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Abstract 

Performance of steam-assisted gravity drainage (SAGD) is influenced significantly by the 

distributions of shale barriers and lean zones, which tend to impede the vertical growth 

and lateral spread of a steam chamber. Reliable appraisal and prediction of SAGD require 

a comprehensive understanding of the effects of shale barriers and lean zones on SAGD 

performance. However, a comprehensive and systematic investigation of the 

heterogeneous distribution (location, continuity, size, proportion and saturation) of shale 

barriers and lean zones is still lacking. 

In this study, numerical simulations are used to model the SAGD process. First, a 

detailed sensitivity analysis is performed by varying the location, continuity, size, 

proportion, and saturation of these heterogeneous features. Shale barriers (imbedded in a 

region of degraded rock properties) and lean zones with different sizes and degrees of 

continuity are placed in areas above the injector, below the producer, or in between the 

well pair. Then, the distribution of shale barriers and lean zones is stochastically modeled 

by nested sequential indicator simulation. A set of attributes, such as facie proportions 

and dimensionless correlation lengths, which represent the characteristics of reservoir 

heterogeneities are identified on the basis of the knowledge learned from preceding 

sensitivity analysis. Finally, neural network modeling is used for constructing data-driven 

models to correlate the pertinent attributes to SAGD performance measures. 

This work provides a guideline for assessing the impacts of shale barrier and lean 

zone heterogeneities on SAGD performance. A set of input variables and parameters that 
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have significant impacts on the ensuing recovery response is identified. One can define 

readily the proposed set of variables from well logs and apply immediately in data-driven 

models with field data and scale-up analysis of experimental models to assist 

field-operation design and evaluation. One can also extend the approach presented in this 

thesis to analyze other solvent-assisted SAGD processes. 
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Chapter 1: General Introduction 

In this chapter, the problems motivating this research are first presented. Then, the 

objectives of this research are listed. Finally, the layout of this research is presented to 

introduce this study briefly.  

 

1.1 Problem Statement 

Performance of SAGD is influenced significantly by the distributions of lean zones and 

shale barriers, which tend to impede the vertical growth and lateral spread of a steam 

chamber. Reliable appraisal and prediction of SAGD require a comprehensive 

understanding of the effects of reservoir heterogeneities on SAGD performance.  

Real reservoir typically consists of complex facies, where shale sand is stochastically 

distributed but separated with clean sand by a natural low-quality-sand (LQS) transition 

zone. However, in the literature survey, few researches considered the existence of LQS 

typically surrounding the shale layers, because the shale has a more significant effect on 

the spatial expansion of steam chamber. In addition, variability in multiphase-flow 

functions (capillary pressure and relative permeability) of different rock facies is often 

ignored in previous studies by assigning identical capillary pressure and relative 

permeability relationships to both sands and shales. Because many classical works have 

already demonstrated the strong influences of lithological characteristics and pore 

geometry on multiphase-flow functions (Botset 1940; Morgan and Gordon 1970), one 

should consider appropriate relative permeability and capillary pressure models for 
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different rock types when analyzing the effects of reservoir heterogeneities on SAGD 

performance. 

Also, most prior investigation limited the lean zones as top water or bottom water, 

but water can stochastically exist in reservoir based on the well log information. Although 

previous works have partially provided many useful insights regarding the modeling of 

shale barriers/lean zones and their impacts on short-/long-term recovery performance, a 

comprehensive and systematic investigation of the heterogeneous distribution (location, 

continuity, size, proportion and saturation) of shale barriers and lean zones is still lacking. 

Laboratory-scale experiments and reservoir simulations are two typical methods to 

study impacts of reservoir heterogeneity on SAGD process. In experimental analysis, the 

difficulty is the modeling of stochastic distribution of shale barriers/lean zones. Reservoir 

simulation is typically time consuming and invokes many assumptions, especially for 

field-scale simulation, and not suitable for real-time decision making or forecasting, 

though it is useful for detailed study of displacement process. This motivates an 

alternative approach of SAGD performance prediction based on data-driven models. 

However, a set of input attributes suitable for characterizing the heterogeneities of shale 

layers and lean zones in SAGD reservoirs is not readily identifiable from existing 

literature. A more fundamental description and understanding of the effects of 

heterogeneities on recovery performance is in demand. This understanding would also 

become the basis for formulating numerous input attributes in subsequent data-driven 

modeling: artificial neural networks (ANN) or fuzzy-based models can be used to 
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construct data-driven models that relate input (predicting) attributes describing 

reservoir/fluid/operational variables to output (target) attributes representing recovery 

performance. 

 

1.2 Research Objectives 

The objective of this study is to study the effects of reservoir heterogeneities on SAGD 

performance by numerical simulation: 

(1) A comprehensive and systematic investigation of the heterogeneous distribution 

(location, continuity, size, proportion, and saturation) of shale barriers and lean zones 

will be presented. Multiple facies in reservoir, including a gradation of properties 

exists between shale barrier and clean sand, will be considered. Appropriate relative 

permeability and capillary pressure models for different rock types will be 

considered.  

(2) Reservoir heterogeneities will be modeled by stochastic distribution of shale barriers 

and lean zones to mimic the practical scenario.  

(3) ANN will be used to construct data-driven models that relate input attributes 

describing reservoir variables to output (target) attributes representing recovery 

performance. Therefore, a set of parameters suitable for characterizing the 

heterogeneities of shale barriers and lean zones in SAGD reservoirs should be 

identified and can be applied immediately in data-driven models with field data to 

assist field-operation design and evaluation. 
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1.3 Thesis Layout 

In the next chapter, the process of SAGD is summarized and previous studies related to 

the impacts of reservoir heterogeneities on SAGD performance are reviewed. A detailed 

literature review on the application of ANN in petroleum engineering is also included in 

the next chapter. Chapter 3 presents the methodology employed in this study. Details of 

the model set-up and numerical simulation are discussed. The techniques of sequential 

indicator simulation and sequential Gaussian simulation are introduced to model 

stochastic distribution of shale barriers. Chapter 4 presents a comprehensive sensitivity 

analysis of the effects of shale and lean zone distribution on SAGD performance, 

including location, continuity, size, proportion and saturation. A set of input variables for 

correlating relevant parameters to ranking results are identified. Chapter 5 investigates 

the application of ANN for correlating the parameters identified in Chapter 4 to SAGD 

performance measures. The principal component analysis (PCA) method is used here to 

reduce the dimensionality of the input variables. Chapter 6 summarizes the major 

findings of the conducted research and presents suggestions for future research. 
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Chapter 2: Literature Survey 

In this chapter, literature survey helps understand what has been done in the past on the 

topic of this research. Improvement of this research compared to previous study is then 

highlighted. The research focuses on the effects of reservoir heterogeneities on SAGD 

process, so this chapter starts with a brief introduction of SAGD process. 

 

2.1 SAGD Process 

The huge quantity (approximately 7 trillion bbl) of heavy oil/bitumen discovered 

worldwide shows its increasing economic potential, especially when conventional oil 

production continuously declines (Albahlani and Babadagli 2008). Canada and Venezuela 

have the greatest amounts (1.7 trillion bbl and 1.8 trillion bbl, respectively) of bitumen 

and heavy oil reserves (Burton et al. 2005, Nasr and Ayodele 2006). More than 60% of 

the total natural bitumen resources are in the province of Alberta (Attanasi and Meyer, 

2007). 

Extremely high viscosity of the heavy oil/bitumen at reservoir temperature, however, 

is one of the significant challenges for the recovery process (Chen et al. 2008; Dang et al. 

2010). Because of its high viscosity, conventional non-thermal technology cannot 

produce the oil efficiently and economically. Instead, success with several thermal 

methods, such as steam injection and electromagnetic heating, was demonstrated. Among 

the thermal processes, steam assisted gravity drainage (SAGD), which was pioneered and 

developed by Butler (Butler and Mcnab, 1981), is the most widely adopted technology 
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for commercial production in Alberta (Ipek et al. 2008). 

SAGD is an enhanced oil recovery technology by which steam is injected into the 

reservoir with a horizontal well pair spaced 5 to 10 m from each other, with the injector at 

the top and the producer at the bottom. The injected steam creates a high temperature 

chamber, in which the viscosity of heavy oil is dramatically decreased, and the oil drains 

along the walls of the chamber toward the producer caused by gravitational forces 

(Hampton et al. 2013). With gravity drainage as the primary mechanism, SAGD can 

avoid the potential challenges of steam override (Chen 2009). In addition, the viscosity of 

the heated oil remains low, whereas in other conventional steam-flooding methods, oil 

viscosity increases as it cools and flows to the production well (Chen et al. 2008). 

 

2.2 Review of SAGD Investigation 

Because of the importance of SAGD, understanding the complex physics of SAGD is 

essential so that reliable prediction and effective design can be made. Richardson et al. 

(1978) developed a mathematical model to study the effects of shale barrier on SAGD 

performance. They found that the size and distribution of shale barriers played an 

essential role on SAGD production. Also, they presented that computer blocks with a 

reduced vertical permeability can mimic the effects of shale barrier, which gave evidence 

for simulation study of SAGD process with more complex physics. Theory of SAGD 

process has been presented by assuming homogeneous and isotropic reservoir (Butler and 

Mcnab 1981, Butler 1985). Butler (1985) developed a semi-analytical model to calculate 
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the oil drainage rate, heat penetration rate, and the “S-shaped” interface advancement 

with homogenous and isotropic reservoir properties. 

After Butler’s study, various investigation modified and improved Butler’s 

gravity-drainage model, which made the model more realistic for industry. A model with 

linear steam chamber was developed by Reis (1992). A modified approach for calculating 

the local velocity and temperature distribution was proposed to better match the 

experimental data. Other researchers have proposed semi-analytical models, in which 

analytical solutions of the momentum and mass balances performed at the solvent-oil 

interface are incorporated into a calculation sequence to advance the steam chamber 

interface and to compute oil recovery. These models were applied successfully to provide 

approximate solutions for 2D cross-sectional realizations (Vanegas et al. 2008; Azad and 

Chalaturnyk, 2010).  

A major shortcoming of analysis with analytical models lies in their limited 

capabilities for incorporating reservoir heterogeneities, rendering them rather deficient in 

studying the impacts of features such as shale barriers and lean zones. For example, less 

permeable shale barriers can hamper vertical propagation of the steam chamber, whereas 

lean zones with low oil saturation increases heat loss. Simplified physics and assumptions 

invoked in nearly all analytical or semi-analytical models cannot fully capture these 

complex heterogeneities. 

The impacts of the reservoir heterogeneity on the SAGD process were assessed in 

the past with different approaches: laboratory-scale experiments and reservoir simulations. 
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In the experiments by Joshi and Threlkeld (1985), a box-shaped sand pack was filled with 

20-30 mesh (0.84-0.58 mm diameter) Ottawa sand for heavy oil displacements. Shale 

barriers were simulated by installing 6 mm thick plastic sheets. They observed that the 

final SAGD oil recovery at a fixed time was reduced when shale barriers were added in 

the sand pack. In addition, initial oil production rate was faster in the presence of shale 

barrier because the shale could divert the injected steam to the reservoir portion above it 

and accelerate oil production. Yang and Butler (1992) performed a series of 2-D SAGD 

experiments using porous media (0.21 m in height) consisting of 2-mm and 3-mm glass 

beads, with shale barriers of varying continuity (length) placed above the injector. A 

sealed, 0.4 cm thick, reinforced, phenolic resin divider was inserted to model the thin 

shale layer. They found that short horizontal barriers did not have considerable effects on 

SAGD performance, whereas the longer horizontal barriers would decrease the 

production rate significantly. Law et al. (2003) used an elemental approach to investigate 

the effects of top thief (lean) zone on drainage rate and steam loss. The 60 cm × 30 cm 

diameter high-pressure vessel was constructed to mimic the cylindrical physical model.  

A primary challenge with experimental analysis is that laboratory studies are 

typically time-consuming, whereas operation conditions, such as injection rate, are 

difficult to control in heterogeneous models. Although lab-scale measurements are 

available at a length scale ≤ 1 m, extrapolating these fine-scale measurements to 

field-scale values, where heterogeneity correlates over a much larger distance, remains 

difficult. 
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Those difficulties with experimental analysis can be partially overcome with 

numerical simulation, which was widely used to monitor the advancement of steam 

chambers (Lerat et al. 2010; Leskiw and Gates 2012), and to optimize operational 

strategies (Zhao et al. 2007, Mohebati et al. 2010, Nguyen et al. 2012) and to investigate 

the effects of reservoir heterogeneities on SAGD performance (Pooladi-Darvish and 

Mattar 2002; Ipek et al. 2008; Hampton et al. 2013; Wang and Leung 2015).  

Pooladi-Darvish and Mattar (2002) constructed a series of 2D layered models on the 

basis of underground test facility (UTF) field data to study the effects of shale continuity 

in the vertical direction on SAGD operations in the presence of gas cap and top water. 

Four different permeable levels were tested to represent the scenarios of sealing shale, 

partially sealing shale, homogeneous formation, and communicating shale. In each case, 

an effective permeability at the modeling scale of 1 m was obtained with a power average 

as a function of shale volume. The authors observed only a minor effect on the SAGD 

performance. In addition, the permeability averaging might have masked and smeared the 

effects of shale barrier connectivity on the resultant production behavior. 

Ipek et al. (2008) incorporated the effects of geomechanics in SAGD operations for 

a series of reservoirs with varying degrees of shale content. They investigated the 

potential of pressure cycling as a method of enhancing reservoir permeability to offset the 

negative effects of shale barriers. Chen et al. (2008) studied the effects of shale barriers 

on SAGD performance with a series of 2-D geostatistical models in which shale layers, 

characterized by low vertical permeability (typically in the range of 10
-6 

to 10
-3

 mD), are 
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distributed stochastically in the near-well region (NWR) and the above-well region 

(AWR). The authors assumed that the laterally oriented thin shale lenses would have no 

impact on the horizontal permeability. A sensitivity analysis was performed by varying 

the correlation length and proportions of the shale. It was observed that shale layers 

hindered the fluid drainage within the NWR and the expansion of the steam chamber in 

the AWR. Their results also confirmed that SAGD performance was affected adversely 

only when the AWR contains long, continuous shale, an observation that was consistent 

with the findings of Yang and Butler (1992).  

Hampton et al. (2013) studied the effects of thermal conductivity and permeability 

heterogeneity (introduced by the presence of shale lenses) on SAGD performance. 

Geostatistical realizations of shale distributions with varying correlation length were 

modeled, and it was concluded that variations in permeability affected the steam chamber 

development more prominently than variations in thermal conductivity. One should note 

that not one of these works has considered the effects of capillary pressure in shale. 

Another origin of reservoir heterogeneity stems from spatially-varying water 

distribution. Highly-permeable lean zones could promote lateral spreading of the steam 

chamber. Lean zones could act as thief zones causing severe heat loss during the SAGD 

process (Xu et al. 2014a, Wang and Leung 2015). Law et al. (2003) investigated the 

field-scale SAGD performance in the presence of confined and unconfined top water. A 

baseline run was performed first with no top water zone in the SAGD process. Effects of 

the top water zone and optimization of operation conditions in the presence of top water 
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zone were analyzed by comparison with the base case. Effects of injection pressure and 

initial pressure in the top water zone were investigated. Their results suggest that 

increasing the pressure difference between the steam chamber and the top water zone 

would lead to unfavorable SAGD performance.  

In reservoirs with underlying bottom water (Masih et al. 2012), the performance of 

SAGD depends on the vertical offset and pressure differential between the producer and 

the water zone. Ricardo (2013) confirmed through numerical simulations that the 

negative impacts of bottom water increases with its thickness; a vertical offset of 5 m was 

determined to be the optimum in terms of project economics. Results of these studies 

highlighted the adverse impacts on SAGD efficiency due to heat loss through these 

heterogeneous features/thief zones. However, detailed description of the impacts of 

randomly-distributed water saturation (as often inferred from well log measurements) is 

lacking. Xu et al. (2014b) presented a hybrid CSS/SAGD design study using a stochastic 

lithological model constructed via sequential Gaussian simulation; the water saturation 

was assigned deterministically subject to the facie distribution. 

Although numerical simulation can provide detailed study of displacement process, 

it is typically time consuming and invokes many assumptions, especially for field-scale 

simulation in which millions of gridblocks are required. Thus, the alternative approaches 

of SAGD performance prediction based on data-driven models were applied. Weiss et al. 

(2002) used artificial intelligence tools such as fuzzy logic and neural networks to 

forecast oil production based on historical information. Their results showed that an 
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estimate of oil production rate in the first year could be obtained if well logs information 

were given. The error between prediction and target could be minimized if a large datum 

was available. Amirian et al. (2013) used a series of attributes that described reservoir 

heterogeneities as inputs for their artificial neural network (ANN) model. Their results 

exhibited good correlation and prediction between the given inputs and the outputs 

associated with the SAGD performance. Ma et al. (2015) analyzed the exploratory data 

and extracted inputs describing reservoir heterogeneity and operation conditions for their 

ANN model. They confirmed that ANN could be implemented in a practical manner for 

SAGD performance prediction. Therefore, the next section in this chapter is to introduce 

the background of ANN which is used in this research. 

In the aforementioned studies, shale barriers are represented by a series of 

low-permeability layers distributed either stochastically or uniformly in the background 

domain composed of clean sand. However, a gradation of properties exists between the 

shale barriers and background clean sands, particularly in the inclined heterolithic strata 

deposits. Hubbard et al. (2011) observed four different lithofacies, involving coarse 

grains, fine- to medium-grain, interbedded fine-grain, and thin very-fine-grain, from the 

seismically-imaged depositional elements. Smith et al. (2009) also reported varying grain 

size distributions in counter point bar deposits in McMurray formations.  

In addition, variability in multiphase flow functions (capillary pressure and relative 

permeability) of different rock facies is often ignored in previous studies by assigning 

identical capillary pressure and relative permeability relationships to both sands and 
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shales. Because that many classical works have already demonstrated the strong 

influences of lithological characteristics and pore geometry on multiphase flow functions 

(Botset 1940; Morgan and Gordon 1970), one should consider appropriate relative 

permeability and capillary pressure models for different rock types when analyzing the 

effects of reservoir heterogeneities on SAGD performance. 

Finally, the previous studies have provided many useful insights regarding the 

modeling of shale barriers/lean zones and their impacts on short-/long-term recovery 

performance; however, analysis that aims to correlate a set of input parameters 

descriptive of reservoir heterogeneity introduced by shale barriers and lean zones to 

SAGD production performance is unavailable. The ability to formulate such parameters 

from well log or other petrophysical data would facilitate the construction of data-driven 

or statistical models for SAGD production analysis.  

 

2.3 Artificial Neural Network 

The artificial neural network (ANN) is a virtual-intelligence method used to approximate 

a nonlinear relationship between input and target variables. Initially, ANN is inspired 

based on human’s central nervous systems that are capable of machine learning and 

pattern recognition. ANN is developed by training the network to represent the intrinsic 

relationships existing within the data. This idea was created by neurophysiologist Warren 

McCulloch and mathematician Walter Pitts (McCulloch and Pitts 1943). They modeled a 

simple neural network by use of electrical circuits to explain how neurons function in the 
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brain. In the past decades, combination of many neurons in neural networks can be more 

promising than single neurons.  

A schematic of various elements of an ANN consisting of only one hidden layer is 

illustrated in Fig. 2-1. A series of neurons are assigned in the hidden layers, in which 

nonlinear activation functions are applied to the weighted summation of input signals. 

Weights and biases associated with each connection in the network are determined by 

means of a supervised learning process, by which the mismatch between network 

predictions and known values of the target variables is minimized with a set of training 

data consisting of know input and output attributes (Francis 2001).  

ANN is widely applied in petroleum engineering (Mohaghegh 2002, Bravo et al. 

2012), such as reservoir property prediction, history matching and design of well 

trajectory. Recently, neural network has been used at a proxy model to predict oil 

recovery (Queipo et al. 2002, Ahmadloo et al. 2010). 
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Figure 2-1 An ANN is an interconnected group of nodes. The circle represents an artificial 

neuron, and the arrow represents a connection between two neurons. 

 

  



16 
 

Chapter 3: Research Methodology 

In this chapter, reservoir and fluid models are presented in detail, which will be used in 

the subsequent simulations. Then, the detailed procedure of modeling of stochastic 

distribution of shale barriers and lean zones is presented. The tool of artificial neural 

network to analyze the simulation results will also be discussed in this chapter. 

 

3.1 Reservoir Property Modeling 

 

3.1.1 Reservoir Model Description 

A commercial thermal-compositional simulator (Computer Modelling Group 2013) is 

used to construct a 2D (x-z) numerical model representative of a typical Athabasca 

oil-sand reservoir. As shown in Fig. 3-1 (a), the reservoir is 200-m deep with a pay zone 

of 30 m in thickness. The model is 51 and 30 m in the x- and z- direction, respectively, 

with ∆x = ∆y = 1 m. A lateral leg of 900 m is oriented along the y-direction. The 

producer is at z=26, which is 5 m below the injector at z=21. The locations of the well 

pair are also shown in Fig. 3-1 (a). The model setup exemplifies a confined drainage 

pattern, similar to many previous works such as Chen et al. (2008), where only one-half 

of a steam chamber is simulated. A schematic illustrating the steam chamber expansion is 

shown in Fig. 3-1 (b). In this model, only half of the well bore of injector and producer is 

used for injection and production, respectively.    Fig. 3-2 shows the oil-viscosity 

profile with temperature. The viscosity of the in-situ oil is 600,000 cp at the initial 

reservoir temperature of 18℃. As shown in the figure, the rate of oil viscosity decrease 
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becomes smaller as temperature increases. When the temperature is higher than 300℃, 

the oil viscosity is nearly constant. For all simulations, 100% quality steam is injected at 

1900 kPa continuously for a total simulation time (ts) of 20 years. A pre-heating period of 

3 months is modeled to alleviate injectivity issues caused by unfavorable mobility ratio. 

 

3.1.2 Multiphase Flow Functions 

In this research, three different rock facies are modeled: clean sand, shale barrier, and 

low-quality sand (LQS) that exists as a transition zone between the clean sand and the 

shale barrier. Relative permeability relationships of oil/water and gas/liquid systems for 

the clean sand and LQS are adopted from Mohebati et al. (2010), as shown in Fig. 3-3. 

As for the shale facies, relative permeability is assigned in accordance with the 

experimental observations by Morgan and Gordon (1970), which show a narrower 

two-phase region and lower end-points in the shale. The modified shale relative 

permeability functions are shown in Fig. 3-4. Similar phase relative permeability 

functions were also used in Chen et al. (2008), although capillary pressure was ignored. 

Similar to previous SAGD simulation studies, capillary pressure in the clean sand 

and LQS is assumed to be negligible, considering that the average grain size is 

sufficiently large. However, a similar assumption would not be valid in the shale. In this 

work, the capillary pressure function is formulated after Skjaeveland et al. (2000), which 

was based on the experimental evidence in Morrow and Harris (1965). Skjaeveland et al. 

(2000) adopted the following correlation for the water/oil system: 
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𝑃𝑐 =
𝐶𝑤

(
𝑆𝑤−𝑆𝑤𝑟

1−𝑆𝑤𝑟
)𝑎𝑤

+
𝐶𝑜

(
𝑆𝑜−𝑆𝑜𝑟
1−𝑆𝑜𝑟

)𝑎𝑜
 .                      (3-1) 

In Eq. 3-1, the parameters 𝑐𝑤, 𝑐𝑜, 𝑎𝑤 and 𝑎𝑜 , are empirical constants (Table 3-1). 

The 𝑆𝑤 and 𝑆𝑜 are the saturation for water and oil phases. 𝑆𝑤𝑟(0.15) and 𝑆𝑜𝑟(0.2) 

refer to the residual saturation of oil and water phases, respectively. Considering the 

difference in the interfacial tension between the water/oil and the liquid/gas systems, 

Wang et al. (2006) proposed a multiplication factor to relate the capillary pressures of 

water/air and water/oil systems on the basis of experimental measurements. Although 

Wang et al. (2006) did not study two-phase displacements in SAGD, a similar factor of 

3.0 is adopted to quantitatively characterize the difference of capillary pressure in two 

different systems. Figs. 3-5 and 3-6 shows the capillary pressure functions for water/oil 

and liquid/gas in the shale, respectively. 

 

3.2 Heterogeneity Modeling 

 

3.2.1 Facie and Rock Property Modeling 

As mentioned in Chapter 2, shale barriers and lean zones are distributed stochastically in 

practical field. Reliable prediction of SAGD performance requires realistic and accurate 

modeling of stochastic distribution of shale barriers and lean zones. In this section, shale 

barriers and lean zones are modeled stochastically by use of sequential indicator 

simulation (SISIM) and sequential Gaussian simulation (SGSIM) techniques.  

    Nested sequential indicator simulation (Deutsch 2002) is applied to stochastically 

model shale barriers, which are imbedded in a region of LQS, among a background of 
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clean sand. Within each facie, porosity values are populated using sequential Gaussian 

simulation (Deutsch and Journel 1998). LQS properties are modeled to depict a 

continuous gradation between shale barrier and clean sand. Figs. 3-7 (a), (b), (c) and (d) 

show the histograms and variogram to model the porosity distribution for different facies 

by use of SGSIM. As shown in Fig. 3-7, the mean values of porosity for clean sand, LQS 

and shale are 0.30, 0.18, and 0.05, respectively. For the variogram plot, the 𝛾  is 

calculated by the following equation: 

𝛾(ℎ) =
∑[𝜙(𝑥)−𝜙(𝑥+ℎ)]2

2𝑁ℎ
                     (3-2) 

Where, 𝛾 refers to semivariance, 𝜙(𝑥) means the value of property (i.e. porosity) at 

location x, 𝑁ℎ is the number of data pairs separated by the distance h. In the variogram 

plot, the solid lines are the analytical solution of the semivariance along vertical and 

horizontal directions, while the dashed lines are the corresponding results for 

experimental data. The experimental semivariances are similar to the analytical solutions, 

which indicates that experimental data for porosity within each facie is reliable. 

Chen et al. (2008) assumed that the presence of shale in sand reduces the vertical 

permeability dramatically but has no effect on the horizontal permeability. Following 

their suggestion, a constant horizontal permeability of 5 darcies is applied to all three 

facies in this study, and a factor of 10
-8

 to 10
-4

 and 0.2 to 0.8 is applied to the kv/kh in 

shale barriers and clean sand, respectively, which are similar to the values provided in 

Chen et al. (2008) and Dang et al. (2010). The continuous variation in kv/kh within each 

facie is also modeled by sequential Gaussian simulation. The variation in kv/kh ratio in the 
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LQS is modeled as the arithmetic average between the clean sand and shale barrier. 

The same value of thermal conductivity is assigned for all three rock types, as 

suggested by Hampton et al. (2013). However, as shown in the paper by Yang and Butler 

(1992), the fluids have different thermal conductivity. Water phase has a higher thermal 

conductivity than oil and gas phases. The thermal conductivity of the gas phase is the 

smallest. The conductivity values of rocks and fluids and other reservoir properties are 

shown in Table 3-2. These parameters are comparable to those in the experimental 

studies by Yang and Butler (1992) and simulation studies of Chen et al. (2008). 

Archie model (1942) is used to model the stochastic distribution of lean zones 

within the reservoir as a function of local porosity and formation resistivity: 

𝑆𝑤 = ((𝑎𝑅𝑤) (𝜙𝑚𝑅𝑡)⁄ )1/𝑛                         (3-3) 

Where, a, m = cementation factor; n = saturation exponent; 𝜙 = porosity in fraction; 𝑅𝑡 

= true or formation resistivity, and 𝑅𝑤 = water resistivity. McCoy and Grieves (1997) 

demonstrated that values of a and m do not vary significantly for different facies; 

however, n is observed to be the highest for clean sand and lowest for shale barrier. The 

values of 𝑅𝑤 and 𝑅𝑡 can be derived from the well log measurements. Values of these 

parameters, as summarized in Table 3-3, are assigned based on the representative trends 

for different rock groups presented in Palacky (1987). The formation resistivity is 

assumed to be constant within the facie. An example of facie, porosity and saturation 

distributions is shown in Fig. 3-8. 
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3.2.2 Procedure of Generation of Multiple Stochastic Realizations 

The preceding subsection introduces the basic principles to model stochastic distribution 

of shale barriers and lean zones within reservoir. In this subsection, those basic principles 

are applied for generation of multiple realizations and are presented step by step. The 

number of multiple realizations is Nr here. 

1. Generation of porosity and kv/kh distribution for clean sand, LQS, and shale barrier, 

respectively, by use of SGSIM; 

2. Generation of Nr maps for clean sand and shaly sand, and Nr maps for LQS and shale 

barrier by use of SISIM. Note that shaly sand here consists of LQS and shale barrier. 

Superposition of the Nr shaly maps and the Nr shale maps can generate Nr maps 

consisting of clean sand, LQS and shale barrier; 

3. Set up the facy properties by combining the facy maps (i.e. item 2) and property maps 

(i.e. item 1). This step is implemented by the Matlab code in Appendix A; 

4. Calculation of water saturation by Eq. (3-3). 

 

3.3 Performance Ranking 

To facilitate the comparison between various cases, three ranking schemes (R, DB and 

tDiSOR) facilitating the assessment of different scenarios are devised. The following 

dimensionless indicator based on oil recovery factor (RF) and cumulative steam-to-oil 

ratio (CSOR) is implemented:  

R = RF/CSOR                        (3-4) 
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Where RF = COP/OOIP = cumulative oil production/original oil in place and CSOR = 

cumulative steam-to-oil ratio. It is observed that neither RF nor CSOR alone is sufficient 

as a comprehensive performance indicator; for example, there are scenarios in which low 

CSOR is a result of low injectivity (and hence low production).  

The measure that is based on the concept of discounted barrel of oil is also explored. 

It takes into account the economic impact of steam consumption and variation in fluid 

properties. In the simplest terms, it represents the net energy that can obtain from the 

process. Assumptions and calculation procedures are detailed in the Appendix B. 

Another important variable in describing the efficiency of steam injection is tiSOR, 

which is defined as the duration over which the monthly average steam-to-oil ratio (iSOR) 

exceeds 5 (a commonly-accepted upper limit for typical SAGD wells). For a given value 

of COP, low values of tiSOR and CSOR would correspond to higher steam injection 

efficiency. A dimensionless form defined as tDiSOR = tiSOR /ts is considered as an output 

attribute in the ANN modeling. 

 

3.4 Artificial Neural Network for Data-Driven Model 

In this thesis, ANN is used to analyze the simulation results by correlating the inputs and 

outputs. Therefore, the formulation and architecture of ANN is briefly introduced in this 

section. 

A schematic of various elements of an ANN consisting of only one hidden layer has 

been illustrated in Fig. 2-1. In a back-propagation neural network (BPNN), signal is 
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passed from an input layer of neurons through a series of hidden layer to an output layer 

of neurons, while error is back propagated from the output layers to train the unknown 

network parameters including weights and biases (Bishop 1995). The input signals are 

multiplied by their corresponding weights to obtain the value of Y: 






n

i

iijj xwwY

1

0 ,                           (3-5) 

Where Yj is weighted sum of input signals at node j; w0 is threshold (bias) value; wij is the 

weight associated with the connection between node j and the input node i; xi = value of 

input node i; and n = number of input nodes. An activation function such as the one 

shown in Eq. 3-6 is applied to the weighted sum: 

Ye
Yf




1

1
)(                              (3-6) 

The output signal from node j is calculated from Eq. 3-6, and it is considered as the input 

signal to the next layer. Eqns. 3-5 and 3-6 are applied repeatedly until the final output 

layer is reached and the value for the target variable is computed. Because of large 

disparity in scales of different data sources, normalization or standardization procedures 

are performed on all input and output attributes (Francis 2001). The training data set is 

also used to design the optimal network configuration. Readers may refer to additional 

reference materials for ANN techniques (Zupan 1994; Shahab 1995; Shahab 2000; 

Al-Fattah and Startzman 2001; Weiss et al. 2002). 
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3.5 Principle Component Analysis 

Principal component analysis (PCA) is performed to reduce the dimensionality of the 

original dataset (X) through a linear projection onto a lower-dimensional subspace. A 

mean-adjusted dataset (Z) is attained by subtracting the mean of each variable in 𝑿. Next, 

the covariance between two variables are calculated to eliminate bias due to large 

disparity in mean values.  

1
),( 1



 

M

ZZ
XXCOV

M

i ikij

kj

                       (3-7) 

Where Xj and Xk represent two particular variables in X; M denotes the total number of 

samples in X. The calculation in Eq. (3-7) is repeated for all pairs of variables to compute 

the covariance matrix, which is subjected to eigenvalue decomposition. Individual 

eigenvalue signifies the contribution of the variance from the corresponding eigenvector 

to the total variance of the original data. The eigenvectors with highest eigenvalues, or 

the principal components (PC), can be obtained by sorting the eigenvalues in decreasing 

order. Principal scores (PS), which are regarded as new inputs attributes in subsequent 

ANN modeling, are computed using Eq. (3-8). 

TZPCPS 
                           (3-8) 

The detailed procedure of PCA is shown as follows: 

1. Suppose n data and p variables are available and they form a matrix[𝑋]𝑛×𝑝; 

2. Subtract the mean from each of the p dimensions, get the new matri[𝑍]𝑛×𝑝; 

3. Calculate the covariance of the new matrix, 𝐶 = 𝑐𝑜𝑣(𝑍); 
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4. Calculate the eigenvalue T and the eigenvector V, [T, V] = eig(C); 

5. Sort the eigenvalues from the maximum to minimum; 

6. Select the first d eigenvalues and the corresponding eigenvectors which is  

  considered as the principal components, create the matrix [𝐿]𝑝×𝑑; 

7. Calculate the final matrix 𝐵 = 𝑍 × 𝐿; 

8. The B is the matrix after dimension reduction. 

 

3.6 Sensitivity Analysis of Grid Size 

To assess the impacts of grid sizes on the simulation accuracy and numerical dispersion, a 

sensitivity study is performed with three models with different cell sizes (∆x × ∆y): 

1m × 1m  (coarse), 0.5m × 0.5m   (medium), 0.25m × 0.25m  (fine), respectively. 

Zones with high water saturation are commonly encountered underlying or overlying a 

heavy oil bearing formation such as those in Alberta (Kendall 1977; Towson 1977; Law, 

et al. 2003). Although a gas cap near the top of the reservoir is rarely observed, high gas 

saturation can be a result of natural depletion (Farouq Ali, 1983). Pooladi-Darvish and 

Mattar (2002) reported that top water leads to more-severe heat loss than a top-gas cap 

because of higher heat capacity of water. They also suggested that top water could drain 

into and collapse the steam chamber. Therefore, in this study, effects of a gas cap were 

not considered. All three models consist of a 3-m top water zone and a 4-m bottom water 

layer. There are seven shale barriers randomly distributed in the reservoir, but their sizes 

and positions are kept constant among the three cases. Simulation results show that only 
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minor difference (less than 0.002%) in cumulative production after 20 years is observed. 

However, significant differences in computational costs are noted: by use of a 3.4 GHz, 

16GB of RAM, Intel Core i7-2600 CPU, the execution time for the model with 

0.25m × 0.25m cell size is 9.6 times and 576 times longer than that of the 0.5m ×

0.5m  model and 1m × 1m  model, respectively. Balancing both accuracy and 

computational efficiency, a cell size of 1m × 1m is selected in this study. 
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Table 3-1 Parameters in Eqn. (3-1) 

Parameters Value Unit 

ao 11 - 

aw 21 - 

co -7.5*10
-7

 - 

cw 1.0*10
-6

 - 

 

Table 3-2 Reservoir and Fluid Properties 

Parameters Value Unit 

Reservoir Depth 200 m 

Reservoir Pressure 1500 kPa 

Reservoir Width 900 m 

Horizontal Permeability 5 D 

Reservoir Temperature 18 ºC 

Oil Viscosity (18 ºC) 600,000 cp 

Rock Compressibility 9.6*10
-6

 kPa
-1

 

Formation Heat Capacity 2350 kJ/m
3
*K 

Rock Thermal Conductivity 6.6*10
5
 J/m*d*ºC 

Oil thermal Conductivity 1.15*10
4
 J/m*d*ºC 

Water Thermal Conductivity 5.35*10
4
 J/m*d*ºC 

Gas Thermal Conductivity 1.4*10
2
 J/m*d*ºC 

 

Table 3-3 Parameters in Archie Equation 

Parameter Clean sand LQS Shale Unit 

a 1 1 1 - 

m 2 2 2 - 

n 2 2.5 3 - 

Rt 500 300 100 Ω·m 

Rw 0.2 0.2 0.2 Ω·m 
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Figure 3-1(a) Configuration and setup for 2D (X-Z plane) SAGD simulation.  

 

 

Figure 3-1(b) Schematic of steam chamber expansion in a SAGD displacement. 

 



29 
 

 

Figure 3-2 Oil viscosity profile as a function of temperature. 

 

 

Figure 3-3(a) Relative permeability functions in clean sand and LQS for water-oil system. 
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Figure 3-3(b) Relative permeability functions in clean sand and LQS for liquid-gas system. 

 

 

Figure 3-4(a) Relative permeability functions in shale barrier for water-oil system. 

 



31 
 

 

Figure 3-4(b) Relative permeability functions in shale barrier for liquid-gas system. 

 

 

Figure 3-5 Capillary pressure functions for water-oil system in shale barrier. 
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Figure 3-6 Capillary pressure functions for liquid-gas system in shale barrier. 

 

 

Figure 3-7(a) Histogram of porosity for clean sand by use of SGSIM.  
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Figure 3-7(b) Histogram of porosity for LQS by use of SGSIM. 

 

 

Figure 3-7(c) Histogram of porosity for shale barrier by use of SGSIM. 
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Figure 3-7(d) Variogram of porosity distribution for clean sand, LQS, and shale barrier by 

use of SGSIM. 

 

 

Figure 3-8 Distribution for clean sand, LQS and shale barriers, and corresponding porosity, 

water saturation distribution. 
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Chapter 4: Assessing Impacts of Reservoir Heterogeneities on 

SAGD Performance 

In this chapter, detailed sensitivity analysis is performed to explore the effects of 

reservoir heterogeneities of shale and lean zone on SAGD performance, which helps find 

the important parameters associated with SAGD performance. Effects of shale and lean 

zone in reservoir on SAGD are investigated in terms of location, continuity, size, 

proportion and saturation.  

 

4.1 Effects of Lean Zones on SAGD Performance 

In this sub-section, the effects of lean zones, which are defined as layers consisting of 

reduced oil saturation that are overlying (top water) or underlying (bottom water) the pay 

zone, are investigated. A base case is set up without any lean zone. 

 

4.1.1 Top Water 

A sensitivity analysis is carried out by increasing the water zone thickness. Results of RF, 

CSOR, DB and R are shown in Table 4-1 as a function of dimensionless water zone 

thickness defined as hDwt = Hwt/H, where Hwt is the thickness of top water zone and H is 

the reservoir thickness. Fig. 4-1 compares the oil saturation distribution after 2 years for 

four selected cases with Hwt less than 10 m (hDwt = 0.3333). At the end of the preheating 

period, the steam chamber grows vertically and mobilizes the oil uniformly with 

essentially zero bypassed oil. When the steam chamber reaches to the top of the pay zone, 
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the injected steam is used to vaporize the top water layer, which serves as a thief zone. 

Despite the heat loss through the top water, the additional steam helps to accelerate the 

steam chamber expansion. As shown in Fig.4-1, the steam chamber expands more 

quickly as the top water thickness increases. This is corroborated by the acceleration in 

oil production with top water thickness. A key observation is that thicker top water zone 

absorbs more heat and requires more steam injection, resulting in a higher CSOR as 

shown in Table 4-1. This observation, similar to that in Pooladi-Darvish and Mattar (2002) 

and Law et al. (2003), suggests that heat transfer to the oil is most efficient when steam 

remains in the pay zone instead of the surrounding formation. Law et al. (2003) compared 

oil rate and CSOR for three scenarios including (1) absence of top water, (2) confined top 

water and (3) unconfined top water. It was observed that oil rate increased in the presence 

of confined top water. However, no sensitivity analysis regarding the thickness of the 

confined top water was performed in that study; hence no complete systematic conclusion 

regarding effect of top water on SAGD performance could be derived. Nasr et al. (2000) 

also concluded from experimental studies that the thicker top water zone would lead to 

higher CSOR. The ranking results in terms of R and DB shown in Table 4-1 demonstrate 

further a reduction in process efficiency as hDwt increases. Collapsing of the steam 

chamber is not observed from this simulation study, which is in agreement with other 

previous studies (Good et al. 1997). 

To model an unconfined aquifer overlaying the reservoir with constant pressure 

boundary condition, a series of water injectors with constant bottom-hole pressure 
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constrained at the initial reservoir pressure are positioned near the top. As the oil drains, 

water encroachment into the reservoir, which is detrimental to steam chamber expansion 

and the ensuing oil production, becomes prevalent. However, this negative impact on 

COP is not observed for the cases with confined top water. As a result, the overall SAGD 

performance with unconfined top water is much worse than the base case in terms of R 

and DB values. One should note that Law et al. (2003) also reported the highest CSOR 

for the unconfined case, which is consistent with this study. Next, a series of simulations 

are performed with varying levels of oil saturation in top water zone for a fixed 5m 

thickness. Simulation and ranking results are summarized in Table 4-1. The presence of 

oil in top water zone is beneficial for the SAGD performance in terms of values of R and 

DB. As the oil saturation in top water increases from 0 to 0.95, the efficiency of SAGD 

process increases by 32% in terms of R. 

 

4.1.2 Bottom Water 

A sensitivity analysis is carried out by increasing the water zone thickness. Results of RF, 

CSOR, R and DB are shown in Table 4-2 as a function of dimensionless water zone 

thickness defined as hDwb = Hwb/H, where Hwb is the thickness of bottom water zone and 

H is the reservoir thickness. Fig. 4-2 compares the oil saturation distribution after 5 years 

for 4 selected cases. When the steam chamber rises, the water in the bottom layer begins 

to flow toward the production well because of its low viscosity. Because steam chamber 

expansion is primarily localized in regions above the producer, the presence of bottom 
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water has minor effect on the shape or advancement of the steam chamber and the 

ensuing oil mobilization within the chamber; however, the mobilized oil would drain into 

the bottom water zone because of gravitational force and thus increase the oil saturation 

at depths below the producer. The low oil saturation region near the lower left corner is 

caused by coning. Because water production is driven by the pressure difference, the 

heated oil is drained along the steam chamber to the producer, as well as to the bottom 

zone to replace the void space left by the produced water. On the other hand, the low oil 

saturation region in the lower right hand corner is present only at early time (before the 

steam chamber reaching the right boundary). After all oil is mobilized by the steam (e.g., 

after 10 years in our cases), this low oil saturation region would disappear. To investigate 

the sensitivity of well control, simulations are performed with various pressure 

differences between injector and producer: 200, 400 (base case) and 800 kPa. Less than 

10% difference in results (R values and oil saturation distribution) is observed among 

these cases. Because SAGD operation optimization is not a primary focus of this work, 

all simulations are conducted with the same well control as in the base case. In addition, 

the water production from the lean zone has increased the water cut at the producer, 

resulting in a lower oil rate. These mechanisms would explain the lower RF observed for 

the case with thicker bottom water as shown in Table 4-2. The ranking results also 

suggest that increase in bottom water thickness reduces the performance efficiency 

significantly, and the effect appears to be more severe than for the top water scenario. A 

lean zone below the producer does not introduce additional benefits of enhancing steam 
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chamber advancement and subsequent oil recovery; instead, it serves as an energy sink, 

which increases the CSOR eventually. To model a scenario in which the reservoir is 

underlaid by an unconfined aquifer with constant pressure boundary condition, a series of 

water injectors with constant bottom-hole pressure constrained at the initial reservoir 

pressure are positioned near the bottom. Much more water is flowing into the producer, 

leading to a higher water cut and lower oil recovery. 

Next, a series of simulations is performed with varying levels of oil saturation in 

bottom water zone for a fixed 5m thickness. Simulation and ranking results are also 

summarized in Table 4-2. Similar to the cases of top water, higher oil saturation in the 

bottom water contributes to the higher R and DB. As the oil saturation in bottom water 

increases from 0 to 0.95, the efficiency of SAGD process increases by 34% in terms of R. 

 

4.2 Effects of Shale Distribution on SAGD Performance 

In this subsection, a comprehensive analysis about the continuity, location, size (length 

scale and thickness), and proportion of the shale barriers is presented. First, a base case is 

set up with clean sand only, in which capillary pressure effects are neglected. Next, the 

effects of LQS with a single continuous shale barrier are studied (Fig. 4-3 a-b). Finally, 

sensitivity of the location and distribution of discontinuous shale barriers is explored in 

(Fig. 4-3 c-d).  

To assess the impacts of capillary pressure, results for a single shale barrier (Fig. 

4-3a) are repeated with and without capillary pressure effects. Fig. 4-4 compares the oil 
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rate and monthly average steam-to-oil ratio (iSOR) with/without capillary pressure 

effects. An increment of 3% for COP is observed caused by a slightly higher oil rate at 

early production stage, if capillarity effect is ignored. The effect on iSOR is more 

observable during the later production period; an increment of 4.2% for CSOR is detected 

for the case without capillarity effect. Considering that most models used in this work 

consist of shale proportions much higher than those in Fig. 4-3a, one should not ignore 

the impacts of capillary pressure. 

 

4.2.1 Continuous Shale Barrier 

Fig. 4-3b illustrates the configuration of a single continuous shale barrier with LQS. 

Positions of the shale barriers in relation to the well pair are varied systematically 

according to three categories: (a) AIR: above the injector region, (b) BIP: between 

injector and producer, (c) UPR: underneath producer region. A series of simulations cases 

is performed by varying the position of the shale barriers: z = 3, 10, 17 (AIR); z = 22, 23, 

24 (BIP); and z = 27, 28, 29 (UPR). Simulation and ranking results are summarized in 

Table 4-3 (without LQS) and Table 4-4 (with LQS). The length (Lsh) and thickness (Hsh) 

of the shale barrier are expressed dimensionlessly as: lDsh = Lsh/L and hDsh = Hsh/H, where 

L refers to the length of the reservoir. 

It is interesting to note that the incorporation of LQS does not have a significant 

adverse effect on the ultimate oil production and CSOR. Values of RF, CSOR, R and DB 

shown in Tables 4-3 and 4-4 suggest that only minor reduction in recovery efficiency is 
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detected when LQS is modeled. This observation is also corroborated by the comparison 

of RF and CSOR profiles in Fig. 4-5 for a single shale barrier at z = 10 in cases with and 

without LQS. A possible explanation is that properties (porosity, permeability, and 

multiphase flow functions) assigned to the LQS in this study are approximately the same 

as those in the clean sand; therefore, the LQS would not strongly impede steam chamber 

expansion and the fluid drainage toward the production well. In addition, the areal extent 

of the LQS is rather limited. In fact, under certain circumstances, reduced velocity in the 

LQS would lead to a more uniform chamber front and slightly higher RF. Although the 

focus of this current study is the heterogeneity in shale barrier distribution, further 

sensitivity analysis is required to fully capture impacts of LQS characteristics in SAGD 

performance.  

Next, Fig. 4-6 compares the oil saturation distribution with different locations of the 

single continuous shale barrier with LQS after 5 years. When the nearly impermeable 

shale barrier is located at z = 10 in the region above the injector (AIR), the vertical 

growth of the steam chamber is strongly impeded, compelling the steam to spread 

sideways underneath the shale barrier, which is acting like a cap rock. As a result, the oil 

above the shale barrier is bypassed. On the other hand, if the shale barrier is at z = 28 in 

the region beneath the producer (UPR), the shale barrier essentially has a very minor 

impact on the recovery process. Values of its performance indicators of R and DB are the 

same as those in the base case, though RF and CSOR values have both increased slightly.   

When the shale barrier is between the injector and producer (BIP: e.g., z = 23), steam 
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injection and chamber advancement are significantly hampered, hindering oil production 

toward the producer. Although the shale barrier does not interfere with the vertical grow 

of the steam chamber, permitting heat transfer and the oil to be mobilized above the 

injector, it is, however, obstructing the heated oil from draining toward the producer.  

The RF and CSOR profiles for the three cases are shown in Fig. 4-7. Because of the 

obstruction of the shale barrier in the AIR, the RF in the case of z = 10 is lower than the 

base case. Because the shape of the steam chamber is distorted around the shale barrier, 

increased bypassed oil above the shale barrier contributes to a higher CSOR. A 

combination of reduced RF and increased COSR would ultimately result in a lower R 

value in Table 4-4. As the shale barrier is placed closer to the injector, the amount of 

bypassed oil increases, reducing the efficiency (and ranking) of the ensuing SAGD 

process. When the shale barrier is at z = 28 below the producer, the corresponding RF and 

CSOR profiles are very similar to those in the base case. Finally, when the shale barrier is 

at z = 23 in between the well pair, both the RF and ranking drop dramatically despite the 

fact that the CSOR is much lower than the base case. Steam injectivity is dramatically 

reduced because of this extremely low production. 

On the basis of the aforementioned observations, one can deduce a number of 

general conclusions regarding the impacts of shale barriers on SAGD performance. First, 

shale barriers above the injector could impede the advancement of steam chamber. 

Second, all shale barriers, regardless of their positions or distributions, could obstruct oil 

drainage towards the producer. Finally, evaluation of the SAGD performance should be 
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facilitated with some ranking indictor or scheme that takes into account both RF and 

CSOR. It is demonstrated in a number of cases in which either CSOR or RF is enhanced 

as compared to the base case, whereas the overall performance efficiency is notably 

inferior. 

 

4.2.2 Discontinuous Shale Barrier 

Fig. 4-3c illustrates the configuration of a single discontinuous shale barrier with LQS. A 

series of simulation cases is performed by varying the position of the shale barrier: z = 3, 

10, 17 (AIR); z = 22, 23, 24 (BIP); and z = 27, 28, 29 (UPR) – same as in the preceding 

subsection. Each segment of the shale barrier has a uniform length of 3 m (lDsh = 0.5882). 

Results of the simulation and ranking are also shown in Table 4-4.   

Although the shale barriers could still hinder the expansion of steam chamber and 

increase the amount of bypassed oil inside the steam chamber, their impacts are 

significantly diminished as the continuity reduces. Shale barriers of shorter length scale 

allow the steam chamber to expand around them. Results in Table 4-4 also reveal that the 

performance (ranking) of all these cases is comparable to that in the base case. Once 

again, when the shale barrier is below the producer, their impacts on the subsequent 

performance are the least observable. It is interesting to note that sensitivity of shale 

position within a particular region (e.g.AIR) decreases as shale barrier continuity is 

reduced.  

Results from the preceding subsection have provided a systematic understanding of 
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the various characteristics of shale distribution (location and continuity) on SAGD 

performance. Next, the effects of their length scale and thickness are investigated. In 

particular, a set of randomly distributed discontinuous shale barriers with LQS (a more 

realistic scenario) is used. The position of the shale barriers is generated stochastically. 

Fig. 4-3d shows a particular realization with 10 discontinuous shale barriers that are 

distributed randomly across the domain. Practically, depositional environment has a 

strong relationship with shale volume (Goetz et al. 1977), which can be reflected from the 

petrophysical log data; however, this relationship is not considered here. Instead, a series 

of sensitivity analyses is carried out by arbitrarily varying the length scale and thickness 

of the shale barriers.  

A series of simulation cases is conducted with different shale barrier length scale, 

lDsh, while keeping the thickness constant at 1 m (hDsh = 0.0333), and the results are 

presented in Table 4-5. The oil saturation distributions after 5-year simulation are 

compared in Fig. 4-8. Additional oil is bypassed because the steam chamber interface is 

distorted by the shale barriers. As the length scale of shale barrier increases, distortion of 

the chamber interface and the fraction of bypassed oil also increase. This is evidenced by 

the reduction in RF and rise in CSOR shown in Table 4-5.  

Next, another set of simulation cases is conducted in which the thickness of the 

randomly discontinuous shale barriers, hDsh, is varied while keeping the length scale 

constant at 5 m (lDsh = 0.098). The simulation results are summarized in Table 4-6. 

Comparison of oil saturation distributions with those in Fig. 4-8 reveals similar 
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characteristics; as the volume of the shale barriers increase, more oil is bypassed. This is 

always accompanied by a reduction in RF and an increase in CSOR. However, it is not 

obvious whether the thickness or length scale would be a more dominant factor in 

controlling the amount of bypassed oil, because this might depend on the shale properties 

in a specific reservoir. 

Results in Tables 4-4 through 4-6 are corroborated by many previous studies of 

analyzing reservoir-heterogeneity effects on SAGD (Pooladi-Darvish and Mattar, 2002; 

Chen et al. 2008; Dang et al. 2010). It was typically shown that the presence of randomly 

distributed, discontinuous, thin shale/clay lenses with limited extent might not 

significantly affect production because heat conduction takes place without direct contact 

with the bitumen. One should note that variability in shale thickness was not studied in 

these previous works. 
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Table 4-1 Simulation Results for Cases with Top Water 

hDwt 
Top Water 

RF CSOR 
R DB 

 (J/m
3
) Oil Saturation (RF/CSOR) 

0.0000 0 0.8523 1.683 0.506 3.79E+10 

0.0333 0 0.8549 1.756 0.487 3.77E+10 

0.1000 0 0.8552 1.858 0.460 3.75E+10 

0.1667 0 0.8579 1.944 0.441 3.72E+10 

0.2667 0 0.8598 2.062 0.417 3.69E+10 

0.3333 0 0.8607 2.139 0.402 3.67E+10 

unconfined 0 0.4363 28.192 0.015 5.01E+9 

0.1667 0.05 0.8588 1.916 0.448 3.73E+10 

0.1667 0.1 0.8594 1.888 0.455 3.74E+10 

0.1667 0.15 0.8586 1.864 0.461 3.75E+10 

0.1667 0.2 0.8594 1.834 0.469 3.75E+10 

0.1667 0.5 0.8633 1.679 0.514 3.79E+10 

0.1667 0.95 0.8605 1.479 0.582 3.85E+10 

 

Table 4-2 Simulation Results for Cases with Bottom Water 

hDwb 
Bottom Water  

RF CSOR 
R DB 

 (J/m
3
) Oil Saturation (RF/CSOR) 

0.0000 0 0.8523 1.683 0.506 3.79E+10 

0.0333 0 0.8335 1.756 0.475 3.77E+10 

0.1000 0 0.7942 1.904 0.417 3.73E+10 

0.1667 0 0.7574 2.049 0.370 3.70E+10 

0.2667 0 0.7092 2.285 0.310 3.63E+10 

0.3333 0 0.6783 2.418 0.281 3.60E+10 

unconfined 0 0.6776 2.8168 0.2405 3.53E+10 

0.1667 0.05 0.7574 2.012 0.377 3.71E+10 

0.1667 0.1 0.7609 1.997 0.381 3.71E+10 

0.1667 0.15 0.7673 1.944 0.395 3.72E+10 

0.1667 0.2 0.7667 1.933 0.397 3.73E+10 

0.1667 0.5 0.7731 1.773 0.436 3.77E+10 

0.1667 0.95 0.7813 1.575 0.496 3.82E+10 
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Table 4-3 Simulation Results for Single Continuous Shale Barrier without LQS 

Location of Shale 

 Barrier Layer(z) 
lDsh RF CSOR 

R 
DB (J/m

3
) 

(RF/CSOR) 

Base Case 1 0.8523 1.683 0.506 3.79E+10 

AIR 

3 1 0.8104 1.798 0.451 3.76E+10 

10 1 0.6164 2.206 0.279 3.65E+10 

17 1 0.3887 3.105 0.125 3.41E+10 

BIP 

22 1 0.0021 0.281 0.007 4.17E+10 

23 1 0.0017 0.678 0.002 4.06E+10 

24 1 0.0014 1.818 0.001 3.76E+10 

UPR 

27 1 0.8599 1.705 0.504 3.79E+10 

28 1 0.8611 1.702 0.506 3.79E+10 

29 1 0.8637 1.711 0.505 3.79E+10 

 

Table 4-4 Simulation Results for Single Continuous and Discontinuous Shale Barrier with 

LQS 

Location of Shale 

Barrier Layer(z) 
lDsh RF CSOR 

R 
DB (J/m

3
) 

(RF/CSOR) 

Base Case 0 0.8523 1.683 0.506 3.79E+10 

AIR 

3 1 0.8170 1.855 0.440 3.75E+10 

10 1 0.6251 2.280 0.274 3.63E+10 

17 1 0.3115 3.963 0.079 3.18E+10 

BIP 

22 1 0.0023 0.814 0.003 4.03E+10 

23 1 0.0016 1.418 0.001 3.86E+10 

24 1 0.0013 1.708 0.001 3.79E+10 

UPR 

27 1 0.8582 1.763 0.487 3.77E+10 

28 1 0.8807 1.742 0.506 3.78E+10 

29 1 0.8843 1.744 0.507 3.78E+10 

AIR 

3 0.0588 0.7996 1.779 0.449 3.77E+10 

10 0.0588 0.8038 1.797 0.447 3.76E+10 

17 0.0588 0.8039 1.812 0.444 3.76E+10 

BIP 

22 0.0588 0.8012 1.801 0.445 3.76E+10 

23 0.0588 0.8018 1.800 0.445 3.76E+10 

24 0.0588 0.8016 1.812 0.443 3.76E+10 

UPR 

27 0.0588 0.8422 1.697 0.496 3.79E+10 

28 0.0588 0.8360 1.720 0.486 3.78E+10 

29 0.0588 0.8353 1.731 0.483 3.78E+10 
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Table 4-5 Simulation Results for Randomly-Distributed Discontinuous Shale Barriers with 

LQS with Fixed Shale Barrier Thickness 

lDsh hDsh RF CSOR R (RF/CSOR) DB (J/m
3
) 

0 0 0.8523 1.683 0.506 3.79E+10 

0.0196 0.0333 0.8277 1.733 0.478 3.78E+10 

0.0588 0.0333 0.8077 1.785 0.452 3.77E+10 

0.0980 0.0333 0.7919 1.816 0.436 3.76E+10 

 

Table 4-6 Simulation Results for Randomly-Distributed Discontinuous Shale Barriers with 

LQS with Fixed Shale Barrier Length 

lDsh hDsh RF CSOR R (RF/CSOR) DB (J/m
3
) 

0 0 0.8523 1.683 0.506 3.79E+10 

0.0980 0.0333 0.7948 1.820 0.437 3.76E+10 

0.0980 0.1000 0.7391 1.930 0.383 3.73E+10 

0.0980 0.1667 0.6848 2.088 0.328 3.69E+10 
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Figure 4-1 Oil saturation distribution after 2 years for varying top water thickness. 

 

 

Figure 4-2 Oil saturation distribution after 5 years for varying bottom water thickness. 
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Figure 4-3 Permeability distribution (in darcies) for various shale distributions. 

 

 

Figure 4-4 Impacts of capillarity on oil rate and iSOR over 20 years for a single continuous 

shale barrier located at z = 10. 
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Figure 4-5 Comparison of RF and CSOR for 20 years for single continuous shale barrier at z 

= 10 with and without LQS. 

 

 

Figure 4-6 Oil saturation distribution after 5 years for different locations (z) of the single 

continuous shale barrier with LQS. 
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Figure 4-7 RF and CSOR for 20 years with different locations (z) of the single continuous 

shale barrier with LQS. 

 

 

Figure 4-8 Oil saturation distribution after 5 years for different lDsh for randomly-distributed 

discontinuous shale barriers with LQS. 
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Chapter 5: Correlation of Reservoir Heterogeneities to SAGD 

Performance Using Data-Driven Modeling Methods 

In the chapter 4, a detailed sensitivity analysis is performed so that a comprehensive 

understanding about how shale barriers and lean zones affect the SAGD performance is 

obtained. In this chapter, the objective is to identify and propose a set of parameters 

suitable for characterizing the heterogeneities of shale layers and lean zones in SAGD 

reservoirs on the basis of the sensitivity analysis in chapter 4. ANN is used to develop a 

data-driven surrogate model to predict SAGD recovery performance from this set of 

heterogeneous reservoir variables.  

This chapter starts with the correlation of reservoir heterogeneities to SAGD 

performance by use of the dataset from sensitivity analysis in chapter 4. Then, 

investigation of the correlation is extended to stochastic distribution of shale barriers and 

lean zones. 

 

5.1 Correlation of Heterogeneity Attributes to SAGD Performance Indicators 

Because of the complexity in the shale and lean-zone heterogeneities, it is hypothesized 

that simple parameters such as average porosity, permeability, or saturation would not 

suffice to capture the highly nonlinear relationship between these heterogeneous features 

and recovery performance. In addition, it is strongly desired that the input attributes 

should be readily derived from data including well logs, a crucial consideration in 

development of data-driven models involving a vast amount of field data. 
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On the basis of the sensitivity analysis in chapter 4, it is noted that among numerous 

parameters influencing SAGD performance (ultimate recovery, remaining trapped 

bypassed oil, chamber advancement, and heat loss), certain characteristics of the shale 

barriers (proportions, size, continuity, and position in relation to the well pair) and of lean 

zones (thickness, oil saturation, and position in relation to the well pair) play a 

particularly crucial role. The observation that recovery becomes less efficient if the 

distance between the shale barrier and the well pair decreases, or if the volume or size 

(length and thickness) of the shale barrier increases, motivates the formulation of a shale 

indicator SI = V/d (Amirian et al. 2013), where V and d refer to the volume and closest 

direct distance between a shale barrier and the producer, respectively. In this study, the SI 

formulation is modified to be a dimensionless quantity: V/(dwH), where w is the reservoir 

width. In this formulation, V = LshHshWsh, where Lsh, Hsh and Wsh refer to the length, 

height and width of the shale barrier, respectively; the product dwH can be considered as 

the volume of rock between the vertical plane at the heel of the well pair to the 

corresponding shale barrier. This ratio essentially represents the ratio of shale barrier 

volume and rock volume between well pair and shale barrier. A vertically continuous 

shale barrier close to the well pair can be reflected by a high SI value. A similar 

dimensionless lean-zone indicator can be defined: LI = V'/(d'wH), where V' and d' refer to 

the volume and closest direct distance between a particular lean zone and the producer. A 

high LI value describes a thick lean zone very close to the producer. LIT and LIB denote 

the LI indicator for top water and bottom water, respectively. 
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A data set consisting of a total of 120 cases with randomly-distributed 1m-thick 

shale barriers and lean zones with varying thickness and oil content is assembled from the 

sensitivity-analysis study. One should note that although various aspects of 

heterogeneities were studied in the past, this study presents an analysis that combines all 

these effects into a single comprehensive dataset. One can summarize variability among 

these 120 cases as follows: (1) top-water thickness is between 0 and 100 m (hDwt = 0 to 

3.333) (a zero value refers to the absence of lean zone); bottom water thickness is 

between 0 and 300m (hDwb = 0 to 10); (2) oil saturation in the lean zones is between 0 and 

0.95; (3) length of the shale barriers is between 3 and 30m (lDsh = 0.06 to 0.59); and (4) 

total number of shale barriers is between 2 and 15 (equivalent to 0 to15% probability of 

shale occurrence). The total data set (m) is partitioned into two parts: (1) m1 samples are 

designated for training and validation of the BPNN model; an n-fold cross validation is 

implemented to identify the optimal network architecture (Ma et al. 2015); and (2) the 

remaining m2 = m-m1 samples are assigned for final testing in a prediction mode with the 

previously trained network parameters. In this study, the entire data set is subdivided into 

70 cases for training, 20 cases for validating, and the remaining 30 cases for testing. 

An implementation of ANN modeling in Matlab (R2010b) is used to assess the 

nonlinear relationships between various pertinent system parameters identified from the 

sensitivity analysis and SAGD performance indicators (R and DB). Although the 

influences of heterogeneities were presented in previous studies, formulation of 

dimensionless variables descriptive of their impacts on SAGD production indicator (or 
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ranking) are only referred to, but not explicitly defined. A total of 9 dimensionless input 

variables including SIclose, <SI>, Var(SI), shale proportions, lDsh, LIT, oil saturation of top 

water, LIB, and oil saturation of bottom water are adopted in this work. SIclose refers to 

the SI of the shale barrier that is a shortest direct distance to the production well. <SI> 

and Var(SI) refer to the mean and variance of the SI histogram, respectively. Shale 

proportions are defined as the volume ratio of shale to clean sand and LQS. The data 

ranges for these 9 variables are tabulated in Table 5-1. ANN modeling is repeated with 

either R or DB designated as the single output. 

Although the primary aim of this work is to demonstrate the feasibility of ANN 

modeling in correlating SAGD performance and to formulate a set of pertinent input 

attributes that are readily extracted from petrophysical measurements (e.g., logs), it is 

worthwhile to point out that the selected ranges are comparable with previous studies. 

The experimental set-up in Yang and Butler (1992) is equivalent to lDsh = 0.5 to 1.0 and a 

shale thickness of 2m at field scale. Dang et al. (2010) also selected a shale thickness of 

1m. Chen et al. (2008) tested a number of stochastic models of shaly sands with 

correlation length of 1.5m to 24m (lDsh = 0.03 to 0.5) and shale proportions of 10-50%. 

Pooladi-Darvish and Mattar (2002) modeled a water layer of 2m in the UTF project, but 

the range in this training dataset encompasses both confined and un- or semi- confined 

lean zones. 

Cross-plots between actual target values and the network predictions for the training 

data sets are shown in Fig.5-1 (left) and Fig.5-2 (left). Good agreement is observed 
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between the target values and the ANN predictions. Result of the testing data set (which 

were not presented to the network previously) are shown in Fig. 5-1 (right) and Fig.5-2 

(right), and it can be concluded that trained ANN model yields reasonable predictions for 

the testing data set. A key conclusion from the ANN modeling results is that the nine 

proposed input attributes (previously demonstrated to be highly correlated to recovery 

performance and ranking results) can be used successfully for capturing the effects of 

heterogeneities as a result of position, continuity, size, proportion of shale barriers, and 

characteristics (position, thickness, and oil content) of lean zones. 

The implementation of SI was tested recently with an SAGD field data set compiled 

from numerous publicly available sources (Ma et al. 2015). In addition to the typical 

petrophysical variables including porosity, net-to-gross ratio, saturation and gross pay, it 

was concluded that the dimensionless SI, which is defined from logs as the shale-barrier 

thickness divided by distance to well pair, is pertinent in describing the characteristics 

associated with reservoir heterogeneities and facilitating SAGD-production-performance 

prediction. The remaining dimensionless attributes adopted in this work, including LI, 

saturation and shale proportions, can also be derived from log measurements in an 

analogous fashion.  

 

5.2 Stochastic Distribution of Shale Barrier and Lean Zone 

In the section 5.1, good results of ANN modeling demonstrated that these attributes, 

which can be defined readily from well logs, are highly correlated with the ensuing 
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recovery response and heat loss. The work also demonstrated the feasibility and utility of 

data-driven models in correlating SAGD performance.  

However, the reservoir heterogeneity modeling in section 5.1 is not realistic such as: 

(1) the shape of shale/LQS is inerratic; (2) the shale/LQS always distributes in horizontal 

direction; (3) the size of LQS is limited to be one gridblock surrounding shale barrier; (4) 

the lean zone distribution within reservoir is not considered; (5) the property of each facie, 

such as porosity and permeability, are fixed. In this section, the distribution of shale 

barriers and lean zones will be modeled stochastically as described in chapter 3, and then 

identify, formulate and correlate a set of attributes pertinent to characterizing stochastic 

distribution of shale barriers/LQS and lean zones to production performance measures. 

Although it is concluded in Chapter 4 that top/bottom water can result in additional 

heat loss and higher CSOR, it is necessary to examine the effects of 

stochastically-distributed lean zones on SAGD performance. Two cases are compared: (1) 

lean zones are distributed stochastically and modeled by the Archie equation as described 

in Chapter 3 in one case, and (2) constant water saturation that is equal to the mean of the 

water saturation in the clean sand (0.0667) is assigned. Fig. 5-3 compares the temperature 

distributions of the two cases after 10 years simulation. The steam chamber in the 

reservoir with stochastically-dsitrbuted lean zone has expanded more quickly. Although a 

higher RF is observed the corresponding CSOR is also increased; as a result, lower 

combined R and DB, with higher tDiSOR are computed. Therefore, it can be concluded that 

lean zones can accelerate the expansion of steam chamber by providing additional steam 
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once they are contacted by the heat. However, the additional heat loss due to higher water 

thermal conductivity leads to poorer overall efficiency. 

The reservoir is assumed to be composed of primarily clean sand, with the combined 

proportions of shale barriers and LQS to be less than 50%. In particular, LQS proportion 

is approximately 30% to 50%, whereas the shale barrier proportion is less than 10%, as 

LQS depicts a gradation of properties between shale barriers and clean sand. 

The shale barriers are characterized through proportion, shale range in horizontal 

direction, shale orientation, and its vertical permeability; the LQS is characterized 

through proportion, LQS range in horizontal direction, LQS range in vertical direction; 

and lean zones are characterized through average water saturation of the reservoir. Fig. 

5-4 shows a schematic to illustrate the stochastic heterogeneity-distribution. Here, the 

correlation lengths of the LQS and shale barriers along the maximum direction of 

anisotropy (LLQS and Lsh) are normalized against the total reservoir length in the 

x-direction (L): lDLQS = LLQS/L and lDsh = Lsh/L, respectively. Similarly, the correlation 

lengths along the minimum direction of anisotropy (HLQS and Hsh) are normalized against 

the total reservoir thickness (H): hDLQS = HLQS/H, and hDsh=Hsh/H. Since the physical 

thickness of a shale barrier is generally smaller than the resolution of the numerical 

model, Hsh is assumed to be a constant value of 1m (size of one grid block); as a result, 

hDsh is also a constant. The azimuth angle , is measured anti-clockwise away from the 

x-direction. The value of sh is assumed to be quite small, since the shale barriers are 

typically limited in vertical extent. In addition, LQS in LQS is assumed to be the same as 
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sh (i.e. LQS = sh) to ensure that the LQS would exist as a transition facie surrounding 

the shale barriers. Prior to ANN modeling, these azimuth angles are normalized to 

dimensionless forms as: DLQS = LQS/360° and Dsh = sh/360°. These parameters have 

sufficiently captured the essential information extracted from the semi-variogram models. 

Other parameters including average kv/kh and average water saturation in reservoir 𝑆𝑤
̅̅̅̅  

are computed. All these variables are considered as input attributes for the subsequent 

ANN modeling, and their ranges are summarized in Table 5-2. 

In this study, a data set consisting of a total of 50 cases with 

stochastically-distributed facies, rock properties and lean zones is assembled for ANN 

modeling, the entire data set is subdivided into 45 cases for training and validating, with 

the remaining 5 cases for testing. 

ANN modeling is implemented in Matlab (R2010b) to correlate the non-linear 

relationships between the extracted input attributes and multiple SAGD performance 

indicators (R, DB and tDiSOR). A total of 9 dimensionless input attributes including LQS 

proportion, lDLQS and hDLQS, shale proportion, lDsh, Dsh, kv/kh in clean sand and shale, and 

𝑆𝑤
̅̅̅̅  are adopted in this work. 

Cross-plots between actual target values and the network predictions for the training 

data sets are shown in Figs. 5-5 through 5-7. In these figures, the output attributes are 

normalized between their minimum and maximum values to range between 0 and 1. The 

predictive quality of the ANN models is quantified by the correlation coefficient, and the 

results are presented in Table 5-3. Except for tDiSOR, good agreement is observed between 
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target and predicted values. The results for the testing dataset are also shown in Figs. 5-5 

through 5-7. It is interesting to observe that the tDiSOR prediction results with the testing 

dataset are better than those based on the training dataset. Next, PCA is applied to the 

original dataset, and the number of input attributes is reduced to 5 principal scores. The 

results as shown in Figs. 5-8 through 5-10 and Table 5-3 confirm that the removal of 

internal data redundancy is often needed to improve accuracy and robustness of 

data-driven models. 

Results of Figs. 5-5 through 5–10 seem to suggest that the prediction accuracy for 

tDiSOR is inferior compared to that for R and DB. It should be noted that tiSOR or iSOR are 

typically highly sensitive to the specific positions of lean zones in relation to the well pair 

(Xu et al. 2014a). For instance, significant variation in tiSOR would be expected for two 

identical reservoirs with the same overall average water saturation, if the lean zones are 

distributed differently with respect to the well pair. 

Finally, only information along the vertical direction of wellbore is extracted to 

calculate the nine input attributes. This procedure aims to replicate a practical field data 

set consisting of petrophysical logs available only at vertical delineation wells (Ma et al. 

2015). It is obvious that the extracted input variables would capture only a portion of the 

information related to the reservoir heterogeneity. The objectives of this analysis are to: 

(1) assess the performance of ANN models when only limited petrophysical information 

is available; and to (2) illustrate the potential implications of ignoring inter-well 

heterogeneities. A total of 45 cases are designated for training, and the remaining 5 cases 
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are employed for testing. The ANN modeling results are shown in Figs. 5-11, 5-12 and 

5-13. The correlation coefficients are lower than 0.5, a drastic reduction in prediction 

accuracy comparing to the ANN models constructed in previous section. An improvement 

is observed between the target values and the ANN predictions when PCA is 

implemented (Figs. 5-14, 5-15 and 5-16). This, again, confirms that the accuracy and 

robustness of data-driven models can be improved by removing the internal data 

redundancy. 

 

5.3 Derivation and Calculation of Reservoir Heterogeneities Parameters 

In the preceding section, a set of parameters are identified to characterize the reservoir 

heterogeneities by shale barriers and lean zones. In this section, the method for deriving 

and calculating these parameters from practical field data is discussed. 

    Djebbar and Donaldson (2004) presented that it is easy to obtain thickness, water 

saturation and porosity from well logs, compensated neutron log, density log, sonic log 

and other methods. The volume and porosity of shale can also be obtained from the well 

logs (Malureanu et al. 2010). Based on the relation of Wyllie and Rose (1950), a few 

empirically relations for evaluating the permeability which use porosity and irreducible 

water saturation. The most well-known relations are Tixier model, Timur model, 

Coates-Dumanoir model, and Coates model (Schlumberger Ltd., 1989). Hubbard et al. 

(2011) distinguish facies based on their property difference; therefore it is easy to 

distinguish LQS from clean sand and shale so that the volume of LQS can be calculated 
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from the well log data.  
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Table 5-1 Range of Dimensionless Input Attributes for ANN Modeling 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-2 Range of Dimensionless Input Attributes for ANN Modeling (Stochastic) 

Variable Min Max 

LQS Proportion 0.30  0.50  

lDLQS 0.29  0.39  

 hDLQS 0.17  0.33  

Shale Proportion 0.04  0.08  

lDsh 0.17  0.33  

Dsh  0.00  0.08  

kv/kh in Clean Sand 0.20  0.80  

kv/kh in Shale 1.00E-08 1.00E-04 

𝑆𝑤
̅̅̅̅   0.11  0.36  

 

Table 5-3 Correlation Coefficients for ANN Modeling (Stochastic) 

 Base scenario Ignoring lateral heterogeneity 

Output 

attributes 

Original 9 input attributes 5 Principal scores Original 9 input attributes 5 Principal scores 

Training Testing Training Testing Training Testing Training Testing 

R 0.91  0.72  0.92  0.92  0.46  0.28  0.64  0.92  

DB 0.91  0.79  0.91  0.84  0.47  0.39  0.59  0.84  

tDiSOR 0.48  0.74  0.60  0.79  0.35  0.17  0.59  0.79  

 

 

  

Variable Min Max 

SIclose 0.0006 0.0227 

<SI> 0.0059 0.0581 

Var(SI) 0.0002 0.3181 

Shale Proportions 0.0144 0.1288 

lDsh 0.0275 0.4657 

So in Bottom Water 0.0000 0.9500 

<LIB> 0.0000 2.5000 

So in Top Water 0.0000 0.9500 

<LIT> 0.0000 0.4000 
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Figure 5-1 Cross plot of actual flow simulation results (target values) of normalized R 

against network predictions: training data set (left) and testing data set (right). 

 

 

Figure 5-2 Cross plot of actual flow simulation results (target values) of normalized DB 

against network predictions: training data set (left) and testing data set (right). 

 

 

Figure 5-3 Temperature distribution after 10 years SAGD simulation for: Left: stochastic 

lean zone, and Right: constant water saturation of 0.0667. 

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Ranking based on ANN predictions

R
a
n

k
in

g
 b

a
se

d
 o

n
 s

im
u

la
ti

o
n

 o
u

tp
u

ts

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Ranking based on ANN predictions

R
a
n

k
in

g
 b

a
se

d
 o

n
 s

im
u

la
ti

o
n

 o
u

tp
u

ts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized DB based on ANN predictions

N
o

rm
a
li

z
e
d

 D
B

 b
a
se

d
 o

n
 s

im
u

la
ti

o
n

 o
u

tp
u

ts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized DB based on ANN predictions

N
o

rm
a
li

z
e
d

 D
B

 b
a
se

d
 o

n
 s

im
u

la
ti

o
n

 o
u

tp
u

ts



66 
 

 

Figure 5-4 Schematic illustrating the stochastic distribution of shale and LQS. 

 

 

Figure 5-5 Cross plot of actual flow simulation results (target values) of normalized R 

against network predictions using all 9 original input attributes: training data set (left) and 

testing data set (right). 
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Figure 5-6 Cross plot of actual flow simulation results (target values) of normalized DB 

against network predictions using all 9 original input attributes: training data set (left) and 

testing data set (right). 

 

 

Figure 5-7 Cross plot of actual flow simulation results (target values) of normalized tDiSOR 

against network predictions using all 9 original input attributes: training data set (left) and 

testing data set (right). 

 

 

Figure 5-8 Cross plot of actual flow simulation results (target values) of normalized R 

against network predictions using 5 principal scores as input attributes: training data set 

(left) and testing data set (right). 
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Figure 5-9 Cross plot of actual flow simulation results (target values) of normalized DB 

against network predictions using 5 principal scores as input attributes: training data set 

(left) and testing data set (right). 

 

 

Figure 5-10 Cross plot of actual flow simulation results (target values) of normalized tDiSOR 

against network predictions using 5 principal scores as input attributes: training data set 

(left) and testing data set (right). 

 

 

Figure 5-11 Cross plot of actual flow simulation results (target values) of normalized R 

against network predictions for the case in which lateral heterogeneities are ignored and all 

9 original input attributes are used: training data set (left) and testing data set (right). 
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Figure 5-12 Cross plot of actual flow simulation results (target values) of normalized DB 

against network predictions for the case in which lateral heterogeneities are ignored and all 

9 original input attributes are used: training data set (left) and testing data set (right). 

 

 

Figure 5-13 Cross plot of actual flow simulation results (target values) of normalized tDiSOR 

against network predictions for the case in which lateral heterogeneities are ignored and all 

9 original input attributes are used: training data set (left) and testing data set (right). 

 

 

Figure 5-14 Cross plot of actual flow simulation results (target values) of normalized R 

against network predictions for the case in which lateral heterogeneities are ignored and 5 

principal scores are considered as input attributes: training data set (left) and testing data 

set (right). 
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Figure 5-15 Cross plot of actual flow simulation results (target values) of normalized DB 

against network predictions for the case in which lateral heterogeneities are ignored and 5 

principal scores are considered as input attributes: training data set (left) and testing data 

set (right). 

 

 

Figure 5-16 Cross plot of actual flow simulation results (target values) of normalized tDiSOR 

against network predictions for the case in which lateral heterogeneities are ignored and 5 

principal scores are considered as input attributes: training data set (left) and testing data 

set (right). 
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Chapter 6: Conclusion 

This thesis has attempted to characterize the effects of reservoir heterogeneities 

introduced by shale barrier and lean zone on SAGD performance. Their correlation was 

established using a data-driven model based on the artificial neural networks. A set of 

parameters that can be directly extracted from well log data are found capable to describe 

the reservoir heterogeneities and to predict SAGD performance. The research mainly 

consists of sensitivity analysis for reservoir heterogeneities, modeling of stochastic 

distribution of shale barrier and lean zone, case study by use of ANN to predict SAGD 

performance. This chapter summarizes the key points that can be concluded from this 

research: 

1. A comprehensive sensitivity analysis is performed to investigate the effects of 

heterogeneities in lean zones and shale barriers by varying their location, continuity, 

size, proportion, and saturation.  

(1) The results show that heat loss in lean zones would typically result in higher 

CSOR, despite marginal improvement in RF observed in certain cases. 

Vaporization from the top water could generate additional steam to accelerate the 

steam chamber expansion, whereas a lean zone located beneath the producer acts 

as an energy sink and does not introduce additional benefits of enhancing steam 

chamber advancement and subsequent oil recovery. 

(2) Another interesting observation is that although oil saturation in top and bottom 

water zones does not seem to have a significant impact on SAGD performance in 
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this study, they are, nevertheless, important considerations for original oil in place 

estimation. Thickness of top water is observed to be the dominating factor in 

controlling CSOR. 

(3) Shale barriers could impeded steam chamber advancement and obstruct oil 

drainage to the producer. The SAGD performance becomes less efficient if the 

distance between the shale barrier and the well pair decreases, or if the volume 

(length and thickness), proportions, or continuity of the shale barrier increases. 

2. A main novelty of this simulation study is that shale lenses (imbedded in a region of 

degraded rock properties referred to as LQS) and lean zones are distributed 

systematically in reservoir. Capillarity and relative permeability effects, which were 

ignored in many previous simulation studies, are incorporated in the shale to model 

bypassed oil trapping. 

3. ANN techniques are applied to construct a data-driven surrogate model to predict 

SAGD recovery performance. A set of dimensionless input attributes is proposed to 

capture the heterogeneities of shale barriers and lean zones. Although the influences 

of heterogeneities were presented in previous studies, the formulation of such 

dimensionless variables are only referred to, but not explicitly defined. Results of the 

ANN modeling demonstrate how these input attributes could capture, for instance, the 

reduction in SAGD performance efficiency with the volume (length and thickness), 

proportions, or continuity of the shale barrier, or as the distance between the shale 

barrier and the well pair decreases. 
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(1) Nine pertinent dimensionless input attributes including SIclose, <SI>, Var(SI), shale 

proportions, lDsh, LIT, LIB, and oil saturation of lean zones are proposed to 

capture the heterogeneities due to position, continuity, size, proportions of shale 

barriers, and characteristics (position, thickness, and oil content) of lean zones. 

Either of the two ranking schemes (R, DB) is taken into account to facilitate the 

assessment of SAGD performance. 

(2) The formulation of these nine dimensionless input attributes has been extended to 

represent stochastically distributed shale barriers sand lean zones including LQS 

proportion, lDLQS and hDLQS, shale proportion, lDsh, Dsh, kv/kh in clean sand and 

shale, and 𝑆𝑤
̅̅̅̅  are proposed to capture the heterogeneities due to proportions, 

orientation, continuity, saturation, and permeability of different facies. Three 

production performance indicators (R, DB and tDiSOR) that take into account both 

recovery factor (RF) and cumulative steam injection efficiency (CSOR) are 

devised to facilitate the assessment of different scenarios. These three indicators 

capture the main aspects of SAGD efficiency by considering the total oil 

production, energy consumption associated with steam injection and the overall 

revenue generation. 

(3) Results of the ANN modeling demonstrate these parameters are capable to 

describe the reservoir heterogeneities. Common to most data-driven models, 

removal of internal data redundancy with techniques such as PCA is generally 

recommended in order to improve model robustness and accuracy.  
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4. The proposed set of variables can be applied immediately in field-data analysis and 

scale-up study of experimental models to assist field-operation design and evaluation. 

This work demonstrated that these attributes, which can be defined readily from well 

logs, are highly correlated with the SAGD performance (R, DB, tDiSOR). A case study 

is presented to assess the predictability of ANN models when only limited 

information is available along the vertical direction above a given well pair. The 

results, though not as good as those where inter-well heterogeneities are accounted for, 

demonstrate promising potential in the application with practical field data set 

typically consisting of only petrophysical logs. This work has demonstrated the 

feasibility and utility of data-driven models in correlating SAGD performance. 

5. After this research, formulation of input attributes will include SI and LI when shale 

barriers sand lean zones are stochastically distributed. Future work should also model 

the effects of gas cap. In addition, it should incorporate time series data such as the oil 

rate and instantaneous steam to oil ratio as the ranking criteria. 
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Nomenclature 

Symbols: 

a = constant in DB calculation, J/m
3
 or cementation factor 

ao = constant, dimensionless 

aw = constant, dimensionless 

b = constant in DB calculation, J/m
3
 

B = notation of matrix (PCA process) 

co = constant, dimensionless 

cw = constant, dimensionless 

Cw = specific heat for water, J/kg/°C 

C = notation of matrix (PCA process) 

d = distance, m or dimension of dataset (PCA process) 

d’ = distance, m 

f(Y) = activation function 

H = reservoir thickness, m 

HLQS = thickness of LQS, m 

Hsh = thickness of shale barrier, m  

Hwb = bottom water zone thickness, m  

Hwt = top water zone thickness, m 

hDLQS = dimensionless thickness of LQS 

hDsh = dimensionless shale thickness 
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hDwb = dimensionless bottom water zone thickness  

hDwt = dimensionless top water zone thickness 

kv/kh = vertical-to-horizontal permeability ratio 

L = reservoir length, m or matrix notation (PCA process)  

LLQS = length of LQS, m 

Lsh = length of shale barrier, m 

lDLQS = dimensionless length of LQS 

lDsh = dimensionless shale length 

M = number of samples in X 

m = cementation factor or number of samples in a dataset 

mw = water mass per m
3
 

m1 = number of samples for training and validation 

m2 = number of samples for testing 

Nr = number of realization 

Nh = number of data pairs separated by the distance h 

n = saturation exponent or number of input nodes or dimension of dataset (PCA process)   

Pc = capillary pressure, kPa 

p = dimension of dataset (PCA process) 

Qo = energy of produced oil per cubic meter, J/m
3
  

Qw = energy required to generate one cubic meter of steam, J/m
3
 

𝑅𝑡 = true or formation resistivity, Ω·m 
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𝑅𝑤 = water resistivity, Ω·m 

So = oil saturation 

Sor = residual oil saturation 

Sw = water saturation 

Swr = residual water saturation 

𝑆𝑤
̅̅̅̅  = average water saturation in reservoir 

tiSOR = duration over which the monthly average steam-to-oil ratio exceeds a threshold, 

day 

tDiSOR = dimensionless form of tiSOR 

ts = simulation time, year 

Ts = surface temperature, °C 

V = shale volume, m
3 

V’ = lean zone volume, m
3 

Vw = vaporization heat for water, kJ/kg 

w = width of the reservoir, m 

w0 = bias 

wij = weight associated with the connection between nodes i and j 

Wsh = width of the shale barrier, m 

x = coordinate in horizontal direction 

xi = signal from input node i 

y = coordinate in horizontal direction 
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Yj = weighted sum of input signals 

z = coordinate in vertical direction 

ρo = oil density, kg/m
3
 

𝛾 = semivariance 

𝜙 = facy property or porosity 

 = orientation, 
o  

LQS = orientation of LQS, 
o   

sh = orientation of shale barrier, 
o  

 

DLQS = dimensionless orientation of LQS 

Dsh = dimensionless orientation of shale barrier 

Acronyms: 

AIR = above injector region 

ANN = artificial neural network 

AWR = above well region 

BIP = between injector and producer 

BPNN = back propagation neural network 

CMG = computer modeling group 

COP = cumulative oil production 

CSS = cyclic steam stimulation 

CSOR = cumulative steam oil ratio 

DB = discounted barrel 
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iSOR = monthly average steam-to-oil ratio 

LQS = low quality sand 

LI = lean zone indicator 

LIT = lean zone indicator for top water 

LIB = lean zone indicator for bottom water 

NWR = near well region 

OOIP = original oil in place 

PC = principal component 

PCA = principal component analysis 

PS = principal score  

R = ranking indicator 

RF = recovery factor 

SAGD = steam-assisted gravity drainage 

SGSIM = sequential Gaussian simulation 

SISIM = sequential indicator simulation 

SI = shale indicator 

UPR = underneath producer region 

UTF = underground test facility 

X = original data vector 

Z = mean-adjusted data vector 
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Appendix A: Combination of Facy Maps and Property Maps 

% This code is used to read the output data from sisim.out and combine the Facy model 

with Porosity model and Perm Model. 

clear; 

clc; 

 

% permeability ratio 

% kvkhsand=0.5; 

% kvkhlqs=0.25; 

% kvkhshale=1e-7; 

% in=23; 

multiple_num=80; 

% %%%%%%%%%%%%%%%%%%%% 

 

basename='basecaseANN.dat'; 

SIclosename='SIclose.txt'; 

SImeanname='SImean.txt'; 

SIvariancename='SIvariance.txt'; 

Averagelength='Averagelength.txt'; 

Averageporosity='Averageporosity.txt'; 

AverageSw='AverageSw.txt'; 

Shaleproportion='Shaleproportion.txt'; 

LQSproportion='LQSproportion.txt'; 

OOIP='OOIP.txt'; 

Shalecloselength='Shalecloselength.txt'; 

cumu_oil_pro='COP.txt'; 

cumu_water_inj='CWI.txt'; 



90 
 

fid_SIclose=fopen(SIclosename,'w'); 

fid_shaleclose=fopen(Shalecloselength,'w'); 

fid_SImean=fopen(SImeanname,'w'); 

fid_SIvariance=fopen(SIvariancename,'w'); 

fid_AL=fopen(Averagelength,'w'); 

fid_AP=fopen(Averageporosity,'w'); 

fid_ASW=fopen(AverageSw,'w'); 

fid_SP=fopen(Shaleproportion,'w'); 

fid_LQSP=fopen(LQSproportion,'w'); 

fid_OOIP=fopen(OOIP,'w'); 

fid_COP=fopen(cumu_oil_pro,'w'); 

fid_CWI=fopen(cumu_water_inj,'w'); 

Aporosand=zeros(multiple_num,1); 

Aporoshale=zeros(multiple_num,1); 

Apermsand=zeros(multiple_num,1); 

Apermshale=zeros(multiple_num,1); 

 

% read porosity of shale, LQS, and clean sand 

datarange='B4:B1533'; 

filename='Realization.xlsx'; 

filename2='Saturation of 3 facies.xlsx'; 

porosand=xlsread(filename,1,datarange); 

porolqs=xlsread(filename,2,datarange); 

poroshale=xlsread(filename,3,datarange); 

numgrid=length(porosand); 

% swsand=xlsread(filename2,1,datarange); 

swsand=(0.2*ones(numgrid,1)./(500*ones(numgrid,1))./(porosand).^2).^(1/2); 
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% swlqs=xlsread(filename2,2,datarange); 

swlqs=(0.2*ones(numgrid,1)./(300*ones(numgrid,1))./(porolqs).^2).^(1/2.5); 

% swshale=xlsread(filename2,3,datarange); 

swshale=(0.2*ones(numgrid,1)./(100*ones(numgrid,1))./(poroshale).^2).^(1/3); 

for i=1:length(swsand) 

    if swsand(i,1)<0 

        swsand(i,1)=0; 

    elseif swsand(i,1)>1 

        swsand(i,1)=1; 

    end 

    if swlqs(i,1)<0 

       swlqs(i,1)=0; 

    elseif swlqs(i,1)>1 

        swlqs(i,1)=1; 

    end 

    if swshale(i,1)<0 

        swshale(i,1)=0; 

    elseif swshale(i,1)>1 

        swshale(i,1)=1; 

    end 

end 

perm=0.5; 

kvkhsand=rand(1,multiple_num)*0.6+0.2; 

kvkhshale=ones(1,multiple_num)*1e-4+1e-8; 

kvkhlqs=0.5*(kvkhsand+kvkhshale); 

permsand=perm*kvkhsand; 

permlqs=perm*kvkhlqs; 
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permshale=perm*kvkhshale; 

 

for i=1:multiple_num 

     

    % read the facy data for shale, LQS, and clean sand 

    facy1name=strcat('sisim',int2str(i),'_1.txt'); 

    facy2name=strcat('sisim',int2str(i),'_2.txt'); 

    idfacy1=dataread(facy1name); 

    idfacy2=dataread(facy2name); 

     

    % cui wang at 2015 July 17th 

    idfacyplot=ones(30*51,1)*0.9; 

    poroplot=porosand; 

    swplot=swsand; 

    for m=1:30*51 

        if idfacy1(m,1)==1 

            if idfacy2(m,1)==1 

                idfacyplot(m,1)=0.1; 

                poroplot(m,1)=poroshale(m,1); 

                swplot(m,1)=swshale(m,1); 

            else 

                idfacyplot(m,1)=0.5; 

                poroplot(m,1)=porolqs(m,1); 

                swplot(m,1)=swlqs(m,1); 

            end 

        end 

    end 
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    % cui wang at 2015 July 17th 

     

    idfacym1=reshape(idfacy1,51,30)'; 

    idfacym2=reshape(idfacy2,51,30)'; 

    porosandm=reshape(porosand,51,30)'; 

    porolqsm=reshape(porolqs,51,30)'; 

    poroshalem=reshape(poroshale,51,30)'; 

    swsandm=reshape(swsand,51,30)'; 

    swlqsm=reshape(swlqs,51,30)'; 

    swshalem=reshape(swshale,51,30)'; 

     

    for nr=1:30 

        nrr=31-nr; 

        idfacymnew1(nr,:)=idfacym1(nrr,:); 

        idfacymnew2(nr,:)=idfacym2(nrr,:); 

        porosandmnew(nr,:)=porosandm(nrr,:); 

        porolqsmnew(nr,:)=porolqsm(nrr,:); 

        poroshalemnew(nr,:)=poroshalem(nrr,:); 

        swsandmnew(nr,:)=swsandm(nrr,:); 

        swlqsmnew(nr,:)=swlqsm(nrr,:); 

        swshalemnew(nr,:)=swshalem(nrr,:); 

    end 

     

    idfacym1=idfacymnew1; 

    idfacym2=idfacymnew2; 

    porosandm=porosandmnew; 

    porolqsm=porolqsmnew; 
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    poroshalem=poroshalemnew; 

    swsandm=swsandmnew; 

    swlqsm=swlqsmnew; 

    swshalem=swshalemnew; 

     

    porostring(1,1)=' '; 

    swstring(1,1)=' '; 

    sostring(1,1)=' '; 

    permstring=' '; 

    permstringv=' '; 

    permmodel='mod'; 

     

    idfacym=ones(30,51)*2; 

    for m=1:30 

        for n=1:51 

            if idfacym1(m,n)==1 

                if idfacym2(m,n)==1 

                    idfacym(m,n)=0; 

                else 

                    idfacym(m,n)=1; 

                end 

            end 

        end 

    end 

     

     

    ns=1; %number of shale 
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    shalelength=0; %shale length 

    xshale=0; %shale x coordinate 

    yshale=0; %shale y coordinate 

    idnum=0; 

    idstring=1; 

     

    sumsandporo=0; 

    sumlqsporo=0; 

    sumsandperm=0; 

    sumshaleporo=0; 

    sumshaleperm=0; 

    sumsandsw=0; 

    sumlqssw=0; 

    sumshalesw=0; 

    numsand=0; 

    numlqs=0; 

    numshale=0; 

    oo=0; 

 

    for m=1:30 

        for n=1:51 

            if idfacym(m,n)==2 

                porostring=strcat(porostring,32,num2str(porosandm(m,n))); 

                swstring=strcat(swstring,32,num2str(swsandm(m,n))); 

                sostring=strcat(sostring,32,num2str(1-swsandm(m,n))); 

                   

                permstring=strcat(permstring,32,num2str(perm)); 
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                permstringv=strcat(permstringv,32,num2str(permsand(1,i))); 

                 

                sumsandporo=sumsandporo+porosandm(m,n); 

                sumsandsw=sumsandsw+porosandm(m,n); 

                sumsandperm=sumsandperm+perm; 

                numsand=numsand+1; 

                 

                oo=oo+1*1*900*porosandm(m,n)*(1-swsandm(m,n)); 

 

            elseif idfacym(m,n)==0 

                porostring=strcat(porostring,32,num2str(poroshalem(m,n))); 

                swstring=strcat(swstring,32,num2str(swshalem(m,n))); 

                sostring=strcat(sostring,32,num2str(1-swshalem(m,n))); 

                 

                permstring=strcat(permstring,32,num2str(perm)); 

                permstringv=strcat(permstringv,32,num2str(permshale(1,i))); 

                 

                sumshaleporo=sumshaleporo+poroshalem(m,n); 

                sumshalesw=sumshalesw+swshalem(m,n); 

                sumshaleperm=sumshaleperm+perm; 

                numshale=numshale+1; 

                 

                oo=oo+1*1*900*poroshalem(m,n)*(1-swshalem(m,n)); 

 

                shalelength(ns,1)=shalelength(ns,1)+1; 

                 

                if n-1>=1 
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                    if idfacym(m,n-1)~=0 

                        xshale(ns,1)=n; 

                        yshale(ns,1)=m; 

                    end 

                end 

                if n==1 & idfacym(m,n)==0 

                    xshale(ns,1)=n; 

                    yshale(ns,1)=m; 

                end 

                 

                if n+1<=51 

                    if idfacym(m,n+1)~=0 

                        ns=ns+1; 

                        shalelength(ns,1)=0; 

                    end 

                end 

                if n==51 & idfacym(m,n)==0 

                    ns=ns+1; 

                    shalelength(ns,1)=0; 

                end 

                 

            else 

                porostring=strcat(porostring,32,num2str(porolqsm(m,n))); 

                swstring=strcat(swstring,32,num2str(swlqsm(m,n))); 

                sostring=strcat(sostring,32,num2str(1-swlqsm(m,n))); 

                 

                permstring=strcat(permstring,32,num2str(perm));  
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                permstringv=strcat(permstringv,32,num2str(permlqs(1,i))); 

                sumlqsporo=sumlqsporo+porolqsm(m,n); 

                sumlqssw=sumlqssw+swlqsm(m,n); 

                numlqs=numlqs+1; 

                oo=oo+1*1*900*porolqsm(m,n)*(1-swlqsm(m,n)); 

                 

            end 

        end 

    end 

    ooip(i,1)=oo; 

    Aporosand(i,1)=sumsandporo/numsand; 

    Appermsand(i,1)=sumsandperm/numsand; 

    Aporoshale(i,11)=sumshaleporo/numshale; 

    Apermshale(i,1)=sumshaleperm/numshale; 

    ns=ns-1; 

    lengthshale=zeros(ns,1); 

    xshaleend=zeros(ns,1); 

    SI=zeros(ns,1); 

    d=zeros(ns,1); 

     

    for idshale=1:ns 

        lengthshale(idshale,1)=shalelength(idshale,1); 

        xshaleend(idshale,1)=xshale(idshale,1)-1+lengthshale(idshale,1); 

        d(idshale,1)=sqrt(xshale(idshale,1)^2+(yshale(idshale,1)-26)^2); 

        SI(idshale,1)=lengthshale(idshale,1)/d(idshale,1)/51/30; 

    end 

    [mind,minp]=min(d); 
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    Lengthclose=lengthshale(minp); 

    SIclose=SI(minp); 

    SImean=sum(SI)/ns; 

    SIvariance=sum((SI-SImean).^2)/ns; 

    SP=sum(shalelength)/51/30; 

    LQSP=numlqs/51/30; 

    AL=sum(lengthshale)/ns; 

    AP=(sumsandporo+sumlqsporo+sumshaleporo)/51/30; 

    ASW=(sumsandsw+sumlqssw+sumshalesw)/51/30; 

     

    fprintf(fid_SIclose,[strcat(num2str(SIclose),32) '\n']); 

    fprintf(fid_shaleclose,[strcat(num2str(Lengthclose),32) '\n']); 

    fprintf(fid_SImean,[strcat(num2str(SImean),32) '\n']); 

    fprintf(fid_SIvariance,[strcat(num2str(SIvariance),32) '\n']); 

    fprintf(fid_AL,[strcat(num2str(AL),32) '\n']); 

    fprintf(fid_AP,[strcat(num2str(AP),32) '\n']); 

    fprintf(fid_ASW,[strcat(num2str(ASW),32) '\n']); 

    fprintf(fid_SP,[strcat(num2str(SP),32) '\n']); 

    fprintf(fid_LQSP,[strcat(num2str(LQSP),32) '\n']); 

    fprintf(fid_OOIP,[strcat(num2str(oo),32) '\n']); 

     

    newcasename=strcat('basecaseANN',num2str(i),'.dat'); 

    fidr=fopen(basename,'r'); 

    fidw=fopen(newcasename,'w'); 

    frewind(fidr) 

    a=0; 

    while ~feof(fidr) 
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        a=a+1; 

        lines{a} = fgetl(fidr); 

        if a==82 

            lines{a}=porostring; 

        end 

        if a==84 

            lines{a}=permstring; 

        end 

        if a==87 

            lines{a}=permstringv; 

        end 

        for idshale=1:ns 

            linenum=idshale+273; 

            if linenum==274 && a==linenum 

                

lines{a}=strcat('mod',32,int2str(xshale(idshale)),':',int2str(xshaleend(idshale)),32,int2str(

1),':',int2str(1),32,int2str(yshale(idshale)),':',int2str(yshale(idshale)),32,'=',32,int2str(2)); 

            end 

            if linenum>274 && a==linenum 

                

lines{a}=strcat(32,int2str(xshale(idshale)),':',int2str(xshaleend(idshale)),32,int2str(1),':',in

t2str(1),32,int2str(yshale(idshale)),':',int2str(yshale(idshale)),32,'=',32,int2str(2)); 

            end 

        end 

        if a==397 

            lines{a}=swstring; 

        end 
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        if a==399 

            lines{a}=sostring; 

        end 

        fprintf(fidw,[lines{a}  '\n']); 

    end   

     

simulatorPath='C:\Program    

Files(x86)\CMG\STARS\2013.10\Win_x64\EXE\st201310.exe'; 

resultReportPath = 'C:\Program Files (x86)\CMG\BR\2013.10\Win_x64\EXE\report.exe'; 

workDirectoryPath = 'E:\\Cui\\Cases generation using SISIM porosity lean zones\\'; 

command=strcat('"',simulatorPath,'" -f "', newcasename,'" -wd "', workDirectoryPath, '" 

-log ', ' -wait '); 

system(command); 

newModelName=newcasename; 

     

    irfFilePath = strrep(newModelName,'.dat','.irf'); 

    rwdFilePath = strrep(newModelName,'.dat','.rwd'); 

    % create rwd file  

        writeFileID = fopen(rwdFilePath,'w');       

                   % UPDATE THIS 

                fprintf(writeFileID,'*SPREADSHEET '); 

                fprintf(writeFileID,'\n'); 

                fprintf(writeFileID,'*TIME ON '); 

                fprintf(writeFileID,'\n'); 

                fprintf(writeFileID,'*FILES '); 

                fprintf(writeFileID,''''); 

                fprintf(writeFileID,irfFilePath); 
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                fprintf(writeFileID,''''); 

                fprintf(writeFileID,'\n'); 

                fprintf(writeFileID,'*TABLE-FOR '); 

                fprintf(writeFileID,'\n'); 

                fprintf(writeFileID,' *COLUMN-FOR  *WELL    '); 

                fprintf(writeFileID,''''); 

                fprintf(writeFileID,'Producer'); 

                fprintf(writeFileID,''''); 

                fprintf(writeFileID,'\n'); 

                fprintf(writeFileID,'  *PARAMETERS '); 

                fprintf(writeFileID,''''); 

                fprintf(writeFileID,'Cumulative Oil SC'); 

                fprintf(writeFileID,''''); 

                fprintf(writeFileID,'\n'); 

                fprintf(writeFileID,'*TABLE-END '); 

        fclose(writeFileID); 

    % create rwo file 

    rwoFilePath = strrep(newModelName,'.dat','.rwo'); 

%     execute result report to rwo file 

    command = strcat('"',resultReportPath,'" -f "', rwdFilePath,'" -o "', rwoFilePath);  

    system(command); 

%  

%  

    % open the rwo file 

    % read line by line 

        foutputfileid = fopen(rwoFilePath); %close this file? 

        tline = fgetl(foutputfileid); 
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        while ~feof(foutputfileid) 

               tline = fgetl(foutputfileid); 

        end 

%   

%     % create _w.rwd file      

        rwdFilePath_w = strrep(newModelName,'.dat','_w.rwd'); 

        writeFileID_w = fopen(rwdFilePath_w,'w');       

%                    UPDATE THIS 

                fprintf(writeFileID_w,'*SPREADSHEET '); 

                fprintf(writeFileID_w,'\n'); 

                fprintf(writeFileID_w,'*TIME ON '); 

                fprintf(writeFileID_w,'\n'); 

                fprintf(writeFileID_w,'*FILES '); 

                fprintf(writeFileID_w,''''); 

                fprintf(writeFileID_w,irfFilePath); 

                fprintf(writeFileID_w,''''); 

                fprintf(writeFileID_w,'\n'); 

                fprintf(writeFileID_w,'*TABLE-FOR '); 

                fprintf(writeFileID_w,'\n'); 

                fprintf(writeFileID_w,' *COLUMN-FOR  *WELL    '); 

                fprintf(writeFileID_w,''''); 

                fprintf(writeFileID_w,'Injector'); 

                fprintf(writeFileID_w,''''); 

                fprintf(writeFileID_w,'\n'); 

                fprintf(writeFileID_w,'  *PARAMETERS '); 

                fprintf(writeFileID_w,''''); 

                fprintf(writeFileID_w,'Cumulative Water SC'); 
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                fprintf(writeFileID_w,''''); 

                fprintf(writeFileID_w,'\n'); 

                fprintf(writeFileID_w,'*TABLE-END '); 

        fclose(writeFileID_w); 

    % create _w.rwo file 

    rwoFilePath_w = strrep(newModelName,'.dat','_w.rwo'); 

%     execute result report to _w.rwo file 

    command = strcat('"',resultReportPath,'" -f "', rwdFilePath_w,'" -o "', 

rwoFilePath_w); 

    system(command); 

 

 

%     open the _w.rwo file 

%     read line by line 

        foutputfileid_w = fopen(rwoFilePath_w); 

        tline_w = fgetl(foutputfileid_w); 

        while ~feof(foutputfileid_w) 

               tline = fgetl(foutputfileid_w); 

        end 

%  

%     writing the output data to the txt files 

        originalModelName = strcat(workDirectoryPath,'basecaseANN1.rwo'); 

        newModelName=strrep(originalModelName,'1.rwo',strcat(int2str(i),'.rwo')); 

        

newModelName_w=strrep(originalModelName,'1.rwo',strcat(int2str(i),'_w.rwo')); 

        fid=fopen(newModelName, 'r'); 

        fid_w=fopen(newModelName_w, 'r'); 
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        frewind(fid); 

        while ~feof(fid) 

              COP_FINAL= fgetl(fid); 

        end 

        fprintf(fid_COP,[COP_FINAL '\n']); 

        while ~feof(fid_w) 

              CWI_FINAL= fgetl(fid_w); 

        end 

        fprintf(fid_CWI,[CWI_FINAL '\n']); 

 

end 

fclose(fidr); 

fclose(fidw); 

fclose(fid_AL); 

fclose(fid_AP); 

fclose(fid_SIclose); 

fclose(fid_shaleclose); 

fclose(fid_SImean); 

fclose(fid_SIvariance); 

fclose(fid_SP); 

fclose(fid_COP); 

fclose(fid_CWI); 

 

Appendix B: Calculation of DB 

The net energy obtained from the entire SAGD process can be expressed mathematically 

as discounted barrels: DB (BTU/bbl) = Qo – CSOR × Qw. The quantity of DB is 

interpreted as the energy of the produced oil at surface conditions (1atm, 15
o
C), while Qo 
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and Qw refer to the energy content of one barrel of oil and steam, respectively. Qo is 

computed from the oil density (o in kg/m
3
) based on the empirical relationship by Iwata 

et al. (2000): Qo = a + b × o , where a = 4.11 × 10
10 

J/m
3 
and b = 3.80 × 10

7 
J/kg, while 

Qw is estimated to be mw × Cw × (100 – Ts) + mw × Vw, where mw refers to the mass of 

water per barrel (100 kg/m
3
); Cw and Vw are the specific heat (200 J/kg/°C) and heat of 

vaporization of water (2260 kJ/kg), respectively; Ts is the surface temperature (15
o
C). 


