
Dispersion effects in buoyancy-driven flow in porous media: local vs.
distributed drainage

by

Saeed Sheikhi Mohammadabadi

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Mechanical Engineering

University of Alberta

© Saeed Sheikhi Mohammadabadi, 2024



Abstract

Understanding the dynamics of injecting fluids into porous media is essential for enhancing the

reliability of subsurface storage/sequestration of fuels such as hydrogen or combustion byproducts

such as carbon dioxide. In either case, significant progress has been made overcoming a variety

of technical challenges, such as understanding capillary trapping in the context of carbon seques-

tration. Conversely, the dynamics of mixing, whether for miscible or immiscible systems, remain

poorly understood. This work specifically focuses on the case of miscible systems and so is espe-

cially relevant when considering the flow of hydrogen into cushion gas, i.e. the gas that remains in

formation in a depleted natural gas reservoir. The overarching goal of this thesis is to clarify the

dispersive mixing dynamics of a source fluid injected into a saturated porous medium characterized

by cap rock that is leaky and possibly inclined. Our study employs both theoretical analysis and

numerical simulations and assumes small density differences between the source and ambient fluids,

consistent with the Boussinesq approximation.

To address the above objective, three interrelated problems are considered. First, we consider

the mixing dynamics of a gravity current fluid that propagates along cap rock layer character-

ized by an isolated fissure. The gravity current thereby experiences dispersion and local drainage.

We present a reduced-order theoretical model that includes coupled, non-linear partial differential

equations, the solution of which yields estimates for the gravity current shape and density. We

validate this theoretical model using COMSOL numerical simulations that mimic laboratory ex-

periments. Our findings demonstrate that the fissure permeability and dimension impact the degree

of dispersive mixing, as do the dip angle and flow conditions upstream of the fissure.
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The second research component replaces the localized drainage of the above paragraph with dis-

tributed drainage, which is experienced along the length of a (thin) interbed layer. Our theoretical

model and accompanying COMSOL simulations suggest that the relative intensity of dispersion is

influenced by the amount of mixing experienced by the fluid that drains through the interbed layer.

To this end, we consider two extreme scenarios for the mixing of this drained fluid: no mixing and

perfect mixing. Comparing the theoretical model predictions with COMSOL output, it is observed

that the no mixing model performs better at early times, while the perfect mixing model is more

reliable at late times. In this context, the degree of dispersive mixing experienced by the gravity

current depends on the effective permeability of the interbed layer and the dip angle.

The third research component is to validate our reduced-order theoretical model for underground

hydrogen storage in depleted gas reservoirs. Thus do we compare predictions from the theoretical

model described in the previous paragraph against the output of reservoir-level simulation software

such as CMG and OpenGoSim. Relative to the reduced-order models, these reservoir simulator

packages take into account more complex factors e.g. thermodynamic effects including non-linear

equations of state and concentration-dependent viscosities. By performing this comparison study,

we find that the theoretical model is often successful in predicting both the amount of hydrogen

that dispersively mixes with the surrounding ambient gas and the shape of the gravity current.

The overarching contribution of this thesis is to present a straightforward hydrodynamic model

that describes the evolution and dispersive mixing of miscible, leaky porous media flows reasonably

well, all the while neglecting the kinds of thermodynamical details that would otherwise render the

model very computationally expensive to solve.
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Ãdisp Fraction of area enclosed by the dispersed interface

Abulk Area enclosed by the bulk interface

Adisp Area enclosed by the dispersed interface

aL Longitudinal dispersivity

aT Transverse dispersivity

xviii



b Buoyancy

B̃disp Fraction of buoyancy enclosed by the dispersed interface

Bbulk Buoyancy enclosed by the bulk interface

Bdisp Buoyancy enclosed by the dispersed interface

c Concentration

cr Rock specific heat capacity

D Dispersion coefficient

D∗
g Gas phase effective molecular diffusion

Dmol
g Gas phase standard molecular diffusion

Dmol Molecular diffusion

Dg Gas phase dispersion

dp Beads diameter

E Mean temporal error

Fg Gas phase formation resistivity factor

g Gravitational field

g′ Reduced gravity

h Gravity current height

Hβ Hydrostatic pressure head of phase β

K Permeability ratio of fissure (Chapter 2) or permeability ratio of interbed layer (Chapter 3
and 4)

k Medium permeability

kβ Relative permeability of phase β

kb Interbed layer permeability

kf Fissure permeability

Keff Effective permeability of interbed layer

l Fissure depth (Chapter 2) or depth of drained fluid (Chapter ?? and 3)

P Pressure

Pe Péclet number

xix



q (Q) Volume flow rate

Ra Rayleigh number

Re Reynolds numbe

Sβ Saturation of phase β

T Temperature

u Horizontal velocity

Uβ Internal energy of phase β

uβ Velocity of phase β

V Darcy flux

wd Drainage velocity

we Entrainment velocity

xαβ Mole fraction of component α in phase β

xf Fissure position

xNb
Bulk phase nose position

xNd
Dispersed phase nose position

Subscripts

0 Reference value

1 Bulk phase

2 Dispersed phase

s Source value

Superscripts

∗ Non-dimensional value

xx



Chapter 1

Introduction and overview

Modern global energy systems, which largely rely on hydrocarbon-based fuels, have undeniably

played a significant role in contributing to climate change and environmental issues (United Nations,

2021,). Global CO2 emissions are estimated to be 23-84Gt annually by 2050, leading to an increase

in Earth’s surface temperature by 1.61◦C (Metz et al., 2005). The mitigation actions taken to

reduce the discharge of anthropogenic CO2 to the atmosphere e.g.

• Capture and store CO2 in geological formations,

• Switch to clean energy sources such as hydrogen instead of fossil fuels,

have been implemented. There is a vast area of active fundamental research and commercial

development, the details of which are highlighted below.

1.1 Geological carbon dioxide sequestration

Carbon dioxide (CO2) can be captured from production sources (either stationary e.g. power plants

or moving e.g. vehicles by bringing the exhaust gases into contact with a solvent to capture the

CO2), compressed to a supercritical state, and subsequently injected into deep oil and gas reservoirs,

unmineable coal seams or saline formations (Keith et al., 2004), see figure 1.1. An IEA report (2002)
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Figure 1.1: [Colour] Options for geological CO2 storage. Adapted from Ali et al. (2022) under the
terms of the Creative Commons CC-BY license.

highlights that saline aquifers have the capacity to store approximately ten trillion tons of CO2

around the world. As a result, saline aquifers have been pursued with the greatest investment

for carbon sequestration among geological storage strategies. After injection, the injected CO2

is more buoyant than the surrounding brine, yielding a rising CO2 plume (Bolster, 2014). Once

the ascending plume encounters an impermeable boundary, it spreads laterally as a gravity current

(Riaz et al., 2006). The vertical and horizontal flow of CO2 can cause its superficial leakage through

local fractures or semi-permeable layers; however, various geophysical and chemical mechanisms,

e.g. residual trapping, dissolution trapping and mineral trapping, might hinder such leakage (Luo

et al., 2022; Massarweh & Abushaikha, 2024).

• Residual trapping: When CO2 moves in porous rock, it can become trapped within pore

spaces due to physical and chemical interactions with the rock matrix (Zuo & Benson 2014;

Rahman et al. 2016; Rasmusson et al. 2018; Amooie et al. 2024). In other words, as CO2

encounters surfaces with varying wettabilities, capillary forces can trap it in smaller pore

spaces due to the surface tension of the CO2-fluid-rock interface (Huppert & Neufeld, 2014).

Ide et al. (2007) showed that this trapping mechanism becomes stronger when the aquifer is
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inclined because gravity can further contribute (by making a thinner and longer flow, thereby

allowing it to contact a larger volume of the aquifer) to trapping and immobilize CO2 in lower

regions before it leaks to the upper regions of the aquifer. The amount of trapped CO2 in this

mechanism is also influenced by the relative permeability characteristics and heterogeneity of

the aquifer rocks.

• Dissolution trapping: CO2 can dissolve into brine within the pore spaces of the rock for-

mation. Once dissolved, the CO2 can be transported with the formation fluids over long

distances. The brine saturated with dissolved CO2 has a density greater than that of uncon-

taminated brine (Riaz et al., 2006). Consequently, the contaminated brine moves downwards

and might initiate finger-like instabilities. The instabilities occur when the boundary layer

Rayleigh number in porous media, Ra = (g∆ρckδ)/(µwϕD), is more than a critical Rayleigh

number, Rac, (Huppert & Neufeld, 2014). Here, ∆ρc is the density difference between the

pure brine and contaminated brine, k is the permeability, δ is the boundary layer thickness,

µw is the brine viscosity, ϕ is the porosity and D is the diffusivity of CO2 in water. Such

instabilities effectively trap high amounts of CO2 within the subsurface (Neufeld et al. 2010;

MacMinn et al. 2012; Khan et al. 2022; Lyu & Voskov 2023).

• Mineral trapping: CO2 might react chemically with minerals in the rock formation, leading

to the formation of carbonate minerals, such as calcite or dolomite. This process, known as

mineral trapping or mineral carbonation, can immobilize sequestered CO2 over geological

timescales by converting it into a solid form within the rock matrix (Gunter et al., 1993;

Bello et al., 2024).

The relative importance of each trapping mechanism might change over time during CO2 storage.

In addition to CO2 sequestration in geological formations, there are other methods available.

For example, CO2 can be incorporated into concrete, trapping it within construction materials

(Zhang et al., 2024). Another option is to inject liquid CO2 into the depths of the oceans, where

high-pressure and cold conditions facilitate sequestration (Pryck & Boettcher, 2024). CO2 can

also react with naturally occurring minerals to form stable carbonates, which can then be used in
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construction materials or safely stored (Kurusta et al., 2023). We can utilize CO2 as a feed-stock

to produce chemicals and fuels, e.g. methanol and synthetic hydrocarbons (Mustafa et al., 2020).

By converting CO2 into these valuable products, we help reduce its presence in the atmosphere.

1.2 Hydrogen as a substitute for fossil fuel

Hydrogen, one of the potential alternatives to hydrocarbon fuels, can be transformed into heat or

electricity without producing CO2 (Andrews & Shabani, 2012). However, the degree to which CO2

emissions are eliminated by using hydrogen depends on the method of hydrogen production. For

instance, green hydrogen (produced by using renewable energy sources to electrolyze water) yields

no greenhouse gas emissions during production while grey and blue hydrogen (generated from nat-

ural gas using a chemical reaction called steam reforming) or brown and black hydrogen (generated

from the gasification of coal) release greenhouse gases, principally CO2, to the atmosphere (World

Energy Council, 2019). In case of blue hydrogen, CO2 is captured and stored rather than released

to the atmosphere. Results show that coal-based hydrogen production without CO2 sequestration

releases 21 kg of CO2 for each kg of hydrogen produced (Li et al., 2022). One of the significant

challenges in the widespread adoption of green hydrogen production is the intermittency of renew-

able energy sources like wind and solar. These sources are dependent on weather conditions and

are not always available on demand. Therefore, storing excess hydrogen is crucial for ensuring

reliable supply during times of high demand. Note that the imbalance in question may be mea-

sured hourly or seasonally depending on context and the size of production and storage facilities

(Sainz-Garcia et al., 2017). Hydrogen might be stored either at the surface in limited volumes or

stored underground in large volumes.

1.2.1 Surface hydrogen storage

Hydrogen can be stored as a gas or liquid at the surface; in either case, safety concerns apply due

to explosion hazards. As a gas, hydrogen is stored in high-pressure tanks at pressures up to 700

bar. This method is suitable for stationary applications and some vehicle applications but requires
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strong and durable tanks to withstand such high pressures. As a liquid, hydrogen is is stored in

cryogenic temperatures (-253°C) to stay in the liquid phase, reducing its volume significantly for

storage. This method is commonly used in aerospace applications but requires energy-intensive

liquefaction processes and specialized storage infrastructure. Therefore, high pressure tanks and

cryogenic temperatures are required for gas and liquid storage, respectively, where, in either case,

substantial costs may be incurred.

1.2.2 Underground hydrogen storage

A more appealing option, particularly when considering large volumes of hydrogen, may be un-

derground hydrogen storage (UHS). Storage within geological strata leverages aquifers or depleted

oil and gas reservoirs. Alternatively, solution mining may be used to generate voids within salt

deposits such that hydrogen is stored within the so-produced salt cavern (Taylor et al., 1986).

Salt caverns

Salt caverns can withstand high pressures, making them ideal for storing hydrogen in a compact

form. However, there are several challenges associated with hydrogen storage in salt caverns, such

as geographical limitations, high infrastructure costs, and environmental concerns. For example,

suitable salt formations are not found everywhere, limiting potential storage locations. Additionally,

the solution mining process used to create these caverns can have environmental impacts, including

groundwater contamination if not properly managed. Despite the fact that gas can be withdrawn

from salt caverns comparatively quickly, salt caverns are expensive and have smaller total gas

storage capacity than do aquifers and depleted oil and natural gas reservoirs (Amid et al., 2016;

Salmachi et al., 2024; Alinejad et al., 2024).

Aquifers

Aquifer storage is appealing because aquifers are prevalent in all sedimentary basins and have a very

large storage capacity. On the other hand, aquifer storage is associated with undesirable reactions
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Figure 1.2: [Colour] Schematic of the hydrodynamic effects and gas mixing in an underground
hydrogen storage facility. Adapted from Michelsen et al. (2023) and used with permission.

leading to the production of gases such as CH4 with commensurate loss of hydrogen (Tarkowski,

2019). Also, UHS in aquifers is even more expensive than that in salt caverns (Tarkowski, 2019).

The high mobility contrast between hydrogen and brine in aquifers increases the possibility of vis-

cous fingering instabilities, which can cause hydrogen to bypass much of the pore space depending

on the geological characteristics of the formation – see figure 1.2. This may lead to uncontrolled

hydrogen spreading in aquifers and reduce the average hydrogen saturation within the pore spaces

(Jafari Raad et al., 2022). Additionally, hydrogen’s high buoyancy compared to the resident for-

mation brine creates a strong upward migration (gravity segregation), driven by the large density

contrast. While gravity segregation can effectively separate injected hydrogen from the formation

brine, it also heightens the risk of uncontrolled subsurface migration, hydrogen leakage, and loss

(Jafari Raad et al., 2022).

Depleted reservoirs

Hydrogen storage in depleted gas and oil reservoirs involves using existing underground forma-

tions, which previously contained natural gas or oil, to store hydrogen. This method leverages

the infrastructure and geological characteristics that are already in place, providing a potentially

cost-effective and large-scale storage solution. Oil reservoirs involve more complexity in terms of

contamination and infrastructure modification.
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Here, we consider hydrogen storage in depleted reservoirs wherein existing infrastructure in the

form of pipelines, etc. may often be leveraged to reduce capital costs. In particular, we focus

on depleted natural gas reservoirs for which chemical reactions between hydrogen and residual

oil are avoided. Throughout the hydrogen storage cycle, the gas that is permanently held in

the reservoir is referred to as the cushion gas. It maintains the parameters needed for proper

functioning of the storage medium, such as pressure range, flow rate, and avoiding withdrawal

contamination. When hydrogen is injected into reservoirs, a portion of it may mix with the cushion

gas, as illustrated in Figure 1.2, or dissolve in the existing water. This fraction of hydrogen

becomes trapped underground and cannot be withdrawn in its pure state. Amid et al. (2016)

reported that hydrogen loss due to dissolution or diffusion into water from underlying aquifers

is insignificant. However, the authors stated that losses resulting from the mixing of hydrogen

and cushion gas in the reservoir needs to be quantified more carefully. Feldmann et al. (2016)

identified mechanical dispersion, along with density differences, and molecular diffusion, as the most

significant factors contributing to gas-gas mixing during UHS in gas reservoirs. Effective molecular

diffusion is regarded as a slow process in comparison to mechanical dispersion in advective or

convective transport (Tek, 1989). Feldmann et al. (2016) and Sahu & Neufeld (2023) also reported

that mechanical dispersion is more severe in heterogeneous reservoir where hydrogen can leak to

other layers. There is considerable uncertainty surrounding the mixing of hydrogen and cushion

gas in depleted gas reservoirs, particularly in terms of the parameters and mechanisms influencing

hydrogen dispersivity. This has led to a significant knowledge gap in this area.

The hydrodynamic behaviour of hydrogen coupled with formation heterogeneities make it diffi-

cult to simulate the precise details of hydrogen migration. Moreover, tracking the movement of the

injectate plume in hydrogen storage operations can be costly. Therefore, it is imperative to create

realistic conceptual models of hydrogen flow, drainage, and dispersion in order to guide crucial

procedures involved in the techno-economic assessment of hydrogen storage projects. To this end,

and in the interests of simplicity, we defer to future investigations consideration of additional effects

such as viscous fingering, capillary effects, bio-geochemical reactions and, when residual liquid may

be present, capillarity, dissolution and chemical reaction. On the other hand, we do specifically
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consider the technical details of dispersion and buoyancy-driven flow, as is appropriate when con-

sidering the flow evolution away from the point of injection. Throughout, and unless otherwise

noted from this point forward, we assume an injectate that is dense relative to the surrounding

ambient fluid. Although this description does not apply to the case of hydrogen storage, the above

assumption makes our study consistent with key seminal works e.g. that of Huppert & Woods

(1995) discussed below. And, in any event, there is no difference, dynamically-speaking, between a

dense vs. buoyant injectate provided density contrasts are relatively modest so that the Boussinesq

approximation applies. Thus do we illuminate key physical processes in a framework that becomes

independent of orientation in the Boussinesq limit of small density contrast. The Boussinesq ap-

proximation allows us to assume that viscosity is independent of buoyancy/concentration effects,

leading to the simplification of treating the viscosity as constant for both the mixed and unmixed

fluids.

1.3 Buoyancy-driven flow in porous media

Buoyancy-driven flow is mainly governed by density differences, stemming from either temperature

and/or concentration gradient. When a denser fluid is placed above a lighter fluid within a porous

medium, gravity acts on the density difference, causing the denser fluid to sink while the lighter

fluid rises. This movement creates flow patterns within the porous medium. Such flow patterns

might be a primarily vertical, downward or upward, plume or a primarily horizontal gravity current

– see figure 1.3 (Note that Figure 1.3(a) shows a primarily vertical flow with no barriers obstructing

the downward movement whereas in figure 1.3(b) an impermeable layer causes the fluid to spread

out as a gravity current).

The dynamics of buoyancy-driven flow in porous media are influenced by several factors, i.e.

• Density contrast (∆ρ): The density difference between the fluids involved in the flow

strongly influences the magnitude of the buoyancy force and thus the flow rate.

• Porous Medium Properties: The porosity (ϕ), permeability (k), and pore structure of
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Figure 1.3: [Colour] (a) Dense plume and (b) dense gravity current with density ρ within a uniform
porous medium. This figure is generated by running COMSOL simulations of the type described
in Chapter 2 and Chapter 3.

the medium greatly influence the flow behavior. Highly permeable and well-connected pore

networks facilitate faster fluid movement.

• Fluid properties: The viscosity (ν) and other properties of the fluids involved affect their

ability to flow through porous media.

• Boundary conditions: The presence of impermeable/semi-permeable boundaries or other

obstructions can alter the flow patterns and affect the overall behavior of buoyancy-driven

flow in porous media.

Accordingly, porous media flows typically are categorized by two non-dimensional numbers: the

Reynolds number, Re = Udo
ν , and Péclet number, Pe = Udo

Dmol
, where U is a characteristic velocity,

do is a characteristic length characteristic of the pore size and Dmol is molecular diffusion. The

Reynolds number indicates the proportion of inertia compared to viscous dissipation. If Re < 10,

the flow is Darcy and momentum conservation follows Darcy’s law; however, flow deviates from

Darcy’s law when Re > 10. In this Re > 10 scenario, inertial effects must be incorporated in

the momentum conservation equation. Alternatively, the Péclet number compares mass transport

by mechanical dispersion to mass transport by molecular diffusion. If Pe ≪ 1 molecular diffusion

is the dominant factor over mechanical dispersion, whereas when Pe ≫ 1, mechanical dispersion
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Figure 1.4: Physical mechanisms cause dispersion in porous media.

takes precedence. Dispersion is the macro-scale manifestation of pore-scale mechanisms that cause

fluid particles, originally adjacent, to spread apart from one another. Such mechanisms are (i) a

difference of fluid velocity in pores with different sizes (figure 1.4a); (ii) a difference of flow path

length (figure 1.4b); and (iii) a difference in fluid velocity owing to position within a pore in a pore

channel (figure 1.4c) (Bear, 1972). Dispersion can mix fluid in the direction of the flow in which

case it is referred to as longitudinal dispersion. Alternatively, dispersion can mix perpendicular to

the flow direction in which case it is referred to as transverse dispersion (Bear, 1972).

Understanding buoyancy-driven flow in porous media is crucial for various applications, includ-

ing underground hydrogen storage, geological CO2 sequestration, groundwater management, oil

and gas recovery, and geothermal energy production. Given this critical importance, researchers

have been exploiting mathematical models, laboratory experiments, and numerical simulations to

study and predict the behavior of porous media buoyancy-driven flow and to develop strategies for

its control and optimization.

1.3.1 Literature review

Plume

Wooding (1963) derived similarity solutions for laminar plumes in porous media under the assump-

tion of a Darcy’s flow with a Péclet number Pe ≪ 1, such that flow is diffusion dominant. For both

rectilinear and axisymmetric geometries, the formulas for the plume volume flux are provided as
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follows:

Rectilinear : Q =
(︂36Dmol ϕF0 kΛ

2 z

ν

)︂1/3
, and Axisymmetric : Q = 8πDmol ϕ z , (1.1)

where F0 is the source buoyancy flux and Λ is the source width perpendicular to the paper. Mean-

while z is the vertical distance from the source. Equation (1.1) illustrates how the plume volume

flux increases with distance from the source in the porous medium, with the dependency on the

permeability and porosity of the medium.

Wooding’s solution was later extended to dispersion dominant flow by Sahu & Flynn (2015) for

infinite porous media, and by Gilmore et al. (2021) for semi-infinite porous media, which is confined

by an impermeable vertical boundary at the injection elevation. The former study suggests the

following expressions for volume flux and reduced gravity of a rectilinear plume:

Q =
[︂(︂16F0 kΛ

π ν

)︂2
aT ϕ z

]︂1/4
, (1.2a)

g′ =
[︂(︂π F0 ν

16 kΛ

)︂2 1

aT ϕ z

]︂1/4
, (1.2b)

respectively. Here, aT is the transverse dispersivity. The latter study reports the following rela-

tionships for plume volume flux and reduced gravity:

Q =
[︂(︂8F0 kΛ

π ν

)︂2
aT ϕ z

]︂1/4
, (1.3a)

g′ =
[︂(︂π F0 ν

8 kΛ

)︂2 1

aT ϕ z

]︂1/4
, (1.3b)

respectively. These results illustrate that the dispesivity coefficient becomes important rather than

diffusion coefficient when flow is dispersion dominant.

Gravity current

Huppert & Woods (1995) conducted a seminal study of gravity current flow in porous media,

specifically analyzing a two-dimensional rectilinear geometry along an impermeable boundary with
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an arbitrary slope angle, θ. Assuming a hydrostatic pressure distribution and using Darcy’s law,

the authors derived an equation for the gravity current along-slope velocity, u, which reads

u = −kg′

ν

(︂∂h
∂x

cos θ − sin θ
)︂
, (1.4)

where ν is the kinematic viscosity, g′ = g∆ρ/ρ is the reduced gravity and h is the gravity current

height. Huppert & Woods (1995) averaged the mass conservation equation in the gravity current

perpendicular to the slope and obtained the following evolution equation for h:

ϕ
∂h

∂t
− kg′

ν

∂

∂x

[︂(︂∂h
∂x

cos θ − sin θ
)︂
h
]︂
= 0 . (1.5)

Lyle et al. (2005) expanded Huppert and Woods’s findings to axisymmetric gravity currents with

θ = 0◦. They found that the horizontal velocity measured in axisymmetric coordinates is

u = −kg′

ν

∂h

∂r
, (1.6)

in which r indicates radial direction. Therefore, (1.5) becomes

ϕ
∂h

∂t
− kg′

ν

1

r

∂

∂r

(︂
r
∂h

∂r
h
)︂
= 0 . (1.7)

Although (1.5) and (1.7) share some similarities –both of them are non-linear heat equations– their

predictions are not the same. Thus does a gravity current spread as t2/3 and its height varies

as t1/3 in a rectilinear geometry while the gravity current (with the identical source and initial

conditions) spreads as t1/2 and its height is constant with time in an axisymmetric scenario. Later,

Nordbotten et al. (2005) and Pegler et al. (2014) studied gravity currents within the vertically-

confined porous media. Their research revealed that confinement introduces fundamentally different

dynamics compared to unconfined porous media. While the ambient fluid effects are not important

for gravity currents spreading in unconfined media (Huppert & Woods, 1995), vertical confinement

contributes ambient flow effects due to the restriction on the total thickness of the exchange flow.

As a result of the ambient counter flow, the dense gravity current is retarded, and the ambient fluid
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viscosity becomes significant in confined settings. According to Pegler et al. (2014) for a porous

media with thickness H, the two equations for the gravity current flow and ambient flow are given

by

ϕ
∂h

∂t
− k

µ

∂

∂x

(︂
h
∂P

∂x

)︂
= 0 , (1.8a)

∂

∂x

[︂(︂k
µ
h+

k

µa
(H − h)

)︂ ∂P

∂x
− kg′

νa
(H − h)

∂h

∂x

]︂
= 0 . (1.8b)

Here, subscript ‘a’ indicates ambient fluid. Equations (1.8a) and (1.8b) form a coupled hyperbolic-

elliptic system for h and P , where the latter variable denotes the background pressure due to the

ambient counter flow.

In the geological context, gravity currents could potentially extend along cap rock, exposing

pathways for leakage. The leakage associated with gravity currents may be either localized (such as

through a discrete fracture) or distributed (as through seeping into a lower layer characterized by

relatively low permeability). Upon fluid drainage from the gravity current underside, (1.5) modifies

to

ϕ
∂h

∂t
− kg′

ν

∂

∂x

[︂(︂∂h
∂x

cos θ − sin θ
)︂
h
]︂
= wd , (1.9)

where wd (< 0) is the drainage velocity within the gravity current. Pritchard (2007) modeled gravity

current flow within a porous medium over a cap rock layer intersected by line fissures. This model

employed numerical integration to describe drainage driven by the hydrostatic pressure from the

fluid column above the fissure(s). For the same source and initial conditions as described above,

the authors found that leading edge of the gravity current spreads as t1/2, which is slower than the

prediction made by Huppert & Woods (Huppert & Woods, 1995). Pritchard (2007) proposed that

entirely draining the gravity current with fractures might be challenging, particularly if the system

has a few large fractures instead of many smaller ones. Later, Neufeld et al. (2009) expanded

the Pritchard (2007) model to examine porous media gravity current flow over a single line fissure.

They considered a fissure of width W and permeability kf positioned a distance xf from the source.
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Figure 1.5: Gravity current over a narrow permeable layer.

They assumed that W ≪ xf and expressed the vertical draining velocity within the fissure as

wd = −
kf g

′

ν

(︂
1 +

h

ξ

)︂
, (1.10)

in which ξ indicates the fissure thickness. The authors then validated the above expression by

comparing it with the outcomes of a Hele-Shaw cell experiment. Farcas & Woods (2013) found that

when multiple fractures are present in the boundary, the system ultimately behaves like a scenario

with distributed drainage from the gravity current through a permeable layer with permeability kb,

which is given by

kb ≃
∫︂ W

0
(kf/Df ) dx . (1.11)

Here, Df is the distance between fractures. For the case of distributed drainage, Pritchard et al.

(2001) modeled the drainage term by considering leakage along a thin semi-permeable layer – see

figure 1.5. They assumed the permeability of this thin layer kb ≪ k and its thickness, ξ, to be much

smaller than the ambient thickness. Therefore, the drainage velocity becomes

wd = −kb g
′

ν

(︂
1 +

h

ξ

)︂
. (1.12)

Here, the drainage velocity is similar to that in Neufeld et al. (2009) but distributed rather than

localized at a fissure. Goda & Sato (2011) increased the depth of the lower/draining layer and

modeled the drainage from the gravity current through a deep permeable layer. By doing so,

the depth of the drained fluid in the lower layer, l(x, t), should be considered when deriving an
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expression for the drainage velocity. Accordingly, their revised theoretical estimate for wd reads

wd = −kb g
′

ν

(︂
1 +

h

l

)︂
. (1.13)

Goda & Sato (2011) ignored ambient fluid entrainment into the drained fluid in the lower layer. As

a result, the reduced gravities g′ in the upper and lower layers are equal. However, Rayleigh–Taylor-

type instabilities in the lower layer cause a significant entrainment of ambient fluid into the drained

fluid. Therefore, Sahu & Flynn (2017) accounted for entrainment in the lower layer and defined

different reduced gravities for the upper layer, g′u, and for the lower layer, g′l. Subsequently, (1.13)

was modified to

wd = −
kb g

′
l

ν

(︂
1 +

g′u
g′l

h

l

)︂
. (1.14)

The authors suggested an empirical correlation for g′l/g
′
u experimentally based on source reduced

gravity and volume flow rate. Later, Bharath et al. (2020) extended the Sahu & Flynn (2017)

model for inclined gravity currents with arbitrary inclination angle, θ. They expressed the drainage

velocity as

wd = −
kb g

′
l

ν

(︁
1 +

h

l
cos θ

)︁
. (1.15)

Although it is mentioned in sections 1.1 and 1.2.2 that mass transfer between ambient and

injected fluid is important in the context of CO2 sequestration and underground hydrogen storage,

all the aforementioned studies consider a sharp interface and therefore exclude the possibility of

mass transfer by dispersion. Sahu & Neufeld (2020), theoretically and experimentally, studied

mixing in horizontal porous media gravity currents elongating over an impermeable boundary. They

demonstrated that considerable mixing between the gravity current and the surrounding ambient

fluid takes place as a result of mechanical dispersion. Looking to incorporate these observations into

a theoretical model, Sahu & Neufeld (2020) only considered the transverse component of dispersion

and ignored its longitudinal counterpart to quantify the dispersive mixing in the gravity current.
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Based on their theoretical model, the amount of ambient fluid mixed into the gravity current is

Ve = α
(︂q k g′
νϕ2

)︂2/3
t4/3 , (1.16)

in which q is source volume flux and α is the dispersive entrainment coefficient. They conducted

dye-attenuation-based laboratory experiments and estimated α ≃ 0.01 for the case where there is

no drainage of gravity current fluid. Their theoretical model was thereby validated against the ex-

perimental outcomes. Sahu & Neufeld (2020) anticipated that α and subsequently Ve increase when

the gravity current experiences drainage. Therefore, Sahu & Neufeld (2023) conducted an experi-

mental study on the behavior of gravity currents in multi-layered porous media to investigate the

effects of heterogeneity and drainage on dispersive mixing. Their study revealed that the existence

of transverse gravity-induced fingers and a leading blunt edge within layered materials intensify the

mixing within gravity currents. Sahu & Neufeld (2023) presented semi-empirical formulas based

on their experimental measurements. These semi-empirical equations can be used to predict the

dynamics of gravity current flow and mixing in a heterogeneous medium on a significantly larger

scale by accurately specifying the depth-averaged parameters and ‘jump factors’ that characterize

the heterogeneity of the medium.

1.4 Knowledge gap

The inherent characteristics of porous media within a majority of geological formations typically

remain unknown, and the monitoring of fluid flow incur substantial expenses. Consequently,

researchers and engineers benefit greatly from simplified theoretical frameworks and statistical

methodologies to comprehend and predict the fluid behavior within these geological structures.

Despite progress by various researchers, as outlined in section 1.3, there is still substantial room

for enhancing the capacity to predict the patterns in buoyancy-driven flows in relation to CO2

sequestration or underground hydrogen storage. Notably, compared to the extensive research on

gravity currents supporting a sharp interface, the mixing in gravity currents is far less thoroughly

explored. As the benefits and challenges of depleted reservoir storage are mentioned in section
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1.2.2, we aim to investigate mixing due to mechanical dispersion in miscible porous media gravity

currents that is relative to flow in depleted gas reservoirs. We specifically focus on UHS rather

than CO2 sequestration because (i) CO2 has been much more thoroughly studied and industrial

projects have been up and running for decades, (ii) the decreasing reliance on fossil fuels in the

future will eventually reduce the need for CO2 sequestration. This investigation addresses following

knowledge gaps:

1. Previous studies related to dispersive mixing in porous media gravity currents (Sahu &

Neufeld, 2020; Sahu & Neufeld, 2023) did not predict the mixing zone clearly by separat-

ing bulk and dispersed fluid phases. However, in practical applications and as depicted in

figure 1.2, figure 5 of Feldmann et al. (2016) and figure 3 e of Sahu & Flynn (2017), the mix-

ing zone is a vital parameter in leaky gravity currents because the fluid in the mixing zone

likely will not be recovered owing to the high capital and operating costs of surface separation

facilities. Therefore, to predict the dispersive mixing behaviour in a porous media gravity

current, it is necessary to assign an interface between the bulk and dispersed phases. This

distinction between bulk and dispersed fluid can quantify the amount of dispersion within

gravity currents. Once the requisite theoretical scaffolding is in place, the effects of param-

eters e.g. source conditions and mass loss by drainage on the amount of dispersion can be

investigated.

2. In geological contexts, the orientation of porous layers is generally influenced by the topog-

raphy of the landscape and can often be inclined at a certain angle, as depicted in figure 1.1.

This inclination can significantly affect the dynamics of fluid flow through these layers. Sahu

& Neufeld (2020) and Sahu & Neufeld (2023) investigated the dispersive mixing in horizontal

gravity currents. However, inclined boundaries may lead to non-trivial interactions between

gravity and the non-uniform permeability in the media, potentially resulting in different mix-

ing rates. Further research is required to understand how these inclined layers impact fluid

flow and mixing.

3. In the context of leaky porous media gravity currents, various real-world scenarios exist where
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fluid flow encounters localized or distributed drainage. For instance, faults or fractures in cap

rocks can cause local drainage by providing distinct, high permeability pathways for fluids

to escape. Distributed drainage, on the other hand, occurs throughout sedimentary layers as

fluids progressively drain through the (tight) porous matrix. To the best of our knowledge,

there are currently no thorough theoretical works that address dispersive mixing in porous

media gravity currents that experience either distributed or local drainage.

4. Although it is suggested by Sahu & Neufeld (2023) that their semi-empirical formulations

can be applied to geological scales, real underground storage sites exhibit a wide range of

geological conditions, including varying layer orientations, thermodynamic conditions, and

complex interactions between the injectate and ambient fluid. These factors can significantly

alter the flow dynamics and mixing behavior as predicted even in simplified theoretical models

and controlled experimental setups. No thorough investigation has been conducted to confirm

whether the findings of studies on dispersive mixing in buoyancy-driven gravity currents can

be successfully applied to practical uses such as underground hydrogen storage.

We will therefore deploy a gravity current model that is similar to, but more detailed than,

that leading to (1.9). In so doing, we implicitly make the following set of assumptions: (i) flow

velocities are sufficiently small and Reynolds numbers sufficiently modest that the porous media

flow is appropriately modeled as Darcy, (ii) the gravity current is long and thin such that the

pressure distribution within the gravity current is hydrostatic, (iii) the Péclet number is sufficiently

large, allowing us to ignore diffusion relative to mechanical dispersion, (iv) the density difference is

solely attributed to concentration, while the effect of pressure on density difference is disregarded.

1.5 Thesis outline

In this thesis, we fill in the gaps in our understanding as mentioned in section 1.4 by applying theory

and CFD methods. To this end, the thesis has three goals. These are (i) Utilize a theoretical model

describing the flow of a miscible gravity current subject to local drainage to identify key dispersion-
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influencing parameters (e.g. those associated with the source vs. fissure). (ii) Extend the preceding

analysis to include a gravity current experiencing distributed drainage. (iii) Apply our findings

to practical instances of underground hydrogen storage, this for the purposes of evaluating the

strengths and weaknesses of our analytical models vis-à-vis engineering operations in the field.

Accordingly, chapter 2, chapter 3 and chapter 4, which are further described below, fulfill these

goals.

A simplified hydrodynamic theoretical model is developed in chapter 2 to predict the dispersive

mixing behavior of gravity currents subjected to localized drainage. We supplement our theoretical

work with similitude CFD simulations conducted using COMSOL in order to assess the accuracy of

our theoretical predictions. Such validation is especially important because our theoretical model

takes a binary view and assigns gravity current into one of two categories, i.e. bulk vs. dispersed.

By measuring the volume of fluid predicted to reside in the dispersed phase, we propose a new

metric to assess the degree of mixing. With the metric so defined, we can then assess the relative

importance of various control parameters.

In chapter 3, we extend our theoretical framework and COMSOL numerical model to investigate

dispersive mixing dynamics in gravity currents experiencing basal distributed drainage through a

thin interbed layer. By the integration of theoretical modeling and COMSOL simulations, we

examine the behaviour of the drained fluid and its impact on the gravity current mixing. Key

parameters on the mixing dynamics of the leaky gravity currents are studied using the metric from

the previous chapter.

In chapter 4, we model the process of hydrogen storage in depleted gas reservoirs using sophis-

ticated reservoir simulation software, namely CMG and OpenGoSim. Our primary objective is to

assess the applicability and accuracy of the reduced-order hydrodynamic model of chapter 3 in pre-

dicting the behavior of actual geological flows. In addition to validating our theoretical model, we

extend our investigation to explore mixing behaviors in flow scenarios that go beyond the original

scope of the theoretical model. We specifically study the dynamics of hydrogen flow and mixing

in confined reservoirs, where the flow is constrained by impermeable layers or boundaries, and in
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anticline reservoirs.

Chapter 5 provides a summary of the major conclusions and ideas for future research that stem

from the current analysis.

Chapters from this thesis have been published and presented at various conferences/symposiums.

A relevant summary is given in tables 1.1 and 1.2 below.

Table 1.1: Scientific contributions of this thesis.

Chapter Journal Status Co-author(s)

2 J. Fluid Mech. Published M. R. Flynn, C. K. Sahu

3 J. Fluid Mech. Published M. R. Flynn

4 Int. J. of Hydrogen Energy Submitted M. R. Flynn

Table 1.2: List of scientific meetings at which the author has presented portions of this thesis.
Abbreviations are as follows: APS - DFD: American Physical Society - Division of Fluid Dynamics,
IGR: Institute of Geophysical Research, FEGRS: The Faculty of Engineering Graduate Research
Symposium. Furthermore, Interpore is an annual conference organized by the International Society
of Porous Media.

Chapter(s) conferences/symposiums Location Month and Year

2 13th Interpore Online May-June 2021

2 APS - DFD Online Nov. 2022

2, 3 15th Interpore Edinburgh, Scotland May 2023

3 FEGRS Univ. of Alberta Aug. 2023

3, 4 16th Interpore Online May 2024

2, 3, 4 IGR Symposia Univ. of Alberta Nov. 2022, Apr. 2023

Nov. 2023, Apr. 2024
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Chapter 2

Dispersion effects in porous media
gravity currents experiencing local
drainage 1

2.1 Abstract

We develop a theoretical model to study (dense) two-dimensional gravity current flow in a later-

ally extensive porous medium experiencing leakage through a discrete fissure situated along this

boundary at some finite distance from the injection point. Our model, which derives from the

depth-averaged mass and buoyancy equations in conjunction with Darcy’s law, considers dispersive

mixing between the gravity current and the surrounding ambient by allowing two different gravity

current phases. Thus do we define a bulk phase consisting of fluid whose density is close to that of

the source fluid and a dispersed phase consisting of fluid whose density is close to that of the ambi-

ent. We characterize the degree of dispersion by estimating, as a function of time, the buoyancy of

the dispersed phase and the separation distance between the bulk nose and the dispersed nose. On

this basis, it can be shown that the amount of dispersion depends on flow conditions upstream of

the fissure, the fissure permeability, and the vertical and horizontal extent of the fissure. We also

show that dispersion is larger when the gravity current propagates along an inclined barrier rather

than along a horizontal barrier. Model predictions are fitted against numerical simulations. The

1Sheikhi. S., Sahu, C. K. & Flynn, M. R. 2023 Dispersion effects in porous medium gravity currents experiencing
local drainage. J. Fluid Mech. 975, A18.
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simulations in question are performed using COMSOL and consider different inclination angles and

fissure and upstream flow conditions. Our study is motivated by processes related to underground

H2 storage (UHS) e.g. an irrecoverable loss of H2 when it is injected into the cushion gas saturating

an otherwise depleted natural gas reservoir.

2.2 Introduction

Among possible substitutes for hydrocarbon fuels, hydrogen has a high energy density and can be

converted into heat or electricity without emitting CO2 (Andrews & Shabani, 2012). Although

there is an obvious incentive to generate hydrogen from renewables, it is difficult to do so on a

temporally-consistent basis given the variability of e.g. wind forcing and solar radiation. As such,

options for H2 storage must be pursued so that H2 produced in excess may be stored then used

when demand outstrips supply (Sainz-Garcia et al., 2017). An appealing option for H2 storage,

particularly when considering large volumes of H2, may be underground storage (Panfilov, 2016).

The technical and economic feasibility of underground H2 storage (UHS) has been studied in various

locales e.g. Bulgaria, United States, United Kingdom, Poland, Spain and Turkey (Flesch et al.,

2018). Here, we consider UHS in the context of depleted reservoirs. In particular, we focus on

depleted natural gas reservoirs, which avoid a possible contamination of H2 by the longer chain

organic molecules present in depleted oil reservoirs.

UHS in depleted natural gas reservoirs requires cushion gas, gas stored permanently in formation

to maintain pressure for optimum injection and withdrawal. Although the cushion gas may be H2,

it is more typically a dissimilar (heavier) gas such as CO2 or N2 (Feldmann et al., 2016). Thus

H2 injection into cushion gas may be associated with significant mixing, whether due to diffusion

or dispersion. Mixing may be exacerbated by buoyancy effects, which result from the small size

of the H2 molecule. In turn, H2 has a high mobility in formation and may therefore travel long

lateral distances or else leak into adjoining stratigraphic layers (Lubon & Tarkowski, 2021). Leakage

often arises from local fault(s), which act as pathways through otherwise impermeable layers – see

e.g. Flett et al. (2005). Complicating matters are the facts that (i) local faults may prove difficult
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to detect in surveys, and, (ii) monitoring injectate migration in UHS operations is nontrivial and

expensive. There is a need, therefore, for tractable conceptual models of buoyancy-driven flow,

drainage and dispersion that may inform key processes important to the techno-economic evaluation

of UHS projects. Of course, such conceptual models might additionally consider effects such as

viscous fingering, capillary effects, bio-geochemical reactions and, when residual liquid is present,

capillarity, dissolution and chemical reaction. However, and in the interests of simplicity, we do not

examine such additional effects here.

Another possible application of our work is to CO2 sequestration. In this related (and better-

studied) problem, one likewise considers the eventual fate of a fluid that is injected at high pressure

into a porous medium. Similar to UHS, the success of CO2 sequestration relies, in part, on con-

siderations of the mixing (e.g. by dissolution c.f. MacMinn et al. 2012; Khan et al. 2022) between

the injectate with the ambient fluid (i.e. brine) that occupies the pore space. CO2 sequestration

flows are, however, complicated by surface tension effects and the possibility of capillary trapping,

which arise because of the relative immiscibility of CO2 and brine.

Buoyancy-driven flow in porous media is bookended by two canonical scenarios: a vertically

ascending or descending plume and a horizontally-propagating gravity current. Wide attention

has been devoted to gravity current flow in porous media since the seminal work of Huppert &

Woods (1995), who studied the evolution of finite releases of fluid propagating in an expansive

rectilinear porous medium. They considered that (dense2) fluid moves under gravity along either

horizontal or inclined boundaries and through a medium whose permeability is either uniform or

else changes normal to the lower (impermeable) boundary. Huppert and Woods’s analysis was

extrapolated to axisymmetric geometries by Lyle et al. (2005). Further extensions to Huppert &

Woods’s work have considered gravity current flow in shallow porous media (MacMinn et al., 2012;

Pegler, Huppert & Neufeld, 2014), through horizontally heterogeneous media (Zheng, Christov &

Stone, 2014), and through layered porous media that are either horizontal (Pritchard et al., 2001;

2For analytical convenience, many previous studies assume that the gravity current density is larger than that of
the surrounding ambient. To be consistent with this earlier body of research, a similar assumption shall be adopted
here. In this respect, the gravity currents to be described quantitatively in e.g. section 2.3 are “upside-down” relative
to those expected in real UHS operations.
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Goda & Sato, 2011; Sahu & Flynn, 2017), or else make an angle to the horizontal (Bharath et al.,

2020). Studies have further considered non-Newtonian gravity currents (Ciriello et al., 2016) and

gravity currents consisting of fluid having spatially-variable densities (Pegler, Huppert & Neufeld,

2016).

Notable in the above summary of previous research are investigations involving a leakage of

fluid from the gravity current underside. This leakage may be either localized (e.g. through a

discrete fissure) or else distributed (e.g. into a lower layer of comparatively small permeability).

Pritchard (2007) modeled gravity current flow in a porous medium with a series of line fissures

in which drainage is due to the hydrostatic pressure exerted by the column of gravity current

fluid situated directly above a particular fissure. Neufeld et al. (2009) expanded this analysis by

additionally considering the weight of the dense fluid inside and below the fissure. More recently,

Gilmore et al. (2021) combined Neufeld et al.’s description with the plume solution of Sahu &

Flynn (2015) to study flow in faults cross-cutting multiple aquifers. Meanwhile Avci (1994) studied

local drainage in separated confined aquifers taking into account the effect of the injection pressure

and the natural contrast of hydraulic head in two separated aquifers. Nordbotten et al. (2004)

extended Avci’s work for multiple abandoned leaky wells. The above studies mostly invoke a sharp

interface approximation and so ignore mass transfer between gravity currents and the surrounding

ambient fluid e.g. through dissolution, diffusion or dispersion. However, in miscible flow e.g. gas

reservoir storage of H2, the numerical simulations of Feldmann et al. (2016) indicate that mixing

between the injected and ambient fluids may be nontrivial. As we shall see, this feature becomes

more prominent in the presence of draining.

Mixing in porous media involves dispersion and diffusion. Diffusion is a process driven at the

molecular scale by concentration differences while dispersion is advection-driven and is related

to the macro-scale flow phenomena. Dispersion in a porous medium is influenced by the grain

characteristics in several ways: the pore size affects the tortuosity of flow paths; variations in

channel width alter the velocity distribution within the pores; different grain sizes modify the

permeability and contribute to medium heterogeneity by creating diverse flow paths; and the surface

area variations impact the dispersion process (Bear, 1972). Mathematically, dispersion (D) can be
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expressed as D = a · V , in which a is dispersivity and V is Darcy velocity. Dispersivity depends

on factors such as pressure, temperature, flow velocity, and the tortuosity and heterogeneity of

the porous medium (Michelsen et al., 2023). The mixing that occurs between miscible fluids in

porous media flow depends on the Péclet number which characterizes the importance of advection to

diffusion. Mixing is due to diffusion for Pe ≪ 1 and due to dispersion (transverse and longitudinal)

for Pe ≫ 1 (Delgado, 2007). Studies that explore mixing in the context of buoyancy-driven porous

media flow include Szulczewski & Juanes (2013). They examined mixing due to diffusion for lock

exchange flows consisting of two fluids in vertically confined permeable rock. Szulczewski & Juanes

(2013) showed that if a constant volume of dense fluid is released into light fluid, there is an

evolution through the following regimes: (i) diffusion-dominated flow, (ii) slumping in which the

interface between the two fluids is sharp and tilts in an S-shaped curve, (iii) slumping in which the

interface remains sharp but changes from an S-shaped curve to a straight line, (iv) Taylor slumping

where mixing increases due to Taylor dispersion at the aquifer scale and decelerates the flow, and,

(v) late diffusion where, similar to (i), transport occurs primarily by diffusion. Hinton & Woods

(2018) modeled longitudinal shear dispersion due to a vertical gradient of permeability. They

demonstrated that the pattern of longitudinal dispersion depends on a number of factors including

(i) the viscosity (or mobility) ratio, and, (ii) the severity of the vertical permeability gradient.

Huyakorn et al. (1987) considered interfacial mixing associated with sea water intrusions into coastal

aquifers. The study of Paster & Dagan (2007) also applied boundary layer approximations and

the von Kármán integral method to solve for the velocity-dependent transverse dispersion in sea

water intrusions having a non-uniform flux field. Mixing in miscible gravity currents is studied

directly by Sahu & Neufeld (2020). In their study, the authors used the depth-averaged mass and

buoyancy conservation equations to provide a theoretical model for porous media gravity currents

experiencing transverse dispersion only. Theoretically speaking, they determined that the gravity

current buoyancy flux can be described by a self-similar solution. However, in contrast to the sharp

interface case, the gravity current height and concentration are not self-similar.

A limitation of the study by Sahu & Neufeld (2020) is that it ignored longitudinal dispersion.

Furthermore, they considered a dispersed interface only and did not define the bulk interface
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separately from the dispersed interface. The gravity current nose position is therefore identical

to that predicted by a sharp interface formulation. Sahu & Neufeld’s model works well when the

lower boundary is impermeable, however, when draining is allowed to occur (either locally or in

a distributed fashion), experimental evidence from Sahu & Flynn (2015) (e.g. their figure 3e) and

from Bharath et al. (2020) shows that a significant separation may arise between the fronts for the

bulk and dispersed phases of the gravity current.

Due to these shortcomings in the literature, we seek to provide a theoretical model for porous

media gravity current flow where the bulk and dispersed phases are accounted for separately using

the depth-averaged mass and buoyancy conservation equations for each phase. Also important is

to develop a complementary numerical model (e.g. using COMSOL Multiphysics) to validate our

theoretical model. In section 2.3, we derive a theoretical model for gravity currents experiencing

dispersion and local drainage. Section 2.4 describes the numerical simulations meant to corroborate

model output. In section 2.5, we discuss results and compare the predictions of the theoretical

model with those due to the numerical simulations. Section 2.6 illustrates the application of our

theoretical model to UHS in depleted reservoirs. Finally, current work is summarized and ideas for

future research are outlined in section 2.7.

2.3 Theoretical model

2.3.1 Governing equations

We consider gravity current flow due to a dense fluid injection of density ρs along a punctured

boundary that makes an angle θ with the horizontal as depicted in figure 2.1. Simplifying assump-

tions are as follows: (i) Initially, the porous medium is saturated with ambient fluid of uniform

density ρ0. (ii) The source fluid and ambient fluid are incompressible and also miscible i.e. capillary

effects can be ignored both in the medium as well as in the fissure. (iii) The gravity current consists

of a bulk phase and a dispersed phase both of which remain long and thin such that the gravity

current flow is everywhere hydrostatic, i.e. the Dupuit approximation is applicable. In addition,
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the depth of the ambient is much larger than the gravity current depth. (iv) Consistent with the

Boussinesq approximation, the dynamic viscosity, µ, is independent of concentration and therefore

the viscosity of the bulk and dispersed phases are assumed equal. (v) At least until the location of

the isolated fissure, the leading edge of the dispersed phase remains close to that of the bulk phase

such that negligible drainage of dispersed fluid occurs (vi) Pe ≫ 1 such that diffusion is ignored.

(vii) Broadly analogous to the dissolution study of MacMinn et al. (2012), whatever mixing occurs

along the bulk-dispersed boundary leaves, within the bulk phase, a core of fluid whose density

remains ρs. This core of bulk fluid remains upstream of the dispersed phase and, in time, must

extend downstream of the fissure.

Following Vella & Huppert (2006), the coordinate system (x, z) associated with the along- and

cross-slope directions is obtained by a clockwise rotation of the natural coordinates (X,Z) through

an angle θ. The origin of both coordinate systems is coincident with the isolated source, which is

indicated by the red dot in figure 2.1. In the analysis to follow, we restrict attention to x ≥ 0.

If the gravity current experiences local drainage through a fissure situated at x = xf and having

width ξ, the continuity equation as applied to the bulk phase reads

ϕ
∂h1
∂t

+
∂

∂x

∫︂ h1

0
u1 dz = −we1 − wd F (x, xf , ξ) , (2.1)

where ϕ is the porosity, h1 is the height of the bulk phase and we1 and wd are the Darcy velocities

respectively accounting for entrainment from the bulk to the dispersed phase and drainage through

the fissure. Meanwhile F (x, xf , ξ) is a boxcar function centered on the fissure, which is zero every-

where except within the interval xf − ξ
2 < x < xf +

ξ
2 . Because the pressure is hydrostatic, the bulk

phase velocity u1 does not change significantly in a direction perpendicular to the bottom bound-

ary. Thus u1 can be considered independent of z in (2.1) (Happel & Brenner, 1991). Accordingly,

(2.1) may be simplified to

ϕ
∂h1
∂t

+
∂

∂x
(u1h1) = −we1 − wd F (x, xf , ξ) . (2.2)
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Figure 2.1: [Colour] Schematic of a leaky gravity current propagating along an inclined boundary
with local drainage through an isolated fissure. The gravity current consists of bulk and dispersed
phases. Variables h1 (bulk phase height), h2 (overall height), u1 (bulk phase velocity), u2 (dis-
persed phase velocity), we1 (entrainment velocity from bulk phase), we2 (entrainment velocity from
ambient), and c2 (average concentration in dispersed phase) are function of x and t. Meanwhile,
variables xNb

(bulk phase nose position) and xNd
(dispersed phase nose position) are function of t

only.

The solute concentration in the bulk phase is assumed to be equal to the source concentration, cs;

consequently, it is unnecessary to apply a solute conservation equation in the bulk phase.

The continuity equation for the dispersed phase is

ϕ
∂(h2 − h1)

∂t
+

∂

∂x

∫︂ h2

h1

u2 dz = we1 + we2 , (2.3)

in which h2 − h1 and u2 are, respectively, the thickness and speed of the dispersed phase. (Note

that, consistent with the caption to figure 2.1, u2 is assumed independent of z). Finally, we2 is the

entrainment velocity from the ambient to the dispersed phase. By simplifying and exploiting (2.2),

the above result can be rewritten

ϕ
∂h2
∂t

+
∂

∂x

[︁
u2(h2 − h1)

]︁
= − ∂

∂x
(u1h1) + we2 − wd F (x, xf , ξ) . (2.4)
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Finally, solute conservation in the dispersed phase provides

ϕ
∂

∂t

∫︂ h2

h1

c2 dz +
∂

∂x

∫︂ h2

h1

u2c2 dz = we1cs . (2.5)

Here, we1 is defined only over the interval 0 ≤ x ≤ xNb
(see figure 2.1). By defining the dispersed

phase buoyancy as b2 = c2(h2 − h1), in which c2 is the z-averaged solute concentration in the

dispersed phase, (2.5) can be further simplified to

ϕ
∂b2
∂t

+
∂

∂x
(u2b2) = we1cs . (2.6)

Because the bulk buoyancy, b1 = csh1, equals the source buoyancy, solute conservation in the bulk

phase is trivial.

Similar to the classical entrainment hypothesis that was proposed for flow in free jets by Ellison

& Turner (1959), we consider that the entrainment of ambient fluid is proportional to the gravity

current characteristic velocity. This entrainment hypothesis explains the inclusion of ambient fluid

into and mixing it with a free shear jet, driven by differences in velocity, as the jet traverses the

surrounding medium. The entrainment velocity is perpendicular to the interface between the jet and

the ambient fluid, and is assumed to be a linear function of the jet’s velocity. Of greater relevance

to buoyancy-driven flow in porous media, Sahu & Neufeld (2020) also used a linear relationship

between the entrainment and characteristic velocities in their study of dispersive gravity currents.

Motivated by this latter work most especially, we define we1 = ε1u1 and we2 = ε2u2 where ε1

and ε2 are entrainment coefficients that account for the effects of dispersive mixing. Theoretically

speaking, there is no reason that ε1 and ε2 have to be different. Therefore, we assume ε1 = ε2 = ε

so as to reduce the number of free parameters in our problem. (The preliminary accuracy of

this assumption can be assessed in the context of the agreement between theory and numerical

simulation to be presented later. A more detailed assessment of the relative magnitudes of ε1 and

ε2 requires a dedicated study and so is left for future work.) On the other hand, and motivated by

analog studies of turbulent free gravity currents (Ellison & Turner, 1959; Reeuwijk et al., 2019),

we allow the possibility that ε varies with the inclination angle of the bottom boundary, θ. Such a
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dependence will be explored below.

Pressure in the bulk and dispersed phases is defined as

p1(x, z, t) =
[︁
∆ρ2gh2 +

(︁
∆ρ1 −∆ρ2

)︁
gh1 − ρsgz

]︁
cosθ + ρ0 g x sinθ + P0 0 ≤ z ≤ h1 , (2.7)

p2(x, z, t) =
[︁
∆ρ2gh2 − ρ2gz

]︁
cosθ + ρ0 g x sinθ + P0 h1 ≤ z ≤ h2 , (2.8)

in which P0 is a reference pressure evaluated at x = z = 0 outside of the gravity current, ρs is the

source (or bulk) fluid density and ρ̄2 is the z-averaged density in the dispersed phase. Moreover,

∆ρ1 = ρ0βcs is the density difference between the bulk and ambient phases and ∆ρ2 = ρ0β c2

is the corresponding density difference for the dispersed phase, averaged over z. In deriving the

previous expressions for ∆ρ1 and ∆ρ̄2, reference is made to a linear equation of state of the form

ρ = ρ0(1 + βc) in which ρ0 is a reference density and β is the solute contraction coefficient. There

is, in fact, a more subtle assumption associated with the derivation of (2.8) namely that vertical

variation of ρ2 small enough such that

1

h2 − z

∫︂ h2

z
ρ2 dz ≃ 1

h2 − h1

∫︂ h2

h1

ρ2 dz ≡ ρ2 . (2.9)

Stated differently, the above assumption suggests a dispersed phase hydrostatic balance of the form

∂p2
∂z

= −ρ2 g (2.10)

rather than

∂p2
∂z

= −ρ2 g . (2.11)

Our assumption that (2.10) and (2.11) are approximately equal is, of course, consistent with the

principal of ignoring the vertical variation of concentration and of velocity in the dispersed phase.

By combining (2.7) and (2.8) with Darcy’s law, i.e.

V = −k

µ
(∇p− ρg) , (2.12)

30



where V is the Darcy flux, µ is the dynamic viscosity and k is the (assumed constant) medium

permeability, the calculation steps of Appendix A.1 suggest that

u1(x, t) = −kgβ

ν

[︂∂b2
∂x

cosθ + cs

(︂∂h1
∂x

cosθ − sinθ
)︂]︂

, (2.13)

u2(x, t) = −kgβ

ν

[︂∂ (c2h2)

∂x
cosθ − c2sinθ

]︂
≡ −kgβ

ν

[︂ ∂

∂x

(︂ b2h2
h2 − h1

)︂
cosθ − c2sinθ

]︂
. (2.14)

Here, ν = µ/ρ0 is the kinematic viscosity.

If we assume drainage to be hydrostatically-driven through a fissure having permeability kf ,

width ξ and depth l, application of Darcy’s law (2.12) similar to Neufeld et al. (2009) yields the

following expression for the drainage velocity:

wd(x, t) =
kfgβ

ν

(︂csh1 + b2
l

+ cs

)︂
cos θ (2.15)

(see Appendix A.2). Upon substituting (2.13-2.15) and the expressions for the entrainment veloci-

ties we1 and we2 into (2.2), (2.4) and (2.6), the following modified governing equations result:

ϕ
∂h1
∂t

+
kgβ

ν

∂(h1U)

∂x
= −ε

kgβ

ν
U −

kfgβ

ν

(︂csh1 + b2
l

+ cs

)︂
cos θ × F (x, xf , ξ) , (2.16)

ϕ
∂h2
∂t

− kgβ

ν

∂

∂x

[︂(︁
h2 − h1

)︁ (︂∂Ψ
∂x

− C
)︂
− h1U

]︂
=

− ε
kgβ

ν

(︂∂Ψ
∂x

− C
)︂
−

kfgβ

ν

(︂csh1 + b2
l

+ cs

)︂
cos θ × F (x, xf , ξ) , (2.17)

ϕ
∂b2
∂t

− kgβ

ν

∂

∂x

[︂
b2

(︂∂Ψ
∂x

− C
)︂]︂

= ε
kgβcs
ν

U . (2.18)

In the above equations, and for the sake of notational economy, we have introduced the following

symbols:

U = −
(︂∂b2
∂x

+ cs
∂h1
∂x

)︂
cos θ + cssin θ , (2.19)

Ψ =
b2h2

h2 − h1
cos θ , (2.20)
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C =
b2

h2 − h1
sin θ . (2.21)

The variables U , Ψ and C are introduced only to simplify the notation; we do not regard these vari-

ables as having a noteworthy physical significance. Equations (2.16-2.18) contain three unknowns,

namely h1, h2 and b2. The equations are solved with the boundary conditions listed below.

2.3.2 Boundary conditions

Boundary conditions for (2.16-2.18) are

− kgβ

ν

[︂(︂∂b2
∂x

+ cs
∂h1
∂x

)︂
h1cos θ − csh1sin θ

]︂
0
= qs , h1|xNb

= 0 , (2.22a,b)

h2|0 = h1|0 , h2|xNd
= 0 , (2.22c,d)

b2|0 = 0 , b2|xNd
= 0 . (2.22e,f)

Here, xNb
and xNd

are the bulk and dispersed nose positions, respectively as indicated in figure 2.1.

Note that (2.22a) represents the influx boundary condition, qs =
(︁
u1h1

)︁
0
, at the source. It is not

required to take b1|xNb
= 0 because the source concentration is fixed (and finite) so b1|xNb

= 0 is

automatically-satisfied by (2.22b). From boundary condition (2.22c), we assume that the thickness,

h2−h1, of the dispersed phase is zero at x = 0; we investigate the validity of this assumption below.

Finally, the expressions of global volume balance in the bulk phase and the expression of global

buoyancy/solute balance for the combined bulk and dispersed phases can be written as

qst = ϕ

∫︂ xNb

0
h1 dx− ξ

∫︂ t

0
wd dt−

∫︂ t

0

∫︂ xNb

0
we1 dx dt , (2.23a)

qscst = ϕ cs

∫︂ xNb

0
h1 dx− ξcs

∫︂ t

0
wd dt+ ϕ

∫︂ xNd

0
(h2 − h1)c2 dx . (2.23b)

The first term on the right-hand side of (2.23a) represents the volume of the bulk phase fluid, the

second term represents the volume of bulk fluid drained through the fissure and the third term
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represents the volume of fluid lost by the bulk phase to the dispersed phase. The first term on

right-hand side of (2.23b) represents the buoyancy in the bulk phase, the second term represents

the buoyancy lost by the bulk phase due to fissure drainage and the third term represents buoyancy

in the dispersed phase where we have assumed implicitly that h1 = 0 for xNb
< x < xNd

.

2.3.3 Non-dimensional governing equations

Consistent with Neufeld et al. (2009), we respectively define the characteristic downdip length scale,

the characteristic across-dip length scale and the characteristic timescale as

X = xf , H =
(︂xf qsϕν

kg′s

)︂1/2
, and T =

(︂x3fϕν
kg′sqs

)︂1/2
, (2.24a-c)

where g′s = g′1 = gβcs is the source reduced gravity and xf denotes the fissure position – see figure

2.1. Thus do we define the following non-dimensional (starred) variables:

c∗2 =
c2
cs

, x∗ =
x

X
, ξ∗ =

ξ

X
, h∗1 =

h1
H

, h∗2 =
h2
H

, l∗ =
l

H
, t∗ =

t

T
. (2.25a-g)

Neufeld et al. (2009) defined a parameter to characterise the drainage through an isolated

fissure of width ξ. With reference to this parameter and their equation (2.12), we define, for the

flow depicted in figure 2.1, an upstream flow parameter Γ and a fissure permeability ratio K as

Γ =

xf h0

qs
xf

ub

xf
h0

=
ubxf
qs

≡
kg′sxf
ϕνqs

, (2.26a)

K =
kf
k

, (2.26b)

respectively. In (2.26a), h0 is the height of the gravity current at the source and ub = kg′s
ϕν is the

buoyancy velocity associated with a source concentration cs. There are a variety of different ways

to interpret the upstream flow parameter Γ. Firstly, Γ can be thought of as the analog of the

Richardson number because its definition includes the ratio of the time, ts =
xf h0

qs
, for fluid to flow

from the source to the fissure based on the source volume flux, to the time, tf =
xf

ub
, for fluid to
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flow from the source to the fissure based on the source reduced gravity. Keeping with a ratio of

timescales, Γ can also be interpreted as a ratio including tf and tb =
qs
u2
b
, which is a characteristic

time of the flow. Finally, Γ (= xf/(
qs
ub
)) can be thought of as the ratio of the fissure distance,

xf , to the flow thickness, qs
ub
. As the above definitions of Γ make clear, the larger the value of

Γ, the more the gravity current flow is influenced by its density contrast with the ambient. The

fissure permeability ratio K(< 1) corresponds to the ratio of the flow resistance through the porous

medium to the drainage resistance through the fissure. Therefore, the larger K, the greater the

volume of fluid that can drain through the fissure for a fixed depth of gravity current.

Applying the above definitions, (2.16-2.18) may be rewritten in non-dimensional form as

∂h∗1
∂t∗

+
∂(h∗1U

∗)

∂x∗
= −εΓ1/2 U∗ −K Γ

(︂h∗1 + b∗2
l∗

+ 1
)︂
cos θ × F (x∗, 1, ξ∗) , (2.27)

∂h∗2
∂t∗

− ∂

∂x∗

[︂(︂
h∗2 − h∗1

)︂(︂∂Ψ∗

∂x∗
− C∗

)︂
− h∗1 U

∗
]︂
=

− εΓ1/2
(︂∂Ψ∗

∂x∗
− C∗

)︂
−K Γ

(︂h∗1 + b∗2
l∗

+ 1
)︂
cos θ × F (x∗, 1, ξ∗) , (2.28)

∂b∗2
∂t∗

− ∂

∂x∗

[︂
b∗2

(︂∂Ψ∗

∂x∗
− C∗

)︂]︂
= εΓ1/2 U∗ . (2.29)

Here,

b∗2 = c∗2
(︁
h∗2 − h∗1

)︁
, (2.30)

U∗ = −
(︂ ∂b∗2
∂x∗

+
∂h∗1
∂x∗

)︂
cos θ + Γ1/2 sin θ , (2.31)

Ψ∗ =
b∗2 h

∗
2

h∗2 − h∗1
cos θ , (2.32)

C∗ = Γ1/2 b∗2
h∗2 − h∗1

sin θ . (2.33)

Also, the boundary conditions (2.22) now read

ϕ
[︂(︂ ∂b∗2

∂x∗
+

∂h∗1
∂x∗

)︂
h∗1cos θ − Γ1/2h∗1sin θ

]︂
0
= −1 , h∗1|x∗

Nb
= 0 , (2.34a,b)
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h∗2|0 = h∗1|0 , h∗2|x∗
Nd

= 0 , (2.34c,d)

b∗2|0 = 0 , b∗2|x∗
Nd

= 0 . (2.34e,f)

Assuming a fixed value for the medium porosity, ϕ, there are five dynamically-significant dimen-

sionless groups in (2.27-2.34), namely Γ, K, ξ∗, l∗, and θ. These dimensionless groups characterize

the fluid, medium and fissure properties.

The governing equations are solved using an explicit finite difference algorithm where spatial

derivatives are discretized using backward finite differences because the source is situated on the

upstream side (see Appendix A.3 for more details). Sample results are shown in figure 2.2 for θ = 0◦

and for θ = 5◦. Because bulk fluid drains through the fissure but not so dispersed fluid, significant

separation of the bulk and dispersed interfaces occurs only downstream of x∗ = 1. Figure 2.2

illustrates a sharp change in the leading edge profile of the dispersed phase, especially at late times.

The slope of this leading edge is set by a balance between the advection and dispersion. When,

as is the case here, advection dominates, the nose of the dispersed phase is expected to change

abruptly (though not discontinuously) as x∗ → x∗Nd
.

Accordingly, we focus on the dispersed phase and its fraction, relative to the gravity current as

a whole, of buoyancy (per unit box width) and of area (volume per unit box width). In symbols,

these quantities are denoted as B and A, respectively. In performing the requisite calculations,

we first evaluate the area enclosed by the bulk interface (the thick lines in figure 2.2) and by the

dispersed interface (the thin lines in figure 2.2). Areas are calculated from

A∗
bulk =

∫︂ x∗
Nb

0
h∗1 dx

∗ and A∗
disp =

∫︂ x∗
Nd

0
(h∗2 − h∗1) dx

∗ . (2.35a,b)

The dispersed area fraction Ã
∗
disp is found from

Ã
∗
disp =

A∗
disp

A∗
bulk +A∗

disp

. (2.36)
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Buoyancies in the bulk and dispersed phases are respectively determined from

B∗
bulk =

∫︂ x∗
Nb

0
h∗1 dx

∗ = A∗
bulk and B∗

disp =

∫︂ x∗
Nd

0
b∗2 dx

∗ , (2.37a,b)

The quantities B∗
bulk and A∗

bulk are equal because concentrations are scaled by cs. Similar to (2.36),

the dispersed buoyancy fraction is given by

B̃
∗
disp =

B∗
disp

B∗
bulk +B∗

disp

. (2.38)

Figures 2.3 a,b show time-series of Ã
∗
disp and B̃

∗
disp for θ = 0◦ and θ = 5◦. As these figures make

clear, dispersion increases when the bottom boundary is inclined and more solute will then reside

in the dispersed phase. This phenomenon can be understood with reference to the significantly

larger characteristic value for u1 measured in the case of the sloping boundary, i.e. at t∗ = 60, the

magnitude of u1 when θ = 5◦ is approximately 30% larger than that for θ = 0◦. A parametric

study that more carefully documents the impact of the non-dimensional parameters θ, Γ, K, ξ∗,

and l∗ on the evolution of the gravity current is included in section 2.5 below.

2.4 Numerical investigation

COMSOL simulations were performed so as to illustrate the effects of dispersive mixing in gravity

currents within porous media and to assess our mathematical model in various scenarios. COMSOL

utilizes the finite element method to discretize the governing equations (given below).

Our COMSOL model is validated in two complementary ways. First, we model the flow of

a porous media gravity current along an impermeable boundary (in which dispersion is compar-

atively small) and thereby demonstrate excellent agreement with the sharp interface solution of

Huppert & Woods (1995). Second, we confirm that our COMSOL model correctly predicts the

degree of dispersion in a scenario where fluid density differences are absent, i.e. the scalar is passive

rather than active. More specifically, we model the mixing of two miscible fluids in a long capillary
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Figure 2.2: Theoretical predictions showing, for different times, gravity current profiles for (a)
θ = 0◦ and (b) θ = 5◦. The thick line represents the bulk interface and the thin line represents the
dispersed interface. The location of the fissure is as indicated. Here, Γ = 35, K = 0.5, l∗ = 0.79 and
ξ∗ = 0.04. As we will justify in section 2.4.5, we consider ε = 0.0125 when θ = 0◦ and ε = 0.0086
when θ = 5◦.

tube. As considered by Bear (1972), section 10.6, the up-and downstream fluids have initial solute

concentrations of 0 and cs, respectively, but mix as a result of dispersion. Here again, we ob-

serve excellent agreement between the theoretical solution and the corresponding COMSOL-based

numerical result – see Appendix C.1.1 for more details.

2.4.1 Numerical set-up

Simulations are conducted in a 2-D rectangular box 400 cm long × 25 cm deep filled with a

porous medium saturated with water having a density ρ0 = 0.998 g cm−3. The medium porosity is

ϕ = 0.38 based on the assumption of a random close packing of beads (Happel & Brenner (1991)).

The permeability is 2.18× 10−4 cm2 and by inverting Rumpf & Gupte’s relation (Rumpf & Gupte,
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Figure 2.3: Percentage of the gravity current (a) volume and (b) buoyancy that remains in the
dispersed phase for θ = 0◦ with ε = 0.0125 and θ = 5◦ with ε = 0.0086. Here, consistent with
figure 2.2, Γ = 35, K = 0.5, l∗ = 0.79 and ξ∗ = 0.04.

1971)

k =
1

5.6
d2p ϕ

5.5 , (2.39)

we determine that the equivalent bead diameter measures dp = 5mm, which is broadly consistent

with the related experiments of Sahu & Flynn (2017) and Bharath et al. (2020) for which the

Reynolds number is on the order of 0.3. The salt water of fixed concentration is discharged at a

constant rate from a source located in the bottom-left corner of the numerical domain – see figure

2.4. The source has a vertical expanse of 1 cm; Broadly comparable to Neufeld et al. (2009) the

fissure is situated at a distance of xf = 7.5 cm from the source. At this location, deviation from a

hydrostatic pressure gradient is small.

Two different COMSOL physics interfaces are used, i.e.

1. The Darcy’s law (dl) interface is used to model fluid flow within the porous medium specifically
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Figure 2.4: Schematic of the numerical set-up.

by solving the following mass and momentum equations:

∂u

∂x
+

∂w

∂z
= 0 , (2.40a)

1

ρ0

∂p

∂x
+

ν

k
u = − ρ

ρ0
g sin θ , (2.40b)

1

ρ0

∂p

∂z
+

ν

k
w =

ρ

ρ0
g cos θ . (2.40c)

2. Solute transport is modeled using the transport of diluted species in porous media (tds)

interface where the underlying equation to be solved reads

ϕ
∂c

∂t
+ u

∂c

∂x
+ w

∂c

∂z
= ϕ

[︂ ∂

∂x

(︂
Dxx

∂c

∂x
+Dxz

∂c

∂z

)︂
+

∂

∂z

(︂
Dxz

∂c

∂x
+Dzz

∂c

∂z

)︂]︂
. (2.41)

Here, c is concentration and Dij is a dispersion coefficient. The dispersion tensor Dij is defined as

Dij = Dmol + aijlm
VlVm

|V |
. (2.42)

Here, Dmol is the coefficient of molecular diffusion, V() is a component of the velocity whose over-

all magnitude is given by |V | and aijlm is the geometrical dispersivity of the porous medium.

Scheidegger (1961) showed that aijlm is a sparse matrix in which only terms a1111 = a2222 = aL,

a1122 = a2211 = aT and a1212 = a2121 = a1221 = a2112 =
1
2(aL−aT ) are non-zero for two-dimensional
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porous media flow. The dispersion coefficients for such a two-dimensional flow can therefore be

defined as follows:

Dxx = Dmol + aL
u2

|V |
+ aT

w2

|V |
, (2.43a)

Dzz = Dmol + aL
w2

|V |
+ aT

u2

|V |
, (2.43b)

Dxz = Dmol + (aL − aT )
|uw|
|V |

. (2.43c)

The variables aL and aT are called the longitudinal dispersivity and the transverse dispersivity,

respectively. The dispersivities do not assume universal values and are, instead, resolved by curve

fitting relevant experimental data corresponding to various regions of the parameter space e.g. as

defined by the Schmidt (Sc) and Péclet (Pe) numbers. Notwithstanding this complication, we can

adapt (3) and (4) of Delgado (2007) to derive reasonable predictions for these two parameters for

the Péclet numbers relevant to our flow. For mathematical convenience in practical applications

and as suggested by Sahimi (2011), the power of Pe in (3) of Delgado (2007) is considered to be

unity for 5 < Pe < 300. Therefore, the longitudinal and transverse dispersivities in this region are

aL = 0.5 dp , (2.44a)

aT = 0.025 dp , (2.44b)

respectively. For 300 < Pe < 105, the relevant equations are

aL = (1.8± 0.4) dp , (2.45a)

aT = 0.025 dp . (2.45b)

In this work, we take aL to be 1.8 dp for 300 < Pe < 105.
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2.4.2 Initial conditions

Consistent with the theory of section 2.3, we assume the porous medium is saturated with quiescent

fresh water at t = 0. The initial pressure distribution is therefore hydrostatic and the initial solute

concentration is everywhere zero. The source concentration is related to the source density, ρs, via

the equation of state, i.e.

cs =
ρs − ρ0
ρ0β

.

Here, β is considered constant so the effects of temperature and pressure are ignored. According

to the study of Millero & Poisson (1981), β is 0.82 cm3/g. After defining the source concentration

for desired ρs, the linear equation of state ρ = ρ0(1 + β c) is used to relate the density to the

concentration field c.

2.4.3 Meshing and solver

Equations (2.40) and (2.41) are discretized using an unstructured triangular mesh. As shown in

figure 2.4, grid refinement is applied in the vicinity of the source and of the fissure because these

are regions of significant velocity shear. Figure 2.5 shows, for t∗ = 40, Ã
∗
disp for various grid sizes

from coarse to fine. The dispersed phase area fraction is sufficiently close to its asymptotic value

when the grid is comprised of 81715 ≃ 104.91 triangles; at and beyond this point, we deem the

numerical results to be grid-independent.

To discretize the equations in space, cubic shape functions are chosen for (2.40), whereas

quadratic shape functions are selected for (2.41). Note that due to stability concerns, the order of

the shape function for the former equation must be higher than the that of the latter equation. For

(2.41), a third-order implicit Backward Differentiation Formula (BDF) is applied such that

ϕ
11cn+1 − 18cn + 9cn−1 − 2cn−2

6∆t
=[︂

ϕ
∂

∂x

(︂
Dxx

∂c

∂x
+Dxz

∂c

∂z

)︂
+ ϕ

∂

∂z

(︂
Dxz
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Figure 2.5: Numerically-determined estimates for the dispersed phase area fraction for different
grid sizes. Here, consistent with figure 2.2, θ = 0◦, Γ = 35, K = 0.5, l∗ = 0.79 and ξ∗ = 0.04.

where n is the time increment. Increasing the order of shape functions or order of time discretiza-

tion method does not lead to significant changes in the results, but it requires substantially more

computational effort to solve.

We implement a two-step sequential method to solve (2.40) and (2.41) by using a two-step

segregated solver within COMSOL. In the first step, (2.40a-c) are solved by considering the fluid

density, ρ, as known. Then in the second step, velocities calculated in step one are applied to solve

(2.41) for concentration. Thus the Darcy and species equations are solved in sequence at each time

step until convergence is achieved. In this work, we consider a relative convergence tolerance of

0.001.

2.4.4 Qualitative observations (horizontal bottom boundary)

One of the key assumptions applied in the model of section 2.3.1 is that there persists a bulk gravity

current within which the solute concentration is effectively the same as the source concentration,

cs. The numerical simulations afford us the opportunity to test the validity of this assumption in

different regions of the parameter space. To this end, numerical simulations indicate that the bulk
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phase concentration decreases downstream of the fissure and is less than cs due to the dispersion

that arises in conjunction with drainage. This discrepancy between the bulk phase concentration

and the source concentration can, for sufficiently vigorous dispersive mixing, affect the accuracy

of our theoretical model. It is necessary, therefore, to estimate the parametric regime where such

vigorous dispersive mixing is/is not significant. The degree to which the bulk phase concentration

deviates from cs depends on the upstream flow parameter, Γ, the permeability ratio, K, and the

non-dimensional fissure width, ξ∗ – see figure 2.6. Although there is an additional dependence on

the vertical extent, l∗, of the fissure, this dependence is weak and so is not considered in the figure.

Concentrations in the regime diagram of figure 2.6 are measured at x∗ = 2, z∗ = 0 and at a time

t∗ when the dispersed nose position x∗Nd
= 10. Based on figure 2.6, we surmise that the theoretical

model predicts the bulk interface with good accuracy for arbitrary Γ and K. On the other hand,

our model does a comparatively poor job of predicting the location of the dispersed interface when

c∗(2, 0) ≡ c(2, 0)/cs < 0.8. Among other challenges when c∗(2, 0) < 0.8 is the fact that the bulk

phase terminates at the location of the fissure, i.e. any gravity current fluid appearing downstream

of x∗ = 1 has a density nontrivially less than ρs. This limitation notwithstanding, there remains

a large parametric domain over which our theoretical model works well. Figure 2.6 suggests that

as the upstream flow parameter Γ decreases, so too does the front speed. Less dispersive mixing

is therefore observed and the solute concentration after the fissure decreases relatively slowly. As

a result, there is a broader range of K over which our theoretical model generates predictions in

reasonable agreement with the output of the numerical model. Of course, the degree of agreement

between theory and numerics is related to the numerical value of the entrainment coefficient, ε,

which appears e.g. in (2.16-2.18). We discuss the procedure for determining ε in the following

subsection.

2.4.5 Determining the entertainment coefficient

Comparisons such as that depicted in figure 2.6 (and also figures 2.8 and 2.9 below) require that a

value be specified for the entrainment coefficient, ε. This coefficient is found based on our numerical

results. More specifically, we specify ε such that the separation distance, x∗Nd
− x∗Nb

, between the
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Figure 2.6: [Colour] Bulk phase concentration reduction beyond the fissure for θ = 0◦ and l∗ = 0.79.
The red area shows c∗ > 0.9, the green area shows 0.8 < c∗ < 0.9 and the blue area shows c∗ < 0.8.
Boundaries are drawn based on an interpolation performed over a total of 14 simulations for each of
the lower and upper surfaces. The inset images show a comparison between theory and numerical
simulations for different combinations of Γ andK. The thick (thin) white line is the bulk (dispersed)
interface as predicted by the theoretical model of section 2. Meanwhile colored contours show the
output of the COMSOL numerical model. Red dashed lines indicate the location x∗ = 2, where
concentrations are evaluated in constructing the regime diagram.

dispersed and bulk nose positions matches as closely as possible the distance measured numerically.

A mean temporal error is therefore defined as

E =

∫︂ t∗2

t∗1

⃓⃓(︁
x∗Nd

− x∗Nb

)︁
theory

−
(︁
x∗Nd

− x∗Nb

)︁
num

⃓⃓(︁
x∗Nd

− x∗Nb

)︁
num

dt∗ . (2.47)

Where
(︁
x∗Nd

−x∗Nb

)︁
num

is evaluated from the numerical model of section 2.4 and
(︁
x∗Nd

−x∗Nb

)︁
theory

is

evaluated from the theoretical model of section 2.3 for various ε. The (unique) ε that minimizes E

is referred to as the optimum entrainment coefficient. For simplicity, we assume that this optimum

value does not depend on Γ andK; a justification for this assumption is given in the next paragraph.

However, and motivated by the work of Ellison & Turner (1959), we allow the error-minimizing

value of ε to vary with the inclination angle, θ, of the bottom boundary. Results associated with

(2.47) and the minimization of E are displayed in figure 2.7. They suggest that the optimum

value of ε experiences a nontrivial decrease as the slope angle is increased and the gravity current
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Figure 2.7: [Colour] Error-minimizing value of ε vs. θ. Here we consider Γ = 45, K = 0.3, l∗ = 0.79
and ξ∗ = 0.04. Blue circles consider Γ = 45, K = 0.2 and red crosses consider Γ = 30, K = 0.3
Also, and with reference to (2.47), t∗1 = 20 and t∗2 = 70.

propagates more rapidly downdip.

Also included in 2.7 are data corresponding to different values of Γ and K. The blue circles

indicate the same value of Γ but a different value of K. The red crosses indicate the same value

of K but a different value of Γ. In all cases, we see but a minor deviation from the quantitative

data indicated by the black line. In principle, larger changes of K can be imagined, however, these

would be inconsistent with figure 2.6, i.e. we limit ourselves to changes of K or Γ that keep us

strictly within the red or green sections of the regime diagram.

2.5 Results and discussion

Within the region of model validity defined in subsection 2.4.4, theoretical results are compared

in figure 2.8 against COMSOL numerical output. Also included in figure 2.8 is a sharp interface

solution that is obtained by setting ε = 0 in (2.16) and (2.17). The sharp interface model over-

predicts the nose position while under-predicting the height of the gravity current especially when

the bottom boundary is inclined. A comparison of inclined vs. horizontal gravity currents reveals
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that the height of the dispersed interface has a monotone variation with x∗ when θ = 0◦ but a

non-monotone variation with x∗ when θ > 0◦. The non-monotone variation in question becomes

more pronounced as time increases.

Figure 2.8: [Colour] Gravity current profiles as predicted theoretically and numerically. Line types
are as follows: thick solid line – bulk interface; thin solid line – dispersed interface; dashed line
– sharp interface solution obtained by setting ε = 0 in (2.16) and (2.17). Numerical output is
indicated by the colour contours. (a-d) θ = 0◦, Γ = 35, K = 0.5, ξ∗ = 0.04, and l∗ = 0.79. (e-h)
θ = 5◦, Γ = 70, K = 0.3, ξ∗ = 0.04, and l∗ = 1.11. The variation of parameter values between the
left- and right-hand side panels is deliberate and illustrates model predictions over a broad range
of the parameter space. Note that the scale of the horizontal axis in the left- and right-hand side
images is different.

To quantify dispersion effects in gravity currents, we examine the time variation of Ã
∗
disp from

(2.36) and B̃
∗
disp from (2.38) – see figures 2.9 (c,d,e). Each panel includes both theoretical and

numerical data and considers a different value for K. Whether K is comparatively large (0.4) or

46



small (0.2), the same general trend appears: theory underpredicts the area and buoyancy fraction

at early times, however, for sufficiently large t∗, good agreement is achieved. The early time

discrepancy likely appears because the theoretical model assumes a long and thin gravity current.

Although the gravity current evolves into a shape that is long and thin for large t∗, such a large

aspect ratio does not apply initially. Furthermore, and for mathematical convenience, our theory

is predicated on the assumption that h2(x = 0) = h1(x = 0) however a careful inspection of

our numerical results (not shown) indicates some nontrivial initial height of the dispersed phase,

at least for not small times. From a theoretical standpoint, we lack precise insights into the

height of the dispersed phase at x = 0. While it is possible to determine the value of h2(x =

0)−h1(x = 0) through experimental or numerical simulations, we find that this value is a function

of time. Therefore we jeopardize the local accuracy in the neighborhood of x = 0 for convenience

by assuming no dispersed fluid near the source. Fortunately, the consequence of ignoring dispersed

fluid in the neighborhood of the source becomes smaller as time progresses and the cumulative

volume occupied by the (elongating) gravity current grows.

Whereas figures 2.9 (c,d,e) assume the same value for Γ, i.e. Γ = 45, the influence of the upstream

flow parameter is explored in figures 2.9 (a,b) where Γ appears as the x-axis variable. The different

curves of figure 2.9 (a,b) correspond to K = 0.2, 0.3 and 0.4 such that, with Γ = 45, the red and

green regions of figure 2.6 are spanned appropriately. Curves are drawn at t∗ = 40 by which time

the gravity current is indeed long and thin, i.e. the comparison is not unduly influenced by effects

related to the early time evolution of the flow. The area and buoyancy fractions increase with Γ and

also with K. When the upstream flow parameter is large, there is more dispersive mixing because

of larger velocities in the gravity current so the fraction of buoyancy and area associated with

the dispersed phase increases. By increasing K, draining of bulk fluid is more robust causing the

gravity current to elongate more slowly. Although this has a secondary effect on the dispersed phase

(which is, after all, fed by the bulk phase), the overall impact of increasing K is to likewise increase

the area and buoyancy fractions occupied by the dispersed phase in comparison to the bulk phase.

Correspondingly, one might expect that, asK increases, so too does the separation distance between

the bulk and dispersed nose positions. Figures 2.9 (f,g,h) both confirm this hypothesis and indicate
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Figure 2.9: (a) Area fraction (equation 2.36) and (b) buoyancy fraction (equation 2.38) as a function
of the upstream flow parameter (equation 2.26 a) for three different values of the fissure parameter
(equation 2.26 b). Here, we consider a horizontal bottom boundary such that θ = 0◦ and t∗ = 40.
Crosses indicate the solutions for Γ = 45, for which corresponding time series data are given in
panels (c), (d) and (e) for K = 0.2, 0.3 and 0.4, respectively. These same three K values are
considered in the time series of panels (f), (g) and (h), which consider, again for Γ = 45 and θ = 0◦,
the difference of nose position between the bulk and the dispersed gravity currents. This nose
position difference is shown as a function of Γ in panel (i) where we again consider t∗ = 40.
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that the theory matches well with the analog numerical result. Whereas figures 2.9 (f,g,h) assume

the same value for Γ, i.e. Γ = 45, the influence of the upstream flow parameter is explored in figure

2.9 (i) where Γ again appears along the abscissa. The different curves of figure 2.9 (i) correspond

to K = 0.2, 0.3 and 0.4 and are drawn at t∗ = 40. Figure 2.9 (i) indicates that x∗Nd
− x∗Nb

increases

with both Γ and K.

Analogue results have been generated for θ = 5◦ to quantify dispersion effects for the case of

inclined gravity currents – see figure 2.10. Comparing this figure against figure 2.9 shows that, as

expected, dispersion is more robust when θ > 0◦. For instance, and when t∗ = 60, figure 2.10 g

suggests the nose separation for θ = 5◦ is almost twice of that in figure 2.9 g for θ = 0◦. This is

because of the larger characteristic velocity in the inclined case, which leads to more entrainment

to the dispersed phase either from the ambient or the bulk phase. This point notwithstanding, very

similar trends are observed in figures 2.9 and 2.10, e.g. in both cases the separation between the

bulk and dispersed noses increases with K (due to a stronger drainage) and also with Γ (due to a

larger characteristic velocity). Moreover, theory and numerical simulation demonstrate satisfactory

agreement with generally better overlap observed for larger t∗.

Further to the comparison between figures 2.9 and 2.10, the sensitivity of our model predictions

to the slope of the bottom boundary is more thoroughly explored in figure 2.11. Figure 2.11 a shows,

for t∗ = 45, the difference of nose positions for the bulk vs. dispersed phases. Meanwhile figure

2.11 b shows the corresponding area and buoyancy fractions for dispersed phase fluid, i.e. Ã
∗
disp and

B̃
∗
disp. Both panels of figure 2.11 include theoretical and numerical data and confirm the hypothesis

that dispersion increases with θ.

Because fissure dimensions directly impact drainage, ξ∗ and l∗ also influence the degree of

dispersion. Figure 2.12 confirms that increasing the fissure width, ξ∗, leads to more dispersion,

whether measured in terms of x∗Nd
−x∗Nb

or Ã
∗
disp. On the other hand, bulk fluid drainage decreases

by increasing the vertical extent, l∗, of the fissure. As a result, there is less dispersion as l∗ is

increased – see figure 2.13. Consistent with our previous results, figures 2.12 and 2.13 indicate that

inclined gravity currents experience more dispersion than do horizontal gravity currents.
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Figure 2.10: As in figure 2.9 but with an inclined boundary (θ = 5◦).

50



Figure 2.11: Difference of (a) nose positions and of (b) dispersed phase area and buoyancy fractions
vs. θ. Here, t∗ = 45, Γ = 35, K = 0.5, l∗ = 0.79 and ξ∗ = 0.04.

Figure 2.12: Difference of (a) nose position and (b) area fraction in the dispersed phase for θ = 0◦

with ε = 0.0125 and θ = 5◦ with ε = 0.0086 for various ξ∗. Here, t∗ = 45, Γ = 35, K = 0.5, and
l∗ = 0.79.

2.6 Application to UHS

To illustrate the application of our results, we return to the example of UHS considered in section

2.2. More specifically, and for the idealized case of an unbounded reservoir, we wish to estimate the

fraction of H2 that will be lost to dispersion as a function of, say, the source volume flow rate. To

this end, we consider a line, rather than a point, source such that qs is expressed in units of standard
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Figure 2.13: As in figure 2.12 but considering the influence of l∗ for ξ∗ = 0.04.

m3/m/day or Sm2/day. Motivated by the numerical investigation of Feldmann et al. (2016), we

further suppose that H2 is injected into a sandstone layer, bounded above and below by clay layers,

where the cushion gas consists of 80 mol% N2 and 20 mol% CH4. The reservoir pressure is 170 bar

such that the density contrast between the H2 and the cushion gas is approximated as 118 kg/m3.

The sandstone layer has a porosity of ϕ = 13.08% and a permeability of k = 22.4mD. Meanwhile

the clay layer through which the injected H2 drains is idealized as being impermeable except for an

isolated fissure situated at a horizontal distance xf = 50m from the source. The fissure is assumed

to have a width and depth of 2m and 1m, respectively, and is characterized by K = 0.3, 0.5 or

0.7. Finally, we assume θ = 0◦ and consider the evolution of the flow over a 10 year period.

Given all of the above parameters, figure 2.14 shows B̃
∗
disp as a function of qs. As expected from

the model predictions of the previous section, the proportion of H2 that mixes with the cushion gas

through dispersion decreases with the source volume flow rate. Moreover, and as expected, B̃
∗
disp

is larger when more H2 is allowed to drain, i.e. when K is comparatively large. Results such as

those shown in figure 2.14 are helpful because they can, for given K, identify the minimum source

volume flow rate necessary to limit losses by dispersion to a particular value. For example, if, as

suggested by the dashed line of figure 2.14, the maximum loss fraction were set to 5%, the minimum

possible qs could be identified for different fissure permeabilities. Note that this minimum value of
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the source volume flow rate, (qs)min decreases with K. Obviously, as K tends to zero (indicating a

fissure of very limited outflow capacity), (qs)min also tends to zero.

Figure 2.14: Fraction of H2 lost to dispersion vs. source volume flow rate for the example of section
2.6. The horizontal dashed line assumes a maximum loss fraction of 5%.

The preceding analysis can be criticized for prioritizing injectate losses due to dispersion over

those due to draining. Indeed, H2 losses by either mechanism have the potential to make otherwise

profitable ventures unattractive economically. On the other hand, there are scenarios such as the

“selective technology” advocated by Feldmann et al. (2016) for which H2 injection or withdrawal

occur simultaneously to/from adjacent sandstone layers. In such a scenario, H2 drained from one

layer can be extracted from another layer and so is not necessarily lost to the geological formation.

Rather different considerations apply to dispersion because any attempt to produce H2 that has

mixed with cushion gas requires the ability, at the surface, to separate H2 from, say, CH4 or N2.

The expenses associated with such surface separation operations justify our emphasis on dispersion

vs. draining as a key loss mechanism for H2.

Notwithstanding the conclusion of the previous paragraphs, it should be recalled that our analy-

sis neglects a concentration dependence on viscosity. Strictly speaking, this assumption is incorrect

for UHS-type applications: the viscosity of pure H2 is less than that of a mixture of H2 and cushion

gas. Because we do not account for the greater mobility of the bulk vs. the dispersed phase, our
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model likely overestimates the volume of the latter relative to the former though by how much is

not straightforward to quantify. In a similar, though more complicated, spirit our model obviously

falls well short of permitting the kinds of fingering instabilities that may arise as a result of a

Taylor-Saffman-type instability and the injection of a less viscosity fluid into a more viscous fluid.

The modification of our momentum equations to include a concentration-dependent viscosity shall

be the subject of future investigations.

2.7 Summary and conclusions

A theoretical model is developed for a porous media gravity current consisting of a bulk phase and

a dispersed phase – see figure 2.1. Our theoretical model of section 2.3 considers local drainage

along the bottom boundary, which may be either horizontal or inclined. Model equations are robust

enough to capture the essential physical processes of draining and dispersion but are simple enough

to be solved using a straightforward numerical algorithm. To this end, we solve the non-dimensional

governing equations by defining five non-dimensional parameters namely the inclination angle, θ,

the upstream flow parameter, Γ, of (2.26 a), the permeability ratio, K, of (2.26 b), the fissure width,

ξ∗, and the fissure length, l∗. We surmise that all five non-dimensional parameters influence the

degree of dispersion. However, l∗ exerts a subordinate influence compared to Γ, K, ξ∗ and θ.

Increasing one or both of Γ and θ increases the gravity current front speed and so increases the

degree of dispersion. With reference to the definition of the entrainment velocities we1 and we2,

increasing the gravity current speed makes the entrainment more robust. This supports the idea

that the volume of the dispersed phase is significantly larger when we increase parameters such as

Γ or θ that increase the driving force for gravity current flow. Dispersion may also be augmented

by causing more (bulk phase) fluid to drain through the fissure, which is realized as either of K

or ξ∗ is increased or l∗ is decreased. Because drainage directly removes mass from the bulk phase,

increasing the drainage leads to more separation between the leading edges (or nose positions) of

the bulk and dispersed phases.

Complementing our theoretical results, a COMSOL-based numerical model is developed – see
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section 2.4. The numerical model is exploited to estimate the approximate optimum value of the

entrainment coefficient, ε, which appears as a parameter in the theoretical model e.g. (2.16-2.18).

Through this analysis, we find that the error minimizing value of ε is a function of the inclination

angle, θ, as depicted graphically in figure 2.7. With the appropriate value of ε so selected, we

find from figures such as 2.8, 2.9 and 2.10 generally good agreement between theory and numerical

simulation. In other words, our model of section 2.3 does a reasonable job of predicting the fractions

of fluid or solute that appear in the dispersed phase. Our theoretical model also provides generally

accurate estimates of the separation distance between the noses of the bulk and dispersed phases.

Note, however, that comparisons are restricted to the region of the parameter space for which the

degree of draining and subsequent dispersion is not too severe. The results of figure 2.6 suggest

that our theoretical model makes inaccurate predictions of the shape of the dispersed phase when

K is so large and draining is so vigorous that little or no bulk fluid appears downstream of the

source. The modeling of this more complicated case is left for future investigations.

Our study is motivated by the need to address uncertainties in H2 storage in depleted natural

gas reservoirs. Mixing of H2 with resident cushion gas is an inevitable facet of depleted reservoir-

based UHS systems, particulaly in the medium to long term (Feldmann et al., 2016). Granted our

theoretical and numerical models are predicated on a number of simplifying assumptions e.g. ignor-

ing viscosity variations, compressibility effects, ambient counterflow, or possible bio-geochemical

reactions involving H2. Progressively relaxing these (and related) assumptions are topics for fu-

ture study. It would also be interesting to consider not localized but rather distributed drainage

c.f. Pritchard et al. (2001), Goda & Sato (2011) and Bharath et al. (2020). Work on this latter

problem is already underway and will be reported upon in a future publication.
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Chapter 3

Porous media gravity current flow
over an interbed layer: the impact of
dispersion and distributed drainage 1,2

3.1 Abstract

Motivated by buoyancy-driven flows within geological formations, we study the evolution of a

(dense) gravity current in a porous medium bisected by a thin interbed layer. The gravity current

experiences distributed drainage along this low-permeability boundary. Our theoretical description

of this flow takes into account dispersive mass exchange with the surrounding ambient fluid by

considering the evolution of the bulk and dispersed phases of the gravity current. In turn, we

model basal draining by considering two bookend limits, i.e. no mixing versus perfect mixing in

the lower layer. Our formulations are assessed by comparing model predictions against the output

of complementary numerical simulations run using COMSOL. Numerical output is essential both

for determining the value of the entrainment coefficient used within our theory and for assessing

the reasonableness of key modeling assumptions. Our results suggest that the degree of dispersion

depends on the dip angle and the depth and permeability of the interbed layer. We further find

that the nose position predictions made by our theoretical models are reasonably accurate up to

1Sheikhi. S. & Flynn, M. R. 2024 Porous media gravity current flow over an interbed layer: the impact of dispersion
and distributed drainage J. Fluid Mech. 984, A33.

2Here, a positive inclination angle is defined as up-dip rather than down-dip in previous chapter to maintain
consistency with the flow in geological layers.
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the point where the no mixing model predicts a retraction of the gravity current front. Thereafter,

the no mixing model significantly under-predicts, and the perfect mixing model moderately over-

predicts, numerical data. Reasons for the failure of the no mixing model are provided, highlighting

the importance of convective instabilities in the lower layer. A regime diagram is presented that

defines the parametric region where our theoretical models do versus do not yield predictions in

good agreement with numerical simulations.

3.2 Introduction

In layered porous media, the flow of a dense (buoyant) fluid into a buoyant (dense) ambient leads to

the formation of gravity currents, where predominantly the flow velocity is aligned with the bottom

(top) boundary. Porous media gravity currents are associated with a wide variety of geophysical

flows, whether naturally-occuring, e.g. seawater contamination of coastal aquifers (Werner et al.,

2013; Costall et al., 2020), or else related to human activities, e.g. underground hydrogen storage

(UHS) (Feldmann et al., 2016; Tarkowski, 2019; Muhammed et al., 2023) or CO2/acid gas seques-

tration (Ajayi et al., 2019; Ali et al., 2022; Warnecki et al., 2021). Not surprisingly, a significant

volume of research has been driven by the need to understand the dynamics of porous media gravity

currents, particularly as they relate to energy industry applications.

In a pioneering study, Huppert & Woods (1995) established initial models for porous media

gravity current flow. They proposed a similarity solution that was then verified through laboratory

experiments. Huppert & Woods (1995) showed that a gravity current spreads as t2/3 when fed by

a constant-flux source. (Separately, they also derived similarity solutions for a general power-law

influx condition). Many extensions to the Huppert & Woods seminal analysis have been pursued.

For example, Hesse et al. (2007), MacMinn et al. (2012), Pegler, Huppert & Neufeld (2014) and

Zheng et al. (2015) have examined similar examples of buoyancy-driven flow but in porous media

that are confined vertically. A question of recent interest, which is more relevant to the research

described in this study, is the impact of a heterogeneous porous medium, particularly when some

fraction of the injectate is allowed to drain through local or distributed fissures. For example,

57



Anderson, McLaughlin & Miller (2003) investigated the movement of gravity currents in strongly

heterogeneous porous media using homogenization methods. They found that by employing appro-

priate coefficients, one can project the similarity solution appropriate for a (long and thin) gravity

current in a uniform medium to gravity current flow in horizontally- or vertically-layered porous

media. Moreover, Pritchard et al. (2001) and Farcas & Woods (2009) studied distributed drainage

over a thin permeable layer. Pritchard’s investigation considered miscible flow with drainage along

a horizontal layer while Farcas & Woods (2009) studied immiscible flow with drainage along an

inclined layer. Meanwhile, Neufeld & Huppert (2009) studied the flow of gravity currents of super-

critical CO2 in thin layers representing the Utsira formation beneath the North Sea. In contrast

to the modeling approach of Pritchard et al. (2001) who did not consider the possible dynamical

influence of the drained fluid on the evolution of the gravity current, Neufeld & Huppert (2009)

hypothesized that when gravity current fluid drains into the interbed layers that separate adjacent

permeable layers, such an influence is manifest. More precisely, the weight of the drained fluid adds

to the driving force for draining so that, over time, the velocities of drainage and of the gravity cur-

rent front become respectively large and small. Neufeld & Huppert (2009) thereby identified three

distinct regimes for the drainage of (dense) gravity current fluid, i.e. drainage is driven primarily

by (i) the weight of the gravity current, (ii) the combined weight of the gravity current and the

fluid already drained into the lower layer, and (iii) the weight of the drained fluid. Regimes (ii) and

(iii) are respectively associated with the arrest and retraction of the gravity current front. Similar

kinds of flow behavior have been documented in the related studies of Goda & Sato (2011), Acton

et al. (2001), Sahu & Flynn (2017) and Bharath et al. (2020) who examined, theoretically and

experimentally, distributed drainage over a deep lower layer having a relatively small permeability.

Most notably, and consistent with Pritchard et al. (2001) and Farcas & Woods (2009), these related

studies found that gravity currents stop elongating when the rate of basal drainage from the gravity

current underside matches the source influx.

Most of the above research ignores mass transfer between the gravity current and the ambi-

ent fluid saturating the porous medium, e.g. by application of a “sharp interface” assumption in

theoretical models. By contrast, and in the context of CO2 sequestration, Neufeld et al. (2010),
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MacMinn et al. (2012), Pegler, Huppert & Neufeld (2014) and Khan et al. (2022) investigated

mixing due to convective dissolution in porous media buoyancy-driven flow. Also, mass transfer

processes associated with seawater intrusions into coastal aquifers were considered by Huyakorn

et al. (1987) and Paster & Dagan (2007). In such examples of miscible porous media flow, the

key modes of mass transfer are diffusion and hydrodynamic dispersion. Mixing by dispersion is

likewise important when considering the societally-important possibility of storing hydrogen (H2)

in depleted natural gas reservoirs. Indeed, the combination of H2 leakage through cap-rock and

the dispersive mixing of H2 into the “cushion gas” that otherwise occupies the porous medium re-

duces the volume of H2 that can be recovered economically. Quantifying such details is challenging;

e.g. the study by Lubon & Tarkowski (2021) estimated the amount of recoverable H2 as anywhere

from 50% to 80% depending on, among other factors, the number of H2 injection cycles and the

degree of heterogeneity within the medium. As regards this latter variable, Feldmann et al. (2016)

highlighted the possibility of leakage through semi-permeable boundaries by examining H2 migra-

tion through a heterogeneous porous medium consisting of sandstone layers separated by tight clay

interlayers.

Also in the context of miscibility, Szulczewski & Juanes (2013) studied, theoretically, mixing

when a fixed amount of dense fluid is released in vertically confined porous media. They reported

evidence of various regimes associated with the flow evolution. At early and more especially late

times, diffusion is vital, especially when it is coupled with Taylor dispersion. However, at inter-

mediate times, diffusion is insignificant, such that application of the sharp interface assumption

is approximately correct. Meanwhile, Sahu & Neufeld (2020) studied, theoretically and exper-

imentally, the mixing that occurs in a homogeneous porous medium due to velocity-dependant

transverse dispersion in gravity currents. In their theoretical model, they exploited mass and buoy-

ancy conservation laws in conjunction with a semi-empirical expression for dispersion, analog to

turbulent entrainment in free shear flows. Sahu & Neufeld (2020) tuned the associated entrain-

ment coefficient from their theoretical model with measured results from the laboratory. Although

transverse dispersion leads, through ‘dispersive entrainment,’ to a thickening of the gravity current,

the neglect of longitudinal dispersion means that the gravity current length predicted by Sahu &
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Neufeld (2020) must match that anticipated by the sharp interface model of Huppert & Woods

(1995).

The equivalence documented at the end of the previous paragraph runs contrary to the exper-

imental observations of Bharath et al. (2020). They studied gravity currents propagating along

a permeability jump and demonstrated that dispersion leads to enhanced gravity current elonga-

tion. The difference of length compared to the sharp interface case was attributed to longitudinal

dispersion. The Sahu & Neufeld model therefore appears most effective in describing gravity cur-

rent flow through homogeneous media where drainage is not dynamically-significant. Recognizing

that real geological media are not always so ideal, Sahu & Neufeld (2023) conducted laboratory

experiments to examine dispersive mixing in gravity currents over layered strata. They showed

that the mixing that occurs in heterogeneous media is approximately twice that in homogeneous

media having otherwise identical properties. To quantify the effects of heterogeneity on mixing,

Sahu & Neufeld (2023) introduced a term called the ’jump factor,’ which characterizes the degree of

layering within a porous medium. Sahu & Neufeld (2023) further demonstrated that the early-time

entrainment into the gravity current renders it thick with a rounded nose. Therefore, the long

and thin assumption, which is vital in developing a theoretical model, becomes suspect. Sahu &

Neufeld (2023) used their experimental findings to derive semi-empirical equations that estimate

the gravity current height and length as functions of time and other parameters. The semi-empirical

correlations in question do not, however, distinguish between bulk and dispersed phases within the

gravity current. A pioneering theoretical attempt at drawing such a distinction was made by Sahu

& Neufeld (2020), whose approach was later expanded upon by Sheikhi et al. (2023). The authors

of this latter investigation separated the bulk and dispersed phases to study dispersive mixing in

gravity currents elongating over inclined porous media and experiencing local drainage through

discrete fissures. Sheikhi et al. (2023) thereby extended the theoretical model of Sahu & Neufeld

(2020) by introducing two entrainment velocities, i.e. we1, which is associated with entrainment

from the bulk phase to the dispersed phase, and we2, which is associated with entrainment from

the surrounding ambient to the dispersed phase. They assumed an identical entrainment coefficient

associated with we1 and we2, and determined the numerical value of this entrainment coefficient by
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fitting theoretical predictions against COMSOL-based numerical simulations meant to mimic simil-

itude laboratory experimental conditions. Their theoretical model, combined with the COMSOL

numerical simulations, revealed that five parameters can affect the amount of dispersive mixing in

porous media gravity currents experiencing local drainage: (i) Γ, which represents flow conditions

upstream of the local fissure(s); (ii) K, which represents the permeability ratio (fissure-to-medium);

(iii) ξ, which represents the fissure width; (iv) l, which represents the fissure depth; and (v) θ, which

represents the dip angle.

A primary objective of this study is to extend the work of Sheikhi et al. (2023) to gravity currents

experiencing distributed drainage, as is more representative of many geological flows compared to

the case of localized drainage. To do so, we suppose that the gravity current propagates through

a porous medium and over a thin interbed layer having a lower – possibly substantially lower –

permeability. We develop a theoretical model and a complementary numerical model to study

the details of the dispersive mixing relevant to this case. In the former case, our formulation is

predicated on two linearizations of the real behavior. The first pertains to fluid mechanics and

supposes a linear entrainment law of the type proposed for high-Reynolds number shear flows

by Ellison & Turner (1959) and for low-Reynolds number porous media flows by Sahu & Neufeld

(2020). The second pertains to thermodynamics and supposes a linear equation of state, i.e. a linear

relationship between fluid density and solute concentration. The latter linearization in particular

seems well-justified in a UHS context: measured data from Hassanpouryouzband et al. (2020)

suggest that nonlinear terms in the equation of state describing H2/CH4 mixtures have minor

significance. Meanwhile, the validity of the former linearization is discussed in more detail below.

A further objective of our study is to characterize the drainage of gravity current fluid into the

interbed layer and, from there, into a semi-infinite layer of larger permeability below3.

The rest of the Chapter is organized as follows: Section 3.3 derives the theoretical model for

the gravity current by incorporating a distributed drainage formulation. Particular attention is

3For analytical convenience and consistent with previous studies (e.g. Huppert & Woods 1995; Neufeld & Huppert
2009; Bharath et al. 2020, and Sahu & Neufeld 2020), we assume a dense rather than a light gravity current. As a
result, the gravity current appears “upside-down” relative to those expected e.g. in UHS-type flows. Note, however,
that the flow orientation does not impact the flow dynamics provided we apply the Boussinesq approximation, which
supposes relatively modest density differences between the injectate and the ambient fluid.
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paid to two limiting cases, which assume either no mixing or perfect mixing in the lowest of the

porous layers. In section 3.4, we outline the COMSOL-based numerical simulations conducted

to validate and contextualize the predictions of the theoretical model. In section 3.5, we discuss

these predictions in more detail and contrast the predictions with complementary output from the

numerical simulations. Finally, key findings of the current work are reviewed, and prospects for

future research are identified in section 3.6.

3.3 Theoretical model

3.3.1 Governing equations

We examine the flow of a gravity current, z ≥ 0 in figure 3.1, that occurs when a dense fluid

with a density of ρs is injected into a uniform porous medium with a constant permeability k.

This medium is intersected by a thin interbed layer of permeability kb < k with inclination angle

θ and depth ξ. Thus the interbed layer occupies the vertical expanse −ξ < z < 0. In general,

and with the application of (buoyant) H2 storage in an anticline structure in mind, we consider

an up-dip inclination angle. The (x, z) coordinate system that describes the directions along and

perpendicular to the slope, is derived by rotating the natural coordinates (X, Z) in a clockwise

direction by the dip angle θ. The red dot shown in figure 3.1 signifies the isolated source, and the

origin for both coordinate systems is located at this same point.

The continuity equation for the bulk (or unmixed) phase of the gravity current experiencing

drainage over its lower boundary reads

∂h1

∂t̃
+

∂

∂x
(u1h1) = −we1 − wd1 . (3.1)

Here, h1 is the height of the bulk phase, u1 is the bulk phase velocity, and we1 and wd1 are velocities

that respectively account for entrainment from the bulk to the dispersed phase and drainage from

the bulk phase through the lower layer. Also, t̃ = t/ϕ, in which ϕ is the porosity. (Note that all

velocities in our theoretical model are Darcy velocities.)
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Figure 3.1: [colour] Schematic of a leaky gravity current propagating along, and draining through,
the permeability jump associated with an interbed layer of thickness ξ. We assume equal perme-
ability k in the upper and lower layers, and a reduced permeability kb in the interbed layer. The
gravity current and the fluid that drains from the gravity current consist of bulk and dispersed
phases. These are respectively confined by the red and black curves. Meanwhile, the dashed curve
that is drawn through the lower two layers signifies the equivalent depth of draining fluid, assum-
ing that this draining fluid consists solely of bulk fluid, i.e. has a density that matches the source
density. The variables h1, h2, u1, u2, we1, we2 and c2 depend on x and t̃. Conversely the variables
xNb

and xNd
depend only on t̃. The vertical scale is exaggerated in this schematic.

Similarly, the continuity equation for the dispersed phase can be stated as

∂h2

∂t̃
+

∂

∂x

[︁
u2(h2 − h1)

]︁
= − ∂

∂x
(u1h1) + we2 − wd1 − wd2 , (3.2)

where h2−h1 is the thickness of the dispersed phase, u2 (assumed independent of z) is the advection

speed of the dispersed phase, we2 is the entrainment velocity from the ambient to the dispersed

phase, and wd2 is the drainage velocity from the dispersed phase through the lower layer. The latter

velocity must be interpreted with some care because it is not defined everywhere along the extent

0 ≤ x ≤ xNd
occupied by the dispersed phase (and likewise for wd1). We clarify this situation when

formally defining the draining velocities wd1 and wd2 below.

Although the solute concentration in the bulk phase is equal to the source concentration cs

by assumption, the concentration in the dispersed phase varies between 0 and cs. Therefore a

z-averaged solute concentration c2 is defined in the dispersed phase. Solute conservation in the
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dispersed phase can be expressed as

∂b2

∂t̃
+

∂

∂x
(u2b2) = we1csH(xNb

− x)− wd2c2 , (3.3)

in which b2 = c2(h2 − h1) is the buoyancy of the dispersed phase, averaged over depth. Meanwhile

H(xNb
−x) is a Heaviside step function, which is zero everywhere except when xNb

> x, where xNb

indicates the front position of the bulk phase. In this study, we follow previous work on entraining

flows from either the turbulent free shear flow literature (e.g. Ellison & Turner 1959) or, much more

importantly, the porous media flow literature (e.g. Sahu & Neufeld 2020) and so consider a linear

entrainment relationship. Accordingly, the entrainment velocities are defined as we1 = εu1 and

we2 = εu2 where ε is the dispersive entrainment coefficient. Extrapolation of these relationships

to more complicated formulations (e.g. we1 = ε1u1 and we2 = ε2u2 with ε1 ̸= ε2 or wei ∝ uλi or

we1 ∝ |u1 − u2|) remains a topic to be examined in future studies. Our reluctance to pursue such

a line of inquiry here stems not from the physical illogicality of these alternative formulations but

rather from our desire to minimize model complexity and the number of variables whose value must

be set by comparison with numerical output.

By considering a hydrostatic pressure gradient throughout the gravity current and using Darcy’s

law, the horizontal velocity in each phase is given by

u1(x, t̃) = −kgβ

ν

[︂∂b2
∂x

cosθ + cs

(︂∂h1
∂x

cosθ + sinθ
)︂]︂

, (3.4)

u2(x, t̃) = −kgβ

ν

[︂∂ (c2h2)

∂x
cosθ + c2sinθ

]︂
≡ −kgβ

ν

[︂ ∂

∂x

(︂ b2h2
h2 − h1

)︂
cosθ + c2 sinθ

]︂
(3.5)

– see Sheikhi et al. (2023). Here, β is the solute contraction coefficient, which we borrow from the

(assumed linear) equation of state ρ = ρ0(1+β c) in which ρ0 is the density of the uncontaminated

ambient fluid. Also, ν is the kinematic viscosity, which we assume to be the same throughout the

bulk and dispersed phases. By inserting (3.4-3.5) and the expressions for the entrainment velocities

64



we,1 and we,2 into (2.2-3.3), we obtain the following modified governing equations:

∂h1

∂t̃
+

kg′s
ν

∂(h1U)

∂x
= −ε

kg′s
ν

U − wd1 , (3.6)

∂h2

∂t̃
− kg′s

ν

∂

∂x

[︂(︁
h2 − h1

)︁ (︂∂Ψ
∂x

+ Csin θ
)︂
− h1U

]︂
= −ε

kg′s
ν

(︂∂Ψ
∂x

+ Csin θ
)︂
− wd1 − wd2 , (3.7)

∂b2

∂t̃
− kg′s

ν

∂

∂x

[︂
b2

(︂∂Ψ
∂x

+ Csin θ
)︂]︂

= ε
kg′s
ν

UcsH(xNb
− x)− wd2C cs . (3.8)

In the above equations, we have introduced the following symbols:

U = −
(︂ 1

cs

∂b2
∂x

+
∂h1
∂x

)︂
cos θ − sin θ , (3.9)

Ψ =
b2h2

cs(h2 − h1)
cos θ , (3.10)

C =
c2
cs

≡ b2
cs(h2 − h1)

. (3.11)

Note that U , Ψ and C are defined solely for the purpose of simplifying our notation, i.e these

variables do not carry any particular physical meaning. Before studying (3.7-3.8) in more detail,

it is necessary to define the drainage velocities wd1 and wd2. These velocities are influenced by the

degree of mixing occurring in the lower layer of the porous medium. Because predicting the extent

of mixing in this lower layer is a complicated task that relies on numerous factors (see e.g. figure

10 in Bharath et al. (2020) and the discussion thereof), we will confine ourselves to two limiting

scenarios, which we label as perfect mixing and no mixing. Both of the perfect mixing and no

mixing cases are idealizations. Consistent with Pritchard et al. (2001), the former assumes that

dense fluid that drains through the interbed layer immediately dissolves into lower layer ambient

fluid. Meanwhile the latter scenario supposes that mixing details can be ignored in this lower layer

(even though they figure prominently in our description of the gravity current flow). Thus do we

assume that the draining flows evolve as depicted in figure 3.1. The perfect mixing and no mixing

idealizations are helpful bookend-limiting cases that we expect to often bound the true behavior of

the evolving flow.
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Figure 3.2: [colour] Schematic of a leaky gravity current experiencing perfect mixing in (and there-
fore immediate removal from) the lower layer. The red line indicates the bulk interface and the
black line indicates the dispersed interface.

Perfect mixing

As noted above, the perfect mixing regime considers an immediate and total dissolution of drained

gravity current fluid when this dense fluid reaches the lower layer. In turn, and because this lower

layer is semi-infinite in extent, it maintains a negligible solute concentration. The perfect mixing

regime is supposed to be approached when the density difference between the gravity current fluid

and the ambient fluid is comparatively large, or when the permeability in the interbed layer is

much smaller than elsewhere. As suggested by figure 3.2, perfect mixing is analogous to a situation

where drained fluid is removed from the domain as soon as it exits the interbed layer. Note that

such a removal does not invalidate the equations of subsection 3.3.1, which are focused on the flow

dynamics in the domain z > 0.

From figure 3.2, the drainage velocities wd1 and wd2 can be determined by using the z-component

of Darcy’s law, i.e.

∂p

∂z
= −ρg′cosθ − µ

k
w , (3.12)

where µ is the dynamic viscosity, p is the pressure, and g′ = gβc is the reduced gravity. We enforce
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continuity of pressure and of the vertical flux at z = 0 and thereby conclude that

wd1(x, t̃) =

⎧⎪⎨⎪⎩
kbg

′
s

ν

(︂
csh1+b2

cs ξ
+ 1

)︂
cos θ 0 ≤ x < xNb

0 xNb
≤ x ≤ xNd

. (3.13)

This last result considers the draining of bulk phase fluid through the upper and interbed layers.

Meanwhile, and by examining the dispersed phase, it can be shown that

wd2(x, t̃) =

⎧⎪⎨⎪⎩ 0 0 ≤ x < xNb

kbg
′
s

ν C
(︂
h2
ξ + 1

)︂
cos θ xNb

≤ x ≤ xNd

. (3.14)

(The derivation of equations 3.13 and 3.14 is outlined in Appendix B.1). Note that the (degenerate)

limit ξ → 0 is not necessarily associated with the appearance of singularities in (3.13) and (3.14)

because ξ → 0 likewise implies kb → 0.

No mixing

If no mixing occurs in the lower layer, then the solute concentration of the drained fluid is the same

as the solute concentration of the gravity current fluid directly above it. In this case, the drainage

velocities are obtained by applying (3.12) for both the bulk and dispersed phases and through all

three layers of figure 3.1. To wit,

wd1(x, t̃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
kbg

′
s

ν cos θ

⎧⎪⎨⎪⎩
(︁
csh1+b2

cs l
+ 1

)︁
l < ξ

csh1+b2+csl
(1−K)cs ξ+Kcs l

l ≥ ξ

0 ≤ x < xNb

0 xNb
≤ x ≤ xNd

, (3.15)

and

wd2(x, t̃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 0 ≤ x < xNb

kbg
′
s

ν cos θ

⎧⎪⎨⎪⎩
(︁
h2
l + 1

)︁
l < ξ

h2+l
(1−K) ξ+Kl l ≥ ξ

xNb
≤ x ≤ xNd

. (3.16)
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(The derivation of equations 3.15 and 3.16 is outlined in Appendix B.2; No corresponding expres-

sions are provided for ud1 and ud2 because, in the rotated or x−z coordinate system, ud1 and ud2 do

not impact the evolution of l.) Here, K = kb
k is the permeability ratio. When ξ → ∞, (3.15)-(3.16)

are consistent with the drainage formulation of Acton et al. (2001) for a gravity current propagating

over a deep layer that is permeable but “tight”. By contrast, we again avoid consideration of the

limit ξ → 0: in the absence of an interbed layer, figure 3.1 must be redrawn completely because

source fluid will now fall vertically in the form of a descending plume. Such a flow, studied at some

length by Sahu & Flynn (2015) and Gilmore et al. (2021), is not the focus of the current work.

Finally, and in defining the depth of the contaminated fluid in the lower layer, we simplify the

analysis by defining l(x, t̃) as an equivalent depth such that all of the drained fluid in the lower

layer has the same uniform solute concentration cs. The evolution equation for l therefore reads

∂l

∂t̃
=

⎧⎪⎨⎪⎩ wd1 0 ≤ x < xNb

C wd2 xNb
≤ x ≤ xNd

. (3.17)

In solving (3.17), we acknowledge that we do not distinguish rigorously between the bulk and

dispersed phases for z < 0. On the other hand, no such sacrifice applies for z > 0 and thus our

dynamical description of the bulk and dispersed phases of the gravity current is not jeopardized.

3.3.2 Boundary conditions

As shown in Sheikhi et al. (2023), boundary conditions for a gravity current consisting of bulk and

dispersed phases are

− kg′s
ν

[︂(︂ 1

cs

∂b2
∂x

+
∂h1
∂x

)︂
h1cos θ + h1sin θ

]︂
0
= qs , h1|xNb

= 0 , (3.18a,b)

h2|0 = h1|0 , h2|xNd
= 0 , (3.18c,d)

b2|0 = 0 , b2|xNd
= 0 . (3.18e,f)
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Whereas the last five of these expressions are self-explanatory, the first (influx) boundary condition

merits some additional discussion. In this spirit, (3.18 a) signifies that all of the injectate supplied

by the source is added to the rear of the gravity current such that the source volume flux matches

the gravity current volume flux measured at x = 0. Thereafter, and consistent with the numerical

treatment of the source to be described in section 3.4, gravity current fluid may propagate down-dip

or else drain into the interbed layer.

3.3.3 Non-dimensional governing equations

Following Goda & Sato (2011), we define a characteristic length scale, Π1, and a characteristic time

scale, Π2, as

Π1 =
νqs
kg′s

and Π2 = qs

(︃
ν

kg′s

)︃2

, (3.19a,b)

respectively. Thus do we define the following dimensionless (starred) variables:

x∗ =
x

Π1
, ξ∗ =

ξ

Π1
, h∗1 =

h1
Π1

, h∗2 =
h2
Π1

, l∗ =
l

Π1
, t∗ =

t̃

Π2
, w∗ = w

Π2

Π1
. (3.20a-g)

Also, c∗2 =
c2
cs
. Note that for notational simplicity, we drop the superscript ∗ such that all variables

are now to be interpreted as dimensionless. (By necessity, however, we revert to dimensional

variables in subsection 3.4.1 and in the appendices.) Accordingly, (3.7-3.8) may be rewritten as

∂h1
∂t

+
∂(h1U)

∂x
= −εU − wd1 , (3.21)

∂h2
∂t

− ∂

∂x

[︂(︁
h2 − h1

)︁ (︂∂Ψ
∂x

+ Csin θ
)︂
− h1U

]︂
= −ε

(︂∂Ψ
∂x

+ Csin θ
)︂
− wd1 − wd2 , (3.22)

∂b2
∂t

− ∂

∂x

[︂
b2

(︂∂Ψ
∂x

+ Csin θ
)︂]︂

= εU H(xNb
− x)− wd2C . (3.23)

Here,

b2 = c2
(︁
h2 − h1

)︁
, (3.24)

U = −
(︂∂b2
∂x

+
∂h1
∂x

)︂
cos θ − sin θ , (3.25)
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Ψ =
b2 h2

h2 − h1
cos θ , (3.26)

C =
b2

h2 − h1
. (3.27)

Equations (3.21)-(3.23) comprise three equations in three unknowns, namely h1, h2 and b2. The

dimensionless boundary conditions to be coupled to these equations read

[︂(︂∂b2
∂x

+
∂h1
∂x

)︂
h1cos θ + h1sin θ

]︂
0
= −1 , h1|xNb

= 0 , (3.28a,b)

h2|0 = h1|0 , h2|xNd
= 0 , (3.28c,d)

b2|0 = 0 , b2|xNd
= 0 . (3.28e,f)

When a state of perfect mixing can be assumed for the lower layer, the dimensionless drainage

velocities that appear in (3.21)-(3.23) are given by

wd1 = K cos θ

⎧⎪⎨⎪⎩
(︂
h1+b2

ξ + 1
)︂

0 ≤ x < xNb

0 xNb
≤ x ≤ xNd

, (3.29)

and

wd2 = K cos θ

⎧⎪⎨⎪⎩ 0 0 ≤ x < xNb

C
(︂
h2
ξ + 1

)︂
xNb

≤ x ≤ xNd

, (3.30)

where K is the aforementioned permeability ratio. For the no mixing case, by contrast, we write

wd1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K cos θ

⎧⎪⎨⎪⎩
h1+b2

l + 1 l < ξ

h1+b2+l
(1−K) ξ+Kl l ≥ ξ

0 ≤ x < xNb

0 xNb
≤ x ≤ xNd

, (3.31)
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Figure 3.3: Theoretical predictions showing gravity current profiles assuming (a) perfect mixing,
and, (b) no mixing in the lower layer. Thick lines represent the bulk interface and thin lines represent
the dispersed interface. Here, K = 0.0025, ξ = 0.333 (equivalent to Keff ≡ K(1 + 1

ξ ) = 0.01, see
equation 3.40 below) and θ = 0◦. We further assume that ε = 0.0344. The justification for this
choice will be presented in subsection 3.4.4.

and

wd2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 0 ≤ x < xNb

K cos θ

⎧⎪⎨⎪⎩
h2
l + 1 l < ξ

h2+l
(1−K) ξ+Kl l ≥ ξ

xNb
≤ x ≤ xNd

. (3.32)

Finally, the non-dimensional analogue of (3.17) becomes

∂l

∂t
=

⎧⎪⎨⎪⎩ wd1 0 ≤ x < xNb

C wd2 xNb
≤ x ≤ xNd

(3.33)

An explicit finite difference algorithm is employed to solve the governing equations. This ap-

proach discretizes spatial derivatives using backward finite differences. Note that, so as to prevent

unrealistic singularities, we initialize l with a small value, i.e. l(x, 0) = 10−3. Figures 3.3 a,b show
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results for both the perfect mixing and no mixing cases. Because l is comparable to ξ at early

times, the prediction for wd1 returned by (3.29) is similar to that returned by (3.31), and likewise

when considering wd2, for (3.30) and (3.32). As a result, and up to t ≃ 100, the gravity current

propagates to a comparable extent in both scenarios. As time evolves, the l predicted by (3.33) for

the no mixing case increases steadily. When l is similar in magnitude to h2, the drainage velocity

remains small such that the gravity current extends beyond the steady-state value that is realized

in the long-time limit. As l continues to increase, however, the gravity current begins to retract, a

pattern clearly evident from figure 3.3 (b). This pattern of extension and retraction is quite differ-

ent from that noted in the perfect mixing case where the terminal length of the gravity current is

approached monotonically. The difference of behavior in question therefore provides a convenient

metric by which to assess the validity of one versus the other representation of lower layer mixing.

However, before elaborating on such details and the results anticipated away from the bookend

limiting cases of figures 3.3 a,b, it is first necessary to summarize the numerical technique used to

resolve such flows.

3.4 Numerical simulations

The first purpose of the COMSOL-based numerical simulations is to approximate the value of ε in

the theoretical models of section 3.3. Thereafter, we use numerical results to infer the strengths

and weaknesses of the perfect mixing and no mixing models.

Consistent with the orientation of the flows depicted in figures 3.1 and 3.2, we consider the

evolution of a dense gravity current through a less dense ambient. More precisely, and mimicking

similitude laboratory experiments, we assume that the gravity current and ambient fluids are

respectively comprised of salt and fresh water. Although this choice guides our selection of the

equation of state, the results of section 3.5 are, in any event, non-dimensionalized so as to increase

the generality of our research, i.e. make it applicable to flows spanning a broader range of time- and

length-scales. Notwithstanding this preference for non-dimensional variables, it must be noted that

g′s = 15 cm/s2 and qs = 0.3 cm2/s in our simulations. Simulations are typically run for 20 minutes
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Figure 3.4: Schematic of the numerical set-up that similitude (a) perfect mixing (b) laboratory
experiments.

after injection onset representing an investment of approximately 30 hours of wall clock time on an

Intel Core i7-9700 CPU with 3.00 GHz and 16 GB memory. (By comparison, numerically-solving

the theoretical model of section 3.3 requires only about 3% of the computational resources needed

for the COMSOL simulations.)

3.4.1 COMSOL set-up

In order to determine the velocity and concentration fields in our numerical simulations, mass

continuity, Darcy’s equation, and a solute transport equation are solved. With COMSOL, this is

achieved by leveraging the following two interfaces:

1. The Darcy’s law (dl) interface prescribes the mass and momentum equations as

∂u

∂x
+

∂w

∂z
= 0 , (3.34a)

1

ρ0

∂p

∂x
+

ν

k
u = +

ρ

ρ0
g sin θ , (3.34b)

1

ρ0

∂p

∂z
+

ν

k
w =

ρ

ρ0
g cos θ , (3.34c)

respectively.
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2. The transport of diluted species in porous media (tds) interface solves the solute transport

equation

ϕ
∂c

∂t
+ u

∂c

∂x
+ w

∂c

∂z
= ϕ

[︂ ∂

∂x

(︂
Dxx

∂c

∂x
+Dxz

∂c

∂z

)︂
+

∂

∂z

(︂
Dxz

∂c

∂x
+Dzz

∂c

∂z

)︂]︂
. (3.35)

Here, c is the solute concentration, and Dxx, Dxz and Dzz are components of the dispersion tensor,

Dij . As explained by Bear (1972), this tensor can be defined based on two independent variables

namely the longitudinal dispersivity aL and the transverse dispersivity aT , i.e.

Dxx = Dmol + aL
u2

|V |
+ aT

w2

|V |
, (3.36a)

Dzz = Dmol + aL
w2

|V |
+ aT

u2

|V |
, (3.36b)

Dxz = Dmol + (aL − aT )
|uw|
|V |

, (3.36c)

where Dmol is the coefficient of molecular diffusion and |V | is overall velocity magnitude. Following

Sheikhi et al. (2023), the dispersivity parameters aL and aT are predicted based on the empirical

correlations of Delgado (2007) as

aL =

⎧⎪⎨⎪⎩ 0.5 dp 300 < Pe < 105

0.025 dp 300 < Pe < 105
, aT = 0.025 dp , (3.37a,b)

in which Pe is Péclet number and dp is the bead diameter. In this work, we consider dp = 0.5mm

in line with similitude experiments of the type performed by Sahu & Flynn (2017) and Bharath

et al. (2020). Note finally that the linear equation of state ρ = ρ0(1 + β c) allows us to relate the

density in (3.34b,c) with the solute concentration in (3.35).

3.4.2 Initial conditions and solver

Initially, it is assumed that the porous medium is filled with fresh water of density ρ0 = 0.998 g/cm3

such that the solute concentration is zero at t = 0. The source consists of an opening, oriented
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in z, of height 5mm across which salt water is injected in x with a uniform velocity profile. We

determine the salt water density from g′s by applying

ρs =

(︃
1 +

g′s
g

)︃
ρ0 . (3.38)

To discretize (3.34) and (3.35), an unstructured triangular mesh (with local refinement in the

neighborhood of the source) is employed – see figure 3.4. After performing a grid independency

study, the governing equations are discretized in space using cubic shape functions for (3.34) and

quadratic shape functions for (3.35). A third-order implicit backward differentiation formula (BDF)

is employed for time discretization.

3.4.3 Preliminary validation

As described in more detail in Sheikhi et al. (2023), our COMSOL model is validated using different

points of reference. First, we model the flow of a porous media gravity current along an imperme-

able boundary and observe a strong agreement with the theoretical solution of Huppert & Woods

(1995). This comparison confirms the effectiveness of the COMSOL model in predicting porous

media buoyancy-driven flow (without either drainage or dispersion). Second, we confirm that our

COMSOL model predicts accurately the amount of dispersion experienced by a passive scalar by

juxtaposing numerical model output with the classical solution of Bear (1972), section 10.6. This

comparison confirms the effectiveness of the COMSOL model in predicting dispersion (without

buoyancy effects). Finally, we compare numerical predictions against the flow patterns observed

in similitude laboratory experiments of a filling box flow consisting of a leaky gravity current fed

by a descending plume, i.e. figures 4 a,c of Sahu & Flynn (2017). This comparison confirms the

effectiveness of the COMSOL model in predicting distributed drainage for flows driven by density

differences.
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3.4.4 Determination of the entertainment coefficient

Numerical simulations are run under two different mixing scenarios. For one, mixing details in the

lower layer are resolved using (3.34) and (3.35), thereby offering the most realistic representation

of the flow behavior expected in, say, a similitude laboratory experiment. For the other, we run

numerical experiments that mimic the perfect mixing case of figure 3.2 and so eliminate dense fluid

from the lower layer. This latter category of numerical experiment is run so that, by comparison

with the analogue model of section 3.3, we may estimate the numerical value of the entrainment

coefficient ε. The value so determined is assumed to apply to both of the perfect mixing and no

mixing models, the latter of which is challenging to reproduce numerically. The primary difference

between these models concerns, of course, mixing details from the lower layer; in turn, mixing

experienced in the domain z < −ξ seems very unlikely to directly influence mass transport between

the bulk and dispersed phases of the gravity current and therefore the numerical value of the

entrainment coefficient.

To make quantitative predictions with our theoretical models, we first have to estimate the

value of the entrainment coefficient ε. To this end, and with specific reference to the perfect mixing

case, the difference between the nose positions of the bulk and dispersed phases in the theoretical

versus numerical models is specified by a time-integrated error E, which is defined as

E =

∫︂ t2

t1

[︄(︃
xNd

− xNb

xNd

)︃
theory

−
(︃
xNd

− xNb

xNd

)︃
num

]︄
dt , (3.39)

in which
(︂
xNd

−xNb
xNd

)︂
theory

is assessed from the theoretical model and
(︂
xNd

−xNb
xNd

)︂
num

is assessed from

the numerical model. When post-processing the numerical data, we follow the approach suggested

by Bharath et al. (2020) and define xNb
(xNd

) as the down-dip-most location where fluid having a

density 80% (5%) of the source density can be found. Note also that we select t1 = 20 (by which

time the gravity current is indeed long and thin) and t2 = 200 (by which time the gravity current

has propagated a significant distance downstream). The ε that minimizes this time-integrated error

is considered as the optimum value for the entrainment coefficient in the theoretical model.
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For mathematical simplicity, the theoretical models of 3.3 assume a linear relationship between

wei and ui, where i = 1, 2. However, and consistent with the free shear flow study of Reeuwijk

et al. (2019) and the porous media flow study of Sheikhi et al. (2023), we allow the entrainment

coefficient to vary with the dip angle θ, and also with Keff , defined as

Keff = K

(︃
1 +

1

ξ

)︃
. (3.40)

Keff , effective permeability, is motivated by the functional forms of (3.29) and (3.30), which demon-

strate that the draining velocities depend directly on K and ξ−1. In physical terms, Keff character-

izes the ease with which dense fluid may drain through the interbed layer. Resistance to draining

may arise because K is relatively small or because ξ is relatively large (though not so large that the

interbed thickness is large compared to a characteristic gravity current thickness); Keff takes into

account both of these considerations. Thus larger Keff is associated with more draining and with

a slower speed of advance for the gravity current. Corresponding data are summarized in figure

3.5. These results suggest that ε increases with both of θ and Keff . In this way, our results, though

consistent with the porous media flow investigation of Sheikhi et al. (2023), demonstrate an in-

triguing difference with Reeuwijk et al. (2019). Although they likewise determined that ε increases

with θ, their investigation pertained to downslope, not upslope, flow. In other words, Reeuwijk

et al. (2019) determined that the entrainment coefficient increases with the gravity current speed

whereas porous media flows evidently exhibit the opposite behavior. This difference is likely related

to the different entrainment mechanisms that apply for turbulent free shear flows versus porous

media flows. In the former case, entrainment is a consequence of large-scale eddies, which entrain

external ambient fluid via engulfment. Even for small θ, no such mechanism applies for the porous

media flows of interest here, which remain laminar such that gravity current boundaries remain

smooth. Graphical evidence for this last claim is presented in the following section.
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Figure 3.5: Error-minimizing value of ε versus θ and Keff = K
(︂
1 + 1

ξ

)︂
.

3.5 Results and discussion

3.5.1 Comparison of theoretical and numerical results

Figure 3.6 compares the numerical output against the theoretical predictions made by the perfect

mixing and no mixing models. As anticipated, the numerical solution often lies between the two

extremes of perfect (red curves) versus no mixing (black curves). Consistent with figure 3.3, the

black and red curves very nearly overlap at early times but then diverge as t increases. By extension,

and for both θ = 0◦ and θ = 5◦, there is a good qualitative agreement between the numerical data

and the theoretical predictions for t ≲ 100. For t ≳ 100, the perfect mixing model continues to

provide reasonably accurate predictions for the shape and extent of the bulk and dispersed phases.

On the other hand, the accuracy of the no mixing model suffers from its over-prediction of gravity

current retraction. Additional discussion on this point is provided below.

Shown in figure 3.7 are the bulk (left-hand side panels) and the dispersed (right-hand side

panels) nose positions for the two theoretical models. Also included in figure 3.7 are corresponding

numerical data, which are indicated by the solid symbols. The no mixing model predicts a gradual
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Figure 3.6: [colour] Numerical prediction of the gravity current profile versus the analogue theoret-
ical predictions corresponding to perfect mixing (red curves) and no mixing (black curves). Thick
lines indicate the bulk interface and thin lines indicate the dispersed interface. The color contours
show the numerical output. (a-d) θ = 0◦ and (e-h) θ = 5◦. Here, K = 0.0025 and ξ = 0.333 which
is equivalent to Keff = 0.01.
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Figure 3.7: [colour] Time series of the bulk and dispersed nose positions for θ = 0◦ and (a)
Keff = 0.01 and (b) Keff = 0.02. Numerical data are indicated by the square symbols; theoretical
predictions are indicated by the red (perfect mixing) and black (no mixing) curves. The dashed
black curves indicate the domain where the hydrostatic assumption becomes invalid in the no
mixing model. The inset images show the bulk and dispersed interfaces before and after the sharp
reduction in the position xNd

of the dispersed nose for the no mixing case.
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retraction in the bulk phase but an abrupt retraction in the dispersed phase. As the inset images in

figure 3.7 make clear, the sudden retraction in the dispersed phase occurs because of a decrease in

the thickness of the dispersed phase at its leading edge. The decrease in question causes a sudden

vanishing of the thinned front. As the effective permeability, Keff , increases, the drainage becomes

more robust, and the equivalent drained depth, l, increases more quickly. The retraction, therefore,

occurs earlier for larger Keff . Beyond the onset of retraction, draining is so robust, and vertical

velocities in the gravity current so large, that the assumption of a hydrostatic flow can no longer

be justified. In figure 3.7, the (black) line type then changes from solid to dashed. Figure 3.7

confirms that the degree of gravity current retraction experienced in the numerical model, though

non-zero, is small and time-delayed, much more so than is predicted by the no mixing model.

So although the no mixing model gives predictions that are in reasonably good agreement with

the numerical data up to the point of retraction, model fidelity suffers thereafter. Generally more

favorable agreement is observed when considering the perfect mixing model, although the long-time

limit is characterised by an over-prediction of the front positions for both the bulk and dispersed

phases. Not surprisingly, deviations are seen to increase as draining is made more robust, i.e. as

the value of Keff increases.

The results of figure 3.7, in particular the observation concerning the eventual non-hydrostatic

nature of the flow in the no mixing case, motivate us to divide the (t, Keff) parameter space as

in figure 3.8. The red region shows the regime before the onset of gravity current retraction in

the no mixing model. In this red regime, we can use either theoretical model to predict, with

reasonable accuracy, the forward advance of the bulk and dispersed phases. The green area shows

the regime where the no mixing model becomes unduly influenced by its prediction of gravity

current retraction. Here, the no mixing model generates results that are consistent with respect

to the model assumptions but not, unfortunately, in good agreement with numerically-determined

behavior. The severity of the retraction predicted by the no mixing model stems from its inability

to account for the instabilities that develop within the lower layer draining fluid. We elaborate on

this point in section 3.5.3. Thereafter, and in the blue region of figure 3.8, the flow predicted by

the no mixing model becomes non-hydrostatic and the model violates one of the key assumptions

81



Figure 3.8: [colour] Theoretical model regime diagram illustrating the regimes where (i) both of the
no mixing and perfect mixing models return accurate predictions [red], (ii) the no mixing model
remains hydrostatic but is inaccurate owing to its over-prediction of gravity current retraction
[green], (iii) the no mixing model is invalid [blue], and, (iv) both models become invalid [white].
Formally, data are shown for θ = 0◦; however, we find very similar results at different inclination
angles.

stated in section 3.3. In this blue region, therefore, only the perfect mixing model is physically-

acceptable. Finally, when Keff exceeds approximately 0.075, corresponding to the white region in

figure 3.8, the drainage velocity becomes so large that the hydrostatic assumption is violated even

in the perfect mixing model. In this regime, most of the injectate immediately drains to the lower

layer such that relatively little fluid remains above the permeability jump in the form of a distinct

gravity current. Separate analyses (not shown) suggest that the regime diagram of figure 3.8 is

insensitive to the choice of inclination angle. Accordingly, the results of figure 3.8 are presumed

applicable for different θ.

3.5.2 Effects of Keff and θ on dispersion

In this subsection, attention is restricted to the case where both theoretical models yield accurate

predictions corresponding to the red region of figure 3.8. In this red region, we can employ the no

mixing and perfect mixing models to quantify the impact on dispersion of two especially important
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dimensionless parameters, namely Keff and θ. To this end, we consider as dispersion metrics the

separation distance between the bulk and the dispersed nose positions and the fraction of the total

buoyancy (per unit width) that is specifically associated with the dispersed phase. As regards the

latter parameter, and with respect to the thick and thin curves of figure 3.3, we first calculate

Bbulk =

∫︂ xNb

0
h1 dx and Bdisp =

∫︂ xNd

0
c2(h2 − h1) dx ≡

∫︂ xNd

0
b2 dx . (3.41a,b)

The dispersed buoyancy fraction B̃disp is then found from

B̃disp =
Bdisp

Bbulk +Bdisp
. (3.42)

The sensitivity of dispersion to Keff is explored in figure 3.9. Figure 3.9 a shows the nose

separation, 1−xNb
/xNd

, whereas figure 3.9 b shows the dispersed buoyancy fraction, B̃disp. In both

panels, data are measured at t = 150. Increasing Keff leads to more drainage of bulk fluid from

the gravity current, which thereby retards the elongation of the bulk phase. Although increasing

Keff likewise increases the drainage of dispersed fluid, the effect is comparatively mild, so that the

net effect of increasing the effective permeability is to increase both the nose position separation

distance and also the dispersed buoyancy fraction. The trends in question are apparent from both

of the no mixing (black curves) and perfect mixing (red curves) models and are also evident from

the superposed numerical data (closed symbols). Consistent with figure 3.7, and for the relatively

modest values of t of interest here, we find better agreement between the numerical data and the

predictions of the no mixing model versus the perfect mixing model.

A complementary comparison but considering the impact of θ rather than Keff is presented in

figure 3.10. When the bottom boundary is inclined up-dip such that θ > 0◦, the gravity current

characteristic velocity decreases. Hence entrainment to the dispersed phase, whether from the

surroundings or from the bulk phase, is reduced. Therefore, both of 1−xNb
/xNd

and B̃disp decrease

with θ. Comparing figure 3.10 against figure 3.9 shows that dispersion intensity is more sensitive

to Keff than to θ, e.g. doubling the former parameter yields a bigger change in 1 − xNb
/xNd

and
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Figure 3.9: [colour] (a) Difference of nose separation and (b) buoyancy fraction in the dispersed
phase for θ = 0◦ but various Keff at t = 150.

Figure 3.10: [colour] As in figure 3.9 but considering the influence of θ for Keff = 0.01.
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B̃disp than is realized by doubling the latter parameter. On the other hand, and as with figure

3.9, figure 3.10 confirms that output from the numerical simulations is better aligned with the no

mixing model than with its perfect mixing counterpart.

3.5.3 Flow characterization past the point of theoretical model breakdown

Although the theoretical models of section 3.3 become inaccurate and/or invalid in the green and

blue regions of figure 3.8, we can leverage the numerical results from the COMSOL simulations to

investigate the flow behavior within these parameter spaces. These numerical simulations illustrate

that following the elongation of both the bulk and dispersed phases, the bulk phase begins to

retract, whereafter the dispersed phase begins to thin – see the top two panels of figure 3.11. The

thin leading edge of the dispersed phase eventually disappears and the bulk and dispersed phases

reach their respective terminal lengths. Qualitatively similar behavior is predicted by the no mixing

model – see e.g. figure 3.7 – though in this theoretical case, transitions are more abrupt and the

magnitude of the retraction is much larger.

Examination of the numerical data has a further benefit, namely that it allows us to study

the details of the draining flow. To this end, figure 3.12 shows the convective flow patterns that

develop in the lower layer for different Keff . Figure 3.12 confirms that drainage is more severe for

0 ≤ x < xNb
than it is for xNb

≤ x ≤ xNd
. Moreover, and consistent with Leahy et al. (2009)

and Sahu & Neufeld (2023), this figure demonstrates the presence of fingers, which result from a

Rayleigh-Taylor-type instability. The appearance of fingers is characterized by alternating bands

of upward- versus downward-propagating fluid – see e.g. the solid red curve in the left-most panel

of figure 3.12. Moreover, the bulbous shape of the largest finger from the second panel of figure

3.12 suggests an eventual separation of this draining fluid from the overlying gravity current. In

either case, the situation differs significantly from the much more uniform scenario associated with

the no mixing model, whereby the vertical velocities measured in the gravity current, the interbed

layer and the lower layer are identical (and over-predicted). Note finally that as Keff increases,

fingers form earlier. With reference to figure 3.8, this explains why the time interval over which
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Figure 3.11: [colour] Numerical prediction of the flow in the green and blue regions of figure 3.8.
Inset images show the gravity current profile in more detail. Here, Keff = 0.03, θ = 0◦ and non-
dimensional times are as indicated.
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Figure 3.12: [colour] Numerical prediction of the gravity current and associated draining flow for
different Keff at t = 150 and with θ = 0◦. The inset images show the vertical variation of the
vertical velocity, w. Curves are drawn for t = 100 (black lines) and t = 150 (red lines). The
red dashed line from the left-most image displays the location x = 3 where vertical velocities are
evaluated.

the theoretical models work well is tighter for larger Keff .

To categorize mixing in the lower layer, we can extend the definition of B̃disp to the draining

flow. Accordingly, we evaluate integrals similar to those of (3.41) but spanning a vertical domain

z < −ξ. Thus do we suppose that B̃disp now represents the fraction of the drained fluid that

appears in a dispersed rather than in a bulk phase. Numerical values for the redefined B̃disp are

reported in table 3.1 for various Keff and for two inclination angles, i.e. θ = 0◦ and θ = 5◦. Although

there is some scatter in the data, particularly for the case of a horizontal permeability jump, the

Table 3.1: Lower layer dispersed buoyancy fraction at t = 150 for various Keff and θ = 0◦ and
θ = 5◦.

θ = 0◦ θ = 5◦

Keff B̃disp Keff B̃disp

0.015 0.80 0.015 0.83
0.03 0.85 0.03 0.68
0.05 0.65 0.05 0.59
0.07 0.77 0.07 0.60
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results of table 3.1 support the conclusion that most of the drained fluid exists in a dispersed

state, especially for small Keff . This observation is helpful in the re-examination of figure 3.7 a,

particularly over the time interval 200 ≲ t ≲ 350. There, we find much better overall agreement

between the numerical data and the perfect mixing model (red curve) than the no mixing model

(black curve). The no mixing model fails to account for the dispersed (and disconnected) nature of

the drained flow and so over-predicts both the influence of dense fluid from the lower layer and the

severity of gravity current retraction. This limitation is obviously avoided by the perfect mixing

model, which neglects any contribution of the drained flow when calculating the draining velocity.

The perfect mixing model thereby provides a more accurate (though still imperfect) prediction for

the distances traveled by each of the bulk and dispersed phases.

3.6 Summary and conclusions

The present analysis considers, theoretically and numerically, the flow of a porous media gravity

current along an interbed layer where drainage from the gravity current underside is spatially-

distributed. The theoretical model of section 3.3 includes dispersive mixing and separates the

gravity current into bulk and dispersed phases. The latter phase entrains fluid from the former and

also from the surrounding ambient. For expediency, we adopt a somewhat simpler approach when

considering the evolution of the fluid that drains into the lower layer of the porous medium. Thus

do we restrict attention to the two bookend opposite cases of no mixing versus perfect mixing. The

non-dimensional governing equations presented in section 3.3 make reference to two dimensionless

parameters namely Keff , the effective permeability defined by (3.40), and θ, the inclination angle of

the interbed layer. Increasing Keff by either increasing the permeability of the interbed layer or else

decreasing its thickness intensifies drainage from both the bulk and the dispersed phases. Given

that drainage is notably more severe in the bulk phase, increasing Keff (i) yields a larger separation

between the bulk and dispersed nose positions, and, (ii) causes a greater fraction of the gravity

current fluid to reside in the dispersed phase. By either metric, we conclude that dispersion is more

significant. Increasing θ, so that the gravity current flows up a steeper incline, leads to a smaller
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velocity of advance and therefore to less dispersion. Our analysis (see e.g. figure 3.8) suggests

that, consistent with Sahu & Neufeld (2023), the hydrostatic pressure assumption becomes invalid

when Keff and t are large. The no mixing and perfect mixing models do not, therefore, provide

meaningful predictions always. In particular, the no mixing model eventually predicts a draining

velocity that is too large and so exhibits a more limited range of applicability than its perfect

mixing counterpart.

To gain additional insights into the veracity of our model predictions, we ran a series of comple-

mentary COMSOL numerical simulations as described in section 3.4. In the first case, numerical

data are needed to calibrate the value of the entrainment coefficient, ε, that appears in the gov-

erning equations (3.21)-(3.23). Figure 3.5 demonstrates that the optimum value of ε is a function

of Keff and θ. (Note that we consider the same value for ε for both of the no mixing and perfect

mixing models because the entrainment coefficient depends on the details of the dispersive mixing

that occurs between the gravity current and the ambient, but not on mixing processes in the lower

layer.) In the second case, numerical simulations are performed for the sake of comparison with

theoretical model output. Not surprisingly, the numerical simulations require approximately 30

times the number of floating point operations given e.g. the simplifying assumptions applied in the

theoretical model. Figures such as 3.6, 3.7, 3.9 and 3.10 confirm that both theoretical models pro-

vide a reasonable description of the gravity current evolution, at least until the point where the no

mixing model predicts flow retraction. Thereafter, the front positions anticipated by the no (per-

fect) mixing model significantly under-predict (moderately over-predict) the numerically-derived

behavior. The eventual breakdown of the no mixing model cannot be regarded as surprising: the

model assumes that fluid drained to the lower layer contributes to basal draining in perpetuity.

This picture is rather different from the numerical simulation results of figure 3.12, which suggest

the appearance of convective fingers that both mix into the lower layer ambient and later detach

from gravity current underside. Fingers are the result of a Rayleigh-Taylor-type instability, are

characterized by adjacent bands of upwards- versus downwards-directed flow and materialize ear-

lier on for larger Keff . On the other hand, and for smaller Keff , we observe that a greater fraction

of the draining fluid in the lower layer appears in a dispersed rather than bulk phase – see e.g. table

89



3.1. This is, of course, the opposite behavior to what is observed in the upper layer. In other

words, large Keff is associated with robust dispersion above the interbed layer but comparatively

modest dispersion below. Meanwhile, small Keff is associated with more modest dispersion above

the interbed layer but more robust dispersion below. These observations suggest that theoretical

models that consider sharp interfaces for the gravity current and also for the draining fluid may

apply only under special circumstances e.g. at relatively early times before finger onset.

Although we have presented a careful comparison of theory and numerical simulation, it remains

to confirm independently the accuracy of both categories of models with similitude laboratory

experiments. To this end, we envision running a series of experiments in the spirit of Huppert

et al. (2013), Bharath et al. (2020) and Sahu & Neufeld (2023). In such a case, the interbed

layer may be included by application of a thin porous substrate as in the experiments of Thomas

et al. (1998). Laboratory experiments must employ a lower layer of large depth so as to avoid

the collision of the draining fluid with the bottom boundary of the tank. If such a collision were

to occur, then a secondary gravity current would appear, which has the potential to influence the

evolution of the gravity current propagating along the interbed layer – see e.g. Bharath & Flynn

(2021). Turning from the laboratory to the field, it is important to reiterate that our research is

motivated by examples of environmental flows in geological layers. These are more complicated

than the physical domain that we consider here owing, for instance, to the more complicated

pattern of layer heterogeneities than is accounted for in figure 3.1. In the next step, it would be

beneficial to include multiple interbed layers, as has been done in the studies of Neufeld & Huppert

(2009), Behnam et al. (2021) and Sahu & Neufeld (2023), for example. By doing so, we can better

understand buoyancy-driven flow through non-uniform porous media, e.g. the communication of

H2 between different layers in underground hydrogen storage (UHS) projects involving depleted

natural gas reservoirs. Our models also consider that the dynamic viscosity, µ, is independent of

the concentration and is therefore the same in the bulk and dispersed phases. For the UHS example

described in the Introduction, the viscosity of the dispersed phase (consisting of a mixture of H2

and CH4) should be more than that of the bulk phase (consisting of H2). Underestimating the

dispersed phase viscosity leads to over-predicting its propagation speed. Relative to real geological
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flows, the models presented here might therefore over-predict the extent of dispersion. Quantifying

this effect more precisely is a topic of current interest; to this end, we hope to report on our findings

in a future publication.
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Chapter 4

Can a hydrodynamic model predict
the flow evolution of a hydrogen
plume in a depleted natural gas
reservoir? 1

4.1 Abstract

Hydrogen storage in depleted natural gas reservoirs is a promising solution for storing excess re-

newable energy on a timescale longer than can be accommodated by salt cavern storage. However,

commercial exploitation of the technology in question awaits the resolution of key challenges and

uncertainties. Chief among these from a fluid mechanics point of view is to resolve the connection

between hydrogen leakage and the mixing of hydrogen and cushion gas. Reduced-order-models

examining this question have been developed i.e. by Sheikhi & Flynn (J. Fluid Mech., vol. 984,

A33, 2024), however their work relies much more heavily on fluid mechanics than it does on ther-

modynamics. It is therefore unclear the extent to which their model predictions are accurate when

compared with e.g. the numerical output from reservoir-level simulation packages. Addressing this

knowledge gap is the key focus of the present study. To this end, we use OpenGoSim and CMG to

numerically resolve hydrogen injection directly below an interbed layer of reduced, but still finite,

1Sheikhi. S. & Flynn, M. R. 2024 Can a hydrodynamic model predict the flow evolution of a hydrogen plume in
a depleted natural gas reservoir? Int. J. of Hydrogen Energy, Submitted.

92



permeability. The resulting comparison demonstrates that the theoretical model predicts, with

generally good accuracy, the overall shape of the gravity current plus the amount of hydrogen that

dispersively mixes into the surrounding cushion gas. However, reduced-order-model fidelity suffers

when the injection time is long, the draining layer is thin and the interbed layer admits a relatively

large drainage. This observation highlights areas of future improvement for the reduced-order-

model, which can otherwise be applied, with great computational efficiency, in screening candidate

reservoirs for hydrogen storage.

4.2 Introduction

As developed and developing economies strive to reduce their dependence on conventional fossil

fuels, it is crucial to adopt sustainable alternatives that can minimize the environmental impact as-

sociated with traditional energy sources (Dincer, 2000). Because renewable energies, e.g. wind and

solar, have emerged as promising surrogates in the energy transition, (green) hydrogen produced

from the electricity derived from wind and solar is expected to play a crucial role in shaping the

future energy landscape. However, before green hydrogen can displace either of blue or grey hy-

drogen, effective large-scale storage solutions must be developed (Muthukumar et al., 2023; Hassan

et al., 2023; Abdellatif et al., 2023; Verma et al., 2024). Only then can the green hydrogen produced

in summer, when solar radiation is plentiful, can be combusted in winter, when such radiation is

less abundant. To this end, there is now much interest in underground hydrogen storage (UHS) in

which hydrogen is first injected into, then withdrawn from, geological formations (Crotogino et al.,

2010; Tarkowski, 2019; Zivar et al., 2021; Song et al., 2023; Salmachi et al., 2024). Among un-

derground formations, depleted natural gas reservoirs are perhaps best suited for seasonal storage.

Depleted natural gas reservoirs offer storage capacities in the terawatt-hour range and so surpass

the amount of energy that can be stored in salt caverns by several orders of magnitude (Tarkowski,

2019; Alinejad et al., 2024). Moreover, depleted gas reservoirs are believed to be better storage

vehicles than either of depleted oil reservoirs or saline aquifers. Hydrogen storage in either of these

latter formations includes a greater likelihood of hydrogen dissolution and/or chemical reactions

93



involving hydrogen. As with the leakage and dispersion mechanisms to be explored below, dissolu-

tion and chemical reaction represent an irreversible, and undesirable, loss of injectate (Tarkowski,

2019).

The feasibility of UHS in depleted gas reservoirs has been categorized in various studies (Amid

et al., 2016; Huang et al., 2023). No small number of these studies have explored the impact of

the cushion gas, i.e. the in-situ gas that maintains operational pressures downhole. Cushion gas

composition is a key consideration to any UHS project because, for example, different cushion

gases have different densities and are therefore associated with different likelihoods for the “gravity

override” of the hydrogen plume (Hassanpouryouzband et al., 2021). Moreover, different cushion

gases impact the reservoir pressure in different ways. For instance, the numerical simulations

conduted by Zamehrian & Sedaee (2022) reveal that hydrogen recovery is maximized when N2

is employed as the cushion gas: injecting N2 results in a greater increase of reservoir pressure

compared to CO2 or CH4. In the current context, larger pressures are desirable because they are

associated e.g. with greater water displacement, a job that would otherwise have to be performed

by the hydrogen injected into (then subsequently retained within) the formation.

Other studies, have focused on the possible mixing of injected hydrogen with the cushion gas,

the extent of this mixing having been identified by Amid et al. (2016) as a key knowledge gap. To

this end, quantitative insights are contributed by Sari & Çiftçi (2024), who numerically modeled

hydrogen injection/withdrawal from an onshore depleted gas reservoir, namely the Değirmenköy gas

field, in Turkey. They used MRST (the MATLAB Reservoir Simulation Toolbox) and documented

instances of significant mixing between the hydrogen and ambient reservoir fluid. Consistent with

the earlier numerical studies of Pfeiffer & Bauer (2015) and Feldmann et al. (2016), Sari & Çiftçi

(2024) showed that the ratio of the withdrawn hydrogen increases with the number of storage

cycles. By the time of the fifth and final cycle, the recovery ratio (volume ratio of hydrogen

injected vs. hydrogen produced) reaches approximately 92%. Complementing Sari & Çiftçi’s study,

Hagemann (2017) modeled numerically and theoretically UHS in depleted gas reservoirs and found

that predictions of mixing efficiencies increase significantly when mechanical dispersion is taken

into account. Thus when mechanical dispersion is included, the volume of hydrogen that can be
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recovered economically decreases by 15% (Hagemann, 2017). Heterogeneity increases mechanical

dispersion because the associated random grain orientation provides different pathways for fluid

flow (Wang et al., 2022). In a related spirit, Cai et al. (2022) conducted numerical simulations of

UHS in an aquifer, a salt cavern and a depleted natural gas reservoir. The authors demonstrated

that the purity of the produced hydrogen decreases in the reservoir case when the formation is

heterogeneous. Feldmann et al. (2016) investigated hydrogen migration within a heterogeneous

porous medium. This medium was characterized by the presence of sandstone layers interspersed

with semi-permeable clay interbed layers. Their results show that hydrogen drainage through low

permeable layers in conjunction with cushion gas dispersion decrease the hydrogen recovery ratio.

The above discussion suggests that the hydrodynamic behaviour of hydrogen (e.g. the “slippery”

nature inherited from its small size at the atomic scale) coupled with formation heterogeneities make

it difficult to model the precise details of hydrogen migration. Accordingly, simplified conceptual

models are required to provide insights into the important factors, i.e. mixing and drainage, that in-

fluence the porous media flows relevant to UHS projects. Key to such descriptions is the realization

that hydrogen is much more buoyant than any candidate cushion gas (unless, of course, hydrogen

is itself used as the cushion gas). Hydrogen injected into formation will therefore rise vertically

as an ascending plume, at least until the point where it strikes a cap rock layer. Thereafter, the

primary flow will be orientated in a direction parallel to this impermeable or mostly-impermeable

boundary. A theoretical study of mixing process within vertical porous media plumes is given in

Sahu & Flynn (2015) and Gilmore et al. (2021) . Meanwhile, Sheikhi et al. (2023) and Sheikhi

& Flynn (2024) presented simplified (e.g. hydrostatic) theoretical models for dispersive mixing

in porous media gravity currents. The former of these studies developed a theoretical model to

identify those most influential parameters that control dispersive mixing in porous media gravity

currents experiencing localized drainage. Theoretical predictions were validated using COMSOL-

based numerical simulations. This line of inquiry was extended by the latter of the two studies,

which examined distributed drainage through a semi-permeable interbed layer rather than localized

drainage through a fractured (but otherwise impermeable) interbed layer.

The studies of Sheikhi et al. (2023) and Sheikhi & Flynn (2024) are notable in that their theo-
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retical models emphasize hydrodynamics at the expense of thermodynamics. Thus do the authors

employ a linear equation of state in addition to numerous other simplifying assumptions. These

include incompressible flow, concentration-independent dynamic viscosities and linear entrainment

laws. So although the theoretical models in question exhibit encouraging quantitative agreement

with the output of similitude numerical simulations, it is unclear whether these models offer mean-

ingful insights in the context of real UHS-type flows. The primary focus of this work is to address

this uncertainty and we do so by contrasting theoretical predictions with the output of OpenGoSim-

and CMG-based numerical simulations that consider reservoir-appropriate (rather than similitude)

conditions plus concentration-dependent viscosities, etc. In turn, theoretical predictions are de-

rived from the work of Sheikhi & Flynn (2024), distributed drainage being of greater interest than

localized drainage in the context of UHS in a depleted gas reservoir (Bunch et al., 2024). Through

the resulting comparison, we will demonstrate that the hydrodynamic model of Sheikhi & Flynn

(2024) performs surprisingly well, at least insofar as its ability to predict (i) the lateral spread of

hydrogen along the underside of the interbed layer, and, (ii) the volume of hydrogen that mixes into

the cushion gas. These observations are significant in the UHS context because they suggest that

preliminary assessments of hydrogen flow/mixing can be performed using reduced-order models

that emphasize hydrodynamics but that sidestep many of the other complications (and runtime

overhead) of more comprehensive numerical simulations.

The rest of this Chapter is organized as follows: in section 4.3, we present the details of

OpenGoSim- and CMG-based numerical simulations. Meanwhile, key details associated with

Sheikhi & Flynn (2024)’s theoretical model are given in section 4.4. Model output comparison

is saved for section 4.5 and conclusions are then presented in section 4.6.

96



Figure 4.1: Schematic of the numerical domains. (a) Planar geometry, (b) curved (i.e. one-half of
an anticline-like) geometry. Note that the scale of the domain is not identical in all directions. The
dark stripe indicates the interbed layer. The interbed thickness varies between 1m and 1.5m in
different simulations. The domain height H and lower layer height Hl are, respectively, 150m and
38m for unconfined domains and 50m and 23m for confined domains.

4.3 Numerical simulations

4.3.1 Formulation

The numerical domain consists of a homogeneous reservoir, except for the inclusion of a thin

interbed layer. Most of the domain is saturated with a mixture of methane, carbon dioxide and

nitrogen. The precise composition of this (cushion) gas is as follows: 93.95 mole% methane, 1.53

mole% carbon dioxide and 4.52 mole% nitrogen. The domain measures 800m long × 500m wide

× 150 (or 50)m tall – see figure 4.1. The thickness of the interbed layer depends on the particular

simulation but varies between 1m and 1.5m. The permeability and porosity of the upper and

lower layers measure 100mD and 0.2, respectively. These values are appropriate to a medium

grained sandstone (Iscan & Kok, 2009). The interbed layer likewise has a porosity of 0.2 but its

permeability is much smaller, i.e. we consider a minimum (layer-uniform) permeability of 0.35mD

and a maximum (layer-uniform) permeability of 1.0mD, which is relevant to different varieties of

hydrate-bearing clay (Zhang et al., 2022). Note finally that saturating liquid water is included to

a depth of 10m from the lowest point of the domain. Any water appearing outside of this region

of water saturation is considered as irreducible water corresponding to the endpoint saturation of

the aqueous phase after extensive displacement by the gas phase – see figure 4.2. Accordingly, and
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Figure 4.2: [Colour] Relative permeability of the aqueous and gas phase based on saturation.
Note that for irreducible water (i.e. Sg ≤ 0.2), the relative permeability of the gas phase remains
unchanged. This is because the irreducible water resides small pore spaces that do not contribute
to the overall flow (Ahmed, 2010).

whether we examine the upper, lower or interbed layer outside of the 10m deep pool of saturating

liquid water, the gas phase relative permeability (kg) is unity (Ahmed, 2010) and the aqueous phase

relative permeability (kaq) is zero. This aligns with the concept of immobile irreducible water. Our

approach is therefore also consistent with the theoretical model of Sheikhi & Flynn (2024), which

ignores capillary effects. As suggested by the information given in the caption to figure 4.1, the

lower layer thickness is always larger than 10m such that the interbed layer does not intersect the

water-saturated region within the horizontal domain of interest. This applies even to the anticline

case of figure 4.1 (b) for which the region of water saturation remains well-separated from the

hydrogen plume.

Hydrogen is injected at a rate of Qin = 2 × 105 S m3/day from a horizontal well situated

immediately below the interbed layer and spanning the formation width. At the source, the flow

rate is therefore uniform in y, the spatial direction indicated in figure 4.1. The maximum Bottom

Hole Pressure Limit (BHPL) measures 50 Bar above the original formation pressure whose value

typically measures Pform = 100 bar. By applying mass balance for all three components (hydrogen,
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cushion gas and water) (Chen et al., 2006), we find that

∂

∂t

(︁
ϕxH2

g Sg ηg
)︁
+∇.

(︁
xH2
g ug ηg + ϕSg Dg ηg ∇xH2

g

)︁
= Qin δ(X,Z − Zwell) , (4.1)

∂

∂t

(︁
ϕxcg Sg ηg

)︁
+∇.

(︁
xcg ug ηg + ϕSg Dg ηg ∇xcg

)︁
= 0 , (4.2)

∂

∂t

(︁
ϕSaq ηaq

)︁
+∇.

(︁
uaq ηaq

)︁
= 0 . (4.3)

Here, ϕ is the porosity and xαβ is the mole fraction of component α (hydrogen, H2 or cushion gas,

c) in phase β (gas, g or aqueous, aq). Meanwhile, Sβ, uβ and ηβ are, respectively, the saturation,

Darcy velocity and molar density of phase β. Finally, Dg is the gas phase dispersion coefficient, δ is

the Dirac delta function and Zwell is the Z-position of the well. Equations (4.1-4.3) do not include

dissolution of either of the cushion gas or hydrogen gas in the aqueous phase because the associated

Henry’s law constants are relatively small (Huang et al., 2023). In a similar spirit, we discount

the contribution of water vapor in either gas phase owing to the large formation pressure. Finally,

we neglect the capillary pressure at the gas-aqueous interface in the deep water layer that appears

below the gas phase and so assume the following equality of pressures Paq = Pg = P . In other

words, and in the large Bond number limit of interest here, the capillary pressure is insignificant

due to the interfacial tension between water and hydrogen (Muhammed et al., 2023). Given the

above assumptions, the Darcy’s law expressions for the aqueous and gas phases read as follows

ug =
k kg
µg

∇
(︁
P − ρg g Z

)︁
, (4.4)

uaq =
k kaq
µaq

∇
(︁
P − ρaq g Z

)︁
, (4.5)

in which k is the medium permeability, g is gravitational acceleration and kβ, µβ and ρβ are the

relative permeability, dynamic viscosity and density of phase β, respectively. Equations (4.1-4.5)

are solved separately in the upper, lower and interbed layers, the only substantial difference between

these being the small thickness and permeability associated with the latter layer.
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Equations (4.1-4.5) are complemented by an energy balance equation that reads

∂

∂t

[︂
ϕ
(︁
Sg ηg Ug + Saq ηaq Uaq

)︁
+ (1− ϕ)ρr cr T

]︂
+∇.

(︁
ug ηg Hg + uaq ηaq Haq + κ∇T

)︁
= 0 . (4.6)

Here, T is temperature, Uβ is the internal energy of phase β and Hβ is the hydrostatic pressure

head of phase β. Meanwhile, κ is the rock thermal conductivity, ρr is the rock density and cr is the

rock specific heat capacity. Upon substituting (4.4) and (4.5) into (4.1-4.3), we are left with four

equations in the six unknowns Sg, Saq, x
H2
g , xcg, P and T . Closure is realized by recognizing that

Sg + Saq = 1 , (4.7)

and

xH2
g + xcg = 1 . (4.8)

The resulting system of coupled equations can be solved using a variety of commercial software

platforms. In the following two subsections, we outline how we deployed two particular packages,

namely OpenGoSim and CMG. In either case, we consider the same initial conditions, namely a

domain devoid of hydrogen and in hydrostatic balance where the top of the domain is at a depth of

3550m. Except as specified below, this depth is associated with a pressure of 100 bar. Moreover,

we consider an initial temperature of 75◦C. All boundaries are considered impermeable.

The numerical models are verified in three complementary ways. First, we compare the numer-

ical simulations from two distinct programs, recognizing that OpenGoSim utilizes a finite volume

method whereas CMG applies a finite difference method. Second, we confirm that our simulations

are grid independent. Finally, we confirm that the numerical model predicts a systematic change in

output parameters in response to variations in input variables – see figure 4.7 below and Appendix

C.1.2.
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4.3.2 OpenGoSim

The COMP3 multi-gas component mode (gas/solvent/water) of OpenGoSim-1.8 is used to solve

the governing equations of subsection 4.3.1. Having specified the reservoir temperature and pres-

sure, cushion gas and hydrogen densities are determined via the Peng-Robinson equation of state

(Peng & Robinson, 1976). Meanwhile cushion gas and hydrogen viscosities are obtained via the

Lorenhz-Bray-Clay method (Lohrenz et al., 1964) and a residual entropy method (Mairhofer, 2021)

respectively. Consistent with the value reported in Feldmann et al. (2016), the gas phase dispersion

coefficient, Dg, is 2×10−5 m2/s. Finally, (4.1-4.3) and (4.6-4.8) are discretized in space using a finite

volume scheme based on the two-point flux formula, and in time using a first order fully implicit

scheme. The Newton-Raphson approach is used to linearize the discretized equations. This linear

system is preconditioned and solved iteratively via the GMRES method.

4.3.3 CMG

When applying CMG 2021.10 to solve the governing equations of subsection 4.3.1, (4.1-4.3) and

(4.6-4.8) are discretized using the finite difference method and solved implicitly using the GEM

solver. We use higher order upstream weighting schemes under a Total Variation Diminishing

(TVD) flux limiter to control the numerical diffusion in the solution (Shrivastava et al., 2005).

The reservoir initialization is similar to OpenGOSim. Hydrogen and cushion gas properties are

calculated using WINPROP. The gases viscosity is calculated from the Jossi, Stiel and Thodos

correlation (Reid et al., 1959). Within CMG, the gas phase dispersion coefficient is represented as

a tensor of the form

Dg =

⎡⎢⎢⎢⎢⎣
Dg,xx Dg,xy Dg,xz

Dg,yx Dg,yy Dg,yz

Dg,zx Dg,zy Dg,zz

⎤⎥⎥⎥⎥⎦ . (4.9)
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Diagonal (Dg,mm) and non-diagonal (Dg,mn) terms of the above tensor (4.9) are given by

Dg,mm =
D∗

g

ϕFg Sg
+

aL − aT
ϕSg |ug|

u2g,m + aT
|ug|
ϕSg

, (4.10a)

Dg,mn =
aL − aT
ϕSg |ug|

ug,m ug,n . (4.10b)

Here, Fg is the gas phase formation resistivity factor and D∗
g is the gas phase effective molecular

diffusion coefficient. D∗
g is related to the standard molecular diffusion, Dmol

g , except that it incor-

porates effects related to the porosity, saturation state, pressure, temperature, and tortuosity of

the porous medium (Poling et al., 2001). Based on Michelsen et al. (2023), D∗
g is taken to be 10−7

m2/s in this study. Equations (4.10) also make reference to the longitudinal dispersivity, aL, and

the transverse dispersivity, aT . Dispersivities are scale-dependent and are influenced by pressure,

temperature, flow velocity, and the tortuosity and heterogeneity of the porous medium. Although

the porous medium considered in our study is not, strictly speaking, homogeneous, we base our

estimate for aL on Michelsen et al. (2023) who performed 13 different investigations across a range

of flow speeds, temperatures and pressures and found that aL = 0.04Lc/25 in which Lc is a char-

acteristic length scale. If, in specifying this length scale, we follow Gelhar et al. (1992) and use the

maximum downdip distance available to the expanding gravity current, i.e. Lc = 400m, we find

that aL = 0.64m, which is broadly consistent with the range of values reported by Tek (1989) and

Carriere et al. (1985). In general, transverse dispersion is two orders of magnitude smaller than

longitudinal dispersion (Feldmann et al., 2016) on which basis we set aT = 0.0064m.

4.4 Theoretical model development

The exposition presented in this section is adapted from the more expansive derivation presented

in Sheikhi & Flynn (2024). Although the equations to follow have been published previously, they

are reproduced here for the sake of completeness in this standalone study.

Sheikhi & Flynn (2024) investigate the flow evolution of an incompressible gravity current from

a line source through a lower layer with a constant permeability, k. The gravity current experiences
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Figure 4.3: [colour] Schematic of a leaky gravity current elongating over an inclined interbed
layer. The upper and lower layers have identical permeability, k, and the interbed layer has a
smaller permeability, kb. The red and black lines respectively define the boundaries of the bulk and
dispersed phases of the gravity current. We assume a “perfect mixing model” whereby source fluid
that drains into the upper layer is quickly and thoroughly mixed into the surrounding ambient.
Adapted from figure 2 of Sheikhi & Flynn (2024).

boundary drainage through a thin interbed layer of thickness ξ and permeability kb – see figure

4.3. The authors model mass exchange between the gravity current and surrounding ambient fluid

by defining entrainment velocities. Borrowing ideas from Ellison & Turner (1959) and the theory

of free jets, Sheikhi & Flynn (2024) employ the simplest possible entrainment relationship, namely

that the entrainment velocity is proportional to the gravity current characteristic velocity. As a

result of this entrainment, there develops within the gravity current two phases, i.e. a bulk phase

consisting of essentially undiluted source fluid and a dispersed phase consisting of fluid that is a

mixture of source and ambient fluid – see figure 4.3. The density of the dispersed phase is therefore

between that of the ambient and that of the source.

Sheikhi & Flynn (2024) define as their characteristic length scale

Π1 =
νqs
kg′s

, (4.11)
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and as their characteristic time scale

Π2 = ϕqs

(︃
ν

kg′s

)︃2

, (4.12)

in which qs is the injectate source volume flow rate (per unit span and therefore expressed in units

of length2/time ), g′s is the source reduced gravity and ν is the kinematic viscosity. As regards this

latter variable, recall that Sheikhi & Flynn (2024) assume that the kinematic viscosity of all phases

(bulk, dispersed and ambient) are identical. The advent of Π1 and Π2 allows us to introduce the

following non-dimensional variables:

x∗ =
x

Π1
, ξ∗ =

ξ

Π1
, h∗1 =

h1
Π1

, h∗2 =
h2
Π1

, t∗ =
t

Π2
, w∗

d = wd
Π2

Π1
. (4.13a-f)

Further to figure 4.3, h1 and h2 − h1 denote, respectively, the depths of the bulk and dispersed

phases. Meanwhile, wd is the drainage velocity oriented in a direction perpendicular to the interbed

layer. The height h1 (h2) can be resolved by integrating the mass continuity equation over the depth

of the bulk (dispersed) phase. After a nontrivial amount of algebra, it can be shown that

∂h∗1
∂t∗

+
∂(h∗1U

∗)

∂x∗
= −εU∗ − w∗

d1 , (4.14)

and

∂h∗2
∂t∗

− ∂

∂x∗

[︂(︁
h∗2 − h∗1

)︁ (︂∂Ψ∗

∂x∗
+ C∗sin θ

)︂
− h∗1U

∗
]︂
= −ε

(︂∂Ψ∗

∂x∗
+ C∗sin θ

)︂
− w∗

d1 − w∗
d2 , (4.15)

where, for notational convenience, we have introduced the following parameters:

U∗ = −
(︂ ∂b∗2
∂x∗

+
∂h∗1
∂x∗

)︂
cos θ − sin θ , (4.16)

Ψ∗ =
b∗2 h

∗
2

h∗2 − h∗1
cos θ , (4.17)

C∗ =
b∗2

h∗2 − h∗1
. (4.18)
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In these last equations, reference is made to b∗2, the z-averaged buoyancy in the dispersed phase.

(The rotated coordinate, z, is defined in figure 4.3.) Note that b∗2 is described by its own evolution

equation, which is derived by performing a solute mass balance on the dispersed phase. Thus can

it be shown that

∂b∗2
∂t∗

− ∂

∂x∗

[︂
b∗2

(︂∂Ψ∗

∂x∗
+ C∗sin θ

)︂]︂
= εU∗H(x∗Nb

− x∗)− w∗
d2C

∗ . (4.19)

Finally, the parameter ε that appears in (4.14-4.19) is an entrainment coefficient; ε can be evaluated

from figure 5 of Sheikhi & Flynn (2024).

Before (4.14), (4.15) and (4.19) can be solved for h∗1, h
∗
2 and b∗2, respectively, expressions must

be derived for the drainage velocities wd1 and wd2. To this end, Sheikhi & Flynn (2024) consider

two bookend opposite scenarios, namely the no mixing limit and the perfect mixing limit. In the

former, source fluid drains into the upper layer, evenly displacing the ambient fluid native to this

upper layer. In the latter, source fluid rapidly mixes into the upper layer ambient, whose density

is minimally impacted by said mixing. Whereas the no mixing model exhibits moderately better

agreement with COMSOL-based numerical output at small times, it suffers from a longer time

divergence owing to its overestimation of the degree of gravity current retraction after a maximum

downdip distance has been achieved. This shortcoming motivates us to consider only the perfect

mixing model in the current study. Thus do we anticipate that the drainage velocities w∗
d1 or w∗

d2

are uninfluenced by the degree of drainage that has occurred at previous times. Accordingly, the

drainage velocities are given by

w∗
d1 = K cos θ

⎧⎪⎨⎪⎩
(︂
h∗
1+b∗2
ξ∗ + 1

)︂
0 ≤ x∗ < x∗Nb

0 x∗Nb
< x∗ ≤ x∗Nd

, (4.20)

and

w∗
d2 = K cos θ

⎧⎪⎨⎪⎩ 0 0 ≤ x∗ < x∗Nb

C∗
(︂
h∗
2

ξ∗ + 1
)︂

x∗Nb
≤ x∗ ≤ x∗Nd

, (4.21)

where K = kb
k is permeability ratio. Exploiting K and interbed layer thickness ξ∗, Sheikhi & Flynn
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(2024) define an effective permeability

Keff = K

(︃
1 +

1

ξ∗

)︃
(4.22)

that characterizes the value of drainage through the interbed layer.

By solving (4.14), (4.15) and (4.19) subject to the drainage velocities (4.20) and (4.21), estimates

can be made for the spatio-temporal evolution of the bulk and dispersed phases. Thereafter, and

for each instant in time, it becomes necessary to estimate the fraction of source fluid that resides

in one or the other phase. Sheikhi & Flynn (2024) suggest as an appropriate metric the dispersed

buoyancy fraction B̃disp (i.e. the fraction of the buoyancy that resides in the dispersed phase), which

is defined as

B̃disp =
Bdisp

Bbulk +Bdisp
. (4.23)

B̃disp serves as a helpful representation for the amount of dispersive mixing that takes place as a

result of gravity current flow. In (4.23), Bbulk and Bdisp quantify the respective buoyancies of the

bulk and dispersed phases. The parameters in question can be found from

Bbulk =

∫︂ x∗
Nb

0
h∗1 dx

∗ and Bdisp =

∫︂ x∗
Nd

0
b∗2 dx

∗ . (4.24a,b)

Here, x∗Nb
and x∗Nd

respectively indicate the frontal position (or “nose”) of the gravity currents

formed by the bulk and dispersed phases – see figure 4.3. The integrals from (4.24) are straightfor-

ward to evaluate once the solutions for h∗1, h
∗
2 and b∗2 are known. Note that this model is developed

specifically to account for the injection cycle of UHS and it is this cycle that therefore occupies our

attention in the following section.
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4.5 Results

4.5.1 Comparison of the theoretical and numerical results

The theoretical model of section 4.4 is formulated in terms of non-dimensional variables, however,

and for the most part, we shall represent theoretical predictions using dimensional variables, this

to facilitate the comparison with the OpenGoSim- and CMG-based numerical results. Of course,

swapping between dimensional and non-dimensional variables is straightforward and is achieved

by application of (4.13). We consider a 6 month injection period as is appropriate for the case

of seasonal storage with green hydrogen derived from e.g. the excess electricity generated from

solar panels. With reference to the flow evolution of the bulk and dispersed phases, figure 4.4

compares predictions of the theoretical model against the numerical solutions returned by CMG

and OpenGoSim. As shown in this figure, the theoretical model predicts the gravity current profile

and dispersion amount relatively well. The positive agreement evident in figure 4.4 suggests that the

effects of source momentum are insignificant so that the gravity current can be assumed buoyancy-

driven rather than momentum-driven. Furthermore, the difference in viscosity with concentration

that is ignored in the theoretical model does not substantially impair the ability of the theoretical

model to yield reasonable predictions.

A further important conclusion from figure 4.4 is that the numerical results generated by Open-

GoSim are very similar to those generated by CMG. We explore this equivalence in quantitative

detail in figure 4.5, which plots timeseries of B̃disp, the dispersed phase buoyancy fraction. The

left- and right-hand side subplots show OpenGoSim and CMG results, respectively. A total of

four curves are included in each subplot corresponding to the following values for Keff : 0.015, 0.03,

0.045 and 0.06. Although CMG predicts slightly larger values for B̃disp and therefore more overall

dispersion, particularly for small Keff , the similarities between panels (a) and (b) of figure 4.5 are

more striking than their differences. Given these similarities, plus those evident from figure 4.4, we

will hereafter restrict attention to CMG numerical output so as to avoid unnecessary repetition.

The curves of figure 4.5 (b) include dark shading for sufficiently large time and/or Keff . Within
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Figure 4.4: [colour] Theoretical predictions for the profile of the bulk phase gravity current (thick
solid curves) and the dispersed phase gravity current (thin solid curves) vs. the analogue numer-
ical simulation output (color contours) computed using (a) OpenGoSim, and, (b) CMG. Here we
consider a dip angle of θ = 0◦, a total time of 6 months and two different values for Keff , defined
by (4.22).

Figure 4.5: Time series data of the buoyancy fraction in the dispersed phase for θ = 0◦ and different
Keff . (a) OpenGoSim results, and, (b) CMG results. Lines connecting adjacent data points are
included to highlight the overall trend of the numerical data. Shaded domains indicate times when
the gravity current bulk phase either stops elongating or experiences retraction. The time t = 0
corresponds to the initiation of hydrogen flow.
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Figure 4.6: Time variation of the bulk nose positions predicted by CMG for various Keff and θ = 0◦.
Theoretical predictions for each Keff value are indicated with the solid lines.

these shaded regions, the bulk and dispersed phase gravity currents are expected to stop elongating

and possibly even retract. Such retraction behavior, which is not well-represented by a perfect

mixing-type theoretical model, is even more clearly illustrated by figure 4.6. Similar to figure 4.5,

figure 4.6 is a time-series image. Here, however, we consider the temporal evolution of xNb
, the bulk

phase nose position, rather than B̃disp. As figure 4.6 makes clear, the bulk phase gravity current

stops elongating and/or retracts earlier for larger Keff . In this regime of large Keff , the theoretical

model over-predicts the horizontal extent of the bulk phase to a greater extent than when Keff is

small. Indeed, and for even larger Keff values than we consider in figure 4.6, the theoretical model

breaks down altogether – see e.g. figure 8 of Sheikhi & Flynn (2024) and the discussion thereof.

Earlier, we stated that the hydrogen flow is expected to be largely buoyancy-driven. The impact

of formation vs. source pressure is therefore expected to be of secondary importance given that larger

pressures cause an increase of density of both the cushion gas and injected hydrogen. The CMG

numerical simulations provide an ideal platform by which to test the above hypothesis. To this end,

figure 4.7 investigates the effect of formation pressure on the dispersive mixing in gravity currents.

Figure 4.7 illustrates the variation of the dispersed phase buoyancy fraction with Keff for different

formation pressures. Also included in figure 4.7 are theoretical predictions derived from the model
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Figure 4.7: [colour] Dispersed phase buoyancy fraction vs. Keff for formation pressures of Pform =
100 bar, 125 bar and 150 bar. Results are shown assuming θ = 0◦, t = 180 days for black circles,
t = 92 days for red circles and t = 53 days for blue circles. In all cases, t∗ = 90, where (4.13) is
used in defining the non-dimensional time. For each pressure, the marker size indicates the volume
of fluid in the bulk phase. For ease of presentation, data are normalized so that the symbols
corresponding to Keff = 0.06 are all the same size.

of Sheikhi & Flynn (2024). Note that the black, red and blue data points of figure 4.7 are shown at

different dimensional times but the same non-dimensional time, i.e. t∗ = 90. In this way, we account

for the fact that the bulk and dispersed phase gravity currents do not propagate as far when Pform

is increased. Figure 4.7 reaffirms that there is a generally good agreement between the theoretical

results and numerical simulations. In contextualizing this overall good agreement, recall that the

theoretical model is, in non-dimensional form, agnostic to the particular value of formation pressure.

The situation is slightly different for our numerical results as the associated data demonstrate a

mild sensitivity to Pform, especially for larger Keff . To understand this difference, consider figure

4.8, which shows the bulk nose position vs. time for three different pressures and two different

values of Keff . We present data in a non-dimensional format in figure 4.8 in order to facilitate a

fair comparison between data sets having different formation pressures. The results displayed in

the left-hand side panel corresponding to Keff = 0.015 predict no retraction of the bulk phase over

the indicated time period. However, and for the larger value of Keff = 0.06 shown in the right-hand

side panel, retraction is evident for times as small as t∗ = 60 when Pform = 150 bar. The fact that

gravity current retraction both occurs earlier and is more severe at elevated pressures is important:
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Figure 4.8: Variation of the bulk phase non-dimensional nose position as a function of non-
dimensional time t∗, compared for different formation pressures, namely 100 bar (circles), 125 bar
(squares) and 150 bar (stars). (a) Keff = 0.015, and, (b) Keff = 0.06. In both panels, we assume a
horizontal interbed layer such that θ = 0◦.

retraction is a consequence of draining and draining disproportionately removes bulk phase fluid.

In other words, the greater the retraction, the larger the fraction of the hydrogen that appears in

the dispersed phase. Correspondingly, we expect to measure larger values for B̃disp at the elevated

pressures of 125 bar and, more especially, 150 bar. This expectation is, of course, consistent with

the trends of the black, red and blue data points indicated in figure 4.7.

A complementary comparison between the predictions of our theoretical model and CMG-based

numerical results but with an inclination angle θ = 10◦ is presented in figure 4.9. Comparing figure

4.9 and 4.4(b) shows that, as expected, the gravity current propagates less distance as we increase

the inclination angle. This point aside, it is reassuring to note that figure 4.9 shows the same

positive agreement between theory and numerical simulations as is evident in figure 4.4.

All the above results consider an unconfined reservoir where the boundaries do not affect the

gravity current flow. In figure 4.10, the domain height is decreased from 150m to 50m in order

to analyze the performance of the theoretical model in a confined reservoir. When we limit the

vertical extent of the reservoir, there arise three potentially-important effects that are omitted
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Figure 4.9: [colour] As in figure 4.4 but with an inclination angle θ = 10◦. (a) Keff = 0.015 (b)
Keff = 0.06. Note that only CMG-based numerical results are shown.

Figure 4.10: [colour] Gravity current evolution in a vertically-confined porous medium where θ =
0◦. As in figures 4.4 and 4.9, the thick and thin red curves indicate the theoretically-predicted
boundaries for the bulk and dispersed gravity currents. Color contours show the output of the
CMG numerical simulations. (a) Keff = 0.015, and, (b) Keff = 0.06. Results are shown after 6
months of hydrogen injection.
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by the theoretical model. First, the counter-flow of ambient fluid is now more substantial and

therefore likewise the shear stress exerted by this counter-flow on the advancing gravity current.

Thus does the viscosity of the ambient fluid, a variable ignored in the theoretical analysis, become

important in describing the evolution of the (coupled ambient-gravity current) flow (Pegler et al.,

2014). Second, and counterbalancing the above effect, confined layers are associated with the

appearance of secondary gravity currents, which in this case appear along the underside of the

upper boundary in figure 4.10 (b). It is known from the similitude laboratory experimental work

of Bharath & Flynn (2021) that secondary gravity currents can exert a “tugging” force on primary

gravity currents arrested along a permeability jump. Third, gravity current fluid drained into the

upper layer may accumulate, leading to a decrease in the drainage velocities predicted by (4.20)

and (4.21) and a corresponding increase in the rate and distance of gravity current advance. Of the

three effects just listed, evidence suggests that the third is the most important. For instance, and

comparing Keff = 0.015 results for an effectively unconfined upper layer (i.e. figure 4.4 b) against

figure 4.10 (a), we find that the averaged drained flux reduces from 915 S m3/day to 524 S m3/day

when the depth of the upper layer reduces from 150m to 50m. Thus do we observe in figure

4.10 that theory generally under-predicts the horizontal extent of the gravity current that forms

immediately below the interbed layer. The under-prediction in question is especially notable when

considering the larger effective permeability of Keff = 0.06.

4.5.2 Results beyond the theoretical model

A imitation of the theoretical model of Sheikhi & Flynn (2024) is that it is limited to interbed

layers that are flat (whether horizontal or inclined). However, the most desirable formations for the

geological storage of hydrogen are anticline structures that are characterized by a structural fold

in the rock layers – see figure 4.1 b. Because the inclination angle varies with position in anticline

reservoirs, the theoretical model of Sheikhi & Flynn (2024) is unable to predict the flow evolution. In

this final subsection, we therefore deviate from the direction of much of the rest of our exposition and

present numerical results without accompanying theoretical predictions. Accordingly, we include

as supplemental information a video that illustrates the CMG-resolved flow evolution for the case
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Figure 4.11: Time series data of the dispersed phase buoyancy fraction for a horizontal (circles),
10◦ inclined (squares) and anticline (stars) domain. (a) Keff = 0.015, and, (b) Keff = 0.06. Note
that the y-axis limits are different for panels (a) and (b). Note that the closed and open circles
are drawn directly from figure 4.5 (b). Note also that the average inclination angle experienced
by a gravity current in an anticline domain progressively increases as time evolves and the gravity
current elongates. The average inclination angle is specified here at t = 90 days, 120 days, 150 days
and 180 days.

of an anticline geometry. Complementing this video, figure 4.11 compares the amount of dispersive

mixing associated with gravity current flow within a horizontal vs. inclined vs. anticline domain.

This figure suggests that the degree of dispersive mixing realized in an anticline reservoir depends on

the average inclination angle experienced by the gravity current as well as the effective permeability

of the interbed layer. Focusing on this latter variable first, note that as Keff increases, the gravity

current experiences severe drainage and therefore elongates less. Correspondingly, the average

inclination angles documented in figure 4.11 b are less than those given in figure 4.11 a. In figure

4.11 a, mixing for the anticline case is close to that for the inclined case because the average

inclination angle is close to 10◦. On the other hand, the average inclination angles reported in

figure 4.11 b fall closer to the average of the θ = 0◦ and θ = 10◦ cases. It is little surprise, therefore,

that B̃disp values for the anticline geometry likewise fall roughly halfway between the B̃disp values

for the other two geometries.
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4.6 Conclusions

Numerical simulations are presented to assess the accuracy of the theoretical model presented by

Sheikhi & Flynn (2024) vis-à-vis hydrogen storage in depleted natural gas reservoirs. Numeri-

cal simulations are conducted using two reservoir simulation packages, namely OpenGoSim and

CMG. Consistent with the theoretical model of section 4.4, the numerical simulations of section 4.3

consider flow in a porous medium intersected by a thin interbed layer of substantially reduced per-

meability – see figure 4.1. Comparison of the numerical results and theoretical predictions indicates

that the simplifying assumptions associated with the theoretical model do not lead to significant

errors in the UHS context. These simplifying assumptions include, for example, the neglect of

detailed thermodynamical relationships, the neglect of the dependence of gas viscosity on composi-

tion and the application of a linear entrainment law. On the other hand, the numerical simulations

allow us to explore phenomena beyond the scope of Sheikhi & Flynn’s model e.g. effects due to

formation pressure or a curved interbed layer. Regarding the former effect, figure 4.8 demonstrates

that the eventual retraction of the gravity current formed by hydrogen injection depends upon the

formation pressure (as well as the effective permeability, Keff , of the interbed layer). Regarding

the latter effect, figure 4.11 suggests that gravity currents evolving along interbed layers of variable

slope can still be well-approximated by a Sheikhi & Flynn (2024)-type formulation provided the

average slope angle can be estimated.

A further effect explored in this study concerns the depth of the upper (draining) layer. From

the analysis in question (e.g. figure 4.10), we find that the theoretical model may struggle to

correctly predict the gravity current evolution if the time horizon is relatively long, the upper layer

is relatively thin and Keff is relatively large such that ample draining occurs across the interbed

layer. Accounting for these effects in the theoretical model e.g. by modifying the expressions for

drainage velocity (4.20) and (4.21) is saved as a topic for later investigations. Furthermore, both the

theoretical model and numerical simulations disregard capillary effects and relative permeability

effects by treating liquid water within the gas phase as residual in nature. Extending this approach

to account for mobile rather than residual water would necessitate expanding the theoretical model
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in a manner similar to Golding et al. (2011). Also on the topic of future research, it would be

worthwhile, as a numerical exercise, to modify the values of the longitudinal (aL) and transverse

(aT ) dispersivities within the interbed layer to determine whether making the change in question has

a demonstrable impact on the numerical output. One significant limitation of our current model is

its oversimplified representation of layer heterogeneities. In the physical domain considered here, the

model only accounts for a single interbed layer with different permeability, neglecting more complex

heterogenous layer structures. To address this limitation, future work should focus on enhancing

the model to include detailed representations of intricate layer heterogeneities. By incorporating

these complexities, the model’s applicability in real-world scenarios would be significantly improved.

Notwithstanding this last commentary and the need for future studies, it is necessary to reiter-

ate the advantages of our hydrodynamics-based, namely that it can generate reasonably accurate

estimates of hydrogen plume evolution in a small fraction of the time needed to run even coarse-

grained numerical simulations e.g. using CMG. Deploying such a reduced-order-model is expected

to be especially advantageous when completing an initial screening of multiple, perhaps many,

candidate formations for UHS.

116



Chapter 5

Conclusions and future work

A comprehensive investigation of dispersive mixing in porous media buoyancy-driven flows is con-

ducted using theoretical analysis and simplified/reservoir-level CFD simulations. CFD simulations

fall into one of two categories: (i) simulations that mimic similitude experiments to estimate the

entrainment coefficient and validate the theoretical model; (ii) reservoir-level simulations that in-

corporate parameters and effects not included in the theoretical model. After identifying knowledge

gaps in Chapter 1, Chapters 2 and 3 investigate mixing owing to mechanical dispersion in gravity

currents experiencing local/distributed basal drainage, e.g. through a local fissure or along a thin

interbed layer. The investigation in question requires the development of reduced-order theoretical

models, which are validated with reference to the output of the commercial CFD package COM-

SOL. Then, in Chapter 4, the suitability of the aforementioned reduced-order models in describing

real geological flows is considered. Particular focus is placed on the societally-important problem

of underground hydrogen storage (UHS) using depleted natural gas reservoirs. From the concise

summary given above, we now elaborate on the key methodology and significance of each of the

technical chapters of this thesis.

In Chapter 2, the dispersive mixing dynamics of gravity currents propagating along a either

horizontal or inclined boundary with a thin local fissure are predicted. We provide a set of non-

dimensional coupled non-linear advection-dispersion equations in our theoretical model; these equa-

117



tions are solved subject to well-prescribed boundary conditions. In the context of dispersive mixing,

we use a linear entrainment law consistent with previous works of Ellison & Turner (1959) for free

jets and Sahu & Neufeld (2020) for porous media gravity currents. Four important parameters are

defined in order to solve the dimensionless governing equations: the boundary inclination angle,

the upstream flow parameter, the permeability ratio, and the fissure dimensions, which include its

width and length. Using COMSOL, we developed a numerical model to fix the value of the entrain-

ment coefficient, ε, and to thereafter validate our theoretical predictions. Our findings indicate

that there is generally good agreement between the numerical simulations and theoretical predic-

tions. In particular, the theoretical model accurately predicts the solute or buoyancy fractions in

the dispersed vs. bulk phases of the gravity current. Furthermore, the frontal separation distance

between the bulk and dispersed phases is accurately determined by our theoretical model, unless

draining is so robust that very little or no bulk fluid flows downstream of the fissure. When this

is not the case, our numerical and theoretical results indicate that significant mixing may occur

beyond the fissure. Lastly, by applying our theoretical model to UHS applications, we demonstrate

that the dispersion of hydrogen in the cushion gas diminishes in a relative sense as the injection

flow rate increases.

In many real geological settings, gravity currents experience distributed rather than localized

basal drainage. In Chapter 3, we therefore study, numerically and theoretically, the elongation of

gravity currents over a thin interbed layer whose permeability is spatially-uniform and also less

than that of the surrounding porous medium. Adapting results from 2, we build a corresponding

theoretical model and a complementary COMSOL-based numerical model to investigate the effects

distributed drainage on gravity current dispersive mixing. Here, two important parameters are

defined in the dimensionless governing equations: the effective permeability of the interbed layer

and the inclination angle. In the context of distributed drainage, the drainage velocity depends

on the extent of mixing within the drained fluid in the lower layer. For simplicity, we adopt a

binary perspective when considering this drained fluid, i.e. it either mixes completely with the

ambient fluid of the lower layer or else it remains as a distinct phase and does not experience any

mixing whatsoever. The former scenario predicts the progressive elongation of the gravity current
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front, whereas the no mixing model suggests that after some initial elongation, the gravity current

retracts to its terminal run-out length. Our results confirm that, up until the point where the no

mixing model predicts flow retraction, both theoretical models explain the evolution of the gravity

current in a reasonable way. Past this point, however, the front position predicted by the perfect

mixing model moderately over-predicts the numerically-derived solution; conversely, the no mixing

model significantly under-predicts the front position. Therefore, the theoretical model does not

consistently provide meaningful predictions in the long time limit or when the distributed drainage

is so robust that the hydrostatic pressure distribution becomes invalid – see figure 3.8. The eventual

breakdown of the no mixing model is expected because it makes the assumption that fluid that

drains into the lower layer will always contribute to basal drainage. The results of the numerical

simulation, which show the formation of convective fingers some of which eventually detach from

the base of the gravity current, strongly contradict this assumption.

In Chapter 4, the hydrodynamic-based model from Chapter 3 is applied to UHS in depleted

natural gas reservoirs. In doing so, the reduced-order theoretical model is validated against simula-

tions considering the injection period of UHS operations using reservoir-scale simulators, i.e. CMG

and OpenGoSim. We compare the numerical results with the perfect mixing model because the no

mixing model cannot correctly predict the long-term flow behavior. This comparison demonstrates

that the theoretical model makes accurate predictions of the injectate evolution even though it

ignores the detailed thermodynamic relationships, gas viscosity dependence on composition, and

non-linearities in the entrainment law and equation of state. Our analysis reveals that when the

time horizon is relatively long, the upper layer is relatively thin, and the effective permeability Keff

is relatively large, leading to significant drainage across the interbed layer, the theoretical model

may struggle to correctly predict the flow evolution. Notwithstanding, there exist other regions of

the parameter space where our hydrodynamics-based model offers tangible benefits e.g. it can return

reasonably accurate predictions of the gravity current shape and mixing dynamics in a fraction of

the time required by reservoir-scale simulation software. Therefore, with future improvements, the

theoretical model can be applied to vast reservoirs for hydrogen storage with great computational

efficiency. On the other hand, the reservoir-scale numerical simulations enable us to investigate
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phenomena beyond the scope of the hydrodynamic-based model, such as the effects of formation

pressure or flow dynamics in anticline reservoirs.

5.1 Primary contributions from the present work

The following main points might be used to summarize the primary conclusions and contributions

of this thesis:

• We extend the preliminary work of Sahu & Neufeld (2020) on dispersive mixing in porous

media gravity currents by incorporating both longitudinal and transverse dispersion, rather

than focusing solely on transverse dispersion. When longitudinal dispersion is disregarded,

the nose position of the advancing gravity current matches that predicted by the sharp inter-

face model. However, we demonstrate that this equivalence breaks down when longitudinal

dispersion is considered, providing an improved method for predicting the outcomes of nu-

merical simulations. Additionally, we differentiate between the bulk phase and the dispersed

phase within the gravity current. This approach enables us to apply our theoretical model

with greater confidence to porous media gravity currents experiencing either local or dis-

tributed drainage. Consequently, we can predict the separation of the bulk interface and the

dispersed interface due to drainage and dispersion. Furthermore, this framework allows us to

quantify the extent of dispersion based on this separation and examine the parameters that

influence dispersion.

• According to both theoretical analysis and COMSOL simulation results, dispersion severity

for a gravity current experiencing local drainage increases with down-dip inclination angle and

fissure drainage, the latter of which follows from an increase in fissure permeability or width.

Furthermore, the extent of dispersion increases with the upstream flow parameter Γ, large

Γ indicating a flow driven by buoyancy rather than by source momentum. We validate the

hydrodynamic component of our theoretical model by comparing its results with COMSOL

simulations. By this comparison, we highlight the parameters that can augment hydrogen
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dispersion in cushion gas when hydrogen flows underground and drains through discrete faults

in the cap rock.

• Similar to the previous bullet, and for the case of gravity currents elongating over an interbed

layer, the dispersion severity increases when the interbed layer is more permeable or has

a larger down-dip (or smaller up-dip) inclination angle. Upon comparing our theoretical

model with COMSOL simulation output, we find that the predictions of gravity current

dispersion and nose position are influenced by Rayleigh-Taylor-type instabilities that develop

in the lower layer. These instabilities can limit the applicability of our theoretical model,

particularly the no mixing model, over large time horizon. Furthermore, the fluid instabilities

add complexity to the understanding of the gravity current retraction. While the perfect

mixing model fails to predict any retraction, the no-mixing model significantly overestimates

it. The instabilities create an intermediate state where neither model can accurately describe

the retraction behavior. Although previous studies, e.g. Neufeld & Huppert (2009), have

considered the concept of retraction, we examine the realism of retraction as predicted by

the no mixing model. We show that this prediction lacks realism, as it fails to account for

the instabilities that break the continuity between the gravity current and the draining fluid.

These findings highlight the importance of accounting for instabilities in the drained fluid

within the theoretical model to achieve more accurate predictions.

• We have demonstrated that a reduced-order model that incorporates hydrodynamics but

which ignores thermodynamics can still provide an accurate description of the evolution and

dispersive mixing of a hydrogen plume in a UHS in a depleted natural gas reservoir context.

By comparing the results of the reduced-order theoretical model with those of reservoir-

level simulations, we confirm that at sufficient distant from the injection well, the flow can

be considered buoyancy-driven. Furthermore, reservoir-scale simulations suggest that the

reduced-order model can approximate the gravity current spread and mixing along anticline

interbed layers, as long as the average slope angle can be estimated.

• In this research, we identify key non-dimensional parameters that influence dispersive mix-
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ing in porous media gravity currents, particularly those draining through local fissures or

permeable layers. These non-dimensional parameters can be utilized to inform investment

decisions and optimize field operations, aiming to minimize hydrogen loss due to drainage

and dispersion, thereby enhancing the economic viability of underground hydrogen storage

projects. Moreover, we shed light on the retraction of gravity currents propagating over a

thin permeable layer and its dependence on instabilities in the drained fluid. These insights

are important in the context of field measurement and monitoring (which is expensive and so

necessarily limited). Unlike the controlled environment of a laboratory, field measurements

tend to be more variable and complex. Nevertheless, measurements indicate that an irregular

advance of the hydrogen gravity current are not inherently incorrect. Our findings high-

light the predominance of hydrodynamic factors over thermodynamic factors in controlling

the behavior of hydrogen plumes. Consequently, our study suggests that significant insights

into geological hydrogen flow can be achieved by focusing on hydrodynamics alone, thereby

reducing computational demands.

5.2 Limitations of the present study to be addressed by future

work

After solving several critical problems related to dispersive mixing in leaky porous media gravity

currents, future investigations should address the remaining unresolved issues. Key limitation and

areas for future research include:

• In this study, the flow of a gravity current is modeled within unconfined reservoirs. It is

imperative to incorporate the effects of boundaries into our model to enhance model appli-

cability to confined reservoirs. To this end, the impact of the ambient counter-flow on the

injectate gravity current should be incorporated following the approach outlined in Pegler

et al. (2014). In the context of distributed drainage, the drainage velocity can be adjusted,

for example, to account for the fact that drained fluid will form a secondary gravity current
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instead of continuing to propagate vertically indefinitely. Consequently, the influence of im-

permeable upper and lower boundaries on the gravity current will be added to the theoretical

model, which should yield longer and more dispersive gravity currents.

• In the simplified hydrodynamic model, we neglect the compressibility of the fluid. Con-

sequently, our theoretical models of Chapters 2 and 3 work within an intermediate non-

dimensional length scale. For small x∗ (or r∗), the flow is dominated by source momentum

or volume flux rather than buoyancy. Meanwhile, at larger scales, the hydrogen plume is

expected to decompress, rendering the incompressible flow assumption invalid. Similar to the

problem studied by Pegler et al. (2014) for large scales in confined porous media, the flow

dynamics are influenced by the pressure difference between the source and the nose of the

gravity current. By incorporating compressible fluid dynamics in future work, the applica-

bility of our theoretical models can be extended to encompass larger non-dimensional length

scales. In this scenario, the gravity current should extend over a greater distances due to the

assistance of pressure in its elongation. The amount of dispersion should therefore increase.

• Our investigation in Chapter 3 is limited to porous media with a single interbed layer. Ac-

cording to the experimental study of Sahu & Neufeld (2023), the presence of multiple layers

with different permeabilities amplifies the degree of dispersion within the fluid flow. Inte-

grating multiple interbed layers enables the investigation of buoyancy-driven flow through

heterogeneous porous media, such as the transfer of hydrogen gas between distinct layers.

The formulation of a comprehensive theoretical framework for multiple interbed layers still

remains an open challenge. A comprehensive theoretical framework for heterogeneous porous

media improves the accuracy of predictions regarding fluid flow and dispersion in complex

geological formations, leading to an increase in hydrogen storage capacity by optimizing the

use of available depleted reservoirs.

• As outlined in Chapter 3, the drainage velocity for gravity currents experiencing distributed

drainage is influenced by the amount of mixing in the lower layer. For the sake of simplicity, we

examine two extreme conditions of no mixing and perfect mixing. This assumption narrows
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the operational scope of our theoretical model, as illustrated in figure 3.8. The mathematical

approach to investigate the Rayleigh–Taylor-type instabilities and predict the mixing because

of the gravity-driven fingers is left for the future study. The mathematical approach to be

developed would, if successfully implemented, enable us to predict the drainage velocity much

more accurately and, by extension, the gravity current evolution more precisely.

• In the CMG simulations of Chapter 4, the primary input variables are the longitudinal and

transverse dispersivities, aL and aT , which are assumed to be constant. However, Michelsen

et al. (2023) suggest that dispersivities are influenced by factors such as flow velocity, pressure,

temperature, tortuosity, and the heterogeneity of the domain. It would be preferable to treat

these dispersivity coefficients as variables rather than constants. This approach would help

determine whether such variability has a significant impact on the numerical predictions.

• The reduced-order theoretical model has been developed exclusively for the injection phase

and is not applicable to the withdrawal phase of a UHS project. However, similar to the

approaches of Neufeld & Huppert (2009) and Golding et al. (2011) in the context of CO2

sequestration, incorporating a transient source into the theoretical model would enhance its

realism vis-á-vis predicting the flow evolution during not just the injection phase but also the

withdrawal phase.

• Current simplified theoretical model ignores capillary effects, by considering miscible flow, and

treats liquid water within the gas phase as residual, limiting the accuracy of the representation

in scenarios involving mobile water. When water in a reservoir transitions from being residual

to mobile, dispersion may increase; it seems likely that mobile water enhances the mixing and

spreading processes within the porous medium. Extending the theoretical model to account

for mobile water by incorporating multiphase flow dynamics, following the approach similar

to Golding et al. (2011), is kept for future work.
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Appendix A

Theory details of gravity currents

experiencing local drainage

A.1 Derivation of the bulk and dispersed velocity in the theoret-

ical model

By using the definition of ∆ρ1, ∆ρ2 and b2 in terms of concentration, equations (2.7) and (2.8) can

be rewritten as

p1(x, z, t) = ρ0gβ
(︁
b2 + cs h1

)︁
cosθ − ρs gz cosθ + ρ0 g x sinθ + P0 0 ≤ z ≤ h1 , (A.1)

p2(x, z, t) =
[︁
ρ0 gβ c2h2 − ρ2 gz

]︁
cosθ + ρ0 g x sinθ + P0 h1 ≤ z ≤ h2 . (A.2)

Moreover, Darcy’s law (2.12) in the x-direction indicates that

u1(x, t) = −k

µ

(︃
∂p1
∂x

− ρs g sinθ

)︃
, (A.3)

u2(x, t) = −k

µ

(︃
∂p2
∂x

− ρ2 g sinθ

)︃
. (A.4)
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If we insert p1 and p2 from (A.1) and (A.2) into (A.3) and (A.4), the bulk and dispersed velocities

then read

u1(x, t) = −kgβ

ν

[︂∂b2
∂x

cosθ + cs

(︂∂h1
∂x

cosθ − sinθ
)︂]︂

, (A.5)

u2(x, t) = −kgβ

ν

[︂(︂∂(c2h2)
∂x

− z
∂c2
∂x

)︂
cosθ − c2sinθ

]︂
. (A.6)

COMSOL results show that for the conditions relevant to our analysis, the term z ∂c2
∂x in (A.6) is

two order of magnitude smaller than ∂(c2h2)
∂x and can therefore be ignored. Accordingly, velocity in

the dispersed phase can be simplified to

u2(x, t) = −kgβ

ν

[︂∂(c2h2)
∂x

cosθ − c2sinθ
]︂
. (A.7)

A.2 Derivation of the drainage velocity in the theoretical model

Using (2.7), the pressure at the bottom boundary of the gravity current is expressed as

p(x, 0, t) =
[︁
∆ρ2gh2 +

(︁
∆ρ1 −∆ρ2

)︁
gh1

]︁
cos θ + ρ0 g x sin θ + P0 . (A.8)

Moreover, and assuming a hydrostatic pressure balance, the pressure at z = −l corresponding to

the base of the fissure is given by

p(x,−l, t) = ρ0 g l cos θ + ρ0 g x sin θ + P0 . (A.9)

Analogous to Acton et al. (2001), and by considering pressure continuity at z = 0, the pressure

distribution within the fissure is described by the following linear function:

p(x, z, t) =
[︁
∆ρ2gh2 +

(︁
∆ρ1 −∆ρ2

)︁
gh1

]︁(︂
1 +

z

l

)︂
cos θ

−ρ0 g z cos θ + ρ0 g x sin θ + P0 − l ≤ z ≤ 0 . (A.10)
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Applying Darcy’s law, the vertical velocity in the fissure reads

wd(x, t) = −
kf
µ

(︂∂p
∂z

+ ρ0 g cos θ
)︂
= −

kfg

µ

[︂∆ρ2h2
l

+
(︁
∆ρ1 −∆ρ2

)︁h1
l
+∆ρ1

]︂
cos θ . (A.11)

If we insert ∆ρ1 = ρ0βcs and ∆ρ2 = ρ0β c2 into (A.11), it can be shown that

wd(x, t) = −
kfgβ

ν

(︂csh1 + b2
l

+ cs

)︂
cos θ . (A.12)

A.3 Method of solution for the theoretical model

The finite difference method is used to discretize equations (2.27)-(2.29) in space. First-order

derivatives in space are discretized using backward finite differences and a central finite difference

is used to discretize second-order derivatives. Although implicit methods are more stable, they

produce extra diffusion in our solution; we therefore apply an explicit method for time discretization.

Thus equations (2.27)-(2.29) may be rewritten in discrete form as

(h∗1, i)
n+1 = (h∗1, i)

n −∆t∗
(︁
h∗1, i dU

∗
i

)︁n −∆t∗ (U∗
i )

n
(︂h∗1, i − h∗1, i−1

∆x∗
+ εΓ1/2

)︂n

−∆t∗K Γ
(︂h∗1, i + b∗2, i

l∗
+ 1

)︂n
cos θ × F (x∗, 1, ξ∗) , (A.13)

(h∗2, i)
n+1 = (h∗2, i)

n +
∆t∗

(∆x∗)2

[︂
(h∗2, i − h∗1, i)

(︂
Ψ∗

i−1 − 2Ψ∗
i +Ψ∗

i+1 − (C∗
i − C∗

i−1)∆x∗
)︂

+ (h∗2, i − h∗2, i−1 − h∗1, i + h∗1, i−1)
(︁
Ψ∗

i −Ψ∗
i−1 − C∗

i ∆x∗
)︁]︂n

−∆t∗
(︂
h∗1, i dU

∗
i + U∗

i

h∗1, i − h∗1, i−1

∆x∗

)︂n

− εΓ1/2∆t∗
(︁Ψ∗

i −Ψ∗
i−1

∆x∗
− C∗

i

)︁n −∆t∗K Γ
(︂h∗1, i + b∗2, i

l∗
+ 1

)︂n
cos θ × F (x∗, 1, ξ∗) , (A.14)

(b∗2, i)
n+1 = (b∗2, i)

n +
∆t∗

(∆x∗)2

[︂
b∗2, i

(︂
Ψ∗

i−1 − 2Ψ∗
i +Ψ∗

i+1 − (C∗
i − C∗

i−1)∆x∗
)︂

+ (b∗2, i − b∗2, i−1)
(︁
Ψ∗

i −Ψ∗
i−1 − C∗

i ∆x∗
)︁]︂n

+∆t∗ εΓ1/2(U∗
i )

n , (A.15)
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respectively. Here, i and n are non-negative indices that respectively correspond to space and time.

In addition, (U∗
i )

n and (dU∗
i )

n are defined as

(U∗
i )

n = −
(︂b∗2, i − b∗2, i−1

∆x∗
+

h∗1, i − h∗1, i−1

∆x∗

)︂n
cos θ + Γ1/2sin θ , (A.16)

(dU∗
i )

n = −
(︂ ∂2b∗2
∂x∗ 2

+
∂2h∗1
∂x∗ 2

)︂n

i
cos θ =

−
(︂b∗2, i−1 − 2b∗2, i + b∗2, i+1

(∆x∗)2
+

h∗1, i−1 − 2h∗1, i + h∗1, i+1

(∆x∗)2

)︂n
cos θ . (A.17)

Equation (A.13) applies for i ≥ 1. When i = 1, (h∗1, 0)
n in equation (A.13) is found based on

the discrete form of the influx boundary condition in (2.34a), such that

(h∗1, 0)
n =

∆x∗

ϕ (h∗1, 1)
n cos θ

+ (h∗1, 1)
n − (b∗2, 0)

n − Γ1/2tan θ∆x∗ . (A.18)

To find (h∗1, 0)
n in (A.18), we assume some amount for (b∗2, 0)

n and solve equations (A.14) and (A.15)

for i = 1 to recover (h∗2, 1)
n+1 and (b∗2, 1)

n+1. We then iterate using the secant method to satisfy

boundary conditions (2.34c) and (2.34e), i.e.

(h∗2, 1)
n+1 = (h∗1, 1)

n+1 , (A.19a)

(b∗2, 1)
n+1 = 0 . (A.19b)

Then the expressions in (A.14) and (A.15) apply for i ≥ 2. Finally, for i = Nb and i = Nd, the

bulk and dispersed nose positions in (2.34b,d,f) read

(h∗1, Nb
)n+1 = 0 , (A.20a)

(h∗2, Nd
)n+1 = (b∗2, Nd

)n+1 = 0 . (A.20b)

In the above equations, ∆x∗ and ∆t∗ indicate the grid spacing and the time step, respectively. Our

discretized equations are solved with ∆x∗ = 10−2 and ∆t∗ = 10−5. We estimate ∆x∗ by fixing
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∆t∗ and then performing a grid independence test. Once the largest value of ∆x∗ that preserves

grid independency is determined, ∆t∗ is increased slightly, but not beyond a value where computed

results vary with the magnitude of the time step. With suitable values for ∆x∗ and ∆t∗ selected,

we find that the run time to produce a figure such as figure 2 is approximately 0.65 Core-hours

using an Intel Core i7-9700 CPU (3.00 GHz and 16 GB memory).
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Appendix B

Theory details of gravity currents

over an interbed layer

B.1 Derivation of the drainage velocity in the perfect mixing model

With reference to figure 3.2, we assume a hydrostatic pressure distribution through the gravity

current such that the pressures measured along z = 0 in the bulk and dispersed phases are

p1,I(x, 0, t) = ρ0g
′
s

(︃
h1 +

b2
cs

)︃
cos θ + P0 + ρ0 g x sinθ , (B.1)

p2,I(x, 0, t) = ρ0 g
′
sC h2 cos θ + P0 + ρ0 g x sinθ , (B.2)

respectively. Here, subscript I indicates the upper layer of figure 3.2. Turning to the interbed layer,

we integrate Darcy’s law in the z-direction below the bulk and dispersed phases and find that

∫︂ 0

z

∂p1,II
∂z

dz = −
∫︂ 0

z
ρ0g

′
scos θ dz −

∫︂ 0

z

µ

kb
wd1 dz , (B.3)

∫︂ 0

z

∂p2,II
∂z

dz = −
∫︂ 0

z
ρ0Cg′scos θ dz −

∫︂ 0

z

µ

kb
wd2 dz , (B.4)

139



in which subscript II denotes the interbed layer. Fortuitously, all terms under the right-hand side

integrals of (B.3) and (B.4) are independent of z and the integrals are therefore straightforward to

evaluate. Consistent with Acton et al. (2001) and by considering pressure continuity at z = 0 such

that p1,I(x, 0, t) = p1,II(x, 0, t) and p2,I(x, 0, t) = p2,II(x, 0, t), the pressure distributions through

the interbed layer are given by

p1,II(x, z, t) = ρ0g
′
s

(︁
h1 +

b2
cs

− z
)︁
cos θ − µ

kb
wd1 z + P0 + ρ0 g x sinθ , (B.5)

p2,II(x, z, t) = ρ0 g
′
sC (h2 − z) cos θ − µ

kb
wd2 z + P0 + ρ0 g x sinθ , (B.6)

for the bulk and dispersed phases, respectively. Also following Acton et al. (2001), we set p1,II(x,−ξ, t) =

P0+ ρ0 g x sinθ and p2,II(x,−ξ, t) = P0+ ρ0 g x sinθ. Using these results, the drainage velocities for

the perfect mixing case can be recovered by substituting z = −ξ in (B.5) and (B.6) then solving

for wd1 and wd2, respectively. To wit, we find that

wd1(x, t) =

⎧⎪⎨⎪⎩
kbg

′
s

ν

(︂
csh1+b2

cs ξ
+ 1

)︂
cos θ 0 ≤ x < xNb

0 xNb
< x ≤ xNd

, (B.7)

and

wd2(x, t) =

⎧⎪⎨⎪⎩ 0 0 ≤ x < xNb

kbg
′
s

ν C
(︂
h2
ξ + 1

)︂
cos θ xNb

≤ x ≤ xNd

. (B.8)

B.2 Derivation of the drainage velocity in the no mixing model

Using (B.5) and (B.6), the pressures measured at the base, z = −ξ, of the interbed layer of figure

3.1 are

p1,II(x,−ξ, t) = ρ0g
′
s

(︃
h1 +

b2
cs

+ ξ

)︃
cos θ +

µ

kb
wd1 ξ + P0 + ρ0 g x sin θ , (B.9)

p2,II(x,−ξ, t) = ρ0 g
′
sC (h2 + ξ) cos θ +

µ

kb
wd2 ξ + P0 + ρ0 g x sin θ . (B.10)

If we consider, consistent with Neufeld & Huppert (2009), the continuity of flux perpendicular to

the boundary at z = −ξ, the drainage velocities wd1 and wd2 must be constant through the interbed
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and lower layers. Regarding this lower layer, we integrate Darcy’s law in the z-direction and find

that ∫︂ −ξ

z

∂p1,III
∂z

dz = −
∫︂ −ξ

z
ρ0g

′
scos θ dz −

∫︂ −ξ

z

µ

k
wd1 dz , (B.11)

∫︂ −ξ

z

∂p2,III
∂z

dz = −
∫︂ −ξ

z
ρ0Cg′scos θ dz −

∫︂ −ξ

z

µ

k
wd2 dz . (B.12)

Again, all of the terms under the right-hand side integrals are independent of z. Note that, for

the sake of mathematical convenience, we suppose that any drained fluid that appears in the lower

layer forms a uniform layer of depth l. This simplification is in obvious contrast to figure 3.1, which

defines layer depths l1 and l2 for the bulk and dispersed phases, respectively. As a consequence of

the simplification, it is appropriate to set C = 1 in the former right-hand side terms of (B.10) and

(B.12). By assuming pressure continuity at z = −ξ, the pressure distributions under the gravity

current bulk phase and dispersed phase can be found. These read

p1,III(x, z, t) = ρ0g
′
s

(︁
h1 +

b2
cs

− z
)︁
cos θ +

µ

kb
wd1

[︁
(1−K)ξ −Kz

]︁
+ P0 + ρ0 g x sin θ , (B.13)

p2,III(x, z, t) = ρ0g
′
s (h2 − z) cos θ +

µ

kb
wd2

[︁
(1−K)ξ −Kz

]︁
+ P0 + ρ0 g x sin θ . (B.14)

Consistent with Acton et al. (2001), we set p1,III(x,−l, t) = p2,II(x,−l, t) = P0 + ρ0 g x sin θ.

Combining this information with (B.13) and (B.14), the drainage velocities in the no mixing case

can be written as

wd1(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
kbg

′
s

ν cos θ

⎧⎪⎨⎪⎩
(︁
csh1+b2

cs l
+ 1

)︁
l < ξ

csh1+b2+csl
(1−K)cs ξ+Kcs l

l ≥ ξ

0 ≤ x < xNb

0 xNb
< x ≤ xNd

, (B.15)

and

wd2(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 0 ≤ x < xNb

kbg
′
s

ν cos θ

⎧⎪⎨⎪⎩
(︁
h2
l + 1

)︁
l < ξ

h2+l
(1−K) ξ+Kl l ≥ ξ

xNb
≤ x ≤ xNd

. (B.16)
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Reassuringly, (B.15) and (B.16) are consistent with (B.7) and (B.8) when l < ξ such that fluid has

not yet drained through the depth of the interbed layer.
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Appendix C

Details of numerical simulations

We utilize two distinct sets of numerical simulations in our research. The first set involves COM-

SOL simulations that replicate similitude laboratory experiments, while the second set comprises

CMG/OpenGoSim simulations that mimic reservoir-scale fluid flow. The validation, verification,

and sequence of numerical operations in these simulations are highlighted in the following.

C.1 Verification and validation of numerical simulations

C.1.1 COMSOL

We verify the COMSOL model through a grid independence study. Figure 2.5 demonstrates that

the COMSOL model is grid independent for the local drainage scenario with 104.91 grid cells.

Figure C.1 below also shows that the COMSOL model is grid independent with 105 grid cells in

the distributed drainage scenario.

Our COMSOL model is validated in two complementary way. First, we confirm that it faithfully

reproduces the results of a canonical buoyancy-driven flow when dispersion is comparatively small.

More specifically, and as indicated in figure C.2 below, we model the flow of a porous media

gravity current along an impermeable boundary and thereby demonstrate excellent agreement with

the well-accepted theoretical solution of Huppert & Woods (1995). Second, we confirm that our
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Figure C.1: COMSOL estimates for the dispersed phase bouncy fraction for different grid sizes in
the distributed drainage case. Here, Keff = 0.015, θ = 0◦ and t∗ = 150.

Figure C.2: [Colour] Comparison between COMSOL and the Huppert & Woods (1995) solution
for a porous media gravity current propagating along an impermeable boundary without drainage.
Here, k = 2.18× 10−4 cm2, qs = 0.14 cm2/s and (a) g′s = 15 cm/s2,(b) g′s = 30 cm/s2.
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Figure C.3: [Colour] Comparison between COMSOL and Bear’s (1972) theoretical solution for a
concentration front progressing through a porous medium. Here, k = 2.18 × 10−4 cm2, ϕ = 0.38,

t = 200 sec and (a) q = 0.001 cm/s, (b) q = 0.01 cm/s. The horizontal axis variable, x′ =
x− qt

ϕ√︂
4Dt
ϕ

,

represents a Galilean-shifted horizontal coordinate in which D is the dispersion coefficient. The
vertical axis variable, c/cs, represents the non-dimensional scalar concentration in which cs is the
concentration ahead of the advancing front.

COMSOL model correctly predicts the degree of dispersion in a scenario where the scalar is passive.

To wit, we consider the left-to-right advance of a concentration front in a laterally expansive porous

medium and compare the result with the classical solution of Bear (1972). The concentration front

advects owing to a steady, uniform flow of Darcy flux q, which is large enough that the Péclet

number exceeds unity. Figure C.3 below illustrates that there is a strong agreement between our

COMSOL solution and Bear’s theoretical solution.

C.1.2 CMG and OpenGoSim

A hallmark of a reliable numerical model is its ability to exhibit a systematic variation in output

parameters, e.g. the dispersed buoyancy fraction B̃
∗
disp, with respect to changes in the input pa-

rameters like petrophysical properties or fluid flow characteristics. For instance, variations in the

medium permeability or the injection flow rate should yield a consistent and predictable variation

in B̃
∗
disp. The variation in question is illustrated in figure C.4. Figure C.4 (a) shows a smooth,

monotone increase in the amount of dispersion with the medium permeability. Similar comments

apply to figure C.4 (b), which, consistent with figure 14 of Sheikhi et al. (2023), illustrates the
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Figure C.4: Dispersed phase buoyancy fraction vs. (a) the medium permeability, k, and (b) the
source volume flow rate, Qin. Results are shown assuming a formation pressure of Pform = 100 bar.
We further assume that θ = 0◦, t = 180 day and Keff = 0.015. Note that Qin = 2 × 105 S m3/day
in panel (a) and k = 100mD in panel (b).

variation of B̃
∗
disp with the source volume flow rate, Qin.

We also conduct grid independence tests for our reservoir-scale simulations. As an example,

figure C.5 illustrates that the CMG solution becomes grid independent beyond approximately 106

grid cells.

C.2 Workflow of numerical simulations

The workflow used to obtain numerical simulation, i.e. COMSOL, OpenGoSim and CMG, output

in the desired format is demonstrated in figure C.6.
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Figure C.5: CMG estimates for the dispersed phase buoyancy fraction for different grid sizes. Here,
consistent with figure C.4, Pform = 100 bar, Qin = 2×105 S m3/day, k = 100mD, θ = 0◦, t = 180 day
and Keff = 0.015.

Figure C.6: [Colour] Numerical software workflow visualization.
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