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/ ,  MesTRACT
e . o .,3 ' N - . ,

o This work is concerned with:the electromagnetic properties and the
quantum Haii effect of-quasi two-dimensional (q-2D) etectron systems. A
modei of the g- 20 electrons is introduced by deriving the effective 20 ‘

m_Hamiitonian yia a dimensionai;reduction from the 3D Hamiitonian for the
e]ectrons ~ The Ward-Takahashf (W-T) relations are derived for the exact
density and current reSponse functions to ensure that the initiai symmetry

iof the modei will be reflected ‘in later approximations of these functions.

. The retarded transrsfse dgpﬁent -current response functions of an

ideal q -2D electron gas at zero temperature with and without an external

‘ magnetic field are ca]cu]ated.~ Introducing‘a new.approxnmation scheme

-‘uhich allows one to take account of the reaction of the eiectrOmagnetic
field to the induced current i.e. the'infiuence of the electronic induced
current on ‘the dynamics of the e]ectromagnetic field, within the framework
of the conventionaiiiinear response theory in a self-consistent way, a

" possible ‘form of}the dispersion relation for the transverse pJasmon in
thelsystem s obtained It is'found that the'energy of the piasmon has a -

gap at k =0, if the thickness of the system is finite, in contrast to the

, 1ongitudina1 case. - _ J
h . ﬁr\\\\- A microscopic theory of the integer quantum Hall effect (IQHE?‘based
on the canonisal equation of motion for the current operators, in the
presence of impurities and the Couiomb interaction, is presented when
the appropriate thermodynamic variable is taken to be the chemical poten-
'5§ia1 due to edectron reserv01rs. rather than the number density, the
obtained formu]a gives the Hall conductivity as a function of the gate

voltage and shows good agreement with the MOSFET experiment by K.v. Kiitiing

iv A F



et al. ‘The formula also givés the temperature dependence quantitat1ve1y5
and shows exp11c1t1y how the plateaus d1sappear at- higher temperature
giving the’ clasggca1 Hal] effect results In connection with ‘the frac-

"ﬁﬁﬁ“‘n‘a'tionaY quantum Hall effect it is shown that the Green s function assumed by

‘{;R Tao and D. J. Thouless, 1n their many body model of . the fractiona] effect,
* s~ig)ates the fundamental requiremont of current conservation.
An exact Hamiltonian is derived for the Laughlin's wavefunctions
This Hamiltonian is shown to represent non 1nteracting electrons in con-
‘trast to the findings of S.M.:thyin.et;ua1.

l A Y 8 ' L 5
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CHAPTER 1
LAVECER Y

1.1 INTRODUCTION

Quantum'f1e1d theorettcal methods have been applied to many and
diverse physical éystems: Nowhere'haé‘gs much experimental knowledge been
- gathered as in condensedfmatter phystcs, wh%ch can therefdre serve as an '
» ideal test ground for modern quantum fie]d_theoretfcal many-body (QFTMB)
theor{es.

In particular it has been fea]izedilate1y'that a certain kind of
condensed matter systems, the so cal]éd qUasi~two-dimensiona1 (g-2D) onés,
may bp.of paramount interest to the development of QFTMB methods. This
J1§ due to their uniquely variable parameters in}confrast to‘thgir 3D
‘co;nterpqrts. Although the e1ectf0—magnetic properties of any condensed
matter system depend on the transverse!responsé function;the’dynamic
transversé response function of a q-2D electron gas has ngt been calculated.
Inxthis thesis it will be evaluated and used to derive the dispersion of
a transversejplasmon in a Zb electron gas with or without an external
magnetic field. -

A'genéral micfoébopic model of the IQHEw(integer quantum Hall Effect)
wii] bg presented which accounts for both the quantum and the classical ‘
effect. This model is independent of the detailed mechanism for e1ectron/__

/

localization and includes the spin and valley splitting and a]]ows for
fhe width of the landau Tevels. o

The experimental results of K.v. Klitzing (K.v. Klitzing, 1980) will
be Feproduced in detail by this model; and the imb]ications to the FQHE
(fractional quantum Hall Effect) will be discussed.

In connection w%th\exact QFTMB relations, as the»ward-?akahashi

1
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' Lo ! ; ‘ Lo A _ . .
" rejation and;the f-sum rule, it will be shown that the only. real QFTMB
Co e ' LS » P , .
model of the FQHE, the Tao-Thouless model (R. Tao, 1983), does not obey

the fundamental requifementhfon the conservation of ‘the current;

1.2 TWO-DIMENSIONAL SYSTEMS'IN NATURE

e o B . . ) :
1.2.1 Expefimghta1 Systems C:' S 4

| Quasiyfg,e]ectnon'systems are chanacterized‘by the fact that the

electrons’ are~a1most free to move in a p]ane, while the1r mot1on 1n the
T

d1rect1on perpend1cu1ar to the plane is severly restr1cted by a c0nf1n1ng

3

potent1a1 'So, as w111 be shown be]ow, the dynam1c behavwor of these
Systems approaches that of 2D 1dea1 systems

v If-the conf1n1ng potent1a1 1s narrow enough the mot1on in the 3rd
direct1on~w111 be quant1zed'1nto d1screte energy'1eve]s, these Will be

-‘b

resolved 1f the therma1 and scatter1ng broadenwng do not 1ead to over-
. 1 .‘ » -

- 1app1ng of 1eve1s L -
When a magnetic field is app1iea»pengendicu1ar to the free'electronﬂ
p]ane the free mot1on 1n the. p]ane is quant1zed into d1screte Landau 1eve]s
(L D Landau, ]977) w1th a harmon1c osc111ator tyoe spectrum ‘
. Many e1ectron systems have Qeen found to exh1b1t a 2D behav1or, and
| ‘Tn most of them the electron dens1ty can be varied over many orders.of
magn1tude K o 5 - | |
Electrons can be- he]d by an image potent1a1 to the surface of 11qu1d
He]ium (T.. Ando, 1982a) (M W. Cole, 1974) (c.c. Gr1mes, ]978) creating
a th1n layer of h1gh mob111ty at low temperature. Thetr‘density can be
v _ modu1ated by e]ectrodes be1ow and above the sample, creat1ng the so- ca]]ed

h01d1ng Q\\press1ng f1e1d

Y



\ .
_2Dfe1ectron Systen:can also be created -at the SiOZ-Si interface in
| MOSFET's by bendiha the conduction band of the Si with a strong positive
gate b1as which at the same time contro]s the ZD density of eélectrons in ¢

. the s0 ca11ed 1nvers1on layer formed at the 1nterface (T Ando, 1982a)

Another system of jncreasing importance in modern techno]ogy, due to

vits hwgh e]ectron mob111ty, is in a GaAs heterostructure.h In this system

the electrons are conf1ned to the GaAs- A] Ga1 As interface by the

natural conduct1on band d1scont1nu1ty The e]ectron-density is controlied
by the donor concentrat1on in the AT Ga] As layer, or less. cmnnon]y, by
a gate bias in a FET structure (T. Ando, 1982a) (H.L. Stdrmer, 1984)

Many othery?D-e1ectron systems are known and the. 1nterested reader
may be referred to the rev1ew art1c1e of T. Ando et+ al (T. Ando, 1982a)

The. three Systems ment1oned above are the most 1mportant ones with respect
' to the topics of th1s theses - the QHE (quantum Hall Effect) and the //',.
. /'/

| electromagnetic propert1es of 2D systems R o //

In ‘the beg1nn1ng of the 3rd chapter a thorough descr1pt10n oﬁ the

structure and parameters of two of these 2D electron systems w111 be g1ven,

' i.e. the MOSFET and _the’ GaAs systems. o ‘ g

1.2.2 Two-Dimensionality | - 7

The‘ZD behavior of these eleCtron systems can best be tested by
compar1ng some dynam1ca1 characteristic 1ength (such as the'fermi
wavelength or the cyc]otron radius, etc.) to the: w1dth of the confining
potent1a1, or by observing some dynam1ca1 phenomenon which is d1st1nct1y
d1fferent Jn 1dea11y ZD or 3D systems

The former suggest1on can be carried out bykcomparing the character-

jstic sbatiaT extention (the average:distance of the electrons from the



/ ' ! yd
interface (F. Stern, 1982)) of these q 2D systems 3? 100A for one level

occupied of the conf1n1ng potential) to the fermi wave]ength

: 2=n .
== 2. _ e | ,
GRG0 KT - (-1
(
‘where ne is the 2D e]ectron denswty and g is the 1nherent degeneracy

For typtcal densities in MOSFET's and GaAs Hetero structures n égj

cmfz) one f1nds that Ap

extent of these systmes in the 3rd direction (T Ando, 1982a)

can be more than 10 t1mes larger than the spat1a1“'

one strong]y expects that these systems would show ideal” 20 beh3v1or

w“

"~ The Tongitudinal- p1asmon dispersion for an 1dea1 2D e]ectron gas was

"-B

deréyed by F Stern in. 1967 (F Stern 1967) and shown to be“r'ﬁf

d1fferent from the p]asmon 1n 3D systems The 3D p]asmon a
o ‘gap,wh11e-the 2D one is gap]ess. This 1dea1 20 p]asmon d1s_@r50n has been
observed exper1menta]1y in the He system (C C Gr1mes, 1976) and 1n a

o MOSPET inversion layer (S.J3. Allen, 1977) (T Ando, 1982a) 'fe}?;ﬂ{]‘" .

1.2.3 Quantum Behavior

-4 i . by
. o
o =

i 13 - : .

- As already mentioned in section 1.2.1 the quantums behavior in the

Srd direction_wil] be manifested in discheté?energy levels, but what about

the electron motion in the plane in which they e%e freé to move?

.

For the MOSFET and the GaAs system the average kinetic energy of the

ferm1ons at T =0 (the nonthermal quantum energy).

{ . o ’,mﬁz
e

o (1.2)

¢
whehe~mfzis the effective electron mass, is always larger than the average

-



thermal energy kBT (the e1as§ica1 energy, kB; Boltzmann's constant) for

]]<n ‘1013

T<4,2K and attainable electron densit&/ne (10 "2 ip Si MOSFET

(T. Ando, 1982, p.442), n~10'! in GaAs (D.C. Tsui 1981c) (H.L. Stdrmer,
1983a)).

)

Therefore'these systems have to be treated quantum mechanically. On

~ the other hand the He-system does not enter into the quantdm region (due

to its lower ne) unti} T<0,1K for the nighest attainable név2~109cm'2‘

(A.P. Volodin, 1977). - .
s N

1.2.4 Observables in q-2D Systems : , | ©

. Observables such as'the energy spectrum, the 2D electron density
.and the effective massthaVe a]ready been mentioned in this work; how
are these and other quant1t1es, re]evant to this thesis, measured7
The exper1mental methods used to obtain the fundamenta] observables
are mainly of two different types; optical spectroscopy (rev1ewed by
(J.F. Kach, 1975, 1976)) and electrical conductance measurements
(M.A. Paalanen, 1983) (S.'Kawaji, 1975, 1976). Fortunately tnese two
methods both overlap and comp11ment each other. The diagohai elements,
- and ~yy, of the conduct1on tensor ~ exhibit an osc111atory behavior

XX

with respect to a variation of a weak perpendicular magnet1c fxe]d : ’//
This effect the Shubnikov- de Haas effect, has been studied theo— '
retwca]]y by Ando (T. Ando, 1974d), see also (A. Isihara, 1979a).
The‘COndnctivityvoxx dips each time an integral number of'Lénﬂau
levels-is filled as will becbme clear in section 2. | |
The per1od of theShubn1kov de Haas oscillation, with respect to the

inverse of the magnet1c fweld depends only on the 2D e]ectron dens1ty

and some fundamental copstants. This effect has become one of the most
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jmportant method to measure the 2D electron density (M.A. Paalanen, 1983)“
(F.F. Fang, 1977, 1978). . | | S

The theoretical studies of the Shubnikov-de Haas effect havg_further-w

‘more shown that. one can determihe the cyclotron frequency W from the

tenperature dependence of the osci11at1on amplitude (T. Ando, 1974d)

cyc]otron frequency depends on the effect1ve mass m¥*:

N
b 4

o =8 BAREY

where -e is the absolute value of the electronic charge, B is the magnetic

-

field and c is the speed of light. . .~ oy

The amp11tude at a fixed 1ow tenperature g1ves the scatter1ng‘time
- of the electrons once the, effect1ve mass and Zp dens1ty are known %Af

(T. Ando, 1974d). ; o

\\

The Shubn1kov-de Haas effect therefore g1ves the three very important

\

parameters ne, m* and L,nfrom wh1ch the mob111ty of the e1ectron§\can
\

~

be calculated:
L= Is | (.8

‘Direct spectroscopic measurements can be. interpreted by simfle quantdm
mechanics (L.D.'Lahdau,.1977) to give the energy level spectra of the
confining potentié] (7. Ando, }925b) and the1r correspond1ng broaden1ng

(F. Neppl, 1977 1979) for a ZB~e1ectron system not in an external

~ magnetic fie]d The scattering time t can be obtained from the 1eve1

w1dth or ‘the broadening (T Ando 1982a p.621).

\

- h : ~' v . v
T T e (1.5)
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In an externa1 magnetic field B the Eyclotron frequen%y @

can then be used"1nd1rectly to give a picture of t

<:*‘-\“' i ‘ :v ».I i | k) N ‘ulb ‘ |’7'

c can be ,
determined giving the effective mass m*, which combined with T gives the
mobility u(1.3) (A. Kangar, 1974). | ‘

The sp1nsplitt1ng of the Landau 1eve1s can be used to fimd the effect<
ive g*-factor (R.C. M111er; 1980). It 1svinterest1ng~to note that the |
spin structbre'of the spectra can easiTy.be distibﬁdished -from other
structure by ti]ting the magnet1c fie1d from the norma1 of° the free
e]ectron p]ane The spin sp11tting an essent1ally 30 phenomenon depends

Bn the total B-field while. we depends only’ on the. pernendicular

4component of . the B~fie1d (F. Fang, 1968) (A Isihara, 1979)

Tilting of the magnet1c f1e1d has a1sa been used to observe the
energy levels of the conf1n1ng potent1a1 from the resu1t1ng coupl1ng to
the Landau levels (Z: Schlesinger, 1983).

In FET s the 2D electron density 1s regulated by the gate>vo1tage

V., and the density n can be approx1mate1y est1mated from the geometry

g
of the sample

A]l this infonmat1on about the energy spectrum of 2D electron systems

confining potentia] T

and to est1mate the spat1a1 extent of the system i he*Brd direction |

perpend1cu1ar to the interface (F.F. Fang, 1966).

1.3 THEORY OF 2D SYSTEMS

oo

~Une of the difficultles in mode]]ing q- ZD electron systems ar1ses frnm )
the fact that even though the electrons may be confined to very thin 1ayers
they do interact with a fu]]y 3D electro- magnet1c f1e1d
This problem has been tack]ed‘in‘three different ways: -

 In calculations of properties of the q-2D system that depend only on
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the Coulomb 1nteraction, but not on the fu11 electromagnetic field, a

, model of 1dea11y 2D e]ectrons has been assumed (F. Stern, 1967) (A Isihara,

On the other hand. when the full e1ectromagnet1c\}1e1d has to be

included, two different approaches have been used. Chfurand Quinn (K.W. Chiu.

1974), using a method common for surface properties, obtained a solution
of the Maxwe11 equations for two ha]f spaces and matched them together with
an ideal 2D system at the boundary - |

Another method used later in this theses (V Gudmundsson, 1984)

(T. Toyoda, 1984a) is to couple the 3D electromagnetic field to a q-20

n

electron system of a finite thickness (see Chapter 2).  *

‘Once the model has been chosen the appropriate Hamiltonian together

fw1th the Nother currents and the ground-state can be written down. But

there are some further complications. The q-2D electrons not only 1nteract

"with each other. but also with a periodic background potential of the

crystal lattice and with a random potential of impurities and surface

states, as well in the case of MOSFET's, the glassy $i0, adds to the random-

. ness of the backgroﬁnd‘potentiafrﬁF.;Stérn, 1967a). . &

~ The periodic background potential is usually taken into account by

" the effective mass m* and the dielectric constant e.

The random potential outside,-giving rise to scattering Ts impbsés
the much more difficu1t ouestion_of a possible electron localization
(Y. Nagaoka, 1982) (N.F. Mott, 1967) (P.W. Anderson, 1958).

The question of whether to use a finite tempErature’or”aviero
temperature QFT formalism has to be answered by comparing the possible

energy spectrum with the average thermal energy.

[23
<w
%



1.4  IMPORTANCE OF 2D SYSTEMS (

O

.Q-2D electron systems are of great importance both to théoretita1

{

developments in QMBFT methods and in modern techno1ogy
' When QFTMB methods are applied to condensed matter systems to eva]uate
‘quantities such as the groundstate energy, the excitation energies, po1ar-

\/ization, etc.’the.results are usually expressed as an expansion in the

‘ dimensionless paraMeter re:
density ne‘and'the effective mass m* (A.L. Fetter, 1971) (A.A. Abrikosov, ¢

v?his parameter rs‘depends only on the\e]ectron‘

1963) (E.M. Lifshitz, 1980) (D. Pines™1977) (A. Isihara, 1971) (S. Doniach,
1974) (L.P. Kadanoff, 1962). ' '

. T /2 el
- (] M*e
re = (=) - - (1.6)

) In;most o-ZD syStems the 2D electron density ne/can be,yarted g9ér
many ofders of magnitude -(T. Ando, 1982a p.442) (F.M. Peeters, 1983) in
contrast with 3D electron systems where the density can hardly be varied
at all. In other 3D quantum many body systems such as 1iquid'He1ium the
expansion parameter, a product of the denswty and the hard core radwus,
:1s not variable in experimentsoe1ther B ) ?

Q-ZD electron systems are therefore a unique testground for QMBFT
methods in o?ndensed matter, since compar1sonﬁpetween the theory and
eXperiméhts Puts more stringent'requirementslon the model.

Q;ZD electron systems also exhibit sodeUnique 2D oehavior, Tike
strongly variable g*;factor (Th.'Englert, 1978) and effeotive mass m*
(H.L. Stonmer, 1984), and of .course the recent]y discovered quantum Hall

'effects that have caught a ot of attention, (K.v. Klitzing, 1980, 1981)

|
(H.L. St¥rmer, 1984). o



b

4

“dk @,“,,J vy

10

Most of the above mentidned phenomena are either poorly understood
in detail or not understood at all.

On the more technical side the QHE, in 2D systems, has offered a
resistance standard that has already surpassed other known resistance
standards (K;vt K1itzing, 1980, 1981). And at the same time the QHE is
the only known solid-state phenomenbn that can offer a high pr!cision
determination of the fine structure constant a.

Conduction properties of the 2D electron layers in MOSFET's or GaAs-:
FET's are also of greét techn{cal importance in micro-electronics and

computer designs of the future.

1.5  REVIEW OF PREVIQUS WORK ON RESPONSE. FUNCTIONS AND THE QHE IN 2D
ELECTﬁON SYSTEMS

¥
“ Aot of work has been done on g-20 e1eétron systems. In this section

the werk that bears direct relation to the topics of the thes1s will be

rev1ewed, i.e. response functions, conductivity, the IQHE‘and the FQHE.

1.5.1 Response Functions

<

Response functions can be used to'derive many properties of a system, .'
such as; collective modes, ground- and excited -state energfes, the éffec;—
ive g-factor and magnetic susceptibilities, etc. (A.A. Abrikosov, 1963)
(A:L. Fetter, 1971) (A. Isihara, 1971) (EFM. Lifshit;, 1980). -The main
emphasis here will be put on their use to study the collective modes in
q-2D e}ectron systems. | |

F. Stern (F. Stern, 1967) was one of the first to calculdte the
density response function of an ideal 2D electron gas usingvthe RPA

(Random Phase Approximation). He then used the response function to~

-
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derive the 1ongifud1na1 2D plasmon dispersfen at zero temp.'and}w1thout

‘an external magnetic field.

2 2 o
- 2m _e” hk .
2N .
. N ) . ‘ }".-,‘\
Where » is the frequency and k‘is'thg wave vector, kc is the fapy-vave-
vector s ‘ 5o L “ig.;'

. ~ ¥ Lo 3
The main d1fference between the 2D p]asmon and" ’76?3§¥3§F‘ﬁ , :

2D dispersion is gapless, i.e. .~0 as k0. This can?#*'used, ast”:f.

- before, to determine whether a system is dynamicaliy ZD or not. Tﬁis
characteristic 2D béhavior of the plasmon has beén.confirmed, to the }ovest
order, in experiments with electrons bound to the surface of 11qu1d He
(C.C. Grimes, 1976) and in experiments on. MOSFET 1nvers1on layers

(S.J. Allen, 1977). _— T -

A. Isihara and T. Toyoda (A. Isihafa, 1976) evaluated the density
response function at finite temperature for an‘ideal 2D electron gas and
used it to find the’exchange energy. o

AK. Rajagppa] (A.K. Rajagopal, 1977) iﬁc]uded.gxchénge diagrams
in addition to the, RPA diagrams in hié deriQation ofﬁghe 20 plasmon’
dispersion at T=0. He claims that the exchange terms ?é?ﬁitvin a correct-
ion to the quantum term of the dispersion (1.5) (the secoﬁd term on the
r.h.s.). | | '

. o :

Rajagopal also derived the real part of the transverse current
response function in the static (w~0) and Tong wave length (k»o)'1imit
and usednit to ;valuate the orbital magnetic susceptabili;y.

G.F. Giuliani and J.J. Quinh (G.F. Giuliani, 19§4) calculated the

2D plasmon damping at T=0 due to impurity scattering. Their calculation



12

is performed in the high and Tow impurity concentration limit assuming da
€:¥ﬁpur1ty. ) ‘.
A11 these calculations of the plasmon dispersion mentioned above have:v

been done assuming only one subband of the cohfieing potential to be fu?l.
There have been some attempts to evaluate the plasmon dispersion for
systems with more than one subband occupied.

'. Y. Takada (Y. Takada, 1977)\ca1cu1atea the .density .response at finite
temperature, including more than one subbend{ In addition to the "usual
20 plasmon” he finds anothef collective mode, the acoustic plasmon (when
the electrons of each subband oscillate out of phase) ' |

Intra and inter subband plasmons have been studied by S. Das Sarma

- (S.D. Sarma, 1984) who maintains that the interference of "these modes

\
\.

explains the observed plasmon mass increase at higher wave numbers in

-

MOSFET's (D. Heitman, 1982).
i.e..many 2D electron systems$ stacked together (G. Qin, 1983) (A.C. Tselis,
1984) . |

) The collective osci]lationé‘élso exist-in a 2D electron Qas1in an
e;terna1 perpendicular magnetic field.

- The first calculation of the.current response function for;é 2D
'e1ectfon gas at finite temperature, and in a strong magnefic field, was
performed by K.W. Chiu and J.J. Quinn (K.W. Chiu, 1974). Using the RPA
and a high Femperature sem%c]assica] approximdtion they were éb]e to
calculate numerically the dispersion of the magnetb-p]asmbn for 1ong and
short wavelengths. |

This calculation has been improved by'M.L; Glasser (MZl. Glasser, 1983)

& -

who derived the density response at finite;€EMéerature ih’a CIQsed :
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integral form over a finite range. He claims to have optained terms
neélected in the semiclassical approximation of J.J. Oujnn.
C. Kallin and B.I. Ha]perin use a combination of the RPA and the
. Tadder approximation to é&jéu]ate the density response of a 2D electron

¢

" gas with n full landau levels at T=0. |
* They show that the collective mode can be thought of either as a

magneib plasmon or as a magretic excitatgon (i.e. a bound state of a hole

in a filled Landau 1eve1\ and one electrk in an otherwise empty Landau

level). They 6bt§in, numgrically, dispersion Curveszénd“a]so the spim<

wave dispersion for the lowest landau level. The implications to the

FQHE are discussed.{

A.H. MacDonald (A.H. MacDonald, 1984b) uses the Hartree-Fock
approx1mation for a 2D electron gas, w1tA an integral number of fully .
occupied Landau Jevels, to evaluate the sp1n dependent response funct1on
at T=0. He uses numerical methods to eva]uapg,the d1spers1on curves and
finds‘that the co]]ective modes are agnetop]asmons or excitations between
Landau levels, in agreement with‘the results ef’B.I. Halperin.

None of the above mentioned works have dealt with the possible trans-
verse plasmon in 2D electron systems3 though J.J. Quinn correctly states

(K.W. Chiu, 1974) that the longitudinal magneto plasmon has to be derived
with transverse'effects in mind. In only one paper are claims laid to
have derived the dispersion of trensyerse excitations in a 2D e]eefron
gas (G.K..Agarﬁa], 1981). |

G.K. Agarwal et. al. use a numerical simulation of a classical 2D
electron gas to qbtain the“dispersion‘pf Jongitudinal and transverse
excitations. The physical meaning of Ehis transverse made is far from

a

clear.
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As mentioned before, the response fun;tions have also been used to
calculate other interesting quantities of 2D systems such as the density

dependence of g* and m* (A. Isihara, 1979, 1980, 1983).

1.5.2 The Importance of Transverse Response Functions and Plasmons
. , A :

The electromagnetic properties of any Ebndeqsedimatter system ére
related to the transverse current response functibn ike. the prop%gation
"of an electromagnetic wave or a trans?erse p]asmén mode, etc. depend on
the transverse current response and the Maxwell equations.

The transverse plasmon wasffirst der{ved.in 3D electron systems by
D. Bohm and D. Pines (b Bohm, 1951). They used a cons1derab1y comp11cated
canon1ca1 transformation in order to éa]cu]ate the. dispersion.

H. Matsumoto et. a] (H. Matsumoto, 1980) .applied their quantum
e1ectrodynam1cs of so]1ds to the same problem and obtained the dispersion |
re1at1on of the 3D traqsverse plasmon in agreement with Bohm and Pines.

Nobody ha$>ca1cu1ated the dynamic.transverse response function of a
q-2D electron gas with or wfthout ah external magnetic field. In this
theses the current response function will be calcu1§ted)for”the 20 electron )
gaé. The longitudinal and the transverse part will be separated in a
genera] way. The’ transverse response function will be coupled to the 3D
aclass1ca1 electromagnet1c field accord1ng to the new se]f consistent
linear response method, leading to the transverse p]qsmon dispersion

relation. : v ! 4
| It will be shown that our simple method, in theecase of 3D electrons
leads to the same results (including the first order quaﬁtgm correction)
ast. Matsumoto et. al. have-obtaingd using theusecond quantized form of

the electromagnetic field.
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The transverse response of 2D electron systems may be of 1mportance
for the FQHE, for when the magnetic field increases in strength the current
becomes almost entirely transversét

The transverse plasmon dispersion may beubf significance in the
proposed micro-optical systems of the futdre.‘ Recently the superconduc—
tivity of q—ZD.electron systems has attracted great attention (H. Takagi,
1982a, b, 1983). In‘theée sysfems the transverse current responsevconhects
the behavior of the current and the e]ectrom;gnetic field in the Meissner
éffect.‘ Our formalism migh% therefore benhe1pfu1 to shed gome light on

the fascinating subject of q-2D superconductivity.

1.5.3 Conduction ‘ .

The conductivity tensor o for a 2D electron gas is deriQed from‘fhéA
current response function of the system, calculated perturbafiona]]y "
with respect to the impurity Hamiltonian (S. Doniach, 1974). .o

The irreversibility enters the problem when a random average is taken
over the impurity sites and a selective group of Feynman-graphs is used
for the perturbation‘calcu1ation (A.A. Abrikosov, 1963) (A. Isihara, 1971)
(. Doniach, 1974). ‘ o

The emphasis of conductivity calculations shifted withwthe‘disbovery
of the QHE, s0 m this section thevpre—QHE studies will be reviewed.

Ca]cu]ationslof the conductivity in 3D condensedjgatter systems were
pfoneered amongst others, by R. Kubo (R. Kubo, 1957), using linear current

i . :
‘response with respect to an external electric field E in the presence of

impurities. R. Kubo later on (R. Kubo, 1969) founded the so called "center

migration theory", in which the cyclotron motion is separated from the

diffusive motion of the electrons, in order to calculate the conductivity



o of ‘a 2D electron gas in an externa1 magnet1c field B
@

Q.F. Tf methods, 1ater used in 2D systems. to: ca1cu1ate the cohduct1v1ty,
. where 1¢§ }down in 3D systems by H. Sh1ba et /a1 (H. Shiba, 1970, 1971)
and H. Hasegawa (H Hasegawa, 1969). " : v | | ‘
T. Ando used these-QFT methods for 2D e1ectrons (T. Arido, 1974a,b, c)
§

in order to der1ve the Landau 1eve1 broaden1ng #(the’ 1magfnary part of the

Q

e se]f energy) cons1stent1y us1ng e1ther 5 2impurities or 1onger range ‘

f'b:

‘f1mpurft1es represented by a Gaussian potent1a1 well. These resu]ts wete

then used to evalu teoXx at’f1n1te temperature 1n_var1ous approx1mat1ons‘
- the self consistent Born approximation (SCBA), the single site approgf— |
mation (SSA} or.the many site approx1mat10n (MSA) AT but the most simp]e‘
resu]ts have to be presented by numer1ca1 means. ’, o

These ca]cu]at1ons were. car;1ed out 1n the strong magnet1c field
11m1t, s0 on]y one Landau 1eve1 is accounted for. | _ ' .
| T. Ando (T Anoo,-1974d)‘a1so cons1dered the more difficult problem
of a 2D systems 1n~an arb1trary magnetic f1e1d and thereby der1ved an

' express1on for the very 1mﬁ3rtant Subn1kov de Haas effect (see sec, 1, 2 4).

»In 1975 (T. Ando, 1975 calculated\the off- d1agona] conduct1v1tyoxy,,.

SNy | B »
a - - B‘ ;+ hoxy i ‘ (].8l

obtaining”the well known classical result %nvadditionvto_the higher order

(83

. correction Ao The‘higher‘order corrections to both o _ and o _ are

Xy XY XX
usua]]y not sma]] and suffer from problems with analyt1c1tv of the self

energy

~ Ando never discussed in his paper what quantities would be measured

in a Hall effect'experimeht (see, Section 2.3) consequent1yrhe was' not
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~able ‘to see the QHE

_,,*Ihe'eeﬂduct1on ca]cu]at1ons of W*”Ando 1ed the group of S. Kawaji

and J. wakabayash1 et. al. (J wakabayash1, 1976, 1978, 1980a) (S. Kawii1,"

1975, 1976) to do measurements on MOSFETS at Tow temperature (T~ 1 4K) and
high magnet1c f1e1d (B<150 KG). ) ;nva R él?{ - o |
They qbta1ned a good qualitative egreement fortd;%'and Iy with Ando'sj
v‘theory, but they djd not find the plateaus tﬁht']aterfwere known to
chdrecterize‘the FQHE. Thisfmay be dde‘either to their sample having
too low mobi]ity,‘or td their preoccupattdn in studying oxx‘and c%y'in
connection witthndo's theory, ' instead df u§ingvpxx and oxyvdirect1y
(p: resisttVity tensor); In this conhection it 15 tnterestihg to see
that Th.'Eng1ert,ahd'K.v. Klitzing (Th. Englert, 1978) did a similar
e*perimehtvan’a MOSFET.at T =1.5K dhdlp = 142 KG. 'They find both O vx
vpxy.and wxx f;y’ and their o y éhowswthe beginning df the formationgof the
f1at reg1ons, which later were 1dent1f1ed as ‘the s1gnature of the IQHE
They also f1nd ev1dence for osc111at1ons of the effect1ve g- factor
Much_ attent1on has been devoted to the d1ff1cu]t quest1on of ndersoh
localization of ‘2D e]ectrons in 1mpure systems, and to 1ts connect1on to
the conduct1v1ty | | |
FSeveral papers have been written on hhether alT,e1eetrdns in 2D
syétems,ere 1dca]izedter hot'(E. Abrahams, 1979) (L.P. Gor'kev,x1979)
(B.L. Altshuler, 1980). This cohtrOVersial topic will be further -
' addressed in section 1 5. 3 on the QHE together w1th further deve1opments

1n the conduct1v1ty calcu]at1on after the d1scovery of the @HE

1.5.4 Q

‘Ihe‘TQHE has been haiTed;as one of the most important phenomenon
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discovered in quantum condensed matter systems.

It had net béén predicted by/any théory, in spite of the active
‘research.on 2D electron systems. | |

Good review articles on tﬁé QHE have been published (K.v. KTiﬁginQ,'
- 1981) (S. Kawaji, L983) (H.L. Stormer, 1§84). _For_descfiption of the
experimental systems and the resu]ts sée Chaptef 3. | '
| The_IdHE is manifested'by flat platéaus in ?xy and_near vanishing )
of Oy x when an integer number of Landau levels i% filled }n a 2D electron
system in a strong maghetié fig1d @nd at'a.1ow témperature_(T<4K).,Ihe
vajue of 5H(= 1/pxy) ié quantized.£97an integer times the constant eZ/h,
wheré'h is Plancks constant and e isﬂthe‘abso]uté value of the elegtronic
charde. (P;/é2 is therefore a natura]zresistance unit). ~fhe QHE was |
first_diécovered by K.v. Klitzing et. al. (K.v. Klitzing, 1980) wﬁo
fouﬁd'that the;plateaus.of dxy:are f1at'to~bnefpart in 10° and 00y
vanishes at thé sahe t%me.' This experiment was conducted on a'MBSFET5at
| T = 115K‘and‘a cqnstant‘magnet5c fje]d B. The gate‘vo1tage Vg was
varied invordér tq-chahge the density of e]éctronsland populate the-:
successive Landau levels. |

The spin and valley splitting is c1earjfor‘the Towest‘twonLandau
yleve1s. o | ' |
A A2 K1itzing sugges ted that'the IQHE could be u%éd to determine

the fine structure tonstant a:

o ' : i
from the high precision value: for oxy:
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(K.v. Klitzing, 1980, 1981). | |
Soor . ar, D.C. Tsui et. al. (N.C. Tsui, 1981 a,c) discovered the

IQHE in GaAs heterostructures and found Oy to have plateaus flat to one

6

part in 10° at T = 4.2K. The universality of the QHE had been shown by

these two different sample materials and by samples of different shapes
and sizes (K.v. Klitzing, 1981). | ' |

‘ H.L. Stérmer (H.L.‘Stﬁrmer, 1983b) furthér boosted the universality
of the QHE by observing it in a ZD'qgle‘system in a»GaAs heterostructuré,
“thereby showing that the effect is independent of the details of the

¥

band structure.

L

K.v. Klitzing et. al..(K.v. Klitzing, 1982) studied the IQHE at
_ temperatures down to 8mK while M.A. Paalanen et. al. (M.A. Paa]anén,l

-1982) reached a temperature of 50 mK. Both‘these‘groups find the steps

~in °xy to be extremely sharp and to have reagggdvalmost fu]ﬂ'possib]e‘

plateau width. The spin sp]fttiné is bb%erved'for the first two Landau
Tevels. |

"The highest'precision in determinfng ﬁhé flatness of'the p]ate@qs i
in Pxy has, been obtained- by J. Kinoshita&ﬁ; al. (J.-Kinoshita, 1983)
| who claims that they 'are f1af to‘oneipart in‘107 in a MOSFET.
~ The temperature dependence of the IQHE has been studied by sevecaf
groups. ln particular K.v. Klitzing (K.v.'Kiftzfng, 1981) shows how the
b1atedu width increases with decreasing temperatﬁre; ‘whiTe‘M.E.fCage

et. al. (M.E. Cage, 1984) have observed a shift of the value of o* away

, . Y
from the precisely quantized one'(1.8) with increased temperature. The
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latter emphasfzed the difterence between this shift and the temperature
dzpendent s]obe of the plateaus,'Whﬁch they quote from an unpublished
measurement of K.v. Klitzing et a] ‘ ‘ |

The p1ateau width of p& is also dependent on the mob111ty of the
‘2D electrons in the samp]e:' J. E Furneaux- 'and T.L. Reinecke (J.E.
Furneaux, f984a, b) and D.A. Syphers et. al. (D.A. Syphers,‘1984) have
studied:the'effect of the impyhity concenthation on the plateau width,
by drifting Na* ions into MOSFETS. 'They find that the plateau width
mincreases with -added impurities. As an explanation they suégested that
'thé region of 1oca1ized‘states in-the tails of the Landau levels grow,
dw1th 1ncreas1ng 1mpur1ty concentrat1on, and thereby narrow the region of
extented states at the Landau Tevel center (see the next sect1on on IQHE

theortes). They also observe that the spin plateaus grow s]ower in w1dth

-~which may,poss1b1y be due to overlapping of the spin sp11t Landau Tevels.

' QHE Theory .
:.'Many theories ha;e been put forward to explain the IQHE.andmcan be
Q 1oos1y grouped’ 1ntd four categor1es 1oca1ized-states-thed%ies,'gauge—
hprinc1p1e theories, Reservo1r theor1es ‘and theories based on a chiral
anoma]y. C o A | ,
H Aoki and T. 'Ando (H. Aoki, 1981) bui1t a modeT of the IQHé using
the.prev1ous conduct1on calculations of T. Ando (T. Ando, 1975) in
connect1on with the idea of 1oca11zed states. ' They c]atm that the
1mpur1t1es in the 2D e]ectron system cause 1oca11zed states of e]ectrons
* to'be in the tails of the Landau levels and between them

Furthermore when I x and’ ony are evaluated the ma1n contribution
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comes from the states apound the Fermi level. Therefore if the Fermi

Tevel is in the.loCa11zed states then I x and;Ao;y vanish, 1eading to:
e e o (1.11)

It is then argued that the Coulomb 1nteraction has no effect due to the 5

'part1c1e hole symmetry o ) , ' ‘./”(w
~ They have a harder time explaining how the density n, i n (1.9) i ﬁ

the tota] density of e1ectrons in the system, not only the: dens1ty of
"mob11e e]ectrons this 1s supposed to be due to the higher speed of the,

extended e]ectron states to compensate for the carrier loss to the
| localized: 'states. This explanation is far from being convincing, and

it shou]d be kept in mind‘that the essent1a1 condition for the Ha]] effect

1n genera1 to be observed, that either the perpendicular current Iy or

the perpeud1cu1ar voltage Vy has to vanish, has not’ been used by H. Aoki

and T. Andol ‘ |

- R.E. Prange (R.E. Prange,‘]981) uses a'sdng1e G-impurity'(causjng
rldcaiized states) in order to evaluate this current compensetion.

Much work has‘been done on Anderson 1oca1izatipn; rendcm,impurity'
pOtentia1‘ehd periodic potentia]v(D.d,AThou]ess, 198f) (D.C. Tsui, 1981)
(T. Ando, 1982a) (N. Hoshi, 1982) (P. Stieda, 1982b) (G.F. Giu]jani, 1983)
(D. Yoshioka, 1983a) (H. Levine, 1983, 19844, 5, c) (D. Yoshioka, 1983a)

(J.E." Avron, 1983) (J.T. Chalker, 1984) (D.E. Khmelnitskii, 1984)
‘(S. H1kam1 1984) in connect1on with IQHE mode1 but thisuyhole'field is
st111 qu1te controversial. o | | .
R. Joynt (R. Joynt, 1984) finds in his'?esearchithatva11_ph}kica]1y-

reasonable disordered potentials should exhibit the IQHE in the Timit

(0]
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" of a strong B-feld. But he also claims that the mechanism of local-

ization is qua]itatiVe1y different from that of Anderson ?ocaiizationt

His article is a gogd review of earlier work on the localieation problem.
A very sim1Tar approach, percolation theory, has also been used to

model the IQHE (R.F. Kazarinov, 1982) (S. Luryi, 1983) (s. A Trugman,

1983)“)~The main results of the perco1ation theory has been that there

s a%qg}; a narrow band of extented states at the center of each Landau

"" '

]eve] ;& ; _
A very different approach uo the IQHE, but “still used in close

connection with loca11zat1on, have been the so called fundamenta] gauge

principle theories that were first 1ntroduced by R.B. Laugh11n (R B.

Laugh11n, 1981) In this theory the electrons are located on a cylin-

drjcal ribbon, with magnetic field both through its center and sides

(a Bohm-Aharonov geometry).‘ Due. to the°extended states a gauge trans-ﬂ

formation would have to be periOdic (in the cipcumference) in order to
— ’

! Con
Teave the system gauge jnvariant. The total energy of one electron

depends on its location with respect to the e]ectric field across the |

: r1bbon. The gauge transformat1on changes this 1ocat1on, so in order for

the total energy of the system to remain gauge 1nvar1ant an 1ntegra1
number of elegtrons has to be moved from one edge of the r1bbon to the
other h%isleads to. the quant1zat1on of P xy due to the re]at1on between
thé current along the r1bbon to the voftage across it caused by ‘the
magnetic field.

“The weak ess of this theory is that 1t 1s bas1ca11y a one électron

'theory, SO no tent1on is g1ven to the ant1symmetr1zat1on of ferm1on1c

many -body systems Th1s theory 1s therefore equa11y good for bosen B

~ o

systems.” . . "' CL



Another problem is the speC1a1 geometry of the sample)requiredi//
“most exper1ments of the QHE a th1n elongated flat sample is used and\1t - :

i
1s not obvious how th1s theory can be extended to such’ ‘samples.

R.B. Laugh]in d1d not specially account for 1mpurit1es in the system,
but assumed that a]ways some extended states would Qe present. - This point
'has beenxe1aborated by 'B.1. Halperin. (B I. Halperin, 1982) who uses a
phys1ca1 argument in order to prove that there. shou]d always. be some -
extended states present Furthermore, he 1nd1cated that extendedﬁedge
states are of 1mportance if the Ferm1 energy E 1s not the same 6n both
sides of the r1bbon | J ) |

For add1t1ona1 work’ é]ong these lines see (H Aoki, 1982) (R Ramm&1,
i983) (A.H. @MacDonald 1983f).. The red1str1but1on of charges which | \
'_kgenerate the Hall vo]tage are d1scussed by A H MacDonaId (A.H. MacDonald,
1983b). R

The importance of an electron reservo1r has been stressed in a paper
" by G.A. Baraff and D,C. Tsu1 (G A Baraff 1981) They emphas1zed that
for o, (1 11) to._have plateaus as a ﬁunct1on of B ng must’ vary with
B, SO there must be a reservoir: of electrons. |

In GaAs heterostructures the Si donors 1n the AL Ga] As layer,
separated by a thin 1ayer of undoped AL Ga1 As from the 2D e]ectrons,
‘can act as a reservo1r R |

A model built on the assumpt1on that the S1 donors are the only
" reservoir in GaAs is reported, by G. A Baraff and D.C. Tsu1, to be ab1e

-to account for 78% of thelplateauvwgdth in an exper1ment by D.C; Tsui 'f.
— et. .a1 (D.C. Tsui, 1981a, b). The restJof the p1ateauLWidth‘mayfhave' l
‘been caused by’ 1oca11zed states or 1nterface states. ?

This theory is very appea11ng, having 1n m1nd that it may exp]a1n

* the much narrower p]ateausTn Si- MOSFETs due to the fact that no -
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reservoirs ahe known in MQSFETS comparable to the ones in GaAs hetero-
structures. | :
"The role of the 1ocalized states may also have to be reconsidered
in 11ght of experiments (J E. Furneaux, 1984a, b) (D A. Syphers, 1984)
that show the p]ateau width increased with added impurities
M.A. Paalanen (M.A. Pea]anen, 1983). states that this modgl can only
account for 30% of the plateah'hidth inkhis precision experiment. -
.~ There fs no douGt though that reserv?irs are of fundamentaliimpor-
“tance, but the mechanism has to be studied more thoroughly.
The plateau width has also been studied by A. Isihara (A. Isihara,
1983) who found it to depend on the ratio of the field energy and the
thermal energy |
0. Heinonen and P.L. Taylor (0. Heinonen, 1983) constructed en
,essent1a11y one e]ectron model showing that the p1ateaus can exist with

.i‘

no impurities present
. Several euthgrs dea1t especja11y,with various aspects of the con-
duction. | |
P,~StFeda"(P.»St?edaQ_IQBZe) dekives a’ quantum correction tb the

cii&&ica} c_., differing substantially from the "center mfgration” results

xy
of R. Kubo (R. Kubo, 1969). ‘

- A.H. MacDonald (A.H.dhacDonald, 1983a) claims to show that thev
simple cfassice1 result for the quantum Hall cenductance can also be
der1ved for a re]at1vust1c system us1ng the Dirac equat1on

And the van1sh1ng of a11 h]gher order correct1ons to the Ha]l
conductance, due to the.externa1 electric field, is proved by Q. Niu and

D.J. Thouless.(Q. Niu, 1984a) |
0 Hewnonen and P.L. Taylor (Q He1nonen, 1984) concluded that.the



breakdown of the IdHE,‘observed when the current along the .sample Ix is
“increased (M.E. Cage, 1983), is‘Que to electron phonon interactions.
Recént1y a duitg different théOry of the IQHE has been pre;ented by
K. Ishikawa (K. Ishikawa, 1984). He'claims that a possible chiral 7
o anama]y of electrons described by the Dirac equation may be responsible
for the IQHE; he alsb points out that this theory may act as a micro-

scopic theory for the gauge theory of Laughlin (R.B. Laughlin, 1981).

1.5.5 General Microscopic IQHE Model ,
. , /f'

As stated earlier T. Ando et. al. calculated the conductivity tensor
o (T. Ahdo, 1975) for gq-2D electrons in an“externé}\magnetic field.

' N\
H. Aoki and T. Ando (H. Aoki, 1981) then try to show that Iy
# - '

- develops plateaus due to higher order corrections'Acxy when an integer

number of Landau levels is filled. ,
The problem with this approach 1sythat they never take into account
. the important pre-condition for the Ha1fjefféct,.that either the Hall

current Iy'or the Hall voltage V_ has to vanish.

y .
Unfortunately hany experimenta] groups have also tried to apply the
Aoki -Ando theory directly to their experiments, and discussed. the effects
of g, (S. Kawaji, 1975, 1976) (J. Wakabayashi, 1980) (K.v. Klitzing,
1981). ”
 In this theses it wil] be emphasized that there are two types of

_ experiments. In the'more common one the candition I, = 0 holds, and

*

y
it will be shown that.pXy should exactly equal:

(1.12)
¢ - o ‘
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While in experiments where V'y = 0 Iy exactly equals:

‘neec : ‘"
a z - + Ao, (1.]3)

with a correction term ony depehding bn Tyx* It should be stressed that
oxy in (1.12) is independent of the value assumed by o, at the séme
time.

It will be shoqn that the cohductivity tensér can be derived from
an equation of motion for the 26 iﬁteracting electron current, quantum
mechanically, ana]ogdus to the classical derjvafion. “

The Hall conductance will have the simple classical form:

1)

X e .

oy = T —g | (1)
y .
;

where <ﬁe> is the grand canonica) average of the 2D e]ect(on density Ny
In the evaluation of <ng> it will be essential to gonsider the anti-
-symmetry prope}ty of the many eiect;on ane‘functﬁon$~§n contrast to
R.B. Laughlin's (R.B. Laughlin, 1983) esséntia11y one electreon gauge
principle theory where the fermionic property of the electrons js not
accounted for. |
The general hode] of the IQHE, proposed by us, is able to handle
different plateau widths, temperature, spin and valley degeneracy, and is
}generalvenough so as ta be independent of the exact mechanistfor Tocal-
ization and elecfron reservoirs, '
In the third chapter Qhé4exce11ent reproduction oflexperimenta1 dat&
byAthis.hodel'wil1 be demonstrated and implications for the FQHE and |

further work on the IQHE will be discussed.
| \

\ /
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- 1.5.6 FOHersy : '

The FQHE was surely the most unexpected and fasc1nat1ng phenomenon
discovered in condensed matter physics in recent years.
\\\ It has also not yet been understood, since to date no adequate
microscopic theory of the FQHE has been presented.

After the discovery of the IQHE the groep of D.C. Tsui (D.C. Tsu%,'
1982) was looking for the elusive Wigner crystalization of a 2D electron
gas in a GaAs heterostructure, expected at high enough magnet1c f1e1d
'so only one Landau level would be partially occupied. _

What they found instead was a dip in o, and a plateau in Iy
(= 1/0 ) at one-third of the value e2/h when the temperature was below

1K. The plateau was measured to be flat to one part in 102 at T = 0.42K.

Soon after (H.L. Stdrmer, 1983), the fract1ona1'et}ect‘was seen both
at filling factors v = 1/3 and é/3 with clear plateaus in Ay and d1ps
in 0 x’ (v: 1; the factor multiplying e /h in the expression for “H’\\ ‘
i.e. Yy = v _e_ﬁ ).

Moreover, plateaus were also observed forming in Py’ and corre-
sponding dips fn o, at v - 4/3, 5/3, 2/5, 3/5, 4/5, 2/7. While nothing
has- been seen at even denominal fractional filling factors

This experiment was carried out on a GaAs sample pf high mobility,

- and it was noted that no fra;tiqna] effect could be seen in samples with
Tow mobility, which instead developed very wide IQHE plateaus.

The stability of the e1ectroh system, the plateaus in Py and
“the van1sh1ng of o, in the Fqﬁg indicates that there might be gaps
in the energy spectra of the system at these fractional filling factors

" The reappearance of finite Pyx or Tyx when the temperature is increased—



i

&

implies then that the conduction is ghermally activated i.e. the
conductivity Sxx has a factor of the form:
6 N . .

T ¥ exp(.— Ri;-r) , (].15)

‘ K ay
where A is the energy gap (the activation energy) depending on the fill-
ing factor v, and kg 1s the Boltzmann constant. ' ~

*

This dependence of 5__ or px£ on T has been observed in experiments.

XX
A.M.‘Chang et. al. (A:M. Chang, 1983, 1984) have studied systematically
the low T_(65;770 mk) behavior of the v = 2/3 effect in ordefwio deter-
mine the ectivation energy A. They found the same gap from both Pyx and
'.pxy having the maximum va1ue at v f 2/3 and decreésing’rapidly to both
sides as a function of v. The width of the narrow ectivation energy
peék iS‘Ae = 0.1 + 0.01, while the maximum value at B = 92,5 KG is
0.830 = 0.03K. | | |

The activation energy has been measured for v =1/3 and 2/3, a]so in
GaAs, by S. Kawa31 (S. Kawaji, 1984). The ratio of these two values‘does
" not agree with the theory of R.B. Laugh]in (R.B. Laughlin, 1983b) (see
below). | ‘ | | 7 o

The unfversality of the FQHE has been clearly demonstrated by
V.M. Pudalov (V. M’ Puda10v, 1984) and D.A. Syphers '(D.A. Syphers, 1983)
who have studied the effect in MOSFET's, and by E.E. Mendez (E.E. Mendez,
1984) observing the FQHE in systems of 2D holes.

The quéstion of the range of v, for wh1ch the FQHE can be seen, has
been looked into by two groups:

E.E. Mepdez (E.E. Mendez, 1983) reports that no effect is seen below

= 1/5at T = 0.068K even though the filling factor is brought down to

'\ ‘

"y
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= 1/11,

- K.v. Klitzing has‘found structures developing at v = 3/4, 1/2 (k:v
K]itzing; 1984) and thereby suggests that our idea of the FQHE may have
to be changed arastically in the future. .

- E.E. Mendez et. al. (£.E, Mendez, 1984a) finds strdctures at v =2
4/3, 5/3, 7/3, 8/3.

~ From these last two accounts it is clear that fhe FQHE is not re-

stricted to the Towest Landau level.

. FQHE Theory

De5p1te the great attention focused on the FQHE no adequate theory '
j ex\1a1n1ng it microscopically. has been presented.

Several theories were suggested soon after the discovery of the®RQHE,
but tae surviving ones can be loosely grouped into. 3 groups: Trial wgve
function theories, supér—]attice ground state theoaies and fractional
fermion number theories. . | ‘

The expeFimental groups finding the FQHE (D.C. Tsui, 1982) (K.v.
Klitzing, 1982) suggested that the effect éou]d be caused by the form-
ation of 2 Wigner solid or a charge-density-wavelike ground state
(H, Fukuyama, 1982) (D..Yoshioka, 1983b). The main reason for the
abandonment of this approach was the fact that no conduct1on threshold
was found for low voltages due to the p1nn1ng of the ground state to the
impurities. Another reason is that some investigators (D. Yosh1oka;
1583c) (R.B. Laughlin, 1983a) (W.P. Su, 1984) found that the ground state

.energy of few electrons (3l€§4in a strong magnetic field is less than that

of a Wigner solid. They also found some signs of extra stability at
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=1/3, through it isvhotﬁclear if thf.cdncept of a filling faé%o; is
appropr1ate for so few electrons. | |
R B ‘Laughlin (R.B. Laugh11n, 19€3b) consfructed ahtrial wavefunct{on
“for a ground state with a f1111ng factor v = l/p, where p is an odd
infegef .Through a connect1on w1th ‘the 2D OCP (onevcomponent,plasma) he
found that the exc1tat1ons are of a fract1ona1 charge in.an fncompressible
qugﬁtum fluid. fﬁe ground state energy isl1oher than in a Wigner crystalg'
| 'F{D.M. Ha]dane (F.D.M. Hﬁldang; 1983) improved,R;B. Laughlin's
agbnoﬁch by_constructﬁng 3 tran§]atioﬁ311y invariant trial wavefunction
- that can also account for thé—FQHE’at-ff]]fng‘factors of the ty}e
- 5/p, wheré plis an bdd‘integer whj}e g can be-any integer 1§ss than
| 'B.I. Halpérin discussés nossible extensions of‘gaughlin's w;;efdnc-,
tions to v = a/p in a review article on both the IQHE and the FQHE:
- (B.I. Ha]perin 1983) S1m11ar extension of wavefunct1ons are a1so g1ven
by P.W. ‘Anderson (P W. Anderson, 1983) | |
The Laugh11n wavefunct1ons are not aﬁ exaét solution to the 1nter—
ct1ng electron prob]ém (Coulomb 1nteract10n) but S.M. G1rv1n (S.M.
G1rv1n, 1983) c1a1ms that they - are an ”exact so]ut1on" to the prob]em
of harmon1ca11y 1nteract1ng part1c1es --(see a. comment on the va11d1ty
of th1s claim in the next: sectlon) | |
The Laugh]in wavefunctipns have been USgd to construct ﬁhe qurdx-_
_imate 2 point é]assfca1 correfgtioh functions in order to faci]itéte the
Cdmparison of the ground §tate energy for different modéis (S.M.‘Gﬁévin,
1984b). " The same author has{also giveh a more rigorbus derivation of the
ho]e-éxéitatfon“of £he Laughiin ground state and extended it to v = q/p.

(S.M. Girvin, 1984a).  ©



~P.K.’Lamz(P.K. Lam; 1984) and S.M.vGirvyé tﬁén use the correiation fﬁpci’ o
' iibn,tO’show Fhat'for v € 1/7 the gfouhd‘state will ‘transform from Fhe
.1mcompres§f5§é'f1uid.state (describedﬂfﬁb Laugh1in_wayefunctions)‘;hto a
Wigner solid. This theoryfshould be gombared with the experiments of
E.E. Mendez (E.E. Mendez, ,1983) in which no-FQHE is observed below v =
1/5). At the ggme time it is necessary to keep {ﬁ‘mind that ;hé ratio

~of the energy gpszfor v = 1/3 and 2/3, according to the'theorydof

Laughlin, is in7E6htradiction with the gxperimental resuTtS»bf‘S. Kawéji
et. al. (S. Kawaji, 1984).

Thereghdg been some disagreément over the kind of statistics that

—
—~—

the quasipartiéTéékof Laughlin obey. R.B. Lauéhlin (R.B,ﬂLaugh]in,'1984)
argues that the excjtations must bg usual fermions, while B.1. Ha}pé}in
(B.I. Ha]perin,T1984) mainfaihs that théy must obey fractional statistics;
and iq that connection argues that their energy $pectrum has downward
CUsﬁS (stab]e) at odd denominal filling fattors Q,'and peaks (unstable)v
at even denominal v. | .
o There haye hot been many attempts to construct QMB?T micrdscopic
 models. of the FQHE though D.J. Thouless (D.J. Thouless, 1984) expresses
the commonly held view that the Cou]omb.intefac%ion may be of importance.
| R. Tao and D.J. Thouless have rresented a QMBFT model of the FQHE
in which they assume that tﬁe grounc .. ate"is a superv1atticé in Landau-
‘orbital 'space (R. Tao, 1983a). The 1ifting of the degéneracy causéd by
the Coulomb interaction, is,ca]cu]ated.self consisﬁenﬁ]y using the RPA. -
Thé‘eAergy Qap A thus found between holes and‘parficles deé@nd§ on
the filling factor v and is largest for vé]ues of v.close to y/Z. In
this model the odd denominal v are not faQo;ed over the even ones in

contradiction to experimental Eesults.



32

Th1s model has some ser1ous flaws as will be discussed 1ater on.
‘ Tao and Thouless truncated the iandau 1eve1 space such that on1y the
;ﬁ1owest Landau 1eve1 is 1nc1uded in the ca1cu1at1ons : Y E. Lozovik |
(Y.E. Lozovik, 1984) has calculated the Hall conductance Y (w) (the ratio
u\of the 1ong1tud1n§ﬁ current I and the Hall voltage Vy) and in his paper
he discusses the importance of con51der1ng the trans1t1ons between all
'the‘Landau'1evels, even in strong B field, in order to preserve exact
retations such as the"f—sum rule. -

He also stresses the importance of including the transitions between
1oca]ized'states and extended states in models that consider the electron

1ocal1zat1on

Ina cont1nuat1on ‘of the Tao-Thouless theory S .M. Girvin (S.M. Girvin,

1984c) ﬁgrmulated a general theory of quantum mechanics w1thin the lowest
LRLapdau 1eve1 An a]gor1thm for projecting any. quantum operator on the
1owest Landau level 1s introduced in con3unct1on‘;1th coherent states
“and path 1ntegrals
- Very recently there has been a surge of act1v1t1es around a completely

different model of the FQHE using the Dirac equat1on to descr1be the
electrons In these models (R. Jack1w 1984a, b, c) the theory of "~
fermion fractionalization due toa topo]og1ca11y generated groundstate
is used. There seems to be d1ff1culty to specify which fract1ons are
stable, - o ¢ ‘ % ’

There are some theories of the FQHE that do not lend themsetf to an
easy tntérpretation . |

R S Mark1ew1cz et. aI (R. Su\Markiewicz,‘1983) c]aim that the FQHEF
can be exp1a1ned by proper]y accounting for the magnetic compressibility

of the N1gner 1att1ce -

N
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1.E. Dzyaloshinskii (I.E. Dzyaloshinskii, 1984) maintains that the
‘FQHE can be understood qualitative]y from the viewpoint of the symmetry
of the electron states in an external B-field. a

Q. Niu and D.J. Thouless (Q N1u, 1984b) c1a1m to have expressed
the Hall conduct1v1ty in a topolog1ca1 1nvar1ant form in the presence of
impurities and interactions. They a]so suggest that the ground state
has a broken s}mmetry.

R. Tao‘(R. Tao, 1984b) gives ragﬁebarguments ‘for the ease that the
'FQHE may be modelled in an ena1090us way to R.B.’Laughlin's éauge. |

principle for the IQHE (R.B. Laughlin, 1981). - .

1.5.7 The Application of Exact QMBFT Methods to the FQHE

The FQHE is a great cha]]enge to many investigators and until now
no real progress has 'been made in explaining it. The'pest known
models (R.B. Laughlin, 1983) (R. Tao, 1983) suffer fromome serious

™

Flaws. . a ‘ﬁéf-'

It will be shown that the Laughlin eatefunctions ce; be writteﬁ as
a power of a Slater qeterminant of the single e%ectrdn wavefunctions ie
the lowest Landau level, - ahe therefore the fracttona1 character of
. thesevﬁavefunctions is a trivial artifact. In this connection it will
alse:be seen that'these wavefunctions are not an exact solution of the
) prbB\em~of harmonically irteracting e]eetrons, jﬁ contrast to the claims
" of S.M. Girvin et. al. (s. M Girvin, 1983). : S
If the FQHE is a manybody phenomena then one needs QMBFT methods,w

rather than a guess of trial wavefunctions, in order to: construct a

m1croscop1c model.. The only microscopic model, the Tao-Thouless model

®
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(R. Tao, 1983) suffers from some seriods inconsistencies as will. be

shown in Section 2.4.1. It cannot'be stressed enough, for example, when

condensed matter systems are modelled, how 1mportant it is to carefu]]y

consider the cho1ce of the QFT in- f1elds, and the approxlmatlons used -

‘ have to sat1sfy exact relatlons as the Ward- Takahash1 re]ation and the

f{gﬁm ru1es
" The Greens funct1on in the Tao- Thouless model will be shown to

violate current conservat1on and the on]y possible remedy for the diver-

4

" gent plasmon d1sper$jon is seen to come from the application of the

f-sum rule to redefine the gap parameter A, in order to account for the
effects of highervLandau levels. | ‘

It is an open quest1on whether the assumed groundstate in the Tao-'
Thouless theory can be der1ved using the Coulomb interaction, and what

the role.of symmetry breaking is in the model.
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CHAPTER 2

.

ELECTROMAGNETIC"PROPERTIES AND THE QHE OF QUASI-2D-ELECTRON SYSTEMS

.

The fact that g-2D electron systems are a sbeeial Timiting easeCOf
2D systems Has to be reflected by the models bf the 2D electron gas. In
this’chepter the‘effective 20 Hamiltonian déécriuihg the'ZD,e1ectron
System will be derived, threugh dimensiena1 reduction, from the'BD
Hami]toniau It will furthehnore be ‘shown tuat this procedure is necessary
l~for the der1vat1on of some of the electromagnetic propert1es of q ZD
electron systems (such as the transverse p]asmon)
In section 2.2 QEﬁMB‘methods will be used in order to study the
possible propagation of electromagnetic waves in a q-2D electron gas. This
,study,wi11 Be cartied}out on systems with and without an'externe] magnetic
field. Section 2.3 is devoted to the study of IGHE. A simple formula for
the Hall conductivity sH=uill’be derived for an interacting electron gas
. in'the'presence'of @@purities. This derivation, is shown to para11e1
\ESSP]etE]y the cla srta] derivation, even though a quantum system is con-
swdered The resu§t1ng express1on for the Hall conduct1v1ty w111 be seen
to cover both the classical and the quantum reg1ons of the IQHE The -
theory presented here of the 'IQHE w111 be shown to be fundamenta]]y dif-
ferent from the theory of R.B. Laugh11n (R B. Laugh11n, 1981) “and T. -Ando
and H. Aoki.{H. Aoki, 1981). |
.Hith the betterbunderstanding,of the IQHE, the attention can be
turned to the FQHE. In section 2.4 it will be shown that the QFTMB mode]
of Tao and Thouless (R. Tao, 1983) for the FOHE does violate the funda-
mental law of the CurrentvconseFvation, some'remedies will qé discussed.

This sectiod concludes with the derivation of the exact Hamiltonian
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for the wavefunctions of Laughlin (R.B. Laughlin, 1983b) in his mode] ot7fr
the'FQHE' The Hamfltonian derived will be shown to'be a Hami]tonian of ’
* non- 1nteract1ng e1ectrons in contrast with the’ results of S.M. G1rv1n

(S.M. Girvfn, ]983)

2.7 THEORY OF 2D ELECTRONS -

. The Hamiltonian of a(physical system\(ef]ects the symmetrieL and
fcqnservation Iahs of.the system. Some cfjthese symmetries can be used to
derive exact re1ations betweenuvericus physfcal quantities, or even to
der1ve their funct1ona] form. For example the momentum or current con-
servation can be used to derive exact re]at10ns, the Nard Takahashi |
relations, between the response functions of the system The 1mportance
of these re]at10ns is that they can- be used to ensure that later approx-
"imations of the response functions do also ref]ect the initial symmetr1es

S

of the system.

2.1.1 The Model
QoY

A qdasi—ZD-electroh gas is a system of 3D electrdhs’which are free to
move in two directions (the plane x;, x,) thle their motion in the third
direction (x3) is restricted byva confining_potehtia1 V(x3) h

As wes discussed in Chapter 1~meny properfies of the q-2D system are
sgccessfully described,by a model of 2D electrons, howerer_it.will'be
shown later that when thehinteraction of a g-2D electron gas with dynamic
3D e]ectromaghetic fields is treatédi it may be necesSary to cdnsider the
finite thickness of the system (the confihfné potentia])i o o=

It will therefbre be important to clearly distinguish bétween the 2D



e

and 3D varidbles. To do so the 2D to ord1nétes w111 be denonated by

X = _(2-1)
~ while the 3D co-hrdinateS'are:
. ) W ) ~‘ o P m\_' ) b) |
."- . | X '—‘ (X",‘ &2) X3) = (x; X3) ) - ‘ ' (2-2)

P .
‘A'corresponding‘notation will be used for the Fourier transformed cq-ordi44
nates. The full_.3D Hamiltonian of the q-2D electron gas before the

"dimensional reduction" is:

H SVH0»+,HC661 * Himpf+ Hsp1’n ¥ Hconfining l (2.3)
with: . .
y a ' ) 2 R L
Ho’ 2m dxy (xt)[ ihv + —-A (x) + —-A(xt ws(xt)_ é $2:4a)

_ where Aext and,ﬂ are_c-number’vector fields but the field opefatdrs
satisfy the usual anticommutation relation: v O
~ - A+_’ - - . ‘ ! .
_{vs(xt), vo(x't)} = S r 5(x - x*) | L (2.4h)

m is the effective electron mass, -e is the electroni¢ _charge, ¢ is the
speed of light and s is a spih index of the wave operator. (The Einstein
summation convention is aésumed)f

»Aext is the external c-number: vector potential that Jeads to the
wconstant magnet1c f1e1d B in the X4 direction. A‘représents the 1nterna]
vector potent1a], in wh1ch case it dynam1cs has té be ]nc]uded a]so

S1nce the vector field is not cons1dered to be an opeYator, rts dynam1cs .

;“’11 be described by its wave ation. Both thi/g‘ve6tor fields w111 be
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considered using the/;oﬂoumb gaude:

a

TA = Q | - - (2.5)

H@GL] represents the Coulomb interaction in between the electrons:

>

Heoul =-%J[dxdx' w:(xt) v (x't) U(x - xf) v (x't) Ws(xt) (2.6)
§ ' ‘

whére U is the Coulomb botentia], -
The interaction of the electrons with impurities in the system is

described by:

. - - ~ . - -
Himp = ? 5./;x Ws(xt) Ws(xt) Vu(x - X;

N (2.7).

Py

, .Heﬁé Vu(i - X;) is the potential of the u-type impurity located at the
 s1terxi.

| The‘interaction between the spin and the magnetic field has the

1

)

1
i

© Hamil tom’lan:

NI
 Hspin ” 298 i ‘ex

I e1 W

e G [yt + RG]

(%¢) S,

sr Wr

Qs .
;fwhefglg?is the electron g-factor, ug is the Bohr magneton and (:i) is

component of the Pauli spin matrix.

the s,f element of the i
The reduction of an effective 2D Hamiltonian will be accomplished

by separating the wave-operator into parts:
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where @:(xt)'is.the 2D wave operator of the electrons in the free plane

.obeying the usual equal time fermionic anticommutation relation:

N ‘ o R RTEN
o, (Xt), ¢, (X*t)} = 5.y s(xX - x') (2.10)

v

n( 3) on the other hand are the first quantized wavefunctions found from

the ‘one dimensional Schrodinger equat1on with the conf1n1ng potent1a1

Later on (2.9) will be truncated so that only the lowest state Y« = %

is considered since in many exper1ments on1y the Towest subband is kept
occup1ed D

This dimensional reduction is not trivia] in all cases, and will be

L each calculation tak1ng into account the dynam1cs of the

e1ectromagnet1c vector potent1als

Some calculations wi]T‘be peffanmed at zero temperature (T = 0), the
groundstate |¢O> of the noninterattfng e]ectrons will then be chosen in
‘re1ation with the‘externa1 constant magnefic“field in the~x3'direction.
in case of no magnetic field tne\usua1 fermi Fea wf]] be‘employed, while
a certain number of Landau Jlevels will be used in the case of an external

field. The He1senberg groundstate is denoted by ;w >,

The dens1ty and the current density for -the Ham11ton1an (2.;) are:

¢ S(it) = lev (xt) v (xt) - 3 | (Z.iia)

2
e. - - - \j ~
- = {Aext(x) + A(xt)]k. (xt) ¥ (xt) (2.11b)
QupC 3 . . ‘ A ‘
(U5 | _ A
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- egyi 1S the antisymmetric levi-Civita tensor. The last term of the
current density, the spin current, hasvto be derived using the Nother's
theorem.

In the work to fo110w;the vector potential A will be considered to
be a classical c-nhmber field. |

-

2.1.2 Response Functions

The response\of a system, to any outside field or a probe, can be
;;1cu1ated in terms of th€ so-called response functions or retarded corre-
lation functions (see section-2.2.2) (A.'Isihara, 1971) (A.A. Abrikosov,
1963) (A.L. Fetter, 1971) (E.M. Lifshitz, 1980).

" The density-density response function is defined as:

R (

1000.;t, x't') =2 (t - t-)<wo|[3(i§), s(it)jlwoa \ (2.12)

and the current-current response function:

.nR (= v+
1Dij(Xt’ x't")

it

At - th)ey 104 (XE), 3j(§'t')]|wo> (2.13)

3 is here the Heaviside unit step function:

;

1 if x>0
: ©  jwx .
o 8(x) EQ%T- J S-ie dw = 1/2 if x=0 (2.14)
- ’ 0 if x<0

and ¢ is a vanishingly small positive number (B.W. Roos, 1969). It js

also possible to define the current-density respohse function:

ing?it, x't) = a(t - t')<@ol[31(§ t (X't )]y > (2.15)

These response functions are connected by the Ward-Takahashi relation
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(H.S. Green, 1953) (K. Nishijima, 1960) (Y, Takahashi, 1957,1977a,b, 1978)

(it is not essential here whether one is dealing with the 3D response

functions or the 2D counterparts);
: R“"ul 'R"’ll_
i3, Doo(xt, x't') f 1aDio(xt, x't') =
s(t - t')<W0|[5(§t), 3(§'t')]|WO> '
+ o(t - t)fwo|[at8(it) + aiﬁi(it), 8(%'t')]lw0> =0 (2.16)

where the Einstein summation éoayention is used for the spatial part of
the inner product.
The second equality holds since the equal time commutator of the .

density operates does vanish, and the current is assumed to be’conseryed:
P(xt) + 3,0 (Rt) =0 | (2.17)

‘' The W-T reTation therefore reflects the current conservation:

-

.R—"l °R—"-ll
13tDoo(xt,x t') + 1aiDio(xt, x't') =0 - (2.18)

If the system is time translationally invariant then the response
functions depend on the time-difference t - t', 50 the following Fourier
transform can be defined:

R - ‘|' = ® 1 ~i(t - t")w R - Y
D (Kox'0) = [ d(t - t)e Dp (%Xt - b)) (2.19)

-0

And the w-T relation becomes :

. - - R ,- -
by (KXow) + 305 (XoK'hu) =0 O (2.20)

This relation (2.20) ¢an now be used to derive the so called f-sum

rule, an exact relation. Integfation}over w in (2.20) leads to:.



i ogo(i,i',w) = 3, é[ de D?o(i,if,m)

-0 -

= -R-"."'._
= 278i Dio(x,x ,t -t =0) (2.

q

To evaluate the Nast term of (2.21) the following commutator, of:

]

full current 31 (2.11b) and the density operator o (2.11a), is needed:

-

3 ‘- ~s iezﬁ ~e =z :
[35(xt), o(x"t)] = - —¢ o(xt)a; &(x - x') (2.
‘ /
Using this expression (2.22) in (2.21) gives:
: J _ 2 _ . ‘
i ;l wd Dgo(x,x',w) = - 1%9-31 ng(x)a; s(x - x') (2.
where:
ne(i) = <W0{3(i)!vo> ) (2.
' - \
o® (%t,x't') is a real function as can be seen from the definition (2.

00
therefore the imaginary part'of its Fourier transform.has to be anti-

symetric:
3

R R
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21)

the

22)

23)

24) .

12),

Im Doo(i,i',-w) = ~Im Dpo(%sX"su) - (2.25)

-

combining equations (2.24) and (2.23) then leads' to the f-sume rule:

B 2 -
’ R s oy , P Tne \ Y U
% adis Im Do (XX ) T 2ime () Ay f(xe
_ Al

The f-sume rule (2.26) is valid for a system in a magnetic field (no

-« x') (2.

26)

translational invariance) and with a groundstate of non-uniform density.

If the system has a uniform densfty and is translationally invariant,

" then eq. (2.25) takes the familiar form (A.A. Abrikosov, 1963) (D. Pines,

1971):

’
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w M hin_e® »

[ udu m DR J@su) = - —E—q . (2.27)
| _

-

where the following spatial Fourier transform has been introduced:

05 (Gww) = [ dx e X9 0R (%,0) | (2.28)

-0

There is another important relation between the current and density re-
sponse functions, as will be seen Tater it relates the longitudinal part

of the current response to the density response.

s ]
1aiaj D1J(xt x't') =

s(t - t') v2s X

or in Four1er space if D (xt x't') = D$j(§ - i',t -t'):

R _ ' :
kikj DT..(R,w) = 4D k (2.30)

This relation is also derived by using the current conservation (the eq.

of continuity) and the commutation relation (2.22).

2.2 ELECTROMAGNETIC PROPERTIES OF 2D SYSTEMS

»

The transverse c?rrent response functions have not been calculated
before for the g-2D electron gas. . In this section. these funct1ons will be
“calcu1ated and used in conjunction w1th self cons1stent Tinear response
methods to study‘the bropagation of e1ectromaqpetic(waves'or the transverse
p]asmon in 2D e]ectron systems. |

The cases of external or no’externa] magnet1c f1e1d have to be con-

sidered separately, s1pce the separation into transverse and ]ong1tud1na1

3



= e]ectromagnet1c field.
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parts is complicated hy the external field.

"It is also of fundamenta] ihpohtance to consider properly the’finite

[

_th1ckness of the q-2D electron gas systems, due to ‘the 3D nature of the

[}

)
N Ta I Bl
. . 1

*

2.2.1 The Model (B = 0)

The e1ectrons w111 be cons1dered to be free to move 1n the
L8

"p]ane wh*h&dthey arg, in the ground state x(x ) of the conffh1ng ou-ential

V(x,) with respect to the motion along the X3 direction. Onjy~:he‘1nter-

3)_ _ ‘
action of the electrons via the vector potential A wi]1 be taken into
account, since the Cou]bmb-interaetion has no effecté on the trahsyerse
phgpertiegwof the systen.
The Hamiltonian of the system is:.
. _ , 2 2, . . | » | ‘
H dx xt)[ — V& + E (xt) + Hint g (2.31)

/
o

Here the separation of the 3D wave operatbr~(2‘9) (Z'iO) has been per-

>

formed and the groundstate energy E3 for the wavefunction /(XB) is
determ1ned by the one d1mens1ona1 Schrod1nger eq.
- 2 .
- h 2 A 2L v‘ 2.
. : ' ¢ : ‘ . ,l'giy
~Since x(x3) represents ‘a boundstate the following conditions have to be
satisfied: , | |
x.({x3) —)(-3—_:——2 | f dx3lxl /J o E (2.33) "

~ The interaction Hamiltonian H%ht describes the interaction of ‘the. 2D
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& electrons via the vector field A; and will be discussed later.

The components of the'3D free electron current lying in. the (x1 - x2)—

Ve
plane can be factorized as:
43

0% g yj2deR . L
J (Xsxq,t) = [x(x3) 1" 5= [és(Xt)°u's(Xt)

| | : \
= ix(x3)§2 ji(;,t)7_(vf= 1,2) o (2.34)

-

Greek indexesvwi11 be used to denote the first two componentsv

of any vector since yith lowest boundstate wavefunction (x5} can-be

[t

assumed to be real, the third current component vanishes.

r . , h

35(X,xgst) = s (Xt): (Xt) 12_.{,*33} - g

Y

n

o =‘O (2.3

As there is no external magnetic field é, the 20 wave operator can be

expanded in terms of plane waves and creation and annihijation operators:

o , = ikex - it
- 1. r . i SN fA apn
3 :S(xt) = E:-_i e “s<k‘ '2.36°
where: , o
l o = gf,kz Jr .
~k Z2m =32 Ty

and the dot stands for the 20 inner product.

“From (2.10) it can be found that the operators satisfy the.usua® anti-

commutation relations

S

[a)

fox
N
"

]
——
00

"

Fay

[
£3
[
C
X

Fot the wavefuncticn ~{x.}, it will be convenient to introcuce ne



s

following Fourier transforms:

: » o Tkgx : | o
fx(x3)32 = %:- j:Qk3 e 33 2 (kj) (2.39)

’i(g - t
(2-)%/ am.
(k +2p)  ci(F)e (P + E)]
8y
= —l———J[dk e 1KX jg(kt) (2.40)
2-)° I . o

The current operator (2.34) can be split into its transverse and longi-

tudinal parts: .

46

P(KeX + kx|
20 Vo 1 373
J (X,X3©t/ W, dkdk3 e
f - RN ‘, ~ - o -
T Gkl 1 Dkg) o (k) 0k (2.41)
by the introduction of the projection operators:
. -
.A3D o k k. . L 30, N ,
L (Kkg) 2 gy e T T RG] (2,420

'Hé”Sreek indeces: ame used ‘or the. £irgt two components of any 2D.or 3D

}Ah

»Qctor and *he s‘ewn SJmmat on convention s used with respect to
2,‘ &&

repeated indeces. ~“he 20 counter parts of these projection operates can
be defined: . : ' L ;\?‘
. ' “ N
k ¥ . . ‘1' ’

- 5, ™ D i - - hai -

K = > = 3L:K,kq =0 . @- K (2.43
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in order to split the 2D current into its transverse and Tongitudinal

.parts:

47

-~ ,:2 -
z joteﬁ,t) + 397K, ) - (2.44)

H ’ K ' ‘

The projection ope%éid}%,sﬁ s

for -any 2D vector field Ax(ﬁijn.,

3Dk k.

n’u\) 3) ‘J)\( . A

o 1307 A =0
2)) v \))\ A
3D, _ . 3Dy
m BV IL-J)\AX (H';J\ -.,ILU}\)A\
, R NS ‘ : ' -(2.455

pwo L LA A

B
9

The factorization of the 30 current now?opéns-the possibility of -

‘writing;the 3D current, response function for a,non;interacting electron

gas in terms of the 2D response function:

00> P xe,xtet) = bilxg) 2 rlx) 1P 00 (Rekte) 0 (2.46a)
where:
iD% (xt,x"t!) = (t - t')es 1 T3Ok), TOxet) Tl s (2.46b)

0T
Here the superscript R used to signify the retarded correlation in (2.12)

(2.13) has been dropped'?or clarify of notation, and §¢0>.stands for the

non-interacting Fermjfgroundstate.

The%Sp]itting~of tHe‘current (2.44) furthermore suggests the defini-

.
b



tion of the various
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response functions:

ot, v, o , Lot N PR
1Duv(xtix't') = e(t - t-‘)<¢>0[[Ju (xt), AN (X't )4?¢o> '(2.47)
OQ, '\Jl =« _ f r:o Ny . ':0 ,‘“' .: -‘t] ‘ .
1Duv(xt,x4t ) =a(t t )<¢0]LJu (xt), i, (X't ),,¢O> (2.48)
e ‘ 0.
1028 (Xe, %) = a(t - ) Ir300(Re), 000 EN) T e s (2.49)
PR bR, E) = et - th)<s 1130 (Re), 0N E)T s (2.50):
uv 0 U —' o]
+which are useful to .express the~current response function as »>
% (Xt,x't') = p°F + pOF 4+ pOt 4 port ©(2.51)
v hel) (e e .
o -
later it will be shown that the m1xed response funct10ns D and ﬁo‘t-

van1sh while the prOJect1on

transform of the remaining two: ™ - - \

operators may be factorized in the Fourier

Q\ T . i

2.2.2 Se}f—Consistent Linear

The Hamiltonian .for the

with the véctor field A is: .

'— - —-[&x A

where the Current is now the full-current for the *

Response
interaction H. . (2.31) of the 2-20 electrons
- 2 ‘f - ~
t) Q (xt; - —E-§ fdx AS v . 7.53
Y anc » N >
T . ‘
otal Hamiltonian 2,37



49

. B : 2- . CA o
J (xt) = i;(;3)’2 {jf(it) - %E A {xt) ?;(it) :S(it)] - (2.54)

[ g N )
since the electrons are confined to the (x1 -x27rplane one assumes that

A3'= 0, and therefore:
Jjlaat) = 0 - © (2.55)

According to linear reSbonse theory the ‘time evolution of the

expectation value of the current operator, to the lowest order in Mopp 180

t
. - 2
) 1oV e = € ne . 2 PR
o) = e o= (xg) 0T A (xt)
- lhE ,(x@’j’) 2. ,,l{ dt'dx' D° (}2 -‘;E'v,‘t -t
. e T |
Taxl xg %A e . (2.56;

-

where D7 is the 2D current response function defined in {2.46b;, anc no

initial current was assumed. * The expression {2.56' gives the expectation
value of the induced current for an external c-number vector field A .

{f on the other hand one is interested in finding the transverse plasmon

»

of the system {the collective mode of the electrons mediated by the 4 -

‘ieid], then the vector field should be the internal one created by tne

s o
&

currents ‘n the system:

SR P TR S
7ti‘\ N A

>t
-
(&3
[}
[l
|
[
N}
o
“r
,
[aW]
wm
~1

|
H
where <;t(§t?v is the 30 transverse part of -. ; it is also assumed nere
that there are no external currents,

's'obtain the transverse plasmon it is-.now D0Ssible to use eq. 2,87



to elfminate‘self—consistently the vector field Av from_eg. (2.56), and

- thereby get an equatioh for the expectation'value'of the. induced curreet
The nontr1v1a1 solution of that express1on wou]d‘ﬁorrespond to the trans-
verse plasmon. It is possible to use eq (2 57)- to eliminate the current
from eq. (2.56) and thereby obtain an expression for the propagation of
the vector field in the 2D e]ectron system This 1nd1cates that the

transverse plasmon is noth1ng ‘else put the propagat1on of a transverse

.electromagnet1c wave in the system

The elimination of A from eq. (2.56)'i§'best carried out in k&SpaCe;

so the fo]1owing Fourier transforms are introduted:

i

-:\»]uv(i,'t)> < —1——5 dikde X = Tut (Kokgu) L (2.58)
B L
A ( 1 ik x - jut ' -
X,t) = ——. dkdw A (k k3,w) , (2.59)
(=) e o :

The retarded solution of the wave equation (2.57) for the electrop

system placed in-a vacuum is given by:

= e v ' ; \. .
(k k3,w) = J (k k3,w) (k,k3,w)‘ | (2.60)

with: 9 ) )
| 1wz, 2 N L2 , [
BN L A B (2.67)

o . /

- where - is a yanishingly small positive number, and

3D,y . '
J (k k 1T (k k ) o aﬁ,») (2.62)

3"”

" The Fourier transform of the linear response expéession (2.56) becdmes:

50



" -s
Ju(k’k3’w) "‘ [dq3 p(k - q3) (k’Q39w)
4 ————-Zlﬁc Q(k3 D (k,deq3 D( Q3) A ( 9Q39w) (2-63)

*-.where definitions (2 58) (2 59) and (2.39) have'been used. The vector
field A can now ‘be eliminated from (2.68) by usfng (2f60). First, for

ks1mp11f1cat1pn of notation define:

*

‘ Y b v v 2300 ) s

Then (2.63) becomes:
2

' . en . ’ '
AV] N ~N
) JU(k’k3’w) “ ZTTmC[dq3 O(k3 = q:;) qu(k9Q3sw) \J.J(k$Q3’\~>
: , (2.65)
- 1 0 ;% ,
= 27he p(k3)Du\(k’w)/dQ3 C('.'qB)" (k Q3’w) ‘J (k Q39
which can ‘be written compactly ag. ..
"\:“J} " y . v \
/dQ3 Ku\)(k$k3yw) J\)(k’qBa"-) a 0 ' ‘ (266)
with:
) —_—TNN
. 2
o e ne A -
KolKokgaw) =5 6(ag - kg) + 5@ a(ky - a3) & (Kag,.]
“‘]—L—— 0 T 1o . “ = ¢ : ! - :
+ .ZTThC O(k3)DJ)\(k,UJ) V('Q3) -"k_)(k’q:sr‘«a) \2-6/. 

From (2;66) it is possible to find whethér a transverse plasmon mode

exists in<€he system or not. If a re]itfon,.;o= (k) ca be found %or
Kuv sucﬁ.thht a non-vanishing J 'sat%sfies (2.66), then this expression
w = w(k) is the dispersion relation for a transv rse plasmon 1n the system.

In order to accomp11sh this the f0110w1ng assem6t1on has to be made:
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3 fkp) = olk)d d> (2.68)

o8

w

This féctorization holds exactly for the current of the free electrons '
- (2.34), whiJé for the current oﬁ the interacting electrons (2.54) it is
.an_approximation, the validity o>\rﬁich depends on the form of c(k3).

With the definition:

Y
'

-

T (K, k3,w) z‘/;q3 ;(kj - q3) ;(q3}

together with (2.68), the expressioqi£2.63) becomes :

o eZne ! | ‘La
¥<k3)<3;(k$*‘)>' = - 'é':'m? 7,, (k k3)w) J ’(k’w‘)'>
. ' o
- (k0% (ko) 7, (Ky0,2)4d (KsD)> IR

If the traﬁéverse wave is to travellin the system of electrons along the
(*j" X2>-D1ahe then k3 shou]d'be set edua] to zero in eq; (2.70). - This

together with the definition of the projection operators (2.42) and (2.43)

leads to:
 (Reon)d (Beelo = ¥ dqn s(-0) elqy) c(Eaape) T (6)-
R0 3 (Bl = T Jdug (o) ) slhoag) T,
(%)
JRRSAPInY /.t kY . - .
- *(kaw)“‘]'(kyw)" ‘(2.7])
where:
P C4- | y '
. (ka~) :‘ ‘C‘"/dq3 u(‘q:a) ..(q3) .a(k:Q3,u)) - (2.72)

The normalization, condition qu X(x3) (2.33) is equivalent to stating

that: : - , | )
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o(ky = 0) = 1 . >n(2.73)
Using (2.71), (2.73) and

Ty 20 (R _ oty _ _ '
Wuv(k) va(ksw) = Du)\(k,w) (2.74)

(see (2.52)) allows (2.70) to be written as: .

en
t v * - . e - n t \
<Ju(k,w)> i s {(k,u) Ju(k,w)> .
1 '\". Ot A" .t AV “‘\‘\ '
= r'(Kyw) Duv(k,@)<3u(k,m)>. c (2.75)

If in addition one uses {2.52) then eq. (2.75).reduces to: -
- ) N ’ )
2

n 1 B
[1 +-<2ﬂm§ + E%gg»DOt(k,w)> r(k,w)j<j§(k,w)> = 0 (2.76).

i

From which it can be seen that the dispersion relation v = w(k) is detér;

mined'ffom the equation: .

2 .
~» . 1 e ne 1 ot ) . | |
: =~ " Zmc Tzane 0 (Kw) =0 . @
F(k,w) ) « _ .

In order to solve this equation, one needs to specify o(k3) (i.e. x(x3))

" to evaluate:

r(kow) = 2 [day ol-a3) olag) alReagew) . (2.78)

and the transverse current response DOt(k,w) has to be calculated.

2.2.3 Evaluation of the Response Function

dn this section the transverse response function will be evq1uated



” \

| | -

exactly; after which various physicaT]y'interesting'1imiting cases will
be presénted. The results will also be given for the longitudinal response

function.

. o ,
The response function for the transverse current is given by: /

L0t v, Ny L B | ot ‘70t i | ‘ 'i,

10D C(XEX" ') = ot - t')<a [L3)(xt), 30 (X"t")] o > (2.79)
» - ,

The commutator is evaluated using (2.40) -and (2.38)»ana the’ remaining

vacuum.eXpectatiOn values are of the .form:

l_ N Ty
<0,leg(P) (K

+q)[5g> = 5, 5(F - K - d) (kg - p) (2.80)

. 14 ! . - 1 N . ‘
where I¢O> is the vacuum of noninteraction fermions, and'kF is the fermi

v

wave vector: . ~

kE = 2mn, . (2.81)

in the case of two degregs of freedom for the spin. If the Fourier trans-

form is then defined as:

tH

» 2oL, | (%= U)K - it - )
0 (K,w) = [a(x - X1) d(t - tr) @ 0T K-

uv ‘

, -‘D?t(;

-X't-t') (2.82)

“ /

for a spatié]]y isotropic system, then thevtransverse/current response

function becomes: | 7/ %
Kk
Ot T 1 2 F 2- : 1,
D“ (Kyo) = E_é. (_m) f pdp ] 4= (K)p. T (K)o
- o -

L
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where n »0+ and

"2

= b “ Yo
sm Pt Eg (2.84,{.

- "
p ‘ ' 2
s ’ ' ) .y
Without doing the angular integration its symmetry can be explored -

to find that the integral can be written in the much simpler form:

*

' k

0% (k..) = J—-Z- (ﬁf‘-) T (K f odp | d-psin®-
o 2- ‘ o 0 b
d - Ny S = ' (2.85)
- _,__.P.hk. ) - b_g__‘-; 1- - _._RhR. + ,E‘B__ + i~ : .
,o.m 2m - m 2m B
‘d ) ‘ ]
where the transverse operators have beepn simplified and 7@ - rized out-

side the integral, and eq. (2.84) has been used.

In order to evaluate the integral (2.85) it is convenient to define

_the dimensjonless frequency and wave vector:

M. K

y U F (2.86)
A
leading to: ~
| ~
24,2
e hk -
%%,y - ~l§ — F Hx3dx 'd-sin®-
. 2.2 é .
A 1 ‘ ] . u’:” 1]
2 e @
_ - yé“*'UXCQS" + i~ . "".%‘*'UXCOS* + 1nJ1
E
Now the imaginary and the real part can be separated using the
identity:
] ~

~T—r—— = J‘—\.; 175(&) (2'88)

55
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where - stands for the principal value. The angular integral is then of

the form:

fo- Sl 2% 0 Tl <~(a) . -;(—a))-“(az - %)) (2.89)
b .

a + bcos-

-~

where a and b stand for the appropriate éoq@ination of u and . needed in
each case. '

The rest of 'the integration is‘straight forward, and if one defines:

1

' 2k’ o,
Nk, =T (R 00Kk, s =L (K. 0%k, (2.90)
tthen the results are:
P, 2 2 Lo o
Re D%(ko) =454 () -+ g (uy) - g, (us0) (2.91)
and: l . , o A
\,t
Im D (k,uJ) f+(ua') = f_(uv")

where:

foo(u) = 20 -v0) -8

.U:l_k—l-:‘i(—.’ v=@t_u_2_, v =z

k , *
Fookr CORKE
The longitudinal current responseAfUnction (2.48)

éimi1ar methods as the transverse one, giving:
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Ok (¥ i | i o (2.96)
D“)(k.,t‘u) = 'nm H-UV !’) D (k,w) - .
where: .
N 2 4
Re D (k,u) = EZ-[- 2—7 -l - g (u,v) + §+(u,v)J (2.97)
u 2v
ahd:
.; "Q, '\)2 n, Y
Im D7 (k,w) = -z'[f+§u,v) - f_(u,v) ' - (2.98)
. u _
with:
A
‘ §, (u) = son(v,) s(vE - 1) uvE - (2.99)
- F, (uyv) = 81 - v2) w1 -2 " (2.100)
L J - - - B

The symmetry with respect to the angular variable 9§ in the integral

t2 "ot

expressions for the mixéq response funt{iogg Div and Duv show that thp§e

vanish.

.t otl _ ot _ ' .
o D,y =0, =0 (2.101)

AV
From (2.92) and (2.98) it can be seen that Im 5t and ImD* are non-

vanishing only in the region:

-1<55%<1 (2.102)

This is shown in Fig. 1, where the shadowed regions give vanishing

Im D* and Im D%, 1In Fig. 1, the slope of OE is given by:

y2rn

tang = —= f , (2.103)
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.which ig_smaller than the speed of Tight c¢ for ne€<10
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L

20 cm—2. The follow-

ing 1imitihg forms for the response functions are of physical 1mportéhce:

2
P [1 .
e o2
Re Bt(»u,v) = = —]2—+1EZ—
. .2
o1 U
-7z (0
. .
1 ,u\" 1.
5.0 [ 3+
e ‘ -
Re D (Qg\)) = - ‘2_
e _L%

(%) + .. i(v = finite,u»o)
o (2.104)
(.)‘ = 0,u < 2)
To(2.108)
3/2 2 .
-4y v (b= 0 2)
U r . .
8 (2.106) -
2 5 u N RN .
uc + 2 (Y +.J (v = finite,u-0)
2ty . :
| (2.107) .
(v = O,u < 2)
7 ' - (2.108)
o 4 (.V = O,‘U > 2)‘
- | (2.109)

~ The static long wavelength Timit for'Re pt (2.186) was derived by A.K.

yﬁajagopa1 (A K. Rajagopal, 1977) and .is in agreement with eq. (2.105).

 The 1ongitudina1'part'of the current response function (2.97) and (2}98)

can be compared to the density response functionkDgo, calculated by

F. Stefﬁ‘(F. Stern, 1967), by using the relation (2.30). These two o

calculations are,in'comp1§te‘agreementi

+

. : . z'
2.2.4°20 7 ansverse Plasmon, B = 0 - -

- In this'seétiOn the diépersionnfbr the electomagnetic wave propégaf— .

ing in the (x{

|

- xé)=p1ane witl be éa1cu1étedf
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As was mentioned before, the wavefunction .(k, has toc be speci®ied

so that the dispersion can be evaluated from eq. .ig

“hree different

" cases will be considered, (i) Lorentzian . (k. 8e@aussian . (k. anc

*

(1ii)fthe zero thicknes$ 11m1ting case. -

(i) The Lorentzian‘;(k3) is:

~(k3“‘) = a’ 5 2710
k3 + 3
imp]ying: v
g ' :
- -'x,'a
xg) Fede 3 2

of course the‘abovg ((x3)JShOUJd be understood as an apprOxﬁmate'

3
parameter a can be interpreted as/the inverse thickness of the>system.\

solution to (2.32) on account of the differentiability at x, = 0. The

/

In seeking for a dispersion re]atidn~fbr the transverse plasmon in the
S /
system the case . > ck will be cow@1dered expecting a gap ..k = o % 7.

‘The function r(k,w) (2.78) can no$ be evaluated for ok

“@@ N . l H /! ) . - ' ¢ ‘» »m,
e e |
Flkow) = ﬁ_f'j-dk3 /a 2 T ] P
-0 (k2*+ aZ) l k2 + k? - J_( oo+ :j
3 L 3 7.2
2 2 3 -
. 2-“a < 2a° i2a
= - 1 + - ‘ (2 112
c(a2 + \2) al + ,Z)J y(a2 + .0 ! |
' wheré:
P 2 . ¢ ",
YZ = 2-2- - k@, k = ;k K 2.113
C ) v
Ea

wr

In order to get'analytica1,resu1ts, T&k,-} has o be expanded in Dowers of

‘«4
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i o RO . e . .
fore 4he numerjical faCtor muitiplying a "in the gap terr. ’
\‘ ', ) . M ‘ " . . - -

" - ,
3

"+1) Now the'opposite case will de investigated; f.e. when 3 decomes

largeang the tnickness of <the syster ‘s smal’.  Lcsume:
i wo Co= I \ PO PR : 2077
- ) - ) . o — . o . - :
Then TikLL. (2078 becomes:
al . . 5 .
5.7 o T »
v S BERT-E A S 4
) R, o=k ' .28
3 \ ! JURA LT e S
8-St - Tk ’
in orger tdﬁobtain o= ik from (2,770 it is necessary to have regl s
Therefore due tc (2.128; the limit _-ck is reauirea. In tne otner nang
nCt ST, I A >, . L ;;n; R N
, imD7 " vanishés.only fore >hkgok/m-as 1% shown in 12.132°. Therefore :

»

%) . ' - s
. ke, Sl

“Ck 2,129
.m . .
‘must be satisfied, implying that-/2.104° must.ve used 2§ in expansior in
‘ S N & Y
2 = nkk/mz, then “2.77; becomes: 7.

" 2 - -n - k - 2,2

c kz - 12 - ® e - ek K "oon R Teh

prey 2“;] > 2 o PR

4-¢ 2-mc ' gemic =G - \

1

which obviously does not have &y real .-= _(k: sclution: Therefcre one

)

is led to the conclusion that-insthis 1<mit there is no transverse plasmon
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system, in contrast with the gapless 2D longitudinal plasmon.

-~

202;5 The Model in.the Case of an External Mgghetic Field (B#0)

When a maghetic field B is applied perpendicular to the g-2D electron  J*
gas, the free motign 6f the é1ectrons aTong the (x] —‘x2)-p1ane is
‘quantized into Landau 1eve]s.‘ In this énd the'nex} two‘sections'the\
b}ettromégnetic prppérties of such a system will beheXp1ored with respecg-
to the current response function and the possible propag;tion of a trans-
verse electromagnetic field. ’ |

The Hamiltonian of the system is:

H o= H0 * Hint )
H 'J[d% Hi ek ) e (Xt) (2.135)
o J X rg WXt =17+ 2 Raxt) 3\ X » . -135

Here the separation of the 3D wave operator (2.9) (2.10) has beeqi carrikd

out as before, and E3 is the groundstate energy of the conf1n1ng ‘otent1a]

\

defined by (2.32). The 1nteract1on Hamiltonian H1 ¢ 1s of the same form

as before (2.53). The Cou1omb interaction of the e13ttrons is neg]ected

a
t

as will be justified later on.
~ The external magnetic field -B is considered to lie in the x3\directi0n,

8

sQ fhg vector potential can be of the form:

t L= (-8y,0), SR B P 136)

here the notion (x,y) = (x 1,x wgﬁ be used for c¢larity. The eigen -

‘unct1ons of the free Ham11tonxan H are now"

<

bexs ' . .




( . 1 ] )1/4 1 1/2 { - 5 2
‘ s (X)) = — (—5) ( } explikx - {y - k€Y
nk o2 1o ET? —
o | E
A (LA (2:137)
. ./.;"‘ b A .
wil th ‘n“' Y“;“,- | S : .
[ B /
e Ty s e o J
eB ’ x .
where'Px is the eigen valué of “the momentum operator in the x-direction, \w)

n is the number of the Landau level. . stands for tne nbh'order “ermite
polynomial. The eigenenergy of - ‘s:
e O Ty

L1380 .

£ =4 I{n« 1/2° 2
n c'
where ' .
2 4
C% 2.139"

- later on the groundstate :o"”i]z e considered *o have-eély one Landau®™

level occupied, so the spin of the electrons can de neglected, and the

field operators are defined as:

(xt' = - Dol el L {40 (2. )
(x Fdkoa v (K . $2.140

n:O g h v

The creation and annihiiation operators obey*the Jsual anticommuta-

tion relation:

-
N

LAl it T T { \
tlil'an=k‘\t n t - tr n'ni \i L G v _\.2.]4](

Pkt

The humber.densitynof electrons ng in any single fully occupied

Q

Landau Tevel state t.- is {spinpolarized):



-1 X
eB
e he (2.142)
. The current of the free electrons 1s
.o. ; _g__ ATANE AT A -
Jo(xt) = th L#(Xe) - (D o(xt)) Q(xt,-)} (2.143)
where due to (2.136): 5 .
= - J_l = 7
N 12 R Dy ay | (2.144)

7 7 a1
- -
o) Tk N (1) 2 () (2.145)
where: '
s(x) =1, aly) = -i -(2.146)

2.2.6 Eva1uation‘ofvthe Response Function, B#0

Due to the loss of translational invariance of the system,ﬂqau$ed by

the external magnetic field, the response function:

A

O (x,x',t - ) = ot - t')<a, || 3%(%t), (X't

o

iD

53, W
w111 not be Fourier transformed at the outset of its eva]uat10nkﬁ For the
same reason the projection operators (2.43) w111 not be used to express

/

7,\\

/

66 .
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~ the transverse response function as‘the response function of the‘tfans-

'J‘verse currents. The transverse and 1ongitﬁdiﬁa1 reébonse will have to be"
built up from the compqnents of Dﬁv,.and furthermore the transverse aﬁd
longitudinal response functions will not be factorized as in the case of
no, external magnetic field (2.52). The transverse and longitudinal
effects %n,a 2D system are therefore entangled by the éxternal magnetic

,Lfieln.y
. Now eq. (2j145) is ;ubstituted into (2.147) and the fd11owiﬁg idenfity,

for a groundstate Fb0> of only the lowest Landau level fiilled, is used.

it . | X -
Doy + LY
<‘bLank(t) anlk'(t)’ amq(t ) amoql(\-) vo [
- ’i&rm<t - tl .
* mtam (K- a) stk -gt)te T
Lcn(t -t
noll ™ mol - @ moll T no 2148
Together with the integral,
o . 1 r )
/ dk ank(x) :r;k<xl} =5 expl —3 fy v v "l -«
_: : 2-.° L2.” .
X - %x'1, S
Jnm( : ! .029
where: .
7’2 . My ) - "
(el Tl s e T anl 2
! s 5 n 2%
v2’ ' 2;‘
| L ¢ i man .
mtT) 2.150
‘ 1/2 . - 2
k nl '\__ - 8 /e
,\1‘2:‘ m 2:-
’ 1Fonm
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~0

. ~ m, . ; -
with r = x-x' and Ln(lf is the lLaguerre Dolynomial. Then 07 can be:

. expressed as:

2 2 -2 2
58y 4 2 2
r . r r r
TWO A ~ j\_(eh \‘ e - { Yoo ! X
Yaxt 2 2"“‘ 2 =] ! 2 _v
. [ P n= ¢
Yy 2 Ve -
\ ? ? 2
! z;rz . 7L3 e . 4nl ‘ re T
R A -1, 2 n 2
2 2. 2. 2,
2
e
~2n+ 1 L _yi—5) 21sin(-. n- L 2.181)
n+i < C
2 .
. aﬂd a ‘.,,‘\\
7 —
1, eh 2T ' "o 2r
;30 r = (80, & - (- SRS &
< 2 2m. 5 2 el 2
/X (2-.%) - '
. ? 2
Co 2T 2 r- kv. . .
i-ina‘—y, - ZLn 1 2isin(-. n-)
\ 2.° 2:5
/ o] 2 \ H
. ,Y' z L r \ o) 3 ~ /" \
=dnl L i, - L —%,; 2icos({..n) \2.152)
\ 2 A C
where:
rosox - o« ry =y -y, re T X x', - =t -t . (2.153)

It is now evident that DO is a function of x - X' in spite oflthe broken.’

/ . .
transtational invariance of the system. [t is thereforg possible to
-Derfoﬁﬁ tne fourier transform with respect to rand :. The Fourier trans-
forim with respect to r is defined as:

e 2-

- i -1 - ) ,
Wk, = / rdr i d: e fkreos(. "0/ D?.(r,') 7 (2.154)
o 0 ) ’

where : - » is the angle between K and r. Therefore the fo]lbwing angudar
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integrals are needéd: ' \

-%krcos(r - )
dre = 2n Jo(kr) (2.155)

_ 0

2 . 2 2

. -ikrcos(s - ;) k¢ - k

;}d; ,sinz; - cos 5) e o= Zn—é;-§~l J2(kr) (2.156) ,
3 | «

?" -ikrcos(: - °5) kK

| de sine cosy e = - 2ar 2L 3, (kr) (2.157)
/ k

5 .

where Jn is the Bessel function, and kx and ky are the x and y component

L]

of the wave vector K. The radial integration is’of the form: (N.B.)

N

S 2 coelo2n
;dxx«"']ex Lr\])(XZ) J‘J(Xy):z\)]znyJ"'Zﬂ

0 \
| ‘ 2
) LoeTy /4 1 (2.158)

The Fodrier transform can be ‘carried out by using (2.155-2.758)

giving:
K2 -2 2
2 2 o ki - k
0 4 eh e . 7
ko) = (Ge) (g 02 2
b (272%) n=] L k
Yy ‘
2.2 " 2,2 22T
Ao 2= 3589 | - e 55
2 n\ 2 (n-T)T'2
2.2 2.2 "y
k™2 L. A
n- ( 2 ) + 2n( 2 ) ) ii‘31n(‘ mcnf:).v (2]59)

In connection with this integral it should be mentioned that eq. (7.422.2)

in (I. Gradsteyn 1965) is wrong and cannot be used to evaluate (2.158),

instead one can use eq. (7.421.4) with the appropriate 1imit.
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1D§§(h) (‘%7)2 e(zn;) oo () ILAC% =
<i‘—§—"3>,n 2 - ‘EH—%S) isin(-o nt)

(2.160)

The transverse and longitudinal current response functions are defined. as"

02 (ke) = T () 0F (K, )

DOQ(E’T) = I-L )

A& 02 (K1)

(2.161)

From which it is sééhnthai for example Dgi and Dgﬁ can be constructed as:

0%t = kxkx) ° - kxkx o°
xx k2 XX k2 yX

and similarly for the other components, leading to:

i007(koe) = L (1) # () + 107 (K) F(k,o)

o .

and:

where:

(2.162)

(2.163)

(2.164)
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x {?‘.’» »
4 . ”‘Q’ywkz 2 N *
: - 2,2 "
HIDRR L R N N T
& me 1 2me n=1 (n -1 2
2,2\ * 2 2 M1
2 - ‘(R, k ) + 4 (k ') ) LS )
7 ] P TT 2
' 2.7 |
22 2.2 i
" n- (k L) 4 l—CE—£~) (sin(-w_nt) 8(x) (2.165)"
2 2n' 2 '
J 4
K4
and:
- _K-Eg'—?- n_]
R s : ’ ©
é(k,r)>=‘(%£3)2 e 2 ) [ (—'? DX (k2§2)
; “ ' § 2n n:]L n ,
;v N "
s "(‘n - 0—§—~)) cos(w nt) 8(r) (2.166)
1 and the’prgjection operators are: X
C - o . a 5 | ‘
A Loy 2. (v * 9 oy L = "
S e, o =T, ()
N IRt A s yx vy N
2 't A, _ ' 1:;;\1 ' t "~ - ' " ‘ »
N Oxx(K) = 2 ny‘k)’ Oxy(k) =+, (K (2.167)
q}uﬂ*: f y yX yy

" The Fourier transformwith respect to r can be introduced now in the usual
; ‘Way;f - |

D (Kw) = erT e p.. (K1) | (2.168)
where the following integrals will be used:

(o + in)
fd'r e Sin(-mcnr) = < —2 (2.169)

0 w-(mn




o . ('}

- dt(w + in) . | i . h : .
err e “cos(w nt) = B © (2.170)
. Ve 2 . 2, .
0 , 5 . w. - (wcn) + 1e .

[t is interesting to note here that due to .the appearance of w in the
’numerator of (2. 170) and that only F(k,r) has this cds(m nr) dependence,

. the folTowing factor1zat1on is poss1b1e in the stat1c limit (w>0) :

0g = R .
D (Ks0) = L (k) H™(K,0)
] o't "b o S o t ’\4 ' ' . » ,
Duv(k,O)&—>TTuv(k)»H (Ko) 7 ° (2.177)
‘:Thif factbrifatiod is bOSSible for’all values of K and » in the case &f no "

,external magnet1c f1e1d

>

| The dens1ty response funct1Dn can be der1ved by us1ng (2.30)-to relate
e _
»'it;to the current response functyqn.(23]63) and,(2.164).; If the 1dentities:

‘= Cr a2 et Lo P oy
'E“k“ﬂ-”Y . % kﬁkvmpv ke kaV(Ouv-+uoﬁv) -0 (2.72).
:,' - “.:’ B L ‘ ‘ | o . . ‘
L are_used then (§e30),.(2.163)~and (2;162)“give: - " )
B RS A j’ B s ' 2 “ .
2. ékn T
! R W >\ L = 9_.. 0 </ . e v ’ "
ERPRATOAE '”.\wakiw)' Ko Doglkiw) - —=— e ,»?=(2'1?3)v‘
"1VLWhi;h_qan”be reaﬁrahgééét6 giye; 1 S TN
' B g 2 2w 2e2 Zm no B
o e’ et : .
[N PN R N S N Py
A ." 2'”22 = ~ 2 - n'. 2‘ ( )2 +
o o o : wor wcn T .
where 10" and S | |
o : 3 n = ] —' SB_ . - (2 ]
€ ang he 75)
! \ ii A T
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has been used. Th1s resu]t (2 174) is in an agreement with the results

s 9

of C. Kallin and B.1. Halperin (C. Kallin, 1984).

From (2.163) and (2.164) it can be seen that a 1dngwave Timit of the

v

current response (k~0) is equ1va1ent to restr1ct1ng the Landau Tevels,, in-
the infinite sum over n, to a finite number. It should a]so be noted that'
the choite"of the groundstate f:o> to have oniy the YOwest Landau leve)

occup1ed is equivalent to the high magnetic f1e1d agproxwmﬁfwon ;ﬁhe w

‘Qa'- -t

main difference between the response funct10ns in an externa#’fwelai,ama 4 -
the ones in no magnet1C\f1e1d bes1des of course the obvwous quant1zatwor
’ 1n to Landau 1evels when B#0, is the factsthat for-the response funct1ons

‘1ﬁ a magnet1c f1e1d one. can not factorwze out, the 1ongwtud1na1 and trans-

verse prQJett1on operators, compare (2 163 d,, \2 90 and {2.9¢".

@
]

2.2.7'20 Transverse’Plasmdh, B#O e
L § ' : L5

= Thecﬂuest103§6ﬁa§o1Teaﬁﬂ@jﬁﬁgaﬁs ima g- ZD e///tron system, in%h

'externa] magnet1c §1e1d, JS a comp]ex pkob1em dué”to’ the possible mwang
of transverse and 1ong1tud1na1 modes caused by the magnet1c field. .
«Therefore in th1s sect1on the fo110w1ng spec1f1c prob]em w111 be stud1ed

'A“how does a purly transverse electromagnetfc wavé’propagate in the system

N

of q- ZD e]ectrons, 1nteract1ng on]y via the vector potent1a1?

. K.W. Ch1u and J J Qu1nn also neg]ected the Cou]omb 1nteract1on when o

»

' they (r.w. Chiu, 1974) derived the dJspersaon of the magn%to p]aSmon in the

v

high temperature*sem1 c1ass1ca1 approx1mat1on ‘The magneto p]asmon,' .
‘ -gfla'fggg#k
represents a m1xture of 1ong1tud1na] and transverse modes y~w” %égfﬂ
o Lot Ry
As’ before the 1nteract1on Ham11ton1an Wil be c0ns1dered to be' Q@&%ﬁ

A 2 g f‘aﬁ?"> L
Hint fM:l:[ax A (xt) J (Rt} - dx e 2are)
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Q
the seconc :ehl was negiected by fua. Thigoanz U0 Tuinn Tdlal ThtL, L

1974 . The oynamics of L, ir tne Zoulomo gauce, are describec as defire
hy the wave go. . ‘ L .
s 2 - 4- . o
. ’W‘.”h i ~ XLt T - e .. VLt >
5‘:" 13 ‘*_- " .

The vector- potential A in Z.176 ang (Z.177 is the interne’ seif

consistent ‘ieig, while the effects of tne external constant magnegyé
“ieig are accounted for in the free namiitoniarm = _ and the wave‘u7é:ior
& -00€Iner with the groundstate. o (
Zust as in section (2.2.2} the self consistent linear resporse o :
, : .. : _ :
the 20 electrons is: . . N o - ‘
’ ecn " kY
t \ e &:tl< 1 -7 v
, R e R eI G
27K (K f217Ee
uere "(k,.) is given by (2.78). The external vector potential (2.136° - 7
poses no difficu]gy to the dimensional reductioh since it is entirely
two dimensional. )
The second term on the rih.s. in (2.178) has the form:
& I '
1 ‘l"otf\;- R S .
v 2-he *(ksw) DU‘)‘(k’w)<J\%(‘<.l"w)>
W X i_ ‘ ] “ p « , ] . . o " U ' ‘I .
2 ‘ = " o mtre oy e ot Brky ~
,. R = srpe T(Kaw) {TTuv(k) H (f,w) +0; Flkow), (
S : . J
Tt e ' T (X VR 1 v
: . ‘ va(k)<JA$§g@)> (2.179)
- - s ot o S ' § ’ :
~where eq. (2.164) has been used for D o+ From the definition’ of 0% ¢
. v v oo nv .
(2.167) it becomes clear that: S q
’ £ " ‘ﬁﬂ{{:&
: Ny,



Thus

verse orgj ec*qon ooerator cannot be factorized out of “O

~3
-
o

./
where eq.

leads to the exoresswon (2 181

ieading to:

.3

the ”OrreSDOHGTHO in one 1n the case of

52116§3 and (2.175) give:

|
3

[

{
n

O

WC 8){‘ terna’

-0 inspite that in the presence of an external magneiic field

(2.181"

the trans-
, *the identity
Which is of the same functional:

magnetic ‘ig’

ne dwspers1on fe1atwon ofs a *ransverse e]ectromagne%wt wave

o~
[V ]
-
[08]
~no

1(2.185)

IF theﬁﬁ?gnet1c f1e1d B 1s strong enough, such that on]y one Landau

* Tevel égﬁVe the f1]1ed ground Tevel part1c

then*

|
I
s
1

1

1
.l
1

opates 1n the co]]ect1ve mode

’(2.180}<

B

Y

At
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Due t¢.the. struc“f‘ure of eq. (2.-183, tm’s m‘g-h’ magnetic field limit fis

eqyml nt. fB “the Tong waveTeng*h Timit -<-O Substitutjon of (2184
ol . S
into 2. 182‘ gwes *he mwersmn rn1atwon o o
) B ) *ﬂ‘),,n . . . B v £
. . S : :
ezn : .e’2 o 2,2
i -+ e + e 1 '_ 3{ LK \
\ ~(k s/ Z'mc , ”'T}C\ .
) PR ' N » B ' . [

"And if the wave’fun\cti'on o (k 3, is assumed to be a aauss1an P@ 123, ﬁ

ﬁ#@’ N

§ :
T

. . . . 'k /za : - | N
Lt N ) 2 ’ o
’ 3? - é . A
- k,*.) (%;12"5) becgﬁeggﬂ‘ | - :

\. ¢ B (  ’ R - v ,’ i - 1\3 , o, \\ - ".-\, .
D e = - BTEE L o@) ) e (287)

- ek

. * Thusiithe dispersiog (2.185) is:

T A P R N N A
. Oy -.ch (w‘_-w)— - w0 ]—3( )

-

"~

which -is‘,equi\)ﬂen_t tos,

%2' =0 {2088

(2.186)"



»

A

¢

’ “’
; ) ‘ ’
-en B E

LRl ety s TS,
w 3 m ~ .

R VT ‘ N
82!‘! "2k2 ~ ) o i
P it =0 . (2.189)

in dériving the dispersion

used:,

.
.

It js remarkable to not1ce that, even though (2. 190) is derﬁved'in the'

strong B limit (2 191), that (2. 190 gwg#

4 . S ¢
5, o2 . o
~ b o 2meln
2 2,2 PR T SR

1n the n6 proper 11m1t B»O This resﬁ1t iS'ﬁhe same as®that obtained

rm G‘?’ .
for the case of no externa] magnet1c f1e1d (2;126)'f0r the’ transverde

p]asmon (up to O(kz))
§ ,
The dlspers1on re1at1on (2 190) can be written as:

77

e A 1 v B | 92 E Tt e .
@ . _ : (,__2._) 4‘:( )1 ‘ o (2.191

- ' vz -
Lt e ) 2 2 : .
S s 2[c2k2 + 3( k ) i] L o -
x' ’ 'L‘ . - I . o | . (2.193)
s 2,2, 2 2 ,
P K ) |
) ' ’ ‘ : ' : LA e; :"»4":
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where: . L ’
2
2-e’n SRR
2 e (a :
, e (2.194)
For k sufficiently small k~0 (2.193) becomes \ . ?ﬁg
“\-j " _.:\?‘
2,2 R
0 2[1 2.2 kT 2] S
2 - 2 2,27 ‘c[c‘* * 3(5 2 )‘tJ ( L
o= . v c k- T 2.195)
t 2.2 |2
c kT + .
it
- |
. o
wjth': v ‘ , . " ,
| 28 Ay g i\:,, | :
g | | B &
where the dispersion has the same gap ‘4 as in thegﬁase of no externa]
magnetic field (2.126) | o -
. s o . A .~ 3 R “
b Sk=0) = Ly | ,%.\(2.197)
~ T . o
ﬁ‘ ] . , . [
' , a ) . ‘ )
© SUMMARY B ‘ : . .

In this section a generaI forha]ism has been presented toaspriVe

{ . : .».
the effective Hamiltonian for the g-2D electron gas from:the fut™ three.

n -

S dimensional Hamiltonian of the system./ The important finite thickness
. ; - .

A

~ L

" of the q-2D electron gas has thus been-taken into account, in contrast

o

to ‘most exjsting works;on 20 &lectron gas.
- For theifirst time the. current response functions for'thensystem;

‘KWfth or without an extérna1 hagnetic field haVe been{Separated into —

’ the 1ong1tud1na1 and the transverse parts by general projection operatorsA
The 11near response of the transverse current to the vecter potential A ‘
has then been used cons1stent1y, w1tr the wave- equat1on for A, t0 der1ve
‘the d1spers1on re]at1on for the propagat1on of the transverse e1ectro-

,o

78
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- magnetwc ‘field in the. systema the transverse p]asmon The analytic

‘re5u1ts for the d1spers1on, derwved under. very restr1ct1ve conditions

for the parameters of the system, where shown to devend cruc1a11y on the

‘thtckness of- the 20 e1ectron gas These 2D transverse p]asmons have not .

" been studied before. cr . ; N

w - E ,& = ' I
s Dne can see several 1nterest1ng dlrect1ons for future research The -

transverse respgnse functions may be of 1mportance 1n q- ZD superconductors

N
!pf%* fa%%gﬁg vgg?a, b, 1983 since in the Me1ssner effect an externa1

transverse vector field A induces a transverse CUrrenteun the super-

conductor, ‘.»“”f?*::@_x L e
- . S . ‘ S V
Due td the rather restrictivg.gonditionsl (2.196) and (2.129), under

&

which the analytical dispersion relations (2.130), (2.131) and (2.195)
are derived; it is of great importance to solve the general dispersion

relations (2.77) and (2.182) numerically. In this connection, the effect

- of including more than one energy 1e§e1 of the confinind potential,

needs to be stud1ed The plasmon :iswersion can also be‘studied at ' e

: f1n1te temperature, espec1a11y in order to derrve the damp1ng effects '

Lo

[ AR

9
.

v It has been,not1ced (T. Toyoda, 1984d),that when the magﬂ%t1c field ¥
is strong enough so only one Landau level is part1a11y occup1ed the

current is almost,ent1re1y’transverse. It is therefore an open quest1on

whether the transverse mode in a magnetic field has any connection with

the FQHE, which is obServed under these same conditions.

.

2.3 ‘MICROSCOPIC THEORY OF THE*IQHE

Toer

£2

A]though most theoret1ca1 works on the QHE are now concerned with

the FQHE, the m1croscop1c mechanism of the IQHE has not been fu]py under-'
N

stood. This sect1onvw111 begnn WJth a simple classical model of the Hall

-
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effect, in order to define the relevant observables, and clear some of
the confusion about what is measured in experiments. It is then shown
that the Hall conductance oy can be derived from the quantum model (2.3)
by QFTMB methods, giving hesu]ts which are‘analogous-to the classical

results in form The Hall conductance o, expressed by one formu]i will
be able toJKcQQUnt for the temperature dependence, the sp1n and va11ey
sp11tt1ng,vtha,ffﬁ1te width of Landau levels and the plateau width of,i
the QHE. Om?&mﬁggther hand yt 15 1ndependent of the exact mechan1sm of

. “"”e?ectroﬁ }ocaleat1OnL’wh1ch is controvers1a1 at the t1me be1ng

- ‘Q;ﬁ; ' - i

CHE J&

: e' The éﬁee&gonstn a 2D system (the (x-y)-plane) are subjected to an
fexterne1 coqstant magnetic f1e1d B = (0,0,8), and an-external electric
.ﬂ?éﬂd é E O O (see Fig. 2). In a finite system the Lorentz force
)on t s, wh1ch are trave111ng in the x.direction, can def1ect

'.« n‘,*-

”‘them the negﬁt e y d1rect1on, theret® creating an 1nterna1 electric
;[\

f1e1d Ey The c1ass1ca1'equat1on of mot1on for one e1ectroz/7§ (N.W.
- Ashcroft, 1976). | ”

5. e(E+xiy -2 2 75
dyp = -e(E + 2 s3 ! | (2.198)

whehe P is the momentum of the electron, and the lastltefm is a phenome—

_no]og1ca1 damp1ng term, where T is the relaxation time betwéen collisions.

-

Due to the dampwng term 1t 1s poss1b1e to assume that the system

is in a steady state, 5 0. Then eq. (2.198) g1ve1

p,(
;-’t-—', . . L
Py | - (2.199)

o
u
]
1]
m
~<
+
£
o
!



and the -conductivity tensor oy

81 N
[ ]
where - is the cyclotron frequency:
=g . (2.200)
c  mc
If the 2D current density J is defined: o i
'\?‘, J=-n_ev (2.201)
. i . ’ . o x
where v is the velocity and N is the 2D density ofrelectrons, together
- With the classical conductivity
' o "
et
- o= £2.202)
o o m
théh eq.is (2.199) give:
(2.203)
S - _ o :
E”’ =200 oy
' : (2.204) )
~ 7 J»a' h j'J'.‘ EJ .
where the resﬁftivity tensor o is:
. g . ]
‘ 1 u_ T |
7 - C
7 ny, t ! .
’ o= ' (2.205)
\ 0' 1 [ ; A o p ¥
o \ '(UCT ., - u
Loc. = . {
L

(tM inverse of o ) .pas the form:
- u\) v

'}f ‘-1 - 1*‘
o] ¢ . ‘\7
— | : (2.206
1 + (mCT) , . - '
w.T 1 /
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From (2.205) and (2.206) one finds:
Xy XX :
T T, w72 (2.207)
XX Xy XX Xy

which implies that if . does vanish then'wxx also vanishes at the same

time. Relations can also be found between "y 4nd Tay? which will be of

importance later. -
- g , v -
. . 0°c’ - Do -
W Xy § . ( _)2 o xx (2.208)
.dnd:‘
(1 0+ yzfz) + 4
) A = < —-__.—Q.._g__-——-z_ = . 0 c 2 0
Xy N . ]
] + ( ¢ 2 ‘.)C‘ ( % »c % ﬁz
g /
{ ¥ Y oy
= + 0 1 o
/' NI NS 1 + #2T2
n_ec : \
- L (2.209)
;JCT XX : ;

where eq.'s (2.200) and (2.202) have been used.

The experimental 204€<ectron systems are finite, so initi%]]y'the

. ]

Lorentz force on the electrons, travelling in the x-direction will create
" a cufrent‘jy. No current can flow out of the system in the y-direction,
so after a short time the charge imbalance will create an electrical

+

field Ey which will counteract tHe Lorentz force. When the.system has

attained egui1ibrium theﬁ: ,

i =0 | C(2.210)

K N

This important conditien (2.210)'1e;a§/t0 the Hall effect. Equation

€

\
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(2.210) gives a relation between Ex and Ey:
i =0 E + o =0 o 2.211
Iy = 7yyEy oy | (2-211)
. therefore: °~ .
‘ EX a
g=- A (2.212)
y . ¥X :
The Hall conductivity o camn. now be calculated as:
j E (j
X X XX -
gy TE~F 0., et o, ===+ 3 o (2.213)
H y XX Ey Xy Ty Xy
where (2.212) was used. If now eq. (2.208) and (2.209) are used in
N ,
(2.213) then: . . = o ‘ \
O . n ec ‘ \
oy = - ;;T +\"’X_Y - .(2.214)

-

The Hall conductivity o, is also related to Syx by eq.(2.204)'ahd (2.210)%

H
T j o Neec
oy = (oyx) = - 7% (2.215)
5 . w
By similar methods one finds:
' ! - jX ) ' .
. . | (o) =5 =7 | - (2.208)
. X . 1 '
It is therefore clear that, in an exper1ment where Jy = O’“pxx and o&x
are measured and eq. (2. 215) ho]ds independent 6f the‘va1uefof oxxr/ The ,
m\swn of T Ando and H. Aok] (H‘Aoki-, 1981) (T. Ando, 1975) *abo e
N L *i..
the plateaus in o jv A ~ o %*MQE;”"
’ #_ — . - e : e e SR
- . ] J;n B/ .-‘:.,' . - . . Lk ) i . . . ‘.
-y N S "'éﬁ%: R o ) o 2%
# O'xy = e B | AOxy I\«_‘,. : (2
developing onlygwhen Tyy = 0, and therefor? Aqu = 0, is thus irrelevant.
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o .
. A
R .

xtouexpéfimentS’where jy = 0.

AIn‘the case when Ey = 0 in experiments insteaq of the usual condition

(2.210) then: | , . : - n
’ | ‘ v . ¥
Ty oo e 1 ‘ ,
Ex ¥X B XX N

o - ’rf\
j ‘ o $ar
X _ | 9
o d (2.21/8/&%-
Wi ' ] /'”’—’—/—\f:::/.//

§ochere the théo}y T. Andq and H, Aoki is relevant. The only experi-
ments carried out’under thts condition are by j. Wakabayashi and S. Kawaji

“et. al. (J- Wakabayashi, 1980a, b)(S. Kawaji, 1975, 1976).

L "
(-( v ) N
' . w
[QHE K
k] ;
It will mbw be shown that the formuld (2.215) for the Hall conduc-
’ tiVitxiSH can be derived from a QFTMB-model, wiere of course n, will be
replaced by its Qrand canonical ensadp]ekaverage.
) The full 3D Hamiltonian of the g-2D electrons is: {
’ ) N : * o
) H = HO + HTnt, - . (2.219)
where: \
| Al . w? -
. . . ’ LY + + ’ .
- ' Ho Ho Hspin’ HCou] * Hconfining h (2.220)
~and7 |
sl NESA A ; (2.221)
Y T 2 T R R ST .
! s giwen by: & '
A .
W | oy 1o te - 2 - .
) ,_“‘;{;:_,\- - Ho = Jdxvg | = 5nlT + g2 AG)) - w | ¥(Rt) . (2.222)
%ere‘ u is the chemiceﬂ, potential and A(X) is the vector field
] . £

o ' ,Axb : Y Cen - codie oy o i



» ct .
Ry O
X 2 J’;h' A

R §

A(X) = (—By,o,o) causing the external coqﬁ%%nt mggnet1C°fiéTd B = (0,0,8).

The spin Hamiltenian is as before (2.8):

- 3
. - 1 ,\;\+ v (: vt VT' o '
Hspin = 5 Qup 1§]_jax Js(Xt)x' YA(x))i (oi)sr “(xt) (2.223)
Heoul is given by (2.6), while Hconfining js: JB
VR Vg TR | ! (2.224)
Hc0nfining - ¥ X X3/ Tg\X . '

Hwhere V(x3) is the confining potential of the g-2D electron system. The

impurity Hamiltonian is given by (2.7) and He is:
o -

- -}’/ -. A.’* _ '- . _ . ‘ )
Hep = - eE-j dx ws(xt)g ws(xt) ‘ ) ¢(2.225)

where EX is the external electric field causing the bonduction in the

‘ . v ' |
x-direction.: Ey is the  induced e]gftfﬁc field due to the Lorentz-force
and the finite»sampTe size.

As before (2.9) the dimensional reduction down to an effectiqévZD

Hamiltonian will be accomplished by the factorization; . f
- « . [ |
i P oy o :
v (xt) = rz] 5 (Xt) x,(xg) (2.2?6)

where Xn is the wavefunction 0f§ﬁ§éfhth$3eve] of the confining potential
V(x3):

2

h” 2

Y odyie g g ye ot
B SO A ACT AR f

"’;’v"n 5, w1 . . .
SRR R :
and (E3)n 14 the eigenanergy of Xq* In experiments on the IQHE the

electrons are usually assumed to be confined to the lTowest level Xg = X

* The effective 2D Hamiltonians now become:

-.25‘83.+ V(xé) xn(x3) = (E3)n Xn(x3L» (2-227);ﬁ§ |

i 0. ~ R 85 -

AY

L 4
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- H°. dxw(t) St pe AR - vy s X}\t.)

T BT _ -
SR iV . OSSR O i

Caeres ey

o Th1s effect1ve 2D H is @ comb1nat1oh of the\3D H and HConﬁmng

’

'_ ,«the externa] A-f1e1d is two dimens1ona] the spwn Ham11ton1an 1s s1mp]y

s \;»Th““:v] Ll e ee) fan .G 236> |
o Mepin TRl e BT LY A RE
aan/jf/' - ‘ > )
e o ) B } = bl
A . .

i SRRV

- . . ) ’ e ,/

The main impact of the d1mens10na1 Yeduct1on Ts*teen in the Cou]omﬁ,a\d B

. ‘im ;:
¢ - N - - ~, . ‘,

~ where: -

Sinée“”

“HE =-e £ .dX ;+(;?t)."x (X1, (L=m2) Tl w.»xr‘,(‘;z.zzd)}.-d%

:."O.V -
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‘ _. ' - : . f\?f “
The effect1ve 20 Hcou] S . %f"' .
\\t ; ‘ i Y ! R
| Rl = ~+ SN ey b,
. . .,_ [P .t‘_,' Y] -‘ﬂ,,. ,_.\“\ f 4’\ z
Heg1 = Eljéxdx as(:;) (x t) U(x . X") ér(x t)‘as(xt) (2 234)
¢ ‘ . " ‘ .", - \ . 7 .\.'
where the effect%ve 2D Coulomb-ingéraction ha; the form: o R
S ylX - }'). dx x(x ) w(xa) x(x') x(x') U(X - X') - (2.238)
Lo , " 3 3 . 3 3 . 3 ) . 1y s
where: . \ L
T U(X‘r X") = —:——-—_;—— S . . : (2.236)
x o= x! L S

Generally in works’ on q~20 systems attentich has not been given to the

E

effect1ve Coulqmb 1nteract1on wh1ch can have a d1fferent form from the

usua11y chosen Cou]qmb 1n@eract1on of a 2D electron gas - R

, R ‘ 2 . ’ | \‘ - r"""—.’_/>

U - X ) B e l(2.235)

Y 1/;" %. v "‘
o : .%X =X

Analogously ;otLZ.Zlggjthe effectiVeJZD,Hami1fbnian is dividéd‘ihto‘thé i

“free" and interacting parts:

T HE s e . (2.238)
where = E o - , 3
N [T - :
H Ha Hspm Heou : v‘\\f\>
S i} o (2.239)
lef } ‘A“ Hint B HE~+ Himp L ;
oo T v

. }ﬂhe current density for the 3D\HamiTtonian_is given by:

»



® . T * . M ~

jk(it)  :;g;[ v (xt) 3 wszifﬁj,(ak%;(;t)) @é(;t)]y:

T .
L& R RVERY) &S(it)f*'
! g'».3‘3 | , !
‘ -%ﬁi ' '9' | .
| -5 121 35 k31 .‘ (xt)(o ) i ((xt) -~ (2.240)
[ : . .

See (2 11b), € 44 15 the- ant1symmetr1c Levi Civuta tensor and o, is the

kgi

i h Rgoli spin matrix. The current is def1ned as:
R S Bt

If the wavefunction iix3) (or xn) is real and éincevthe soin current is

expressed as a dirergente'of a‘quantit§>then:

a0 O (2.2%2)
U TR AT 230, 73D . ) '
In the other two components 17~ and I," the x, integration can be

performed,since A(i) = (fo,o,o). Therefore the 2D current is:

.// ‘ B R . _ ' ‘ -
7 ENCEIE BN RN CER I ~(2.203)
B AR I TR
\ = 1—%% dx {o:(;t)l)u ¢S(§?) - ’_(Du;s(‘;f)v)"' 'os(’)\(t)} o (2_244)
) S . : i ) ) .

~ where D is-defined by (2.229).  Fhe 2D density operator is defined as:

S) = e sR) s (1) (2.245)

In order to obta1n an equat1on of- a s1m11ar form as’ the class1ca1 equat1on

n

of\mot1on for the momentum p (2. 198) one can use the following canon1ca1

+ equation of mot1on for the current (2.2{3).

Y r_ - '_ - | - '
130 = fax 3 (), (k=1,2,3) . (2.241)



3 'd_ 'i—'(t) - F c'f"(»t),HJ o z.2)

This cunmutator of the total effective 20 Hamﬂtonian and the cuf‘rent'

can be evaluated using the canonical comutation relation (2 10) and the ‘

89

formulae | SN
ﬁ‘ ‘E5§<?t&(a; . K;)~$s(%ti;';:(%-§>:E{sg) &r<;e¢53?'* ;\\rjw/g
- = . ‘4’ ("t)(a - 75) 6(?( -V‘?')"};(a‘.‘,) > (;“ét) '(2.247)' |
*),‘ S,.ws( t)({F(a )<S(x-x‘)}(a ‘-5) ¢(xt\)\
e, np o

hRe) G Ge), o (D) FG) 801

’

= ‘ SR Ao 7 RTETS “"'. e .'\"l \
b ¢ 9()1 x') 0S(x.t),F(3 ) o (x t)

. Fat) 8K - X)) an(ke) o () (.249)

L ,—where F(a* ) s any differentia] operator
W The comutator (2. 246) then gives |

) ii . . . 2 B .' . . | . ‘ ‘ ’
3 1(t) = - ucly 3'-;‘ Elf& ;(?t), S y
+ £ fd%ak"(aluw-:%" )) o(Xt) p(X't)
GRILE R (2209
and:

v
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‘ > L ’l, - ¢ : f . P . . ',Q‘ \ L
_ . Lo Sk 2 A

5 axmaz U(x - “")) p(m p(” w Coel

S -ﬁ-[l (t) um G LT esor

The above. equations are {or the Heisenberg opera;ors Now ] o'roper
quantum statistical mechanicai average for these operators as well as a.
Proper random distr'lbut‘ion for the imurities should be introduced he .
1atter is necessary to obﬁain ~the dissipation term for the turrent Th
dissipation wr'm win not be derived here. instead the results from tne
Hterature wﬂ] be adopted (A A. Abrikosov, 1963) (s. Doniach, 1974) ,

* That is, the last tems in (2 249) and (2 250) cause’ the d*iss1pat1?m ;

' after the quantum statistican mechanica'l ensenble average and the / o .
impuri ty distribut‘lon average are taken The' dissipation is character-
1zed by the relaxa-tion time r = r(B,n» T,......) which wi‘H not appear
epocitly in the formula for the Hall. conduc{wity This two stepped
averagez procedure wﬂl be denoted by <, Then, the equation of :

| motion for the current expéctation va]ue bec:omes7 Vi,‘,vi\{" e

(t)> -'-w <I (t)> + g E fdx<r(xt)> - o N
‘- : o (2.291)

o+ -—fdxd (3 U(x - X '))<¢;(')\(t\) p(}"t)) - %)F[{il?}

.and:

Ly

> .‘:& . | " v 2 F’,“' ' ‘ .
(t)> = uehy(t) ‘+.,9- _a%c(?(g)? o

. , , (2 282)
ﬁx&'(az U(x - X f"‘))<p()(t) o(x't)> - .— Ff<12>]
SR

Ry

~.



\ et
o wnere F[<12>] = F[<12>4 <1, .....] is any function of <xz> doscribing
the dissipation. and F[<Iz> = 0] = 0. F could for example be the
" identity function as i the classicol derivation. Considering the -

syuoetry of the lost pert of (2 251) and (2. 252) ono*’con eosily see
‘.that it veni snes., Tnerefore the Coulonb interaction hos no effect on
the fequetio'nssof motion. “Thus. the equations of ootion ore.
- B R O . - v . s 5 j
4,4 (t)>1= o <L (> +-°2 e [dearer - Letdo] | (2.250)
,'_tq% > *t‘z toa by jaxeelxtly = L] (26

C

‘ <xz(t)> - ugely (1> + & sz [ ax<p(?en> - —rc<rz>1 Sazss)

In order .to obtain the-fomula for the Hali» co‘nductivity. 'the _following U

‘Vconditions must be mposed. T (. o o o
?,<\d <1 (t)> . a <12(t)> =0 N e (2.256)'-):yf’_‘
| <;é>x§ 0 ;,_-»,F[<x->]";,g - - C (2.257)

~The condition (2 257) is ver\y important to interpret the experiment by

“ Kev, Klitzino 5} al (K, Klitzing, isao 1981) _Nith these conditions“
s (2. 256) ond (2. 257), the equations of mﬁsn, (2. 254).}nd (2 255}, for

X 1 the current expectation value can be conpared to the classical equations

(2. 203) S6'as_in the classicol case, if the- current density and the
u _.nunber density expectation values are unifonn in space, then ‘

~ R

~ - ‘-, . : ‘Ql .
<Iy> 4 ne . . - o .
oL S et L - 58}
gy o | S (2.258) . -
WwERTTTT ik
¥ \ ) N



. where n E <o> This expression 1s 1ndepegdent of the value for Pyx’

T!* averaging procedure for calcuﬂhtlng the expectation value of the
_number density operator fn (2.258) has not been speclfled In the.

o MOSFET experlment by K.y, Klitzlng et. al. (K.v. Klltzing. l980, l98l)

K the gate voltage V. is experlmentally bntrolled and the Hall conductance

1s measuned as a- fgdctlon of gate voltage Since ‘the gate voltage changes
5 the conflnlng potential along the X3 dlrection. it is natural to expect
\.that it causes the chemical potential " to vary. Therefore the experi-
.,mentally controlled quantity 1s the chemlcal potentlal but not the number
denslty The number density of course depends on the chemicail potentlal
The - number denslty should therefore be calculated in the grand canonlcal
ensemble. Thus the density operatqr 1s 1ntroduced |
'.' - .1}
g = {Tr exp( 'F“T (H - uN))} exp|-

'El‘f (H - th)) (2.259)

to calculate the expectatlon vaﬂue of gée/number density operator in

(2. 258) The Hamilton1an H 1s the effective 2D Hamiltonlan

o= Hy +H (2.260)

spin * Hcoul * H1mp .
e ;
Where the'coupllng to the elettrical field H is omitted on the basis of

llnear response theory The total number operator N 1s
_ N .

» o usfatam. ., (2261
. Now it wlll be assumed that the sector of the Hilbert space responsible
for. the IQHE can be spanned by the scattering states. The valldlty of
- this hypothesis can only be tested by comparing the results wlth experi- _

“mental data. Locallzed electron states will not be explicitly accounted'

for. Therefore the 1n-Hamllton1an can be wrltten as:

: ( 2 Co : . . Y A * °
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4 | -
T Werrr: E(n sovsc) t"‘ : T (2.262)
50 s nsve | nsvc . ,

Hlhere the enorgy spectrum E(n s,v.g) fs a broadened Landau leVel with the
Lan/dau level quantu nmber N spin s, the valley v a&i the rmining
. Quantum number . The uymptotic field satisfies:

, + o
‘ in in . e
' ansvc n’s'v';’lkﬂz én.n

j‘ . .
It is assumed that the effects of the Coulu‘b and the fmpuritiesf

~ actions are gu/ broads A the unperturbed Landau levels and to chanqe the
» effective g-factor g*. Even in the presence

effective. mass m* and
of these 1nterac‘t_‘ions the.nunbe'r of states belonging to a s_ingle Landau

Jevel remains the same:

n,;

B ,“ 1 ) . 4
SRR ST gla _  (2.268)

. 3‘

The brbadening of the Landau levels is introduced by the number of states. -

”

(e .' | 1

(
N

densi ty function g“sv

{the mmber of scates with energy in between

’

"E° +eand B0, + ¢+ de} -

L eB Y

hc . nsv(C) dcﬁx , o s (2.265)

" where the energy spectrtm is: L K
'Ens",-m»(n»f?wg-,s Bsws oy (2.268)

Here the effective mass m*, the effective g* and the effective vaﬁéy
r ' g | -
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. splitting energy & _b€ie baeq introduced (K.v. Klitzing, 1981).

r"

) ?h -~ (2.267)
. /_‘/---. / e ! : v
- The .fixed nuRbe ftes belonging to one Lapdau level (2. 264) 1mpT1es
, \>x<::;:i;:; | . .
, .jhe nsv (e) =1 . r(2¢258)

vThe effects of the Coulomb and the impurity 1nteract10ns come into the

thezry through the effective quantities m*, g* E and the function

Iney(€)-
Now the grand canonical ensemble average for the number density/
operator in (2.258) can be expressed as: . - //
. . ’ /

- o . / . _]

ﬂSV

- &8 -
e = T ﬁ § z J(de g(e) [1 + exp{-T (E € ~U)}l (2.269)9

ThereforeAcH-(2.258)46ec0mes:

2 °
T - e € s //,.—
a(T, B.y) h niv-j:d 9ngy(e) -
1 0 ° ] -1 -
‘11 + exp —k? (EﬁSV € - u)) . \\ (2.270)

This formula, together with (2.266) and a simple choice for Iney> Wi

be shown in Chapter 3 to reproduce the experimenta] results of K.v.
K11tzing, 1080) in deta11 |
In order to obtain analytical results for o, (T B,u) the following

(e) can be assumed:

simple model'for Insy

(2r)" 4f o [e]er
,gnsv

0 if  Jel>r

(e) ? - | | | o (2.271) .



'aiso obey the initial symmetries of the system.‘iﬂ

95

‘ - ‘ i
0f course, any other form for gnsv(e) can be assumed, such as a

G&ﬁssian,etc.;tbut this simple form allows ‘the integration in-(2.270) to

vbe‘peréormed giving: Y
| ~1 + exp( 1 (g° ',‘u + 1)1 -
2 ( ko T kBI nsv T
e B :
o= -F L1+t In S J - (2.272)
nsvi . 1 + eua&ka (Ensv cw-T)}]>- ‘OZ )

It has: been seen in this secthn that the IQHE can be'understo

the basis of formula (2. 258) with out considering the mechanism of

localization (H. Aok , 1981) or Laughlin's fundamental gauge principle '

(R.B. Laugh]in,\J981) . One may hope that the 'FQHE can also be expﬂained
by'(2s270) through the properties of the number of states density,function,~

gnsv(ei' //

2.4 APPLICATION OF EXACT QFTMB METHODS TO THE EQHE,’]

- R , . . o A:
Whenever physical quantities are calculated using-perturbation

' theory, extra care°has to be taken to presenye/ihe symmetries of the

mode] in these approximations \ .

i
1
!

In section 2 1.1t was shown that from the current conservatiqn Taw -

one can derive the W-T re]ation (2 20) which connect the urrent and
density response functions (2. 12), (2.13) and (2. ij) f ese relations

can then be used to ensure that approximations tofthe r sponse functions

lthe current con-

Aservation These relations can also be used to dedu e the\functionai
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2 4.1 Current"Conservation Violation in the Tao-T s Model

, ’ A
/ Attempts to the d1ff1cuf& task of descr1b1n9 the¢FOHE by microscopic

QFTMB models have been few (R. Tao, 1983), (R. Jackiw, 1984a, b, c).

In this section the Tao-Thouless model (n 1;0. 1983) will be
studied and some difficulties with it will be pointed out

In the T-T mode] the FQHE.arises splely from the 1nterplay.of the
Coulomb interaction between the electrgns and the strong external ‘
magnetic field. The 2D Hamiltonian of] the system is:

r n 4, ? e }
int 7J dx ?.(Xt)‘ ; - iy + & j s(Xt)
’ e /
+ Ld;d%f ¢7(Q (g t) o(xt

o

+
H = Ho H

(2 273)

St
7
:’
?

'considered, The auge for the vector field is chosen such that

AG) = (- Bx,.0) | (2.278)

then the nt" Landay level siﬁ§1e electron wave function is: |

' . ; -1/2 3 ) 1» |
un,,‘,s(’)\(') = (1L /7 r’! 2") : exp{ikx] - 12.(1_2_ - k) | /
- XZ - k22,/ - . ﬁ 0 ’/.

where L2 is the area oﬁ the systeﬁ, Ho is the Hermitepo\yﬁbmial qﬁd:
/ ‘ , ' '/

/
;

\\\\ | - 2 = hc e = &T_S_ zf . ’ / .
\\\ -2 ';é", k L ’ (S 0, :]’ tz -v/.) ' (2.276>
The Heisenberg field operator ;(Qt)rcén be exbaﬁde?/as:
¥ f};’j
& /’i
/o
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» l ' ¥
. « N/2 . 2. -
3t) =t T e (thu (X)), N= -ty (2.277)
' - n=0"s=-N/2 ns ns 2n -

Tab’Lnd Thouless then made the approximation that due to the ver;
strong ejterna1 magnetic field, it is enough to cdnsider only the Towest
Landad level (n = 0) in the expansion (2.276) yor the f1e1d operator.
They also made th& assumption that tre groundstate }o (p)>, in the
interaction picture, is a superlattice in the /lTowest Landau orbital

th

space (characterized by the parameter s or ky_such‘thqt every p = s-site

is occupied by an electron. The f1111n§ facﬁor v is therefore given by:
o =

Vv

'} (P = integer) | ‘ (2.278)

/
In thii/groundstate !@ (p)> the particﬂes and holes are separated by an
energngap 4 which is supposed to zz/caus d by the Coulomb 1ntevact10n

,
The f#eﬁ Greens funct1on int iA eraction picFure is given by:.

/ /

d (xt X't')

1 ~i(t -
‘:wadwey )

;’m‘

IH

SmuzuMQyﬁg%w 1-f(s) fF).} (2.280)
/ S ; 1w n .

'-e tin w-e -

. 4 ' N / ; ' ' 7’ |
where the distributjon function f(s) reflects the gpper]attice stricture

’
i

of [o(p)>: [/ /, .
\ d ) we O

f(s) = <o (p)l 0s osl°ow)> ) mﬁ-’/éP Ssmp (2.28ﬁ)

. ] T Y o l

/ \ / . |

and’e+ and ¢ ypre given by:

, o n z
/ / y : ; \ P
/ i |
/ / / v/ / I | l:

R , , I \ |
o L w7 A / ' / : / Voo /
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where the gap parametér A is subposed to be found in a self consistent
way, i.e. Tao and Thouiess caltulated the self energy correction to the

Greens function according to the RPA using 6° and thereby Hetermined A

self consistently. A then‘debends on the filling factor v = %-and is

largest for v = %u The T-T model offers no mechanism to suppress'even

denominal filling factors, which are not observed in experiments (H.L.

"

Stormer, 1984).

1 T .

‘Now,the Causal density correlation function can also be calculated

- from the self consistent Greens function (2.278).

In the lowest drder:“

+ n k]
(x't")

.t o o
't1) = efeny(p)|T o1M(RE) 1K) o "

U)o (p)>

2.2 | .
eng |

.
AN

- : ‘
ezso(%t,§7?*1\§o(%'t';}t) ‘ | (2.283)

If the discrete summation & fé regTéced by‘the continuous integral /sds,
i : B

thén the density corre1ati¢h function turns out to be a function of

51

N N . « .
x - x' so that its Fourigr transform can be introduced as:
. ’/‘ ' .

"' ) 1 " 1?\,.'\1_4:, s iw(t - t')
Dgo(i - i,/- t ) = (2")3qudw e q (X X ) 1 ( )

0% (§,w) ' (2.284a)

98

(2.282) .



/

. the generalized dielectric function k(§,u) i the RPA:

JE R U A ‘ 99
. : .{ o ! H . . '
| i " B / ‘ i ’\‘ ' . .

: The wavefun¢tions;definedxby (2.274) are of the same form an(2.137);

“therefdre Dgo(a,a) can be evaluated using the integrals (g.149) and

(2.150), resulting in:

=
(9}

—
£l
-
~—r

fl
—r

n
2 C
~~
—

. .
<
s
.o
N

w0t (2a2sa)

. 5The reiardedlgorrelétion functioh,yor_the respdnse function, therefore j

"/ has the form: . R T I

/
/

R | 422
R ny 1 ‘ ! . —."2‘1.” :
D (qQW) = V(] f'v) e =
00 ‘2'n22 T -
lu-at in--:_\.mﬁ' 4+ in ) S ‘(2.2‘85.)

S o . ~ | | el
This‘resu]i (2.285) immediately gives the effective potential as well as

o

o 2met o oo . 1 ’.2ne2 
[ 27re2 DR.k(m\.)‘ K(g,w) q,oy
¢ qaf fie oot/ ’

(2.286)

1M2 \)(1 _'r-’y) e

' : o i 1 S ‘j , : .' B »
_; ' F : w‘;vA._~in T o+ A+ n j - . : : (2.287)

fFrom which the}dispérsion relation: of fherlongitudina]vplésmon becomes :

-



wz(Q) = A2 + ‘e ‘_.ZAv(1'- vY‘expi- SEE— f

o el%m' ‘ . -
The second term on the r.h.s. diverges as o»o s0 it is necessary to find //
out whether this divergence is caused by the‘aporoximations'usqd, i.e. 2/

the truncation of the Hi]bert spaCe etc., or if it reflects properties /
o : o " .:' » 4
of the initial mode] A R o ;f

In sectlon 2.1.2 the f -sum ru1e, for a system w1th a groundstate

of un1form\gensnty,-was derived from the.W-T-reIat1onS\(2.20).; For the

-

exact D (k,m) the f- Qﬁ\?UTE‘giMQEL\;\;;\\;\¥\

, o hn_e” g - ;
O . R _=_” e 2. . ¥
T fqm Im oo (@) = - —5— 4 , (2.“239.‘)“ |
0 - ‘ : - // S
On the other .hand the same expression for the approx1mate response
S ‘ " e S
_function (2.285 gives:*- S el s S
;o
f/ﬂw n 0f (q,w) = (1 -v=tre 2 (2.290)

218 /
/

.s1nce on]y t%e 1owest Landau 1eve1fwas used to/der1ve DR (9,w) in the - 254\\\
T-T model. Tt can be-shown that the 1owest order response funct1on, =:
- - derived in an untruncated H11bert space sat1sf1es (2\289) if A =.0.

\\

1t is 1nterest1ng to_ note that if a 1n eq. (2.290) is chosen such_

'»'as to give the correct f-sum ru]e (2 289), i.e. A will be—used to account

T~

for correct1ons due to h1gher Landau 1evels 1nstead of be1ng caused by

"the Coulomb 1nteract1on, then

= 8(q) — (2~/.'2'91)'

which {mplies g deben {nce, Here the relation



o o r ,ioﬁ'{ .

o - |
ng = <ygleT(Xe) e(Nt) v > = Zﬂzz -  (2.292)

" was used"to derive (2.291) from (2. 289) and (2.290). If now th1s A(q)
(2. 291) is used 1n the d1spers1on relat1on (2 288) then:

2 Zﬂezne S S ‘
(g, -a(q)+ N (-

where the apparently singu]ar term has. turned intb”the 1eadin§3term o?' ..

-'the d1spers1on relation for a 2D electron gas 1n no externa] magnetlc

ff1e1d The 1mportant questions now is why does;the-useﬂof the. f-sum ru]e
\ get rid of the s1ngu1ar1ty in eq. (2.288). ’v‘ 'j ‘: |
To answer th1s question 1? wtdl'be sh”" _heﬁitheféreeQSqunction:
 assumed byTao and Thou]ess(Z 279) v1o1ates‘ e~curﬁént‘éahéérQ$£§on’in‘

'the model. The: f -sum ru]e was der1ved from the,w-T relat1ons (2 20)

wh1ch ref]ect the conservat1on of the current ‘“Therefore the f sum
rule 1mposes the current conservatlon on the'dens1ty response functxon

The current of the T- T mode] in the He1senberg p1cture is:

A\

jv(’)\(‘t) : l%fr:" $+(;\(t)(a\) ) (Xt) - & 6 (x) ¢,+( )“ (Xt)
o ) ‘ ; / 5 ! (2.294)
and the density is: v o ' I
ofit) = - e ¢T(XE) B(xt) K (2.295)

-'The Greens function (2.279) impliesnthe'td11owing asymptotic field:

ad + k
Tedey o, vy =i t ) + ; i -y
¢ (xt) _ s;mp'aSUOS(X) e £ bl () et t .
s'=mp. . (2.29)
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If the current 3l~f1s assumed 'to. have the same funct1ona1 form as - (2 294)
and the density as (2 295), then one can show: that the current is purely B

transverse a pecu11ar property of the lowest order Landau subspace

‘“(%t) + 3

232"(2t) -0 (zaem)

This is caused bv the following property of the anefunctions Uos:\~
l\& Ty | ' AL :‘ P o

(X) =

|
-
>
| -
o~
>
g

1 os

W . ) ,
. Ny X2 A . :
3y Ugg(X) = - (7= - ke) uyg(X) S (2.298)

;
L]

el

It is important to note here'that'the transversality7of'the current does
not mean the vanishing of the longitudinal plasmon mode;'since”the current
i1s not conserved | "

| The time der1vat1ve of the dens1ty operator can be found by using’

(2.296) and (2.295) |
s ) ' . . 4 . +‘ - j, .\\.
s, MY = -fele’ - &) [ ab- by elte e ) wnic., (2.299)

and therefore::'

PR 2 . o .
a, oMXe) + 2o, §NRXt) = - te(e’-e7)z talby, Sit(e"-e)

she b0 E  (2.300)

-Therefore the current iinfimpiied by theeGreens function (2.279); is not
conserved due to the energy gap A e+‘- € . | |

The T-T model is an important step in the d1rect1on of exp]a1n1ng'
- the FQHE by QFTMB methods,,and as such more research is needed on it. .
| Definitely the H11bert space shou]d not be truncated to the 1owest Landau
1eve] as the f-sum.rules (2.289) and (2.290) show. Second]y the- quest1on

-~
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N of whether the super]attice groundstate is really ‘the prOper groundstate ’
of the Coulomb 1nteract1ng electrons’ has not been answe;éd yet. And in i'
, this connection one must have in. mind the effective Coulomb interact1on
introduced in (2.235). |
| The se]f cons1stent determinat1on of the gap parameter Ay caused by
the 1nterp1ay of the Coulomb interactwon and the externa] magnet1c f1eld
has also to be 1ooked carefu]ly 1nto In this connection one may also
‘;ask whether the current.for the asymptot1c field might have,to be def}ned
‘on_ the basis of the equation of:mOtion“SO'that it will be conserved.
The accuracy of the fract1onal quant1zation of the Hall conductivity
also makes doubtfu] the commonly he]d\v1eu that the 5QHE is oaused by the
. .

Cou]omb 1nteract1ons ' e -\“"lf"",f;;*j

“ . . N

- 2.4.2 The Exact Hami]tonian for Laughlin“s Navefunction§§<\

Sy ~

R B Laugh]1n has proposed var1at1ona1 groundstate wavefunct1onsc\

o

which he c1a1ms to descr1be the condensat1on of a ZD e1ectron gas into a\‘i;7/(

new state of matter an'1ncompress1b1e quantum fluid (R-B fLaughlln 1983b, /

1984). The deta1ls of how these wavefunct1ons describe: the FQHE w111 n
‘be entered. into here, 1nstead the confu$1on about;phat is the exact

. Ham11ton1an of these wavefunctions w111 be cleared up. S.M.Girvin

"exact so]ut1ons to the problem of harmonical]y 1nteract1noye}ettrons

'Th1s c1a1m will be shown to be wro\gc espec1a11y since they used an

v

o The Laughlin wavefunct1on descr1b1ng th QHE at the f1111ng factor
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e T g T e
‘ - SRR o 04
SV . i/M; where:M is a pdsitjve q&d_ihtegg},-dre Of.tbe fohp;';‘xh
‘ v(zo;z]...;in) = 7 (i{.rfzd)"'exp[fﬁ—l%'zizilz}vlw o (2;301)"'
| T R Mg KT A ks L UL
- where the co-ordinatesof the n+1 electrohs aré5descr1béd4by:;
2= Xj+ 1yj =0 L (2.302)
and’ as before 22 = g& o o FE (2.303) o

v These wavefunctions (2. 30]) are considered as trial wavefunctions for t:he//\‘>

Hamiltonlan

H =

o

e

‘J'.O[IE'?(T 3. +._ J) " v(z )‘ ) JEk T_-—Z_l : E ;(v2'3045')

where V(z ) is a potentlal generated by a unlfonm neutraliz1{g background

' Kj is the vector potent1a1 caus1ng the external constant magnet1c f1e1d
.
in the d1rect1on perpendlcular to the electron p]ane

I : 1 DR o o
Aj,z,(' §i¥8:"§ixs)v - A F2'30$) 
The gigenfpn¢tiqns‘bf_the free Hamiltonian - o N

- . : > L .
| J__"ﬁ” ex 1o %6) . -
Vo Mt { it AjJ o (23
are qf the form:

12

¢m(lj?v=v(2m+. ?W!? Z?vgxp[f';;?‘{ljl:ju o F21307y

_ where m =v0.1,;1..m{‘ A'Slater determinant of n+1 of these wavefunctions - .

has the form:
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- n(zb..t.zn) =

4nlzy) ¢n(az) : f_.im(zn)\\ |

0.0 o ﬁ {
1.1 1 - “
EV exp T |2 ]
2R ;:gij. J
o°1 . |
On .n n s
| L ZoZy -+ ¢ Iy
= M (zy - 2 exp[- - T |z, } S (2.308)
A TR :

'where the last equality is obtained by identifying the detenminant, in
gthe 1ine before, as the Vandermond determinant | :

- Due- to (2.308) it is possible to write the ‘Laughlin wavefunction
- (2.301) as a power of the Slater determinant of . the wavefunctions for
the Hamiltonian (2 306) if the electrons had the fractional charge - e/M.

;l<g°.,ff;“)‘=' W(zge.. 2., - El]-, L (2;309)

'This possibility has not been pointed out in the literature yet, but it
" shows that the fractional charge content of (2.301) is almost trivial.
| Now the exact. Hamiltonian for (2 30l) can be found by applying o
the free Hamiltonian '

(2.310) .
‘with

(2.311)
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on the wavefunction (2.309)‘~ © . ,
D Mot | (g ) 0y T N |
. . : . : 2 ‘ T\_ L AR
2 lz, | - .
4 [mz ( , i .
. X -y, 3 ) - v . (2:312) ,
T ‘2 i? X, LA LT
, By using the co-ordinate change: | R , i//
! X = %(zﬁ+ z*)
: | (2.313)
oy %g(z ~2*) ' — ,
¢ N o ‘ ' :
leading to:
. . 2 »} . V . IR .
Vg S w(2.318)
3z3z* SO ’
,end: o
. , X 3?" y ax i(z : t* az*) : (2.315)

' ’and'carrying out the pending derivatives, then eq (2 312) becomes, OnCe

‘the sum over i s performed

L, 2 o : :

2 lzg1® - % 2z . .

= 3h M i ~
H 5— ¥ I + - (2.316)

. o - [ 4s? ;7 ) } . o

. ) : b
The summations of‘the,second term on the r.h.s. can. be carried out giving:

Nz

. z - | N

. . i,jgo z.i Zj »
o T

i _(n : 1)n e (2

< o _': |  6 :
Therefore a Laughlin wavefunction of n electrons ’ ‘

wm ”,_> R exp[—;};glzilz] (2.318)
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is an exact.eigen-function of the Hamiltonian S
{=~1 ¥ e Fiva2 3ﬂ2 n 42 | "
Ho= |z (109, + KGN - Ly x| (2.319)
S . 8mg 5
with eigen-energy: - ' B ‘
w3 | |
;;;z-nn(n-l)'= z»ﬂmF Ma(n-1) - | | (2.320) .
and
A(X) = 5 B(-y.x) - L (e

This Hamiltonian derived without an approxhnation does not describe

harmonically 1nteract1ng electronsh there;is no coup]ing between the

/ ;

There are many unanswered questions about the: Laughlin wave-

'functions, For example what ig/the meaning of eq. 92 309), can it be

used as a starting point, for a QFTMB description 7‘ Laughlin s model?

Is there a connegtion between these wavefunctions and the Tao-Thouless

ugroundstate (R Tao, 1983)2 . A

CoNT
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CHAPTER 3 s

.

Experimental Results for the QHE

vt . \
Ample but general wmodel .
K : N\

‘ iipe sec. 1.5. 4)

The chapter therefore commences by a description of these two experimenta]

systems emphasizing their important differences and simi]ar1t1es The

chapter then. continges with a description of some of the experwmenta1

resu]ts,for the QHEs emphasizing the role of the chemical potential as

the relevant thermdd&namic variable rather than the electron number density.

It\wilj then -be shown how c]osely the microscopic model of sec ion 2.3 can

fit the experimental results of K.v. Klitzing. | |
. ] _

3.1 DESCPIPTION OF EXPF?IHENTAL SlSTE'

The QHE' s ‘were found in two quite different exper1menta1 systems, the
Si-MOSFET and the GaAs heterostructure. As will be seen later, it is, this |
difference which wil] lead to the fuller understanding of the QHE. F1rst
these systems have to be described starting hith‘the_51-MOSFET. o
MOSFET _ A

The structure of a MOSFET. 1s ShOWn in Fig. 3. - The metaJ~gace is

\ihsulated.from the p-type by]k 51, by a thin Si0, layer. There is a
potential step of 3.15 eV between the p-Si bulk and the S0, insulator.

A current can flow between the source and drain contacts only if a positive



ibias Vg s apblie& to the gate in order to prpduce an n-éynﬁff%

(channel) on the surfacelof p-~type Si adjacent to the 5102;1nsu1a£dr. The. -

band structure of the MOSFET cani .be seen in Fig 4 Nhen a‘posit1ve bias
is applied to the gate V > 2 negat1ve charge w111 be induced ° 1n the bulk. ™

Si by removing holes frbm its va]ence band, creating the so cal]ed deple- .

9
the conductjon band can be bent below: the Fermi level and electrons will be

~ tion layer (0.1-10 pm). If,the positive bias V_ becomes very strong then
induced in the bulk Si atlfhe interface. When the surface densiiy of

gelectrons is higher than. the equivalent hole density of the bulk then th1s
thin (10-100A°) (C.C. Grimes, 1978) layer is callad inversion 1ayer The

10<n 410 em™2 .

- realizable 2D electron.density of the inversion layer is 10
(T. Ando, 1982a, p.442) (S. Kawaji, 1983). 'Th{sedensify'is controlled by

the gate VOltage,Vg, and can be meesured by.;heShubnikov-de Haa; efféct
(see‘section 1. 2.4) The notion of tne electrons perpendicular to the
Si-SiO2 interface is quantized into d1screte energy 1eve1s (subbands) nf /

If n m1012 -2

- the confining potentia]. , the die]ectr1c constant £ 11 5’/

and the’cOncentration of cceptors NA 1 65 1015 -3 then the energy 1eveﬁs
in the Si(]OO) n-type inv rsion layer are (T\ Ando, 1975b) a ﬁ 1/
EA-~E_ S’mev
£\ £~ 21 mev
E, { E, v 36 meV
Bk °~45imevg

. . ) )
. p
v R //
I j
. . S
" .

lowest subband is popu]ated

Si has 6 conduction b nd minimas (va?1eys 1n the <100> dlrect1on

|

e o e
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of momentum\kpace\:;\:\\ﬁﬁhcrbf%, 1976). The ground state of

/ Co N /o

-/ s AR |

/ // |
A )

has two va11eys whth effecti)y mn;s m# = 0.916m in the direc fon peWpen-

'"\Q dicular to the interface.’ /fk has: been obs rved 1n experime ts\(A B
y

Fow’ler, 1966) that this 94

(R. Kumme1, 1975) The €] fective mass for the Q?tion parall

interface is m{ 0. 190 m
The mobility u . of el
Vs (s. Kawaji, 1983). It

thT Shubmkov-de Haas amth de (see section 1.2.4). / /
\ 1

. The GaAs hei&rostr ctu
SFET, the 2D electroh
duct1on bands at the A'

e

band Structure (The d

The cryeta] Tattices

fe
“\kinterface of a gla y fins 1$tor and a c?ysta111ne 51 in a\JESFET
GaAs layer in whi h the 2& e1ect on gas 15 1ocated is undop

AL Ga As is

1-x

V
6 cm /Vs (S. Kawaji,

qx 10
(K.L. Stormer, 1984).

the GaAs h erostructure haYhng mob111; es

\
A

eneracy 1s Iiftéd thoygh the mech nVsm is not
well uﬁderstood (F.J./ Okawa, 1976, 1972# b) (L a Sham, 1978, 1979)

}/to the .
N

v : : ) ’
trons in Si 1nversion layers j///p to 10%cm /

measured‘?%om the cyc]ok on line width or

e, F1g 5, is qu1t:/ﬁ1fféren§ from the Si-
s1de‘;p natural disc nt1nu1ty of the con-

1- xAs - GaAs interface, see Fiq 6 for the
\

'E

i»cont1nu1ty 1% about/;bo 4ev (G. A\igizi:f 1981))
/ K

tched at the 1nterface, 1n contnfst 0 the

‘ and the
\\\;}984) such tha c]osesy/

~ |
‘%to the 1nterf ce there is ﬂ“th1n (w50A° undoped 1ayer Th1s resu}ts in

ch higher than MOSFET s, i.e.
\(.{
%§3i\équ1ya1ent to

1 an free path A v Bum

The e]ectrnn;\hre $ubbTif¥ by the Si &Bhers in the‘AL

1

L

jan in most exper1ments H.L. (3
| ZD dEns1ty 1\ va fed \\é\ge

e e]ectrons

3 ﬂ//‘

|
\\\/é

A

,]"
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‘made into a FET KF1e1d Effect Tﬁansistor) by add1ng f substrate and a

)gate plate, in order t?/yentrol Ab by V (D.C. Tsui, 381%) (A.M. Chang,
11983). The effective mass m* and“the effective g-factor g* in GaAs are yd
m* = 0.068m g* = 0&522 “(p. C Tsui ﬁQBIa) ' \

Probab]y the p ;est q-2D e!ec@ron system k own yet 1s the thin layer

\' \ of electrons held ti the surface oﬁ 11q He The characteristic jongi-

tudina] p1asmon of a\ 2D e]ectron gas was - f1 st féund in this system

(C.C. Grimes, 1976).

RESULTS -~ s

\ 3.2 QHE EXPERIMENT

The general resul sjfrom\experiments on the IQHE a th;\ggHE were

reviewed in sections 1.5.4. and 1.5.6. of the first chabter. fh this

I sect?@n the results of some few experiments will he.preseneedQ \\ .
.‘/fthere‘are two types.bf'experiments; In experiments performed} n

MOS?ETS,,see\the reselts f K.v;‘K1itzing et. al. (K.v. Klitzing, 1 81) -

/ » ~ :
]n Fig% 7, the‘resistiviti Sp.., = 1/o and Py 2T measured as functions

Xy \
\ .

lof the ate voltage Vg, s1nce increased Vg means in reaLed dens1ty and
!

' / therefore the populat1on oﬁ higher and h1gher Landau levels. The sp1n
; and: valﬂey sp11tt1hg is c1ear1y seen for the 1owe t Landau 1eve1s In
f this exp%r1ment the magnetwc field is held constant at 18.9T. In the
; experiments using GaAs heterostructures, wh1ch sua11y have no gate,

. the magnet1c f1e1d B is var1ed from 0 upto 30T, seefF1g 8 for experi- \
%;alanen, 1982), and Fig. 9

mental reSu]tS\bf\M A. PaaTanen et. al." (M.A.
\\\ieh the exper1menta1 reSults of K. ‘ K11tz1ng/et al. (K.v. K11tz1ng, 1982).
In\these experiments successive La dau 1eve1s are depopu]ated by~ 1ncreas-

ing B since the ZD number density of electrons each Landau level can



/ nz
hold is:
S e T @)

-

and the total density né/can oﬁQy vary within some limits (see below). The
: . O ) N
spin splitting is resglved for thg lowest Landau levels. In both tyRes

of experiments the sharp plateaus are seen in Py with the simu]ianeo%s

y
\ :
vanishing of Pex & Tow enough temperatures. The plateaus are general

wider in the daA heterostructure than in the MOSFETs. |
The re;u1t/ for the FQHE are shown in Fig. 10 from the experiment of
H.L. Stérmer dt. al. (H.L. Stérmer, 1983), and in Fig. 11 from the experi-
ment of K.v./Klitzing et. al. (K.v. Klitzing, 1984). These é&xperiments |
are carried out on GaAs heterostructures of high mobi]igy and at Tow
tenperatuyz. The temperature dependence of the FQHE is shown in Fig. ]2
from th7/;xperiment of D.C. Tsui et. al. (D.C. Tsui, 1982). The dip in |
Pyx deye]ops before the plaieau in Oyy in the FQHE as the temperature is
lowered. It is obvious from both types of experiments that the 2D
eIeé;ron density Ne is.not constant in thewsamp]es since 9y develops- flat
plateaus, both as a function of Vg and B. Thus there has to be som~
reservoir of electrons in the samp1e§;tG.A. Baraff,v1?81). In the GaAs-
heterostructure the Si-donors in the ALxGa1_xAs layer act as a reservoik,
wﬁije in MOSFET's the Teservoir méchanism is not well understood (G.A.
Baraff, 1981). If in MOSFET's there wend no reservoirs then the electron
densitj‘in the inversion layer would depend linearly dn the gate vo]tége
.Vg according to Gauss'/s Law; resulting in no plateaus to be segn in oy
But sinée there'is}a eservoir an increase in the gate'§o1tage does not

have to lead to a directly proportional increase in ng» some electrons

) / L\\ L3 . [ '
can be transferred,betweq; the inversion layer and the reservoir. There-

\
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thermodynamica] var1ab1e 1nstaad of the dens1ty n
§FET s has therefor to be related to a
. [y

gate voTtaJ; in exper1ments on MO

' njhange\ln Ahe chem1ca1 potent1a1 ue
- SR

@

‘-MODELi REP_RODUCTION OF EXPERIMENTAL RE'SULTS ol

.3
' ‘ vra:h
- In section 2. 3 the fo110w1ng express1on was der1ved for “the Ha]T
con uct1v1ty (2,270). | TN : _ B R ; } “
= 5 (TBo) = - ¢ ]Pde ()| 1 + exp[(EC |
7 R A h nsv - Insy kaBT nsv.
o S ‘ . -I 3 . ,-“ | : 4}* h \
whereyg ., is the number of stites density function introducted in (51265)
and Bl is the energy spectrum. . )
| % - o - ‘ o
. o' _ 2y i+ 35 CeyE 3.3)
. : EnSV»\ ﬁwc(n + ]/2)ﬁ+ 5 SnBB,+ VEM" | (3.3)_
. I ‘the 1ineshape (the number -of states dgﬁéity'fuhction) is’assumed "to be
- Gaussian: . R o g | \y* SR
nsv /‘2-—2 : 2T : .
, T . "
‘where T represents©the line width, then‘the»integration in (3.2) can be
penkbrmed'ndmérica11y The resu1ts are shown in FigUreS‘13415 where *
Y. is p]otted as a funct1on of the chem1ca1 potent1a1 u, s and v are
chosen“to be zero and ﬁw 10 meV wh11e T is O 5 ‘meV in F1g 13, 1.0 meV -
', in Fig. 14 and 2 0 meV in F1g‘y15 In eachﬁ¥1gure the curve is shown
h
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for the two- temperatures I = 0,58K and'T-='5, 8K. Figures 13 and 14 show _
%‘{,f s =
, c1ear plateqys w1th rounde off corners at the h1gher temperature wh11e

“

, in F1gure 15 no p]ateausqfre seen due ‘to the 1arge 11new1dth S1m11ar

curves can be obtained fgr oH .as’ a §9n¢t1on of B.

- LIf the s1mp]er 11n7&1dth is chosen (?~271)- "g; ' |
// Loen)T At efer c _ ,l
“ﬁlm’ ; f“ 'gnsv(e)'= o e | (3ﬂ5)

then the 1ntegra1 in Z‘Z?Ql\ggh\he eva]uated ana1yt1ca11y g1v1ng fz 72) Wf“\,\

{
°

e e

2 PR N exp[‘lT*Egsy_' b *T) 7 - '.”’/4

z I T In}- 1{ \
niv : 1+ eXp[—‘_(Ensv - W\

. Which is easier to uSe to reprodUce exper1menta1 results In order to do
that for experiments performed on MOSFET s the re]at1on between.the gate AT
vo]tage Vg and the chemical. potent1a1 1 has ‘to be determ1ned (see section _”
32) e ». . | ‘; o | o .

From the exper1menta1 resu]ts of K.v. K)itzing‘(K.v. K1itzing, 1980,
1981)‘1n f1g, 7(1t is seen that for the range O%Vg<BQV the dips in Prx
are equispﬁced,;indieettng thatithevLandaﬁ~1evels are also equispggedfwith
respect tofvg.;'QneFCah’therefore assume.from the i:dependence dt<eq. (3.2)

 that there should be ‘a Tinear relation between Vg and u for this range of
. Ed - . ,,»/. S T .

V v. . S .
« 97

W= o, *oae Vg S R . (3.7) .

: where the parameters p  and o can be determined experimentally. With the



. choice of parameters: . /;/
g% =5.0, E = 1.2 (meV)} m* = 0.19m, T = 0.8 (meV)
by = 0, o = 9.3:107° mev/ev : (3.8)

‘a very nice fit to the experiment of K.v. K]itzing (K.v. K1ttetng; 1981)
fcan be obta1ned F1g 16— where the solid curve represents,the mode] results
N and the dotted curve shows the exper1menta] resu]ts Thetchoice (3.8) of
parameters does by no means represent best fit method. The parameters
::::::have been/chosen to be-close to known experimental valueS‘(K.vt‘Kltteing,
| .]§8Q1'1981) (T. Ando, 1982a). The Tinewidth (3.5) is of course an over
‘.simp1itication sinCe g* and E are known to depend on'Vé and N (fh Englert,
1978) ‘and to be strong]y enhanced by many body effects when only few
- Landau 1e921s (1 or 2) are popu%ated" A
The temperature dependence of oy for-the same parameters (3 8) is
shown in Figures 17 to 23. At T-= 0 5K the plateaus are sharp, F1g 17
'wht]efat T =6.0K the p1ateaus have d1sappeared and the curve is very c]ose
to the c]ass1ca1 resu]ts This model can, therefore both account for the
IQHE and the CHE : The vanishing of~the ]ongtudina] resiStivity Oxx can'h
-, be understood directly from the energy level structure (3.3) as fo11ow5'

1f the chem1ca1 potent1a1 p lies between two adJacent bands, for examp]e

Lt
¥

between Eo+¥ and E_, _, then the hands‘be1ow the chemical potent1a] are '
tui]y'occupied and~theve1ectrons.in those bands cannot be scattered by the
1mpur1t1es unless the supp11ed energy is sufficient for the e]ectrons to
. Jump into empty bands. | '
Hav1ng success1ve1y reproduced the exper1menta1 resu]ts for the MOSFETn

experiments of the.IQHE, what about the results from experiments on GaAs?

In thesé_experiments thevmagnetic field.B is varied instead of the gate |
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" voltage V ‘and‘os in MOSFET's, the density n, cannot be constant (G.A.

g
Baraff, 1981) (T. Toyoda, 1984b) so the chehiooT potentiai has to be
treated ao the reieVant thermodynamical variable. OtherWise.eq. (3.2) can
"ot*give pTateauo in dH a§ a function of B. However the“main prob]em is
that g* and the 11new1dth depend strong]y on B, therefore a detailed .

- investigation is requ1red to spec1fy ‘them as funct1ons of B before -a good
fit can be obtained. .

An'interesting future tosk would also be to include higher ordero
effecte (1nteract1on effects) in the evé]ﬁation of ng = <p>. \Theee higher
order effects might ex%%a1n the small dips ino J%St 1n-front of a p]ateau
‘(K v. Klitzing, 1981), see F1gures 7 and 16.

It is also 1nterest1ng to notice thatrthe FQHE cou1d be exp1a1ned

‘through the structure of g (s) in eq (3.2). ;}\for examp1e it is found

nsv:
that the lowest Landau 1eve1:(or higher ones) has-£1ny energy gaps for
. high magnetic field at Tow tahperature; for sdﬁé{;ow unknoWn reason, then.
'these'would cause fractional plateaus in eq. (3.2). T

‘in thislchapter it has'beeo shown that the IQHE is well deéoribed'by
the microscopic model 1ntroduced in sec. 2.3, together w1th the assumption

that the chemical potent1a1 depends 11near1y on the gate vo1tage in the”

reg1on of ‘interest. ' e

®

[

N
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. © CHAPTER 4

CONCLUSIONH T

This thesis has been concerned with some 1mportant dynamica] propert1es
of q -2D e1ectron systems, such as the possible propagation of transverse
e]ectromagnet1c waves and the quantum Ha]] effects Several new results

f

have been obtained and new methods used 1n attack1ng the problem Ihese

r
s

: w111 be summarized in this section and some 1mportant qu¢st1ons for future
1 )

research will be-ra1sed.‘ / _

From the outset the point of view has been taken that the -finite

'thickness of q-ZD e]ectron systems has to be accounted for{ especial]y

\

L

when the electrons are interacting wwth a 3D electromagnetic f1e1d This

. is accomp11shed by wr1t1ng the 3D field operator. as a product of the 2D ‘
f}e]d operator of the e]ectrons.1n the (x]-xz)-p]ane, and the boundstate
wave functions in the x3-directionl(2 9).  Then the effectfve'ZD'Hami1tonian‘
for the thD e1ectron gas can be derived from the fu11 3D Ham11ton1an of

the system. Before;any approx1mate ca]cuIat1ons of the response funct1ons

-

for the model were performed the N T re]at10ns ‘connecting._the current .

and density response funct1ons were derived from the current conservat1on

These relations (2.20) can be used to ensure that approx1mat1ons to the

.response functions ref]ect the current conservat1on | ,4 |
For the f1rst time the dynam1ca1 current response funct1ons are

calculated at T=0 with or-w1thout an external magnetic f1e1d (2~90-2 101)

(2.163-2.167). These response funct1ons are separated 1nto the1r trans—

. verse and 1ong1tud1na1 part The transverse part is then used 1n coup11ng

h the 11near response of the current se]f consistently to the canumber

e1ectromagnet1c f1e1d, in order to derive the dispersion re1at10ns for the

el\?

R
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transverse plasmon in g- ao e]ectron systems (2 77) This self. consistent '

- 11near response method is considerably simpler than the methods employed

by D. Bohm and D. Pines (D. Bohm, 1951) or by H. Matsumoto et. al.
(H. Matsumoto,_1980)‘to calculate the 3D plasmon d1spers1on In appendix»
h'A it'isﬂshounhthat'the se1f-cohsisent Tinear response method gives the same
result as these'other.methods for the 3D transverse plasmon, where the |
calculation 1nc1udes the f1rst order quantum correct1on | |
. The 2D transverse p1asmons have not been derived before Remarhab]y
fthey have a ‘gap which depends on the th1ckness of the system (2. 131)
(2.195), thus emphas1zing the necessity of the dimens1ona1 reduction scheme i
‘descr1bed earlier. s | | q
o For future tasks invo]vino thetfb transverse p1asmon-the'following
few pointseCan be considered: | | | ' |
Due‘to‘the‘severeArestriction placed on the relevant parameters in
-.grder to obtain analytic dispersion'relations, it'isfnecessary to seek -
‘for solutions .numerically in reg1ons where the ana]yt1c approx1mat1ons,
| do not hold. . . U
In the derivat1on of the dlspersiOn re]atlons it is assumed that a11
the electrons are. 1n the lowest 1eve1 of the conf1n1ng potent1a1 This
' assumpt1on is adequate for Tow enough temperature, but it might be
'1nterest1ng to see the effects of more than~one 1eve1 be1ng populated. In
that connection f1n1te temperature correctﬂons m1ght a]so be of 1nterest “
The transverse response functions may also be 1mportant in- connect1on
\with 2D superconductors where they re]ate the super currents and the
'external magnet1c field in the Me1ssner effects (H Takagl, 1982a, b, 1983).
. In sect1on 2.3 on the IQHE it is shown that the 1mportant formu]a :
(2. 258) ‘ o |
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holds exactly independent of Prx O Ty This.formula is derived for a

‘Coloumb interacting quantum q-ZD electron system in the presence of

impurities and at finite temperature Here the Hall effect condition

y
the equation of motion fg ¥ is that.it mustxvanish when.Iy = 0. Since

h‘ I, =0 was used and the ﬁnly restriction on the damping contribution to

the number density n of e1ectrons is not constant in experiments due

to the eieCtron reservoirs the grand canon1ca1 ensembie is used to eva]uate

it. when the spin and vaiiey spiittings are added to the broadened Landau
]

lievei spectrum then the_experimenta] results of K.v. Klitzing (K.v.- K]itzing,fﬂ .

_'1981)}are‘reproduced in detail. No other simple model, has been demoy- °

strated to do this. Moreover at higher temperature the model gives the .
Interesting future taéks in connection w1tpythis microscopic IQHE
model are v |
The effect of. 1nc1ud1ng h1gher order interaction effects (for example

Couiomb 1nteraction) in the evaluation of Ne has to be studied especially

/

. in connection with "pre-piateau d1pS" of oy seen in experiments (K.v.

h

Klitzing, l:fs,t1981) | ' ) B
. The}d e dencevof'g* on the'magnetic:field and'the~number of Landau‘

levels has to be studied_in‘order to-get'good fits to experiments performed

on GaAs.

The number of states den51ty function describing the broadening of the

Landau levels (2.265) has to be studied w1th respect to mini gaps that

’ couid explain the FQHE on the basis of the mode] presented in this the51s

Ir connection with the FQHE it is shown that 1n the Tao- Thouiess

/
1,
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mode1 (R kao, 1983) the assume form fqr the se]f consistent Green's

functions vio]ates the current con ervation \This emphasizes the mpor-

tance of u51hg exact relations as the T re]ations to ensure that

' approximations to the response functiﬁns or the\green s functions ref]ect

| the initial symmetries of - the mode] " The derivation of the. exc1tation |
gap in the T T mode1 has to be re- examined, fs the gap rea11y caused by

‘the Couiomb 1nteraction7 when the gap is assumed ipstead to represent the
effect of the prev1ously negiected higher Landau 1eve1s, then the 51ngu-

. 1ar1ty in the p]asmon disper51on vanishes Another 1mﬁortant related task
in connection w1th the EFT modei 1s to study the choice of the ground-

state by a microscopic ca]culation This is important.since the model
predicts the FQHE to occure both for odd and eyen denom1na1 fi]ling factors,

contrary to the experimentai resu]ts to datef Another model of the FQHE

1s the set of groundstate trial wavefunctions suggested by R.B. Laughlin
(R.B. Laugh]in, 1983) In section 1.5.7 it i3 shown that the exact
Hamiltonian of this model does not include 1nteract10ns between the

electrons,-in contrast to claims made by S.M.

jrvin et. al .'(S.M; Girvin,
N _

1983)
It remains -an open question whether these wavefunctions of Laughlin

are re]ated to the assumed groundstate in the T-T mode] }R Tao, 1983)
~In the general context of the FQHE one needs to explore if the

_ transverse,modes are of 1mportance there, Since 1t has been naticed

(2.297) that the current in the. system, when oniy one Landau level is

, occupied and»a]i higher ones are neg]ected, is entirer,transverse. The, N

accuracy'Of the EQHE may also hint.that, contrary to'?he commoniy he]d -

beiief, the fractionai effect might not be a many body effect, but

rather a reflection of some internal symetries. In either case the

, . . . B . Al
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| importance hds to be b]dted'dpon building a microscopic model based on a

' Hémi1;on1an rather than trfa1‘wavefuﬁctions.




Fig. 1 The regions in the (Q,ﬁ)-p1éne’where Im D* and Im D°

vanish (the shadowed regions).  The Curves'are determined _

by condition (2.102) and ¢ is given by (2.103).
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F1g q The geometry of Hall efLect eTper1ments, see eq 's (2. 198)

. and (2 199) (Based on((N W. Ashcroft 1976)) . ~; A
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Fig. 3 AMOSFET. S, D and G stand for source, drain and gate
respectively, while Vg is the gate voltage which regulates

the density of the 2D electron gas (2D EG).(Based on

(S. Kawaji, 1983)) - @ - C
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Fig. 4

&

-The energy bands of a p-type 3 at the Si- S102 interface

in a MOSFET (a ) The flat bands in the case of no gate
bias.” (b) Depletion of holes ﬁear the interféce due to a
poSitivékgate bias. | (é) Band bend1ng due to a strong
positivé gate bias. An 1nvers1on 1ayer of ZD electrons
i$ formed at the_interface.‘ E_ and E are the conduct1on

c
and valence bands, Efvis the Fermi 1eve1 and Ea is the

energy of the acceptors. (Based on (T. Ando, 1982a))

-~
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Fig. 5 A‘GaAS heterostructure, the 2D electron gas (2D EG)-reSides

~in the GaAs layer near the ALxGa]_XAs - G&As interface.

(Based on (S. Kawaji, 1983))
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'ng, 6 The'béhdstrUthre of a GaAs heteréstructure. The ZD\
electron ga$ (2D EG) fesides iqltheJdiscontinuity of fhe
conduction band E.." E, and Efiare the énérgies of the
valence band and the Fermi level. (Based on (H.L. Stormer,

1984))
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Fig. 7

The eXpefimenté] resu]ts of K.v.

)’
The magnet1c field is he]d at B =

with respect to Vg is shown.

and pyy are shown as. funct1ons of the ggte voltage V .

Klitzing et. al. (K.v.

‘Klitzing, 1981) for the IQHE in & MOSFET. The reéistivities

g’
18 9T and the - temperature

is 1.5 K. The extent of the Landau levels n=1, and n=2"

o
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Fig. 8 The resistiVities pxx‘and pxy as functions of the magnetic

field B, in an experiment on a GaAs-heterostructure at

T = 50 mK (M.A. Paalanen, 1982). The number of- the
respective Landau ]evels;ig shQWn.on the P yx graph

together with thg‘spin}po]ariiétion which'it resolved for -

‘\, .

the n=1 and n=2 1eve1s,

*
.
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tat

Fig. 9 The resistivities.o;i and Pyy 25 functions of the magnetic

Yy
field B, in an experiﬁent_on a GéAs-heterostructure at
T = amK (K.v. Klitzing, 1982). The number and spin

polarization of the respective-Léndqu levels .is shown.
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Fig.l"lo The FQHE in s heterostructure, the resistivities px);
ox @ iPgoin as functions of the magnetic field B or

the fi11ingWor v, at T = 0.55K.(H.L. Stdrmer, 1983a)
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Fig. 11 The FQHE in a GaAs heteroétruqﬁuré, the Pesistivities ¢

, Xy
~  and pyx dre shown as functions of the magnetic field B or

the filling factor v, at T = 0.55K (K.v./Klitzing, 1984).
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Fig.

12

SUXxy

The temperature dependence of the FQHE. The resistivities

¢ and ®x are shown as  functions of the mhgnetic field B .
A ‘ . N ‘ . ) ‘ »‘,;{ K
or the filling factor -, at variouswtemperatures.(BWsui,

1982)



145

. ' v \\\\ - A
N
43 2

1 2/3 172 \\<3 14
‘ 17 T 1 ]
4 L




Fig. 13. The quantum Hall cpnductjvity OH’ from éq.'(2.270); as a
f?ungtion of tﬁe chemical potential u. fThe smoother Eurve
rgpkesents-the temperature T ¥ 5.8(, and the sharper dne |

‘ T‘=‘b.58K.' The Landau\leve1‘1iﬁé’shépe is assumed Gaussian

eq. (3.4) with half width © = 0.5 meV, and fiu_ = 10 meV.
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Fig. 14 Thé7QUantum Ha11‘conductivity oy» from eq..(2.270), as a
function of the chemical potential u. The smoother curve
;épfesents the temperature T = 5.8K, and the sharper one
T = 0.58K. The Landau Tevel line shape is assumed Gaussian
eq. (3;ﬁ)~V‘F“ half width‘r = 1.0 meV, and ﬁwc-=-10 meV.
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Fig. 15 The quantum Hall conductivity Iy from eq. (2.270), as a
function of the chemical potential .. The smoother curve
represents the temperature T = 5.8K, and the sharper one

- : ) :

T = 0.58K. The Landau level line shape is assumed Gaussian

eq. (3.4) with half width T = 2.0 meV, and fiu_ =10 meV. -
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Fig. 16- The iﬁverse of the absolute value of the Hall conductivity
o, as a function of the gate voltae fj at B = 18.97 and

T = 1.5K. The solid curve is fror -a. (3.6) and (3.7) with

the parameter choice (3.8), The dotted curve is from

o
experimental resd]ts of K.v. Klitzing et. al. (K.v. KlitZ

1981) - -
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Fig. 17. The inverse of the absolute value of the Hall conductivity
o as a function of the gate voltage Vg at B = 18.9T and
T = 0.5K. The sblid curve is from eq. (3.6) and (3.7) with

the parameter choice (3.8).
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Fig.

18

The inverse of the abso1¢ate vb]ué»of the Hall conductivity

R / S - . U
7y as a function of the/gate voltage Vg at B =.18.9T7 and

T = 2.0K. The solid cuﬁ&e is from eq. {3.6) and (3.7) with

B the parameter choice,(3;8).'
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Fig.

19

The inverse of the.absolute value of the Hall conductivity
. B o . B TSy -,

By

A

oy s a functfon of the gate voltage Vg atB = 18.9T and

T= 3.0K. The solid curve is from eq. (3.6) and (3:7) with N

the parameter choice (3.8).
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Fig. 20 The ‘inver‘;e'of 'the.absqluten value of the Hall coli/rflductiv-i ty }
3, as .élfunc.tion of. ﬁhe gén';eyk‘ymtég'e"Vc.J ;at B = 18.9T and \ _ [

T = 4,2@(,' The solid Curvé;is'frmnoéq.~ (3.6) and (3.7) with - ‘¥

the. parqrpétér chbice (3.8)‘. ' o , | o i

" &i
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Fig. 21 Thé;ihverse of the absolute value of the Ha]]‘ onductivity

quas a function of thé gaté voltage Vg at B = 18\9T and
T < 6.0K. The solid curve is from eq. (3.6) and‘(3}{z with

" the parameter choice (3.8). \\
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Fig. 22

b
The inverse of the absoluate value of the Hall conductivity
oy as a function of the gate voltage V at B = 18.9T and

g
T = 10.0K. The solid curve is from eq. (3.6) and (3.7)

)

with the parameter choice (3.8).
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a2

Fig. 23 The inverse of the'abso]ute va]d@ Qf the Hall conductivity

°H

as a function of the gate voltage Vg at B\= 18.9T7 and
T = 20.0K. The solid curve is from eq. (3.6) and (3.7) with

_the parameter choice (3.8).
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L - apPERDIX, A

THE 30 TRANSVERSE PLASMON, DERIWMON A;:CORDING 10 THE SELF- CONSISTENT
; NEAR RESPONSE METHOD,\/\W , 8

In the 3D case the 1ined” Pesponse of the transverse Current is

- g1ven by L ’ﬁ’ ?
:" N ) 2 . —1 L
- 1 & 1 & -
t ! ‘ 1onat t
’ Jilksn) = - 8 545 * e By(k, ) Aglke) (A.1)
i (1,] =1,2,3)

A“g :

where Jt(k,u) is the ﬁour]er tfansfonn of the tnansverse curren; J th

3

~and’ D (Ew) isthe F.T. of the Petarded transverse current- C”rre”t )
"response function:;" ) o
\‘ ; ’ \
Y - 1 - = 19(t - ' fOtl s \Ot X ol
}5(% - Kt - ) (€=t 137 (0t)h 35760 8) T
, oy dke(x - - - t') otk
% N P (R ORI
(2-Y"~/ :
where 3 ot is. the, transverse part.of j? defined by (2.44). The vector
potential ?at1sf1es: ‘ s s // ©
: | 2 o) p N
A;?(E,u) = - ﬁi[(%* in)® - kz] JJ?(E,@) ‘ (A.3) "

where the external current nas Peen assumed to vanish. By using (A.3) to

eliminate A§»in (A.])‘the SeTf‘C°n515tent 11néar reSponse)equatiod

. becomes :° T L | B o o - ‘* 
R . .4' 2n ‘ vy 1
2 2 tm 1%4; 4n_ st (T tt
w4 . 8 - 8 . —= Di.(k,
[(C 171) k ] '|J me ' 13 f]CZ 1‘]( w) JJ(k,w)
5 ) ' :
N y -0 (A.2)



The 30 response function D?

.
. 2203 _)lf (ke - )9 Sinl-
ot (k.) - .5 (k) /dq ?f
ij 3 3 ijt ) - - 2 2 2 v
(2-)"m hk-q .y . (hkC
~ - m + 1 ) ( Zm)
e / 22 -
g » ﬁkk en h
¥ . = 1y F e 30 4
T s 5 = T (k) * 0(k") (A.5)
;;f"ﬁ' & ' - L
‘V:‘w . *

ﬂound w usmg (A 5) in (A.4)

‘V‘“ . . W

o o 2 2
w o ‘_*rre‘ Ay g () *.0,,,(_‘?4) ‘
B : ‘J' ) . . - ' &

ch agrees with the prev10us results of D, Bohm .and D. Pines (D. Bohm,

1951) and H. Matsumoto et. al. (H._Matsumoto, 1980).
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