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Abstract

Hydraulically fractured horizontal wells are widely adopted for the development of tight or shale 

gas reservoirs. The presence of highly heterogeneous, multi-scale, fracture systems often renders 

any detailed characterization of the fracture properties challenging. The discrete fracture network 

(DFN) model offers a viable alternative for explicit representation of multiple fractures in the 

domain, where the comprising fracture properties are defined in accordance with specific 

probability distributions. However, even with the successful modelling of a DFN, the relationship 

between a set of fracture parameters and the corresponding production performance is highly 

nonlinear, implying that a robust history-matching workflow capable of updating the pertinent 

DFN model parameters is required for calibrating stochastic reservoir models to both geologic and 

dynamic production data. 

This thesis will develop an integrated approach for the history matching of hydraulically fractured 

reservoirs. First, multiple realizations of the DFN model are constructed with conditioning data 

based on available geological information such as seismic data, well logs, and rate transient 

analysis (RTA) interpretations, which are useful for inferring the prior probability distributions of 

relevant fracture parameters. A pilot point scheme and sequential indicator simulation are 

employed to update the distributions of fracture intensities which represent the abundance of 

secondary fractures (NFs) in the entire reservoir volume. Next, the model realizations are upscaled 

into an equivalent continuum dual-porosity dual-permeability model and subjected to numerical 

multiphase flow simulation. The predicted production performance is compared with the actual 

recorded responses. Finally, the DFN-model parameters are adjusted following an indicator-based 

probability perturbation method. Although the probability perturbation technique has been applied 

to update facies distributions in the past, its application in modeling DFN distributions is limited. 
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An indicator formulation is proposed to account for the non-Gaussian nature of the DFN 

parameters. The algorithm aims at minimizing the objective function while reducing the 

uncertainties in the unknown fracture parameters. 

The novel probabilistic-based framework is applied to estimate the posterior probability 

distributions of transmissivity of the primary fracture (Tpf), transmissivity of the secondary induced 

fracture (Tsf) and secondary fracture intensity (Psf
32L), secondary fracture aperture (re), length and 

height (L and H), in a multifractured shale gas well in the Horn River Basin. An initial realization 

of the DFN model is sampled from the prior probability distributions using the Monte Carlo 

simulation. These probability distributions are updated to match the production history, and 

multiple realizations of the DFN models are sampled from the updated (posterior) distributions 

accordingly. The key novelty in the developed probabilistic approach is that it accounts for the 

highly nonlinear relationships between fracture model parameters and the corresponding flow 

responses, and it yields an ensemble of DFN realizations calibrated to both static and dynamic 

data, as well as the related upscaled flow-simulation models. The results demonstrate the utility of 

the developed approach for estimating secondary fracture parameters, which are not inferable from 

other static information alone. 
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Chapter 1: Introduction 

1.1 BACKGROUND 

The basin-centered continuous accumulations, otherwise known as the unconventional reservoirs, 

cannot produce economic volumes of hydrocarbon without stimulation treatments such as 

fracturing and steam injection. These types of reservoirs (shale gas and shale oil, coalbed methane, 

gas hydrates, deep gas, heavy oil and (or) natural bitumen and shallow biogenic gas) are often 

characterized by low recovery factor, low matrix permeability, uncertain hydrocarbon-water 

contact, large in-place volumes, lack of traditional traps or seal, and abnormal pressures. Shale, in 

particular, the most abundant source rock for conventional reservoirs and self-sourcing cap rock 

for unconventional oil and gas fields is a fine-grained fissile or laminated sedimentary rock formed 

from the compaction of silt and clay-size mineral particles (clay size < silt size < sand size); less 

than 
1

256𝑡ℎ
 mm in diameter particles.  

The combination of horizontal drilling and hydraulic fracturing, also called hydraulically 

fractured horizontal wells, as shown in Fig. 1-1, has contributed to the improved production of 

unconventional (tight and shale) reservoirs in recent years.  This technique involves horizontal 

directional drilling of well into the tight formation and the use of water, sand, and chemicals at 

high pressures to create fissures in the shale rock, which increases permeability and allows 

hydrocarbon to escape. The commercial application of this method was successful in the nineties 

and as of 2012, about 2.5 million fracturing jobs had been performed worldwide on both oil and 

gas wells with an adequate flow from the reservoirs (shale gas, tight gas, and tight oil). 

Although the use of hydraulically fractured horizontal wells has some recorded successes, 

the presence of highly heterogeneous, multi-scale fracture systems often renders any detailed 
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characterization of the fracture properties, a necessity for future prediction of the reservoir, 

challenging. The complex geometries of the secondary fractures and the significant disparity in 

permeability between the matrix and fracture systems pose particular challenges to the flow 

simulation and intensify the nonlinearity between the fracture model parameters and flow 

responses. There is, therefore, a need for a robust and efficient process to update both hydraulic 

and secondary fracture parameters integrating both static (e.g., logs) and dynamic data (e.g., rate 

and pressure measurements) for reliable production forecast and to facilitate reservoir management 

or optimize development strategies. 

1.2 SIMULATION APPROACHES FOR PROPER REPRESENTATION OF COMPLEX 

FRACTURE SYSTEMS 

Many different strategies are available for the numerical multiphase simulation of fractured 

reservoir systems. They primarily differ on how the geometries of the fracture systems are 

described and how the fracture-matrix fluid flow is presented. The choice of simulation approach 

reflects the complexity of the fracture characteristics (e.g., geometry, intensity, and scales) in 

capturing the matrix and fracture flow interactions. The dual porosity formulation considers 

fracture systems as the flow path directly connected with the wellbore and inter-porosity flow from 

matrix system to fracture system while ignoring the flow from the matrix to the wellbore 

(Barenblatt et al., 1960; Warren and Root, 1963; Al-Ghamdi and Ershaghi, 1996). The 

consideration of both the fracture system and the matrix block as fluid flow pathways into the 

wellbore with additional inter-porosity flow between matrix and fracture systems, otherwise called 

dual permeability model (or DPDK – dual-porosity dual-permeability) was proposed as 

improvements to the DP model (Hu and Huang, 2002; Degraff et al., 2005; Uba et al., 2007). It 

widely depends on the assumption that the fractures should be densely populated and well 
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connected (Sun and Schechter, 2015; Kumar et al., 2019) to prevent the overestimation of fracture 

connectivity. Due to these limitations, DFN modeling, which explicitly specifies the actual 

geometries and locations of individual fractures using local refinement to discretize the volume 

near fractures in the computational domain, serves as a substitute. In situations where the detailed 

description of the actual geometries and locations of individual fractures are necessary, local grid 

refinement (LGR) can be applied in the fracture regions to represent these fracture elements in the 

computational domain explicitly. Despite that the DFN model approach can offer a more accurate 

representation of the complex fracture system than the DP or DPDK models, it suffers 

computational constraints, thus demanding the need to upscale the DFN models into equivalent 

dual permeability models as often adopted in most commercial simulation tools (Sarda et al., 2001; 

Nejadi et al., 2017; Nwabia and Leung, 2020).  

The advanced higher-order discretization schemes such as control-volume finite-element 

(CVFE), cell-centered finite-volume (CCFV or multi-point flux approximation MPFA) and mixed 

finite-element methods (MFE), have been developed (Monteagudo & Firoozabadi, 2004; Sandve 

et al., 2012; Zidane & Firoozabadi, 2014; Liu et al., 2020) to simulate fluid flow in fracture systems 

using unstructured grids accurately. Each of these techniques has its own merits and limitations; 

for example, the CVFE design is computationally efficient, but it does not maintain flux continuity 

for a heterogeneous porous medium; the MFE method, which is locally flux-continuous and 

conservative, can be computationally expensive, as both the velocity and pressure fields are 

evaluated concurrently. While the use of unstructured grids suffers from high cost of computation 

as a result of too many gridblocks required to conform to hydraulic fractures, the local grid 

refinement suffers the same constraint due to the difficulty in representing fracture orientation 

(Cipolla et al., 2010). The recent and widely adopted embedded discrete fracture model (EDFM) 
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discretizes fractures into structured cubical matrix cells (Li and Lee 2008; Shakiba et al., 2018). 

The EDFM is computationally efficient in calculating fluid transport within SRV since fractures 

are modeled explicitly within the matrix grid without refinement. These simulation tools used for 

the representation of complex fracture systems have peculiar limitations associated with 

adaptability for the scope of a study, computational efficiency, and the assumptions used for the 

formulation.  

1.3 PROBLEMS WITH THE METHODS FOR CHARACTERIZING FRACTURED 

RESERVOIR SYSTEMS 

In reservoir systems where both hydraulic and secondary fractures are present, secondary data such 

as seismic can improve predictions of fracture intensity in between the wells. In this thesis, fracture 

intensity at pilot (e.g., well) locations are used as conditioning data in a sequential indicator 

simulation to populate secondary fractures to the rest of the domain. Reservoir model parameters 

are adjusted during history matching such that the model predictions can closely reproduce the 

historical data (e.g., flow rates and pressures). History matching is inherently an ill-posed inverse 

problem with non-unique solutions. For fractured reservoir systems, a set of initial models (or 

realizations) are constructed by incorporating various static or geological data, and the models are 

subjected to flow simulation and an optimization scheme to adjust the fracture parameters until the 

mismatch between the predicted response and the actual historical data is minimized.  

The goals of most probabilistic history-matching schemes are: (a) to estimate the posterior 

distributions corresponding to the unknown model parameters; and (b) to sample a set of updated 

models (or realizations) from those distributions; the variability exhibited by those realizations 

facilitates the uncertainty quantification and assessment. A particularly important aspect of 
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fractured reservoir history matching is the capability to handle the probability distributions of any 

forms, without assuming that it follows a Gaussian distribution. Stochastics search algorithms 

(e.g., genetic algorithm, simulated annealing), optimization-based methods (e.g., maximum a-

posterior), and sampling-based (e.g., gradual deformation), have been used to either update 

equivalent model parameters or update parameters of the discrete fractures. A combined gradient 

simulator and the adjoint method was formulated by Cui and Kellar (2005) to update the flow 

properties of a reservoir based on the correlation between fracture intensity and fracture 

permeability, matrix permeability, and a coupling factor. Gradient-based optimization techniques 

require several gradient calculations and are thus not computationally efficient. De Lima et al. 

(2012) implemented the gradual deformation approach to estimate realizations of fault distribution 

(i.e., spatial locations, intensity, and length). However, despite the ease of the implementation of 

the gradual deformation method, it only works for modeling properties that follow a Gaussian 

distribution, and this is an invalid assumption for most fracture properties. The MCMC has been 

applied to calibrate subsurface models and quantify its uncertainties in a Bayesian probabilistic 

framework  (Maucec et al., 2007). The gap with MCMC is that it tends to require a large number 

of forward simulations, especially when dealing with a large number of unknown model 

parameters. The implementation of stochastic search algorithms to estimate fracture distribution 

have also proven useful in reservoir studies. Ensemble-based techniques such as Ensemble Kalman 

Filter or EnKF (Aanonsen et al., 2009; Emerick and Reynolds, 2011) and ensemble smoother or 

EnS (Chai et al., 2018; Chang and Zhang, 2018), which utilize the covariance matrix to update an 

ensemble of parameters, have also gained wide attention for their advantages in data assimilation 

and uncertainty quantification. Its major limitation is that it assumes multi-Gaussian distribution 

on model and data variables and a linear relationship between all variables, and these assumptions 

https://www-sciencedirect-com.login.ezproxy.library.ualberta.ca/topics/engineering/probabilistic-framework
https://www-sciencedirect-com.login.ezproxy.library.ualberta.ca/topics/engineering/probabilistic-framework
https://www-sciencedirect-com.login.ezproxy.library.ualberta.ca/science/article/pii/S0920410518302481?casa_token=oULGvg0sUVoAAAAA:mwBkmZdKAlv9rCWMnbVXDzFYk_QqYcmn3kdKZ1hC_U8md9Nn5W42f-5CnSyjomKFHUil9dv5BPiQ#bib23
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do not hold for fractured reservoirs, rendering the convergence behavior of other ensemble-based 

methods, including EnKF, to be compromised. Emerick and Reynolds (2012) assessed the results 

of a very long MCMC as a reference solution to scrutinize the sampling performance of the 

ensemble-based methods by combining MCMC with EnKF. Despite acknowledging a high data 

mismatch, the outcome identified improvements when compared to EnKF alone.  Although these 

extensions/hybrid formulations may retain the idea of utilizing an ensemble, they do not rely on 

linear update and are not appropriate for highly non-Gaussian variables; therefore, it is argued that 

they could offer only partial approximation of the true distribution.  

1.4 PROBLEM STATEMENT 

Hydraulically fractured reservoirs are characterized by very complex fracture systems and 

heterogeneities. The significant challenges usually encountered in characterizing these types of 

reservoirs include: the inadequate constraining information for the proper description of the 

fracture networks, inability of optimization algorithms to handle fracture parameters whose 

distributions are non-Gaussian, the uncertainties posed in the nonlinear relationship between the 

fracture parameters and updated upscaled reservoir model properties,  and the rationale for 

formulating localization schemes for reliable history matching process.  

These limitations can be resolved by developing a novel technique poised with the ability to 

properly characterize the complexities inherent in such reservoirs while being within appropriate 

computational efficiency and cost. Consequently, integrating the description of fracture network 

systems using information from microseismic data and RTA estimates into the formulation of an 

efficient probabilistic history matching workflow provides a means for improving the 

characterization of multi-scale fractured reservoirs.  
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Therefore, the problem statement of this thesis is “development of a robust probabilistic history 

matching framework aimed at improving existing history matching routines for the 

characterization of multi-scaled hydraulically fractured reservoirs”. 

1.5 RESEARCH OBJECTIVES 

The main objective of this research is to develop a practical probabilistic-based assisted history 

matching workflow for characterizing and updating fracture network parameters of multi-scale 

hydraulically fractured reservoirs while honoring both static geological data and dynamic 

information. The developed history matching workflow integrated both dynamic production data 

and static information into the probability perturbation method to specifically address the 

following objectives. 

1. Describe fracture network systems using conditioning data from microseismic information 

and RTA estimates. 

2. Handle the spatial variability of the secondary fractures in the reservoir, including those 

in the vicinity of the hydraulic fractures and those disconnected from the hydraulic 

fractures, by incorporating a pilot-point parameterization scheme and sequential 

simulation in an indicator-based PPM workflow. 

3. Formulate a localization scheme based on RTA-derived flow regimes for reliable history 

matching.  

4. Handle the uncertainties associated with the non-linear relationship between fracture 

network parameters and reservoir flow response for both Gaussian and non-Gaussian 

uncertain fracture network parameters. 



 

8 

 

5. Update the posterior probability distributions of the hydraulic and secondary fractures of 

a shale gas reservoir – Horn River Basin.  

1.6 LIMITATIONS OF RESEARCH 

(i) The forward model does not couple the flow computations with geomechanics calculations, 

thus, the impact of stress changes in the reservoir on production is not explicitly captured. 

(ii) The research workflow is implemented for a (water-wet) dry gas reservoir where the gas 

remains in the gas phase during pressure depletion in the reservoir. 

(iii) The hydraulic fractures are modeled as elongated penny-shaped fissures. 

(iv)  The DPDK model is used to represent the matrix – fracture fluid flow in the fractured 

reservoir system comprising of both hydraulic and secondary fractures. 

1.7 DISSERTATION STRUCTURE 

This is a paper-based thesis with a total of 7 chapters. Chapters 3, 4, 5 are already published 

articles, and chapter 6 has been submitted for publication. Each of these articles comprises a 

specific introduction, literature review, methodology, conclusion, and references. The 

bibliography at the end of the thesis is the combination of the references from individual chapters 

of the reports.  

Chapter 1 presents a general background in terms of the motivation, the problem statement and 

research objectives. Chapter 2 reviews the relevant literature associated with the characterization 

of fractured reservoirs and production history matching approaches. 

Chapter 3 discusses the probabilistic-based history matching workflow formulation and the 

practical applications for updating Gaussian and non-Gaussian fracture parameters in case studies. 
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Chapter 4 explores the integration of an RTA-constrained localization scheme for the formulated 

history matching workflow in Chapter 3 for a reliable history matching of hydraulically fractured 

reservoirs.  In this chapter, the result derived from RTA was used to constrain the initial probability 

distribution of uncertain fracture parameters. The flow regimes were used to formulate a 

localization scheme for history matching. Chapter 5 employs the developed workflow to assess 

the impact of the variability of fracture parameters across hydraulic fracture stages during history 

matching and update of fracture parameters. Chapter 6 describes a robust assisted history matching 

workflow for updating fracture network parameters for hydraulic and secondary fractures (NFs). 

In this chapter, the pilot-point parameterization scheme and sequential simulation are integrated 

into the indicator-based PPM workflow to handle the spatially varying secondary fracture 

distribution, and the parameters of both hydraulic and secondary fractures of a reservoir in the 

Horn River Basin were characterized and updated.  

The conclusions of the thesis, the relevant contributions, and applications are presented in 

Chapter 7, along with recommendations for future work. 
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Fig. 1-1: Schematic depiction of hydraulic fracturing for shale gas. 
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Chapter 2: Literature Review  

2.1 OVERVIEW 

This chapter gives an insight into different approaches of quantifying, representing, and managing 

uncertainties in subsurface systems. Detailed discussions and limitations of different probability-

based sampling techniques used in history matching are also presented. It should be noted that this 

thesis is written in a paper-based structure and therefore contains specific literature reviews 

peculiar to each of the publications presented in different chapters. 

2.2 QUANTIFICATION OF UNCERTAINTIES IN SUBSURFACE SYSTEMS 

Subsurface systems with a large pool of natural resources are abound with several complexities 

and require proper characterization. These systems are usually studied and measured at the surface 

based on collated data to improve knowledge and volume calculations. Despite studies and 

modeling performed on these systems on different scales (including local, regional, or global 

scales), it is plagued with several uncertainties, mostly due to lack of data, measurement errors and 

lack of understanding of the elemental phenomena and processes taking place. Generally, there is 

no unique representation or interpretation of the subsurface model for decision-making purposes. 

A reasonable numerical model comprising of geostatistical inputs is usually needed to relate 

available data and improve the understanding of the subsurface. Therefore, the quantification of 

uncertainty in subsurface systems is a crucial part of the decision-making process in the 

characterization of a reservoir and is discussed in this thesis in the context of uncertainties in input 

parameters and uncertainty management (uncertainty presentation, multiple realizations and 

decision making under uncertainty).  
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2.2.1 Uncertainties in Input Parameters 

Input parameters in the form of histogram means, standard deviation and sample range are mostly 

assumed to be fixed whereas they have some inherent uncertainty which requires assessment. 

Reduction of these associated uncertainty in input parameters improves accuracy of results from 

modeling. Methods such as the conventional Bootstrap (BS), spatial Bootstrap (SBS) and 

Conditional Finite Domain (CFD) has been developed for the purpose of quantifying uncertainties 

in such statistical parameters.  

The BS method is based on random sampling with replacement notwithstanding the form 

of data probability density function. It is a form of statistical resampling technique that can quantify 

uncertainty by simply resampling from the original data. It assumes that the data are independent 

and is representative of the entire population, and, therefore, may not be adaptable for reservoir 

data which usually have some level of correlations. Neufeld and Deutsch (2007) developed boot-

avg code based on the resampling technique. The SBS method is applied to spatial data with 

correlated structure and quantifies uncertainty only of order one in histogram. The limitation with 

this approach is that for spatially dependent data, the application of conventional bootstrap will 

amount to the loss of the correlation. Solow (1985) created spatial dependency for SBS by 

describing covariance matrix to the bootstrap. Deutsch (2004) created the GSLIB-like code 

premised on efficient matrix simulation procedure by relaxing the independence assumptions of 

bootstrap through resampling with correlation.  

For SBS, the following steps are used. 

• Gather the representative data. 

• Compute the 3-D variogram of the data set. 

• Lower and upper triangular matrices (LU) simulation. 
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• Calculate the necessary statistical parameters. 

• Redo step 3 severally and  

• Assemble the distribution of uncertainty in the statistic. 

Despite that the SBS has the ability to handle the problem of data independency, there is an 

increase in uncertainty as the spatial correlation increases since it does not account for all possible 

data in the area of interest.  

The CFD technique assesses the uncertainty in the histogram mean by accounting for the 

size of the domain and the local conditioning data. It is a stochastic approach based on a 

multivariate Gaussian distribution. Compared to SBS, CFD quantifies the uncertainty of any order 

in the histogram and has a decreasing uncertainty in sample mean as the range of correlation 

increases (Babak and Deutsch; 2008). 

2.2.2 Uncertainty Management 

Decision analysis on subsurface systems involves; consideration of all possible inherent 

uncertainties, the complexity of the system, multiple objectives and time factor involved in 

quantifying the uncertainties. The decisions made in the study of these subsurface systems usually 

depend on how best the uncertainties inherent in these systems are understood, presented, and 

managed.  

2.2.2.1 Uncertainty Presentation 

It is certain that due to lack of complete knowledge of relevant geophysical, geological and 

reservoir engineering parameters of subsurface systems, it is impossible to reduce the limiting 

uncertainties to zero. This necessitates the need to carefully investigate, capture and present the 

important parameters affecting the system in a good manner to avoid underestimation and 



 

18 

 

overestimation in decisions which can mostly lead to bad outcomes. The use of probability 

distributions, quantiles, sensitivity analysis, spider diagrams and tornado chats are some of the 

popular methods of representing and understanding uncertainty. Probability distributions will be 

discussed in this section. 

2.2.2.1.1 Probability Distributions 

Since uncertainties in model parameters are majorly due to lack of knowledge, the uncertainties 

are usually incorporated in the input data (individual parameters) in the form of histogram (or 

maybe variogram) forming different realizations. Probability distributions (probability density 

function PDF) is constructed by drawing smooth curve fit through a vertically normalized 

histogram. It is differentiated from a histogram due to its involvement with continuous data rather 

discrete data. In the context of subsurface systems studies, the minimum, P90 (actual recovery ≥ 

estimate with probability of at least 90%), mode, median or P50 (actual recovery ≥ estimate with 

probability of at least 50%), mean, P10 (actual recovery ≥ estimate with probability of at least 

10%), and maximum, are the common terms used in quantifying reserve uncertainty according to 

the Guidelines for Application of the Petroleum Resources Management System (2011), Fig. 2-1.  

2.2.2.1.2 Screening Techniques 

Simplified approaches are useful in identifying the non-influential inputs of a computer model 

before using the more advanced sensitivity analysis methods for systems with many input 

parameters. This simplified screening methods keep the number of model evaluations small 

(Scheidt et al., 2018). The use of a screening technique is computationally economical making 

sensitivity evaluation subjective to parameter ranking based on their importance. The one-at-a-

time and the Morris methods are the popular screening techniques in subsurface systems modeling.  
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The one-at-a-time method proposed by Daniel, 1973 involves varying the input parameters 

one after another while keeping other input parameters fixed at a nominal value or a baseline. This 

simple process enables visualization of the effects of changing one parameter at a time and this is 

best expressed using Tornado charts. The Morris, 1991 method is best adapted for models with 

large number of input parameters and is based on repeated sampling of randomized one-at-a-time 

designs. It measures the global sensitivity using a set of local derivatives (elementary effects) taken 

at points sampled throughout the parameter space. 

2.3 UNCERTAINTY ASSESSMENT WITH MULTIPLE MODELS AND REALIZATIONS 

The understanding that uncertainty is not an inherent characteristic of reservoirs but rather due to 

lack of knowledge about the reservoir implies that it can be modeled while bearing in mind that it 

has no objective measure.  

 Generally, to appropriately manage uncertainty associated with different aspects of 

reservoir management, there is need for a method or tool capable of evaluating a complete range 

of uncertainties by identifying the relevant elements of uncertainty and filtering out the irrelevant 

ones, and implement the processes that can reduce the uncertainties to an acceptable level by 

refining both the interpretation and model, and gathering more data when the existing information 

cannot be refined further. 

Construction of multiple 3D models (either by changing a parameter or performing stochastic 

simulation, etc.) serves as a way to assess the cumulative impact of data, interpretation, and 

modeling uncertainties on reservoir management decisions. For a 3D model, the uncertainty 

analysis follows the workflow proposed by Gringarten (2009): 
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• Evaluation and quantification of the uncertainties of all parameters involved in the model 

construction. 

• Integration of the evaluated and quantified uncertainties – through the construction of a 

complete reservoir model. 

• Analysis of the impact of constructing multiple models based on the criteria used to make 

a decision and 

• Perform iterations targeted at reducing the uncertainties until risks are sufficiently 

minimized to allow decision making. 

A way of looking at model uncertainty is seeing it as multiple realizations of a 

geostatistical-based process where stochastic simulations reproduce input parameters due to 

ergodicity (fluctuations around the input parameters), with a resultant variability in responses. It 

is believed that the only way to assess the cumulative impact of all uncertainties is to construct 

multiple realizations through a combination of scenario-based and stochastic simulations i.e., by 

repeating stochastic simulation process (e.g., Monte Carlo method, Gaussian simulation etc.) using 

different random paths or seeds (Amarante et al., 2019).   

2.4 PROBABILITY APPROACHES FOR PRODUCTION HISTORY MATCHING  

The major goal of history matching is to improve how reservoirs are represented so as to make 

reliable predictions of production rate and consequently optimize future field developments. The 

conventional “manual” trial and error approach or standard history matching techniques which 

uses limited number of models for prediction can only make global modifications and local 

adjustments which are not always geologically realistic and does not handle static uncertainties. 

The probabilistic approaches for production history matching incorporate uncertainty 

quantification as an ensemble to improve forecasting or prediction.  
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 The assessment of uncertainty in estimated reservoir parameters requires sampling from 

the posterior distribution of the parameters, and this is implemented efficiently using the Bayesian 

methods (Lee, 1997).  

2.4.1 Bayesian Approach 

In simple terms, the Bayesian approach aims to determine the probability distribution of model 

parameters based on Bayes’ theorem (Bayes et al., 1763) which describes the probability of an 

event based on prior knowledge of conditions that might be related to the event. This probabilistic 

approach is useful in calibrating model parameters considered as random variables characterized 

by a probability density function, whilst having ‘subjective beliefs’ during calibration defined by 

a joint posterior distribution of parameters. 

 Mathematically, the probability function of a particular parameter defined according to 

Bayes theorem is given as, 

 

( | ). ( )
( | )

( )

P P
P

P

  
 


=                                                                                                           (2-1)  

Where; 

 represents the model parameter;   is the observations or experimental data; ( | )P   is the 

posterior probability function (posterior beliefs having accounted for  ) or the conditional 

probability of event occurring given that  is true; ( )P  is the prior probability distribution 

(modeler prior beliefs); ( | )P B  is the likelihood function of the observations; and ( )P  is the 

probability of observations. 
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 Important advantages of the Bayesian approach noted to be adaptable for production 

history matching include; (1) treating inverse problems as a well-posed problem (i.e. has a 

uniquely determined solution that depends continuously on its data) in an expanded stochastic 

space, (2) providing point estimates (maximum and medians) and posterior probability distribution 

function, and (3) providing more flexibility in the regularization or while adding information 

(stochastic regularization is the minimum mean square estimation of a random parameter that is 

normally distributed when the data are also normally distributed) (Emery, 2016). 

Some probabilistic approaches referenced on Bayesian concept and some other useful 

probabilistic methods for production history matching are discussed in the following sections. 

2.4.1.1  Markov Chain Monte Carlo 

Markov Chain Monte Carlo (MCMC) method derives its meaning from the individual terms 

“Markov” which assume that predictions for the future state of a system (or model parameters) 

depend entirely on the current state of the system and “Chain” implying that there are many 

iterations of Monte Carlo random sampling. This therefore means that in MCMC, the distributions 

from which sampling is done depends on the current state of the system (related to bayesianism). 

During the process, each iterative step consists of a proposal and an acceptance step and as the 

iterative steps continue, the Markov chain converges to a desired fixed distribution. The basic 

method of the MCMC is simple and is derived from Metropolis algorithm. 

1. Start with a guess of the parameters, 1 . Calculate the probability for this guess, P1. 

2. Guess a second set of parameters, randomly drawn from a Normal multivariate solution 

centered on 1 .  The Normal distribution is known as the proposal density, or jumping 

distribution. The normal sampling distributions for each of the parameters are assumed to 
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be independent, with Gibbs sampling. Call the new set of sampled parameters 1  and 

calculate its probability as P2. 

3. Calculate the acceptance ratio 2

1

P
R

P
= . 

4. Pick a random number r between 0 and 1. If R>r, then new best guess is 1 = 2 , go to step 

3.  If R r , go to step 2. The idea of using the current guess to change the sampling region 

defines the MCMC. 

5. The algorithm terminates after some fixed (large) number of iterations that attains the 

desired distribution. The posterior probability distributions of the parameters is the 

distributions of the accepted values of the parameters at the various iterations. 

Note that the parameters of the normal sampling distribution in step 2 depend only on the 

current best guess, thus MCMC. 

The described technique can generate realizations conditioned to hard data as well as honor 

the reference statistics. The major challenge in using MCMC is its requirement of large number of 

iterations to converge to a stationary distribution mainly due to low acceptance ratios for 

transitions to a new state when the number of parameters in a model is large. 

2.4.1.2  Kalman Filtering and EnKF 

The Kalman Filtering developed by Rudolf Kalman (1960) is essentially a set of mathematical 

equations that minimizes the estimated error covariance by applying a predictor – corrector type 

estimator when some presumed conditions are satisfied. It provides a recursive computational 

procedure for minimizing quadratic function of estimation error for a linear dynamic system with 

statistical noise and inaccuracies. There is a basic assumption in Kalman filtering that the system 

dynamics are linear and that measurements and errors follow a Gaussian distribution.  
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The following stochastic differential equation describes the Kalman filter as a method of 

estimating the current state of a process. 

1 1k k k k k kx A x B u w− −= + +
                                                                                         (2-2) 

Where Ak represents the state transition model, Bk the control input model applied to the control 

vector uk. wk-1 is the process noise with mean zero and covariance Q: 

( ) (0, )P w N Q               (2-3) 

Let z be the measurement defined as: 

k k k kz H x v= +
              (2-4) 

Where Hk represents the observation model, and the vk represent the measurement noise with 

mean zero and covariance of R: 

( ) (0, )P v N R   (2-5) 

 The priori state estimate based on the knowledge of the system at step k is defined as
*

kx , and 

the posterior state estimate at step k, based on the measurement kz , is defined as kx


. 

Let the prior estimate error be 
*

*

k k ke x x


= − and the posterior error 
k k ke x x



= − .  

Error covariance matrices measure the correctness of the state estimates.  

The priori estimate error covariance is defined as: 

* * *[ ]T

k k kP E e e=   (2-6) 

The posteriori estimate error covariance is defined as: 

[ ]T

k k kP E e e=                (2-7) 
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Now, the posteriori state estimation kx


 is defined as a linear combination of the priori estimate 

*

kx


and the weighted difference between an actual measurement and the predicted measurement: 

* *

( )k k kkx x K z H x
  

= + −              (2-8) 

Where K represents the Kalman gain and it also minimizes the posteriori noise covariance:  

( )* * 1/ ( )T T

k kK P H HP H R −= +   (2-9) 

The Kalman filter can operate in two different stages; prediction and updating. While the 

prediction phase utilizes the current state to estimate the state of the next step, the updating phase 

uses the priori estimates and the current observations to improve the state estimate.  

The Kalman filter as is most history matching algorithms minimizes the mean square error. 

The expected value (or rather the mean) of the squared error in the posteriori estimate error is: 

2( )k kE x x
 

− 
 

  (2-10) 

Note that to minimize the expected value of the squared error is the same as minimizing the 

trace of the posteriori estimate error covariance matrix Pk. It can be said that this trace is minimized 

when its derivative with respect to the gain is set to zero, thus leading to Kalman gain which 

minimizes the mean square error.   

There has also been some useful extensions and generalizations to the Kalman filters method 

including extended Kalman filter (known to be the nonlinear version of the Kalman filter, which 

linearizes about an estimate of the current mean and covariance), the unscented Kalman filter 

(particularly useful when the predict and update functions are highly nonlinear, thus poor 

performance with the use of extended Kalman filters. This deterministic sampling is used to pick 

minimal set of sample points or sigma points around the mean to propagate through the nonlinear 
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functions and the ensemble Kalman filter (a Monte Carlo based technique in which an ensemble 

of model states are used to approximate the covariance matrices used in the updating process). 

The ensemble Kalman filter (EnKF) is a Monte Carlo implementation of the Bayesian update 

problem. EnKF represent the distribution of the system state using a collection of state vectors, 

called an ensemble, and replace the covariance matrix by the sample covariance computed from 

the ensemble. The ensemble is assumed a random sample, but the ensemble members are really 

not independent – the EnKF ties them together. An advantage of EnKF is that advancing the PDF 

in time is achieved by simply advancing each member of the ensemble. 

The Kalman filters and its extensions are very useful algorithms for history matching but not 

without some challenges. The main challenge of the EnKF is the Gaussian assumption of the prior 

joint probability distribution and thus difficulty in convergence to the correct distribution if the 

prior joint probability distribution has non-Gaussian contribution. The non-linearity in the dynamic 

model, the non-Gaussianity of state variables distribution and the limitations of the ensemble size 

(highly dependent on the size and characteristic of the initial ensemble) result in non-physical 

updates during the analysis.   

2.4.1.3  Gradual Deformation Method 

This is a stochastic method introduced in Hu (2000) to constrain history matches to simple statistics 

and was further remodified to handle dependent realizations in Hu (2002). The method utilizes the 

fact that certain linear combinations of independent Gaussian fields maintain second order 

statistics. It is the continuous perturbation of an initial realization of a prior model in a way that 

the perturbed realization matches better the data d and the same time honors a prior model. While 

the perturbations in this method are gradual or continuous (as the name implies), the variable being 

perturbed can be discrete or categorical (Caers, 2007). 

https://en.wikipedia.org/wiki/Numerical_weather_prediction#Ensembles
https://en.wikipedia.org/wiki/Sample_covariance
https://en.wikipedia.org/wiki/Random_sample
https://en.wikipedia.org/wiki/Statistical_independence
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 The implementation of this method requires that a standard Gaussian random variable V or 

standard Gaussian vector V can be represented as a linear combination of two independent standard 

Gaussian variables V1 and V2 or standard Gaussian vectors V1 and V2 sharing the same covariance 

matrix; equations below. 

1 2cos sinV V r V r= +  

V = V1 cos r + V2 sin r       (true for any value of r)        (2-11) 

Some important points to note; 

• Components of V1 and V2 of vector V can be correlated or uncorrelated.  

• When correlation of the components of V1 is expressed in a variance-covariance matrix C, 

and the components of V2 share the same covariance, then the components of V also have 

the same variance-covariance matrix C.  

• r is the perturbation parameter of variable V1.   

• If r=0, V = V1. 

• If r increases, any outcome of V becomes “gradually” different from the corresponding 

outcomes of V1 in the limit case. 

• If r = π/2, V = V2 

• V1 and V2 must be independent random vectors. 

Generally, the gradual deformation method is relatively a straightforward process with an easy 

implementation for an existing history matching framework. However, its application to only 

systems that can be represented by a Gaussian distribution makes it unsuitable for complex 

geologies or systems which cannot be derived from a Gaussian distribution. 
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2.4.1.4  Probability Perturbation Method 

The probability perturbation method (PPM) introduced by Caers (2003) is a flexible data 

integration method applicable to solve non-linear inverse problems where there is complex 

geology. The process follows a different course from the normal Bayesian inverse models which 

usually rely on prior and likelihood distribution and sampling from posterior distribution. Rather, 

sampling in this method consists of perturbing the probability models used to generate the model 

realization, creating a chain of realizations which converge to match any type of data.  

 The concept of PPM is to incorporate production data mismatch as a piece of secondary 

information during history matching to generate new realizations. It uses the following 

parameterization to translate production data mismatch into a piece of secondary information: 

( | ) (1 ) ( )c cP A C r i r P A= − +   (2-12) 

where P(A) is the marginal distribution of the event A (the unconditional probability of A or the 

prior probability distribution or the modelers prior belief) representing the global proportion of A 

over the entire domain. C represents the production data. rc is the perturbation parameter and i is 

the realization of binary indicator variables for any physical property or parameter at the grid 

blocks.  

 Referencing on the equation above, if rc = 0, P (A|C) = i, resulting in a realization similar 

to i. However, when rc = 1, P (A|C) = P (A), resulting in a different binary indicator variable or 

realization equiprobable to i. A blend of i and another equiprobable realization will be obtained if 

rc is between 0 and 1. Thus, by adjusting rc, the indicator variable is perturbed.  

 P (A|C) does not depend on the production data mismatch, C, rather it is considered to be 

dependent on the resulting realization of the binary indicator which simply implies that the 

production data depends on the choice of rc. 
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 A good history match using PPM is achieved when the mismatch between the forward 

model and actual data d2 (otherwise called objective function) is optimal or minimal. This is 

possible with an optimal value of the perturbation parameter rc. 

(1)

2( ) || ( ( , )) ||c j cO r g i u r d= −            (2-13) 

where O(rc) is the objective function as a function of rc; g is the forward model and {i(1)(uj,rc), 

j=1,…,N} is a generated perturbation. 

Using the method to perturb the initial realization can only reduce the objective function but not 

achieve a global minimum. The probability perturbation algorithm below is employed in an 

iterative way to further reduce the objective function and achieve a global optimal match. 

• choose random seed  

• generate an initial realization  

• Until an optimal value of rc is found 

(i) Minimize to get ropt
c 

           (1)

2( ) || ( ( , )) ||c j cO r g i u r d= −  

(ii) Change random seed 

(iii) Assign  

                             (0) (1)( ) ( , ),opt

j j ci u i u r j   

In the use of PPM algorithm for production history matching, the production data can be integrated 

through an optimization process (such as Dekker Brent 1-D derivative-free optimization method) 

while the PPM serve as the main engine for the production data integration (Johansen, 2008). The 

entire process consists of an inner loop where the optimization scheme such as Brent’s algorithm 

(Brent, 1973) can be used to obtain a local optimal value or rD for a given initial realization, and 

an outer loop where a different initial realization of model parameters is explored. The method 
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does not require a particular type of distribution to represent the perturbed parameter, thus it is 

able to represent reservoir fracture parameters which is usually not smooth (non-Gaussian); a very 

flexible advantage it has over other methods such as gradual deformation and Kalman filtering 

whose parameters are represented by Gaussian distributions. 
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Chapter 3: Inference of Hydraulically Fractured Reservoir 

Properties from Production Data Using the Indicator-Based 

Probability Perturbation Assisted History-Matching Method  

 
3.1 OVERVIEW 

Hydraulically fractured horizontal wells are widely adopted for the development of tight or shale 

gas reservoirs. The presence of highly heterogeneous, multi-scale, fracture systems often render 

any detailed characterization of the fracture properties challenging. Discrete fracture network 

(DFN) model offers a viable alternative for explicit representation of multiple fractures in the 

domain, where the comprising fracture properties are defined in accordance with specific 

probability distributions. However, even with the successful modelling of a DFN, the relationship 

between a set of fracture parameters and the corresponding production performance is highly 

nonlinear, implying that a robust history-matching workflow capable of updating the pertinent 

DFN model parameters is required for calibrating stochastic reservoir models to both geologic and 

dynamic production data. 

This thesis proposes an integrated approach for the history matching of hydraulically fractured 

reservoirs. First, multiple realizations of the DFN model are constructed conditioning to available 

geological information such as seismic data and well logs, which are useful for inferring the prior 

probability distributions of relevant fracture parameters. Next, the models are upscaled into 

equivalent continuum dual-permeability model and subjected to numerical multiphase flow 

simulation. The predicted production performance is compared with the actual recorded responses. 

Finally, the DFN-model parameters are adjusted following an indicator-based probability 
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perturbation method. Although the probability perturbation technique has been applied to update 

facies distributions in the past, its application in modeling DFN distributions is limited. To account 

for the non-Gaussian nature of the DFN parameters, an indicator formulation is proposed. The 

algorithm aims at minimizing the objective function, while reducing the uncertainties in the 

unknown fracture parameters. 

The method is applied to estimate the posterior probability distributions of the transmissivity of 

the primary fracture (Tpf), transmissivity of the secondary induced fracture (Tsf) and global fracture 

intensity (Psf
32G) in a multifractured shale gas well in the Horn River Basin. An initial realization 

of the DFN model are sampled from the prior probability distributions using the Monte Carlo 

simulation. These probability distributions are updated to match the production history, and 

multiple equi-probable realizations of the DFN models are sampled from the updated (posterior) 

distributions accordingly. The final sampled realizations of the DFN model are consistent with 

both static geological information and dynamic production history. 

3.2 INTRODUCTION 

The combination of horizontal drilling and hydraulic fracturing, or otherwise known as 

hydraulically fractured horizontal wells, has contributed the improved production from 

unconventional (tight and shale) reservoirs in recent years. The presence of highly heterogeneous, 

multi-scale fracture systems often renders any detailed characterization of the fracture properties 

challenging. Complexities such as the secondary fracture geometries and the striking difference 

between permeabilities of the matrix and fracture systems constitute distinct challenges to the flow 

simulation and intensify the nonlinearity between the fracture model parameters and flow 

responses (Wang and Leung, 2015). Thus, formulating an efficient workflow that integrates both 
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static (e.g., logs) and dynamic data (e.g., rate and pressure measurements) to update hydraulic and 

secondary fracture parameters in a discrete fracture network model remains challenging. 

First, numerical simulation of multiphase flow in fractured porous media is challenging. The 

choice of simulation approach should reflect the complexity of the fracture characteristics (e.g., 

geometry, intensity, and scales), while capturing the matrix and fracture flow interactions. The 

dual-porosity (DP) model considers the fracture system as the only flow path that is directly 

connected to the wellbore; although inter-porosity flow between the matrix and fracture systems 

is accounted for, inter-porosity flows within the matrix system and to the wellbore are ignored 

(Warren and Root, 1963; De Swaan, 1976; Bui et al., 2000). An improved form of the DP model 

is termed the dual-porosity dual-permeability (DPDK) model, as it considers all inter-porosity 

flows between the matrix system, fracture network, and the wellbore (Hu and Huang, 2002; Al-

Shaalan et al., 2003; Van Heel et al., 2008). In the DPDK framework, the flow transfer terms are 

formulated as functions of the shape factor, pressure gradients, and several other physical 

parameters. A major pitfall is its difficulty in fully capturing the effects of capillarity and gravity 

into the formulation of shape factor. Equivalent models consisting of matrix and fracture domains 

have also been used to represent the fractured medium in the DP or DPDK modeling frameworks. 

Other more sophisticated techniques are available to incorporate features of a discrete fracture 

model, where the actual geometries and locations of individual fractures are explicitly specified in 

the computational domain. This generally requires discretizing the domain with unstructured 

meshes. Several finite element and finite volume methods, such as control-volume finite-element 

(CVFE), cell-centered finite-volume (CCFV or multi-point flux approximation MPFA) and mixed 

finite-element methods (MFE), have been developed (Monteagudo & Firoozabadi, 2004; Sandve 

et al., 2012; Zidane & Firoozabadi, 2014; Liu et al., 2020). Each of these techniques has its own 
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merits and limitations; for example, the CVFE design is computationally efficient, but it does not 

maintain flux continuity for a heterogeneous porous medium; the MFE method, which is locally 

flux-continuous and conservative, can be computationally expensive, as both the velocity and 

pressure fields are evaluated concurrently. More recently, the Embedded Discrete Fracture Models 

(EDFM) has been widely adopted. Each matrix cell is divided into a set of sub-segments divided 

by various discrete fractures located within the cell. An updated connectivity/transmissibility list 

is used for computing the flow between matrix and fracture segments (Shakiba et al., 2018). The 

transmissibility calculations take into account the orientation and size of individual fractures. 

Given that pressure distribution along each fracture is not explicitly calculated, the overall 

computational cost is reduced. 

The DP model is used in this work because of its ease of implementation. The presented workflow 

is not specific to a particular flow simulation strategy, so other aforementioned simulation 

techniques can also be adopted readily. The specification of a dual continuum reservoir simulation 

model requires assigning equivalent porous medium properties to each reservoir cell consisting of 

both matrix and fracture continua (Nejadi et al., 2017). These equivalent properties refer to the 

permeability tensor and shape parameters obtained by appropriate upscaling techniques 

(Bourbiaux et al., 1998, Bogdanov et al., 2007). The Oda upscaling technique is a commonly 

adopted analytical approach developed by Oda (1985). Other flow-based upscaling techniques 

(including both local and other advanced local-global schemes) have also been developed (Chen 

et al., 2003).  

A second challenge is associated with the inference of distributions of fracture properties from 

dynamic (flow and pressure) data. History matching is in itself an inverse problem with non-unique 

solutions. This is a process by which all data (various sources and scales) are integrated. Typically, 
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a set of initial models (or realizations) are constructed by incorporating various static or geological 

data. The models are then subjected to flow simulation and an optimization scheme to adjust the 

model parameters until the mismatch between the predicted response and the actual historical data 

is minimized. In the case of fractured reservoirs, the uncertain model parameters may include 

different fracture parameters (e.g., size, location, intensity, orientation). The goals of most 

probabilistic history-matching schemes are to (a) estimate the posterior distributions 

corresponding to the unknown model parameters and (b) to sample a set of updated models (or 

realizations) from those distributions; the variability exhibited by those realizations facilitates the 

uncertainty quantification and assessment. A particularly important aspect of fractured reservoir 

history matching is the capability to probability distributions of any forms without the assumption 

of Gaussianity.  

Different approaches, such as stochastics search (e.g., genetic algorithm, simulated annealing), 

sampling-based (e.g., gradual deformation), and optimization-based methods (e.g., maximum a-

posterior), are available to characterize fracture network models. While the equivalent model 

parameters are updated in some cases, the discrete fracture properties are updated in others. Cui 

and Kellar (2005) adopted a gradient-based technique, where the sensitivity coefficients of 

production data with respect to the fracture intensity were computed using a gradient simulator 

and the adjoint method; correlations between fracture intensity and fracture permeability, matrix 

permeability, and a certain coupling factor were used to update these pertinent flow parameters. 

Others have applied alternative global search techniques. Hu and Jenni (2005) designed a gradual 

deformation routine to tune an object-based Boolean model for predicting the location, shape, and 

size of various heterogeneous features from production data. An approach called the probability 

perturbation method (PPM), which is adopted in this work, was previously used by Hoffman 
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(2004) and Suzuki et al. (2007) for production history matching. Hoffman (2004) formulated a 

PPM workflow to estimate the uncertain locations and proportions of calcite bodies in a North Sea 

reservoir integrating both water rates and repeat formation tester (RFT) data. Suzuki et al. (2007) 

applied the PPM workflow for history matching of a synthetic naturally fractured reservoir. In 

their study, fracture density (e.g., fracture count per volume) was the unknown parameter; a multi-

scale approach was adopted where both large-scale distribution and local-scale variations were 

estimated; however, hydraulically fractured tight/shale wells were not analyzed in that work; in 

particular, additional relevant fracture parameters (e.g., aperture, permeability) and their 

distributions were not considered. It has been widely established that PPM can handle non-

Gaussian probability distributions, as no particular assumptions of the model parameter 

distributions are necessary; these previous works did not explicitly present examples where the 

model parameters are highly non-Gaussian.  

De Lima et al. (2012) subsequently employed the gradual deformation technique to estimate 

realizations of fault distribution (i.e., intensity, length, and spatial locations). Chai et al. (2016) 

proposed a two-stage Markov Chain Monte Carlo method with embedded discrete fracture 

modeling for characterizing different porosity distributions corresponding to the organic matrix, 

inorganic matrix, secondary fractures, and hydraulic fractures of shale reservoirs. Other 

researchers have applied various stochastic search algorithms to estimate fracture distribution. 

Chen et al. (2019) designed a multi-scale (two-way) strategy for the history-matching of dual-

porosity models: an evolutionary algorithm was used to calibrate coarse-scale static and dynamic 

parameters from average field pressure, well bottom-hole pressures, and repeat formation tester 

(RFT) data, while the streamline simulation was performed to fine-tune local fracture permeability 

to match the specific well bottom-hole pressures. Many ensemble-based techniques (e.g., 
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Ensemble Kalman filter, or EnKF, and ensemble smoother) have also gained wide attention due 

to its merits in data assimilation and uncertainty quantification. The basic form of EnKF assumes 

multi-Gaussian distribution for all model and data variables and a linear relationship between 

them; unfortunately, none of these assumptions would hold for fractured reservoirs. A Bayesian 

updating scheme is involved to minimize the mismatch function. Modifications were proposed to 

partially address these limitations: iterative updating to alleviate issues related to nonlinearity and 

alternative parameterization schemes to transform the non-Gaussian distributions into Gaussian 

ones. Nejadi et al. (2015) employed EnKF to characterize hydraulic fracture parameters (e.g., half-

length and transmissivity) and induced fracture parameters (e.g., length, transmissivity, intensity) 

using a DPDK simulation model. This approach was also employed in Nejadi et al. (2017) for 

inferring fracture orientation, conductivity, permeability tensors, and intensity for a naturally 

fractured reservoir. Although these extensions/hybrid formulations may retain the idea of utilizing 

an ensemble, they do not rely on linear update and are not appropriate for highly non-Gaussian 

variables; therefore, it is argued that they could offer only partial approximation of the true 

distribution.  

The literature review highlights a number of unresolved issues pertinent to production history-

matching of multi-scale fractured reservoirs. The gradient-based optimization techniques are 

robust, but the computation of gradients (sensitivity coefficients) can be computationally 

expensive. Stochastic search algorithms, such as simulated annealing and the genetic algorithm 

may also require many iterations to converge. A sampling-based technique, namely the probability 

perturbation method, is preferred, as it does not require gradient calculations and exhibits good 

convergence property; it facilitates the estimation of the posterior probability distribution, from 

which multiple realizations can be sampled. This approach has been used to calibrate permeability 
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distribution in conventional reservoirs (Kashib et al. 2006) and naturally fractured reservoir 

permeability distribution, which was conditioned to a prescribed fracture density model (Suzuki 

et al. 2007). However, there was no previous application for unconventional reservoirs where both 

hydraulic and secondary fractures are present. 

The objective of this research is, therefore, to formulate an indicator-based probability perturbation 

method for history-matching production data in a reservoir system consisting of both hydraulic 

and secondary (natural) fractures: the discrete fracture network (DFN) model parameters are 

updated, and the DFN model will be upscaled into a DPDK model for flow simulation. This 

framework is used to characterize both local and global fracture parameters. A significant 

advantage is that the uncertainties in fracture parameters are represented by multiple equi-probable 

DFN realizations and their corresponding upscaled flow-simulation models. Many previous 

studies focus on updating the upscaled models, without offering a direct means of transferring that 

upscaled model parameters back to a set of DFN model parameters. In addition, the proposed 

indicator-based formulation of the probability perturbation method is flexible in the handling of 

non-Gaussian fracture model parameters. The developed workflow is applied in a synthetic case 

study of a hydraulically fractured shale reservoir in the Horn River basin. 

3.3 METHODOLOGY 

3.3.1 Generation of an Initial Realization of the Discrete Fracture Network Model 

The Fisher et al. (2005) conceptualization of a complex hydraulic fracture system was adopted to 

construct the DFN model using FRACMAN® (Golder Associates, 2018). Each hydraulic fracture 

stage is modeled using a primary fracture (an elongated penny-shaped crack) intersected by many 

randomly-distributed secondary fractures. These secondary fractures may represent any complex 
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induced (or natural) fractures connected to the primary fracture – Fig. 3-1. Fracture properties, 

such as the location, size, orientation, intensity, aperture, and transmissivity, are defined for both 

the primary and secondary fractures. The Fisher distribution (Fisher, 1953) is used to define the 

orientation parameters of the induced fractures. In principle, different orientation parameters 

should be defined for each hydraulic fracturing stage, and these parameters can be inferred from 

geomechanical and microseismic data, if available. 

The transmissibilities of the primary (Tpf) and induced fractures (Tsf), as well as the global induced 

fracture intensity (Psf
32G), are the uncertain history-matching parameters. Updating of the uncertain 

parameters based on production histories is achieved during history matching. For a certain value 

of Psf
32G, individual secondary fractures are populated following a prescribed nearest neighbor 

model, where the local fracture intensity (Psf
32L) decreases exponentially with distance to the 

primary fracture: 

,

32P ( ) ce x fb

L x
− 

= ,                                                                                                                (3-1) 

where c is an empirical constant; ∂ is the distance between location x and the primary fracture 

plane (according to Dershowitz, 1993). c can be estimated using image log data, possibly gathered 

from nearby fields, and b controls how quickly the secondary fracture intensity would decrease 

with distance away from the primary fracture; its value is calculated from the mean distance 

between the location x and the primary fracture and is defined as  

1
,x f b− = .  (3-2) 

Static data such as cores, well logs, and microseismic interpretations can be used to infer prior 

distributions of various fracture parameters; for example, aperture, height in relation to the bed 

thickness, density or spacing, orientation, and dip are fracture parameters derivable from cores, 
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while the approximate trend and plunge of both primary and secondary fractures can be inferred 

from microseismic responses. It should be emphasized that although static data is useful for 

interfering the prior distributions and offering an approximation of SRV, static data alone is 

typically insufficient to resolve all relevant parameters of a hydraulic fracture system, such as 

secondary fracture parameters (Psf
32G,Tsf); hence, dynamic data is needed to reduce the uncertainty. 

3.3.2 Discrete-Fracture-Network Model Upscaling 

The DFN model is transformed into an equivalent DPDK simulation model (Fig. 3-2) based on a 

static upscaling scheme (Oda 1985). Given that the induced fractures are well connected and 

densely populated, the Oda upscaling scheme is assumed applicable (Dershowitz et al., 2000).  

The upscaled DPDK model parameters include fracture porosity, Oda permeability tensor, and 

matrix-fracture coupling in the form of shape factor. In particular, the fracture porosity is defined 

as the total fracture volume (average cross-sectional area× aperture) divided by the cell volume. 

The Oda permeability tensor is computed by projecting the fracture isotropic permeability onto the 

fracture plane and then scaling it according to the fracture porosity. The orientation of a fracture 

inside a grid cell is described by a unit normal vector n. The mass moment of inertia of all fracture 

normals distributed over a unit sphere is obtained as: 

( )i jN n n E d


=  n

    (3-3) 

where Ω is the integration domain corresponding to the surface of a unit sphere, N is the number 

of fractures in Ω, ni and nj are the components of n, and E(n) represents the probability density 

function describing the number of fractures whose unit normals are oriented within dΩ.  
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The resultant 3 × 3 fracture permeability tensor describing the directional permeability for the 

upscaled grid cell is given by the following matrix:  

1
( )

12
ij kk ij ijK F F= −

   (3-4) 

where Kij is an element in the permeability tensor, Fij is the corresponding element of the fracture 

tensor: it projects the permeability to the direction of n and expresses the flux along n, assuming 

the fractures are impermeable in a direction parallel to their unit normals. It is calculated by 

summing the contributions from N individual fractures within the upscaled grid block, weighted 

by their area and transmissivity as in Eq. (3-5); δij is the Kroenecker's delta. 

1

1 N

ij r r ir jr

r

F A T n n
V =

= 
,  (3-5) 

where V is the grid cell volume, N is the total number of fractures in the grid cell, nir and njr denote 

the ith and jth components of the unit normal vector corresponding to the fracture plane r, Ar is the 

area of fracture plane r and Tr is the transmissivity of fracture plane r.  

Finally, the shape factor, or sigma factor (with a dimension of 1/length2), provides a measure of 

the fracture-matrix interaction or interporosity flow between the matrix and fracture domains. It is 

represented mathematically according to Kazemi et al. (1976) as: 

2 2 2

1 1 1
4

i j k

Sigma
L L L

 
= + +  

     ,                                                                            (3-6) 

where Li, Lj, and Lk refer to the fracture spacing in the x, y and z directions.   
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In most practical applications, fractures could be non-orthogonal and irregularly oriented within a 

grid block). For such complex scenarios where multiple disconnected matrix blocks separated by 

thin fracture planes are present in a grid block, the regional dimensions (perpendicular to the 

fracture surface areas) become the fracture spacings. In most of these applications, the shape factor 

is used directly in the simulators in such a way that the contact area open to flow direction is 

preserved. Kazemi et al. (1992) introduced a formulation for the generalized shape factor as:  

1 m

sm m

A
Sigma

V d
= 

.  (3-7) 

Vm represents the matrix volume within the grid block, Am is the area open to flow between a 

segment of the fracture plane and its neighboring matrix block, dm is the distance from that open 

flow surface to the center of the corresponding neighboring matrix block, and sigma is computed 

by summing over all such open surfaces within that particular grid block. This formulation was 

further generalized by Heinemann et al. (2011) for two specific scenarios. For matrix with isotropic 

permeability, the distance should be calculated by selecting a point j on the fracture plane segment, 

such that a line connecting i to the center of the neighboring matrix block is orthogonal to the 

surface Aj: 

1

1 N
j

jm j

A
Sigma

V d=

= 
.  (3-8) 

N refers to the total number fracture plane segments. For an anisotropic matrix, the distance must 

be k-orthogonal to the surface: 
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1

.
1 N j

j

jm j

k
Sigma A

V d=

= 
  n

 .  (3-9) 

k  is the permeability tensor. 

3.3.3 Numerical Flow Simulation  

Material balance, momentum balance, phase behavior descriptions, and numerous auxiliary 

equations are implemented in numerical simulation to model multiphase fluid flow. A commercial 

black-oil simulator (Schlumberger, 2017) is employed. This system of nonlinear differential 

equations for the DP formulation is solved numerically based on finite-difference and finite-

volume methods: 

( ),d G= m u
.                                                                                                        (3-10) 

u and m represent the estimated state variables (pressure and saturation) and the model parameters, 

respectively; d is simulated data after model simulation G, which depends on the principles of 

material balance, momentum balance, phase behavior descriptions, and numerous auxiliary 

equations.  

3.3.4 Probability Perturbation Method 

The probability perturbation method (PPM) can be used to effectively integrate production 

dynamics during the history-matching process (Caers, 2003; Kashib and Srinivasan, 2006). In 

PPM, instead of tuning the specific unknown model parameters, such as a particular geostatistical 

realization of fracture intensity, the probability distributions corresponding to these model 

parameters are perturbed; in other words, instead of attempting to construct one history-matched 
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realization of the DFN model, the goal is to infer the posterior probability distributions of 

numerous DFN parameters such that multiple realizations of the DFN model can be sampled. The 

variability exhibited by these realizations is expected to capture the uncertainty in the model 

parameters and reflect the non-unique nature of an inverse problem.  

 

The technique does not depend on the conventional Bayesian decomposition of posterior into the 

likelihood of observing the data and a prior belief, but rather utilizes pre-posterior distributions 

(probability of the model parameters given some subset of the data). It enables a fast non-iterative 

updating scheme to generate new realizations of the uncertain model parameters, and this aspect 

differs from other methods, such as MCMC, which requires a large number of iterations to 

converge to a stationary distribution due to low acceptance ratios for transitions to a new state, 

especially when the number of unknown model parameters is large. The convergence behavior of 

other ensemble-based methods, such as EnKF, may also be compromised if the prior and posterior 

are non-Gaussian. In Emerick and Reynolds (2012), a hybrid method where MCMC is combined 

with EnKF to improve sampling efficiency, a very long chain was used as the reference solution 

to scrutinize the sampling performance of several ensemble-based methods with 100 realizations; 

the comparison showed that either MCMC or EnKF alone may not be efficient. 

Another drawback with EnKF is that, in its simplest form, EnKF assumes multi-Gaussian 

distribution on model and data variables and a linear relationship between all variables (Aanonsen 

et al. 2009; Emerick and Reynolds, 2012). Both these assumptions do not hold for fractured 

reservoirs. Modifications were proposed to address these limitations partially: iterative updating 

to alleviate issues related to nonlinearity (Li and Reynolds 2009; Chen and Oliver, 2012) and 

alternative parameterization schemes to transform the non-Gaussian distributions into Gaussian 



 

45 

 

ones (Linde et al., 2015). One of our previous works also employed a re-sampling scheme and a 

parameterization formulation to account for non-Gaussian model parameters and nonlinear multi-

phase flow processes in an EnkF framework (Nejadi et al., 2015). However, the choice of an 

appropriate parameterization scheme for 3D fracture parameters is not established. In the end, there 

is still debate that though these extensions/hybrid formulations may retain the idea of utilizing an 

ensemble, they do not rely on linear update or transformation of space; they could offer only partial 

approximation of the true distribution. 

Similar to previous PPM implementations, as cited previously, an indicator formulation is adopted 

here to account for the non-Gaussian nature of DFN parameters. The probability distributions of 

the uncertain parameters (i.e., Psf
32G, Tpf and Tsf) are perturbed according to the indicator-based 

formulation proposed in Kashib and Srinivasan (2006): 
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                           (3-11)  

The formulation describes the probability of transitioning from the indicator category k at step l to 

the category k’ at step l+1 using the deformation factor  r 0,1D  . The probability P{I(u) = k’} is 

the prior probability (inferred from static/geologic data) while P{Il+1(u) = k|Il (u) =k, C} is the 

posterior probability. As 𝑟𝐷  tends towards 1, more perturbation of the probabilities is resulted. If 

𝑟𝐷 = 0, there is no perturbation, and the probability of staying at category k at step l+1 is 1.0; if 𝑟𝐷 

= 1, the probability of staying at category k at step l+1 is 0. Thus, the indicator-based formulation, 

together with the rD adjustment facilitates the perturbation of both Gaussian and non-Gaussian 

distributions. u represents the unknown Tsf, Tpf and P32G as points in the domain.  
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At the end of each perturbation step, a set of updated DFN parameters are sampled and used to 

generate a new DFN model. The model is subsequently upscaled into a DPDK model for flow 

simulation. The advantage of this approach, instead of perturbing the DPDK model parameters 

directly, is that it facilitates the sampling of DFN realizations and the corresponding upscaled 

DPDK models to be conducted in a consistent fashion. Suppose one were to perturb the DPDK 

mode parameters directly. In that case, there is no unique way to reconstruct the posterior 

probability distributions or even to sample realizations, of the corresponding DFN parameters 

based on those updated DPDK parameters alone. This parameterization scheme helps to preserve 

the non-linear relationship between a given set of DFN parameters and the associated reservoir 

flow response. As the perturbation is performed in the DFN space, no down-scaling is actually 

required; after each perturbation step, there is a DFN model associated with the upscaled DPDK 

model. 

The PPM workflow is described in Fig. 3-3. To attain the global optimal, the workflow is divided 

into an inner loop, where the Brent 1D optimization scheme (Brent, 1973) is used to obtain a local 

optimal value of rD for a given initial realization, and an outer loop, where a different initial 

realization of the model parameters is explored. Denotations are marked in the figure to describe 

the sections of the workflow indicating the two loops.  

max max

22 2* * *
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       (3-12)                           

Eq. (3-12) is the normalized objective function, where Qg, Qw and b representing the gas 

production, water production and Bottom-hole pressure, respectively;  the subscripts s, h and max 
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denote the simulation prediction, historical data, and the upper limit (maximum value) for that 

particular variable, respectively. 

During the probability perturbation, Brent's algorithm is applied to search for the optimal rD 

corresponding to the local minima of the objective function based on a certain initial realization of 

the model parameters. This algorithm is effective in locating the minimum of a single-variable 

function by utilizing the concepts of golden section search and parabolic interpolation, which are 

summarized in Eq. (3-13). 

(2) (1)

0.618.
low high

high low high low

x x x x

x x x x


− −
= = =

− −                                                                 (3-13) 

where xlow and xhigh are the lower and upper bounds for the search interval corresponding to an 

unimodal function; x(1) and x(2) are points on the function such that the distances from xlow to x(2) 

and x(1) to xhigh are exactly the same. Either x(1) and x(2) is selected as the minima for the next search 

interval. The process is repeated until the minimum is below a certain predefined tolerance. 𝜑 is 

the ratio of equal distances to the overall interval distance (xhigh – xlow), which is a factor akin to 

what is applied in the golden section search algorithm. The algorithm is computationally efficient 

as objective function evaluation is only required at the equal-distance points (i.e., x(1), x(2) etc.) and 

the convergence speed is fast. The method is used to estimate the optimal value of rD corresponding 

to a given initial realization of the unknown parameters. The inner loop is then repeated using a 

different initial realization, as denoted by the outer loop. With the implementation of the entire 

workflow for the PPM, the following uncertain parameters are updated: 

● Global fracture intensity of the secondary (induced) fractures (Psf
32G). 

● Transmissivity of the secondary fracture (Tsf). 

● Transmissivity of the primary fracture (Tpf) 
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New model realizations are generated for each update of these parameters until an optimal 

objective function is achieved based on a predefined tolerance. 

Following the approach described by Caers (2007) and Kashib and Srinivasan (2006), the PPM 

algorithm, as implemented in this work, is summarized below; 

● Generate an initial realization Il(u) with seed s 

● Until a history match of data is achieved 

o Change the random seed 

o Until the search for rD yields rD
opt 

(i) Guess a value for rD 

(ii) Calculate P{Il+1(u) = k|Il (u) =k, C} 

(iii) Generate a new realization Il+1(u, rD)  

(iv) Evaluate objective function as a function of Il+1(u, rD) 

o Set Il+1(u,rD
opt)→ Il(u) 

Although the PPM formulation has been applied in other studies in the literature, this thesis is the 

first to illustrate how this method can be formulated to infer/characterize parameters associated 

with hydraulic and secondary fractures from dynamic data. In particular, previous studies, those 

that are cited in the introduction and earlier in this section, focused on characterizing the 

distribution of a single unknown parameter (e.g., absolute permeability, facie, or fracture 

intensity). This thesis, however, attempts to history match multiple unknown parameters 

simultaneously, corresponding to different scales and prior distributions. Another contribution is 

that, despite it having been widely established that PPM can handle non-Gaussian probability 

distributions, previous works did not often explicitly present examples where the model parameters 
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are highly non-Gaussian. Two different case studies are presented to show how the results would 

differ if the “true” distributions of the unknown model parameters are indeed non-Gaussian. 

 

3.4 REFERENCE CASE STUDY 

To demonstrate the functionality of the proposed PPM implementation, an example corresponding 

to a horizontal shale gas well consisting of four stages of hydraulic fracturing is presented. 

3.4.1 Model Description 

The model dimension is 800 ft. × 800 ft. × 250 ft. (with 50 × 50 × 10 grid cells along the x-, y-, 

and z- directions, respectively). The reference model representing a multifractured shale gas well 

in the Horn River Basin is created. Each hydraulic fracturing stage is modeled as a primary (main) 

fracture plane intersected by a set of secondary (smaller) fractures. The trend and plunge of each 

primary fracture were inferred from interpreted microseismic events (Nejadi et al., 2015). The 

trend is defined as the horizontal angle in the x-y plane measured away from the north (i.e., positive 

y-axis), while the plunge is defined as the vertical angle between the fracture plane and the 

horizontal (x-y) plane. The microseismic observations show that the orientation of fracture growth 

(as defined by Fisher (1953) distribution) is along the NE direction (i.e., with an average pole trend 

of 140˚). These values are used to populate the primary and secondary fracture planes in the 

reference model.  

The properties of the fracture and matrix systems in the DPDK model are determined via analytical 

upscaling of the DFN model (Oda, 1985). It is then subjected to numerical flow simulation to 

compute the production profiles for a period of 12 months. The 12-month production profiles of 

water production rate, gas production rate, and bottom-hole pressure (Pwf) are considered as the 
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historical data in this case study. The uncertain DFN model parameters to be history-matched are 

Psf
32G, Tsf, and Tpf. It should be emphasized that in the reference case, these three parameters are 

constants for the entire domain. Given that the history-matching problem is ill-posed with non-

unique solutions, the objective for applying the PPM workflow is to infer the univariate 

distributions of Psf
32G, Tsf, and Tpf, from which multiple sets of solutions, while honoring the 

production histories, can be sampled. It should also be noted that in this case study, the forward 

model incorporates only the flow simulation, and geomechanics calculations are not coupled. In 

addition, history matching of other reservoir parameters such as relative permeability or 

compaction tables has not been considered. These additional aspects can be integrated into future 

work. However, it should be mentioned that the proposed workflow is very flexible and can be 

readily extended to incorporate additional uncertain model parameters.  

A preliminary history-match is conducted to determine, approximately, the potential mismatch in 

the objective function (although it could be quite high) and assess the upper and lower bounds of 

individual model parameters. This step is essential to examining the sensitivity of the production 

responses with respect to variations in the uncertain parameters. Table 3-1 summarizes the other 

(i.e., known) DFN model and the corresponding upscaled dual-permeability model parameters. 

The orientation parameters for the secondary fractures are assumed similar to those of the primary 

fractures. As explained previously in the methodology, the nearest-neighbor model and Fisher 

distribution (Fisher, 1953) are used to populate the secondary fractures in accordance to the 

location of the primary fractures. Values of storativity for the primary and secondary fractures are 

similar to those reported in Cinco-ley (1996). 
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Table 3-1: Data for the discrete fracture network model and the dynamic dual permeability 

(DPDK) simulation model. 

Discrete Fracture Network Parameters: 

Primary Fractures 

         Aperture                                                                                        1.0 × 10-3 feet 

         Storativity                                                                                      1.0 × 10-2 

         Trend (Stage 1)                                                                              247˚ 

         Trend (Stage 2)                                                                              244˚ 

         Trend (Stage 3)                                                                              177˚ 

         Trend (Stage 4)                                                                              226˚ 

         Plunge (Stage 1)                                                                            55˚ 

         Plunge (Stage 2)                                                                            29˚ 

         Plunge (Stage 3)                                                                            69˚  

         Plunge (Stage 4)                                                                            19˚ 

         Compressibility                                                                             0.231 psia-1 

Secondary Fractures 

          Storativity                                                                                     1.83 × 10-2 

          Aperture                                                                                        1.97 10-5 feet 

          Trend                                                                                            Similar to primary fractures 

          Plunge                                                                                                  

          Compressibility                                                                                   

Dual Permeability Model Parameters:  

         Number of grids                                                                            50 × 50 × 10              

         Model dimensions                                                                         800 × 800 × 250 feet3 

         Matrix Permeability                                                                      0.0005 to 0.0007 mD 

         Matrix Porosity                                                                             6% 

         Reservoir depth                                                                             6400 feet 

         Initial reservoir pressure                                                               5000 psi 
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3.4.2 Workflow Validation  

In this section, the workflow described in Fig. 3-3 is applied to history match the historical 

production data corresponding to the reference case. An initial realization of the DFN model is 

constructed and upscaled; it is carried out within the FracMan® software facilitated by the use of 

macros. The macro is an editable script consisting of a set of function calls for creating and 

upscaling the DFN models. The macro can be executed repeatedly within a loop, enabling the 

generation of multiple DFN realizations at each iteration or updating step. The rest of the PPM 

workflow is implemented in MatlabTM R2018a (MathWorks, 2018).  

3.4.2.1  Case #1 – Gaussian Fracture Parameters 

It is assumed that the three unknown parameters (Psf
32G, Tpf, and Tsf) would follow the Gaussian 

distribution. Thirty indicator levels are used to parameterize each of the three unknown model 

variables. The midpoint corresponding to each level is used during the back-transform. Fig. 3-4(a) 

shows the initial distributions of the three uncertain model parameters. 

3.4.2.2  Case #2 – Non-Gaussian Fracture Parameters 

This case illustrates the application of the probabilistic history-matching framework, if the 

distributions of the various uncertain fracture parameters are non-Gaussian. It is assumed that the 

distributions for three unknown parameters (Psf
32G, Tpf and Tsf) are unknown and could possibly be 

non-Gaussian. Once again, thirty indicator levels are used to parameterize each of the three 

unknown model variables. However, in this case, the initial distributions for some of three 

unknown parameters are assumed non-Gaussian: Psf
32G is log-normally distributed, while Tsf and 

Tpf are bi-modally and normally distributed, respectively. Fig. 3-4(b) shows the initial distributions 

of the uncertain model parameters. 
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3.4.2.3  Case #3 – Gaussian and Non-Gaussian Fracture Parameters for a Complex DFN  

A more complex DFN case, as shown in Fig. 3-1(b), is analyzed next. This example consists of 

the same multi-stage hydraulic fracture system, where a more complex set of secondary fractures 

are present in each stage of the primary fracture. This, the global fracture intensity of the secondary 

fracture (Psf
32G) is higher compared to that in Case #1 and Case #2. The same three unknown 

parameters (Psf
32G, Tpf and Tsf) are considered. Thirty indicator levels are used to parameterize each 

of the unknown variables; two particular sub-cases are examined: (a) Gaussian distributions are 

assumed for all three parameters; (b) non-Gaussian distributions are assumed for some variables, 

where Psf
32G is log-normally distributed, while Tsf and Tpf are bi-modally and normally distributed, 

respectively. Figs. 3-5(a) & 3-5(b) shows the initial distributions of the uncertain model 

parameters.    

3.5 RESULTS AND DISCUSSION 

The quality of the history match of the reference models’ historical data is measured based on the 

mismatch in the objective function; the iterations are terminated if the objective function in Eq. (3-

7) is less than 5 %. It is observed that the mismatch would be around or reduced below this 

tolerance after approximately 39 iterations, which is equivalent to roughly three outer loops, with 

each comprising 13 inner loop iterations.  

Selected successive changes in the prior and posterior distributions from iteration l to iteration l+i 

are shown in Figs. 3-6(a), 3-6(b) and 3-7(a) & 3-7(b) for cases #1, #2 and #3; this figure depicts 

the probabilities for either staying at the current category k at step l+1 or transitioning to category 

k' at step l+1. In the figure, each row represents a particular outer loop (1, 2, and 3), while 

individual figures along the row depict selected inner loop iterations from counter i = l to i = l+1. 
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The profiles of gas production rate, water production rate, and Pwf corresponding to the posterior 

distributions are compared with the historical data, and three additional realizations are 

subsequently sampled; the corresponding profiles of the gas production rate, water production rate, 

and Pwf  of all three history-matched realizations are shown in Figs. 3-8(a), 3-8(b) and 3-9(a) & 3-

9(b). 

Tables (3-2, 3-3, 3-4 and 3-5) summarize the mean of the distributions of the model parameters 

for the initial and updated realizations. Notwithstanding the different set-up between  Case #1 and 

Case #2 (i.e., Gaussian vs. non-Gaussian distributions of unknown model parameters), a reduction 

in the model parameter uncertainty is observed after the history matching process, reflecting the 

conditioning effect in the model uncertainty due to the integration of additional dynamic data. The 

history-matched results obtained in both demonstrations of Case #3, as shown in Tables 3-4 and 

3-5, reflect an increase in Psf
32G , resembling that of the reference model. The results presented in 

Figs. 3-6 – 3-7 further suggest the final updated distributions for Psf
32G and Tsf remain non-

Gaussian.  

A single deterministic “true” (reference) reservoir is used, and a certain set of prior distributions 

are assumed for all unknown variables. In all practical applications, some additional static 

(geological studies or microseismic data) must be used to infer these prior distributions (as 

mentioned in section 3.4.1). This particular aspect (inference of a prior) is universal to all history-

matching and dynamic data integration methods. However, as shown in the case studies, despite 

the initial models being quite different from the reference model (Tables 3-2 – 3-5), the final 

updated models are remarkably close to the reference model. This behavior implies that despite a 

set of incorrect initial models being used, the history matching workflow is capable of 

progressively perturbing the posteriors to match the actual production data.  
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Table 3-2: Summary of the uncertain DFN model parameter distribution for the reference, initial 

and updated realizations (Case #1). 

Uncertain Parameter                                  Reference Model        Initial Model                   Updated  Model 

                                                                                                        (Mean values)                   (Mean values) 

 

Global Fracture Intensity (Psf
32G), /ft.             0.092                           0.152                               0.059 

 

 

Transmissivity Tsf, ft2/sec                               31.160                        84.970                            28.875 

 

 

Transmissivity Tpf, ft2/sec                              449.56                       680.100                          571.450 

 

 

Table 3-3: Summary of the uncertain DFN model parameter distribution for the reference, initial 

and updated realizations (Case #2). 

Uncertain Parameter                                 Reference Model        Initial Model                   Updated  Model 

                                                                                                      (Mean values)                    (Mean values) 

 

Global Fracture Intensity (Psf
32G), /ft.             0.092                           0.120                                0.079 

 

 

Transmissivity Tsf, ft2/sec                               31.160                        112.625                            32.110 

 

 

Transmissivity Tpf, ft2/sec                              449.56                         888.900                           412.500 
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Table 3-4: Summary of the uncertain DFN model parameter distribution for the reference, initial 

and updated realizations (Case #3a). 

Uncertain Parameter                                   Reference Model              Initial Model              Updated  Model 

                                                                                                             (Mean values)              (Mean values) 

 

Global Fracture Intensity (Psf
32G), /ft.              0.092                                0.104                            0.2418  

 

 

Transmissivity Tsf, ft2/sec                               31.160                              103.670                          99.910 

 

 

Transmissivity Tpf, ft2/sec                              449.560                             848.300                        524.250 

 

 

Table 3-5: Summary of the uncertain DFN model parameter distribution for the reference, initial 

and updated realizations (Case #3b). 

Uncertain Parameter                                  Reference Model                Initial Model             Updated  Model 

                                                                                                              (Mean values)             (Mean values) 

 

Global Fracture Intensity (Psf
32G), /ft.              0.092                               0.050                           0.1713 

 

 

Transmissivity      Tsf, ft2/sec                          31.160                             80.125                          55.845 

 

 

Transmissivity      Tpf, ft2/sec                         449.560                           571.450                        441.500 
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The procedure adopted in this work demonstrates the possibility of estimating DFN model 

parameters using dynamic flow data by incorporating complex fluid flow physics and direct 

perturbation of the probabilities of DFN model parameters, from which DFN models can be 

sampled and upscaled into the equivalent DPDK models. Thus, this approach is more suitable for 

handling the non-linear relationship between the DFN parameters and flow response. It offers a 

means of estimating parameters related to secondary (e.g., induced) fractures (Psf
32G and Tsf) based 

on production data, which may not be readily inferred from well logs and microseismic 

interpretations. 

3.6 CONCLUSION 

o A probabilistic workflow for perturbing the probability distributions of uncertain fracture 

parameters has been developed to characterize hydraulically fractured reservoirs from static 

and dynamic (production) observations. 

o An indicator formulation is adopted to facilitate the modeling of uncertain distributions of three 

particular global fracture parameters (primary fracture conductivity, secondary fracture 

conductivity, and global fracture intensity). 

o The method is flexible in handling both Gaussian and non-Gaussian uncertain fracture 

parameters and can be implemented to characterize other uncertain fracture parameters, such 

as fracture aperture, length, and height. 

o The method is more suitable for handling the non-linear relationship between discrete fracture 

network parameters and reservoir flow response. This was achieved by the perturbation of 
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DFN parameters in the DFN space instead of the upscaled reservoir parameters, thus reducing 

possible errors associated with upscaled reservoir parameters. 

o An important benefit of this method is that the uncertainties in fracture parameters are 

quantified using multiple equi-probable DFN models and their corresponding upscaled flow-

simulation models. 

o It is recommended that this technique be applied to analyzing other complex field cases 

involving multiple well pads (with more than one well) and extended to characterize naturally 

fractured reservoirs.  
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APPENDIX – Figures  
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Fig. 3-1: Diagram showing the well, the primary fractures and secondary induced fractures intersecting 

the primary fractures for (a) Cases #1-2, and (b) Case #3. 
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Fig. 3-2: (a) Nested model grid – with the variable of fracture PERMX is shown; (b) 1D filter of the variable of 

fracture PERMX. 
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Fig. 3-3: Flowchart describing the probability perturbation method and objective 

function minimization workflow. 
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Fig. 3-4: Initial probability density functions of Tpf, P
sf

32G and Tsf for  

(a) Case #1 and (b) Case #2. 
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Fig. 3-5: Initial probability density functions of Tpf, P
sf

32G and Tsf for 

Case #3 – (a) Gaussian and (b) non-Gaussian. 
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Fig. 3-6: Comparison between (selected) prior and posterior distributions for the iterations steps i to i+1 for 

different loops corresponding to (a) Case #1 and (b) Case #2. 
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Loop 1 Loop 1 

Loop 3 

Fig. 3-7: Comparison between (selected) prior and posterior distributions for the iterations steps i to i+1 for 

different loops corresponding to 

Case #3 – (a) Gaussian and (b) non-Gaussian  

Note: i refer to l (iterative index). 
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Fig. 3-8: Gas production, water production and BHP profiles corresponding to equi-probable 

history matched realizations sampled from the final posterior probability distributions for  

(a) Case #1 and (b) Case #2. 



 

76 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

Fig. 3-9: Gas production, water production and BHP profiles corresponding to equi-probable 

history matched realizations sampled from the final posterior probability distributions for  

Case #3 – (a) Gaussian and (b) non-Gaussian. 
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Chapter 4: Probabilistic History Matching of Multi-Scale Fractured 

Reservoirs: Integration of a Novel Localization Scheme Based on 

Rate Transient Analysis  

4.1 OVERVIEW 

A new assisted history-matching workflow is presented, where rate transient analysis (RTA) 

results are used to constrain not only the initial discrete fracture network (DFN) models, the 

interpreted flow regimes are also used to formulate a localization scheme for more efficient 

updating of the pertinent DFN model parameters. The outcome is an ensemble of DFN realizations 

that are calibrated to both geologic and dynamic production data. 

RTA interpretations and other pertinent geological data are used to infer the prior probability 

distributions of the unknown fracture parameters, from which an ensemble of initial DFN models 

is sampled. The DFN models are subjected to numerical multiphase flow simulation. The fracture 

parameters are adjusted following an indicator-based probability perturbation method, which is 

capable of minimizing the objective function and reducing the uncertainties in the unknown 

fracture parameters simultaneously. A key feature is that the flow regimes identified from RTA 

are used to formulate a localization strategy, where individual segments of the production data are 

used to tune only a specified subset of the unknown model parameters.  

In a case study, the method is applied to characterize the probability distributions of four 

parameters in a multifractured shale gas well: primary fracture transmissivity, aperture of the 

secondary fracture, transmissivity of the secondary induced fracture, and global fracture intensity. 

Their probability distributions are updated following the proposed approach to match the 

production history. Multiple realizations of the DFN model are sampled. 



 

78 

 

A key novelty is that the proposed probabilistic approach facilitates the representation of 

uncertainties in fracture parameters via multiple DFN models and their corresponding upscaled 

flow-simulation models. A more comprehensive and robust approach is presented for integrating 

specific RTA interpretations and estimations into various steps of the history-matching process. 

4.2 INTRODUCTION 

Detailed characterization of highly heterogeneous, multi-scale, fracture systems, which are 

commonly observed in hydraulically fractured unconventional reservoirs, is often challenging. 

Complex fracture geometries compounded with the significant disparity in permeability between 

the matrix and fracture systems can pose particular challenges. Flow simulation of a discrete 

fracture network (DFN) model can be computationally demanding considering the highly 

nonlinear relationships between various fracture model parameters and the corresponding flow 

responses (Wang and Leung, 2015; Liu et al., 2019). It remains challenging to construct a set of 

DFN models and update both the hydraulic and secondary fracture parameters by integrating both 

static (e.g., logs) and dynamic data (e.g., rate and pressure measurements). 

The first issue is the integration of data and measurements from diverse sources and scales. 

Fracture properties, such as size, aperture, compressibility, orientation, storativity, transmissivity, 

intensity, half-length, permeability, are generally not known a priori. Certain image logs may be 

used to infer the statistics of these parameters. Data acquired from recorded microseismic activities 

has been useful in determining the direction of fractures regarding their trend (the angle measured 

from the North in the x – y plane) and plunge (the vertical angle measured from the horizontal x – 

y plane). Rate transient analysis (RTA) can be used to assess flow regimes and certain fracture 

parameters from production data. There are many existing RTA models in the literature 

corresponding to different flow regimes and boundary conditions. Some of the early works is that 
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of Bello et al. (2010), which developed an analytical model for a dual-porosity medium entailing 

five identifiable flow regimes. Ezulike et al. (2015) identified three flow regimes similar to those 

in Bello’s model and further extended the analysis to late-time pseudo-steady state flow due to 

inter-fracture interference. Ali et al. (2013) also performed an analysis on the triple-porosity 

model, which assumes sequential flows from matrix to micro-fractures, macro-fractures, and 

finally to the horizontal well while identifying six different flow regimes. Recently, Wang (2018) 

incorporated many additional mechanisms in their analytical models, including secondary fracture 

networks, non-Darcy flow, non-uniform stimulated reservoir volume, gas desorption in nanopores, 

and heterogeneous completion across multiple stages, for analyzing various flow regimes in 

fractured shale gas well production. Despite the development of many new models over the years, 

the main limitation, however, is that the analytical models used in RTA often invoke many 

assumptions, such as constant parameter values and specific boundary conditions. Nevertheless, 

interpretations derived from RTA can be used as initial guesses for more rigorous (detailed) history 

matching analysis (Yue et al., 2016). 

The second concern is connected to the numerical simulation of multiphase flow in fractured 

porous media. Fractured reservoir simulation approaches can be categorized depending on how 

the fracture geometry is represented and how the matrix and fracture flow interactions are captured. 

The dual-porosity (DP) model considers the fracture system as the only flow path directly 

connected to the wellbore; although inter-porosity flow between the matrix and fracture systems 

is accounted for, inter-porosity flows within the matrix system and to the wellbore are ignored (De 

Swaan, 1976; Warren and Root, 1963; Bui et al., 2000). An improvement to the DP model, which 

is the dual-porosity dual-permeability (DPDK) model, was proposed, and it considers all inter-

porosity flows between the fracture network, matrix system, and the wellbore (Hu and Huang, 
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2002; Al-Shaalan et al., 2003; Van Heel et al., 2008). In the DPDK model, the flow transfer terms 

are formulated as functions of the shape factor, pressure gradients, and several other physical 

parameters. A major drawback is that it is difficult to fully capture the information pertinent to 

multiphase flow, in terms of capillarity and gravity, into the formulation of the shape factor. In the 

DP or DPDK modeling framework, the fractured medium is represented with an equivalent model 

consisting of matrix and fracture domains. There is also an assumption that the fractures should be 

densely populated for this model to work efficiently (Ahmed et al., 2015). Alternative approaches 

have been developed to alleviate these limitations by incorporating the discrete fracture model, 

where the actual geometries and locations of individual fractures are prescribed in the 

computational domain explicitly. An unstructured mesh is used to discretize a domain with 

randomly-distributed fractures. Various finite element and finite volume methods, such as control-

volume finite-element (CVFE), cell-centered finite-volume (CCFV or multi-point flux 

approximation MPFA), and mixed finite-element methods (MFE), have been developed 

(Monteagudo and Firoozabadi, 2004; Sandve et al., 2012; Zidane and Firoozabadi, 2014; Liu et 

al., 2020). There are some limitations with these techniques; for example, the CVFE scheme does 

not preserve flux continuity for heterogeneous porous medium, while the MFE method, which is 

locally flux-continuous and conservative, can be computationally expensive, as both the velocity 

and pressure fields are estimated simultaneously. In recent years, the use of Embedded Discrete 

Fracture Models (EDFM) is becoming more popular. The discrete fractures are integrated within 

the conventional matrix cells (Shakiba et al., 2018).  In this work, the DPDK model is used to 

capture the interporosity flows between the fracture network, matrix system, and wellbore. To 

construct a dual continuum reservoir simulation model, equivalent porous medium properties such 

as permeability tensor and shape parameters are assigned to each reservoir cell consisting of both 



 

81 

 

matrix and fracture continua via upscaling techniques (Nejadi et al., 2017). A commonly-adopted 

analytical approach was developed by Oda (1985). More advanced flow-based upscaling 

techniques and local-global upscaling schemes have also been developed (Chen et al., 2003).  

The third concern is the inference of distributions of fracture properties from dynamic (flow 

and pressure) data. History matching is a process by which dynamic data is integrated to infer the 

uncertain model parameters: fracture parameters (e.g., intensity, location, orientation, size) are 

perturbed until the simulation prediction is consistent with the actual dynamic data.  This is an 

inverse problem, and its solutions are non-unique. Several techniques, including stochastics search 

(e.g., simulated annealing, genetic algorithm), optimization-based methods (e.g., maximum a-

posterior), and sampling-based (e.g., gradual deformation), have been utilized to characterize 

fracture network models. In some cases, the equivalent model parameters are updated, while 

discrete fracture properties are updated in others. Cui and Kellar (2005) calculated the sensitivity 

coefficients of production data with respect to the fracture intensity using a gradient simulator and 

the adjoint method; correlations between fracture intensity and fracture permeability, matrix 

permeability, and a certain coupling factor were used to update these pertinent flow parameters. 

Yet, the gradient-based optimization techniques can be computationally expensive due to the 

gradient calculations. Hu and Jenni (2005) formulated a gradual deformation method to calibrate 

an object-based Boolean model for estimating the shape, location, and size of various 

heterogeneous features from production data. De Lima et al. (2012) applied gradual deformation 

to estimate realizations of fault distribution (i.e., intensity, length, and spatial locations). However, 

despite the ease of the implementation of the gradual deformation method, it is only applicable for 

modeling properties that follow a Gaussian distribution, and this is generally not a valid 

assumption for fracture properties. Suzuki et al. (2007) applied the probability perturbation method 
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(PPM) to estimate large-scale fracture distribution and local-scale variations in fracture densities 

for a naturally fractured reservoir without considering hydraulic fracture stages. Chai et al. (2016) 

proposed a two-stage Markov Chain Monte Carlo (MCMC) method with embedded discrete 

fracture modeling for characterizing different porosity distributions corresponding to the organic 

matrix, inorganic matrix, secondary fractures, and hydraulic fractures of shale reservoirs. The 

problem with MCMC is that it requires numerous iterations to converge to a stationary distribution 

due to low acceptance ratios for transitions to a new state, particularly when the number of 

unknown model parameters is large. Other researchers have applied various stochastic search 

algorithms to estimate fracture distribution. Chen et al. (2019) developed a multi-scale approach 

for history-matching of dual-porosity models: an evolutionary algorithm was used to calibrate 

coarse-scale static and dynamic parameters from average field pressure, well bottom-hole 

pressures, and repeat formation tester (RFT) data, while the streamline simulation was performed 

to fine-tune local fracture permeability to match the specific well bottom-hole pressures. 

Ensemble-based techniques (e.g., Ensemble Kalman filter, or EnKF, and ensemble smoother) have 

also gained wide attention for their advantages in data assimilation and uncertainty quantification. 

The convergence of EnKF is guaranteed if multi-Gaussian distributions can be assumed for the 

model and data variables, as well as if a linear relationship between all variables exists. These 

assumptions are generally not applicable for fractured reservoirs, rendering the convergence 

behavior of other ensemble-based methods, including EnKF, to be compromised. Improvements 

on the EnKF formulation, such as iterative updating to mitigate concerns associated with 

nonlinearity (Chen and Oliver, 2012) and alternative parameterization schemes to transform the 

non-Gaussian distributions into Gaussian ones (Linde et al., 2015), were proposed.  Nejadi et al. 

(2015) employed EnKF to characterize hydraulic fracture parameters (e.g., half-length and 
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transmissivity) and induced fracture parameters (e.g., length, transmissivity, intensity) using a 

DPDK simulation model. A similar technique was used in Nejadi et al. (2017) to infer fracture 

orientation, conductivity, permeability tensors, and intensity for a naturally fractured reservoir. 

Emerick and Reynolds (2012) combined MCMC with EnKF, and the results showed some 

improvement compared to EnKF alone; however, the data mismatch was still quite high. They 

assessed the results of a very long MCMC as a reference solution to scrutinize the sampling 

performance of the ensemble-based methods. In the end, there is still debate that though these 

extensions/ hybrid formulations may retain the concept of utilizing an ensemble, they no longer 

depend on a linear update or transformation of space and are not appropriate for highly non-

Gaussian variables, implying that they could offer only a partial approximation of the true 

distribution.  

The literature review has revealed several arguable issues relevant to production history-

matching of multi-scale fractured reservoirs. The description of DFN models with little or no data 

counters the idea of proper representation of fractured reservoirs. Values obtained from thorough 

RTA study and microseismic data serve as an ideal substitute to constrain the description of DFN 

and further localization of dynamic history matching. The gradient-based optimization techniques 

are robust, but the computation of gradients (or the sensitivity coefficients) can be computationally 

expensive. Stochastic search algorithms, such as simulated annealing and the genetic algorithm, 

may also require many iterations to converge. A sampling-based technique, namely the probability 

perturbation method, is used for this research, as it does not require gradient calculations and can 

easily handle non-Gaussian fracture parameters; it facilitates the estimation of the posterior 

probability distribution, from which multiple realizations can be sampled. The PPM approach has 

been implemented to calibrate permeability distribution in conventional reservoirs (Kashib et al., 
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2006) and naturally fractured reservoir permeability distribution, conditioned to a prescribed 

fracture density model (Suzuki et al., 2007).  

The objective of this thesis is to propose a new workflow for incorporating RTA-derived 

information into an indicator-based probability perturbation method for history-matching 

production data in a system consisting of both hydraulic and secondary (induced) fractures: in 

addition to utilizing the RTA results to constrain the initial distributions of various fracture 

properties (e.g., transmissivity, aperture, or intensity), information related to the flow regimes is 

used to formulate a localization scheme, where individual segments of the production data are used 

to tune only a specified subset of the unknown model parameters. Therefore, the RTA results are 

used in two different ways to constrain the overall history-matching workflow. The adoption of 

localization strategies in other settings has improved the convergence behavior of many history-

matching problems that are generally ill-posed. In the proposed method, the global and local 

discrete fracture network (DFN) model parameters are updated, and the DFN model is 

subsequently upscaled into a DPDK model for multiphase flow simulation. A significant 

advantage of the technique is that the uncertainties in fracture parameters are represented by 

multiple DFN realizations and their corresponding upscaled flow-simulation models. Many 

previous studies focus on updating the upscaled models, without offering a direct means of 

transferring that upscaled model parameters back to a set of DFN model parameters. The outcome 

is an ensemble of DFN realizations that are calibrated to both geologic and dynamic production 

data. The developed workflow is applied in a synthetic case study of a hydraulically fractured shale 

reservoir in the Horn River basin.  
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4.3 METHODOLOGY 

4.3.1 Rate Transient Analysis of Production Data 

In the RTA study, a dual-porosity reservoir model is employed to represent the hydraulic fracture 

and background matrix; it is assumed that a hydraulically-fractured horizontal well is located in 

the center of the rectangular domain with no-flow outer boundaries (Blasingame et al., 1990; 

Bourdet, 2002). The fractured horizontal well model commonly used for unconventional gas 

analysis and production forecasting is adapted here, as represented in Fig. 4-1.  

The analysis is performed on the plot of rate normalized pressure versus square root of time and 

the log-log plot of rate normalized pressure (RNP) integral, as well as its derivative, versus 

equivalent time (te) (as shown in Fig. 4-2 and Fig. 4-3, respectively). The equations for the 

identified flow regimes are presented in Appendix A.1. The RNP integral and its derivative are 

defined according to Eq. (4-1) and Eq. (4-2), respectively. Relevant model parameters, including 

fracture half-length (Xf), total matrix surface area draining into fracture system (Acm), matrix 

permeability (km) and stimulated reservoir volume (SRV) can be obtained from different 

identifiable flow regimes. 
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e

Q t
t

q t
=  is the equivalent time, otherwise called material balance time and it is a time 

function that transforms the variable-rate solution into an equivalent constant-rate solution. The 

integral of RNP and its derivative are often preferred, instead of its direct form, as they help to 
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preserve the signatures corresponding to the flow regimes and suppress the noise or fluctuations 

commonly observed in the derivative of RNP versus te plot.   

The dashed blue lines represent the boundary model where the distance from the well to the 

North and South boundaries are the same, and the distance to the East and West boundaries are 

also the same. The two nodes can be adjusted to control the distances to the boundaries. These 

flow regimes can be identified:  

1. Transient linear flow: half-slope representing flow from the matrix into the primary 

fractures with infinite conductivity: Acm can be obtained from this segment after 

determining km from the psedo state-state flow regime.  

2. Pseudo steady-state or SRV flow: unit slope representing pressure interference between 

consecutive hydraulic fractures. kmand Xf  can be determined from the intercept and slope, 

respectively. Since Xf  is determined, SRV (= 2 × Lw × Xf × h) can be obtained from this 

segment. 

The normalized rate cumulative plot (Fig. 4-4) is also employed to estimate the initial in-place gas 

volume. A straight line with a negative slope can be identified during the boundary-dominated 

flow regime. Thus, this is transformed into a simple relationship between the dimensionless rate 

and cumulative as defined below: 
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The plot of Eq. (4-5) with an assumed value of STGIIP iteratively converges to a value of STGIIP 

(compared with the assumed value) identified as an intercept on the x-axis.  

From the RTA results, the following parameters are estimated, and they are used subsequently 

in the numerical simulation model: Xf, km and Acm. For the remaining four fracture parameters 

(transmissivities of the primary (Tpf) and induced fractures (Tsf), global induced fracture intensity 

(Psf
32G), the secondary fracture aperture re), the RTA estimates will be used to infer the initial 

distributions, while the posterior distributions will be updated in the probabilistic history-matching 

framework in the next step. First, the Latin hypercube sampling technique is applied with the RTA 

procedure to generate random samples of these four parameters – considering that model parameter 

estimation is an inverse problem, multiple sets of values could match the data. This sampling 

approach helps to determine a reliable range for each parameter, which is subsequently used to 

define the initial distributions of the DFN model parameters. This approach ensures that the initial 

DFN models used in the next step are constrained to the RTA estimates. Details are discussed later 

in section 4.4.1. 

4.3.2 Generation of Initial Realization of Discrete Fracture Network Models 

The Fisher et al. (2005) formulation for a complex hydraulic fracture system was adopted to 

construct the DFN model using FRACMAN® (Golder Associates, 2018): each hydraulic fracture 

stage is modeled using a primary fracture (an elongated penny-shaped fissure) that is intersected 

by randomly-distributed secondary (induced) fractures connected to the primary fracture – Fig. 4-

5. The secondary fractures are the induced fractures initiated as cracks on the hydraulic fracture 

surfaces. Since natural fractures are not considered here, their impacts on the hydraulic fracture 

geometry, as well as reactivation of natural fractures, are not modeled. In this work, it is assumed 

that the primary and induced secondary fractures are the most dominant features. Fracture 
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properties, such as orientation, intensity, aperture, location, size, and transmissivity, are defined 

for both primary and secondary fractures. The Fisher distribution (Fisher, 1953) is used to define 

the orientation parameters of the induced fractures. Parameters of the Fisher distribution should be 

defined separately for individual hydraulic fracturing stages and can be estimated from 

geomechanical and microseismic data.  

Transmissivities of the primary (Tpf) and induced fractures (Tsf), global induced fracture 

intensity (Psf
32G), as well as the secondary fracture aperture re, are the uncertain history-matching 

parameters considered in this research. Updating of the uncertain parameters based on production 

histories will be achieved during history matching. Individual secondary fractures are assigned 

following a prescribed nearest neighbor model, where the local fracture intensity (P32L) decreases 

exponentially with distance to the primary fracture: 

,

32P ( ) ce x fbd

L x
−

=                                                                                                   (4-6)                                                                                                          

Where c and b are empirical constants; d is the distance between location x and the primary 

fracture plane (Dershowitz, 1993). 

4.3.3 Discrete-Fracture-Network Model Upscaling 

The DFN model is transformed into an equivalent DPDK simulation model (Fig. 4-6) based on a 

static upscaling scheme (Oda, 1985). The Oda upscaling scheme is assumed to be suitable and 

applicable for this thesis; it is computationally faster than the flow-based upscaling schemes (it 

can be calculated without running any flow simulations). In addition, it is assumed that the induced 

fractures are well connected to the primary fracture (Dershowitz et al., 2000).  

The upscaled DPDK model parameters include fracture porosity, Oda permeability tensor, and 

matrix-fracture coupling in the form of shape factor. In particular, the fracture porosity is defined 
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as the total fracture volume (average cross-sectional area × aperture) divided by the cell volume. 

The Oda permeability tensor is computed by first projecting the isotropic fracture permeability 

onto the fracture plane and then scaling it according to the fracture porosity.  The resultant 3 × 3 

permeability tensor is given by the following matrix:  

1
( )

12
ij kk ij ijK F F= −                                                                                                  (4-7) 

Where Kij is an element in the permeability tensor, Fij is the element of fracture tensor 

(facilitates fracture flow as a vector along the unit normal from the fracture plane and is calculated 

by adding the individual fractures within the upscaled grid block, weighted by their area and 

transmissivity as in Eq. (4-8); δij is the Kroenecker's delta. 
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Where V is the grid cell volume, N is the total number of fractures in a grid cell, nir, njr represents 

the component of a unit normal to the fracture r, Ar is the area of fracture r and Tr is the 

transmissivity of fracture r. 

Finally, the shape factor, or sigma factor, provides a measure of fracture-matrix interaction, or 

interporosity flow between the matrix and fracture domains. It is represented mathematically as: 
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Where Li, Lj, and Lk refer to the fracture spacings in the x, y, and z directions.   

4.3.4 Probability Perturbation History Matching Using Flow Regime-Localization Scheme 

A commercial black-oil simulator (Schlumberger, 2017) is employed to model multiphase fluid 

flow.  
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PPM effectively integrates production data dynamically during the history-matching process 

(Caers 2003; Kashib and Srinivasan, 2006). It substitutes the tuning of specific unknown model 

parameters, such as a particular geostatistical realization of fracture intensity, with the tuning of 

the probability distributions corresponding to these model parameters. This is accomplished via a 

deformation parameter, rD.  

The probability perturbation method (PPM) is a perturbation approach based on the Bayesian 

updating framework. It perturbs or updates the posterior probability distribution directly based on 

the mismatch with the production histories. Similar to other ensemble-based techniques, multiple 

realizations can be sampled from the posterior distributions, facilitating the analysis of many 

realizations of the uncertain model parameters. Secondly, it is a non-iterative updating scheme and 

does not assume Gaussian distributions. Therefore, PPM is adopted here due to its flexibility with 

non-Gaussian distributions and non-linear updating. The main disadvantage of PPM is that the 

perturbation is based on a perturbation factor, and in some implementations, this can be a limiting 

step. However, in the formulation shown here, an efficient 1D optimization scheme is adopted, as 

suggested by others in the literature (Caers 2003; Kashib and Srinivasan, 2006). 

An indicator formulation is adopted here to account for the non-Gaussian nature of DFN 

parameters. In particular, probability distributions of the uncertain parameters (i.e., Psf
32G, Tpf, re, 

and Tsf) are perturbed according to the indicator-based formulation proposed in Kashib and 

Srinivasan (2006): 
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The formulation describes the probability of transitioning from the indicator category k at step l to 

the category k’ at step l+1 using the perturbation factor  r 0,1D  . The probability P{I(u) = k’} is 

the prior probability while P{Il+1(u) = k|Ii (u) =k, C} is the posterior probability. As 𝑟𝐷  tends 

towards 1, more perturbation of the probabilities results. If 𝑟𝐷 = 0, there is no perturbation, and the 

probability of staying at category k at step l+1 is 1.0.; if 𝑟𝐷 = 1, the probability of staying at 

category k at step l+1 is 0. u represents the unknown Tsf, re, Tpf, and Psf
32G as points in the domain.  

The PPM framework is described in Fig. 4-7. To arrive at the global optimal, the workflow is 

divided into an inner loop, where the Brent 1D optimization scheme (Brent, 1973) is used to obtain 

a local optimal value of rD for a given initial realization, and an outer loop, where a different initial 

realization of the model parameters is explored. Denotations are marked in the figure to describe 

the sections of the workflow indicating the two loops. In Fig. 4-7, the first step is to generate a set 

of initial realizations based on previously-derived RTA results. It should be emphasized that the 

RTA step is not repeated at the beginning of every outer loop; it is simply necessary to ensure all 

initial realizations are constrained by the RTA estimated distributions, as discussed earlier. 

max max
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          (4-12)                           

Eq. (4-12) defines the normalized objective function based on the L2 norm corresponding to 

the mismatch between historical data and simulation prediction, where Qg, Qw, and b represent the 

gas production, water production, and Bottom-hole pressure, respectively, and the subscripts s, h 

and max denote the simulation prediction, historical data, and the upper limit (maximum value) 

for that particular variable, respectively. 
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In the inner loop, the Brent’s algorithm is applied to search for the optimal  𝑟𝐷  corresponding 

to the local minima of the objective function based on a certain initial realization of the model 

parameters. This algorithm effectively locates the minimum of a single-variable function by 

utilizing the concepts of golden section search and successive parabolic interpolation, which are 

summarized in Eq. (4-13). 

 

(2) (1)

0.618
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high low high low

x x x x

x x x x


− −
= = =

− −                                                               (4-13) 

Where xlow and xhigh are the lower and upper bounds for the search interval corresponding to a 

unimodal function; x(1) and x(2) are points on the function such that the distances from xlow to x(2) 

and x(1) to xhigh are exactly the same. Either x(1) and x(2) is selected as the minima for the next search 

interval. The process is repeated until the minimum is below a certain pre-defined tolerance. 𝜑 is 

the ratio of equal distances to the overall interval distance (xhigh – xlow), which is a factor akin to 

what is applied in the golden section search algorithm. The Brent algorithm in the inner loop is 

computationally efficient as objective function evaluation is only required at the equal-distance 

points (i.e., x(1), x(2), etc.), and the convergence speed is fast. The efficiency of the designed 

workflow is therefore associated with the Brent algorithm. The method is used to estimate the 

optimal value of rD corresponding to a given initial realization of the unknown parameters. The 

inner loop is then repeated using a different initial realization, as denoted by the outer loop. 

A novel localization strategy is incorporated based on the flow regimes identifiable from RTA. 

The RTA-derived flow regimes are used to constrain which model parameters can be perturbed or 

updated based on different parts of the production data. The early-time data is used to adjust the 

parameters describing the hydraulic fractures. The late-time data is used to adjust the secondary 



 

93 

 

fracture parameters; this is because secondary fractures generally remain un-propped, and their 

aperture and hydraulic conductivity strongly depend on the inner-fracture fluid pressure; 

communication between the secondary and hydraulic fractures is significant during the late time 

after much of the water in the active secondary fractures has been displaced by gas influx from the 

matrix (Ezulike and Dehghanpour, 2015). A localization scheme is designed: (1) the early-time 

data is used to perturb and optimize only Tpf ; (2) the late-time data is used to perturb and optimize 

Tsf, P
sf

32G, re, while Tpf remains fixed at its optimal value from stage (1). 

4.4 REFERENCE CASE STUDY 

To demonstrate the functionality of the proposed PPM implementation, a model representing a 

particular horizontal shale gas well comprising of four stages of hydraulic fracturing in the Horn 

River Basin is presented. The data is extracted from a field example presented in an earlier work 

by Nejadi et al. (2015) and as adapted from Nwabia and Leung (2021). 

4.4.1 Model Description 

The model dimension is 244 m × 244 m × 76 m (with 50 × 50 × 10 grid cells along the x-, y-, and 

z- directions, respectively). Each hydraulic fracturing stage is modeled as a primary (main) fracture 

plane intersected by a set of secondary (smaller) fractures.  

Table 4-1 shows a summary of the DFN model parameters. Fracture orientation, including the 

trend (horizontal angle in the x-y plane measured away from the north, i.e., positive y-axis) and 

plunge (vertical angle between the fracture plane and the horizontal x-y plane) of each primary 

fracture can be inferred from microseismic interpretations. For this particular well, the 
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microseismic observations show that the orientation of fracture growth is along the NE direction 

(i.e., pole trend of 140˚) (Nejadi et al., 2015). 

As discussed in section 4.3.1, values of Xf, Acm, km, and SRV are estimated directly from the 

RTA results and are used for the construction of the reference DFN model. The following 

equations are used to compute the relevant DFN model parameters, which are used to constrain 

the initial distribution of the four uncertain fracture properties (Psf
32G, Tpf, Tsf, and re) that are 

updated in the PPM workflow:   
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P32 is a measure of fracture intensity, as defined by Dershowitz (1984); the subscript G denotes a 

global fracture intensity measure that is constant throughout the entire domain. Tf refers to the 

transmissivity of either primary, Tpf, or secondary, Tsf, fracture. In this example, the secondary 

fractures represent induced/reactivated fractures due to hydraulic fracture; therefore, both Tpf and 

Tsf are proportional to the corresponding primary fracture permeability kf (stages 1 to 4, as shown 

in Table 4-1). re is the secondary fracture aperture. Values of fluid viscosity μ, density ρ, and fluid 
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compressibility cfluid for the gas phase at initial conditions are presented in Table 4-2. g is the 

gravitational constant.  is the shape factor defined by the characteristic dimension of the matrix 

block and the number of normal sets of fracture planes intersecting the matrix block; rw is the 

wellbore radius (0.091m). Sfrac and cfrac are the fracture storativity and fracture compressibility, 

respectively.  is the storativity ratio describing the fractional contribution of the fractures to the 

total storativity of the system (i.e., ratio of fracture storativity (ct)f  to the storativity of the entire 

matrix-fracture systems (ct)f+m; wherem and f are the matrix porosity (obtained from RTA) and 

the fracture porosity, respectively; the fracture porosity is defined as the ratio of total fracture 

volume to the cell volume, and the total fracture volume is computed as 2XfLw h. Primary and 

secondary fracture compressibility are assigned based on values corresponding to the Muskwa 

shale, ranging between 0.025 – 0.12 MPa-1, according to Bustin et al. (2008). 

Eq. 4-14(a) is used to compute P32G. Eq. 4-14(b) is used to estimate Tpf, and Tsf; Eq. 4-14(c) is 

used to estimate kf. Eq. 4-14(d)-(e) are used to compute re, and the values of storativity for both 

the primary and secondary fractures are similar to those observed by Cinco-ley (1996). As 

discussed in section 4.3.2, individual secondary fractures are populated according to the nearest 

neighbor model, where the local fracture intensity (P32L) decreases exponentially with distance to 

the primary fracture. Analytical upscaling (Oda, 1985) is used to construct the equivalent DPDK 

model. After the DFN model upscaling, the upscaled model is then subjected to numerical flow 

simulation (Eclipse-Petrel E&P Software Platform, 2017) to compute the production profiles for a 

total period of 12 months. 

One particular DFN realization is treated as the reference case, from which the historical data 

is extracted for this case study. As discussed in section 4.3.4, the production period is divided into 

two segments for localization purposes: early time (Day 0 to Day 90) vs. late time (Day 91 to 365). 
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Therefore, the 12-month production profiles of water production rate, gas production rate, and 

bottom-hole pressure (Pwf) corresponding to the reference case are considered as the historical 

data.  

A preliminary history match is conducted to determine approximately the potential mismatch 

in the objective function (although it could be quite high) and to assess the level of perturbation 

(e.g., the bounds corresponding to the model parameters) that may be required during the PPM 

history-matching step. 

Table 4-1: Parameters for the reference discrete fracture network (DFN) model and the 

corresponding dual permeability (DPDK) simulation model. 

Discrete Fracture Network Parameters: 

Primary Fractures 

         Storativity, Spfrac                                                                             1.0 × 10-6 

         Equivalent radius,  epeq                                                                                                  (70, 50, 64, 75) ft 

         Permeability  kf                                                                              (kf1 = kf2 10, kf3 15, kf4 5) mD                                                     

         Trend (Stage 1)                                                                              226˚ 

         Trend (Stage 2)                                                                              177˚ 

         Trend (Stage 3)                                                                              244˚ 

         Trend (Stage 4)                                                                              247˚ 

         Plunge (Stage 1)                                                                            19˚ 

         Plunge (Stage 2)                                                                            69˚ 

         Plunge (Stage 3)                                                                            29˚  

         Plunge (Stage 4)                                                                            55˚ 

         Compressibility, cpfrac                                                                     0.000156 psi-1 

Secondary Fractures 

          Storativity,  Ssfrac                                                                            1.0 × 10-6 

          Equivalent radius, eseq                                                                  (10, 19, 9, 32) ft 
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Table 4-2: Reservoir Fluid Properties (Shale Gas). 

         Gas Density, ρ                                                                              0.0507 lb./ft3 

         Viscosity, μ                                                                                    0.015 cp                                      

         Compressibility, cfluid                                                                       3.99 e-7 psi-1 

  

4.4.2 Workflow Implementation 

The designed history matching framework is implemented to perturb the unknown DFN model 

parameters and to integrate the historical production data for the reference case, as described in 

section 4.4.1. A FracMan macro editable script comprising of a set of function calls for creating 

and upscaling of the DFN models is used to generate a set of initial realizations, as well as the new 

realizations during each iteration or updating step. The remaining segments of the PPM workflow 

involving the fluid flow simulation, history matching, and unknown parameter updating are 

implemented in Matlab® R2020a (MathWorks, 2020) as a central control for the call functions to 

the other software platforms.  

          Trend                                              Assigned based on the nearest neighbor model from the primary fracture 

          Plunge  

          Compressibility,  csfrac                                                                   Similar to the primary fracture                                                                                                                                                                 

Dual Permeability Model Parameters:  

         Number of grids                                                                            50 × 50 × 10              

         Model dimensions                                                                         800 × 800 × 250 ft3 

         Matrix Permeability                                                                       0.00004 to 0.00007 mD 

         Matrix Porosity                                                                              6% 

         Reservoir depth                                                                            6425 ft 

         Initial reservoir pressure                                                               5000 psi 
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Thirty indicator levels are used to parameterize each of the four unknown (history matching) 

parameters; Psf
32G (lognormal distribution), Tpf  (Gaussian distribution), re (lognormal distribution), 

and Tsf (bimodal distribution). These indicators represent different bins of the categorical 

parameters, where the midpoints correspond to the levels used during the back-transform. Fig. 4-

8 shows the initial distributions of the four uncertain model parameters generated in the outer loop 

and this will be optimized when the minimum objective function is achieved, calibrated to both 

geologic and dynamic production data.  

4.5 RESULTS AND DISCUSSION 

The initial realizations are constructed based on the RTA estimates, with N ranging between 2 and 

9 and km ranging from 0.0002 to 0.0006 mD. For the reference model, N = 4 and km = 0.004 mD. 

The status of the dynamic history matching is monitored according to the mismatch, and the 

iterations would terminate if the objective function is lower than a pre-determined tolerance (∆Otol 

≤ 10%, according to Eq. 4-12). It is observed that the iterations would stop after approximately 

104 to 120 iterations; for example, in this case study, it takes 10 outer loops and 13 inner loops for 

one particular set of initial realizations.  

Selected successive changes in the prior and posterior distributions from iteration l to iteration 

l+i are shown in Fig. 4-9, representing the probabilities for either staying at the current category k 

at step l+1 or transitioning to category k' at step l+1. The rows indicate some selected outer loops, 

and individual figures along each row represent some selected inner loop iterations corresponding 

to counter i = l to i = l+1. The spikes observed in the figure reveal a reduction in the sampling 

variance, which indicates a level of convergence to a solution at the particular iteration step. 

Between loops 1 and 5, only Tpf is updated using the early time data. From loop 6 onwards, Tpf is 
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not updated, with its value being drawn from the posterior distribution obtained at the end of loop 

5, while Psf
32G, re, and Tsf are updated using the late time data. Fig. 4-9 illustrates that the PPM 

algorithm has satisfactorily retained the non-Gaussian characteristics for different distributions 

during the parameter updating process, while Gaussian posterior distributions are generally 

expected with other sampling-based methods, such as EnKF. After obtaining the final posterior 

probability distributions, two additional realizations are sampled and the profiles of gas production 

rate, water production rate, and Pwf of all three history-matched realizations are shown in Fig. 4-

10. A 5% noise is added to the production data. The results confirm that our method is robust and 

capable of handling noisy data. 

Table 4-3 compares the distribution means of the model parameters for the initial and updated 

realizations. The updated values of the uncertain fracture parameters are different from those of 

the initial models, indicating that the RTA-derived mean values would only offer possible 

estimates for the initial models. Table 4-4 shows the comparison between the objective functions 

of the three history-matched realizations with the set objective function tolerance (∆Otol ≤ 10%). 

For all the uncertain parameters, the updated (history-matched) values are much closer to those 

in the reference model. In particular, a noticeable variation from the initial model is observed, 

indicating that the initial model, which is constrained based on RTA estimates alone, could only 

offer a preliminary estimate. For re, although the updated aperture (mean) value of 0.016 ft is not 

as close to the reference model (mean value of 0.029 ft), it still represents a much better match 

with the reference model, considering that the initial distribution was much wider and different. 

The variability exhibited by the final updated models illustrates the non-uniqueness of all history-

matching inverse problems. 
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Table 4-3: Comparison of the uncertain DFN model parameters for the reference case, initial and 

updated realization. 

 

Table 4-4: Comparison of the objective function of the history matched realizations. 

 

The history matching framework adopted in this thesis demonstrates the possibilities of; 

handling non-Gaussian fracture parameters, handling the non-linear relationship between the 

uncertain fracture parameters and upscaled reservoir model properties, and implementing a flow 

regime-localization scheme for efficient history matching. It further presents a method for 

evaluating secondary fracture parameters, such as Psf
32G, re, and Tsf; that are not readily inferred 

from existing well logs and microseismic interpretations. 

Uncertain Parameter                               Reference Model                Initial Model                Updated Model  

                                                                                                         (Mean Values)               (Mean Values)      

 

Global Fracture Intensity (Psf
32G), /ft.              0.190                                 0.250                                    0.193 

 

Transmissivity Tsf, ft2/sec                               32.530                              126.340                                 43.431 

 

Transmissivity Tpf, ft2/sec                              357.600                             855.100                                391.910 

 

Aperture re, ft.                                                 0.029                                  0.052                                   0.016 

                                   ∆Otol                Realization #1                  Realization #2             Realization #3 

 

0 – 90 days                       10%                      0.1732%                     0.3050%                         0.0844% 

        

91 – 365 days                   10%                      8.7052%                     9.5281%                         8.5464% 
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It is acknowledged that there are limitations associated with the DPDK model for representing 

fracture geometry and the matrix–fracture flow interactions, as highlighted in the introduction, but 

considering that the focus of this thesis is to introduce a history-matching workflow for 

characterizing unknown fracture parameters, the emphasis is on the history matching scheme and 

less so on the simulation tool. The presented workflow can easily be modified to integrate with 

more advanced simulation tools (e.g., EDFM). Future studies will incorporate other methods of 

fluid flow simulation for the multi-stage hydraulically fractured reservoir.  

4.6 CONCLUSION AND RECOMMENDATION 

a) This research adopted the probability perturbation method for history matching of multi-

staged fractured unconventional wells. This method has not been employed for this particular 

application previously. Most importantly, a new localization scheme based on flow regimes 

is added. 

b) The implementation shows the flexibility of the framework to handle non-Gaussian fracture 

parameters. The workflow also handles the non-linear relationship between fracture 

parameters and upscaled reservoir model properties directly by perturbing the probabilities of 

the uncertain fracture parameters (using a macro file representation of the DFN model). 

c) The localization scheme for history matching designed for the method facilitates efficient 

history matching by perturbation of the impacting parameters of the model according to the 

specific flow region. 

d) A significant advantage of this approach is that the uncertainties in fracture parameters are 

quantified using multiple DFN models and their corresponding upscaled flow-simulation 

models. 
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e) The updated (history-matched) values of the uncertain fracture parameters show a noticeable 

variation from the initial model; indicating that the initial model, which is constrained based 

on RTA estimates alone, could only offer a preliminary estimate. A more rigorous history 

matching procedure, such as that presented in this thesis, is required for properly inferring the 

inherent uncertainties. 

f) Future studies will extend this technique to modeling spatially varying uncertain fracture 

parameters with a more complex distribution of secondary fractures for several field cases. 

Effects of natural fractures should also be considered. 
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APPENDIX – Figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-1: Schematic of a fractured horizontal well and dimensions. 
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Fig. 4-3:  Log-log plot of rate normalized pressure (RNP) integral and its derivative 

versus material balance time (te) [blue – integral; brown – derivative]. 

Fig. 4-2: Specialized linear square root plot for gas case 
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Fig. 4-5: Diagram showing the primary fractures and the intersecting secondary induced 

fractures. 

 

Primary fractures 

Intersecting secondary induced fractures  

Fig. 4-4:  Normalized rate-cumulative plot. 
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Fig. 4-6: Schematic representation of the upscaled DPDK model with an indication of 

PERMZ (permeability along the z-direction). 

Fig. 4-7: Flowchart describing the procedure for probability perturbation method 

and objective function optimization. 
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Fig. 4-8: Initial probability density functions of Psf
32G, Tpf, Tsf, and re. 

 

 

 

 



 

116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loop 10 Loop 10 

Loop 6 Loop 6 

Fig. 4-9: Comparison between (selected) prior and posterior distributions for the iteration step i to i+1, 

where i = l = iterative index. 
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Fig. 4-10: Gas production, water production and BHP profiles of history matched realizations 

sampled from the final posterior probability distributions  

[black – early time; blue – late time). 
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Chapter 5: Incorporating the Variability of Uncertain DFN Model 

Parameters of a Hydraulically Fractured Reservoir during 

Probabilistic-Based Assisted History Matching: Findings and 

Deductions 

5.1 OVERVIEW 

Discrete fracture network (DFN) models can explicitly represent the geometrical properties of each 

individual fracture (e.g., size, orientation, shape, and aperture) and fracture sets, where these 

comprising fracture properties are sampled from specific probability distributions. Nevertheless, 

integrating these DFN models during a production history matching remains difficult. A robust 

model updating technique, with the capabilities of incorporating the variability in the fracture 

parameters across hydraulic fracture stages and mitigating the uncertainty inherent in the non-

linear relationship between a set of fracture parameters and the corresponding upscaled reservoir 

model properties, is required. It is important to update pertinent DFN model parameters, such that 

they are calibrated to both stochastic reservoir models and dynamic production data. 

Rate transient analysis (RTA) interpretations are used to infer the prior probability distributions of 

the unknown varying DFN parameters across each stage of the hydraulic fracture and the 

intersecting secondary fractures associated with each hydraulic fracture stage; an ensemble of the 

initial DFN models are sampled. This is followed by a numerical multiphase flow simulation of 

the upscaled model and a comparison between the predicted production responses with the actual 

historical data. An indicator-based probability perturbation method is then used to minimize the 

objective function and consequently reduce the uncertainties in the unknown fracture parameters. 
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An essential detail is those flow regimes identified through RTA study are used to develop a 

localization scheme, where multiple flow regimes are inferred from the production data, and 

different portions of the production data are used to perturb specific model parameters 

corresponding to that particular flow regimes. The adoption of localization schemes is targeted at 

improving the convergence behavior of such ill-posed inverse problems. The designed 

probabilistic framework characterizes the posterior probability distributions of twenty-four DFN 

parameters of a multi-staged (4 stages) hydraulically-fractured horizontal shale gas well in the 

Horn River Basin: primary fracture transmissivity (Tpf), secondary fracture aperture (re), secondary 

fracture transmissivity (Tsf), global fracture intensity of the secondary fracture (Psf
32G), secondary 

fracture length (L) and height (H); The proposed approach does not only sample multiple 

realizations of the DFN model, but it also updates (through the adopted history matching 

workflow) the probability distributions of these impacting DFN parameters. The results reveal the 

flexibility in obtaining unknown secondary fracture parameters that are not easily inferred by other 

methods such as cores and microseismic interpretations. 

5.2 INTRODUCTION 

The combination of horizontal drilling and hydraulic fracturing, which is also termed hydraulically 

fractured horizontal wells, has immensely contributed to the improved production from 

unconventional (tight and shale) reservoirs in recent years. This practice involves horizontal 

directional drilling of well into the tight formation along with the injection of water, sand, and 

chemicals at high pressures to create fissures in the shale rock. Despite the successes with hydraulic 

fracturing and horizontal drilling, the presence of highly heterogeneous, multi-scale, fracture 

systems renders any detailed characterization of the fracture properties, a prerequisite for future 

reservoir forecast, to be difficult. A particular challenge is related to the complex geometries of 



 

120 

 

the secondary fractures (intersected with or reactivated by a hydraulic fracture) – their distribution 

is generally correlated to the position/orientation of a hydraulic (primary) fracture. Another 

difficulty stems from the high contrast in permeability between the matrix and fracture systems 

which amplifies the nonlinearity (uncertainty) between the fracture model parameters and recorded 

flow responses. Consequently, an efficient procedure, which would mitigate these challenges is 

essential to update both hydraulic and secondary fracture parameters per stage whilst integrating 

both static (e.g., core/ logs) and dynamic data (e.g., rate and pressure measurements) for reliable 

production forecast and to optimize development strategies. 

 Detailed characterization of fractured reservoirs is firstly challenged by data paucity 

leading to the combination of information and measurements from different sources. Image logs 

and results from core data analysis can be used to infer the uncertain statistics of fracture 

parameters like orientation, half-length, intensity, aperture, height, and permeability. In some 

cases, acoustic data, such as microseismic events, has been used to infer fracture orientation (e.g., 

trend and plunge). Analytical models of rate transient analysis (RTA) have been useful for deriving 

fractured reservoir flow regimes and fracture parameters from production data. One of the early 

RTA studies was performed by Bello et al., 2010, which presented an analytical model for a dual-

porosity medium, and the model was used to analyze production rate data for identifying five flow 

regimes. Many improved models have since been proposed to capture additional physics in 

different reservoir settings: shale gas (Agarwal et al., 1999), tight gas (Zuo et al., 2016), and tight 

oil (Clarkson et al., 2010; Uzun et al., 2016). Although RTA techniques are widely adopted for 

analyzing production data obtained from hydraulically fractured horizontal wells in tight or shale 

reservoirs, the major drawback of these analytical models are the many assumptions involved: e.g., 

homogeneous reservoir properties, rendering it difficult to be integrated for generating stochastic 
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realizations of fracture parameters or DFN models. Yet, there are limited studies that integrate 

results from these analytical models for constraining DFN models. 

 The next challenge concerning fractured reservoir characterization is the complexity 

associated with numerical simulation of multiphase flow in fractured porous media. Detailed 

representation of discrete fractures (accounting for its geometry and the matrix–fracture flow 

interaction physics). One common approach is the dual-porosity (DP) model, which is used to 

represent a fractured medium with an equivalent continuum model. In the DP model, the fracture 

system is considered as the only flow path directly connected to the wellbore. An alternative, which 

is the dual-porosity dual-permeability (DPDK) model, considers all inter-porosity flows between 

the matrix system, fracture network, and the wellbore. With the DPDK models, regularly spaced 

matrix blocks separated by a fracture network are utilized to replace a domain with randomly-

distributed discrete fractures; a set of effective (upscaled) parameters are used to define this 

equivalent system for fluid flow modeling (Warren and Root, 1963; Kazemi, 1976; Uleberg and 

Kleppe, 1996; Bui et al., 2000). The method is effective when the fractures are densely populated 

and well-connected (Vo et al., 2019). In recent years, the Embedded Discrete Fracture Model 

(EDFM) technique serves as an improvement to the DPDK model and an alternative approach to 

the more complex DFN flow simulations: complex fracture networks are embedded in a set of 

structured matrix blocks without utilizing local grid refinement or unstructured gridding (Yu et al., 

2018; Torres et al., 2020). Since the main focus of this research is to introduce a history-matching 

workflow for characterizing unknown fracture parameters, the emphasis is on the history matching 

scheme and less so on the simulation tool. Thus, the DPDK model is used: equivalent porous 

medium properties, such as permeability tensor and shape parameters, are assigned to each 

reservoir cell consisting of both matrix and fracture continua via upscaling techniques (Nwabia 
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and Leung, 2020). The approach developed by Oda, 1985 is used to compute these effective 

properties  

History matching (HM), which is the task of integrating production data to infer the 

distributions of uncertain model (fracture) properties, is generally an ill-posed inverse problem 

with non-unique solutions. Optimization-based methods (e.g., maximum a-posterior), ensemble-

based methods (Ensemble Kalman Filter - EnKF and Ensemble Smoother - EnS), and sampling-

based techniques (e.g., Monte Carlo Markov Chain or MCMC and gradual deformation) are some 

common HM algorithms, which can be used for characterizing fracture network models, by 

updating either the equivalent model parameters or specific discrete fracture properties. A number 

of probabilistic approaches, such as the gradual deformation method first introduced by Hu (2000) 

and subsequently modified in Hu (2002) can be used for updating probability distributions of 

uncertain model parameters. However, though the gradual deformation method is easy to 

implement, it is only applicable for modeling properties that follow a Gaussian distribution, which 

is generally not a valid assumption for fracture properties. Another technique, the probability 

perturbation method (PPM) that was developed by Caers, 2003, is more flexible for handling non-

Gaussian distributions. In our previous work, Nwabia and Leung (2021), a HM workflow based 

on the PPM was developed to characterize hydraulic fracture parameters (e.g., primary fracture 

transmissivity) and induced fracture parameters (e.g., length, aperture, intensity) using a DPDK 

simulation model); however, variability in fracture parameters across different stages was not 

considered. Chai et al. (2016) proposed a two-stage MCMC method with EDFM for characterizing 

different porosity distributions corresponding to the secondary fractures, hydraulic fractures, 

organic matrix, and inorganic matrix of shale reservoirs. However, the MCMC approach may 

require several iterations to arrive at a stable converged solution (Tripoppoom, 2019). Ensemble-
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based methods, such as EnKF (Emerick and Reynolds, 2011) and EnS (Chai et al., 2018; Chang 

and Zhang, 2018), which utilize the covariance matrix to update an ensemble of parameters, have 

also gained wide attention for their advantages in data assimilation and uncertainty quantification. 

Its major limitation is that it assumes multi-Gaussian distribution on model and data variables and 

a linear relationship between all variables, and these assumptions do not hold for fractured 

reservoirs.   

A PPM workflow that integrates relevant RTA-derived information is applied in this 

research thesis. It can handle non-Gaussian fracture parameters and facilitate the estimation of the 

posterior probability distribution, from which multiple realizations can be sampled. Properties 

derived from RTA are used to constrain the initial distributions of the uncertain fracture parameters 

(length, height, aperture, intensity, and transmissivity), and the derived flow regimes are used to 

formulate a localization scheme where individual segments of the production data are used to tune 

only a specified subset of the unknown model parameters. In contrast to our previous work 

(Nwabia and Leung, 2021), the unknown hydraulic fracture model parameters can vary among 

different stages. The proposed PPM framework offers a direct means of updating unknown model 

parameters in the DFN domain and subsequently upscaling them into a DPDK model for 

multiphase flow simulation, thus creating the representation of uncertainties in fracture parameters 

with multiple DFN realizations and their corresponding upscaled flow-simulation models. A case 

study of a synthetic case of a hydraulically fractured shale reservoir in the Horn River basin is 

presented. 
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5.3 STUDY PROCEDURE 

5.3.1 Rate Transient Analysis to Constrain DFN Model Parameters 

The schematic representation in Fig. 5-1 (Appendix – B) shows the fractured horizontal well model 

commonly used for unconventional gas analysis and production forecasting. It is adapted to 

represent a four-stage hydraulically fractured horizontal well located in the center of a rectangular 

domain with no-flow outer boundaries.  

The plot of rate normalized pressure and the square root of time and log-log plot of rate 

normalized pressure (RNP) integral and its derivative versus equivalent time (te) is analyzed to 

obtain the dominant flow regimes, where the matrix-fracture area (Acm), matrix permeability (km), 

fracture half-length (Xf) and SRV can be derived. Both the RNP integral and its derivative are 

preferred because they are useful for smoothening noisy data. Various flow regimes can be 

identified from the plot of RNP versus te. Eq. (5-1) and Eq. (5-2) (in Appendix – A) and equations 

in Appendix A.1 represent the equations for defining the RNP versus √t, and RNP integral and its 

derivative versus te. The equivalent time, otherwise known as the material balance time (MBT), is 

the ratio of the cumulative production as a function of time and fluid (gas) production rate with 

time, 
( )

( )
e

Q t
t

q t
= . 

 From the RTA, an initial linear flow period corresponding to a half-slope and the pseudo 

steady-state flow (PSS) corresponding to a unit slope are observed. Fracture parameters, such as 

Acm is estimated from the initial linear flow from the matrix into the hydraulic fracture with infinite 

conductivity, while properties representing pressure interference between consecutive hydraulic 

fractures are estimated from the PSS flow (km, Xf, SRV). These estimated fracture properties are 
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used to derive the initial distributions of the hydraulic and induced fracture parameters necessary 

for the construction of the DFN model (global induced fracture intensity Psf
32G, the secondary 

fracture aperture re, transmissivities of the primary Tpf and induced fractures Tsf).  

5.3.2 DFN Modeling Incorporating Unknown Multi-Stage Hydraulic Fracture Properties 

In this work, each hydraulic fracturing stage is modeled as an elongated penny-shaped crack 

(primary fracture) with intersecting randomly distributed secondary or induced fractures connected 

to the primary fracture, according to Fisher et al., 2005 – Fig. 5-2. The secondary fractures are 

induced fractures initiated as cracks on the hydraulic fracture surfaces. It is assumed that the 

hydraulic and induced fractures are the dominant fractures; thus, the impacts of other natural 

fractures on primary fracture geometry and its reactivation are assumed to be negligible. Each set 

of induced fractures is specified based on the nearest neighbour model, where the local fracture 

intensity (P32L) decays exponentially with the distance to the hydraulic fracture – Eq. (5-3) 

(Appendix – A). The model is based on several empirical parameters: c is typically inferred from 

image log data; b controls how quickly the induced fracture intensity decreases with distance away 

from the hydraulic fracture; d is the distance between location x and the primary fracture plane 

(Dershowitz, 1993).  

The initial distributions of the unknown DFN model parameters (Tsf, P
sf

32G, Tpf, re, L and 

H) vary for each individual hydraulic fracture stage, and their updating during history matching 

will be performed simultaneously for all the fracture stages.  

5.3.3 Probability Perturbation and Flow Regime-Based Localized History Matching  

The creation of the DFN model with varying unknown fracture parameters across fracture stages 

is followed by model upscaling and PPM history-matching.  
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 The implications of the DFN model on flow and transport at the regional scale are evaluated 

by transforming the DFN model into an equivalent DPDK simulation model (in this case matrix-

fracture coupling, fracture porosity, and Oda permeability tensor) following Oda, 1985 static 

upscaling scheme. This scheme is selected since it can be calculated without requiring flow 

simulations, thus it is more computationally efficient in comparison to other flow-based upscaling 

schemes. The fracture porosity is calculated as the product of the average cross-sectional area and 

aperture divided by the cell volume. The 3 × 3 Oda permeability tensor is estimated based on the 

projection of the fracture isotropic permeability onto the fracture plane and scaling according to 

the fracture porosity as in Eq. (5-4) – (5-5) (Appendix A). The sigma factor or shape factor creates 

a means of matrix-fracture interaction and it is represented mathematically in Eq. (5-6) (Appendix 

– A). 

 With the DFN upscaling completed, numerical simulation of the DPDK model is 

performed using ECLIPSE (Schlumberger, 2017) commercial black-oil simulator.  

 The PPM is an alternative to a traditional Bayesian approach for solving inverse 

problems which effectively integrates the changes in production data during the history-matching 

process (Caers, 2003). Through the use of a perturbation parameter rD, the probability distributions 

corresponding to model parameters are adjusted instead of directly perturbing the specific 

unknown model parameters (as implemented in most other HM methods). Thus, it has the 

flexibility to handle non-Gaussian distributions for model parameters and non-linear relationships 

between model parameters and the dynamic responses. 

 Following the proposed indicator-based PPM formulation in Kashib and Srinivasan, 2006 

– Eq. (5-7) (Appendix – A), the probabilities of the unknown DFN model parameters (Psf
32G, re, 
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Tpf, Tsf, H, and L) are adjusted and updated. The indicator formulation handles the non-Gaussian 

nature of the DFN model parameters. Eq. (5-7) describes the probability of transitioning from the 

indicator category k at step l to the category k’ at step l+1 using rD[0,1]. The probability P{I(u) 

= k’} is the prior probability while P{Il+1(u) = k|Ii (u) =k, C} is the posterior probability. When 

𝑟𝐷  approaches 1, the probability of transitioning to another category increases; in other words, if 

𝑟𝐷 = 1, the probability of remaining in category k at step l+1 is 0. This is in contrast to 𝑟𝐷 = 0, 

when there is no perturbation and the probability of staying in category k at step l+1 is 1.0. u 

represents the unknown parameters: Tsf, re, Tpf, P
sf

32G, H, and L for each stage.  

 The PPM framework described in Fig. 5-3 achieves a global minimum through a two-loop 

process; the inner loop where the 1D optimization scheme is implemented; similar to Kashib and 

Srinivasan (2006) and Caers (2003), the 1D optimization algorithm by Brent, 1973 is adopted to 

determine a local optimal value of rD for a given initial realization, and the outer loop is used for 

exploring a different initial realization of the model parameters. The normalized objective function 

corresponding to the mismatch between production history and simulation prediction is presented 

in Eq. (5-8) (Appendix – A). 

The 1D optimization scheme in the inner loop locates the minimum of a single-variable 

function and uses the concept of golden section search and parabolic interpolations to search for 

the optimal rD which corresponds to the local minima of the objective function from any initial 

realization of the DFN model parameters, as described in Eq. (5-9) (Appendix – A). 

xhigh and xlow in Eq. (5-9) are the upper and lower bounds for the search interval 

corresponding to a unimodal function; x(1) and x(2) are points on the function such that the distances 

from xlow to x(2) and x(1) to xhigh are exactly the same. Either x(1) and x(2) is selected as the minima 
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for the next search interval. The process is repeated until the minimum is below the pre-defined 

tolerance. 𝜑 is the ratio of equal distances to the overall interval distance (xhigh – xlow) and is a 

factor related to what is applied in the golden section search algorithm. The computational 

efficiency of the designed workflow is associated with the Brent algorithm as its objective function 

evaluation is only required at the equal-distance points (i.e., x(1), x(2), etc.). The method is applied 

and repeated to estimate the optimal value of rD corresponding to any given initial realization of 

the unknown parameters.  

The flow regimes derived from RTA are incorporated into the workflow as a localization 

strategy to constrain which of the DFN model parameters is to be updated for different parts of the 

production data. Since secondary fractures are considered to generally remain un-propped, the 

communication between the secondary and hydraulic fractures is significant during the late time 

after much of the water in the active secondary fractures has been displaced by gas influx from the 

matrix (Ezulike and Dehghanpour, 2015). Thus, hydraulic fracture parameter Tpf is perturbed 

during the early time while the late-time data is used to update the secondary fracture parameters 

– Psf
32G, re, Tsf, L, and H for all four fracture stages, whereas the already-optimized Tpf remain 

unchanged. 

5.4 CASE STUDY 

5.4.1 Model Definition 

The model represents a four-stage hydraulically fractured reservoir in the Horn River Basin with 

dimensions of 244 m. × 244 m. × 76 m. (with 50 × 50 × 10 grid cells along the x-, y-, and z- 

directions, respectively). The primary fractures propagate along a pole trend of 140˚ according to 

the available microseismic information of the well (Nejadi et al., 2015).  
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 The values of km, Xf, Acm, and SRV estimated from the RTA results are converted to the 

relevant DFN parameters (Psf
32G, re, Tsf, L, and H) for the construction of the DFN model. A plot 

of the RNP integral and its derivative versus MBT (te) is shown in Fig. 5-4 and the estimated 

parameters are summarized in Table 5-1 (Appendix – C).  

The relevant DFN model parameters are useful in constraining the initial distributions of 

the uncertain fracture parameters according to Eq. (5-10i) – (5-10v) (Appendix – A). 

The secondary fractures are the induced fractures, and it is assumed that both Tpf and Tsf 

are proportional to the primary fracture permeability kf for all the four fracture stages according to 

Eq. (5-10i) (Appendix – A). Psf
32G is the fracture intensity defined by Dershowitz, 1984 where sf 

refers to secondary fracture, and the subscript G denotes a constant global fracture intensity 

throughout the entire domain. re represents the secondary fracture aperture, while Sfrac and cfrac are 

the fracture storativity and fracture compressibility, respectively.  is the storativity ratio described 

as the fractional contribution of the fractures to the total storativity of the system (i.e., the ratio of 

fracture storativity (ct)f  to the storativity of the entire matrix-fracture systems (ct)f+m; where m 

and f are the matrix porosity and the fracture porosity, respectively; the fracture porosity is defined 

as the ratio of total fracture volume to the cell volume, and the total fracture volume is computed 

as 2XfLw h. Once a DFN model is constructed, it is upscaled as shown in Fig. 5-5 which represents 

the upscaled DPDK model of permeability along the x-direction.  

Summary of the DFN model parameters and the shale gas reservoir fluid properties are 

presented in Tables 5-2 and 5-3, respectively. 
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The historical data is a 12 month production history comprising gas and water production rate and 

flowing bottom-hole pressure (Pwf); with a localization scheme designed for early time (0 – 90 

days) and late time (91 – 365 days). 

5.4.2 Workflow Application 

The implementation of the PPM workflow is performed using one DFN realization as a reference 

case where the historical data is extracted. A first-pass history matching aimed at determining the 

approximate mismatch in the objective function and evaluating the extent of perturbation that may 

be required during the PPM history-matching is conducted. An editable macro script in the 

FracMan® domain containing a set of function calls for constructing and upscaling DFN models 

is used to create a set of initial realizations during the initialization steps and updated realizations 

during the updating steps. Other sections of the PPM framework (flow simulation, history 

matching, and parameter updating) are facilitated from Matlab® 2021a (MathWorks, 2021) central 

control with call functions to other software platforms.   

 The twenty-four unknown fracture parameters; Tpfi (Gaussian distribution), Tsfi (bimodal 

distribution), Psf
32Gi (lognormal distribution), rei (lognormal distribution), Hi (lognormal 

distribution), and Li (lognormal distribution) are parameterized using thirty indicator levels (bins 

of the unknown parameters) whose midpoints are the levels used for back-transform. i represents 

fracture stages 1 to 4 implying that the unknown DFN fracture parameters vary across the fracture 

stages from i = 1 to i = 4. Following the implementation of the PPM workflow, the initial 

distributions of the uncertain DFN model parameters generated in the outer loop are presented in 

Fig. 5-6 (Appendix – B). 
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5.5 RESULTS, FINDINGS, AND DEDUCTIONS 

The minimized objective function was achieved with approximately 520 iterations, comprising 10 

outer loops where all initial realizations were explored and 52 inner loops. The iterations stop when 

the mismatch has dropped below a certain tolerance (∆Otol ≤ 10%). 

 Fig. 5-7 (Appendix – B) shows the prior and final posterior distributions of the updated 

mean values of the unknown fracture parameters after history matching using the designed PPM 

framework. The updated values of Tpf (Tpf1, Tpf2, Tpf3, and Tpf4 for all the four fracture stages) are 

achieved in the early time based on the novel localization scheme. These values are fixed during 

the late time to obtain the updated values of Tsf (Tsf1, Tsf2, Tsf3, and Tsf4) and Psf
32Gi (P

sf
32G1, P

sf
32G2, 

Psf
32G3, P

sf
32G4) realized in loop 7, re (re1, re2, re3, and re4) realized in loop 9, and H (H1, H2, H3, and 

H4) and L (L1, L2, L3, and L4) achieved in Loops 6 and 10 respectively. The figure further shows 

that the designed workflow preserved the non-Gaussians characteristics of the distributions of the 

updated parameters.  

 The gas production rate, water production rate, and bottom-hole pressure profiles for the 

best three history-matched realizations sampled from the final posterior distributions are presented 

in Fig. 5-8 (Appendix – B).  The comparison between the objective functions of these realizations 

as presented in Table 5-4 shows that the final model predictions closely match the production 

histories for all three realizations corresponding to both early and late times. This match can be 

attributed to the robustness of the designed PPM workflow.  

 Table 5-5 (Appendix – C) compares the mean values of the updated model parameters with 

the (true) reference model and mean values of the initial distributions (that are based on the RTA 

estimates). The twenty-four uncertain model parameters are grouped in the table according to the 
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respective hydraulic fracture stages. The results indicate that the updated model's values closely 

match the reference model with negligible differences. On the other hand, noticeable discrepancies 

are observed between the updated and initial models, and this would suggest that the initial models, 

though constrained with reliable RTA estimates, should be further updated to achieve a better 

history match. 

5.6 CONCLUSION  

(i) We have developed and tested a probabilistic-based history matching framework for the 

updating of the unknown primary and secondary fracture parameters of a hydraulically 

fractured reservoir in the Horn River Basin.  

(ii) A flow regime-based localization scheme incorporated into the workflow enhanced the 

history matching process by adjusting only specific impacting fracture parameters for 

specific flow periods.  

(iii)The PPM framework is flexible for handling the non-Gaussian fracture parameters, as well 

as the non-linear relationship between the fracture parameters and the upscaled reservoir 

model properties, by perturbing the probabilities of the fracture parameters in the DFN 

domain. 

(iv) The noticeable variation between the values of the updated models and the initial models 

indicates that the initial models constrained by RTA estimates are only possible estimates. 

The target match between the updated model and the reference model was achieved with 

negligible differences. 
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APPENDIX – A (Equations) 
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Fij is the element of fracture tensor which facilitates fracture flow as a vector along the unit normal 

from the fracture plane and is calculated by adding the individual fractures within the upscaled grid 

block, weighted by their area and transmissivity as in Eq. 5-5; δij is the Kroenecker's delta and Kij is 

an element in the permeability tensor.  
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N is the total number of fractures in a grid cell, nir and njr represents the component of a unit 

normal to the fracture r, Ar is the area of fracture r, Tr is the transmissivity of fracture r and V is the 

grid cell volume. 
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Li, Lj, and Lk is the fracture spacings in the x, y, and z directions. 



 

138 

 

( ) ( ) ( )

( ) ( ) ( )

1 ' '

1 '

,    .  

  ,    1 {

{ | } { }

| } { } .  
i

l l

D

l l

D

k k

P I u k I u k C r P I u k k k

P I u k I u k C r P I u k

+

+



= = = = 

= = = − =




  (5-7) 

max max

22 2* * *

* * *

max

( ) ( , ) ( ) ( , ) ( ) ( , )

( , ) ( , ) ( , )

s h s h

h h

g g D w w D s h D

g D w D D

Q t Q r t Q t Q r t b t b r t
O dt dt dt

Q r t Q r t b r t

   − −  −
 = + +        

    
    (5-8) 

(2) (1)

0.618
low high

high low high low

x x x x

x x x x


− −
= = =

− −
  (5-9) 

2( / )
f e

f

k gr
T ft s




=   (5-10i)

1
32

2
(total area of fractures)

(/ )
 (total volume) 2

N
w

cm
G

t w f

L
h

A N
P ft

V L X h
= =


  (5-10ii) 

( )frac fluid frac eS c c gr= +   (5-10iii) 

( )

( ) ( )
t f

t tf m

c

c c




 
=

+
  (5-10iv) 

2 m
w

f

k
r

k
 =   (5-10v) 

 

 

 

 



 

139 

 

APPENDIX – B (Figures) 

 

Fig. 5-1: A representation of a fractured horizontal well and dimensions. 

 

 

Fig. 5-2: The hydraulic fractures and intersecting secondary induced fractures. 
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Fig. 5-3: PPM framework and objective function optimization. 
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Fig. 5-4:  A plot of the RNP integral and its derivative versus MBT (te)  

[red – integral; green – derivative]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-5: The upscaled DPDK model indicating permeability along the x-

direction. 
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Fig. 5-6: Initial probability density functions of Tpf, P
sf

32G, Tsf, re, L, and H for all four fracture stages. 
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Loop 5 Loop 7 

Loop 7 Loop 9 

Loop 6 Loop 10 

Fig. 5-7: The prior and posterior distributions for the iteration step i to i+1 of the updated parameters.  

i = l = iterative index. 
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Fig. 5-8: History matched realizations of gas production rate, water production rate, and Pwf 

profiles sampled from the final posterior probability distributions. 
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APPENDIX – C (Tables) 

Table 5-1: Preliminary results obtained from the RTA analysis. 

 

 

 

 

Table 5-2: Summary of the reference DFN model parameters and the corresponding DPDK 

simulation model. 

DFN Parameters: 

Primary Fractures 

         Storativity, Spfrac                1.0 × 10-6 

         Equivalent radius, epeq        (70.3, 50.9, 62.8, 72.7) ft 

         Permeability kf                   (kf1 = kf2 12, kf3 17, kf4 3) mD                                                     

         Trend (Stage 1)                 226˚ 

         Trend (Stage 2)                 177˚ 

         Trend (Stage 3)                 244˚ 

         Trend (Stage 4)                 247˚ 

         Plunge (Stage 1)               19˚ 

         Plunge (Stage 2)                69˚ 

         Plunge (Stage 3)                29˚  

         Plunge (Stage 4)                55˚ 

         Compressibility, cpfrac          0.000156 psi-1 

Secondary Fractures 

          Storativity, Ssfrac                 1.0 × 10-6 

          Equivalent radius, eseq       (10, 19, 9, 32) ft 

          Trend                                        

          Plunge  

          Compressibility, csfrac        Similar to the primary fracture                                                                                                                                                                 

DPDK Parameters:  

         Number of grids                  50 × 50 × 10              

         Model dimensions               244 × 244 × 76 m3 

         Matrix Permeability             0.000045 to 0.000075 mD 

         Matrix Porosity                    4 – 6 % 

         Reservoir depth                  1959 m 

         Initial reservoir pressure     5000 psi 

Fracture half length, Xf                               156 m (512 ft)    

Number of traverse fractures, N                 4 

Producing well interval, Lw                         218 m (717 ft) 

Porosity,                                                   0.060 

Interporosity coefficient,                          1.03E-08 

Storativity,                                               0.538 
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Table 5-3: Shale Gas Reservoir Fluid Properties. 

 

 

 

 

Table 5-4: Objective function values of the history matched realizations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Compressibility, cfluid                               3.99 e-7 psi-1        

         Gas Density, ρ                                        0.0507 lb./ft3 

         Viscosity, μ                                              0.0155 cp                                      

Days ∆Otol 

% 

Realization #1   

% 

Realization #2 

% 

Realization #3 

% 

0 - 90 10        0.01590       0.01582       0.01580 

91 - 365 10      0.1035       0.0134 0.1031 
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Table 5-5: Comparison of the uncertain DFN model parameters for the reference case, initial and 

updated realization for the four stages of the fractures. 

Uncertain Parameter Reference Model Initial Model Updated Model 

Transmissivity Tpf, 

ft2/sec 

575.650 

850.000 

585.000 

550.650 563.500 

270.500 273.510 

240.600 250.050 

Global Fracture 

Intensity (Psf
32G), /ft. 

0.090 

0.210 

0.041 

0.093 0.042 

0.190 0.142 

0.130 0.105 

Transmissivity Tsf, 

ft2/sec 

45.050 

135.000 

53.420 

52.500 62.180 

50.000 62.050 

32.530 38.700 

Aperture re, ft. 

0.022 

0.670 

0.030 

0.029 0.048 

0.020 0.015 

0.050 0.078 

 

Height H, ft. 

 

 

9.010 

14.300 

10.730 

10.950 12.714 

12.001 13.201 

8.450 10.450 

 

Length L, ft. 

 

 

 

8.450 

14.250 

10.495 

12.000 13.320 

11.005 12.901 

9.000 10.861 
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Chapter 6: A robust probabilistic history matching framework for 

the characterization of fracture network parameters of shale gas 

reservoirs 

6.1 OVERVIEW 

A novel workflow is presented for characterizing discrete fracture network parameters in tight or 

shale reservoirs using an indicator-based probability perturbation method. The conditional 

probability distributions of primary (hydraulic) and secondary fractures are perturbed until a 

reasonable match with the production history is attained.  

A case study for the characterization of the DFN model parameters in a reservoir in the Horn River 

Basin (HRB) is illustrated, where the posterior probability distributions of primary fracture 

transmissivity (Tpf) at each stage of the hydraulic fracture and secondary fracture aperture (re), 

secondary fracture transmissivity (Tsf), global fracture intensity of the secondary fracture (Psf
32L), 

secondary fracture length (L) and height (H) are updated. A pilot point scheme and sequential 

indicator simulation are employed to update the distributions of Psf
32L. 

Each realization of the DFN model is upscaled to an equivalent dual-porosity dual-permeability 

model and subjected to numerical multiphase flow simulation. The predicted production 

performance is then compared with the historical data. The DFN model parameters are adjusted 

following an indicator-based probability perturbation method during the history matching process. 

This workflow accounts for the highly nonlinear relationships between fracture model parameters 

and the corresponding flow responses, and it yields an ensemble of DFN realizations calibrated to 

both static and dynamic data, as well as the related upscaled flow-simulation models. The results 
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demonstrate the utility of the developed approach for estimating secondary fracture parameters, 

which are not inferable from other static information alone.  

6.2 INTRODUCTION/ LITERATURE REVIEW  

Detailed characterization of primary (hydraulic) fracture (HF) and secondary (i.e., induced or 

naturally occurring) fractures (SF) in unconventional tight/shale gas reservoirs remains 

challenging due to the complex heterogeneity in fracture properties. In addition, flow simulation 

of discrete fracture network (DFN) models remains computationally demanding (Garcia et al., 

2007; Liu et al., 2019). Due to the significant disparity in scales, estimating the distributions of 

secondary/natural fracture properties is more challenging than the hydraulic fracture properties.  

 Data from different sources, including static/geologic and dynamic/flow measurements, 

should be integrated during the characterization process. Interpretations of the microseismic 

response cloud are often used to infer the approximate size and shape of the stimulated reservoir 

volume or SRV (Aminzadeh et al., 2013). The inference of SRV alone does not provide detail 

about connectivity between different fractures and secondary fracture properties. Yu et al. (2016) 

applied the Hough-transform technique and moment-tensor analysis to generate DFN models 

constrained by microseismic locations and fracture plane orientations. Many rate transient analysis 

(RTA) models have been developed over the years to analyze flowing data (fluid rates and flowing 

pressures) for estimating unknown fracture and reservoir parameters. One of the earlier works was 

by Bello (2009), who developed a model consisting of five flow regimes for a dual-porosity (DP) 

medium. The model was used to estimate matrix drainage area, fracture half-length, and formation 

damage. There have been many improvements in the topic of RTA; however, given that RTA 

models are based on analytical solutions of idealized models (e.g., homogeneous properties and 

javascript:;
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simplified boundary conditions), their applications are limited by these many assumptions (Yue et 

al., 2016). Therefore, in this work, interpretations derived from RTA are used to infer initial 

distributions of the model parameters for the PPM history-matching analysis.  

Many different strategies are available for the numerical multiphase simulation of fractured 

reservoir systems. They primarily differ on how the geometries of the fracture systems are 

described and how the fracture-matrix fluid flow is presented.  In a dual-porosity (DP) formulation, 

only the fracture system or network is directly connected to the wellbore. Therefore, fracture-to-

fracture flow and inter-porosity flow from matrix system to fracture system are considered, while 

matrix-to-matrix flow and matrix-to-wellbore connection (Barenblatt et al., 1960; Warren and 

Root, 1963; Al-Ghamdi and Ershaghi, 1996) are not. In a dual-porosity dual-permeability (DPDK) 

formulation, both the fracture and matrix systems are connected to the wellbore, where inter-

porosity flow between matrix and fracture systems are considered (Hu and Huang, 2002; Degraff 

et al., 2005; Uba et al., 2007). Both DP and DPDK models generally work well if the fractures are 

densely populated and well connected (Sun and Schechter, 2015; Kumar et al., 2019; Xu and 

Leung, 2021). In situations where the detailed description of the actual geometries and locations 

of individual fractures are necessary, local grid refinement (LGR)  can be applied in the fracture 

regions to represent these fracture elements in the computational domain explicitly. Although this 

modelling approach can offer a more accurate representation of the complex fracture system than 

the DP or DPDK models, it is much more computationally demanding. Therefore, many simulation 

studies still adopt DP or DPDK models (Sarda et al., 2001; Nejadi et al., 2017; Nwabia and Leung, 

2020).  

 The aforementioned simulation techniques generally employ a structured (e.g., Cartesian) 

mesh. Unstructured grids have become increasingly popular to model fracture systems. Advanced 
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higher-order discretization schemes, such as mixed finite-element or finite volume with multiple-

point flux approximation, can more accurately simulate fluid flow in fracture systems. These 

discrete fracture models (DFM) are also more computationally intensive (Cipolla et al., 2010). The 

recent and widely adopted embedded discrete fracture model (EDFM) discretizes fractures into 

structured cubical matrix cells (Li and Lee 2008; Shakiba et al., 2018). The EDFM is considered 

more computationally efficient in calculating fluid transport than DFM, where fractures are 

embedded explicitly within the matrix; fluxes between sub-grid fracture segments and the 

background matrix block are computed grid without refinement.  

In reservoir systems where both hydraulic and secondary fractures are present, secondary 

data such as seismic can improve predictions of fracture intensity in between the wells. In this 

work, fracture intensity at pilot (e.g., well) locations are used as conditioning data in a sequential 

indicator simulation to populate secondary fractures to the rest of the domain. Reservoir model 

parameters are adjusted during history matching such that the model predictions can closely 

reproduce the historical data (e.g., flow rates and pressures). History matching is inherently an ill-

posed inverse problem with non-unique solutions.  A combined gradient simulator and the adjoint 

method were formulated by Cui and Kellar (2005) to update the flow properties of a reservoir 

based on the correlation between fracture intensity and fracture permeability, matrix permeability, 

and a coupling factor. Gradient-based optimization techniques require several gradient calculations 

and are prone to converging at local minima. Other non-gradient-based or global optimization 

techniques can be applied: stochastics search algorithms (e.g., genetic algorithm, simulated 

annealing), optimization-based methods (e.g., maximum a-posterior), and sampling-based (e.g., 

gradual deformation, MCMC), have been used to infer discrete fracture parameters or some 

effective (or equivalent DPDK) properties. De Lima et al. (2012) implemented the gradual 
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deformation approach to estimate realizations of fault distribution (i.e., spatial locations, intensity, 

and length). However, this method only works for modelling properties that follow a Gaussian 

distribution. It is not applicable for modelling non-Gaussian fracture properties. The MCMC 

technique has been applied to calibrate subsurface models and quantify their uncertainties in a 

Bayesian probabilistic framework  (Maucec et al., 2007). A combined two-stage MCMC with 

EDFM was proposed by Chai et al. (2016) for characterizing different porosity systems 

corresponding to the organic matrix, inorganic matrix, secondary fractures, and hydraulic fractures 

of shale reservoirs. The MCMC tends to require many forward simulations, especially when 

dealing with a large number of unknown model parameters. Evolutionary techniques have been 

implemented to estimate fracture distribution. For example, a multi-scale scheme was formulated 

by Chen et al. (2019) for the history-matching of dual-porosity models; they calibrated coarse-

scale and local-scale fracture parameters from a variety of dynamic and static data. Finally, 

ensemble-based techniques such as Ensemble Kalman Filter or EnKF (Aanonsen et al., 2009; 

Emerick and Reynolds, 2011) and ensemble smoother or EnS (Chai et al., 2018; Chang and Zhang, 

2018) are also popular for data assimilation and uncertainty quantification. They utilize the 

covariance matrix to update an ensemble of parameters. Its major limitation is that it assumes a 

multi-Gaussian distribution on model and data variables and a linear relationship between all 

variables. These assumptions do not hold for fractured reservoirs, compromising their convergence 

behaviour. Emerick and Reynolds (2012) assessed the results of a very long MCMC as a reference 

solution to scrutinize the sampling performance of the ensemble-based methods by combining 

MCMC with EnKF. Despite acknowledging a high data mismatch, the MCMC formulation offered 

noticeable improvement to the EnKF formulation. However, though these extensions and hybrid 

formulations may retain the utility of an ensemble, they do not depend on a linear update; thus, 

https://www-sciencedirect-com.login.ezproxy.library.ualberta.ca/topics/engineering/probabilistic-framework
https://www-sciencedirect-com.login.ezproxy.library.ualberta.ca/science/article/pii/S0920410518302481?casa_token=oULGvg0sUVoAAAAA:mwBkmZdKAlv9rCWMnbVXDzFYk_QqYcmn3kdKZ1hC_U8md9Nn5W42f-5CnSyjomKFHUil9dv5BPiQ#bib23
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they provide only a partial approximation for cases with highly non-Gaussian variables or 

nonlinear system dynamics.  

A workflow addressing some of the concerns above is proposed for production history 

matching of multi-scale fractured reservoirs. Integrated information from both microseismic data, 

RTA results, and knowledge from previous studies can be used to infer prior probability 

distributions of fracture network parameters. A sampling-based history-matching method (PPM – 

probability perturbation method) is adopted for updating the non-Gaussian hydraulic and 

secondary fracture parameters; it facilitates the approximation of the posterior probability 

distributions based on the dynamic (production) data. Although this method has been used to 

calibrate permeability distribution in conventional reservoirs (Kashib et al., 2006) and 

unconventional reservoirs (Suzuki et al., 2007; Nwabia and Leung, 2021a), its application in 

scenarios where the secondary fractures are disconnected to and not within the vicinity of the 

hydraulic fractures is lacking. In our previous works, the technique was used to estimate the 

properties of hydraulic fracture and nearby secondary fractures (those that are induced or 

connected to the hydraulic fractures). Information from microseismic events and results from RTA 

was also used to construct the initial distributions of unknown fracture parameters. To history 

match the production data, an indicator-based probability perturbation method was employed 

(Nwabia and Leung, 2021a; Nwabia and Leung, 2021b).  

This thesis aims to extend the technique to modelling secondary fractures throughout the 

entire domain. To handle the spatially varying secondary fracture distribution, a pilot-point 

parameterization scheme and sequential simulation are integrated into the indicator-based PPM 

workflow to update the unknown DFN model parameters: primary fracture transmissivity (Tpf) at 

each stage of the hydraulic fracture, secondary fracture aperture (re), secondary fracture 
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transmissivity (Tsf), secondary fracture length (L) and height (H), local fracture intensity of the 

secondary fracture (Psf
32L). Similar to the previous works, RTA interpretations, microseismic data, 

and knowledge of the updated fracture parameters are used to construct the initial distributions of 

the unknown DFN parameters. In the PPM framework, a realization of the DFN model is sampled, 

upscaled to an equivalent DPDK model, and subjected to flow simulation (forward modelling). 

The mismatch between the simulation predictions and the actual production profiles is computed. 

The novelty in our proposed workflow is the description of uncertainties in fracture parameters 

through several DFN models capturing both HF and SF properties and the equivalent upscaled 

flow-simulation models, resulting in an ensemble of DFN realizations conditioned to both static 

and dynamic data.   

6.3 METHODS 

The proposed PPM framework integrates data from different sources to infer unknown multi-scale 

fracture parameters. Static (geologic) information such as those extracted from microseismic data, 

as well as RTA estimates of fracture parameters, are employed to construct the initial (prior) 

distributions of various uncertain discrete fracture parameters. Parameters including Tpf, Tsf, re, H 

and L are assumed to be constant, while secondary fracture intensity represented by P32L are 

assumed to vary spatially. The pilot point technique is used to parameterize P32L, such that the 

number of unknown parameters is reduced and to provide a means of reintroducing the spatial 

distribution through sequential simulation. In particular, P32L values at selected pilot point 

locations are updated and used as conditioning data in the sequential indicator simulation or SISIM 

(Deutsch and Journel, 1998) to populate its values for the rest of the grid. In this thesis, well 

locations with conditioning data (microseismic data and RTA estimates of fracture properties) are 

selected as the pilot locations. The PPM algorithm is used to perturb the probability distributions 
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of all unknown parameters (e.g., H, P32L at pilot points, etc.) until a match with the production data 

is attained: first, a realization of the reservoir (or DFN) model is constructed by sampling from the 

initial distributions of all unknown parameters; second, the model is upscaled into an equivalent 

DPDK model and subjected to numerical flow simulation using a commercial black-oil simulator 

(Schlumberger, 2020); (3) a Brent 1-D optimization algorithm is applied to minimize the objective 

function update the unknown fracture parameters. A localization scheme or two-step history 

matching process is employed: early-time production data is used to update only some of the 

hydraulic parameters, while late-time production data is used to perturb only the secondary fracture 

parameters.  

6.3.1 DFN Modeling and Simulation  

6.3.1.1  Generation and Upscaling of Initial Realization of DFN Model 

The HF and SF properties are inputted into a commercial DFN modelling package (Golder 

Associates, 2018) to generate different DFN model realizations and perform the upscaling step.  

Fig. 6-1 represents a complex fracture system with primary fractures conceptualized as 

elliptical fissures intersected by secondary fractures, as Fisher et al. (2005) proposed. It comprises 

four hydraulic fracturing stages, modeled as elongated penny-shaped fissures and secondary 

fractures throughout the domain. An editable macro script is used to implement these steps. 

Consider a mesh of nx × ny × nz grid cells. Each grid cell is populated with secondary fractures 

according to its values of P32L, Tsf, re, H, and L. If a primary fracture is also present, then other 

parameters of the hydraulic fracture, including Tpf are used to generate an initial realization of the 

DFN model.  
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To model the multivariate distribution of P32L, it would require modelling their values at 

all nx × ny × nz locations. As mentioned earlier, a pilot point scheme is adopted to parameterize 

P32L. For example, in the case study presented next,  nx × ny × nz = 50 × 50 × 10, five pilot points 

are selected such that P32L values at these selected locations are updated and used as conditioning 

data in SISIM to populate the rest of the grid. P32L is modeled as a categorical variable: high, 

relatively high, medium, and low intensities. There are many possible ways of choosing these pilot 

points. A few considerations are made when selecting these locations: (1) they are intersected by 

well perforations or hydraulic fracture planes (where microseismic data and RTA estimates of 

fracture properties are available); (2) they are placed randomly throughout the domain to ensure 

sufficient variability is captured. In addition, instead of selecting five cells from all locations, five 

subregions (each consisting of 7 × 7 × 10 grid cells) are chosen. The pilot subregions represent 

about 10% of the total reservoir domain, ensuring a sufficient level of conditioning is achieved 

without exarcerbating the computational load. 

To summarize, the model parameters are: 

• Tpfi at each hydraulic fracture stage: i = 1,.., number of hydraulic fracture stages. It is 

assumed that they follow a Gaussian distribution. 

• P32Lj at each pilot point: j = 1,…, number of pilot points. It is assumed that they follow a 

lognormal distribution, and SISIM is used to simulate P32L at other grid locations. 

• Tsfj ́at each specified perturbing location: j́ = 1,…, number of perturbing locations. It is 

assumed that they follow a bimodal distribution, and initialized based on the assumption 

that the probability distributions of Tsf facilitated through RTA estimates of induced 

fractures obtained from previous studies are suitable. At other non-perturbing locations of 
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the reservoir, the bimodal distributions of Tsfj ́ remain unchanged and values are sampled 

randomly from these probability distributions. 

• rej,́ Lj ́ , and Hj ́ at each specified perturbing location: j́ = 1,…, number of perturbing 

locations. It is assumed that they follow a lognormal distribution. rej ́is initialized based on 

the assumption that the probability distributions of re facilitated through RTA estimates of 

induced fractures obtained from previous studies are suitable. The initial distributions of Lj ́

and Hj́ are assumed based on knowledge of the field. At other non-perturbing locations in 

the reservoir, the lognormal distributions of these parameters remain unchanged and their 

values are sampled randomly from their lognormal distributions. 

The probability distributions of the secondary fracture network parameters (i.e., re, Tsf, L, and H) 

are adjusted only at specific perturbation locations. The assumption is that fracture intensity (P32L) 

is most uncertain and significantly impacts the overall conductivity of the SF network.  

Next, the DFN model is upscaled to an equivalent DPDK model using a static upscaling procedure 

developed by Oda (1985). In this work, a static upscaling scheme is employed for its computational 

efficiency; however, other flow-based techniques can also be used. This Oda upscaling technique 

works well when all the secondary fractures are well connected to the primary fractures, which is 

assumed to be valid in this research (Dershowitz et al., 2000). 

The upscaled DPDK parameters are (1) Oda permeability tensor; (2) fracture porosity – defined as 

the total fracture volume (average cross-sectional area × aperture) divided by the cell volume; (3) 

shape factor – related to the flow area between the matrix and fracture systems within a grid block. 

The Oda permeability tensor is computed by projecting the isotropic fracture permeability onto the 
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fracture plane, thereafter scaling it in line with the fracture porosity, resulting in a 3 × 3 

permeability tensor.  

1
( )

12
ij kk ij ijK F F= −  ,             (6-1)

       

In the equation above, while δij is the Kroenecker's delta, Kij represents an element in the 

permeability tensor. Fij is the element of fracture tensor which simplifies fracture flow as a vector 

along the unit normal from the fracture plane and is estimated by summing individual fractures 

within the upscaled grid block, weighted by their transmissivity and area described in Eq. (6-2). 
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The total number of fractures in a grid cell is represented as N. nir, njr is the component of a unit 

normal to the fracture r, Tr is the transmissivity of fracture r, Ar is the area of fracture r, while V is 

the grid cell volume. The shape factor describes the interporosity flow between the matrix and 

fracture domains and is mathematically represented as: 

2 2 2
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 
,                         (6-3) 

where Li, Lj, Lk are the fracture spacings in x, y, z directions, respectively. Fig. 6-2 shows the first 

diagonal element of the upscaled DPDK Oda permeability tensor.  

6.3.1.2  History Matching – Probability Perturbation Method  
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This probability perturbation method (PPM) is used to update the posterior probability distribution 

of unknown model parameters depending on the mismatch between model predictions and the 

actual production histories at each perturbation step (Caers 2003; Caers 2007). The tuning of the 

probability distributions corresponding to the unknown DFN model parameters is achieved 

through the variable rD (a deformation parameter). An indicator-based formulation based on 

Kashib and Srinivasan (2006) is applied here to model the non-Gaussian distributions of model 

parameters (Nwabia and Leung, 2021a, 2021b): 
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The equation describes the probability of transitioning from the indicator category k at step l to the 

category k’ at step l+1 utilizing the perturbation factor  r 0,1Dn  , for n = 1, …, number of distinct 

types of model parameters (e.g., n = 6 for Tpf, Tsf, P32L, re, L, and H). P{I(u) = k’} is the prior 

probability while P{Il+1(u) = k|Il (u) =k, C} is the posterior probability considering C as the 

production data. For this research, the probability distributions of the uncertain DFN model 

parameters (i.e., Tpfi, Tsfj,́ P32Lj, rej,́ Hj,́ and Lj)́ are adjusted. u represents the locations of the 

unknown multivariate distributions of Tpfi, Tsfj,́ rej,́ Hj,́ Lj,́ and P32Lj. The indicator-based formulation 

facilitates the handling of the non-Gaussian distributions.  

An efficient 1D optimization scheme suggested by other authors (Caers 2003) is adopted 

here to handle limitations associated with the PPM perturbation, which depends on the perturbation 

factor only. As 𝑟𝐷 → 0, there is little or no perturbation implying that the probability of staying at 

category k at step l+1 is 1.0. As 𝑟𝐷 → 1, the probability of staying at category k at step l+1 is 0 

since more perturbation is expected. The adopted parameterization scheme preserves the nonlinear 
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relationship between the set of uncertain DFN model parameters and the corresponding reservoir 

flow response since the perturbation of these parameters is executed in the DFN space. DPDK 

upscaling is performed after the sampling of a DFN model.  

The PPM procedure is summarized in Fig. 6-3. The process consists of an inner and outer 

loop, where different levels of optimization are performed to attain the desired global optimal. For 

the inner loop, a 1D optimization scheme (Brent, 1973) is used to obtain a local optimal value of 

rD for a given initial realization. In other words, the goal of the inner loop is to find the optimal 

 𝑟𝐷𝑛, considering a particular initial realization of the model parameters. The single-variable 

function is optimized using the golden section search and successive parabolic interpolation, as 

outlined in Eq. (6-5).  

(2) (1)

0.618
low high

high low high low

x x x x

x x x x


− −
= = =

− −
                       (6-5) 

where xhigh and xlow are the upper and lower bounds for the search interval equivalent to a unimodal 

function; x(2) and x(1) are points on the function such that the distances from xlow to x(2) and x(1) to 

xhigh are equal. Either x(2) and x(1) is selected as the minima for the next search interval, and the 

procedure is repeated until the minimum is achieved (i.e., below a user-defined tolerance). 𝜑 

represents the ratio of equal distances to the overall interval distance (xhigh – xlow), and this is a 

factor related to what is applied in the golden section search algorithm. Once an optimal value of 

“rD” is obtained, the entire inner loop is repeated using a different initial realization, as denoted by 

the outer loop. In other words, during the execution of the outer loop, a different initial realization 

of the model parameters is examined. An optimal set of rDn values (for n model parameters) and 

the corresponding posterior distribution are updated according to Eq. (6-4). Each rDn value is 

perturbed and optimized individually since different rD values should be used for different 

variables.  



 

161 

 

The normalized objective function is formulated as the L2 norm of the mismatch between 

the historical data and the model forecast: 

max max

22 2
* * *

* * *
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where Qg, Qw, and Pwf are the gas production, water production, and bottom-hole pressure, 

respectively, while the subscripts s, h and max are the historical data, simulation prediction and 

the upper limit for a specific variable, respectively. 

 The PPM algorithm is summarized below. It follows the algorithm descriptions given by 

Caers (2007) and Kashib and Srinivasan (2006): 

▪ [Outer Loop] Generate an initial realization of the DFN model by sampling from 

probability distributions of Tpfi,Tsfj́, rej,́ Hj,́ Lj ́  and P32Lj. Perform upscaling and flow 

simulation to compute O . 

▪ [Inner Loop] Perform a set of 1D optimizations for rDn to yield rDnopt [i.e., optimizing all 

n rD’s simultaneuosly]: 

o Repeat until O is minimized  

▪ Guess a value for rDn for each of n parameters [Eq. 6-5]; 

▪ Calculate P{Il+1(u(x)) = k |Il (u(x)) = k, C} for Tpfi, Tsfj,́ rej,́ Hj,́ Lj ́and P32Lj 

[Eq. 6-4]; 

▪ Perform SISIM and generate a new realization of the DFN model by 

sampling from the updated posterior distributions of Il+1(u(x)); 

▪ Perform upscaling and flow simulation to compute O .  

o Set Il+1(u(x)) computed using the optimal “rD” values → Il(u(x)). 
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The outer loop [step 1] is repeated until minimum mismatch in the objective function is achieved, 

and the most optimal Il+1(u(x)) [step 2b] with the lowest minima is selected as the final updated 

posterior distributions.  

Following Nwabia and Leung (2021b), a novel localization strategy is formulated using 

the flow regimes identifiable from RTA. First, the early-time data is used to perturb and optimize 

only Tpfi. Next, the late-time data is used to perturb and optimize Tsfj,́ P32Lj, rej,́ Lj,́ and Hj ́while Tpfi 

remains fixed at its optimal value from the first stage. This scheme is adopted since it is known 

that secondary fractures typically remain un-propped, and their hydraulic conductivity and 

aperture strongly depend on the inner-fracture fluid pressure; communication between the 

hydraulic and secondary fractures are significant during the late time when much of the water in 

the active secondary fractures has been displaced by gas influx from the matrix (Ezulike and 

Dehghanpour, 2015). First, the rD perturbation for Tpfi at the four hydraulic fracture stages is done 

independently until optimal rDn and the corresponding updated distributions of Tpfi are attained. 

Then, independent rDn for each secondary fracture parameter at the different locations are 

perturbed and combined until rDnopt or minimum objective function mismatch is achieved. The 

algorithm is computationally efficient and exhibits good convergence behaviour. 

6.4 CASE STUDY 

A field example of a four-stage hydraulically fractured reservoir with secondary fractures in the 

Horn River Basin is modelled to assess the validity of the designed workflow. The model domain 

is 244 m × 244 m × 76 m (50 × 50 × 10 grid cells along the x-, y-, and z- directions, respectively). 

As mentioned earlier, to facilitate the parameterization of P32L, five sub-regions of 7 × 7 × 10 grid 

cells (each) are selected as pilot points. Model parameters (as shown in Table 6-1) are extracted 
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from a previous study (Nwabia and Leung, 2020). The average aperture of NFs in the HRB is 

approximately 0.8 mm, with most of the NFs ranging from 0.1 to 2.5 mm (Yang et al., 2018).  

A reference DFN model is created representing a multifractured shale gas well in the Horn 

River Basin. This reference model is considered as the “true case” here. As discussed in the 

previous study, the trend and plunge of each primary fracture were inferred from interpreted 

microseismic events (Nejadi et al., 2015). The reference DFN model is upscaled to an equivalent 

DPDK model. This step is carried out within the FracMan® software facilitated by macros, which 

are scripts of function calls for generating and upscaling the DFN models. The upscaled DPDK 

model is then subjected to numerical flow simulation to compute the production profiles over 12 

months. The 12-month production profiles of water production rate, gas production rate, and 

bottom-hole pressure are employed as the historical data.  A sensitivity analysis is performed to 

ensure the prior distributions of all model parameters are reasonable (e.g., the ranges exhibited are 

sufficient to capture the variability in the production histories). The summary of the parameters of 

the DFN model and the corresponding upscaled dual-permeability model are presented in Table 

6-1. The orientation parameters for the secondary fractures are assumed similar to those of the 

primary fractures.  Values of storativity for the primary and secondary fractures are similar to those 

reported in Cinco-ley (1996).  

Table 6-1: Parameters for the reference discrete fracture network (DFN) model and the 

corresponding dual permeability simulation model. 

Discrete Fracture Network Parameters: 

Primary Fractures 

         Storativity, Spfrac                                                                        1.0 × 10-6 

         Equivalent radius, epeq                                                                                                   30, 45, 26, 55m (98.4, 147.6, 85.3, 180.4ft) 
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         Permeability kf                                                                               (kf1 = kf2 10, kf3 15, kf4 5) mD                                                     

         Trend (Stage 1)                                                                              247˚ 

         Trend (Stage 2)                                                                              244˚ 

         Trend (Stage 3)                                                                              177˚ 

         Trend (Stage 4)                                                                              226˚ 

         Plunge (Stage 1)                                                                            55˚ 

         Plunge (Stage 2)                                                                            29˚ 

         Plunge (Stage 3)                                                                            69˚  

         Plunge (Stage 4)                                                                            19˚ 

         Compressibility, cpfrac                                                                     0.0226 MPa-1 (0.000156 psi-1) 

Secondary Fractures 

          Storativity, Ssfrac                                                                            1.0 × 10-6 

          Equivalent radius, eseq                                                                   3.0, 4.9, 2.4, 5.5 m (9.8, 16.1, 7.9, 18 ft) 

          Trend                                 Assigned based on the nearest neighbor model from the primary fracture 

          Plunge  

          Compressibility, csfrac                                                                   Similar to the primary fracture                                                                                                                                                                 

Dual Permeability Model Parameters:  

         Number of grids                                                                            50 × 50 × 10              

         Model dimensions                                                                         244 × 244 × 76 m3 (800 × 800 × 250 ft3) 

         Matrix Permeability                                                                       0.00004 to 0.00007 mD 

         Matrix Porosity                                                                              5 to 6% 

         Reservoir depth                                                                            1959 m (6425 ft) 

         Initial reservoir pressure                                                               34.47 MPa (5000 psi) 

Parameters for Variogram Model: 

         2    0.0                                                                                    -nst, nugget effect 

         1    0.15   0.0   0.0   0.0                                                           -it, cc, azm, dip, tilt (ang1, ang2, ang3) 

         5   5   0.0                                                                                -a_hmax, a_hmin, a_vert (ranges) 

         1    0.85    0.0   0.0   0.0                                                         -it,cc,azm,dip,tilt (ang1,ang2,ang3) 
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Table 6-2: Reservoir Fluid Properties (Shale Gas) 

         Gas Density, ρ                                                                              0.812 kg/m3 (0.0507 lb./ft3) 

         Viscosity, μ                                                                                    0.015 cp                                      

         Compressibility, cfluid                                                                      5.787 e-4 MPa-1 (3.99 e-7 psi-1) 

 

Next, the PPM workflow is applied to history match the production data collected from the 

reference case. An initial realization of the DFN model is constructed and upscaled (using the 

macros as described earlier). The macro can be executed repeatedly within a loop, enabling the 

generation of multiple DFN realizations at each iteration or updating step. The entire PPM 

workflow is implemented in MatlabTM R2018a (MathWorks, 2018), and it also acts as the interface 

between multiple software platforms.  

The initial (prior) probability density functions of the uncertain DFN parameters are shown in 

Fig. 6-4. They are formulated based on static information and RTA results, as discussed in the 

previous studies (Nwabia and Leung, 2021b). These initial probability density functions are set so 

that their means are widely apart.  To test the robustness and validity of the proposed technique, 

the initial (prior) distributions are constructed such that the means (indicated in red) are different 

from the true case (indicated in green – it is assumed that the initial distributions for each of the i, 

j, and j' locations are the same).  

         5  5    0.0                                                                                -a_hmax, a_hmin, a_vert (ranges) 

         ,,   ,,   ,, 

         Structure type (it): 

         1 - spherical variogram model 
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Thirty indicator levels are used to parameterize each unknown model variable. The midpoint 

corresponding to each level is used for the back-transform. There are a total of 29 model 

parameters, including Tpfi (i = 1,…,4), Tsfj ́(j́ =1,…,5), P32Lj (j =1…5), rej,́ Lj ́, and Hj ́(j́ =1,…,5). In 

this thesis, it is assumed that the perturbation locations of the secondary fracture properties (i.e.,  

j́) are the same as those pilot point locations j. The use of different notations is to emphasize that 

SISIM is performed for P32Lj only, while the other secondary fracture parameters (Tsfj,́ rej,́ Hj́, Lj́) 

are updated during history matching process at the locations j́ only. Finally, the variogram model 

for P32L are shown in Table 6-1. A localization scheme is adopted where Tpfi (i = 1,…,4) is tuned 

at the early time production period (0 – 90 days), and the other secondary fracture parameters (Tsfj ́

(j́ =1,…,5), P32Lj (j =1…5), rej,́ Lj́ , and Hj ́(j́ =1,…,5) are adjusted at the late time (91 – 365 days). 

This scheme is achieved by dividing the PPM workflow into two separate stages, and different 

parameters are adjusted in each stage.   

An additional case is set up to examine the sensitivity of the pilot points (or subregions) on the 

performance and the developed history matching framework – Fig. 6-5. The model set up and 

workflow implementation is the same as described earlier. The only difference is that there are 

only four pilot points (subregions) intersecting the hydraulic fractures. They represent about 8% 

of the reservoir domain.  

6.5 RESULTS AND DISCUSSION 

The quality of the history match is quantified according to the mismatch in the objective function. 

The iterations are terminated after approximately 300 – 363 iterations when the mismatch is less 

than 5%. This is typically achieved after 10 outer loops and 30 inner loops (3 iterations for each 

outer loop). 
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The (final) updated posterior distributions with the minimum objective function mismatch 

are presented in Fig. 6-6 & 6-7. The figures show the distributions of Tpfi for different hydraulic 

fracturing stages and those of the secondary fracture parameters – (P32Lj) and (Tsfj,́ rej,́ Lj,́ Hj)́ at the 

pilot locations and locations j,́ respectively. Selected successive changes in the prior and posterior 

distributions from iteration l to iteration l+i during the final outer loop are shown, representing the 

probabilities of staying at the current category k at step l+1 or transitioning to category k' at step 

l+1. The spikes observed in the figure reveal a reduction in the sampling variance, indicating 

convergence to a solution at the final iteration step. A reduction in the model parameter uncertainty 

is observed in the posterior distributions, reflecting the conditioning effect in the model uncertainty 

due to the integration of additional dynamic data. The results demonstrate that the procedure can 

adequately capture the non-Gaussian characteristics for the individual distributions during the 

parameter updating process.  

The means of the initial and updated (posterior) distributions are compared to the reference 

(true) values in Table 6-3. Despite the vast disparity between the initial models and the true case, 

the updated models are close to the true case. It suggests that the history matching workflow can 

progressively perturb the posteriors to match the actual production data in both case 

implementations: where pilot points are placed either randomly throughout the domain, or placed 

near the hydraulic fractures. Since the updated posterior distributions of the DFN parameters 

closely matches the true case for the case where pilot points are placed near the HF’s, it is suggested 

that the fluid flow is more sensitive to the parameters of the SF’s near the HF’s than those of SF’s 

away from the HF’s. The slight variability exhibited by the final updated models, compared to the 

reference (true) case, further illustrates the inherent non-uniqueness (ill-posed nature) of all 

history-matching inverse problems. 
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Table 6-3. Updated realizations of the DFN model parameters are compared with the reference 

(true) and initial models. 

DFN Parameter Reference Model Initial Model 

(Mean Values) 

Updated Model for both 

cases 

(Mean Values) 

Transmissivity Tpfi, 

ft2/sec                             

277.06 

851.000 

289.050, 280.060 

282.40 273.501, 279.630 

287.90 280.092, 283.690 

698.00 711.010, 705.000 

Transmissivity Tsfj,́ 

ft2/sec  

91.36 

137.400 

102.500, 101.950 

113.30 126.85, 125.680 

82.19 88.072,   - 

83.95 80.024, 81.402 

67.78 65.809, 66.470 

Fracture Intensity (P32Lj), 

/ft. 

0.093 

0.218 

0.051, 0.058 

0.097 0.060, 0.063 

0.055 0.047,   - 

0.209 0.190, 0.210 

0.200 0.199, 0.202 

Aperture rej,́ in. 0.050 0.087 0.048, 0.052 
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0.065 0.064, 0.066 

0.075 0.082,   - 

0.074 0.083, 0.080 

0.045 0.033, 0.034 

 

Length Lj́, in. 

 

 

10.90 

11.710 

11.594, 11.520 

10.95 11.699, 11.600 

10.00 10.780,   - 

10.25 10.793, 10.710 

10.45 10.804, 10.778 

 

 

 

Height Hj́, in. 

 

12.95 

14.400 

13.374, 13.296 

12.50 12.661, 12.618 

13.90 14.197,   - 

10.90 11.190, 10.802 

14.25 14.202, 14.242 

 

Typically, in a robust optimization process as presented in this work, an ensemble of model 

realizations is used for the assessment of uncertainties in the fracture parameters. Intuitively, these 

realizations appear equiprobable or statistically similar with similar patterns and similar spatial 

variability, since they are generated by the same perturbation method using the same data, same 

grid and same parameter settings. Three additional realizations are sampled from the final posterior 
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probability distributions. These realizations are useful in optimizing reservoir management 

decisions such as the proposed fracture sizes, fracture location, fracture spacing and their varied 

impacts on production, future reservoir performance predictions and the decisions about future 

development (with minimized risks). Table 6-4 compares the objective functions of the three 

realizations. Their profiles of gas production rate, water production rate, and Pwf are compared 

with the historical data in Fig. 6-8 & 6-9.  

Table 6-4: Contrasts in the objective function of the history matched realizations 

Days ∆Otol 

% 

Realization #1 

% 

Realization #2 

% 

Realization #3 

% 

Early time 

(0 – 90) 

5 0.7043 0.1039 0.6313 

Late time 

(91 – 365) 

5 0.9467 0.1947 0.7031 

 

 A comparison in model assumptions, computational time, and model accuracy between the 

developed technique with other sampling-based methods are presented in Table 6-5.  

Table 6-5: Comparison between the developed PPM framework and other sampling-based 

methods 

 Model Assumptions Computational Time Accuracy 

Gradual Deformation Relies on the 

perturbation of 

random numbers for 

stochastic 

realizations. Applied 

to only systems that 

can be represented 

Converge exponentially 

to the global minimum 

for only linear problems 

after long run. Difficulty 

in convergence for non-

linear problems.  

Inaccurate sampler 

for non-Gaussian 

cases. 
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by a Gaussian 

distribution. 

EnKF Gaussian prior joint 

probability 

distribution.  

Linear model 

assumptions.  

Difficulty to converge to 

correct distribution if the 

prior joint probability 

distribution has non-

Gaussian contribution. 

Partial approximation 

for cases with non-

Gaussian variables 

or nonlinear system 

dynamics. 

MCMC Relies strongly on 

the statistical 

assumptions of the 

error model. 

Large number of 

iterations to converge. 

Approximately 

sample the space 

defined by the 

model. 

Developed PPM Framework Relies on probability 

models to generate 

realizations. 

Computationally efficient 

and exhibits good 

convergence behaviour. 

Better 

approximations to 

both Gaussian and 

non-Gaussian 

posterior probability. 

 

It should be emphasized that the forward model does not couple the flow computations with 

geomechanics calculations. In addition, other reservoir parameters, such as relative permeability 

functions or compaction tables, are not considered during the history matching. The proposed 

workflow can be extended in future work to consider these additional parameters. 

6.6 CONCLUSION 

o A probabilistic-based assisted history matching workflow is applied to update unknown DFN 

model parameters from static and dynamic (production) observations. The method is used to 

update posterior probability distributions of hydraulic and secondary fractures of a shale gas 

reservoir. 

o An indicator formulation is adopted to facilitate modelling uncertain distributions of several 

fracture parameters (Tpf, P32L, Tsf, re, L, H). 
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o The method is flexible in handling both Gaussian and non-Gaussian uncertain fracture 

parameters. It is suitable for handling the nonlinear relationship between discrete fracture 

network parameters and reservoir flow response. Perturbation of model parameters is 

performed in the DFN space instead of the upscaled reservoir parameters. The uncertainties in 

model parameters are represented using multiple DFN models and their corresponding 

upscaled DPDK models. 

o Secondary fractures, including those in the vicinity of the hydraulic fracture and those 

disconnected from the hydraulic fractures, are modeled. The spatial variability is handled using 

a pilot-point parameterization scheme and sequential simulation with the indicator-based PPM 

workflow. 

o The significance of this work is that while the workflow was developed for analyzing 

hydraulically fractured reservoirs with secondary fractures, it can be applied to other 

unconventional hydrocarbon formations with multiple wells. Future studies should test this 

technique for modelling other complex field cases involving numerous well pads.  

o The history-matching results are achieved within the low user-defined tolerance (∆Otol ≤ 5%), 

suggesting the modelling workflow can infer a reasonable representation of the reservoir’s 

primary and secondary fracture distributions.  
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APPENDIX – Figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6-1 (a): The discrete fracture network model with the hydraulic and secondary fractures:  

pilot points (left) and SISIM realization of P32L (right). 

Fig. 6-2: The upscaled DPDK Oda permeability tensor (PERMXX – 1st diagonal element).  

Only the regions near the hydraulic fractures and several pilot locations are displayed. 
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Construct initial distributions of DFN parameters based on static 

(geologic) data and RTA estimates: 

o Tpfi at each stage of the hydraulic fracture (i) 

o Secondary fracture properties at each selected location: aperture (re), secondary fracture 

transmissivity (Tsf), secondary fracture length (L) and height (H), local fracture intensity 

of the secondary fracture (Psf
32L). 

o Model SF throughout the reservoir domain using SISIM 

Guess values for rDn and generate a 

corresponding DFN realization 

Upscale DFN realization + Run flow simulation 

Perform 1D Brent optimization algorithm to calculate rDnopt 

Calculate Objective function  

Objopt ≤Objtol 

 

History matching is successful. 

Updated posteriors are obtained.  

YES 

NO 

 

 
Outer loop 

Inner loop 

Sample new DFN parameters 

(Tpfi, P32Lj, rej́, Tsfj́, Lj́, Hj́) from the 

previous rDopt 

Localization scheme 

• Early time – Tpfi. 

• Late time – P32Lj, 

Tsfj́, rej́, Lj́, Hj́  

Fig. 6-3: Schematic description of the PPM procedure. 
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Fig. 6-4: Initial probability density functions of the primary and secondary fracture DFN 

parameters. 
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Fig. 6-5. The DFN model with the hydraulic and secondary fractures for the case where the 

pilot points are placed near the hydraulic fractures. 
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Fig. 6-6: Final posterior distributions of the hydraulic and secondary fracture DFN parameters 

for the iteration step i + 1, where. i = l = iterative index 
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Fig. 6-7. Final posterior distributions of the hydraulic and secondary fracture DFN parameters 

for the iteration step i + 1, where i = l = iterative index, for the case where pilot points are located 

near the hydraulic fractures. 
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Fig. 6-8: Three random history-matched realizations of gas production rate, water production 

rate, and BHP profiles sampled from the final posterior probability distributions. 

 

Fig. 6-9: Three random history-matched realizations of gas production rate, water production 

rate, and BHP profiles were sampled from the final posterior probability distributions for the 

case where pilot points are located near the hydraulic fractures. 
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Chapter 7: Conclusions and Recommendations for Future Work 

7.1 OVERVIEW 

In this thesis, a robust probability-based assisted history matching framework for the 

characterization of fracture networks in fractured shale reservoirs is reported. The research 

improved the existing history matching routines for hydraulically fractured reservoirs by handling 

both Gaussian and non-Gaussian fracture parameters and the non-linear relationship between 

fracture parameters and upscaled reservoir model properties while maintaining a low 

computational cost and honouring both the static and dynamic data. This chapter presents the 

conclusions derived from the work, the academic and industrial contributions, and finally, 

recommendations for future work. 

7.2 CONCLUSIONS 

Available datasets from a four-stage hydraulically fractured reservoir in the Horn River Basin, 

including production data and microseismic information, are gathered from previous field reports. 

An RTA study is conducted to derive possible estimates of the reservoir fracture parameters. The 

resulting RTA estimates are combined with the microseismic information to constrain the 

description of the fracture network. Secondary fractures, including those in the vicinity of the 

hydraulic fracture and those disconnected from the hydraulic fractures, are modeled. Their spatial 

variability is handled using the pilot-point parameterization technique and sequential indicator 

simulation.   

 A robust probabilistic-based assisted history matching workflow is developed and 

employed to characterize the hydraulically fractured reservoirs from the static and dynamic 

observations and update the posterior distributions of the uncertain fracture network parameters. 
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The developed PPM workflow integrates data from different sources to infer unknown multi-scale 

fracture parameters by perturbing the probability distributions of the unknown model parameters 

until a match with the production data is attained. An efficient multiple 1D optimization scheme 

based on golden section search and successive parabolic interpolations is incorporated with the 

PPM framework to obtain a local optimal value of a perturbation parameter rDn for a given initial 

realization. Perturbation of rDn is performed individually for each variable. The results are posterior 

distributions of the uncertain DFN parameters after integrating the production data. 

 A novel localization strategy is formulated based on the flow regimes identified from RTA 

where the early-time data is used to perturb and optimize only the hydraulic fracture parameters 

and the late-time data is used to perturb and optimize the secondary fracture parameters while the 

hydraulic fracture parameters remain fixed at its optimal value from the first stage. The 

incorporation of this scheme into the PPM workflow achieved reliable history matching results 

within a low pre-set objective function tolerance.  

 The developed fractured system characterization methodology is implemented to handle 

both Gaussian and non-Gaussian uncertain fracture parameters and has the capabilities of 

characterizing any other type uncertain fracture parameters, which is usually impossible through 

other sampling-based techniques where a Gaussian posterior distribution are normally expected. 

It further accounts for highly nonlinear relationships between fracture model parameters and the 

corresponding flow responses, and yields good characterization results through an ensemble of 

DFN realizations that honor both static and dynamic data, as well as the related upscaled flow-

simulation models. 
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 This thesis presents a robust probabilistic-based assisted history matching workflow which 

can efficiently characterize and update the posterior distributions of the uncertain fracture network 

parameters of fractured reservoir systems. The methodology presented in this thesis is targeted at 

improving the existing history matching routines for unconventional reservoirs used in both the 

academics and the industry by providing a robust and efficient workflow for the characterization 

of the fracture systems of shale gas reservoirs. 

7.3 CONTRIBUTIONS 

The significant contributions of this work can be summarized as follows: 

a) A robust and efficient probabilistic-based history matching framework capable of 

characterizing hydraulically fractured reservoirs from static and dynamic (production) 

observations and updating unknown fracture network parameters is developed. 

b) An incorporated pilot-point parameterization scheme and sequential simulation with the 

indicator-based PPM workflow efficiently handled the spatial variability of secondary 

fractures in the reservoir volume, including those in the vicinity of the hydraulic fractures 

and those disconnected from the hydraulic fractures. Thus, a proper representation of the 

fluid flow in a fractured reservoir system where flow is contributed by both the primary 

fractures and secondary fractures (NFs), and not only the primary fractures and induced 

fractures, is captured.   

c) The developed workflow flexibly handled both Gaussian and non-Gaussian uncertain 

fracture parameters. This is usually impossible using other sampling-based techniques 

where a Gaussian posterior distribution is normally expected. In addition, it appropriately 

handled the nonlinear relationship between discrete fracture network parameters and 
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reservoir flow response by perturbing model parameters in the DFN space instead of the 

upscaled reservoir parameters.  

d) A formulated localization scheme using the flow regime rationale facilitated a reliable 

history matching process by perturbing the impacting model parameters according to the 

specific flow region. 

e) An important benefit of this method is that the uncertainties in fracture parameters are 

quantified using multiple DFN models and their corresponding upscaled DPDK models. 

f) The history-matching results achieved within a low user-defined tolerance (∆Otol ≤ 5 – 

10%), suggest that the modelling workflow can infer a reasonable representation of both 

primary and secondary fracture distributions in the reservoir.  

g) The probabilistic-based assisted history matching workflow is applied to update unknown 

DFN model parameters (Tpf, P32L, Tsf, re, L, H) from static and dynamic (production) 

observations. The method is used to update posterior probability distributions of hydraulic 

and secondary fractures of a shale gas reservoir. 

7.4 APPLICATIONS 

A major significance of this research is that while the workflow was developed for analyzing 

hydraulically fractured reservoirs with secondary fractures, it can be applied to other 

unconventional hydrocarbon formations with multiple wells. 

The developed framework is also useful for CO2 storage in terms of the improved 

knowledge of a competent reservoir to be used for the storage, derived from the characterization 

of its fracture network. An example is the reservoirs in the Horn River Basin, which is studied in 
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this research. It originally contains about 12% CO2 and can be classified as a good candidate for 

CO2 storage, thus contributing to the vision of 2050 net-zero emissions target. 

7.5 RECOMMENDATIONS FOR FUTURE WORK 

(i) Application of the developed technique to characterize other complex unconventional 

hydrocarbon formation cases involving multiple well pads. 

(ii) Coupling flow computations with geomechanics calculations in the forward model to 

capture the dynamic changes in stresses and temperatures, and their consequent impacts on 

production.  

(iii) Adoption of the technique for other multiphase fluids such as wet gas and gas condensates, 

other than a (water-wet) dry gas reservoir where the gas remains in the gas phase during 

pressure depletion in the reservoir. Consideration of relative permeability function during 

the history matching.  

(iv) Consideration of other possible hydraulic fracture shapes such as the plane strain and the 

elliptically shaped cross-section fracture and compare them with the elongated penny-

shaped fissures used in this research. 

(v) Modification of the workflow by integrating other simulation tools that can explicitly 

model fractures within matrix grid without refinement for the efficient calculation of fluid 

transport within SRV.  
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Appendix 

A.1 RATE TRANSIENT ANALYSIS 

Matrix transient linear flow:  

The transient linear flow regime is characterized by a half-slope representing matrix drainage into fractures with 

infinite conductivity. The analysis data obtained during this flow regime is useful in estimating the total matrix surface 

area draining into the fracture system. 

The plot of 
( ) ( )i wf

sc

m P m P

q

 −   versus  t  is derived from the following equation; 

Considering oil flowing at constant rate, 
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For a gas case,   

2

( ) ( ) 1
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Plot of 
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g
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versus t yields, 
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Slope, 
( )

sc

f sc m t f m

TP
m

hX T k c  +

=          (A.1-9) 

Note that,
2

cm w
f
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A L
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
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Thus, 
. ( )

sc
m cm

sc t f m

TP
k A

mT c  +

=         (A.1-12) 

If km is known, Acm is estimated.  

 

Pseudo steady-state or SRV flow:  

This flow regime is characterized by a unit slope representing pressure interference between consecutive hydraulic 

fractures. Its analysis is based on the log-log plot of RNP versus MBT on a cartesian graph. The equation for the plot 

of RNP versus MBT is originally derived from the material balance equation into the governing equation during the 

PSS flow regime. 

Material balance equation | | | |x x x m m t t m m tq t q t V V   + + −  = −   (A.1-13)  

m

m t

dP q

dt V C
= −     (A.1-14) 

Linear diffusivity equation 
2
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Average pressure of control volume 

2

12

f

m f

m m

BqL
P P

k V


= +        (A.1-16) 

where 2m f fV X hNL=   

Governing equation
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  (A.1-17) 

As hydraulic fractures are considered highly permeable, pressure drop during the PSS is negligible and thus Pf  

(fracture pressure) ≡ Pwf.  
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For a gas reservoir,  
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To preserve the signatures corresponding to the flow regimes by suppressing the noise level, the integral of RNP and 

its derivative are plotted with te. 

Integral of normalized pressure 
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Derivative of the integral of normalized pressure 
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The slope of the log-log plot of RNP versus MBT of the PSS region facilitates the estimation of Xf. Thus, SRV is 

calculated as 2 × Lw × Xf × h. The line intercept on the other hand is used for the estimation of km.  

 

MBAL (normalized rate cumulative) plot: 

The gas material balance is formulated in terms of pseudo pressures. At PSS boundary dominated flow, it obeys the 

equation, 

1

2
D DAq Q
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= −                      (A.1-21) 

Where, 
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A plot of 
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converges towards a straight line as the system goes into 

PSS flow and intercepts can be used to estimate STGIIP: 
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These equations representing the solutions of the flow regimes are embedded in the ©KAPPA - Topaze NL tool and 

were adapted for a dry gas analysis. 

 

 

A.2 OPTIMIZATION ALGORITHM FOR rDn 

algol60.m 

function [x,fx,vec,vec2,paramVals]=algol60(func,a,b,t,iter_out,MCno,vec,vec2,paramVals,debug) 

% function [x,fx]=algol60(a,b,t,debug) 

iter=1; 

c=(3-sqrt(5))/2; 

x= a + c*(b-a);v=x;w=x;e=0; 

[fx,vec,vec2,paramVals]=func(x,iter,iter_out,MCno,vec,vec2,paramVals,debug);fw=fx;fv=fx; 

while true 

    iter=iter+1; 

    m=(a+b)/2;          % Line 10 

    tol=eps*abs(x)+t; 

    t2=2*tol; 
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    if abs(x-m)>t2-(b-a)/2 

        p=0;q=0;r=0; 

        if abs(e)>tol 

            r=(x-w)*(fx-fv); 

            q=(x-v)*(fx-fw); 

            p=(x-v)*q - (x-w)*r; 

            q=2*(q-r); 

            if q>0 

                p=-p; 

            else 

                q=-q;       % Line 20 

            end 

            r=e;            % Line 30 

            e=d; 

        end 

        if ( (abs(p) < abs(q*r/2)) && (p < q*(a-x)) && (p < q*(b-x)) )  % Line 40 

            d=p/q; 

            u=x+d; 

            if ( ((u-a) < t2) || ((b-u) < t2) ) 

                if x<m 

                    d=tol; 

                else 

                    d=-tol;     % Line 50 

                end 

            end 

        else        % Golden section step 

            if x<m 

                e=b-x; 

            else                % Line 60 

                e=a-x;          % Line 70 

            end 

            d=c*e;              % Line 80 

        end 

        if abs(d) >= tol 

            u=x+d; 

        elseif d>0          % Line 90 

            u=x+tol; 

        else                % Line 100 

            u=x-tol;        % Line 110 

        end 

         

        [fu,vec,vec2,paramVals]=func(u,iter,iter_out,MCno,vec,vec2,paramVals,debug);   % Line 120 

        if fu<=fx 

            if u<x 

                b=x; 

            else 

                a=x;        % Line 130 

            end 

            v=w;            % Line 140 



 

212 

 

            fv=fw; 

            w=x; 

            fw=fx; 

            x=u; 

            fx=fu; 

        else 

            if u<x 

                a=u; 

            else            % Line 150 

                b=u;        % Line 160 

            end  

            if( (fu<=fw) || (w==x) )    % Line 170 

                v=w; 

                fv=fw; 

                w=u; 

                fw=fu; 

            elseif( (fu<=fv) || (v==x) || (v==w) )  % Line 180 

                v=u; 

                fv=fu; 

            end 

        end 

       if debug 

           %fprintf('rD_cb = %d  |  obj.= %d\n',x,fx); 

       end 

    else 

        break; 

    end 

end 

fprintf('Found local minima in %d iterations at:\nx=%d | f(x)=%d\n',iter,x,fx); 

end 

getParamsFromRD.m 

function [Iy,newVal,CI]=getParamsFromRD(rD,ci,Ix,Iy,pdfX,pdfY,I2PDF,iter,iter_out,figNo,lege,MCno,debug) 

 

NoOfIndicators=length(Ix); 

 

if isempty(ci) 

    [~,ci]=max(Iy); 

end 

 

P=double(false(size(Iy)));      % Variable for the probabilities of the indicators at the next step. This is PPM. 

for i=1:NoOfIndicators 

    if i~=ci 

        P(i)=rD*Iy(i); 

    end 

end 

P(ci)=1-sum(P); 

Iy=P; 
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if debug  

    figure(figNo);clf;subplot(1,3,1);hold on; 

    plot(Ix,Iy,'.','DisplayName',sprintf('rD=%.3f',rD)); 

    title(['PDF with ind. for ',lege]);legend show; 

end 

 

% Transform PDF to CDF and plot it in Fig 

cumu=getCDF(Iy); 

 

% N - Monte-Carlo sampling 

idx=double(false(MCno,1));newVal=double(false(MCno,1)); 

CI=MCSamples(cumu,MCno); 

newVal=I2PDF(CI); 

 

% cmuO=getCDF(pdfY); 

% cmuO=cmuO/max(cmuO); 

% for i=1:MCno 

%     [~,idx(i)]=min(abs(cmuO-cumu(CI(i)))); 

%     newVal(i)=pdfX(idx(i)); 

% end 

 

if debug 

    figure(figNo); 

    subplot(1,3,2);hold on; 

    plot(Ix,cumu,'.','DisplayName','CDF'); 

    for i=1:MCno 

        plot(Ix(CI(i)),cumu(CI(i)),'*','DisplayName',['MC #',num2str(i)]); 

    end 

    title(['CDF with ind. for ',lege]); 

%     legend show; 

    figure(figNo); 

    subplot(1,3,3);hold on; 

    plot(I2PDF(Ix),cumu,'.','DisplayName','CDF'); 

    for i=1:MCno 

        plot(newVal(i),cumu(CI(i)),'*','DisplayName',['MC #',num2str(i)]); 

    end 

    title(['CDF for ',lege]); 

    legend show;set(legend,'Location','EastOutside','Box','off'); 

    saveas(figNo,[lege,'_CDF_',num2str(iter_out),'_',num2str(iter),'_distri.png']); 

end 

 


