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Abstract

Paper-making systems are known to be large-scale and two-dimensional. In

such systems, the control performance needs to be ensured at both the ma-

chine direction (MD) and cross direction (CD) for successful paper production.

This thesis studies the robust tuning problem of MD and CD Model Predic-

tive Control (MPC) systems, and focuses on paper-making processes with

uncertain model parameters.

Four problems are solved in the work. First, the robust MD-MPC tun-

ing for uncertain single-input, single-output (SISO) paper-making processes

is explored. A sufficient condition is first derived for robust stability of MD-

MPC, and then an automatic tuning procedure is proposed to achieve satisfac-

tory closed-loop responses, as measured by overshoots, settling times and out-

put oscillations with user-specified parametric uncertainties. Second, the ro-

bust MD-MPC tuning for uncertain multiple-input, multiple-output (MIMO)

paper-making processes is studied. An efficient visualization technique is de-

veloped to characterize the set of all possible step responses for all outputs

given the parametric uncertainty. An automatic tuning algorithm is then de-

veloped to achieve the desired time domain performance. In addition, a tech-

nique to predict the computation time of the tuning algorithm is proposed.

Third, the robust spatial tuning of CD-MPC is investigated. The weighting

matrix Sb is first appropriately designed to suppress high frequency compo-

nents in the actuator profile. A systematic tuning procedure is then developed
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to adjust the corresponding multipliers to guarantee the robust stability and

to reduce the variability of the measurement profile given the pre-specified

parametric uncertainties. Lastly, the robust temporal tuning of CD-MPC is

studied. A performance visualization technique is proposed to evaluate all

possible 2σ (two times of the standard deviation) spreads of the measurement

and actuator profiles given the pre-specified parametric uncertainties. Then,

a temporal filter is adopted to smooth the MPC reference trajectory, and a

systematic procedure is developed to tune the parameter in the temporal filter

for robust stability and satisfactory 2σ performance.

The effectiveness of the proposed tuning algorithms is verified through in-

dustrial examples extracted from the pulp and paper industry. By utilizing the

proposed techniques, the MPC tuning parameters can be automatically deter-

mined to meet intuitive robust performance specifications for paper-making

processes with easy-to-understand parametric uncertainties.
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Chapter 1

Introduction

1.1 Paper Machine and Paper-Making Pro-

cess

Pulp and paper industry is a traditional Multi-Billion-Dollar business. In

paper-making process, the paper machine is the key component, which can

convert the semi-liquid mixture of wood cellulose fibers and water into varieties

of paper products. In Figure 1.1, the standard configuration of a modern

(Fourdrinier style) paper machine is shown, and we can briefly describe the

operating process of the machine as follows: a slurry of fibers and water at

0.25 ∼ 0.55% consistency1 is first inputted to the headbox of the machine,

and then the consistency is being increased through the wet end section, the

press section, and the dryer section, after which the consistency is increased

to 91 ∼ 95% and the slurry has already become a dry paper sheet. Then,

the dry paper sheet is further manipulated within the post drying operation

section for brightness and thickness, and finally collected in a reel at the end

of the machine.

In paper-making with modern high-speed paper machines, sheet properties

must be continuously monitored and controlled to guarantee that the paper

product quality specifications are satisfied along both the Machine Direction

(MD) and Cross Direction (CD) [13, 65]. Machine direction indicates the di-

rection towards which the paper moves on the machine, and cross direction

is the direction perpendicular to machine direction [13]. Correspondingly,

two control problems are involved in the paper making process: MD control

1Consistency indicates the proportion of the wood fibers in the slurry.
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Figure 1.1: General view of a modern (Fourdrinier style) paper machine. (Art-
work courtesy of Honeywell)

and CD control. MD control accounts for minimizing the variation of several

physical properties of the paper product (e.g., dry weight and moisture) with a

number of manipulated variables (e.g., stock flow, steam pressure and machine

speed) in the machine direction. CD control solves a similar problem but with

respect to the paper product qualities along cross direction. Various feedback

control strategies are proposed for MD and CD control. Model predictive con-

trol (MPC), a control strategy which takes control constraints explicitly into

consideration, has recently found its success in the pulp and paper industry

[5, 6, 8]. MPC is an optimization-based control approach, and thus it involves

a set of design parameters that are highly related to the robustness and the

performance of the controlled system [45], making MPC tuning an important

task. In this thesis, we focus on the MD and CD MPC tuning problems for

paper-making processes with uncertain model parameters.

1.2 Literature Review

In this section, the existing MPC tuning methods are reviewed. As MD and

CD processes have different system structures, the literature review for MD

and CD MPC tuning is carried out separately.
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1.2.1 Robust MPC tuning for MD processes

Both single input, single output (SISO) and multiple input, multiple output

(MIMO) systems are included in the paper-making MD processes. The prob-

lem of MPC parameter tuning for SISO systems has been widely investigated

in the literature. One type of the tuning approaches was to match the un-

constrained MPC controller or the corresponding closed-loop transfer function

with a desired controller or transfer function so that the desired closed-loop

performance could be inherited, see, e.g., [10] and [48]. Another type of meth-

ods investigated the relationship between the closed-loop system responses and

the effect of MPC tuning parameters based on the approximation of MPC so-

lutions, see, e.g., [1] and [25]. In addition, some analytical results for MPC

tuning were proposed in [7] and [64]. Among these approaches, only a small

portion considered model uncertainty in MPC tuning. In [31], a min-max

strategy was utilized to deal with model mismatch explicitly, based on which

strong robustness could be obtained. In [39], by choosing the Morari resiliency

index and the condition number as the performance measure, an efficient tun-

ing approach was provided by utilizing the particle swarm optimization. In

[59], the tuning parameters were calculated by finding an optimal bandwidth

that provided a good trade-off between robustness and nominal performance.

In [9], the authors proposed a modified generalized predictive control frame-

work that was easy to implement and tune for the first-order-plus-dead-time

(FOPDT) model, and the inherent robustness properties were also analyzed.

In [58], the tuning problem was solved by balancing the contradictory con-

trol objectives in the optimization problem of the MPC. In [60], the tuning

parameters for the nonlinear MPC were calculated based on muti-objective

optimization and Pareto optimality. In [11], the authors proposed an MPC

tuning strategy based on the frequency domain design, in which a min-max

optimization approach was utilized to minimize the maximum singular value.

The parameter tuning problem becomes more difficult to deal with when

MIMO plants and model mismatch are considered simultaneously [45]. In

the existing literature, the generally utilized idea amounts to investigating

the closed-loop performance with respect to each specific controller parame-

ter based on the following two-step analysis: 1) hold all the parameters that

affect the controller performance except one to make the tuning problem into

a problem with one degree of freedom; 2) adjust this parameter to investi-
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gate the relationship between it and the closed-loop system behavior. Based

on this type of investigation, some principles for multi-variable MPC tuning

were developed, see [19], [25], also, [43], [47]. Besides, in [49], the authors

proposed a systematic approach to adjust the MPC parameters by matching

the closed-loop transfer function obtained via the unconstrained MPC with a

desired transfer function. In [10], a systematic tuning method was developed,

in which the controller parameters were tuned by minimizing the difference

between the MIMO MPC controller and a pre-assigned multi-variable con-

troller, and thus the features of the pre-assigned controller could be inherited.

In [40], a metamorphic MPC framework was developed, in which a tuning pa-

rameter was incorporated such that one could move smoothly from an existing

controller to a new MPC strategy. In addition, the readers can refer to [26]

for a comprehensive review of the existing results on MPC tuning.

In the aforementioned robust tuning strategies, the performance indices

and model uncertainty level are normally specified in the frequency domain,

which are difficult to understand and specify by paper machine operators who

may not have the background in robust control theory. Therefore, it is desir-

able that intuitive, time-domain performance specifications (e.g., overshoots

and settling times in step responses) as well as easy-to-understand parametric

uncertainties be directly incorporated into the tuning procedure to maintain

the user-friendliness. Despite of the progress made in this area, such an easy-

to-use robust MPC tuning approach is still missing and is desired in the pulp

and paper industry.

1.2.2 Robust MPC tuning for CD processes

Different from MD processes that can be described by more standard models

(a SISO MD process can be modeled as an FOPDT system while the MIMO

one can be represented as the superposition of FOPDT components), CD pro-

cesses are large scale two-dimensional (spatial and temporal) systems [20]. As

suggested in process model identification algorithms [28, 30] and Theorem 3

in [20], the spatial response and temporal response are decoupled. Conse-

quently, the controller tuning of CD processes can be separated into spatial

tuning and temporal tuning. Spatial tuning aims to tune the weighting ma-

trices such that the steady-state paper property across the paper sheet is

consistent; temporal tuning concerns more about the satisfaction of time do-

4



main performance indices, e.g., settling times and overshoots, of the actuator

and measurement profiles.

A lot of research results on spatial tuning have been reported. The spa-

tial frequency concept of spatially-distributed CD processes was investigated

thoroughly in [15], and the application of the spatial frequency was proposed

in [41] for the controller design of CD processes. It was analyzed in [16]

that the spatial frequency response of a single actuator determined the spa-

tial frequency bandwidth of a CD process. A constructive procedure to design

spatially-distributed feedback controllers was proposed in [57] and was applied

in paper-making processes [56]. Model predictive control has been recently in-

troduced into CD control in paper-making processes [5, 6, 8], with the advance

of computational capability as well as the development of fast QP solvers [63].

Some stability margin and parameter tuning criteria were obtained via rect-

angular circulant matrices (RCMs) for the unconstrained CD-MPC, which

provided a guide in the parameter tuning algorithms [20]. Furthermore, an

approximate steady-state performance prediction technique was proposed to

speed up the parameter tuning procedure [21] for the constrained CD-MPC.

An automated tuning method was presented for the CD process such that the

performance and robustness could be simultaneously satisfied under unstruc-

tured uncertainty [18]. An extensive review on CD control of sheet and film

processes was given in [61]. It is worth noting that in the existing literature, no

specific effort was dedicated to reducing the undesirable high frequency com-

ponents that might exhibit in the actuator profile. As illustrated in [16, 46],

the CD system has a limited spatial bandwidth. It is desirable that the lim-

ited spatial bandwidth property be explicitly incorporated into the parameter

tuning procedure to avoid harmful high-frequency picketing in the control

actuator beam.

Temporal tuning aims to tune the parameters such that the performance

indices such as the settling time of the measurement profile and actuator profile

overshoot, which can be easily understood by the technician-level operators

and maintenance personnel, are satisfied. This can usually be realized by

adding a weighted control effort in the associated cost function. However, if a

smaller weighting parameter is chosen, then a larger actuator profile overshoot

will be observed. On the other hand, if a larger weighting parameter is chosen,

then it will take a longer time for the output profile to achieve a steady-state
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value. To the best of the author’s knowledge, few research results have been

published in the literature for the temporal tuning of CD processes with time

domain performance indices.

Ubiquitously existing uncertainties make the spatial tuning and the tem-

poral tuning more challenging. The parameters in CD processes are usually

identified through bump tests [23, 27, 28] and are inevitably subject to para-

metric model uncertainties [29, 41]. Furthermore, geometric misalignments of

CD actuators and measurement profiles, sheet wandering and paper shrink-

age, etc, also give rise to some additional uncertainties to system models used

in CD-MPC strategies. Thus, it is also necessary that spatial and temporal

tuning algorithms be robust to the uncertainties mentioned above.

1.3 Contribution of the Thesis

In this thesis, the proposed techniques aim at providing solutions to the chal-

lenge of finding MPC tuning parameters to meet intuitive robust performance

specifications for paper-making processes with easy-to-understand parametric

uncertainties. Several user-friendly robust tuning algorithms are developed

for MD and CD MPC, forming the main contributions of the thesis.

In Chapter 2, the automated tuning of a two-degree-of-freedom model pre-

dictive controller for SISO industrial MD processes with model uncertainties is

explored. The objective of the tuning algorithm is to automatically determine

the MPC tuning parameters such that 1) the robust stability can be guaran-

teed; 2) the worst-case overshoot is controlled; 3) the oscillations in process

outputs are attenuated; and 4) the worst-case settling time is minimized. A

rigorous robust stability analysis is first conducted based on the connection

between parametric uncertainties and unstructured uncertainties, and a tight

robust stability condition is derived. As the specification on process output

variation is not easily made by the end users, two alternative methods are

proposed to automatically determine the tolerable total variation, which lead

to two automatic tuning algorithms that achieve the tuning objectives. The

proposed results are tested and verified through examples extracted from in-

dustrial processes in the pulp and paper industry, and comparisons are made

with other existing results.

In Chapter 3, we focus on the controller tuning problem of machine-

directional predictive control for MIMO paper-making processes represented
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as superposition of FOPDT components with uncertain model parameters.

A user-friendly multi-variable tuning problem is formulated based on user-

specified time domain specifications and then simplified based on the struc-

ture of the closed-loop system. Based on the simplified tuning problem and a

proposed performance evaluation technique, a fast multi-variable tuning tech-

nique is developed by ignoring the constraints of the MPC. In addition, a

technique to predict the computation time of the tuning algorithm is pro-

posed. The efficiency of the proposed method is verified through a Honeywell

real time simulator platform with a MIMO paper-making process obtained

from real data from an industrial site.

In Chapter 4, we focus on the robust spatial tuning of cross-directional

model predictive control with model parameter uncertainties. The weighting

matrix Sb in the MPC cost function is first appropriately designed to reduce

the undesirable high frequency components that might exhibit in the actuator

profile. A systematic tuning procedure is then developed to automatically

determine the corresponding multipliers so that robust stability and reduced

variability of the actuator and measurement profiles can be achieved given the

pre-specified parametric uncertainties. The effectiveness of the proposed tun-

ing algorithms is verified through the Honeywell real time simulator platform

using a system model extracted from the pulp and paper industry.

In Chapter 5, the temporal tuning problem of cross-directional model pre-

dictive control under model-plant mismatch is studied. The user-friendly tem-

poral performance indices are first defined based on the two times of the stan-

dard deviation (2σ) of the input/output profile and a visualization technique

is proposed to evaluate all the possible 2σ performance given the pre-specified

parametric uncertainty. Then, a temporal filter is adopted to smooth the

MPC reference trajectory, and an automatic tuning algorithm is presented for

the parameter in the temporal filter to guarantee satisfactory performance in

terms of the proposed 2σ indices. In the presence of parametric uncertainties,

the tuning is based on the worst-case situation, which ensures that the required

performance indices can be satisfied. An application to a process extracted

from the pulp and paper industry is employed to verify the effectiveness of the

proposed algorithm.
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Chapter 2

User-Friendly Robust Tuning
for SISO MD-MPC∗

2.1 Introduction

In this chapter, the automated tuning of a two-degree-of-freedom model pre-

dictive controller for single-input, single-output industrial MD processes with

model uncertainties is explored. The target of MD control accounts for min-

imizing the variation of the considered paper properties along the machine

direction. The starting point of our work is the simplified MPC tuning struc-

ture introduced in [12], in which the controller tuning problem is formulated

as a two-degree-of-freedom (2-DOF) optimization problem. This framework

has also been considered in [53], the target of which was to automatically

determine the tuning parameters so that the performance requirements on

worst-case overshoots and settling times are satisfied. Although fast responses

with almost-optimal settling times satisfying the overshoot constraints can al-

ways be obtained by the three-step tuning algorithm introduced in [53], the

responses could be oscillatory as the controller needs to behave aggressively to

generate the smallest worst-case setting time without limiting the oscillations

in the process output. These variations add to the wear and tear of the control

valves and make the system more sensitive to actuator saturation [54], which

not only downgrades the control performance but also increases the cost for

maintenance. Based on the aforementioned considerations, the total variation

is utilized for tuning method design in this work. Different from the overshoot,

∗Parts of the results presented in this chapter are published in Industrial & Engineering
Chemistry Research, vol. 54, no. 43, pp. 10811-10824, 2015.
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the total variation is normally not intuitive to practitioners of the pulp and

paper industry, and therefore the tuning tool should avoid users from directly

specifying the requirement on total variation. In this regard, the specification

on total variation is implicitly made according to the requirement on either the

overshoot or other familiar time domain performance measures in this work.

The main contributions are summarized as follows:

• A detailed robust stability analysis is given based on the small gain the-

orem and a tight robust stability condition is derived using a weighting

function determined by the parametric uncertainty.

• Two flexible ways of specifying the output oscillation are proposed. In

Section 2.4, the output oscillation is connected with the overshoot, which

results in simple and fast tuning algorithms; in Section 2.5, the output

oscillation is specified by the decay ratio, thus significantly reducing the

conservativeness of tuning.

• By taking advantage of the unimodality and monotonicity properties of

the conflicting time response measures, two efficient contour-line based

parameter auto-tuning algorithms are proposed, based on which the ro-

bust time-domain specifications can be achieved.

• The efficiency and optimality of the proposed tuning algorithms are

validated and analyzed for different uncertainty levels and robustness

specifications on process models that are used for machine directional

MPC of a paper machine at an industrial site.

2.2 Preliminaries and Problem Formulation

In this section, we first introduce the components in the following 2-DOF

MPC control structure proposed in [12] and then describe the tuning problem

to be solved.

2.2.1 Nominal model and model uncertainties

Based on the industrial practice, we consider the transfer function of the single-

input, single-output real process Gp in Fig. 2.1 that has the FOPDT model
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Figure 2.1: The 2-DOF MPC control system.

form:

Gp(s) =
g

Tps+ 1
e−tds, (2.1)

where g, Tp and td are the real process gain, time constant and time delay,

respectively. As Gp(s) cannot be exactly known in practice, a nominal model

G0(s) is identified to approximate Gp(s):

G0(s) =
g0

Tp0s+ 1
e−td0s. (2.2)

The nominal model parameters g0, Tp0, and td0 are identified from the input

and output data of the real process. However, it is inevitable that the iden-

tified model G0(s) is different from Gp(s). To take into account the model

mismatch, we introduce two types of model uncertainties in this work. One is

the parametric uncertainty that refers to the mismatch in the model parame-

ters, i.e.,

g ∈ [g, g], Tp ∈ [T p, T p], td ∈ [td, td]. (2.3)

Using the parametric uncertainty, a set of possible perturbed plant models is

denoted as

Π1 :=
{
Gp(s) : g ∈ [g, g], Tp ∈ [T p, T p], td ∈ [td, td]

}
. (2.4)

The other type of uncertainty we considered here is the multiplicative un-

certainty, which is usually employed for robust stability analysis. For the

multiplicative uncertainty, the set of possible perturbed plant models can be

denoted as:

Π2 := {G0(s)(1 +W (s)Δ(s)) : |Δ(jω)| ≤ 1, ∀ω} , (2.5)
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where Δ(s) is a stable transfer function and W (s) is a weighting function.

Note that the parametric uncertainty is easier for plant engineers to under-

stand and thus it will be used throughout this study, while the multiplicative

uncertainty will be only considered in the robust stability analysis. It is worth-

while mentioning that Π1 and Π2 are not necessary to be equal. However, by

designing the weighting function W (s), we may approximate Π1 by Π2 so that

the robust stability condition can be derived when the parametric uncertainty

is specified. Note that given an FOPDT model and a bounded parametric

uncertainty, the weighting function W (s) can always be calculated to connect

Π1 and Π2, and the detailed discussion is shown in Section 2.3. In practice,

this is highly desired by end-users with limited knowledge of robust control

theory.

2.2.2 MPC and 2-DOF tuning

The MPC controller in Fig. 2.1 basically solves the following quadratic pro-

gramming problem

min
ΔU

J =‖Ŷ − Yref‖Q1 + ‖ΔU‖Q2 + ‖U − Uref‖Q3

s.t. x̂(k + i) = Aix̂(k) +

min{Hu,i}∑
j=1

Ai−jBΔu(k + j − 1),

ŷ(k + i) = Cx̂(k + i), for i = 1, 2, . . . ,Hp,

where

x̂(k): estimated states at time k;

ŷ(k + i): estimated controlled variables at time k + i;

Δu(k): control move at time k;

(A,B,C, 0): discrete-time state space realization of (2.2);

Hu: control horizon;

Hp: prediction horizon;

Ŷ=
[
ŷT (k + 1), ŷT (k + 2), · · · , ŷT (k +Hp)

]T
;

Yref : reference signal vector of Ŷ ;
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ΔU=
[
ΔuT (k), ΔuT (k + 1), · · · , ΔuT (k +Hu − 1)

]T
;

U=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎥⎥⎦
u(k − 1) +

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

1 1
. . .

...
...

. . . . . . 0

1 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
ΔU ;

Uref : reference signal vector of U ;

Q1, Q2, Q3: diagonal penalty matrices;

‖X‖Q: XTQX.

In addition to the MPC controller, filters Fr and Fd are also an important

part of the closed-loop control system in Fig. 2.1. These filters are respectively

used for filtering the output target, ytgt(k), and the estimated disturbance,

d̂(k) := y(k) − ŷ(k). With the filtered signals, we generate the reference

trajectory based on

Yref(k) = Frytgt(k)− Fdd̂(k).

Here Fr and Fd are the time domain implementations of fr(z) and fd(z),

according to yref(z) = fr(z)ytgt(z) − fd(z)d̂(z), where fr(z) and fd(z) are the

so-called reference tracking filter and disturbance rejection filter:

fr(z) =
brz

−1

1− arz−1
z−Td0 , fd(z) =

bdz
−1

1− adz−1
z−Td0 , (2.6)

where ar = e
− ΔT

λTp0 , br = 1 − ar, ad = e
− ΔT

λdTp0 , bd = 1 − ad, ΔT is the

sampling period and Td0 is the discretized version of td0. With these filters,

the MPC performance can be adjusted by tuning λ and λd and setting Q1 =

I, Q2 = Q3 = 0, which simplifies the tuning problem [12]. Note that the

new tuning parameters λ and λd can be used to achieve similar objectives as

those by tuning Q2 and Q3. The reason is that λ and λd can be adjusted to

filter the reference signal of the MPC so that there is no aggressive change

in the reference trajectory, and correspondingly aggressive control signal can

be avoided. Besides, the prediction horizon Hp and control horizon Hu are

not considered as tuning parameters in this work and are set to fixed values

according to the industrial experience [12].
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2.2.3 Performance measures and tuning problem

In this work, we adopt the overshoot and settling time as the main performance

measures for parameter tuning, since they are intuitive and well-suited for con-

trol performance evaluation for practitioners. As the performance concerned

is for the whole set of perturbed systems in Π1, the worst-case performance

has to be utilized. The definitions of the worst overshoot and settling time

are given as follows.

Definition 2.1 (Worst-case overshoot). The worst-case overshoot OS of a

set of step responses with the same final value is the maximum value in all

responses minus the final value divided by the final value.

Fig. 2.2 shows an illustration example of the worst-case overshoot.

0 500 1000 1500 2000 2500 3000

Time (s)
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0.4
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y

OS

Figure 2.2: Illustration of worst-case overshoot OS.

Definition 2.2 (Worst-case settling time). The worst-case settling time Ts

of a set of step responses with the same final value is the maximum time,

among all possible responses, to reach and stay within a range of a pre-specified

percentage of the final value.

Fig. 2.3 shows an illustration example of the worst-case settling time.

However, to efficiently characterize the OS and Ts is a non-trivial task. A

conventional idea is to approximate the closed-loop system by a second-order
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Figure 2.3: Illustration of worst-case settling time Ts.

system and compute the resultant OS and Ts using some existing formulas [44],

but the approximation is a non-trivial task since the controlled system consists

of an FOPDT model and an MPC and the approximation error is not pre-

dictable, even when the model parameters are exactly known. In this regard,

as the step responses of a set of systems based on the parametric uncertainty

(rather than a single system) are considered, the standard formulas for OS

and Ts are not applicable here. In this work, we employ the heuristic ap-

proach introduced in [53], which computes the OS and Ts from the following

8 extreme-case systems:

ΠE :=
{
Gp(s) : g ∈ {g, ḡ}, Tp ∈ {T p, T̄p}, td ∈ {td, t̄d}

}
, (2.7)

where x ∈ {x, x̄} means x = x or x = x̄. As the extreme behavior of the

step responses mostly happens at the extreme process parameters, the OS

and Ts can be respectively approximated using the worst overshoot and the

worst settling time of the extreme-case systems. The visualization technique

utilized was developed based on industrial experience. Based on the analysis

and extensive simulations in [53], the results obtained by (2.7) are acceptable

since the worst-case OS and Ts can be calculated accurately and efficiently. As

OS and Ts depend on the values of λ and λd in the tuning, we use the no-

tations OS(λ, λd) and Ts(λ, λd) to explicitly express these relationships when

necessary.

14



In addition to the OS and Ts, another important time-domain performance

measure is the total variation [55], which measures the output oscillation for

general systems. It is defined mathematically as

tv :=
∞∑
k=0

|y(k + 1)− y(k)|, (2.8)

Fig. 2.4 shows an example of how to calculate the total variation. Here,

Time

A
m

pl
itu

de

D1

D2

D3
D4

D5

D6

Figure 2.4: A graphical illustration example for total variation, where TV is
equal to

∑
i Di.

we may ignore the effect of the sampling time and replace ∞ by n for ease

of implementation, assuming that the system output converges to the final

value within n steps. Note that in this work n is chosen according to n =

(T p+ t̄d)× 20 with T p and t̄d defined in (2.4). Based on these simplifications,

the worst-case total variation can be defined as below.

Definition 2.3 (Worst-case total variation).

TV := max
Gp∈Π1

n∑
k=1

|y(k)− y(k − 1)|. (2.9)

Note that total variation is only calculated in the design stage and do not

have to be calculated on-line with real data, as it is used as a performance

index to avoid aggressive oscillations of the input and output signals in pa-

rameter tuning. To reflect the dependence on λ, λd of TV, we use the notation

TV(λ, λd) to represent this relationship when necessary.

The tuning problem we are concerned is how to automatically determine

λ and λd such that the robust stability is achieved and the system output can
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track its target with a small overshoot, settling time and output oscillation.

However, multiple conflicts exist in achieving these objectives: a small over-

shoot often comes with a sluggish response, while a small settling time can be

associated with an aggressive overshoot and total variation. Considering the

tradeoff among different performance requirements, we tune λ and λd by min-

imizing the settling time while requiring OS and TV to lie in certain tolerable

regions. Mathematically, it can be formulated in to the optimization problem

as follows:

min
λ,λd

Ts(λ, λd)

s.t. OS(λ, λd) ≤ OS∗,

TV(λ, λd) ≤ TV∗,

(2.10)

where OS∗ and TV∗ refer to the specifications on OS(λ, λd) and Ts(λ, λd),

respectively. Fig. 2.5 shows a graphical illustration example of (2.10).
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Figure 2.5: A graphical illustration example for the tuning problem.

In addition to the difficulties in solving the problem at hand, the choice

of TV∗ is a non-intuitive task. Different from OS∗ (which can be intuitively

determined by the users based on their requirements, e.g., 10%), it is diffi-

cult for the end users to manually specify the appropriate value of TV∗. In

this regard, TV∗ is determined either automatically or based on the decay

ratio (another well-understood control quality performance index in the pulp
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and paper industry), to maintain the user friendliness of the proposed tuning

methods.

2.3 Robust Stability Conditions

Before tuning λ and λd with respect to the time-domain performance, we first

investigate the robust stability of the closed-loop system, which is the top pri-

ority in the controller design. In Section 2.2, we have introduced two types of

uncertainties: the parametric uncertainty and the multiplicative uncertainty.

In this section, we will discuss how to build a bridge to connect them. Also, a

tight robust stability condition based on parametric uncertainty will be given

for the tuning of λd.

2.3.1 Robust stability condition for Gp ∈ Π2

Considering the multiplicative uncertainty, the real process model is Gp =

G0(s)(1 +W (s)Δ(s)), |Δ| ≤ 1. By pulling out Δ, the closed-loop system in

Fig. 2.1 can be represented in a general form as shown in Fig. 2.6(a), see Zhou

and Doyle [66].

(a) N -Δ (b) M -Δ

Figure 2.6: General representations for uncertain systems

The expression of N and the transfer function of the closed-loop system

are as follows:

N =

⎡
⎣ N11 N12

N21 N22

⎤
⎦, (2.11)

F (N,Δ) = N22 +N21Δ(I −N11Δ)−1N12. (2.12)
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As the stability of the closed-loop system only depends on N11, we thus ex-

amine the M -Δ system (see Fig. 2.6(b), where M = N11) instead of the N -Δ

system. With some algebraic manipulations, we have

M = −(1 + FMPCF
1
d + FMPCF

2
dG0)

−1FMPCF
2
dG0W, (2.13)

where FMPC is the transfer function from yref (k) to u(k) and can be derived

from the unconstrained MPC control law; F 1
d and F 2

d are the transfer functions

from u(k) to yref (k) and y(k) to yref (k), respectively. For the M -Δ system,

the system is robustly stable, if and only if,

det(1−M(jω)Δ) 
= 0, ∀ω, ∀|Δ| ≤ 1. (2.14)

For SISO systems, it is equivalent to

|M(jω)| < 1, ∀ω, ∀|Δ| ≤ 1,

⇔|W (jω)T (jω)| < 1, ∀ω, ∀|Δ| ≤ 1
(2.15)

where T (s) = 1
λdTp0s+1

e−td0s is the sensitivity function of the closed-loop sys-

tem, which is obtained following some tedious but straightforward mathe-

matical manipulations, and the readers can refer to [12, 51] for the detailed

discussion.

2.3.2 Construction of W (s) with Gp ∈ Π1

The robust conditions in (2.15) are derived for Gp ∈ Π2, which may not be

applicable to the systems in Π1. Fortunately, the freedom of choosing W (s)

provides us possibility to closely connect Π1 and Π2.

From Gp ∈ Π2, Δ can be written as W−1(Gp −G0)G
−1
0 , whose modulus is

known to be less than 1. It implies that

|W | ≥ |(Gp −G0)G
−1
0 |. (2.16)

This suggests us a way to construct the weighting function W using the upper

bound of |(Gp−G0)G
−1
0 |, which is known as the multiplicative error [38]. Note

that the closer |W | is to the upper bound of |(Gp−G0)G
−1
0 | at all frequencies,

the less conservative the robust condition is.
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We now use the parametric uncertainty to find the upper bound of |(Gp−
G0)G

−1
0 |. Without loss of generality, we can assume that,

g0 −Δg ≤ g ≤ g0 +Δg,

Tp0 −ΔTp ≤ Tp ≤ Tp0 +ΔTp,

td0 −Δtd ≤ td ≤ td0 +Δtd.

Then, the multiplicative error becomes:

(Gp −G0)G
−1
0 =

ge(td0−td)s(Tp0s+ 1)− g0(Tps+ 1)

g0(Tps+ 1)
. (2.17)

By using Padé approximation, we can change (2.17) into a real-rational form

as below,

(Gp −G0)G
−1
0 ≈

g(1 + td0−td
2

s)(Tp0s+ 1)− g0(Tps+ 1)(1− td0−td
2

s)

g0(Tps+ 1)(1− td0−td
2

s)
.

(2.18)

The upper bound of |(Gp−G0)G
−1
0 | can be determined with the inspection

of the denominator and the numerator of (2.18). For the numerator, we have

|g(1 + td0 − td
2

s)(Tp0s+ 1)− g0(Tps+ 1)(1− td0 − td
2

s)|2

= [(g − g0) + (gTp0 + g0Tp)
td − td0

2
ω2]2+

[gTp0 − g0Tp + (g + g0)
td0 − td

2
)]2ω2

≤ {Δg + [(g0 +Δg)Tp0 + g0(Tp0 +ΔTp)]ω
2}2+

[Δg(Tp0 + 0.5Δtd) + g0(ΔTp +Δtd)]
2ω2.

(2.19)

For the denominator of (2.18), we get

|g0(Tps+ 1)(1− td0 − td
2

s)|2

= g20[1 + (Tpω)
2][1 + (

td0 − td
2

ω)2]

≥ g20[1 + (Tp0 −ΔTp)
2ω2].

(2.20)

Thus, the expression of W (s) can be constructed as below:

W0(s) =
Δg + [Δg(Tp0 + 0.5Δtd) + g0(ΔTp +Δtd)]s

g0[(Tp0 −ΔTp)s+ 1]

− [(g0 +Δg)Tp0 + g0(Tp0 +ΔTp)]0.5Δtds
2

g0[(Tp0 −ΔTp)s+ 1]
,

(2.21)
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Figure 2.7: The bode magnitude plot of W0(s), W �(s) and multiplicative
errors

which satisfies |W0| ≥ |(Gp −G0)G
−1
0 |. However, we may observe that W0(s)

shown above is a bit conservative, because it has large values in high frequen-

cies, see Fig. 2.7(a). To fix this issue, we multiply (1−as) in the denominator

to get W �(s) = 1
1−asW0(s), which results in

|W �(∞)| = | [(g0 +Δg)Tp0 + g0(Tp0 +ΔTp)]0.5Δtd
ag0(Tp0 −ΔTp)

|. (2.22)

On the other hand, we see that

|(Gp(∞)−G0(∞))G−10 (∞)|
≈ |gTp0 + g0Tp

g0Tp

| ≤ | [(g0 +Δg)Tp0 + g0(Tp0 +ΔTp)]

g0(Tp0 −ΔTp)
| (2.23)
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To have |W �(∞)| ≥ |(Gp(∞)−G0(∞))G−10 (∞)|, we may let a = 0.5Δtd and

therefore

W �(s) =
1

1− 0.5Δtds
W0(s). (2.24)

Fig. 2.7(b) shows a bode magnitude plot of an example system, where blue

curves are corresponding to the multiplicative errors of perturbed systems

in Π1. It is seen that the proposed |W (s)| is indeed a tight bound of |(Gp −
G0)G

−1
0 | over all frequencies. Note that given the parametric uncertainty and

FOPDT model, a quantitative evaluation of the conservativeness is normally

difficult to perform explicitly. Alternatively, the conservativeness of the pro-

posed results is tested based on extensive simulations and the obtained bound

is normally observed to be tight (see Fig. 2.7 for some typical results).

Based on (2.15) and (2.24), a tight robust stability condition on λd can be

derived:

λd ≥
√
1− |W �(jω)|2
Tp0ω|W �(jω)| := λ�

d, ∀ω. (2.25)

λ∗d will serve as the minimum allowed value of λd in the following tuning

analysis.

2.4 Efficient Tuning with Time-domain Per-

formance

In this section, we present the first approach to the optimization problem in

(2.10). The value for overshoot requirement OS∗ is easy to specify, e.g., 10%;

however, the specification of TV∗ is not straightforward. Since the constraint

on total variation is utilized to limit the potential oscillations in the system

output, it is possible to link the value of TV∗ with OS∗, for which we have the

following relationship.

Proposition 2.1. If TV(λ, λd) ≤ TV∗ and OS(λ, λd) > 0, then

OS(λ, λd) ≤ (TV∗ − 1)/2.
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Proof: For the unit step response y(k) of the system in Fig. 2.1, let

ymax := max
k∈{0,...,n}

y(k),

nmax := arg max
k∈{0,...,n}

y(k).

According to the definition of the worst-case total variation, we have

TV(λ, λd)

= max
Gp∈ΠE

n∑
k=1

|y(k)− y(k − 1)| (2.26)

≥ max
Gp∈ΠE

(∣∣∣∣∣
nmax∑
k=1

[y(k)− y(k − 1)]

∣∣∣∣∣
+

∣∣∣∣∣
n∑

k=nmax+1

[y(k)− y(k − 1)]

∣∣∣∣∣
)

(2.27)

= max
Gp∈ΠE

|ymax − y(0)|+ |y(n)− ymax| (2.28)

= max
Gp∈ΠE

(|ymax − y(n) + y(n)− y(0)|
+|ymax − y(n)|) (2.29)

= max
Gp∈ΠE

2|ymax − y(n)|/|y(n)|+ |y(n)− y(0)| (2.30)

= 1 + 2 max
Gp∈ΠE

|ymax − y(n)|/|y(n)| (2.31)

= 1 + 2OS(λ, λd), (2.32)

where inequality (2.27) follows from the triangle inequality, equation (2.28)

follows from the definition of ymax and nmax, equation (2.30) follows from the

fact that ymax−y(n) ≥ 0, y(n)−y(0) > 0 and y(n) = 1, equation (2.31) is due

to y(0) = 0, and equation (2.32) follows from the definition of the worst-case

overshoot. The conclusion follows from TV(λ, λd) ≤ TV∗.

The above result shows that given the specification on OS∗, the specifica-

tion on TV∗ can be chosen as 1+2OS∗ to ensure a smooth response. Also, this

helps simplify the problem in (2.10), as by determining TV∗ = 1 + 2OS∗, the

specification on overshoot can be automatically satisfied. This also reduces

the requirement of user’s knowledge on the process, as no other information

is needed to specify TV∗, except for the requirement on overshoot OS∗, which

is normally familiar to the end-users of commercial quality control software.
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Based on the above discussion, the problem in (2.10) now reduces to

min
λ,λd

Ts(λ, λd)

s.t. TV(λ, λd) ≤ TV∗,
(2.33)

where TV∗ = 1 + 2OS∗.

2.4.1 Empirical monotonicity properties of TV with re-
spect to λ and λd

Similar to the approach in [53], the empirical unimodality and monotonicity

properties of TV with respect to λ and λd are investigated and employed to

solve the robust tuning problem, due to the lack of analytical expression of

TV, even for standard second-order systems.

Since λ controls the speed of the output response, a larger value of λ leads

to smoother response and thus a smaller value of total variation. In this

way, TV(λ, λd) can be empirically considered as a monotonically decreasing

function of λ. Note that this property is determined by the 2DOF structure

of the control system and is generally held in the considered paper-making

processes. This property is further verified through numerical simulations,

and a typical plot of the monotonicity relationship is shown in Fig. 2.8. Note

that the monotonicity property is very useful in solving the tuning problem.

As analytical expressions of the performance indices are not known, given

this property, the search of the tuning parameters can be achieved based on

simple and fast optimization methods, like the bisection method in this work.

Otherwise, we need to use intelligent optimization methods which normally

require more computational time.

2.4.2 The contour-line optimal tuning algorithm

In this section, we introduce the contour-line based tuning algorithm, which

is proposed according to the monotonicity and unimodality properties (Uni-

modality here means that there is only one maximum/minimum in the defined

interval of a function). Here we assume the user-specified total variation (or

the equivalent specification on overshoot based on Proposition 2.1) is rela-

tively small such that, for the optimal solution, the constraint in problem

(2.33) is active; this is intuitive in that for small total variation specifications,

aggressive λ-parameters would be chosen to achieve small settling time, but
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Figure 2.8: Empirical monotonicity properties of worst-case total variation
with respect to λ and λd.

these may result in increased overshoot or total variation. The aforemen-

tioned assumption is mainly introduced to reduce the computational burden

required to solve the tuning problem, as the line-search procedure to find the

value of λ that corresponds to the smallest Ts given a fixed value of λd and

TV(λ, λd) ≤ TV∗ can be avoided.

Algorithm 1 Find λc(TV∗, λd) and T c
s (TV

∗, λd).

1: Input TV∗, λd and the uncertainty intervals [g, g], [T p, T p] and [td, td];
2: Input ε; � ε = 0.1 by default
3: λ← 0.02; λ̄← 100;
4: while λ̄− λ > ε do
5: λ← (λ̄+ λ)× 0.5;
6: Numerically evaluate the total variation TV(λ, λd) based on (2.9);
7: if TV(λ, λd)− TV∗ > 0 then
8: λ← λ;
9: else
10: λ̄← λ;
11: end if
12: end while
13: λc(TV∗, λd)← (λ̄+ λ)/2;
14: T c

s (TV
∗, λd)← Ts(λ

c, λd);
15: end
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Based on the above analysis, the optimization problem can be converted

to

min
λ,λd

Ts(λ, λd)

s.t. TV(λ, λd) = TV∗.
(2.34)

In this regard, it suffices to minimize the settling time Ts(λ, λd) along the

contour line TV(λ, λd) = TV∗. In order to solve this problem, we propose two

algorithms: the first algorithm (Algorithm 1) finds the corresponding λ (which

is denoted as λc in the following context) on the contour given a fixed λd, while

the second algorithm (Algorithm 2) is introduced to search for the optimal λd

that provides the smallest settling time, with the help of Algorithm 1. The

algorithms are further interpreted in details in the following. Note that as we

do not have analytical expressions for the performance indices utilized in the

considered optimization problem, it may not be easily handled by a standard

optimization algorithm. Besides, should an intelligent optimization algorithm

(e.g., genetic algorithm) be utilized, the computational time would increase

a lot, which would downgrade the user-friendliness of the proposed tuning

algorithm.

Interpretations for Algorithm 1: As TV(λ, λd) is a monotonic function of λ

for a fixed λd, the search of λc that leads to any given value of TV∗ for a fixed

λd can be achieved by a bisection search. To avoid notational confusion, we

use T c
s (TV

∗, λd) to represent the dependence of the worst-case settling time

on TV∗ and λd. Besides, the upper and lower bounds of λ are chosen based on

the industrial experience and it is worth noting that the computation time of

the algorithm will increase if a larger search region (determined by the upper

and lower bounds) is considered.
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Algorithm 2 Tuning of λ and λd

1: Input the uncertainty intervals [g, g], [T p, T p] and [td, td];
2: Input the overshoot specification OS∗;
3: Calculate the total variation specification according to TV∗ = 1 + 2OS∗;
4: Input ε; � ε = 0.1 by default
5: Calculate λ�

d based on (2.25);
6: λd ← λ�

d; λ̄d ← 100;
7: while λ̄d − λd > ε do
8: λd1 ← λd + (λ̄d − λd)× 0.382;
9: λd2 ← λd + (λ̄d − λd)× 0.618;
10: Numerically evaluate the settling times T c

s (TV
∗, λd1) and T c

s (TV
∗, λd2)

based on Algorithm 1;
11: if T c

s (TV
∗, λd1) > T c

s (TV
∗, λd2) then

12: λd ← λd1;
13: else
14: λ̄d ← λd2;
15: end if
16: end while
17: λd ← (λ̄d + λd)/2;
18: λ← λc(TV∗, λd);
19: end

Interpretations for Algorithm 2: The assumption utilized here is that

T c
s (TV

∗, λd) is a unimodal function of λd; the underlying cause is that λd

controls the stability of the system: a small λd leads to an aggressive and

oscillatory response, while a large λd leads to a sluggish response. In this

way, the algorithm uses golden search to find the optimal λd that achieves the

smallest worst-case settling time; the corresponding value of λ can be obtained

through Algorithm 1. Note that the golden search method is used due to the

unimodal property of T c
s (TV

∗, λd).

Given the optimization problem in (2.34), Algorithm 2 searches for the

λd that minimizes the settling time Ts. Also, Algorithm 2 uses Algorithm 1

to calculate settling time Ts for each λd value. In calculating Ts, Algorithm

1 determines the value of λ so that TV = TV∗ for a fixed λd. In this way,

Algorithm 2 finds λ and λd such that a small settling time can be obtained

while the constraint TV = TV∗ is satisfied, with the help of Algorithm 1.
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2.5 Determining TV∗ from the Decay Ratio

In the previous section, we have presented two efficient auto-tuning algorithms

and we have connected TV∗ with OS∗ to automatically determine TV∗. Al-

though it gives a fast and simple tuning procedure and OS ≤ OS∗ is guaran-

teed, it may involve conservativeness in the tuned OS due to the fact that the

oscillation is overlooked when the output response is approaching the steady

state. This section aims at providing an alternative heuristic user-friendly ap-

proach to specify TV∗ through decay ratio to reduce the conservativeness.

2.5.1 Determine TV∗ using decay ratios

For stable second-order linear systems, the output oscillation is often measured

by the decay ratio (denoted as DR), which is defined as the ratio between two

consecutive maxima of the output after a step change in the set point and

lies in (0, 1), see Fig. 2.9. From the engineering perspective, the response
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Figure 2.9: Illustration of the decay ratio for the response of a second-order
system, where DR is equal to P2/P1.

of the system in Fig. 2.1 can be approximated by that of a second-order

system. Therefore it is reasonable to set TV∗ equal to the total variation of a

second-order linear system with a maximum allowed decay ratio DR∗, which

is specified by users with process knowledge. Fig. 2.10 sketches the procedure

to specify the TV∗.

In this section, it is assumed that DR∗ is specified by users. When users

have limited knowledge of the process or have no particular requirement on

the oscillation specification, DR∗ will be set to 1/4 by default, since ‘one
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Figure 2.10: The specification of TV∗

quarter decay ratio’ is normally utilized as the design criterion for controller

tuning [42]. The following formula is utilized to calculate TV∗ from DR∗:

TV∗ = 1 +
3OS∗

1−DR∗
. (2.35)

The above formula is constructed using the total variation of a second-order

system with DR=DR∗. The total variation of the system in Fig. 2.10 can be

approximately calculated as

tv = 1 + 2(P1 + P2 + · · · ) + 2(P′1 + P′2 + · · · )
= 1 + 3(P1 + P2 + · · · )
= 1 + 3P1(1 + DR + DR2 + · · · )
= 1 +

3P1

1−DR
,

(2.36)

where we empirically assume that each lower peak amplitude is a half of

the previous upper peak amplitude, considering the ‘one quarter decay ratio’

criterion (namely, P1
′/P1 = 1/2 and P2/P

′
1 = 1/2, which gives P2/P1 = 1/4).

Since the amplitude of the first upper peak P1 is also equal to the overshoot

of the system, we may replace it by OS∗ if we let DR=DR∗. Then, we have

the formula as shown in (2.35). Note that P1 is replaced by the maximum

overshoot OS∗ in (2.35) because of two reasons: 1) in the case of DR=DR∗, the

overshoot is intuitively close or equal to OS∗; 2) the choice of OS∗ maximizes

the tolerance on the oscillation, which reduces the conservativeness of tuning.
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Algorithm 3 Find λc and T c
s with TV∗ specified by (2.35)

1: Input TV∗, λd and the uncertainty intervals [g, g], [T p, T p] and [td, td];
2: Input ε; � ε = 0.1 by default
3: λ← 0.02; λ̄← 100;
4: whichInUse =‘TV’;
5: while λ̄− λ > ε do
6: λ← (λ̄+ λ)× 0.5;
7: Numerically evaluate TV(λ, λd) and OS(λ, λd) based on (2.9) and Def-

inition 2.1, respectively;
8: switch whichInUse
9: case ‘TV’
10: if TV(λ, λd)− TV∗ > 0 then
11: λ← λ;
12: else
13: if OS < OS∗ then
14: λ̄← λ;
15: else
16: whichInUse =‘OS’;
17: λ← λ;
18: end if
19: end if
20: case ‘OS’
21: if OS(λ, λd)−OS∗ > 0 then
22: λ← λ;
23: else
24: λ̄← λ;
25: end if
26: end switch
27: end while
28: λc(TV∗, λd)← (λ̄+ λ)/2;
29: T c

s (TV
∗, λd)← Ts(λ

c, λd);
30: end

2.5.2 A switching tuning mechanism

The above approach to specify TV∗ provides the users more insight and control

of the output oscillation, but it also opens up the possibility that the tuned

OS is greater than OS∗. To avoid this phenomenon, we introduce a switching

tuning mechanism in the tuning of λc, which guarantees OS ≤ OS∗. The

tuning procedure is given in Algorithm 3.

It works in the following way: when TV(λ, λd) reaches TV∗, if the asso-
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ciated OS(λ, λd) at this time is smaller than OS∗, then the algorithm stops;

otherwise, it continues to tune λ until OS(λ, λd) approaches OS∗; note that as

λ has a similar monotonic relationship with both TV and OS (i.e., the increase

of λ will decrease TV and OS), the tuning the OS here will not violate the

constraint on TV. Clearly, if OS(λ, λd) is always less than OS∗ in the tuning

process, the tuning of λc is along the same line of that in Algorithm 1. Note

that based on the structure of the 2-DOF MPC, if λ and λd are sufficiently

large, then TV → 1 and OS → 0, so the feasible solution set for the tuning

problem is non-empty if the upper bounds for λ and λd are sufficiently large.

In this work, we have set the upper bounds of λ and λd to be 100, which

normally can guarantee a feasible solution.

Based on Algorithm 3, we can update Algorithm 2 by modifying its line

10 to “Numerically evaluate the settling times T c
s (TV

∗, λd1) and T c
s (TV

∗, λd2)

based on Algorithm 3;”. Hereafter, this new version of Algorithm 2 will be

named as Algorithm 4 for simplicity.

2.5.3 Discussion

In this work, two Algorithms (namely, Algorithm 2 and Algorithm 4) are

proposed to solve the problem in (2.10), providing the end users alternative

options to determine the values of the tuning parameters for satisfactory per-

formance. Algorithm 2 determines the worst-case total variation specification

automatically by exploiting the relationship between the overshoot and to-

tal variation of a step response. Given the same specification on worst-case

overshoot, Algorithm 4 potentially leads to a smaller settling time, as the cor-

responding specification on worst-case total variation made based on (2.35)

is larger than that of Algorithm 2; however, the sacrifice is that end users

need to manually specify the specification on decay ratio and the relationship

between the overshoot specification and the total variation specification is

heuristic rather than rigorously established. Given the same specification on

worst-case total variations, Algorithm 2 inherits a larger opportunity of find-

ing the optimal solution as the worst-case settling time is directly minimized,

while Algorithm 4 is equipped with a switching tuning mechanism, which has

a potential effect of deviating the tuning results from the optimal solutions.
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2.6 Application Examples

To illustrate the performance of the proposed tuning algorithms, extensive

evaluations and comparisons are presented in this section by applying the

proposed results to examples extracted from real applications of machine di-

rectional paper machine control. The details of the papermaking process can

be found in [13].

First, we evaluate the proposed stability condition, test the optimality of

the proposed tuning algorithms and compare the tuning performance based

on Algorithms 2 and 4. The following nominal system is considered,

G0(s) =
0.0135

60s+ 1
e−90s, (2.37)

which models a papermaking process from stock to conditioned weight. The

model was identified using an advanced industrial control software package

and used by an MPC controller for a real paper machine. The prediction and

control horizons are set to Hp = 42 and Hu = 20, respectively. The uncertainty

level is defined as [−r%, r̄%], which means that the real model parameters are

chosen from the following intervals:

Tp ∈ [(1− r%)Tp0, (1 + r̄%)Tp0],

td ∈ [(1− r%)td0, (1 + r̄%)td0],

g ∈ [(1− r%)g0, (1 + r̄%)g0].

(2.38)

A large uncertainty level [-40%, 100%] is used throughout the example. Based

on the robust stability condition in (2.25), λd is calculated and it equals to

2.1. Fig. 2.11 shows the step response of the eight extreme-case systems under

different λd’s. The envelopes of step responses of the uncertain systems are

shown in the red solid lines. In Fig. 2.11(a), λd is set to λd and from the

envelopes we can see that the closed loop system is still robustly stable. By

contrast, when λd is slightly decreased (from 2.1 to 2.0) in Fig. 2.11(b), robust

stability no longer holds. This implies that the obtained λd is indeed a tight

lower bound that guarantees robust stability.

It is worth noting that the envelope responses from λd = λd can be aggres-

sive. Thus, in proposed algorithms, we further tune λd for better performance.

Next, we proceed to test the optimality of Algorithm 2 for different worst-

case total variation specifications, where a brutal search is applied to identify

the near-optimal solution to the problem in (2.33). Note that the optimality
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Figure 2.11: Robust stability analysis based on step responses

Figure 2.12: Optimality test under the uncertainty level [-40%, 100%].

of Algorithm 4 is not evaluated, as the underlying idea in finding the optimal

settling time is the same as that of Algorithm 2 when the specification on the
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Table 2.1: Performance comparison between Algorithm 2 and Algorithm 4
(unit of time: second)

OS∗ 10% 15% 20% 25% 30% 35% 40% 45% 50%

TV∗
2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

TV∗
4 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

TV2 1.19 1.3 1.39 1.49 1.6 1.7 1.8 1.88 2

TV4 1.37 1.59 1.79 1.99 2.18 2.38 2.56 2.67 2.83

OS2 0% 0% 0% 0.29% 6.87% 7.02% 12.40% 17.30% 20.73%

OS4 0% 5.15% 13.19% 17.21% 22.01% 30.70% 38.92% 43.33% 49.97%

ts2 3258 3045 2880 2760 2640 2535 2460 2370 2325

ts4 2995 2640 2460 2310 2295 2100 2025 1980 1995

ts2 − ts4 263 405 420 450 345 435 435 390 330

worst-case total variation is directly given without considering the worst-case

overshoot. For a given total variation, the brutal force search method examines

all tuning points within a pre-defined gridded region of the λ− λd space and

computes the worst settling time for all the points. The closeness to optimality

is controlled by the resolution of the grid. Fig. 2.12 shows the optimality test

results under the uncertainty level [-40%, 100%], where we can observe that the

proposed algorithm can capture the optimal solutions for all different cases.

The computational time of the tuning algorithms is around 5 seconds on a

desktop with Intel CORE-i5 and 6G memory, while the brutal force search

takes about 15 minutes to complete the computation for a single specification

of the worst-case total variation. Note that as the proposed algorithms are

designed for a commercial control software, the computational efficiency is

also important due to the fact that the site engineers may have to tune a large

number of control loops within limited time and the user-friendliness of the

software can be improved if the tuning algorithms run faster.

To compare the performance of Algorithms 2 and 4, the tuning results for

the same overshoot specifications (the decay ratio for Algorithm 4 is chosen as

1/4 throughout this example). under the uncertainty level [-40%, 100%] are

shown in Fig. 2.13, where the computation time for each point is also included.

The values of the obtained settling times are presented in Table 2.1, where we

use the subscript ‘2’ to denote the performance indices of Algorithm 2, and use

subscript ‘4’ to denote the performance indices of Algorithm 4. From Fig. 2.13,

Algorithm 2 requires a smaller computation time but gives a larger settling

time, while Algorithm 4 runs a little slower but allows a smaller settling time.
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Figure 2.13: Performance comparison of Algorithms 2 and 4

Table 2.2: Comparison of different tuning algorithms (OS∗ = 20%)

TV∗ TV OS TS (unit: second) λ λd

Algorithm 2 1.4 1.4 1.1% 2880 11.0205 5.8152

Algorithm 4 1.8 1.7675 6.5% 2520 9.6733 4.6603

OS Algorithm − 2.54 15.6% 2310 8.1747 3.7143

The interpretation is that the Algorithm 4 uses the decay ratio to specify the

total variation value for the overshoot specification, which allows a relatively

larger tolerance on the worst-case total variation and thus results in relatively

smaller worst-case settling times.

Now we further compare the results obtained by Algorithms 2 and 4 with

the result obtained by the algorithm proposed in [53], which we call ‘OS Algo-

rithm’ hereafter. Note that the OS Algorithm finds the MPC tuning param-

eters that minimize the worst-case settling time while considering the upper

bound OS∗ on worst-case overshoot. The specification of worst-case overshoot

is set to be OS∗ = 20%, and the obtained results are shown in Fig. 2.14 and

Table 2.2. Based on the obtained results, the effect of introducing total vari-

ation in robust tuning is shown in two folds: a) Algorithms 2 and 4 produce

relatively smoother envelope responses than the OS Algorithm, although the

responses obtained by Algorithm 4 is faster than that of Algorithm 2; b) the

worst-case settling times of Algorithms 2 and 4 are larger than that of OS

Algorithm, which is a natural cost for the smoother responses.

Finally, we apply the tuning results to the Honeywell real time MPC +
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(c) Step response envelope obtained by Algorithm 4

Figure 2.14: Step response envelopes of different tuning algorithms

Simulator environment. In order to consider the model mismatch, the real
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Figure 2.15: Real time MPC + simulator results of the output signal
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Figure 2.16: Real time MPC + simulator results of the input signal

time process is taken as

Gp(s) =
0.0269

119.4s+ 1
e−179.1s, (2.39)

which lies within the uncertainty level [-40%,100%] of the nominal process in

(2.37). The initial operating conditions are set to be y(0) = 432, u(0) =3790,

according to the actual operating conditions. Then choose Hp, Hu, Q1, Q2

and Q3, which are the optimization parameters of the MPC, to be the same as

in the above tuning procedure, and use the constraints on the control signals

as follows:

0.9u(0) ≤ U ≤ 1.1u(0),

−0.1u(0) ≤ ΔU ≤ 0.1u(0).
(2.40)
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Figure 2.17: Real time MPC + simulator results of the change of the input
signal

To consider the possible changes of the operating conditions, a set point

change of 2 lbs/1000 ft2 is made at t = 300s, also an output disturbance

of 2 lbs/1000 ft2 takes place at t = 3000s, an input disturbance of 80 gpm

is introduced at t = 5250s, and the measurement noise is taken to be zero-

mean Gaussian with standard deviation 0.1 lbs/1000 ft2. The tuning results

obtained in Table 2.2 are applied to the process simulator and Honeywell real-

time MPC for performance comparison. The results of output signals, input

signals and the changes of the input signals are shown in Figs. 2.15∼2.17,
respectively. Despite the huge model uncertainty and the measurement noise,

the system responses from all the three pairs of λ-values can always robustly

track the reference signal for all the operating condition changes, which indi-

cates the effectiveness of the proposed algorithms. Besides, the effect of the

consideration of total variation is reflected again in Figs. 2.15 and 2.16, as the

proposed algorithms yield relatively smoother output/input signal compared

with that obtained without taking total variation into account (namely, the

OS Algorithm). It is also worth mentioning that the maximum and minimum

values in control signals and the changes of the control signals are a bit far

from the limits in the constraints in (2.40), which explains why the perfor-

mance corresponding to the tuning parameters obtained from the proposed

methods are not affected by the constraints that much. In general, the con-

straints in the papermaking processes are normally loose, and therefore the

proposed algorithms can guarantee the robust stability and performance, as
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has been shown in this example. Besides, the proposed algorithms can also

be applied for the constrained case, since the empirical monotonicity and uni-

modality properties utilized in this work remain valid for the constrained case

in general; however, a real-time MPC solver has to be utilized in Algorithms 1

and 3 to calculate the worst-case performance indices, which may significantly

increase the corresponding computational time - the overall tuning time will

increase from about 5 seconds to about 110 seconds (on a desktop with Intel

Core i-5 and 6G RAM).

2.7 Summary

In this work, a 2-DOF MPC tuning problem is considered to minimize the

worst-case settling time while considering the constraints on the worst-case

overshoot and worst-case total variation. As the specification on total varia-

tion is difficult to make by the end users, two alternative methods are proposed

to determine an acceptable total variation automatically, which leads to two

algorithms that heuristically solve the MPC parameter tuning problem. Ex-

tensive comparison results indicate that improved performance in terms of

smoother responses can be obtained by the tuning algorithms.
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Chapter 3

User-Friendly Robust Tuning
for MIMO MD-MPC∗

3.1 Introduction

In this chapter, we focus on the controller tuning problem of machine-directional

predictive control for MIMO paper-making processes with uncertain model

parameters. The starting point of this work is the 2-DOF MPC structure

proposed in [12]. In this framework, two filters Fr and Fd with dynamics ad-

justed by λ and λd, are added to the closed-loop system, and then we can

tune the performance of the MPC controller by adjusting λ and λd with the

original tuning weights fixed to simplify the tuning procedure. In last chap-

ter, MD-MPC tuning problems for SISO case have been considered and solved

under a similar framework. As the MD processes also have MIMO plants, an

easy-to-use MIMO MD-MPC tuner is also of high demand. Thus, based on

the 2-DOF MPC structure, we tune the λ and λd (which we refer to as λ-

parameters hereafter, and are vectors with appropriate dimensions) for the

desired robust performance of the closed-loop system, with the MPC penalty

weights set to pre-assigned values. Based on the industrial experience, the

nominal model of the real MIMO plant is available and rather than unstruc-

tured uncertainty, which is typically used to date but difficult to understand

for end users, parametric uncertainties are considered in this work. The tun-

ing objectives are specified via the overshoot, total variation and settling time

for each output of the MIMO system; this enhances the easy-to-use feature of

∗Parts of the results presented in this chapter are published in Control Engineering Practice,
vol. 55, pp. 1-12, 2016.

39



the designed MIMO MD-MPC tuner, yet complicates the problem at hand.

As dead time and model mismatch are unavoidable in process operation and

model identification, the output responses of the closed-loop system cannot

be expressed in an explicit way, and therefore the tuning problem is difficult

to formulate. On the other hand, the complexity of the MIMO MD-MPC

tuning problem increases with the system size, and how a specific pair of the

λ-parameters (e.g., λi and λd,i in vectors λ and λd) affects the closed-loop

responses of all the outputs of the MIMO system is unclear because of the

multi-variable system structure. Besides, to further improve the easy-to-use

feature of the proposed tuning algorithm, the overall time consumption of

the MIMO MD-MPC tuning algorithm is not only limited by a pre-specified

amount of time, but also required to be predictable without running the algo-

rithm. In regard of the aforementioned challenges, we propose a multi-counter

line based algorithm for the MIMO MD-MPC robust tuning problem. The

contributions of the work are as following:

• In order to characterize the extreme step responses of each output for a

set of MIMO systems described by parametric uncertainties and to cal-

culate the worst-case time-domain measures, a fast robust performance

evaluation technique is developed.

• A user-friendly MIMO MD-MPC tuning problem is constructed, and

then transformed into a number of individual MISO tuning problems,

based on which the tuning problem is simplified. Based on the robust

performance evaluation method and the simplified tuning problem, a

fast multi-variable tuning method is developed for the MIMO MD-MPC,

based on which the controller parameters can be tuned for satisfactory

performance within acceptable computation time.

• An efficient technique to predict the overall computation time of the pro-

posed MIMO MD-MPC tuning algorithm is proposed, based on which

the end users can predict the tuning time without running the algorithm.

3.2 Preliminaries and Problem Formulation

In what follows, the 2-DOF MIMO MD-MPC framework developed in [12] is

introduced; the user-friendly tuning objective is also proposed in this section.
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Figure 3.1: The MIMO 2-DOF MPC structure

3.2.1 Nominal system and uncertainty

In Fig. 3.1, Gp ∈ R
m×n and G0 ∈ R

m×n are the transfer function matrices

of the real process and nominal model respectively. The FOPDT structure

is utilized to model the subsystems in Gp and G0, as it can provide a good

approximation of the process [13] and is also easy to understand by the op-

erators of paper machines. Therefore the real process Gp can be represented

as

Gp(s) =

⎡
⎢⎢⎢⎣
G11

p (s) · · · G1n
p (s)

...
. . .

...

Gm1
p (s) · · · Gmn

p (s)

⎤
⎥⎥⎥⎦ ,

Gij
p (s) =

kij
τijs+ 1

e−Tijs, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (3.1)

where kij, τij and Tij are the real process gain, time constant and dead time

for Gij
p . The discretized model of Gij

p is Gij
p (z) = kij

bijz
−1

1−aijz−1 z
−T d

ij , where

aij = e−ΔT/τij , bij = 1 − aij, ΔT indicates the sampling time, and T d
ij is the

discretized time delay. As model mismatch, disturbance and noises exist in

practice, Gp(s) cannot be known accurately. Thus, a nominal model G0(s) is
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identified as the approximation of Gp(s):

G0(s) =

⎡
⎢⎢⎢⎣
G11

0 (s) · · · G1n
0 (s)

...
. . .

...

Gm1
0 (s) · · · Gmn

0 (s)

⎤
⎥⎥⎥⎦ ,

Gij
0 =

k0
ij

τ 0ijs+ 1
e−T

0
ijs, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (3.2)

where k0
ij, τ

0
ij and T 0

ij are usually obtained from some commercial control soft-

ware based on the input/output data of the real plant, and the discretization

of model is achieved similarly as that of the process model. However, the

difference between the real process and nominal model is inevitable so that

the uncertainties in the model parameters must be considered. Two differ-

ent kinds of uncertainties are normally used in the robust control, namely,

parametric uncertainty and unstructured uncertainty. As the unstructured

uncertainty is not familiar to our end users, parametric uncertainty is consid-

ered for MD-MPC parameter tuning, which can be denoted in the following

form

kij ∈ [kij, kij], τij ∈ [τ ij, τ ij], Tij ∈ [T ij, T ij],

1 ≤ i ≤ m, 1 ≤ j ≤ n, (3.3)

where kij, kij, τ ij, τ ij and T ij, T ij are the lower and upper bounds of the

mismatch on the model parameters. Thus, we can represent the uncertain

models as

Π := {Gp(s) :kij ∈ [kij, kij], τij ∈ [τ ij, τ ij],

Tij ∈ [T ij, T ij], 1 ≤ i ≤ m, 1 ≤ j ≤ n}. (3.4)

Note that given the multivariate structure of the system, it is difficult to find

an analytical connection between the parametric uncertainty and the unstruc-

tured uncertainty. However, the proposed tuning algorithms in this chapter

provide an alternative way to directly handle the parametric uncertainty so

that the robust stability and performance can be guaranteed.

3.2.2 MPC controller

First define Hp, Hu as the prediction and control horizon, respectively. The

MPC in Fig. 3.1 amounts to solving the following finite-horizon optimal con-
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trol problem [12]

min
ΔU

J = (Ey(k))
TQ1(Ey(k)) + ΔU(k)TQ2ΔU(k)

+ (Eu(k))
TQ3(Eu(k))

s.t. x̂(k + i) = Aix̂(k) +

min{Hu,i}∑
j=1

Ai−jBΔu(k + j − 1),

ŷ(k + i) = Cx̂(k + i), for i = 1, 2, . . . , Hp, (3.5)

where

Ey(k) = Ŷ (k)− Yref(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ŷ(k + 1)− yref(k + 1)

ŷ(k + 2)− yref(k + 2)
...

ŷ(k +Hp)− yref(k +Hp)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.6)

Eu(k) = UHu(k)− Uref(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

u(k)− uref(k)

u(k + 1)− uref(k + 1)
...

u(k +Hu − 1)− uref(k +Hu − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.7)

ΔU(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Δu(k)

Δu(k + 1)
...

Δu(k +Hu − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.8)

UHu(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎥⎥⎦
u(k − 1) +

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

1 1
. . .

...
...

. . . . . . 0

1 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
ΔU(k). (3.9)

Uref and Yref are the reference signal vector of UHu and Ŷ , respectively, and

Q1, Q2 and Q3 are penalty weights.
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Then, we can represent the MPC as a quadratic programming problem

with the following objective

J = ΔUT (k)HΔU(k) + 2ϕTΔU(k), (3.10)

where H and ϕ are the Hessian matrix and gradient matrix, respectively.

Therefore, the analytical expression of ΔU(k) that minimizes (3.10) is

ΔU(k) =−H−1ϕ

=Kxx̂(k) +Ku−1u(k − 1) +KytYref +KxtUref , (3.11)

where Kx, Ku−1, Kyt, Kxt are matrices related to the parameters in MPC and

the nominal model (see [52] for the detailed expressions of the matrices).

Besides, compared with the traditional MPC, an additional penalty term

Eu is considered in the cost function for the economic purpose. As the energy

consumption is an important element affecting total profits of a paper mill, Eu

can be utilized to minimize the operation cost of paper machines. Note that

if there are more manipulated variables than controlled variables plus (active)

constraints, degrees of freedom to execute steady-state optimization exist for

the system [13]. Therefore, for some paper-making systems, the penalty on the

difference between the actual input and the corresponding ideal steady state

value uref can be utilized in the MPC to reduce the cost without downgrading

the quality of the product.

Remark 3.1. In paper-making processes, there are only constraints on the

input signal UHu and the change of the input signal ΔU . Based on industrial

experience, these constraints are relatively loose compared with actual signals

appeared in the control loop, and therefore the constraints are not considered

in the tuning problem to save the computational resource for user-friendliness.

Besides, test results on industrial example with the actual constrained MPC

show that the performance of the algorithm is not evidently influenced by the

actual constraints (see Section 3.5 for the detailed results and discussions).

3.2.3 2-DOF tuning

Given the MPC controller and system model in previous subsections, the

filters Fr and Fd, as shown in Fig. 3.1, are designed to filter the target of the

output (ytgt(k)) and the estimated disturbance (d̂(k) � yp(k) − ŷ(k)), which
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constitute the MIMO 2-DOF MPC structure. Based on the filtered signals,

the reference trajectory is obtained as follows:

Yref(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

yref(k + 1)

yref(k + 2)
...

yref(k +Hp)

⎤
⎥⎥⎥⎥⎥⎥⎦
= Fr(ytgt(k))− Fd(d̂(k)), (3.12)

where Fr(·) and Fd(·) are projection filters to implement fr(z) and fd(z), based

on yref (z) = fr(z)ytgt(z) − fd(z)d̂(z) [12]; fr(z) and fd(z) are the reference

tracking filter and disturbance rejection filter, respectively; The user-specified

reference tracking filter fr(z) is taken to have the form

fr(z) =

⎡
⎢⎢⎢⎣
fr,1(z) 0 0

0
. . . 0

0 0 fr,m(z)

⎤
⎥⎥⎥⎦ , and

fr,i(z) :=
br,iz

−1

1− ar,iz−1
z−Ti , 1 ≤ i ≤ m, (3.13)

where ar,i = e
− Ts

τiλi , br,i = 1− ar,i; fr,i(z) is the reference tracking filter for the

ith output; we define λ = [λ1, · · · , λm] as the reference tracking ratio vector.

Similarly, fd(z) has the following form

fd(z) =

⎡
⎢⎢⎢⎣
fd,1(z) 0 0

0
. . . 0

0 0 fd,m(z)

⎤
⎥⎥⎥⎦ , and

fd,i(z) :=
bd,iz

−1

1− ad,iz−1
z−Ti , 1 ≤ i ≤ m, (3.14)

where ad,i = e
− Ts

τiλd,i , bd,i = 1 − ad,i, and fd,i(z) is the disturbance rejection

filter for the ith output; we define λd = [λd,1, · · · , λd,m] as the disturbance

rejection ratio vector. In this way, the performance of the MPC can be tuned

by λ and λd with fixed penalty matrices (Q1 = I, Q2 = 0.01 × I, Q3 = 0

in this work); and hence the MPC tuning problem is simplified [12]. It is

worth noting that the function of the original penalty matrices Q2, Q3 can

be achieved by λ and λd. According to the 2-DOF system structure, abrupt
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changes in the output reference Yref can be removed by the tuning of λ and λd

to reduce the aggressiveness of the corresponding control inputs u, as λ and λd

affect the smoothness of the references for each output. Based on the structure

of fr and fd shown in (3.13)-(3.14), the time constants of the filters increase

with the increase of λ and λd, and therefore larger values of λ and λd make

the reference Yref smoother, and the resultant the closed-loop system responses

more sluggish. On the contrary, smaller values of λ and λd make the system

responses more aggressive. In particular, as fd filter appears in the feedback

channel, λd affects the robust stability of the closed-loop system; a larger λd

improves the robustness but also increases the settling time. fr outside the

feedback loop only affects the speed of the reference signal, and therefore the

increase of λ can reduce the values of overshoot and total variation.

In addition, the reason of utilizing the diagonal structure for the filters

fr and fd is to make the tuning problem easier to save more computational

resource. As fr and fd are employed to smooth the reference and estimated

error trajectories for each output, the intuition of adopting the diagonal struc-

ture is to filter each trajectory only based on its original signal; besides, the

diagonal form is a concise way to filter the trajectories, and is sufficient to

affect the closed-loop system responses. Note that a non-diagonal structure

can also be utilized to design better filters, but additional tuning parameters

appear, making the tuning problem more complex and the automated tuning

procedure slower. As the user-friendliness is of high priority in this work, we

have selected the diagonal form for filter design to make the algorithm more

computationally efficient.

Note that a key part of the 2-DOF MPC tuning problem is the design

of fr,i(z) and fd,i(z) in (3.13) and (3.14). The principle to design fr,i(z) is

that given the ith output, the open-loop transfer function from the input that

dominates the output is selected to construct this filter, i.e., we select τi of

fr,i(z) to be the open-loop time constant of the dominant subsystem1 for ith

output; the underlying reason is to make the speed of the closed-loop response

dependent on the speed of the dominant or primary open-loop response of the

system according to the requirements on a specific paper product. As for

fd,i(z), the same design procedure is applied except that λd,i is used instead

of λi such that we can filter the output target and the estimated disturbance

1The dominant subsystem is either selected based on the physical property of the paper
machine or to be the subsystem with the largest time constant in our work.
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separately.

3.2.4 User-friendly tuning objectives

For the MIMO system considered in this work, the overshoot, total variation,

and settling time of each output are considered as the tuning measurements.

Since the parametric uncertainty (defined in (3.3)) results in a set of perturbed

systems, the worst-case time domain performance indices are employed. In

the following, the definitions for the worst-case overshoot, settling time and

worst-case total variation are first recalled.

Definition 3.1. (Worst-case overshoot). The worst-case overshoot OS of

a set of step responses with the same final value is the maximum value in all

responses minus the final value divided by the final value.

Definition 3.2. (Worst-case settling time). The worst-case settling time

Ts of a set of step responses with the same final value is the minimum time

required for all the responses to reach and stay within a range of pre-specified

percentage of the final value.

Definition 3.3. (Worst-case total variation). Assume the system con-

verges to the target value within n steps, the worst-case total variation TV

is

TV = max
Gp∈Π

n∑
k=1

|y(k)− y(k − 1)|. (3.15)

Note that Definitions 3.1-3.3 are introduced for characterizing the worst-

case performance for a set of step responses for SISO systems, and thus are

applicable for each of the outputs of the MIMO system. In this work, we

allow the end users to specify their requirements on each output directly via

the worst-case time domain performance indices. This improves the user-

friendless of the proposed MIMO MPC tuner. In addition, the tuning time,

defined as tλ, is also an important factor in a successful industrial MPC tuner

design. According to the guideline of commercial paper machine tuner design,

the total time consumption of the tuning algorithm should not be more than

half a minute; and this requirement needs to be considered also as a hard

constraint for the problem at hand. Note that the requirement on tλ is selected

according to the size of the real MD process (e.g., no large than 7 outputs and
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8 inputs), and the average time that a site engineer can spend on the controller

tuning procedure based on industrial experience.

Remark 3.2. Note that the tuning time was normally not considered in the

existing MIMO MPC tuning algorithms, because 1) a limited computation time

might affect feasibility of these algorithms and 2) the computation time was

normally not predictable. A hard constraint on the tuning time would further

increase the difficulty of solving the MIMO MPC tuning problem.

Based on the factors mentioned above, the tuning target is twofold: 1) the

robust stability of the MIMO system is achieved; 2) the closed-loop responses

of all the outputs track the reference signals with small OS, Ts and TV, given

the parametric uncertainty defined in (3.3). Besides, the λ and λd should

also be tuned within the acceptable tuning time. To do this, we formulate the

tuning problem as

min
λ,λd

||Ts(λ, λd)||∞,
s.t. OSi(λ, λd) ≤ OS∗i , 1 ≤ i ≤ m,

TVi(λ, λd) ≤ TV∗i 1 ≤ i ≤ m,

tλ ≤ 30s, (3.16)

where λ = [λ1, . . . , λm],λd = [λd,1, . . . , λd,m].NoteOS(λ, λd) := [OS1(λ, λd),

OS2(λ, λd), . . . ,OSm(λ, λd)], TV(λ, λd) := [TV1(λ, λd), TV2(λ, λd), . . . ,

TVm(λ, λd)] and Ts(λ, λd) := [Ts,1(λ, λd), Ts,2(λ, λd), . . . ,Ts,m(λ, λd)] de-

note the worst-case overshoots, total variations and settling times given the

(λ, λd), for all the outputs of the MIMO system Gp(s) within parametric

uncertainty region, i.e., Gp(s) ∈ Π. OS∗ := [OS∗1, OS∗2, . . . ,OS∗m], TV∗ :=

[TV∗1, TV∗2, . . . ,TV
∗
m] are the specifications on the overshoots and total vari-

ations. Note that in (3.16), we tune λ and λd to find the smallest worst-case

settling times of all the outputs while require the corresponding worst-case OS

and TV to be no greater than the pre-determined specifications, and require

the tuning time is no more than half a minute, i.e., tλ ≤ 30s.

It is worth noting that since the explicit formulas for the performance mea-

sures employed in (3.16) are generally not available, the constraints and cost

of the optimization problem become implicit, and therefore a typical option is

to adopt evolution based optimization techniques (e.g., the genetic algorithm),

which, however, increase the computational complexity significantly so that

48



the constraint on tuning time can not be satisfied. The proposed algorithm

utilizes the empirical (monotone/unimodal) relationship between the tuning

parameters and performance measures obtained based on the industrial ex-

perience and extensive simulations, and then seeks for the tuning parameters

via the line search methods. Although the optimality can not be guaranteed

theoretically, satisfactory results can normally be achieved, as shown in the

example section. Besides, the line search structure of the proposed algorithm

also allows us to develop the tuning time prediction technique, which allows

the users to know the tuning time beforehand.

Besides, the optimization problem in (3.16) is always feasible for MD

paper-making processes; the reason is as follows: 1) the first two constraints in

(3.16) can be satisfied when λ and λd are selected large enough, because the

TV approaches 1 and OS approaches 0 as λ and λd increase. In the proposed

algorithm, an adequately large upper limit is chosen for both λ and λd, which

guarantees the feasibility of these two constraints; 2) as the size of MD process

is limited (normally no larger than 7 outputs and 8 inputs), the feasibility of

the constraint on tuning time is verified by testing the proposed algorithm on

the largest MD process.

3.3 Envelope Algorithm: the MIMO Case

3.3.1 Proposed performance evaluation technique

In this section, we propose a performance evaluation method to compute the

worst-case OS, Ts and TV for all the outputs of the MIMO system, which is

an essential part to handle (3.16). For a specific pair of λ, λd, the goal here

is to calculate the envelopes that can serve as the upper and lower bounds

of all the possible step responses for all uncertain MIMO systems satisfying

Gp(s) ∈ Π. As the system considered has multiple outputs, the envelopes are

represented for each of the outputs, based on which the outcome of selecting

a specific pair of λ, λd can be figured out directly.

In [53], a visualization method was developed to obtain the envelope re-

sponses for a group of SISO FOPDT systems (G∗p(s)) under parametric un-

certainty:

G∗p(s) ∈ Πe := {G∗p(s) : k ∈ [k, k], τ ∈ [τ , τ ], T ∈ [T , T ]},
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via 8 extreme-case systems:

ΠE := {G∗p(s) : k ∈ {k, k}, τ ∈ {τ , τ}, T ∈ {T , T}},

where k, τ, T are the gain, time constant and time delay respectively. Note

that as the visualization problem can be viewed as a constrained optimization

problem, the optimal solution can be achieved via examining every possible

combination of active constraints based on the Karush-Kuhn-Tucker condi-

tion. Due to the requirement on the tuning time, enumerating every combi-

nation of active constraints (including the case that no constraint is active,

namely, the so-called ‘interior’ case) is computationally impossible; therefore,

a suboptimal solution in the sense that only a subset of active constraint com-

binations focusing on the extreme cases is utilized in our work. Although

this suboptimal solution is not always guaranteed to be optimal, extensive

simulation results indicate that the technique utilized is effective, as indus-

trial experience suggests that worst-case step-response behavior is normally

experienced by extreme process parameters. Although all subsystems in the

MIMO process Gp(s) have the FOPDT structure, and the parametric uncer-

tainty of Gp(s) is constructed by considering all subsystems in a way like Πe,

the approach mentioned above cannot be used directly to the MIMO process

due to the following factors: 1) the number of extreme-case systems from [53]

depends on the number of model parameters, and becomes a large number

even for a low dimensional MIMO system (e.g., a 2-by-2 system consists of 4

FOPDT subsystems, and thus requires 84 extreme-case systems based on the

approach in [53]); 2) the computation time of the visualization method in [53]

increases rapidly as the number of extreme-case systems increases; 3) as the

tuning procedure should cost less than 30 seconds, and the worst-case perfor-

mance will be evaluated many times in the tuning algorithm, the performance

evaluation algorithm should run very fast.

To deal with this problem, we first define the parameters of the MIMO

system considered as

k =

⎡
⎢⎢⎢⎣
k11 · · · k1n
...

. . .
...

km1 · · · kmn

⎤
⎥⎥⎥⎦ , τ =

⎡
⎢⎢⎢⎣
τ11 · · · τ1n
...

. . .
...

τm1 · · · τmn

⎤
⎥⎥⎥⎦
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T =

⎡
⎢⎢⎢⎣
T11 · · · T1n

...
. . .

...

Tm1 · · · Tmn

⎤
⎥⎥⎥⎦ . (3.17)

Then, following the idea of characterizing a set of uncertain systems via a

polytopic system (specified by extreme uncertain systems on the vertices) in

multi-variable robust control theory [2, 62], the MIMO system with parametric

uncertainty defined in (3.3) can be approximated as

PE := {Gp(s) :k ∈ {k, k}, τ ∈ {τ , τ},
T ∈ {T ,T }}, (3.18)

where k, τ and T denote all entries in k, τ , and T taking their minimum values

in the uncertainty region, and k, τ and T correspond to all elements taking

their maximum. Note that PE only consists of eight extreme-case systems.

Therefore, the envelopes of the MIMO system with parametric uncertainty

defined in (3.3) can be obtained via PE with significantly reduced computation

time.

Based on PE, the envelope responses of each output of the MIMO system

with MD-MPC can be obtained. The detailed procedure is summarized in

Algorithm 5.

Algorithm 5 MIMO envelope algorithm

1: Input λd, λ and the uncertainty intervals [k,k], [τ , τ ] and [T ,T ];
2: Determine the eight worst-case uncertain systems in PE based on extreme

combinations of the uncertainty intervals, and then calculate the output
responses Yi = [y1, . . . , ym]

T
i for the ith extreme system (i = 1, 2, . . . , 7, 8)

in PE based on the analytical expression of ΔU in (3.11).
3: Obtain the upper envelope for all the outputs {y1, . . . , ym} by calculating

maxi∈{1,2,...,7,8}Yi(k,:), k = 1, 2, . . . ,m.
4: Obtain the lower envelope for all the outputs {y

1
, . . . , y

m
} by calculating

mini∈{1,2,...,7,8}Yi(k,:), k = 1, 2, . . . ,m.

Specifically, Algorithm 5 is mainly composed of the following steps: 1)

construct 8 extreme case uncertain systems based (3.17)-(3.18); 2) run closed-

loop simulation for each of the 8 extreme systems with the MPC introduced

in Section 3.2, and obtain the output vector Yi, i = 1, . . . , 8 for the 8 ex-

treme systems; here, the simulation period is selected as 12(maxi(maxj(T ij))+
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maxi(maxj(τ ij))), where T ij and τ ij indicate the (i, j)-th element of the ex-

treme model parameter matrices T and τ for time constant and delay in (3.17)-

(3.18); 3) to obtain the upper envelope of the kth output, take the maximum

value of the kth output in all Yi at each the time step; 4) take the minimum

value of the kth output in all Yi at each time step to construct the lower

envelope.

Extensive simulation results indicate that the worst-case OS, Ts and TV

can be approximated based on the responses of the extreme systems, for which

certain combinations of the critical/extreme uncertain model parameters are

reached simultaneously. The underlying theoretic support is that the perfor-

mance of a set of uncertain systems described by a polytopic system can be

characterized only by the set of systems with vertex parameters of the poly-

topic uncertainty [2, 62] and in particular, can be captured only by the set of

the worst-case vertex systems for the purpose of computation cost reduction

[50]; thus, the proposed performance evaluation approach is able to character-

ize the time domain measures employed in the controller tuning. In addition,

the actual performance of the proposed method is also verified by simulations

with different processes extensively in next subsection.

3.3.2 Extensive simulation study of the proposed per-
formance evaluation technique

In order to further evaluate the performance of Algorithm 5 in terms of ac-

curate calculation of the envelope responses, the extensive simulation-based

method is employed. For all different types of MIMO processes considered

in the real paper-making machine directional control (the largest MIMO pro-

cess used in the MD-MPC is about 7 inputs and 8 outputs), the following

test procedure is utilized: we set λ-parameters to different values, and com-

pare the envelopes obtained from Algorithm 5 with the step responses from

a large number (�500) of uncertain systems, the parameters of which are

randomly selected based on the interval uncertainties, to accomplish the ver-

ification. The obtained results show that Algorithm 5 works effectively in all

the MIMO MD processes of the paper machine. Due to the space limitation,

here we only show the results (see Figure 3.3) from one process, which is a 2-

by-3 MD process of a paper machine, controlling the Dry weight and Moisture

of the paper products by Stockflow, Steam and Speed. An illustration plot of
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such process is shown in Figure 3.2. The readers may also refer to Figs. 1 to

Figure 3.2: Illustration of the typical 2-by-3 MD process

4 and the corresponding descriptions in [13] for a more detailed illustration

of real paper-making processes. Note that in Figure 3.3 we show two typical

situations that may happen during the tuning: 1) the system is stable, see

Fig. 3.3 (a)-(b) and Fig. 3.3 (c)-(d); 2) the system is unstable, see Fig.3.3

(e) and (f). The values of λ, λd are shown in the figures, and the uncertainty

level is considered as [−30%, 50%]. Here the uncertainty level [−r, r] denotes
the intervals of the model parameters based on their nominal values:

kij ∈ [(1− r)k0
ij, (1 + r)k0

ij],

τij ∈ [(1− r)τ 0ij, (1 + r)τ 0ij],

Tij ∈ [(1− r)T 0
ij, (1 + r)T 0

ij].

In Figure 3.3, we can see that for each output the corresponding envelopes

all serve as tight upper and lower bounds for all step responses from different

MIMO systems whose parameters satisfying the user-determined parametric

uncertainty; the resultant OS, Ts and TV can then be calculated directly

from the envelopes. Meanwhile, the proposed method is also computational

efficient, because implementing this technique for the largest MIMO process

(7 outputs and 8 inputs, which we refer to 7-by-8 hereafter) accounts for only

0.47 seconds on a computer with Intel i5 CPU and 6 GB RAM.

3.4 MIMO Tuning Algorithm

The MIMO tuning problem is first simplified in this section, and then a fast

multi-variable MPC tuning algorithm is designed to efficiently tune the ratio

vector λ and λd for desired time-domain performance.
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Figure 3.3: Numerical verification of the proposed performance visualization
technique

3.4.1 MIMO tuning to MISO tuning

In order to solve (3.16), the relationship between λ-parameters and the per-

formance indices of each output, e.g., OSi(λ, λd), and Ts,i(λ, λd) in (3.16), is

explored. As performance measures utilized in the controller tuning can not

be expressed in an explicit way, an empirical analysis is carried out to assist

the tuning procedure.
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According to the 2-DOF tuning structure, as the filters Fr and Fd can

achieve the same function as the original penalty weights, we have fixed these

weighting matrices and adjust the closed-loop performance by λ and λd. More

specifically, as Fd filter appears in the feedback channel, λd affects the robust

stability of the closed-loop system; a larger λd improves the robustness but also

increases the settling time. Fr outside the feedback loop only affects the speed

of the reference signal, and therefore the increase of λ results in smaller values

of overshoot and total variation. As both filters have the diagonal structures,

and λ, λd only exist on the diagonal entries, it is intuitive to assume that the

closed-loop response of ith output is dominated by the ith elements in λ, λd

(which we refer to as λi and λd,i hereafter). Besides, given each output of the

MIMO system, the corresponding filters in the Fr and Fd are designed based

on the dominant or primary open-loop system producing that output; this

also ensures the specific pair of the λ-parameters plays a dominant role only

for the closed-loop response of the single corresponding output. In this way,

the effect of changing λj and λd,j (j 
= i) on OSi(λ, λd) and Ts,i(λ, λd) can be

ignored. In other words, OSi(λ, λd) and Ts,i(λ, λd) can now be represented

as OSi(λi, λd,i) and Ts,i(λi, λd,i).

These properties are further illustrated in Fig. 3.4 via a typical 2-by-3

MD process; the illustrations are also verified through extensive simulations

with other types of MIMO systems, but the results are not shown here due

to space limitation. Based on Fig. 3.4, two apparent observations can be

obtained: 1) From the right subfigure of Fig. 3.4(a) and that of Fig. 3.4(b),

we can see that the adjustment of λ1 and λd,1 does not affect the overshoot

and settling time of the second output, which verifies our idea above; 2) the

overshoot can be empirically treated as an monotone decreasing function of λ,

and the settling time can be considered as an unimodal function of λd, which

is basically determined by the 2-DOF MPC structure, and is a property that

was also found in the SISO MD-MPC tuning [52].

Thus, as the closed-loop response of the ith output is dominated by λi

and λd,i, we can simplify the tuning problem in (3.16) from a MIMO tuning

problem to m individual MISO tuning problems, in which we tune λi and λd,i

for the ith output separately. Mathematically, the new MISO tuning problem
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(a) OS of 1st and 2nd output with different λ1 and λd,1

(b) Ts of 1st and 2nd output with different λ1 and λd,1

Figure 3.4: Numerical verification of OSi(λ, λd) and Ts,i(λ, λd)

can be stated as

min
λi,λd,i

Ts,i(λi, λd,i), for i = 1, . . . ,m, (3.19)

s.t. OSi(λi, λd,i) ≤ OS∗i

TVi(λi, λd,i) ≤ TV∗i

based on which the tuning algorithm in the next subsection is proposed. Note

that in (3.19) we solve the tuning problem m times for all the MISO distinct

form systems.

It is worth noting that different from the overshoot, the total variation

is not familiar to the end users, and therefore it is difficult for them to se-

lect a proper value for TV∗i in (3.19). In order to keep the user-friendliness

property, which is of high priority here, TV∗i should be chosen either au-

tomatically, or according to other intuitive performance indices (e.g., decay

ratio); to achieve this target, the results in last chapter are utilized here to

determine the specification of total variation TV∗i based on the overshoot ac-

cording to TV∗i = 1 + 2OS∗i , or based on the decay ratio (DR∗) according
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to TV∗i = 1 +
3OS∗i

1−DR∗
i
. Note that overshoot-based TV∗i is slightly conservative

while decay ratio based TV∗i requires additional knowledge on decay ratio for

the end users, and thus the users can choose either one in different situations

depending on their preference and process knowledge.

3.4.2 Tuning algorithm

Based on the empirical properties of OSi(λ, λd) and Ts,i(λ, λd), an efficient

MIMO tuning algorithm is proposed in this section. As Ts,i(λ, λd) is tuned

via only λi, λd,i in the MISO tuning problem (3.19), it is similar to the SISO

tuning problem solved in [37]. One feasible method to the tuning problem at

hand is to solve each of the MISO tuning problems one by one via the proposed

contour-line searching tuning algorithm in [37], but such method is too time

consuming to meet the constraint on tuning time, as the overall tuning time

equals to the sum of the tuning times for each MISO system; define tλ,i as

the tuning time for the ith MISO system, the overall tuning time (tλ) can be

represented as

tλ = tλ,1 + tλ,2 + · · ·+ tλ,m, (3.20)

Based on Algorithm 5, instead of solving the MISO tuning problems one after

another, the main idea of the proposed MIMO tuning algorithm here is to solve

all the MISO tuning problems simultaneously, by searching for the optimal λ-

parameters for all the MISO systems along m identical contour-lines at the

same time. Therefore, the proposed tuning algorithm is almost as fast as

only solving one MISO tuning problem, and the computation time of the fast

algorithm is

tfλ = max{tλ,1, . . . , tλ,m} ≈ 1

m
· tλ. (3.21)

The fast algorithm is feasible, because the contour-line searching is based on

the worst-case performance indices calculated by Algorithm 5 and when the

Algorithm 5 is called the performance indices are computed for all the MISO

systems. Besides, as all the MISO tuning problems are almost independent

(tuning of (λi, λd,i) does not significantly affect that of (λj, λd,j), j 
= i), the

proposed tuning algorithm can produce the same results as those of tuning

the MISO systems one after another.

In order to develop the multi-counter line MIMO tuning algorithm, we

need the following two algorithms: Algorithm 6 identifies the contour lines
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that TVi(λi, λd,i) = TV∗i for a fixed set of λd,i, i = 1, . . . ,m and provides the

resultant λi, i = 1, . . . ,m (denoted as λc
i) for all the MISO systems; Algorithm

7 searches on the above counter lines for the λd,i, i = 1, . . . ,m associated with

the smallest values of Ts for all the outputs. The detailed procedures of the

MIMO Algorithms 6 and 7 are shown below.

Algorithm 6 Find λc(TV∗,λd) and Tc
s(TV

∗,λd).

1: Input TV∗, λd, and the uncertainty intervals [k,k], [τ , τ ] and [T ,T ] and
upper bound for λ: λ

∗
;

2: Input ε;
3: NoFeasibleLambda = 11×m;
4: λ ← 0.51×m, λ ← λ

∗
;

5: while max (λ− λ) > ε do
6: for i=1 : m do
7: λ(i)← (λ̄(i) + λ(i))× 0.5
8: end for
9: Numerically evaluate the total variation and overshoot vectors

TV(λ,λd) and OS(λ,λd) based on the envelope responses obtained by
Algorithm 5.

10: for i=1 : m do
11: if TV(i) > TV∗i then
12: λ(i)← λ(i);
13: else
14: if OS(i) < OS∗i then
15: λ(i)← λ(i);
16: NoFeasibleLambda(i) = 0;
17: else
18: λ(i)← λ(i);
19: end if
20: end if
21: end for
22: end while
23: λc(TV∗,λd)← (λ+ λ)/2 ;
24: Tc

s(TV
∗,λd)← Ts(λ

c,λd);
25: end

Algorithm 6: Given a set of λd,i, i = 1, . . . ,m and the specifications

TV∗i , i = 1, . . . ,m, the bisection search method is utilized to find the λc
i , i =

1, . . . ,m on all the counter lines, because each TVi(λi, λd,i) is a monotone

decreasing function of λi according to 2-DOF structure; Tc
s(TV

∗,λd) here

denotes the corresponding worst-case settling times for all the outputs; the
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variable NoFeasibleLambda indicates the existence of λ given a pair of λd

and TV∗. It is worth noting that 1) all the λis are tuned before evaluating the

TV and OS for all the outputs, based on which the search on all the contour-

lines are executed simultaneously, rather than one after another; 2) lines 14-19

are used if the TV∗ is chosen based on decay ratio.

Algorithm 7 Tuning of λ and λd.

1: Input uncertainty intervals [k,k], [τ , τ ] and [T ,T ] and upper bound for
λd: λ

∗
d;

2: Input the overshoot specification OS∗;
3: Calculate the total variation specification according to TV∗ = 1 + 2OS∗

or TV∗ = 1 + 3OS∗
1−DR∗ ;

4: Input ε;
5: λd ← 0.51×m, λd ← λ

∗
d;

6: while max (λd − λd) > ε do
7: for i=1 : m do
8: λd1(i)← λd(i) + (λd(i)− λd(i))× 0.382;
9: λd2(i)← λd(i) + (λd(i)− λd(i))× 0.618;
10: end for
11: Numerically evaluate the settling times Tc

s1(TV
∗,λd1) and

Tc
s2(TV

∗,λd2) based on the Algorithms 5 and 6 ;
12: for i=1 : m do
13: if NoFeasibleLambda(i) = 0 then
14: if Tc

s1(i) > Tc
s2(i) then

15: λd(i)← λd1(i);
16: else
17: λd(i)← λd2(i);
18: end if
19: else
20: λd(i)← λd1(i);
21: end if
22: end for
23: end while
24: λd ← (λd + λd)/2;
25: λ← λc(TV∗,λd);
26: end

Algorithm 7: In the 2-DOF MPC structure, the closed-loop robust stabil-

ity is determined by the ratio vector λd according to the sensitivity analysis.

Therefore, for each MISO system, the Ts,i(λ
c
i , λd,i) is approximately a uni-

modal function of λd,i; because an extreme value of the λd,i will result in
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either a marginally stable response or a slow response, both of which are asso-

ciated with a large settling time. Thus, golden search is utilized in Algorithm

7 to obtain the λd,i, i = 1, . . . ,m that offer the smallest worst-case settling

times for all the MISO systems; Note that the resultant λi, i = 1, . . . ,m and

the Tc
s(TV

∗,λd) are calculated based on Algorithm 6 as shown in line 11. The

robust stability can be achieved based on the proposed algorithms. The reason

is that the unstable envelope responses would have large worst-case settling

times and thus the corresponding λd,i, i = 1, . . . ,m can not be the optimal

solution.

The efficiency of the proposed MIMO tuning technique is shown in Section

3.5.

3.4.3 Prediction of tuning time

The proposed fast tuning algorithm not only solves the MIMO MD-MPC

tuning problem efficiently, but also provides a salient feature of accurately

predicting the tuning time. Note that an accurate prediction of tuning time

is highly demanded for algorithms designed for a commercial tuner software,

because the user-friendliness can be improved.

As the proposed tuning algorithm is a line search based method, the com-

putation time can be estimated based on the iteration numbers for convergence

and the time required for each iteration. The iteration number only depends

on the pre-defined search region and stop criteria, and thus can be calculated

based on
log(ε/max (λ

∗ − 0.51×m))
log(0.5)

(3.22)

for Algorithm 6 as the bisection search is utilized, and

log(ε/max(λ
∗
d − 0.51×m))

log(0.618)
(3.23)

for Algorithm 7 based on the structure of the golden search method. Note

that ε is the stop criteria utilized in Algorithms 6 and 7 (introduced in line 2

and line 4, respectively), and the constants 0.5 and 0.618 correspond to the

convergence rates of the bisection and golden search methods employed in

the Algorithms 6 and 7. The iteration time is decided by the time required

for numerical evaluating the performance indices, the duration of which can

be computed based on the time required to call Algorithm 5, which can also

60



be pre-calculated. Thus, the tuning time can be predicted with Algorithm 8

stated below.

Algorithm 8 Prediction of tλ(λ
∗
,λ

∗
d).

1: Input λ
∗
d, λ

∗
and the uncertainty intervals [k,k], [τ , τ ] and [T ,T ];

2: Input ε;
3: Input NTV and NTs ;
4: Run the MIMO simulator 3 times to obtain the computation time tβ,1, tβ,2

and tβ,3;
5: t̄β = (tβ,1 + tβ,2 + tβ,3)/3;

6: x = log(ε/max (λ
∗−0.51×m))

log(0.5)
;

7: Iλ = ceil(x);

8: y = log(ε/max(λ
∗
d−0.51×m))

log(0.618)
;

9: Iλd
= ceil(y);

10: tλ = ((Iλ × NTV +NTs)× 2 + Iλd
× (Iλ × NTV +NTs))× t̄β;

11: end

Interpretations for Algorithm 8: NTV and NTs (line 3) are the numbers

of the extreme-case systems considered to calculate the total variation and

the settling time; according to Algorithm 5 both of them are 8 by default;

however, the number of the extreme-case systems considered in Algorithm

5 can be optimized to further save some computation time, and is a future

research direction of this work; tβ (line 5) is the time cost for a single run

of the simulation (based on which the running time of Algorithm 5 can be

obtained), and as the computer normally needs more time to run a program

for the first time, the average of three runs is used as the simulation time.

Iλ (line 7) and Iλd
(line 9) are the iteration numbers for Algorithm 6 and 7

respectively. The formula in line 10 is constructed based on the structure of

the tuning algorithm.

3.5 Industrial Examples

In this section, our algorithm is tested on a model generated based on MD

process data obtained from a US paper mill to verify the effectiveness. The

2-by-3 MD process considered is concerned with controlling the Conditioned

Weight (CW), and Moisture (M) of the paper products with Base Stock Flow

(SF) to the headbox, Main Steam (MS) in the cylinders, and Machine Speed2

2“Machine speed” indicates how fast the paper machine is running, e.g., 500 feet per minute.
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(S) as inputs; specifically, the conditioned weight is controlled by base stock

flow and machine speed, while the moisture is controlled by base stock flow

and main steam. The nominal model is shown in Table 3.1, and is obtained

by the bump test experiment [13] on the original paper making process, in

which a number of step changes are first introduced to each input of the

paper machine to explore the dynamical property of the system, and based on

the experimental data, the nominal model is obtained utilizing a commercial

system identification software. Figure 3.5 shows the the step response plot of

the nominal process dynamics in the bump test. To illustrate the developed

results, the proposed tuning algorithm is applied to the nominal model in this

section; also, to evaluate the performance of the resultant MPC controller,

the tuning results are tested in the Honeywell real time MPC + Simulator

environment.

Table 3.1: Nominal model

O\I SF MS S

CW
0.35

80s+1
e−80s - −0.025

30s+1
e−51s

M
0.4

90s+1
e−80s −0.08

150s+1
e−80s -

Figure 3.5: Illustration of the 2-by-3 MD process

The MPC penalty weights are Q1 = I, Q2 = 0.01 × I, Q3 = 0 and

the control period is 15 seconds; Hp and Hu are 68 and 27, respectively.

Given the multi-variable process in Table 3.1, we have utilized the fast MIMO

62



tuning algorithm to achieve a large number of performance requirements, from

OS∗ = 10% to OS∗ = 50%, at different types of uncertainty levels, from

[−25%, 25%] to [−50%, 50%]. It is worth noting that all the performance

specifications and uncertainties are selected based on the industrial experience

to cover possible situations that may occur in practice. In order to further

evaluate the optimality of the proposed results, we have compared the tuning

results of Algorithm 7 with those achieved by the brute force search method3,

given the tuning problem in (3.19). The results of the optimality test for

uncertainty level [-50%, 30%] are shown in Table 3.2-3.3. Besides, the actual

computation time and the beforehand predicted tuning time by Algorithm 8

are indicated for each case in Table 3.4. The test results for other uncertainty

levels are not shown here to save the space. It is worth mentioning that

the tuning results from the MIMO algorithm are almost exactly the same as

those of brute search, indicating the optimality of the proposed method. The

proposed algorithm is also very computational efficient, as for a particular

requirement of OS, the tuning time is about 10 seconds4 while that of the

brute force search method is around 20 minutes. In addition, the predicted

tuning time from Algorithm 8 produces a very accurate prediction with error

less than 5%. The envelope responses of both outputs of this process for

OS∗ = 20% under uncertainty region [-50%, 30%] are also shown in Figure

3.6.

Table 3.2: Comparison for output 1

Overshoot specification OS∗ 10% 20% 30% 40% 50%

total variation specification TV∗ 1.4 1.8 2.2 2.6 3

Fast tuning algorithm

OS 0.1% 19.03% 27.76% 28.7% 49.08%

TV 1.26 1.49 2.09 2.50 2.62

ts 1200s 1425s 1125s 990s 1110s

λ1 2.4413 1.3872 1.1316 1.1872 0.6646

λd,1 0.8970 1.9145 1.2034 0.7793 1.2939

Brute force search method

OS 0.5% 19.03% 27.76% 27.7% 49.08%

TV 1.32 1.49 2.09 2.41 2.62

ts 1175s 1425s 1125s 990s 1110s

λ1 2.2131 1.3872 1.1316 1.2157 0.6646

λd,1 0.8810 1.9145 1.2034 0.7841 1.2939

3The brute force search method exhaustively tests all possible λ, λd to find the optimal
λ-parameters for the tuning problem in (3.19).

4The simulation is performed on a computer with Intel i5 CPU and 6G RAM.
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Table 3.3: Comparison for output 2

Overshoot specification OS∗ 10% 20% 30% 40% 50%

total variation specification TV∗ 1.4 1.8 2.2 2.6 3

Fast tuning algorithm

OS 9.59% 17.20% 16.46% 37.56% 41.39%

TV 1.20 1.64 2.04 2.24 2.44

ts 1575s 1335s 1155s 1215s 1185s

λ2 1.1444 0.8203 0.8203 0.5646 0.5090

λd,2 1.1657 0.8853 0.6078 0.7793 0.7388

Brute force search method

OS 9.19% 17.20% 16.46% 39.56% 41.39%

TV 1.20 1.64 2.04 2.41 2.44

ts 1585s 1335s 1155s 1200s 1185s

λ2 1.1665 0.8203 0.8203 0.5465 0.5090

λd,2 1.1775 0.8853 0.6078 0.7676 0.7388

Table 3.4: Results of predicting tuning time

Overshoot specification 10% 20% 30% 40% 50%

total variation specification 1.4 1.8 2.2 2.6 3

Real tuning time 9.58s 9.56s 9.62s 9.69s 9.69s

Predicted tuning time 9.96s 10.00s 10.1s 9.74s 10.17s

Now the Honeywell real time MPC + Simulator is utilized to further ver-

ify the proposed tuning method. The Honeywell real time MPC + simulator

environment serves as a virtual realistic testbed for the proposed MPC algo-

rithm - the simulator is utilized to generate the dynamic responses of the MD

process subject to disturbances, while the real time MPC is consistent with

that implemented in a commercial controller with constraints to generate the

control inputs. Different from the nominal model, the real process considered

here is shown in Table 3.5, which is chosen based on the uncertainty region

Table 3.5: Process model

O\I SF MS S

CW
0.455

104s+1
e−104s - −0.0325

30s+1
e−66.3s

M
0.52

117s+1
e−104s −0.1040

195s+1
e−104s -
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Figure 3.6: Step response envelopes obtained by proposed tuning algorithm

considered in the tuning. y(0) = [432 8]T and u(0) = [3790 79 447]T are the

initial conditions for the controlled and manipulated variables. Hp, Hu, Q1,

Q2 and Q3 are selected according to their values used in the aforementioned

tuning algorithm, and hard constraints on U and ΔU utilized in the real time

MPC are as follows:

0.5u(0) ≤U ≤ 1.5u(0),

−0.1u(0) ≤ΔU ≤ 0.1u(0), (3.24)

Note that the constraints in (3.24) are considered here for two reasons: 1)

to be consistent with the realism of considered process and MPC; 2) to test

the performance of the proposed algorithms (in which the constraints are not

considered) on the MPC with the real constraints. Besides, we also introduced

several changes on the operating conditions based on the situations that may

happen in practice; set-point changes with amounts of 1 lbs/1000 ft2 and
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1 % are introduced at t = 1500s for output 1 and 2, simultaneously; a 2

lbs/1000 ft2 disturbance is made for output 1 at t = 4800s, and a -2 % output

disturbance is in effect at t = 2250s for output 2; a 10 gpm disturbance is

considered at t = 3300s for input 1; and a Gaussian distributed noise with

mean 0 and standard deviation 0.1 is introduced to all the measurements. The

obtained results for the process outputs and inputs are shown in Figs. 3.7 and

3.8, respectively. In these obtained figures we can see that although a large

amount of model uncertainty and different kinds of noises are considered, the

closed-loop responses of all the system outputs can still track the reference

signals under different working conditions; this further illustrated the promise

of the fast multi-variable MPC tuning technique.
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Figure 3.7: Outputs obtained by the Honeywell Real time MPC + Simulator

3.6 Summary

This chapter investigates a robust controller tuning problem for the MD-MPC

used in MIMO paper-making processes under user-specified interval uncer-

tainty. An envelope algorithm to evaluate the worst-case OS, Ts and TV
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Figure 3.8: Inputs obtained by the Honeywell Real time MPC + Simulator

considering the interval uncertainty for the MIMO MD-MPC is first devel-

oped, and then a fast MIMO tuning technique is developed to calculated the

MPC tuning parameter vectors λ and λd that fulfill the requirements on the

worst-case time-domain performance indices under the parametric uncertainty

for the MIMO system; in addition, a technique to predict the tuning time is

also designed to further improve the user-friendliness. The effectiveness of

the proposed method is illustrated based on a real MIMO model used by the

MD-MPC at a paper mill.

On the other hand, the idea of tuning utilized in this work can be extended

to the oscillatory systems (e.g., second-order-plus-time-delay systems), but

some modifications and verifications may need to be performed, including 1)

the two filters fr and fd can still be designed in the first order structure, but an

estimated time constant may need to be specified based on the settling time

of the oscillatory system’s open loop response; 2) the analytical expression

of the controller utilized in Algorithm 5 needs to be derived again based on
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the oscillatory system model; 3) the envelope algorithm utilized to visualize

the robust performance needs to be verified on the oscillatory systems with

parametric uncertainty; 4) the relationship between the filters and the perfor-

mance needs to be verified. Note that the modifications in 1)-2) mentioned

above are minor and can be achieved easily. Although verification tasks 3)-4)

may cost some time, the underlying properties utilized in 3)-4) should hold

for the oscillatory systems based on the intuition and the theoretical analysis

in this work. Overall, we expect the proposed algorithms to be expendable to

the oscillatory systems, and will explore this topic in our future work.
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Chapter 4

User-Friendly Robust Spatial
Tuning for CD-MPC∗

4.1 Introduction

In this chapter, we focus on the robust spatial tuning of cross-directional model

predictive control under model-plant mismatch. The objective is to tune the

MPC weighting matrices such that 1) the robust stability is achieved; 2) the

variability of the steady-state actuator and measurement profiles is minimized.

As the CD system has a limited spatial bandwidth, the actuation at high spa-

tial frequencies is harmful to the process, and therefore it is essential that the

limited spatial bandwidth property be explicitly incorporated into the design

of the weighting matrices to suppress the high frequency components in the

actuator profile. Besides, the parameters in CD processes are usually iden-

tified through bump tests [23, 27, 28] and are inevitably subject to model

parameter uncertainties. Thus, it is also desirable that the pre-specified para-

metric uncertainties be directly considered in the spatial tuning algorithm to

guarantee robust performance. To achieve the above mentioned objectives,

an automated spatial tuning algorithm is developed in this chapter, and the

contributions are as follows:

• A weighting matrix Sb has been appropriately designed via the Fourier

matrix approach based on the system model and pre-specified parametric

uncertainties. The newly designed Sb penalizes more on the undesirable

high-frequency components so that reduced variability of the actuator

∗The results presented in this chapter were submitted as a provisional U.S. patent [33] and
also to IEEE Transactions on Control Systems Technology [32].
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and measurement profiles is achieved.

• A systematic automated design procedure has been developed for the

spatial tuning of CD-MPC processes. Given a system model and user-

specified parametric uncertainties, the matrix Sb and the associated

weighting parameters are automatically designed such that robust sta-

bility is ensured and better performance is achieved.

4.2 System Description and Preliminaries

In this section, we first introduce each element in the CD-MPC structure (see

Fig. 4.1), and then propose some preliminaries on stability and performance

analysis.

Figure 4.1: The block diagram of the closed-loop CD-MPC system.

As shown in Fig. 4.1, the closed-loop CD-MPC structure for a paper-

making process consists of four parts: the real process Gp(z), the nominal

model G(z), the MPC and the temporal filter Fα(z), which are illustrated in

detail in the following. Moreover, the associated signals are defined as follows:

ytgt, ysp, u(z), d(z), yp(z) and y(z) are the output target, the reference tra-

jectory, the actuator profile, the disturbance profile, the measurement profile,

and the predicted output profile, respectively.

4.2.1 Nominal model and model uncertainty

The nominal model G(z) of a CD paper-making process is characterized by

G(z) = G0h(z), (4.1)
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where G0 ∈ R
m×n is a constant matrix that characterizes the spatial re-

sponse/gain of the CD process; h(z) = (1 − a)z−td/1 − az−1 is the temporal

transfer function of the process, in which a and td are the time constant and

time delay in the discretized version.

The spatial gain matrix G0 has the parameterized structure as shown be-

low [22]:

G0 = [g1, . . . , gn] ∈ R
m×n,

gk = f(x, γ, η, ξ, β, ck)

=
γ

2

{
e
− η(x−ck+βξ)2

ξ2 cos

[
π (x− ck + βξ)

ξ

]
+

e
− η(x−ck−βξ)2

ξ2 cos

[
π (x− ck − βξ)

ξ

]}
,

x = 1, . . . ,m, k = 1, . . . , n, (4.2)

where γ, η, ξ, and β are the process gain, attenuation, width, and divergence,

respectively. They are utilized to characterize the spatial response of each

specific actuator. For the kth actuator, ck is the alignment parameter that

determines the center of the corresponding spatial response. The aforemen-

tioned model in (4.2) describes the response of each specific actuator in spatial

domain and a detailed explanation can be found in [22].

Since model-plant mismatch is unavoidable in process operation and iden-

tification, model uncertainties are considered in the work. Based on traditional

definitions in robust control to represent model mismatch, it is assumed that

the real process model belongs to a set of possible models, characterized by an

unstructured or parametric perturbation on the nominal model in (4.1). As

parametric uncertainty is easy to understand and specify by the end users in

the pulp and paper industry [35, 37], the real process model Gp(z) is described
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based on the uncertain parameters by

Gp(z) = Gp
0h(z),

Gp
0 = [g1p, . . . , gnp],

gkp = f(x, γp, ηp, ξp, βp, c
p
k),

γp = (1 + rγ)γ, ηp = (1 + rη)η,

ξp = (1 + rξ)ξ, βp = (1 + rβ)β,

cpk = ck + ε,

k = 1, . . . , n, x = 1, . . . ,m, (4.3)

where rγ ∈ [rγ, r̄γ], rη ∈ [rη, r̄η], rξ ∈ [rξ, r̄ξ], rβ ∈ [rβ, r̄β], and ε ∈
[−εm

n
, ε̄m

n
] are utilized to characterize the parametric uncertainties. These

trust ranges are also represented as γp ∈ [γ, γ̄], ηp ∈ [η, η̄], ξp ∈ [ξ, ξ̄], and

βp ∈ [β, β̄] for brevity; note that as ε is a global perturbation on all cpk, k =

1, . . . , n, ε ∈ [ε, ε̄] is utilized to represent the trust region of the alignment

parameter. Therefore, a set of perturbed models can be characterized by the

uncertain model parameters γp, ηp, βp, ξp, ε. Note that as spatial and temporal

components of CD processes are decoupled (the detailed analysis is shown in

Section 4.3), only uncertainties on spatial parameters are considered in (4.3)

for spatial tuning.

4.2.2 CD-MPC

In this subsection, we start from an industrial CD-MPC controller that has

already been successfully applied in paper mills [5]. In this CD-MPC, the

following optimization problem is solved:

min
Δu(k)

{
Hp∑
i=1

(y(k + i)− ysp(k + i))TQ1(y(k + i)

− ysp(k + i)) +
Hu−1∑
i=0

[
Δu(k + i)TQ2Δu(k + i)

+ (u(k + i)− usp(k + i))TQ3(u(k + i)− usp(k + i))

+ u(k + i)TQ4u(k + i)
]}

, (4.4)

subject to the system dynamics defined in (4.1) and the constraints as follows:

ΩΔu(k) ≤ b− Γu(k − 1), (4.5)
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where Hp is the prediction horizon, and Hu is the control horizon; y(k) ∈
R

m and ysp(k) ∈ R
m are the predicted output profile and the corresponding

reference signal; u(k) ∈ R
n and usp(k) ∈ R

n are the actuator profile and its

reference; Δu(k)(= u(k) − u(k − 1)) is the changes in the actuator profile.

Q1 to Q3 are diagonal weighting matrices; Q4 is the weighting matrix on the

actuator bending/picketing in the following form:

Q4 = q4S
T
b Sb,

Sb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · · · · · · · 0

1 −2 1
. . . . . . . . .

...

0 1 −2 . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . −2 1 0
...

. . . . . . . . . 1 −2 1

0 · · · · · · · · · 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.6)

where q4 is a scalar weight and Sb ∈ R
n×n is the “bending moment matrix” [8,

17]. Note that for the actuator profile, the first and second order derivatives are

incorporated in the matrix Sb, and thus the bending behavior is penalized in

the cost function of CD-MPC. Ω,Γ and b are the constraint matrices (vectors)

derived based on the physical limitations of the process and the details can be

found in [5].

Besides, the reference trajectory ysp(k) is generated based on ysp(k) =

Fα(ytgt(k)− dy(k)), where dy(k) = yp(k)− y(k) and Fα is implemented based

on a standard first-order filter [24].

4.2.3 Closed-loop transfer functions

In order to analyze the properties of the CD-MPC shown in (4.4), we em-

ploy the method in [20] to calculate the equivalent transfer matrices with the

unconstrained MPC, and then evaluate robust stability and performance of

the corresponding closed-loop system. To aid the analysis, the closed-loop

system can be rearranged in Fig. 4.2. Kr(z) and Kα(z) are derived based on

the explicit solution of the unconstrained MPC, following the similar proce-

dure in [20]. Note that as the unconstrained MPC is exploited, the resultant

closed-loop system is linear.

73



Figure 4.2: The rearranged block diagram of the closed-loop CD-MPC system.

In Fig. 4.2, Gp(z) is the real process that is different from the nominal

model G(z), and can be represented in the additive uncertainty form

Gp(z) = G(z) + Δ(z), (4.7)

in which Δ(z) denotes the model uncertainty.

Robust stability is analyzed using the small gain theorem [20]. Specifically,

given the parametric uncertainties defined in (4.3), the closed-loop system in

Fig. 4.2 is robustly stable for all Gp(z) if it is nominally stable and

||Tud(z)Δ(z)||∞ < 1→ σ̄(Tud(e
iω)Δ(eiω)) < 1, ∀ω, (4.8)

Tud(z) = Kα(z)[I −G(z)Kα(z)]
−1, (4.9)

where σ̄(A) denotes the maximum singular value of a matrix A; Δ(z) is the

model uncertainty in (4.7) and Tud(z) ∈ C
n×m is the sensitivity function from

the disturbance profile d(z) to the input profile u(z) at the nominal case.

Since the performance of CD control is characterized by its capability to

suppress the disturbance, the closed-loop transfer function from the distur-

bance profile d(z) to the output profile y(z) is used to evaluate the perfor-

mance

Tyd(z) = [I −G(z)Kα(z)]
−1, (4.10)

where Tyd(z) ∈ C
m×m.

Tud(z) and Tyd(z) are employed as the key transfer functions in this chapter

for evaluating the closed-loop system performance.

Given the CD-MPC structure shown in Fig. 4.1, the closed-loop system

behavior is affected by the following parameters: the penalty matrices Q1 to
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Q4, the temporal filter Fα, the prediction horizon Hp, and the control horizon

Hu. Note that in industrial practice, the prediction horizon Hp is normally

selected to be 4 times the summation of the time constant and delay; the

control horizon Hu = 1 is usually utilized in the large-scale MPC (can also be

increased based on practical situations); Q1 is often fixed in the robust tuning.

Consequently, only Q2 ∼ Q4, and Fα need to be designed. In next section,

we will show that the CD process is a two-dimensional (spatial and temporal)

frequency process and the spatial and temporal responses are decoupled, based

on which the controller tuning of CD processes can be separated into spatial

tuning and temporal tuning.

4.3 Two-Dimensional Frequency Analysis

The spatially invariant property is one of the most important features of CD

processes; this allows us to approximate the plant model G(z) as an RCM, and

further represent it in the two-dimensional (spatial and temporal) frequency

domain. Thus, the multi-variable transfer function G(z) can be simplified into

a group of single-input, single-output transfer functions [20]. Denote Ğ(z) as

the two-dimensional frequency domain representation of G(z), and it can be

calculated by

Ğ(z) = FmG(z)FH
n , (4.11)

where Fm and Fn are the complex Fourier matrices with dimension m and n,

respectively. Then, all the frequency information of G(z) is contained in the

following transfer functions:

{ğ(v1, z), . . . , ğ(vn, z)} = DIAG(FmG(z)FH
n ), (4.12)

where DIAG(A) denotes the operation of getting the following elements of a

rectangular matrix A ∈ C
m×n: DIAG(A)1 = {A(1, 1), . . . , A(k, k), A(k + 1 +

m− n, k + 1), . . . , A(m,n)}, where k = n/2 if n is even, or k = (n+ 1)/2 if n

is odd; and

ğ(vj, z) =
ğ(vj)(1− a)z−td

1− az−1
, for j = 1, . . . , n. (4.13)

Note that based on (4.13), the spatial frequency response gain of G(z) at vj

is |ğ(vj)|, where vj, j = 1, . . . , n, are the spatial frequencies with engineering

units and vn is the actuator Nyquist frequency [20].

1DIAG(A) = {A(1, 1), . . . , A(k, k), A(k+1, k+1+m−n), . . . , A(n,m)} for A ∈ C
n×m, where

k = n/2 if n is even, or k = (n+ 1)/2 if n is odd.
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Given the special structure of CD processes, it can be further shown

that the corresponding sensitivity functions Tyd(z), Tud(z) are also RCMs [20].

Thus, they can also be analyzed in the two-dimensional frequency domain as

follows:

T̆yd(z) = FmTyd(z)F
H
m ,

T̆ud(z) = FnTud(z)F
H
m ,

{t̆yd(v1, z), . . . , t̆yd(vm, z)} = diag(T̆yd(z)),

{t̆ud(v1, z) . . . , t̆ud(vn, z)} = DIAG(T̆ud(z)), (4.14)

where diag(A) represents the diagonal elements of a square matrix A and vm

is the measurement Nyquist frequency. Therefore controller tuning can be

implemented based on the sensitivity functions t̆ud(v, z) and t̆yd(v, z) in the

two-dimensional frequency domain. Based on the aforementioned analysis and

the existing results on CD-MPC tuning for unstructured uncertainty in [18],

the tuning task can be separated into two parts: spatial tuning at z = 1

(z = eiω, ω = 0) with Q3, Q4, and temporal tuning at v = 0 based on Q2 and

Fα.

In the following, the spatial tuning is explored; the corresponding design

objective is to tune Q3 = q3In, Q4 = q4S
T
b Sb so that: (1) the closed-loop

system is robustly spatial stable; (2) the variability of the steady-state actuator

and measurement profiles is minimized. First a new Sb matrix is designed to

improve the spatial performance and then a tuning algorithm is proposed to

automatically adjust the weights q3 and q4.

4.4 The New Sb to Shape the Spectra of the

Actuator Profile

In the existing CD-MPC, the weighting matrix Sb inQ4 term is a fixed constant

matrix disregarding of the CD model considered. In this section, a new Sb

matrix, which can tune the frequency response of the actuator profile based on

the property of a given CD system, is designed to improve both the nominal

and robust performance of the CD-MPC.
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4.4.1 The new Sb design for nominal case

In this subsection, we first perform a spatial frequency analysis on the existing

Sb and then propose a new Sb to improve the performance. Note that the

spatial frequency representation of a signal can be calculated by the Discrete

Fourier Transform (DFT), i.e., given a signal y ∈ C
m, its spatial frequency

representation can be obtained by

y̆ = Fm · y, (4.15)

where Fm is the Fourier matrix. To further analyze the signal in the spatial

frequency domain, we need the following useful lemma from [20].

Lemma 4.1. Given spatial signals y ∈ C
m and u ∈ C

n and assuming N ∈
C

m×n is an RCM, if y = N · u, then

y̆ = N̆ · ŭ, (4.16)

where N̆ = FmNFH
n .

Note that if N is a constant RCM, N̆ in Lemma 4.1 denotes its spatial

frequency domain representation.

In the cost function of CD-MPC, the cost term associated with Q4 is

u(k + i)TQ4u(k + i) = (Sbu(k + i))Tq4(Sbu(k + i)),

where the matrix Sb can be approximated as an RCM; its spatial frequency

domain representation can be calculated as

{s̆b(v1), . . . , s̆b(vn)} = diag(FnSbF
H
n ). (4.17)

Fig. 4.3 illustrates the spatial frequency response (gain) of the existing Sb

(namely, |s̆b(vj)|), in which we can see that Sb looks like a high pass filter

in the spatial frequency domain. Therefore, when Q4 penalizes the actuator

picketing, based on Lemma 4.1, it actually puts more weights on the high

frequency components of the actuator profile, which works like a low pass

filter to suppress the high frequency components in the actuator profile u. The

reason that an actuator profile with high spatial frequency (namely, actuator

picketing) is not desired is that CD processes normally have very small gains

at high spatial frequencies (also known as ill-conditioning), and an actuator
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Figure 4.3: The spatial frequency response of the existing Sb.

profile with high spatial frequency could lead to instability of CD processes

[5]. However, the spatial frequency response of different CD processes behave

differently, and thus, it is beneficial to design a specific Sb for a specific CD

process.

To achieve better robustness and performance, the new Sb here is designed

to be a high pass spatial filter whose stop band can be adjusted according

to different CD processes. To achieve this objective, the definition of cut-off

frequency, which is used to characterize the spatial frequency response gain of

a CD process, is introduced as follows [15].

Definition 4.1. Assume the maximum gain of the spatial frequency response

of a CD process is gmax. The cut-off frequency vc is the spatial frequency at

which the following holds

gvc = r · gmax, r ∈ (0, 0.5]. (4.18)

Fig. 4.4 illustrates the above definition using one of the typical single beam

CD processes (note that we use r = 0.1 in this chapter).

As the process is almost uncontrollable above the cut-off frequency [15],

the actuator profile with the spatial frequency components that is higher than

vc is not desirable. Therefore, the stop band of the new Sb can be selected

based on vc of a given CD process, which allows the new Sb to put more
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Figure 4.4: The definition of the cut-off frequency vc.

weights on the high spatial frequency components (> vc) in the input profile

while putting small or zero weights on the spatial frequency that is smaller

than vc.

The first approach is to design the new Sb as a high pass Finite Impulsive

Response (FIR) filter with the stop band that equals vc of a given process

model. This can be realized by Algorithm 9.

Algorithm 9 Design Sb as a high pass FIR filter with the stop band that
equals vc
1: Input G0;
2: Calculate vc based on G0;
3: Design a low pass filter based on the sinc function and the window func-

tion with the stop band that equals vc;
4: Conduct the inverse Fourier transform to obtain the filter in the spatial

domain;
5: Construct the desired high pass filter Sb via spectral inversion of the filter

obtained in line 4;
6: End

Executing Algorithm 9 yields the desired Sb. However, there exist two

drawbacks for this method: 1) the stop band of Sb (which we denote as vb

hereafter) may not equal vc exactly, because the length of the filter is limited

by the size of the penalty matrix; 2) even if vb = vc can be achieved accurately,

the transition band of the filter Sb still needs to be optimized based on the

spatial frequency response of G(z).
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Considering the aforementioned drawbacks, it is desirable to design Sb with

a spectrum that is the mirror of the system’s spatial frequency response with

respect to the cut-off frequency. Such a Sb matrix can be obtained based

on the following idea: we first obtain the mirrored frequency response of a

given process model by numerical methods, and then process it to satisfy

some conditions and finally perform the inverse Fourier transform using the

Fourier matrix, resulting in a Sb with the expected spatial frequency response.

Note that the processing step mentioned above is utilized to ensure that the

obtained Sb has the circulant property to retain the two-dimensional feature

of the closed-loop system and also to guarantee Sb is a real valued matrix for

implementation reasons. More specifically, the conditions on the pre-specified

spectrum content are summarized in the following to guarantee the desired

properties of Sb.

Lemma 4.2. Define km(j), j = 1, . . . , n, as the pre-specified spatial frequency

response gain of Sb. If km(j) ∈ R, ∀ j and km(j) = km(n − j + 2) (j =

2, . . . , (n + 1)/2, if n is odd; or j = 2, . . . , n/2, if n is even), then the Sb

obtained via the inverse Fourier transform is a real valued circulant matrix.

Proof. As Sb is a square RCM, the spatial frequency response gains of Sb

equal its singular values. Therefore, as the real conjugate even property is

guaranteed by km(j) ∈ R, ∀j and km(j) = km(n− j+2) (j = 2, . . . , (n+1)/2,

if n is odd; or j = 2, . . . , n/2, if n is even), the obtained Sb is a real valued

circulant matrix [14]. �

In addition, the desired Sb can also be achieved based on the real valued

Fourier matrix [14, 56] to further reduce the computation complexity, and one

typical formula for such matrix is shown below.

Definition 4.2. The real valued Fourier matrix F r
n ∈ R

n×n is defined as

F r
n(j, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1
n
, j = 1,√

2
n
· sin[(k − 1)vj], j = 2, . . . , q,√

2
n
· cos[(k − 1)vj], j = q + 1, . . . , n,

(4.19)

where q = (n + 1)/2 if n is odd, and q = n/2 if n is even; vj =
2π(j−1)

n
is the

spatial frequency.
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To conclude, the method to generate the improved Sb matrix is summarized

in Algorithm 10.

Algorithm 10 Design Sb based on the mirror of the spectrum of the system
model
1: Input G0;
2: Calculate vc based on G0;
3: Obtain the desired mirrored spectrum by numerical methods;
4: Process the obtained spectrum content based on Lemma 4.2;
5: Conduct the inverse Fourier transform to obtain the weighting matrix Sb

in the spatial domain;
6: End

Fig. 4.5 shows the spatial frequency response of the Sb designed using Al-

gorithm 10 for a typical single beam CD process. The closed-loop performance

of the new Sb is illustrated in the next section.
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Figure 4.5: The spatial frequency response of the new Sb designed by Algo-
rithm 10.

4.4.2 Performance illustration of the new Sb

As the new Sb is designed based on the frequency property of G(z), it is

expected to provide better performance compared with the old Sb. In this
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section, the performance improvement is illustrated based on the sensitivity

analysis.

To analyze the performance of the new Sb, we compare the sensitivity

function Tyd(z) of the new Sb with that of the old Sb considering the similar

robustness (the peak value of Tud is the same). The details are shown in Fig.

4.6.
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Figure 4.6: Performance comparison of different Sb based on the sensitivity
function Tyd(z) at steady state (z = 1).

Note that the result is only shown at the steady state (z = 1) for clear

display. We can see that, on the one hand, the sensitivity function with the

new Sb has smaller gains at the low frequency, indicating that the disturbance

at low frequency (smaller than the cut-off frequency vc) can be better handled.

On the other hand, for the frequency components that are higher than the

cut-off vc, the sensitivity function with the new Sb has larger gains, which

prevents the actuator profile from chasing the uncontrollable high frequency

components of the disturbance.

It is worth mentioning that if there is no model mismatch, the new Sb can

be designed with vb = vc, and should achieve performance improvement based

on the above analysis. However, in the presence of parametric uncertainty, it

is better to design vb to be robust over the model mismatch. To achieve this

target, a robust Sb design procedure is introduced in the next section.
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4.4.3 The Sb design under parametric uncertainty

In this section, a technique to find the vb based on the worst spatial model

under user-specified parametric uncertainties is proposed, which can help us

design a robust Sb that takes the pre-specified model mismatch into account.

First, we propose the definition for the worst spatial model as follows:

Definition 4.3. Given the parametric uncertainty specifications ηp ∈ [η, η̄],

βp ∈ [β, β̄], γp ∈ [γ, γ̄], ξp ∈ [ξ, ξ̄], and ε ∈ [ε, ε̄], the worst spatial model

refers to the spatial model that has the smallest cut-off frequency among all

the possible models due to parametric uncertainty.

Based on Definition 4.3, the cut-off frequency of the worst spatial model

under parametric uncertainty can be obtained by

min
ηp,βp,γp,ξp,ε

vc(Gp(z))

s.t. ηp ∈ [η, η̄], βp ∈ [β, β̄],

γp ∈ [γ, γ̄], ξp ∈ [ξ, ξ̄], ε ∈ [ε, ε̄]. (4.20)

Lemma 4.3. The cut-off frequency vc for a given process model Gp(z) is

independent of the process gain parameter γp.

Proof. As Gp(z) can be approximated as an RCM, vc can be obtained by

f(x, ηp, βp, γp, ξp, c
p
k) for any k [15]. Therefore, as γp is a multiplication term in

f(x, ηp, βp, γp, ξp, c
p
k), it does not affect the normalized shape of the spectrum

of the system model Gp(z) based on the property of the Fourier transform,

and thus is independent of vc. �

The approach utilized here is to hold all the spatial parameters except one

to analyze how the change of this parameter affects the cut-off frequency vc,

and apply similar analysis to the parameters ηp, βp, γp, ξp, ε one by one. The

results of the aforementioned method are shown in Fig. 4.7 for one CD pro-

cesses. It is observed that the cut-off frequency vc is changing monotonically

with respect to ηp, βp, ξp, ε and is not affected by γp. This property is also

verified through other practical systems, and the details are not shown here

due to space limitation.

As vc(Gp(z)) is independent of γp, and is changing monotonically with

respect to each of ηp, βp, ξp, ε, the smallest cut-off frequency can be obtained
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Figure 4.7: The relationship between the spatial parameters and vc. Note that
γp, ηp, βp, ξp are increased from 50% to 150% of the nominal values, and ε is
increased from −m

n
to m

n
.

by solving the following optimization problem:

min
ηp,βp,ξp,ε

vc(Gp(z))

s.t. ηp ∈ {η, η̄}, βp ∈ {β, β̄},
ξp ∈ {ξ, ξ̄}, ε ∈ {ε, ε̄}. (4.21)

The obtained worst cut-off frequency is denoted as vw, and will be utilized

in the robust spatial tuning of CD-MPC.
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4.5 The Automated Spatial Tuning

The spatial tuning of robust CD-MPC contains two parts: 1) the selection of

the stop band vb of the matrix Sb; 2) the selection of q3 and q4. Note that

based on the idea in [20], the weight q3 is selected to be the same as q4 to

simplify the robust tuning problem (this new weight is denoted as qf ).

In order to achieve the tuning objective, the analysis based on the sen-

sitivity functions is utilized to provide some tuning guidelines, and then the

automated tuning approach is proposed. Figs. 4.8(a) and 4.8(b) illustrate the

effect of changing vb in the sensitivity functions, and it is observed that a
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Figure 4.8: The sensitivity function Tyd(z) (a) and control sensitivity Tud(z)
(b) in the spatial frequency domain with z = 1: the effect of changing vb.

larger vb gives better robustness, while a smaller vb gives better performance.

If there is no model mismatch, we can select vb = vc based on the spatial

frequency response of a given process model, the performance of which is also

illustrated in Section 4.4. As we can predict the worst spatial model that has

the smallest cut-off frequency (vw) based on the approach in Section 4.4.3, the

design of vb = vw directly takes care of the given parametric uncertainties, so

that a good robustness property can be obtained.

Similar analysis can also be applied to the parameter qf , and the results

are shown in Figs. 4.9(a) and 4.9(b). We can observe that a larger qf gives

better robustness, while a smaller qf gives better performance. As vb = vw is

selected, the tuning objective of qf is to achieve robust stability in the spatial

domain with z = 1. As the robust stability and performance are characterized

based on the sensitivity functions, it is useful to derive the sensitivity functions
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Figure 4.9: The sensitivity function Tyd(z) (a) and control sensitivity Tud(z)
(b) in the spatial frequency domain with z = 1: the effect of changing qf .

in the spatial frequency domain with z = 1 (steady state ω = 0), which are

obtained as follows:

Tyd(z = 1) = (I +G0(Q3 +Q4)
−1GT

mQ1)
−1, (4.22)

Tud(z = 1) = (Q3 +Q4 +GT
mQ1G0)

−1GT
mQ1, (4.23)

where Gm =
∑Hp−td

k=1

∑k
l=1 a

l−1.

The tuning objective is then to find the smallest qf so that the robust

stability condition in the spatial frequency domain is satisfied, because it can

provide the best performance while still guaranteeing robust stability accord-

ing to the tuning guidelines in Figs. 4.9(a) and 4.9(b). Based on the robust

stability condition in (4.9) and the two-dimensional frequency analysis, the

robust stability at z = 1 can be achieved if the following condition is satisfied:

σ̄(Tud(1)Δ(1)) < 1. (4.24)

However, in the presence of parametric uncertainty, the singular values of Δ(1)

are hard to compute directly, and therefore the analysis on the uncertain term

is carried out first. From (4.7), the uncertain term Δ(1) can be represented

as

Δ(1) = Gp(1)−G(1). (4.25)

Note that as Gp(1) = Gp
0 from (4.3), Δ(1) is only affected by the uncertainties

on spatial parameters, i.e., ηp, βp, γp, ξp, ε. Beside, since uncertainties are spec-

ified on the model parameters, Gp(1) is also an RCM based on the method
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that generates the spatial gain matrix in (4.2). Then, Δ(1) is also an RCM

according to the property that the RCM is closed on the summation operation

[20], and therefore it can also be transformed into two-dimensional frequencies

Δ̆(1) = FmΔ(1)FH
n ,

{δ(v1, 1), . . . , δ(vn, 1)} = diag(Δ̆(1)). (4.26)

Then, since the singular values equal the gains along the spatial frequencies,

equation (4.24) can then be represented in the two-dimensional frequency

domain as

max
j

(|t̆ud(vj, 1)δ(vj, 1)|) < 1→ |t̆ud(vj, 1)| < 1

|δ(vj, 1)| , ∀j, (4.27)

where t̆ud(vj, 1) is the sensitivity function Tud(z) with z = 1. Existing tuning

approaches for large-scale systems normally consider unstructured uncertainty,

in which Δ(1) is a constant for all spatial frequency. In the proposed approach,

however, we consider parametric uncertainty to improve user-friendliness, and

therefore the key problem here is to calculate the singular values |δ(vj, 1)|, ∀j,
given the user-specified parametric uncertainties in (4.3), which can be math-

ematically formulated as

max
ηp,βp,γp,ξp,ε

|δ(vj, 1)|, for j = 1, . . . n

s.t. ηp ∈ [η, η̄], βp ∈ [β, β̄],

γp ∈ [γ, γ̄], ξp ∈ [ξ, ξ̄], ε ∈ [ε, ε̄]. (4.28)

It is worth noting that μ analysis can not be applied here because of the

large dimensionality of CD processes (n ≤ 200, m ≤ 2000) and the nonlinear-

ity of f(x, γp, ηp, γp, ξp, c
p
k).

Due to high nonlinearity of f(x, γp, ηp, βp, ξp, c
p
k), based on which Gp(z) and

G(z) are generated, explicit representations of the maximum singular values

of Δ at vj, j = 1, . . . , n, are hard to achieve. Therefore the following approach

is utilized to obtain an approximate solution to the problem in (4.28). Given

the temporal frequency z = 1, as the singular values of Δ can be obtained

by its spatial frequency gains, we can analyze how the spatial gain changes

along the spatial frequency with respect to each of the spatial parameters.

We increase each of the parameters from its lower bound (50% of the nominal

value) to the upper bound (150% times the nominal value) in (4.3) with all
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the other parameters fixed, and analyze the change of the spatial gains. The

results of this analysis are shown in Fig. 4.10 for a typical process, which

indicate that the spatial gain at each frequency is decreasing monotonically

when a specified parameter is increasing from its lower bound to its nominal

value (blue line) while increasing when the parameter increases within the

other half of the region (red line).

It is observed that in Fig. 4.10, |δ(vj, 1)| for j = 1, . . . , n, is changing

monotonically with respect to each of γp, ηp, βp, ξp, ε, so that the extreme val-

ues should occur at the boundaries of the uncertainty regions. Thus, the

optimization problem in (4.28) is equivalent to:

max
ηp,βp,γp,ξp,ε

|δ(vj, 1)|, for j = 1, . . . n

s.t. ηp ∈ {η, η̄}, βp ∈ {β, β̄},
γp ∈ {γ, γ̄}, ξp ∈ {ξ, ξ̄}, ε ∈ {ε, ε̄}. (4.29)

Note that in the optimization problem in (4.29), only the extreme case spatial

parameters are considered, which simplifies the problem at hand.

Although the monotonicity property cannot be rigorously proved, it is

intuitive in that the maximum singular value, which characterizes the system

behavior, usually happens at the largest amount of model mismatch. This

is also verified by extensive simulations, in which we compare the maximum

singular values of Δ from the proposed approach with that of a large number

(> 500) of the Δ’s generated randomly within the pre-specified uncertainty

region for different processes. Due to space limitation, we only show the results

for one of the typical processes, which is a single beam CD process that the dry

weight is controlled by the primary autoslice, and the pre-specified parametric

uncertainties are

γp ∈ [0.5γ, 1.5γ], ηp ∈ [0.8η, 1.2η],

βp ∈ [0.8β, 1.2β], ξp ∈ [0.5ξ, 1.5ξ],

ε ∈ [−0.6m
n
, 0.6

m

n
], (4.30)

where γ = 0.26434, η = 2.3, ξ = 0.3, β = 367,m = 264, n = 44. The results

are shown in Fig. 4.11, in which the blue curves are the singular values of

randomly generated systems along the spatial frequency while the red bound is

the maximum singular values calculated by solving the optimization problem
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Figure 4.10: The relationship between the spatial parameters and the spatial
gain |δ(vj, 1)|.
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in (4.29). We can see that the red bound is a tight bound for all possible

singular values due to model mismatch.
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Figure 4.11: Performance illustration of the maximum singular values calcu-
lated based on the optimization problem in (4.29).

Based on the tuning guideline of qf and the robust stability condition in

(4.27), the desired qf can be found by utilizing a bisection search for the

smallest qf that satisfies (4.27), which can be normally completed in about 2

seconds on a desktop with Intel i5 core and 6G memory.

In summary, the automated robust spatial tuning can be implemented

according to the flow chart in Fig. 4.12.

4.6 Simulation Results with Real-time Simu-

lator

In this section, we apply the proposed new Sb and the automated robust

tuning algorithms to a process model obtained from a paper mill in Canada.

This is a single beam process in which the dry weight of the output profile is

controlled by the primary autoslice.
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Figure 4.12: Flow chart of the automated spatial tuning.

In this test, the parametric uncertainty specifications are given as

γp ∈ [0.75γ, 1.25γ], ηp ∈ [0.75η, 1.25η],

βp ∈ [0.75β, 1.25β], ξp ∈ [0.75ξ, 1.25ξ],

ε ∈ [−0.6m
n
, 0.6

m

n
], (4.31)

where γ = 0.26434, η = 2.3, ξ = 0.3, β = 367,m = 264, n = 44.

By utilizing the technique in (4.21), the worst cut-off frequency vw of the

process model for the given parametric uncertainties in (4.31) can be obtained,

and then the spectra penalization weighting matrix Sb is designed based on

the stop band vb = vw.

The overall tuning costs 2 seconds on a computer with Intel i5 core and 6G

memory. The spatial tuning results in a qf that equals 0.026 (see Fig. 4.13,

91



which shows that the stability condition in (4.27) is satisfied).
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Figure 4.13: Spatial tuning result for the proposed approach. Note that the
red line is for the | 1

δ(v,1)
| and the blue line is for the |t̆ud(v, 1)|.

We then apply the obtained tuning results to the Honeywell real time MPC

+ simulator environment and compare the obtained results with that of the

existing controller. Note that the real process model Gp is selected satisfying

(4.31). The performance is shown in Figs. 4.6. In Fig. 4.6, the upper figure

shows the steady-state measurement profile, while the lower figure is for the

corresponding actuator profile. In both of the figures we can see that the

profiles using the proposed method (red line and bars) are much better than

that of the existing method (gray line and bars) as the input/output process is

less oscillatory. More specifically, the 2σ (two times of the standard deviation)

of the steady-state actuator profile has been improved by about 66% while that

of the measurement profile has been improved by about 44%.

4.7 Summary

An automated spatial tuning approach for cross-directional model predictive

control under user-specified parametric uncertainties is proposed in this chap-

ter. A computational efficient approach is first proposed to calculate the
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Figure 4.14: Performance illustration for the proposed robust tuning method.

smallest cut-off frequency of all process models given the pre-specified para-

metric uncertainty. The weighing matrix Sb is then appropriate designed to

penalize undesirable high-frequency components in the actuator profile based

on the worst-case cutoff to reduce the variability of the actuator and measure-

ment profiles in the spatial domain; finally, an automated tuning method is

established to adjust the multiplier of the spatial frequency weighted actuator

variability term in the MPC cost function to assure robust spatial stability.

The proposed algorithms are validated using a system model extracted from

the pulp and paper industry.
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Chapter 5

User-Friendly Robust Temporal
Tuning for CD-MPC∗

5.1 Introduction

In this chapter, the temporal tuning problem of cross-directional model pre-

dictive control under model-plant mismatch is studied. The aim is to au-

tomatically determine the MPC tuning parameters such that 1) the robust

stability can be guaranteed; 2) the required time domain performance indices,

such as overshoots and settling times, can be satisfied. As CD processes have

hundreds of inputs and outputs, it is massive to visualize the indices for all

the inputs/outputs simultaneously, and therefore it is more user-friendly to

find some novel indices that can both characterize the traditional time do-

main performance and are also easy to visualize. Besides, as uncertainties on

model parameters are unavoidable in system identification, it is desired that

the user-specified parametric uncertainties be explicitly accounted in the tun-

ing procedure. In order to achieve the aforementioned objectives, a temporal

filter is adopted to smooth the MPC reference trajectory, and a systematic

procedure is developed to tune the parameter in the temporal filter. In sum-

mary, the contributions of the chapter are as follows:

• the user-friendly temporal performance indices are defined based on the

two times of the standard deviation (2σ) of the input/output profile

and a visualization technique is proposed to evaluate all the possible 2σ

performance given the pre-specified parametric uncertainty.

∗The results presented in this chapter were submitted as a provisional U.S. patents [34] and
also to IEEE Transactions on Control Systems Technology [32].
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• an automatic tuning algorithm for the parameter in the temporal filter is

presented to guarantee satisfactory performance in terms of the proposed

2σ indices. In the presence of parametric uncertainties, the tuning is

based on the worst-case situation, which ensures that the required robust

performance can be achieved. Besides, the effectiveness of the proposed

tuning algorithm is verified using a system model extracted from the

pulp and paper industry.

5.2 Preliminary and Tuning Objective

In this section, we first introduce each element in the CD-MPC structure (see

Fig. 5.1) for temporal tuning, and then state the problem to be solved.

Figure 5.1: The block diagram of CD-MPC structure.

5.2.1 Nominal model and model uncertainty

The nominal model G(z) of a CD paper-making process is characterized by

G(z) = G0h(z), h(z) =
(1− a)z−td

1− az−1
, (5.1)

where G0 ∈ R
m×n is a constant matrix that characterizes the spatial re-

sponse/gain of the CD process [5]. h(z) is the temporal transfer function of

the process; a and td are the discretized time constant and time delay, which

are identified from the input and output data of the real process through bump

test experiment [15, 33].

Model-plant mismatch is unavoidable during process identification pro-

cedure, and therefore model uncertainties must be considered in the tuning
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algorithm design. Two different kinds of uncertainties are normally used in

robust control theory, namely, parametric uncertainty and unstructured un-

certainty. Since unstructured uncertainty is not familiar to practitioners in

the pulp and paper industry [37, 53], parametric uncertainty is employed and

the real process model Gp(z) is denoted in the following form

Gp(z) = G0hp(z),

hp(z) =
(1− ap)z

−tdp

1− apz−1
,

ap = (1 + ra)a, tdp = (1 + rtd)td, (5.2)

where ra ∈ [ra, r̄a] and rtd ∈ [rtd , r̄td ] are utilized to characterize the paramet-

ric uncertainties. These trust ranges are also represented as ap ∈ [a, ā], and

tdp ∈ [td, t̄d] for brevity; Therefore, a set of perturbed models can be char-

acterized by the uncertain model parameters ap, tdp. Note that as the spatial

and temporal tuning are independent based on the analysis in last chapter,

only uncertainties on temporal parameters are considered for temporal tuning.

5.2.2 CD model predictive controller

The MPC controller shown in Fig. 5.1 basically solves the following finite-

horizon optimal control problem:

min
Δu(k)

{
Hp∑
i=1

(y(k + i)− ysp(k + i))TQ1(y(k + i)

− ysp(k + i)) +
Hu−1∑
i=0

[
Δu(k + i)TQ2Δu(k + i)

+ (u(k + i)− usp(k + i))TQ3(u(k + i)− usp(k + i))

+ u(k + i)TQ4u(k + i)
]}

, (5.3)

subject to the system dynamics defined in (5.1) and the constraints as follows:

ΩΔu(k) ≤ b− Γu(k − 1), (5.4)

where

Hp: prediction horizon;
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Hu: control horizon;

y(k): predicted output profile at time k;

ysp(k): reference signal for output profile at time k;

u(k): actuator profile at time k;

usp(k): reference signal for actuator profile at time k;

Δu(k): changes in the actuator profile at time k.

Q1 ∼ Q4: weighting matrices;

Ω,Γ, b : matrices (vectors) for actuator constraints.

5.2.3 Temporal filter

The traditional MPC output reference trajectory is constructed as a step

change, which requires the predicted output profile to track the output target

immediately after the dead time of the process. However, in this work, the

temporal filter designed in [24] is utilized to generate the reference trajectory

Ysp(k) based on

Ysp(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ysp(k + 1)

ysp(k + 2)
...

ysp(k +Hp)

⎤
⎥⎥⎥⎥⎥⎥⎦
= Fα(ytgt(k)− dy(k)), (5.5)

where ytgt(k) is the output target, and dy(k) = yp(k)− y(k) is the disturbance

estimated based on the process output yp(k) and predicted output y(k). Fα is

the time domain implementation of fα(z) based on ysp(z) = fα(z)Im(ytgt(z)−
dy(z)) and fα(z) is the temporal filter

fα(z) =
(1− ar)z

−td

1− arz−1
, (5.6)

where ar = e−
ΔT
ατ ; ΔT is the sampling time and τ is the continuous-time time

constant of the temporal transfer function of the process; Im represents an

m-by-m identity matrix. Based on this filter, the aggressiveness of the con-

trol signal can be adjusted by the parameter α with Q2 set to a small-valued
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scalar matrix. It is worth noting that the function of Q2 can be achieved by

parameter α. The reason is that parameter α can be adjusted to filter the ref-

erence signal of the MPC so that there is no aggressive change in the reference

trajectory of the output profile, and correspondingly the aggressive control

signal can be avoided. On the other hand, α-based tuning is more intuitive to

the end users, because, different from the original tuning parameter Q2 which

seems not to have a direct meaning for its value, the value of parameter α

can provide an approximation on the closed-loop time constant based on the

open-loop one [24].

5.2.4 Tuning objective

Given the temporal parametric uncertainties defined in (5.2), the real process

Gp(z) can also be represented in the following form

Gp(z) = G(z) + Δ(z), (5.7)

where Δ(z) indicates the additive uncertainty. Compared with the robust spa-

tial tuning, the only difference in the closed-loop system here is the model un-

certainty term Δ(z) in Gp(z)
1, and therefore the closed-loop transfer functions

for temporal tuning are the same as those of the spatial tuning. Therefore,

given the parametric uncertainties in (5.2), the closed-loop system in Fig. 5.1

is robustly stable for all Gp(z) if it is nominally stable and

||Tud(z)Δ(z)||∞ < 1→ σ̄(Tud(e
iω)Δ(eiω)) < 1, ∀ω, (5.8)

where σ̄(A) indicates the maximum singular value of a matrix A; Tud(z) ∈
C

n×m is the sensitivity function from the disturbance profile d(z) to the in-

put profile u(z) at the nominal case. Besides, the closed-loop transfer func-

tion from the disturbance profile d(z) to the output profile y(z), namely,

Tyd(z) ∈ C
m×m, is also utilized to evaluate the performance. Based on the two-

dimensional analysis in last chapter, the controller tuning can be implemented

based on the sensitivity functions t̆ud(v, z) and t̆yd(v, z) in the two-dimensional

frequency domain, and furthermore, temporal tuning can be considered only

at v = 0 via the parameter α in the temporal filter.

Based on the aforementioned analysis, the temporal tuning of CD-MPC

under pre-specified parametric uncertainty is considered in the following, and

1The reason is the uncertainties are specified on different parameters.
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the corresponding design objective is to tune the parameter α so that: (1)

the closed-loop system is robustly stable at v = 0; (2) the time domain per-

formance indices, namely, settling times and overshoots, meet the end users’

specifications.

5.3 Robust Stability Analysis and Performance

Visualization

In this section, we first calculate a lower bound of the tuning parameter α to

guarantee robust stability at the spatial frequency v = 0, and then develop a

visualization technique for robust performance.

5.3.1 Robust stability analysis

Similar to the spatial tuning, the robust stability condition for temporal tuning

can be represented as

|t̆ud(0, eiω)δ(0, eiω)| < 1, ∀ω → |t̆ud(0, eiω)| < 1

|δ(0, eiω)| , ∀ω. (5.9)

where t̆ud(0, e
iω) and δ(0, eiω) are Tud(z) and Δ(z) at spatial frequency v = 0.

In order to achieve (5.9), it is essential to find the maximum value of

|δ(0, eiω)|. Based on the parametric uncertainties in (5.2), this can be achieved

by solving

max
ap,tdp

|δ(0, eiω)|, ∀ω
s.t. ap ∈ [a, ā], tdp ∈ [td, t̄d]. (5.10)

Given the constrained optimization problem in (5.10), the optimal solution

can be obtained by examining every possible combination of active constraints

according to the Karush-Kuhn-Tucker condition, which, however, requires too

much computationally time for the problem at hand. Based on the analysis

and numerical verification in [36, 37], the extreme system behavior normally

happens at the extreme model parameters, and therefore the maximum value

of |δ(0, eiω)| can be obtained by solving

max
ap,tdp

|δ(0, eiω)|, ∀ω
s.t. ap ∈ {a, ā}, tdp ∈ {td, t̄d}. (5.11)
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Then, a bisection search can be utilized for the smallest α that satis-

fies (5.9), as increasing α can provide better robustness (i.e., α ↑ leads to

|t̆ud(0, eiω)| ↓). Then, the obtained α is a lower bound for α that guarantees

robust stability, and is denoted as α∗ hereafter. Note that only a finite number

of temporal frequencies distributed from 0 to the Nyquist frequency may be

considered in solving (5.11) due to the implementation issue [18].

5.3.2 User-friendly performance indices and their visu-
alization

In this subsection, we focus on robust performance. As existing robust tun-

ing approaches normally consider frequency domain performance evaluation,

which may not be intuitive to end users in the pulp and paper industry [53],

the time domain performance indices, e.g., settling times and overshoots, are

utilized. The traditional time domain indices are characterized based on the

step response of each output measurement, which, however, is not applica-

ble here due to the fact that CD processes, even for single beam cases, have

hundreds of output measurements (which we call the measurement profile).

Therefore, it is more intuitive and efficient to transform m dimensional out-

put measurements into just one dimension and then to adopt the time domain

performance indices. In this work, we select the spread of the two times of the

standard deviation (2σ) of the input/output profile as the one dimensional

representation which is widely used in the pulp and paper industry and is fa-

miliar to end users. Before proceeding, the temporal tuning indices are defined

as follows.

Definition 5.1 (Overshoot of the 2σ spread). The overshoot of a stable 2σ

spread is its maximum value minus the final value divided by the final value.

Definition 5.2 (Settling time of the 2σ spread). The settling time of a stable

2σ spread is the time required for the spread to reach and stay at its final value.

As uncertainties are considered on the dynamic parameters a and td, which

results in a set of process models, an efficient visualization technique needs

to be designed to evaluate all the possible 2σ spreads to calculate the pro-

posed performance indices. This visualization for the output 2σ spread can
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be obtained by solving the following optimization problems:

min
ap,tdp

2σ(yi(ap, tdp)), for i = 1, . . . , l

s.t. ap ∈ [a, ā], tdp ∈ [td, t̄d], (5.12)

max
ap,tdp

2σ(yi(ap, tdp)), for i = 1, . . . , l

s.t. ap ∈ [a, ā], tdp ∈ [td, t̄d], (5.13)

where l is the entire scan time for the process. Note that as the spatial gain

matrix G0 only affects the steady-state value of the 2σ, it is selected to be the

worst spatial model obtained in Chapter 4, which produces the worst spatial

performance (on the basis of the steady-state values of the 2σs).

Based on the FOPDT structure of h(z), the extreme closed-loop system

behavior normally happens when all the extreme parameters are taken si-

multaneously [36, 53], and therefore the above optimization problems can be

approximately solved only at ap ∈ {a, ā} and tdp ∈ {td, t̄d} to obtain the enve-

lope of the 2σ spreads. More specifically, the robust performance visualization

can be achieved with

min
ap,tdp

2σ(yi(ap, tdp)), for i = 1, . . . , l

s.t. ap ∈ {a, ā}, tdp ∈ {td, t̄d}, (5.14)

max
ap,tdp

2σ(yi(ap, tdp)), for i = 1, . . . , l

s.t. ap ∈ {a, ā}, tdp ∈ {td, t̄d}. (5.15)

Similarly, this approach can also be applied on the input profile to achieve

visualization. The performance of the visualization method based on opti-

mization problems in (5.14) and (5.15) is verified through many industrial

examples. To save space, we only show the result (see Fig. 5.2) for one typical

CD process (dry weight controlled by primary autoslice), with the following

uncertainties:

ap ∈ [0.5a , 1.5a], tdp ∈ [0.5td, 1.5td], (5.16)

where a = 0.6873 and td = 2 for the nominal process, and the corresponding

sampling time is ΔT = 15s.
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Figure 5.2: Robust performance visualization for the 2σ spreads for the output
(upper figure) and the input (lower figure).

5.3.3 An extended robust performance visualization
method

The visualization technique can also be extended to characterize the envelope

of the 2σ spreads for the best spatial performance under the given parametric

uncertainties, by utilizing the technique in Section 4.4.3 to find the best spatial

model (with the largest cut-off frequency vc = vl). Combining the best and

worst envelope spreads results in a more detailed visualization result, which

is shown in Fig. 5.3. Here the lower red line represents the best 2σ spread

(with smallest steady state value and settling time), while the upper red line

is for the worst 2σ spread (with largest steady state value and settling time);

the area in between indicates all possible 2σ spreads for the given parametric

uncertainties; and the blue line represents the nominal case.
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Figure 5.3: Visualization technique for both worst- and best-case 2σ spreads.

5.4 Automated Temporal Tuning Algorithm

Given the proposed performance measures, the tuning objective of the tem-

poral part is then formulated as

min
α

Ts(2σ(y))

s.t. OS(2σ(u)) ≤ OS∗, (5.17)

where Ts(2σ(y)) and OS(2σ(u)) are the worst-case (longest) settling time of

the output 2σ and the worst-case (largest) overshoot of the input 2σ under

pre-specified parametric uncertainties, respectively. OS∗ is the requirement

on the worst-case overshoot. In the above tuning objective, the users can

specify the maximum allowable overshoot on the input 2σ, and then solve the

optimization problem in (5.17), yielding the tuning parameter that provides

the smallest worst-case settling time of the output 2σ. In order to solve the

optimization problem in (5.17) efficiently, we separate the temporal tuning

into two parts: 1) tuning in the frequency domain; 2) tuning in the time

domain.

In the frequency domain tuning, an upper limit on the sensitivity function

Tyd(z) at v = 0 is first selected, and then we find an α to meet the bound

while still guaranteeing robust stability.
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Define κl as the minimum limit of the maximum peak of the sensitivity

function (see Fig. 5.4), the objective here is to adjust α so that

|t̆yd(0, eiω)| < κl, ∀ω, (5.18)

is satisfied. Then, the frequency domain tuning can be realized by solving
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|t yd
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)|
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α=1.5
α=2

κl

Figure 5.4: The minimum limit on the maximum peak of the sensitivity func-
tion.

αf = max
k=0,...,kmax

(αm
ωk
) (5.19)

αm
ωk

= min(αωk
)

s.t. αωk
> α∗, |t̆yd(0, eiωk)| < κl, (5.20)

where ωk, k = 0, . . . , kmax, are the temporal frequencies distributed from 0

to the Nyquist frequency [18]. Based on the results in [3] and [18], κl can be

selected according to OS∗ and the longest time constant of a process model

for the given parametric uncertainties, and is normally between 1.2 and 1.8.

It is worth noting that the frequency domain tuning may result in an α with

OS > OS∗, and thus the time domain tuning is implemented to fine tune the

parameter.

In the time domain tuning, the parameter α is fine tuned to find the optimal

α (denoted as αt) that provides the smallest worst-case settling time while

still satisfying the requirement on OS. Since OS(2σ(u)) is a monotonically
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decreasing function of α, the bisection search can be utilized to find the αt

based on the closed-loop simulation with the following procedure. If the OS

with αf is larger than the specification, the search is implemented in the region

α ∈ [αf , αu], where αu is the upper bound for α with κl = 1.2, and αf is

obtained in the frequency tuning. Otherwise, the search is implemented in the

region α ∈ [αl, αf ], where αl is the lower bound for α with κl = 1.8. To sum

up, the temporal tuning part is implemented using Algorithm 11.

Algorithm 11 Temporal tuning

1: Input OS∗;
2: Input the parametric uncertainty specification on temporal model param-

eters, i.e., [a, ā] and [td, t̄d];
3: Calculate the lower bound for robust stability α∗;
4: Implement the frequency tuning to achieve αf ;
5: if OS(αf ) > OS∗ then
6: Search in [αf , αu] for α

t;
7: else
8: Search in [αl, αf ] for α

t;
9: end if
10: Output αt

Implementing the tuning procedure in Algorithm 11, the automated tem-

poral tuning normally costs about 6 seconds on a computer with Intel i5 core

and 6G memory.

Remark 5.1. To save more computation time, we can also stop the algorithm

if OS(αf ) ≤ OS∗. This can avoid the tuning in the time domain once the

requirement is satisfied in the frequency tuning.

5.5 Simulation Results with Real-Time Simu-

lator

In this section, we apply the proposed automated robust tuning algorithm

to a process model obtained from a paper mill in Canada. This is a single

beam process in which the dry weight of the output profile is controlled by

the primary autoslice.
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In this test, the parametric uncertainty specifications are given as

γp ∈ [0.75γ, 1.25γ], ηp ∈ [0.75η, 1.25η],

βp ∈ [0.75β, 1.25β], ξp ∈ [0.75ξ, 1.25ξ],

ap ∈ [0.5a , 1.5a], tdp ∈ [0.5td, 1.5td],

ε ∈ [−0.6m
n
, 0.6

m

n
], (5.21)

where γ = 0.26434, η = 2.3, ξ = 0.3, β = 367,m = 264, n = 44, a = 0.6873, td =

2 and the sampling time is ΔT = 15s.

Then, the requirement of the robust temporal tuning of CD-MPC is to

guarantee that the time-domain performance indices are satisfied, i.e., a fast

settling time with the worst-case overshoot of the actuator 2σ less than OS∗ =

20%.

The overall tuning costs 6.4 seconds on a computer with Intel i5 core and

6G memory. The temporal tuning provides α = 1.6821 (see Fig. 5.5, which

shows that the requirement OS(2σ(u)) < OS∗ is satisfied), and the spatial

parameters are chosen based on the tuning method proposed in Chapter 4.

We then apply the obtained tuning results to the Honeywell real time MPC
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Figure 5.5: Temporal tuning result for the proposed approach. Note that the
red lines are the visualization of all the possible 2σs and the blue line is for
the nominal model.

+ simulator environment and compare the obtained results with that of the
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existing controller. Note that the real process model Gp is selected satisfy-

ing (5.21). The performance is shown in Fig. 5.5, in which the top figure

shows the 2σ spread for the measurement profile while the bottom one illus-

trates the 2σ spread for the corresponding actuator profile. We can see that

the proposed tuning approach can achieve much better temporal performance

in both the measurement and actuator profiles (2σ settling times are signifi-

cantly reduced). In addition, it is observed that the steady-state value of the

measurement 2σ is even larger than its initial value for the existing controller

under the pre-specified parametric uncertainties, which further illustrates the

robustness of the proposed method.
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Figure 5.6: Performance illustration for the proposed robust tuning method.

5.6 Summary

The CD-MPC temporal tuning problem for uncertain paper-making processes

is explored in this chapter. A visualization technique is first developed to

characterize all the possible 2σ spreads given the user-specified parametric

uncertainties for CD-MPC. Then, an automatic tuning algorithm is proposed

to adjust the parameter in the temporal filter to achieve satisfactory tempo-

ral performance as measured by measurement profile 2σ settling times and

actuator profile 2σ overshoots. In order to take care of the parametric un-

certainties, the tuning is performed based on the worst-case situation, which
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ensures that the desired performance indices can be achieved. The effective-

ness of the proposed algorithm is verified by applying the tuning results on a

process extracted from the pulp and paper industry.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, the robust tuning problems of MD and CD MPC have been

fully investigated and studied. We have developed a few user-friendly MPC

tuning tools for paper-making processes with model parameter uncertainties.

Firstly, the robust MD-MPC tuning problem for uncertain SISO paper-

making processes has been explored in Chapter 2. The objective is to achieve

satisfactory closed-loop responses, as measured by overshoots, settling times

and output oscillations with user-specified parametric uncertainties. As the

output variation cannot be easily specified by the end users, two methods

are proposed to connect a total variation specification to user-friendly indices,

based on which two algorithms are designed to solve the tuning problem.

Secondly, the robust MD-MPC tuning problem for uncertain MIMO paper-

making processes has been studied in Chapter 3. An envelope algorithm to

evaluate the worst-case time domain performance indices considering the inter-

val uncertainty for MD-MPC is first developed, and then a fast MIMO tuning

technique is developed to calculated the MPC tuning parameter vectors to

fulfill the desired time domain performance under the parametric uncertainty;

Besides, a technique to predict the tuning time is proposed to further improve

the user-friendliness. Thirdly, the robust spatial tuning problem of CD-MPC

has been investigated in Chapter 4. A new weighting matrix Sb is designed to

reduce the high-frequency picketing in the actuator profile, and then an auto-

mated tuning procedure is developed to adjust the corresponding multipliers

such that robust stability and reduced variability of the actuator and measure-

ment profiles are achieved given the user-specified parametric uncertainties.

109



Lastly, the robust temporal tuning problem of CD-MPC has been studied in

Chapter 5. A visualization technique is proposed to evaluate all the possi-

ble 2σ spreads given the user-specified parametric uncertainty. A systematic

tuning algorithm is then proposed to achieve the user-specified performance,

namely, measurement profile 2σ settling times and control signal 2σ overshoots

in the presence of parametric uncertainty.

To conclude, the techniques proposed in the PhD thesis provide a solution

to the challenge of finding MPC tuning parameters to fulfill user-specified

robust performance specifications for paper-making processes with intuitive

parametric uncertainties. They have both theoretical and practical signifi-

cance. The overall concept behind the work may also be relevant to other

applications or other control methods where robust tuning is desired; but

practitioner capabilities dictate that performance and uncertainty specifica-

tions should take simple and intuitive forms.

6.2 Future Work

The research on model predictive control for CD processes, as well as other

large scale systems is still at the developing stage and several issues need to

be further investigated. In what follows, a number of interesting ones are

proposed.

CD-MPC with a hard constraint on the spectrum of the
input profile

In Chapter 4, it is mentioned that CD systems are almost uncontrollable

above the cut-off frequency vc, and we have proposed a method to design

the weighting matrix Sb such that frequency components beyond vc in the

input profile are penalized by CD-MPC. This works like a soft constraint

to limit the magnitude of the input spatial frequency response within the

undesired frequency region (> vc). Therefore, it is also desirable to study the

possibility of incorporating a hard constraint on the input spectrum of CD-

MPC for performance and user-friendliness improvement. The main difficulty

for achieving this lies in the construction of such spectrum constraints in the

spatial domain. More specifically, the desired spectrum constraints need to be

represented in proper forms such that the resultant CD-MPC can be solved
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by standard QP solvers.

Min-max MPC for CD systems

Given the model-plant mismatch mentioned in the work, the proposed meth-

ods focus on adjusting the CD-MPC tuning parameters to achieve robust

stability and performance. Another approach to incorporate robustness into

CD-MPC is to utilize the a so-called min-max formulation/optimization. The

advantage of this approach is the uncertainties on the model parameters can

be explicitly considered in the CD-MPC optimization problem and the optimal

worst-case performance of the CD process can be guaranteed. However, the

min-max formulation introduces additional computational complexity to the

CD-MPC optimization problem, and therefore how to reduce the computation

time to guarantee the on-line implementation for the modified CD-MPC is the

main difficulty in making this idea work.

Event-triggered implementation of MPC for large scale
systems

As an optimization based control approach, MPC controllers require a large

amount of computation resources for on-line implementation. This restricts

its application to only slow dynamic processes (e.g., CD systems considered

in Chapters 4 and 5), as the MPC optimization problem needs to be solved

at every sampling instant. An event-triggered control strategy is a possible

solution for this problem. In such a control strategy, instead of executing

the optimization periodically, the computation is triggered only when a pre-

specified condition is on longer satisfied. This can potentially save more com-

putation and open up the possibility of applying MPC to other large scale

processes with relatively fast dynamics. Besides, as shown in [4], the event-

triggered control strategy may also provide better performance compared with

the original time-based one, and therefore, it is also valuable to investigate the

event-triggered MPC for CD processes for performance improvement.
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