
Massively Parallel Electromagnetic Transient Simulation of Large
Power Systems

by

Zhiyin Zhou

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Energy Systems

Department of Electrical and Computer Engineering
University of Alberta

c©Zhiyin Zhou, 2017

Abstract ii

Abstract

Electromagnetic transient (EMT) simulation, which is widely utilized in power system

planning and design, is one of the most complex power system studies that requires de-

tailed modeling of the study system including all frequency-dependent and nonlinear ef-

fects. Large-scale EMT simulation is becoming commonplace due to the increasing growth

and interconnection of power grids, and the need to study the impact of system events of

the wide area network. To cope with enormous computational burden, the massively pa-

rallel architecture of the graphics processing unit (GPU) is exploited in this work for large-

scale EMT simulation. A fine-grained network decomposition, called shattering network

decomposition, is proposed to divide the power system network exploiting its topological

and physical characteristics into linear and nonlinear networks, which adapt to the unique

features of the GPU-based massive thread computing system. Large-scale systems, up to

240,000 nodes, with typical components, including synchronous machines, transformers,

transmission lines and nonlinear elements, are tested and compared with mainstream si-

mulation software to verify the accuracy and demonstrate the speed-up improvement with

respect to sequential computation.

Power electronic devices are widely utilized in modern power grid, especially for

AC/DC converters in HVDC systems. The proposed fine-grained decomposition algo-

rithm can also be applied in the simulation of multiple levels modular multilevel converter

(MMC) consisting of Insulated Gate Bipolar Transistors (IGBTs) based on linear and non-

linear switch models, which effectively enhances the simulation performance and extends

the system scale by parallelizing the calculation and maintaining the convergence during

the computation.

Preface iii

Preface

This thesis is an original work by Zhiyin Zhou. As described in the following, several

chapters in this thesis have been published or submitted as journal articles. My supervisor,

Dr. Venkata Dinavahi has provided me with instructive comments and corrections during

the research and the manuscript composition.

Chapter 3 of this thesis has been published as: Z. Zhou and V. Dinavahi, “Parallel

massive-thread electromagnetic transient simulation on GPU,” IEEE Trans. Power Del.,

vol. 29, no. 3, pp. 1045-1053, June 2014.

Chapter 4 of this thesis has been accepted for publication (PETSJ-00058-2016.R2): Z.

Zhou and V. Dinavahi, “Fine-grained network decomposition for massively parallel elec-

tromagnetic transient simulation of large power systems,” IEEE Power and Energy Techno-

logy System Journal, vol. 4, no. 3, pp. 51-64, Sept. 2017.

Chapter 5 of this thesis has been accepted for publication (TPEL-REG-2017-02-0298.R1):

S. Yan, Z. Zhou and V. Dinavahi, “Large-scale nonlinear device-Level power electronic cir-

cuit simulation on massively parallel graphics processing architectures,” IEEE Transaction

on Power Electronics, pp. 1-19, July 2017.

Chapter 6 of this thesis has been published as: V. Jalili-Marandi, Z. Zhou and V. Di-

navahi, “Large-scale transient stability simulation of electrical power systems on parallel

GPUs,” IEEE Trans. Parallel and Distrib. Syst., vol. 23, no. 7, pp. 1255-1266, July 2012.

iv

To my parents and my families,

for their support as always.

Acknowledgements v

Acknowledgements

I would like to express my sincere thanks to my supervisor Dr. Venkata Dinavahi for his

full support, encouragement, and guidance for the years throughout my research at the

University of Alberta. His insightful guidance, passion and enthusiasm for the research

has been an invaluable motivation for my life.

It is an honor for me to extend my gratitude to my Ph.D. committee members for revie-

wing my thesis and providing invaluable comments. Special thanks go to my colleagues

and friends at the RTX-Lab: Yuan Chen, Jiadai Liu and Shenhao Yan.

Finally, financial help from NSERC, the University of Alberta, Government of the Province

of Alberta for my living in Edmonton during these years is greatly appreciated.

Table of Contents vi

Table of Contents

Abstract ii

Preface iii

Acknowledgements v

Table of Contents vi

List of Tables ix

List of Figures x

List of Acronyms xiii

1 Introduction 1

1.1 EMTP on CPU . 2

1.2 EMTP on GPU . 3

1.3 Parallel Performance . 4

1.3.1 Amdahl’s law . 4

1.3.2 Gustafson-Barsis’s law . 5

1.4 Motivation for this work . 6

1.5 Research Objectives . 7

1.6 Thesis Outline . 8

2 Computing System and Electrical Network 10

2.1 GPU-based computing system . 11

2.1.1 GP104 GPU . 11

2.1.2 CUDA Abstraction . 12

2.1.3 Performance Tuning . 16

2.2 Electrical Power Network . 18

vii

2.3 Summary . 19

3 Electromagnetic Transient Modeling 21

3.1 Synchronous Machine with Control System 21

3.2 Control System Interface . 24

3.3 Transformer with Magnetic Saturation . 25

3.4 Transmission Line . 27

3.5 Linear Passive Components . 30

3.6 Nonlinear Components . 32

3.7 Summary . 34

4 Shattering Network Decomposition 35

4.1 First-level decomposition (Coarse-grained) 38

4.2 Second-level decomposition (Fine-grained) 39

4.2.1 Compensation network decomposition 40

4.2.2 Jacobian domain decomposition . 50

4.3 Summary . 53

5 Power Electronic Circuit Decomposition 54

5.1 Modular Multi-Level Converter (MMC) and Control Strategy 55

5.1.1 Circuit Structure . 55

5.1.2 Control strategy . 57

5.2 Decomposition for Nonlinear Modeling MMC 58

5.2.1 Matrix trim based on relaxation domain decomposition 60

5.2.2 Partial LU Decomposition for MMC 61

5.2.3 Blocked Forward and Backward Substitution 66

5.3 Decomposition for Linear Modeling MMC 68

5.4 Summary . 69

6 Massively Parallel Implementation on GPUs 71

6.1 EMT Simulation Implementation on GPUs 71

6.1.1 Linear Side . 73

6.1.2 Nonlinear Side . 74

6.2 System Diagram . 75

6.3 Matrix LU Factorization and Inverse . 77

6.4 Nonlinear System Newton-Raphson Method 79

viii

6.5 Balance and Synchronization . 80

6.6 GUI . 81

6.7 Summary . 82

7 Simulation Case Studies 83

7.1 Case Study A . 84

7.2 Case Study B . 91

7.3 Case Study C . 95

7.4 Case Study D . 97

7.5 Summary . 99

8 Conclusions and Future Works 102

8.1 Contributions of Thesis . 102

8.2 Directions for Future Work . 103

Bibliography 104

A Appendix 112

A.1 Nonlinear Power Diode . 112

A.1.1 Model Formulation . 112

A.1.2 Model Discretization and Linearization 114

A.2 Nonlinear Physics-based IGBT . 115

A.2.1 Model Formulation . 115

A.2.1.1 Current Sources . 115

A.2.1.2 Charges and Capacitances 117

A.2.2 Model Discretization and Linearization 119

B Appendix 121

B.1 Parameters for Case Study A . 121

B.2 Parameters for Case Study B . 121

B.3 Parameters for Case Study D . 122

List of Tables ix

List of Tables

2.1 Specs comparison of NVIDIA’s GPUs . 11

2.2 Specs of CUDA Compute Capability 6.1 . 13

2.3 Memory bandwidth . 14

2.4 CUDA Libraries . 15

5.1 Capacitor states of SM . 56

5.2 Node mapping of Diodes and IGBTs in SM 59

7.1 Test system specification . 83

7.2 Comparison of execution time for various networks among CPU, single-

GPU and multi-GPU for simulation duration 100ms with time-step 20μs . . 91

7.3 Average execution time (ms) for one time-step 93

7.4 SaberRD�, CPU and GPU solution times of nonlinear systems. 96

7.5 Condition number of Jacobian matrix during Newton iteration 97

7.6 CPU and GPU execution times of 3-phase AC/DC converter for 0.5s dura-

tion with 10μs time-step. 101

List of Figures x

List of Figures

1.1 Amdahl’s law. 4

1.2 Gustafson-Barsis’s law. 5

2.1 Die, chip and device for NVIDIA� GP104 GPU. 11

2.2 Block diagram of the GP104 GPU [37]. 12

2.3 CUDA abstraction of device (GPU) and host (CPU) 13

2.4 CUDA compute performance related to the number of threads in one CUDA

Block. 16

2.5 Concurrent execution overlap for data transfer delay. 17

2.6 Sparsity of IEEE 39-bus power system. 18

3.1 Electrical side model of synchronous machine. 22

3.2 Mechanical side model of synchronous machine. 23

3.3 Electrical equivalent of mechanical side model. 23

3.4 Excitation control system. 24

3.5 Excitation control system. 25

3.6 Admittance based transformer model with saturation. 26

3.7 Frequency-dependent transmission line model. 28

3.8 Linear interpolation. 30

3.9 Linear passive component. 32

3.10 Nonlinear passive component. 33

4.1 Shattering network decomposition. 36

4.2 Propagation delay based partition. 37

4.3 Delay element equivalent circuit. 38

4.4 Fine-grained partition for LSs and NLSs. 40

4.5 Compensation network decomposition for LS. 41

4.6 Flowchart of compensation network decomposition. 47

xi

4.7 Y matrix transformation. 49

4.8 Jacobian domain decomposition for NLS. 51

5.1 MMC circuit structure. 55

5.2 MMC control strategy. 57

5.3 Node order of SM. 58

5.4 MMC Jacobian matrix trim. 62

5.5 LU factorization. 63

5.6 Partial LU decomposition for J∗
MMC . 64

5.7 Blocked forward substitution. 66

5.8 Blocked backward substitution. 67

5.9 Linear behavior SM model based on functional switching. 69

6.1 Heterogeneous CPU-GPU execution. 71

6.2 Fine-grained EMT simulation work flow. 72

6.3 Concurrent execution with multiple streams. 74

6.4 System diagram of massively parallel EMT simulator 76

6.5 Massively parallel matrix inverse based on LU Factorization. 78

6.6 Mechanism of computational load balancing and event synchronization. . . 80

6.7 GUI for the fine-grained GPU-based EMT simulator. 81

7.1 Single-line diagram for Case Study A. 84

7.2 3-phase voltages comparison at Bus2 of Case Study A 85

7.3 3-phase currents comparison through Bus2 of Case Study A 86

7.4 3-phase voltages comparison at Bus3 of Case Study A. 87

7.5 Synchronous machine angle and torque of Case Study A. 88

7.6 Active power and reactive power of Case Study A. 89

7.7 Comparison of overlapped waveforms . 90

7.8 System scale extension for case study B. 92

7.9 Fine-grained decomposition for the 39-bus system. 93

7.10 Execution time and speedup for varying scales of test networks on CPU, 1

GPU and 2 GPUs based programs compared to EMTP-RV�. 94

7.11 Nonlinear system solution time and speedup comparison. 96

7.12 Single-line diagram for Case Study D. 97

7.13 3-phase output Voltages of 17-level MMC from GPU-based simulation . . . 98

xii

7.14 SM capacitor voltages of 17-level MMC from GPU-based simulation 99

7.15 3-phase output currents, P and Q of 17-level MMC from GPU-based simu-

lation. 100

7.16 Execution time and speedup of simulation for varying levels of MMC on

CPU, 1 GPU and 2 GPUs based programs. 101

A.1 (a) Physical structure of power diode, (b) Discretized and linearized equiva-

lent circuit of power diode. 113

A.2 (a) Phenomenological structure of IGBT, (b) Analog quivalent circuit of IGBT.

116

A.3 Discretized and linearized equivalent circuit of IGBT (IGBT-DLE). 118

List of Acronyms xiii

List of Acronyms

ATP Alternative Transients Program

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

CS Control System

CB Control Block

CN Connecting Network

DRAM Dynamic Random-Access Memory

EMT ElectroMagnetic Transients

EMTP ElectroMagnetic Transients Program

FFT Fast Fourier Transform

IGBT Insulated Gate Bipolar Transistor

GPC Graphic Processing Cluster

GPGPU General Purpose Computing on GPU

GPU Graphic Processing Unit

GUI Graphical User Interface

HVDC High-Voltage, Direct Current

LU Lower Upper

LS Linear Subsystem

LB Linear Block

MMC Modular Multilevel Converter

NLS NonLinear Subsystem

NLB NonLinear Block

OS Operation System

PCIe Peripheral Component Interconnect Express

SIMD Single Instruction Multiple Data

List of Acronyms xiv

SIMT Single Instruction Multiple Thread

SM Streaming Multiprocessor

ULM Universal Line Module

UMM Universal Machine Module

Chapter 1. Introduction 1

1
Introduction

Computer simulation plays an essential role in modern power system design and analysis.

The electromagnetic transient program (EMTP) [1], which analyzes the temporary electro-

magnetic phenomena in both off-line and real-time [2], such as changes of voltage, current

and flux in a short time slice induced by switching, surges, faults, lightning strike or any

other disturbances in the network [3], moreover, is also indispensable for the planning,

construction and operation of realistic electrical generation, transmission and distribution

facilities in power systems, which is one of the most complicated large-scale network. Due

to the versatility of EMT simulation tools, various power devices and components, in-

cluding generators, transformers, transmission lines, loads, power electronic devices and

control systems, are modeled using linear and nonlinear detailed models, which are calcu-

lated by discretized numerical methods such as Trapezoidal rule, and iterative solutions

such as the Newton-Raphson method. Not only steady-state but also dynamic phenomena

of the power system can be presented and studied with EMT simulation tools using the

above models [4].

Along with the extending size of power system scale and the consequent increase in

computational burden, the computing capability of CPU-based single thread EMT sequen-

tial program lags the requirement of computational power for large-scale power system

simulation. Since the clock speed is reaching the ceiling and the chip power dissipation

is constrained by fabrication, the computing ability of the single CPU core is closing to

saturation. Therefore, an evolution of high performance computing is looming ahead, es-

Chapter 1. Introduction 2

pecially for the EMT simulation of power system.

1.1 EMTP on CPU

For the large-scale power system EMT simulation, off-line method is studied other than

real-time mode in this work since the real-time simulation normally focuses on a specific

study zone of the system; however, the off-line simulation will cover all buses and compo-

nents over the system. Mainstream off-line EMT tools, such as ATP [5], PSCAD/EMTDC�

[6], EMTP-RV� [7] and etc., developed over several decades, are routinely used in the

power and energy industries, to study transient and dynamic phenomena over a wide fre-

quency range [8]. These simulation tools comprise of extensive libraries of power system

equipment models to accommodate most physical phenomena of practical significance.

The typical components modeled in EMT simulation are as follows,

• For 3-phase synchronous machines, universal machine model [9] can represent it

with multiple windings on rotor d-axis and q-axis. The conventional mass-shaft sy-

stem representation for mechanical part is equivalent to an electrical circuit modeling

the mechanical part, which can be solved by the same discretization as electrical part.

• The transformer can be modeled by the admittance-based model [10] with nonli-

near magnetic saturation representation by connecting an additional nonlinear in-

ductance.

• The transmission line modeled by the universal line model [11] can be calculated in

time-domain instead of phase-domain with frequency dependence. However, the

numerical convolution has to be involved, which absorbs large amount of computa-

tional power.

• The linear passive loads, such as resistor, capacitor and inductor, can be modeled as

a unified combination of a admittance and a history current source in parallel.

• The nonlinear relationship between valuables in the nonlinear component can be ex-

pressed as analytical equations or piecewise functions, which are solved by Newton-

Raphson iterative method.

• The HVDC AC/DC converter, containing the modular multilevel converter (MMC)

structure, is made of a series of submodules, which contains high frequency swit-

Chapter 1. Introduction 3

ching power electronic devices, such as IGBT and Diode, modeled using physics-

based or behavior models.

• Since the control systems for normal power circuit and high speed power electro-

nic devices are in different sample rates, interfaces are required to synchronize the

computation.

Due to the detailed, high-order and nonlinear models applied, the performance of

mainstream EMT tools is bound by the sequential programing based on the CPU, running

on a closely saturated clock frequency, when the network size becomes large. Meanw-

hile, the sparsity of the system matrix is increasing rapidly along with the system scale,

which burdens the computational efficiency seriously. The traditional way to handle this

situation is to create a large-scale sparse system matrix describing the physical electrical

network, and then use a mathematical method for its solution [12].

1.2 EMTP on GPU

The graphics processing unit (GPU) is originally designed to accelerate the computation

for video and graphic processing which require a great amount of lighting, triangle and

rendering calculation. Thus, it has a large number of processing units working similarly,

which are independent of the CPU. Based on the massive cores architecture of GPU, it

brings supercomputing for the masses, which has been described by many developers and

researchers in various compute, analysis and simulation fields [13–15]. The application of

high performance computing technology, such as multi-core CPU and many-core GPU, for

solving large-scale power system problems, especially for dynamic and transient analysis,

is on the rise.

There have already been contributions made in transient stability, dynamic state esti-

mation, electromagnetic transient simulation, and power flow calculation fields [16–25].

For EMT simulation, while there have been efforts to develop massively parallel models

for linear passive elements and frequency-dependent elements, a comprehensive treat-

ment of transients in nonlinear elements using a fully iterative solution for large systems

is a desired and yet to be achieved objective. As a compute-intensive job, the electromag-

netic transient simulation in electrical system is also an excellent problem for GPU appli-

cation [24], though there are only linear and basic models applied without detailed and

frequency-dependent features included. Moreover, In order to increase the parallelism of

Chapter 1. Introduction 4

1 2 4 8 16 32 64 128 256 512 1024
1

2

3

4

5

6

7

8

9

10

Number of threads

S
pe

ed
up

P=90%
P=80%
P=70%
P=60%
P=50%
P=40%
P=30%
P=20%
P=10%

Figure 1.1: Amdahl’s law.

the calculation, duplicated circuit structure and precalculated matrix inverse are applied,

which seriously impacts the utilization of the designed GPU-based EMT simulator.

1.3 Parallel Performance

In order to approximate the performance in parallel computation, there are two basic cri-

teria giving the theoretical speedup in latency of the execution. One is Amdahl’s law and

the other is Gustafson-Barsis’s law, which address the problem in different scopes.

1.3.1 Amdahl’s law

Amdahl’s law, based on the assumption of a fixed workload, gives the formula in (1.1) as

follows,

S =
1

(1− P) + P/N
(P ∈ [0, 1]), (1.1)

where S is the execution speedup, P is the parallel portion of the whole computation, and

N is the number of threads [26]. According to the above equation (1.1), the maximum

performance that a parallel system can achieve is bound by the portion of parallel part

in the whole task. No matter how many computing resources N are obtained, the max

speedup S has a limitation respecting the parallel portion P . In the plotted Fig. 1.1, the

speedup can never reach 2 when the portion rate is lower than 50%, even if the number of

Chapter 1. Introduction 5

1 128 256 384 512 640 768 896 1,024

0

200

400

600

800

1,000

Number of threads

S
pe

ed
up

P=90%
P=80%
P=70%
P=60%
P=50%
P=40%
P=30%
P=20%
P=10%

Figure 1.2: Gustafson-Barsis’s law.

threads is given as many as 1024. Considering the unlimited resource,

N →∞, P/N → 0, (1.2)

the theoretical max performance is obtained as,

Smax =
1

1− P
(P ∈ [0, 1]), (1.3)

which shows that the maximum speedup of a fixed size problem is decided by the paralle-

lism of the problem itself instead of the hardware resources of parallel computing system.

Therefore, increasing the parallel proportion is the key to optimize a fixed size problem in

parallel computing.

1.3.2 Gustafson-Barsis’s law

Different from Amdahl’s law, in Gustafson-Barsis’s law, the workload of problem is assu-

med to keep increasing to fulfill the existing computing resource, which is given as,

S = (1− P) +N ∗ P (P ∈ [0, 1]), (1.4)

where S is the execution speedup, P is the parallel portion of the whole computation, and

N is the number of threads [27]. With above formula (1.4), the overall performance of the

parallel computing system will continue climbing, only if enough computing resources

are offered, whereas, the parallel proportion of the problem only influences the difficulty

of reaching the higher speedup. For example, to obtain 200 times acceleration, it needs 256

Chapter 1. Introduction 6

threads when the portion rate is 80%, however, it requires 1000 threads when the portion

rate is only 20%. Therefore, the performance enhancement of a parallel system is unlimited

when the computation acquires enough computing resources for an open problem.

For large-scale parallel EMT simulation, the system parallelism can be improved by

dividing the large system into smaller subsystems as possible, thus more computing re-

sources can be involved in the computation, calculating all those subsystems simultane-

ously to increase the maximum possible speedup according to Amdahl’s law. On the other

hand, the optimization of parallelism has a limitation: in that case, the whole workload,

that is the power system scale, can be increased to promote the utilization of computing re-

source following Gustafson-Barsis’s law. Therefore, by complying with both laws, the per-

formance of parallel EMT simulation will obtain the substantial growth via fine-grained

system decomposition and system scale extension.

1.4 Motivation for this work

The single instruction multiple thread (SIMT), which is derived from single instruction

multiple data (SIMD), provides the ability of branching, whereas the GPU has lightweight

cores and coalescent memory. Therefore, the irregularity and unpredictability of the sparse

construction seriously sabotages the SIMT execution and access efficiency of GPU cores

compared with a multi-core CPU-based sparse algorithm. Transferring the physical circuit

problem to the mathematical equations solved by a sparse algorithm is complicated to

implement on GPU because of numerous random data access; and extends the number of

iterations since Newton’s iterative method is sensitive to initial values.

An alternative solution for SIMT execution is to partition the large system into simi-

lar small parts, which increases the rate of parallelism and the speed of convergence of

solution for nonlinear systems using Newton iterations [28]. Exploiting the interface and

boundary type sharing between subsystems, domain decomposition methods were pro-

posed for parallel processing, such as Schur complement [29], additive Schwarz and mul-

tiplicative Schwarz method [30], which solve the system iteratively. Waveform relaxation

methods, similarly, were developed for solving large sparse linear and nonlinear numeri-

cal systems iteratively [31]. In addition to the various pure mathematical methods, a large

circuit can also be broken down into small parts based on its topology and physical cha-

racteristics. Diakoptics, introduced by G. Kron [32], showed that the method of system

tearing can be a combination of equations and topology, and was further developed and

Chapter 1. Introduction 7

systematized as a method to decompose electrical circuits [33, 34]. Taking into account the

interconnection among subsystems, the system matrix exhibits a special bordered block

diagonal pattern after transformation and reorganization, which enables parallelism for

the system solution.

This work proposes a fine-grained decomposition method for sparse linear and nonli-

near networks for large-scale EMT simulation implemented on a GPU-based parallel com-

puting system. Considering the EMT simulation with detailed, nonlinear component mo-

dels and the particular features of GPU-based computing, the large-scale sparse linear sy-

stem, (which requires numerous random access and lowers data processing density) and

the wide ranging nonlinear solution, (which is slow to converge and expensive to synchro-

nize among threads) are still the main challenges of this work. Therefore, the partitioning

method employed is much fine-grained than usual and is named shattering decomposition in

this work. The compensation network decomposition method, evolving from diakoptics,

is utilized to solve the partitioned linear system in parallel without iteration . The Jacobian

domain decomposition method is proposed to decouple the nonlinear system to be solved

by Newton-Raphson method iteratively.

1.5 Research Objectives

The objectives to be accomplished in developing the GPU-based massively parallel pro-

gram for EMT simulation are listed as follows:

• To develop the GPU-based parallel EMT algorithm for the synchronous machine ba-

sed on the universal machine model. The mechanical part is equivalent to a electrical

circuit, which can also be represented as EMT power components’ models.

• To develop the massively parallel algorithm of admittance-based model on the GPU

for transformer, and the magnetic saturation effect is represented by a nonlinear in-

ductance.

• To develop the massively parallel algorithm of universal line model for transmission

line with frequency dependence. The parallel numerical convocation is implement

due to the time-domain modeling.

• To design the massively parallel unified linear passive element model on GPU for

common linear power system components, such as resisters, capacitors, inductors

and breakers.

Chapter 1. Introduction 8

• To partition the large power network by shattering decomposition, which includes

two levels. The first level is coarse-grained and the second level is fine-grained.

• In the fine-grained level, to use compensation network decomposition for linear

network and Jacobian domain decomposition for the Jacobian matrix in Newton-

Raphson method.

• To design the massively parallel matrix decomposition algorithm for LU factoriza-

tion.

• To design the massively parallel linear system solver based on LU factorization with

forward-backward substitution for the decomposed power network.

• To design the massively parallel Newton-Raphson method for the solution of nonli-

near components, such as lightening arrestor and nonlinear inductors.

• To design the decomposition scheme for the Jacobian matrix of MMC AC/DC con-

verter based on Jacobian domain decomposition.

• To solve the MMC AC/DC converter based on the nonlinear device-level and linear

behavior-based models in massively parallel, using proposed fine-grained decompo-

sition for nonlinear and linear modeling respectively.

• The performance of the GPU-based massively parallel EMT simulation is evaluated

for accuracy, computational efficiency and scalability, using a series of test power

systems in different scales. The results and execution times are compared with the

CPU-based EMT simulation using the same method and the mainstream commercial

EMT simulation tools.

1.6 Thesis Outline

The thesis consists of six chapters. Other chapters are organized as follows:

• Chapter 2 introduces the general features of the GPU-Based computing system, in-

cluding background, structure and technology; and the developing environment,

CUDA architecture. This chapter also describes the important characteristics of elec-

trical power systems which will influence the performance of parallel simulation.

Chapter 1. Introduction 9

• Chapter 3 describes the typical components modeling, such as synchronous machine,

transformer, transmission line, loads and control system with linear and nonlinear

features. Trapezoidal rule is applied to discretize the differential and integral equa-

tions; and then, the discretized equations are solved to find the network solutions.

• Chapter 4 gives the methods of shattering decomposition for linear and nonlinear

systems, which consist two levels: the first level is coarse-grained one based on pro-

pagation delay; and the second level is fine-grained one based on circuit topology

analysis.

• Chapter 5 demonstrates the application of the fine-grained decomposition on the

MMC AC/DC converter, which is a strongly coupled power electronic network ba-

sed on nonlinear and linear modeling.

• Chapter 6 explains the algorithms and implementations of the entire EMT simulation

on a multi-GPU computing system.

• Chapter 7 includes four case studies, which show, compare and analyze the experi-

mental results for various large-scale test systems.

• Chapter 8 gives the conclusions and future work.

2
Computing System and Electrical Network

Equipped with thousands of cores and possessing massive parallelism, the GPU has alre-

ady shown its power in parallel computing because of its native massive processing cores,

high memory bandwidth and outstanding floating point capability, so that it becomes the

natural heart of massively parallel computing system. As the cradle of GPGPU, NVIDIA�

developed generations of GPU architecture from Tesla, Fermi, Kepler, Maxwell to Pas-

cal. Pascal is the most advantageous architecture released by NVIDIA� in 2016, which

obtained far more improvement than its predecessor in performance and efficiency [35].

Meanwhile, the software developing environment, named the compute unified device ar-

chitecture (CUDATM), was also evolved along with the hardware architecture to support

the novel features, of which the compute capability indicating the version of supported

features in parallel computation is updated to 6.x up to now [36]. In this work, Pascal

architecture GPU with CUDA compute capability version 6.x is utilized to implement the

massively parallel EMT simulation.

Different from the conventional CPU-based computing, GPU-based computing has

some special requirements of the target, such as data flow, memory arrangement and task

division, which associates with the natural characteristics of electrical power network. Ta-

king advantage of these characteristics can effectively help deploy the massive parallelism

and improve the efficiency.

Chapter 2. Computing System and Electrical Network 11

Figure 2.1: Die, chip and device for NVIDIA� GP104 GPU.

2.1 GPU-based computing system

2.1.1 GP104 GPU

The NVIDIA� GP104 GPU is based on Pascal architecture, which is comprised of 7.2 bil-

lion transistors on 314 mm2 die using 16nm fin field-effect transistor (FinFET) manufactu-

ring process that provides higher performance and improves power efficiency at the same.

Table 2.1: Specs comparison of NVIDIA’s GPUs

GPU Kepler GK104 Maxwell GM204 Pascal GP104

GPU clock (MHz) 1006 1226 1607
SMs 8 16 20
Cores 1536 2048 2560
Memory (GB) 4 4 8
Memory clock (GT/s) 6 7 10
Bandwidth (GB/s 192 224 320
GFLOPS 3090 4612 8228
Transistors (billion) 3.54 5.2 7.2
Die size (mm2) 294 398 314
Fabrication (nm) 28 28 16
TDP (W) 195 165 180

Chapter 2. Computing System and Electrical Network 12

(a) GPU (b) SM

Figure 2.2: Block diagram of the GP104 GPU [37].

Fig. 2.1 shows the die image, chip package and the card device of the GP104 GPU. It featu-

res 20 streaming multiprocessors (SMs) containing 2560 cores, 8 32-bit memory controllers

(256-bit total) providing 320 GB/s memory bandwidth, and 8 GB memory. The GPU cores

run at 1607 MHz, and the DDR5 memory offers 10 GT/s data transfer rate. The Table 2.1

provides the comparison of GP104 versus its predecessors, GM204 and GK104. The block

diagram of the GP104 GPU is shown in Fig. 2.2(a). There are 4 graphics processing clusters

(GPCs), and each GPC has 5 SMs. As shown in Fig. 2.2(b), each SM contains 128 cores, 256

KB register, 96 KB shared memory, 48 KB L1 cache, and 1 warp scheduler which manage

the execution of 32 threads in group [37].

2.1.2 CUDA Abstraction

CUDA is a parallel computing software platform, besides C++ Accelerated Massive Paral-

lelism (C++ AMP), open computing language (OpenCLTM) and etc., introduced by NVIDIA�

to access the parallel resources of the GPU. It offers application programming interfa-

ces (APIs), libraries and compiler for software developers to use GPU for general pur-

pose processing (GPGPU). With CUDA runtime, the GPU architectures are abstracted into

CUDA specs, which decide how to map the parallel requests to hardware entities when

the GPGPU program is being developed. It provides a unified interface for CUDA sup-

ported GPU according to the compute capability version regardless of the different details

Chapter 2. Computing System and Electrical Network 13

Host
Memory

Core0

Core1

Coren

Multicore
CPU

Gridn

Execution Queue

Blockn
Warp

Thread0
Thread1
Thread2
Thread3
Thread4

Threadn

Selectable
L1 Cache

Hardware L2 Cache

Device Memory

Grid1

Execution Queue

Hardware L2 Cache

Device Memory

Grid0

Execution Queue

Block0

Warp

Thread0
Thread1
Thread2
Thread3
Thread4

Threadn

Shared Men
/ Cache

Block1

Warp

Thread0
Thread1
Thread2
Thread3
Thread4

Threadn

Shared Men
/ Cache

Blockn

Warp

Thread0
Thread1
Thread2
Thread3
Thread4

Threadn

Shared Men
/ Cache

Hardware L2 Cache

Global Memory

P
C

Ie
B

us

Figure 2.3: CUDA abstraction of device (GPU) and host (CPU)

of each generation device. Thus, the programmer can only focus on their algorithm design

and need not concern themselves about the GPU hardware too much. Based on the CUDA

attraction, the whole parallel computing platform including CUP and GPU is described

as a host-device system, as shown in Fig. 2.3. When developing parallel application with

Table 2.2: Specs of CUDA Compute Capability 6.1

Device GeForce GTX 1080

Total amount of global memory 8192 MB
CUDA Cores 2560
Total amount of constant memory 64 KB
Total amount of shared memory per block 48 KB
Total number of registers per block 64 K
Warp size 32
Maximum number of threads per block 1024
Max dimension size of a thread block (x,y,z) (1024, 1024, 64)
Max dimension size of a grid size (x,y,z) (2 G, 64 K, 64 K)
Concurrent copy and kernel execution Yes, with 2 copy engines

Chapter 2. Computing System and Electrical Network 14

Table 2.3: Memory bandwidth

Type Bandwidth

Host to Device 6GB/s∗

Global Memory 226GB/s
Shared Memory 2.6TB/s
Cores 5TB/s

CUDA, the programmer follows the standard of the CUDA capability given by the NVI-

DIA driver, such as 6.1 used in this work, which defines thread hierarchy and memory

organization, as listed in Table 2.2. Since each generation GPU hardware is binded with

specific CUDA version, the configuration of parallel computing resource including threads

and memory running on GPU is based on the CUDA capability version.

Different from the heavyweight cores in multi-core CPU whose threads are almost in-

dependent workers, the threads in SIMT GPU are numerous but lightweight. Thus, the

performance of GPU-based computation depends to a great extent on the workload dis-

tribution and resource utilization. The C-extended functions in CUDA, called kernel, runs

on GPU, device side, in parallel by different threads controlled by CPU, host side [36]. All

threads are grouped into blocks and then grids. Each GPU device presents itself as a grid, in

which there are up to 32 active blocks [35]. The threads in a block are grouped by warps.

There are up to 4 active warps per block. Although a block maximally supports 1024 thre-

ads, only up to 32 threads in one warp can run simultaneously. The initial data in device

are copied from host through PCIe bus, and the results also have to be transfered back to

host via PCIe bus again, which causes serial delay.

There are 3 major types of memory in CUDA abstraction: global memory, which is

large and can be accessed by both host and device; shared memory, which is small, can be

accessed by all threads in a block, and is even faster than global one; registers, which is

limited, can only be accessed by each thread, and is the fastest one. Although the global

memories have high bandwidth, the data exchange channel, PCIe bus, between host and

device is slow; thus avoiding those transfers unless they are absolutely necessary is vital for

computational efficiency. Table 2.3 lists the typical bandwidth of major memory types in

CUDA.

Besides that the compiler is extended to the industry-standard programming langua-

ges including C, C++ and Fortran for general programmers, CUDA platform offers the

∗The PCIe interface is reduced to ×8 instead of ×16 due to multiple PCIE devices

Chapter 2. Computing System and Electrical Network 15

interfaces to other computing platforms, including OpenCL, DirectCompute OpenGL and

C++ AMP. In addition, CUDA is supported by various languages, such as Python, Perl,

Java, Ruby, MATLAB and etc., as a third part plug-in. CUDA toolkits also comes with

the following libraries as listed in Table 2.4. Developers can choose some of libraries on-

demand to simplify their programming.

Table 2.4: CUDA Libraries
Library Description

CUBLAS CUDA Basic Linear Algebra Subroutines
CUDART CUDA RunTime
CUFFT CUDA Fast Fourier Transform library
CUSOLVER CUDA based collection of dense and sparse direct solvers
CUSPARSE CUDA Sparse Matrix

CUDA C/C++, which is used in this work, extends C by define a C-like function called

kernel to invoke parallel execution on the GPU by deploying the execution configuration

for dimensions of thread, block and grid before the kernel is called. The configuration

information can be retrieved inside the function by the Built-in Variables, including grid-

Dim, blockIdx, blockDim and threadIdx.

There are different types of functions classified by type qualifiers in CUDA, such as

device , global and host .

The device qualifier declared function is

• executed on the device,

• callable from the device only.

The global qualifier declared function is

• executed on the device,

• callable from the host or device,

• eeturned void type,

• specified execution configuration,

• asynchronous execution.

The host qualifier declared function is

• executed on the host,

• callable from the host only.

According above criterion, a global function cannot be host .

Similarly, the variables are also classified by type qualifiers in CUDA, such as device ,

constant and shared .

Chapter 2. Computing System and Electrical Network 16

0 128 256 384 512 640 768 896 1,024

1

2

3

Number of threads

Ti
m

e
(μ

s)

0 16 32 48 64 80 96 112 128

1

1.02

1.04

Figure 2.4: CUDA compute performance related to the number of threads in one CUDA
Block.

The device qualifier declared valuable is

• located in global memory on the device,

• accessible from all the threads within the grid.

The constant qualifier declared function is

• located in constant memory space on the device,

• accessible from all the threads within the grid.

The shared qualifier declared function is

• located in the shared memory space of a thread block,

• accessible from all the threads within the block.

device and constant valuables have the lifetime of an application, while shared

valuable has the lifetime of the block. [36]

2.1.3 Performance Tuning

As shown in Fig. 2.4, the first inner level step characteristic (zoomed-in balloon) shows

32 threads working in parallel, while the second outer level step characteristic shows 4

active warps in parallel to make up the total 128 executing threads. Therefore, lowering

occupation in one block as well as raising some number of blocks with the same total

number of threads is an optimal way to increase efficiency. In each block, there is 48KB

of shared memory which is roughly 10x faster and has 100x lower latency than uncached

global memory, whereas each thread has up to 255 registers running at the same speed

as the cores. The overwhelming performance improvement was shown with avoiding

and optimizing communication for parallel numerical linear algebra algorithms in various

supercomputing platforms including GPU [38]. Making a full play of this critical resource

Chapter 2. Computing System and Electrical Network 17

Two Copy Engines Overlap

Copy Engine2

Kernel Engine

Copy Engine1 H-D1

ES1

D-H1

H-D2

ES2

D-H2

H-D3

ES3

D-H3

H-D4

ES4

D-H4

One Copy Engine Overlap

Kernel Engine

Copy Engine H-D1

ES1

D-H1H-D2

ES2

D-H2H-D3

ES3

D-H3H-D4

ES4

D-H4

Sequential Concurrent

Kernel Engine

Copy Engine H-D1

ES1

D-H1H-D2

ES2

D-H2H-D3

ES3

D-H3H-D4

ES4

D-H4

Non-concurrent

Kernel Engine

Copy Engine Host to Device (H-D)

Execute Steam (ES)

Device to Host (D-H)

Figure 2.5: Concurrent execution overlap for data transfer delay.

can significantly increase the efficiency of computation, which requires the user to scale

the problem perfectly and unroll the for loops in a particular way [39].

In addition to one task being accelerated by many threads, concurrent execution is also

supported on GPU. As shown in Fig. 2.5, the typical non-concurrent kernel is in 3 steps

with one copy engine GPU:

• Copy data from host to device first by Copy Engine;

• Execute in the default Stream by Kernel Engine;

• Copy results back to host from device by Copy Engine.

The calculation can also be finished by multiple streams. In sequential concurrent, the

performance is the same as Non-concurrent; however, different streams can run in overlap,

thus, the calculation time can be completely hidden with one copy engine. Furthermore,

the maximum performance can be reached using the hardware with two copy engines,

where most of the time of data transfer is covered, and the device memory limitation is

effectively relieved since the runtime device memory usage is divided by multiple streams.

According to CUDA compute capability specs, version 6.1 supports concurrent copy and

kernel execution with 2 copy engines.

Chapter 2. Computing System and Electrical Network 18

2.2 Electrical Power Network

(a) 39-bus network

0 9 18 27 36 45 54 63 72 81 90 99 108 117
0

9

18

27

36

45

54

63

72

81

90

99

108

117

(b) Admittance matrix (Y)

Figure 2.6: Sparsity of IEEE 39-bus power system.

Similar to most electrical circuits, the electrical power network transmitting energy

Chapter 2. Computing System and Electrical Network 19

from end to end is a sparse system, where each element (component) only links with few

other elements (component) nearby. Fig. 2.6 shows the sparsity pattern of IEEE 39-bus

power system, where each dot represents link between two nodes. There are 117 nodes in

total since all 39 buses are 3-phase. In order to avoid dealing with this sparsity during the

computation, especially when the scale of network is considerably large, the fine-grained

decomposition is applied during the simulation. Although the ideal target is to tear the sy-

stem into component level pieces, such as bus-by-bus, for EMT simulation such a partition

scheme would cause extra computing effort normally, such as data communication and

connection networks. The simulation performance relating to the scale of the subsystem

has a step effect due to the warp execution of CUDA, which means it has the same per-

formance within every 32-thread (1-warp) enlargement, and similar performance within

every 4-warp increasing step. Therefore, sparsity can be ignored in each warp, and the

scale of the subsystems can be manipulated to meet the maximum size of the warp.

Thinking of partitioning and reorganizing the power network, there are two types of

components are considered for decoupling the network. One type has non-negligible sin-

gle propagation delay from one node to other node like transmission line. When the delay

is larger than the EMT simulation time-step, the subnetworks linked by this type of com-

ponent are natively decoupled for time discretized numerical method. The other type is

at the border of subnetworks since a large power network is comprised by connecting a

series of small subnetworks. If the calculation of this type of border components can be se-

parated from the overall network solution, the solutions of subnetworks are decoupled in

numerical computation and can run in parallel. The fine-grained decomposition to handle

this problem is detailed in Chapter 4.

2.3 Summary

In this chapter, the main features about the computing system and electrical power net-

work relating to the massively parallel EMT simulation are introduced. The Pascal archi-

tecture GPU, GP104, ships 7.2 billion transistors with 16 nm fabrication to offer 2560 cores

grouped into 20 SMs running under 1607 MHz and carrying 8 GB memory, which shows

much more computational power than its predecessors. Meanwhile, the CUDA compute

capability version 6.1 demonstrates a substantial and consolidated spec for GPU-based

massively parallel EMT simulation. The important characteristics of the computing sy-

stem, including massive cores, SIMT execution, memory bandwidth, CUDA abstract and

Chapter 2. Computing System and Electrical Network 20

concurrent engines; and features of electrical power network, such as sparse structure and

interconnection topology, will be considered and utilized to implement and optimize the

GPU-based massively parallel EMT simulation.

3
Electromagnetic Transient Modeling

The proposed GPU-based EMT massively parallel simulation includes typical electrical

power devices and components to build up a realistic-size power system. In order to pre-

sent the simulation performance on GPU-based massively parallelism, they are modeled

in detailed, frequency-dependent or lump with linear and nonlinear features. Because po-

wer electronic devices contain high-frequency switching characteristics, they are discussed

separately in Charter 5.

In modern electrical networks, the classical components include synchronous machi-

nes with control systems, transformers, transmission lines, and linear and nonlinear pas-

sive elements. Although the purpose of this work is to show the compute acceleration of

fine-grained parallel EMT nonlinear simulation, detailed models are used to realize the

computing power of the GPU. The basic theory of the electromagnetic transient program

is to discretize the differential and integral equations in electrical circuits by Trapezoidal

rule; and then to solve them repeatedly to find the numerical time-domain solutions, such

as voltages and currents [8].

3.1 Synchronous Machine with Control System

The universal machine model provides a unified mathematical framework to represent

various types of rotating machines including synchronous, asynchronous and DC machine

[9]. As shown in Fig. 3.1, the electrical part of the synchronous machine includes 3 stator

armature windings {a, b, c}; one field winding f and up to 2 damper windings {D1,D2} on

Chapter 3. Electromagnetic Transient Modeling 22

Q1 Q2

D1

f

D2

Q3

Figure 3.1: Electrical side model of synchronous machine.

the rotor direct d-axis; and up to 3 damper windings {Q1,Q2,Q3} on the rotor quadrature

q-axis. The discretized winding equations after dq0 conversion are described as

vdq0(t) = −Ridq0(t)− 2

Δt
λdq0(t) + u(t) + V h, (3.1)

where R is the winding resistance, λdq0 are the flux linkages, u are speed voltages and Δt

is the simulation time-step. where RRR is the winding resistance matrix, and the flux linkage

λdq0 is given as

λdq0(t) = Lidq0(t), (3.2)

where L is the winding leakage inductance matrix given as

LLL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ld 0 0 Mdf MdD1 MdD2 0 0 0

0 Lq 0 0 0 0 MqQ1 MqQ2 MqQ3

0 0 L0 0 0 0 0 0 0

Mdf 0 0 Lf MfD1 MfD2 0 0 0

MdD1 0 0 MfD1 LD1 MD1D2 0 0 0

MdD2 0 0 MfD2 MD1D2 LD2 0 0 0

0 MqQ1 0 0 0 0 LQ1 MQ1Q2 MQ1Q3

0 MqQ2 0 0 0 0 MQ1Q2 LQ2 MQ2Q3

0 MqQ3 0 0 0 0 MQ1Q3 MQ2Q3 LQ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

Chapter 3. Electromagnetic Transient Modeling 23

J1
D1

J2
D2

J3
D3

J4
D4

J5
D5

J6
D6

Tgen TexcTturbine1

K12

D12

K23

D23

K34

D34

K45

D45

K56

D56

Tturbine2 Tturbine3 Tturbine4

Figure 3.2: Mechanical side model of synchronous machine.

GD

v

CJ

iTe

iTm GD

v

iTm IhCJ

iTe

GCJ

Figure 3.3: Electrical equivalent of mechanical side model.

with L and M standing for the self and mutual inductances respectively. In (3.1), the

vectors of voltages vvvdq0, currents iiidq0 and speed voltages uuu of the windings are expressed

as
vvvdq0

iiidq0

uuu

= [

= [

= [

vd

id

−ωλq

,

,

,

vq

iq

ωλd

,

,

,

v0

i0

0

,

,

,

vf

if

0

,

,

,

0

iD1

0

,

,

,

0

iD2

0

,

,

,

0

iQ1

0

,

,

,

0

iQ2

0

,

,

,

0

iQ3

0

],

],

];

the winding resistance matrix RRR is a diagonal matrix, given as

RRR = diag[Rd,Rq,R0,Rf ,RD1 ,RD2 ,RQ1 ,RQ2 ,RQ3];

and the history voltages V h in (3.1) are given as,

V h(t−Δt)=−vdq0(t−Δt)−Ridq0(t−Δt)+
2

Δt
λdq0(t−Δt)+u(t−Δt). (3.4)

The mass-shaft mechanical side model shown in Fig. 3.2 is represented as a linear

electrical equivalent, as shown in Fig. 3.3, thus the speed-torque equation (3.5) is updated

to voltage-current equation (3.6)

J
dω

dt
+Dω +K

∫
ωdt = Tturbine − Tgen/exc, (3.5)

iTm = CJ
dvω
dt

+GDvω + iTe , (3.6)

Chapter 3. Electromagnetic Transient Modeling 24

 + sTc
 + sTb

Ka
 + sTa + sTr

VT

Vref

Vs

Vmax

Vmin

Figure 3.4: Excitation control system.

where iTm , CJ , GD and vω represent the equivalent mechanical torque, inertia, damping

and rotor speed respectively [40]. The equivalent electromagnetic torque iTe , which inter-

faces to the electrical part, can be represented by the flux linkages λdq0 and the machine

currents idq0 as,

iTe = λdiq − λqid. (3.7)

Then the time discretization for linear passive elements is applied to (3.6), to obtain:

vω(t) =
iTm(t)− iTe(t)− IhCJ

(t−Δt)

GD +GCJ

, (3.8)

which merges the solution of mechanical part to that of the electrical part. The equivalent

conductance GCJ
is given as,

GCJ
= 2CJ/Δt. (3.9)

and the history term IhCJ
is given as,

IhCJ
(t−Δt) = −IhCJ

(t− 2Δt)− 2GCJ
vω(t−Δt). (3.10)

3.2 Control System Interface

Since the model of excitation control system, shown in Fig. 3.4, is different from that of

the electrical network, whose equations are difficult to be merged into the nodal analysis

equations in EMT simulation, they will be solved separately. On the other hand, the sample

time (Ts), used in control system is much larger than the time step:

Ts � Δt. (3.11)

Therefore, there is an interface between the two subsystems, as shown in Fig. 3.5. After

the machine network is solved, the solutions including voltages and currents are sent to

Chapter 3. Electromagnetic Transient Modeling 25

Ts

t

Figure 3.5: Excitation control system.

the excitation system, and then its solutions are calculated, which are in turn sent back to

the former in the next time-step of EMT computation. Since the excitation system appears

as almost static to the EMT network, the error introduced by the time delay inserted is

usually very small.

3.3 Transformer with Magnetic Saturation

The linear part of the transformer is modeled by admittance based model [10]. The n-

winding transformer for EMT simulation with winding resistance R and leakage induc-

tance L is represented as,

v = Ri+L
di

dt
, (3.12)

where R and L are n× n matrices, given as

R = diag{R1 R2 . . . Rn}, (3.13)

L =

⎡
⎢⎢⎢⎢⎣
L11 L12 . . . L1n

L21 L22 . . . L2n

...
...

. . .
...

Ln1 Ln2 . . . Lnn

⎤
⎥⎥⎥⎥⎦ , (3.14)

which are obtained from open and short circuit tests. In case of the three phase 2-winding

transformer, R and L are given as

Rabc
12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ra
1

Rb
1

Rc
1

Ra
2

Rb
2

Rc
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Labc

12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Laa
11 Lab

11 Lac
11 Laa

12

Lab
11 Lbb

11 Lbc
11 Lbb

12

Lac
11 Lbc

11 Lcc
11 Lcc

12

Laa
21 Laa

22 Lab
22 Lac

22

Lbb
21 Lab

22 Lbb
22 Lbc

22

Lcc
21 Lac

22 Lbc
22 Lcc

22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.15)

Applying trapezoidal rule, (3.12) is rewritten as,

i(t) = Geqv(t) + Ih(t−Δt), (3.16)

Chapter 3. Electromagnetic Transient Modeling 26

Figure 3.6: Admittance based transformer model with saturation.

where the equivalent admittance is given as,

Geq =
Δt

2
[I+

Δt

2
L−1R]−1L−1. (3.17)

and the history currents are expressed as,

Ih(t−Δt) = Geqv(t−Δt)

+ [I+
Δt

2
L−1R]−1[I− Δt

2
L−1R]i(t−Δt)

= Geqv(t−Δt) + (I− 2GeqR)i(t−Δt),

(3.18)

where I is the identity matrix. Expressed in term of v(t − Δt) and Ih(t − 2Δt), (3.18) is

updated as,

Ih(t−Δt) = 2(Geq −GeqRGeq)v(t−Δt)

+ (I− 2GeqR)Ih(t− 2Δt).
(3.19)

The saturation effect is represented by the extra nonlinear inductance connected to the

secondary winding, which is joined to the linear inductance matrix, as shown in Fig. 3.6.

The nonlinear inductance taking care of the saturation effect contains the nonlinear relation

between flux λ and branch current i, given as,

g(λ, i) = 0. (3.20)

On the other hand, the flux λ is the integral of node voltage v over a time-step,

λ(t) = λ(t−Δt) +

∫ t

t−Δt
v(u)du. (3.21)

Discretizing by Trapezoidal rule, we get,

λ(t) =
Δt

2
v(t) + Λh, (3.22)

Chapter 3. Electromagnetic Transient Modeling 27

where the history term Λh is defined as,

Λh(t−Δt) = λ((t−Δt) +
Δt

2
v(t−Δt). (3.23)

Thus, the relation found by substituting λ in (3.20) with (3.22) between voltage and current

of the nonlinear inductor is expressed as,

g(
Δt

2
v(t) + Λh, i) = 0. (3.24)

Since the nonlinear inductance is also connected to the linear network, the node equation

is given as,

GNv = i0 − i, (3.25)

where GN is the Norton admittance of the node which includes all admittance connects the

node, and i0 is the sum of all currents, except the current from the nonlinear component,

injecting to the node. i0 can be know or unknown, if there are multiple nonlinear compo-

nents connecting to the node, the number of unknown valuables and nonlinear equations

are added at the same time. Substituting i in (3.24) with

i = GNv − i0, (3.26)

from (3.25), the nonlinear function for Newton-Raphson method is obtained as,

F ≡ g(
Δt

2
v(t) + Λh,GNv − i0) = 0, (3.27)

And the Jacobian value is the partial derivative of F respect to v, as

J =
∂F

∂v
=

∂g(
Δt

2
v(t) + Λh,GNv − i0)

∂v
. (3.28)

With F and J , the iterative method is applied to find the node voltage when the algorithm

reaches converge.

3.4 Transmission Line

The universal line model (ULM) [11] is used for one of the most important components in

electrical circuit, transmission line, which can represent both symmetrical and asymmetri-

cal overhead lines and cables since it is constituted in the phase-domain directly. As shown

in Fig. 3.7, the long line is modeled by two separate circuits with admittance G and history

Chapter 3. Electromagnetic Transient Modeling 28

ik(t)

vk(t) vm(t)IkGk Gm
h Imh

im(t)rik

iik

rim

iim

Figure 3.7: Frequency-dependent transmission line model.

current source Ih, sending end ‘k’ and receiving end ‘m’, linked by traveling waves. The

KCL equation is expressed as,

ik(t) = GY vk(t)− Ihk, (3.29a)

im(t) = GY vm(t)− Ihm, (3.29b)

where the history currents Ih at the two ends of the line are expressed as

Ihk = Y ∗ vk(t)− 2iik, (3.30a)

Ihm = Y ∗ vm(t)− 2iim, (3.30b)

and the incident currents ii can be expressed by remote reflected currents ir as,

iik = H ∗ irm(t− τ), (3.31a)

iim = H ∗ irk(t− τ), (3.31b)

where Y and H are the characteristic admittance and the propagation matrices respecti-

vely, which are approximated by finite-order rational functions using the vector fitting

(VF) method [41]. In the phase domain, the general entry of Y is given as,

Y (i,j)(s) =

Np∑
m=1

rY (i,j)(m)

s− pY (m)
+ d(i, j), (3.32)

where rY , pY , d and Np are the residues, poles, proportional terms, and the number of

poles of Y respectively. Similarly, the general entry of H after fitting in multiple modes is

given as,

H(i,j)(s) =

Ng∑
k=1

⎡
⎣NNNp(k)∑

n=1

rrrH
(k)
(i,j)(n)

s− pppH (k)(n)

⎤
⎦ e−sτττ(k), (3.33)

Chapter 3. Electromagnetic Transient Modeling 29

where Ng is the number of modes; NNNp(k) and τττ(k) are numbers of poles and time delays

for fitting the kth mode; and rrrH
(k) and pppH

(k) are residues and poles for the kth mode. In

(3.30) and (3.31), the ‘∗’ denotes numerical complex matrix-vector convolution, which is

a trade-off between the simplification of model complexity and computational resources.

The admittance in (3.29) is given as,

GY = (
Δt

2
)/(1− pY

Δt

2
)rY + d, (3.34)

where rY , pY and d are the residues, poles and proportional terms of the vector fitting

respectively. The numerical convolution Y ∗ v(t) in (3.30) is defined as

Y ∗ v(t) = cY xY (t), (3.35)

where the coefficients cY are given as

cY = rY (αY + 1)λY , (3.36)

and the state variables xY are defined as

xY (t) = αY xY (t−Δt) + v(t−Δt) (3.37)

with the coefficients αY expressed as

αY = (1 + pY

Δt

2
)/(1− pY

Δt

2
). (3.38)

Similarly, the numerical convolution H ∗ ir(t− τ) in (3.31) is defined as

H ∗ ir(t− τ) = cHxH(t) +GHir(t− τ), (3.39)

where the coefficients cH are given as

cH = rH(αH + 1)λH ; (3.40)

and the state variables xH(t) are defined as

xH(t) = αHxH(t−Δt) + ir(t− τ −Δt), (3.41)

with the coefficients αH expressed as

αH = (1 + pH

Δt

2
)/(1− pH

Δt

2
). (3.42)

The propagation matrix GGGH in (3.39) is given as

GGGH =

Ng∑
1

rY λY . (3.43)

Chapter 3. Electromagnetic Transient Modeling 30

t-(N+2) t t-(N+1) t t-N tt-t- - t

t

ir(t-(N+2) t)

ir(t-(N+1) t)ir(t- - t)

ir(t-)

ir(t-N t)

t
(1-) t(1-) t

Figure 3.8: Linear interpolation.

In (3.31), there is a propagation time delay ’τ ’ between k and m ends. Since the wave

traveling time τ is not an integral multiple of the time step Δt normally, linear interpolation

is used to approximate the reflected current ir(t− τ) in (3.39) and ir(t− τ −Δt) in (3.41).

As shown in Fig. 3.8 the mean values, ir(t− τ −Δt) and ir(t− τ) are approximated by the

linear interpolation as

ir(t− τ −Δt) = (1− δ)ir(t− (N + 1)Δt) + δir(t− (N + 2)Δt), (3.44a)

ir(t− τ) = (1− δ)ir(t−NΔt) + δir(t− (N + 1)Δt), (3.44b)

where δ is the residue of τ divided by Δt, given as

δ = τ −
[τ

Δt

]
. (3.45)

3.5 Linear Passive Components

The linear passive components, such as resistor (R), inductor (L) and capacitor (C) have

linear current-voltage relations expressed as,

vR(t) = Ri(t), (3.46a)

vL(t) = L
di(t)

dt
, (3.46b)

vC(t) =
1

C

∫
i(t)dt. (3.46c)

Chapter 3. Electromagnetic Transient Modeling 31

Discretized by trapezoidal rule, we get

Ri(t) = vR(t), (3.47a)
2L

Δt
i(t) = vL(t) + V L

h (t−Δt), (3.47b)

Δt

2C
i(t) = vC(t) + V C

h (t−Δt), (3.47c)

where V L
h (t−Δt) and V C

h (t−Δt) are the history voltages which are updated by previous

results in every time-step, given as,

V L
h (t−Δt) = vL(t−Δt)− 2L

Δt
i(t−Δt), (3.48a)

V C
h (t−Δt) = −vC(t−Δt)− Δt

2C
i(t−Δt). (3.48b)

Considering that a general linear component has all R, L, C characters, 3 equations in (3.47)

are combined as,

Reqi(t) = v(t) + Vh, (3.49)

where Vh is the total history voltage, defined as,

Vh(t−Δt) = V L
h (t−Δt) + V C

h (t−Δt), (3.50)

and Req is the equivalent resistance, defined as,

Req = R+
2L

Δt
+

Δt

2C
= RR

eq +RL
eq +RC

eq. (3.51)

Denoting the equivalent admittance Geq as,

Geq =
1

Req
, (3.52)

and the history current Ih as,

Ih(t−Δt) = GeqVh(t−Δt), (3.53)

the KCL format equation of general linear passive component is given as,

i(t) = Geqv(t) + Ih(t−Δt), (3.54)

which is used for network node analysis method.

As shown in Fig. 3.9, the linear passive component, including resistor (R), inductor (L)

and capacitor (C) elements, can be represented as a unified circuit with equivalent admit-

tance (Geq), that can be calculated by the equivalent resistances (Req) from each elements,

Chapter 3. Electromagnetic Transient Modeling 32

i(t)

Ih vm(t)

Geq

vk(t)

Figure 3.9: Linear passive component.

and a virtual history current source (Ih), that can be updated by the history voltages (Vh)

from each elements respectively. In this case, the processing flow and equation pattern for

all linear passive elements are the same and similar, that is important and helpful to the

massively parallel computation on the GPU based on SIMT. Thus, the differential equati-

ons of L and C are discretized in time. Applying the network nodal analysis method to

create the circuit equation

Y v = i, (3.55)

the numerical solutions of the electrical circuit can be obtained by solving above linear

system (3.55).

3.6 Nonlinear Components

Besides linear passive elements, the nonlinear components, generally represented in Fig.

3.10, also appear in the EMT simulation often to obtain more accuracy results, such as

nonlinear resistor, inductor, capacitor, surge arrestor and so on, for which the voltage and

current relations are defined by a nonlinear function,

f(v, i) = 0, (3.56)

instead of linear Ohm’s law. Thus, a Newton type iteration method is involved to find

their solutions. Theoretically, the nonlinear solution will cover the whole network inclu-

ding the linear and nonlinear components even if there are only few nonlinear ones since

the system is nonlinear. However, applying the iterative solution to the allover network

would cost too much computation resource, bring convergence problem and reduce si-

mulation efficient. Therefore, a fine-grained decomposition method for linear network is

proposed in this work to trim the size of nonlinear subsystem. When the nonlinear subsys-

tems is decoupled with linear subsystems, only the linear components directly connecting

to the nonlinear component are included in the Newton iterations. Further more, when the

nonlinear subsystem has multiple nonlinear components strongly coupled each other, the

Chapter 3. Electromagnetic Transient Modeling 33

i(t) v(t)

f(v,i)=0

Figure 3.10: Nonlinear passive component.

extended Jacobian matrix also seriously lowers the simulation efficiency, weakens the con-

vergence and challenges the capability of computing system. In order to reduce the size

of Jacobian matrix and optimize the convergence, a decomposition method for Jacobian

matrix based on domain decomposition is proposed as well. The proposed fine-grained

network decomposition for both linear and nonlinear solution is detailed in Chapter 4, and

an application of its usage is described in Chapter 5.

Considering the nonlinear component, the nonlinear Newton function f can be found

combining with linear equation and nonlinear equation. For the latter one, there are two

methods normally used to describe the nonlinearity, which are analytical function and pie-

cewise function. If it is easy to find the derivative of the nonlinear mathematical equation,

such as the elementary function, the analytical function can be applied directly; however,

if some nonlinearity is described by the special function and difficult to obtain the deriva-

tive, the piecewise function is an effective replacement, which can reduce the computatio-

nal complication and maintain relevant precise by controlling the number of interpolation

points. And then, the derivative of f respecting to the unknown voltages v, given as

f ′ =
df

dv
, (3.57)

which is updated in every iteration, the next approximate solutions v(n+1) can be solved

as:

v(n+1) = v(n) − f(v(n))

f ′(v(n))
. (3.58)

The iteration is repeated until v(n+1) and f(v(n+1)) is converged.

|v(n+1) − v(n)| < ε, |f(v(n+1))| < ε, (3.59)

where ε is the tolerance of error. In view of the stability of simulation, a boundary of

maximum iteration is preset to prevent the deadlock of the program; and a reasonable

tolerance of error also significantly impacts the results.

Chapter 3. Electromagnetic Transient Modeling 34

3.7 Summary

The models of typical components in power system are described in this chapter, which are

the universal machine model for synchronous machine; the lumped model for transformer

and nonlinear inductance for its magnetic saturation; the universal line model for trans-

mission line; the unified linear passive element model for linear loads; and the Newton-

Raphson method for nonlinear components. From their theoretical formulas, the massi-

vely parallel algorithms can be elaborated. Since the modeling covers from linear to nonli-

near, lumped to detailed, and frequency-independent to frequency-dependent, the parallel

implementation can be extended to most other components in power system. Especially,

an extra component with strong coupled structure and high-frequency switching function,

power electronics devices such as IGBT, will be demonstrated separately in Chapter 5.

Chapter 4. Shattering Network Decomposition 35

4
Shattering Network Decomposition

According to the characteristics of GPU-based computing system mentioned in Chapter 2,

it can offer extraordinary computation power with its enormous cores and massive band-

width. However, the practical effectiveness of computation is determined by the utiliza-

tion of the computing resource on the GPU when the problem is solving. Based on the

special execution model of the GPU, SIMT, which is different form the traditional multi-

core CPU parallel computing system, the problem that can be effectively accelerated on

the GPU must have not only numerous independent tasks, but also similar procedure of

all these tasks. In other words, dividing the computation into decoupled branches is not

enough; moreover, all those subroutines must have similar data structure and processing

flow. In addition, all data for each task should be scheduled, ordered and aligned.

In order to increase the degree of parallelism, the large system will be partitioned into

small enough independent divisions, which can be fully accessed by the massive threads

of the GPU. Two levels of decomposition, coarse-grained and fine-grained, are proposed

to decompose the large-scale electrical power circuit. As shown in Fig. 4.1, the original

circuit is divided into linear subsystems (LSs), nonlinear subsystems (NLSs), and control sy-

stems (CSs) in the first-level decomposition by propagation delay based partitioning. In

linear subsystem (LS), there are only linear components, which can be represented by li-

near matrix system and solved by a linear solver such as Gaussian elimination directly or

Jacobi method iteratively. In nonlinear subsystem (NLS), on the other hand, it contains

not only nonlinear components but also linear components connecting to the same nodes,

Chapter 4. Shattering Network Decomposition 36

Fi
gu

re
4.

1:
Sh

at
te

ri
ng

ne
tw

or
k

de
co

m
po

si
ti

on
.

Chapter 4. Shattering Network Decomposition 37

Figure 4.2: Propagation delay based partition.

which cannot be solved by linear solving methods and has to be solved by nonlinear sol-

ving method such as Newton-Raphson iterative method. In other words, NLS may not be

a pure nonlinear subsystem. The control system (CS) only contains the control logic with

different sample rate from the main EMTP simulation. Fig. 4.2 shows an example of the

first level decomposition based on propagation delay, which partitions the large network

into LSs, NLSs and CSs in coarse-grained along the border of delay elements’ connection.

In the second-level, the fine-grained decomposition methods are different for linear and

nonlinear subsystems due to the solution methods. The linear subsystems are partitio-

ned into linear blocks (LB) and connecting network (CN) by compensation network decom-

position, through which the linear solutions can be obtained by solving the open-circuit

Chapter 4. Shattering Network Decomposition 38

vja(t) vkb(t)

ija(t) ikb(t)

Ija(t-) Ikb(t-)

Figure 4.3: Delay element equivalent circuit.

voltages and compensation voltages in parallel. For nonlinear subsystems, the nonlinear

components are detached from the network into nonlinear blocks (NLB) by Jacobian domain

decomposition computed independently in parallel, and then the temporary results are in-

terfaced to the rest of the connecting network to find the temporary solutions. Iterations

of the above two-step computations are repeated until the solutions of the subsystems

converge. All linear and nonlinear subsystems solutions are integrated to obtain the final

solutions of the large-scale system. When the sample step arrives, the integrated solutions

are sent to the control block (CB) to obtain the excitation signals which are fed back to the

main circuit for the EMT computation of next time-step.

4.1 First-level decomposition (Coarse-grained)

Observing the procedure of modeling and discretization, some components, such as trans-

mission lines and control systems, have time delays inside or for connecting to external

components, which provide the native characteristics to decouple the network based on

propagation delay [42]. Since the network variables, such as voltages and currents, of the

nodes between those delay elements are asynchronous at the same time step, the subsys-

tems divided by them can be calculated separately. In the parallel computing platform,

this independence of computation can be utilized for designing the parallel algorithm of

EMT simulation.

The equivalent circuit after delay based decomposition is shown in Fig. 4.3, where the

delay element is represented as two current sources connecting to the nodes on both sides

respectively, and τ is the delay time of signal propagation between two nodes linked by

Chapter 4. Shattering Network Decomposition 39

the delay element. The injected current Iaj (t− τ) and Ibk(t− τ) are history values calculated

previously, given as

Iaj (t− τ) = fa(vbk(t− τ), ibk(t− τ)), (4.1)

Ibk(t− τ) = f b(vaj (t− τ), iaj (t− τ)), (4.2)

which are the functions, fa and f b, relating to the previous values by τ delay in opposite

peers. For example, in ULM of transmission line, the propagation delay τ in (3.31) is given

as,

τ = (β/ω)l =
√
LCl, (4.3)

where β is the phase constant, ω is the angular frequency, L is the intrinsic inductance, C

is the intrinsic capacitance and l is the length of the transmission line. Similarly the control

system can also be decoupled by Ts time delay. Since the transmission line is one of the

essential components, the large network is partitioned into small subsystems, which are

classified into linear subsystems decomposed into linear blocks and connecting networks,

and nonlinear subsystems decomposed into nonlinear blocks.

In the GPU architecture, shared memory is much faster than other memory types, so it

is used to store the initial and intermediate data when the task is dispatched to the CUDA

block, and only the result is sent back to global memory. On the other hand, registers of

CUDA threads have more bandwidth than shared memory during arithmetic operations.

The way to maximize the usage of registers, reaching the best performance, is to unroll the

for loops in CUDA threads because the registers cannot be indexed and optimized by GPU

automatically, which multiplies the workload of each CUDA thread to reduce communi-

cation, overlap memory access and increases occupation [43]. Since the general electrical

network is 3-phase, the number of operations is multiples of 3 normally. Considering the

number of threads per CUDA warp, the amount of shared memory per CUDA block and

the number of registers per CUDA thread, which are the fundamental criterions of deter-

mining the subsystem partition granularity, the node limitation of each network block is

set to 12 (4×3-phase buses) and the unroll factors can be 2, 3 or their multiple. Therefore,

the subsystems with less than 12 nodes can be sent to GPU directly as network blocks.

4.2 Second-level decomposition (Fine-grained)

After the large network is partitioned into subsystems in fine-grained, the ones which are

relevantly small with less than 12 buses are grouped into linear blocks (LBs) and nonlinear

Chapter 4. Shattering Network Decomposition 40

Figure 4.4: Fine-grained partition for LSs and NLSs.

blocks (NLBs), as shown in Fig. 4.4. In contrast, the subsystems with more than 12 bu-

ses will be divided into smaller blocks by fine-grained methods. Since linear subsystems

(LSs) are made of linear components, they can only be divided into linear blocks (LBs);

while nonlinear subsystems (NLSs) contain both linear and nonlinear components, they

produce not only nonlinear blocks (NLBs) but also linear blocks (LBs) in the second-level

partition. According to the difference of topological characteristics and solution methods

of linear and nonlinear networks, there are two fine-grained decomposition methods pro-

posed: compensation network decomposition for linear subsystems, and Jacobian domain

decomposition for nonlinear subsystems, which will be detailed in following sections re-

spectively.

4.2.1 Compensation network decomposition

Considering an N -node linear subsystem deriving by first-level decomposition, its linear

system equations can be obtained using nodal analysis method, given as

Y v = i, (4.4)

where the admittance matrix Y is sparse and its dimension is N by N . In order to in-

creasing the parallelism of linear solution, the fine-grained decomposition method, com-

pensation network decomposition, for coupled linear system is applied by which the linear

Chapter 4. Shattering Network Decomposition 41

Z I =Ey' v i j

v v v' v v v'

Y'v = i + j

v v v'
y' v i j

y' v i j y' v i j

 j I

E v v

 j I
I

v

v
v v v' v

v
Z

I=
E

v

v Z I =E

E v v

E v v

E v v

v

v

Figure 4.5: Compensation network decomposition for LS.

subsystem (LS) can be divided into small linear blocks (LBs) and solved in parallel without

iteration.

As shown in Fig. 4.5, LS can be partitioned into K linear blocks (LBs) by breaking

down B links, on which there is a linear component with nonzero impedance connecting

linear blocks via its both nodes. If the impedance is zero, those nodes connected can be

considered as the same one, and then the other link will be chosen for the decomposition.

Since there are B branch currents go through the links, defined as

I =

⎡
⎢⎢⎢⎢⎣
I1

I2
...
IB

⎤
⎥⎥⎥⎥⎦ , (4.5)

equivalent node currents are injected to the relevant nodes when the linear components on

the links are removed, which are named as j. Since the B links are broken down, the LS

network is divided into K LBs, in which there are nk (k ∈ 1, 2, · · · ,K) nodes for each LB.

Chapter 4. Shattering Network Decomposition 42

Thus, the total number of nodes in LS is given as

N =

K∑
k=1

nk (4.6)

After remapping the node indices by LB to make them continuous for each LB, the linear

system (4.4) can be rewritten as:

Y ′ · v = i + j⎡
⎢⎢⎢⎢⎣
y′1

y′2
. . .

y′K

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
v1

v2

...
vK

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
i1

i2

...
iK

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
j1

j2

...
jK

⎤
⎥⎥⎥⎥⎦ ,

(4.7)

where large system Y is decomposed into Y ′, which contains K decoupled small systems

y′k (k ∈ 1, 2, · · · ,K) for every LBs. Similarly, the node voltages v, node currents i and

additional equivalent injection currents j are also regrouped according to the decoupled

LBs. The linear system matrix of kth LB is defined as

y′k =

⎡
⎢⎢⎢⎢⎣
yk11 yk12 · · · yk1nk

yk21 yk22 · · · yk2nk

...
...

. . .
...

yknk1
yknk2

· · · yknknk

⎤
⎥⎥⎥⎥⎦ , (4.8)

whose dimension is nk by nk. Similarly, the node voltages of kth LB are given as

vk =

⎡
⎢⎢⎢⎢⎣
vk1
vk2
...

vknk

⎤
⎥⎥⎥⎥⎦ ; (4.9)

the kth node currents are

ik =

⎡
⎢⎢⎢⎢⎣
ik1
ik2
...

iknk

⎤
⎥⎥⎥⎥⎦ ; (4.10)

and the kth injection currents are

jk =

⎡
⎢⎢⎢⎢⎣
jk1
jk2
...

jknk

⎤
⎥⎥⎥⎥⎦ . (4.11)

Chapter 4. Shattering Network Decomposition 43

Solving for (4.7), we get

v = (Y ′)−1i+ (Y ′)−1j. (4.12)

From (4.12), the linear system solution v can be considered as a combination of two parts:

one is for open circuits defined as,

v = (Y ′)−1i, (4.13)

the other is for injection compensation, given as

v′ = (Y ′)−1j. (4.14)

Since the decoupled large linear system matrix, Y ′, is in block diagonal format and the

node currents, i, are also grouped by LBs, the open circuit solution, v, can be solved with

additional block-level parallelism on the GPU avoiding most zero elements in the sparse

matrix structure.

Since the injection currents, j, are caused by the branch currents, I , of the omitted links,

they can be expressed as

j = c · I †⎡
⎢⎢⎢⎢⎣
j1

j2

...
jK

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
c1

c2

...
cK

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
I1

I2
...
IB

⎤
⎥⎥⎥⎥⎦ ,

(4.15)

where the dimension of the coordination matrix, c, is N × B according to (4.6). The

structure of the coordination matrix for kth BL is given as

ck =

⎡
⎢⎢⎢⎢⎣
ck11 ck12 · · · ck1B
ck21 ck22 · · · ck2B

...
...

. . .
...

cknk1
cknk2

· · · cknkB

⎤
⎥⎥⎥⎥⎦ . (4.16)

The coordination matrix indicates the connecting relations between skipped branch cur-

rents and injection node currents, which only maintains one value of sign function among

-1, 1 and 0. All nodes of the linear subsystem have themselves coordination values. For

common nodes, since the connection at these nodes are not changed during the decomposi-

tion, there is no additional equivalent injection currents involved, so that the coordination

†The superscripts present indexes

Chapter 4. Shattering Network Decomposition 44

values are set to ‘0’. If the link connected to a node is removed for the decomposition, an

additional equivalent injection current is taken account, therefore, the coordination value

is ‘1’ or ‘-1’ depending on the direction of branch current, defined as

cnb =

⎧⎪⎨
⎪⎩
1 if the same direction,
0 if no removed link, n ∈ (1, 2, · · · ,N), b ∈ (1, 2, · · · ,B)

−1 if the opposite direction.

(4.17)

Taking the circuit network in Fig. 4.5 for example, the coordination matrix, c, is given as

c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 · · · 0

0 −1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

1 0 1 · · · 0

0 0 0 ∗ 0
...

...
...

. . .
...

0 0 0 · · · 0

0 1 0 · · · 0

0 0 −1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 0
...

0 0 0 · · · −1
0 0 0 ∗ 0
...

...
...

. . .
...

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.18)

where the row indexes are grouped by the order of linear blocks. Similarly, the potential

difference, E, across the connecting linear components can be represented by the node

voltages, v, as

E = d · v⎡
⎢⎢⎢⎢⎣
E1

E2

...
EB

⎤
⎥⎥⎥⎥⎦ =

[
d1 d2 · · · dK

]
⎡
⎢⎢⎢⎢⎣
v1

v2

...
vK

⎤
⎥⎥⎥⎥⎦ ,

(4.19)

where the elements of transformation matrix, d, are also the values of sign function, ‘-1’,

‘0’ or ‘1’, depending on the connection of the omitted linear components. The dimension

Chapter 4. Shattering Network Decomposition 45

of d is B ×N , and the structure of kth matrix is given as

dk =

⎡
⎢⎢⎢⎢⎣
dk11 dk12 · · · dk1B
dk21 dk22 · · · dk2B

...
...

. . .
...

dknk1
dknk2

· · · dknkB

⎤
⎥⎥⎥⎥⎦ . (4.20)

For example, the equations of potential differences in Fig. 4.5 are given as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E1 = v11 − v21,

E2 = v12 − v31,

E3 = v32 − v21,
...

EB = vK1 − v32,

(4.21)

which can be rewritten to matrix mode, where the d is obtained as

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 −1 0 · · · 0 0 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0 −1 0 · · · 0 0 0 · · · 0

0 0 · · · 0 −1 0 · · · 0 0 1 · · · 0 · · · 0 0 · · · 0
...

...
. . .

...
... ∗ . . .

...
...

...
. . .

...
... ∗ . . .

...
0 0 · · · 0 0 0 · · · 0 0 −1 · · · 0 1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (4.22)

Therefore, the transformation matrix in (4.19) can be derived from the coordination matrix

in (4.15), defined as

d = −cT , (4.23)

when defining the direction of branch currants as same as the potential difference of con-

necting linear components. Then, (4.19) is expressed as

E = −cTv. (4.24)

Applying Ohm’s Law to the connecting components, we obtain

Z · I = E⎡
⎢⎢⎢⎢⎣
Z1

Z2

. . .

ZB

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
I1

I2
...
IB

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
E1

E2

...
EB

⎤
⎥⎥⎥⎥⎦ ,

(4.25)

where the impedance matrix, Z, is a B-order diagonal matrix. Combining (4.24) and (4.25)

gives:

Z · I = −cTv, (4.26)

Chapter 4. Shattering Network Decomposition 46

then, substituting (4.12) to (4.26) gives:

Z · I = −cT (v + v′), (4.27)

and substituting (4.14) to (4.27) gets:

Z · I = −cT (v + (Y ′)−1j). (4.28)

Replacing the injecting currents j with (4.15) gives:

ZI = −cT (v + (Y ′)−1cI). (4.29)

Define an equivalent impedance matrix as

Z ′ = Z + cT (Y ′)−1c, (4.30)

and reformatting (4.29), we get:

Z ′I = −cTv. (4.31)

then, the branch currents I can be represented as

I = −(Z ′)−1cTv. (4.32)

Since the computation complexity of (4.32) is determined by the order of Z ′, which is B,

the same as that of Z, partitioning a network with fewer connection links results in less

computational load. With (4.32), the compensation solutions v′ can be obtained as

v′ = −(Y ′)−1c(Z ′)−1cTv. (4.33)

Thus, the final solutions can be written as:

v = (1− (Y ′)−1c(Z ′)−1cT)v. (4.34)

In (4.34), all variables including v, Y ′, c and Z ′ are organized based on LBs and can be

calculated independently and concurrently. Since the coordination matrix, c, have few

nonzero elements, column-wise compression can be used to increase the matrix storage

efficiency; and similarly, row-wise compression can be used for cT .

The compensation network decomposition method partitions the linear subsystem into

fine-grained linear blocks, and the sparse admittance matrices are decoupled into small

size linear systems which have much more density. Therefore, the GPU-based dense direct

Chapter 4. Shattering Network Decomposition 47

Yv i

Y' c

v Z'

v'

v v + v'

Figure 4.6: Flowchart of compensation network decomposition.

linear solution algorithms, including matrix LU factorization and inverse, can be imple-

mented to solve the decomposed linear subsystems in parallel without iterations. The

working flow is shown in Fig. 4.6

An example of transforming the Y matrix of 39-bus system is shown in Fig. 4.7. The

original admittance matrix shown in Fig. 4.7(a) with random index has a irregularly sparse

pattern since the node numbers are created by user or system randomly, whose elements

are coupled and sparse. After decomposition, the structure is much more concise as shown

in Fig. 4.7(b), but the shape is still not good enough. Applying the block node adjustment

and reordering the blocks, a perfect block diagram shape is shown in 4.7(c) adapting to the

requirement of GPU-based SMIT computation, which can be grouped by the dimension

of the blocks. Finally, in order to increase the efficiency of memory, most of zero area are

trimmed and only the elements of blocks are saved with just few zeros according to the or-

der of the block dimensions. When the admittances connecting to some nodes are changed

during computation, only the block related to the relevant nodes need to be updated, and

the LU and inverse operation are only limited within those blocks. Even if the topology is

changed due, the difference is only propagating inside the block or linking few blocks as

well, without spreading the whole system.

Chapter 4. Shattering Network Decomposition 48

0 9 18 27 36 45 54 63 72 81 90 99 108 117
0

9

18

27

36

45

54

63

72

81

90

99

108

117

(a)

0 9 18 27 36 45 54 63 72 81 90 99 108 117
0

9

18

27

36

45

54

63

72

81

90

99

108

117

(b)

Chapter 4. Shattering Network Decomposition 49

0 9 18 27 36 45 54 63 72 81 90 99 108 117
0

9

18

27

36

45

54

63

72

81

90

99

108

117

(c)

(d)

Figure 4.7: Y matrix transformation.

Chapter 4. Shattering Network Decomposition 50

4.2.2 Jacobian domain decomposition

For the solutions of nonlinear subsystems, Newton-Raphson iteration (NRI) method is

applied. If there are multiple nonlinear components in the subsystem, all components

in the subsystem including linear ones will be involved in the NRI theoretically. Thus,

the size of the Jacobian matrix in NRI will extended to large according to the number of

components since extra component has additional variables and equations. However, the

large sparse Jacobian matrix will impact the solution convergence and the application of

parallelism. Therefore, Jacobian domain decomposition method is proposed to decouple

the nonlinear elements into nonlinear blocks.

As shown in Fig. 4.8, for a nonlinear subsystem (NLS) with M groups of nonlinear

components, it can be decomposed into M nonlinear blocks (NLBs). Since the pattern

of Jacobian matrix created in the NRI is decided by the topology of NLS, the partitioned

subsystem will derive a block diagonal format for the Jacobian matrix, by which the New-

ton function can be solved in parallel on GPU-based computing system. In the divided

nonlinear subsystem (NLS), each nonlinear block (NLB) has lm (m ∈ 1, 2, · · · ,M) links

connecting to the other NLBs. The variables of those connection, node voltages (ν) and

currents (ι), are defined as

ν =

⎡
⎢⎢⎢⎢⎣
ν1

ν2

...
νM

⎤
⎥⎥⎥⎥⎦ , ι =

⎡
⎢⎢⎢⎢⎣
ι1

ι2

...
ιM

⎤
⎥⎥⎥⎥⎦ , (4.35)

where the connection voltages and currents for mth NLB is given as

νm =

⎡
⎢⎢⎢⎢⎣
νm1
νm2

...
νmlm

⎤
⎥⎥⎥⎥⎦ . (4.36)

Denoting χm as all internal variables of the mth block, which may be any internal voltages,

currents, fluxes and etc. bound with nonlinear relations inside the NLBm, the nonlinear

equations can be expressed as

fm(νm, ιm,χm) = 0, (4.37)

where fm represent the nonlinear relations of NLBm.

Chapter 4. Shattering Network Decomposition 51

f =

g =

f =

g =

f =

g =

l l

l

Figure 4.8: Jacobian domain decomposition for NLS.

On the other hand, since the relations between NLBs are linear, the linkages of the M

nonlinear blocks in the subsystem can be described by a set of linear equations, which are

denoted gm, given as ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g1(ν, ι) = 0

g2(ν, ι) = 0
...

gM (ν, ι) = 0

(4.38)

For the mth block, ν and ι can also be rewritten by νm, ιm and their complementary νm,

ιm, which defined as,

ν = [νm,νm] (νm = [ν1, · · · ,νm−1,νm+1, · · · ,νM]), (4.39a)

ι = [ιm, ιm] (ιm = [ι1, · · · , ιm−1, ιm+1, · · · , ιM]). (4.39b)

Since (4.38) is linear, gm can be reformatted as gm for the node currents ιm after substituting

(4.39) into (4.38), represented as

ιm = gm(νm,νm, ιm). (4.40)

Substituting (4.40) into (4.37), the nonlinear equations are updated as

fm(νm, gm(νm,νm, ιm),χm) = 0. (4.41)

Chapter 4. Shattering Network Decomposition 52

Denoting f
m for the reorganized nonlinear equations gives

f
m
(νm,χm,νm, ιm) = 0. (4.42)

where the complementary variables νm, ιm can be trimmed by using previous values cal-

culated in other NLBs during Newton iteration, thus, the simplified nonlinear equations

are obtained as

f
m
(νm,χm) = 0. (4.43)

The Jacobian matrix for the mth NLB can be calculated by the partial derivative of (4.43)

for νm and χm, given as

Jm(n+1) =
∂f

m
(νm(n),χm(n))

∂[νm,χm]
. (4.44)

Since the Jacobian matrix for each nonlinear block only relates to the variables of itself and

does not couple with others, the large Jacobian matrix of NLS is partitioned into M small

blocks, which can be processed in parallel on GPU. Therefore, the Newton equations of

NLBm are given as

JmΔ[νm,χm] = f
m
. (4.45)

From solving (4.45), all connection voltages, ν, can found by combined the solution of each

nonlinear block with (4.39). And then, the connection currents, ι, can also be obtained

by (4.38) and (4.37) for the next iteration. In contrast to the traditional NR method, the

connection node voltages and currents of all blocks are interchanged with others to update

the Jacobian matrix for the next iteration according to domain decomposition theory [44,

45]. The final solution for the whole nonlinear subsystem can be found when all nonlinear

blocks get converged.

Comparing to the original Newton-Raphson iteration method, although the rate of con-

vergence of decomposed Newton iteration will be slightly impacted by the data exchange

between nonlinear blocks, the computational speed will be significantly enhanced by pa-

rallel computation, especially when system size becomes large. Obviously, the number of

connections among nonlinear blocks is the point influencing the convergence, therefore,

choosing a path with less connections to partition a large system into blocks is always

an optimization policy. When the Jacobian matrix is near ill-conditioned due to the high-

frequent solution and transient, the decomposition can limit the scope of computation,

reduce the accumulation of calculation error and increase the convergence of simulation

Chapter 4. Shattering Network Decomposition 53

when the scale of nonlinear system becomes large, which will be shown on the application

of simulation MMC AC/DC converter based on nonlinear device-level model in Chapter

5.

4.3 Summary

In this chapter, the multi-level shattering network decomposition is introduced, of which

the first level is coarse-grained based on propagation delay, and the second level is fine-

grained for linear and nonlinear solution respectively. The purpose of the decomposition

is to divide the large system into subsystems relatively small, which can optimally fit to

the SIMT execution features and release the computational power of GPU as possible. In

the fine-grained level, the compensation network decomposition is proposed for linear

subsystem, which partitions the linear subsystem into linear blocks and connection net-

work. The solution of linear subsystem is obtained by solving linear blocks in parallel

and compensate the results with the solution of connection network. The Jacobian domain

decomposition decouples the Jacobian matrix based on domain decomposition method to

accelerate the solution of Newton equations, which parallelizes the calculation and enhan-

ces the convergence.

5
Power Electronic Circuit Decomposition

Different from conventional components in power electrical system, power electronic de-

vices, such as diode, MOSFET and IGBT, which are widely used in renewable energy,

smart grid and modern transport, have intensive nonlinearity and high-frequency tran-

sient [46–48]. Growing with the complicate structure of power electronic circuit, the chal-

lenge for device-level simulation tool is not only the complexity of modeling, but also

the increasing circuit size. Mainstream commercial simulation tools, such as SaberRD�,

Orcad�, PSIM� and etc., provide plenty of support for device-level simulation [49–53]

with various models. However, the single-thread execution or limited coarse-grained pa-

rallelism hampers the computational performance of above simulators seriously. Especi-

ally in system-level simulation, the model of power electronic device is downgraded to

linear and behavior level, which covers important information in EMT simulation. The

GPU executing in SIMT is a candidate, that can effectively enhances the simulation per-

formance with its massive cores and data transfer bandwidth, as long as the simulation

procedure of power electronic system can be decoupled into fine-grained level. As a typi-

cal voltage source converter in HVDC grid, the modular multi-level converter (MMC) has

a strongly coupled relation among its power electronic devices, such as IGBTs, in its com-

plicate structure. When a device-level nonlinear detailed model is applied, the situation

is getting worse. It is hard to break down the relation of devices in MMC by the circuit

structure. Fortunately, the shattering decomposition proposed in this work shows itself to

be of great benefit to alleviate the contradiction by decoupling the solution method, so that

Chapter 5. Power Electronic Circuit Decomposition 55

va

vc

La

La

+Vdc

-Vdc

ia
ib

ia

ia

vb

Lb

Lb

Lc

Lc

ic

ib

ib

ic

ic

Figure 5.1: MMC circuit structure.

the EMT simulation of power electronic circuit can be accelerated by GPU-based massively

parallel computing platform.

5.1 Modular Multi-Level Converter (MMC) and Control Strategy

5.1.1 Circuit Structure

Popularly applied in HVDC systems, the 3-phase modular multi-level converter (MMC)

circuit with cascade structure, as shown in 5.1(a), consists of a series of half-bridge sub-

modules (SMs) in each arm. Fig. 5.1(b) shows the internal devices and connection of an

SM, which contains two IGBT-Diode units paralleling with a capacitor, CSM which stores

the energy transferring between AC and DC. Based on the gate signal combination and

current direction of each IGBT, SMs have different operating states. As listed in Table 5.1,

once T1 gate has on signal and T2 gate has off signal, CSM will be charged and discharged

according to the direction of iSM; and when T1 gate has off signal and T2 gate has on signal,

CSM will be uncharged regardless the current direction. Especially, when the gate signal

Chapter 5. Power Electronic Circuit Decomposition 56

Table 5.1: Capacitor states of SM
T1 T2 iSM Capacitor State SM Operation

1 0 >0 Charging

1 0 <0 Discharging

0 1 >0 Bypass

0 1 <0 Bypass

combination is ’00’, the SM is blocked; and the gate signal combination ’11’ will cause the

short circuit of the capacitor. Thus, neither of those two signal combinations is used in

normal operation.

Chapter 5. Power Electronic Circuit Decomposition 57

va,b,c

ia,b,c

g ,

va,b,c
g

Figure 5.2: MMC control strategy.

The MMC circuit has been modeled by different types of simulation models including

equivalent circuit base model, arm switching function and average value model [58–61].

Hefner’s physics-based IGBT model is brought up as the first complete analytical model

available for circuit simulator, which is implemented in SaberRD� [55]. Based on Hefner’s

model, IGBT is described as the combination of nonlinear current sources and capacitors,

that extends the circuit structure by introducing extra internal nodes. [56] Due to the most

detailed information inside every device and the nanosecond level time-step, the physics-

based model requires so much computational requirement that it is uncommon in simu-

lation [62]. However, the application of GPU with fined-grained decomposition makes it

feasible in both accuracy and speed.

5.1.2 Control strategy

The control strategies of MMC circuit include the active and reactive power control, mo-

dulation signal phase shifter and amplitude scaling, and capacitor voltage averaging and

balancing control [63–65]. The outer-layer in Fig. 5.2 is the active and reactive power con-

trol. Comparing the instance power and the reference power, the difference of active and

reactive power is inputted to PI controllers. Combining the 3-phase voltages and currents,

phase shifter and amplitude scaling module creates the 3-phase reference voltages for mo-

dulation. The outputs of the capacitor voltage averaging and balancing control module

are the gate signals, g1 and g2, used to control the IGBTs, T1 and T2, in the SM respectively.

Since the gate signals are necessary for switching in each time-step, the sample rate for the

control logic of MMC is the same with the time-step of the network solution.

Chapter 5. Power Electronic Circuit Decomposition 58

Figure 5.3: Node order of SM.

5.2 Decomposition for Nonlinear Modeling MMC

Since the MMC circuit is difficult to be partitioned from its physical structure due to the

strongly coupled serial SM connection, the solution method of nonlinear modeling MMC

is considered for the decomposition. As the basic solving method for nonlinear system is

Newton-Raphson iterative method, by which to solve the nonlinear system is converted

to solve the same order linear system multiple times to find the closest approximate root,

the proposed Jacobian domain decomposition method can be applied to break down the

relevance during Newton iteration.

Without loss of generality, the MMC circuit modeled by the Hefner’s physics-based

IGBT model [55, 56], accompanying nonlinear power diode model [57], is taken as an ex-

ample, which are detailed in Appendix A. Since the diode has 3 nodes including one

internal node, the conductance matrix of the linerized device, GDiode, is 3×3 according to

(A.16), denoted as

GDiode =

⎡
⎢⎣
GD

11 GD
12 GD

13

GD
21 GD

22 GD
23

GD
31 GD

32 GD
33

⎤
⎥⎦ . (5.1)

And the IGBT is modeled in 5 nodes equivalent circuit, as shown in Fig. A.3, with a 5×5

Chapter 5. Power Electronic Circuit Decomposition 59

conductance matrix from (A.41) after linearization, denoted as

GIGBT =

⎡
⎢⎢⎢⎢⎢⎢⎣

GI
11 GI

12 GI
13 GI

14 GI
15

GI
21 GI

22 GI
23 GI

24 GI
25

GI
31 GI

32 GI
33 GI

34 GI
35

GI
41 GI

42 GI
43 GI

44 GI
45

GI
51 GI

52 GI
53 GI

54 GI
55

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.2)

The node order of SM, which combines two Diode-IGBT units, is shown in Fig. 5.3, where

there are 11 nodes in total. Since diodes and IGBTs are connected in SM, the node IDs of

Table 5.2: Node mapping of Diodes and IGBTs in SM

1 2 3 4 5 6 7 8 9 10 11

D1 1 2 3
D2 3 2 1
T1 1 2 3 4 5
T2 5 2 3 4 1

new conductance matrix of SM must be remapped according to the structure of SM, which

is listed in Table. 5.2.

The linear system with Jacobian matrix before decomposition in Newton method is

given as,

J
o(n)
SM ·Δv(n+1) = −F o(n), (5.3)

where n denotes the previous step and n + 1 represents the next step. The topology of

Jacobian matrix of a SM applying Hefner’s physics-based IGBT model is given as,

Jo
SM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1,1 J1,2 J1,3 J1,4 J1,5 J1,6 J1,7 J1,8 J1,9 J1,10 J1,11

J2,1 J2,2 J2,3 J2,4 J2,5 J2,6

J3,1 J3,2 J3,3 J3,4 J3,5 J3,6

J4,1 J4,2 J4,3 J4,4 J4,5 J4,6

J5,1 J5,2 J5,3 J5,4 J5,5 J5,6

J6,1 J6,2 J6,3 J6,4 J6,5 J6,6 J6,11

J7,1 J7,7 J7,8 J7,9 J7,10 J7,11

J8,1 J8,7 J8,8 J8,9 J8,10 J8,11

J9,1 J9,7 J9,8 J9,9 J9,10 J9,11

J10,1 J10,7 J10,8 J10,9 J10,10 J10,11

J11,1 J11,6 J11,7 J11,8 J11,9 J11,10 J11,11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4)

Chapter 5. Power Electronic Circuit Decomposition 60

according to the node mapping of SM [66, 67]. Since the idea of shattering decomposition

is based on the topology of the system, only the pattern of Jacobian matrix are concerned.

Jacobian matrix of one SM is 11 by 11, partial sparse and close to block diagonal except for

few elements. It can be noticed that the matrix will be in border block diagonal if elements,

J6,11 and J11,6 marked in (5.4), are eliminated.

5.2.1 Matrix trim based on relaxation domain decomposition

Original Jacobian matrix Jo
SM can be reshaped by eliminating two elements, J6,11 and J11,6,

using the relaxation algorithm. Their influence to the linear system can be approximated

as known values using J6Δvn6 and J11Δvn11 and inject to the RHS. After the transformation,

the linear system (5.3) is updated to

J
(n)
SM ·Δv(n+1) = −F (n), (5.5)

where the updated Jacobian matrix of one SM is

JSM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1,1 J1,2 J1,3 J1,4 J1,5 J1,6 J1,7 J1,8 J1,9 J1,10 J1,11

J2,1 J2,2 J2,3 J2,4 J2,5 J2,6

J3,1 J3,2 J3,3 J3,4 G3,5 J3,6

J4,1 J4,2 J4,3 J4,4 G4,5 J4,6

J5,1 J5,2 J5,3 J5,4 G5,5 J5,6

J6,1 J6,2 J6,3 J6,4 G6,5 J6,6

J7,1 J7,7 J7,8 J7,9 J7,10 J7,11

J8,1 J8,7 J8,8 J8,9 J8,10 J8,11

J9,1 J9,7 J9,8 J9,9 J9,10 J9,11

J10,1 J10,7 J10,8 J10,9 J10,10 J10,11

J11,1 J11,7 J11,8 J11,9 J11,10 J11,11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.6)

and the RHS vector F o(n) is the updated to F (n), given as

F (n) = F o(n) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

J11,6Δv
(n)
6

0

0

0

0

J6,11Δv
(n)
11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.7)

Chapter 5. Power Electronic Circuit Decomposition 61

whose 6th and 11th elements are merged by J11,6Δvn6 and J6,11Δvn11 with known values

in previous iteration respectively. Thus, the original Jacobian matrix can be divided into

multiple blocks so that the simulation of each Diode-IGBT unit can be computed indepen-

dently for parallelism.

In normal relaxation domain decomposition algorithm, there should be an extra outer

Gauss-Jacobi loop to converge the solution. In this case, however, the outer loop can be

skipped since the relaxation approximation is inside Newton iteration. When the solution

of Newton method gets converged,

Δvn+1 = Δvn → 0. (5.8)

The solution satisfies (5.5) must also satisfies the original linear system (5.3), that guaran-

tees the solution of nonlinear system is converged. Thus, an updated Jacobian matrix in

border block diagonal is obtained, which can be partitioned into smaller blocks to apply

the GPU-based parallel solving algorithm.

5.2.2 Partial LU Decomposition for MMC

For the MMC circuit with K SMs, the cascades structure is created by connecting node

11 of an SM to node 1 of the next one. Therefore, the pattern of Jacobian matrix JMMC is

shown in Fig. 5.4(a), where the 5×5 middle matrices are named as A2k−1 and A2k; the 1×5

horizontal border vectors are denoted as c2k−1 and c2k; the 5×1 vertical border vectors are

named as d2k−1 and d2k; and the overlap element is denoted as ek (k = 1, 2, · · · ,K). In

order to decompose the Newton iteration equation (5.5) and solve it avoiding its sparsity,

the last elements of border vectors, c and d, which are J1,11 and J11,1 in (5.6), need to be

trimmed by relaxation method, as shown in Fig. 5.4(b), where the c2k and d2k are updated

as c′2k and d′
2k by trimming the last elements. Thus, the Newton iteration equation of

MMC, given as

J
(n)
MMC ·Δv(n+1) = −F (n), (5.9)

is updated as

J
∗(n)
MMC ·Δv(n+1) = −F ∗(n), (5.10)

where the trimmed elements in LHS Jacobian matrix, JMMC , are merged into RHS vector,

F , with known values in previous iteration to obtain the updated RHS vector, F ∗, of which

The kth block RHS vector is given as[
F ∗

2k−1

F ∗
2k

]
=

[
F 2k−1

F 2k

]
+

[
(d52k)Δv

(n)
1 , 0, 0, 0, 0, 0, 0, 0, 0, (c52k+2)Δv

(n)
10

]T
. (5.11)

Chapter 5. Power Electronic Circuit Decomposition 62

e

A

c c

d
d

A
c c

d
d

A

A

c K c K

d
K

d
K

A K

A K

e

A

c c
d

d

A
c c

d
d

A

A

c K

d
K A K

A K

e

eeK

e

eK

e

e

c c

d
d

c c

d
d

JMMC

JMMC

c K

d
K

Figure 5.4: MMC Jacobian matrix trim.

Chapter 5. Power Electronic Circuit Decomposition 63

A*
...

U

U

U

Un

...

...

...

...

...

U

U

Un

LnLL LN-

UN-

UN

L

Li
n

U j
n

A

L L Ln

Figure 5.5: LU factorization.

After reshaping the Jacobian matrix in (5.10) by relaxation method, the LU factorization

of the reshaped matrix can be processed in block-level parallel since the computation is

decoupled according to the structure of J∗
MMC .

Firstly, for all A matrices in J∗
MMC , the LU factorization is processed first, we get

Ll ·U l = Al (l = 1, 2, · · · , 2K). (5.12)

As shown in Fig. 5.5, the column vectors Ln and un are calculated in order of 1 to N for

an N ×N matrix A. The i element of Ln is calculated as

Li
n =

Ain

Ann
i ∈ [n+ 1,N]; (5.13)

the j element of un is given as

U i
n = Anj j ∈ [n,N]; (5.14)

and the elements of residue matrix A∗ is updated as

Ai
ij = Aij − Li

nU
i
n i, j ∈ [n+ 1,N]. (5.15)

Combining all Ln column vectors and setting diagonal elements to ‘1’ obtain the lower

triangle matrix L of A; similarly, the upper triangle matrix is composed of all Un row

vectors.

Chapter 5. Power Electronic Circuit Decomposition 64

h

f f

f f

f K f K

L

L

L

L

L K

L K

g
g

g
g

g
K

g
K

U

U K

U

U

U

LMMC

UMMC

h

h

hk

U K

f f

g
g

Figure 5.6: Partial LU decomposition for J∗
MMC .

Chapter 5. Power Electronic Circuit Decomposition 65

And then, the border vectors, f j and gj in Fig. 5.6, can be found according the relations

in (5.16) and (5.17)

f l ·U l = cl (5.16)

Ll · gl = dl (5.17)

Since f l and cl are row vectors, and U l is Upper triangular matrix, (5.16) gives

[f1
l f2

l · · · fN
l]

⎡
⎢⎢⎢⎢⎣
U11
l U12

l · · · U1N
l

U22
l · · · U2N

l
. . .

...
UNN
l

⎤
⎥⎥⎥⎥⎦ = [c1l c2l · · · cNl]. (5.18)

Therefore, f l can be solved by forward substitution, given as.

fn
l =

cnl
Unn
l

−
n−1∑
i=1

f i
lU

in
l n ∈ [1,N]. (5.19)

where N is the size of Al. Similarly, (5.17) is expressed as⎡
⎢⎢⎢⎢⎣

1

L21
l 1
...

...
. . .

LN1
l LN2

l · · · 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
g1l
g2l
...

gNl

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
d1l
d2l
...

dNl

⎤
⎥⎥⎥⎥⎦ , (5.20)

with column vectors, gl and dl, and lower triangle matrix, Ll. Thus, gl can also be solved

by forward substitution, given as

gnl = dnl −
n−1∑
i=1

gilL
ni
l n ∈ [1,N]. (5.21)

Last, the elements at the connecting node, hk (k = 1, 2, · · · ,K) in Fig. 5.6, are calculated

with ei in Fig. 5.4, as

hk = ek − f2k−1 · g2k−1 − f2k · g2k, (5.22)

which is expressed as

hk = ek −
[
f1
2k−1 f2

2k−1 · · · fN
2k−1

]
⎡
⎢⎢⎢⎢⎣
g12k−1

g22k−1
...

gN2k−1

⎤
⎥⎥⎥⎥⎦−

[
f1
2k f2

2k · · · fN
2k

]
⎡
⎢⎢⎢⎢⎣
g12k
g22k

...
gN2k

⎤
⎥⎥⎥⎥⎦ , (5.23)

where N is the size of vectors.

Chapter 5. Power Electronic Circuit Decomposition 66

f k

L k

L k f k

t
k

t
k

f k f kL k

-F
k

-F
k

t
k

-F
k

Figure 5.7: Blocked forward substitution.

So far, the Jacobian matrix, J∗
MMC , is factorized into lower and upper matrices by the

proposed partial LU decomposition, which can be computed in parallel since the decou-

pled structure of the matrix, including the LU factorization of A; calculating border vec-

tors, f and g; and updating connecting node elements h.

5.2.3 Blocked Forward and Backward Substitution

After obtaining the semi lower and upper triangular matrices utilizing partial LU factori-

zation, we obtain the updated linear system of (5.10) as

L
(n)
MMCU

(n)
MMC ·Δv(n+1) = −F ∗(n). (5.24)

Defining

U
(n)
MMC ·Δv(n+1) = t, (5.25)

where t are a temporary intermediate variables. Substituted by (5.25), (5.24) can be rewrit-

ten as

L
(n)
MMC · t = −F ∗(n). (5.26)

Since L
(n)
MMC is lower diagonal, (5.26) can be solved by blocked forward substitution, as

shown in Fig. 5.7. Taking the kth block for example, t2k−1 can be solved directly by forward

Chapter 5. Power Electronic Circuit Decomposition 67

U k

t
k

t
k

g
k

hk

g
k

U k

hk

U k

v
k

v
k

v
k

t
k

Figure 5.8: Blocked backward substitution.

substitution as

tn2k−1 = −F ∗n
2k−1 −

n−1∑
i=1

ti2k−1L
ni
2k−1 n ∈ [1,N], (5.27)

where N is the order of L2k−1. Meanwhile, t2k except the last element, tN2k, can also be

calculated by forward substitution as

tn2k = −F ∗n
2k −

n−1∑
i=1

ti2kL
ni
2k n ∈ [1,N − 1]. (5.28)

The major part of t2k−2 is solved similarly. Afterward, the last element of t2k−2, tN2k−2, can

be found with the solved results of t2k−2, t2k−1 and t2k as

tN2k−2 = −F ∗N
2k−2 −

N−1∑
i=1

ti2k−2L
Ni
2k−2 −

N∑
i=1

ti2k−1f
i
2k−1 −

N−1∑
i=1

ti2kf
i
2k. (5.29)

At the same time, the last element of t2k can also be calculated using the same method,

given as

tN2k = −F ∗N
2k −

N−1∑
i=1

ti2kL
Ni
2k −

N∑
i=1

ti2k+1f
i
2k+1 −

N−1∑
i=1

ti2k+2f
i
2k+2. (5.30)

Since all blocks are decoupled, t is solved by the blocked forward substitution in parallel.

With solved t, v(n+1) in (5.25) can be found by blocked backward substitution, as shown

Chapter 5. Power Electronic Circuit Decomposition 68

in Fig. 5.8. The voltage different at connecting nodes, is calculated first as follows

ΔvN2k−2 =
tN2k−2

hk
k ∈ [1,K], (5.31)

and

ΔvN2k =
tN2k
hk+1

k ∈ [1,K], (5.32)

where N is the order of U . Then Δv2k−1 can be solved by backward substitution, given as

Δvn2k−1 =

tn2k−1 −ΔvN2k−2g
n
2k−1 −

N∑
i=n+1

Δvi2k−1U
ni
2k−1

Unn
2k−1

n ∈ [N , 1]. (5.33)

Simultaneously, the rest elements of Δv2k can also calculated as

Δvn2k =

tn2k −ΔvN2k−2g
n
2k −ΔvN2k−2U

nN
2k −

N∑
i=n+1

Δvi2kU
ni
2k

Unn
2k

n ∈ [N − 1, 1]. (5.34)

Finally, the results of (5.10) are solved in parallel. When the newton iteration of (5.10) is

converged, the solution of nonlinear system, (5.9), gets converged as well.

In the MMC circuit, the size of Jacobian matrix grows with the number of output

voltage levels. Instead of solving a system containing a (10k + 1) × (10k + 1) large Ja-

cobian matrix, the 5× 5 block perfectly accommodates the parallel scheme of GPU with its

limited shared memory to reduce the data transmission cost.

5.3 Decomposition for Linear Modeling MMC

In system-level MMC circuit simulation, the linear behavior-based SM models are com-

monly adopted [68], where the IGBT-diode unit is represented as functional switching

control resistor [69], as shown in Fig. 5.9, given as,

r1 =

{
ron if (g1 = 1)

roff if (g1 = 0)
(5.35a)

r2 =

{
ron if (g2 = 1)

roff if (g2 = 0)
(5.35b)

The capacitor, CSM, in each SM is discretized into an equivalent resistor rc, given as,

rc =
2Δt

C
, (5.36)

Chapter 5. Power Electronic Circuit Decomposition 69

v
r

r r

g

g

Figure 5.9: Linear behavior SM model based on functional switching.

in series with an equivalent history voltage source vc h(t−Δt), given as,

vc h(t−Δt) = 2rcic(t−Δt)− vc h(t− 2Δt), (5.37)

by trapezoidal rule. The r1 and r2, are decided by the gate signals, g1 and g2, which are

generated by the control logic, as shown in Fig. 5.2. In this way, each SM’s Thevenin

equivalent circuit in Fig. 5.9 contains an equivalent resistor rSM and a history voltage

source vSM , given as

rSM =
r2(r1 + rc)

r1 + r2 + rc
, (5.38)

vSM =
r2

r1 + r2 + rc
vc h(t−Δt). (5.39)

Thus, each arm of MMC containing n SMs in Fig. 5.1 is represented by a voltage source

and a resistor as

varm =

n∑
i=1

viSM , (5.40)

rarm =

n∑
i=1

riSM . (5.41)

The arm current can be calculated by above arm equivalent model with (5.40) and (5.41) as

iSM =
varm
rarm

. (5.42)

Since each SM’s input current is the same as arm current, the node voltage inside each

SM can be updated independently. Therefore, the solving process for each SM is natively

decoupled, and the solution of MMC are computed in parallel with massive cores.

5.4 Summary

In this chapter, the fine-grained decomposition method is applied for the simulation of

MMC AC/DC converter, which is modeled by both nonlinear physics-based model and

Chapter 5. Power Electronic Circuit Decomposition 70

linear behavior-based models. When Newton iteration method is applied to the nonli-

near system, the Jacobian matrix of K-SM MMC circuit is strongly coupled. The propo-

sed fine-grained decomposition method deriving from relaxation domain decomposition

decouples the Jacobian matrix into border block diagram formation to adapting to the

SIMT execution model of the GPU-based massively parallel computation. For the linear

behavior-based model, each SM is represented as a node of functional switching controlled

Thevenin equivalent resistor and voltage source. After the arm current is obtained, all no-

des along the MMC arm can be solved independently, which satisfies the SIMT execution

model of the GPU-based parallelism. Therefore, the proposed fine-grained decomposition

method transform the MMC structure to a decoupled data topology effectively, which can

fully release the computational power of GPU-based massively parallel computing plat-

form on EMT simulation of power electronic system.

6
Massively Parallel Implementation on GPUs

The proposed fine-grained EMT simulation is implemented on a CPU-GPU heterogeneous

platform, whose execution method is shown in Fig. 6.1. Considering the 64-bit double

precision performance, which is used across the simulation, two Pascal microarchitecture

(GP104) NVIDIA� GPUs are mounted into the Intel� Xeon� E-2620 server with 32 GB

memory running Windows 7 Enterprise 64-bit OS.

6.1 EMT Simulation Implementation on GPUs

As shown in Fig. 6.2, the simulation starts with loading the netlist including the network

connections and parameters, from which the topology of the network can be analyzed to

find the boundaries of propagation delay for the first-level decomposition, such as trans-

mission lines and control systems. The large network is then divided into subsystems by

CPU
Serial code

GPU
Parallel kernel

Host Device

CPU
Serial code

GPU
Parallel kernel

Host Device

...
CPU

Serial code

Host

Figure 6.1: Heterogeneous CPU-GPU execution.

Chapter 6. Massively Parallel Implementation on GPUs 72

Y'
,

Z'
I

v'

J k
f k

k
k

k

kc
kc

v

Fi
gu

re
6.

2:
Fi

ne
-g

ra
in

ed
EM

T
si

m
ul

at
io

n
w

or
k

flo
w

.

Chapter 6. Massively Parallel Implementation on GPUs 73

coarse-grained decomposition, and the bus node system is also rebuilt according to the

new topology. After separating linear and nonlinear subsystems, they are partitioned into

small linear blocks and nonlinear blocks with fine-grained decomposition methods as des-

cribed in Section 4.2. The bus node numbers have to be remapped again to guarantee the

admittance, and the resulting Jacobian matrices will be block diagonal. At this time, all

the detailed component models including frequency-dependent line model are specified,

the data structures on both host (CPU) and device (GPU) are determined and all neces-

sary data are transferred from the host to the devices when the entire simulation process is

branched. One GPU is responsible for linear blocks and the other takes charge of nonlinear

blocks. Every component model listed in Section 3 is represented by a parallel module,

consisting a set of CUDA kernels, as well as solution methods, such as matrix operators,

linear and nonlinear solvers [23]. According to the communication avoiding parallel the-

ory in numerical linear algebra [70], in order to increase the register utilization inside each

thread and minimize the data exchange between memories, the kernels are designed in

small scale for limited register resource, the for loops are unrolled to make more data ca-

ched and individual thread work load is increased to extend the data lifetime inside the

thread. Therefore, the per thread throughput is amplified, while the device occupancy per

kernel is lowered, which can be compensated by kernel concurrent execution.

6.1.1 Linear Side

Algorithm 1 Linear parallel solution
for each LB do

if any LB of Y ′ (3.9, 3.17, 3.34, 3.52) is updated then
Invert y′

k for the updated LB
update Z ′ (4.30)

for each 3-phase bus node do
update i with history terms (3.10, 3.18, 3.30, 3.53)
solve the open circuit solution v (4.13)
calculate the compensation voltages v′ (4.33)

v ← v + v′

The component modules are applied to compose the admittance matrix Y ′ and initial

inputs i in (4.7). Due to the independence of component modeling, all classified modules

can run in parallel on the GPU. Since the optimized sparse admittance matrix Y ′ is decou-

pled, the open circuit linear solutions v for all blocks run in parallel as well using (4.13).

After all compensation voltages v′ are solved by (4.33) at the same time, the solutions of

Chapter 6. Massively Parallel Implementation on GPUs 74

ti totexe

Figure 6.3: Concurrent execution with multiple streams.

linear blocks are found, which are then integrated to the solutions of the large system.

6.1.2 Nonlinear Side

Algorithm 2 Nonlinear parallel solution
repeat

for each NLB do
update RHS (4.43)
update Jacobian matrix J (4.44)
for each external bus node and internal node do

solve for Δνk and Δχk

ν
(n+1)
k ← ν

(n)
k +Δν

χ
(n+1)
k ← χ

(n)
k +Δχ

calculate currents ι (4.40)
update νc and ιc by interchange

until
| ν(n+1) − ν(n) |< ε and | f (n+1) − f (n) |< ε

Since all nonlinear components are decoupled by Jacobian domain decomposition, the

NR iterations are processed for all nonlinear blocks independently. The Jacobian matrices

are composed by (4.44) with the updated nonlinear equations f created during decompo-

sition. When the next step voltages νm(n+1) for each blocks are solved, the node currents

ιm(n+1) can be obtained by the updated linkage functions g in (4.40). They are interchan-

ged among the blocks to update the connection voltages and currents for the next iteration.

The parallel nonlinear solvers are synchronized when all solver loops are converged, and

the results are sent to the host side as the other part of the system solution.

Combining the linear and nonlinear parts solutions, the large network system solutions

for one time-step are found. Before approaching the next time-step, the synchronization of

Chapter 6. Massively Parallel Implementation on GPUs 75

control system and EMT network is checked on the CPU, and if ‘Yes’, the control system

solution will be calculated for the next EMT time-step. In order to parallelize the tasks

with various algorithms that cannot be contained in a same kernel with different blocks,

and cover the data transfer time between host and device, multiple streams are used to

group independent kernels. As shown in Fig. 6.3, the dependent kernels, such as a set of

kernels for a component module, are assigned to the same stream, which are executed in

serial, while the kernels in different streams are independent without any data or proce-

dure interference. Firstly, the data for each stream are copied from host to device costing

ti; then the set of kernels belonging to the stream are executed in texe; lastly, the results of

the stream execution are copied back to host consuming to. If the following conditions for

different hardware properties are satisfied,

texe >

{
max(ti, to) (two copy engine)

ti + to (one copy engines)
, (6.1)

The data transfer cost can be effectively covered only if texe > (ti + to), which is scheduled

delicately. In addition, the execution of streams can also be concurrent when the GPU

hardware still has enough resources available, which increases the overall occupation of

GPU since the kernel are designed with low occupancy.

6.2 System Diagram

After system decomposition and discretization, the data structure, components modules,

solution algorithms and input data are organized into an integrated system, as shown

in Fig. 6.4. The Netlist and initial data carrying network topological information and

components parameters are input into the parallel simulation system; then all component

modules are created based on the EMT modeling for linear components, nonlinear com-

ponents, transmission lines, power transformers, synchronous machines, power electro-

nic device and control system; according to above modules of components, the solution

algorithms are involved, such as time-domain discretization, matrix LU decomposition,

forward/backward substitution, Newton-Raphson iteration and connecting network com-

pensation, to compute all variables inside the EMT simulation. Between every time-steps,

the results and intermediate values are exchanged with those of components modules and

updated to solution algorithms. The time loop of the EMT simulation keeps iterating until

the maximum simulation time is reached. Finally, the time-domain solutions of the power

electrical system are obtained by collecting all results of each time-step.

Chapter 6. Massively Parallel Implementation on GPUs 76

Fi
gu

re
6.

4:
Sy

st
em

di
ag

ra
m

of
m

as
si

ve
ly

pa
ra

lle
lE

M
T

si
m

ul
at

or

Chapter 6. Massively Parallel Implementation on GPUs 77

6.3 Matrix LU Factorization and Inverse

In order to solve the linear system obtained by the node analysis method in EMT simu-

lation after discretization, the LU factorization are applied to decompose the admittance

matrix to Lower and Upper triangle matrices, in this work. The linear system built up by

node analysis method is given as

Y v = i (6.2)

Applying LU factorization to Y , we get

LUv = i (6.3)

Define

Uv = x (6.4)

and substitute to (6.3) can get

Lx = i. (6.5)

Since L is a lower triangle matrix, the solution x can be get by forward substitution from

top to bottom. After x is solved, the solution of the linear system, v, can be found by

backward substitution from bottom to top in (6.4) since U is an upper triangle matrix.

Since the power electrical system is partitioned by shattering decomposition method, the

admittance matrix created by the decomposed system is definitely decoupled into block

diagram structure. The LU factorization for the whole large matrix is converted to the

factorization for each small block, which can be processed in parallel on the GPU-based

computing system.

Considering there are only few blocks of the admittance matrix influenced by the swit-

ching occurring in the power system since it is decoupled, the admittance matrix is re-

levant stable. Therefore, the linear system solution, v, can also be obtained by the in-

versed matrix multiplying with the RHS currents, i, more efficiently than doing forward-

backward substitution every time. From the definition of matrix inverse,

Y Y −1 = I, (6.6)

where I is the identity matrix, Y −1 can be considered as a combination of the vector solu-

tion of the linear systems as follows,

Y y′
k = ik, k = 0, 1, . . . ,n (6.7)

Chapter 6. Massively Parallel Implementation on GPUs 78

B0

Ck

C0

A

B

C

Bj
-1

B0
-1

Bj

B0
-1

Ck
-1

C0
-1

Bj
-1

A0

Ai

A0A-1

AiA-1

A

B

C

A0

Ai L
U

A-1

B-1

C-1

A-1

B-1

C-1

A0A-1

A0A-1

B0

Bj L
U

C0

Ck L
U

C0
-1

Ck
-1

Y Y-1

L
U

L
U

L
U

Figure 6.5: Massively parallel matrix inverse based on LU Factorization.

where n is the dimension of the linear system, y′
k are the column vectors of Y −1 and ik are

the column vectors of I. Since Y is factorized into LU , and ik is independent with each

other, the column vectors y′
k can be solved by forward-backward substitution in parallel

and combined into Y −1 finally. The working flow of massively parallel matrix inverse

based on LU factorization is shown in Fig. 6.5. The Y matrix is partitioned into small

blocks which is grouped according to the dimensions, for instance groups A, B and C.

• In step (1), all grouped data are copy from host side (CPU) to device side (GPU).

• All matrix block are extracted from the groups and assigned to different CUDA

blocks in the light of dimensions in step (2).

• In step (3), The LU factorization for each block is processed in parallel.

• The inverse of each block is computed with massively threads in step (4).

Chapter 6. Massively Parallel Implementation on GPUs 79

• All data of inverse matrices which have the same size with the original matrices are

regrouped into a large data block containing groups A−1, B−1 and C−1 in step (5).

• And in step (6), all grouped data of inversed matrices are copy back from device side

to host side, which can be extracted back into the inversed admittance matrix, Y −1,

with block diagram structure.

After the admittance matrix is inversed and stored, the solution of the linear system can

be obtained by matrix-vector multiplication, which can be processed in high-rate parallel

as well. If a switching happens, only the block related to that switch need to be updated,

and the other blocks are remained.

6.4 Nonlinear System Newton-Raphson Method

To find the solution of the nonlinear system,

F (v) = 0, (6.8)

consisting k unknown variables, the Newton equations with Jacobian matrix JF (v) gives

as follows,

JF (v
n)Δvn+1 = −F (vn), (6.9)

where Δvn+1 is given as

Δvn+1 = vn+1 − vn. (6.10)

Jacobian matrix JF (v) is a k×k matrix of the first-order partial derivatives of F respecting

the unknown variables v, given as

JF =
dF

dv
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂v1

∂F1

∂v2
· · · ∂F1

∂vk
∂F2

∂v1

∂F2

∂v2
· · · ∂F2

∂vk
...

...
. . .

...

∂Fk

∂v1

∂Fk

∂v2
. . .

∂Fk

∂vk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.11)

Therefore, to find the root of a nonlinear system is converted to solving a linear system

multiple times. Since the Jacobian matrix is normally updated in every iteration, using

matrix inverse methodis less efficient than LU or Gaussian elimination with substitution to

Chapter 6. Massively Parallel Implementation on GPUs 80

Figure 6.6: Mechanism of computational load balancing and event synchronization.

find the solution. After Δvn+1 is solved, vn+1 can be found with (6.10), by which Jacobian

matrix can also be updated. The solving process is repeated till the solution difference,

||Δvn+1||, is converged.

6.5 Balance and Synchronization

Since the large scale system has already been decomposed into LBs and NLBs of similar

size relevantly small, the computing tasks can be assigned to each GPU evenly with a

round-robin scheme with the task queues [71], if more than two GPUs are present on the

simulation platform, as shown in Fig. 6.6. There are several criteria that are followed

during the workload distribution:

• linear and nonlinear subsystems are processed in different groups of GPUs separa-

tely;

• all blocks belonging to one subsystem are assigned to the same GPU due to data

interchange inside the subsystem;

• linear blocks with the same size can be grouped in multiple CUDA kernels and ap-

portioned to different CUDA streams;

• nonlinear blocks with the same components can be grouped in multiple CUDA ker-

nels and apportioned to different CUDA streams;

• CUDA kernels inside the queue are synchronized by CUDA events.

Chapter 6. Massively Parallel Implementation on GPUs 81

Figure 6.7: GUI for the fine-grained GPU-based EMT simulator.

6.6 GUI

A graphical user interface (GUI) prototype was developed for the GPU-based fine-grained

EMT simulation tool, which provides basic functions for network construction and para-

meter configuration, as shown in Fig. 6.7. The power system diagram created by users is

transformed to a Netlist file, which contain the information of bus nodes, connecting relati-

ons, parameter values, the number of components, modeling arguments and so on. When

the massively parallel EMT simulation engineer accesses the Netlist file, all information

of the electrical power network is parsed and extracted, whose results are saved into da-

tabase for the network topology analysis to create the decomposition rules. According to

the decomposition information, the kernel data structures of computing engineering, such

as data structures for admittance matrix and Jacobian matrix are built up and assigned to

relevant computing units. Finally, the large-scale EMT simulation is processed following

the SIMT execution model on the GPU-based massively parallel computing platform.

Chapter 6. Massively Parallel Implementation on GPUs 82

6.7 Summary

In this chapter, the implementation of massively parallel EMT simulation on GPUs is intro-

duced, including computing platform environment, hardware and software configuration,

simulation work flow, multi-stream concurrent execution, linear solution, nonlinear solu-

tion, synchronization mechanism and GUI.

7
Simulation Case Studies

In order to show the accuracy of transients, and the acceleration for the proposed GPU-

based parallel EMT simulator, four test cases are utilized.

• In the first test case, various transient behaviors are presented, and the simulation

results are validated by the EMT software ATP and EMTP-RV�.

• In the second test case, the accelerating performance of GPU, whose execution times

on various system scales are compared to those of EMTP-RV�, is shown and analy-

zed by running the EMT simulation on the extended large-scale power systems.

• In the third test case, the single-phase and 3-phase physics-based MMC circuits are

simulated and compared to those of SaberRD�.

• In the last test case, the 3-phase behavior-based MMC based AC/DC converter is

simulated and compared with different submodule levels.

Table 7.1: Test system specification
CPU Intel Xeon E5-2620
Main memory 32GB
GPU GeForce GTX 1080 (Pascal) × 2
Video memory 8GB × 2 (16GB)
OS Windows 7 Enterprise, 64-bit

Chapter 7. Simulation Case Studies 84

Figure 7.1: Single-line diagram for Case Study A.

The hardware and software environment of the test system is listed in Table 7.1, and

the parameters for the test cases are given in the Appendix B.

7.1 Case Study A

The synchronous machine (SM), two transformers (T1, T2) and the arrester (MOV) are

nonlinear components in the test system, as shown in Fig. 7.1. The first switch (SW1)

closes at 0.01s, the ground fault happens at 0.15s, and then the second switch (SW2) opens

at 0.19s to clear the fault. The total simulation time is 0.3s with 20μs time-step. All results

of GPU-based EMT simulation are compared with those of EMTP-RV� and ATP.

The 3-phase voltages at Bus2 are shown in Fig. 7.2, which are the output voltages of the

step up transformer, T1.; the 3-phase currents through Bus2 are shown in Fig. 7.3, which

are the currents through the transformer, T1; the 3-phase voltages at Bus3 are shown in Fig.

7.4, which are the waveforms after transmission and the input of step down transformer,

T2t the power angle and electromagnetic torque waveforms of the synchronous machine,

G, are shown in Fig. 7.5; and the active and reactive power of the case study A are shown

in Fig. 7.6. Additionally, the phase a voltage of Bus2, phase a current of Bus2 and power

angle are compared in overlapped waveforms in Fig. 7.7 with the simulation results of

GPU-based EMTP, EMTP-RV� and ATP.

When the switches activate and fault happens in the circuit of case study A, the power

electromagnetic transients are clearly demonstrated by the proposed GPU-based parallel

simulation in the waveforms of voltages, currents, power angle, electromagnetic torque,

active power and reactive power, which illustrate good agreement with the results from

EMTP-RV� and ATP.

Although the different synchronous machine model (SM type 58) and transmission

line model (Line type JMarti) are used in ATP other than GPU-based parallel simulation

and EMTP-RV�, the results are nevertheless close enough to represent designed transient

phenomena. Due to more sophisticated models applied, there are more details on the

Chapter 7. Simulation Case Studies 85

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

-10

0

10

20

Simulation time (s)

Vo
lta

ge
(k

V
)

Sim Bus2 Va
Sim Bus2 Vb
Sim Bus2 Vc

(a) Bus2 Voltages from GPU-based simulation

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

-10

0

10

20

Simulation time (s)

Vo
lta

ge
(k

V
)

EMTP-RV Bus2 Va
EMTP-RV Bus2 Vb
EMTP-RV Bus2 Vc

(b) Bus2 Voltages from EMTP-RV�

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

-10

0

10

20

Simulation time (s)

Vo
lta

ge
(k

V
)

ATP Bus2 Va
ATP Bus2 Vb
ATP Bus2 Vc

(c) Bus2 Voltages from ATP

Figure 7.2: 3-phase voltages comparison at Bus2 of Case Study A

Chapter 7. Simulation Case Studies 86

0 0.05 0.1 0.15 0.2 0.25 0.3

-100

-50

0

50

100

Simulation time (s)

C
ur

re
nt

(A
)

Sim Bus2 Ia
Sim Bus2 Ib
Sim Bus2 Ic

(a) Bus2 currents from GPU-based simulation

0 0.05 0.1 0.15 0.2 0.25 0.3

-100

-50

0

50

100

Simulation time (s)

C
ur

re
nt

(A
)

EMTP-RV Bus2 Ia
EMTP-RV Bus2 Ib
EMTP-RV Bus2 Ic

(b) Bus2 currents from EMTP-RV�

0 0.05 0.1 0.15 0.2 0.25 0.3

-100

-50

0

50

100

Simulation time (s)

C
ur

re
nt

(A
)

ATP Bus2 Ia
ATP Bus2 Ib
ATP Bus2 Ic

(c) Bus2 currents from ATP

Figure 7.3: 3-phase currents comparison through Bus2 of Case Study A

Chapter 7. Simulation Case Studies 87

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

-10

0

10

20

Simulation time (s)

Vo
lta

ge
(k

V
)

Sim Bus3 Va
Sim Bus3 Vb
Sim Bus3 Vc

(a) Bus3 Voltages from GPU-based simulation

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

-10

0

10

20

Simulation time (s)

Vo
lta

ge
(k

V
)

EMTP-RV Bus3 Va
EMTP-RV Bus3 Vb
EMTP-RV Bus3 Vc

(b) Bus3 Voltages from EMTP-RV�

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

-10

0

10

20

Simulation time (s)

Vo
lta

ge
(k

V
)

ATP Bus3 Va
ATP Bus3 Vb
ATP Bus3 Vc

(c) Bus3 Voltages from ATP

Figure 7.4: 3-phase voltages comparison at Bus3 of Case Study A.

Chapter 7. Simulation Case Studies 88

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

0

20

40

60

80

Simulation time (s)

A
ng

le
(1

0-3
ra

d)

Sim Angle

-1

0

1

2

3

4

To
rq

ue
(k

N
m

)

Sim Angle
Sim Torque

(a) Angle and torque from GPU-based simulation

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

0

20

40

60

80

Simulation time (s)

A
ng

le
(1

0-3
ra

d)

EMTP-RV Angle

-1

0

1

2

3

4

To
rq

ue
(k

N
m

)

EMTP-RV Angle
EMTP-RV Torque

(b) Angle and torque from EMTP-RV�

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

0

20

40

60

80

Simulation time (s)

A
ng

le
(1

0-3
ra

d)

ATP Angle

-1

0

1

2

3

4

To
rq

ue
(k

N
m

)

ATP Angle
ATP Torque

(c) Angle and torque from ATP

Figure 7.5: Synchronous machine angle and torque of Case Study A.

Chapter 7. Simulation Case Studies 89

0 0.05 0.1 0.15 0.2 0.25 0.3

-0.2

0

0.2

0.4

0.6

0.8

1

Simulation time (s)

A
ct

iv
e

po
w

er
(M

W
)

Sim P

-0.2

0

0.2

0.4

0.6

0.8

1

R
ea

ct
iv

e
po

w
er

(M
va

r)

Sim P
Sim Q

(a) P and Q from GPU-based simulation

0 0.05 0.1 0.15 0.2 0.25 0.3

-0.2

0

0.2

0.4

0.6

0.8

1

Simulation time (s)

A
ct

iv
e

po
w

er
(M

W
)

EMTP-RV P

-0.2

0

0.2

0.4

0.6

0.8

1

R
ea

ct
iv

e
po

w
er

(M
va

r)

EMTP-RV P
EMTP-RV Q

(b) P and Q from EMTP-RV�

0 0.05 0.1 0.15 0.2 0.25 0.3

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Simulation time (s)

A
ct

iv
e

po
w

er
(M

W
)

ATP P

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
ea

ct
iv

e
po

w
er

(M
va

r)

ATP P
ATP Q

(c) P and Q from ATP

Figure 7.6: Active power and reactive power of Case Study A.

Chapter 7. Simulation Case Studies 90

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

-10

0

10

20

Simulation time (s)

Vo
lta

ge
(k

V
)

Bus2 Va Sim
Bus2 Va EMTP-RV
Bus2 Va ATP

(a) Bus2 phase a overlapped voltages

0 0.05 0.1 0.15 0.2 0.25 0.3

-100

-50

0

50

100

Simulation time (s)

C
ur

re
nt

(A
)

Bus2 Ia Sim
Bus2 Ia EMTP-RV
Bus2 Ia ATP

(b) Bus2 phase a overlapped currents

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

0

20

40

60

80

Simulation time (s)

A
ng

le
(1

0-3
ra

d)

Angle Sim
Angle EMTP-RV
Angle ATP

(c) Bus1 overlapped Angles

Figure 7.7: Comparison of overlapped waveforms

Chapter 7. Simulation Case Studies 91

transient waveforms from the GPU simulation.

7.2 Case Study B

In order to show the acceleration of GPU based EMT simulation, large-scale power systems

are built, which are based on the IEEE 39-bus network as shown in Fig. 7.8. Considering

the interconnection is a path of power grid growth, the large-scale networks are obtained

by duplicating the Scale 1 system and interconnecting by transmission lines. As shown

in Table 7.2, the test systems are extended up to 3×79872 (239616) buses. All networks

are decomposed into LBs, NLBs and CBs after fine-grained decomposition in the unified

patterns. For instance, the 39-bus network is divided into 28 LBs, 21 NLBs and 10 CBs, as

shown in Fig. 7.9. The simulation is based on CPU, 1-GPU and 2-GPU computational sy-

stems from 0 to 100ms with 20μs time-step respectively, using double precision and 64-bit

operation system. All test cases are extended sufficiently long to suppress the deviation of

the software timer, which starts after reading the circuit net-list and parameters, including

network decomposition, memory copy, component model calculation, linear/nonlinear

solution, node voltage/current update, result output and transmission delay.

The scaled test networks are given in Table 7.2, including network size, bus number

and partition. The execution time for each network is listed in order of network size and

Table 7.2: Comparison of execution time for various networks among CPU, single-GPU
and multi-GPU for simulation duration 100ms with time-step 20μs

Scale
3φ Blocks Execution time (s) Speedup

buses LBs NLBs CBs EMTP-RV� CPU 1-GPU 2-GPU CPU 1-GPU 2-GPU

1 39 28 21 10 1.24 1.38 1.16 0.93 0.89 1.06 1.33
2 78 56 42 20 2.71 2.87 1.52 1.36 0.94 1.78 1.99
4 156 112 84 40 5.54 5.53 2.03 1.77 1.00 2.73 3.14
8 312 224 168 80 11.94 11.22 2.96 2.37 1.06 4.04 5.03

16 624 448 336 160 26.50 23.12 4.63 3.35 1.15 5.73 7.91
32 1248 896 672 320 60.65 48.16 7.98 5.19 1.26 7.60 11.68
64 2496 1792 1344 640 142.31 100.11 14.42 8.72 1.42 9.87 16.31

128 4992 3584 2688 1280 323.26 210.76 28.36 15.83 1.53 11.40 20.42
256 9984 7168 5376 2560 705.92 439.26 55.47 30.23 1.61 12.73 23.35
512 19968 14336 10752 5120 1513.35 892.45 109.29 57.78 1.70 13.85 26.19

1024 39936 28672 21504 10240 3314.24 1863.66 225.17 116.86 1.78 14.72 28.36
2048 79872 57344 43008 20480 7033.61 3796.37 454.48 234.37 1.85 15.48 30.01

Chapter 7. Simulation Case Studies 92

Fi
gu

re
7.

8:
Sy

st
em

sc
al

e
ex

te
ns

io
n

fo
r

ca
se

st
ud

y
B.

Chapter 7. Simulation Case Studies 93

Figure 7.9: Fine-grained decomposition for the 39-bus system.

Table 7.3: Average execution time (ms) for one time-step
Scale 20 21 22 23 24 25 26 27 28 29 210 211

EMTP-RV� 0.25 0.54 1.11 2.39 5.30 12.13 28.46 64.65 141.18 302.67 662.85 1406.72
CPU 0.28 0.57 1.11 2.24 4.62 9.63 20.02 42.15 87.85 178.49 372.73 759.27

1-GPU 0.23 0.30 0.41 0.59 0.93 1.60 2.88 5.67 11.09 21.86 45.03 90.90
2-GPU 0.19 0.27 0.35 0.47 0.67 1.04 1.74 3.17 6.05 11.56 23.37 46.87

categorized by the type of computing systems as well as the speedup referred to the per-

formance on CPU. In the plotted Fig. 7.10 along the 1-GPU speedup curve, the speedup

increases slowly when network size is small (lower than 4 scales) since the GPU cannot

be fed enough workload; for the network scale from 4 to 32, the acceleration climbs fast,

showing the computational power of the GPU is released by fetching a greater amount of

data; when the network size is more than 32, the performance approaches a constant since

the computational capability of GPU closes to saturation. In the case of 2-GPU system, the

trend of speedup increase is similar to the 1-GPU case except that the saturation point is

put off because of the doubled computational capability. Due to the nonlinear relationship

of the execution time to the system scale, the bar diagrams of execution times for various

system scales are zoomed using a logarithmic log axis to obtain a detailed view. Additi-

onally, it can be noticed that the performance of CPU is also enhanced by the proposed

decomposition method since the divided circuit blocks simplify the sparse data structure

to dense one along with the increasing system scale, thus the systems can be solved by

dense solver and avoid the extra cost of dealing with the sparse structure, such as non-

zero elements analysis, which is involved in every solution. In that case, the computation

Chapter 7. Simulation Case Studies 94

20 21 22 23 24 25 26 27 28 29 210 211

0

2000

4000

6000

Network scale

E
xe

cu
tio

n
tim

e
(s

)

EMTP-RV time
CPU time

1-GPU time
2-GPU time

0

5

10

15

20

25

30

S
pe

ed
up

EMTP-RV time
CPU time

1-GPU time
2-GPU time

CPU speedup
1-GPU speedup
2-GPU speedup

20 21 22 23 24 25 26
100

101

102

Network scale

Zo
om

ed
ex

ec
ut

io
n

tim
e

(s
)

EMTP-RV time
CPU time

1-GPU time
2-GPU time

27 28 29 210 211
101

102

103

104

Network scale

Zo
om

ed
ex

ec
ut

io
n

tim
e

(s
)

EMTP-RV time
CPU time

1-GPU time
2-GPU time

Figure 7.10: Execution time and speedup for varying scales of test networks on CPU, 1
GPU and 2 GPUs based programs compared to EMTP-RV�.

load is almost linearly related to the system scale comparing with the nonlinear traditional

sparse solver.

Owing to the shattering network decomposition, the computation load can be well-

distributed to each compute device so that the overall performance of a computing system

is decided by the number of processors, following the Gustafson-Barsis’ law [27]. The

average execution time for one time-step is listed in Table 7.3 due to the different conver-

gent speed of each time-step. When the network scale is up to 211 (2048), which is close

to the memory limitation of the computing system, the 2-GPU system doubles the perfor-

mance of the 1-GPU system and attains 30 times faster than EMTP-RV�.

Chapter 7. Simulation Case Studies 95

7.3 Case Study C

The performance of massively parallel nonlinear solver based on Newton-Raphson met-

hod with fine-grained decomposition is evaluated by solving the nonlinear system of

MMC circuit modeling in Hefner’s physics-based model. Multiple nonlinear systems with

various order derived from difference level MMC circuits are tested. The execution time

and convergence are compared among single-thread CPU code, massive-thread GPU code

and SaberRD� since the model is included in SaberRD�.

For a l-level MMC system, there are 2(l− 1) half-bridge SMs used, of which the size of

Jacobian matrix JMMC is (20l − 19)× (20l − 19) based on Hefner’s IGBT model. a typical

Jacobian matrix of an IGBT is given with following element values,

⎡
⎢⎢⎢⎢⎢⎢⎣

1.17722× 10−19 −1.2410× 10−9 −1.0000× 10−12 −5.3015× 10−10 0

−1.2410× 10−9 3.9958× 10−9 0 −2.7558× 10−9 0

0 0 0.5454 0 −0.5454
−5.3015× 10−10 −2.7548× 10−9 0 4.3443× 10−9 −1.0593× 10−9

−2× 10−12 0 −0.5454 −1.0583× 10−9 0.5454

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The challenge of solving the high order nonlinear system is the ill conditioning of the

Jacobian matrix since the nonlinear solution is obtained by solving multiple linear systems.

The sensitivity of a linear system can be measured by the condition number of the square

nonsingular matrix A, which is defined as:

cond(A) = ||A|| · ||A−1||. (7.1)

If the condition number is close to 1, it means the matrix is well-conditioned, whereas

if the condition number is large, the matrix is deemed as ill-conditioned. Unfortunately,

due to the variety and difference of the conductance caused by the switching character of

the power electric devices, the Jacobian matrices, JMMC , of the MMC circuits are very ill-

conditioned, whose condition number are more than 1×107 normally. The ill conditioning

of Jacobian matrix influences the solution accuracy of the Newton equation; and then the

solution impacts the convergence of Newton iteration.

The solution times of various nonlinear systems are list in Table 7.4 with the error to-

lerance, ε = 1 × 10−6, and the maximum iteration, Itermax = 10. For SaberRD�, the

Newton iteration for nonlinear solution cannot converge when the level of MMC reaches

6 (the order of the Jacobian matrix is 101), due to the ill-conditioned linear system of New-

ton method. The CPU program uses the same fine-grained decomposition algorithm with

Chapter 7. Simulation Case Studies 96

Table 7.4: SaberRD�, CPU and GPU solution times of nonlinear systems.

NL OJ
Solution time (ms)

Speedup
SaberRD� CPU GPU

2 21 1.06 1.13 1.42 0.80
3 41 2.00 2.22 1.63 1.36
4 61 2.98 3.20 1.75 1.83
5 81 4.04 4.28 1.80 2.37
6 101 - 5.35 1.88 2.84
7 121 - 6.61 2.03 3.26
8 141 - 7.82 2.15 3.64
9 161 - 9.14 2.24 4.09

10 181 - 10.70 2.31 4.63
11 201 - 12.40 2.42 5.11

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

Jacobian matrix order of nonlinear system

S
ol

ut
io

n
tim

e
(s

)

SaberRD
CPU
GPU

0

1

2

3

4

5

6

S
pe

ed
up

SaberRD
CPU
GPU

Speedup

Figure 7.11: Nonlinear system solution time and speedup comparison.

GPU program but runs in single thread. Therefore the convergence of CPU and GPU pro-

grams are similar, which both solve the nonlinear system up to 11 levels MMC (201 by 201

Jacobian matrix); however, even for the decomposed system, the Newton iteration cannot

converge when the level of MMC is higher than 11. Over 5 time speedup is gained from

the advantage of massively parallel computing. The nonlinear system solution times re-

specting to the order of Jacobian matrices are compared by bar graph and the speedup

trend is plotted in Fig. 7.11.

Chapter 7. Simulation Case Studies 97

Table 7.5: Condition number of Jacobian matrix during Newton iteration
Number of iteration 1 2 3 4 5
cond(JMMC) 2.3813×1017 1.6154×1017 5.7653×1016 9.2175×1016 7.1517×1017

Vdc
Rs

Vdc

voio VsTs

Figure 7.12: Single-line diagram for Case Study D.

Table. 7.5 lists the condition numbers of JMMC during 5 steps of Newton iteration.

The condition numbers of the Jacobian matrix are quite large. Therefore, the solution of

the linear system in Newton method is very sensitive to errors, and the Newton iteration is

very difficult to converge due to the inaccurate results from the linear system. The situation

gets even worse along with the increasing levels of MMC circuit since the order of the

Jacobian matrix of nonlinear system grows as well.

7.4 Case Study D

The AC/DC converter based on MMC, as shown in Fig. 7.12, is used to evaluate the

power electronic type of switching in GPU-based EMT simulation. Due to the proposed

fine-grained decomposition algorithm, all 6 arms in 3-phase MMC are decoupled and each

SM in one arm is processed by one thread. The waveforms in Fig. 7.15 show the EMT

simulation results of the converter with 8 SMs per arm (17-level) MMC with 10μs time-

step. The 3-phase output voltages of MMC are shown in Fig. 7.15(a) and zoomed in Fig.

7.15(d) between 56ms to 59ms; the capacitor voltages of upper and lower arms of SMs in

MMC are shown in Fig. 7.15(b) and the waveforms inside the marked area on upper arm

curves are zoomed in Fig. 7.15(e) between 53.2ms and 54.8ms; 3-phase output currents are

shown in Fig. 7.15(c); active and reactive power control results are shown in Fig. 7.15(f),

which correctly follow the reference P and Q signals.

The performance of GPU-based massively parallel EMT algorithm with the proposed

fine-grained decomposition is compared to CPU-based simulation by varying the number

of SMs per arm in MMC. The execution times from CPU, 1-GPU and 2-GPU based simula-

tion of 3-phase MMC converter with a 10μs time-step during 0.5s simulation are listed and

Chapter 7. Simulation Case Studies 98

50 55 60 65 70 75 80

-1000

-500

0

500

1000

Simulation time (ms)

Vo
lta

ge
(V

)

vo a
vo b
vo c

(a) 3-phase output Voltages

55 56 57 58 59

-1000

-500

0

500

1000

Simulation time (ms)

Vo
lta

ge
(V

) vo a
vo b
vo c

(b) Zoomed output voltages of MMC

Figure 7.13: 3-phase output Voltages of 17-level MMC from GPU-based simulation

compared in Table 7.6 from 8 SMs per arm (17-level) to 1024 SMs per arm (2049-level) in

MMC. In Fig. 7.16, the bar graph shows the comparison of execution among various com-

putational platforms and curves illustrate that the speedup keeps increasing along with

the number of SMs in MMC, which is close to 51 times for 1-GPU platform and reaches

64 times for 2-GPU platform compared to the single thread CPU simulation. It is obvious

that the execution time is almost doubled when the number of SMs in MMC is doubled on

CPU-based simulation; however, it grows much slower for GPU-based simulation. Since

Chapter 7. Simulation Case Studies 99

50 55 60 65 70 75 80

200

220

240

260

280 Upper arm

Zoomed area

Simulation time (ms)

Vo
lta

ge
(V

)
Lower arm

(a) SM capacitor voltages

53.2 53.4 53.6 53.8 54.0 54.2 54.4 54.6 54.8

225.4

225.6

225.8

226.0

Simulation time (ms)

Vo
lta

ge
(V

)

(b) Zoomed SM capacitor voltages of MMC

Figure 7.14: SM capacitor voltages of 17-level MMC from GPU-based simulation

the increase of speedup is close to linear, the computational complexity order of the EMT

simulation is reduced effectively by the massively parallel computation on the GPUs.

7.5 Summary

In this chapter, four test cases are studied to demonstrate the accuracy and performance of

the proposed GPU-based parallel EMT simulator. The transients caused by system energi-

Chapter 7. Simulation Case Studies 100

50 55 60 65 70 75 80

-200

-100

0

100

200

Simulation time (ms)

C
ur

re
nt

(A
)

io a
io b
io c

(a) 3-phase Output currents

40 60 80 100 120 140 160 180 200

-0.2

0

0.2

0.4

0.6

0.8

1.0

Simulation time (ms)

P,
Q

(p
u) P

P ref
Q
Q ref

(b) Active and reactive power control

Figure 7.15: 3-phase output currents, P and Q of 17-level MMC from GPU-based simula-
tion.

zation and ground fault are verified with mainstream commercial EMT simulation tools,

including EMTP-RV� and ATP, which shows a reasonable agreement. The large-scale po-

wer systems made of 39-bus system extend the number of buses up to 23.9k, of which the

execution times and acceleration are compared among those of EMTP-RV�, CPU, 1-GPU

and 2-GPU EMT simulation. For the power electronic circuit, the performance of the non-

linear solver based on fine-grained decomposition is tested and compared with SaberRD�

and CPU program, which shows better convergence and acceleration benefitting from the

massively parallel computing on GPU. The MMC circuit with linear behavior-based mo-

Chapter 7. Simulation Case Studies 101

Table 7.6: CPU and GPU execution times of 3-phase AC/DC converter for 0.5s duration
with 10μs time-step.

NSM NSM Execution time (s) Speedup
per arm total CPU 1-GPU 2-GPU 1-GPU 2-GPU

8 48 9.77 1.98 1.91 4.93 5.12
16 72 17.75 2.18 2.02 8.14 8.79
32 144 34.83 2.61 2.27 13.34 15.34
64 288 68.89 4.16 3.12 17.30 22.08

128 768 131.72 5.92 4.87 23.03 27.05
256 1536 254.95 8.64 6.96 29.51 36.63
512 3072 485.58 12.87 9.55 37.73 50.85

1024 6144 902.69 17.53 14.03 51.49 64.34

8 16 32 64 128 256 512 1024
1

10

100

1000

Number of SMs per arm

E
xe

cu
tio

n
tim

e
(s

)

CPU time
1-GPUP time
2-GPUP time

0

10

20

30

40

50

60

70

80

S
pe

ed
up

CPU time
1-GPU time
2-GPU time

1-GPU speedup
2-GPU speedup

Figure 7.16: Execution time and speedup of simulation for varying levels of MMC on CPU,
1 GPU and 2 GPUs based programs.

deling are implemented on GPU-based massively parallel computing platform. Multiple-

level MMC circuits, up to 1024, are tested to show accuracy and performance in compari-

son to single-thread CPU program.

8
Conclusions and Future Works

Electromagnetic transient simulation of large-scale nonlinear power grids is computatio-

nally demanding, and it is therefore imperative to accelerate the simulation which is used

to conduct a wide variety of studies by electric utilities. The shattering network decompo-

sition methods proposed in the thesis partitions the power electrical circuit, decouples the

linear and nonlinear solution, and accelerates the power electronic converter circuit simu-

lation working with high frequency switching, which enables the transient simulation to

take advantage of massively parallel computing platform conveniently and unleashes the

computational power of GPUs. All the component models employed are detailed and the

solution is fully iterative. Along with the increasing scale, fully decomposed simulation

can be easily deployed on to multi-GPU computing system and implement the massively

parallel algorithms, so that the maximum performance of simulation can be obtained ac-

cording Gustafson-Barsis’ law.

8.1 Contributions of Thesis

• The fundamental procedure framework and data structure for the electromagnetic

transient simulation of power systems are designed in this work, which adapt to the

attributes of the SIMT parallel execution model of the modern massive-core proces-

sor such as GPU.

• Nonlinear massively parallel modules are developed for synchronous machine, trans-

Chapter 8. Conclusions and Future Works 103

former with magnetic saturation and nonlinear load, including both piecewise and

analytical nonlinear expressions.

• Linear massively parallel modules are developed for transmission line and linear

passive components (R, L, C) with frequency-dependent detailed model and unified

lump model.

• Control logic is included in the massively parallel EMT simulation system and inter-

faced to the main routine of components models computation.

• The power electronic circuit, MMC, are decoupled in fine-grained to adapt to the

massively parallel solving algorithm for both nonlinear and linear modeling with

proposed shattering decomposition method.

• The high frequency switching power electronic devices are implemented on the GPU-

based massively parallel computing platform with linear behavior-based model.

• The multi-level shattering decomposition method is proposed by analyzing the topo-

logy of the circuit network, including the coarse-grained level based on propagation

delay and the fine-grained level based on system diakoptics, to accommodate the

SIMT massively parallelism.

• For the fine-grained system partition, compensation network decomposition and Ja-

cobian domain decomposition are proposed for linear and nonlinear solution in mas-

sively parallel computing platform respectively.

• The massively parallel linear system solution is developed based on SIMT data and

execution scheme. In addition to the basic algebra operations, the linear solver inclu-

des matrix LU decomposition, forward/backward substitution and matrix inverse.

• The massively parallel nonlinear system solution is developed based on Newton-

Raphson iteration algorithm according to the SIMT data and execution method.

• A prototype of GUI is designed to offer a friendly interface between user and parallel

computing engine.

8.2 Directions for Future Work

• Although the typical components are implemented, there are vast components with

various models in power electrical network, which can be implemented step by step

Chapter 8. Conclusions and Future Works 104

to build up a complete EMT simulation environment on the massively parallelism.

• HVDC transmission grid is important to modern energy system, which can be simu-

lated and extended with both behavior-based and physics-based models.

• Other than LU decomposition, various parallel linear system solving methods can be

developed and implemented on GPU-based massively parallel computing system to

enhance the accuracy and performance of EMT simulation.

• The shattering decomposition proposed in this work can be used on other types of

parallel platforms potentially, such as multi-core CPU and distributed parallel sy-

stem, since network partition is one of the keys to parallel computation.

Bibliography

[1] H. W. Dommel, “Digital computer solution of electromagnetic transients in single and

multiphase networks,” IEEE Trans. Power App. Syst., vol. PAS-88, no. 4, pp. 388-399,

Apr. 1969.

[2] M. D. Omar Faruque et al., “Real-time simulation technologies for power systems

design, testing, and analysis,” IEEE Power Energy Technol. Syst. J., vol. 2, no. 2, pp.

63-73, Jun. 2015.

[3] H. W. Dommel and W. S. Meyer, “Computation of electromagnetic transients,” Proc.

IEEE, vol. 62, no. 7, pp. 983-993, Apr. 1974.

[4] J. Mahseredjian, V. Dinavahi, J. A. Martinez “Simulation tools for electromagnetic

transients in power systems: overview and challenges,” IEEE Trans. on Power Delivery,

vol. 24, no. 3, pp. 1657-1669, July 2009.

[5] CAN/AM EMTP Users Group, Alternative Transients Program (ATP) Rule Book, 2000.

[6] Manitoba HVDC Research Centre, EMTDC User’s Guide, Winnipeg, MB, Canada,

2003.

[7] EMTP-RV website: www.emtp-software.com

[8] H. W. Dommel, EMTP Theory Book, Bonneville Power Administration,1984.

[9] H. K. Lauw and W. Scott Meyer, “Universal machine modeling for the representation

of rotating electric machinery in an electromagnetic transients program,” IEEE Trans.

Power App. Syst., vol. 101, no. 6, pp. 1342-1350, Jun. 1982.

[10] V. Brandwajn, H. W. Dommel and I. Dommel, “Matrix representation of three-phase

n-winding transformers for steady-state and transient studies,” IEEE Trans. Power

App. Syst., vol. PAS-101, no. 6, pp. 1369?1378, Jun. 1982.

Bibliography 106

[11] A. Morched, B. Gustavsen, and M. Tartibi, “A universal model for accurate calculation

of electromagnetic transients on overhead lines and underground cables,” IEEE Trans.

Power Del., vol. 14, no. 3, pp. 1032-1038, July 1999.

[12] J. W. Demmel, J. R. Gilbert, and X. S. Li “An asynchronous parallel supernodal algo-

rithm for sparse gaussian elimination,” SIAM J. Matrix Analysis and Applications, vol.

20, no. 4, pp. 915 - 952, 1999.

[13] E. Lindholm, J. Nickolls, S. Oberman and J. Montrym, “NVIDIA Tesla: A Unified

Graphics and Computing Architecture,” IEEE Micro, vol. 28, no. 2, pp. 39-55, Mar.-

Apr. 2008.

[14] D. Blythe, “Rise of the graphics processor,” Proc. IEEE, vol. 96, no. 5, pp. 761-778,

May 2008.

[15] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C. Phillips, “GPU

computing,” Proc. IEEE, vol. 96, no. 5, pp. 879-899, May 2008.

[16] A. Gopal, D. Niebur and S. Venkatasubramanian, “DC power flow based contingency

analysis using graphics processing units,” IEEE Power Tech., pp. 731-736, Lausanne,

2007.

[17] V. Jalili-Marandi and V. Dinavahi, “Large-scale transient stability simulation on

graphics processing units,” IEEE Power & Energy Society General Meeting, pp. 1-6,

Calgary, AB, 2009.

[18] N. Garcia, “Parallel power flow solutions using a biconjugate gradient algorithm

and a Newton method: a GPU-based approach,” IEEE PES General Meeting, pp. 1-4,

Minneapolis, MN, 2010

[19] V. Jalili-Marandi and V. Dinavahi, “SIMD-Based large-scale transient stability simu-

lation on the graphics processing unit,” IEEE Trans. Power Syst., vol. 25, no. 3, pp.

1589-1599, Aug. 2010.

[20] V. Jalili-Marandi, Z. Zhou and V. Dinavahi, “Large-scale transient stability simulation

of electrical power systems on parallel GPUs,” IEEE Trans. Parallel Distrib. Syst., vol.

23, no. 7, pp. 1255-1266, Jul. 2012.

[21] H. Karimipour and V. Dinavahi, “Extended Kalman filter-Based parallel dynamic

state estimation,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1539-1549, May 2015.

Bibliography 107

[22] H. Karimipour and V. Dinavahi, “Parallel relaxation-based joint dynamic state esti-

mation of large-scale power systems,” IET Gener. Transm. Distrib., vol. 10, no. 2, pp.

452-459, 2 4 2016.

[23] Z. Zhou and V. Dinavahi, “Parallel massive-thread electromagnetic transient simula-

tion on GPU,” IEEE Trans. Power Del., vol. 29, no. 3, pp. 1045-1053, Jun. 2014.

[24] J. K. Debnath, A. M. Gole and W. K. Fung, “Graphics-processing-unit-based accelera-

tion of electromagnetic transients simulation,” IEEE Trans. Power Del., vol. 31, no. 5,

pp. 2036-2044, Oct. 2016.

[25] V. Roberge, M. Tarbouchi and F. Okou, “Parallel power flow on graphics processing

units for concurrent evaluation of many networks,” IEEE Trans. Smart Grid, vol. PP,

no. 99, pp. 1-10, 2015.

[26] G. M. Amdahl, “Validity of the single-processor approach to achieving large scale

computing capabilities,” Proc. AFIPS Spring Joint Computer Conf., vol. 30, pp. 483-485,

Atlantic City, N.J., Apr. 18-20, 1967.

[27] John L. Gustafson , “Reevaluating Amdahl’s law,” Communications of the ACM, vol.

31, pp. 532-533, 1988.

[28] N. Fröhlich, B. M. Riess, U. A. Wever and Q. Zheng, “A new approach for parallel

simulation of VLSI circuits on a transistor level,” IEEE Trans. Circuits Syst. I: Funda-

mental Theory and Applications, vol. 45, no. 6, pp. 601-613, Jun. 1998

[29] P. Aristidou, D. Fabozzi and T. Van Cutsem, “Dynamic simulation of large-scale po-

wer systems using a parallel Schur-complement-based decomposition method,” IEEE

Trans. Parallel Distrib. Syst., vol. 25, no. 10, pp. 2561-2570, Oct. 2014.

[30] H. Karimipour and V. Dinavahi, “Parallel domain-decomposition-dased distributed

state estimation for large-scale power systems,” IEEE Trans. Ind. Appl., vol. 52, no. 2,

pp. 1265-1269, March-April 2016.

[31] Y. Liu and Q. Jiang, “Two-stage parallel waveform relaxation method for large-scale

power system transient stability simulation,” IEEE Trans. Power Syst., vol. 31, no. 1,

pp. 153-162, Jan. 2016.

[32] G. Kron, Diakoptics: The Piecewise Solution of Large Scale Systems, London: MacDonald,

1963.

Bibliography 108

[33] H. H. Happ, “Diakoptics and piecewise methods,” IEEE Trans. Power App. Syst., vol.

PAS-89, no. 7, pp. 1373-1382, Sept. 1970.

[34] D. Montenegro, G. A. Ramos and S. Bacha, “Multilevel a-diakoptics for the dyna-

mic power-flow simulation of hybrid power distribution systems,” IEEE Trans. Ind.

Informat. vol. 12, no. 1, pp. 267-276, Feb. 2016.

[35] NVIDIA� Corp., Whitepaper NVIDIA Tesla P100, 2016.

[36] NVIDIA� Corp., CUDA C Programming Guide, Sept. 2015.

[37] NVIDIA� Corp., Whitepaper NVIDIA GeForce GTX 1080, 2016.

[38] G. Ballard, J. Demmel, O. Holtz and O. Schwartz, “Minimizing communication in

linear algebra,” SIAM J. Matrix Analysis and Applications, vol. 32, no. 3, pp. 866 - 901,

Sept. 2011.

[39] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear algebra,”

SC2008 Proc. ACM/IEEE Conf. on Supercomputing, pp. 1-11, Austin, TX, USA, 15-21

Nov. 2008.

[40] H. K. Lauw, “Interfacing for universal multi-machine system modeling in an elec-

tromagnetic transients program,” IEEE Trans. Power App. Syst., vol. 104, no. 9, pp.

2367-2373, Sept. 1985.

[41] B. Gustavsen and A. Semlyen, “Simulation of transmission line transients using vec-

tor fitting and modal decomposition,” IEEE Trans. Power Del., vol. 13, no. 2, pp.

605-614, Apr. 1998.

[42] S. Priyadarshi, C. S. Saunders, N. M. Kriplani, H. Demircioglu, W. R Davis, P. D.

Franzon and M. B. Steer, “Parallel transient simulation of multiphysics circuits using

delay-based partitioning,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.

31, NO. 10, pp. 1522 - 1535, Oct. 2012.

[43] G.S. Murthy, M. Ravishankar, M. M. Baskaran and P. Sadayappan, “Optimal loop

unrolling for GPGPU programs,” in Proc. IEEE Int. Symp. on Parallel Distrib. Process.,

pp.1-11, 19-23 Apr. 2010

[44] J.S Przemieniecki, “Matrix structural analysis of substructures,” AIAA J., 1 (1963)

138-147.

Bibliography 109

[45] H.A. Schwarz, Gesammelte Mathematiche Abhandlungen, vol. 2, Springer, Berlin, 1890,

pp. 133?143.

[46] A. Ammous et al., “Electrothermal modeling of IGBTs: application to short-circuit

conditions,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 778-790, Jul 2000.

[47] W. Zhou, X. Zhong and K. Sheng, “High temperature stability and the performance

degradation of SiC MOSFETs,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2329-

2337, May 2014.

[48] A. Subbiah and O. Wasynczuk, “Computationally efficient simulation of high-

frequency transients in power electronic circuits,” IEEE Trans. Power Electron., vol.

31, no. 9, pp. 6351-6361, Sept. 2016.

[49] Synopsys Inc., “Saber Industry Standard for Multi-Domain and Mixed-signal Simu-

lation,” 2007.

[50] L. Johnson, “Saber-MATLAB Integrations: Enabling Virtual HW/SW Co-

Verification,” Synopsys, Inc., June 2004

[51] “Analog and mixed signal simulation,” Cadence Design Systems, Inc.

[52] O. A. Ahmed and J. A. M. Bleijs, “Pspice and simulink co-simulation for high effi-

ciency DC-DC converter using SLPS interface software,” 5th IET International Confe-

rence on Power Electronics, Machines and Drives (PEMD 2010), Brighton, UK, pp. 1-6.

2010.

[53] M. Pahlevaninezhad, P. Das, G. Moschopoulos and P. Jain, “Sensorless control of a

boost PFC AC/DC converter with a very fast transient response,” 2013 Twenty-Eighth

Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach,

CA, USA, 2013, pp. 356-360.

[54] Synopsys, Inc. “Saber� Accelerates Robust Design,” vol.5, June 2007

[55] A. R. Hefner and D. M. Diebolt, “An experimentally verifed IGBT model implemen-

ted in the Saber circuit simulator,” IEEE Trans. Power Electron., vol. 9, no. 5, pp.

532-542, Sept. 1994.

[56] A. R. Hefner, “Modeling buffer layer IGBTs for circuit simulation”, IEEE Trans. Power

Electron., vol. 10, no. 2, pp. 111-123, Mar. 1995.

Bibliography 110

[57] C. L. Ma and P. O. Lauritzen, “A simple power diode model with forward and reverse

recovery,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 342-346, 1993.

[58] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard and P. Barbosa, “Operation, control,

and applications of the modular multilevel converter: a review, ” IEEE Trans. Power

Electron., vol.30, no. 1, pp. 37-53, Jan. 2015.

[59] D. C. Ludois and G. Venkataramanan, “Simplified terminal behavioral model for a

modular multilevel converter,” IEEE Trans. on Power Electron., vol.29, no. 4, pp.

1622-1631, Apr. 2014.

[60] H. Peng, M. Hagiwara and H. Akagi, “Modeling and analysis of switching-ripple

voltage on the DC link between a diode rectifier and a modular multilevel cascade

inverter (MMCI),” IEEE Trans. on Power Electron., vol.28, no. 1, pp. 75-84, Jan. 2013.

[61] Z. Shen and V. Dinavahi “Real-time device-level transient electrothermal model for

modular multilevel converter on FPGA,” IEEE Trans. on Power Electron., vol.31, no.

9, pp. 6155-6168, Sept. 2016.

[62] H. Saad et al., “Dynamic averaged and simplified models for MMC-Based HVDC

transmission systems”, IEEE Trans. on Power Del., vol. 28, no. 3, pp. 1723-1730, Apr.

2013.

[63] M. Hagiwara and H. Akagi, “Control and experiment of pulsewidth-modulated mo-

dular multilevel converters,” IEEE Trans. on Power Electron., vol.24, no. 7, pp. 1737-

1746, July 2009.

[64] H. Akagi, S. Inoue and T. Yoshii, “Control and performance of a transformerless

cascade PWM STATCOM with star configuration,” IEEE Trans. on Ind. Appl., vol. 43,

no. 4, pp. 1041-1049, July-Aug. 2007.

[65] G. P. Adam, O. Anaya-Lara, G. M. Burt, D. Telford, B. W. Williams and J. R. Mcdo-

nald, “Modular multilevel inverter: pulse width modulation and capacitor balancing

technique,” IET Power Electronics, vol. 3, no. 5, pp. 702-715, Sept. 2010.

[66] W. Wang, Z. Shen and V. Dinavahi, “Physics-based device-level power electronic

circuit hardware emulation on FPGA,” IEEE Transactions on Industrial Informatics, vol.

10, no. 4, pp. 2166-2179, Nov. 2014.

Bibliography 111

[67] S. Yan; Z. Zhou; V. Dinavahi, “Large-scale nonlinear device-level power electronic ci-

rcuit simulation on massively parallel graphics processing architectures,” IEEE Tran-

sactions on Power Electronics, vol.PP, no.99, pp.1-1., 2017

[68] Ó. Jiménez, Ó. Luca, I. Urriza, L. A. Barragan, D. Navarro and V. Dinavahi “Imple-

mentation of an FPGA-based online hardware-in-the-Loop emulator using high-level

synthesis tools for resonant power converters applied to induction heating applian-

ces,” IEEE Trans. on Ind. Electron., vol. 62, no. 4, pp. 2206-2214, April 2015.

[69] A. Myaing, M. O. Faruque, V. Dinavahi, C. Dufour, “Comparison of insulated gate

bipolar transistor models for FPGA-based real-time simulation of electric drives and

application guideline,” IET Power Electronics, vol. 5, no. 3, pp. 293-303, March 2012.

[70] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5D matrix multi-

plication and LU factorization algorithms,” EECS Technical Report, EECS-2011-10, UC

Berkeley, Feb. 2011.

[71] L. Chen, O. Villa, S. Krishnamoorthy and G. R. Gao, “Dynamic load balancing on

single- and multi-GPU systems,” Proc. IEEE Int. Symp. Parallel Distrib. Process., At-

lanta, GA, 2010, pp. 1-12.

Appendix A 112

A
Appendix

A.1 Nonlinear Power Diode

A.1.1 Model Formulation

Detailed device-level modeling of power diodes covers a wide range of circuit operating

conditions since it includes equations for drift and diffusion of electrons and holes. Howe-

ver, different from conventional detailed models which are too complicated to simulate,

this paper employs a simplified physics-based model containing p-i-n structure suitable

for power diode operating condition of high-voltage and fast switching [57].

The physical structure of a power diode is shown in Fig. A.1(b). The reverse reco-

very happens when turning off a forward conducting diode rapidly as described by the

following equations:

iR(t) =
qE(t)− qM (t)

TM
, (A.1)

0 =
dqM (t)

dt
+

qM (t)

τ
− qE(t)− qM (t)

TM
, (A.2)

qE(t) = ISτ(e
vE(t)

VT − 1), (A.3)

where iR(t) is the diffusion current in i-region, qE(t) represents charge variable in the

junction area, qM (t) represents charge variable in the middle of i-region, TM is the dif-

fusion transit time across i-region, τ is the lifetime of recombination, IS is the diode satu-

ration current constant, vE is the junction voltage, and VT is the thermal voltage constant.

Appendix A 113

vE vM

i(t)

CJ
iR

RS

v(t)

CJ

i(t)

gR

vE

iReq

gJ

RS

v(t)

iJeq

vM

RM

vA(t) vin(t) vK(t)

Figure A.1: (a) Physical structure of power diode, (b) Discretized and linearized equivalent
circuit of power diode.

The voltage drop across i-region vM (t) is described as

vM (t) =
VTTM i(t)

qM (t)
. (A.4)

The voltage across diode, v(t), is expressed as

v(t) = 2vM (t) + 2vE(t) +RS

[
iE(t) +

dqJ(t)

dt

]
, (A.5)

where RS is the contact resistance presented as an internal resistance and the charge of

junction capacitance in the capacitance CJ is given as

qJ(t) =

∫
CJ(t)d(2vE). (A.6)

Appendix A 114

The expression of junction capacitance CJ(t) is given as follows:

CJ(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CJ0

(1− 2vE(t)

φB
)m

vE <
φB

4

[
2m+2mvE(t)

φB
− (m−1)2m

]
CJ0 vE ≥

φB

4

, (A.7)

where CJ0 is the zero-biased junction capacitance, φB is the built-in potential and m is the

junction grading coefficient.

A.1.2 Model Discretization and Linearization

After discretization by Trapezoidal rule, the differential term dqM (t)
dt in (A.2) is expressed as

qM =
Δt · qE(t)

2TM (1 + k1Δt
2)

+
qhist(t−Δt)

1 + k1Δt
2

, (A.8)

where the history term is given as

qhist(t−Δt) =
Δt

2TM
qE(t−Δt)− k1Δt

2
qM (t−Δt). (A.9)

The equivalent reverse recovery current iReq, as shown in Fig. A.1(c), is given as

iReq = k2ISτ(e
vE(t)

vT −1)− qhist(t−Δt)

TM (1 + k1Δt
2)

−2vE(t)gR, (A.10)

where gR is the dynamic conductance defined as

gR =
1

2vT
k2ISτe

vE(t)

VT . (A.11)

Similarly, the equivalent junction capacitance current iJeq is obtained as

iJeq = iJ(t)− 2vE(t)gJ , (A.12)

where the equivalent junction conductance gJ is given as

gJ =
2

Δt
CJ(t). (A.13)

The discretized and linearized system (Diode-DLE) shown in Fig. A.1(c) can be obtai-

ned as follows:

GDiode · V Diode = IDiode
eq , (A.14)

Appendix A 115

where

GDiode=

⎡
⎢⎣

gR+gJ −gR−gJ 0

−gR−gJ gR+gJ+
1

RM+RS
− 1
RM+RS

0 − 1
RM+RS

1
RM+RS

⎤
⎥⎦ , (A.15)

V Diode= [vA, vin, vK]T , (A.16)

IDiode
eq = [−iReq−iJeq, iReq+iJeq , 0]T . (A.17)

Applying Newton-Raphson method, the next iterate values V Diode(n+1)
can be updated by

previous nth iterate values until the solution is converged.

A.2 Nonlinear Physics-based IGBT

A.2.1 Model Formulation

Based on the Hefner’s physics-based model [56], the IGBT is described as the combination

of a bipolar transistor and a MOSFET. Since these internal devices are differently struc-

tured from standard microelectronic devices, a regional approach is adopted to identify

the phenomenological circuit of IGBT as shown in Fig. A.2(a). An analog equivalent cir-

cuit, shown in Fig. A.2(b), makes it possible to implement the model in circuit simulators

by replacing the BJT with base and collector current sources and MOSFET with a current

source, which represents the currents between each of the terminals and internal nodes in

terms of nonlinear functions.

A.2.1.1 Current Sources

The steady-state collector current icss of BJT is formulated as

icss =
iT

1 + b
+

4bDpQ

(1 + b)W 2
, (A.18)

where b is the ambipolar mobility ratio, Dp is the hole diffusivity, W is the quasi-neutral

base width, Q is the instantaneous excess-carrier base charge and the anode current iT is

shown as follows:

iT =
vae
rb

. (A.19)

The base resistance rb in (A.19) is expressed as

rb =

{
W

qμnANB
veb ≤ 0

W
qμeffAneff

veb > 0
, (A.20)

Appendix A 116

p+

Depletion
Region

n-

p+

Cdsj Ccer

n+
CmCoxsCoxd

Cgdj

rb

Cebj+Cebd

CgsCgd

i
Cdsj

i

C

icssCceribssCeb

rb

Figure A.2: (a) Phenomenological structure of IGBT, (b) Analog quivalent circuit of IGBT.

where μn and μeff stand for electron mobility and effective mobility, neff is the effective

doping concentration, q is the electron charge, NB is the base doping concentration and

A is the device active area. The steady-state base current ibss is caused by the decay of

excess base charge of recombination in the base and electron injection in the emitter, and

is expressed as

ibss =
Q

τHL
+

4Q2N2
sclisne

Q2
Bn

2
i

, (A.21)

where τHL is the base high-level lifetime, Nscl is the collector-base space concentration, isne

is the emitter electron saturation current, ni is the intrinsic carrier concentration and QB

represents the background mobile carrier base charge. The MOSFET channel current imos

is expressed as

imos =

⎧⎪⎪⎨
⎪⎪⎩
0 vgs < vT

Kp(vgs − vT)vds − Kpv2ds
2 vds ≤ vgs − vT

Kp(vgs−vT)2

2 vds > vgs − vT

, (A.22)

where Kp is the MOSFET transconductance parameter, vgs is the gain-source voltage and

vT is the MOSFET channel threshold voltage [?]. In addition, due to thermal generation in

Appendix A 117

the depletion region and carrier multiplication which is a key factor to determine the ava-

lanche breakdown voltage and the leakage current, the avalanche multiplication current

imult, shown in Fig. A.2(b) is given as

imult = (M − 1)(imos + icss + ic cer) +Migen, (A.23)

where M stands for the avalanche multiplication factor.

A.2.1.2 Charges and Capacitances

The gate-source capacitance Cgs in the analog model is a constant, and its charge Qgs is

given as

Qgs = Cgsvgs. (A.24)

The gate-drain capacitance Cgd is expressed as

Cgd =

{
Coxd vds ≤ vgs − vTd
CgdjCoxd

Cgdj+Coxd
vds > vgs − vTd

, (A.25)

where vTd is the gate-drain overlap depletion threshold voltage, Coxd is the gate-drain

capacitance. The gate-drain overlap depletion capacitance Cgdj is given as

Cgdj =
Agdεsi
Wgdj

, (A.26)

where Agd is the gate-drain overlap area, εsi is the silicon dielectric constant and Wgdj is

the gate-drain overlap depletion width. The charge of Cgd has the expression as

Qgd =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Coxdvdg vds ≤ vgs − vTd

qNBεsiA
2
gd

Coxd
[
CoxdWgdj

εsiAgd
−

ln(1 +
CoxdWgdj

εsiAgd
)]− vds > vgs − vTd

CoxdvTd

. (A.27)

Similarly, the drain-source depletion capacitance Cdsj , related to the active area (A− Agd)

and drain-source depletion width Wdsj , is given as

Cdsj =
(A−Agd)εsi

Wdsj
, (A.28)

and its charge Qds is expressed as

Qds = Ads

√
2εsi(vds + 0.6)qNscl. (A.29)

Appendix A 118

g C
gs

i Cg
s_

g C
gd

i Cg
d_

g ds

i

g gsvgs

g C
ds

j

i Cd
sj

_e
q

g
ds

g
gs
v g

s

g
ae

v a
e

g
eb

v e
b

i g C
bc

i C

g C
eb

i Ce
b_

g b
ss

_b
cv

bs

i bs
s_

i Cc
er

_

g C
ce

r_
bc

v b
c

g c
ss

_e
bv

eb

i cs
s_

g c
ss

_a
ev

ae

g c
ss

_b
cv

bc

g T
bc

v b
c

g T
ae

g T
eb

v e
b

i T
g b

ss
_e

b

Figure A.3: Discretized and linearized equivalent circuit of IGBT (IGBT-DLE).

The emitter-base capacitance Ceb is solved from ∂Qeb
∂Veb

as

Ceb = −qNBεsiA
2

Q−Qbi
. (A.30)

The collector-emitter redistribution capacitance Ccer is solved from the ambipolar diffusion

equation as

Ccer =
QCbcj

3QB
, (A.31)

where QB is the background mobile carrier base charge and Cbcj is the base-collector de-

pletion capacitance. The carrier multiplication charge and capacitance relating to Ccer are

given as

Qmult = (M − 1)Qce and Cmult = (M − 1)Ccer. (A.32)

Appendix A 119

A.2.2 Model Discretization and Linearization

After applying the Newton-Raphson method on four current sources and the conductivity-

modulated base resistance rb, the analog equivalent circuit model (IGBT-AE) shown in Fig.

A.2(b), containing five nonlinear and time varying elements, is transferred into discretized

and linearized equivalent circuits (IGBT-DLE), as shown in Fig. A.3. The iterative equati-

ons of imos, iT , icss, ibss, imult for the (n+ 1)th iteration are obtained as follows,

in+1
mos =inmos eq + gnmos gsv

n+1
gs + gnmos dsv

n+1
ds , (A.33)

in+1
T =inT eq + gnTaev

n+1
ae + gnTbcv

n+1
bc + gnTebv

n+1
eb , (A.34)

in+1
css =incss eq + gncss bcv

n+1
bc + gncss aev

n+1
ae

+ gncss ebv
n+1
eb , (A.35)

in+1
bss =inbss eq + inbss ebv

n+1
eb + gnbss bcv

n+1
bc , (A.36)

in+1
mult =inmult eq + gnmult dsv

n+1
ds + gnmult dsv

n+1
ds

+ gnmult aev
n+1
ae + gnmult ebv

n+1
eb . (A.37)

Applying KCL to the nodes Gate, Collector, Base and Emitter, results in the following

nodal equation:

GIGBT · V IGBT = I IGBT
eq , (A.38)

where

V IGBT = [vc vg va vd ve]
T , (A.39)

I IGBT
eq is given in (A.40) and the 5×5 conductance matrix, GIGBT, is given in (A.41).

I IGBT
eq =

⎡
⎢⎢⎢⎢⎢⎢⎣

ic eq

ig eq

ia eq

id eq

ie eq

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

imult eq + iCmult eq + icss eq + iC cer eq + iCgs eq + iCdsj eq + imos eq

−iCgs eq + iCdg eq

−iT eq

iC ceb eq + ibss eq − imos eq − iCdg eq − iCdsj eq − imult eq − iCmult eq

icss eq − ibss eq − iC cer eq − iC ceb eq + iT eq

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.40)

GIGBT=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gmult ds+gmult gs

+g
mult bc

+g
css bc

+gC cer bc+gCgs

+gCdsj+gmos ds

+g
mos gs

−gmult gs−gCgs

−gmos gs

−gmult ae−gcss ae

−g
mult ds

−g
Cmult bc

−gcss bc+gcss eb

−gC cer bc−gdsj

−gmos ds+gmult eb

−g
mult ae

−g
css ae

+gcss eb−gmult eb

−gCgs g
Cgs
+g

Cdg 0 −gCdg 0

−gTbc 0 gTae gTbc−gTeb −gTae+gTeb

gbss bc−gmos gs

−g
mos ds

−g
C dsj

−gmult ds−gmult gs

−gCmult bc

gmos gs−gCdg

+g
mult gs

gmult ae

gCeb−gbss bc

+gbss eb+gmos ds

+gCdg+gCdsj

+gmult ds−gmult eb

−gCmult bc

−gCeb+gbss eb

−g
mult ae

+g
mult eb

−gcss bc−gC cer bc

−gbss bc+gTbc

0 g
css ae

−g
Tae

g
css bc

−g
css eb

+gC cer bc−gbss eb

+gbss bc−gCeb

−g
Tbc
+g

Teb

−gcss ae+gcss eb+
g

bss eb
+g

Ceb
+

gTae−gTeb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.41)

Appendix A 120

Applying Newton-Raphson method to solve the nonlinear matrix equation (A.38), ΔV IGBT

is obtained to update V IGBT iteratively. Therefore, the iterative equation is given as

GIGBT(n)ΔV IGBT(n+1) = −I IGBT(n), (A.42)

where

I IGBT(n) = GIGBT(n)V IGBT(n) − I IGBT(n)
eq . (A.43)

Appendix B 121

B
Appendix

B.1 Parameters for Case Study A

The parameters for Case Study A are as follows:

1. Synchronous machine parameters: 10MVA, 3.5kV, Y-connected, field current: 5A, 2

poles, 60Hz, moment of inertia: 4Mkg·m2/rad and damping: 50kg·m/s/rad.

2. Transmission line parameters: Line1: three conductors, resistance: 0.0583/km, dia-

meter: 3.105cm, line length: 50km; Line2: three conductors, resistance: 0.0583/km,

diameter: 3.105cm, line length: 150km. Line geometry: flat horizontal phase spacing;

horizontal distance between adjacent phases = 4.87m; vertical distance: phases a to

ground, c to ground = 30m, phase b to ground = 28m, and shield wire to tower arm

= 6m.

3. Transformer parameters: T1: 10MVA, 3.5kV/22kV, Xleakage = 6.89e-3pu, Y-Y con-

nection; T2: 10MVA, 22kV/3.5kV, Xleakage = 0.192pu and Y-Y connection.

4. Arrester parameters: Vref = 5kV, multiplier(p) = 1.1 and exponent(q) = 26.

5. Loads parameters: R = 1kΩ and L = 1mH .

B.2 Parameters for Case Study B

The parameters for the Scale-1 39-bus test system of Case Study B are as follows:

Appendix B 122

1. Synchronous machine parameters: 1000MVA, 22kV, Y-connected, field current: 2494A,

2 poles, 60Hz, moment of inertia: 4Mkg·m2/rad and damping: 6780kg·m/s/rad.

2. ULM transmission line parameters: Line 1 - 35: three conductors, resistance: 0.0583/km,

diameter: 3.105cm, line length: 50km (Line 5, 6, 7, 8, 15, 16, 18, 19, 23, 27, 29, 30, 31,

35), 150km (Line 2, 3, 4, 9, 10, 11, 13, 14, 20, 21, 22, 24, 25, 26, 32, 33) and 500km (Line

1, 12, 17, 28, 34). Line geometry: flat horizontal phase spacing; horizontal distance

between adjacent phases = 4.87m; vertical distance: phases a to ground, c to ground

= 30m, phase b to ground = 28m, and shield wire to tower arm = 6m.

3. Transformer parameters: 1000MVA, 22V/220kV, Xleakage = 9.24e-3pu and Y-Y con-

nection;

4. Loads parameters: R = 1kΩ and L = 1mH .

B.3 Parameters for Case Study D

The parameters for MMC of Case Study D are as follows:

1. MMC parameters: DC voltage Vdc=1kV, arm inductance La=Lb=Lc=150mH, SM ca-

pacitance Cm=4mF, carrier frequency fc=2500Hz, system frequency fs=60Hz.

2. AC Source parameters: transformer reactance XT =1.88Ω, Vs=1kV, Rs=5Ω.

