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Abstract 

Under the impact of global warming, the hydro-climatology over the Arctic has changed 

significantly. Warming over the Arctic region is twice the global mean warming rate since the 

1980s, known as Arctic Amplification, which occurs because warming induces melting of sea ice, 

leading to feedbacks that accelerate the ice loss, such as the ice-albedo feedbacks, water-vapor 

feedbacks, cloud feedbacks, and lapse-rate feedbacks. The rapid increase in air temperature leads 

to substantial decline of Arctic sea ice and more intensive hydrologic processes in the pan-Arctic 

river basins. As the primary freshwater source to the Arctic Ocean, streamflow from the pan-Arctic 

river basins plays a crucial role in the sea ice formation, oceanic circulation, and the thermohaline 

balance in the Arctic. With a warmer atmosphere, the melting season of sea ice has lengthened and 

the ice cover has become younger and thinner, while the streamflow from pan-Arctic river basins 

have shown an increasing trends in recent years.  

 Numerous studies detected the teleconnections between the decline in Arctic sea ice and 

climate patterns, and the feedbacks, but the focus of these studies was more about average changes 

and the effects of individual climate patterns instead of their combined impacts. In addition, partly 

because of limited observed hydro-climatologic data available in pan-Arctic river basins, there 

have been relatively few studies on hydrologic responses of pan-Arctic river basins to climate 

change impact compared with studies in southern, highly populated regions. This dissertation 

began with an investigation on the decline of Arctic sea ice using a quantile regression method at 

all quantile levels. Next, hydrologic responses of the pan-Arctic river basins, such as non-

stationarities and trends, and changes in wet and dry spells were analyzed by statistical and 

probabilistic analysis, and an artificial neural network.  
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Therefore, the objectives of this dissertation are: (1) to analyze changes of Arctic sea ice 

under the possible impacts of climate patterns and the physical mechanisms behind the 

teleconnection with climate patterns; (2) to identify non-stationarities and trends of streamflow 

from three Great Siberian river basins using statistical analysis; (3) to simulate the streamflow of 

four large pan-Arctic river basins with machine learning models and to project hydrologic impact 

of climate warming to these pan-Arctic river basins; (4) to analyze the probabilistic characteristics 

of the duration and temperature of both wet and dry spells of the Siberian river basins, and the 

joint and conditional probabilities of extreme dry and wet spells occurring in these river basins 

estimated from a Copulas function. 

Chapter 2  

The probabilistic characteristics of Arctic sea ice was investigated through quantile regression 

analysis with time and climate indices as covariates, such as the Arctic Oscillation (AO), the North 

Atlantic Oscillation (NAO), and the Pacific/North American Pattern (PNA) El Niño-Southern 

Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal 

Oscillation (AMO). The results shows that the combined impacts of climate patterns on the Arctic 

sea ice are statistically significant, especially on low and high quantiles. The composite analysis 

of climate variables shows that the anomalously strong anticyclonic circulation during years of 

positive AO, NAO, and PNA promotes more sea ice export through Fram Strait, resulting in 

excessive sea ice loss. 

Chapter 3  

The non-stationarities and trends of streamflow from three Siberian river basins: the Ob, 

Yenisei, and Lena river basins, were estimated using the traditional and modified Mann-Kendall 

(MK) tests, Pettitt test, and wavelet analysis, at annual, seasonal, and monthly timescales. Most 
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stations experienced abrupt changes in 1970s to 1980s. From wavelet analysis, the streamflow of 

these three Siberian river basins is shown to undergo significant changes at annual, inter-annual, 

and decadal time scales, have significant correlation with climate patterns, namely the AO, the 

North Pacific Oscillation (NPO), the PNA, and ENSO. Human activities such as dam regulation, 

agricultural and industrial water use have contributed to the winter streamflow, while climate 

change and climate patterns have resulted in their non-stationary changes.  

Chapter 4 

Monthly streamflow of four great pan-Arctic river basins: Mackenzie river basin, Ob river 

basin, Lena river basin, and Yenisei river basin were modelled using several popular machine 

learning models: Support Vector Regression Model (SVM), Artificial Neural Network (ANN), 

and Multi-Variable Regression Model. The results show that SVM performs better than ANN and 

MLR in both the calibration and validation stages. After validation, SVM, with precipitation, 

potential evapotranspiration, and temperature as predictors, was used to project the monthly 

streamflow of these four river basins subjected to climate change impact based on RCP4.5 and 

RCP8.5 climate scenarios of four CMIP5 GCMs: ACCESS 1.0, CanESM2, HadESM2-ES, and 

MPI-ESM of AR5 of IPCC, from 2006 to 2100. Results show that under climate warming impact 

attributed to rising concentration of greenhouse gas emissions, the monthly streamflow of the four 

great pan-Arctic river basins are projected to increase significantly but at different magnitudes. 

The annual flow pattern is projected to shift, with higher winter flows and the onset 

of spring snowmelt occurring earlier with higher peak flows at the expense of summer flows. 

Chapter 5  

Wet and dry spells in three Siberia river basins based on the daily precipitation and 

temperature records from stations were analyzed. The GEV-Type III distribution were found to 
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have good performance in describing the probabilistic characteristic of the temperature for both 

dry and wet spells, while the two-parameter negative binomial distribution can describe that of the 

duration for dry and wet spells. By fitting the empirical joint probability distribution, Gumbel and 

Clayton Copulas from the Archimedean Copula families performs well in describing the 

relationships between the duration of both wet and dry spells and air temperature. Based on the 

fitted copulas joint probability distribution, the likelihood of suffering from extreme dry and wet 

spells were estimated and presented as conditional and joint return periods. The results reveal that 

the north of Altay Mountain within Ob river basin, the Stanovoy Range within the Lena river, and 

Dzhugdzhur Mountains at the southeast of Lena river basin have higher likelihood of suffering 

from extreme dry and wet spell with long duration and high temperature than other places.  

Conclusions and future research are provided in Chapter 6. 

 

 

 

 

 

 

 

 



 

vi 

 

Preface 

This thesis is based on four major chapters and is organized in an article format. This thesis 

consists of four chapters and each chapter is written as an integrated paper for journal submission. 

As such, each chapter contains standalone introductions, methods, results and conclusions. A 

general introduction section is provided at the beginning of the thesis, research conclusions and 

recommendations are summarized in Chapter 6, and supplementary materials are provided at the 

end of thesis. Chapter 2 of the thesis has been published as Shuyu. Zhang, Thian. Yew. Gan, and 

Andrew. B. G. Bush, 2020: Variability of Arctic Sea Ice Based on Quantile Regression and the 

Teleconnection with Large-Scale Climate Patterns. Journal of Climate, 33, 4009-4025. 

https://doi.org/10.1175/JCLI-D-19-0375.1. For the work done in Chapter 3, 4, and 5, I was 

responsible for the design of the research topic, data collection, data analysis, and the manuscript 

composition. I am planning to submit works on Chapter 3 to 5 to scientific journals.  

An aggregated bibliography is provided for the entire thesis to avoid reference repetition 
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Chapter 1. General Introduction 

According to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment 

Report, Arctic Amplification is climate change impact amplified in the Arctic, which has been 

warming at twice the global rate since the 1980s, caused by several feedback mechanisms 

(Delworth 2000; IPCC 2014; Knutson et al. 2006). Because of climate warming the ice cover in 

the Arctic Ocean has been shrinking at a trend of -4.1±0.3% per decade during the period of 1979 

to 2010, as determined from satellite passive microwave radiometer data (Cavalieri and Parkinson 

2012); shrinking sea ice extent has been a characteristic feature of the global climate system in 

recent years (Chapin III et al. 2005; Graversen et al. 2008; Mauritsen 2016). Significant loss of sea 

ice allows for strong latent heat fluxes to escape from the ocean to the atmosphere, and the 

enhanced surface evaporation due to retreating winter sea ice and warming will amplify the Arctic 

hydrologic cycle (Bintanja and Selten 2014; Boisvert and Stroeve 2015). Coincidentally, the 

average annual discharge of fresh water from the six largest Eurasian rivers to the Arctic Ocean 

increased by about 7% from 1936 to 1999, at a mean annual rate of increase of 2.0 ± 0.7 km3 per 

year (McClelland et al. 2006; Peterson et al. 2006; Peterson et al. 2002). Precipitation is the main 

input of the Arctic hydrological cycle that directly and indirectly affects the Arctic Ocean’s 

freshwater balance and stratification (Bintanja et al. 2018; Kattsov et al. 2007). Furthermore, 

precipitation over Arctic terrain has been shown to be related to large-scale climate patterns and 

atmospheric circulation (Dirmeyer et al. 2013; Serreze et al. 2002a). In the snow-dominated pan-

Arctic river basins, documented hydrologic trends over recent decades generally include 

decreasing snowpack, a longer snow-free season, increasing precipitation, a larger proportion of 

precipitation occurring as liquid rainfall, higher evapotranspiration loss, lower lake levels, a 

widespread increase in shrub abundance, increased thawing of permafrost, earlier onset of spring 
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snowmelt, and higher winter flow at the expense of lower summer flow (Bring et al. 2016; Chapin 

III et al. 2005; Han et al. 2018; Scheepers et al. 2018; Schuur et al. 2009; Serreze et al. 2002a; 

Sturm et al. 2001). These trends will persist and amplify with continued emissions of greenhouse 

gases (Swann et al. 2010; Yang et al. 2002), and further changes in regional temperature and 

precipitation patterns are expected to affect the Arctic sea ice (Arnell 2005; White et al. 2007). 

Thus, it is important to investigate changes of Arctic sea ice in conjunction with the hydrological 

changes over Arctic basins to more accurately predict future northern hydrology and ecology, as 

well as the global climate. The key objectives of this thesis are: 1) to further understanding the 

changes of Arctic sea ice and the possible teleconnections with climate patterns; 2) to detect the 

non-stationarity of streamflow in pan-Arctic river basins and its relationship with climate patterns; 

3) to simulate and predict the future streamflow from pan-Arctic river basins under different carbon 

emission scenarios with limited input; 4) to investigate the probabilistic characteristics of dry and 

wet spells over pan-Arctic river basins.  

Chapter 2 has been published in the Journal of Climate with the following citation: Zhang, 

S., T. Y. Gan, and A. B. G. Bush, 2020: Variability of Arctic Sea Ice Based on Quantile Regression 

and the Teleconnection with Large-Scale Climate Patterns. Journal of Climate, 33, 4009-4025. 

https://doi.org/10.1175/JCLI-D-19-0375.1.  

Under global warming, Arctic sea ice has declined significantly in recent decades, with years 

of extremely low sea ice occurring more frequently. Recent studies suggest that teleconnections 

with large-scale climate patterns could induce the observed extreme sea ice loss. In this study, a 

probabilistic analysis of Arctic sea ice was conducted using quantile regression analysis with 

covariates, including time and climate indices. From temporal trends at quantile levels from 0.01 

to 0.99, Arctic sea ice shows statistically significant decreases over all quantiles levels, though of 

https://doi.org/10.1175/JCLI-D-19-0375.1
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different magnitudes at different quantiles. At the representative extreme quantile levels of the 5th 

and 95th percentiles, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the 

Pacific/North American Pattern (PNA) have more significant influence on Arctic sea ice than the 

El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Atlantic 

Multidecadal Oscillation (AMO). Positive AO as well as positive NAO contribute to low winter 

sea ice, and a positive PNA contributes to low summer Arctic sea ice. If, in addition to these 

conditions, there is concurrently positive AMO and PDO, the sea ice decrease is amplified. 

Teleconnections between Arctic sea ice and the climate patterns were demonstrated through a 

composite analysis of the climate variables. The anomalously strong anticyclonic circulation 

during the years of positive AO, NAO, and PNA, promotes more sea ice export through Fram 

Strait, resulting in excessive sea ice loss. The probabilistic analyses of the teleconnections between 

the Arctic sea ice and climate patterns confirms the crucial role that the climate patterns and their 

combinations play in overall sea ice reduction, but particularly on the low and high quantiles of 

sea ice concentration. 

Chapter 3: Arctic rivers contribute more than one third of the total freshwater discharge into 

the Arctic Ocean, and therefore play an essential role in the heat and mass circulation in the Arctic 

atmosphere/ocean system. With the current Arctic warming, the discharge of the largest Arctic 

rivers in Siberia were noticed to increase in the past decades. A non-stationary analysis is used in 

this study to estimate changes in the streamflow of three large Siberian river basins: the Ob, 

Yenisei, and Lena river basins. Through the regular and modified Mann-Kendall (MK) test, 

significant trend, auto-correlation and long-term persistence are determined in the streamflow time 

series of the Ob, Yenisei, and Lena river basins at annual, seasonal, and monthly timescales. Most 

stations are found to have abruptly changed during the 1970s to 1980s through the Pettitt test. 
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From a wavelet analysis, significant changes in periods at annual, inter-annual, and decadal periods 

are found in the streamflow of these three Siberian river basins. The streamflows are found to have 

significant correlation with climate patterns, namely the Arctic Oscillation, the North Pacific 

Oscillation, the Pacific/North America Pattern, and ENSO, at different time-scales, respectively, 

through wavelet coherence analysis. Results prove the existence of non-stationarity within the 

streamflow of large Siberian river basins at multi-time-scales. Human activities, such as dam 

regulation and agricultural and industrial water use have limited influence on the seasonal 

streamflow changes, while the climate change and climate pattern have more responsibility for 

their non-stationary changes. 

Chapter 4: as the largest freshwater source to the Arctic Ocean, streamflow plays a crucial 

role in sea ice formation, oceanic circulation, and the thermohaline balance in the Arctic. Under 

a warmer climate, streamflow from the pan-Arctic river basins has exhibited an increasing trend 

in recent years. However, due to the limited number of observational climate stations in the 

Arctic, and given the challenges of modeling hydrologic processes in the northern environment 

subjected to the freeze-thaw cycles of snow and ice, frozen ground and permafrost, there have been 

a limited number of studies conducted on modeling streamflow from pan-Arctic river basins and 

the hydrologic impact of climate warming. In this chapter, two widely-used machine learning 

models are used to address this problem. The Support Vector Regression Model (SVM) and 

Artificial Neural Network (ANN), were first calibrated to simulate the monthly streamflow of four 

great pan-Arctic river basins: Mackenzie river basin, Ob river basin, Lena river basin, and Yenisei 

river basin. Their performances were evaluated and compared with a statistical Multi-Variable 

Regression (MLR) model. When compared with observations, the results show that SVM performs 

better than ANN and MLR in modeling the monthly streamflow of the four pan-Arctic river 
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basins in both the calibration and validation stages. After validation, SVM, with precipitation, 

potential evapotranspiration, and temperature as predictors, was used to predict the monthly 

streamflow of these four river basins subjected to climate changes based on RCP4.5 and RCP8.5 

climate scenarios of four CMIP5 GCMs: ACCESS 1.0, CanESM2, HadESM2-ES, and MPI-

ESM, for the 2050s and 2080s. As expected, under climate warming impacts attributed to rising 

greenhouse gas concentrations, the monthly streamflow of the four great pan-Arctic river 

basins are projected to increase significantly but with different increasing trends in different 

basins. In addition, the annual flow pattern is projected to change with the onset 

of spring snowmelt occurring earlier with higher peak flows at the expense of summer flows. 

Chapter 5: under the global warming, the frequency of extreme events have changed globally. 

Wet spells and dry spells as episodes of consecutive rainy or non-rainy days characterize the day-

to-day variability of precipitation, which have been widely researched. However, in the pan-Arctic 

area, especially Siberian area, researches about the dry and wet spells are restricted by the 

observations. Therefore, this chapter investigated the probabilistic characteristic of duration and 

temperature of dry and wet spells in Siberian river basins through Copulas function. Univariate 

probability distribution were first fitted to the temperature and duration of dry and wet spells, and 

GEV Type-III distribution were found to have good performance on describing the probabilistic 

characteristic of temperature of both dry and wet spell, while two-parameter negative-binomial 

distribution performs good in describing the that of the duration. Then the Copulas function were 

applied to generate the conditional and joint probability distribution of the duration and 

temperature of spells. Gumbel and Clayton Copulas were found to have better performance in the 

dry spells and wet spells, respectively. The conditional and joint return periods under four extreme 

scenarios were estimated through the above Copulas function. Results show that the north of Altay 
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Mountain within Ob river basin, the Stanovoy Range within the Lena river, and Dzhugdzhur 

Mountains at the southeast of Lena river basin have higher likelihood of suffering from extreme 

dry and wet spell with long duration and high temperature than other places. 
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Chapter 2. Variability of Arctic sea ice based on quantile regression 

and the teleconnection with large-scale climate patterns 

2.1 Introduction 

Under the impact of global warming, Arctic sea ice (ASI) has been decreasing significantly 

in recent decades. With a warmer atmosphere, the melting season has lengthened (Stroeve et al. 

2017) and the ice cover has become younger and thinner (Kwok 2018; Lindsay and Schweiger 

2015; Stroeve et al. 2014). Warming over the Arctic region is twice the global mean, through 

Arctic Amplification. Arctic Amplification occurs because the warmer atmosphere induces ice 

loss (Serreze and Barry 2011; Serreze et al. 2009), leading to feedbacks that accelerate that ice 

loss, such as water-vapor feedbacks (Dessler et al. 2013; Held and Soden 2000; Solomon et al. 

2010), cloud feedbacks (Bony et al. 2015; Ceppi et al. 2017; Vavrus 2004; Wetherald and Manabe 

1988), lapse-rate feedbacks (Bintanja et al. 2011; Feldl et al. 2017; Graversen et al. 2014), and ice-

albedo feedbacks (Kashiwase et al. 2017; Landy et al. 2015). According to climate model 

simulations that include these feedbacks (Stroeve et al. 2016; Stroeve et al. 2012), future reduction 

of Arctic sea ice will be continuous and amplified (Derksen and Brown 2012; Pithan and Mauritsen 

2014), with ice-free summers occurring as early as the 2030s, and an ice-free year occurring as 

early as the 2050s (Onarheim et al. 2018).  

The circulation of ASI, characterized by the anticyclonic Beaufort Gyre (BG) and the 

Transpolar Drift Stream (TDS) that transports ice from the Siberian coast across the North Pole 

and into the North Atlantic(Serreze and Barrett 2010), is largely controlled by the surface wind 

field(Thorndike and Colony 1982). The local atmospheric circulation is strongly teleconnected to 

the climate of remote regions through climate patterns, such as the Arctic Oscillation (AO), the 

North Atlantic Oscillation (NAO), the Pacific North America Pattern (PNA), and the El Niño 
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Southern Oscillation (ENSO). The AO is the first mode of wintertime sea level pressure (SLP) 

variability for regions north of 20°N (Thompson and Wallace 1998). The positive (negative) AO 

is characterized by low (high) SLP anomalies over the Arctic that lead to cyclonic (anticyclonic) 

atmospheric circulation anomalies (Armitage et al. 2018), an eastern (western) TDS, and a 

contracted (expanded) BG circulation (Kwok et al. 2013; Rigor et al. 2002). These, in turn, are 

found to minimize sea ice growth in winter (Hegyi and Taylor 2017). During positive NAO years, 

the enhanced north-south gradient in SLP over the North Atlantic has also been shown to drive 

greater southward ice flux through Fram Strait (Armitage et al. 2018; Hilmer and Jung 2000; 

Hurrell 1995; Kwok 2000; Kwok et al. 2013; Rigor et al. 2002). From the persistent surface forcing 

of quasi-stationary meridional thermal gradients, the NAO pattern has affected the sea ice 

variability at interannual time scales (Caian et al. 2018). The PNA is one of the dominant patterns 

of low-frequency variability in the extratropics of the Northern Hemisphere, and it was strongly 

teleconnected to the ASI in summer 2007 (L'Heureux et al. 2008). There was an extreme positive 

phase of PNA that exhibited a 500-hPa cyclonic anomaly west of the Aleutian Islands and a large 

anticyclonic anomaly south of Alaska. Combined, they drove warm maritime air from lower 

latitudes poleward thereby warming the western Arctic (L'Heureux et al. 2008). 

ASI is teleconnected to climate patterns in a much more complex manner than a simple linear, 

univariate or multivariate regression manner. All PNA, AO, and PDO are related to the anomaly 

of the Beaufort High (L'Heureux et al. 2008; Moore et al. 2018; Petty 2018; Serreze and Barrett 

2011), which is an anticyclone centered north of Alaska that largely controls the mean circulation 

of the Arctic sea ice cover (L'Heureux et al. 2008; Thorndike and Colony 1982). Simultaneously 

strong ENSO and NAO episodes were found to be associated with anomalous sea-ice extent 

because of strong SST anomalies and a deepened Icelandic Low that led to very strong northerly 
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winds in the Labrador Sea (Mysak et al. 1996). Liu et al. (2004) also found that in the western 

Arctic the reaction of sea ice to a positive AO is similar to that to El Niño, but that this reaction is 

opposite in the eastern Arctic. In addition, the interaction between climate oscillations further 

complicates the teleconnections to sea ice: the NAO responses to ENSO in the central Pacific are 

mostly linear, while the NAO responses to ENSO in the Eastern Pacific are predominantly 

nonlinear (Ding et al. 2017a; Zhang et al. 2019). This nonstationary interaction is affected by the 

Atlantic Multidecadal Oscillation (AMO), such that the negative ENSO-NAO interaction in late 

winter will only be significant when ENSO and AMO are in-phase (Zhang et al. 2018). Moreover, 

during the winter of 2009-2010, ENSO was found to amplify the anomalous temperature patterns 

across the extratropical landmasses of the Northern Hemisphere generated by a moderate to strong 

AO (Cohen et al. 2010). The simultaneous occurrence of a negative PDO and La Niña events 

generate strong and significant North Atlantic Oscillation (NAO)-like pattern anomalies, but with 

opposite polarity(Ding et al. 2017b). 

ASI changes non-uniformly under the influence of multiple non-uniform internal or external 

factors (Ding et al. 2017a; Ding et al. 2019; Ding et al. 2017b; England et al. 2019; Olonscheck et 

al. 2019). As a time series, sea ice characteristics could be described by statistical measures such 

as the mean, standard deviation, skewness, and kurtosis. Quantiles, which are widely used in 

hydrologic frequency analysis, represent the relative magnitudes of particular values in the 

historical records. For example, in this study an extremely low ice cover is represented by a small 

quantile, while an extremely high ice cover is represented by a large quantile. Past studies about 

changes in sea ice are more based on a linear regression that describes the average changes of sea 

ice. Quantile regression replaces the conditional mean function in linear regression with a 

conditional quantile function (Barbosa 2008; Koenker and Bassett 1978; Koenker and Hallock 
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2001). It provides slopes at any arbitrary quantile so that it is possible to analyze the trend analysis 

of extreme ice conditions accurately. Using quantile regression to detect the trend of ASI extent, 

(Tareghian and Rasmussen 2013) found high variability in the change of sea ice, such that low sea 

ice extent tends to decrease faster than an average sea ice extent. However, they did not consider 

spatial patterns of the changes in sea ice. In this study, regression coefficients between gridded sea 

ice concentration and climate indices were estimated to represent the spatial distribution of the sea 

ice’s responses to the climate patterns. Next, a multivariate quantile regression model was 

developed that allows us to project sea ice under different possible combinations of climate 

patterns. Based on a composite analysis of climate variables such as sea level pressure (SLP), sea 

surface temperature (SST), geopotential height at 500-hPa (GPH), and wind speeds (UV), 

atmospheric circulations associated with the teleconnections between ASI and climate patterns are 

discussed.  

This paper is organized as follows: The ASI data and large-scale climate patterns are described 

in Section 2.2; the technical details on quantile regression and composite analysis are described in 

Section 2.3; trend detection, the influence of climate patterns on Arctic sea ice, and sea ice 

projections are given in Section 2.4; a discussion of atmospheric circulations associated with the 

teleconnection patterns is given in Section 2.5; conclusions are presented in Section 2.6. 

2.2 Data 

Several datasets were used in this study to investigate the changes in ASI and its 

teleconnections with large-scale climate patterns. The data of monthly sea ice concentration (ASI) 

from 1979 to 2017 were downloaded from the Near-Real-Time DMSP SSMIS Daily Polar Gridded 

Sea Ice Concentrations and the Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-

SSMIS Passive Microwave Data. This dataset is stored in the NSIDC database of monthly Sea Ice 
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Index, Version 3, with a spatial resolution of 25km×25km (Fetterer et al. 2017). Monthly data are 

grouped into seasonal data such that: summer is June-August; autumn is September-November; 

winter is December-February, and; spring is March-May. 

The AO index is the first leading mode of the mean height anomalies at 1000-hPa, and a 

positive AO index means a lower than normal pressure in the Arctic. The NAO index is the leading 

mode from the Rotated Principal Component Analysis of the monthly standardized 500-hPa height 

anomalies in the region of 20°N-90°N with variability at inter-seasonal and inter-annual time 

scales (Bladé et al. 2012; Hurrell 1995; Hurrell and Deser 2010; Ogi et al. 2003). The PNA index 

is derived from the variability of opposite geopotential height anomalies centered between the 

Aleutian and the Hawaiian islands, with positive phases coinciding with a warmer western North 

America and drier western Canada (Assel 1992; Gan et al. 2007; Leathers et al. 1991; Sheridan 

2003). El Niño events based on the Niño3.4 index are considered active if a 5-month running mean 

of SST anomalies in the Niño3.4 region of the Tropical Pacific exceeds 0.4°C for 6 months or 

more (Trenberth 1997). Niño3.4 was downloaded from the Climate Prediction Center of NOAA 

on Earth System Research Laboratory (https://www.esrl.noaa.gov/psd/data/climateindices/list/). 

In addition, the Pacific Decadal Oscillation (PDO), the leading pattern of sea surface temperature 

(SST) anomalies in the North Pacific basin (typically, polewards of 20°N; Deser and Trenberth 

(2016), and the Atlantic Multidecadal Oscillation (AMO), a near‐global scale multidecadal climate 

variability with alternating warm and cool phases over large parts of the Northern Hemisphere 

(Enfield et al. 2001), were considered in the multivariate quantile regression model. 

The composites of SST, SLP, GPH at 500-hPa, and wind speed at 500-hPa (UV) were 

estimated to investigate the effects of climate patterns on Arctic sea ice. Datasets for the above 

https://www.esrl.noaa.gov/psd/data/climateindices/list/
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climate variables from 1979 to 2017 are taken from the ERA-Interim monthly dataset of 

0.75°×0.75° spatial resolution (Dee et al. 2011). 

2.3 Methodology 

2.3.1 Quantile regression 

Quantile regression has been widely used in trend analysis (Cannon 2018; Fan and Chen 

2016; Gao and Franzke 2017; Malik et al. 2016; Tan et al. 2018b). Here, it is used to examine the 

temporal changes of sea ice extent and concentration at multiple quantiles. The teleconnection 

between sea ice and climate patterns are examined through quantile regression with climate indices 

as predictor variables, in which regression coefficients at the low (5th), median (50th), and high 

(95th) quantiles were extracted to represent the responses of extremely low, medium, and extremely 

high ice cover to the climate patterns. Moreover, multivariate quantile regression models are 

developed to project sea ice concentrations under the effects of different climate patterns. 

Quantile regression is derived from the ordinary linear regression (OLR) model denoted as 

𝑌𝑖 = 𝛽𝑡+ 𝛾, with 𝑌𝑖 as the dependent variable, time 𝑡 as the independent variable in temporal 

trend analysis, which could also be the time series of a climate pattern index, and 𝛽 and 𝛾 are the 

slope and the y-intercept estimated from the OLR model, e.g., 𝑌 = 𝑓(𝛽, 𝛾, 𝑡). The parameters 𝛽 

and 𝛾  were estimated from the traditional least-squares method by minimizing ∑ [𝑦𝑖 −𝑖

𝑓(𝛽, 𝛾, 𝑡)]2, which is essentially estimating the mean of 𝑌 conditioned on t, 𝐸[𝑦|𝑡]. However, 

quantile regression replaces the target function 𝐸(𝑦|𝑡) with the quantile of 𝑌 conditioned on t, 

denoted as 𝑄[𝑦𝜏|𝑡]. For a quantile 𝜏, the quantile regression model is written as 𝑌 = 𝑔(𝛽𝜏, 𝛾𝜏, 𝑡), 

where 𝛽𝜏, 𝛾𝜏  are the quantile slope and intercept, respectively, which can be estimated by 

minimizing:  
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∑ 𝜌𝜏[𝑦𝑖 − 𝑔(𝛽𝜏 , 𝛾𝜏, 𝑡)]𝑖                                                       (2-1) 

where 𝜌𝜏  is the tilted absolute value function (Koenker and Hallock 2001); 𝛽τ and γτ are the 

quantile regression coefficient vectors to be estimated and 𝜏 is the quantile level. The details of the 

algorithm can be found in Koenker and D'Orey (1987); Tan and Shao (2017); Tan et al. (2018b); 

Yu et al. (2003), and has been implemented in the R package ‘quantreg’ (Koenker 2018) used in 

this study. A detailed description of quantile regression can be found in Barbosa (2008); Buchinsky 

(1991); Cade and Noon (2003); Koenker and Hallock (2001).  

2.3.2 Composite analysis 

As climate patterns dominate the regional climate variability of a specific area, composite 

analysis is used to investigate the relationship, if any, between sea ice concentration and climate 

patterns. In this study, composite values are calculated as the difference of the climate variables 

(SLP, SST, GPH, and UV) in the extreme positive and negative phases of climate patterns (AO, 

NAO, PNA, and Niño3.4). As an example, the composite of SLP is computed from the average 

observations over the five lowest AO years and the five highest AO years, and are denoted 𝑆𝐿𝑃−𝐴𝑂 

and 𝑆𝐿𝑃+𝐴𝑂 , respectively. The composite value of SLP, 𝛿𝑆𝐿𝑃𝑚𝑎𝑥 = 𝑆𝐿𝑃+𝐴𝑂−𝑆𝐿𝑃−𝐴𝑂 , 

represents the effects of AO on SLP. Bootstrap resampling is used to generate the empirical 

distribution of the composite values. By resampling 𝛿𝑆𝐿𝑃𝑚𝑎𝑥  5000 times from the sea ice 

concentration time series of each grid, we can obtain an empirical distribution of 𝛿𝑆𝐿𝑃𝑚𝑎𝑥, with 

the cumulative probability distribution function denoted as 𝐹(𝛿𝑆𝐿𝑃𝑚𝑎𝑥) . If 𝛿𝑆𝐿𝑃𝑚𝑎𝑥 ≤

𝐹−1(0.025) or 𝛿𝑆𝐿𝑃𝑚𝑎𝑥 ≥ 𝐹
−1(0.975), the composite of SLP with respect to AO is statistically 

significant at the 5th level, in which 𝐹−1(0.025) and 𝐹−1(0.975) denote the 2.5th and 97.5th 

quantile of 𝛿𝑆𝐿𝑃𝑚𝑎𝑥  at the 5th significance level, respectively. Detailed descriptions and the 

formulae can be found in Tan et al. (2016); Zhang et al. (2010).  
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2.3 Results  

2.3.1 Changes in Arctic Sea Ice  

Figure 2-1 shows the probability density functions and the regression coefficients of seasonal 

ASI. The winter and spring ASI are distributed more symmetrically than summer and autumn. In 

other words, the probability density functions of winter and spring sea ice extent (Fig. 2-1(1)a, d) 

have more bell curve characteristics but those of summer and autumn (Fig. 2-1(1)b, c) tend to skew 

towards low sea ice extent. The slopes of the regression lines for summer and autumn sea ice extent 

at low and high quantile levels are steeper than they are at medium quantile levels (Fig. 2-1(3)b, 

c). Comparing the seasons, the average regression coefficients of summer and autumn are much 

larger than those of winter and spring (Fig. 2-1(2)).  
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Figure 2-1. Quantile regression of seasonal Arctic sea ice extent a). spring, b). summer, c) autumn, d). winter. 

Within each panel, (1) is the histogram of the sea ice extent with an interval of 0.5 Million km2 and the 

probability density (blue solid curve) and the adjusted normal distribution (orange dash line); (2) is the quantile 

regression coefficients and the confidence interval of (95th) varies with quantile levels (τ , from 0 to 1 by 1%); 

and (3) is the historical sea ice extent records (solid black scatter curve) and quantile regression line at 5th, 10th, 

20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th, 95th quantiles (from bottom to the top, from red to blue). 

The regression coefficients of the gridded sea ice concentration at 5th, 50th, 95th that represent 

the extremely low, the medium, and the extremely high ice covers, show the spatial characteristics 

of changes in ASI. There are significant decreasing trends over the margins of the Arctic Ocean 

(Fig. 2-2), where the ice tends to be thinner and younger. The boreal summer sea ice over the 

Beaufort Sea westward to the Kara Sea shows decreasing trends over the study period (Fig. 2-2 f, 
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g). Also during boreal summer, sea ice at the 95th quantile has smaller areas showing a decreasing 

trend (Fig. 2-2j, k) compared with the 50th quantile (Fig. 2-2f, g), while that at the 5th quantile has 

larger areas and regression coefficients (Fig. 2-2b, c).  

During spring and winter, areas with decreasing ice concentrations are small and concentrated 

in the Barents Sea and the Sea of Okhotsk (Fig. 2-2e, h). The total areas with a decreasing trend in 

sea ice concentration do not differ much between the quantiles. However, decreasing trends of the 

5th quantile in the Barents Sea were as large as 40% per decade, larger than those during the boreal 

summer. Based on trends of the sea ice extent, the decline of summer sea ice would be more likely 

to occur faster in the Chukchi Sea. Also, winter sea ice concentration in the Barents Sea is more 

likely to be much lower in ice concentrations than in other regions, which is in agreement with 

previous findings (Cavalieri and Parkinson 2012; Kay et al. 2011; Wang and Overland 2009). 
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Figure 2-2. Trend coefficients (% per decade) with time as covariate derived from the classic quantile regression 

by quantile level and gridded sea ice concentration dataset for 1978-2016 seasonal average sea ice 

concentration. (a-l) spatial distribution of trend coefficients for τ =0.05 (a-d), τ =0.5 (e-h), τ= 0.95 (i-l). Columns 

show spring, summer, autumn and winter from left to right. Grids with the absolute trend coefficient of less 

than 0.5th per year are shaded in dark blue.  
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2.3.2 Effects of teleconnections with Climate Patterns on Arctic Sea Ice  

Figures 2-3 to 2-6 show teleconnection trends by quantile levels and climate indices for 

seasonal sea ice concentrations. The difference in sea ice conditions between the 5th (95th) and the 

50th quantiles show the difference in how sea ice covers responds to the influence of climate 

patterns under extremely low (high), and mean sea ice conditions.  

 1) Arctic Oscillation (AO)  

Figure 2-3 shows the regression coefficients of sea ice concentration at the 5th, 50th, and 95th 

quantiles with seasonal AO indices as the covariate. During boreal winter-spring, AO has a 

negative relationship with the sea ice at the margins of the Arctic Ocean. Compared with the sea 

ice of the 50th quantile (Fig. 2-3e, h), both the 5th and 95th quantiles of sea ice concentration have 

larger areas that show a stronger relationship with AO, especially in the Sea of Okhotsk (Fig. 2-

3i, l), Davis Strait (Fig. 2-3a, d, i, h) to Hudson Bay (Fig. 2-3d), as well as the Barents Sea (Fig. 

2-3a, e, i). These regions are strongly affected by the extreme positive AO in winter, effects which 

the ordinary linear regression analysis underestimated (Fig. 2-3e-h). The effects of AO on the 

autumn sea ice concentration is also found to be strongly related to AO at the 5th and the 95th 

quantiles (Fig. 2-3c, k) more than the 50th (Fig. 2-3g). The 50th quantile of sea ice concentration 

has large areas positively correlated to the AO index in autumn (Fig. 2-3g) because both the AO 

index and sea ice experienced downward trends in the boreal summer-autumn of recent decades. 

However, the 5th quantile of sea ice in the Kara Sea and the Chukchi Sea are still negatively 

correlated to AO in summer (Fig. 2-3b).  
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Figure 2-3, Trend coefficient (% per increasing of AO index by 1) with the AO index as covariate derived from 

the classic quantile regression by quantile level and gridded sea ice concentration dataset for the 1978-2016 

seasonal average sea ice concentration. (a-l) spatial distribution of trend coefficients for τ =0.05 (a-d), τ =0.5 (e-

h), τ= 0.95 (i-l). Columns show spring, summer, autumn and winter from left to right. Grids with the absolute 

trend coefficient of less than 0.5th per year are shaded in dark blue. 
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2) North Atlantic Oscillation (NAO)  

In Figure 2-4, it was found that the responses of Arctic sea ice to NAO are different in the 

western and eastern Arctic Ocean at some quantiles. In boreal winter-spring when the NAO is 

strongest, a large area of sea ice at the 5th quantile in the Barents and Chukchi Seas has a strong 

negative relationship with the NAO, and that in Davis Strait it has a strong positive relationship 

(Fig. 2-4a, d) than at the 50th quantile (Fig. 2-4e, h). Sea ice at the 95th quantile of the Sea of 

Okhotsk and the Barents Sea has a significant decreasing trend with the NAO index. Again, the 

results show that modeling the sea ice concentration with the NAO index as the covariate would 

underestimate the decreasing trend in these regions. A large area of summer sea ice has a positive 

relationship with the NAO index (Fig. 2-4f), which may be partly due to the downward trend of 

the summer NAO itself in recent decades. In autumn, the relationship between NAO and sea ice 

at low quantile sea ice is negative on the East Siberian Sea but positive on the other regions (Fig.2-

4c).  
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Figure 2-4. Same as Fig. 2-3, but for the NAO index. 

3) Pacific North American Pattern (PNA)  

Figure 2-5 shows the regression coefficients between Arctic sea ice with PNA as the covariate. 

From the coefficients of the 50th quantile, it is evident that a large area of summer and autumn sea 
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ice from the Beaufort Sea westward to the north of Barents Sea has a negative relationship with 

the PNA (Fig. 2-5f, g), and this result agrees with the findings of L'Heureux et al. (2008). In the 

5th quantile, the decreasing trend in the Chukchi Sea is strong, but the trends are positive in the 

Beaufort and Laptev Seas (Fig. 2-5b, c). These summer and autumn spatially distributed regression 

coefficients imply that a strong positive PNA phase may lead to summer and autumn sea ice loss 

in the Chukchi Sea, but not so in the Beaufort and Laptev Seas. In winter, sea ice in the Barents 

Sea has a strong negative relationship with PNA at the 5th and 95th quantiles (Fig. 2-1d, l) but does 

not have any significant relationship with PNA at the 50th quantile (Fig . 2-5h).  
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Figure 2-5. Same as Fig. 2-3, but for the PNA index 

4) ENSO  
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ENSO, which originates from the tropical Pacific, has a weaker relationship with Arctic sea 

ice than other climate patterns (Fig. 2-6). From the west of Beaufort Sea westward to the East 

Siberian Sea, sea ice is positively related to Niño 3.4 at low quantiles in summer and autumn (Fig. 

2-6b, c), while at the 95th quantile, the coastal sea ice is found to be negatively related to Niño 3.4. 

There is very little relationship between sea ice and ENSO at the 50th quantile, regardless of season. 
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Figure 2-6. Same as Fig. 2-3, but for the Niño 3.4 index 
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2.3.2 Effects of Combined Climate Patterns on Arctic Sea Ice  

ASI is teleconnected to climate patterns in a much more complex manner than a simple linear, 

univariate correlation. From the above univariate quantile regressions, we found that the AO and 

NAO have similar relationships with ASI, while the relationships with PNA and ENSO are 

progressively weaker. Therefore, a multivariable quantile regression model was used to project the 

effects of combined climate patterns on the extremely low sea ice concentrations. Since the AMO 

and PDO are found to be non-linearly related to the Arctic (Zhang et al. 2018), the model also 

considers the AMO and PDO as in-phase with each other according to their phase relationship (Li 

et al. 2016a; McCabe et al. 2004). The 95th and 5th quantiles of the climate indices were chosen 

arbitrarily to represent the extremely positive and negative phases of the climate patterns. The 

projected anomalies of sea ice concentration under the extreme phases of climate patterns, minus 

the long-term averages (1979-2018), are presented in Figure 2-7.  

The spring and winter sea ice concentration anomalies under +AO/+NAO are found to be 

lower than the multiyear average (Fig. 2-7a1, b1) as expected. When AMO and PDO are both in 

the extremely positive phase at the same time with +AO/+NAO, the sea ice concentration is lower 

(Fig. 2-7a2, b2). Similar conditions in sea ice concentrations are found during boreal summer with 

active PNA and ENSO. The summer and autumn sea ice concentration is slightly lower than the 

multiyear average with extremely positive PNA and El Niño (Fig. 2-7c1, d1). Combined with 

simultaneously positive AMO and PDO, the summer and autumn sea ice concentration tends to be 

lower than with only a positive PNA or a positive El Niño (Fig. 2-7c2, d2). These findings indicate 

that the extremely positive AMO and PDO can further enhance the negative relationships between 

winter ASI with AO/NAO, and for summer ASI with PNA/ENSO. 
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Figure 2-7. The seasonal sea ice anomalies projected by the multi-variate quantile regression. For spring (a1) 

and winter (b1) sea ice under concurrently positive AO and NAO, while the summer (c1) and autumn (d1) sea 

ice under concurrently positive PNA and El Nino. The seasonal sea ice was projected with additionally positive 

AMO (95th quantile) and positive PDO (95th quantile) (*2). 

2.4 Discussion 

Since strong relationships between large-scale climate variability and ASI quantiles have here 

been quantified, the seasonal influence of climate patterns under positive and negative phases on 

ASI was further investigated. The atmospheric circulation mechanisms that may give rise to the 

teleconnection patterns observed between ASI and AO, NAO, PNA, and ENSO over 1978-2017 

were analyzed by a composite analysis of climate variables, respectively.  
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2.4.1 Atmospheric circulation mechanisms for the teleconnection with AO  

The composite results show that the sea level pressure (SLP) over Asia, the western Siberian 

Sea, and the Chukchi Sea tends to be lower during positive AO boreal winters, resulting in a 

northerly wind that brings cold and dry air to Asia (Fig. 2-8b1).  

Although AO has a relatively weak temporal variability in winters, quantile regression shows 

that there is a complex spatially-distributed response of ASI to AO in summer (cf. Fig. 2-3f, g). 

The composite analysis of climate variability also demonstrates this teleconnection. Lower SST 

and GPH over the North Pacific and North Atlantic Ocean during a positive AO phase favors the 

growth of ASI. On the other hand, SLP over the Arctic is higher during negative AO than during 

positive AO, and the former favors clear sky conditions. Less cloud cover allows more 

downwelling shortwave radiative fluxes that enhance surface (and potentially basal) melting of 

ASI (Kay et al. 2008). The wind field composite shows dominant anticlockwise wind anomalies 

over the Arctic Ocean during positive AO autumns that could promote sea ice export through Fram 

Strait, resulting in less Arctic sea ice.  
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Figure 2-8. Composite of winter (a1,a2), spring(b1,b2), summer(c1, c2), autumn (d1, d2) sea level pressure (Pa) 

(*1), 500-hPa wind field (m/s; vectors) (*1), 500-hPa geopotential height (m; contour with numbers)(*2), and 

surface air temperature (°C; shaded) (*2) during years with extremely high (positive) and low (negative) phases 

values of the AO index. 

2.4.2 Atmospheric circulation mechanisms for the teleconnection with NAO 

As predicted by the quantile regression, seasonal sea ice over the Labrador Sea and north of 

Greenland is higher under positive NAO (cf. Fig. 2-4a, d) due to the enhanced southerly winds 

(Fig. 2-9a1, b1), which is consistent with the findings of Hurrell and Deser (2010). Sea ice in the 

Barents Sea is lower during strong positive NAO winters and springs (cf. Fig. 2-4a, d, e, h, i, l). 

Ottersen and Stenseth (2001) found that the NAO, SST in the Barents Sea, and inflow from the 

Atlantic are interrelated as proposed by ÅDlandsvik and Loeng (1991): under a positive NAO 

phase, there is a strong Icelandic low (Fig. 2-9a1) and enhanced cyclonic circulation that increases 
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the inflow of warm water into the Barents Sea (Fig. 2-9a2, b2), which in-turn enhances upwelling 

heat fluxes and induces low SLP. However, under a positive NAO summer, the SLP over the 

Arctic region tends to be higher (Fig. 2-9c1), which leads to anticyclonic circulation anomalies 

over the Arctic Ocean that favor a low sea ice extent through ice export (Stroeve et al. 2016). 

Sea ice concentration over the Eastern Siberian and the Chukchi Seas tends to be lower during 

positive NAO autumns (cf. Fig. 2-4c, g, k), and is attributed to the near-surface anticyclonic wind 

over the Arctic. Since the summers of 2007, low-level circulations over the Arctic has been much 

more anticyclonic than in prior years for unknown reasons (Ogi and Wallace 2012). The effects of 

the NAO on boreal summer sea ice is complicated for there are multiple mechanisms at play. This 

complex interplay warrants further research.  

 

Figure 2-9. Same as Fig. 2-8, but for the NAO index. 
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2.4.3 Atmospheric circulation mechanisms for the teleconnection with PNA  

The composite analysis of the seasonal wind fields show a strong anticyclone over the Laptev 

and Barents Seas during positive PNA years (Fig. 2-10a1, b1, c1, d1) that drives the Arctic sea ice 

to the Atlantic, resulting in reduced ASI. A positive PNA also enhances poleward shifting waves 

with alternating centers of anomalous pressure that turn northeastward over the North Pacific 

Ocean, over western-central Canada, and then southeastward over central-eastern North America. 

This circulation pattern increases heat intrusion to the Arctic (L'Heureux et al. 2008), which may 

lead to the earlier onset of ASI melting by ~2-3 days per decade (Wang et al. 2013). The strong 

high pressure over the Chukchi Sea (Fig. 2-10d1) during positive PNA autumns leads to strong 

southerly winds through the Bering Strait, resulting in less Arctic sea ice, giving rise to a negative 

relationship between ASI and the PNA index (cf. Fig. 2-5c, g, k). 
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Figure 2-10. Same as Fig. 2-8, but for the PNA index. 

2.4.2 Atmospheric circulation mechanisms for the teleconnection with ENSO 

The quantile regression coefficients between ASI and Niño 3.4 are relatively modest 

compared to those for AO, NAO, and PNA, which may be partly because ENSO needs more time 

to teleconnect with the ASI (Hyo-seok et al. 2015). Furthermore, the atmospheric circulation is 

significantly different during El Niño and La Niña episodes, and the average Arctic SST during 

winter tends to be colder during El Niño but warmer during La Niña events (Fig. 2-11a2), as shown 

by Lee (2012).  

During strong El Niño winters, there is an enhanced low pressure over Iceland and a strong 

anticyclone over the Laptev and Barents Seas (Fig. 2-11a1). Liu et al. (2004) found that ENSO has 

similar effects on the Eastern Arctic as the AO, in that sea ice expands during the negative phase 

(La Niña) and shrinks during the positive phase (El Niño), while the Western Arctic sea ice shrinks 

during La Niña but expands during El Niño. In autumn, the strong low pressure over the Barents 

Sea and high pressure over southern Greenland favors a strong southward wind through Fram 

Strait (Fig. 2-11d1), which may accelerate the export of sea ice to the North Atlantic.  
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Figure 2-11. Same as Fig. 2-8 but for the Niño 3.4 index. 

2.5 Conclusions 

This study extends the application of quantile regression to the problem of Arctic sea ice 

variability and the co-variability of sea ice with climate patterns. Through this new analysis 

technique, the trends of Arctic sea ice are determined to be that the sea ice of low quantiles 

decreases faster than the average, especially in most areas of the Beaufort Sea westward to the 

Kara Sea. Arctic sea ice of low quantiles is also found to have stronger teleconnections with 

climate patterns than the average. A projection of Arctic sea ice through a multivariate quantile 

regression model demonstrates that particular combined climate patterns have a stronger influence 

on Arctic sea ice than an individual climate pattern. The physical mechanisms behind these 

teleconnections were investigated through a composite analysis of climate variables (SLP, SST, 
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GPH, UV). The significantly different climate variables under the influence of extreme positive 

and negative phases of the respective climate indices reveals the existence of forcing mechanisms 

behind the teleconnections between Arctic sea ice and the climate patterns. These findings aim to 

improve the understanding of Arctic sea ice variability, and its complex relationship with large-

scale climate patterns and, hopefully, benefit the prediction of Arctic sea ice.  
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Chapter 3. Non-stationarity of the streamflow of major northern river 

basins of Siberia at multi-time-scales and its teleconnection with 

climate patterns 

3.1 Introduction 

As the warming of climate continues since the mid-Twentieth Century, hydrologic changes 

have been detected in river basins worldwide, including Arctic river basins. The discharge of 

Arctic rivers contributes more than one third of freshwater into the Arctic Ocean (Rachold et al. 

2004), which affects the salinity stratification (McPhee et al. 1998), sea ice formation (White et al. 

2007), and oceanic thermohaline circulation (Bintanja et al. 2018; Kattsov et al. 2007), which 

together constitute an essential linkage with the heat and mass balance of the Arctic atmosphere. 

Recent studies show an increasing trend in the discharge of most northern rivers, including 

the largest Arctic rivers in Siberia, especially in winter and spring, over recent decades 

(McClelland et al. 2006; Peterson et al. 2006; Peterson et al. 2002; Rood et al. 2017; Serreze and 

Etringer 2003; Su et al. 2018; Ye et al. 2003). Under a warmer Arctic atmosphere, the hydrologic 

cycle becomes more intensive (Déry et al. 2009), resulting in a wetter and warmer atmosphere, 

widely observed permafrost degradation, greening vegetation, more severe hydrologic extremes 

(Bring et al. 2016; Dirmeyer et al. 2013; Elmendorf et al. 2012; Han et al. 2018; Macias-Fauria et 

al. 2012; Tape et al. 2006; Wagner et al. 2011), higher groundwater storage (Reginald and Vladimir 

2009), subsurface flow connectivity enhancement (Walvoord and Kurylyk 2016; Watson et al. 

2013), shorter snow-cover duration and less maximum winter snow storage in mountainous Siberia 

(Bulygina et al. 2009), more forest fires resulting from increasing summer dryness (Groisman et 

al. 2007) and higher active layer moisture storage (Smith et al. 2007). Changes of river streamflow 
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is significantly affected by increasing precipitation and land surface changes (Nijssen et al. 2001a; 

Nijssen et al. 2001b; Serreze et al. 2002b; Yang et al. 2003; Yang et al. 2002), with a higher 

discharge rate (Peterson et al. 2002; Zhang et al. 2012) and different spatial-temporal distributions 

of flow patterns.  

Non-stationarity means the statistical properties of a time series represented by parameters of 

the probability distribution of the time series varies with time. It has been widely observed that 

under the influence of global warming and anthropogenic activities, we can no longer assume 

hydrologic processes of river basins to be stationary over time. Therefore, non-stationary analysis 

has been widely conducted in river basins under the influence of significant human activities 

(Kyselý et al. 2010; Laurent and Parey 2007; Li and Tan 2015; Tan and Gan 2016). The presence 

of non-stationarity in hydrologic processes could increase the risk of flooding in flood plains, and 

infrastructure design could become obsolete because underlying forcing mechanisms have shifted, 

resulting in changes that are beyond what have been previously considered to be natural variations 

(Milly et al. 2008).  

In northern Eurasia, which has historically had little human activity, non-stationary analyses 

have rarely been conducted (Su et al. 2018; Xu et al. 2020). From studies conducted in the early 

2000s about the streamflow variance of Siberian river basins, researchers detected an increase in 

streamflow and human activities, (such as dam regulation and industrial and agricultural water use) 

and show modified monthly and seasonal streamflows (Berezovskaya et al. 2004; Fukutomi et al. 

2003; Yang et al. 2004a; Yang et al. 2004b; Yang et al. 2003; Yang et al. 2002; Ye et al. 2003). 

Partly due to limited observations, so far only a few studies have been conducted to address recent 

changes in the hydrologic regimes of Siberian river basins (Tananaev et al. 2016; Yamamoto-

Kawai et al. 2009). 



 

37 

 

Besides climate change, climate patterns could also influence hydrologic processes of northern 

river basins. For example, the sea level pressure over Siberia is significantly influenced by the 

Arctic Oscillation (AO), the Pacific/North America Pattern, and ENSO (Zhang et al. 2020). In 

Siberia, when the winter AO is in its positive phase, both the winter Siberian High and the East 

Asian winter monsoon tend to be weaker than normal (Bingyi and Jia 2002). Under the positive 

phase of AO, temperature tends to be higher, while eastern Siberia tends to be drier when El Niño 

is in its positive phase (Balzter et al. 2007). The temperature and precipitation of Siberia are 

negatively correlated with the Siberian High central intensity (Gong and Ho 2002).  

The objective of this study is to comprehensively analyze the non-stationary characteristics of 

streamflow in major Siberian river basins, namely, the Ob, Yenisei, and Lena river basins at multi-

time-scales and to determine the possible teleconnections with climate patterns. In this study, the 

MK test is used to estimate the trends of streamflow and the effects of auto-correlation and long-

term-persistence are also investigated using the Hurst test. A wavelet coherence analysis is used 

to investigate the influence of climate patterns (including the AO, PNA, NP, and ENSO) on the 

streamflow of these river basins (Gan et al. 2007).  

This paper is organized as follows: The streamflow data and large-scale climate patterns are 

described in section 3.2; the technical details of the Mann-Kendall (MK) test analysis, change 

point detection, and wavelet analysis are described in section 3.3; trend detection, auto-correlation, 

long-term persistence, change points, and the correlation with climate patterns through wavelet 

analysis are given in section 3.4; discussion of trend analysis associated with hydrologic changes 

and teleconnection patterns are given in section 3.5; and conclusions in section 3.6. 
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3.2 Data 

3.2.1 Study area and streamflow data 

The study sites selected are the three largest river basins of Siberia: Ob River Basin (ORB), 

Yenisei River Basin (YRB), and Lena River Basin (LRB). Lena River, the easternmost of the three 

Siberian rivers, originates from the Baikal Mountains south of the Central Siberian Plateau and 

flows northeast into the Laptev Sea. Yenisei River, the largest river flowing into the Arctic Ocean, 

originates from Mongolia, and flows through Lake Baikal and ends in the Kara Sea. Ob River is 

the westernmost of the three Siberian rivers, and originates from the Altay Mountains and flows 

into the Kara Sea. These three rivers contribute more than one third of the total freshwater 

discharge into the Arctic Ocean. Therefore, hydrologic changes in these key northern river basins 

due to climate warming and teleconnections with climate patterns will have significant 

implications to water and energy fluxes in the Arctic. Their location and the surrounding 

topography are shown in Fig. 3-1 and a summary of the surrounding land surface type is given in 

Table 3-1.  

The river discharge of Siberian regions has been observed systematically, and the observed 

data have been quality controlled and archived by the Russian Hydrometeorological Services 

(Shiklomanov et al. 2000). The 1936 to 1999 streamflow data are available from the R-ArcticNet 

(v. 2.0) (Regional Hydrographic Data Network for the Pan-Arctic Region) in CD-ROM (Lammers 

et al. 2016). Most stations have records ending around 1999. A total of 160 stations within the 

river basins with more than 30 years of continuous monthly streamflow observations were chosen 

in this study. Detailed information about these stations are summarized in Supplementary 1. In 

addition, daily streamflow for the basins have been collected continually until now under the 

direction of the Arctic and Antarctic Research Institute, and they are available from ArcGRO 
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(Shiklomanov 2018). The streamflow of YRB were measured at 67.43°N, 86.48°E from 01/1936 

to 12/2018; the streamflow of LRB measured at 70.68°N, 127.39°E from 01/1935/01 to 2018/12; 

the streamflow of ORB measured at 66.63°N, 66.60°E from 01/1930 to 12/2018. The data used to 

detect the change points of the river basin discharge are monthly and seasonal streamflow of each 

river basin from stations located within the river basin boundary.  

Due to low population and slow economic development in northern, high-latitude areas of the 

Arctic, human impacts tend to be minor compared with low and mid-latitude areas (Vörösmarty 

and Sahagian 2000). The total water consumption in major river basins of Siberia subjected to the 

largest anthropogenic impact is unlikely to produce noticeable effects on the streamflow into the 

Arctic Ocean (Shiklomanov 1997; Shiklomanov et al. 2000; Yang et al. 2004a).  

Table 3-1. Summary of three large Siberian river basins 

 
Area 

(103 km2) 

Length 

(km) 

Mean Annual 

Runoff** (km3) 

Permafrost 

Extent 

Land Types (%) 

Cropland Forest Wetland Grassland Others 

ORB 2975 3650 402 4%-10% 36 30 11 10 13 

YRB 2554 3487 573 36%-55% 13 49 3 18 18 

LRB 2430 4400 524 78%-93% 2 84 1 3 10 

*Data from (Yang et al. 2004a; Yang et al. 2004b; Yang et al. 2002; Ye et al. 2003) 

** The mean annual runoff of ORB, YRB, and LRB are from 7142 stations, 6656 stations, and 6342 stations, located 

from the outlets of respectively. Information of stations are listed in Appendix 1 
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Figure 3-1. Geophysical location of the study area, the distribution and drainage area of streamflow stations, 

and the permafrost extent of Ob, Yenisei, and Lena river basin. The station information is listed in Appendix 

1 

3.2.2 Climate Indices 

We investigated possible teleconnections between streamflow of three Siberian river basins 

and the Arctic Oscillation (AO), the North Pacific Oscillation (NP), the Pacific/North American 

Pattern (PNA), and ENSO based on correlations estimated between deseasonal monthly river 

discharge with the long-term monthly average discharge removed and divided by the standard 
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deviation of the long-term discharge of the month and these climate indices. The AO index 

represents the first leading mode of the mean geopotential height anomalies at 1000 hPa, with a 

positive index representing a lower than normal pressure over the Arctic. The NP is defined in 

terms of opposition in sign of mean temperature anomaly between western Alaska‐eastern Siberia 

and western Canada (Rogers 1981). The PNA index represents the variability of opposite 

geopotential height anomalies centered between the Aleutian and the Hawaiian islands. A positive 

phase of PNA coincides with a lower autumn sea level pressure over Northern Eurasia in autumn 

(Zhang et al. 2020). ENSO (El Niño) represented by the Niño3.4 index is considered active if a 5-

month running mean sea surface temperature anomalies in the Niño 3.4 region of the Tropical 

Pacific exceeds 0.4°C for 6 months or more (Trenberth 1997). Climate indices were downloaded 

from the Global Climate Observing System, 

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/. 

3.3 Research Methodology 

3.3.1 Temporal Trend Analysis 

The Mann-Kendall (MK) test (Kendall 1955), the most popular and rank-based, nonparametric 

test for temporal trends, is chosen to estimate trends in precipitation and streamflow time series of 

pan-Arctic basins. However, the significance of the trend of a time series with a positive (negative) 

auto-correlation may be overestimated (underestimated) (von Storch 1999). The lag-1 auto 

correlation (AR1) is the correlation between values that are one time period part. Therefore, the 

“trend-free pre-whitening” (TFPW) procedure will be applied to remove any short-term serial 

correlation (Yue et al. 2002). Meanwhile, the presence of long-term persistence (LTP) may lead 

to an underestimation of the auto-correlation but an over-estimation of the probability that the MK 

test detects a significant trend (Cohn and Lins 2005; Su et al. 2018). LTP indicates long-term 

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/
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autocorrelation in a time series, or the presence of long-term variability in the background climatic 

environment, and can be used as a “fingerprint” in hydrologic or climate models for re-constructing 

a time series (Koutsoyiannis and Montanari 2007). The LTP of a time series, which can be shown 

by its scaling and fractal properties that describe the self-similar behavior over a certain range, is 

also related to deterministic trends or change points of that time series. Thus the LTP properties of 

precipitation and streamflow can be represented by the Hurst exponent H (Hurst 1951), which 

ranges from 0 to 1, such that H < 0.5 shows a lack of LTP, while H > 0.5 shows the presence of 

LTP. Thus, a modified MK test will be also used to detect the trend of a time series with its LTP 

estimated from the Hurst exponent (Hamed 2008).  

In this study, the Mann-Kendall test is performed in three ways: (i) the regular Mann–Kendall 

(MK1) without autocorrelation, (ii) Mann–Kendall with a lag-1 autocorrelation (AR) and trend-

free pre-whitening (MK2), and (iii) Mann–Kendall with LTP (MK3). The Mann–Kendall test is 

applied to the streamflow data using the above three approaches. By comparing results obtained 

from MK1, MK2 and MK3, we can examine the effects of AR and LTP on the trends of streamflow 

data. 

3.3.2 Change-point analysis 

A change-point analysis based on the nonparametric Pettitt test (Pettitt 1979) (a robust method 

for detecting abrupt change points in a continuous time series (Villarini et al. 2012) was conducted 

on the mean and variance of precipitation and streamflow time series. The Pettitt test is a rank-

based test that examines whether two samples come from the same population through building a 

Mann-Whitney statistic that allows detection of a single change-point in the mean of the variable 

of interest at an unknown point in time, which makes it more robust against outliers and skewed 

distributions than parametric tests. Even though there could be more than one change-point, we 
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assume that there is no more than one change-point in order to not segment the time series into too 

many subseries, which could have negative effects on the trend analysis results.  

The p-value of the test statistic is calculated using an approximate limiting distribution of the 

Kolmogorov-Smirnov goodness-of-fit statistic.  (Muggeo 2003; Villarini et al. 2012).  

3.3.3 Wavelet analysis 

This study investigates the possible teleconnection between river discharge and certain climate 

patterns by wavelet analysis, including a Continuous Morlet wavelet transformation, a global 

wavelet spectrum (GWS), a scale-averaged wavelet power (SAWP) and the wavelet coherence 

(WTC). In a continuous Morlet wavelet transformation, a time series of monthly river discharge 

with seasonality removed is decomposed into time-frequency fields, with the variance of wavelet 

coefficients of various frequency bands summarized by a GWS. Based on the results of GWS, 

fluctuations over certain periods are filtered out by SAWP and are correlated with climate indices 

in the corresponding frequency bands. Then the WTC with climate indices as covariates is 

conducted to investigate the possible effect of climate patterns on the river discharge data over 

time. Details of these methods can be found in various studies (Jevrejeva et al. 2003; Mwale and 

Gan 2004; Tan et al. 2016).  

3.4 Results: 

3.4.1 Temporal Trend of Streamflow Data 

The regular Mann-Kendall test was used to estimate the possible temporal trend in the 

streamflow of the three basins at annual, seasonal, and monthly time scales, in which the 

seasonality within the monthly streamflow time series have been removed in the preprocessing 

that minus long-term mean value and divided by the long-term standard deviation value. Results 

were presented in Figure 3-2. From Figure 3-2a, we find that the annual streamflow of stations 
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located at the downstream and the main branches shows statistically significant positive trends, 

while the upstream stations of ORB and LRB show negative trends. As expected, at the monthly 

time scale, streamflow time series have higher variance spatially. Monthly streamflow of small 

subbasins with less than 10×104 km2 drainage areas at the mid- and upstream parts of ORB have 

significant trends, but only few stations at the middle of YRB have significant increasing trends 

(Fig. 3-2b).  

Figure 3-2c-f show stations with significant trends in the seasonal streamflow time series. In 

ORB and LRB, streamflow of upstream rivers have decreased in spring and summer (Fig. 3-2c, d) 

but increased in winter and autumn (Fig. 3-2e, f). In these areas, there are several large dams and 

relatively larger water use along the river valleys than other regions, resulting in reduced summer 

peak flood and the release of water for power generation over the winters (Yang et al. 2004a; Yang 

et al. 2004b). Climate warming leads to more rainfall and less snowfall, which has contributed to 

higher winter streamflow. With relatively less human activities but higher permafrost coverage 

than others, the trends of streamflow in LRB should reflect the hydrologic response of LRB to the 

impact of climate change. The streamflow in winter seasons shows increasing trends without water 

release from reservoirs. The summer streamflow also shows an increasing trend in reservoir-free 

sub-basins, while the streamflow in areas with a reservoir has decreased. Therefore, reservoir 

regulation is partly responsible for the observed seasonal changes, especially in winter.  
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Figure 3-2. Temporal trend of the monthly, seasonal, and annual streamflow of the Siberian river basins from 

the regular MK1 test (the significance of 0.05 was used). 

3.4.2 Lag-one Autocorrelation and Long-Term Persistence (LTP) 

From the MK2 and MK3, we estimate the LTP and lag-one auto-correlation (AR1) in the annual 

and seasonal streamflow. Figure 3-4 shows the spatial distribution of stations with time series 

showing LTP and AR1. Most stations that have a significant trend (Fig. 3-2) also have LTP and 

AR1 (Fig. 3-3), and almost all stations that have AR1 also have LTP. LTP exists in nearly all 

stations that have a significant trend no matter whether it is increasing or decreasing, while AR1 

is found in stations located in the upper stream of ORB, in the mainstream of YRB, as well as in 

the middle stream of LRB (Fig. 3-3a). In spring, stations with LTP are mainly located in the plain 

area in ORB and in the western part of YRB (Fig. 3-3b). Compared with spring, there are more 

LRB stations that show LTP, and more stations in the upper stream of YRB have AR1 (Fig. 3-3c). 

In autumn, most ORB stations that have LTP and AR1 are in the upper stream, but those in YRB 

are located along the mainstream (Fig. 3-3d). Stations in the upper stream of ORB that show an 

increasing trend in winter streamflow also have significant AR1, while stations in the middle 
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stream of LRB also have AR1 (Fig. 3-3e). The winter discharge of all three basins have AR1 and 

LTP. Therefore, given that the stations that have a significant trend almost all have LTP or AR1, 

it is necessary to further analyze the contributor of the trend of the streamflow. 

 

Figure 3-3. Spatial distribution of AR1 and LTP in the annual and seasonal time series from the MK2 and MK3 

test (the significance of 0.05 was used). 

3.4.3 Change points of the Streamflow 

The Pettitt test was applied to the deseasonal monthly streamflow to detect the abrupt change 

point and their significance, shown in Figure 3-4. Among 160 stations analyzed, 40 stations are 

detected with statistically significant change points in their monthly streamflow time series, and 

most of them occurred between 1960 and 1985 (Fig. 3-4a). The streamflow of ORB, YRB, and 

LRB have been detected with significant change points at 1969, 1984, and 1979, respectively (Fig. 

3-4b, c, d). Further, after the change points, all the streamflow of ORB, YRB and LRB had 

increased. The largest reservoir in ORB, Bukhtarma reservoir was completed in 1960 with max 

capacity of 49.8 km2 (Yang et al. 2004a). YRB has the most number of reservoirs among the three 
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basins, and most of them were first filled in 1960s to 1970s (Adam et al. 2007), while the stations 

at the reservoir outlets had abruptly changed in 1984. In LRB, the largest reservoir, Vilyuy 

reservoir was completed in 1967 to provide hydropower for industrial use, with max capacity 35.9 

km2 (Ye et al. 2003). Considering the timing of reservoirs operation and their capacity, the abrupt 

change point detected in the discharge of the whole river basins is the combined results of dam 

regulation, and climate change that the attribution of these two factors requires the dam operation 

dataset.  

 

Figure 3-4. Significant change point detected through Pettitt test: a) spatial distribution of change point in the 

standardized deseasonal monthly streamflow, b, c, d) the time series of deseasonal monthly discharge of the 

whole ORB, YRB, and LRB, and their significant change points (the significance of 0.05 was used). 

3.4.4 Wavelet analysis of Monthly Discharge  

The Morlet wavelet was used to decompose the deseasonal monthly discharge of the three 

Siberian river basins into time-frequency fields, from which the periodicity of the discharge could 
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be investigated at multi-time-scales. Figure 3-5 shows the local wavelet spectra of the deseasonal 

monthly discharge. In ORB, there is a strong periodicity of 4-16 months (annual) that is significant 

during 1930 to 2018 and the periods longer than 64 months were also significant since the 1950s 

(Fig 3-5a). In YRB, significant interannual oscillations at the 64-128 month time-scales are 

detected between 1935 and 2018 (Fig 3-5b). In LRB, significant interannual oscillations at 64-128 

month and interdecadal time-scales (longer than 256-month time scales) (Fig 3-5c). Therefore, 

these three scale bands at annual, interannual and interdecadal (1-16 months, 64-128 months, 

and >256 months) oscillations were selected to compute the SAWP.  
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Figure 3-5. Continuous Morlet wavelet spectrum and global wavelet spectrum (solid grey line) with 95% 

confidence level (dashed line) of the monthly discharge of the three largest Siberian basins are presented. The 

color bar shows the wavelet power, while the thick black contours depict the 95% confidence level of local 
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power relative to a white noise background. The grey slash is the cone of influence beyond which the energy in 

contaminated by the effect of zero padding.  

The SAWP of the deseasonal monthly river discharge at 1-16 month, 64-128 month, and >256 

month time-scales are shown in Figure 3-6. At the 1-16 month time-scales (Fig. 3-6a), the variance 

of the monthly discharge are larger after 1990s than before. At the 64-128 month time-scales, all 

the monthly discharge of the three basins show increasing trend after 1990s (Fig. 3-6b). At longer 

than 256-month time-scales, YRB and LRB show increasing trends while ORB shows a decreasing 

trend (Fig. 3-6c).  

 

Figure 3-6. SAWP at 1-16 month (annual), 64-128 month (inter-annual) and longer than 256 month scales 

(inter-decadal) of the discharge of the three river basins.  

3.4.5 Wavelet Coherence between Monthly Discharge and Climate Indices  

The Pearson correlation coefficients between climate indices and SAWP of monthly discharge 

at multi-time-scales were estimated (Table 3-2). We found that NP and Nino 3.4 have significant 
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positive correlation with deseasonalized monthly discharge of YRB at 1-16 month time-scales, 

while AO and NP have significant positive correlation with that of LRB. AO and PNA have 

significant positive correlation with monthly discharge of ORB at both 64-128 month time-scale 

and longer than 256-month time-scales. For LRB, AO, PNA, and Nino 3.4 have significant 

negative relationship with the monthly discharge at higher than 256-month time-scales. These 

significant correlations confirmed the existing of relationship between the climate pattern and the 

discharge at certain temporal-scales. 

Table 3-2. Pearson’s correlations between the SAWP of wavelet decomposed monthly discharge and climate 

indices for selected scales. Statistically significance correlations at the 5% significance level are in bold text. 

Basin  Scale AO NP PNA NINO 3.4 

ORB 

1-16 month 0.038 0.126 0.059 0.102 

64-128 month 0.071 -0.009 0.087 0.032 

>=256 month 0.139 -0.041 0.099 0.087 

YRB 

1-16 month 0.133 0.201 -0.051 0.022 

64-128 month 0.072 -0.031 0.099 0.005 

>=256 month 0.133 -0.032 0.099 0.079 

LRB 

1-16 month 0.009 0.040 -0.003 0.055 

64-128 month 0.014 -0.046 0.039 0.011 

>=256 month -0.141 0.036 -0.099 -0.096 

The wavelet coherence was used to estimate the phase relationship between the climate 

patterns and river discharge of the three Siberian basins. The monthly climate index was used as 

covariates. For ORB, NP has significant relationship with the river discharge at around 16-month 

time-scales during 1990s and after 2000s (Fig. 3-7c), and NP also has a strong relationship with 

the discharge of ORB at interdecadal time scales from the 1970s to the 1990s. The discharge of 

YRB has a strong relationship with NP at an annual scale over the whole study period.  
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Figure 3-7. In WTC spectra and phase difference between the monthly river discharge of ORB and four climate 

indices, the thick black contours enclose periods with statistically significant coherence relative to a red noise 

process at 5% significant level. The phase difference is plotted only for time periods and scales with coherence 

over 0.7. The right (left) pointing arrows indicate that the two signals are in phase (antiphase), arrows pointing 

down (up) means that climate indices lead (lag) discharge by 90°.  

For YRB, there is a significant relationship at about the 16-month time-scale between NP and 

the monthly discharge since the late 1970s, which were in-phase before the end of the 1960s but 

were anti-phase since the end of the 1970s. Nino 3.4 is also significantly teleconnected to the YRB 

discharge at annual time scale. Nino 3.4 led YRB discharge by 90° before the 1970s, but led YRB 

by 270° after the 1990s. Compared with NP and Nino 3.4, AO and PNA have relatively weaker 

relationships with the YRB discharge at the 16-month time scale.  
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Figure 3-8. Same as Figure 3-7, but for YRB 

There were significant in-phase relationships between AO and the monthly discharge of LRB 

since the late 1970s at about 64-month time scale. In the 1990s, PNA led the LRB discharge by 

90° at about 64-month time scale. NP was significantly teleconnected to the LRB discharge at 

about 16-month time-scale intermittently, that was in-phase before 1980s but anti-phase there 

after. At about 64-month scale, NP had a strong in-phase relationship with LRB discharge since 

1980s. As for Nino 3.4, there was an intermittent significant anti-phase relationship with the LRB 

discharge at 16-month time scale. 
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Figure 3-9. Same as Figure 3-7, but for LRB 

These findings demonstrate that the variability of the discharge of Ob, Yenisei and Lena river 

basins are teleconnected to certain climate patterns at multi-time-scales, which is largely dependent 

on the variability of climate patterns. Limited by the length of the time series of streamflow, the 

influence of climate patterns at decadal and higher time scales cannot be fully examined. The 

multidecadal variability of the discharge of Ob and Kolyma rivers have been shown from 

reconstructions, and apparently they are similar with that of climate patterns originated from the 

North Atlantic, North Pacific, and the Northern Hemisphere (MacDonald et al. 2007). If longer 

dataset will be available, we will be able to more thoroughly analyze the periodicity and the non-

stationarity of the streamflow of Siberia subjected to the impact of warming and climate patterns. 

3.5 Discussions of Results 

We have detected significant increase in the discharge of three large Siberian river basins at 
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multi-time scales, which are related to changes in precipitation in recent decades. Extreme 

precipitation events have been occurring more frequently since the 1980s (Ye et al. 2017a; Ye et 

al. 2017b). Rainfall rates are increasing at the expense of snowfall rates(Screen and Simmonds 

2011). Such recent changes in precipitation has resulted in changing variability of river discharge 

over different seasons. Numaguti (1999) found different water recycling processes over Eurasia, 

such that the winter precipitation is mainly supplied by evaporation from oceans, but summer 

precipitation mainly by evaporation from the continental land surface. Under a warmer atmosphere 

in the Arctic since the 1980s, which has been warming at about double the global average, known 

as Arctic Amplification attributed to ice-albedo and other feedback mechanisms (Pithan and 

Mauritsen, 2014), the more intensive recycling of water between the atmosphere and the land 

surface should contribute to recent hydrologic changes in Siberian river basins. Warming leads to 

higher frequency and intensity of precipitation events, along with higher atmospheric precipitable 

water precipitation (Ye 2008). However, Ye and Cohen (2013) found that warmer fall and spring 

will delay the onset and hasten the end of snowfall season, and reducing the length by about 6.2 

days per oC increase in mean temperature over the Arctic.  

The variations of surface air temperature over Eurasia during 1980-2000 were found to 

correlate to the variability of AO  (Rigor et al. 2000). During the negative phase of AO, the upper-

level air flow convergence was enhanced, which is concurrent with an anomalous anticyclonic 

flow over the Urals around 500hPa (Gong and Ho 2002). The atmospheric circulation variation in 

Pacific sectors had caused the atmospheric shift over North Eurasia, contributing to seasonal 

changes of Siberian river discharges. (Savelieva et al. 2000). 

The pan-Arctic region is covered with permafrost extensively, which is sensitive to air 

temperature, with an active layer on top, undergoing annual freeze and thaw cycle. The distribution 
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of permafrost can modify the hydrologic conditions through the soil moisture, connectivity of 

inland waters, streamflow seasonality, and the partitioning of water stored above and below ground 

(Walvoord and Kurylyk 2016). The development of continuous permafrost over the Great Siberian 

river basins can also contribute to higher water mass (Muskett and Romanovsky 2009). In the 

2000s, the abrupt warming of top soil and the deepening active layer thickness in the Lena River 

basin were observed in response to increasing rainfall, which was partly caused by enhanced 

cyclonic patterns (Iijima et al. 2016). In the Lena river basin, which has the highest permafrost 

coverage of the three basins, the maximum/minimum discharge ratios had decreased over 1942-

1998 partly due to higher base flow, which is consistent with the degradation of permafrost (Ye et 

al. 2009). The enhanced infiltration and deeper flowpath over the Yukon River basin are found to 

be the result of degradation of permafrost (Walvoord and Striegl 2007). Besides, the distribution, 

structure, composition and growth rate of vegetation also adjust to the thawing of permafrost 

(Torre Jorgenson et al. 2013; Zhang et al. 2005), which could have a critical impact to hydrologic 

processes. Researches has found the increasing of the Normalized difference vegetation index 

(NDVI) over the high-latitude river basin during the growing season consistent with the discharge 

variations (Xu et al. 2016). 

Hydrologic responses over high-latitude river basins to climate warming impact are complex 

and spatially they can be dramatically different at local and landscape scales (Torre Jorgenson et 

al. 2013). Besides climatic factors, anthropogenic activities such as dam regulations will increase 

winter discharge at the expense of summer discharge (Yang et al. 2002; Ye et al. 2009), but dam 

regulations generally will not affect the annual variability of streamflow (McClelland et al. 2004). 

Affected by ground ice and topography, permafrost thawing is expected to accelerate under 

increased surface runoff caused by increasing precipitation (Jorgenson et al. 2010). Along with 
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increased precipitation, evapotranspiration will also increase (Park et al. 2008). Therefore in high 

latitudes, under simultaneous increase of evapotranspiration and precipitation, changes in 

hydrologic variability could be complex. 

3.6 Conclusions 

In this study, from applying non-stationary analysis to the annual, seasonal and monthly 

streamflow time series of three major Siberian river basins, Ob (ORB), Yenisei (YRB), and Lena 

river basins (LRB), statistically significant non-stationarities were detected. The streamflow of 

these Siberian river basins exhibit extensive increasing trends at multiple time-scales, except the 

seasonal streamflow from the upstream of ORB and YRB, which suffer from the impacts of dam 

regulation, agricultural and industrial water use. Most streamflow stations show significant change 

points during the 1970s to 1980s. From the wavelet analysis, significant periodicities at annual, 

inter-annual, and interdecadal time scales were detected in the streamflow of the three northern 

Siberian river basins. The significant correlation between these streamflow data and climate 

patterns at different time scales were also detected, which could be the result of different forcing 

mechanisms. The results of this study provide some new insight into the hydrologic changes of 

Siberian river basins under the amplified impact of climate warming in the Arctic, and into their 

teleconnections with climate oscillations. 
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Chapter 4. Streamflow of great Pan-Arctic river basins in Siberia: 

Modeling and Impacts of Climate Change 

4.1 Introduction 

Streamflow is the largest single source of freshwater to the Arctic Ocean. It delivers 38% of 

the total freshwater flux (Serreze et al. 2006) and is critical to the stratification of the Arctic Ocean 

(Durocher et al. 2019; Hamman et al. 2017; Yang et al. 2016) and to the formation of Arctic sea 

ice . With global climate change, the rate of warming over the Arctic is twice the global average 

because of a variety of positive feedbacks resulting known collectively as Arctic Amplification. 

Affected by the warmer atmosphere, the streamflows of pan-Arctic river basins have changed and 

most show an increasing trend (McClelland et al. 2006; Rood et al. 2017). In the lower Ob regions, 

streamflow increased during mid-summer and winter months, which is associated with increases 

in summer precipitation and winter snow cover (Yang et al. 2004c). In  North America, the spring 

peak timing of the Mackenzie river basin has advanced by several days (Yang et al. 2015), while 

the peak volume of Siberian rivers has increased (Nijssen et al. 2001a).  

 An increase in streamflow is the combined result of changes in precipitation and land surface. 

A series of studies have revealed that precipitation over north Eurasia has trended towards a greater 

number of more intense events (Chernokulsky et al. 2018; Chernokulsky et al. 2019). The warmer 

temperature and moister atmosphere are found to dominate the increase of the precipitation 

intensity and amount (Ye et al. 2015), the efficiency of precipitation (Ye et al. 2014), and the more 

frequently occurring convective rainy days (Ye et al. 2017a; Ye et al. 2017b). At the same time, 

the dry spell increases with air temperature, while wet spell decrease during summer (Ye 2018). 

The wildfires in Fort McMurray, 2016, for example, could be attributed to the low winter 

snowpack combined with an extremely warm and dry spring (Tan et al. 2018a).  
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For the land surface, the permafrost mass changes over the large Siberian rivers, such as Ob, 

Lena, and Yenisei, were found to have increasing trends under a warmer atmosphere, which is 

associated with long-term hydrological changes (Steffen et al. 2012). The water storage of (Wang 

et al. 2012)North America was also found to increase over the past decades (Wang et al. 2012). 

The melting of excess ground ice in permafrost contributes to the thickening of the active layer 

over the discontinuous permafrost regions in the central Lena basin (Landerer et al. 2010). 

Vegetation greening is also a significant response of the pan-Arctic river basins to the warmer 

atmosphere (Esau et al. 2016; Varlamova and Solovyev 2016). In the Mackenzie river basin, a 

higher Normalized Difference Vegetation Index (NDVI) and a longer growing season were linked 

with a higher streamflow (Xu et al. 2016). 

 Given such complex factors including precipitation, evaporation, runoff yield and confluence, 

topography and human activities, it is challenging to achieve accurate streamflow forecasting 

(Kumar et al. 2013). An accurate representation of the streamflow flux is critically important to 

understanding local hydrological processes and to the improvement of ocean models in GCMs 

(Hamman et al. 2017; Nummelin et al. 2015). However, there have been few studies that have 

simulated the streamflow of the pan-Arctic river basins at the basin-scale using hydrological 

models. The Hydrologiske Byrån avdeling för Vattenbalans (HBV) was applied to the Mackenzie 

river basin and projected the future streamflow under different emission scenarios (Scheepers et 

al. 2018). Scheepers et al (2018) found that warmer temperatures and higher precipitation are the 

main causes of the increase in winter and spring streamflow of the Mackenzie river. The Variable 

Infiltration Capacity (VIC) hydrology model was used to estimate the effects of reservoirs 

operations on the streamflows of the Ob, Lena, and Yenisei rivers in 2007 (Adam et al. 2007), and 

in that study it was found that the changes in annual streamflow is more likely due to the direct 
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effects of climate change, whereas the human impacts were more noticeable on the monthly and 

seasonal streamflows.  

Although hydrological models assist in the physical understanding of hydrological processes, 

their data requirements and uncertainties limit their application, especially in the pan-Arctic river 

basin, where the length of observations is relatively short and the density of observational sites is 

small. Thus, the data-driven models that are based on data analysis are becoming more popular in 

streamflow prediction due to their simplicity, minimal information requirements and ease of real-

time implementation (Adamowski and Sun 2010). Although they may lack the ability to provide 

physical information of hydrological processes, data-driven models are capable of accurately 

predicting streamflow (Zhang et al. 2015b). While data-driven stochastic models are often limited 

by assumptions of normality, linearity and variable independence (Chen and Singh 2018), another 

data-driven type of model based on machine learning (ML) shows strong potential for simulating 

complex hydrological processes. For example, Papacharalampous et al. (2019) conducted 

computational experiments to compare stochastic and ML methods regarding their multi-step 

ahead forecasting properties as applied to hydrological processes and suggested that the ML 

methods exhibit superior performance.  

Among the numerous ML methods, Artificial Neural Networks (ANNs) are a widely used 

method for long-term hydrological simulations and forecasting (Ghumman et al. 2011; Kalteh 

2013; Rajaee et al. 2019; Yaseen et al. 2015). But ANN still has some intrinsic disadvantages, such 

as slow convergence speed, less generalizing ability, arriving at a local minimum and over-fitting 

problems (Guo et al. 2011). Support vector machine (SVM) is based on the  Vapnik Chervonenkis 

(VC)-dimension theory that measures the capacity of the learning machine (Boser et al. 1992) and 

on structural risk minimization of statistical learning (Cortes and Vapnik 1995). Compared with 
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the conventional neural network method, SVMs have their own distinct advantages: first, SVMs 

have better generalization ability; second, the architectures and the weights of SVMs are 

guaranteed to be unique and globally optimal; third, SVMs are trained much more rapidly. 

Especially on a small sample size, SVMs have good performance because they are not concerned 

with probability measures or the law of great numbers. The essence of SVM is to transfer the 

original problem into solving a quadratic programming problem, it can theoretically obtain the 

global optimum result of the problem, while the ANN is easy to converge to local minimum (Guo 

et al. 2011). Thus SVMs have emerged as an alternative data-driven tool in many conventional 

neural network dominated fields (Wu et al. 2014).  

For their advantage of good generalization behavior with non-stationary time series, SVMs 

have been widely used in the simulation and prediction of runoff at multi-scales in river basins 

with high human population. However, there have been few applications of ML models in the 

simulation of streamflow in northern river basins (Yilmaz and Muttil 2014), especially in the large 

river basins, due to the limited observations. Thus, the goal of this study is to evaluate the 

application of the ML method on streamflow simulations at the basin-scale and predict the future 

changes of streamflows from pan-Arctic river basins under different greenhouse gas emission 

scenarios. The performance of SVM on simulating the monthly streamflow at the outlets of four 

great pan-Arctic river basins: Mackenzie river basin, Ob river basin, Lena river basin, and Yenisei 

river basin, is here evaluated and compared with Artificial Neural Networks model (ANN) and 

Multi-variables Linear Regression (MLR) model. We concentrate on the ability of these models 

to match the low flow during the freezing months and the spring peak timing and volume. The root 

mean squared error (RMSE), the Nash-Sutcliffe efficiency (NASH), R-squared (R2), and the mean 

absolute error (MAE) are all used to qualitatively evaluate the performance of each of these models 
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in each of the river basins. The validated models are then used to predict the monthly streamflow 

based on four CMIP5 GCMs: ACCESS 1.0, CanESM2, HadESM2-ES, and MPI-ESM, under RCP 

4.5 and RCP8.5 climate change scenarios. The relative changes of the streamflow and the trends 

of the streamflow are quantified for these two scenarios.. 

This paper is organized as follows: the streamflow data and hydro-climatological variables as 

predictors are described in section 4.2; the technical details of the SVM model are described in 

section 4.3; the training and testing of SVM, ANN, and MLR models are given and compared in 

section 4.4; the predicted streamflow under RCP 4.5 and RCP 8.5 emission scenarios are provided 

in section 4.5; conclusions are given in section 4.6. 

4.2 Study area and Data Sources 

4.2.1 Streamflow data 

The study area includes the four largest river basins that drain into the Arctic Ocean: the 

Mackenzie river basin in North America; the Ob’ river basin; the Lena river basin, and the Yenisei 

river basin (abbreviated these four river basins as MOLY). The total drainage area of MOLY is 

10,439,000 km2, of which the Mackenzie river basin (MRB) has 1,805,000 km2, the Ob river basin 

(ORB) has 2, 975, 000 km2, the Lena river basin (LRB) has 2. 430, 000 km2, and the Yenisei river 

basin (YRB) has 2, 554, 000 km2. The average streamflow of MOLY is 57, 663.68 m³/s, in which 

the Mackenzie river releases freshwater at a rate of 9, 127.48 m³/s into the Beaufort Sea in the 

Arctic Ocean; the Ob river releases freshwater at a rate of 12, 660.82 m³/s into the Kara Sea, the 

Lena river releases freshwater at a rate of 17, 221.51 m³/s into Laptev Sea, and the Yenisei river 

releases freshwater at a rate of 18, 653.88 m³/s into the Kara Sea.  
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In this study, the discharge of each basin is determined. Only the station that is closest to the 

outlet of the basin is considered. The lengths of observation are different among MOLY: ORB has 

the longest observational records, which began in 1930; the streamflow of LRB has been measured 

since 1935; the streamflow of YRB has also been measured since 1935, and; the streamflow of 

MRB has been measured since 1979. The monthly streamflow observations before 1999 were 

obtained from R-ArcticNet (v. 2.0) (Regional Hydrographic Data Network for the Pan-Arctic 

Region) in CD-ROM (Lammers et al. 2016). The long-term monthly streamflow of the Siberia 

basins have been observed systematically, and the observed data have been quality controlled and 

archived by the Russian Hydrometeorological Services (Shiklomanov et al. 2000). After 1999, 

under the direction of the Arctic and Antarctic Research Institute, the daily streamflow data are 

measured until the present and are available from ArcGRO (Shiklomanov 2018). The locations of 

the streamflow measurement stations of MOLY are shown in Figure 1: YRB is observed at Igarka 

(67.43°N, 86.48°E); LRB is measured at Kyusyur (70.68°N, 127.39°E); ORB is measured at 

Salekhard (66.63°N, 66.60°E); MRB is measured at Tsiigehtchic (67.45°N, 133.74°W). The 

monthly streamflow from the beginning of the measurement until 2018/12 were used in this study. 

MRB has 564 monthly streamflow records from 1979/01 to 2018/12. ORB has 1068 monthly 

streamflow records from 1930/01 to 2018/12. LRB has 1008 monthly streamflow records from 

1935/01 to 2018/12. YRB has 996 monthly streamflow records from 1936/01 to 2018/12. 
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Figure 4-1. The locations of the main pan-Arctic river basins, and the stations where the streamflows of each 

basin were measured, denoted as red spots. In this study, the Mackenzie river basin, the Ob’ river basin, the 

Lena river basin, and the Yenisei river basin are considered. https://www.arctic.noaa.gov/Report-Card/Report-

Card-2018/ArtMID/7878/ArticleID/786/River-Discharge 

4.2.2 Hydro-climatological predictors  

In this study, the hydro-climatological variables: precipitation, temperature and potential 

evapotranspiration were extracted from CRU-TS 4.03, which has a spatial resolution of 0.5°×0.5° 

resolution (Harris 2020). CRU-TS 4.03 has records from 1901/01 to 2018/12, which is longer than 

reanalysis dataset, such as NCEP/NCAR Reanalysis I and ERA-Interim. And CRU-TS 4.03 also 

has relatively higher spatial resolution than NCEP/NCAR Reanalysis I and ERA-Interim. 

Predictors that were used to calibrate and validate the statistical and machine learning models are 

monthly precipitation (Pre, in mm), potential evapotranspiration (PET, in mm), near-surface 

temperature (Ta, in ºC), near-surface temperature maximum (Tmax, in ºC), and near-surface 

https://www.arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/786/River-Discharge
https://www.arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/786/River-Discharge
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temperature minimum (Tmin, in ºC) all at 0.5° resolution. The time series of the basin-scale are 

the average of grids that lie within the basin. The temporal length of data used for the predictors is 

the same as the monthly streamflow records.  

4.3 Methods 

4.3.1 Support Vector Regression Model  

The Support Vector algorithm was developed as a class of nonlinear search algorithms based 

on a statistical learning theory (Cortes and Vapnik 1995). Support Vector Regression (SVR) was 

then developed by including regression techniques (Drucker et al. 1997). On a small sample, SVM 

can have good performance for it was not consider probability measure or the law of great numbers 

that makes SVM different with the previous statistical method. The essence of SVM is to transfer 

the original problem into solving a quadratic programming problem. It can theoretically obtain the 

global optimum result of the problem, while Artificial Neural Network (ANN) is easy to converge 

to local minimum. Besides, the computing rate of SVM is significantly faster than ANN (Guo et 

al. 2011). A general overview of SVM is as follows.  

The procedure of a SVM estimator (f) of a regression is written as: 

𝑓(𝑥) =  𝜔 ·𝜑(𝑥) + 𝑏, with 𝜔𝜖𝑋, 𝑏𝜖𝑅                                        (4-1) 

where, 𝜔 and b denote a weight vector and bias, respectively. 𝜑(𝑥) is a transitive function, 

which maps the input space into a high-dimensional particular space. The objective function of a 

lenticular optimization with 𝜀 function, which can be explained as: 

𝑀𝑖𝑛
𝑤,𝑏,𝜉,𝜉

∗
1
2
 𝑤 2+𝐶 (𝜉𝑘+𝜉𝑘

∗
)

𝑁

𝑘=1
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Subject to:                   {

𝑦𝑘 −  𝜔 ·𝜑(𝑥) − 𝑏 ≤ 𝜀 + 𝜉𝑘  
 𝜔 ·𝜑(𝑥) + 𝑏 − 𝑦𝑘 ≤ 𝜀 + 𝜉𝑘

∗ ,

𝜉𝑘 , 𝜉𝑘
∗ ≥ 0                                

𝑘 = 1,2,… , 𝑁                           (4-2) 

where, 𝜉
𝑘
, 𝜉
𝑘
∗
 denote slack variables, 𝜀 denotes the size of intensitive tube that is equivalent to 

the approximation accuracy placed on the training data points(Kalteh 2013), and constant C is a 

positive trade off factor between the approximation error and the weight vector  𝑤 . The model 

was tuned using the Bayesian optimization approach implemented through the MlBayesOpt 

package in R (Adankon et al. 2011). The structural risk minimization approach, the basis of SVR 

designed to minimize errors of the fitting function is more efficient than the traditional approach 

than used by machine learning algorithms such as ANN. This is the one that makes SVM behave 

better than others when the training data is limited and avoids leading to the local optimal solutions 

(Chitralekha and Shah 2010).  

4.3.2 Model training and validation strategy  

ANN and MLR were compared with SVM to simulate the monthly streamflow from the four 

pan-Arctic river basins in this study. A grid searching algorithm was used to calibrate the ANN 

and MLR models, described as follows. For the duration of the streamflow time series, which are 

different within the different basins, 80% of randomly selected monthly streamflow records of 

each were used to train the three models, and the remaining 20% of monthly streamflow records 

were used to test the models. Therefore, in MRB, the number of months of streamflow observations 

used for training are 449, and those for testing are 113; in ORB, 852 months of observations were 

used to train the models, and 214 months were used to test the models. For LRB, 805 months of 

observations were used to train and 202 months were used to test the models. For YRB, 795 months 

of observation were used to train and 199 months were used to test the models. 
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 Four metrics were evaluated to assess the performance of these models in simulating the 

monthly streamflow of four pan-Arctic river basins: the root mean squared error (RMSE), the 

Nash-Sutcliffe efficiency (NASH), R-squared (R2), and the mean absolute error (MAE). The 

higher NASH and R2 represent the better performance of the model, while the higher RMSE and 

MAE represent the weak simulating ability of the model. 

4.4 Results 

4.4.1 Correlation between predictors and streamflow 

The long-term time series of precipitation (Pre), potential evapotranspiration (PET), maximum 

temperature (Tmax), minimum temperation (Tmin), and mean temperature (Ta) were obtained 

from CRU TS 4.03 for MOLY with large drainage for each basins. Each hydro-climatological 

variable is an area-average of grids values within the outline of the basins. The correlations 

between predictors were estimated by Pearson correlation analysis, with results given in Table 4-

1. Although the maximum and minimum temperature have very high correlation relationships, 

they have different effects on the streamflow. Given that pan-Arctic river basin are mostly driven 

by snow-melt, the minimum and maximum have critical effects on the melting and freezing of 

river ice. Therefore, they were both considered as predictors. In addition, their correlation with 

streamflow (R) are all statistically significant. 

Table 4-1. List of predictors used in this study and their cross-correlations from Pearson correlation. 

 R Pre PET Tmax Tmin Ta R Pre PET Tmax Tmin Ta 

 Mackenzie Ob 

R 1 0.801 0.610 0.706 0.738 0.723 1 0.745 0.562 0.660 0.678 0.670 

Pre  1 0.773 0.752 0.764 0.760  1 0.738 0.796 0.817 0.807 

PET   1 0.917 0.884 0.903   1 0.940 0.915 0.929 

Tmax    1 0.992 0.998    1 0.995 0.999 
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 R Pre PET Tmax Tmin Ta R Pre PET Tmax Tmin Ta 

Tmin     1 0.998     1 0.999 

Ta      1      1 

 Lena Yenisei 

R 1 0.735 0.533 0.584 0.610 0.598 1 0.724 0.627 0.597 0.605 0.602 

Pre  1 0.832 0.850 0.872 0.862  1 0.795 0.848 0.873 0.862 

PET   1 0.907 0.896 0.903   1 0.923 0.901 0.914 

Tmax    1 0.994 0.999    1 0.994 0.998 

Tmin     1 0.998     1 0.998 

Ta      1      1 

4.4.2 Performance of SVM compared with ANN and MLR models 

The performance of three models were evaluated by R2, NASH, MAE, and RMSE, and the 

results are summarised in Table 4-2. The performances of both ANN and SVM are better than that 

of MLR with lower MAE and RMSE, and higher R2 and NASH. Between ANN and SVM, SVM 

behaves better than ANN with better metric and, in addition, the calibration of SVM is much faster 

than ANN.   

Table 4-2. Goodness of fit of ANN, MLR, and SVM models in the test group 

 R2 RMSE MAE NASH  R2 RMSE MAE NASH 

 Mackenzie  Ob 

ANN 0.959 4.842 0.198 0.917 ANN 0.907 6.377 0.267 0.820 

MLR 0.903 7.296 0.318 0.812 MLR 0.773 9.523 0.500 0.598 

SVM 0.959 5.091 0.198 0.908 SVM 0.947 4.852 0.167 0.896 

 Lena  Yenisei 

ANN 0.948 3.365 0.200 0.895 ANN 0.905 9.365 0.217 0.785 

MLR 0.786 6.448 0.405 0.615 MLR 0.710 14.400 0.455 0.492 

SVM 0.970 2.552 0.131 0.940 SVM 0.891 9.186 0.247 0.793 
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The monthly streamflow simulations using ANN, MLR, and SVM during the test period are 

shown in Figure 4-2, in which the time series of the monthly streamflow and the error from the 

observations are also given. From the performance metrics, the behaviour of MLR is good, which 

means MLR can match the streamflow at the average scale. Figure 4-2. *1 shows that the shapes 

of the simulated streamflow generally match the observations as well as the timing of the spring 

peak and low flood during the freezing months. However, the time series curves are generally 

either higher or lower than the observations, and the scatters are distributed dispersedly in the error 

panels (Fig. 4-2. *2), in all four river basins. Especially over the low values, the simulated flood 

does not vary with the input variables. The performance metrics of ANN are better than those of 

MLR. From Figure 4-2. *1, the simulated low flood during the freezing months matches 

observations well. However, from the error panels, the simulated peak floods were overestimated 

constantly for all four basins (Fig. 4-2. *2). In addition, the intermediate values of simulated 

streamflow have a large error (Fig. 4-2. *2). To improve the performance of ANN, more variables 

as predictors may be needed, such as the snow water equivalent. As for SVM, it can match the low 

flood well over the timing and magnitudes (Fig. 4-2. *1). Although ANN missed the peak flood 

occasionally, the peak flood simulated by SVM is distributed evenly and is close to the observed 

values in the error panels (Fig. 4-2. *2). The performances of SVM were different between basins 

but were generally better than either ANN or MLR. Among the four river basins, the simulated 

streamflow from YRB has slightly larger errors than the other three basins and the peak flood is 

underestimated but still better than ANN and MLR (Fig. 4-2. d2). Comparing the relative error of 

the simulated peaks, SVM produces more simulated peaks with smaller relative errors than ANN 

and MLR, (Fig. 4-3). Therefore, SVM has generally better performance than ANN or MLR in the 
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simulation of monthly streamflow from the pan-Arctic river basins and better captures the peak 

and low floods.  
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Figure 4-2. The simulation of monthly streamflow from ANN, MLR, and SVM in the test period. The left panels 

(*1) shows the times series of monthly streamflow, in which the black circles show the observations while solid 
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lines in color denote the simulated monthly streamflow from ANN, MLR, and SVM, respectively. The right 

panels (*2) show the streamflow simulation error from the three models in the test period for the four river 

basins, in which the black diagonal line represent y=x. 

 

Figure 4-3 The relative errors of the simulated peak floods of the four river basins in the test months.  

4.5 Projected changes in future flood derived from SVR models 

The monthly streamflow from 2006 to 2100 were predicted based on four CMIP5 GCMs: 

ACCESS 1.0, CanESM2, HadESM2-ES, and MPI-ESM, under RCP 4.5 and RCP8.5 climate 

scenarios. The precipitation and temperature were firstly bias-corrected and downscaled to 

0.5°×0.5° spatial resolution based on the CRU-TS 4.03 dataset. PET was estimated using the 
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Penman Monteith equation through the SPEI package of R (Vicente-Serrano et al. 2010). The time 

series of each predictor was area-averaged as the input of the validated SVMs. The monthly 

streamflow from 2006 to 2100 was predicted based on the four CMIP5 GCMs and the ensemble 

mean values are presented in Figures 4-4 and 4-5.  

The predicted annual flow patterns for 2020s, 2050s, and 2080s under RCP 4.5 and RCP 8.5 

climate scenarios are presented in Figure 4-4. The simulated monthly streamflow time series from 

2006 to 2100 with seasonality removed are presented in Figure 4-5. It can be noted from Fig. 4-4 

that under both RCP4.5 and RCP8.5, the spring peak floods of the four river basins show earlier 

timing of the spring peak flood in the annual flow patterns with the air temperature increasing, 

with differences in the magnitudes of the peak floods. And with the increasing of carbon emission, 

the spring peaks also increases for the pan-Arctic river basins such that the predicted spring peaks 

under RCP 8.5 scenarios is higher than that under RCP4.5 scenarios during the 2020s, 2050s, and 

2080s, except in the Ob river basin. The effects of land cover changes on the streamflow may be 

the reason for the different changes of streamflow between Ob river and Lena river and Yenisei 

river that are located nearby. The permafrost extent of the Ob river basin is lower than that of the 

Lena or Yenisei river basins so that the effects of thawing permafrost under warming of the 

atmosphere on the streamflow are weaker.  
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Figure 4-4. Monthly streamflow for 2020s, 2050s, and 2080s predicted from four GCMs under RCP45 and 

RCP85 for a) Mackenzie river, b) Ob River, c) Lena River, and d) Yenisei river. Dashed lines and solid lines 

show average monthly predicted streamflow from four CMIP5 GCMs: ACCESS 1.0, CanESM2, HadESM2-

ES, and MPI-ESM, under RCP45 and RCP85 scenarios, respectively. 
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In Figure 4-5, the time series of monthly streamflow with seasonality removed from the four 

pan-Arctic river basins shows an increasing trend from 2006 to 2100. The magnitudes of these 

trends were different between the basins and between the different climate scenarios. For MRB, 

LRB, and YRB, the streamflow under RCP8.5 increases faster than under RCP4.5 that until the 

end of 2100, the streamflow increased by 100% under RCP8.5 comparing with the beginning of 

2006, while for ORB, the streamflow increases at a similar rate under RCP4.5 and RCP8.5 that the 

streamflow increases by around 50%.  
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Figure 4-5. The predicted monthly streamflow from 2006 to 2100 by SVM. The grey curves are the predicted 

monthly streamflow (with seasonality removed) based on the four CMIP5 GCMs. The seasonality was removed 

by subtracting the monthly mean and divided by the monthly standard variation. Curves in color were the 12-

month moving average of the seasonality-removed monthly streamflow predicted from four GCMs under 
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RCP4.5 and RCP8.5, respectively. The red and black curves denote the ensemble means of the 12-month 

moving average of monthly streamflow predicted from the four GCMs under RCP4.5 and RCP8.5, respectively. 

4.6 Conclusions 

Under global warming and climate change, streamflows around the world have changed but 

to different extents. The pan-Arctic river basins contribute more than one third of the freshwater 

into the Arctic Ocean, freshwater that plays an important role in the oceanic circulation. However, 

due to the limitation of observations, streamflow simulations and predictions over the pan-Arctic 

river basins are inadequate. Different with the hydrological models that have high requirement on 

the hydrological and climatological parameters, the machine learning models are faster and easier 

to calibrate and validate. Therefore, widely-used machine learning models were applied to the 

simulation of streamflows from the pan-Arctic river basins. This study evaluated the performance 

of the widely-used machine learning model, Support Vector Regression model, on the simulation 

of monthly streamflow at the outlets of four great pan-Arctic river basins: Mackenzie river basin, 

Ob river basin, Lena river basin, and Yenisei river basin. Its performance was compared with 

Artificial Neural Network model and Multi-Variable Regression model. Results show that SVM 

and ANN have similar capabilities on the monthly streamflow, and both are better than MLR, but 

the calibration and validation of SVM is several times faster than ANN. Then the validated SVMs 

were used to predict the monthly streamflow based on four CMIP5 GCMs: ACCESS 1.0, 

CanESM2, HadESM2-ES, and MPI-ESM, under RCP4.5 and RCP8.5 climate scenarios during the 

periods of 2006 to 2100. The predicted streamflow shows a significant increasing trend for all four 

river basins but with different magnitudes. These increasing trends were amplified by the 

increasing of air temperature and carbon emissions under RCP8.5 than under RCP4.5. The results 

show that with the increasing temperature, the monthly streamflow of the four great pan-Arctic 
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river basins have significantly increasing trends and with the increasing carbon emission, the 

increasing trends were amplified. In the annual streamflow patterns, the spring peak flood of each 

basin occurs earlier and has higher volumes with higher air temperature and carbon emissions. 

Amongst the river basins, the increasing trends are different. These differences may be the result 

of the different spatial-temporal land surface within basins, such as the permafrost, vegetation, and 

snow cover. Further research to attribute the changes of streamflow could be the simulation of the 

spatial changes of land cover and the relationship with hydro-climatology, which have high 

requirements on hydrological and climatological datasets. 
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Chapter 5. Probabilistic Characteristics of extreme wet and dry spells 

over Siberian river basins using Copulas functions 

5.1 Introduction  

Wet spells and dry spells, defined as episodes of consecutive rainy or non-rainy days (Ratan 

and Venugopal 2013), characterize the day-to-day variability of precipitation (Li et al. 2016b). 

They have been widely studied in recent decades as an important indicator of extreme events that 

have significantly changed globally under climate change (Froidurot and Diedhiou 2017; Gitau et 

al. 2018; Nabeel and Athar 2018; Sun et al. 2017; Vinnarasi and Dhanya 2016). Long dry spells 

during winter in the Mediterranean Basin tend to be a natural hazard with strong socioeconomic 

impacts (Raymond et al. 2018), and they have shown an increasing trend in the mean duration, 

spatial extent and frequency in recent years (Raymond et al. 2019). In tropical regions, a major 

contribution to seasonal rainfall for arid regions comes from 1-5 day wet spells, while for humid 

regions, this contribution could come from wet spells of durations as long as 30 days (Ratan and 

Venugopal 2013). In China, good regression relationships were found between the number of 

dry/wet spells and spell length, as well as precipitation amount and wet spell length (Li et al. 2017). 

At smaller spatial scales, the variability of wet and dry spells clearly reflects the impact of natural 

climate variability on the water availability over a region. At annual time scale, significant 

increasing trends have been detected in general and the characteristics of wet spells in many parts 

of the world have become more extreme. When El Niño is active, dry spells during the Asian 

southwest monsoon season tend to get drier (Li et al. 2016b). In recent years, durations of wet 

spells exhibit a statistically significant increasing trends over central European Russia, especially 

during winters when the mean duration of wet spells has increased by 15%-20%, although summer 

wet spells have become shorter over northern Russia (Zolina et al. 2013). Ye (2018) has analyzed 
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the characteristics of wet and dry spells over Siberia and its relationship with air temperature using 

a simple linear regression. Ye (2018) shows that both the durations of the mean and extremes of 

summer dry periods have increased with air temperature at about 7.0% (0.24 day/◦C) and 7.7% 

(0.86 day/◦C) respectively, but those of wet periods have decreased at about 1.3% (-0.02 day/◦C) 

and 2.2% (-0.10 day/◦C), respectively. She also found that locations with longer durations of dry 

spells tend to experience faster rates of warming, which implies the likelihood of worsening 

drought severity in drier and/or warmer locations for all seasons in Siberia.  

Copulas function have been widely used in the probability analysis of hydrology variables. 

The advantage of low constraints on the choice of marginal distribution that allows the marginal 

distributions belong to different families makes Copulas functions being widely used to model the 

multivariable joint distribution (Mirabbasi et al. 2012; She et al. 2016; Yu et al. 2014). Moreover, 

copulas are also flexible in describing the dependence structure, extending to multi-variables, and 

allowing for separate analysis of marginal distributions and dependence structure (Chen et al. 

2015). Arya Farid and Zhang (2017) used the copula method for modeling the water quality time 

series. Qian et al. (2018) used the copula method for extreme precipitation simulation. Yin et al. 

(2018) assessed the implication of climate change to the future quantiles of flood peak and volume 

in Ganjiang river basin, China. Sarhadi et al. (2016) proposed a dynamic risk analysis method for 

droughts by combining Bayesian theory with copula functions that could capture time-varying 

risks of suffering from extreme drought. These studies indicate that the copula method can be an 

effective tool for the stochastic simulation of hydrological data.  

The objective of this study is to analyze the probabilistic characteristics of the dry and wet 

spells in three great Siberian river basins from the aspect of duration and temperature, and assess 

the risk of suffering from extreme dry and wet spells. In this study, four continuous probability 
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distribution were fitted to the temperature of the dry and wet spells, including the two-parameter 

Gamma, generalized extreme value (GEV), three-parameter lognormal and Weibull distribution; 

two-parameter negative binomial distribution and Poisson distribution were employed to fit the 

duration of dry and wet spells. Then three types of Archimedean copulas: Frank, Gumbel, and 

Clayton copulas function, were employed to fit the empirical joint probability distribution of the 

duration and temperature of dry and wet spells. Based on their performance estimated by RMSE, 

the best copulas function were used to generate the conditional and joint probability distribution 

under scenarios of extreme duration and temperature. The risk of suffering from extreme dry and 

wet spells were revealed by the return period. From the spatial distribution of the conditional and 

joint return period, the regional likelihood of suffering from extreme dry and wet spells were 

revealed. 

This chapter is organized as follows: the dry/wet spells of the study area are introduced in 

section 5.2; the details of the copulas function are described in section 5.3; the details of the 

marginal distribution fitness and the joint copulas, as well as the return periods under four extreme 

scenarios are given in section 5.4; and conclusions are shown in section 5.5. 

5.2 Study Site and Data  

5.2.1 Study area and dry/wet spells 

Three major Siberian river basins, the: Ob, Yenisei, and Lena river basins, located west of the 

Ural Mountains, are selected as the study sites. Figure 5-1 shows the digital elevation maps of 

these sites. Most or the areas are plains lower than 500m above sea level with small mountainous 

areas located at the southern and the western ends. 221 climate stations with longer than 30 years 

of continuous daily precipitation and temperature observations (less than 1 month of missing 

observations) are selected for this study, as shown in Figure 5-1. Stations outside the outline were 
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also used for spatial interpolation to avoid marginal effect. Consecutive days with precipitation 

higher than 0.1 mm were recorded as wet spells and the average daily temperature of these rainy 

days is the corresponding temperature of the wet spell. Previous studies considered both1mm and 

0.1 mm as threshold to define the wet spells and have similar results(Zolina et al. 2013). Since 

Russia has a significant number of days with less than 1mm rainfall, this study uses 0.1mm as 

threshold to define wet spells. Similarly, the duration of a dry spell is the number of consecutive 

dry (no rain) days and the average daily temperature is the temperature of the dry spell.  

 

Figure 5-1. DEM of the study area and the locations of weather stations 

The mean temperature and duration of the dry and wet spells are plotted as scatterplots. From 

figure 2, it is obvious that both mean duration and temperature of dry spells are generally higher 

than that of wet spells and the relationship between duration and temperature of dry spells is 

predominantly positive, while that of wet spells is negative.  
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Figure 5-2. Scatterplot of the mean duration and mean temperature of dry and wet spells from 221 stations 

that each scatter represent a station. The solid lines, denoted as “dry-lm” and “wet-lm”, indicate the linear 

regression lines of the duration and temperature of dry and wet spells, respectively. The dashed and dotted 

lines, denoted as “dry-mean” and “wet-mean”, indicate the mean duration and temperature of all 221 stations 

for dry and wet spells, respectively. 

The mean duration and temperature of the dry and wet spells are presented in Figure 5-3. The 

mean duration of dry spells observed in the 221 stations is 3.15 days, and the mean temperature is 

15.07 ºC (Fig. 5-2). Further, Figure 5-3a shows that the duration of dry spells ranges from one to 

five days although most are 3 or longer (except in the Stanovoy Range). The variability of the 

mean temperature of dry spells ranges from about 10 ºC in the northeast to 25 ºC in the southwest. 

For wet spells, the mean duration is 2.56 days, and the mean temperature is 14.98 ºC (Fig. 5-2). 

From figure 3b, the mean temperature of wet spells decreases from the southwest to the northeast, 

similar to that of dry spells. The durations of wet spells are longer over the Stanovoy Range, which 

is opposite to the dry spell durations.  
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Figure 5-3. The spatial distribution of the duration and mean temperature of the dry and wet spells over the 

three Siberian river basins, the Ob, Yenisei, and Lena river basins. The mean temperature is shaded, while 

contours in white indicate the mean duration (days) of dry and wet spells. 

5.2.2 Marginal distributions for duration and temperature of dry and wet spells  

Several continuous probability distributions are tested as the marginal distributions of the 

temperature of dry and wet spells, which include two-parameter Gamma, generalized extreme 

value (GEV), three-parameter lognormal and the Weibull distribution. Two discrete probability 

distributions are tested as marginal distributions of the duration of dry and wet spells, which 

include a two-parameter negative binomial distribution and a Poisson distribution. Parameters of 

these probability distributions are estimated by the maximum likelihood method, which is 

relatively robust compared to methods such as the method of moment. The goodness-of-fit of these 

probability distributions (PD) is evaluated by the Kolmogorov–Smirnov’s statistic Distance 
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(Zhang et al. 2015a) at a 95 % confidence level to reject or to accept a PD fitted to a set of data. 

The PD with the highest goodness-of-fit based on K-S Distance statistics is selected for each 

climate station. 

5.3 Bivariate Copulas 

Introduced by Sklar (1959), copulas can link univariate marginal distributions to 

multidimensional distributions. According to the theorem, if two random variables x and y follow 

the arbitrary marginal distribution functions F𝑥(x) = P[X ≤ x]  and F𝑦(y) = P[Y ≤ y]  separately 

(Chen et al. 2015), there must exist a copula C to combine the marginal distribution functions in a 

bivariate framework, with its general form as (Zhang et al. 2015a): 

F𝑥,𝑦(x, y) = 𝐶𝑝(F𝑥(x), F𝑦(y))                                                        (5-1) 

If the marginal cumulative probability distribution F𝑥(x) and F𝑦(y) are continuous, the copula 

function 𝐶𝑝 is unique with the following joint probability density function: 

f𝑥,𝑦(x, y) = c(F𝑥(x), F𝑦(y))f𝑥(x)f𝑦(y)                                               (5-2) 

where f𝑥(x) and f𝑦(y)denote the density functions corresponding to F𝑥(x)and F𝑦(y), respectively. 

c is the density function of C which can be expressed as follows: 

c(u, v) =
𝜕2𝐶(𝑢,𝑣)

𝜕𝑢𝜕𝑣
                                                               (5-3) 

where u and v are the univariate cumulative distribution functions. 

In hydrology, the Archimedean Copulas are the most widely used function, such as in the 

frequency analysis and risk management of floods (Li and Zheng 2016; Sraj et al. 2015), droughts 

(Sarhadi et al. 2016; Zhang et al. 2015a), extreme precipitation events (Zhang and Singh 2007), 

and risk management and water engineering (Arya Farid and Zhang 2017; Qian et al. 2018). There 
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are three types of Archimedean Copulas, which include Clayton, Gumbel-Hougaard and Frank. 

The function of copulas and the relationship between the copulas parameter 𝜃 and the Kendall 

parameter 𝜏  are listed in Table 5-1. Copulas parameter 𝜃  measures the degree of association 

between the two marginal variables, while Kendall’s 𝜏 describes the dependency between the two 

marginal variables. 

Table 5-1. Functions and parameters of three types of Copula (Zhang et al. 2015a) 

Copula types Functions Relationship between 𝜏 and 𝜃 

Clayton C(u, v) = (𝑢−𝜃 + 𝑣−𝜃 − 1)−1/𝜃 𝜏 = 1 +
𝜃

𝜃 + 2
, 𝜃 ∈ [1,∞) 

Gumbel-Hougaard C(u, v) = exp {−[(−𝑙𝑛𝑢)𝜃 + (−𝑙𝑛𝑣)𝜃]−1/𝜃} 𝜏 = 1 −
1

𝜃
, 𝜃 ∈ [2,∞) 

Frank C(u, v) = −
1

𝜃
ln[1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
] 𝜏 = 1 +

4

𝜃
[
1

𝜃
∫
𝑡

𝑒𝑡 − 1
𝑑𝑡

𝜃

0

− 1], 𝜃 ∈ 𝑅 

5.3.1 Goodness-of-fit tests  

To evaluate the efficiency of copula functions and the cumulative sample distributions, the 

empirical copula function is introduced. If (X𝑖, Y𝑖), (i = 1, 2, … , n)  are samples from a two-

dimensional distribution, (X𝑖, Y𝑖) , F𝑥(x)  and F𝑦(y)  are the empirical cumulative distribution 

functions of X and Y, respectively. The empirical copulas can be written as: 

𝐶𝑒(u, v) =
1

𝑛
∑ 𝐼[𝐹𝑛(𝑥𝑖)≤𝑢]𝐼[𝐹𝑛(𝑦𝑖)≤𝑣]
𝑛
𝑖=1 , 𝑢, 𝑣 ∈ [0,1]                                   (5-4) 

where n is the size of the time series, 𝐼[∗]is the indicator function, that is equal to 1 when 𝐹𝑛(𝑥𝑖) ≤

𝑢, or it equals to zero otherwise. 

The root-mean-square error (RMSE), a measure of differences between values predicted by 

the empirical and the theoretical copula, is expressed as: 
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RMSE = √
1

𝑛
∑ [𝐶𝑝(𝑖) − 𝐶𝑒(𝑖)]2
𝑛
𝑖=1                                                     (5-5) 

where n is the sample size , 𝐶𝑝  is the calibrated value of the theoretical copula and 𝐶𝑒  is the 

observation of the probability gained from the empirical copula. A small RMSE represents an 

efficient empirical model and vice versa. 

5.3.2 Joint return period of the duration and the temperature  

Let T denotes the extreme mean temperature and D the duration of a spell from the long-term 

of observation defined through quantile values. The return period with a longer than or equal to a 

certain duration and a warmer than or equal to a certain temperature can be defined as:  

T𝐷 =
𝐸(𝐿)

1−𝐹𝐷(𝑑)
                               

T𝑇 =
𝐸(𝐿)

1−𝐹𝑇(𝑡)
                                                                 (5-6) 

where T𝐷 and T𝑇  is the return period for the temperature and duration of the spells; 𝐸(𝐿)is the 

expected extreme dry/wet spells inter-arrival time.  

T𝐷𝑇 =
𝐸(𝐿)

𝑃(𝐷≥𝑑,𝑇≥𝑡)
=

𝐸(𝐿)

1−𝐹𝐷(𝑑)−𝐹𝑇(𝑡)+𝐶(𝐹𝐷(𝑑),𝐹𝑇(𝑡))
    

T′
𝐷𝑇
=

𝐸(𝐿)

𝑃(𝐷≥𝑑 𝑜𝑟 𝑇≥𝑡)
=

𝐸(𝐿)

1−𝐶(𝐹𝐷(𝑑),𝐹𝑇(𝑡))
                                 (5-7) 

where T𝐷𝑇  is the return period for 𝐷 ≥ 𝑑 and 𝑇 ≥ 𝑡′ , here t means the specific temperature 

value and T′
𝐷𝑇

 is the return period for 𝐷 ≥ 𝑑 or 𝑇 ≥ 𝑡. 
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5.4 Results 

5.4.1 Marginal distributions of duration and temperature of dry/wet spells 

For each climate station, the duration of dry and wet spells (in days) were first fitted with two 

discrete probability distributions, the Poisson and two-parameter negative Binomial distributions, 

while the temperature of dry and wet spells were fitted with four continuous probability 

distributions: two-parameter Gamma; generalized extreme value (GEV); three-parameter 

lognormal, and; Weibull distributions. The K-S distance between the fitted theoretical and the 

empirical cumulative probability distributions were calculated and presented as histograms, shown 

in Figure 5-4. The histograms of duration and temperature for dry and wet spells show that the 

temperature of both dry and wet spells for most stations is better fitted with a GEV than the other 

three probability distributions, while the duration is better fitted with a negative-Binomial than a 

Poisson distribution.  

  

Figure 5-4. Histogram of K-S Distance between the theoretical cumulative distribution function (CDF) of and 

the empirical cumulative distribution function of duration and temperature of dry and wet spells. 
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Station No. 29313, located at 57.57ºE, 79.43ºN within the Ob river basin, is chosen to illustrate 

the procedures to fit the data with marginal distributions. The duration and the temperature of dry 

and wet spells were estimated from the 1966-2019 daily precipitation and temperature data of the 

three Siberian basins. In Table 5-2, smaller goodness-of-fit statistics (K-S distance) represent 

better fits and vice versa. The empirical cumulative and the fitted theoretical cumulative 

probability distributions are compared in Figure 5-5.  

  

Figure 5-5. Marginal probability distribution of the duration (*1) and temperature (*2) of dry (a*) and wet 

(b*) spells at No. 29313 stations (57.57°E, 79.32°N). The duration time series were fitted with two discrete 

distributions, Negative-binomial and Poisson distributions, while the temperature time series were fitted with 

four continuous distributions: Gamma; GEV; Log-normal, and; Weibull distributions. 
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Compared to other probability distributions, the negative binomial and the GEV distributions 

produce the smallest K-S distance, which show that the negative binomial distribution is the best 

probability distribution to model the duration of extreme dry/wet spells and GEV is the best to 

model the temperature of extreme dry/wet spells.  

Table 5-2. Goodness of fit based on K-S D for the duration and temperature at No.29313 station 

Station Spell 

Duration Temperature 

Poisson Negative-binomial GEV Log-normal Weibull Gamma 

29313 Dry 0.213 0.133 0.039 0.065 0.075 0.047 

57.57°E, 79.43°N Wet 0.136 0.124 0. 023 0.391 0.060 0.026 

Given the three-parameter GEV is selected as the theoretical probability distribution in 

modeling the temperature of dry and wet spells, the location, scale, shape parameters of GEV for 

each station are interpolated to obtain the spatial distributions of a*,b*, and c* shown in Figure 5-

6. Overall, the location parameters of the GEV distribution fitted to temperature data increase from 

northeast to southwest and from coastal regions to the inland for both dry and wet spells with the 

highest value located in the northwest of the Altay Mountains (Fig. 5-6a1 and a2). The scale 

parameters increase from south to north and from inland to the coastal regions with the highest 

values located north of the mountainous region upstream of the Yenisei river basin (the 

Mungaragiyn-Gol Ridge) (Fig. 5-6b1 and b2). Most of the study areas have negative shape 

parameters that implies the mean temperature of dry and wet spells of the three Siberian river 

basins can be modeled by GEV Type III distribution with heavy tails.  
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Figure 5-6. Spatial distributions of the parameters of the marginal distribution of duration and temperature of 

dry and wet spells. The left and right columns indicate dry and wet spells, respectively. a1, a2) panels are the 

location parameters of the GEV distribution fitted for the temperature of dry and wet spells, respectively; b1, 

b2) panels are the scale parameters of the GEV distribution fitted for the temperature of dry and wet spells, 

respectively; c1, c2) panels are the shape parameters of the GEV distribution fitted for the temperature of dry 

and wet spells, respectively. 

5.4.2 Joint probability distributions of duration and temperature 

The joint probability distribution of the duration and the temperature of the extreme dry and 

wet spells is determined by copulas. The Clayton, Frank and Gumbel-Hougaard are selected as 

candidates for the joint distribution of the duration and temperature of dry and wet spells. The 



 

92 

 

parameters of these three types of copula function are estimated based on their relationships with 

the Kendall’s rank coefficient, which together with the copula parameters of the 221 stations within 

and around the outline of the study area are listed in Appendix 2. Appendix 2 shows that for most 

stations, the Gumbel copulas produces the minimum error for the dry spells, while the Clayton 

copulas perform better than others for the wet spells. Therefore, Gumbel copulas are selected to 

develop the joint distribution of the duration and temperature of dry spells, while Clayton copulas 

are used to develop the joint distributions of duration and temperature of wet spells. The joint 

distribution of the N0. 29313 station in Figure 5-7 is used as an example.  

 

Figure 5-7. Surface plot and contours from the surface plot of the joint cumulative probability function of 

duration and temperature of dry spells at No. 29313 station modeled by Gumbel-Hougaard copula with the 

parameter θ= 1.265. 

5.4.3 Spatial probability distributions of duration and temperature of dry/ wet spells of 

different return periods  

The spatial probability distributions of the duration and temperature for dry and wet spells of 

certain return periods can be interpolated from the marginal probability distributions of the 221 

climate stations, shown as shaded contours in Figures 5-8 and 5-9, respectively. According to Eq. 
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6, the return period of 5-years, 10-years, 20-years, and 50-years correspond to 80%, 90%, 95%, 

and 98% quantile of the marginal probability distribution. For 5-year return period, the mean 

temperature of dry spells for all stations is 18.28 oC, and the lowest value is 8.92 oC located in the 

Central Siberian Plateau at the downstream of Yenisei river basin, while the highest value is 25. 

17 oC located in the northwest Altay Mountains. Figure 5-8. a1 shows that temperature increases 

from east to west while the 5-year return period duration increases from 3 days to 14 days with a 

mean value of 2.76 days. The highest duration is located in the northwest Altay Mountains, while 

the lowest values is located around the Stanovoy Range (Fig. 5-8. a2). For 10-year return period, 

the temperature of dry spells ranges from 10. 44ºC to 26. 31 oC with mean value of 19.69 oC, and 

the duration ranges from 3.7 days to 21.2 days with a mean duration of 6.96 days. The spatial 

distribution of 10-year return period is similar to that of 5-year return period (Fig. 5-8. b1, b2). For 

20-year return period, the temperature ranges from 11. 33 ºC to 27. 25 oC, with a mean temperature 

of 20. 77  oC, and the duration ranges from 5 days to 27 days, with a mean duration of 9.21 days 

(Fig. 5-8. c1 and c2). The spatial distribution of 50-years return period duration is evenly 

distributed and the northwest of Altay Mountains has dry spells with relatively longer duration 

(Fig. 5-8. d2). From the spatial distribution of marginal probability distributions, it seems that the 

northwest of Altay Mountains and Dzhugdzhur Mountains, located at the southeast of Lena river 

basin are more likely to suffer from long duration of dry spells with relatively higher temperature, 

while Stanovoy Range has a relatively shorter duration and lower temperature during dry spells.  
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Figure 5-8. The spatial distribution of the return period of the duration and temperature of the dry spells of 

the three great Siberian river basins. a1, a2) 5-years return periods value of the mean temperature and duration 

of dry spells; b1, b2) 10-years return periods value of the mean temperature and duration of dry spells; c1, c2) 

20-years return periods value of the mean temperature and duration of dry spells; d1, d2) 50-years return 

periods value of/ the mean temperature and duration of dry spells. 

Figure 5-9 presents the temperature and duration of wet spells at 5-year, 10-year, 20-year, and 

50-year return periods. The temperature at 5-years return period at site-scale varies from 8.8ºC to 

25.4ºC with the mean value of 18.19ºC (Fig. 5-9. a1). For 10-years return period, the temperature 

of wet spells varies from 10.44ºC to 26.3ºC with average of 19.69ºC (Fig. 5-9. a2); that of 20-

years return period ranges from 11.33ºC to 27.25ºC with average of 20.77ºC (Fig. 5-9. a3); and 

that of 50-years return period have a range of 12.52ºC-28.03ºC with mean value of 21.84ºC (Fig. 

5-9. a4). Spatially, the Ob river basin has a higher temperature by about 2 oC than the Yenisei and 

Lena river basins (Fig. 5-9. a*). The duration of wet spells as similar range as dry spells: the 

duration of 5-year return period ranges from 3 to 14 days; that of 10-years return period ranges 

from 3.7 to 21.2 days; that of 20-year return period ranges from 5 to 27 days; and that of 50-year 

return period ranges from 6 to 35 days. The average duration of the wet spell at 5-, 10-, 20-, and 

50-year return periods are 4.76, 6.96, 9.21, and 12.23 days, respectively. The duration of wet spells 
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at the four return periods distributes more evenly spatially than that of dry spells because long 

duration and high temperature of wet spells concentrate in the Stanovoy Range for all four return 

periods (Fig. 5-9 *2).  

 

Figure 5-9. Same as Figure 5-8, but for wet spells. 

Over all, from the marginal distributions of the duration and temperature of dry and wet spells 

estimated from historical data, it seems that these three Siberia river basins, the northwest of Altay 

Mountains and part of Central Siberian Plateau at the downstream of Yenisei river basins are likely 

to suffer from both dry and wet spells with longer durations and warmer temperature than other 

areas. Stanovoy Range is likely to have dry and wet spells of shorter durations and colder 

temperature than other areas. As extreme conditions continue to increase, the probability of the 

upstream region of the Lena river basin suffering from dry and wet spells with warmer temperature 

will likely increase significantly. 

5.4.4 Spatial probability distributions of joint dry/wet spells return periods  

Based on the method of (Salvadori and De Michele 2004), the return period of the bivariate, 

duration and temperature of dry and wet spells corresponding to certain concurrent durations and 

temperature, and at least one of the two variable corresponding to the value, are estimated. The 
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spatial distributions of specific duration and temperature of 5-, 10-, 20-, and 50-year return periods 

for dry and wet spells are estimated. The conditional and joint return periods of dry and wet spells 

are shown in Figures 5-10 and 5-11, respectively.  

Figure 5-10. *1 illustrates the conditional return period characterized by the duration or 

temperature at a specific return period. For the conditional return period, under the first scenario 

(5-year), the mean return period for 221 stations is 4.15-years (Fig. 5-10. a1); the mean return 

period for the whole study area under the second scenario (10-year) is 8.66-years (Fig. 5-10. b1); 

that under the third scenario (20-year) is 17.66-years (Fig. 5-10. c1); and the mean return period 

for the whole study area under fourth scenario (50-year) is 45.08-years (Fig. 5-10. d1). Spatially, 

the Stanovoy Range in the west Lena river basin, the mountainous area upstream of the Yenisei 

and Ob river basins, and the mountainous area in the southeast Lena river basin, have lower than 

the basin-average return period under the all scenarios (Fig. 5-10. *1). This implies that these area 

are more likely to suffer from extreme dry spells with high temperature or long durations.  

The mean joint return periods are much higher than the mean conditional return periods under 

the same scenarios, which are 25.43-years, 54.77-years, 84.06-years, and 117.28-years, 

respectively. Spatially, it seems that large areas in the southeastern parts of the study area have 

less than 10-year return period under the first scenarios while the Altay Mountains and the 

Stanovoy Range have lower than 5-year return periods (Fig. 5-10. a2). Under the second scenarios, 

the central Lena river basin, the Central Siberian Plateau within the Yenisei river basin, and the 

upstream region of the Ob river basin are expected to have lower than 10-year joint return periods 

(Fig. 5-10. b2). These areas are also expected to have dry spells of lower than 20-year return period 

under duration and temperature of joint 20-year return periods (Fig. 5-10. c2). For dry spells with 

both duration and temperature at 50-year return period, there are spots in the central Lena river 
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basin, the upstream region of the Ob river basin, and the Central Siberian Plateau where the joint 

return periods are equal or less than 50 years (Fig. 5-10. d2).  

 

Figure 5-10. Spatial distribution of the conditional and joint return period of the duration and the temperature 

of dry spells at specific return period. a1, b1, c1, d1) conditional return period of when duration or temperature 

is at 5-years, 10-years, 20-years, and 50-years return period, respectively; a2, b2, c2, d2) joint return period of 

when duration and temperature is at 5-years, 10-years, 20-years, and 50-years return period, respectively. 

For the wet spells, the mean conditional return periods under the first scenario is 3.17-year, 

while the spatial distribution shows that west of the Central Siberian Plateau to the Stanovoy Range 

has equal to or shorter than 3-year conditional return period for wet spells with duration or 

temperature at 5-year return periods (Fig. 5-11. a1). The mean conditional return periods under the 

second scenario is 6.27-year, even though most areas have equal to or less than 6-year return 

periods, especially in the Stanovoy Range (Fig. 5-11. b1). The conditional return periods of wet 

spells with duration or temperature at 20-year return period are distributed more evenly spatially 

than previous scenarios, with a mean conditional return period of 12.45-year (Fig. 5-11. c1). For 

the fourth scenario, the mean conditional return period is 31.03-year, but areas around Stanovoy 

Range have less than 30-year return period (Fig. 5-11. d1).  
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The mean joint return periods of the four scenarios are 13.58-year, 34.04-year, 83.33-year, 

and 259.95-year, respectively, which are much higher than the conditional return periods. Figure 

5-11. a2 shows that for wet spells with duration and temperature jointly at 5-year return period, a 

large area in the north of study area have equal to or less than 10-year return periods, as well as a 

small area in the south mountainous area of Yenisei river basin. In the second scenario, the joint 

return period in the Stanovoy Range are much smaller than other regions (Fig. 5-11. b2). For the 

third scenario, the Altay Mountains within the Ob river basin have the lowest joint return periods 

(Fig. 5-11. c2). Under the highest return period, the Stanovoy Range has much smaller joint return 

periods than other regions (Fig. 5-11. d2), which means extreme wet spells are expected to occur 

more frequently in the Stanovoy Range than in other regions.  

From the spatial distribution of conditional and joint return periods of extreme dry and wet 

spells, it seems that the likelihood of experiencing extreme dry or wet spells varies from location 

to location, but the Stanovoy Range is more likely to suffer from both extreme dry and extreme 

wet spells than other regions. The spatial distribution of the return periods also varies with 

scenarios, which indicates the non-linear relationship between the duration and temperature of 

spells. From the spatial distribution, the conditional return period of duration and temperature of 

wet spells have small values concentrating in the Stanovoy Range region in all scenarios. 
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Figure 5-11. Similar with Figure 5-10 but for wet spells. 

5.5 Conclusions 

In this study, the probabilistic characteristic of duration and temperature of dry and wet spells 

in Siberian river basins is investigated. Four continuous and two discrete probability distributions 

were fitted to the temperature and duration data of dry and wet spells occurring over three major 

river basins of Siberia. The results shows that the GEV Type-III distribution can model the 

probabilistic characteristic of temperature of both dry and wet spells well, while a two-parameter 

negative-binomial distribution fits the duration data of dry and wet spells better than the Poisson 

distribution. The spatial distributions of the marginal probability of duration and temperature show 

that north of the Altay Mountains upstream of the Ob river basin, the Central Siberian Plateau 

downstream of the Yenisei river basin, and the Dzhugdzhur Mountains in the southeast Lena river 

basin are more likely to have high temperature and long duration dry spells than other areas. The 

Stanovoy Range and the northwest Altay Mountain are more likely to have long duration and high 

temperature wet spells than other areas.  

Based on the theoretical marginal distributions of duration and temperature, three types of 

Archimedean Copulas: Frank, Gumbel, and Clayton copulas functions are applied to develop the 
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conditional and joint probabilities of these two variables of dry and wet spells. Among them, 

Gumbel and Clayton copulas develop better joint distributions of duration and temperature of dry 

and wet spells, respectively. From the fitted conditional and joint probability distributions at 5-

year, 10-year, 20-year, and 50-year return periods, the respective resultant return periods estimated 

for dry and wet spells are plotted to show the spatial distributions of extreme dry and wet spells 

occurring over the study sites. Results show that the northwest Altay Mountains within the Ob 

river basin, the Stanovoy Range within the Lena river basin, and the Dzhugdzhur Mountains in the 

southeast Lena river basin are more likely to experience extreme dry and wet spells of long 

duration and high temperature than other regions. 

 

 

 

 

 

 

 

 

 

 

 

 



 

101 

 

Chapter 6. Conclusions and future work 

6.1 Conclusions 

Under the climate change, Arctic region, including the Arctic Ocean and the pan-Arctic area 

have been affected by the amplified warming, known as Arctic Amplification. Changes of Arctic 

sea ice has been concerned for decades, but the current understanding of the mechanism behind 

the changes is still unclear for prediction. Therefore, Chapter 1 of this thesis area devoted to the 

understanding of the changes of Arctic sea ice and its complex relationship with large-scale climate 

patterns and, hopefully, benefit the prediction of Arctic sea ice. For the pan-Arctic area, the 

hydrological process of these regions are of importance for the hydrological, oceanic, and 

atmospheric circulation of the entire Arctic region. However, researches about the hydrological 

processes of the pan-Arctic river basins are limited by the observations, especially Siberian area. 

Thus, Chapter 2, 3, and 4 of this thesis are devoted to the understanding of the hydrological changes 

of pan-Arctic river basins from the statistical and probabilistic characteristics and the prediction 

with the limited inputs. The following summaries provide better understanding of the sea ice 

changes and the hydrological changes over the Arctic region, which is essential for the analysis of 

the climate changes to Arctic regions where the warming has accelerated.  

6.1.1 Variability of Arctic sea ice and teleconnection with climate patterns 

From quantile regression analysis, the probabilistic analysis of Arctic sea ice was conducted 

with time and climate indices as covariates. The uneven declining magnitude of Arctic sea ice at 

different quantile levels were found at temporal scales that the sea ice have faster declining trend 

at the 5th and 95th percentiles than the 50th percentile, especially in most areas of the Beaufort Sea 

westward to the Kara Sea. Arctic sea ice of 5th quantiles is also found to have stronger 
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teleconnections with climate patterns than the average. AO, NAO, PNA have more significant 

influence on Arctic sea ice than ENSO, PDO, and AMO.  

From the projection of Arctic sea ice through a multivariate quantile regression model 

demonstrates that particular combined climate patterns have a stronger influence on Arctic sea ice 

than an individual climate pattern. Positive AO as well as positive NAO contribute to low winter 

sea ice, and a positive PNA contributes to low summer Arctic sea ice. In addition to these 

conditions, the sea ice decrease is amplified if there is concurrently positive AMO and PDO.  

From the composite analysis of the climate variables (SLP, SST, GPH, UV), the anomalously 

strong anticyclonic circulation during the years of positive AO, NAO, and PNA were found to 

promotes more sea ice export through Fram Strait, resulting in excessive sea ice loss.  

6.1.2 Non-stationarity of the streamflow of Siberia and teleconnection with climate patterns 

Through applying the Mann-Kendall test, Pettitt test, and wavelet analysis, the non-

stationarity were found to exist in the streamflow of three large Siberian river basins: the Ob, 

Yenisei, and Lena river basins. The streamflow of these Siberian river basins exhibit extensive 

increasing trends at multiple time-scales, except in the upstream of ORB and YRB, which suffer 

from the impacts of dam regulation, agricultural and industrial water use. From the regular and 

modified Mann-Kendall (MK) test, significant trend, auto-correlation and long-term persistence 

are determined in the streamflow time series of the Ob, Yenisei, and Lena river basins at annual, 

seasonal, and monthly timescales. Most stations are found to have abruptly changed during the 

1970s to 1980s through the Pettitt test.  

From a wavelet analysis, significant periodicities at annual, inter-annual, and interdecadal time 

scales were detected in the streamflow of the three northern Siberian river basins. From wavelet 

coherence analysis, the streamflow are found to have significant correlation with climate patterns, 
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AO, NPO, PNA, and ENSO, at different time-scales, respectively, which could be the result of 

different forcing mechanisms.  

Human activities, such as dam regulation and agricultural and industrial water use have limited 

influence on the seasonal streamflow changes, while the climate change and climate pattern have 

more responsibility for their non-stationary changes.  

6.1.3 Simulation and prediction of streamflow from Pan-Arctic river basins under impact 

of climate change 

From the calibrated Support Vector Regression Model (SVM) and Artificial Neural Network 

(ANN) model, the monthly streamflow of four great pan-Arctic river basins: Mackenzie river basin, 

Ob river basin, Lena river basin, and Yenisei river basin were simulated. Comparing 

with a statistical Multi-Variable Regression (MLR) model and the observation, SVM outperforms 

ANN and MLR in modeling the monthly streamflow of the four pan-Arctic river basins in both 

the calibration and validation stages. With precipitation, potential evapotranspiration, and 

temperature as predictors, the monthly streamflow of these four river basins subjected to climate 

changes based on RCP4.5 and RCP8.5 climate scenarios of four CMIP5 GCMs: ACCESS 1.0, 

CanESM2, HadESM2-ES, and MPI-ESM, for the 2050s and 2080s through the calibrated and 

validated SVM models. The monthly streamflow were projected to have increasing trend for all 

four river basins but with different magnitudes. These increasing trends were amplified by the 

increasing of air temperature and carbon emissions under RCP8.5 than under RCP4.5. As expected, 

under climate warming impacts attributed to rising greenhouse gas concentrations, the monthly 

streamflow of the four great pan-Arctic river basins are projected to increase significantly but with 

different increasing trends in different basins. In addition, the annual flow pattern is projected to 
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change with the onset of spring snowmelt occurring earlier with higher peak flow at the expense 

of summer flows. 

6.1.4  Probabilistic Characteristics of extreme wet and dry spells over Sibirian river basins 

The dry and wet spells from daily temperature and precipitation of 221 stations within and 

around three Siberian river basins were extracted and their duration and temperature time series 

were fitted with univariate probability distribution. The results shows that GEV distribution can 

describe the probabilistic characteristic of temperature of both dry and wet spell, while two-

parameter negative-binomial distribution outperforms the Poisson distribution on describing that 

of the duration. Then the copulas joint probability were applied to describe the joint probabilistic 

characteristics between the duration and temperature of dry and wet spells. Presented by 

conditional and joint return period, the regional likelihood of suffering from extreme dry and wet 

spells were investigated. Results show that the north Altay Mountain within Ob river basin, the 

Stanovoy Range within the Lena river, and Dzhugdzhur Mountains at the southeast of Lena river 

basin have higher likelihood of suffering from extreme dry and wet spell with long duration and 

high temperature than other places. 

6.2 Future work  

This thesis only provided limited analysis of Arctic sea ice and hydrological processes over 

the pan-Arctic river basins, and some qualitative discussions of physical mechanisms behind. 

Therefore, future works as a follow up to this thesis will be:  

1) The spatial-temporal changes of precipitation over Siberian river basins and teleconnection with 

climate patterns  
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Since the non-stationarity of streamflow in the Siberian river basins has been found and has 

relationship with climate patterns, we expect that the precipitation to have non-stationarity and 

have relationship with climate patterns at both spatial and temporal scales. In addition to the 

evaluate the non-stationarity of precipitation over the Siberian river basins, future work should 

also estimate the teleconnection between the precipitation and climate patterns, such as PNA, 

ENSO, PDO. Moreover, in this thesis, the risk of suffering from extreme dry and wet spells has 

been found higher in some regions. The spatiotemporal quantile regression model will be used to 

detect the teleconnections of precipitations at extreme high or low quantiles with climate patterns.  

2) Moisture transport patterns associated with Siberian heavy precipitation. 

Recurrent large-scale atmospheric circulation patterns have been shown to be associated with 

variations in the intensity and location of polar jet stream, subtropical jet stream, or midlatitude 

storm tracks. In this research, significant statistical relationships have been detected between 

various climate indices and hydro-climatic variables over Siberian river basins, but causal 

mechanisms responsible for widespread precipitation and streamflow anomalies have not been 

comprehensively identified. Therefore, in future work, teleconnections between precipitation of 

Siberian river basins with large-scale atmospheric circulation patterns will be explored by 

identifying propagating patterns in atmospheric fields, e.g., jet stream–level wind speed, moisture 

flux, temperature advection, and vorticity advection, which have potential relevance to 

precipitation. Moisture sources and pathways that have contributed to the Siberian river basins 

extreme precipitation will be identified through moisture trajectory analysis. 

3) Attribution of streamflow changes in Siberian river basin 

Given the streamflow of Siberian have significant non-stationarity have been found in this 

thesis, the causes of this statistical changes have not been adequately concerned except the 
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teleconnection with climate patterns. As there is quite low population in Siberian region, the 

influence of global warming on the land surface of the pan-Arctic regions, such as the permafrost, 

vegetation, and snow cover, is larger in magnitude and spatial-scales than human activities, which 

is essential to the hydrological cycling of river basins. Based on the long-term water balance of a 

river basin, Budyko curve describes the hydrological responses of a watershed to the climatic 

conditions with the respect to the characteristics of the watershed with the empirical parameter of 

the function representing the landscape properties that control water-energy balances. Therefore, 

the future work will use Budyko curve to evaluate the hydrological response of Siberian river 

basins to the climate changes.  
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Appendix  

Appendix 1. Streamflow stations used in Chapter 3 

 Point ID Code Latitude Longitude 
Drainage 

Area (km2) 
Hydro-zone Altitude Start Year End Year 

1 6076 9079 58.45 92.15 1400000 Yenisei 64.78 1936 1999 

2 6145 3029 59.73 113.17 440000 Lena 166.2 1936 1999 

3 6146 3036 60.48 120.7 770000 Lena 119.42 1933 1999 

4 6147 3042 61.83 129.6 897000 Lena 85.08 1936 1999 

5 6210 3157 60.17 116.8 27600 Lena 162.58 1934 1999 

6 6214 3163 55.42 120.55 37300 Lena 494.72 1957 1999 

7 6216 3169 59.37 121.32 115000 Lena 135.01 1936 1999 

8 6224 3202 60.9 120.8 16600 Lena 139.68 1944 1999 

9 6232 3219 58.97 126.27 49500 Lena 272.62 1936 1999 

10 6234 3222 59.63 133.03 269000 Lena 152.55 1934 1999 

11 6235 3225 61.87 135.5 514000 Lena 125.28 1926 1999 

12 6236 3229 63.32 132.02 696000 Lena 74.1 1942 1999 

13 6242 3248 58.65 127.05 43700 Lena 261.12 1952 1999 

14 6245 3264 57.77 130.9 108000 Lena 230.35 1954 1999 

15 6247 3271 59.78 134.75 165000 Lena 167.34 1935 1999 

16 6250 3277 60.68 135.03 24200 Lena 45.46 1945 1999 

17 6255 3291 59.67 127.05 23900 Lena 270.24 1933 1999 

18 6256 3292 60.9 131.98 56800 Lena 134.35 1939 1999 

19 6257 3293 62.22 134.13 65400 Lena 112.49 1937 1999 

20 6265 3321 62.15 117.65 202000 Lena 109.35 1926 1999 

21 6279 3366 64.23 116.91 78700 Lena 122.44 1954 1999 

22 6342 3821 70.68 127.39 2430000 Lena -1.41 1934 2000 

23 6458 8084 58.38 97.45 866000 Yenisei 121.15 1936 1999 

24 6459 8091 58.35 93.55 1040000 Yenisei 82.32 1953 1999 

25 6495 8288 59.13 99.38 13300 Yenisei 172.95 1957 1999 

26 6496 8289 58.1 99 9320 Yenisei 191.03 1957 1999 

27 6498 8291 58.8 97.23 8950 Yenisei 151.12 1951 1999 

28 6500 8296 57.82 94.32 127000 Yenisei 40.96 1936 1999 

29 6537 9002 51.72 94.4 115000 Yenisei 615.5 1926 1999 

30 6539 9022 53.02 91.48 182000 Yenisei 301.28 1911 1999 

31 6541 9048 55.46 92.3 289000 Yenisei NA 1955 1999 

32 6543 9053 55.98 92.8 3.00E+05 Yenisei 134.41 1902 1999 

33 6544 9092 61.6 90.08 1760000 Yenisei 19.84 1936 1999 

34 6546 9112 52.47 96.1 15600 Yenisei 891.96 1958 1999 

35 6547 9115 52.5 94.93 44600 Yenisei 789.31 1957 1999 

36 6548 9116 51.88 94.46 56500 Yenisei 633.6 1956 1999 

37 6553 9124 51.33 96.25 42300 Yenisei 45 1962 1999 

38 6563 9166 52.08 92.73 6110 Yenisei 569.08 1951 1999 
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 Point ID Code Latitude Longitude 
Drainage 

Area (km2) 
Hydro-zone Altitude Start Year End Year 

39 6569 9207 52.65 90.1 14400 Yenisei 444.97 1932 1999 

40 6570 9213 53.58 91.25 31300 Yenisei 264.97 1953 1999 

41 6576 9252 53.8 92.87 31800 Yenisei 283.8 1911 1999 

42 6594 9337 56.22 95.7 23000 Yenisei 197.98 1936 1999 

43 6597 9342 55.7 95.73 11500 Yenisei 239.31 1955 1999 

44 6606 9372 59.12 93.48 15100 Yenisei 144.89 1933 1999 

45 6607 9374 58.8 92.83 19500 Yenisei 109.86 1960 1999 

46 6615 9390 62.32 92.12 218000 Yenisei 42.51 1938 1999 

47 6620 9401 62.48 86.28 16300 Yenisei 40.41 1960 1999 

48 6622 9404 58.22 108.43 8270 Yenisei 329.72 1921 1999 

49 6623 9406 61.27 108.02 77400 Yenisei 256.08 19511999 

50 6626 9415 65.63 90.02 447000 Yenisei 14.02 1938 1999 

51 6628 9417 59.3 106.35 15000 Yenisei 344.22 1966 1999 

52 6656 9803 67.43 86.48 2440000 Yenisei 0.03 1936 1999 

53 6657 10002 52.45 84.92 98200 Ob 159.65 1953 2000 

54 6658 10006 53.4 83.82 169000 Ob 127.89 1922 2000 

55 6660 10011 54.8 82.95 232000 Ob NA 1958 2000 

56 6664 10021 58.3 82.88 486000 Ob 52.62 1936 2000 

57 6666 10031 61.07 68.6 2690000 Ob 14.07 1936 1999 

58 6668 10042 51.9 87.1 21000 Ob 43 1957 2000 

59 6669 10044 52.27 87.17 25300 Ob 307.54 1962 2000 

60 6670 10048 52.55 85.28 36900 Ob 162.68 1895 2000 

61 6679 10062 51.28 87.72 16600 Ob 435.14 1930 2000 

62 6684 10071 52.42 85.72 58400 Ob 197.08 1936 2000 

63 6685 10073 50.27 85.62 5600 Ob 957.81 1945 2000 

64 6701 10110 52.17 85.97 3360 Ob 40 1954 2000 

65 6703 10112 52.28 85.42 1730 Ob 191.21 1960 2000 

66 6705 10117 52.17 85.17 4720 Ob 181.65 1931 2000 

67 6707 10120 51.65 84.32 2540 Ob 393.06 1955 2000 

68 6708 10122 52.38 84.73 4870 Ob 44 1962 2000 

69 6710 10126 51.02 84.32 3480 Ob 719.26 1936 2000 

70 6711 10127 51.4 83.58 7180 Ob 47.2 1959 2000 

71 6713 10132 52.1 82.55 17600 Ob 158.42 1964 2000 

72 6715 10134 52.13 83.28 20700 Ob 145.04 1948 2000 

73 6722 10150 51.18 81.2 6450 Ob 228.67 1955 2000 

74 6723 10151 51.5 81.22 10300 Ob 207.33 1955 2000 

75 6724 10153 52.52 82.77 18700 Ob 150.34 1954 2000 

76 6728 10175 53.47 85.42 11000 Ob 34 1964 2000 

77 6729 10176 53.73 84.95 15900 Ob 160.33 1937 1999 

78 6730 10177 53.8 83.57 20600 Ob 132.35 1943 2000 

79 6743 10205 54.63 83.4 6270 Ob 116.5 1956 2000 
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 Point ID Code Latitude Longitude 
Drainage 

Area (km2) 
Hydro-zone Altitude Start Year End Year 

80 6749 10216 54.95 85.67 7960 Ob 149.2 1960 2000 

81 6751 10219 55.32 84.1 15700 Ob 119.17 1942 2000 

82 6752 10220 55 83.33 17300 Ob 100.01 1959 2000 

83 6757 10232 53.43 89.13 2480 Ob 437.97 1958 2000 

84 6758 10233 53.63 88.53 4350 Ob 292.7 1966 2000 

85 6760 10240 53.78 87.15 29800 Ob 192.46 1894 2000 

86 6762 10251 56.5 84.92 57000 Ob 69.25 1918 2000 

87 6764 10259 53.68 88.08 3320 Ob 240.04 1937 2000 

88 6767 10266 53.7 87.8 8790 Ob 222.68 1955 2000 

89 6770 10276 52.82 87.25 2510 Ob 314.51 1957 2000 

90 6771 10277 53.33 87.23 7080 Ob 225.2 1936 2000 

91 6772 10279 53.58 87.3 1060 Ob 242.63 1936 2000 

92 6775 10287 54.03 87.17 1110 Ob 194.11 1953 2000 

93 6778 10292 54.83 87.53 1330 Ob 178.85 1941 2000 

94 6786 10308 56.55 83.62 8190 Ob 89.1 1953 2000 

95 6788 10315 55.03 89.87 9990 Ob 368.09 1961 2000 

96 6789 10317 55.38 91.62 14700 Ob 293.08 1939 2000 

97 6790 10323 56.17 89.93 33800 Ob 196.26 1951 2000 

98 6791 10328 57.33 88.1 55300 Ob 123.48 1936 2000 

99 6792 10329 56.85 86.62 92500 Ob 97.19 1936 2000 

100 6794 10331 57.78 85.15 131000 Ob 71.19 1936 2000 

101 6795 10332 54.4 89.45 3520 Ob 498.59 1952 2000 

102 6796 10338 54.87 89.3 3100 Ob 449.74 1959 2000 

103 6799 10343 55.82 90.15 4580 Ob 250.66 1956 2000 

104 6809 10379 56.65 90.55 2130 Ob 180.25 1946 2000 

105 6816 10387 56.2 87.78 9820 Ob 119.63 1936 2000 

106 6824 10402 57.05 88.08 11500 Ob 118.75 1961 2000 

107 6835 10423 57.57 85.42 2620 Ob 44.5 1959 2000 

108 6840 10432 57.48 82.22 6610 Ob 68.38 1959 2000 

109 6845 10441 57.08 81.67 2330 Ob 92.03 1951 2000 

110 6846 10444 56.85 83.07 2560 Ob 98.98 1936 2000 

111 6847 10445 57.53 82.92 5210 Ob 70.54 1965 2000 

112 6849 10453 58.65 86.82 38400 Ob 84.44 1937 2000 

113 6850 10455 58.42 83.67 71500 Ob 57.6 1955 2000 

114 6851 10460 58.77 86.07 8740 Ob 83.76 1956 2000 

115 6854 10466 59.37 82.83 6500 Ob 72.81 1955 2000 

116 6855 10468 58.17 80.6 17900 Ob 58.41 1957 2000 

117 6857 10473 57.83 80.15 7090 Ob 41.96 1956 2000 

118 6858 10475 57.78 77.28 3730 Ob 82.41 1955 2000 

119 6859 10476 58.55 76.47 19000 Ob 62.7 1960 2000 

120 6860 10478 59.22 78.22 31700 Ob 52.64 1936 2000 
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121 6865 10488 60.35 84.08 10100 Ob 91.04 1954 2000 

122 6866 10489 59.85 81.95 24500 Ob 60.58 1937 2000 

123 6883 10511 61.45 68.93 11500 Ob 20.64 1968 1999 

124 6894 10548 55.23 80.32 3910 Ob 123.34 1948 2000 

125 6895 10549 54.7 78.67 6440 Ob 103.94 1936 2000 

126 6950 11048 55.02 73.3 769000 Ob 68.94 1936 1999 

127 6952 11056 58.2 68.23 1500000 Ob 35.62 1891 1999 

128 7009 11309 55.45 78.32 12200 Ob 104.23 1936 2000 

129 7010 11312 55.6 76.38 39200 Ob 92.31 1955 2000 

130 7011 11313 55.07 74.58 47800 Ob 76.98 1936 1999 

131 7020 11335 56.35 78.35 5480 Ob 113.5 1948 2000 

132 7022 11337 55.67 76.75 16200 Ob 94.85 1939 2000 

133 7027 11350 
56.6377.

5 
6250 Ob 88.05 1954 2000 

134 7029 11352 56.47 76.02 14200 Ob 69.41 1948 2000 

135 7030 11353 56.38 75.25 16400 Ob 61.13 1936 1999 

136 7032 11357 56.63 77.52 1430 Ob 88.52 1948 2000 

137 7033 11358 55.48 77.82 2740 Ob 97.7 1948 2000 

138 7036 11369 56.95 75.32 4460 Ob 74.02 1950 1999 

139 7037 11370 57.07 74.52 6650 Ob 54.6 1954 1999 

140 7040 11379 56.98 72.63 4070 Ob 70.42 1960 1999 

141 7041 11381 57.1 73.07 4580 Ob 62.56 1958 1999 

142 7044 11385 57.35 74.75 2320 Ob 80.29 1945 1999 

143 7057 
1141256.

1 
69.47 140000 Ob 69.54 1955 1999 

144 7058 11414 56.82 70.63 151000 Ob 54.32 1952 1999 

145 7059 11415 57.45 70.85 158000 Ob 42.48 1963 1999 

146 7080 11491 57.67 69.2 15600 Ob 38.73 1961 1999 

147 7081 11493 56.43 68.58 2540 Ob 82.95 1958 1999 

148708

3 
11496 57.13 69.22 2140 Ob 57.7 1952 1999 

149 7085 11499 57.53 68.68 2080 Ob 52.48 1954 1999 

150 7086 11502 58.4 67.47 6780 Ob 44 1964 1999 

151 7094 11526 60.33 69 68600 Ob 19.63 1962 1999 

152 7100 11538 62.43 60.88 9850 Ob 32.77 1954 1999 

153 7103 11542 63.65 62.1 65200 Ob 12.04 1937 1999 

154 7105 11545 63.18 64.4 87800 Ob 7.43 1958 1999 

155 7112 11558 66.03 68.73 15100 Ob 5.67 1953 1999 

156 7142 11801 66.63 66.6 2950000 Ob 0.44 1930 1999 

157 7154 12018 56.67 66.35 241000 Ob 49.3 1936 1999 

158 7174 12098 56.17 66.47 3250 Ob 66.7 1963 1999 

159 7185 12129 56.48 65.35 56000 Ob 57.98 1937 1999 

160 7228 12383 56.95 65.83 18600 Ob 50.52 1895 1999 
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Appendix 1. Weather Stations used in Chapter 5 and the simulation errors of each copulas function 

  No. 

Latitude  

(N) 

Longitude 

(E) 

Year 

Dry spells Wet spells 

Clayton Frank 

Gumbel-

Hougaard 

Clayton Frank 

Gumbel-

Hougaard 

τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE 

1 20982 70.97 94.5 1933 0.32 0.11 1.27 0.11 1.16 0.09 -0.24 0.12 -1.22 0.12 1.00 0.11 

2 21824 71.58 128.92 1932 0.09 0.10 0.39 0.10 1.04 0.10 -0.02 0.12 -0.10 0.12 1.00 0.12 

3 21921 70.68 127.4 1940 0.18 0.10 0.74 0.10 1.09 0.09 -0.17 0.13 -0.83 0.14 1.00 0.12 

4 23032 69.72 66.8 1940 0.33 0.07 1.29 0.07 1.16 0.07 -0.12 0.13 -0.59 0.13 1.00 0.12 

5 23074 69.4 86.17 1906 0.37 0.08 1.45 0.08 1.19 0.07 -0.18 0.15 -0.90 0.15 1.00 0.14 

6 23146 68.47 73.58 1950 0.29 0.13 1.16 0.13 1.15 0.13 0.03 0.17 0.13 0.17 1.01 0.17 

7 23220 67.05 64.07 1959 0.25 0.17 0.99 0.17 1.12 0.15 -0.27 0.12 -1.460.13 1.00 0.11 

8 23242 67.68 72.88 1961 0.31 0.08 1.22 0.08 1.15 0.08 -0.11 0.14 -0.53 0.14 1.00 0.13 

9 23274 67.47 86.57 1929 0.40 0.25 1.53 0.25 1.20 0.25 -0.18 0.16 -0.89 0.16 1.00 0.15 

10 23324 66.43 60.77 1940 0.28 0.14 1.13 0.14 1.14 0.12 -0.29 0.14 -1.58 0.15 1.00 0.12 

11 23330 66.53 66.68 1882 0.19 0.08 0.78 0.08 1.09 0.08 -0.09 0.24 -0.42 0.24 1.00 0.23 

12 23331 66.9 65.67 1940 0.27 0.18 1.08 0.18 1.13 0.17 -0.18 0.14 -0.89 0.14 1.00 0.13 

13 23345 66.63 72.93 1948 0.30 0.11 1.19 0.11 1.15 0.10 -0.17 0.15 -0.82 0.15 1.00 0.14 

14 23383 66.88 93.47 1939 0.32 0.52 1.27 0.52 1.16 0.51 -0.15 0.13 -0.72 0.13 1.00 0.12 

15 23412 65.97 56.92 1940 0.35 0.41 1.35 0.41 1.17 0.41 -0.29 0.14 -1.59 0.14 1.00 0.12 

16 23418 65.12 57.1 1951 0.26 0.13 1.06 0.13 1.13 0.12 -0.30 0.13 -1.66 0.13 1.00 0.11 

17 23445 65.47 72.67 1959 0.49 0.10 1.82 0.10 1.24 0.09 -0.20 0.28 -1.02 0.28 1.00 0.27 

18 23463 65.98 84.27 1959 0.37 0.44 1.43 0.45 1.18 0.44 -0.22 0.13 -1.13 0.13 1.00 0.12 

19 23472 65.78 87.93 1843 0.40 0.23 1.53 0.23 1.20 0.22 -0.24 0.34 -1.24 0.34 1.00 0.33 

20 23527 64.28 60.88 1940 0.11 0.32 0.46 0.32 1.05 0.32 -0.15 0.12 -0.73 0.12 1.00 0.11 

21 23589 64.2 93.78 1959 0.32 0.11 1.27 0.12 1.16 0.10 -0.21 0.13 -1.06 0.13 1.00 0.12 

22 23631 63.93 65.05 1834 0.33 0.18 1.30 0.18 1.17 0.17 -0.21 0.27 -1.08 0.27 1.00 0.26 

23 23656 63.38 78.32 1958 0.42 0.14 1.61 0.14 1.21 0.12 -0.26 0.17 -1.39 0.17 1.00 0.15 

24 23662 63.98 82.08 1947 0.46 0.31 1.74 0.31 1.23 0.30 -0.27 0.20 -1.44 0.20 1.00 0.17 
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  No. 

Latitude  

(N) 

Longitude 

(E) 

Year 

Dry spells Wet spells 

Clayton Frank 

Gumbel-

Hougaard 

Clayton Frank 

Gumbel-

Hougaard 

τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE 

25 23678 63.15 87.95 1911 0.51 0.10 1.88 0.10 1.25 0.09 -0.26 0.15 -1.34 0.16 1.00 0.14 

26 23711 62.7 56.2 1888 0.26 0.21 1.05 0.22 1.13 0.21 -0.20 0.25 -1.02 0.25 1.00 0.24 

27 23724 62.43 60.87 1933 0.25 0.12 0.99 0.12 1.12 0.11 -0.25 0.14 -1.28 0.15 1.00 0.13 

28 23734 62.45 66.05 1904 0.43 0.10 1.64 0.11 1.22 0.09 -0.21 0.45 -1.08 0.45 1.00 0.44 

29 23849 61.25 73.5 1884 0.56 0.36 2.05 0.36 1.28 0.36 -0.26 0.29 -1.38 0.29 1.00 0.28 

30 23867 61.1 80.25 1937 0.52 0.11 1.94 0.11 1.26 0.10 -0.24 0.52 -1.26 0.52 1.00 0.52 

31 23884 61.6 90.02 1934 0.38 0.08 1.48 0.08 1.19 0.07 -0.16 0.30 -0.79 0.30 1.00 0.30 

32 23891 61.67 96.37 1934 0.44 0.45 1.66 0.45 1.22 0.44 -0.33 0.18 -1.84 0.18 1.00 0.15 

33 23914 60.4 56.52 1888 0.34 0.23 1.32 0.23 1.17 0.22 -0.21 0.17 -1.10 0.17 1.00 0.15 

34 23921 60.68 60.45 1934 0.43 0.19 1.64 0.19 1.22 0.18 -0.28 0.26 -1.53 0.26 1.00 0.25 

35 23933 61.02 69.12 1897 0.47 0.32 1.78 0.32 1.24 0.31 -0.24 0.24 -1.23 0.24 1.00 0.23 

36 23946 60.5 74.02 1944 0.52 0.55 1.93 0.55 1.26 0.55 -0.30 0.33 -1.65 0.33 1.00 0.32 

37 23955 60.43 77.87 1932 0.36 0.12 1.40 0.12 1.18 0.10 -0.28 0.25 -1.50 0.25 1.00 0.24 

38 23966 60.35 84.08 1955 0.75 0.30 2.61 0.30 1.37 0.28 -0.40 0.12 -2.37 0.13 1.00 0.11 

39 23986 60.38 93.03 1941 0.32 0.37 1.25 0.37 1.16 0.37 -0.16 0.13 -0.78 0.14 1.00 0.13 

40 24105 68.47 102.37 1937 0.41 0.08 1.58 0.08 1.21 0.08 -0.26 0.16 -1.39 0.17 1.00 0.15 

41 24125 68.5 112.43 1935 0.30 0.25 1.18 0.25 1.15 0.25 -0.23 0.15 -1.16 0.16 1.00 0.14 

42 24136 68.62 118.33 1938 0.25 0.08 1.02 0.08 1.13 0.08 -0.15 0.32 -0.72 0.32 1.00 0.31 

43 24143 68.73 124 1936 0.20 0.13 0.81 0.13 1.10 0.12 -0.19 0.28 -0.94 0.28 1.00 0.28 

44 24266 67.57 133.4 1869 0.25 0.37 1.03 0.37 1.13 0.37 -0.17 0.35 -0.86 0.35 1.00 0.35 

45 24329 66.25 114.28 1940 0.31 0.10 1.24 0.10 1.16 0.09 -0.12 0.34 -0.59 0.34 1.00 0.33 

46 24343 66.77 123.4 1935 0.23 0.49 0.93 0.49 1.11 0.49 -0.21 0.16 -1.07 0.17 1.00 0.15 

47 24371 66.8 136.68 1942 0.40 0.09 1.52 0.09 1.20 0.08 -0.20 0.42 -1.02 0.42 1.00 0.41 

48 24507 64.27 100.23 1928 0.32 0.11 1.25 0.11 1.16 0.11 -0.21 0.16 -1.09 0.16 1.00 0.14 

49 24538 64.23 116.92 1955 0.38 0.24 1.47 0.24 1.19 0.23 -0.14 0.22 -0.69 0.22 1.00 0.21 

50 24606 63.58 103.97 1951 0.44 0.20 1.68 0.20 1.22 0.20 -0.18 0.16 -0.90 0.16 1.00 0.15 

51 24641 63.78 121.62 1863 0.45 0.14 1.69 0.14 1.22 0.14 -0.16 0.14 -0.77 0.14 1.00 0.13 
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  No. 

Latitude  

(N) 

Longitude 

(E) 

Year 

Dry spells Wet spells 

Clayton Frank 

Gumbel-

Hougaard 

Clayton Frank 

Gumbel-

Hougaard 

τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE 

52 24643 63.95 124.83 1957 0.39 0.36 1.50 0.36 1.20 0.36 -0.22 0.14 -1.14 0.14 1.00 0.12 

53 24661 64 130.3 1940 0.35 0.32 1.35 0.32 1.17 0.31 -0.15 0.55 -0.76 0.55 1.000.55 

54 24671 63.95 135.87 1937 0.40 0.15 1.55 0.15 1.20 0.14 -0.14 0.13 -0.70 0.13 1.00 0.12 

55 24679 63.22 139.6 1942 0.30 0.23 1.20 0.23 1.15 0.23 -0.20 0.43 -1.01 0.43 1.00 0.42 

56 24688 63.25 143.15 1930 0.31 0.23 1.23 0.23 1.16 0.23 -0.24 0.17 -1.26 0.17 1.00 0.15 

57 24713 62.88 108.43 1961 0.57 0.24 2.09 0.24 1.29 0.24 -0.28 0.45 -1.48 0.45 1.00 0.44 

58 24726 62.53 113.87 1959 0.41 0.20 1.55 0.20 1.20 0.20 -0.14 0.19 -0.68 0.20 1.00 0.19 

59 24738 62.15 117.65 1900 0.60 0.33 2.16 0.33 1.30 0.33-0.20 0.25 -1.03 0.25 1.00 0.24 

60 24763 62.82 134.43 1961 0.42 0.09 1.59 0.09 1.21 0.08 -0.16 0.27 -0.81 0.27 1.00 0.26 

61 24802 61.75 102.8 1940 0.36 0.19 1.41 0.19 1.18 0.19 -0.21 0.16 -1.05 0.17 1.00 0.15 

62 24817 61.27 108.02 1936 0.42 0.09 1.59 0.09 1.21 0.08 -0.25 0.30 -1.31 0.31 1.00 0.29 

63 24908 60.33 102.27 1932 0.38 0.18 1.48 0.18 1.19 0.18 -0.22 0.23 -1.15 0.23 1.00 0.22 

64 24923 60.72 114.88 1940 0.36 0.22 1.40 0.22 1.18 0.22 -0.27 0.40 -1.44 0.40 1.00 0.39 

65 24933 60.95 119.3 1959 0.58 0.27 2.10 0.27 1.29 0.27 -0.25 0.31 -1.30 0.31 1.00 0.30 

66 24944 60.4 120.42 1882 0.38 0.09 1.48 0.09 1.19 0.09 -0.23 0.39 -1.16 0.39 1.00 0.38 

67 24951 60.82 125.32 1940 0.47 0.14 1.77 0.14 1.24 0.14 -0.17 0.28 -0.85 0.28 1.00 0.28 

68 24959 62.02 129.72 1834 0.36 0.22 1.39 0.22 1.18 0.22 -0.27 0.16 -1.43 0.16 1.00 0.14 

69 24966 60.38 134.45 1893 0.30 0.31 1.18 0.31 1.15 0.31 -0.13 0.28 -0.63 0.28 1.00 0.28 

70 24967 60.47 130 1942 0.46 0.11 1.74 0.11 1.23 0.10 -0.19 0.18 -0.97 0.18 1.00 0.16 

71 24982 60.72 142.78 1960 0.55 0.23 2.00 0.23 1.27 0.23 -0.26 0.18 -1.35 0.18 1.00 0.16 

72 28064 59.62 65.72 1927 0.40 0.31 1.54 0.31 1.20 0.29 -0.29 0.43 -1.54 0.43 1.00 0.43 

73 28138 58.52 58.85 1888 0.42 0.24 1.60 0.24 1.21 0.22 -0.30 0.24 -1.64 0.24 1.00 0.22 

74 28144 58.87 60.78 1890 0.53 0.10 1.96 0.10 1.27 0.09 -0.26 0.40 -1.37 0.40 1.00 0.40 

75 28255 58.05 63.68 1940 0.53 0.20 1.96 0.20 1.27 0.19 -0.32 0.16 -1.78 0.16 1.00 0.14 

76 28275 58.15 68.25 1884 0.47 0.40 1.75 0.40 1.23 0.40 -0.30 0.29 -1.63 0.29 1.00 0.28 

77 28367 57.12 65.43 1950 0.42 0.24 1.59 0.24 1.21 0.22 -0.32 0.25 -1.74 0.25 1.00 0.24 

78 28434 56.65 57.78 1926 0.50 0.13 1.86 0.13 1.25 0.11 -0.32 0.35 -1.79 0.35 1.00 0.34 
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  No. 

Latitude  

(N) 

Longitude 

(E) 

Year 

Dry spells Wet spells 

Clayton Frank 

Gumbel-

Hougaard 

Clayton Frank 

Gumbel-

Hougaard 

τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE 

79 28440 56.83 60.63 1831 0.54 0.29 1.99 0.29 1.27 0.28 -0.30 0.15 -1.61 0.16 1.00 0.13 

80 28445 56.73 61.07 1959 0.57 0.36 2.09 0.36 1.29 0.35 -0.27 0.35 -1.42 0.35 1.00 0.34 

81 28493 56.9 74.38 1887 0.51 0.41 1.90 0.41 1.26 0.40 -0.35 0.31 -2.02 0.31 1.00 0.29 

82 28537 55.7 57.9 1940 0.49 0.10 1.83 0.10 1.24 0.09 -0.28 0.34 -1.51 0.34 1.00 0.33 

83 28552 56.07 63.65 1894 0.54 0.66 1.99 0.66 1.27 0.66 -0.27 0.54 -1.42 0.54 1.00 0.54 

84 28561 56.02 65.7 1959 0.54 0.30 1.97 0.30 1.27 0.29 -0.27 0.42 -1.41 0.42 1.00 0.42 

85 28573 56.1 69.43 1925 0.44 0.42 1.67 0.42 1.22 0.41 -0.39 0.27 -2.32 0.27 1.00 0.26 

86 28630 55.17 59.67 1936 0.67 0.10 2.39 0.10 1.34 0.09 -0.25 0.79 -1.33 0.79 1.00 0.78 

87 28661 55.47 65.4 1893 0.55 0.32 2.00 0.32 1.27 0.32 -0.25 0.23 -1.31 0.23 1.00 0.22 

88 28666 55.25 67.3 1961 0.59 0.112.15 0.11 1.30 0.10 -0.29 0.31 -1.60 0.31 1.00 0.30 

89 28679 54.83 69.15 1890 0.54 0.40 1.99 0.40 1.27 0.40 -0.22 0.47 -1.12 0.47 1.00 0.47 

90 28698 55.02 73.38 1875 0.47 0.17 1.77 0.17 1.24 0.17 -0.27 0.42 -1.43 0.42 1.00 0.41 

91 28748 54.08 61.62 1940 0.39 0.54 1.51 0.54 1.20 0.54 -0.22 0.35 -1.12 0.36 1.00 0.35 

92 28833 53.88 59.2 1903 0.56 0.14 2.05 0.14 1.28 0.14 -0.24 0.34 -1.23 0.34 1.00 0.34 

93 28895 53.78 73.88 1959 0.59 0.12 2.14 0.12 1.30 0.10 -0.27 0.18 -1.43 0.18 1.00 0.16 

94 28952 53.22 63.62 1902 0.48 0.28 1.79 0.28 1.24 0.27 -0.30 0.32 -1.61 0.32 1.00 0.31 

95 29023 59.85 81.95 1940 0.60 0.33 2.17 0.33 1.30 0.33 -0.26 0.48 -1.35 0.48 1.00 0.48 

96 29111 59.22 78.23 1940 0.42 0.11 1.62 0.11 1.21 0.09 -0.27 0.92 -1.42 0.92 1.00 0.92 

97 29154 58.88 87.75 1940 0.43 0.30 1.64 0.30 1.22 0.29 -0.29 0.55 -1.59 0.55 1.00 0.54 

98 29231 58.3 82.88 1925 0.37 0.24 1.43 0.24 1.18 0.24 -0.31 0.25 -1.67 0.25 1.00 0.24 

99 29263 58.45 92.15 1853 0.53 0.29 1.96 0.29 1.27 0.29 -0.24 0.25 -1.27 0.25 1.000.24 

100 29282 58.38 97.45 1930 0.34 0.23 1.33 0.23 1.17 0.22 -0.27 0.37 -1.44 0.37 1.00 0.37 

101 29313 57.57 79.43 1927 0.42 0.29 1.61 0.29 1.21 0.29 -0.26 0.26 -1.38 0.26 1.00 0.25 

102 29328 57 82.07 1934 0.35 0.10 1.38 0.10 1.18 0.10 -0.25 0.29 -1.300.29 1.00 0.28 

103 29348 57.07 86.22 1940 0.29 0.34 1.17 0.34 1.15 0.34 -0.29 0.22 -1.56 0.22 1.00 0.21 

104 29379 57.2 94.55 1988 0.46 0.34 1.74 0.34 1.23 0.34 -0.20 0.62 -0.99 0.62 1.00 0.62 

105 29393 57.65 99.53 1959 0.54 0.23 1.98 0.23 1.27 0.22 -0.29 0.42 -1.54 0.42 1.00 0.41 



 

115 

 

  No. 

Latitude  

(N) 

Longitude 

(E) 

Year 

Dry spells Wet spells 

Clayton Frank 

Gumbel-

Hougaard 

Clayton Frank 

Gumbel-

Hougaard 

τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE 

106 29418 56.33 78.37 1940 0.54 0.30 1.99 0.30 1.27 0.29 -0.30 0.38 -1.62 0.38 1.00 0.37 

107 29430 56.5 84.92 1837 0.46 0.11 1.74 0.11 1.23 0.10 -0.24 0.41 -1.27 0.41 1.00 0.41 

108 29467 56.28 90.52 1940 0.46 0.24 1.72 0.241.23 0.23 -0.31 0.36 -1.70 0.36 1.00 0.35 

109 29539 55.67 84.4 1940 0.30 0.42 1.20 0.42 1.15 0.42 -0.22 0.24 -1.13 0.24 1.00 0.23 

110 29541 56.07 85.62 1940 0.38 0.35 1.48 0.35 1.19 0.34 -0.26 0.46 -1.38 0.46 1.00 0.45 

111 29557 55.75 88.3 1940 0.50 0.14 1.85 0.15 1.25 0.12 -0.33 0.32 -1.81 0.32 1.00 0.31 

112 29570 56.03 92.75 1914 0.35 0.45 1.38 0.45 1.18 0.45 -0.28 0.30 -1.51 0.30 1.00 0.29 

113 29580 56.17 95.27 1940 0.51 0.34 1.90 0.34 1.26 0.34 -0.24 0.38 -1.26 0.38 1.00 0.37 

114 29594 55.95 981940 0.46 0.10 1.74 0.10 1.23 0.09 -0.20 0.31 -1.00 0.31 1.00 0.30 

115 29605 55.22 75.97 1940 0.38 0.53 1.48 0.53 1.19 0.52 -0.26 0.40 -1.39 0.40 1.00 0.40 

116 29612 55.33 78.37 1900 0.40 0.39 1.53 0.39 1.20 0.38 -0.25 0.16 -1.29 0.17 1.00 0.14 

117 29638 54.9 82.95 1930 0.29 0.60 1.15 0.60 1.14 0.60 -0.23 0.39 -1.17 0.39 1.00 0.38 

118 29645 55.25 86.22 1955 0.37 0.40 1.44 0.40 1.19 0.40 -0.15 0.21 -0.76 0.22 1.00 0.21 

119 29664 55.1 90.83 1958 0.46 0.20 1.73 0.21 1.23 0.19 -0.28 0.35 -1.52 0.35 1.00 0.34 

120 29698 54.88 99.03 1941 0.13 0.32 0.54 0.32 1.06 0.32 -0.10 0.47 -0.48 0.47 1.00 0.47 

121 29752 54.75 88.82 1932 0.62 0.25 2.22 0.25 1.31 0.25 -0.21 0.35 -1.06 0.35 1.00 0.35 

122 29789 54.22 96.97 1935 0.39 0.36 1.50 0.36 1.19 0.35 -0.20 0.33 -1.01 0.33 1.00 0.32 

123 29807 53.35 75.45 1936 0.37 0.10 1.43 0.10 1.18 0.09 -0.23 0.23 -1.18 0.24 1.00 0.23 

124 29822 53.82 81.27 1940 0.35 0.41 1.37 0.41 1.18 0.41 -0.29 0.47 -1.53 0.47 1.00 0.47 

125 29838 53.43 83.52 1838 0.26 0.37 1.04 0.37 1.13 0.36 -0.23 0.38 -1.16 0.38 1.00 0.38 

126 29849 53.33 87.18 1955 0.34 0.49 1.34 0.49 1.17 0.49 -0.26 0.46 -1.39 0.46 1.00 0.46 

127 29858 53.28 89.07 1947 0.38 0.35 1.45 0.35 1.19 0.34 -0.28 0.36 -1.51 0.36 1.00 0.35 

128 29862 53.77 91.32 1959 0.45 0.38 1.69 0.38 1.22 0.38 -0.18 0.17 -0.89 0.17 1.00 0.16 

129 29866 53.72 91.7 1885 0.47 0.29 1.77 0.29 1.24 0.29 -0.19 0.24 -0.93 0.24 1.00 0.23 

130 29915 52.97 78.65 1940 0.36 0.29 1.41 0.29 1.18 0.28 -0.27 0.34 -1.40 0.34 1.00 0.33 

131 29923 53.08 82.33 1955 0.39 0.32 1.50 0.33 1.19 0.31 -0.21 0.16 -1.04 0.17 1.00 0.15 

132 29939 52.68 84.93 1940 0.02 0.11 0.07 0.11 1.01 0.11 -0.02 0.47 -0.10 0.47 1.00 0.47 
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  No. 

Latitude  

(N) 

Longitude 

(E) 

Year 

Dry spells Wet spells 

Clayton Frank 

Gumbel-

Hougaard 

Clayton Frank 

Gumbel-

Hougaard 

τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE 

133 29974 52.8 93.23 1926 0.34 0.09 1.33 0.09 1.17 0.08 -0.19 0.31 -0.94 0.31 1.00 0.30 

134 29998 52.5 99.821934 0.30 0.57 1.21 0.57 1.15 0.57 -0.25 0.27 -1.31 0.27 1.00 0.27 

135 30028 59.28 106.17 1944 0.18 0.21 0.75 0.21 1.09 0.20 -0.13 0.29 -0.61 0.29 1.00 0.29 

136 30054 59.45 112.58 1929 0.32 0.08 1.25 0.08 1.16 0.08 -0.19 0.27 -0.95 0.27 1.00 0.26 

13730069 59 116.92 1941 0.70 0.12 2.48 0.12 1.35 0.10 -0.22 0.39 -1.11 0.39 1.00 0.39 

138 30089 59.02 121.77 1940 0.23 0.10 0.94 0.10 1.12 0.09 -0.19 0.29 -0.93 0.29 1.00 0.28 

139 30209 57.03 102.3 1961 0.49 0.35 1.84 0.35 1.25 0.34 -0.16 0.30 -0.81 0.30 1.00 0.29 

140 30219 57.1 104.97 1940 0.28 0.29 1.12 0.29 1.14 0.28 -0.21 0.48 -1.05 0.48 1.00 0.48 

141 30230 57.77 108.07 1892 0.39 0.23 1.49 0.23 1.19 0.23 -0.19 0.47 -0.97 0.47 1.00 0.47 

142 30252 57.82 114.17 1959 0.41 0.22 1.57 0.22 1.21 0.21 -0.24 0.19 -1.26 0.19 1.00 0.17 

143 30253 57.85 114.23 1931 0.29 0.09 1.16 0.09 1.15 0.09 -0.12 0.28 -0.58 0.28 1.00 0.28 

144 30309 56.28 101.75 1901 0.31 0.31 1.21 0.31 1.15 0.31 -0.18 0.34 -0.91 0.34 1.00 0.34 

145 30328 56.05 105.83 1932 0.26 0.35 1.03 0.35 1.13 0.35 -0.19 0.37 -0.96 0.37 1.00 0.36 

146 30337 56.28 107.62 1959 0.16 0.55 0.67 0.55 1.08 0.55 -0.14 0.28 -0.69 0.28 1.00 0.28 

147 30356 56.38 114.83 1964 0.40 0.30 1.55 0.30 1.20 0.29 -0.13 0.33 -0.61 0.33 1.00 0.33 

148 30372 56.9 118.27 1938 0.43 0.20 1.62 0.20 1.21 0.18 -0.26 0.17 -1.40 0.17 1.00 0.15 

149 30385 56.58 121.48 1940 0.30 0.19 1.18 0.19 1.15 0.19 -0.15 0.31 -0.73 0.31 1.00 0.31 

150 30393 56.83 124.87 1927 0.22 0.17 0.90 0.17 1.11 0.15 -0.21 0.23 -1.07 0.23 1.00 0.22 

151 30433 55.78 109.55 1933 0.15 0.41 0.62 0.41 1.07 0.41 0.02 0.43 0.11 0.43 1.01 0.43 

152 30437 55.15 107.62 1943 -0.01 0.29 -0.06 0.29 1.00 0.29 0.06 0.13 0.27 0.13 1.03 0.13 

153 30469 55.12 116.77 1935 0.26 0.36 1.04 0.36 1.13 0.36 -0.14 0.15 -0.69 0.15 1.00 0.14 

154 30471 55.87 117.37 1940 0.17 0.15 0.71 0.15 1.09 0.14 -0.17 0.14 -0.83 0.15 1.00 0.13 

155 30484 55.43 120.55 1959 0.38 0.25 1.45 0.26 1.19 0.25 -0.27 0.35 -1.46 0.35 1.00 0.34 

156 30493 55.97 124.88 1940 0.20 0.45 0.83 0.45 1.10 0.45 -0.11 0.35 -0.55 0.35 1.00 0.35 

157 30504 54.6 100.63 1940 0.05 0.09 0.21 0.09 1.02 0.09 -0.05 0.14 -0.25 0.14 1.00 0.14 

158 30521 54.8 105.17 1938 0.04 0.11 0.19 0.11 1.02 0.11 -0.04 0.13 -0.17 0.13 1.00 0.13 

159 30536 54.33 109.53 1959 -0.03 0.12 -0.15 0.12 1.00 0.11 -0.08 0.11 -0.35 0.11 1.00 0.11 
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  No. 

Latitude  

(N) 

Longitude 

(E) 
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Dry spells Wet spells 

Clayton Frank 

Gumbel-

Hougaard 

Clayton Frank 

Gumbel-

Hougaard 

τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE τ RMSE 

160 30554 54.47 113.58 1936 0.12 0.15 0.51 0.15 1.06 0.14 -0.04 0.14 -0.19 0.14 1.00 0.14 

161 30555 54.62 113.13 1938 0.44 0.35 1.66 0.35 1.22 0.35 -0.19 0.46 -0.93 0.46 1.00 0.46 

162 30565 54.43 116.53 1959 0.23 0.11 0.92 0.11 1.11 0.10 -0.25 0.25 -1.31 0.25 1.00 0.24 

163 30612 54 103.07 1962 0.19 0.13 0.78 0.13 1.09 0.13 -0.08 0.15 -0.38 0.15 1.00 0.15 

164 30627 53.1 105.53 1961 0.04 0.14 0.18 0.14 1.02 0.14 -0.07 0.59 -0.31 0.59 1.00 0.59 

165 30632 53.85 108.58 1950 0.20 0.61 0.83 0.61 1.10 0.61 -0.13 0.54 -0.64 0.54 1.00 0.54 

166 30635 53.42 109.02 1933 0.17 0.33 0.73 0.33 1.09 0.33 -0.07 0.13 -0.33 0.13 1.00 0.12 

167 30636 53.62 109.63 1898 0.10 0.47 0.42 0.47 1.05 0.46 -0.10 0.41 -0.48 0.41 1.00 0.41 

168 30650 53.2 112.78 1940 0.11 0.33 0.48 0.33 1.06 0.33 -0.04 0.14 -0.20 0.14 1.00 0.14 

169 30673 53.75 119.73 1910 0.18 0.46 0.75 0.46 1.09 0.45 -0.18 0.38 -0.90 0.38 1.00 0.38 

170 30692 54 123.97 1911 0.31 0.28 1.22 0.28 1.15 0.27 -0.12 0.23 -0.55 0.23 1.00 0.23 

171 30703 52.97 101.98 1940 0.28 0.33 1.10 0.33 1.14 0.33 -0.17 0.34 -0.82 0.34 1.00 0.33 

172 30710 52.27 104.35 1834 0.17 0.25 0.72 0.25 1.09 0.25 -0.05 0.32 -0.22 0.32 1.00 0.32 

173 30716 52.47 104.37 1959 0.09 0.20 0.38 0.20 1.04 0.20 -0.14 0.40 -0.68 0.40 1.00 0.40 

174 30727 52.03 105.42 1940 0.11 0.28 0.47 0.28 1.06 0.28 -0.19 0.26 -0.95 0.26 1.00 0.26 

175 30745 52.53 111.55 1940 0.19 0.29 0.78 0.29 1.09 0.29 -0.09 0.25 -0.42 0.25 1.00 0.25 

176 30758 52.08 113.48 1890 0.17 0.33 0.72 0.33 1.09 0.33 -0.03 0.24 -0.15 0.24 1.00 0.24 

177 30777 52.23 117.7 1940 0.32 0.32 1.28 0.32 1.16 0.31 -0.21 0.17 -1.05 0.17 1.00 0.15 

178 30811 51.73 102.53 1961 0.03 0.09 0.12 0.09 1.01 0.09 -0.03 0.13 -0.15 0.13 1.00 0.13 

179 30815 51.53 103.6 1936 0.31 0.37 1.23 0.37 1.16 0.37 -0.16 0.41 -0.77 0.41 1.00 0.41 

180 30822 51.72 105.85 1940 0.23 0.30 0.92 0.30 1.11 0.30 -0.04 0.39 -0.20 0.39 1.00 0.39 

181 30823 51.83 107.6 1847 0.09 0.32 0.39 0.32 1.05 0.32 -0.03 0.33 -0.14 0.33 1.00 0.33 

182 30825 51.75 107.28 1961 0.10 0.22 0.44 0.22 1.05 0.22 0.05 0.27 0.22 0.27 1.03 0.27 

183 30844 51.35 110.47 1940 0.37 0.18 1.44 0.18 1.19 0.18 -0.10 0.22 -0.48 0.22 1.00 0.22 

184 30915 50.43 103.6 1940 0.13 0.27 0.56 0.27 1.07 0.27 -0.12 0.30 -0.58 0.30 1.00 0.30 

185 30925 50.37 106.45 1940 0.04 0.24 0.16 0.24 1.02 0.24 -0.09 0.29 -0.43 0.29 1.00 0.29 

186 30935 50.37 108.75 1940 0.21 0.36 0.88 0.36 1.11 0.36 -0.15 0.25 -0.74 0.25 1.00 0.24 
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187 30949 49.57 111.97 1927 0.46 0.14 1.73 0.15 1.23 0.13 -0.24 0.17 -1.23 0.17 1.000.15 

188 30954 49.7 112.67 1940 0.49 0.29 1.83 0.29 1.25 0.28 -0.29 0.25 -1.56 0.25 1.00 0.24 

189 31004 58.62 125.03 1926 0.46 0.28 1.75 0.28 1.23 0.27 -0.26 0.15 -1.37 0.16 1.00 0.13 

190 31026 58.73 130.62 1940 0.19 0.53 0.78 0.53 1.09 0.53 0.00 0.16 -0.01 0.16 1.00 0.16 

191 31062 59.77 137.67 1945 0.31 0.23 1.21 0.24 1.15 0.21 -0.26 0.18 -1.40 0.18 1.00 0.15 

192 31088 59.37 143.2 1843 0.29 0.30 1.15 0.30 1.14 0.30 -0.14 0.14 -0.66 0.14 1.00 0.13 

193 31102 57.65 125.97 1950 0.51 0.26 1.89 0.26 1.25 0.26 -0.35 0.67 -1.96 0.67 1.00 0.66 

194 31137 56.28 131.13 1945 0.08 0.12 0.35 0.12 1.04 0.11 -0.13 0.18 -0.62 0.18 1.00 0.17 

195 31152 57.65 136.15 1940 0.38 0.11 1.48 0.11 1.19 0.10 -0.25 0.14 -1.32 0.14 1.00 0.12 

196 31168 56.45 138.15 1891 0.42 0.17 1.60 0.17 1.21 0.17 -0.19 0.14 -0.95 0.14 1.00 0.13 

197 31235 55.33 134.5 1959 0.45 0.14 1.70 0.13 1.22 0.13 -0.25 0.47 -1.29 0.47 1.00 0.47 

198 31253 54.72 128.87 1909 0.50 0.35 1.87 0.35 1.25 0.35 -0.24 0.28 -1.24 0.28 1.00 0.28 

199 35041 52.43 60.351940 0.56 0.31 2.05 0.31 1.28 0.31 -0.28 0.39 -1.49 0.39 1.00 0.38 

200 35078 51.82 68.37 1936 0.60 0.23 2.18 0.23 1.30 0.23 -0.24 0.39 -1.23 0.39 1.00 0.38 

201 35133 51.52 59.95 1936 0.63 0.28 2.27 0.28 1.32 0.28 -0.34 0.22 -1.90 0.22 1.00 0.20 

202 35188 51.13 71.37 1881 0.45 0.37 1.70 0.37 1.22 0.37 -0.30 0.17 -1.65 0.17 1.00 0.15 

203 35233 50.75 59.55 1937 0.46 0.29 1.72 0.29 1.23 0.29 -0.30 0.47 -1.60 0.48 1.00 0.47 

204 35358 49.63 63.5 1900 0.46 0.28 1.73 0.28 1.23 0.28 -0.17 0.20 -0.86 0.20 1.000.19 

205 35394 49.8 73.15 1936 0.23 0.39 0.95 0.39 1.12 0.39 -0.20 0.40 -0.99 0.40 1.00 0.39 

206 35576 48.3 69.65 1937 0.23 0.43 0.93 0.43 1.11 0.43 -0.29 0.54 -1.54 0.54 1.00 0.53 

207 35663 47.83 66.75 1926 0.20 0.30 0.82 0.30 1.10 0.29 -0.19 0.28 -0.93 0.28 1.00 0.28 

208 35796 46.8 75.08 1936 0.17 0.37 0.71 0.37 1.09 0.37 -0.16 0.40 -0.77 0.40 1.00 0.40 

209 36034 51.58 81.2 1924 0.33 0.34 1.31 0.34 1.17 0.33 -0.23 0.56 -1.16 0.56 1.00 0.56 

210 36038 51.15 82.17 1901 0.52 0.71 1.92 0.71 1.26 0.70 -0.24 0.33 -1.23 0.33 1.00 0.32 

211 36045 51.63 84.33 1955 0.42 0.12 1.59 0.12 1.21 0.12 -0.13 0.25 -0.63 0.25 1.00 0.25 

212 36055 51.9 86 1940 0.44 0.09 1.66 0.09 1.22 0.08 -0.14 0.30 -0.67 0.30 1.00 0.29 

213 36064 51.77 87.6 1940 0.21 0.12 0.85 0.12 1.10 0.11 -0.14 0.40 -0.69 0.40 1.00 0.40 
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214 36096 51.72 94.5 1943 0.31 0.34 1.23 0.34 1.16 0.34 -0.18 0.48 -0.89 0.48 1.00 0.47 

215 36099 51.15 94.52 1961 0.30 0.22 1.20 0.22 1.15 0.22 -0.23 0.15 -1.16 0.15 1.00 0.13 

216 36103 52.47 96.1 1945 0.04 0.13 0.18 0.13 1.02 0.13 0.06 1.15 0.26 1.15 1.03 1.15 

217 36177 50.42 80.3 1901 0.16 0.09 0.69 0.09 1.08 0.09 -0.15 0.31 -0.72 0.31 1.00 0.31 

218 36229 50.27 85.62 1940 0.37 0.25 1.45 0.25 1.19 0.25 -0.17 0.39 -0.83 0.39 1.00 0.39 

219 36259 50 88.67 1933 0.44 0.22 1.66 0.23 1.22 0.21 -0.30 0.13 -1.65 0.13 1.00 0.11 

220 36278 50.38 90.43 1961 0.36 0.46 1.39 0.46 1.18 0.46 -0.28 0.48 -1.47 0.48 1.00 0.48 

221 36307 50.27 95.12 1949 0.19 0.21 0.80 0.21 1.10 0.21 -0.27 0.40 -1.42 0.40 1.00 0.39 
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