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Abstract

Deep learning approaches have had success in many domains recently, partic-

ularly in domains with large amounts of training data. However, there are

domains without a sufficient quantity of training data, or where the training

data present is of insufficient quality. Transfer learning approaches can help

in such low-data problems, but still tends to assume access to sufficient source

domain data and a sufficient signal for transfer. In this work, we propose a

novel approach for transfer learning called Parameter Search Transfer Learning

(PSTL) which directly searches over parameters of a neural network in order

to minimize the impact of low training samples in both source and target do-

mains. Across Reinforcement Learning (RL), Regression, and Classification

tasks we demonstrate that PSTL meets or exceeds the performance of trans-

fer learning baselines, which we hypothesize is due to its ability to identify a

better gradient.
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Preface

This thesis presents original work by Mohan Sai Singamsetti under the su-

pervision of Dr. Matthew Guzdial. The work is currently under review at

NeurIPS 2023. Some of the experiments conducted in this work are related to

Health Domain tasks and have conducted in collaboration with Dr. Jane Cook

(Clinical Lecturer, University of Calgary), and Dr. David Olson (Professor,

Univeristy of Alberta). A few of the techniques in this thesis were from our

previous work CENAS [29].
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Dream is not that you see in sleep, the dream is something that does not let

you sleep.

– A. P. J. Abdul Kalam, Former President of India, 1943.
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Chapter 1

Introduction

Deep neural networks (DNNs) have transformed machine learning, achieving

state-of-art performance in a wide variety of tasks including computer vision,

speech recognition and natural language processing [32]. Modern deep neural

networks tend to perform well when they have large structures (i.e., millions

of parameters) and are trained on large amounts of data [4], [12]. However,

this results in two key challenges. First, DNNs require a significant amount of

computation to learn the representation between the input and output features

through backpropagation. Second, there are application domains where we

do not have enough training data, and there is some speculation that such

domains may become more common in the future [35]. As a result, we cannot

presently utilize these approaches in all domains.

Transfer learning refers to the process of training on a source task and trans-

ferring the knowledge learned from the source task to a target task. Transfer

learning [15] can reduce the size requirement for training data by utilizing

pre-trained models trained on existing, sufficiently large datasets for similar

tasks. Many approaches exist including zero-shot learning [39], few-shot learn-

ing [8] and domain adaptation to transfer knowledge from a source domain to

a target domain. Few-shot learning refers to the process of training ANNs

on few samples of training data. Zero-shot learning is a process that allows

machine learning models to generalize to new unseen classes or task without

direct training examples. However, they tend to require either the same set of

classes or features (zero-shot and few-shot) or some other parallelism between
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the domains (domain adaptation), learning additional feature representations

or manually-designed features for adapting to the new domain. Fine-tuning

is a common transfer learning approach. With a fine-tuning approach, we

adapt a model trained on source domain dataset to a target domain by train-

ing the model via backpropagation on a target domain dataset. Fine-tuning

can lead to other issues like overfitting and catastrophic forgetting where the

model loses its generalization ability on the target task or abruptly forgets the

knowledge learned from the source domain, particularly when dealing with

limited training data. It is therefore often ill-suited to domains with very

limited training data.

Search algorithms are a set of techniques that attempt to find an opti-

mal solution to a problem by exploring the space of possible solutions in a

structured and efficient way. Many applications of search to DNNs like Neural

Architecture Search (NAS) [17] and Hyperparameter Optimization (HPO) [1]

have shown significant success. However, these approaches tend to require

a large amount of training data and well-designed fitness functions. NAS

searches for network architectures within the space of possible architectures.

HPO searches over hyperparameters of networks. We take inspiration from

an approach for low data transfer first introduced by Singamsetti et.al [29].

In this thesis, we propose a similar approach that leverages the search for

low-data problems but search over the parameters of fixed architectures.

In this thesis, we introduce Parameter Search Transfer Learning (PSTL), a

stochastic greedy optimization over a neural network’s parameters for transfer

learning tasks. More complex optimization approaches like gradient descent

backpropagation have shown great success in parameter optimization but re-

quire significant computation and training data. Our results show that PSTL,

an approach that relies on a simple parameter search optimization, can out-

perform more complex approaches across a variety of cases.
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1.1 Research Questions and Related Contri-

butions

Considering the above motivation for the challenges with low-sample datasets

and common issues with transfer learning across domains, we would like to

answer the following research questions in this thesis.

• How can Artificial Neural Networks (ANNs) provide advantages in tasks

with low-data compared to other conventional machine learning ap-

proaches?

• Can PSTL achieve optimal parameters with sufficient training data on

both the source and target domain?

• Can PSTL achieve optimal parameters with limited training on the

source and target domain?

• How well can PSTL perform compared to naive transfer learning ap-

proaches across different domains?

The contributions of this thesis are summarized as follows:

• Proposed an efficient stochastic greedy optimization method that searches

over the parameter values of an architecture Parameter Search Transfer

Learning (PSTL).

• Demonstrated how PSTL helps to achieve better performance at the

early stages of training compared to complex optimization approaches

like backpropagation (gradient descent) on target domains with sufficient

data.

• Provided evidence that, on domains with insufficient data, using search-

based approaches can help us to find more optimal models.

• Evaluated PSTL on three different domains: Chip-Placement Problem

(Reinforcement Learning), Health outcomes prediction (Regression) and

Image Classification benchmarks (Classification).
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1.2 Outline

This thesis is organized into six main parts. It begins with an introduction

that addresses the research questions related to Artificial Neural Networks

(ANNs) in transfer learning problems. The subsequent section, Chapter 2,

provides an overview of the background concepts and related work relevant to

the thesis. In Chapter 3, we introduce our method Parameter Search Transfer

Learning (PSTL). This chapter explores the various problem settings where

PSTL is applicable and presents a comprehensive system overview, detailing

the three-step process involved: Source training, Parameter Searching, and

Postprocessing. Chapter 4 delves into the experimental setup and familiar-

izes readers with the domains we used for evaluating PSTL. These domains

are chip-placement problems in an RL-based environment, a regression-based

task focused on DNA-Health Outcomes prediction with limited data, and Im-

age Classification tasks. Moving on to Chapter 5, the thesis describes the

appropriate baselines for the problem and conducts a performance analysis,

comparing the effectiveness of PSTL against other baseline approaches. We

run experiments considering two cases, one with limited data in both the source

and target domains, and one with sufficient data in both domains. Finally,

Chapter 6 serves as the conclusion, providing an overview of how the proposed

approach benefits tasks with low data and discussing potential implications for

future work.
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Chapter 2

Background

This chapter provides readers with the background knowledge required to un-

derstand the work presented in this thesis. In section 2.1 and 2.2 we introduce

the Artificial Neural Network and Long Short-Term Memory (LSTM) to famil-

iarize readers with the neural network approaches used in this thesis. In section

2.3 we give an outline of Transfer Learning, our proposed approach PSTL is

a transfer learning approach, and so we discuss current approaches and chal-

lenges in transfer learning. In section 2.4 we introduce parameter searching

and overview similar problem domains that deal with search-based problems.

In section 2.5 we introduce readers to neuro-evolutionary optimization due to

it and PSTL relying on search to optimize neural network parameters. In

sections 2.6, 2.7 and 2.8 we provide readers with the necessary background in-

formation and related work in our application domains (Chip-Placement, DNA

to Health Outcomes and Image Classification) that we use for evaluation.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the

human brain. ANNs are the most dominant component of modern machine

learning and have shown huge success in numerous domains like Computer Vi-

sion (CV), Natural Language Processing (NLP), speech recognition, anomaly

detection recommendation systems, and more [23]. ANNs are known as func-

tion approximators, where the goal of the neural networks is to build a function

that can map between input and output data. ANNs are most commonly op-
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Figure 2.1: Artificial Neural Network Structure

timized via minimizing loss [11], where the loss is the difference between the

output prediction and the ground truth labels.

ANNs are composed of interconnected nodes called neurons, which are used

to process and analyze complex data. The structure of ANNs can generally

be divided into three parts: input layer, hidden layer(s) and output layer.

This standard structure of ANNs is shown in 2.1. The input data to ANNs is

pre-processed and then passed to the input layer of the ANN. The dimensions

of the input layer and the input data should be the same. This ensures that

there is no mismatch in dimensionality between the input data and the input

layer of the ANN. Dimensionality varies from problem-to-problem.

ANNs receive input data from the input layers, then process it in the hidden

layers and finally output the values in the output layers, where the number

of neurons in the output layers depends on the tasks (e.g., for a classification

task, the number of classes equals the number of neurons in the output layer).

ANNs employ hidden layers to enhance the learning capacity and enable the

modelling of more complex relationships within the data.

Each neuron in a layer is connected to every other neuron in the previous

layer with weights and bias forming a network of connections. Weights repre-

sent the strength of connections between neurons, while bias is an additional

parameter added to each neuron, adjusting the overall output independently

of the inputs. Each neuron employs an activation function to modify the in-

put into the output to introduce non-linearity. This helps to learn non-linear

representations between the input and the output, and to learn more complex
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relationships present in the data. The choice of activation functions in neu-

ral networks depends on the specific task. For example, sigmoid activation

is common when the output needs to be bounded between 0 and 1, as in bi-

nary classification problems. Another common activation function is Rectified

Linear Unit (ReLU), which is suitable for most cases and commonly used in

hidden layers of deep networks, which promotes sparsity and helps in avoid-

ing the vanishing gradient problem in ANNs [18]. We discuss this problem in

section 2.2

Training ANNs involves optimizing parameters (the process of iteratively

adjusting the weights and biases of the network) to minimize the difference

between the predicted output and the desired outputs. For data preparation,

we split the dataset into training, testing and validation sets. The validation

set is used to evaluate the performance of the ANNs during training and

guide the model’s hyperparameter tuning. Pre-processing of the data also

includes techniques like normalization, scaling and handling missing values.

The network is either randomly initialized for general tasks or we use pre-

trained weights in transfer learning tasks. The traditional model training

process involves two steps:

Forward Process: passes the training data through the network in the

forward direction, where each layer applies non-linear activations to compute

the output prediction. A loss function then measures the difference between

the output prediction and the actual labels. The most commonly used loss

functions Mean Squared Error (MSE) for regression tasks are and cross-entropy

for classification tasks.

Backward Process: refers to the process of computing gradients through

a backpropagation algorithm. Backpropagation computes the gradients of the

loss with respect to the weights and biases, starting from the output layer

and moving backward through the network. Then the weights are updated

through an optimization algorithm like gradient descent, to minimize the loss

function and guide the network towards the optimal parameters.
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Figure 2.2: Long short term memory structure.

2.2 Long Short-Term Memory

Recurrent Neural Networks are a type of ANN designed to deal with sequential

or time-series data. Sequential data is a type of data that has a significant order

or sequence of elements, where the order of the elements carries important

information and influences the behaviour of the data. RNNs could be applied

in any task that deals with the analysis and prediction of sequences like NLP,

series analysis, speech recognition, and machine translation [30]. ANNs handle

the input data in a single pass, whereas RNNs have an extra module with

internal memory that allows them to retain information from the previous

input. The memory component of the RNN enables them to capture temporal

dependencies present in sequential data.

One of the major issues with general RNNs is they struggle to handle

longer dependencies, making it difficult for them to capture information that

is far away from the current time step. This common issue in RNNs is known

as the “Vanishing Gradient” problem. The weights in the RNN are updated

using gradients, which are computed using the chain rule of calculus during

backpropagation. The gradients are multiplied at every timestep, representing

the cumulative effect of network parameters on the overall loss function. How-

ever, when the gradients are multiplied over multiple timesteps this makes the

gradients smaller and thus they have almost no impact on the weights at the

initial time steps. To tackle this problem more complex approaches such as

Long Short-Term Memory (LSTM) RNNs have been introduced and used for

predicting time series data more effectively.
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LSTMs contain additional gating mechanisms which control the flow of

information, which helps to selectively remember or forget information from

previous time steps. LSTMs have different gating mechanisms consisting of

input, forget and output gates as shown in Figure 2.2. These gates help to

determine which part of the input and the previous memory state should

remain in the memory gate. The forget gate helps to determine which part

of the information in the memory should be discarded. This uses a sigmoid

activation which outputs values between 0 and 1, representing the degree to

forget. The output gate determines what information will be output as the

hidden state of the LSTM for the current timestep.

The gating mechanisms help the LSTMs capture longer dependencies and

which makes them capable of processing long sequences, carrying forwarding

knowledge to the end of longer sequences. LSTMs have shown great success

in a wide range of domains such as stock market prediction [22], handwriting

recognition [37], machine translation [6] and many other tasks.

2.3 Transfer Learning

Transfer Learning with DNNs involves the transfer of knowledge and parame-

ters from a DNN trained on a source problem dataset to a DNN for a similar

target problem. This approach has achieved significant attention and success

in tasks with limited data. A wide range of techniques exist such as zero-

shot [39], one-shot [8] and few-shot [26] learning to transfer knowledge from

a source domain to a target domain with limited samples of data. But these

kinds of approaches often rely on manual-authored features or additional data

to effectively guide the knowledge transfer process. In this thesis, our pro-

posed approach does not require any additional manually authored features or

training to adapt to the target domain. We also focus on domains that have

limited data in the source and the target domain. There have been many pre-

vious approaches [36] that deal with problems where the target domain data is

limited but the source domain data is abundant. To the best of our knowledge,

there are currently no approaches that utilize DNNs in this transfer learning
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setting to address the problem of both limited source and target domain data.

2.4 Parameter Searching

Parameter searching in Deep Neural Networks is the process of finding the

optimal values for the parameters in a neural network. The search space of

the parameters includes the weights and biases associated with the connections

between the neurons. One of the most common search problems in neural

networks is hyperparameter optimization (HPO) [9], where is the goal is to

find the optimal hyperparameter of an architecture, however in this thesis we

focus on optimizing the parameters of the architecture, which has a much

larger search space compared to the HPO.

Different optimization algorithms have been used to find the optimal pa-

rameters of neural networks. These include random search [3], which involves

randomly sampling parameter combinations from a predefined range of param-

eter distributions, grid search [24], which exhaustively evaluates the predefined

set of parameter combinations, and Bayesian optimization [1], which selects

the parameters based on the relationship between the parameter values and

the objective function using surrogate models, and the well-known parameter

optimization algorithm gradient descent [27], which computes the updates for

the parameters of the network in an iterative fashion by computing gradients

of the parameters. Backpropagation-based approaches have shown huge suc-

cess in various domains in finding optimal parameters, but these approaches

demand heavy computational costs and require large amounts of data to com-

pute optimal parameter values. Our proposed approach PSTL finds better

parameter values in the early stages of training compared to other popular

optimization approaches like gradient descent. In cases with insufficient train-

ing data samples, PSTL outperforms naive gradient descent-based fine-tuning

approaches.
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Figure 2.3: Neuro-evolutionary Workflow

2.5 Neuro-evolutionary Optimization

Neuro-evolutionary optimization is an evolution-inspired algorithm, which com-

bines the concepts of ANNs and ideas from biological evolution. Neuro-

evolutionary is a type of search algorithm often used to optimize the structure

of the network [17], along with its parameters [7]. Genetic algorithms are a

type of Neuro-evolutionary algorithm. There are six main components of the

genetic algorithms w.r.t. searching neural networks and the workflow is as

shown in Figure 2.3.

Population: The population consists of the set of possible architecture

or network structures. Each individual in the population represents a network

with different structures or parameters.

Fitness Evaluation: The fitness function is used to evaluate the perfor-

mance of an individual in the population. which helps to rank the population

from the best to the worst. The choice of the fitness function differs from task

to task. Different metrics such as accuracy, loss, error, and other performance

metrics could be used to compute the fitness score based on the task.

Selection: Selection of individuals (i.e., NN models) from the popula-

tion is the process of choosing parents for the next population. Selection of

the parent models is based on various strategies such as rank-based selection,

tournament selection and roulette wheel selection[2].

Mutation & Crossover: This involves creating new child models from

selected parent models. Different operations such as mutation and crossover

are applied over the parent model to generate the offspring models. Mutation
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refers to the introduction of random changes or perturbations to architecture,

while crossover refers to the process of combining the characteristics of two

parent models to generate an “offspring”.

Termination Criteria: The termination criteria defines when to stop

the algorithm. There are different approaches to terminate the evolutionary

process, the most commonly used methods are setting the maximum number

of generations, and maximum threshold value. But one could even generate

till the computation is exhausted.

These components iterate over multiple generations until the terminal con-

dition is reached. Once the generation is terminated, the best-performing

individual in the final population is selected as the final result for the specific

task. Our PSTL approach is inspired by neuro-evolutionary optimization, with

slight modifications to the off-spring generation and selection mechanism. In

terms of off-spring generation, we employ mutation operations to generate

the child models, and for the selection mechanism, we utilize a simple greedy

method to choose the best parent for the next generation.

2.6 Chip-Placement Problem

Chip-Placement refers to the problem of designing a hardware chip via de-

termining the placement of a number of macro components. This is a graph

optimization problem, where the nodes in the graph are the macro-units and

edges are the wire connections. Placement of the macro components and stan-

dard cells on the chip design is a complex task, which involves multi-objective

optimization, optimizing variables like wirelength, congestion and density of

the circuit. Where the macro components refer to the memory units and

standard cells components like logic gates. A wide range of approaches have

been proposed to solve this problem from using naive divide-and-conquer ap-

proaches [10], [33] to deep reinforcement learning [20]. One of the early ap-

proaches, that has shown long-term success in the Chip-Placement Problem is

Simulated Annealing (SA) [28].

Circuit Training (CT) [20] is a graph optimization approach for the chip-
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placement problem, where an agent learns to make chip-placement decisions

by interacting with the environment and receiving rewards (i.e. minimizing

wirelength, density and congestion). Their approach is based on Reinforce-

ment Learning (RL), a branch of machine learning in which agents interact

with environments and learn to behave optimally by receiving rewards [31].

This is in contrast to the supervised learning branch of machine learning in

which we train a model on existing input and output data pairs, which is

the branch of the other two evaluation domains in this thesis. The original

Circuit Training paper showed that transfer learning applied to placement

problems could help to achieve lower costs at early stages. A recent paper [5]

compared the performance of CT with standard baselines like SA, finding SA

outperforms CT. We ignore the performance of SA as a baseline in this the-

sis because we wanted to see the performance gain of our PSTL approach

w.r.t naive transfer learning approaches. In this thesis, we present a transfer

learning approach that searches and finds the placements of the chip designs

at earlier stages compared to fine-tuning. In this thesis, we include CT as a

baseline for chip-placement and meet or exceed its performance across various

transfer tasks.

2.7 Medical Domain Problem

DNA methylation(DNAm) is the process where the small chemical tag i.e.

methyl group gets added to a DNA sequence. This process controls how the

gene expression either by turning them on or off at the different point of the

DNA sequence. Mapping the relationship between humans DNAm sequences

to health outcomes can help in tasks like predicting fetal health outcomes from

DNA of Maternal smoking during pregnancy (MSP). MSP is linked to many

non-fatal, complex diseases, including depression and anxiety. Some instances

of prior work have attempted to link DNA data to health outcomes [21], [34],

[38]. However, these approaches have most commonly attempted this with

statistical analysis or linear or logistic regression [21] to find the mapping

between these features. It may be possible to outperform this mapping of the
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DNAm sequence and health outcomes with DNNs. In this thesis, we use a Deep

Neural Network model for the task and PSTL to find a better representation

in a transfer learning setting.

2.8 Image Classification

Many papers have used image classification benchmarks to evaluate transfer

learning approaches [17], [29]. Most similar to our own work, Singamsetti et

al. [29] have used a low-sample image classification target dataset for trans-

fer learning and simultaneous Neural Architecture Search (NAS), for finding

optimal architecture and parameters for a model. In this thesis, we evaluate

a similar setting for finding the optimal parameters of the network but with

limited data in both source and target domain. In addition, we do not attempt

NAS.
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Chapter 3

Parameter Search Transfer
Learning(PSTL)

In this chapter, we introduce the readers to an in-depth explanation of Param-

eter Search Transfer Learning (PSTL), In Section 3.1 we introduce readers to

the types of problems our approach is applicable and well-suited to, and detail

the domains that we chose to evaluate PSTL. In Section 3.2 we give a general

overview of the PSTL approach. We overview the method across three sec-

tions. In section 3.3, we describe the first step of the PSTL approach, which

describes the source model training. In section 3.4, we describe the searching

mechanisms and subsection 3.4.1 describes the mutation operations that were

used to explore the search space. Subsection 3.4.2, describes the fitness func-

tions that were used based on different domains. In section 3.5 we describe an

additional post-processing step required for further tuning the model under

certain conditions.

3.1 Problem Definition

In this section we define the type of problems our approach, Parameter Search

Transfer Learning (PSTL), is well-suited for. Specifically, we identify the low-

data transfer problem. We assume the existence of two domains: a source

domain and a target domain representing different problems, with different

environments or datasets. For this problem, we assume two cases, with dif-

ferent effects on PSTL. First, where a source domain with a larger dataset is
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available and a target domain with less training data. Second, with low data

for both the source and target domain. In this thesis, we mainly focus on the

second case. When given enough training samples on the source domain, the

source model will have a better representation of source task, compared to the

model trained with limited data on the source task, But we expect to see an

improvement from the PSTL approach in both the cases, as this searches for

the relevant gradients that can help to optimize the model on the target task.

Our low-data transfer learning problem has two major characteristics. (1)

A small amount of data is available for training. By a small amount of data,

we do not indicate that this type of problem is solely relevant to supervised

learning approaches. It is also relevant in RL setups in which we wish to

minimize the number of interactions in an environment (i.e., if the environment

is dangerous or costly to interact in). (2) We have a source domain with

additional data or more episodes of training available.

In this thesis, we focus on three domains. First, we evaluated PSTL on

the chip placement problem in a reinforcement learning-based environment

[20]. Second, we evaluated this approach in the medical domain to evalu-

ate the predictive performance of the health outcomes, in a regression-based

framework [21], To further show the generalizability of the PSTL approach,

we further demonstrated it in the image classification domain.

We now define the similarities of the source and target domains, In the RL

task, we have similar actions in terms of placing macro components on a chip

canvas. For the regression task, we predict the same output value prediction

for both domains, but with entirely distinct input features. For the image

classification task, we have the same output features between the source and

target domains, but largely distinct input features.

3.2 System Overview

In this section, we present our approach Parameter Search Transfer Learning

(PSTL). We divide our PSTL method into three main steps. First, we train the

model on the source domain, which can be accomplished in whatever fashion
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best suits the domain. Second, we transfer the weights from the source to the

target domain and apply PSTL to further optimize the parameter values to

attempt to improve the model representation for the target domain. Third,

apply fine-tuning on the target domain dataset to further converge and improve

the model representation for the target task. This third step is omitted in the

second case of our problem definition in which we lack sufficient knowledge in

the source and target domain.

3.3 Step 1: Source Training

Our first step is to train a model on the source domain. For each of the

domains, we use a domain-dependent training setup. We employ an existing

policy and value network architecture [20] for the Chip Placement Problem and

train it using a PPO optimization and proxy cost (detailed in Section 4.2.2) to

estimate the reward. For the medical domain, we use a simple 4-layer LSTM

architecture and train it using gradient descent using the Adam optimizer with

Mean Absolute Error(MAE) as the loss function. For the image classification

domain we use CifarNet [14] as our model and categorical cross-entropy as the

loss function.

3.4 Step 2: Parameter Search

The second step of our approach is our parameter search which acts as transfer

learning to adapt the source domain model to the target domain. We use a

neuroevolution-inspired method for the optimization process, as is commonly

applied in Neural Architecture Search [29]. We adapt the usage of search-

based optimization over a neural network, but in this case, focused on a neural

network’s parameters instead of its architecture. We find that this approach

allows us to identify different gradients than traditional backpropagation, as

it allows us to more specifically target individual parameters.

We first initialize a population of models with different parameters, based

upon a set of defined mutation operations, then optimize the parameters of

the architectures guided by a fitness function. We represent the whole process
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in Algorithm 1.

The first line of the algorithm refers to step 1 of PSTL, training the model

on the source domain. All the remaining lines are responsible for parameter

searching. Line 2-3 refers to initializing the source model to the population of

the networks which acts as the base model for searching parameters. We gen-

erate a population of architectures with different parameters using mutation

operations and append the child models to the population of the networks as

mentioned in lines 6-8. In Line 10 we then compute the fitness score for all

the models in the population based on the training loss and select the best

model based on its fitness score. Line 11 refers to the reduce operation, where

we rank the population of the models using the fitness score, where we pick

the best model the one with the highest fitness score. Finally, we update the

population of the models with just the best model as this follows the greedy

optimization, where we choose the best model of the population as shown in

line 12. The mutation operation directly alters the model parameter values.

We describe the details of the mutation operations in the next section.

Algorithm 1: PSTL Workflow

Input: An source A, the population size pop size, maximal
generations gen, the source dataset, and the target dataset.

Output: Best performing architecture(optimal parameters)
1 A ← train A on source;
2 A = best model;

3 pop = {A };
4 i ← 0;
5 while i < gen do
6 while |pop| < pop size do
7 network ← Mutation(best model);
8 pop.append(network);

9 end
10 fitness pop = Fitness(pop);
11 best model ← Reduce(pop, fitness pop);
12 pop = {best model };
13 i ← i + 1;

14 end
15 architecture = best model(pop);
16 Return architecture;
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3.4.1 Mutation Operations

The design of the mutation functions is a crucial aspect of PSTL, as these func-

tions implicitly define the possible gradients for our optimization approach to

follow. Our mutation operations consist of four distinct operations, that di-

rectly alter the parameter values of the source model. Our mutation operations

are similar to the first four mutation operations from CENAS [29], which in

turn are typical mutation operations for the neural architecture search process.

We adopt these operations as they follow simple numeric operations that give

a systematic range of options to explore the search space in order to improve

model performance on the target domain. Our mutation operations are as

follows:

• The first operation randomly chooses a particular layer or a filter of the

network and adds scalar values from the range of [0, 1], using a uniform

distribution.

• The second operation acts as the first, but instead subtracts values.

• The third operation acts the same as the first two, but instead multiplies

the values.

• The fourth operation acts the same as the first three, but instead divides

the values.

3.4.2 Fitness Function

We define the fitness function that guides PSTL in a domain-dependent man-

ner. In this subsection, we describe the fitness functions for our three domains.

First, for the chip placement problem, we use a fitness that’s very similar to

the reward function from circuit training [20]. The reward function here is

the proxy cost estimation, which is a combination of the wirelength, conges-

tion and density of the placement as shown in equation 3.1. These are three

variables identified by domain experts to be the most important in terms of a

particular chip design. The values of the γ and λ are set to 0.5 as mentioned

in the original paper [20].
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proxy cost = Wirelength + γ ·Density + λ · Congestion (3.1)

Second, we have the regression task, which predicts future health outcomes

given an input DNA sequence. We use the mean absolute error of the target

output values as the fitness function to evaluate the model parameters as

shown in equation 3.2, where yij is the actual value and ŷij is the predicted

value and m is number of output features in a sample and n is the number of

training samples.

MAE =
1

n

n∑
i=1

1

m

m∑
j=1

|yij − ŷij| (3.2)

Third, for the image classification task, we employ a simple categorical

cross entropy as shown in the equation 3.3, Where N is the number of classes

in the classification task and yij represent the ground truth label for j-th class

in the i-th image and pij is the predicted probability of the j-th class in the

i-th image.

cross entropy = − 1

N

N∑
i=1

n∑
j=1

yij log(pij) (3.3)

3.5 Step 3: Postprocessing

In step 3, we perform an additional post-processing fine-tuning step. We apply

this step on the tasks with enough training data (i.e., on Chip Placement and

Image Classification tasks) as this could help to further improve our represen-

tation via gradient descent. This step is also beneficial for cases with limited

training samples, in cases with low-variance in the output features. This refers

to the case where there are no distinct classes (output values of range 0-1) in

the dataset (i.e., regression tasks like our health outcome prediction). But this

is not as helpful in the case where there are limited samples and high-variance

datasets (i.e., low-sample image classification tasks). We hypothesize that the

reason is due to the gradients that backpropagation can identify in these cases

and a tendency to diverge rather than converge in the latter case.
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Chapter 4

Experimental Setup

This chapter provides a comprehensive overview of the experimental setup

employed in this thesis. Section 4.1 presents readers with an overview of the

target problem we are tackling and the related domains used to evaluate the

performance of the PSTL approach. In section 4.2 we introduce readers to

ablations of PSTL and general transfer learning baselines, which allow us to

compare the performance between PSTL and these approaches. In section 4.3

we cover details about the architectures selection of all three different domains.

Sections 4.4, 4.5 and 4.6 detail the experimental setup of the three different

domains. In section 4.4 we cover the details of the chip-placement problem,

section 4.5 covers the DNA Health Outcomes task, and section 4.6 details the

image classification task.

4.1 Experiment Overview

In this work, we dealt with two different transfer learning problems one with

sufficient training data in the source and target domain, and the other with

limited data in the source and target domain. We compare the effect of our

PSTL approach in terms of how quickly the model can achieve results at early

stages in tasks with sufficient training data and how well PSTL can achieve

generalizable models in tasks with insufficient data compared to naive transfer

learning approaches. To evaluate our PSTL approach, we have chosen three

different problem settings in different domains that require transfer learning.

• The first is a reinforcement learning problem setting, the chip-placement
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Problem, which has sufficient training data for both the source and target

domains.

• The second is a regression-based problem setting, the health outcomes

prediction task, which has limited data for both the source and target

domains.

• The third is an image classification problem setting, we evaluate both

settings with sufficient and limited training data in both the source and

target domains.

4.2 Baselines

In this work, we employ a total of three different baselines. The first two

baselines (i.e., Scratch Model and Fine-tuning) are used to compare the per-

formance of Full PSTL across all three steps (includes source training, greedy

parameter search and postprocessing), as all these baselines employ gradient

descent. The third baseline (zero-shot) can be compared against 2 Step PSTL

given that neither employs traditional gradient descent on the target domain

data.

4.2.1 Scratch Model:

This refers to the model achieved when training from scratch on the target

domain, which means the parameters of the networks are initialized with ran-

dom values, without any pre-trained parameter values or information from

other source models. The Scratch Model serves as a fundamental baseline in

neural networks as this provides a reference point to evaluate the effectiveness

of transfer learning approaches. We identify domain-dependent scratch model

training setups based on prior work.

4.2.2 Fine-tuning:

This involves taking the parameters of the source model, and further training

that model on the new, target domain dataset. This functionally acts as an
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ablation of PSTL as it is just the first and third steps of our approach. This

allows us to identify the value of the second step, and to support our claim

about the second step allowing us to reach a better gradient. The details of the

fine-tuning approach for different domains are presented in the corresponding

experiment sections.

4.2.3 Zero-shot learning:

This refers to a model trained on the source domain data that inferences on the

unseen data of the target task. This is a common transfer learning approach

[39], and it is also functionally an ablation of PSTL, just including the first

step. This method helps us determine the impact of the latter two steps of

PSTL.

4.2.4 2 Step PSTL:

This refers to the first two steps of PSTL, where we train the model from

scratch on the source domain and then perform the parameter search on the

target domain data. As discussed above, we hypothesize that this approach

will outperform the full three steps in cases with limited source and target

domain data and high variance in the output features, the term variance refers

to the range of NN output value prediction range.

4.2.5 Full PSTL:

This indicates all three steps of the PSTL approach. This is our complete

proposed approach, which we hypothesize will outperform existing transfer

learning approaches in cases with sufficient data and in cases with limited

source and target domain with low-variance in the output features.

We performed all experiments using the cloud computing resource of Com-

pute Canada with 18 CPU cores and 2xNVIDA v100 Volta (48GB memory).

We maintained a consistent random seed across all experiments for repro-

ducibility.
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Figure 4.1: Policy and value network architecture for the chip-placement ar-
chitecture.

4.3 Architectures

In this thesis, we focus on the experiments with transfer learning with both

limited and sufficient training data in the source and target domains. Since

we deal these settings in different domains (i.e., three domains in this case,

RL-domain, regression-problem, and image classification), we adapt different

architectures for each use-case based on the domain.

The first domain is an RL-based problem, which deals with the chip-

placement task approached from a transfer learning perspective, in which we

have sufficient data in the source and target domain. The chip-placement

problem with reinforcement learning was first attempted by a team from

Google [20], which also demonstrated results for fine-tuning, a transfer learn-

ing approach. This is a type of graph optimization, where the nodes in the

graph are the macro units to be placed and the edges are wire connections

between macrounits. We have employed a similar architecture to Google [20]

for this task to compare PSTL and other baselines in the transfer learning

setting. The architecture for this tasks has two main parts as shown in Figure

4.1. The first part computes the graph embedding for the input netlist (an

adjacency matrix, which indicates the connection between two macro units).

These graph embeddings are then used as input to the Policy and Value Net-

work, where the policy network outputs the probability distribution over all

the possible locations on the canvas of the chip and the value network ap-

proximates the estimated reward for the current placement. The mask is used
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Figure 4.2: LSTM-based architecture used for predicting the Health outcomes
task.

to avoid repeated placements at the same location of the canvas. The whole

placement process is divided into two steps. First, using the above policy and

value network we first place the macro units onto the canvas. Second, we

use a force-directed method to place the standard cells (usually very tiny and

millions in number), this approach clusters the standard-cells and places the

cluster onto the canvas after the macro-units are placed. The RL-agent only

approximates the reward once the macro-units and standard-cells are placed.

The second domain is the task of predicting the health outcomes given

DNA methylation. Since DNA methylation is a hugely long sequence, where

each part of the sequence is dependent on other parts we choose to consider

an LSTM-based model that can capture the long-term dependencies in the

sequence. The details about the data and information about the pre-processing

steps are described in Section 4.5. We chose a simple LSTM-based architecture

inspired by prior work, which also dealt with a low-data transfer learning

problem [19], as this model solved a similar task in predicting financial health

outcomes instead of physical health outcomes. Our model has 4 LSTM layers

and 512 units and droprate of 0.2 at each layer, followed by a Dense layer

with 44 output neurons to predict the health outcomes. We implemented this

in the Keras framework, and the model uses all the default parameters for

its LSTM and Dense layers. The whole LSTM architecture for this task is

shown in Figure 4.2. Moreover, we intentionally choose not to rely on a more

complex architecture, because this is a low-sample dataset, which can cause a

more complex architecture to easily overfit. We use the Adam optimizer with

a learning rate of 0.001 and MAE for the loss function.

The first domain has sufficient data in the source and target domain. The
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second domain has limited data in the source and target domain. To evaluate

the effectiveness of the PSTL approach we introduce a third domain, the image

classification domain. For this task, we use a simple Convolutional Neural

Network(CNN) architecture. We employ CifarNet as the base architecture

due to its use in other transfer learning work [29] which dealt with limited

data for the target domain. CifarNet has two convolutional layers and each

layer is followed by max-pooling, at the end it has two fully connected layers.

We do not change this architecture, and employ a similar implementation from

the original paper [14]. We use the default parameters for the experiments as

used in the previous work [29]. The details of our benchmarks for the image

classification domain are described in Section 4.6.

4.4 Chip-Placement Problem

Our first experiment focused on the chip-placement problem, here we had

sufficient training data in both the source and target domain, meaning that we

let the RL agent attempting to solve a given chip-placement task have enough

interactions with the environment while training to converge. We evaluate

the performance of PSTL on a total of 6 chip design tasks taken from prior

work. The first design is Ariane RISC-V CPU design from the Google circuit

training repository with 133 macro units, which is used as a standard reference

for the chip-placement problem [20], the second design is Araine133 [5] which

is a slight variant of the first design, with 133-macro units as well. We also

evaluate the performance on three designs from the ICCAD04 benchmark [5].

We only pick three smaller designs for this benchmark, IBM01, IBM02 and

IBM03 with 246, 271 and 290 macro units respectively, because these were

closer to the other problems in size. These designs are referred to as “netlists”

and “tasks” interchangeably in the literature, and we follow that trend.

For the transfer Learning setup in the chip-placement problem, we follow a

kind of cross-fold validation, where training contains different netlists (tasks)

that could be used to transfer the knowledge to a new netlist (task). A visual-

ization of the difference between training a policy from scratch and using the
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Figure 4.3: Left: Training the model from scratch on every Netlist file for
the chip-placement problem. Right: Transfer Learning setup for the chip-
placement problem, training on multiple netlists and inference on a new netlist.

transfer learning setup is demonstrated in Figure 5.1.

In this transfer learning setup, we consider one design as a source domain

and the other as a target domain. For example, we use the Araine RISC-V

design as the source domain and transfer the trained model to the remaining

five target tasks (i.e., Ariane133, IBM01, IBM02, IBM03). We use the same

training setup as the Google Circuit Training Repository [20]. We train all the

models from scratch and run fine-tuning training for 700k iterations, which is

approximately 4 GPU days of computation. For the second step of PSTL, we

search for 50 generations.

4.5 DNA Health Outcomes

We next evaluate the performance of PSTL on a Regression task, i.e., predic-

tion of health outcomes given a DNAm (DNA methylation) sequence. Here

we have limited training data on both the source and the target domain. In

this transfer learning problem, we have a total of 3 datasets, survey data from

parents of children at birth, which has around 44 features, DNAm sequences

of the same children at birth (187k sequence length), and health outcomes

including features like height, and weight for the same children at set intervals

(7 years, 15 years, etc.) This final dataset also has around 44 features. The

data is collected from the lab of Jane Cook (Clinical Lecturer at the University

of Calgary) and David Olson (Professor at the University of Alberta, Health
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Sciences).

For the transfer learning setting, we train the model from survey data to

health outcomes as the source domain and attempt to transfer from the DNAm

data to the health outcomes as the target domain. This is based on insights

from our domain expert partner (Dr. Cook), who hypothesized that such a

transfer should be possible. Our domain expert partner further identified that

a successful model predicting health outcomes from DNAm data would help

improve pediatric care.

The DNAm sequences are 187k characters sequence long. We tried sev-

eral approaches to compress this information to a latent vector, but Principal

Component Analysis (PCA) gave us the best representation. We represent

the 187k sequence in 500 principal components. The dataset size for both the

source and target domain are 400 samples for training and 40 samples for test-

ing. Furthermore, 10 percent of the training data is used for the validation.

To prevent the model from overfitting, the baselines undergo limited training

followed by backpropagation with early stopping.

4.6 Image Classificaiton

For our third setting, we evaluate the performance of PSTL on image classifi-

cation tasks. We use four tasks and benchmarks from prior domain adaptation

work [13]. The datasets used are MNIST, USPS, CIFAR-10 and STL-10, which

are commonly used benchmarks for image classification tasks, where MNIST

and USPS are digit classification datasets and CIFAR-10 and STL-10 are ob-

ject classification datasets with mostly overlapping classes. In our transfer

learning setting, we use one dataset as the source and the other as the tar-

get domain to create four tasks: CIFAR-10 → STL-10, STL-10 → CIFAR-10,

MNIST → USPS and USPS → MNIST (i.e., USPS is the source domain and

the MNIST is the target domain.) We produce two variant tasks. One where

we have sufficient data, using all available train and test data (“enough”), and

a toy variant with insufficient data (“limited”) which follows a similar ratio

of train-test split from the DNA Health outcomes task i.e., 400 train samples
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and 40 test samples and 10 percent of the training data is used for validation.
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Chapter 5

Experiments

In this chapter, we discuss our experimental results on different domains. In

sections 5.1, 5.2 and 5.3 we provide detailed results and key insights from the

experimental results on different domains. In section 5.1 we provide detailed

results for the chip-placement problem, in section 5.2 we discuss the results for

the health outcomes prediction task and in section 5.3 we detail the results of

the image classification domain.

In this thesis, we focus on three different transfer learning problem settings,

varying in terms of the amount of data available, as mentioned in Problem

Definition of Chapter 3. We categorize the experiments into two main settings

based on the availability of the data. First, we evaluate PSTL on several tasks

that have been used in prior transfer learning work [17], [20]. These tasks have

sufficient training data on the source and the target domain, with sufficiency

determined by the success of existing transfer learning approaches. This serves

to demonstrate evidence to our claims that PSTL can output a better model

that outperforms approaches that solely employ backpropagation on the target

domain dataset. Second, we also evaluate PSTL on tasks with limited training

data on both the source and target domain, this serves to demonstrate evidence

to claims on how PSTL can deal in limited data settings.

For the parameter search phase of PSTL we run for 50 generations and

set the maximum population size of the generated architectures to 10. We

intentionally selected these small values for the search generation and popu-

lation size to showcase the effectiveness of the parameter search with minimal
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Table 5.1: Average proxy cost estimation of the baselines on different chip
designs.

Method/Design Ariane Ariane133 IBM01 IBM02 IBM03

Scratch Model 1.06578 0.73733 1.99398 2.51126 3.19955

Zero Shot 1.11318 0.97043 2.62337 3.8361 3.08051

Fine-tuning 0.80677 0.7777 2.54906 3.05547 3.76074

2 Step PSTL 1.25811 0.84247 2.28112 2.87091 2.47178

Full PSTL 1.05392 0.67646 2.26223 2.75768 2.27273

computational resources.

5.1 Chip-Placement Problem

For the chip-placement problem, we train the scratch model, fine-tuning and

backprop of the Full-PSTL approach for around 700k iterations which are

approximately around four GPU days of computing. The reward of the place-

ment is only approximated once the macro unit and the standard cells are

completely placed. For the 2 Step PSTL method we iterated the search pro-

cess for 50 iterations.

Method/Design Ariane Ariane133 IBM01 IBM02 IBM03
Zero Shot 0.0489 0.0838 0.1512 0.7781 0.2489
Fine-tuning 0.1528 0.1443 0.2026 0.7753 0.2180
2 Step PSTL 0.0051 0.0662 0.0775 0.1995 0.1496
Full PSTL 0.1239 0.0072 0.0691 0.1038 0.2005

Table 5.2: Standard Deviation of the proxy cost estimation of the baselines on
different chip designs.

5.1.1 Results

We present the performance of the baseline approaches in terms of the average

and standard deviation using proxy cost estimation, calculated by equation 3.1

in Table 5.1 and Table 5.2 respectively. Here, the design represents the target

domain, and the values in the table are the average proxy cost of the baselines

for the target domain, when transferred from different source domains (i.e.,

all the designs except the one chosen from the target domain). Overall, Full

PSTL outperforms the baselines for the Ariane133 and IBM03 designs and the
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Figure 5.1: Proxy cost estimation of different metrics on 3 baselines when
transferred from Ariane to Ariane133. We note that these results are only one
of the four runs used to derive the averages presented in Table 5.1.

Scratch Model outperforms in two out of five designs. We also observe that Full

PSTL is either the best or the second-best model in all the transfer domains.

This indicates the backpropagation after the first two PSTL steps benefits from

the better gradient discovered by the parameter search. These experiments

work towards answering RQ2 and RQ4, demonstrating how PSTL can help to

achieve better performance in target tasks by computing the variation of the

gradient in 2-Step PSTL, and how further post-processing can help to achieve

reliable performance compared to naive transfer learning approaches.

We note that fine-tuning is equivalent to the CT baseline approach from

Google [20], which we outperform in all but one case. After roughly 10K

episodes, the scratch model can achieve the best results and eventually, the

fine-tuned model will converge to the results of the scratch model, which fol-

lows the results found in this prior work [20]. This prior work also found that

the fine-tuned model could achieve better results in the early stages of the
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relevant target task. For example, we found that using a generic design like

Ariane as the source design could help to achieve better fine-tuning results

in almost all the target domains. But not all the source domains helped to

achieve better fine-tuning results. We hypothesize this is because the target

domain must unlearn some unwanted features in order to adapt to the target

task. Additionally, we note that the proxy cost estimation for the Ariane de-

sign is roughly equivalent to the performance of current, non-transfer learning

approaches [5].

In most cases, we observe that Full-PSTL can achieve better performance

even faster than the fine-tuning approach. For example, in Figure 5.1 we ob-

serve the learning curves for our three metrics (wirelength, congestion and

density values) for the task, where the source domain is Ariane and the target

domain is Ariane133. The graph indicates that Full-PSTL was able to con-

verge the fastest in the early stages of training (around 200-400k iterations),

especially in the case of the wirelength and congestion. For the wirelength

metric Full-PSTL was able to achieve the fastest results and to find the best

result. For this use-case, we could observe that the transfer learning-based

approach has achieved the best and fastest results compared to scratch train-

ing, in all three metrics. In general, PSTL, is able to achieve better and faster

results on the target task when transferred from a relevant source task.

Comparing the 2-Step PSTL and Zero-Shot results, we can see that the

former outperforms the latter in the majority of cases. This supports the

value of the parameter search step and suggests that the 2 Step variant may

be helpful in cases where it is dangerous or expensive to train on the target

domain traditionally.

5.2 DNA Health Outcomes

For the health outcomes setting, we follow a similar fashion for training, we

choose the architectures from the section 4.3 to train both the source and

target domain, where the source domain is a mapping between survey data to

the health outcomes and the target domain maps DNAm sequences to health
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Table 5.3: Mean absolute loss on the
test data for the health outcomes pre-
diction

Model Test loss
Scratch Model 0.6441
Zero-Shot 0.6639
Fine-tuning 0.6449
2 Step PSTL 0.6312
Full PSTL 0.6163

Table 5.4: Mean absolute error on
test data for NN vs non-NN ap-
proaches

Baseline Test error
Linear Regression 8.8128
Logistic Regression 2.9364
NN (Zero-Shot) 0.6639
NN (Fine-tuning) 0.6449
NN (Full PSTL) 0.6163

outcomes. We use gradient-descent to train the fine-tuning, scratch-training

and Full-PSTL baselines and use early-stopping to avoid over-fitting. For 2-

Step PSTL we follow a 50 step iteration process.

5.2.1 Results

For this setting, we found that Mean Absolute Error (MAE) led to a consistent

performance in terms of training loss. We present the performance of different

baselines on the target task using MAE in Table 5.3. The performance of both

PSTL variants clearly shows it is beneficial in low-data tasks. The 2-step PSTL

approach gained a significant improvement in terms of MAE compared to the

Zero-Shot approach. We also observe that the training of this task ends within

very few epochs, because this task is a low-sample dataset which can easily

lead to overfitting in the target task. These experiment results address our

RQ3 and RQ4, demonstrating the benefit of using PSTL approaches in low-

sample data tasks. The results suggest that by targeting individual parameters

we can achieve more generalizable models compared to other transfer learning

baselines.

The general benchmarks for these tasks in this domain are linear and lo-

gistic regression [21]. We also compare against these approaches as shown

in Table 5.4. The NN-based models clearly outperform linear and logistic

regression, which is because the sequence-based models help to capture the

dependencies of the long DNA sequence and so can capture the information

more effectively. Although there is a slight improvement in terms of MAE

relatively among the NN models, PSTL has the best performance. These
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Table 5.5: Accuracy of the image classification benchmarks on the target do-
main

Baseline STL10 → CIFAR10 CIFAR10 → STL10 USPS → MNIST MNIST → USPS
enough limited- enough limited enough limited enough limited

Scratch Model 82.1 10 52.35 11.1 99.44 10 80.32 10
Zero-shot 10.53 11 11.587 9.2 14.71 10 8.47 10
Fine-tuning 81.05 12.5 68.09 11.1 99.55 10 84.853 10
2 Step PSTL 10.66 12.5 11.637 11.7 12.48 18 12.51 15
Full PSTL 82.37 5 57.61 11.1 99.53 92 94.52 10

experiments work towards answering RQ1, where the ANNs provide an ad-

vantage in low-data tasks compared to traditional ML approaches. Overall,

the results are not perfect, but our domain expert partner identified that they

were sufficient for their purposes and that the Full PSTL approach being the

most precise made it the most useful in terms of identifying links between

DNAm and health outcomes. We note that the goal of this task was to find

important input DNA sequences responsible for health outcomes, and also to

remove unwanted - variability that is correlated to the input DNAm sequence,

but these topics are a bit out of the scope of this thesis. Here we solely try to

show the effect of the PSTL approach in these domains.

5.3 Image Classification

This section provides results for the image classification tasks. We train our

baselines as in the prior section and our 2 steps PSTL follows a 50 step itera-

tions.

5.3.1 Results

We present the test accuracy for each task in Table 5.5 for our two settings with

sufficient and insufficient data. Overall, for the task with sufficient training

data, PSTL has the best or roughly equivalent performance except for the

CIFAR10 → STL10 task, where the fine-tuning model has the best accuracy

instead. We anticipate this is because STL10 shares the same input features

given that it shares the same classes and style (photography) as CIFAR-10

making this a “near transfer” problem, which gives an edge for fine-tuning
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when transferring the knowledge from the source task.

The performance of the non-transfer learning approaches (i.e., scratch

model training for MNIST and CIFAR-10), closely aligns with other non-

transfer approaches with similar models [25]. It is worth noting that the

architecture used in their paper was LeNet [16], which is also small, but differs

slightly from CIFARNet. Regardless, this helps confirm that our non-transfer

learning approaches are accurate implications of typical ways to train these

models.

For tasks with limited data for the source and the target domain, the 2

Step PSTL approach benefits all the transfer tasks (i.e., improvement com-

pared to zero-shot accuracy). Overall, the performance of the baselines with

backpropagation don’t seem to have much improvement, where the perfor-

mance is the same as the zero-shot approach or slightly better. We anticipate

that this is because backpropagation is not beneficial in the case of training

with low samples, as the model starts over-fitting in just 4-10 epochs for all

tasks. But for the USPS → MNIST tasks backpropagation after the first two

PSTL steps helps to a massive degree. We expect this is because MNIST is

a simple dataset, where even a few images can be sufficient to learn a gener-

alizable representation of the dataset. This section contributes to addressing

RQ2, RQ3 and RQ4, confirming the results from the previous domains.

5.4 Discussion

PSTL demonstrated robust performance both in cases with sufficient data for

traditional transfer learning, and in cases with insufficient data for traditional

transfer learning. This supports our hypothesis that searching the parameters

of the network allows us to find better gradients than backpropagation alone

for many transfer learning problems.

For the task with limited data in the source and target domain, we ob-

served that in general for these tasks, using greedy optimization for identify-

ing gradients for individual parameters of the network can help to find better

parameters of the network for the target task. Whereas the effect of back-
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propagation differed from dataset to dataset depending on the variance of

the dataset. For example, the health outcomes prediction is a low-variance

dataset, where the target label is predicting values in the range [0-1] following

something like a normal distribution. In comparison, the high-variance image

classification dataset required predicting a class in the range [0-9] as a one-hot

vector. We anticipate that the first two steps of PSTL would prove helpful in

high-variance, low-data transfer problems in the future.
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Chapter 6

Conclusion

In this thesis, we propose Parameter Search Transfer Learning (PSTL), an

effective stochastic greedy optimization method designed for transfer learning

tasks. It searches over the parameter values of Deep Neural network models

and identifies novel gradients, which cannot be achieved through naive opti-

mization approaches. The thesis aims to address the challenge of dealing with

limited training data in both the source and target domains and also compare

the effectiveness of the PSTL approach in the task with sufficient training

data on both the source and target task. We demonstrated the effectiveness of

PSTL in an RL-environment, a regression-based problem and an image clas-

sification problem. We demonstrated that PSTL can help to achieve better

performance at the early stages of training compared to complex optimization

approaches like backpropagation in cases with sufficient data. Our results also

demonstrate that on tasks with limited training data, using PSTL can help

us to find more generalizable models. We find that our approach is especially

valuable in low-training cases and in cases with low-data and high-variance.

We hope PSTL will serve as a robust tool to expand the set of domains where

we can apply neural networks.

6.1 Future Work

There are many potential improvements that could be explored for the PSTL

approaches. This works only considers the relevant mutation functions that

were used from our prior work. The current mutation functions are static,
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which means we fix the size of the values that need to be added to the net-

work, it could be possible to explore more complex mutation functions which

can find gradients in a more dynamic manner. It could also help to explore

more optimization functions to support tasks with low data. It would also be

interesting to explore the relevancy of relevant factors from the source tasks

that contribute to transfer to the target task, as well as investigating the gen-

eralizability of the search algorithm. We hope to explore this in future and

evaluate the impact on the tasks with low-sample problems.

6.2 Takeaways

Looking back on the research questions this thesis attempted to answer, for

RQ1 we did observe that using ANN-based models for the tasks is very effec-

tive, but this is mainly dependent on the complexity of the architecture. For

RQ2 and RQ3 using PSTL on tasks with sufficient and limited training data

respectively, we were able to achieve equivalent or better performance com-

pared to our baselines. These results do not fully answer if this is useful in all

cases, and we identify a need to explore the effect of this approach with “near”

vs “far” transfer in future work. Some of our PSTL results also demonstrated

a risk of getting stuck in a local minimum, which might lead to sub-optimal

solutions. For RQ4, in many tasks we did observe that PSTL did perform

equally or better in comparison to general transfer learning baselines. This

doesn’t suggest this is always the optimal solution for these transfer learning

settings. This further indicates directions for exploring different optimizations

for PSTL.
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