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Abstract

In this paper, we consider the problem of a single elastic inhomogeneity
embedded within an infinite elastic matrix in anti-plane shear. In particular, we examine
the design of this inhomogeneity to achieve (stress) neutrality when a non-uniform stress
field is prescribed in the surrounding matrix. Since it is known that neutral elastic
inhomogeneities do not exist when the inhomogeneity is assumed to be perfectly bonded
to the matrix, the design method presented here is based on the assumption of imperfect
interface and the appropriate choice of the (single) interface parameter (characterizing the
imperfect interface) to achieve the desired neutrality. Specifically, in the case of a
homogeneously imperfect interface, it is shown that the circular inhomogeneity is neutral
if and only if the prescribed non-uniform stress field in the surrounding matrix belongs to
a certain class of polynomial functions. In the case of an inhomogeneously imperfect
interface, neutrality is established for circular and elliptic inhomogeneities for specific
classes of prescribed states of stress in the surrounding matrix. The results in this paper
affirm the feasibility of designing a neutral elastic inhomogeneity by controlling the

(imperfect) interface parameter describing the inhomogeneity-matrix interface.
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1 Introduction

It is commonly believed that a hole made in an elastic body will inevitably
disturb the original stress field and often lead to a stress concentration. Mans-
field [1] was one of the first who recognized the feasibility of designing a re-
inforced “neutral” hole which does not alter the original stress distribution
in the cut elastic body. For related works see, for example, [2-11].

The analogous problem of a neutral elastic inclusion, which does not cause
any stress disturbance in the surrounding elastic body, has been studied for
a body subjected to constant stress [12-14]. The limited results in the area
of neutral inclusions may be attributed to the fact that the design of such
inclusions is impossible under the assumptions of the traditional model of an
inclusion-matrix composite involving a perfectly bonded interface [14].

The design method followed in this thesis is that proposed by Ru [14] in
which the interface is modelled as imperfect. In this interface model, trac-
tions are continuous across the interface, while jumps in displacement are
proportional to their respective traction components in terms of the inter-
face parameter. This model has originally been proposed to describe the
imperfectly bonded interfaces appearing in various composite materials and

structures, see, for example, [15-22]. In this thesis, we will extend the current
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model to problems involving non-constant stress in the region exterior to the
inclusion [23].

Consider a homogeneous elastic body, finite or infinite in extent and sim-
ply or multiply connected, undergoing a non-uniform stress state under the
prescribed loading system. Assume that the elastic body is now cut out over
a number of simply connected sub-domains and filled up with some homoge-
neous elastic inclusions. The problem raised in this thesis is how to design
the interfaces between the inclusions and the elastic body such that the em-
bedded inclusions are “neutral” in the sense that they do not disturb the
original stress field in the uncut elastic body. In other words, the concept of
a neutral inclusion defined here emphasizes the undisturbed stress state out-
side the inclusion. (As will be seen below, it also implies the state of stress
inside the inclusion is identical to the state of stress that the elastic body was
under before the introduction of the inclusion.) This is obviously different
from the “equal-strain inclusion” in the sense of Eshelby [24], which usually
destroys the uniformity of the stress field outside the inclusion and then is not
“neutral” (see [25-26], and [12]). It is believed that the concept of a neutral
elastic inclusion will find its applications in many practical problems where

the stress concentration caused by material mismatch is of utmost concern.



Since this problem for multiple embedded inclusions reduces to the single
inclusion problems for each of the embedded inclusions [14], the thesis focuses

on the design of a single neutral elastic inclusion.



2 Foundations of the Problem

2.1 Kinematics

We consider the equilibrium deformation of a two-part composite deformable
solid body. In its unstressed state the inclusion, D,, occupies an open cylin-
drical region whose generators are parallel to the X; axis of a rectangular
Cartesian coordinate system. The boundary of D; is denoted by I'. The
surrounding matrix, D;, occupies the region R3\ (D, UT). The inclusion
and the surrounding matrix are made of different isotropic linearly elastic

materials. This is illustrated in Figure 1.

Figure 1: A general cylindrical inclusion
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We consider deformations of the composite of the form

1 =X, 220=X3, z3=X3+ w3 (Xl,Xg) y (1)

so that the displacement field is given by

U1 =0, U2 = 0, Us = w3 (Xl,Xg) . (2)

These functions are defined on D; U D», and not necessarily on the interface.
The composite is assumed to be long enough in the Xj; - direction so that
the end effects are negligible.

Deformations of this type are called antiplane shear deformations [27].

2.2 Formulation of the Boundary Value Problem

We continue the development of the model by assuming that each of the
regions D; and D, is composed of a homogeneous isotropic linearly elastic
solid and consider infinitesimal deformations. Thus, we need not distinguish
between material and spatial coordinates [14]. We adopt the convention that
the axes are named z,y, z, rather than X;, X3, X3. Due to the symmetry of

the problem, we discard references to the z - coordinate.



Under the assumptions of local homogeneity, isotropy, and linearity, the
problem of antiplane shear simplifies to solving Laplace’s equation for w; on

each of the regions. That is [27],

62 w3 + 6211)3
or? ay2

=0, (z,y) €D 3)
The condition of harmonic equilibrium (3) gives boundedness of w3 and

its partial derivatives on D; and D,, but it does not preclude singular behav-
ioronI'. A further assumption is needed here. To ensure physical tractability
of the model, we must assume that w; and its partial derivatives are uni-
formly bounded on D, and on any bounded subset of D;.! This allows us to
extend the domain of w3 (and its partial derivatives) to include the interface
I. Define g=w;: D;UT — Rfori=1,2 by

i =ws (z,9), (z,y) € D,

ag v

lim(z,y)GD.'—J' %w:‘ (Iv y) 1 (.’17, y) € F!

where £ is some unit vector. Note that for (z,y) € I, Zxw, (z,y) and

'In Section 1.4, it will be seen that imposing the condition of neutrality implicitly
necessitates that the partial derivatives of w3 be uniformly bounded on any bounded
subset of D,. However, it is important to observe that this boundedness is necessary for
tractability of any problems dealing with inclusions of this type, not just those dealing

with neutrality.



%wg (z,y) need not be the same. Henceforth, the subscripts 1 and 2 will
be used to refer to the regions D, and D,, respectively.

It still remains to describe the interface conditions under which (3) is to
be solved. A perfectly bonded interface between regions D;and D, would be

described by [12]

w (I, y) = w2 (I, y) ’ (z‘l y) € Fy
o 0
g (z,y) = Hagy- 2 (z,y), (z,y)e€Tl,

where n denotes the outward normal direction to I', and y; is the shear mod-
ulus of region D;. These interface conditions mean, respectively, that the
displacements and the shear stress on an element of the boundary surface
' are both continuous across I'. It has been shown [14] that a perfectly
bonded inclusion interface between two different isotropic linear elastic ma-
terials cannot give rise to a neutral inclusion.

In order to permit the design of a neutral inclusion, an imperfectly bonded
interface is used. Physically, this condition represents an interfacial layer
which is soft. That is, the thin interfacial layer can undergo large differences
in displacement across its thickness. Following the model used by Ru (1996),
we employ an imperfect interface across which tractions are continuous and
jumps in the displacement are proportional to their respective traction com-
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ponents in terms of the interface parameters. This condition is written as

K b}
g (z,y) = Hop-ws (z,y), (z,y)el, (4)

hE) () —w@y)] = maw(zy), @YED ()

where h (z,y) > 0 is an interface function. In particular, h (z,y) = O repre-
sents a traction-free interface, and h (z, y) = oo represents a perfectly bonded
interface.

In practice, the interface I' will represent an adhesive layer between the
inclusion and the body [19]. As such, k(z,y) should be inversely proportional
to the thickness or directly proportional to the density of the adhesive layer
(see, for example [15-16] and [19]). In this way, the function h(z,y) can be
‘chosen’ by varying the properties of the adhesive layer. The only restriction
is that h(z, y) must be non-negative everywhere.?

There is still no formal boundary condition under which the problem is
to be solved. This is because, for most of the problems addressed here, the

displacement field in the matrix D, will be prescribed. Thus, this prescribed

2This requirement is needed only for practical design constraints, not mathematical

necessity. A negative interface parameter would necessitate an adhesive material with a
negative shear modulus. It is this constraint that makes certain neutral inclusion design

problems unsolvable.



exterior displacement function w; (z, y), coupled with the interface conditions
(4 and 5), effectively determine boundary conditions under which the interior

displacement function w, (z, y) is to be solved.

2.3 Complex Variable Formulation of the Problem

To facilitate the solution of the boundary value problem given by (3), (4),
and (5) it is convenient to rephrase the problem in terms of functions of one
complex variable. We denote by z = £ + iy = re®® the complex coordinate.
The regions D; and I will be used interchangeably to refer to the regions de-
fined in Section 1.1 and also to the corresponding complex regions, depending
on the context.

Define analytic functions x; : D; — C such that:
Re[x;] = pwi, (z,y) € D:. (6)

The harmonic equilibrium condition (3) is then solved implicitly on each
region D; by the respective function x; (z), since x; (z) is analytic.

It still remains to translate the interface conditions into complex variable



form. Rewriting (4) in complex form yields

ow Ow
#17%—1' = “278_1;3’ zeTl,
oRe [41] 9Re [%]
M—gp T Mg, #€D
dRelx;] _ ORe(x]
B = o zel.
Then, by the Cauchy-Riemann relations, we have:
aIm[Xl] = aIm[Xz]’ z€E F, (7)

ot ot

where ¢ is the clockwise tangential direction on I
The only assumption made in deriving (7) is (6), an assumption about
the real part of x;. Adding a purely imaginary constant to the function
X; (z) will not affect its satisfaction of the condition (6). Thus, we are free
to choose the value of Im [x;] at any one point. For convenience, we choose
a point z* € I' where we define Im[x; (z°)] = 0. Then, integrating along I

from z* on I yields:

[~ [ 2l

Imf;(2)] = Imp,(2)], =ze€T. (8)

10



Translating (5) into complex form gives

e @y - mEy) = pwEy, (@)

erl,

pio (Rl Relul) _ OFebad .
h(Z) (Re“[IXJ _ Reﬂ[zle) = Re [eiN(z)xll] , zerl.

Here, e'¥(?) denotes the outward unit normal, in complex form. Now we

rearrange things slightly, and then add (8) to get

Re[x,] = %;-Re[XzH LL_Re[e™)y)], z€T,

h(z)

Re[x,] +Im[x,] = 5—;Re[x21+1m[x21+ PL_Re[e¥G)y],

h(2)
#

Hq — Ha —_—
= — + “+ —= — + Re e
X1 ™ [x2 +%2) + 3 e D2 —%a] + 7 B) [

zeTl,

iN(:)xll] , z € F,

Ky + po By—Ho__ , M iN(z) o1
X1 = X2 + + Re e , z€Tl,
X1 2,‘2 2 2#2 X2 h (Z) [ XI]
X1 = Oa+0@-1)x+ h‘zlz) Re[e™V@yi], zeT. 9)

where § = &322 The interface condition (9) incorporates both of the real

2p,

variable interface conditions into one complex variable condition.3

Now the problem has been reduced to finding analytic functions of one

complex variable z which satisfy the interface condition (9). Taking the

3To show formal equivalence of these two interface conditions, a derivation of (4) and

(3) from (9) is shown in Appendix L.
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imaginary part of (9) gives

XI_YI=—X-2+X27 zel.

This condition determines the value of x, on I' uniquely (in terms of x,) to

within an arbitrary real number Cy. That is,

X2 = Xa + Co, F S F. (10)

Substituting (10) into the interface condition (9) gives

(1=08) 0 +%) = (25—1)Co+%Re[eiN(:)x'1v zeT,
2(1-6)Relx,] = (25—1)co+h‘EL)Re[ewmxfl], zeT. (11)

There is a further condition relevant to the problem which allows further
simplification. The problem posed here is that of finding an inclusion which,
when introduced into a stressed body, results in an external loading identical
to that which existed before the introduction of the inclusion. Consider
that, in the prior state (with no inclusion), the elastic body was under an
equilibrium antiplane shear deformation x,,,, which was identical to the
new deformation x, on the region D;. Thus 3x,,, : (D1 UT' U D;) — C, an

analytic function, such that

Xprior = X1» zeD,.

12



Thus, X, is the analytic continuation of x, to D, UT U D,. Henceforth,
we refer to X,,ir as x;- Thus, x; is now defined and analytic on the entire
region D; UT' U D,. .
We now choose the origin of our coordinates to be at the centroid of the
inclusion. Choose the datum values of x, and x, to be zero at the origin.
Observe that both the right and left-hand sides of (10) are analytic on D,
and continuous on D; UT'. Under these conditions, equality on I’ implies

equality on the entire region D, UT'. Then we have
X2=X1+Co, ZGDQUF.

Evaluating this condition at the origin gives

x2(0) = x;(0) +Co,

0 = Co.
So that (10) may now be strengthened to
X2 = X1» ZGDgUF.

Thus, it is no longer necessary to consider x, as an independent quantity.

Also notice that (11) becomes much simpler:

Rex,] = m Re[eV@)yi], zel. (12)

13



This allows h (z) to be isolated explicitly in terms of x; and N (z):

p1__ Re[eNGy ]
2(1-46) Relx]

h(z) = , zel. (13)

14



3 Circular Inclusions

3.1 A Circular Inclusion with Homogeneously

Imperfect Interface

We consider a single circular inclusion of radius R with a homogeneously
imperfect interface characterized by the parameter h(z) = h = constant. In

this case, we have

[ ={z;|z] = R} and "¢ = (14)

z
R,
so that (11) can be written as

2(1—=8&)Re[y|=(26-1)Co + hlz:,) Re [e‘”(‘)x’l] , ze€l. (15)

Consequently, the interface condition reduces to a linear ODE for x;:

Re [ﬂzx; —2(1=48)x; + (26 —1) c.,]

Rh 0

%zx’l —2(1—8)x;+20 = 0, Re[Zy] = (26 —1)C§l6)

Theorem 1 A circular inclusion with constant interface parameter is neu-

tral if and only if the exterior loading takes the form

Zo
= Py 7
X1 A2+2(1_6), z€ D,
2(1 — Rh
p = (_u&)_>0’ Re[Zg) = (20 -1)Cy, A€C, Cy€eR,
1

15



in which case the interface parameter is given by

pp
"= 3R an

Proof. It is clear that since x, is analytic on D,UD,UT, the equation (16)
can be continued analytically from I into the domain D,. Sufficiency
then follows easily by direct substitution of x, into (16). For necessity,

note that the solution to (16) is given by

Z 2(1 - d)Rh
X, = .42"-&-2—(1—3?), P=(—ul—)—, Re[Zo] = (26 —1)Co, A€C
_ Dl
h = ————2(1_6)R, ze DyUT,

The parameter p must be further constrained so that the stress field
remains tractable. For the displacement field to be a bounded, single-
valued harmonic function, p must be constrained to be a non-negative
integer (The trivial case p = 0 is of no interest here since it corresponds

to zero stress in the region D;). =

Remark 2 Isolating (1 — 68) in (17) gives

—§) = PA
(1 6)—2Rh’

which, since p > 0, implies that (1 — §) > 0. This yields the condition

B2 =t
2p,

16



or ps > u,.This is independent of the choice of A or p. Hence, a circular in-
clusion with constant interface parameter may be neutral only if the incluion
is stiffer than the surrounding matriz. This is a result of the neutrality condi-
tion, and is independent of the specific form of the displacement (and stress)
function. It is also interesting to note that the neutrality of the inclusion is
independent of the magnitude of the stress field, and its orientation. (Both
of these quantities are determined by the arbitrary complex constant A.).

This solution is consistent with that derived in [14/, where the circular inho-
mogeneity for p = 1 (uniform ezxterior loading) was found to be given by the

. Hy
t =1
interface parameter h - R

3.2 A Circular Inclusion Under Linearly Varying Stress

It is clear from Theorem 3.1.1 that a circular inclusion cannot be made neu-
tral in the presence of an arbitrary linear stress field in the matrix when the
interface is assumed to be homogeneously imperfect. However, it is of partic-
ular interest (e.g. for approximation purposes) to design a neutral inclusion
for any prescribed linearly varying stress distribution in the matrix, if only
to obtain information corresponding to the next power series approximation

(after a simple constant [14]) of a general non-linear stress field in the matrix.

17



Here, we address this particular problem by considering a linear stress field

corresponding to the analytic function
X1 = 0222 + Clz, Cl,Cz S C,

and by trying to find an (inhomogeneous) interface parameter h (z) which
will make the circular inclusion neutral. For convenience, we rephrase the

function x, as

-G

;= A(z—-2)2 -4z, A=C, z= 5,

(19)

Remark 3 The quantity zo has very special physical significance, aside from
its mathematical convenience. Under a displacement of the form given by
(19). there is a unique point in the elastic body at which there is zero stress.
This point is zo. Thus, there is also good physical reason for giving this point

special attention.

The orientation of the axes allows a further simplification. For example,
choose the orientation of the coordinate axes such that A € R. Combining

(19), (14), and (13) then gives
-
By \ Re[2? —z2]
h(z) = (1- tS) RRe[2? - 2zz]’

zerl. (20)

18



As before, in order for the interface parameter given by (20) to be phys-
ically tractable, it must satisfy the condition h(z) > 0 everywhere on the
boundary of the inclusion. This restricts the value of z,. In fact, writing

2o = Io + 1Yo, from (20) we have:

hz) = —H T~ Tor+ Yoy
- (1 =8) Rx? — y? — 2z0z + 2yoy
_ i (z—-70/2)* ~ (y — 10/2)* — ((z0/2)* — (%0/2)?) (21)
(1-dR (z —Z0)® - (y — %0)* — (z§ ~ 1) '

To guarantee h(z) > 0, Vz € I, the numerator and denominator in the
above expression must change sign only at the same time. In fact, from (21),

the numerator and denominator’s zeros are each hyperbolas passing through

N

N T
the origin with asymptotes at angles of ﬂ:z to the axes, and centered at 50
and zp, respectively. It is also important to note that the numerator and
denominator do, in fact, change sign at these points.

It remains to show when (21) is strictly non-negative. This constraint

implies a rather strict existence criterion.

Theorem 4 A circular inclusion embedded in a matriz subjected to a linearly

varying stress field characterized by the stress function

X1 = A(z — 20)* — Az, A€R,z = (o + iyo)

19



may only be made neutral if and only if

|zo| = [0l . lzo| ¢ (0,2R),

in which case the interface parameter is of the form

a3t Tty—1zo
1-0)Rzx+y—2z¢’

h(z,y) = ( (22)

where both the + correspond to ¢ = yo and o = —yo, respectively.

Proof. Sufficiency:

(i) If zo = 0, then sufficiency is given by Theorem 1, with p = 2 and
Zy=0.

(i) If |z0l 2 2R and |zo| = |yo|, then (20) gives

2) = # Re(z - 2A(z — z)]
h("’) - 2(1—6)RRe[.4(Z_ZO)2_AZg]) ZG[‘,
— H1 Re (2?2 - zg - 2]
=~ (U-0)RRe[z?-225-2]' z€T,
-k Ty -(@mezowy) op

(1-0)Rz*-y*~2(z0-T—%-y)’

15 22—y2—2o(z—y) _
(l—c?)R z’—y’-hoo(r-y)’ To = Yo

B T—y?—zo(z
0-9R z-!—v—y;_—'k-o '(o(':w!ﬂ)v Zo= "%

4 —Z

—#y =
(I-8)Rz+y—2z’ 0= U0

=

(23)

B T-y-To = —
| (1—-)R z—y—2z¢’ To = ~Yo

It remains to show that these quantities are strictly non-negative on I'.

20



In the first case (zo = yo), the proof is as follows. The zero sets of the

numerator and denominator are illustrated in Figure 2: ®

Figure 2: Zero sets of the numerator and denominator of (23)

Proof. If |z 2 2R, it is clear that neither the numerator nor the denom-
inator is ever negative on I'. (In the case of equality, the line given by the
zero set of the numerator is tangent to I at one point. However, it does not
change sign at that point.) It is also clear that both the numerator and de-

nominator have the same sign when evaluated on I'. Thus, the quantity (23)

21



does not change sign on I'. It can thus be ensured to be strictly non-negative
iféd > 1.

The argument is identical in the case when o = —yo, ezcept that the zero
sets of the numerator and denominator are lines with slope of +1, instead of
-1.

If |zo| = |yol and |z0| > 2R, the interface parameter necessitated by the
neutrality conditions is non-negative on I'. Thus, the neutrality condition is
satisfied by (23).

Necessity:

(i) If x, = A(z—29)*—Az%, A € R, but || € (0,2R), then at least one of
the lines in Figure 2 intersect I' at two distinct points. Thus, the numerator
(and possibly the denominator) will change sign at two distinct points on
. If |z0] # O, then the zero sets of the numerator and denominator are
clearly distinct. (They are parallel lines with intercepts equal to zo and 2z,
respectively.) Thus, the numerator and denominator change sign at different
points. This implies that, for |z| € (0,2R), the interface parameter needed
to ensure neutrality of the inclusion would have to take on negative values

somewhere on I'. This is not admissible.

(i) If x, = A(z — 20)* — Az%, A €R, but |zo| # |yo|, then the necessary

22



interface parameter is given by (21). In order for the interface parameter
to give a physically tractable solution, the interface parameter must remain
non-negative. The zero sets of the numerator and denominator are each
hyperbolas, centered at (3, %) and (zo, yo) respectively, with asymptotes at
angles of % to the azes. Also, each hyperbola passes through the origin.
(In fact, they are tangent to each other at the origin.) Clearly then, each of
the hyperbolas must intersect the inclusion boundary ' at least two distinct
points. Thus, the numerator and denominator each change sign at least twice.

The only way such the inclusion can be made neutral under such a loading
is if the numerator and denominator change sign at the same points. Solving
for the simultaneous solution of the numerator and denominator is fairly

straightforward. Isolating y in the numerator and denominator respectively

gives

2
y = %i\/zz—z-aaﬁ-(%) ,

Yy = yox\/z2 -2z 29+ 3.
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Equating to find the simultaneous solutions yields

2
%Q:t :1:2—:1:-1:04-(%) = yot /22 -2z -0+ Y3

2
:t\/zz—x-zo-i-(!{)—o) = %i 12— 21 -39 + Y2

2 2
zz—x-zo+(y§q) = (_3/23) iyo\/x2—2x»zo+y§+z2—2x-1‘o+y§

T-To—y: = :tyo\[z:2—2z—:r:o+y§
2 13- 2z -z +ys = vi(z? -2z T+ 1)

(5 -y5)z* = 0

If |zo| # |vol, then (z3 —y3) # O and the only simultaneous root of the
numerator and denominator is at the origin z = 0 (and thus y = 0) - the
origin, which is not on I'. Thus, the numerator and denominator of (21)
change sign at different points on U if |zo| # |yo|- This would necessitate an
interface parameter which takes negative values on I'. This is not admissible,
as h (z) is non-negative by assumption.

If |xo| # |yo| then there is no admissible interface parameter which gives

rise to a neutral inclusion. This concludes the proof. ®

The geometric implications of Theorem 4 warrant further comment. The
result states that a neutral inclusion may be constructed only at specific
positions in the elastic body. In an elastic body under a loading of the form
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x; = A(z — z)?, circular neutral inclusions of the type proposed here may
be constructed only if they are centered on lines which are situated at angles
of £% to the directions of principle stress, passing through the center of the
loading z5. A composite body with such inclusions could look something like

that shown in Figure 3

Zo

xv

X AX

Figure 3: Possible locations of neutral circular inclusions in a composite body.
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4 Elliptic Inclusions

4.1 An Elliptic Inclusion Under Simple Linearly
Varying Stress

Consider an elliptic inclusion, centered at the origin, with axes of lengths
2a and 2b (a > b), coincident with the z and y axes, respectively. Let the
stress field in the surrounding matrix take the form characterized by the

corresponding analytic function:
x; = Re®2?, ReR. (24)

Due to the lack of rotational symmetry in the ellipse, we are not free to choose
6o = 0. We can, however, choose the axial orientation such that 0 < 6y < 7.
For such an inclusion, the unit normal is given by [14]:
a2

T+t—
eNGEY) = —_ (25)

1/ @ 2 2.
a l-?(a. -b-2)y
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Then combining (13), (24), and (25) gives

_p [Relxi(2)eN]
Ae) = 2(1—6)[ Relx, (2] ] zel.

2
Re[2R - %z (:1: +is )
" [ 779 )]

al Re[Rei 22
21 —-46)ay/1 -~ Bg(a‘z — b=2)y?

= —’—‘12 S (26)

(1 —d)ay/1 - %(a—z — b2)y2

2 2
cos fo(z? — ‘;—2y2) — sinfo((1 + %)xy)

cos fp(z? — y?) — sin fp(27y)) , (z,y)erl.

It is clear from (26) that a solution exists if cosfy = 0. In this case, the

interface parameter shown above simplifies to

h(z) = h (1 " %;)

2(1—6)a\/1—%2(a-2 —b-2) 42

If cos 6y # 0, then we have

(27)

2_ @ oYy &
h(z) = y ’ ((”bz)ta“ °)Iy i

(1-48)ay/1- 2 (a2 — b-2)y? z? — (2tanfo) 7y — y*
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h(z) = b x

1- 6)a\/ 1- %;-(a,—2 —-b-2)y?

a2 al
(1: - (I—ZZ) [tanoo + \/t:an2 6o + i%- y)
l+p'_

(z — (tan g + secBy)y) (z — (tan by — secbo)y)

1+ % 247
Xl{z— ] tanfy — ta.n20o+ Efz Y.
2 1+ %

The zero set of each of the factors in the numerator and denominator in

(28)

(28) is a distinct line passing through the origin. Each of these lines passes
through the boundary I of the ellipse exactly twice. Thus, both the numer-
ator and denominator will change sign exactly four times on the boundary
of the ellipse. In order for h(z) to be strictly positive, the numerator and
denominator must change sign at the same points. For this to be true, the
two lines given by the zero sets of the factors of the numerator must be co-
incident with the zero sets of the factors of the denominator. This gives the
following conditions:

1+ 9% 223
Rl tanfg + {/tan® 6y + _”!, = tanfy + secfy, (29)
2 1+%
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or

1+ 9% 243
Rt} tanfo + {/tan? 6, + 1 = | = tanfy F secby. (30)
2 1+%

In each of (29) and (30), the upper and lower instances of the + and F
signs correspond (i.e. the + and F signs are either + and —, or — and +,
respectively.). Each of these cases imposes two conditions (for each case of
the £). Thus, we can solve each set of conditions explicitly for the unknown
quantities %; and 6.

In either case, we can isolate, and then eliminate sinf, to solve for %;-
This is done in Appendix II. The only values of %; which allow for the solution
of (29) or (30) are found to be {; = —2,0, or 1. None of these values are
admissible, as aspect ratios for an ellipse (%; is clearly positive, ruling out
0 and -2, and %i- = 1 corresponds to a circle). Thus, in the case when
cos @y # 0, we find there are no conditions under which the elliptic inclusion
can be made neutral.

Thus, a physically tractable solution to the problem of constructing a
neutral elliptic inhomogeneity under the prescribed loading exists only when

cosfp = 0. In this case, the interface parameter is given by

2(1-d)a 1-%(a‘2—b'2)y2

(31)
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4.2 An Elliptic Inclusion Under General Linearly
Varying Stress

Here, we consider the same inclusion shape and position as in the previous

section, only under a slightly more general loading condition given by:
X1 = Re'® ((z—2)>—22), RO €ER, 0<f<m 2#0. (32

The interface parameter is then given by

h(z) = =2 Re[x] (2)e"N )]
T 2(1-6) Relx,(2)]

2
Re[2R - €' (z — e )
" e[2R - €% (z — 2p) T+ig ]

x .
2(1 - 6>m Re[Re®® ((z - 2)" — 23)]

1- 6)a‘/ 1- %22- (a2 —-b-2)y?

a2

cos B ((x —z0)z — (y — yo) bzy) —sindo ((z —20) §y+(y—yo)z)

cos fg (22 — y? ~ 2Tz + 2yyo) — 25in by (zy — Toy — TYo)

2

(1-d)a 1—%(a-2—b‘2)y2
2 a?\ . a? a?
€ cos by — (1+§) (sinfo) Ty — (;) y200800+A.1:+32-

z2 cos @y — 2sinfyzy — y? cos by + 2Az + 2By

By
(33)
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where A = —zgcosfy + yosinfy and B = ygcosby + zosinbdy. In order to
transform the numerator and denominator of (??) into canonical form, we

employ the transforation:

r = Icos— +y in-o—o-
2 2
y = ycosgg—zsm@-
2 2
Io = i'?)cosgg-{-ij{)sino—o
2 2
6o . B
Yo = yoCOSE'—.’L’oSln?

which rotate the z, y coordinate axes through an angle of %‘1 radians clockwise

to give I, ¥ axes. This transformation gives!:

RGEG) = — P&
a -
(1-8)ay/1- 5 (@2 =62y E )’
( a? a?
z2 (cos %‘H-bzsmz%ﬂ) -2 (ﬁcoszgg--i-sinzgg)

a2 2
(xo cos & + 7 yosingﬁ) cosfy + (a—sin%“-a:o — cos ngo) sin00]

b2

)

a2 2 )
a
K-}-y ( 1:osm%‘1 -—-yocos%ﬂ- cosoo-i-(—cos-“:r +sm-“yo)sm00
72 -

7% — 2% (zocos & — yosin L) + 27 (zosin L + yocos L)
(34)

The interface parameter given by (34) simplifies substantially if cos 8 = 0.

(Recall this is one of the conditions needed for the solution given by (31).)
4This derivation is given in detail in Appendix III.

31



Recall 0 < 6y < , so cosfp = 0 == 0o = 5. Thus (34) becomes:

hED) = ——
(1-d)ay/1 -3 (@2~ b))y &5’
%(1+ )( ?)—z\/-(—izo—yo)+y\/-(—zxo+yo)

-y - ﬂz(xo—yo +\/-y(1‘o+yo)

= ___H x (35)

2
(1-6)a 1-"—(a—2-b—2)y2

H1+5) @ -7 - VIg2 @D + Vi G+ )
P-@’—\/_xo(x—'ﬁ)-*-\/-yo(f‘*‘g)

At this point, it is clear that, if either o = 0 or yo = 0, then a linear

factor can be cancelled from (35). If zo = 0, we get

N

o . (1+5) @ -7+ v G+

+3
(-0afi-Zar-eny@y T YRETD

2
a ~
" %(14—— -9+ V2%

I T L
(1-9)a 1_%(0-2—5‘2)y(§,y2 -7+ V2
u1(1+32-) (1+_)

— (36)
2(1—6)0. I—%;(a—2_b—2)y(i:’m2 z—y+\/§yo

32

b3
—




Similarly, if yo = 0, we get:

a?
1y (1 + 3'2‘)
h(z,y) =

2 F+7—V2
21-fay1-H a2 -yEy* | TV

(37)
There may still be conditions necessary to ensure that h (2) remains non-
negative. Figure 4 shows the lines given by the numerator and denominator

of the second part of (36).

< &
Numerator Y /
y=x+22y,
7
1+ Denominator
y=x+2¥2y,
b Gz
27 4
- 1.4
/ / X
a
v

Firgure 4: Zero sets of the numerator and denominator of (36)
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Clearly, the numerator and denominator do not change sign if 3o > a. Simi-
larly, the interface parameter (37) for the case yo = 0 is non-negative when-
ever Iy > a.

An elliptic inclusion embedded in a matrix subjected to antiplane shear

characterized by (32)

xI=Re‘a°((z—zo)2—z§), R,6, € R, 0<fy)<m, 20#0

may be made neutral if §y =  , and z is either real or purely imaginary. If

these conditions hold, the interface parameter is given by

a? 5"—§+2—‘/3’§—
m (14 5) (%)
h(Z7) = AL S —
| 2 -+ 2
2(1-8)ay/1- 3 (e~ )y (7,5)° FTYTV

if 20 = iyo, yo € R. If 29 = z9,z¢ € R, then the interface parameter is given

by

a? T+y a
(o3 )

_ !
20-0)ay1-S @r-by@pt | TV
\ )

Remark 5 The conditions found here for the ezistence of neutral elliptic

h(z,y) =

inclustons specify the arrangement of such elliptic inclusions in a manner
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nearly identical to that shown for circular inclusions in Figure 3. Recall the
T and y azes are rotated from the standard azes by an angle of 3. Thus,
the inclusion pictured in Figure 4 ts actually on one of the lines pictured in
Figure 3. In fact, in a composite incorporating elliptic inclusions as specified
here, the inclusions’ centers would all lie on the lines pictured in Figure 3,

and their azes would all be parallel with the azes in Figure 3.

5 Conclusions and Suggestions for Future

Research

The complex variable formulation of the problem was developed in a more
general context than had been done previously in {14]. The problem was
developed from the physical assumptions to give explicit expressions for the
unknown functions without any assumptions on their specific form. The
governing interface condition (12) and the corresponding interface parameter
(13) were derived in a form that facilitates extension of the model to more
complicated stress distributions.

The examples given indicate that, as the boundary curves and stress

distributions increase in complexity, solutions become increasingly restrictive.
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It may be of interest to investigate the possibility of using “smart materials”
to construct interface layers which could allow for negative values of the
interface parameters.

It may also be of interest to address the convergence and well-posedness
of the neutrality problem. If the design parameters (i.e. the shape of the
inclusion, and the magnitude of the interface parameter) are perturbed, it
is important to establish the order of convergence (or if there is indeed con-
vergence) to neutrality. This is motivated by the observation from results in
this thesis that indicate error in certain design parameters gives rise to sin-
gularities in the stress distributions. It is critical to the practical application

of the model that such singular behavior is properly characterized.



Appendix I. Derivation of (4) and (5)

from (9)

The real variable interface conditions given by (4) and (5) are formally
equivalent to the single complex variable interface condition given by (9). The
derivation of the complex variable condition (9) from the two real variable
conditions is shown in Section 2.2. The derivation of (4) and (5) from (9) is
shown here.

Taking the imaginary part of (9) gives
Im(x,]=Im[x,], ze€Tl

Taking the partial derivative along I’ in the clockwise direction gives

Olm ] _ 91m [x,]
ot ot

zel

where t is a unit tangent vector to I'. Then, applying the Cauchy-Riemann

equations

9 Re[y] 91Im [y]

oz oy
ORelp] _ _Olm([y]
oz dy
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(where (z,y) € AUBA, and g is an analytic function on the region A ) allows

one to rotate an equation of complex partial derivatives by an angle of 7 so

we get
ORe[xi] _ ORe[x,]
n = pat zel
dur _ Owp
3 — on’ zel.
Thus (9)=>(4).

Taking the real part of (9) gives

pwy = (26 — 1) pows + P1_Re [eiN(‘)x'l] , =z€Tl

h(z)
, _ (A py 0 (pun)
Sht (#2)u2w2+h(2) om  CSF
ow
h(z)w —ws] = #13{1’ zel

Thus (9)==(5).



Appendix II. Solution of (28) and (29)

Solving both instances of (28) simultaneously gives:

1+ % 2%
Rl tanfy + tan200+ pz = tanfy *x seclyp
3 1+3

1+2) 22 1- % ’
2] tan® 6y + p’z = & tan fg + secy
2 1+ 3= 2

2 2
1+ % 1+%2\a® (1-9% a?
( 23) tan20o+( 237)?:( Zp) tanzeozt(l—-gz-) tan 8 sec fg+sec? 0

1+2\° (1-2)’ a?
( f,) ‘( 23) o (1 ) ntosecto+

2 2 2 2
(Z-z) sin?6p (1 —%) sin00+%(1+%) = (1-sin?60) — 1

1a® a?\ . , a?\ . 1((a®\* a2
§b—2(1—-b7)sm 90?:(1—?)811190-{-5((?) +g.,;—2

2

1+%\a
p-) ﬁ —SeC200

+

AN
[~

-[F(-8)] = /a-9 -8 a-9) (@)’ +5-2)

sinfy = Z )
-9
[+1] + \/1—5; (@)+g-2) -8

a2
1
In order for (28) to correspond to a physical solution, one value of 6, must

satisfy equality in both instances of the equality - ie. when the upper of the
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+ signs apply, and when the lower apply. Thus we have:

(@ +g-2) -7

p

1 1-g (@ +§-2) -9
= Either of

ad
o3

Either of \/

Clearly, the only way this can be satisfied is when

a2 ((a2\2 | a as\~
-\ 1-§ (@ + -2 -9

a2

>3
e 1-g (@) g -2) -9
== %2 .

This gives:

2
#((8) +5-2)
0 = 3
(-4
£ (5+2) (8-
0 = 5
i-g
a2
7 = 0,1 (possibly), or — 2.
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Solving similarly for (29) gives:

1 a2 9a2
Rl tanfy + tan200+ 3!2 = tanfy F secfy
2 1+ %

2 2
1 a2\ 202 1_“2
e tan? 6y + g, = -3 tan 6y F sec
2 1+%& 2

2 2
1+ % . 1+%\a? [(1-% ) a? 2
tan® 8o+ 7 5 tan® 0pF( 1 -5 tan 6 sec fg+sec” 8y

2 2
a? 9 a? 1+§; a? 2
(F)tan GOi(l—ﬁ)taneoseceo-i-( 5 b—z—sec 6o=0
a?\ | a?\ . 1+ %\ a2 ,
(ﬁ)&ﬂzgo:ﬁ(l—ﬁ)SIDOO'f-( ) ?ﬁ(l—ﬂnzoo)—].:()

2

a
pz =0

a? a? (1+% - a?\ . 1+ %
-?—?( 3 Slneo:t(l—?)sm&)—l*' )

N

“E-H)] V-9 -@ -8 (@8 -2)

sinfy = 3 )
Z(1-3)
FE1-@) (B +-2) -9
= pe;
=

41



Similar to (28), we have

a a’ 2 a a -1
li\/l—(?f')((nz) +$-2)(1-%)
Either of

a?

=

1, 1-@) (@ $-2) 0-§)
= Either of oy
3

Here, we observe that the equality conditions are identical to those found for

(28).



Appendix III. Derivation of (34) from (33)
The quotient in (33) which requires simplification is

2 LAPE a®) ,
z?cosfy — (l+§) (sinfg) zy — (ﬁ y* cos fg

2
+ (—zg cos by + yosinbyp) T + %2- (yocos b + zosinby) y

(38)
z2 cos By — 2sin fozy — y? cos by
+2(~xgcosby + yosinby) z + 2 (yo cosfp + Tosinby) y
Using the substitution:
~ o, ~. bo
r = :L'c053+ysm-2—
y = @'cos—g—isin@-
2 2
) ) 0 0
2 _ =220 =g 20 oin 20 ~2 270
z° = ZI°cos 2-+-2:1:ycoszsm2-+-ysm >
) 6 0 0 0 0
Ty = —52sin?°cos-2—°+:ry(coszgo—sin2—2q)+§25in§°»cos—22
) 0 0 0
2 _ =2..2% o5=—=_. Y% Y% -~ 2%
y° = I°sin 2 2:z:ysm2cos2+ycos 2



we get

(

+zy [2 cos

z?

%
2

2 2
[cos2%ﬂcos%+ (1+%2-) sinoosin%ﬂcos%‘l— (%2-) i 29,}c0300]
2
sin % cos 6y — (1+%) sinfq (cosz%l—sinz%ﬁ)+2(

a’

B2

) sin %ﬂ cos

2

2
. a2\ |, ) a
+7° [sm2 % cos g — (1 + -—) sin g sin % cos & — (—) cos? -’lzﬁcos%]

52 b2

+T [(—zo cos @y + Yo sinBy) cos %ﬂ - :—2 (yo cos 8g + g sinfp) sin %‘1

2
+y [(—Io cosfp + yosinbp) sin & + % (yo cos B + ¢ sin fp) cos %ﬁ]

8
2

cos 00]

)

(]

22 cosf + 2sin o sin & cos L — sin? & cos 6]

z* [cos

2 2 2 2

+7° [sin® & cos 6 — 2sinfgsin % cos % — cos® & cos 6

+27 [(—1:0 cos 6y + yo sin fg) cos %9- — (yo cos By + zo sinfg) sin 22‘1]

+27 [(—zo cos g + yo sin fo) sin & + (yo cos fo + zo sin o) cos & |

+Zy [2cos & sin & cosfy — 2sinfp (cos® & — sin? L) + 2sin % cos £ cos fo]




Collecting terms gives

2 2
( z2 [(cos“—’zﬂ- (%2—) sngzﬂ) cosfy + (l+a )sm003m—ﬂcosg2ﬂ] \

(2cos-nsm—’1+2 (;)sm%ﬁc 929) cos 6y
+Ty

2
- (1 + %) sin o (cos? & — sin? &)

- 2 2
+7? (sin2 b (%) cos? 92‘1) cosfy — (1 + %) sin o sin & cos %ﬁ]
3

(—zo cos 8y + yo sin bp) cos 929 - %2— (yo cos 8y + zosinfp) sin 92‘1

T , , a? ,
K +y | (—zgcos Oy + yosmeo)smf’iz‘l + o (yocos By + zqsinfg) cos ‘—’,_;l] )

.

( 72 [(cos? % — sin? %) cos fo + 2sinfp sin & cos %]

+Zy [4 cos & sin & cos B — 2sin Gy (cos® L — sin? &)]

[(sin® & — cos? £) cosfy — 25in g sin & cos L]

+2Z [(—xo cosbp + yosin fg) cos L — (yo cos O + 2o sinfp) sin L]

\ +2 [(—zo cos 8o + yo sin fo) sin & + (yo cos by + Tosinfo) cos L] }

Noting that 2sin -ﬂ cos ® 9 = sinfy, and cos2 —sin? 92'1 = cos fy, this becomes



( a’\ . L, a? 2 )
2 [(C0800+ (1—'3—2')8111 -29') COSOQ".‘% (1+§) sin 00]

2

— a?\ . a®\ .
+Ty [(1 + ?) sin 6y cos g — (1 + b—z) sin 6o coseo]

+7? [(—cos00+ (1 —a_z) cos? g’1) cosfp — (1+ a-z) sin® @ ]
b? 2 072 b2 °

+z [(—Io cos 8o + yo sinfo) cos B — 5;—2- (yo cos B + T sin bo) sin &

_ i i a? X
+y [(-:co cos g + yosinfy) sin %‘l + 7 (yo cos g + ¢ sin p) cos 9,}} )

\

)

( 22 [cos? By + sin® fp]
+27y [sin fp cos y — sin g cos fy]
+3? [— cos? 6 — sin® Bg]

+2z [(—:z:o cos 8¢ + Yo sin fy) cos %ﬁ — (yo cos By + z¢sin fg) sin %ﬁ]

\ +27 [(—zo cos B + yosinbo) sin L + (yo cos G + o sin fp) cos %] )
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([ = [(cosGo+ (
.

o2

i

2

B2
2

)

)sinzgIl

cos? &

2

)cosOo-% (1

.

2

B2

+

~zo cos® & + zsin?

a ) 2 6 a

a2

b2

9 é
F cos F + 2yo

sin3 Qg, — sIn

- 2z
~zosin £ cos? & + zosin® & + 2yo sin® & cos

a®

B2

.

a?
To SN

b2

o

Yo SiIl2 %

38 _ &
2 cos 3 +2

+2T

+2y

=2

-y

be 4

269 %
2

5 .89 2
= cos ¢ + 2yp sin ¢ cos

28
2

nf

—yosin & cos? & + yosin® L — 2z, sin? L cos

wp

—Zosin P cos? % + zosin® & + 2yosin® £ cos

+yo(:083%n —yosin2 ggcosﬁg.+2zosin%ﬁcoszg2n

47




T2
a2
+ 1+32-)2sm“—'2‘1cos b
2
a
(— (cosz%ﬂ—smz%ﬂ)-f-(l-p) cosz%ﬁ) (cos? % —sin* &
+y K
—(l-i—§)2sinz%‘lcosz%‘1
[ ) a? 20 ) ]
—cos® 2 + 1—2§ sin® % cos 2 ) zo
+z ) 9
a 8 269 , & .38
'+((2—§ sin 3 cos -2“+32-sm —zn)yo-
a?
(sms%ﬁ+<2§-1) sm%?»coszg,}) Tg
+y 22
+(( —-—)sin”-’?z‘lcos%‘l-+-§cos“’2n Yo
( )

+25 [(~ cos? % — sin? % cos ) 2o + (sin % cos? & -+ sin’ %) o]

\ +27 [(sin & cos? & + sin® L) 7o + (sin® £ cos £ + cos® &) yo) )




( cost & 1.+.a‘2 12 85 012 8 @ 44 \
—_ — 2 -1
5 77 | sin® P cos? F + 7 sin'
2
-4-(1-*-%;)28111”2 cos? &
LA a?
| et - l-s‘--b—z-)s1n2%‘lcoszgz‘l+sm“%‘l
—y-
2
+ l-i-%)2sulz%‘lcoszgi1
[ 2 8o a? 20 ]
s cos® 3 + 2-52——1)5111 -z‘l)a:ocos%‘1
2
-( 2 -2 ) cos? % + = sin? % %
i b2 2 b2 2 yoSln2
2 -
sin? % + (2% — 1) cos? % b
5 3 72 2 ) zosin &
2
_8 \ - 24 a
( \ +(( bz)sm -2“+bzcos292’1)yocos%ﬂ- )
2P )

—2% [(cos? & + sin? &) zocos & — (cos? & + sin? L) yo sin £
2

\ +27 [(cos® & + sin? &) zosin L + (sin? L + cos? L) yo cos #] )
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( 8, @\ 20 28, &4 )
7% |cos? 2 + 1+§ sin® ¢ cos —2*1+§sm—2Il
- [a? 489 1 a’ 200 00g? %2 4 sint &
—yﬁcosz—i- +§sm2coszsm2
- 2 a®
-T [(cosoo+2%2-sm2%‘1)xocos%ﬂ—(2c05292‘1—§c0500)yosm-2‘1
- 2 a®
k-i-y [(2%—2-&)522'-1——c:osOo)a:osin4"2'1+(251112%‘l+§c0800)yocosi'zn }

—2F [zocos & — yosin 4]

+27 [zosin @ + yo cos £ ]

/

( PR ARY \
72 cosz—gﬁ-i--b?sm &
— [4? 2 89 2 do
-y Ez—cos >+ sin® 3
2 2
7| (zocos @ + L yosin 2 ) cosf + ( = sin &zo — cos Ly ) 2cos & sin &
0C0S% T (Yo sSIY 0 p2 Sy To 2 %0 2 2
7l —zasin % 0_2 (7Y f"j 1} in % % gin %
\+y xosm2+b2yoc052 cos gy + bzcoszxo-i-smzyo 2cos F sin 3 )
( \ '
7 -7

—2T [zocos & — yosin 2]

\ +2y [zosin & + yo cos %] )



+
~ 2 8, a? 0 0
-z [(a:ocos%n + —yosin 3} ] cosfp + (ﬁsin—zﬂa:o —cos-zﬁy()) sinoo]

_ 2 a? . .
\ +7 [(—-1’0 sin 222 + — 1o COS %ﬂ) cosfy + (ﬁ cos 92‘11'0 +sin %ﬂyo) sin 6o

a? \
T2 [c052 9+ 7)551112 9,}}
a2
e Th [ﬁ cos? 929- sin® %ﬁ

| /

B (

\

\
-7

~2% [zocos @ — yosin & ]

+27 [zosin & + yo cos ¥] )

Which is the final form given in (34).
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