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 ABSTRACT \

Radiation therapy is used in 55% of all cancer patients treated in Alberta..
Fundamentally, tlle determination of dose r;quims the complete specification of the particle
fluence as a function of particle type and particlf i‘cncrgy, the tissue interaction co¢fficients

-in the patient, and the average energy dcpo§itcd«by these par;icles. The "Convolution"
method snmp};ﬁcs\the total fluence calculation to the determination of only the pnmary
fluence. Kcmcls, whlch describe the energy spreading fromla primary photon 1mpulse
site, are convolved wnh the primary fluence to yield the resulting dose distribution.

" This wo, aphically displayed the convolution kefncls obtained by Monte Garlo
v 7

National Research Co\uncﬂ of Canada for world wide dlsmbunon 'I'he correqted kemels
have been analyzed, and are consistent with the physxcs of radlauon transport.

- Dosc distributions in a homogeneous water mcdlum were calculated using the
-covolution techmquc in both thc real and Founer domam5° the application of Fouriér
techniques yxelded a reduction in computation time of 14 times for a 642 dose matrix (i.e
22.5 seconds on a VAX' 117780 processor). Fhe calculated results were compared to.
experimental dose measurements for Co-60 and 15 MV X ray beams and the agreemcnt is
good (within 3%) in a homogeneous medium. The results computed by the convolunon
techmque were also compared to those calculated by a more conventional algorithm
(CBEAM), convolution showed botter agreement (5%-10%) with experimental data in
situaticns requiring more predictive power (i.e. blocked field). '

Unfortunately, the strict convolution techhiquc is not appropriate in inhomogeneous

media, although, its "cousin" superposition technique may be applied. The relationship
betwccn vaﬁous‘&ose calCulatlon algorithms and.thc inherent assumptions have been
documented. The ultimate goal remains to incorporate these algorithms into i'cutine _
treatment planning in order o treat the cancer pasent cptimally with radistion.
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1.0 Introduction to Radiotherapy Dose Computations

Radiation therapy is one of the three common techniques used in th[c treatment of
cancer. Itis used to treat 55% of all cancer patients in Alberta, as part of the overall
manag;mcm of the disease. In using radiatiqn, thrce basic strategies are currently followed
in order to improve the probability of cure and minimize the chance of treatment
complications: |

- 1) A uniform high dose must be delivered to the target volume (e.g. zone of
known disease, including pathways for spreading disease).

2) Specific critical structures must receive as little dose as is reasonably

achievable (e.g. spinal cord).. i

*3) Total encrgy delivered (or integral dose) to the entire patient should be \

minimized to improve the overall tolerance to irradiation (e.g. immunological

competence).
These threc requirements are all related to the quaf_tity of dose delivered to ; r‘egion
in the patient. The absorbed dose, or dose, is defined as the energy absorbed from ioniz’ing

radiation per unit mass of tissue.

Thus, the problem in radiation therapy from cﬁhysical viewpoint is to predict and
dclivcr a known quantity of dose to specified locations. The Eterﬁational Conym'ssion on
R;diation Units and Measurements (ICRU) recommends that dose be delivered to the |
target volume with an error of less. than £5% QCRU 24, p45-50). A similar argument has
been mdde for normal tissue irradiation if thc dose approachcs the tolerance levels of
normal tissue. This is only an estimate of the required accuracy smcc the chmcal

) measurcmcnt of human response remains sibjective. Nonetheless, increases in dose of 5-
10% have certainly produced unexpected treatment complications (Task Group 10, 1979).
Each step.involved in the dchvcry of dosc (machine cahbrauon, patient posmomng, dose

o
© Ky
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calcﬁlation) must therefore be perfo;Tncd with an-accuracy better than £5%. Cunningham
(1982, p 103) has recommended that an accuracy of 3% be achieved in the dose
computation step of treatment planning. . ’

In order to achi¢ve this level of computational accuracy, the "input" to tffe '
calculation algorithm must be accurately known. Computed Tomography (CT) scans with
X-rays or magnétiz: resonance yield the precise three dimensional (3D) description of

atient anatomy required to localize tumeur and normal tissues accurately, provided the
;Lcnt is imaged while in the treatment po\sition ( Battista et.al. 1979, Henkelman et.al.
1984). The radiation sources and beam modifying devices can bc accurately spcciﬁed.
Thus, one of thc major causes of uncertainty duging treatment planning lies in the dose
calculation algonthm per se. For the computed dose to be accurate w1thm 13%, and
assummg negligible (or random) errors resulting from the spcc1ﬁcat10n of the above ' mput" ¢
parameters, the dose calculation algorithm alonc must be accurate to better than +3%.

Aceuracy is not the only "yardstick” to assess the performance of a dose calculation
algon'thm. Thcré is a competing fgctor, éalculation speel, which in general varies invers;cly
with the acéuracy of the calculation. For a doée calculation algorithm to be used clinically
for i mtcracnve treatment planning, the calculation nmes must be reasonable. For example,
the entire calculation of a 3D dose dxsmbuuon of 64x64x64 pomts should id Ily bea fcw

' mmutes per beam!. To date, no calculation algonthm has achleved this combined level of .
" accuracy and speed; the use of W Qnal planning with methods c_)f limited accuracy
and acceptable speed (}- 1 minute per bearn) is today's comthon practice. ‘

g —
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The advent of a ncw Balculanon algonthm - thc ‘Convolution method” - may

change this situation (I\ﬁacklc et.al. 1987 Boyer and Moc 1986, AhnCS_]O et.al. 1987,

Mohan et.al. 1986). However, before adopting an algorithm for clinical trcatment

| planning, a series of questions should be answered:

*  What are the implicit and explicit physical and mathematical assumptions?

» How accurate is the algorithm for test cases where dose measurements are

possible?»
* How long does it take to calculate a complcte%D' dose distribution?

* Is the algorithm easy to use from an operator's point of view?

* How difficult is the algorithm to implement and maintain from a software

perspective?

*  Will the calculation assumptions affect the dose results to a level which is

S
» v ?

clin'ta)lly significant (i.e. 3%)?
| -

This thesis poses the fundamental question, "Is the convolution algorithm clinically
useful far calcdlating dose distributions for rr;égavoltage photon /beam.'s? ". This question
will be answered by examining the previous questions. Thus, before determining the
applicabiliiy of the convolution algorithm in solving the clinicdl problem, as depicted in
Figure 1.1, we must first isolat; the assumptions of the algorithm and verify its
performance under the ideal conditions, as depicted in Figure 1.2. Table 1.1 surmarizes
the dxffcrcncc between these two situations. Comparisons betwccn calculated results and

expcnmental results should initially be performed in snuatlons which match the "ideal

situation" as closely as possible.



N

Primary collimator

N

N\

Field ﬂgnqning filter -

Secondary collimator

Field modifying device

Patient or phantom

Figure 1.1 The "real” situation.

e



Figure 1.2. The "ideal” situation. , | ‘



inhomogeneous medium yes no,
finite medium yes no
divergent beam yes no
poly-energetic beam yes no
non-uniform beam yes no
beam modifying devices yes no
dimensionality 3D 2D

Table 1.1.. Cbmparison of the real and "ig’eal" dose calculation situations.

The intent of this thesis is to demonstrate the Ifcamblhty of the "convolution" modcl
under a restncted set of conditions (See Fxgure'i .2) before extending it to.handle more_*_
complex situations. Thus, this thesis is mtendcd to review the foundations of the
convolution algorithm and provide a "solid footing" for its future evolution. A detailed
investigation of this type is timely since many of the inherent assumptions have been

- obscured by frantic development (Convolution 1986).

The answer to the "fundamental quesuon is mcthod1cally developed through the

following four chapters of this thesxs

Chapter 2 examines the interactions of radiation with matter. .This presents a
consistent and concisé overview of the fundament concepts required to examine the
physical basis of th;s convolution algoﬂthm The subjects to be discussed inclu
interaction mechanisms, radiation field quantities, the nansport equation, and iation
equilibrium. These concepts are rélatéd through a most general ekpressio )
dose._This chapter ooncludcs the mtroducuon of concepts and Chaptcrs 3

‘ results of this i mvesugatxon

& v

Chapter3 begmbyspecxfymgthepmmemxequimdmdcﬂneadowcalcuhdon f

————
-

problem. The most geqcral expmssion for thc absorbeddoae is then W,ﬁmn i



number of different viewpoints. A Green's function formalism is eventually reduced to a
superposition integral, which forms the basis of the convolution algorithm. The
assumptions of this algorithm are explicitly stated, and the kernels required to evaluate the )
convolution integral are examined in detail. After the convolution integral is represented in
a form amenable to machine computation, an interesting reciprocity relationship is

|
examined. *

Chapter 4 evaluates one-dimensional and twe-dimensional.convolutions in real
space. Aftera review of Fourier techniques, the 2D convolution is perforged using Fast
Fourier Transforrps. Combparisons are made between the two techniques for evaluating the _ _
convolution. Calculated results are compared to experimental data, and a dg'scussion of the |

practical limitations and techniques for overcoming some of the convolution assumptions

ensues.

Chapter 5 contains a gcxﬁral discussion of calculation algorithms using kemels, and
a specific discussion of the convolution algorithm. Areas requiring furthet investigation in
order to develop these "kernel based" calculation algorithnﬁare suggested. The |
o

. . T, . . /s .
fundamental question posed by this thesis is answered in the conclusions to this thesis.
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v - Chapter 2 %

Interactior_l of Radiation with -Matter

Knowledge is of two kinds.
* We know a subject ourselves,

or we know where we can find information upon it.

Samuel Johnson
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.0 Interaction of Radiation with Matter

This chapter summarizes the terms and fundamental concepts required to determine

Qtl{c Jose distribution resulting from an arbitrary photon beam impinging on an arbitrary
P

-phantom, as depicted previously in Figure 1.1, It begins with a brief discussion of the

mechanisms through which radiation interacts with matter. Quantities used to describe a
radiation field (e.g. fluence, energy imparted) and its interaction with matter (e.g.
interaction cross sections) are defined . These quantities are then used in specifying the
‘absorbed dose’. It wi°ll be seen that the determination of fluence is a major problem and so
particle transport equattons and their solutions are briefly described. Radiation equilibrium

is discussed as it relates to the simplification of the particle transport and absorbed dose -

problems.

We are interested in "absorbed dose" since {t is related to the biological damage
inflicted by 10onizing radiation. lonizing radiation éonsists of charged (e.g. electrons or
positrons) and uncharged particles (¢.g. photons) capable of causing ionizations.
lonjzations may either be caused directly through interactions with thie atomic electrons
(e.g. Compton scattering); or, indirectly through interactions wlg‘g;f;ducc particles
capable of causing ionization directly (e.g. pair production). g ’

Primary ;;hotons interact in a variety of ways which scatter or absorb the photon,
and may or may not liberate a charged particle?. Charged particles arc directly responsible
for the deposition of energy in the medium. The number of interactions experienced by
photons prior to their "death” or prior to exiting the medium are several orders of
magnitude fewer than. &osc experienced by electrons. For example, a 0.5 MeV electron
makes about 100,000 collisions along its path, while a photon of the same energy would be
completcly absorbed after about 10 collisions in an infinite medium (Berger 1963). Ina

g
2An interaction is considered a process that alters the direction and/or energy of the incident particle.

AN



f

clinical situation, the approximate number of photons incident on a patient for a.'simplc' 3
ficld treatment of a mediastinum, using S MeV photons in a 10x10 cm? field is in the orddr
of 1012 photons for a dose of 10 Gy. Thus, there are many interactions contributing to the
deposition of energy in a patient. The task of tracking each particle through its many
interactions in order to keep track of the energy deposition appears monumental. In an
cffort to determine "how much” energy is deposited, let us first look at "how"” energy is

deposited in a medium.

2.1 Interaction Mechanisms .

Intéraction m_cchanisms are the mcan; by which ionizing radiation interacts with
matter. Interactions are characterized by interaction coeffjcients which are average
quantities dependent upon thé:type and energy of radiation, the type' of matter to be

-

interacted with, and the type of interaction. The most fundamental interaction coefficient is
the (collision) cross section, 0, which is the probabilit; of a single particle interacting with
a single target. Photon interaction coefficients to be discussed (section §2.1.1) are: linear
attenuation coefficents, mass attenuation coefficients, mass energy transfer coefficients,
and mass energy absorptiox; cocfﬁgicnts. Charged particle interaction coefficients to be
discussed (section §2.1.2) are: total mass stopping power, collisional stopping power,

radiative stopping power, and linear energy transfer.

L 3
' [

2.1.1 Photon Interactions

The photog interaction mechanisms are classified in Table 2.1 according to the
particle with which the photon interacts and the result of the interaction. Incident photons
used in radiation therapy have maxxmum incident energies of 'up to 30 MeV from

11



accelerators; so the important interaction mechanisms for the energy range of interest

in this work are suitably highlighted.

These interaction processes are all statistical 1n nature. The probability of each
competing process can be exp\résscd as a collision cross section for the specific process. A
collision cross section is the same as the linear attenuation coefficient if the presence of
multiple targets does not affect the interaction probability (i.e. there is no 'shielding’). The
in(crug"tion mechanisms with very small cross sections are deemed unimportant in this work

and are dealt with in vanous references (Attix 1986, Fitzgerald et.al. 1967, Evans 1955,

NBS 583, ICRU 28). The important interaction mechanisms will now be discussed .

Result of interaction
interaction . Elastic scattering | Inelastic scattering
© with Absorption (coherent) (incoherent)
Atomic photoelectric Rayleigh Compton
electrons “effect scaftering scattering °*
Nucleons photonuclear Thomson Nuclear resonance
reaction scattering scattering
Electric field of pair Delbruck
charged particles | production scattering
or nuclei
Meson field of photomeson
nucleons production

Table 2.1. Photon Interaction Mcchanis;ns.

2.1.1.1  Photon Interaction Coefficients
Photon interaction coefficients are useful for characterizing interactions between
photons and matter. The rotal linear attenuation coefficient , H, can be used to determine

the number of photons which have interacted while traversing a thickness, x, in a medium

of density p.

12
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N = Ny e Hx (2.1)
where
N is the number of particles that did not interact in traversmg a
distance x

Ng is the number of incident particles
u is the linear attenuation coefficient [cm™']
X 1s the distance travelled in the medium [cm]

Thus, the number of particles "removed"” from the beam is given by:
Ninteracted = Ng (1-e7HX). _ (2.2)

The totakl linear attenuation coefficient is determined by summing the linear attenuation

coefficients for each of the individual interaction processes.
H =T + Ccoh ¢+ Oc *+ K ) [Cm—‘] (2.3)

where A

s is the total linear attenuation coefficient
T is the linear attenuation coefficient for photoelectric absorption’
Oc is the linear attenuation coefficient for Compton scattering
Ccoh is the linear attenuation coefficient for coherent (Ralelgh)
scattering

k is the linear attenuation coefficient for pair production

The mass anenuation coefficient , defined as the linear attenuation coefficient
divided by the density of the medium (u/p), is a useful éuantity since it is indepentent of
the actual densify of the absorber. This stems from the fact that interaction probabilities are
exprcséiblc as Cross sections per atom, ¢, akK, and ,60. We can relate mass attenuation

coefficients to atomic attenuation coefficients (ap) which describe the attenuation per atom

of the material (see equation 2.4).
M NA .
— = — [cm2/g] (2.4)
p A

where . .

(u/p) is the mass attenuation coefficient [cm2/g)

NA is Avogadros number [6.02205 X 10 23 atoms/mole]

A is the atomic weight [g/mole]

all is the atomic attenuattfoa—’coemclent [cm’/atom]
[+

»



For Compton interactions, an electronic attenuation coefficient (e0) describing the

attenuation per electron can be related to the atomic attenuation coefficient.
a0 = Z 0 [cm2/atom] (2.5)

where -
ad 1s the Compton atomic Cross section [cm2/atom)]

v o0 is the Com@ton electronic cross section [emZ/electron]

Z is the atomic number [electrons/atom] R
el .

Attenuation coefficients answer the question "How many interactions occur?”, but
if our interest is in the dose, we need to a?swer the questions: "How much of the incident
photon energy is rr;ansferred to kinetic energy of charged particles?", and "How much of
the transferred energy is actually absorbed by the medium?".

There :re numerous references ~.vvhich define two or more terms in an effort to
answer these qucétions. Unforplnately, there has been much variation in the use of words
as well as their mcanir{gs (i.e. there is a significant difference between r"impaned energy"
and "energy imparted” (ICRU 33). A very lucid explanation of these terms has been given
by Attix (1986). ) '

The average energy transferred, E—tr, is the average amount of the incident photon
encrgy-which is converted tb kinetic energy of charged particles during the initial interaction
of the phot(;n. The average energy absorbed, ?ab' is the average amount of the incident
photon energy which is eventually absorbed by the medium from electrons during their
slowing down process. There are two energy attcnuatior'l coefficients which characterize

‘the energy tranferred and the energy absorbed. .

The mass energy transfer coefficient , uy/ p, describes the average amount of

energy transferred to kinetic energy of electrons due to the initial interaction.
e \ . .
ste/p = u/p (En/Ey) | [cm?2/g] (2.6)
where : ’
ttr is the average energy transferred to kinetic energy of electrons
per initial interaction )
Eg ¥s the incident photon energy

14



The mass energy absorption coefficient , Jap/ p, describes the average energy

absorbed by the medium during thetslowmg dm\m process

Mab/p = W/p (ean/Eq) ° [ecm2/g)  ~ (2.7)
where
€ab is the average energy absorbed by the medium from charged
particles

Ep 1s the incident photon energy

L3

The two mass energy coefficients are related as follows:

ab/p = pirlp (1-g) [em2/g] (2.8)
where

Hab/p is the mass energy é’bsor’ption coefficient

Mt/ p is the mass energy transfer coefficient <

g represents the fraction of energy from charged particles wmch is
re-radiated as bremsstrahlung radiation during the slowing
down process. This fraction is assumed NOT to be locally
abserbed and so does not contribute to dose. ( i.e. g = Cetr -

- €abl / € )

The mass energy transfer coefficient has the same units as the linear attenuation
coefficient and will al“ways be smaller than the linear attenuation coefficient (see equation
2.6).‘ «<he linear attenuation coefficient can be decomposed into: the energy '‘ransfer’

coefficient (), and the energy 'scatter’ coefficient (j1g) according to conservation of
energy in the initial interaction:

M= Ui+ Hg [em-']  (2.9)
where ’ . . _
M is the linear attenuation coefficient representing the probabilitu of

any kind of interaction which removes a photon of energy Eo

from the beam.

Htr is the energy ‘transfer’' coefficient representing the energu
initially tranferred to the medium.

Hs is the energy 'scattering’ coefficient which represents the energu

‘which is re- directed as scattered photons

For cxample (see Figure 2.1), when a single 10 MeV photon interacts with carbon{

15
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only 7.04 MeV is eventually absorbed in the carbon. The difference, 7.30-7.04=0.26
MeV, is re-radiated as bremsstrahlung and not locally absorbed. The remainder of the
incident photon energy (i.e. the scatter component —E_;), 10.0-7.30=2.70 MeV, is scattered
from the beam. This energy distribution is shown'in Figure 2.1.

The total attenuation coefficients, energy transfer coefficients and energy absorption
coefficients are averages based on the individual intcréction coefficients. Now, let us look
at the individual attenuation cocfﬁcicnts for eacl; of the major interaction mechanisms

o

(’F able 2.1), in order of increasing importance as a function of increasing energy:

photoclccmc effect, Raylc1gh scattering, Compton scattering, and pair production..

bremsstrahlung Eab: 104 mev
radiation X
0.26 MeV Yelectron tracks

E =10.0 MeV

incident photon

-

Figure 2.1. An example of the energy transferred, absorbed, re-radiated, and scattered.
. )

| | A\
2.1.1.2  Photoelectric Effect

The photoelé't:tﬁc interaction (see Figure 2.2) consists of a photon being absorbed‘
by an atom, and the subsequent ejection of a "photoelectron" The kinetic energy qf the
ejected clectmn is equal to the photon kmeuc energy less the electron binding encrgy Thc

= - \‘ »

16



.
excited atom emits fgharacteristic (or flourescence) radiation as it returns to the ground state.
Prior to leaving thc;, atom, this flourescent photon may suffer an "internal photoelectric"
interaction ejecting an Auger electron. The photoelectric process accounts for 50% of the

interactions in water for photons with energies up to about 35 keV.

ejected
photoelectron

incident photon
Auger
electron

flourescence
radiation

-«

Figure 2.2. The Photoglectric Effect

Theoretical determination of the interaction cross sections are difficult presumably
because the atom js involved as a whole; photoelectric cross sections are therefore
> 3‘\ '

predominantly empirical . The approximate dépendcnéc of the atomic cross section on

atomic number (Z) and incident phoﬁ energy (Ep) is well known (Johns and Cunningham

1983):
zn
at = - (2.10)
. : E03 o . .

where * : - o .
n= 4.8 for biological material (Z<15) )
« . 4.0 for 16<2<82 ) T
The-mass attenuation coefficient for the photoelectric effect is

T — = gt — . - [em2/g]  (2.11)

P A
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Since Z/A is roughly constant (except for hydrogen), the mass attenuntion coefficent varies

inversely with Eg3 and proportionally to Z" where n=3.8 for biological material or n=3.0

for higher atomic number materials.
/

\9 The mass cnérgy transfer coefficient is given by :
y/p = T/p (1-8/Eg) [cm?/g] (2.12)
where '

8 is the average energy of the incident photon “escaping” as
flourescent radiation. This corresponds to the binding energy
less the energy imparted to Auger electrons.

Eg is the incident phot°<)n enerqy

. N
Since the binding energy for biological tissues is about 500 c\fi‘thc photoelectron receives

almost all the incident photon énergy; Ignoring the flourescence radiation, Ttr = T :

The mass energy absorption coefficient is given by
Tab/p = Tr/p (1-g) lcm2/g] (2.13)
where

[]
. g is the bremsstrahlung radiation from all photoelectric and Auger
electrons

|
Since the energy of the photoelectrons and Auger electrons is in the order of binding

energies , the production of bremsstrahlung is negligible (see section §2.1.2.1). Thus,
Tab= Tar= T. v

18
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2.1.1.3 Rayleigh Scattering

In contrast to the photoelectric absorption of a photon, Rayleigh scattering occurs,
when bownd atomic electrons cooperatively scatter an incident photon (sc;: Figure 2.3).
This is a coherent elastic scattering process confined to small angles,which can contribut'c
up to 10% of the total interaction cross scctioﬁ for incident photons below 0.1 MeV in

water. '

scattered
N ) photon

electrons
in atom
“

B incident photon

Figure 2.3. Rayleigh scattering

2.1.1.4 Compt(;n Scattering

The scattering of an mmdent photon by a "vxrtually frec" electron is called Compton
scattering (Figure 2.4). ThlS mechanism is inelastic since some small amount of energy is
required to overcome the binding energy of the scattering electron; and it is incoherent
because "virtually free" electrons scatter indc;;cndcm]y of each other. This proccsé -
accounts for about 90% of all cncrgy transferred by incident photons mtcracnng in water in
~ the energy range of 0.1 toSMcV Thxsmtcracnon:ssnﬂedmdetaﬂt@rcbecauseitwﬂl
: help us interpret the convolution kernels in Chaptcr\3 )
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scattered
photon

E

incident photon

recoil
Compton
electron

Figure 2.4. The Compton Interaction

" . £
The most fundameéntal interaction coefficient, the electronic cross section , eTc,

describes the probability of a Compton interaction with an electron. The differential

electronic cross section for the probability of a photon being scattered into a unit solid

angle (£2) about angle ¢ has been calculated by Klein and Nishina from quantum
mechanical principles (Heitler 1954). These cross sccm stétcd in equation 2.14 and

have been tabulated by various authors (Hubbell 1969, Nelms 1953). Tk
deG¢  ry? o 2 : o2(1-cosg)?
z X 11 + cos2g
dQ 2 L1 +o(l-cosp) | 1+ o1-cos9) ] *
” . (219
L K v oy
where ‘ ) . .
deSc/dQ is the differential cross section per electron for scattering
N a photon of frequency v, with a deflection ¢ into a solid angle:
. dQ '
ro? = (e2/mgc?)? = 7.94X10-28cm? is the electron classical radius
squared ) . : : '
” o = Eo_/mocz is the incident photon energy in units of electron rest
mass’ ’

-
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The total electronic cross section can be found by irﬁs,gating overall scattering

angles, yielding the probability of scattering at any angle.

o

1+t 2(1+ox) In(1+20)
eC¢ = 2TU'0 { [ ]

o2 1+2c o )
In(1+2x) 143 ‘ ‘
. N - } - (2a9)
2ot (1+200)2

\

The cross section representing the enérgx scattered can be obtained by weighting
the total cross section with the-fractional energy carried off by the scattered fnho;on. (1

o(1-cas9) ). This is given below

deCs I'oz 1 e \ 0(2(] -COS(P)Z
z [ JX [1 + cos2P « - }
dQ 2 L1+ o{1-cosy) 1 + o{1-cos®) -
) X {2. 16) .
* - v ‘:, o
The total energy scattering cross section is '\
[ 4o (1+2a) 1. -
eOs = 2T, [ : — - (1+20t-20¢2) + — In(1+2a) }
3(1+20)  o2(1+2c1)2 203
- .
' '1\ (_2.]7)

The Compton electronic energy tran.sfer cross section is the av gc fractional

 energy loss of the incident photon and is obtained by subtraction

eStr = eOc - s ' SR T (2.18)
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The Compton electronic energy transfer can alternately be considered as the energy gain of
thejecoil electron:
eStr = I¢ (Ee/Ep) ‘ (2,19)

where
Ee is the average energy of the Compton recoil electron

Figure 2.5 demonstrates the relative importance of ¢O¢, eTs, and eOtr as a

function of photon energy. Figure 2.6 shows the arigular distribution of the number of

Compton recoil electrons for different incident photon energies.
{

Compton Cross Section
per Electron (cm2/e-)

10 AN I ey Lg Lo g wry L LR J T."I'l T 1 T%vY
01 N /C’ 1 10 100

Photon Ehergu (Mev) . =

Figure 2.5. The togl electronic Compton coefficient (eS¢), the Compton scatter

coefficient (¢0's), a\d the Compton transfer coefficient (edtr) fora free clectron plottcd
against incident Jho n energy.
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Figure 2.6. Angular distribution of the-number of Compton recoil electrons per unit ‘.
interval of lec

+

2 1.1.5 ,Pair Productlon , ,
Photons with energy in excess of 1 .02 MeV may be absorbed in the nexghbourhood
of-an atormc nuclcus and produce an c1ecnon-pos1tron palr (Pagure 2 7) 'I'he pos:tron is
'eventually annmxlated by recombmanon wnth an elecu'on of the absorbmg medmm, y:eldmg
u apmrofphonons(see§2122) Pan' onbemsdwdmnmmmmﬂon ‘-
- (>50%)mwawrformcldentphotonewgwsaboveabmn30MeV FE ot



The atomic cross section for pair production, varies pmp«»nionall; to 7.2 and varices
approximiately as log(Eg) (Attix 1986). Again since Na/Z is fairly constant, the mass
attenuation coefficient vanes proportionally to 7 and roughly as log(kg).

< The mass transfer coefficient Is given by

xtr/p = x/p (1-2mgc?/Ey) [crlnz/g] (2.20)

where
moc? Is the rest mass of the electron (0.511 MeV) . )

The mass energy absorption coefficient is given by:
Kap/pP = xe/p (1-9) .lcm?/q] (2.21)

where
g is the percentage of the transferred energy emitted as

bremsstrahlung radiation by either the electron or positron.

atomic¢
. nucleus
E ucleus

incident photon PosnronAclcictrgg pair

P 'e
f ‘/ }x
L i

Figure 2.7. Pair Production

‘ -
2.1.1.6 Comparison of the Cross Sections

v

"Table 2.2 summarizes energy dbsorption and scattering coefficients’for each of the

interacfon mechanisms.

¢
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Transferred enerqy | Scattered energuecomment
T /v = 1-8/Eg ts/Tt = 8/Ey .|t = Ta
o Ot/ 0c = Ee/Eyp... Os/C¢ = ... Oc = Otr + Os
Ocoh | Otr/ O con=0 os/ocoh=1 ignore: elastic smalk angle
K kye/x = 1-2mc?/Ey [ xs/k = 2mc?/Ey |k = xa

Table 2.2. A comparison of the energy transfer and energy scatter coefficients.

Figure 2.8 demonstrates the 1so-importance of the three major interaction

mechanisms as a function of photon energy and atomic number. For example, for a photon

energy of (.1 MeV the photoelectric and Compton effects are equal for an atomic number

of 23. For larger Z, the photoelectric effect is dominant and for smaller Z the Compton

ctfect is dominant. For a fixed Z (water, bone, and lead are shown on Figure 2.8), a more

detailed examination of the interaction cmﬁctions is possible. In this work, we restrict

our attention to water equivalent material where the Compton effect is dominant for the

energy range of 35 keV to 30 MeV. However, it should be noted, that for lead the

- Compton effect is dominant only for the energy range of 600 keV to 5 MeV.

Atomic Number of Absorber

Figure 2.8. Relative importance of o, z, and k as a function of energy and Z
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] Photoelectric effect . Pair production
- dominant dominant
- e o=
Compton effect
dominant
reey v
1.0 5§ 10 50 100
Photon Energy (Mev)

¥

A

Figure 2.9 shows the relative inipox;tancc of the major photon interactions occurring
in water. The relative importance is ineasured in t@ohys:onc_uapawmgeofﬂw_wml
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number of interactions and alternately as a percentage of the total energy transferred. We

see that in water, Compton interactions account for 90% of the efergy transfer to electrons

in water for the energy range of 0.10 to 5.0 MeV. /
/
100
o0
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« Lt
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.01 | 1 10 100
. Incident Photon Energy (MeV) i

Percentage of
Total Energy Transferred

.01 1 1 10 100

Incident Photon Energy (MeV) .
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2.1.2 Charged Particle Interactions

The interactions of charged particles set-in-motion (electrons and ‘;‘)ositrons) by
incident photons are of primary importance in X and ¥ radiation dosimetry since these
particles are the dircct’dcpgsitors of energy. Charged particles experience Coulomb
interactions; and positrons, since they are antimatter, eventually experience an annihilation

process. These interactions will now be briefly discussed. : ¥

2.1.2.1 Coul081b Interactions

Charged particles can undergo both elastic and inelastic Coulomb interactions.
Inelastic interactions are those for which the incoming particle loses energy resulting in
atomic ionization or cxcitation;.whilc elastic interactions simply redirect the incoming
particle with kinetic energy conservation. These Coulomb interactions may occur with the
electrostatic field of the atom as a whole, individual atomic electrons, or the nucleus itself.
The electrostatic field that the incoming charged particle mainly interacts with, can be
determined according to the‘ impact parameter, b, and the atomic radius, a, as illustrated in

Figure 2.10. ' N

Figure 2.10. The impact parameter and atbmic radius.

.
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At a great distance from the atom (b»a), the Coulomb field of the charged particle
"feels” the atom as a whole, with the net result of transferring a little energy (=eV) to the
atom. Since these di’stant interactions are more probable than "near hits" with individual
atomns, these "soft” interactions occur the most frequently and account for roughly half the
energy transferred to the medium (Attix;}1986).

As the impact parameter approaches the atomic radius (b=a), tHe charggq parﬁclc
will be chiefly interacting with an atomic electron. In these "hard" collisions, the incoming
particle transfers a significant fraction of its _incidcm”cncrgy to an atomic electron and

"knocks" it from the atom. These electrons (called §-rays) also undcfgo Coulomb

interactions depositing energy along a track separate from the primary charécd particle (see
Figure 2.11). Although hard collisions are not as numerous as soft éollisic;;ls, the fraction.
of the incident energy of the primary particle transferred tilmugh Rard collisions to the
medium is generally comparable to the fraction of enérgy transferred through soft
collisions (Attix 1986). - s

After cxpcn'cncing/ the previous two interactions, the charged particle may also '
penetrate the atom (b«a), and interact with the clcctrosta'n'C field of the nucleus. In 97-98%
of all such interactions, the particle scatters elastically and does not excite the nucleus or
radiate energy” This mechanism has a high probability for occurrence with electrons in the
"Mev range, and is largely responsible for {he tortuous path followed by the eleciron. The
remainirig 2-3% of the interactions result Bgniﬁcant energy loss and the emission of
Bremsstrahflung (braking radiétion) radiation. While this interaction is responsible for
energy loss of the incident particle, it does not directly result in iopization or éxcitation of
the atom (Attix 1986, Nahum '19‘85). Bremsstrahlung radiation is relatively u;ximportant in

tisspc—likc materials for electrons (and positrons) below 10 MeV.
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Figure 2.11. Electron tracks.,

2.1.2.2 Positron Annihilation

Positrons experience the same Coulomb interactions as do electrons. However,
sincc positrons are antiparticles, they will eventually be captured by an electron in the
fnedium and be annihilated. This annihilation pmcesg is more probable for low energy
positroris and results in the production of two photons. If the posit;'on and electron are
both at rest when they undergo annihilation, _thcn two photons will be produced each with
6.51 1 MeV and travelling in opposite directions (as illustrated in Figure 2.12).

-



h 0.511 MeV photon

slow positron .

free electron

+ 0.511 MeV photon

Figure 2.12. Kinematics of positron annihilation.

I »
2.1.2.3  ~ Stopping Power (

" The large mmmber of small energy losses due to "soft" collisions has lead to the
"continuous slowing down appr.oximation" (CSDA). The average energy loss per unit path
lcn‘gth 1s rc;)resemed by the linear stopping power . In analogy with the mass attenuation

. coefﬁcxcnt for photon interactions, Lherc isa cor(n:spondmg mass stopping power. Thc

stopping power can also be separated into two components; the collision stopping power
and the radiative (or bremsstrahlung) component (equation 2.22). These will be briefly

described.
dE dE dE
[—- ] = [-—— ] + [-——— ] [MeV/cm] (2.22)
- dl. “tot dl col gl rad . .
where : \

(dE/dl)tot is the total linear stopping power representing the total-

¢ energy lost by a charded particle m traversmg a distance dl in

’ material of density p '

(dE/dl)co| is the linear collision stopping power representing the
average energy lost by-a charged particle in traversing a
distance dl due to “saft” and "hard" collisions

(dE/dl)raqg is the linear radiative stopping power representing the
average emergy lost by a charged particle in traversing a
distance dl due toe bremsstrahlung events with the atomic
nucleus - - -



In summary, Figure 2.13 shows the mass collision stopping power for water as a
function of electron kinetic energy. For example, an electron with a kinétic energy of 10
| MeV has a collision stopping power of about 2.0 MeV cm?/g (2.0 MeV/cm) in water
(ICRU 28).

v T T T T 1 | N
o - 10 20 30 40 50 S
' Electron Kinetic Energy (MeV)
Figure 2.13. Energy dependence of the collision stopping power in water.
, _ :

Figure 2.14 show the radiative stopping power as a function of clcctron kinetic
cncrgy The relative 1mportance of the radiative stopping powcr to the collision stopping
power is given approxnnatcly by equation 2.23 and is plotted in Figure 2.15 for various
media. ! -<

Srad EZ |

—_— — - : (2.23)

Sco] 800 d ‘ *
where . .

E is the electron energy- (MeV)
Z is the atomic number of the medium .
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Figure 2.14. Energy dependence of the radiative stopping power in water.
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2.1.2.4 Linear Energy Transfer

The second interaction coefficient used to quantify energy loss is the linear ehergy
|

transfer (LET) or restricted linear collision stopping power ,La.

Y

dE N
LA = [— ] - (MeV/cm] (2.24)
di A
where
(dE/dl)a is the energy lost by a charged particle in traversing a
distance dl due only to collisions w1th electrons in which the

L energy loss is less than A. ;
Note the relationship between the collision stopping power and the LET; - h} -
: dE
. Loo = [—- J \ ‘ (MeV/cm] (2.25)
dl ' -

L.. "counts” all collision energy losses, as does the collision stopping power.
Figure 2.16 plots the total stopping power, collision stopping power and linear
energy transfer (A=10 keV) as a function of electron kinetic energy. In the energy range of

interest in this work (up to 30 MeV), the radiative stopping power is relatively unimportant

“

in water.
- Total Loss
o0
o
E
(%] -
%
. Collision Loss
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o .
A «
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Flgure 2.16. The energy dependcnce of the lmear energy transfer funfnon (A= lOkeV),
total and collision stopping powers m water. = .



2.2 Description of Radiation Fields

This secton will define and illustrate the terms used to describe a radiation field

(fluence) and the transfer of energy (energy imparted) to an absorbing medium, resulting in

¢

the deposition of absorbed dose.

N\

2.2.1 Fluence ) J Y

A complete dcscn'ption of a radiation field requires that for all points in space (r),

and at all times (t)3 thc number of particles (N) of type (i), kinetic energy.(E), and direction
s AN
" ‘flﬁqd The function Nli,E.Q; r) represents such a quantity.

of motion (Q’
However, the use of ﬂns function is somewhat limited since it will answer the question,
"How many particles are tr&:vellmg exactly in the direction Q?"; but in practice we are more
_ interested in answering the question "How many particles are travelling in the direction
Q+AQ?". Thus, the particle radiance, Pi g(r), is of more use. The particle radiance,
defined below, has the meaning tf1at Pi.a(r) dQ da, is the expectation value of the
numbcr of partilees N of type i traveling in the direction dQ around Q which at the point r

will pass throug'h the area element da , as shown in Figure 2.17,

d2N(i.Q :r)
Pialg = ——— <(2.28)
dQ da 1
Throughout this work, subscripts on functions will indicate a spectral distribution

of that function with respect to the subscripted vanablc(s) For cxamplc Pi.a(r) is the -

spectral distribution of the particle radiance with respect to particle type and direction of
motion. Pq and P(Q,,Q,) are related by the following equation, depicted in Figure 2.18.

-

3We arc interested in the dose distribution resulting after a time which is very large compared to the energy

redirection and depbsition events. Thus, the time dependence will be ignored hereafter in this discussion.

34
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Q, . ,
N(Q,y.Q,p) = J P dQ (2.27)
, Q

This function P g(r) is a field quantity which means that it has a value at each point

of space. This is stressed by writing Pi q(r) instead of just Pi.q.

-\-—\\
dQ?), €—
dal i:%entered at Iwith
its normal paralle! to Q
&
| NOT COUNTED.
NOT COUNTED. Not through da |
Not within cone of interest. COUNTED,
[ Y

Figure 2.17. Dcﬁnitio/n) of the particle radiance.
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Vg
N TdPialr)  BNGLE.Q i)
Pi_E.Q(r) = = (2.28)
dE dE dQ da,

-

The particle fluence for each particle type is a more common method of describing
the average number of particles at a point, irrespective of energy or direction. It is defined

below and depicted in Figure 2.19 for particle type, i.

Emax - dsN(l.E.Q; r)
- 9i(r) = j dE jrdQ _ . (2.29a)

0 471 dE dQ da;
d2N(i,Q; r) . i} :
= J QQ ———— AN i fcm-2] (2.29b)
41 dQ da; " \

A\

Equation 2.2§b may be written as follows.‘and interpreted as the number of particles

striking a sphere of cross sectional area Aa (see Figire 2.19).

9i(r) = AN(I) / Aa 5 (2.30)
where Voo
AN(i) is the total number.of particles of type i crossing the surface
of a sphere centered on the point of interest, r
Aa is the cross sectional area of the sphere' ,

3
/ Ly

2

~ Figure 2.19. Particle fluence. The total number of particles of all directions and energy

crossing the surface of sphere centered at r, divided by the cross sectional area of the -
sphere. . - . 2

missed
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The energy fluence, ¥(r), is obtained by multiplying Pg(r) by the kinetic energy of

each particle and integrating:
. rEmax ’ '
w(r) - st JdQ E Pea(r) [MeV/em?] (2.31)-
0 41t .

The particle fluence and energy fluence previously defined are scalar quantities.

-~

I'4

Vector quantities may be similarly established by representing Pg () in a vector
form:

Pea(r) = Pgalr) & . (2.32)
where .
4 is a unit vector in the direction of motion Q
- .

~

The vectorial particle fluence and vectorial energy fluence are used in radiation transport

theory, which we willdiscuss briefly in section §2.3 and are given by:

Emax
&(r) = JdE dQ Pgqlr) & : [cm-?) . (2.33a)
o e u
- rEmex : ‘ :
v(r) = jde de E Peolr) O [MeV/cm?]. (2.33b)
0 41T

L

As an example of the difference between the vectorial and scalar fluence, consider two |

identical particles tnivcfling antiparallel to each other; the vectorial fluence is zero while the

scalar fluence is not. ; .
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222 Energy Redistribution
In otder to determine th’thUl‘th dose to a point, the average cnergy deposited i
the volumie of interest must be known. In section 2.1 1.1 we discussed the mass encrgy
transfer, absorption, and scattering coetficients. These coefficients are based upon the
probability of interactions occurring anywhere and are independent of the volume size. At
this point, 1t is mportant that we make a clear disuncuon between these concepts. Refer to

Attix (1986) for a detatlad discussion.

"2.2.2.1 Energy Transferred

-

The energy transferred 1s the kinetic energy received by charged particles (e.g.

electrons and positrons) from uncharged particles (e.g. photons) in the specified finite

volume V, regardless of where or how they eventually expend that energy. Kinetic energy

transferred among charged particles (e.g. the creation of a 8-ray) is NOT to be included in
P., .E¢r. Stated mathematically, we have

Etr = (Ein)y - (Equt)zNon-radiative , $g (2.34)
where
*. €tr Is the energy transferred to charged particles in volume V

' (Ein)g is the energy of uncharged particles entering V
(Eout)gon-radiative is the energy of uncharged particles leaving V
excluding that energy originating from the radiative losses of

charged particles while in V (i.e. bremsstrahlung and

> - annihilation events) ; .
\
2.Q is the net energy derived from mass-energy conversions in V (m-E
‘ positive; E-m negative)

Positron annihilation results in a rest mass decrease, for which Q is positive. Pair
production is an example of rest mass increase, for which Q is negative.
<4 ?
>
A quantity of interest, closely related to the average energy transferred, is the

Kinetic Energy Released per unit MAss (KERMA). It is defined by:



KERMA = ¥ (utr/p) [(MeV/q] (2.35)
where
¥V is the energy fluence discussed in section 2.2.1 ]

Mtr/p ts the mass energy transfer coefficient discussed in section
2.1.11

2.2.2.2 Energy Absorbed

The amount of energy transferred to clcim)ns which is subsequently absorbed by
the medium is described by the cnérgy absorption. The amount of energy absorbed by the
medium as a rc.s:ult of the intial interaction in V is given by

€ab = (Ein)y - (Equp)y"on-radiative _ p.radiative , $Q (2.36)

>

Etr - Earadiative

where
Eab IS the energy absorbed by the medium
Eg 2diative s the energy emitted as radiative losses by charged”
particles which originate in V, regardless of where the
radiative loss occurs.

Note that pap 1s not only dependent on Z at the point of interest (as is pyr) but also along the
entire track length of the electron (since this affects the bremmstrahlung component).
A quantity of interest, closely related to the average energy absorbed, is the

Collision KERMA, defined by:

i

®
Collision KERMA = V¥ (yap/p) , [MeV/g] (2.37)
where
V¥ is the energy fluence discussed in section 2.2.1
Hab/p is the mass energy absorption coefficient discussed in section
2.1.1.1
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2.2.2.3 A Energy Deposited

In considering absorbed dose, we are interested in the energy deposited and ‘

remaining in the volume of interest. The quantity representing this is the energy deposited,

or as its often called, the "energy imparted” (K.R. Kase et.al. 1985, ICRU 33):

€ = (Ein)y - (Eout)y * (Einlet - (Eoutlet +2.Q " (2.38)
where
€ is the energy imparted to matter of mass m in volume V

(Ein)oy is the energy of all uncharged particles entering V

(Eout)z is the energy of all uncharged particles leaving V

(Ein)et 1s the energy of all charged particles entering V

(Eout)et Is the energy cif all charged particles leaving V

2.Q is the net energy derived from rest mass changes occuring in V
(m—E, Q is positive, E-m. Q is negative)

In summary, an example will illustrate the distinctions between the energy
coefficients. As shown in Figure 2.20), an incident photon of energy Eg expenences a
Compton interaction in the volume of interest and is scattered with energy E;. An electron
is set-in-motion with kinetic energy E and within the volume emits a bremsstrahlung
photon of cncrg)l/ E2. Upon leaving the volume, the electron has energy E'e and
subsequently produces another X-ray of energy E3. For this situtation, the energy

transferred, the energy absorbed, and the energy deposited within the volume are:

L4

Etr = Eg - E1 = Ee (239)
tab = Ep - (E\ + BEg » E;) = ke - (E2 + Es)
E = Eg - (E] + E2 + Ee) = ke - (E2 + E'e)

40
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9 ejected
electron

volume of interest
R :

Figure 2.20. Distinction between the energy transferred, absorbed, and deposited for a
Compton interaction.

€ is energy deposited and remaining within V by electrons and photons.

V(e " k-pn" electrons escaping the volume)
€ab is energy sonverted from photons to KE of electrons which remains as KE of electrons

(i.e. subtract all radiative losses of electrons originating in V). This energy may or may
NOT remainin V. |

Er 1S encrgy:gi\vcncd from photons to KE of electrons which may or may NOT remain in

In this example, we followed only one interaction. In practice many discrete events
contribute to the average energy deposited in a volume.

€ = 'Y 8¢ (2.40)
events '
where

€ is the energy imparted to the matter in the volume of interest
8ej is the energy imparted by the discrete event, i, occurring within
the volume.

‘Numerical Monte Carlo techniques can be used to follow the cascade of photons .
and charged particles which cross a sample volufi)e in order to cvaluﬁtc equation 2.38. This
' Win the generation of "the convolution kerns#" discussed in §3.3. Equation 2.38 -
may also be evaluated analytically as follows. |

3
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The net transport of energy through d A into tﬁte volume of interest (i.e in the

dircction -dA ) is the scalar product -dA - V. Integrating the energy fluence vector over

the entire surface of the volume yields the net energy flow (see Figuré 2.21);

2Ein - XEout = - § Vv . dA (2.41)
s(v) -

Applying the divergence theorem, the surface integral is transformed to a volume integral.

%w«m: JJJV-WdV (2.42)
S(V)

&

-y

Figure 2.21. Net transport of energy through the voluma of interest

-
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Combining equation 2.41 and 2.42 we can write the mean energy imparted to the

volume dV as:

€ = - JJ Jv-w dav + ¥Q (2.43a)
. d(zQ)
= J J J(-v-\y . ) dv . (2.43b)
.‘ dv ' .
where ,

2.Q has been written as the volume integral ot d(£Q)/dV
. ‘) - '

Thus, the energy imparted to a volume is seen to be the suméf the divergence of the energy

vectors, plus (or minus) any changes in rest mass inside the volume of interest.

~
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2.2.3  Absorbed Dose

- "Absorbed dose" is related to the biological damage inflicted by ionizing radiation
since the ionization trigggrs a sequence of chemical reactions which upset cell metabolism.
All interactions in which energy is deposited in tissue in the form of atomic ionization or

L . .
excitation, and increases in chemical or crystal lattice energy contribute to absorbed dose,

defined as (Carlsson 1982, ICRU 24, ICRU 33):

E .
D = lim [ —_— ] (2.44a)
m-0 m
1T u
= lim [ —_ — ] . (2.44b)
V-0 p \Y .

where: .
D is the absorbed dose to a point (1 Gy =1 J / Kg)

T is the mean energy imparted to an infinitesimal volume element
(1 J =6.2414 x 10'8 eV = 6.2414 x 10" erg)

m is the mass of the infinitesimal volume element (Kg)

V is the volume of the tnfinitesimal element (m3)

p is the density of matter in the infinitesimal element (Kg/m?3)

Equation 2.44b shows that in the limiting process of equation 2.44a, we requii‘e the

density of the matter to remain constant and the volume of matter to approach zero.
*However, as th\e volume of matter approaches zero, statistical fluctuations become more

prevalent, as illustrated by Figure 2.22. Thus, in order to evaluate equation 2.44a, the

following stipulations must be made: “

1) € must be interpreted to mean the expectation value of the energy imparted to

. the mass ‘

2) the mass must be small enough for the fh\xcnce to be ixnifonn within it but

large enough to contain many interactions so that statistical fluctuations will be

gegligible.
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Log m

Figure 2.22. Microdosimetry "dose". ) %

Substituiing ‘e from equation 2.43b into equation 2.44b, the dose can be written as
!

(Carlsson 1979):

Dz -— VW o — —— | - (2.45)

Equation 2.45 establishes a connection betwc;:n radiation transport thcory
concémed with the mot(on of particles and radiation dosimetry concerned with the rcsultant
energy deposition. Both radiation transport theory and radiation dosimetry are concemed
with interactions in an infinitesimal volume (Rossi and Roesch 1962, Roesch 1968,
Spencer 1971). As we shall see, the determination of the energy fluence, V¥, is very
difficult; and the next approach eliminates the need to determine the energy flu&nce directly.

Carlsson (1979) determines the amount of energy dcposxted in a volume of interest
vcx'y simply by summing the number of interactions occuring in the volume and mulnply‘mg
by the average energy deposited by an intcra;:tion. Mathématically t.



dN '
D - — TB& (2.46)
Q

- dm

\ <

where
dN/dm is the total number of interactions taking placeFper unit mas's

of the medium
8¢ is the average of the energies imparted by these processes

¢

The total number of basic processes taking place per unit mass of the medium can be

determined through interaction cross sections and particle fluences. Contributions to dose

may be from both external sources (teletherapy) or internal sources (brachytherapy).

dN dNinteractions dNsources
—_— = . (2.47)
. dm dm dm
. where
dNinteractions Hi(E)
L W TN (3 e — dE
dm i p
dNsources
—_— is the number of emissions from an internal radiation
dm source.

Combining Equations 2.46 and 2.47 establishes a generalized absorbed dose

. 3
equation.
D(R) = ¥ jm,g(r) SEI(E) dE o 5T (2.48)
i p(r) dm

where ‘
¢ie(r) is the particle fluence, differential in kinetic energy for

particle type i
Hi(E)/p is the total interaction cross section per unit mass for
" particles -of type i and kinetic energ'g E
BEi(E) is the average value of the energy imparted for interaction
processes initiated by particles of type i and kinetic energy E
dNs/dm is the number of nuclear transformations per unit mass
Bes is the average value of the energy imparted for nuclear
transformations (e.g.. a radioactive source)
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This is a very general statement which can be applied to the determination of -

absorbed dose for any radiation transport problem including primary radiations which
generate a shower of secondary particles. We have already dealt with the determination of !

Mi(E) and §€{(E). Section §2.3 deals with the determination of ¢i £(r), and §2.4 examines

simplications to the dose calculation problem when situations of radiation equilibrium exist.



’2 .3 The Transport Equation\

In order to compute the absorbed dose using equation 2.48, the particle fluence
differential in kinetic energy must %no»/vx/ Yor all particle types at the "point" of interest.
For a pnmary beam of photons, both piloton and electron fluences are required in the

general case. Unfortunately, this requires the complex solution of the coupled two particle
Boltzmann transport equation for which there appears to be no closed analytic solution for
an external beam incident on an arbitrary heterogeneous medium (Fjtzgerald et.al. 1967).
Under simplifying conditions of radiation equilibrium (discussed in section 2.4), a closed
| analytic solution may be possible. *This section will concentrate on the Boltzmann equation
for an arbi[rary radi\zikion source and medium. /

A transport equation relates the strength of radiation sources, the absorption ard
scattering properties of the matter present to the quantities that describe the radiation ﬁel(\i in
the medium. I%-cstrictin g ourselves to one'paru'cle‘typc, the transport equation has been

14

written as follows (Fitzgerald et.al. 1967, Roesch 1968)

S(E.Q:r) +[dE'[dQ" o o1r) pp.alE.8:E.6") = V-G q(r) + p(E)oe olr)
(2.49)

where , ;
S(r.e.Q) is the source term, accounting for the creation of particles

¢g.(r) is the particle fluence differential in kinetic energy and

direction o
ueQ(E'.QE.Q) is the cross section for the state transition from

(E.8") to (£.4)
M(E) = JdE' [df pe (e GE.Q) total interaction cross section

The Boltzmann transport equation is a particle "bookkeeping" equation. It balances
the number of particles entering (LHS) and leaving (RHS) a 6-dimensional "volume"
element consisting of 3 spatial coordinates (r), 2 angular coordinates (Q ) and one energy
coordinate (E). A particle in this 6-dimensional "volume" element d€ = dV df dE isin

the spatial volume element dV travelling in the direction d€3 around & with energy between
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lé and E+dE. The number of particles in this element corresponds to the pzirticle fluence,
differential in energy and angle: ¢g o(r) (see section 2.2.1). >

Consider the left hand side of equation 2.49. Two processes can introduce a
particle into the volume d€; a particle may be 'born'in it (e.g. a bcfa emitter) or a particle
may be 'in-scattered’ from another voltime element. The source term, S(r.e.8) accounts

for the creation of particles in the volume element df,. The 'in-scattering’ term, [dE’

Jd8 ¢p q1r) pe a(€.Q:E.9"), accounts for the scattering from one state (€', §°) to the

state of interest (E, ). .

Now consider the left hand side. Two processes can remove particles from the

volume element d¢,; spatial divergence out of the volume dV, or a collision that removes

the particle from the state (E, G). The term V-G &g o(r) rc\:prcse‘nts the divergence of the
particle fluence. The term p(E)®g q(r) represents the number of pa‘rtiéles “removed” from
the state of interest (E, Q).

As mentioned previously, we require the coupled two particle transport equation
since photons (%) can set electrons (and bositrons) in motion, and charg;:d particles can
reciprocate by setting photons in motion (e.g. bbrémsstmhlung). The addition of a term to
account for the transformation from one pan'icle type to another produces the coupled
electron-photon transport: .

V83,9 £0lr) + pEDS EQ(r) = Sy(r) (2.502)

+ J'dEU'dﬁ, ®1£.01r) pealE 88,0
+ J'_dﬁz.fdﬁz ®2£.0(r) ue,(Ey.84:E5.8,)

iy A02£0(r) + P(ESEA(T) = Sy(r) . (2. 50b).
+ JdE, fdﬁ, ¢ 01r) }lso(Ez 8 ,:6,'.8,)
. fdftldﬁl ¢1.E.n(f) HE.alEa, ﬁz El Q) .

,&ﬁ
—

The subscnpts 1 and 2mptescntthctypeofmdmaon (cgphotonsmdelectrons)
pe0(E.81:E,,8 )mthecrosssecnonforﬂxefonnauonofmdlanonoftype 1 havmg

' ~cnergyE1 anddlrecnon ﬁ, frommdxauonoftypezhavmgenm‘gyEg anddipcﬂonng
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The transport equation for the second pahiclc type is indentical to the first except that .thc

( subscripts are reversed. This pair of cquationé must be solved together for @1 and $5
“indicating the coupled nature of the problem.
Now let us return to the simpler case of 1 pasticle type. The transport equation of

2.49, when intcgraféd along the vector €, becomes (Attix and Roesch pg 234):

e alr) = rda exp { rp(a')da' ]» x fS(E,ﬁ r-ag) «
0 0

JdE' Jdﬁ‘ ¢ qlr-ad) pe.a(E.8 € Q" r-aQ) } (2.51)

where
a is the distance along Q. positive in the -0 direction

The source term represents radiation of the desired energy and direction emitted by
the radiation source along a "ray" in the direction 8 from r. This radiation contributes to
¢ q(r) but is attenuated before reaching r. The cxp‘bnential term "traces"” along the "ray”
to determine the photon attenuation (hence we have "ra‘y tracing"). Similarly, the
contribution from the in-scatter term is attenuated before reaching r.

- A few approaches have been takenf 1o solve ghis p\roblem and will be discussed
bn'efly. Other methods are discussed m a.number of references. (Duderstadt and Martin

1979, Fitzgerald et.al. 1967, Attix and Roesch 1968, Kase et.al. 1985)

50



ad 14

2.3.1 Solution by Iteration
" The transport equation can be solved in an iterative manner by determining the
fluence distribution of unscattered (or primiary), once scattered, and multiply scattered

photons. [f the order of scattering is denoted by a subscript, i, then
o0 v

¢eolr) = ¥ ¢jelr) (2.52)
i=0 . X

4

The primary fluence arrives unscattered from the sources; so equation 2.51 yields:

$o.e.(r) = rda S(E.ﬁ.r—aﬁ) exp {- ﬁi(a')da' } : (2.53)
0 0

The ith scartered radiation comes from those photons which have that scattered (i-1) times

previously; hence for i greater than 0

) ¢i>0,e.0(r) = | daexp { r-p(a')da'} } x
S Jo |

AN

ﬁ JdE' Jdﬁ'¢1..1,5',Q(r—aﬁ)'}1E.Q(E.ﬁ:E'.ﬁ',r-aﬁ): (2.54)

. The calculation of the unscattered (primary) compohent is not too difficult. The
first-scatter component is harder to calculate, but still feasible (Wong et.al. 19§l); the o "

51

higher order components are almiost always very difficult to calculate. In dose calculations, -

the approach of separating the primary and scatter cdmponents has been used extensively
(Cunningham 1972) although the calculation‘of ith"scaner\fmm (i-1)th scatter has nat.

1
a



2.3.2 Solution by Green's Function

If we knew G (r: £°.Q"r’). the solution to the transport equation for a unit point
source at r'and emitting monoenergetic radiation of energy E' in the direction Q7 then tf;(‘
untque solution for an arbitrary source distribution could be written as (Attix and Roesch

196K, Case 1957)

o q(r) = e [dQ" [dVv G qlr:E.Q r’) s(e .Q r) (2.59)

where
Q{.Q(r)i Is the particle fluence distribution with respect to particle

energy and direction

Ge alr: £.Q°r’) is the ’w's function w‘ich describes the particle
fluence distributiOW at r resulting from a point source at r' of

particles with energy E' and direction Q°
S(E'.Q'r’) 1s the source term whiéh describes the energy and angular
spectra of source particles originating at r.

»

14

The Green's function is calculated by making the source term in the Boltzmann
equation a monodirectional point source of a specific energy and direction and then solving
the Boltzmann transport equation for the specific boundary -conditions (i.e. patient). This
solution only provides 2, 'piece’ of the complete Green's function; the location, cncrgyﬁand
direction of the point source must be varied in order to ‘build up' the entire Green's
function. This tedious procedure woyld also need 1o be repeated for all anticipated‘
phantoms (or patients), which is not currently practical. Approximate means of generating
the complete Green's functions for diffcrcnt-phantomS are therefore rcc‘quired‘ '

This‘mcthod does assume that the transport equation can be solvéd for a point
source incident on an arbitrary phantom. Unfortunately, even this problem is very difficult
to solve analytically. Monte Carlo methods are currently the only means of solving the

i

particle fluence problem in general.



2.3.3  Solution by Monte Carlo

The Monte Carlo technique (Raeside 1976) is very similar to solving a problem
experimentally except that the "experiment” is performed by a computer. This method is
based on the use of random sampling (hence the name) to obtain the solution to the
transport equation. A simplistic description of this process will now be given.

A photon is initially set in motion in a specific direction and with a specific energy.
'I‘hc photon travels a distance which is selected randomly according to the probability of
interaction. Once the interaction distance has been selected, the type of interaction must be
~ determined. Another random number is used to determine whc;hér the interaction was
photoelectric, Compton, or pair production based on the probabilities of each type of
interaction occurring. Additional decisions will have to be made depending upon the type
of interaction. For example, if a Compton interaction occured, then the angle of scattering
will have to be determined according to the Klein-Nishina {(mpula. The resulting scatgered
electron may be put crm a 'stack’ to be followed later. This process is carried on until ihc
photon is absorbed or leaves the phantom. The first electron on the ‘'stack’ is ‘popped’ off
and followed ur.ltil it leaves the phantom or 'dies' (by reaching a cut-off energy). When
the particle stack becomes empty (i.e. all the secqndary particles are followed to
completion), a second incidcnt photon is set in motion. This process is repeated until the
launching of another photon will not affect the solution to within some acceptable level of

statistical uncertainty. (Nelson and Jenkins 1980, Nelson et.al. 1985)

The statistical uncertainty in this result is related to the number of photons used in

the simul;tion:
1
g = ' (2.58) )
Vv * of histories




Thus if 10* particles are scorgd in an end result, the uncertainty is 1%. However, all
histories do not contribute equally to the statistics in each volume element (or "voxel”). In
order to arrive at a solution with sufficiently good statistics in all the voxels of a
homogeneous medium (highly symmetric), histories in the order of one to ten million
incident photons are needed. In situations of poor symmetry (i.e. inhomogenous A
phantom), the number of incident photons may be orders of magnitude higher. The
corresponding computer time required to follow these particles usually varies from hours to
Icvcn months depending upon the energy of the incident particles, the phantom geometry,
the desired statistical accuracy, and the type of computer performing the calculations.

The Monte Carlo approach is the most promising method for solving the coupled -
photon-electron transport problem, but is currently impractical in routine clinical use due to
speed limitations in computer technology. '

In conclusion, we can state that the fluence calculation for the coupled photon-
electron problem is extremely difficult if not impossible 1o solve in the general case. .

' Simp.lications enabled by radiation equilibrium will be discussed in the following section.

"
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2.4 Radiation Equilibrium N\

As mentioned previously, in order to calgulate the absorbed dose we require
complete knowlédge of the radiation field (i.e. tﬁc fluence, differential in energy, forall
types of particles). The determination of the particle fluence is a formidable task (§2.3). ,
Under some situations of radiation equilibrium, the requirement of complete knowledge of )
the radiation field may be relaxed. Howpver, when no radiation equilibrium exists, such as
near the interfaces between me?’a, the complete knowledge of the radiation field is still
required. This section deals with the simplifications resulting from different forms of
radiation equilibrium. _ y

Radiation equilibrium is defined as the condition such that the energy of a specific
particle type entering a velume is the same as the energy of the same particle type lcavmg

&

g,hc volume. This is expressed mathematically as \

A
AN

V¥ - ‘ (2 57)

where L
V-¥i is the divergehce of the vectorial energy fluence for particles

of type i (see section §2.2.1)

For an incident photon beam, ¥ is made up of two components, ¥y and ¥e.
Hence we can break radiation equilibrium into two components, charged particle
equilibrium (V-¥¢ = 0) and uncharged particle equilibrium (V¥ = 0). Each will be
discussed briefly. Chargt;,d particle equilibrium has also b;en decbmposcd into other forms

of equilibrium. The reader should refer to Attix (1986) for more detailed in'foxmation.



2.4.1 Complete Radiation Equilibrium

For complete radiation equilibrium we have V-¥; =(, and Equation 2.45 yields
the dose to a point :

1 d(zQ)
(2.58) ,

- P dv 9 o =

-

In the presence of complete radiation equilibrium, the absorbed dose is simply the net rest
mass converted to kinetic energy per unit mass at the point of interest. In a vacuum, |
V¥ =0,d(£Q)/dV=0, but the absorbed dose is also zero; a situation of little interest. For
a non-zero dose, complete radiation equilbrium cannot exist unless d(£Q)/dV>0.
Complete radiation equilibrium may occur for a uniformly distributed yadioactive source,
but will not occur for an external photon beam, so complete radiation equilibrium is of little

interest in this work.

2.4.2 Charged Particle Equilibrium

In contrast to complete radiation equilibrium, charged particle cquﬂibﬁ@ (CPE) is

of great interest for an external photon beam. Figure 2.23 depicts an external beam of

photéns irradiating a finite homogeneous medium. CPE is achieved at distances greater
than the maximum range of charged particles from all boundaries of the medium if;

1) The mean free path of the incident photons is much larger than the maximum

range of the liberated charged particles. |
2) The photon attenuation is negligible over the distance of the charged particle

range.
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incident photons

Figure 2.23. Charged particle equilibrium. K

Under these conditions, charged particles are introduced uniformly in the small volume v,
with the same direction and energy distribution everywhere in the medium V. In this case

(Ein)e = (Eoye, and the energy imparted becomes

L4

3 = (Ein)y - (Eout)y + 2.Q (2.59)

Eliminating 3" Q from equations 2.59 and 2.36 yields

{

Eab = €'+ (Eout)y - (Eout)pnonradiative _ p,radiative ' (2.60)

If the volume is small enough so that éll radiative-loss photons escape,.we can assume that
any radiative loss experienced by a charged particle after leaving v will be replaced by an

identical radiative-loss photon entering v. Thus

(Eout)y = (Equt)gnonradiative , g,radiative (2.81)

and equation 2.60 reduces to

Eab = E . (2.82)

_ “Thus, under conditions of CPE, the energy absorbed is seen to be identical to the
energy imparted; and, dose and collision KERMA become identical! This provides a
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simpler method for calculating absorbed dose since only the photon energy fluence is

required in the KERMA calculation (equation 2.37)!

Under what situations does CPE exist? Let us answer this question by saying
when CPE does not exist. Failure to reach CPE will result from: inhomogeneities in
density or atomic composition, or non-uniformity in the field of indirectly ionizing
, radiation. Some practical situations where CPE fails to occur include:

+ Close to a Source. Due to beam divergence, the energy fluence will be
much larger on the source side. Thus, more electrons will be set-in-motion
nearer to the source.

* Near Field Boundaries. Within the maximum electron range of the field
edges, there will be a lack of laterally scattered electrons due to the lack of
incident indirectly ionizing radiation beyond the field edges.

* Build-up region. CPE fails in the charged particle "build-up" regionA due to
a lack of incident charged particles from outside the phantom. The volume of
air required to compensate for the missing tissue is prohibitively large (i.eci‘thc
entire volume of air would never be irradiated).

* Under beam modifying devices. These devices prevent a uniform
indirectly ionizing radiation fluence. Hence charged particles are not
uniformly liberated and CPE does not.exist.

. Néar inhomogeneities. Inhomogeneities prevent the uniform generation
of charged particlés due to variations in interaction cross sections with density
-and atomic number.

* High Energy Radiation. As the energy of indirectly ionizing radiation
increases, the range of secondary charged ﬁaniclcs increases more rapidly =

than the mean free path of ghe indirectly ionizing radiation (see Table 2.35.

Thus, the same failure occurs as in the case of béing close to a source. The
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number of charged particles decreases with depth due to the increase in the

,attenuation of the indirectly 10nizing radiation.

Photon Energy| - Eg Electron Range] Photon Attenuation over
(MeV)
0.1 1 1

1.0 0.440 0.148 1.0
10 7.33 3.75 8.0
30 26.1 11.47 17.5

Table 2.3. Photon attenuation over a distance of the maximum range of electron set-in-
motion in water as a function of photon energy. Generated from data in Johns and
Cunningham (1983)

Thus, CPE fails to exist in many practical situations. In this case, a complete
knowledge of the radiation field is required in order to determine the absorbed dose.

Chapter 3 deals with numerical solutions to the photon beam dose calculation problem.



Chapter 3

Photon Dosé Calculations

"I consider that a man's brain originally is like a little empty
attic, and you have to stock it with such furniture as you
choose. ... Now, the skillful workman is very careful indeed
as to what he takes intd his brain-attic. He will have nothing
but the tools which may help him in doing his work, but of
these he has a large assortment, and all in the most perfect
order. It is a mistake to think that the little room has elastic
walls and can distend to any extent. Depend upon it, there
comes a time when for every addition of knowledge you
forget something that you knew before. It is of highest
importance, therefore, not to have useless facts elbo/wi/ng out

7

the useful ones."

A in Scarl
Sir Arthur (Y)’lﬁp Doyle

“



3.0 Photon Dose Calculations

This chapter bégins by specifying the parameters required to fully define the photon
dose éalculation problem. The most general solution of calculating the dose to a point,
D(r), resulting from an ar/t:itrary beam of radiation impinging upon an arbitrary system is
then examined. This gcr‘wml solution, is then expressed in a Green's function formalism, -
which requires the specification of a Green's function (or kernel) and a 'source’ function
(e.g. particle fluence). Various approximations can be made to reduce the complexity of
vthe fluence calculatioh but then the kernel calculation becomes more difﬁéult. This
compromise between fluence and kemel calculations is briefly discussed. With simplifying

assumptions, the Green's function formalism is reduced to a convolution integral. The

_properties of the convolution integral and kernels are examined in detail.

3.1 Definition of the General Problem
In the most general specification 6f t}xc dose calculation problem, we have a
"radiation ﬁ;e!d" of arbitrary §ize, shape, direction, and particle type, incident upon an
"irradiated system". Thc irradiated system is usually considered to be the patient, since the
dose distribution there is of primary importance. Howcve;', in the more general case, it
could also include field flattening filters, collimators, field modifying devices, treatment
table, and ponaIIVcﬁﬁcation detectors, where a knoWledge of particle fluence is desireable. |
| We shall say that the irradiated system is ised of four slib-systcms* the field
'producnon sub-system, theﬁeld shapmg sub-systcm the paucm sub-system, and the
venﬁcanon sub-system (see Figure 3.1). v . %
For now, we restict our attention to the patient sub-system, but this dlscussxon
‘phes to the entire irradiated system. “The pammewrs affectmg the dose calculanon can be
specified within three groups; )

1) spectﬁcanon of the radmn%eld a
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Primary collimator

. . Field fl ing filtc
Field production sub-system { teld flattening fillcr

Secondary collimator

Field shaping sub-system { Field modifying device

Patient sub-system Patient or phantom

..........

" Treatment table

Verification detector

Verification sub-system

Figure 3.1. Illustration of an irradiated system with four sub-systems and their
* components. - ‘ : '



2) specification of the irradiated system (i.e. patient sub-system)
3) specification of the interactions of radiation with matter (chapter 2).
The dose calculation algorithm must then take these "input” parameters and generate a dose

distribution - accurately and quickly. : .

1y

3.1.1 Parameterization of the Radiation Field .

The field of radiation is fully defined by the particle source term, S £.8:r), which
describes the number of particles created at r as a function of cnergy, angle, and particle
type. If internal sources are present (e.g. brachytherapy) this funcnon would be specified
throughout the entire irradiated system. However, for an external radiation field, all
paniéles are created outside the irradiated system. These particles are ingluded- in the source
term by suitable placement on the surface of the irradiated system ( e.g. S{(E.Q.r) whére
ro defines the surface of the patient sub-system, see Figure 3.2). The incident particle
spectrum (both energy and angle) should accorhbdatc spectral changc’s resulting fxom the
field production sub-system and the field shaping sub-system. Exogenous photon and |
elcctror} contafninants from the field production and field shaping sub-systems can thus be

modelled thro? photon and electron source terms®.
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4Forexample onecmldstanmﬂ:asomcctumdescnbmgdnemduﬂonmcehmdemonmoﬁdd

mumnmuwmmmmmmmmwmmmmmm

‘ﬁeldshapmgsub-systcm mmmmmmwmwmmum
trallspmedontothepapaumb-sysm. fammgmepaﬁmmb-symm mu'mu s(s,q.r,). ,
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Figure 3.2, The photon dose calculation problem, Parameterization of the radiation field

and patient sub-system. Look-up tables for the interaction of radiation with matter.



3.1.2 Paramet.erization of the Irradiated System

The electron density and (ideally) the atomié number distribution must be specified
everywhere within the irradiated system. T};is specification is most accurately given by one
or more three-di‘rnensional (3D) arrays of t‘issuc volume elements (voxels) (see Figure

3.2).

3.1.3 Parameterization of fhe Interaction of Radiation with Matter

The interaction of radiation with matter has been described fully in Chapter 2. We
shall assume that tables containing attenuation c&‘fﬁciems, and the average energy
deposited as a function of energy, atomic number, and electron density are available (sce

EY . .
Figure 3.2). : _ , .

3.2  Solutions | , ‘

The particle source term, irradiated system specification, and interdction coefficients
~arc used together {0 compute the particle fluence, differential in energy and particle type,
i £(r), within the irradiated systgﬁ (see §2.3). 'I.’hc.paniclc ﬂuence can then be used to
determine the absorbed dose evérywhere in'the patient. This last step is especially -
s1mp11fied under condxtions pf radiation equilibrium (see §2.4). .

In order to detcrmme the absorbed dose in the gencral case for an. external photon
beam, let us assume a lmow}edgc of the followmg quannues (depicted i m Figure 3. 2)

c a descnpuon of the particle beam mcxdcnt on the snrfaceoftlw mdlated
system, Si(E, §:ry), from which we can ca.lculate the particle ﬂuence
differential jn encrgy andpamcletype, oj,,g(r) | |

. a3D voxcl dcscnpnon (.2 a set of C’I‘ scans) of the phanwm ﬁawmy p(r).

"« the inferaction cross secnms. m(E Z.P)
Y . o
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«  the average energy imparted, 8€,(E.2.p)
Given these quantities, we usually wish to determine the resulting dose

‘distribution’, consisting of the dose to a number of points - anywhere from 1 pomnt o 64}

-

p()llll,\

: Y

~ 3.2.1 The General Solution A

In order to develop the convolution method, we begin with the fundamental

equation (2.48). Ignoring nuclear transformagions, and collecting terms we can rewrite this

equation as -
' ‘ pt(E,z,phTi(E.z.p) : '

o) = ¥ [ een ot (3.12)
l p(r) -
- £ e agzon a (3.10)
1 .

where ’
G,(E.2.p:r) represents the average energy imparted per mass per

. incident particle of type i at the voxel centered at r
Figure 3.3 depicts a photon incident on a phantom and its subsequent interactions, ,
labeled 1 to 4. Electron tracks are depicted by a series of dots and dashes. Assuming one -

incident photon and interactions as depicted, Equation 3.1 could be used t6 determine the

dose distribution as follows. : . :

1. & g(r)is calculated knowing Si(E.Q ;rzo), and the interaction coefficients, *
using thq transport e(iuation (sceA §2.3) z\md wollld include the photon and
electron particleé as depicted. ' N )

2. Gé(E‘Z.p;Ir) is calculated by 'looking up' prestored values for pi(€.Z.p), and
Tei(E.2.p) and dividing by the density p(r) of the local maftér. The prestored
values of 8¢{(E,Z.p) can be generated with Monte Carlo techniques for the |

voxel size being uséd.

N
L 4



3. Equation 3.1 is then evaluated by integrating over the energies and then
summing the contributions from each particle type striking the voxel.
Untortunately the first step is very difficult to perform in the general case (see §2.3).
However, there are ways to simplify the fluence calculation and these will be described

next.

3.2.2  Various Green's Function Formalisms

If Equation 3.1b is used to determine the dose to a point, two functions need to be
available: the particle fluence, ¢ g(r), and the kernel, G{(E.Z.p:r). The ke'el or Green's
tunction describes how energy is deposited for a unit particle impulse. So far, we have
specified the impulse as being the particle fluence for all particle types. However, if we
restrict the impulse to photons only, the kernel will include the transport of electrons away
from the poit of photon interaction. There are other such sc\?narioseossible which
separate the responsibility for transporting particles, as summarized in Table 3.1. These

are now discussed individually.

nce contains th : | Kerngl contains 8¢ plus:

’

3.2.1 all particles ‘ . nil

L .
3.2.2.1| all ¥ (except brem&angih) -~ ob&a and et transport,
3.2:2.2| primary ¥ o12.., yb&aand et transpon |

3.2.2.3| no particles (¥ on surface only) 50.12.. b&a and e transport

Table 3.1. Se?amtion of particle transport between the fluence and kernel. -

' ¢
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Figure 3.3. Evalution of the geheral absorbed‘dose equation (3.1).
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3221 Approach One - fluence transports all photons’

As indicated in Section §2.3 the calculation of the photon fluence is an orde‘r of
- magnitude simpler that the calculatiqn of an electron fluence. Since electrons are the energy
depositing pan;clcs, and-Gj contains the energy deposited, it is consistent to couple the

electron transport in with G;(E,Z,p:r). In order to do this, we need to indicate the point of

photon i‘ntcra_ction’, r', as well as the point at which the éncigy is deposited, r. We also

5excluding the transport of bremmstrahlung and annihilatipn photons

68
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need,to stipulate the incident photon direction in order to propogate the electron's

deposition of energy correctly. The functions ® g(r) and Gi(E,Z.p:r) thus become

functions of Q, the incident photon direction. D(r) becomes

D(r) = JdQ Jdr‘ J‘ba,g,g(r‘) Ge(E.Z.p.Q:r.r’) de (3.2)

-

Note that @ £ o(r ) represents the phbton fluence differential in energy and
direction at r’. The problem of explicitly determining the electron fluence has been
incorporated in the computation of Ge(E,Z,p.Q:r,r*); which is now recognized as a
"Green's function". This function describes the imparted energy (at r) as a result of a
photon fluence impulse of energy E and particle direction Q at the point r'. Figure 3.4
illustrates the de-coupled photon transport,® £ o(r ), and the electron transport and
energy deposition, Ge(E.Z.p.Q:r.r'). Each photon interaction has a corresponding electron
kernel associated with it. Note that the kernel for each photon interaction has thé photon
incident from the kernel ‘top’.

Bremsstrahlung and annihilation photons bring to light the problem of the 'coupled’
nature of photon and€lectron transport. Should these photons be transported as part of the

photoh ﬂucncc or should the resulting electrons they release have their imparted energy

mcluded in Ge(E Z.p, Qir.r )? _The latter is easier since thc two functions, 9 .o and Ge, .

can be trcatcd completely mdepcndcnt_ly. If bremsstrahlung photons are added to the
photon fluence then there is 'feedback' between G, and ¥z g.qrand thcy cannot be

determined mdcpcndently{eomphcaung the fluence calculation.
Note that the spatial extent of Ge is largerﬂum for that of Figure 3.3 since the

spread of electrons needs to be described. If the electron cncrgy is deposlted on the spot’,
then the sc‘oge of Gg and Gj would be identical. ’
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calculate ¢ o(r”)
in all voxels
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4
Figure 3.4. Illustration of Approach One
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3.2.2.2 Approach Two - fluence transports primary photons only
We can go one step further in simplifying the photon fluence calculation by moving
the transport of secondary photons from the fluence calculation to the kcme;l calculation.
~ As a result the kernels must contain the transport of all secondary particles. In doing this,
subsequent separation of the transport of photons and electrons becomes impossible. This

approach requires a fluence calculation for only primary photons which can be performed

easily. In this scenario, Equation 3.1 becomes:

o(r) = JdQ Jdr' J¢U°,E.Q(r') Gegy>0(E.2,p.Q:r.r") dé "‘(3.‘3’)

This is a "superposition integral” which will be used as the starting poin't to devesp o
the ponvolution method. Figure 3.5 depicts the primary photon fluence and the prcstprcd

results of Gega>0(E.Z.p.Q:r.r").

3223 Approach Three - fluence does not transport photons

In this approach the kernel contains thc transport of all parnclcs gnd the subscqucnt
deposition of energy. The ﬂugnce function simply specifies the numba of primary
photons strilc'mg the surface of the irradiated system. This approach is often called a pencil ,
beam approach and i 1s used in elccmon beam dose calculations. The usefulness in photon o f"

beam calculations is qucsuonablc Fxgure 3.6 xllustrates thc contents of the kernel.and , 2

-
.

fluence functionts.

“, ) » \\;.."

-
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calculate ¢60'E.'Q(r')
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Figure 35 Hlustration of Approach Two
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3.2.3 QOther Approaches

The difficulty of the photon dose calculation problem has led to the.development of

methods which lose sight of the microscopic physics and algorithr;]s which lose sight of the
[ 4

physics altf)gcthcr! The established semi-empirical methods of calculating dose

distributions in homogeneous and inhomogenous media have been documented elsewhere

(Van de Geign et.al. 1980, Cunningham 1983). In general, the transport of secondary
photons and charged particles is grossly approximated, exogenous photon and electron

scatter from beam modifying devices are ignored, allnd charged particle equilibrium is

assumed.

3.2.4 Convolution Formalism

We begin with the superposition integral discussed in section §3.2.2.2. (Eaaation

3.3 may be rewritten by rearranging the order of integration:

D(r) = J&_ JdQ jdr' ¢U°,E,Q(I"). Geg >%(E.Z.p.Q:r.1") (3.4)

where
D(r) is the absorbed dose at r

%'Ogg(r ) is the primary ph8ton fluence dlfferentlal in photon energy
and direction at' r’

Ge&g>0(E.Z.p.Q;r.r) is a Green's function representing the electron
energy deposited at r-due to a primary photon impulse at.r'.

r' is the location of the primary photon impulse

r is the location of the energy deposition

E is the incident photon energy

Q is a unit vector in the incident photon dlrectlon.

This superposition integral requires that thc Green's function Ge&zpo(E Z.p.r.r )

be known cverywhere in the uradlated system for a prlmary photon 1mpu1sc The Green's

funcuon is dcpcndcnt upon mcﬁem photon spectrum of energy and angle, as, well as the

atomic number d1stnbuuon @, and cleotron density distribution(p(r *)) w1thm the

) L]
-

»
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phantom. The general photon beam dose calculation problem could be solved by
convolving this Green's function with any arbitrary primary photon fluence ® 9 £ o(r ).

Since this general Green's function is spatially variant (i.e. it dcpc‘nds on both r and
r’) it must be known for every point in the irradiated system. Thi_s is currently impractical,
because of the large amount of computation time required to gcneratc‘ c;,ven a Singlc Green's
function for a homogcncous water medium with a high degree of symmetry (see section
§3.4). For an inhomogenegus r;xcdium with poor symmetry, this computation time wolild
escalate further beyond reason. , .

The solution is to estimate the spatially variant Green's function from a set of
spatially invarjant Green's functions. In a homogeneous medium this is rca‘sor;able, but
-requires further study. The following base assumptions are introduced:

1) a'mono-encrgetic photon beam

2) all incident photons travel along a 'ray' from a point source

3) an infinite source to surface distance (SSD)

4) an irradiated system w‘h'ich is homogeneous and water equivalent

5) an irradiated system of inﬁnitc size

{Xssumptions 1, 2 & 3 remove the explicit integration ovcré and Q. Assumption
4 removes the depcndencc' on atomic number (Z) and electron density (p). Assumptions
| 3,4&5 ensure the Grecn s funcnon is spatrally mvanant which means that only thc

dtstance betufeen the dosc deposmomsxte and the pnmary photon 1mpi1!se, (r-r), is .

nnponam. The practical impact of thesg assumptions is discussed in detail in section .

\ -

§4.4. Under these assumptmns, equatlon 3 4 becomes

D(r) jdr ¢305(r)ee&z>o(5r r) T s . (3.58) ,

Setting s:r-r'.a r'=r-s,dr'='-ds,E¢1uaﬁon 3.Sacagberewﬁttcn.as: a

N * . ER N
. " R "

oir) = jds 20K(r-3) Gow"'(“) SR ¢ £ ) I

“ -



These are complimentary forms of a convolution integral which we've been
waiting for!
'The primary photon fluence, ® 0 g(r ), is represented simply by:

Oa0e(r’) = d0e(rg) x e Ml (3.6)
where
¢x0e(rg) is the photon fluence incident on the phantom surface

(photons per cm?).
M is the linear attenuation coefficient (cm~!)
l-is the ray length travelled in the phantom from ry to r’(cm)

’

.

The convolution technique has received a lot of attention recently as a dose
calculation "algo'rithm (Mackie et.al. 1987, Boyer amd Moc 1986, Ahnesjo et.al. 1987,
Mohan c;.al. 1986) although it appeared as early as 1949 (Johns et.al. 1949) . In much of
this previous work, the assumptions listed above have been tacit and additional ones havg
been made for inhomogeneous media. From the rigorous stance of this work, these
additior;al -assumptions merit further study, evén though msult; obtained to date have been
very promisi;lg (Macki;: et.al. 19§5). \

Convolution is a standard image procéssing algorithm used to modify a picture
element (pixel) value based on the neighbouring pixels: This technique is commonly used
for matching objects, measuring image properties, removing noise, and filtering imaggg.
Most newsworthy has been the rolg it played in locating the Titanic (Byte1986). Thus,
there is incentive in developing a dose calcul;ation algorithm which. can Mherit all the
advances made in image processing Fechnology - both hardwhrp and software.

We now look at the convolutioh kernels in detail. .
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3.3 The Kernel Data Base

- N
" Many of the assumptions of section §3.2 are not obviously acceptable. A spatially-

Yyariant Green's function of the form G( p(r’) ; r.r’) is required, rigorously speaking.
However, this is currently impractical. Instead, a se; of inyariant Green's functions;

Glear "), have been generated with the expec‘tation that the variant Green's function can be
*c:ximated from this set. |

. The Gréen's functions which serve as convolution kernels were genefat\ed.using

Mome Carlo techniques (Mackxc et.al.1987b, Nelson et.al. 1985, Ford et.al. 1978). The’
data base-consists of a set of 23 kemels for mono-energetic & mono-directional photon
pencil beams in the energy range of 0.10 to 50.0 Mev incident on water. Approxxmately,

one million incident photons were "forced" to interact in %he center of a sphere of water
) t

with a radius of 60 cm, and the energy deposited by charged particles was separated

: accordmg Yo the category of the photon which set the charged particles in motion. The

77

photon categones are: \ Ce
' -~
* aprimary photon, -
* a 'once-scattered’ photon, _
. \ .
* a 'twice-scattered' photon,
* a 'more than twiceﬁscattcred'photon . ' ) . -

-~

. a photon generated by btemssuahlung or positron anmhxlanon ":

" *The energy deposited was 'binhed’ in-a spherical coordmate system consxsnng of 48 equal -

angular increments povermg 180 degrees, and 24 radx&l mcrements from 0 05 to 60 0cm

.

(see Figure 3.7).

’

. &he separanon into the five categones of photons was done to smdy the pbysxcs of
radxauon transport m detmr Ina homogeneous mdnnn, this mformauon is useful in

deCldmgthcﬁ'equcncyofoccumnceandspanalmﬂuenceofthescmteracnonprooesm In S

a heterogeneous medxum each cat{gory will be affected differently by ussue bwndams o

andthxsseparauomsthexefbreessenual . ", ‘
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. 718
These kernels were generated oﬁgina{iy on a Digital Equipment Corporation (DEC)
VAX-11/780 computer and more recently on an IBM éomputér: Typical computing times
on the VAX-1 1/780/\computcr ranged from about 30,000 hi&ories per CPU hour at 0.1
MeV to 1600 histories at SO MeV. The latest generation of the kernél data base required the

equivalent of one half year of VAX-11/780 CPU ti.me (ﬁiclajcw, private communication)!

l"‘ .

The storage requirements for the complete data base written as binary data is about 0.5 .~ :

Mbytes. For this work, the data files have been re-written in ASCII for ease of data

extraction which increases the storage requirements to 1.4 Mbytes. %
‘ \
!
180° T .. ;
S o ] Radii
. 005 30
: : 0.1 . 40
. : 0.15 50
; 0.2 60
: 0.3 80
I R 0.4 100
" 05 150
: 0.6 200 .
A 0.8 300
: . 1.0 40.8
H ., L5 50
B 20 60.0

- spherical voxel

.
------

Figure 3.7. Spherical coordinate system used in the kernel generation.

+
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3.3.1 Physicalt Interpretation of the .Spahericﬂl Ker'nels - L s

Table 3.2 shows the primary kemel for 1.25 MeV pfiotdns (rcptcscntir;g.Coba&QO 3
radiation) and Table 3.3 shows the primary kernel for 5.0 MeV photons (representing .15
MV X-ray\s). The number in each bin represents the fraction of the incident photon energy
deposited in the bin by a photon interactiné at the origin. For ckample. the spherical bin'at
a mean radius of O 175cmand a niéan anglé of 50.63 dcgfces for 1.25 MeV phofons .
contains a value of 3.147E- 03 which means that 3.934 KeV (3 147x10-3 = 1 25MeV) is 0”
deposned in that voxel when a single 1.25 MeV photon interacts in the center of the water.
sphere. . ' « g
We se€ for the:1.25 MeV primary kemel that no énergy is depositcd in any ;ihec&on
beyond a mean radius of 0. 45€m Simffarly, no energy is deposited bcyond a lﬁrgg.mean
radlus of 2.5 cm for the 5.0 MeV primary kemel. This is«consissent w1?h'1he mean )
stopping power of 2 McV/cm (§2.1.2.3). Ifal: 25 MeV photon t.ransf?rs all its cnergy to

an electron, and assuming conunuous slowing down, that electron would.travel 0.625 cm,/

Similarly: an elecmon receiving all. the energy from a 5.0 MeV photon would travel 2.5 cth.

Electrons are not however contmuOUSly slowed down ata fixcd rate: they slow down mpre
- quickly as they lose energy Hence, energy from'cléctrcns is not visible bcyond a fﬁl s .
0.45 cm for 1.25 MeV incident photons, and beyond 2. 5 cm for 5.0 Me o

Thc sum of all voxcls in kcrnol of category 1 gwcs ;hc mta! en ‘,’ i

charged pamcles set in motion by photons whxch zhave scattereq prec1sély

photonenergy R IR . —
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MEAN Angle

MEAN Radi

(cm)

(degrees) 0.025

0.075

0.125

0.175

0.250

0.350

0.450

1 88
A.63
Q.38
13.13
1688
20.63
2438
2813
31.88
35.63
3938
4313
4688
50.63
5438
58.13
88
65.63
69.38
73.13
*76.88
80.63
84.38
88.13
9188
95.63
9938
103.13
106.88
110.63
11438
118.13
121.88
125.63
129.38
133.13
136.88
140.63
144.38
148.13
151.88
155.63
159.38
163.13
166.88
170.63
174.38
178.13

2.304E-03
3.917E-03
S.415E-03
5.948E-03
6.061E-03
5.997E-03
5.866E-03
5.680E-03
$.474E-03
5.200E-03
4.913E-03
4.576E-03
4.203E-03
3.816E-03
3.399E-03
3.021E-03
2.643E-03
2.305E-03
2.015E-03
1.712E-03
1.426E-03
1.192E-03
1.019E-03
8.510E-04
7.065E-04
5.854E-04
4.828E-04
3.955E-04
3.221E-04
2.640E-04
2.093E-04
1.707E-04
1.391E-04
1.138E-04
8.863E-05
7.180E-05
5.830E-05
4.917E-05
3.894E-05
13.274E-05
2.618E-05
2.170E-05
1.699E-05
1.220E-05
9.340E-06
6.976E-06
3.879E-06
1.243E-06

1.132E-03

3.238E-03-

4.881E-03
5.871E-03
6.341E-03
0.374E-03
6.173E-03
5.817E-03

5.361E-03 -

4 90RE-03
4.456E-03
4.005E-03
3.605E-03
3.200E-03
2.821E-03
2.481E-03
2.154E-03
1.870E-03
1.625E-03
1.396E-03
1.185E-03
9.874E-04
8.347E-04
7.035E-04
5.841E-04
4.718E-04
3.832E-04
3.081E-04
2.525E-04
2.044E-04
1.679E-04
1.370E-04
1.116E-04
8.684E-05
7.106E-05
5.680E-05
5.004E-05
4.061E-05
3.465E-05
2.771E-05
2.371E-05
1.921E-05
1.555E-05
1.112E-05
8.924E-06
6.084E-06
3.821E-06
1.188E-06

8.718E-04 -
2.541E-03
3.947E-03
4.972E-03
5.656E-03
5.916E-03
5.887E-03
5.684E-03
5.343E-03
4 931E203
4 484E-03
4.022E-03
3.85E-03
3.184E-03
2.792E-03
2.422E53
2.070E-03
1.782E-03
1.522E-03
1.280E-03
1.062E-03
8.845E204
7.27SE-04
5.873E-04
4.828E-04
3.849E-04
3.043E-04
2.458E-04
{.978E-04
1.548E-04
1.262E-04
9.893E-05
8.185E-05
6.882E-05
5.512E-05
4.307E-05
3.703E-05
3.034E-05
2.480E-05
2.120E-05
1.689E-05
1.339E-05
1.146E-05
7.793E-06
5.016E-06 _
3.708E-06
1.822E-06
5.467E-07

6.960E-0d
2.013E-03
3.202E-03
4.126E-07
4.792E-03
5.194E-03
5.376E-03
5.364E-03
5.162E-03
4 837E-03
4.458E-03
4.038E-03
31.582E-03
3.147E-03
2.732E-03
2331E-03
1.968E-03
1.668E-03
1.391E-03
1.127E-03
9.362E-04
7.490E-04
5.997E-04
4.769E-04
3.678E-04
2.918E-04
2.243E-04
1.757E-04
1.351E-04
1.127E-04
9.065E-05
6.971E-05
5.617E-05
4.385E-05
3.326E-05
2.665E-05
2.501E-05
2.120E-05
1.723E-05
1.297E-05
9977E-06
8.271E-06
7.580E-06
5.1108E-06
3.814E-06
2.694E-06
1.505E-06

5924E07

9.755E-04
2.837E-03
4.565E-03
010E-03
7.107E-03
7.859E-03
8.213E-03
8.360E-03
8.#4 1E-03
7.114E-03
7.131E-03
6.448E-03
5.703E-03
4.908E-03
4.207E-03
3.485E-03
2.876E-03
2.308E-03
1.859E-03
1.447E-03
1.145E-03
8.721E-04

15E-04
5.022E-04
3.678E-04
2.780E-04
2.035E-04
1.548E-04
1.184E-04
9.076E-05
6.976E-05
5.517E-05
4.424E-05
3.667E-05
2.868E-05
2.038E-05
1.668E-05
1.430E-05
1.288E-05
1.166E-05
8.279E-06
7.016E-06

'5.556E-06

3.56TB-06
3.166E-06
2.210E-06
1.353E-06
3.353E-07

3.836E-04
1.112E-03
1.746E-03
2.281E-03
2.683E-03
2.935E-03
3.035E-03
3.003E-03
2.830E-03
2.593E-03
2.3266E-03
1.9S6E-03
1.623E-03
1.323E-03
1.032E-03
7.973E-04
6.171E-04
4.446E-04
3.359E-04
2.343E-04
1.609E-04
1.191E-04
8.764E-05
5:827E-05
4.041E-05
2.790E-05
2.200E-05
1.516E-05
1.169E-05
8.711E-06 |
7.471E-06
5.153E-06
3.123E-06
3.384E-06
1.499E-06
2.040E-06
1.76TE-06
1.209E-06
1.216E-06
5.156E-07
1.202E-06
7.541E-07
1.105E-06
1.711E-07
1.7268-07
143SE-07
1.739E-07

1.412E-05
4.381E-0S
6.643E-05
8.392E-05
9.172E-05
8.898E-05
8.546E-05
7.464E-05
6.599E-05
5.252E-05
3.706E-05
2.742E-05
2.053E-05
1.351E-05
8.302E-06
4.197E-06
4.388E-06
2.498E-06
1.457E-06
9.447E-07
2.862E-07
2.868E-07
7.455E-08
6.615E-08
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
6.932E-08
0.600E+00
0.000E+00
0.000E+00
0.000E+00
“1.490E-07
9.776E-08
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
MN0.0QOE+00

0.000E+0

0.000E+00

Table 3.2.

ENERGY deposited by electrons set-in-motion by PRIMARY 1.25 MeV

photons. The total energy deposited in this sphere of 60 cm radius is 0.469 MeV.

80



MEAN Anglc

MEAN Radius (cm)

{(degrees)

0.025

0.075

0.125

0.175

0.250

0.350

0450

1.88
5.63
938
13.13
16.88
20.63
24138
2813
31.88
35.63
3938
43113
46.88
50.63

- 5438
S58.13
61 88
65.63
69 .38
73.13
76.88
80.63
84.38
88.13
91.88
95.63
9938
103.13
106.88
110.63
114.38
118.13
121.88
125.63
129.38
133.13
136.88
140.63
144 .38
148.13
151.88
155.63
159.38
163.13
166.88
170.63
174.38
178.13

1.798E-03
4. A17E-03
2.451E-03
1.817E-03
1.440E-03
1.166E-Q3
9.685E-04
8.163E-(4
6.933E-04
S.900E-04
S.010E-04
4.273E-(4
3.648E-04
3.053E-04
2.565E-04
2.155E-04
1.810E-04
1.500E-04
1.271E-04
1.050E-04
8.702E-05
7.103E-05
5.967E-05
5.021E-05
4.161E-05
3.398E-05
2.865E-0S
2.345E-05
1.931E-05
1.601E-05
1.300E-05
1.072E-05
8.797E-06
6.863E-06
5.576E-06
4.587E-06
3.606E-06
2.793E-06
2.511E-06
2.175E-06
1.730E-06
1.321E-06
9.895E-07
8.515E-07
6.443E-07
3.477E-07
1.728E-07
3.219E-08

1.815E-03
3.725E-03
3.028E-03
2.218E-03
1.681E-03
1.336E-03
1.096E-03
8 960E-04
7.340E-04
6.070E-04
5.016E-04
4.140E-04
3.434E-04
% 860E-04
2.418E-04
2.0328-04
1.707E-0%
1.459E-04
1.224E-04
1.046E-04
8.883E-05
7,288E-05
6.117E-05
5.104E-05
4.330E-05
3.619E-05
2.905E-05
2.395E-05
2.043E-05
1.593E-05
1.350E-05
1.020E-05
8.537E-06
7.035E-06
5.421E-06
4.330E-06
3.436E-06
2.981E-06
2.511E-06
2.350E-06
1.765E-06
1.364E-06
9.893E-07
8.226E-07
4.631E-07
3.349E-07
1.831E-07

1.576E-03
3.314E-03
3.144E-03
2.436E-03
1.855E-03
1.451E-03
1.162E-03
9.299E-04
7.58SE-(4
6.199E-04
S.080E-04
4.231E-04
3.554E-04
2.970E-04
2.520E-04
2.111E-04
1.768E-04
1.493E-04
1.238E-04
1.056E-04
8.944E-05
7.469E-05
6.17SE-05

218E-05
%.332}5-05

A497E-05
2.881E-05
2.428E-05
1.842E-05
1.462E-05
1.282E-05
9.802E-06
7.976E-06
6.832E-06
4.778E-06
4.638E-06
3.500E-06
2.830E-06
2.692E-06
2.111E-06
1.617E-06
1.542E-06
1.018E-06
71.473E-07
7.053E-07
5.368E-07
2.540E-07

1.365E-03
3.051E-03
3.140E-03
2.545E-03
1.968E-03
1.535E-03
1.213E-03
9.700E-04
7.821E-04
6.382E-04
5.260E-04
4.382E-04
3.667E-04
3.078E-04
2.587E-04
2.165E-04
1.815E-04
1.538E-04
1.298E-04
1.065E-04
9:036E-05
7.491E-05
6.214E-05
5.143E-05
4.171E-05
3.484E-05
2.831E-05
2.286E-05
1.913E-05
1.473E-05
1.215E-05
9.101E-06
8.068E-06
6.07SE-06
5.081E-06
3.980E-06
3.527E-06
3.180E-06
3.039E-06
2.108E-06
1.762E-06
1.290E-06
1.022E-06
8.134E-07
7.052E-07
6.062E-07
2.051E-07

3.265E-08

9.816E-08

2.277E-03
5.421E-03
6.060E-03
5.239E-03
4.167E-03
3.259E-03
2.578E-03
2.044E-03
1.664E-03
1.349E-03
1.109E-03

- 9.224E-04
7.649E-04

6.403E-04
5.356E-04
4.467E-04
3.679E-04
3.086E-04
2.631E-04
2.172E-04
1.808E-04
1.484E-04
1.204E-04
9.705E-05
7.786E-05
6.458E-05
5.395E-05
4.271E-05
3.412E-05
2.814E-05
2.320E-05
1.896E-05
1.436E-05
L174E;05
9.528E-06
8.009E-06
6.687E-06
5.996E-06
4 45TE-06
3.663E-06
3.370E-06
2.927E-06
2.039E-06
1.657E-06
1.163E-06
9.359E-07
5.006E-07
1.763E-07

1.85SE-03
4.656E-03
5.630E-03
5.243E-03
4.362E-03
3.463E-03
2.767E-03
2.192E-03
1.778E-03
1.452E-03
1.184E-03
9.847E-04
8.128E-04
6.732E-04
5.536E-04
4.654E-04
3.819E-04
3.172E-04
2.565E-04
2.125E-04
1.713E-04
1.378E-04
1.122E-04
9.082E-05
7.238E-05
5.745E-05
4.632E-05
3.749E-05
3.096E-0S
2.335E-05
1.894E-05
1.611E-05
1.294E-05
1.131E-05
9.597E-06
7.385E-06
6.293E-06
5.44TE-06
4.309E-06
3.056E-06
2.608E-06
2.061E-06
2.033E-06
1.625E-06
1.147E-06
7.733E-07
7.249E-07
1.965E-07

1.549E-03
13 N 7E-03
5T137E-03
5.106E-03
4.430E-03
3.609E-03
2 910E-03
2.356E-03
1.897E-03
1.541E-03
1.256E-03
1.019E-03
8.405E-04

7.004E-04

5.772E-04
4.678E-04
3.777E-04
3.150E-04
2.587E-04
2.045E-04
1.629E-04
1.307E-04
1.051E-04
8.200E-05
6.555E-05
5.051E-05
3.927E-05
3.183E-05
2.693E-05
2.131E-05
1.776E-05
1.507E-05
1.174E-05
9.510E-06
7.590E-06
6.638E-06
5.582E-06
4.276E-06
3.965E-06
3.281E-06
2.445E-06
2.102E-06
1.891E-06
1.436E-06
1.066E-06
6.810E-07
5.657E-07

3.982E-08

1.960E-07 |

Table 3.3. ENERGY deposited by clectrons set-in-motion by PRIMARY 5.0 MV
photons. The total energy deposited in this sphere of 60 cm is 0.631. .
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MEAN Angle

MEAN Radius (cm)

{degroes)

0.550

0.700

0,900

1.250

1.750

2.300

3.500

1.88
1 s63
\ 938
13.13
16.88
20.63
2438
28.13
b 3188
[ 35.63
338
43.13
46.88
50.63
2| sa3g
5813
61.88
65.63
_69.38
73.13
76.88
80.63
‘84.38
88.13
91.88
95.63
99.38
103.13
88
110.63
114.38
118.13
121.88
125.63
129.38
133.13
136.88
140.63
144.38
148.13
151.88
155.63
1 15938
163.13
166.88
170.63
174.38

178.13

1.305E-03
3.512E-03
4.680E-03
4.871E-03
4.422E-03
3.7Q7E-H3
3.043E-I
2.468E-03
1.999E-03
1.617E-03
1.322E-03
1.070E-03
8.814E-04
7.260E-04
5.855E-04
4.766E-04
3.894E-04
3.095E-04
2.512E-04
2:000E-04
~1.S96E-04
1.238E-04

| 9.549E-05

9.688E-05
6.026E-0
4.691E-05
3.712E-05
3.015E-05
2.469E-05
1.951E-05
1.468E-05
1.135E-05
1.115E-05
8.783E-06
6.966E-06
5.520E-06
5.548E-06
5.188E-06
3.644E-06
2.627TE-06
1.877E-06
2.212E-06
1.945E-06
1.136E-06
1.034E-06
7.955E-07
4.320E-07

2.112E-03
5.766E-03
8.0™ME-03
8.891E-03
 8.529E-03
7.497E-03
6.336E-03
5.233£-03
4.258E-03
3.450E-03
2.809E-03

283E-03
1.858E-03
17492E-03
1.212E-03
9.683E-04
7,716E-04
6.126E-04
4:742E-04
3.698E-04
2.937E-04
2.327E-04

352 0f
7.762E-05
6.020E-D5
4.758E-05
3.643E-05
’3 202E-05
2 534E-0S5
1.818E-05
1.471E-0S
1.205E-0S
1,112E-05
1.009E-05
8.394E-06
6.790E-06
4 891E-06
4 297E-06
3.493E-06
2.760E-06
2.781E-06
2.469E-06
2.239E-06
1.400E-06

[ 8.052E-07

9.613E-08

1.290E 07

1.730E-04 ]

1.624E-03
4.547E-03
6.633E-03
7.696E-03
7.842E-03
7.296E-03
6.413E-03
5.459E-03

4.553E-03 -

3.716E-03
3.026E-03
2.438E-03
1.963E-03
1.536E-03
1.219E-03
9.681E-04
7.531E-04
5.734E-04
4.439E-04
3.378E-04
2.560E-04
1.972E-04
1.478E-04
1.115E-04
8.270E-05
6.196E-05
4.825E-05
3.561E-05
3.074E-05
2.327B-05
1.927E-05
1.680E-05
1.283E-05
1.166E-05
9.272E-06
8.009E-06
6.780E-06
5.271E-06
4.863E-06
4.367E-06
3.187E-06
2.289E-06
1.951E-06
2.169E-06
1.861E-06
1.198E-06
3.944E-07
9. 9705-08

2.737E-03
7.870E-03
1.185E-02
1.444E-02
1.554E-02
1.551E-02
*1.451E-02
1.291E-02
1.108E-02
9.326E-03
7.612E-03
6.135E-03
4.833E-03
3.742E-03
2.877E-03
2.181E-03
1.621E-03
1.190E-03
8.592E-04
6.296E-04
4.609E-04
3.329E-04
2.458E-04
1.814E-04
1.308E-04
9.906E-05
6.758E-05
5.713E-05
4.755E-05
3.121E-05
2.787TE-05

1.977E-05
1.539E-05
1.434E-05
1.211E-05
8.298E-06
6.991E-06
5.424E-06
6.220E-06
5.749E-06
3.065E-06

2.269E-06
1.275E-06

1.2288-06
3.968E-08

2418E-05

2.697E-06
2.075E-06.

T419E-03
4.071E-03
5:316E-03
7.901E-03
8.849E-03
9.071E-03
8.726E-03
1.950E-08

966E-03

782E-03

3.636E-03
2.708E-03
1.987E-03
1.391E-03
9.65
6.732E-04
4.612E-04
3.040E-04
2.065E-04
1.345E-04
9.231E-05
5.997E-05
4.515E-05
3.629E-05
2.462E-05
1.755E-05
'1.402E-05
9.758E-06
8.146E-06
6.765E-06
5.814E-06
4.648E-06
3.731E-06
3.112E-06
2.243E-06
2.285E-06
1.078E-06
5.4406.07
1.274E-06
7.279E-07
6.797E-07
-5.463E-07
4.661E-07

4.894E-07 .

3.632E-07

4.658E-03

-04 " | 6.834E-05

7473B-07 |6.

2.843E-04
7.994E-04

209E-03
1.482E\03
1.647E-03
1.618E-03
1.497E-03
1.276E-03
1.035E-03
7.761E-04
5.617E-04
3.990E-04
2.620E-04
1.70SE-04
1.107E-04

3.998E-05
2.556E-05
1.482E-05
'1.064E-05
5.357E-06
4.361E-06
2.368E-06
2.388E-06
1.66TE-06
7.530E-07
4.904E-07
5.827E-07
5.196E-07
2:983E-07
2.407E-07
3.424E-07
2.760E-07
3.224E-07
2.361E-07
1.121E-07 |
3.343E-08
9.058E-08
1.538E-07
2.762E-08
.5.038E-08
9,094E-08

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
[ 0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.600E+00
Q.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

0.000E+00
0.000EM0
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

2.34E-07 |

|0.000E+00

Table 3.3.(cont.) ENERGY deposited by electrons sct-m-monon by PRIMARY 5 0

C

MeV photons

A

»

0.000E+00{

000B+00|
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) Energy oﬁcxdcnt Photon (MeV)

ernel Category 1.25  (100%) | 5.00  (100%)
Primary 0.586 (46.9%) | 3.154 (63.1%)
First scatter ’ 0.260 (20.8%) | 0.844 (16.9%)
Second scatter . 0.127 (10.2%) | 0.263 (5.3%)
Multiple scatter 0.234 (18.7%) | 0.263 " (5.3%)
Brem & Anhihilation 0.003 (0.3%) 0.158 (B.2%) %
Total 1210 (969%) | 4.682 (93.8%)

Table 3.4. Total encrgy dcposncd by kerrel category in a 5phere of radius 60 cm.

a N
Y . ~ ~

. ’* These numbers indicate which interactions are more important for various ehcrgies.
and the extent of energy escaping bc.yond the watcréﬁh'erc of 60 cm radius. As expected,
there is more energy leakage-at 5 MeV than at 1.25 MeV.

; For‘ 1.25 MeV photons the following comments are appropriafg.
» The total energy deposﬂcd by the prithary kernel corﬂesponds to the average
cncrgy absbrbed (Eab) From.Johns and Cunmngham (1983), Eap = 0.586
" MeV which corresponds extremely well to the total energy depositéd by\ the
primary kernel.
« The primary kem;:l accounts for 47% of the ingiden't energy deposited.
*  The scatter kemels account for 49% of the incident energy deposited. The first

. L]
scatter kemnel (21%) contains less energy than the higher order scatter kernels

combined (29%).
* Bremsstrahlung and anmhllanon radiatioy is negligible. It accounts for on
. 0.0032 MeV (0. 3%) of the incident energy. The amo:n.t\f bremsstrahlyn
energy is given by Eqr -°Eap. xhe predicted valuc from Johns and Cunnmgham
data is 0.588-0.586=0.002 MeV (0.2%). Thercforc up to 0.2% (if all’
brcmsstrahlung radiation was reabsorbed) of the total bremsstrahlung and

anmhxlation keme] can be explained by bremsstrahlung. Thc balance (0.1%) is
: N _
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contributed by annihilation events (which are very minimal for 1.25 MeV
pﬂotons). ’

* 3% of the ihcident' phbton energy escapes fram the sphere of water.

) v

For 5.0 MeV photons the following should be noted:

+  From Johns and Cunningham, Egp, = 3.16 MeV in excellent agreement with the
kernel value of 3.154 MeV.

+ The pnmary kernel is most immportant conmbutmg 63% of the incident energ):

+ The total of all the scatter kernels accounts fer only 27% of thc incident cncrgy
The second and multiple scatter kernel conthin 'apgromma'tely thc same amount
of encrgy, and the first scatter kernel contains about.50% more energy than the
higher order s\catter kemels combined. |

+  Bremsstrahlung and annihliation radiation account for 3% of the incident
energy. Johns and Cunniﬁgham yieids a \_'alue of 3.21-3.16=0.05 MeV (1%)
for bremsstrahlung radiation. The remaining 2% is attributed to annihilation

“radiation which is more prevalent for 5.0 MeV photons.

. 6% of the incident phé)ton energy escapes from the sphere of water.

. N ' _
As the incident photon energy | incneascs, ‘the fmctional amount of energy transferred

to the primary scattered eleetron also increases. This i is evndcnccd by the pcnccntagc of the

- energy contained by the fmmary kernel: 63% for 5.0 McV photons, and 47% for 1.25 MeV

.=,

photons. - : e
_ " We have noted that the total gnergy deposited by the sum af all kemnels is less than
X(u'ty (100%). The diffemnce from linity/(i.c. 6% fora 5 MeV'bhoton) is the fractional -
- energy escaping from the sphere of water of radius 60 cm. Letus vetify that the 6% of the(
incident photon energy leavmg a water sphm of radms 60 cmis msonable All incxdent

AN
photonsmfomedtommctatthecemerofawwsphae yieldingan avmgeq\ergyof
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®
F,()!Etr-—j'l’.79 MeV for the ﬁrs;.t s.cattcred\photon. The fraction of first scattered photons -

" escaping from the water sphere of radius 60 cm is given by: ¢/<§>0 = @ MX_ This amounts

t0 4.16% of the 1.8 MeV photons (p=0.053 cm-!) which corresponds to an gnergy leakage

of 0.0416 x 1.79 MeV =£74.5 keV (i.e. 1.5% ofithe ihcidem 5.0 MeV photon;cne'rgy).

“The average energy of the second scattercf photon is 1.8 - 0.9=O.9Mev: Assuming the

. second scatterfgig occured at a distance of one mean free path away from the first scattering,

then the lhocan'o-n of the second scatter dvent will be 60-13=47 cm f;om the edge of the

water sphere. 2.9% of the 0.9 MeV pl@ns would escape from the water sphere can’ymg

of the incident 5 McV photon energy. ThUS first and second scater”

with them 0,

nt for a loss of 2% of the mc1dcnt energy. This does not appear to agree all

1l with the kcrﬂ’él losses of 6%. If the above caloulauon is pcrfoxmed with the most
'

probable energy of thc\s&attcred photon instead of the méan energy, we ﬁnd that the energy
loss from first scatter events alone ainounts to 10% of the incident energy. Tﬁ'é \egncrgy

loss will lie somewhere in between our calculated values of 2% and 10% loss; thus the

e : !
kernel value of 6% seems reasonable. ¢

Repeating the above calculations for incident 1.25 MeV photons we find the energy
' ~ .
loss using mean scattered photon energies for first and second scatter events is 0.5%.

Using the most probable energy of the first scattered photon, ihe_enqrg_y losgis 1.2% for

first scattered photon only. Including,the contribution from second scattered photons, the -

cnergy loss is about 2.2% which is approachmg the kemel value of 3%. More scattered
photons need to be followed in the case of 1.25 MeV photons because the scattercd
photons carry away a larger fractlon of the incident energy. ‘than do %C scattcrcd 5. O MeV

kd

photons.

-

. ’ | ]
A - Using thc\yrimary kemel, the sum of the energy deposited in bins along a ray yields
the electron energy deposited along a particular direction. Figbm 3.8 plots the scattered
electron energy as a function of angle. Comparison with results of Compton theory
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3.3.2  Conversion to a Cartesian Coordinate System

86

<

(Figure 2.6) should not yield precise agreement since Compton theory determines the

scattered electron energy launched at the site of the initial Compton interaction. On the

»omer hand, Figure 3.8 shows the energy deposited by the transport of electrons in the

*
phantom after slowing down and multiple seattering away from the primary interaction site.

If all electrons were transported along a stm'ghl-lirie ray from the interaction point, then the
twoyresults would be identical. However, this is not the case and we expect Figure 3.8 to
be a ‘blurred’ image of the Compton theory graph, because of the electron multiple

scattering.

g0°
20
40
) | . 60

80

100-

.« r -
. Figure 3.8. Angular distribution of the energy from the primary kernels for 1.25 and 5.0
MeV incident photons. . .

{ . .
As previously mentioned, the kernels are specified in a spherical coordinate system.
The symmetry of thi§‘ system gxrcady reduces the computer time required to generate the

1)’ The primary photon fluence is generally calculated froi a series of CT
. scans which are based on a Caresian coordinate system. 'lhis'audwrisné ;

R s >,
- o n,

kemels. However, thc?zjiherical coordinate system causes two'problems:



e

aware of any direct techniques for convolving a kernel represented in a
spherical coordinate system with an impulse function represented in a

Cartesian coordinate system. o>
2) Graphical display of the kernel on a r‘astcr‘ graphics device requires a
' Cartesian coordinate system. |
Thus, for simplicity in both calculation and display, the spherical kernels nced to be
converted to a Cartcsxan geometry. A program written by T.R. Mackie aﬁH R. Apdrews
and Mackie (1986) has been modified by this author to convert the spherical keriiels to an
equivalent three-dimensional Cartesian kcmcl..The number and size of kernel voxels in the

'y v
Cartesian system determines the spatal resolution of dose, the spatial extent of energy

deposition, and the speed of the convolution calculation. Indeed; the ability to change these

3 {
approach. ‘ .

for specific dose calculation requirements is an inherent advantage of the convolution

y [Figure3. 9 illustrates the Cartesian kernel geometry. The number of voxels
compnsmgkth/ kernel is charactenzcd by three parameters: top, bottom and cdge Top'
specifies the number of.voxels in the kernel above the interaction voxel; on‘om specifies
the number of voxels below the interaction voxel; and ‘edge’ specifies the Eumber of ‘
voxels lateral to thé' interaetion voxtl. The Cartesian coordinate system has its origin
located in the center of the intcra;ﬁon Voxel, with the Z axis in the direction of thg incidemt
photon. The indices i,j,k ‘refer to the pixel location from the c;rigin in the x,y,z dircc;iog
respectively. The voxel indices (i,j,k) thus range from (-cdge:cdgc, -edge:edge,
top:botyom). .

The computing tirhe (V AX-1 1{780 CPU seconds) required to perform the spherical

to Cartesian g)nvcrsmn is shown in Table 3.5. These conversion times are not negligible,
so it is beneﬁcw.l to pre-store kernels for 'standard’ Cartesian voxel sizes, commensurate

e \
with the dcsmcd spatial resoluuons in the dose distribution.

&
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edge=2
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\
)
Figure 3.9. Illustration of a 3D Cartesian kemci.‘ - .
Kemel Dimension Calculz'ltion Time
_top bottom edge (CPU seconds) .
-15 47 3 242 .
] -13° 50 28 143 | :
=10 36 15 - 68
-3 12 7 24
’ - Y

Table 3.5. Calculation times on a VAX 11/780 compute'i' for kcmel conversion from a

~ spherical geometry toa 3D tesian geometry. I &

. :;' g (\
- ‘\"“ .
Lag Tablc 3.6 shows the px;lmary kemel in a Cartesian- geometry for 1.25 McV photons
(3.6a) and 5.0 MeV photons (3: 6b) The voxel §iz€ in this cxample is 1cm3. The values

of t0p,’b]ottom, and edge are -3,3,3, respectively, whicﬁ‘neans the dimensions of the

kernel are (-3:3, 33 -3:3). A four-Yold symmetry exists (i.c. the vacl value in planes at

-
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4 - g
j=tn, i=tn are identical). Thus, only one quagdrant of the kernel has been presented. Asin
the spherical kemel, the values in each voxel represent the fraction of the incident photon
energy deposited in that voxel. The 'total cnérgy' is the fraction of the total incidcr;t energy
deposited in the con;plctc plane (not just the half-plane). Adding all the planes together we ;
can determine the total éncrgy deposited in a region covered by t};nc extent of the primary
kernel (iE‘. a cube with edge di:ncnsion of 7cm). The tgtal 15 0.631 (i.e. 63.1%) for 5.0
I\;lc\/ incident p'hot‘ons. This value agrees with that obtaine:i from the sp};ncrical primary
kernel (Table 3.3), so we are assured that the extent of the primary kernel .is large enough
to receive all the energy %eposited by electrons set-in-motion byvthe primary photon. If the
kernel extent is too small, then energy will artifically ‘escape’. This situation is definitely
to be avoided for the primary kernel, since the bulk of the cncrgy is deposited in the
primary interaction (at 5 MeV).

When a C'a{tesian kernel extent is specified which is the same or larger than a 60 cm
sphere, the total energy contained in the Cartesian kegnel should be identical to the energy
contained in the sphcri&il lécmel. Otherwise, _energy has not been-conserved in the  ~
spherical to Cartesian conversion process. o . |

The pn’mary,licrncl for 1j25 MeV incidcr;\t photons (Table 3.6a) 8ontains zero's
-everywhere except at the ﬁneraction vc;xcl (0,0). For this voxel size (lcm3); the priina:y
energy is deposited ‘on-the-spot' because of the reduced range qf the ejected electrons
(0.450m)7 The value of this element (0.469%) agrees with the total energy deposited in the
primary spherical T(cmel. As will bc seen, if we were examining kernels other than the
pnmary kernel, this agrecmcnt would not be as}ood since a (7cm)3 cube is not largc s
enough to contam all the cncrgy deposited by the first scatter, sccox)d scatter muluple

scatter or bremss&'ahlung a.nd anmhxlauon proccsscs ) ‘ o



Max valuoe: 4.69E-01 Total: 4.69E-0

‘#‘#*J = Otitll“

»

k\i

01

12

*3

3

-2

-1

0

4.69E-0

1
2
3

Max value: 0.00E-00 Total: 0,00E-00

LAl L] J = tl‘.#.i

k\i

0

12

13

t1

-3
2
-1
0.
1
2
3

Table 3.6a. 2D planes through the 3D Cartesidn primary kernel for 1.25 MeV photons.

-

Max value: 2.31E-01 Total: 5.44E-01

LAt bl J = 0#*.#‘

k\i |01 Y 43

-3 ] 9.85E-123.26E-13
2.33E-10
'1.54E-06 |8.79E-13
‘14.37E-05 [4.86E-11

8.34E-12

L2

ol

” Max value: 1.64E-04 Total: 2.80E-04

RREE | JoRnknn

Max value: 2.16E-02 Total: 4.30Es02

LAl L ] J = il‘_’..‘

90

kK\i[_'0 1 +2 33
3 |326E-13 [4.02E14 |- -
2 [3.52E°07 |9.12E-08 |3.72E-11

-1 |3.63E-05 [1.42E-08 |3.60E-07 [3S1E-14
0 |2.89E-03 magm 1.02E-05 [491E-16
1 [2.16E-02 [4.60E-03 |2.45E-05 |2.63E-13_
2 [5.85E-03 |10SE0) [4.83E08 ]

3 [8.20E10 [2.73E-11

-

Max value: 4.86E-11 Total: 5.84E-11

LEL L 24 J = i’;i““

k\i]0%1 12 a] 13 N0 [ 3 2 13
| 3 . 3 ol
2_|2.33E-103.72B-11 |T.88E-20 . 2

f 1| 1.54E-043.60E-07 [1.43E-11 1 [8.79%13 |349E-14

0| 4.37E01.02E-05 | 2.35E-09 0 |4 86E-11 [4.91E-16

1_| 1.64E-042.45E05 | 1.41E-10 1 [8.33EN2 |248E-13

2| 6.31E-014.83E-08 [3.18E-20 { 21 ‘

3 3

Table 3.6b. 2D planes through the 3D Cartesian primary kernel for 5.0 MeV photons.
. € ‘ : o
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3.3.3 Kernel Compression ® \ C

L4

- Inan e.ffort to reduce the data storage, it4s sometimes appropriate to cc;fnpress the
3D kemnel to a 2D 01: 1D kerhel. This is usefdTif a 2D or 1D convolution may be used to
determine the dose in a plane or along a lincJonly (1.e. a profile). However, this "shortcut"
is permissable only if we assume: a uniform fluence across the incident beam (in the
compression direction), the radiation field size‘ is wide enough (in the compression
direction) to achieve lateral electronic equilibritm, and the irradiated system is

homogeneous. This comprcssxon can be performed as follows

compression to a 2-D kernd:

. edge ? ¥
Golik) = ¥ 6(i,jk) (3.7a)
j=-edge -
edge
= G(i,0.k) + & 2 x G(i.j.k) (3.7b)
j=1
compression to a 1-D kernel:
edge .
G](k) = Z Gz(l k) ' (388) )
i=-edge -
edge _
2 62(0,k) + ¥ 2x Gy(i k) : (3.8b)
i=1 '
edge | edge :
= Go(0k) + ¥ 2« [G(l 0k)+ I 2x G(l\] k) ] (3.8c)

j=1

AN

=1
4 edge “edge’ edge
G(0.0k) +2 ¥ G(i.0k)+ 4 § ¥ G(i.j.k) (3.8d)
i=1 i=1 j=1 :
[ ]

“ .
Table 3.7 illustrates the compressed 2D and 1D versions of the primary 5.0 MeV
kemel of Table 3.6b. . -



“ﬁ ~ Max value: 3.37E-01

Max value: 2.75E-01 Total: 6.31E-01 Total: 6.31E-01 n
¥k Compre in J¥#ees . . ’ *Compressed in J and I*
k\i 0 11 12 3 ¢ k 0 <
-3 [1.05E-11 |4.06E-13 |. - . -3 | 1.13E-11
-2 |2.68E-06 |5.34E-07 |3.07E-10 | - < -2 3.75E-06
-1 ]1.60E-04 ]6.55E-05 |2.26E-06 |9A49E-13 1-1 2.96E-05
0 |2.28E-01 }4.15E-03 }6.41E-05 |4.86E-11 0 2.36E-01 .
1 12.75E-01 |3.08E-02 [2.13E-04 |8.86E-12 i, 11 3.37E-01
2 {4.13E-02 |7.96E-03 |7.28E-07 ) 2 S.12E-02
3 ]3.80E-08 }8.83E-10 " L3--] 398E-08
a) b)
* Table 3.7. Compressed kernel for 5.0 MeV incident photons. T
" a) 2D compressed kemel ' .. __ b) 1D compressed kernel

-
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334  Physical Interpretation of the Cartesian Kernels

The primary kemnels used m section §3.3.2 spanned a very himited spatial extent,
only covering a volume (7¢m) Yo Inorder o accurately r(‘p‘rcscm the first-scatter, sceond
scater, multiple scatter, and bremsstrahlung and annthilatton kernels a much larger kernel
cxtent s required. Cartesian kernels were generated with @ voxel size of Tem?Y and
dimenstons of top= 1(), bottom=40, edge=26 Compressed 2D kernels are shown as
pictures in Frgures 310, 3.11, and 3.12, in which the picture intensity is modulated by
kernel values. These pictures were gererated by self~n0%mulizing the kemels to therr
respective maxima and then mapping the kermel information to an image consisting of
256x256 picture elements (pixels). Depending upon the kernel extent, one kernel voxel .
was mapped to either 4 or 16 pixels. This magnifies the kernel in an effort to make 1t more
visible. In some cases, the logarithm of the kcmerdum was also taken to expand its range
of visibihity.

1

To the nght of each kernel in Figures 3.10-3.12 is the legend indicating the kemel
values associated with each colour. For example, violet represents those pixels which
received 95% or higher of the energy deposited in the 'hottest’ pixel. Red represents a

value of 75% to 95% of the maximum pixel energy and so on until we get to dark blue

which represents a value of 1-2% of the hottest pixel. Pixels containing less than 1% are
)

black.

‘The amount of energy contained in the hottest pixel ofreach kernel is displayed in
Table 3.8, relative to the hottest pixel in the total kernel. Table 3.4 (presented earlier)
shows the relative amount of energy deposited in the complete kernel , wheréas Table 3.8
shows the relative amount of energy deposited in the hottest pixel . Table 3.8 is used only

to relate the true relative intensity of the images in Figure 3.11.

°



THE QUALITY OF THIS MICROFICHE
IS HEAVILY DEPENDENT UPON THE
QUALITY OF THE THESIS SUBMITTED
FOR MICROFILMING.

UNFORTUNATELY THE COLOURED
ILLUSTRATIONS OF THIS THESIS
CAN ONLY YIELD DIFFERENT TONES
OF GREY.

LA QUALITE DE CETTE MICROFICHE
DEPEND GRANDBMENT DE LA QUALITE DE LA
THESE SOUMISE AU MICROFILMAGE.

P -
MALHEUREUSEMENT, LES DIFFERENTES
ILLUSTRATIONS EN COULEURS DE CETTE
THESE N PEUVENT DONNER QUE DES
TEINTES DE GRIS. h

-l ~———



Maximum pixel values (MeV) for:

& annihilation

kernel type 1.2S MeV photons 5.0 MeV photons
total 0.600 (100%) 1.405 (100%)
primary 0.586 (97.7%) 1.375 97.9%)
I'st scatter 0.00128 (2.1%) 0.0262 (1.9%)
2d scatter 0.000759 (0.13%) 0.000745 (0.053%)
muluple scatter 0.000220 (0.037%) 0.000171  (0.12%)
bremsstrahlung | 0.00265 0.011%) 0.00261 (0.19%)

Table 3.8. Comparison of the ‘hottest’ pixel values for each kernel category.’

Figure 3.10. Total and primary kernels for 1:25 and 5.0 MeV photons. A voxel size of

1.0 cm3 and dimensions of top=-10, bottom=40, and edge is 26 were used.

a) 1.25 MeV 1otal
¢) 1.25 MeV primary

b) 5.0 MeV total
d) 5.0 MeV pn"maxy

04



" Figure 3.11, First and second scatter kernels for l 25 and 5.0 MeV photons.
a) 1.25 MeV first scatter - - b) 5.0 MeV first scatter
c) 1.25 MeV second scatter d) 5.0 MeV second scatter

L4

Flgure 3.12. Mulnple sca;ter and bremsstrahlung & anmhxlation kernels for 1.25 and
5.0 MeV photons. - i

a) 1.25 MeV multiple scatter « b) 5.0 MeV muiltiple scatter- '

c) 1.25 MeV brem & annih - d) 5.0 MeV brem & angxih

95



96.

~%

3:3.4.1 Total Kernel

The total kernel represents the energy deposited by charged particles which have

been set in motion by primary photons and their subsequent shower of secondary photons.

4
The total kernel is computed from the individual kernels by simple summation:

e

-~

4
Got(i.k) = 3 G(i.k) ¢ 4 (3.9)
: 5 o

where .
Gy represents the primary kernel, G, the first-scatter kernel, G, the

second-scatter, Gy the multig[e-scatter, and G, the
bremsstrahjung and annthitalion kernel

The total kernel for incident photons of 1.25 MeV (Figure 3.10a) spreads energy
) “ >
over aregion 1 pixel wide and 2 pixels large (1cmx 2cm), indicating very-localized energy

~

deposition for this energy.
For the cage of 5.0 MeV incident photons (Figure 3.10b), energy is spx}dad 2 pixels
downstream, 1 pixel upstream, and 1 pixel laterally, covering a total area of 7 cm?2. The

hottest pixel for'the 5.0 MeV is not the interaction sité, but the first pixel downstream of the

interaction site.

3.3.4.2 - Primary Kernel
The.prirxiary kemel for irféident photons of 1.25 MeV (Figure 3.10¢) is zero
y everywhere excep} at the interaction pixel, as i_s to be expectedAby the analysis in §3.3.2,
. Comparison with the total kemel (Figure 3\.10a) 'incatcs that scattered photons have
carried energy from the interaction pixel to the pixel immediately downstream. '
In‘contrast, ‘thc 5.0 MeV primary kernel (Figure 3.10d), appears identical to the 5.0
MeV total kernel (Figure 3.10b). This indicates thét the scattered photon kernels (and

brerpsstrahlung and annihilation kernel) contribute minimal energy to the pixels in the total

) . . 1
q - *

L]
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kernel. This should not be interpreted to mean that scattered photoné are unimportant! As
seen in §3.2, the primary kemel contains 63% of the incident energy, while the scatter
kernels contain another 27% of, the incident energy. The energy contained in the pnmary
kernel is spread over a few pixels (l), so that cacl;@cl receives a 'large’ amount of
energy. However, there arga vast number of pixels in the scatter kernels which conmb:ie

small amounts of energy per pixel, with the net result that the total contribution from the "

scatter kernels can be significant (27%).

3.3.4.3 First Scatter Kernel

The firs /ueatter kernel for incident 1.25 MeV photons (Figure 3.11a) is complctcly
contained w1thm the selected extent (i.e. 1 cm pixels, top--lK) bottom=40, edge=26).
However, the 5 0 MeV kernel (Figure 3.11b) is just ‘clipped' in the forwani direction,
mdxcatm g the 'bottom parameter is not Quite large enough to encompass the downstrcam
cxtcnt of the fust scatter events. -

In this work, all the kemnels were obtained by Monte Carlo techniques. It is aiso
possible to obtain the first scatter kernel analytically by cofivolving thé primary kernel ;vith
first scattered photon fluence as suggested by Boyer (1984n)‘ .
3.3.4.4 Second Scatter Kernel | 4 -

The second scatter kernel for incident 1.25 McV photons (Figure 3. lo)is
truncatcd in thc fbrward direction at the 5% level, while the 5.0 MeV kernel (Etgﬁ'eé 11d) -~
is truncatcd m the forward direction at the 25% level. _Comparing the pnmary first-scatter
and second-scatter kcrnels, we see the plxcl of maximum energy deposition is movmg ’
" farther downstmam from the interaction plxcl with the i mcreasmg order of scatter. The
shape of the second scatter component is very smnlar to the first scatter component‘ as has

~ been contcnded by Wong and Henkelman (1983).

[~
il
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3.3.4.5 Multiple Scatter Kernel
The multiple scatter kernel for incident photons of 1.25 MeV (Figure 3.12a)
appears almost isotropic. The position of maximum energy deposition ha‘.s moved

downstream even more that for the second scatter kernel as this componeht "builds up"

‘with depth. The multiple scatter kernel is clipped in the forward and backward direction at

the 25% level and laterally at the 5% level.

The 5.0 MeV kernel (Figure 3.12b) is more forward peaked and is clipped in the
forward (Eirection at the 50% level, in the backwards direction at the 25% level, and
laterally at the 10% level. This clipping-appears serious, but recall that this kernel's total -
energy contenf is only 5% of the incident energy (Table 3.3).
3.3.4.6 Br:msstrahlung and Annihilation Kernel

This kernel scores the energy deposited by electrons which have been set in motion
by bremsstrahlung or annihilation radiation (independent of the order of photon scattering).
The Bremsstrahlung and Annihilation kernel (B&A) dcgbsits most of its energy jlfst .
downstream of the interaction pixel; but, there is a fairly large region over which a small
amount of energy is deposited. ’ . / ;

The contribution to the 1.25 MeV B&A ke{nel (Figure 3.12¢) f\rom annihilation
radiation is negligible, since this energy is close to the threshold for pair production (i.e.
1.02 MeV, see §2.1.1.5). In the case of the 5.0 MeV kernel, (Figure 3.12d) beth
annihilation and bremsstrahlung radiation are more prevalent. It has been statt;d (Fitzgerald
et.al. 1967) that for low energy electrons, most brct;{r—nsuahlung photons are emitted at

—

right a;lgles to the incident electron. As the electron energy goes up, the directidn of the

)cmittcd photon moves forward. Thus, for high energy electrons (i.e. the 5.0 MeV kemel),

the photon fluence from bremmstrahlung radiation is more forward peaked, as seen in

&

Figure 3.12d.

o
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3.3.5 Energy Loss versus Spatial Extent

Figure 3.13 shows the relative physical sizes of three different kemels. The vertical

arrow represents a penofl beam of photons which is forced to interact at the tip of the

»
arrow. The circle represerits the sphere used to score the energy deposited in the Monte
Carlo generation of the kemels. The rectangles represent the spatial extent of two Cartesian

o

kernels, denoted as 'small' and 'medium’. The kernel pixel size, kernel dimensions

(Tp ,bottom ,edge), and spatial extent are shown in Table 3.9.

mmdcm photon bearn

AN, -,
N A A
'NN AT
AV A
\/ N A~
AA
\/ v W\ \
ANA Y
ARNAL A /
NN 2 R v
AAAA 0.1 cm-small A
AT
A A
VN :
I Al
A, 1.0 cm medium Y
\/ YA 4
u:u A
e, v A

Figure 3.13. Spatial extent of small and medxum theswn kemcls, rclanvéqo the
spherical kernel.

v ) S

- ‘o

pixelsize 1§fdimension’s spatial extent

o ’ (cm) els cm)
small 0.1 (cartgsian) -3, %, Ig 03, 2, '51.3‘
medium | 1.0 (cartesian) -10, 40,26 | -10, 40, £26
largg .| variable (spherical) ‘ > sphere of fadius 60 cm R

-__Table 3.9. Kernel djﬁ*ensions and extents.
. ] .




Fraction of Total Incident Energy,

o | ' 100

Figu'rc 3.14 shov? ths total energy deposited within the six kernel categories (Iomf,
primary, first-scatter, second-scatter, multiple:-scatter, and B&A)asa f;lnct'ron of kernel
size for monoenergetic photon beams of 1.25 Mev (Figure 3.1'4a) and 5i() Mev (Figure
3.14b). These data may be used to determine the pcrccmz-igc of energy acpositcd by the
various orders of scattered photon as a function of the physical scope of the kernel. We
suggest that energy losses should be kept as low as is reasonably achievable (ALARA), in
order to accurately réprcscnl the energy spread, while achieving acceptable dose calculation
tumes: As suggested by Mackie (1984), it may be bcncﬁqé;zl to use different kernel extents
for the different kernel types. It may be faster to do several convolutions at moderate

spatial resolution than to do a single convolution at fine rgsolution.

1.0 4 1.0 -
1.25 MeV = 5.0 McY‘ )
[l 'arge sphere 1 .O_ large sphere
0.8 - . 0.8+ .
[0 1.0cm medium [ 1.0 cm medium
0.1 cm small 0.1 cm small
8 Va 77, .8
0.6 4 0648 B H
04|l E 044l MR E
02N E o2 N ERN E
0.0 ARG 0.0 s =
total primary 1st 2nd mult ba total primaty 1st, 2nd mult ba
a) ' b)

-
-

Figure 3.14. Percenfage of incident photon energy deposited versus kernel size for
(a) 1.25 Mev photons, and (b) 5.0 Mev photons.

—_ s Y
The energy escaping from each kernel extent is summarized in Table 3.10 for both
r

1.25 Mev and 5.0 MeV incident photons. _ v
. A o / 4 . <.
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incident photon energy -
ernel size 1.25 MeV 5.0 MeV
small 49.9% 36.8%
medium 11.2% 11.7%
large 3.1% 6.2%

Table 3.10. Percentage of incident energy loss as a function of kernel extent!

. ’
To be ‘conservative', we can recommehd the following kernel extents in order to

model the deposition of energy in a water medium.

Incident Photon Energy
ernel type 1.25 MeV . 5.0 MeV
primary small small to medium
first-scatter medium medium
~~sgcond-scatter medium . medium
multiple-scatter medium large medium
brem&annih ignore medidm

Table 3«11. Recommended kemnel extents to minimize energy loss.

In some specific situations, greater energy leakage from a specific kernel type may
be tolerable, depending on igs relative coptribution to the total dose in a particular égion of
interest (see-section §4.2 where an accurate dose calculation is performed in the "build-up"

region despite significant energy loss.)

7

l‘ ‘ L |
3.3.6, Spatial Kesolution versus Voxel Size - L

-Once the kerne] €xtent has been set, the selection of the voxel size determines the

Iy

number of .kemel voxels required. The spatial resolution required depend? upon the .
suuauon being modelled. In regions of—hrge dose gradients (e. g. the 'bulld-up region' of
megavoltage photon beams), it will be necessary to use a smallcr voxei size tban in regions

of low dose gradients. s
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Figure 3.15 illustratc_é how the details contained in the 5.0'McV total kernel are
affected by the kernel voxel size. The black and white images displayed in Figure 3ﬁi§do
not hz;vc the colour legend indicating relative pixel values. These figures were generated
instead by using a "window" and "level" approach. The "window" defines thc total range
of values over which the entire gray scale will be mapped and, the level indicates the
intensity value corresponding to the middle of the window. For example, if an image has
‘ values which range from -1000 to +2000 (as CT images do), and the level and‘ window
were set to 0 and 1000 respectively, then pixels with a value of 500 and abdve would be
pure w;litc and pixels with a value of -500 or less would be black. All the other possible
shades of gray would be evenly distributed from -500 to 500. In this work, the level and
window settings will be indicatedby L/W. The range of values fof all black and white

images in this work are -1000 to +2000.

e

Figure 3.15.  Variation of the details of 5.0 MeV total kernel with voxel size

a) 1 cm voxel edge length (L/W = -1000/70)
b) 0.1 cm voxel edge length (L/W = -1000/70)
¢) 0.01 cm voxel edge length (L/W = -1000/70) (

o . . Kon
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3.4  Discrete Convolutions and the Reciprocity Theorem
This section expresses the convolution integral in two forms$uitable for numerical
evaluation: as a summation, and as a matrix operation. A’ reciprocity rclatioriship is
discussed as it relatos to the evalution of these two representations.
\
[e]

\
3.4.1 Discrete Convolutions

Replacing the integration over s (i.e. the spatial extent of the kernel) in equation
3.5b with an appropriate summation, we can write the continuous convolution integral as a

discrete 3D summation:

-~ edge edge bottom
D(ny.na.hg) = 2 z 2 ¢(ny-my.nz-ma.ng-m3) G(my,my.m3)
my=-edge my=-edge mjz=top
‘ (3.10)
where

D(ny,n2.n3) is the dose to the pixel located at (nq.n9.03) with respect to

the phantom origin ’

&(ny.n2.n3) is the fluence at the pixel located at (n, .Ny.n3) with respect

~ to the phantgm origin

G(my,my,m3) is the kernel representing the energy distribution relative
to the kernel origin per incident photon

The fluence and kernel must be selected for the same 1ncide t photon
energy. The voxel size for the fluence, kernel and doje
elements must also be the same.

Using a kernel compres§ed to 2D and 1D, equation 3.10 reduces to equations 3.11a
and 3.11b,respectively. i A V |

o~

edge bottom
D(ny.n3) = Py Z &(ny-my.nz-my) G(m,, m;)
m;, =-edge m3=top -
bottom o ' ‘
D(n3) = ¥ ¢(nz-mj) G(l’ns) o ' ,(3-1 1b)

ma=top

103
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As a simple example, let us calculaic;'ihc dose along the central axis of a uniform
broad beam irradiating an 'inﬁnitc homogeneous medium. Assume, thata 1D kernel with
dimensions top=-1 and bottom=2 is adequate to rﬁodel the situation, and that »\;e would like
the dose to four points. The components of the dose, fluence, and kernel arrays are showﬁ

in Figure 3.16. Note that the fluence must be known at points upstream from the dose

points.
$(n) & D(n) : A G(m)
| kS
» 0
< i _2 1
'01 2
1 ;"v m
2
3 .
n
| ,

Lo, . :
Figure 3.16. Representation of D(n;), ¢(n;), and G(my).

. - f
Substituting the values for 'top’ and 'bottom' in equation 3.11b we can determine

Y

4
the dose to the four points as shown below.
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N2 .

D(ﬂ3) = Z ¢(n3—m3) V'G(m3) (3] 2) .
\ m;:-]
) . o\
D(0) = ®(1)6(-1) « @(0)G(0) + @(-1)6(1) + &(-2)6(2)
B b)) = ®(2)G(-1) « @(1)6(0) + &(0)G(1) « &(-1)6(2)
- D(2) = ®(3)G(-1) «+ ¢(2)6(0) + &(1)6(1) + ¢(0)6(2)
D(3) = C®(4)6(-1) + (3)G(0) + S(22G(1) «  &(1)G(2)

7
v

These equations can be interpreted from two viewpoints: the energy distribution (or
'pitcher’) point of view, or the energy reception (or ‘catcher’) point of view (Mackie 1984). ~

The connection between these two view points is a consequehce of the reciprocity theorem
2

of radiation transport. ‘ ‘ ' a . \
2
3 4.2 The Reciprocity Theorem
 The reciprocity théorem (which is.exact only in an mﬁmtc homogencous medxum) .

states that for the attcnuanon of radiation, "reversing the positions of a point detector and
point source does not changc the amount of radiation detected” (Attix 1986, pg 55) Thls is
'/ﬂlustratcd in Figure 3.17. If media I and II are identical, then sthchmg thc locauon of the.

point source and the parhcle detector w111 NOT alter the numbser, direction , or energy of

any of the partmles detected )
‘ If medial. and I d1ffer switching thé detcctor and source will not alter the primary -
particles detected since the overall attenpation along the path has not changed However,
. the scattered particles reaching the demctor may change. Even though the I'OCIPI'OClt)'

thcoren‘m is not cxa\c\t for an mhomogcncous medlum, it is still useful if the primary radxanon

dominates, or 1f the transport of secondary pamcles does not vary greatly m the different
media. - . . T ' ™



a)

b)

Mecdum |

primary

Medium 11,

scatier

primary
Source

Detector

O¢

Detector

Figure 3.17. The reciprocity theorem.

In our present case of an infinite homogencous medium, the reciprocity theorem
:applics and suggests that an interaction voxel and an energy deposition voxel may ,hayc
their roles reversed. Previously, all kernels wcfl’c_ illustrated with one intetaction pixel and
Jmany energy deposition pixels. By reciprocity, the kernels also represent how a unit

impulse of primary photons at each of the 'deposition’ voxels deposit energy in the

‘Ifteraction’ voxel.

We now return to the interpretation of equation 3.12 and‘fﬁe ‘catcher’ and ‘pitcher
point of view. From the pitcher's point of view (see Figure 3.17) we imagine a primary
photon impulse at the interaction voxel (G(0) in the kernel) causing energy to be distributed
‘mainly downstream' to dose deposition voxels. The energy deposited is weighted
according to the "intensity" of the incident primary photon fluence. The kemel is shifted
downstream so that G(0) lands on all interaction sitcs.‘ For each interaction site, the kernel
1s reweighted according to the intensity of the primary photon fluence at the interaction site,

and the energy is diitributcd to each destination voxel (i.e. a dose point). Once the kernel

/

pl nar y .
Source

w?

16

clement G(0) has 'landed’ on all possible interaction voxels, the energy distribution process

is crqﬁﬁplctc“ Figure 3.18 illustrates this for determining the dose to one voxel.

.

q
w
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1st contribution to D(n):

$(n-2) G(2)

2nd contribution to D(n):

$(n-1) G(1)

3rd contribution to D(n):

o(n) G(0)

4th contribution to D(n):
" d(n+1) G(-1)

2
D(n) = 3 ¥(n-m) Gfm)

msz=-

Fix m, cycle n, repeat

Figure 3.18. The "pitcher” representation of convolution. The kernel shifts downward
so that G(0) lands on each impulse point ($). The dose is received in an incremental

fashion at D.

~

[

From the catcher's point of view (Figure 3.19), we look mainly 'upstream’ to see

which interaction sites can contribute dose to the voxel of integest. This retroviewing
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- . . - - i . - . t
requires inverting the kernel (Z--2) to determine which voxels are “"within range” of
contributing. Agam, the contribution is weighted according to the primary photon fluence
at cach contributing interaction point. From a mathematical viewpotat, reciprocity is simply.

a consequence of the commutative properties of multiplication and addition (Equation

312y
Dose Inverted Fluence ' Contribution
point Kernel
| G(2) X ®(n-2) G(2)¢(n-2)
—1G(1) —o— X——| &(n-1) G(1)e(n-1)
D(n) =1 6(0) —— X—=] o(n) - G(0)¢(n)
G(-1) X #(ne1) -~ G(-1)®(n+1)
&
2
D(n) = 3 G(m) ¢(n-m)
m=-1

[

fix n, cycle m

Figure 3.19. The "catcher” representation of convolution. The kernel is inverted and
G(0) placed on the dose point (D). The kernel - fluence values are multplied in pairs to
yield the dose at D directly.
The pitcher's forward approach bailds up the dose to all dose points in an
incremental fashion; while the catcher's reverse approach determines the total dose to a
14
single point directly. In either representation, the resulting camplete dose distribution will

e .
be identical in a homogeneous infinite medium.

An interesting physical interpretation links the reciprocity theorem and dose
measurement. If we are interested in calculating the dose along the central axis for a broad
beam then we can perforgn the calculation in one of two manners. We can perform a full

3D convolution (using the pitcher approach) and then extract dose along the central axis; or
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we can use the catcher approach and determing the dose along the central axis. This is
analogous to measuring an identical dose for cither a small detector in a broad beam or a

'pancake’ detectdr in a pencil beam as illustrated in Figure 3.20 (Nahum 1986).

-

[ . °
S -

Figure 3.20. The Reciprocity theorem in action.

3.4.3 A Matrix Representation ' 5

Another method of determining a dose distribution is through a matrix
multiplication®.

[D] = [6] [¢] (3.13)

A

where -
(D] is an N element column matrix representing the dose to N points

(Gl is an N x M matrix representing the kernel -
[¢] is an M -element column matrix representing the fiuence

4 ' = ¢

6A similar matrix formalism is used routinely in deconvolving measured spectzal distributions to obtain the

true spectrum (Skarsgard et.al., 1961)' : '



Using the previous 1D example, the matrix contents-are written in detail to illustrate

the matrix formalism.

D(0) G6(2) 6(1) 6(0) o(-1) O 0 0 (9(-2) ]
D(1) = |0 G(2) 6(1) o6(0) oG(-1) O 0 ¢(-1)
v D(2) 0 C G6(2) G(1) G(0) G(-1) 0 $(0)
o3 | o o 0 6(2) 6(1) 6(0) G6-1) | [e1)
| #(2)
o(3)
[ ¢(4) ]
, (3.14)
\.

The dose matrix consists of al'l those points in the dose distribution. The fluence
matrix is esta't.)lished by considen’ng the dimensions of both the kernel and the dose métrix
(since the ﬂucn(;e must be known at points upstream of the dose points). In this example,
the kernel dimcnsionls are top=-1 am&ottomzl and the dose matrix dimensions range
from () to 3. Using the catchers point of view, we see that the elements required in the

fluence matrix range from 'bottom’ pixels upstreém of D(0) to -top' pixels downstream of
D(3); thatis $(-2) to $(4). The determination of the kernel matrix is a little more difficult.
The ﬁumber of rows in the kernel matrix matches the number of rows in thg dose matrix;
the number of columns in the kernel matrix matches the number of rows in the fluence
matrix. The clements making up the kernel matrix céln.bc interpreted in two manners, again
through the rccipr.ocity theorem.

From the 'pitchers’ viewpoint, the columns of the kernel matrix represent thé -
energy deposited by a primary photon impulse at an interaction site. The first column o
the kernel matrix represents the first conttibution from any interaction site to one of thej
dose points in qucstion.‘ The s:cond column contains the kernel shifted‘onc voxel
downstream from the intemc;ipn pixel of the first column. The kernel is shifted

downstream until it no longer contributes energy to the selected dose points. The locations

&
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of the interaction sites for €ach column given in the fluence coordinate system are: $(-2),

¢(-1), ¢(0), (1), ¢2), (3), $(4).
From the 'catchers' viewpoint, the rows of the kernel maﬁix represent the inverted
kernel. The first row contains a left justified inverted kemel. The second row contains the ¢
kernel shifted one voxel to the right. This process is carried out until the kernel reaches the
right limit. In matrix.multiplication, a row from‘the kernel matrix is multiplied by the _
column of the fluence matrix and this yields the total dose to one voxel - the catcher!
In this example, we saw that a 4D dose distribution required a 2D kernel matrix. It
can be shown that a 2D dose distribution requires a 4D kemnel matrix, and a §D dose.
distribution requires a 6D kernel matrix! Much of the information in the kernel matrix is
redundant ( one row contains the same information.as the next except for sl{ifﬁn-g‘one
. ,position). Thus, the convolution formalism is a more con\cise method of expressing the /
same mathematical operations.
Now thatiwe have the basics of the convolution method, Chapter 4 will present

A

results of 2D convolutions. _
>



Chapter 4 -

Convolutions

Man is a tool-u\§ing animal...

Without tools he is nothing, with tools he is all.

Anonymous

L ]
Fv ' .

112



113

4.0 Convolutions |
3

In this chgipter we will actually calculafe dose distributions by evaluating the
convolution integral in both'real space and Fourier space. Section §4.1 \Cill calculate, in
real space, a central axis depth dose curve (1D) and a planar dose distribution (2D) for a
broad beam of incident photons. Section §4.2 will briefly explain Fodrier transforms, fast
Fourier transforms (FFTs) and use these to calculate the dose resulting from the same beam
of incident photons. Section §4.3 will examine the accuracy and speed of the
convolutions, in real and Fourie£ spac€. Each of the assumptions; required by the
convolution method aré individAua,lly discussed in section §4.4 and possible 'work-arounds’

\

are explored.

-

4.1 Real Space Convolutions
Figure 4.1 illustrates the steps required to perform a convolution in real space. As

mentioned previously (§3.3.2), the preliminary steps of reading a spherical kemel and

——

Read Spherical Kernel o C

=

Generate Cartesian Kernel ' Calcuiate Fluence .

Dose |

Figure 4.1. Steps involved in real space corii'plutiOnS.

- -———

<
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generating the Cartesian kernel could be done in advance and stored for anticipated voxel
sizes. The fluence is calculated as dcscﬁbt':d in section §3.2.4 and the real space
conyplution is then performed.

\é The real space convolution calculation time is proportional to the number of
multiplications performed, which is determined by the kernel and fluence array sizes. The
3D convblution of a kernel of size (M, .M, .M3), with a fluence of size (N, .Né.ﬂ;)qresults in
a dose array size (My+N;-1, Ma+eNyp-1, M3+Nj3-1) (as depicted in Figure 4.2 for the 2D
case). Every element in Ehc kernel #s multiplied by every élemcnt n the fluence matrix;
therefore M1 M;M3N; NN 3 multiplications are performed. 'I'Qe 3D convolution calculation
time is thus proprotional to M;M,M3N1N,N3. Similarly, 2D convolution calculation times

are proprotional to MyM;NN,; and 1D convolution times are proportional to M N;.

[e—M; —

EG(my, M) | ‘
M2:::: =2 2 [ 'y y
G(0,0) 3 '
| el =
¢(ny,ny) ' i i 1,N2
N2 ] k i
: Mz“Nz-] + H
| HH .i ' :':ﬂ 3 H :
e Ny ——»] E - I
J ’ - 1 "

Figure 4.2. The dcpcndenge of the JQsc rnitrix size on the fluence and kernel matrices.

a

~As a simple ex&mple 6f a 2D convolution, consider the two arrays depicted in

Figure 4.3. Evaluation of equation 3.11 yields the result as shown.



N2
1 0 1 O 100
®(ny.ny)= 2 1 G(m,.my)= - ¢(ny.ny) ® G(mymy) = {3 20
> . 231
Ny

Figure 4.3. Numerical éxample of a 2D convolution in real space.

In pra;i?:e, there are other considerations which also influence the overall
calculation time. ”
* the computer address space may limit the array size which can be used at any
%@ne time. Fragmentation of large arrays may be needed (e.g 16 bit
) computers). .
«  the mechanism for addressin g computer memory may become a significant
v factor. Fd}‘gxample, on a "virtual address"” processor (e.g. DEC's VAX),
access to "pages” of memory on disk may require significant time. To
minimize this, it may be necessary to "lock pages in memory".
The above indentify time penalties, but ume savings are also possible:
* if the dose is to be computed everywhere in a patient, then the fluence array
" size can match the dose array size (i.e. patient s1zc) This means that those |
steps of the convolution process which deposit energy outside the patient can
be eliminated. This may amount to significant time savings (see Appendix

A).

-~

, , ¢
4.1.1 A One Dimensional Example . ‘

As a simple example of the convolutlon algonthm. let us calculate the ccntral axis
depth dose curve resulting from a beam of 1 25 MeV photons for a field size of 10x10.

115

cm2. We wish to calculate the dose to the center of each voxel whose edge length is 0.1 cm

V s A R
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in order to resolve the "build-up” portion of the curve. The primary photon fluence (Figure

4.4a) at the comrc of each voxel i1s calculated from

o(n)= ¢y e-0.14(n+1/2) : (4.1)
where 4
M is 0.0632 cm™! for 1.25 MeV photons
) )
¢ (n) appears linear over our depth range of interest since e* = 1 + x, for small x values.

In our case, x ranges from only -0.00316 to -0.06004, making é(k) appear linear in Figure
4.4a.

A Cartesian kernel was generated whioh contained cubic voxels of linear
dimensions 0.1 cm and kernel dimensions of: top=—;,Abottom=2O, edge=5@. The 1D
kernel shown in Figure 4.4b was obtained from a compression of the 3D total kernel

\cction §3.3.3). The total of all the element values in this kemel is 0.493, i.e. 49.3% of
the incident 1.25 MeV photon energy is deposited within the spatial extent of this small .
kemel ThlS value is only marginally larger than the contribution from the primary kemel
(46.9% - see section §3.3.1) because the secondary radiation deposit dose well beyond the
extent of this kernel. This is one situation in which a large energdy leakage does not affcct
the accuracy of the calculated result, since the leaked enorgy does not contribute much to
the point of interest (i.e. in the build-up region). If the dose at larger depths is of intcfes},-“
then this cncré'y leakage will affect the accuracy of the calculated result. * /f

Assuming that all conditions are met to allow the use of the convolut‘fsqtechrﬁqu‘é
(§3.2.4), equation 3.11b can be used to perform the convolution. The resultant "build up”
curve is shown in Figure 4.4c kVoxel number 4"wh1ch corresponds to a mean depth of
\4'5 mm, contains the maxxmum dose. This corresponds well with the "standard" depth of
maximum dosc of 5.0 mm for Cobalt-60 radiation. This is good agrccmcnt considering the
mmdem spcctmm of photons and contammant electrons were ignored (Mackle 1984, Lcung
et.al.1976). Measured data from Lcung et al. (1976) is shown for comparison (the dashed
line). - re ®

7
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1.00 T— (0)

0.90 NG . ¢(1)
1 FY. < ¢(2)
: d(3) . -
" v¢(n) o974 . ®(4) a)
.- | | &(5)
0.96 ‘ ) ¢(6)
0.95 . . ®(7)
1 N . o(8)
094 1 | I - ‘ *(9)

0.98 4§

6(-1)
6(0)
G(1)
G(2)
G(3)
G(4) b)
G(5)
B6). « -

G(m)

[ ®(7)
_ 6(9)

0.305 | D(0)
0.695 | D(1)
. ; ' - | 0.9241D(2) .
D(n) | ¢ REEE ~ |o.898]D(3)
A .000] D(4) +¢©) -
o |0.9991 D(S)
© o paesaioe)
10,8981 D(7)
- 0.2 AR L S R A M- .087 | D(9)

n i
‘Figure 4.4. AlDdosed:smbuﬂoncdcuh%dmmdcpnc(fmalZSMeV&;b:ﬁbem/

\a) anryPhotonFluenoe b) Convoluuonl(ane! 'c)Depdl
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4.1.2 A Two Dimensional Example

The one dimensional c){amplc just ci;mplctcd is instructive but we are generally
more interested in calculating the dose to a two dimens.ional area or a three dimensional
volume. This section deals with the calculation of a-2D dote distribution resu}u'ng from a
5.0 MeV incident photon beam for a field size of 10x10 cm?2. The kernel used in the
calculation contained cubic voxels of linear size 0.5 cm and dimensions of top=-10,
bottom=40, and edge=26 . The convolution and kernel compression assumptions have
be?n met which allows us to perform a 2D convolution. Figure 4.5 shows the kernel

(4.5a), fluence (4.5b), and the resultant dose'distribution (4.5¢).

o

3

Figure 4.5, A 2D dose distribution calculated-in real Space for a 5.0 MeV photon beaha.
a) 5.0 MeV total el ‘_b) 5.0 MeV primary fluence c) resulting dose distribution

*

"The calculation times required to perform these convolutions detersgine the clinical
~applicability of this algorithm. A series of 2D convolutions were performed with various

[t

dose matrix smes and various kernel sizcsi’(/see TFable 4.1). Figure 4.6 summarizes the

calculation times requifed to perform these 2D convolutions. Dose was calculated only in
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the area covered by the fluence ana&;c. energy was not deposited beyond the phantom

where we don't require a knowledge ¢ the dose).
400 - : . ‘
™ &
—_ 300 S
m ‘ .
'g .
g e - 4 Kernel (63x63)
8 8/ 200 «+ Kemnel (63x47)
~ o + Kemel (47x31)
& - Kernel (16x15)
~ 100 <
0 "' 1 v T v T v
0 1000 2000 3000 4000 - 5000 #points

l6 32 44 54 64 Equivalent square matrix

Dose and Fluence Array Size

Flgure 4.6. Calculation times for regl space 2D convolutions. The dose and fluence
matrices are of identical size, and the kernel matrix size varies. Thg times to convert from a
spherical kernel to a Cartesian kernel have not been included in these times (see §3.3.2).
Using Appendix A, we can determine the reduction in the number of multiplications

_ achieved by this "constrained convolution!" as compared to a "full" convolntion. Table 4.1
incorporat'cs this reduction in the number of multiplications and shows the average ;ZPU
time taken to compuée the energy contribution from each kernel voxel to each dose point'
This calcﬁiiuon time should remain constant (ignoring " page faults"; This is seen to be
the case, and the average calculauon time pcr kernel point per dose pomt ona VAX-11/7 80
is36.6 CPU pseconds This value can be used to determine the’ real space calculauon time
asa funcuon of kcmel and ﬂuence mamx size.

KemQISizc top' boteom edge - nme/pomt

ety | pixel)| ixel) _@;Iels) nds)-' S
< 63x B LI T ' :

"63x47 { -13 | 50, 23 373
47x31 | -10 | 36 | 15 | - “359
l6x15 ' -3 - 12 71 | 365

Table4 1 Average calculaum nmcperkcmcl pomtperdosepmntfora&zmamx

-.,V ~
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4.2 Fourier Space

In an cfort to reduce calculation times for the con\‘folulinn algorithm, it has been
suggested (Ahnesjo 1984, Boyer 1984, Mackie 1984, Mohan and Chut. 1987), that
transfofm techniques be applied to the dose calculation problem. A transformation to
aflother space often simplifies solutions (e.g. logarithm space rc(liuces multiplication to
addiion). Fourier transformations are appropnate in our case since a convolution tn real

space is equivalent o a multiplication’in Fourier space. Before dealing with convolutions

in Founter space (§4.3), let us first examine:”
the Fourier transforms of some basic 1D functions (§4.2.1)
the Discrete Founer Transform (DFT) (§4.2.2)

the Fast Founier Transform (FFT) method of evaluating a DET (§4.2.3)

4.2.1 Continuous Fourier Transforms (1D)
In this work, the functions dealt with are functions of spaual location (e.g. a kemnel

A o
function K(m,.m;) describes the energy deposited in the voxel located m, pit.;lsil A

downstream of and m, pixels lateral to the interaction site). The following section \will
deal exclusively with functions of time and their corresponding transforms (functions of
frequency), because of the ease in developing and explaining the Fourner transform. The
following discussions apply equally well to functions of spatial location and their

.

correi)onding transforms, which are functions of spatial frequency (e.g. the Fourier

transform of the spatial function, K(m,,mj), represents the kernel infofmation in terms of

. the spatial superposition of sinusoidal variations in energ9 deposition). Now let us turn

our attention to real space time functions, and Fourier space frequency flﬂctions.

The Fourier transform of a continuous function, F { h(t) }, is defined in equation

4.2a; thc inverse transform, F-{ H(1) 1, is defined by equation 4.2b.

=
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F1 h(t) } = H(r) = Jh(t)eii”“t at - (4.2a)
i P
F-UOH(O) b= R = ﬁ(r)eﬂﬂ“ dr (4.2b)
h(t) > H(T)
where e
) = V-1

and the symbol "=~ denotes h(t) and H(f) as belng a Fourier
transform pair

We see that the Fourier transform H(f), a function of frequency, represents a
function of time, h(vt), in terms of the sinusoid;xl functions of appropriate frequency and
amplitude. In general, both ‘'odd’ and ‘even’ sinusoids will be required to generate h(t)
since @] 27t = cos(21ft) + jsin(27tt). The ‘even’ sinusoids are represented by the
real’ component of €] 27Ut (ie real{el 2T t}-cos{27rt} ) and the 'odd’ sinusoids are
represented by the ‘imaginary’ component of eJ 27t (e imglel 27Ut} =jsin{2mrt}).

The amplitude of the sinusoids are determined by H(f), also a complex quantity in general:

H(1) = R(T) » ji(1) = [H(N)| ei®(f) (4.3)

where :

R(f) is the real part of the Fourier transform

I(f) is the imaginary part of the Fourier transform

[H(D] is the amplitude of the Fourier “spectrum” given by /RZ+I1?

8(f) is the phase angle of the Fourier transform and is given by
tan-1[I{1)/R(1)]

As an introduction, let us examine the Fourier transforms of some simple functions.

4.2.1.1 Fourier Transform of Sine and Cosine functions
Let us calculate the Fourier transform of h(t) = Asin(2mtfgt). Asin(27t14¢) may

be written as jA/2 [e~]2TUot - gj2Tigt) ther;thc‘frequcncy components of ej 27/t

-



122

required to represent h(t) are located at -fg and + 1 with imaginary amplitudes of JA/2 and -

JA/2 respectively. This 1s shown graphically in Figure 4. 7a.

Mathemaucally,

F{ he) = H(T) = rAsm(’zmot) e 127U gt (4.4a)
w .
- J JA/2 [e 127Ut g]27T0gt] ¢ J2TTIL gy (4.4b)
00 ’ 00
= jA/2 { Je‘l2“(f'fo)t dt - Jell’ﬂ(f~fo)t dt ] (4.4¢)
= JA/2 [ 8(1+1g) - 8(1-15) ] ' (4.4d)

Here wehave made use of the delta (or impulse) function (Brigham 1974). :

00

8(1)= Jel?mt dt ) (4.5)

-00

A
\

In Figure 4.7a, the delta function signifies the "ultra purity” of the sinusoidal function of a
single frequency.
12
Does thednverse transform of H(k) (equation 4.4d) yield the original h(t)? The

inverse transform is given by,

Q&/ F-'1{HD b o= h(t) =jA/2 ﬁs(f.ro) - 8(1-19)] €] 27Ut gt (4.6a) [

-00 L
: jA/2 [e-]2TUpt - gj27U gt : (4.6b)
= jA/2 [-2jsin(27fyt) ] (4.6¢)
= A sin(27fgt) = h(t) 14.64d)
¢ \

as expected. The transform pairs are represented by

4

h(t)=Asin(27cf gt) = H(T)=jA/2 [8(f+1g) - 8(f-Tg)] (4.7)

<

Similarily, we can find the tran$form pairs for the cosine function (Figure 4.7b)

given by:



Y

123

h(t)z=Acos(21tyt) = H(1)=A/2 [8(f+1g) « 8(f-f0)]” (4.8)

As expected, the even cosine function has purely real components; and the odd sine
function has purely imz;ginz{ry components. x

An interesting feature of the Fourier transform is that the amplitude of the ransform
describes the 'shape’ of the function wlile thephase describes the temporal positioning of

the structure. For example, the amplitude of the ransforms of both the sine and cosine

/1‘ tion are identical, "H(f)" = A/2[(8(f+1g) « 8(1-1g)]. ﬁc%asc for the sine function

W

however is 9(f0)='9%- 8(-14)=90; and for the cciéne function the phase factors are
’e(ro):e( -19)=0. Thus, the shape of the sine and cosine functions are identical but the

phase factor serves to shift the position of the waveforms appropriately in time (see

§4.2.1.4 Time shifting).

" 41
h(t) = Asin(2mtfgt) * Al2 :
& ' 0 >
(1) = A/2 [8(1+15)-8(1-1p)] o |t & f
' L 3
h(t) AR
h(t) 5 Acos(27tf,t) * A/2 *
/ ot $,
t R(f) = A/2 [8(f+1g)+8(f-1)] ~fo o f
V ‘ . b

'Figure 4.7. Fourier tranform of the sine (a) and cosine (b) functions.

’ <
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4.2.1.2  Fourier Transform of the Impulse and Constant Functions
Let us now determine the Fourier transform of the impulse function (equation 4.5).

One property of the impulse function is that

Jag(htO) x(t) dt = x(tg) ’ (4.9)

[y
4

where .
x(t) is an arbitrary function continuous at tg

The Fourter transform of h(t) = K&(t) is easily determined from equations 4.2a and 4.9.

H(f) = ﬁs(t)e-im“ dt = Ke® = K (4.10)
-00

. - - . - s
This 1s interprcte(kto mean that an impulse functiop in real space is made up of equab
contributions from all even sinusoids (cosine) in.Fourier space (dce Figure 4.8a). Thus the

tranform pair for the impulse function is

h{t) = K&(t) = H{f) = K (4.11)

Let us now exanfine the Fourier transform of a constant, h(t) = K.

H(T) = JK e J2TUt gt - ks(r) (4.12)

-00
Similarly, this is interpreted to mean that a uniform pattern in real space is represented by
sinusoids of zero frequency in Fourier s‘ (Figure 4.8b) since the function is not

w’
changing jn time. This transform pair is given by:

h(t) = K = H(f) = K&(f) (4.13)

-

Note the reciprocity between equations 4.11 and 4.13. X

S~
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h(t) AH(1)
. h(t) = K&(t) -
. — .
a) T H(f) = K . 7
. t .
Ah(t) * H(1)
. - h(t) = K
. * C:
b) > HT) = K8(r) I >
t - f
a) . ~ , b)

Figure 4.8. Fourier tranform of the impulse (a) and constant (b) functions.

kY
4.2.1.3 Fourier Transforni of the \.itep Function
The last transform to be examined is for the step function, a constant function over

\
a finite time period,

A It < T,
h(t) = { A/2 |t = Ty (4.14)
0 th > Tg
~ The Fourier transform is given by )
To . s
H(T) = Ae-jomtit gt/ (4.15a)
a J-1, _
. ’ ’
To , To ,
= A cos(2mtft) dt - jA J jstn(27t1t) dt (4.15b)
/-Tg . °-To '~ '
A To
= —— sin(27tt) o (4.15¢)
27t -To
- 2A .
= — sin(271Ty) - (4.154d)

21
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sin(271U1Ty)
2ATg —— ' (4.15e)

271U T,

Notice that H(f) is purely real and has negative and zero amplitudes at centain "cross-over”

frequencies (see Figure 4.9).

-
ht) At <To H(1)
:A/2 | t]=T, 2AT,
— 0 |t]>T,
T, Tyt = f
T, ) .
i sin(27Tyf)
H(f) - 2AT0 Fﬂ,f_

FigUreI4.9. Fourier tratsform of the step function.

4.2.14 Properties of the Fourier Transform
- )
The properties of Fourier transforms are well known(Brigham 1974 31-49) and

. will only be stated here. )

( Real domai Fourier domai
Linearity h(t) - g(t)\ = H(N) »+ 6(1) (4.16a)
Symmetry  H(1) o, h-1 (4.16b)
A ‘\ 1 i
Time Scaling h(kt) & — H [— ] (4.16c¢)

3N I k
» 1 t .
Frequency Scaling — h. [‘—- ] = H(kT) (4.16d)
S ' .
Time Shifting  h(t-t) e H(Ne-i2TMty  (4.166)
Freq}w{y Shifting h(t)e-127Mot s  h(r-1) “(4.161)

“ . : ©
Convolution h(t)eg(t) o H(1)G(r) (7:169)
L. '
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4.2.2 Discrete Fourier Transforms
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L4

The Fourier traﬁsform discussion to this point.has only considered continuous 1D
functi'ons. In this w;)rk, we deal with sampled (or discrete) fun(ftions. The procedure of
forming a sampled function from a continuous function consists of several intenngdiate
steps (Dudgeon and Mersereau 1984, Bn"gham 1974) and is briefly summarized hére.

Consider a continuous function, h(t), with a corrcéponding Fourier transt{)rm H()
(Figu,re 4.10a). Also.consider an infinite 'sampling" function (Aq(t)), as-a series of &
functions with sampling period T 7, and its corresponding Fourier transform (Figure
4.10b). By multiplying the continous function with the sampling function, we can produce
a 'sampled’ function (see Figure 4.10c). The p‘roduct,‘ h(t)Ay(t), in real space '
corresponds T a convolution in Fourier space (Figure 4.10c). ' “

The tmnsforﬁpajr of ﬁgiire 4.10c is not amenable to digital computation since i}:c
product h(t)Ag(t) containes a infinite number of samples. A step function or "w;naow"
can be used for truncation to a finite series of samples (Figure 4.10d). Multiplication of
this step functi(;n with h{t)AO(t) in real s;pace again orresponds to a convolution in
. Fourier space (Figure 4.10d). This truncation step in real space introduces 'ripples’ i;l the
Fourier transform . .Making the step function wider (i.c. less truncation) suppresses the
ripples in the Fourier space convolution to an acceptable level. . ‘

This transform pair is still not ascful for digitz_il computation since the transform is |
continuous. The frequency domaiﬁ is now sampled with a function as illusmi_t,ed in F”lgufc

4.10f. The multiplication of this sampng function in Fourier space corresponds to a

s

* "The Nyquist theory states that a continuous function is uniquely determined by its sampled valus, wheg
v mewavefomissampledatleastmdccdtmaximumﬁeqmy'comﬁpedindtélidndﬁnwﬁon.dlﬁs
preserving the "fidelity" of the transformation. -
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h(t) .
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t f
Ao(t) '
w
oooﬂTTTTTﬁ?TﬁTﬁ Y
b) »
; s t f
h(Dag(t)
c) _411._ Qi _T—lL A e
‘X(t) . ‘X(f)
=
d) ' > — n
-To/2 To/2 t \ R |
x(t)h(t)Ay(t) , \ X(DH(1)Aq(1)
=
>
t ] f

ooe T ‘t..’i = o8 1 oo |

’ Figure 4.10. Derivation of the Discrete Fourier Transform pair. .
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convolution in real space which repliéates the sampled truncated original function (Figure
4.10g). This transform pair is called a Discrete Fourier transform pair and is amenable to
digital computations. As ill‘ustrated, the original fanction and its transform arlc represented
by N discrete samples. For the discrete transform pair to be used, the original\function
must artificially be rendered periodic.

The net result of the sampling procedure sketched in Figure 4.10g is that the 1D

discrete Fourier transform and its inverse are related by equation 4.17.

Q ..
© N1 K :
H(k) = 2 h(n) Wy O<k<N-1 © (4.17a) ;}1
n=0 - !
® : K
N-T | .
h(n) = 3 H(k) WN 0<n<N-1 (4.17b)
k=0
where

h(n) is a sampled periodic function in real space
H(k) is the Discrete Fourier transform of h(n)

N is the number of samples

WN is a shorthand notation for e-27(j/N.

The corresponding 2D and 3D transforms are g?vcn by.

U Nj-1 Np-1

o

K
ki) = £ Z hlowg) Wy T Wz, (4.182)
- - 1 2
n1-0 2-0
0<k1<N;-1 and 0<kp<N,-1
Ny-1 Nap-1 -
~nyKy . -nyk .
himung) = £ 5 Hikyk) Wl ! Wy 22, _~ (4.18b)
Ky=0 kp=0 . 2
. ' ' 0_<_n15N1-1 and 0502_5_N2-1
' \ -
Nj-] N2°,'1 N3-1 ' .
Nk Ny Kk nzk
Hikikaks) = £ 5 ¥ h(ng.ng.n;) wN’ ! wN2 2 wN3 5 - (4.18¢)
Ny=0 nya=0 n3=0 ! 2 . ‘
| - - - Y ] . '
N 0<k;<Ny-1, 0<kg<N,-1, and 0<ks<N3-1

A} ) .. e l
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Ny-1 Np-1 Nj-1 Mk nzka | nsks

hny.ngng) = ¥ 8 T Hky.koks) Wy Wy W (480)
K1=0 kp=0 k3:=0
0<ny<Ny-1, 0<ny<N,-1, and 0<ny<Nj3-1
The same periodicity requirements are made or},‘ZD discrete functions as were made
on 1D discrete functions. The original base portion of a disérctc function is uniquely
defined for N samples, from 0 to N-1. Beyond this range the discrete fungtipn is v

artificially replicated. For example, consider a 2D step function shown in Figure 4.11a and

artificial rcplicationﬁnﬁ{gureA. 11b. The discrete function is defined mathematically as

i." “: ,..\.31;.".;
hny &3 . nyz0.1 and np=0.1 Ny=4, Np=3 (4.19)
0 _ M=2,3 and ny=2
.nzﬁ
0000f{0000]0000O
N2 1100J/1100{1100
110011100[{1100
2fooo00 0000J0000[0000
]%138 / 1100J1100{1100
o[l ! 1100§1100]1100
0123 n’ 0000]0000{000O0} n’
A 1100{1100/1100 ! '
N;=4, Np=3 1100[1100[/1100
* : b)

Figure 4.11. The periodicity requirement imposed by the sampling procedure.
a) Fundamental Portion of a 2D function b) Periodic Nature of a 2D function

Let us now examine the evaluation of the di/scrctc Fourier transform through the

&

Fast Fourier transform algorithm.
¢



131
4.2.3 Fast Fourigr Transforms (1D)

We shall examine the FFT by looking at the development of the 1D algorithm. If

K . ] .
the W: 's of equation 4.16 are precomputed and stored, then the direct evaluation of a 1D

Fourier transform N elements long would require N2 multiplications of complex numbers.
Since the direct evaluation of the convolution summation (equation 3.11) requires only N2
multiplications of real numbers, th® use of Fourier space to écceleratc convolution
calculations seems pointless. However, the Fast Fourier Transform (FFT) (Cooley Tukey
1965, Cochran et.al.1967) is an algorithm that can compute the Discrete Fourier Transform
(DFT) very efficiently. The FFT achieves its computational efficiency thfough a "divide
and conquer” strategy, which will be bricﬂy cxplained.

Let us assume a 1D array, h(n), containjng N elcmcnts (whcre N is a power of 2).

Separate h(n) into 2 pans using even §nd odd indices: So(k) and S, (k) such that

N/2-1 ok ,
So(k) = I ht2m) wy m=0,1,2...N/2-1 (4.20a)
m=0 ) :
7N/ 2mk
Sy(k) = ¥ h(2mf+1) Wy ' m=0,1,2...N/2-1 (4.20b)
m=0 '
[ 3

then_uging equation 4.17a we find
HEK) = Sg(k) + S9(k) Wh - k=0.1,2,.N/2-1 - (4.21)
Let us examine the value of W2 and WX when k'=k+N/2, then =

2mk’ 2mYfk+«N/2 2mk 2mk mN
N = W ) WN WN s WN ~since WN -ll.O i _‘(4.22a)

N

w

thus 2m(koN/2 L S
N ’ ~ N ’ ;
and similarly : - -
keN/2 O

. v ) ) %



\ n
Using the identities of equation 4.22 and evaluating equation 4.20 at k+N/2 we find repeat

_values. i.e. :
So(k+N/2) = Sg(k) ; and  S,(k+N/2) = S,(k) (4.23)

Using these identities in equation 4.21 we find H(k+N/2) becomes

H(KeN/2) = Sok) + (-WR)S;(K)  (4.24)

"I'hus, for a particular value of k, 2 points of the Discrete Fourier Transform (H(k)
and H(k+N/2)) can be computed from the Q(\id and even components (Sq(k) and 81 (k)).
This computational unit is the basic building blpck of th‘c EFT , and is called a "Radix (2) |
butterfly"”, as shown in Figure 4.12. Equations\h,?l and 4.24 are evaluated by this

"butterfly" structure, which really stems from the symmetry of sinusoidal functjons.

3

So(k) X! X » HK)

x WK )
Sy(k) ——L. ~— H(k+N/2)

-

Figure 4.12. The basic building block of the FFT: a Radix (Zs\.Butterﬂy\.

\ -
In the gdefinition of Sy(k) and S;(k), the elements resulting frt')(p the first "division"
\
can now be ranumbered from 0 to N/2, and the S's can become two discrete Fourier

[ransforms eachof N/2 pomts ,
/2-1 N/2-1

2 "
Solk) = £ h2m) Wy = % h"(n) Wh, (4.252)
m20 n=0 '
N/2-1 N/2-1 :
Sik) = £ h2meD) We™ = E hy"sn) WY, (4.25b)
m=0 n=0

where |, ‘
the h™ sub-arrays contain’ only the even elements ( hy" (n) ) and only

the odd elements ( hy"(n) ) Y

- ,/// | 132
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These new arrays can again be divided into odd and even sub-arrays and the
division process continued until eventually only a 2 element DFT need be performed. At
this terminal stage, the 2 element DFT is simply .
] nk
H(K) = T n(n) W, (4.26a)
n=0
where ; : ‘
W, = 1 and W, = e iRT/2 =
then:
H(0) = h(0) « h(1) (4.28b)
H(1) = h(0) - h(1)

~ 1

~ The FFT procedure is straightforward, the only difficulfy being the repetitive re-
arranging of h(t) into ddd and even subsarrays. There is, however, a very cfﬁcicxit nreans
of doing this. For example, in orderz:a:zform an 8 boint sample,' we would w;itc the
indices in binary with 3 bits (23=8), reversé the bits (from low to high order), and.then re-_
order h(t) according to this new index. Table 4.2 démonstrates this’ procéss and Figure
4.13 shows the flow of values toward the resulting 8 point FFT. Jl}lotc that this algorithm
efficiently computes the entire Fourier ﬂaﬁgfonn. If only c;ne point of the dﬁscrete Fourier

transform was desired, it would be more. efficient to evaluate the DFT dix‘;:ctly.

=l

linitial array| re-ordered
index octal reverse bits |, array index | *
0 000 000 o 41
1 001 * 100 4"
2 010 |- o010 2 .
3 011 1T .-1n10 ] §
4 100 801 T
5 101 101 5
6 110 011 3
7 111 1 1

Table 4.2. Partitibning of h(t) into groups containipg odd .andp_vén indices. | |
< . N J “ Ll ‘ T L

)y - . N
. . .



Re-ordered

Resultant
Transform

>

...("p

- 4..4|||.-

k. el

Array
ho) 21
W w
) h2) 21
o 2 wo
h(l) X 1
h(5) X Wﬁ
h‘(_‘;) x 1
ny W2

...("p

Figure 4.13. Illustration of an 8 point 1D FFT.

With N elements in h(k), N/2 butterflies are required at each stage of the

decimation. There are log,(N) stages of decimation, therefore the total number of

H(O)
-~
H(D)

H(2)

H(3)

H4)

H(5)

H(6)

H(7)

butterflies evaluated is N/2 log,(N). Since each radix (2) butterfly requires 1 complex

multiplication and 2 complex additions, the total number of complex multiplications and

additions is N/2 10g,(N) and N log,(N), respectiviey. This can be quite a computational

savings compared to N? multiplications and additions required for the direct evaluation of

the DFT.
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4.2.4 Fast Fourier Transforms (2D)

The 1D FET has been dc;/elopcd, but we are more interested in 2D and 3D I
_czmvolutions and hence 2D and 3D FITs. How does the 1D FFT help in this regard? A
2D Fourier transform (equation 4.18) can be evaluated in a number of ways. The direct

evaluation requires Ny 2N, 2 complex multiplications. Equation 4.18a can alternately be

rewritten as

Ni-1 [ Np-1 .
H(ky kp) = § ¥ h(ny.n,) w le ' (4.27a)
n1:0 n2 0

which can be wnitten as a pair of 1D FFTs

G(#\.\kz) - Z h(ny.ng) Wy nakz (4.27b)
Ng= 0
} .
Ny-1 ks
H(k1.k2) = z G(n1,k2) \NN1 (4.27¢c)
n]=0

Thus, a 2D FFT can be decomposed into a 1D FFT of the columns followed by a 1D FFT
of the rows. If the 1D DFT is evaluated Ziimctly, the N1N, values of G(ny.k,) each require
N, complex multiplications for a total of NyN,2 multiplications. The NyN, values of
H(k,.k,) each requmc N; multiplications-for a total of Ny 2N, mulnp%cauons for H(k,.k,),
‘ and a grand total of NyN2(N; +N2) multiplications for th¢ complete 2D DFT. If a lD FFT is
. used, this is reduced to N; (N/210g,(N,)) multiplications for G(n, k), N,
(N;/210g5(Ny) ) for H(ky.ky), for a grand total of ' /2 NyN;loga(NyNa) = N2log,(N) (if
N1=N2=N). It can be shown (Dudgeon 1984, pg76) that a 2D FFT using a (2X2) vector
radix butterfly reduces the number of mulnphcatxons to 3/4 N2log,(N). Thus a further
25% can be saved by the use of a direct 2D FFT compared with the row/column
decomposition method using 1D FFTs. '
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Figure 4.14 supplies two simple examples of 2D Fourier transforms which can be

cvaluated using equation 4.26 and 4.27.

1 0 2 0 1 0
- . - G ) = ;. F{G}-=
¢(ny.ny) 5 1l Fio} 4 2 (my.m5) 1

Figure 4.14. Numerical examples of 2D fast Fourier transforms.

To llustrate images in F(;uricr space, FFT's were taken of various images using the
row/column decomposition technique®. The original image and the magnitude of the
Fourier spectrum ("H(k,,k,)") is shown for a number of images in Figure 4.15, 4.16,

.
4.17, and 4.18.

The original image in Figure 4.15a is a set of horizontal bars; i.e. the original
image, h(ny.ny), is constant in the horizontal direction (ny). 1t is intended to idealize the
photon fluence for an infinitely wide beam (incident from above) on a uniform medium.
We know the Fourier transform of a constant (&) to be the delta function (K 8{k)) (section
§4.2.1.2), and that is indeed what is observed in the horizontal direction of the transform,
H(kq.kp). In the vertical direction (ny), h(n,.n,) is a series of step functions. The width of
cach step is constant, but the height of each step varies. We can break h(n,.n,) vertically
into a number of sub-images, each one containing a single step function. The height and
position of each step varies from one sub-image to the next. The transformed image is then
the superposition of the transform of each of these separate images (the linearity property,
§4.2.1.4). In Figure 4.15c, log["H(k,,kg)"] is displayed in order 8 show more details of >
the transform. Without the logarithm being usc;i. the figure would have contained a single
bright pixel. The inverse transform is shown to chify that the loop of performing a

transform followed by an inverse transform does indeed yield the original image.

8FFT algorithm implemented was taken from IEEE transactions on Pattern Analysis & Machine

Intetligence (PAMI-3, no6, nov 81, pg 698)
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Figure 4.16 contains a fluence distribution for a 10x10 cm2 beam of 5.0 MeV

- q
photons with an infinite SSD. Its transform is similar to Figure 4.15 except that we

Ay

observe some "ringing” in the horizontal direction of the Fourier spectrum (Figure 4.16b),

R

due to the finite width.
Figure 4.17 is an image representing the total kernel for 1.25 MeV photons. In real
space it is similar to a delta function in the horizontal direction yielding the "broad band" of

frequencies in the Fourier domain. The kernel values change less abniptly (a morediffuse
»
delta function) in the vertical direction yielding a narrower band in Fourier space.

*

Similarly, Figure 4.18 illustrates the Fourier transform of the 5.0 MeV kernel.

Figure 4.15. The FFT of an idealized fluence of infinite width.

a) original function (L/W = 0/1500) ' .

b) logarithm of the magnitude of the transform spectrum (L/W = 1000/200)

) invrse transform (L/W = 0/1500) .



/
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Figure 4.16. The FFT of the fluenc computcd for a 10x10 cm? bcam of 5.0 MeV
photons, with an infinite SSD. i \

a) original function (L/W = 0/3000)

b) magnitude of the transform spectrum (L/W = -800/600)

Figyre 4.17. The FFT of the total kcrncl for a 1.25 MeV photoen beam.
- a) nmal function (LYW = -1000/50
b) magmtudc of the transform spectrum (L/W = 0/1000) . N

< el .
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Figure 4.18. The FFT of the total kernel for a 5.0 MeV photon beam.
a) original function (L/W = -1000/50)
b) magnitude of the transform spectrum (L/W = 0/1000)

-
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4.2.41 FFT Timings (2D)

Table 4.3 shows the calculation times required to compute 2D FET's of various
square arrays on a VAX 11/780 computer. Thg number of butterflies evaluated for each
array size (N210g,(N)) is gscd\to determine the average calculation time per buttertly as a
t{mctioh of array size (Table 4.3). We expect the calculation time per butterfly to remain
constant. However, this i$ not the case! The calculation time per butterfly is relatively
constant for the three smaller array siz{cs, but is a factor of four times larger for the largest
array size. This is a result of the increased number of “page faults" occurred by the large
array size (see section 4.1). A more constant value of the calculation ch per butterfly is to
be expected if the pages of data are locked' in computer memory, avoiding the time

penaldes of recovering data on disk. Ignon’ng.thc effect of "page faults”, we find the

average time to compute a single butterfly to be 63 p seconds.
) Number of Calculationime | Calculaton tme
points (N) (CPU seconds) | per butterfly (usec)
32x32 0.32 62.5
64x64 : 1.5 61.0
128x128 7.5 65.4
256x256 140.0 267.0

Table 4.3. 2D FFT calculation times. .



; - 141
4.3 Convolutions with FFTs

The major advantage of the Fourier transform is that a real space convolution
simplifies to an element-by-element multiplication of the two arrays of comi)lcx numbers in
Fourier space. TRus, the Fourier transformation of a dose distribution (equation 4.29a)
yields equation 4.29b. The inverse transformation of equation 4.29b produces a dose

distribution in real space (equation 4.29c):

o(r) = J dr' (r) 6(r-r') = ¢ @6 (4.29a)
Fiol - F1 ¢ @ G} = Flo} x FI6} (4.29b)
- .
D(r) = F~' [ Aol x Fi6}H ] (4.29¢)
The steps to solve equation 4.29c are shown as shaded regions in Figure 4.19. In
Read Spherical Kemnel
Generate Cartesian Kernel : - Calculate Fluence

Figure 4.19. Steps involved in Fourier space conyolutions.



order to obtain a dose distribution in real space, the convolution grethod requires that we

.
perform two Fourier transforms, N complex multiplications and finally aninverse Fourigr

transform. It will be shown that even though more steps are required in the Fourier space
convolution than in the real space convolution (rc%ll Figure 4.1), the steps may be

!

performed more quickly.

Section §4.2.2 demonstrated that the discrete Fourier transform had a pcric;dicity
restricion imposed upon it. This periodicity requirement causes a slight problem as
illustrated in the example of Figure 4.20. As we saw in Figure 4.14, the Fourier transform
of a 2x2 image is also a 2x2 image. Thus, when the element by element multiplication is

.pcrformcd in Fourier space, the result is also a ‘2x2 image. The inverse transform yields a
2x2 image also. However, in real spacc the result of this convolutdon would have been a
3x3 image. Comparison with Figure 4.3, shows that the result from Figure 4.20 is an
aliased version of the convolution (e.g. the last colu;nn and row have been "wrapped-

#found" and added to the first column and row).

0 1 0 1 -1
°(”"”2)=; 1] Flek i g Slmimadsy ) Flok=fy
ot Flot| 2 O P T Fol Flot = |5 2

Figure 4.20. Numerical example of a 2D convolution performed without padding the
original functians. '

"Padding" the fluence and kernel matrices with zeroes, and then performing the
Fourier space convolution yields a 4x4 matrix, but eliminates this "wrap-around" problem

as illustrated in Figure 4.21.

w
T
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0 0 0O 3o 2 1ej 2+2j
loo oo | 2 1-j 0 1+
¢(n1.n2)- 1 00O F{¢} = 3_]. 2 2] ]_] 2
2 100 4 3-§ 2 3+
0 0 0 U 2+ 1 j 142
0 0 0O ] - -1 )
- F{G} =
Gmimp) =ty g g o =ty 12 o 1 |
1 1 00 3 2-j 1 2+ |
5+5] 2 -1+j -2+6j
2 -1-j 0 -1+
F{o} F{G} =
fo} Fic '5-5] -2-6j -1-j 2
12 5-5j 2 5+5j
7
0 0 0O
1 000
-1 —
F-' [ F{®} F{G} ] = 3 20 0
2 310

\

Figure 4.21. Numerical example of a 2D convolution performed with padding.
Comparison with Figure 4.3 shows the results from the real and Fourier space
convolutions are the same.

4.3.1 A Two Dimensional Example

A dose calculation for the same situation as\outlined in section §4.1.2 will now be

performed in the Fourier domain.. All assumptions rdquired by the convolutiori technique

"and permitting the compression of the kernel are met. In\addition, the kernel and fluence

' matrix have been “padded” with zeros to eliminate the "wiap around” problem. .
Figure 4.22 shows a convolution calculation perf; for an incident beam of 5.0
MeV photons. Figure 4.23 shows that the ;'Fouricr":dose dis 'bu/tion is identical to tha}
obtained by a real space calculation, as expected. Fhis the proper functioning of
computer programs developed during tl;is'work. Itis intercsting to “
images (Figure 4.22d) rep‘rcschﬁng dose distributions are not as visually p

‘colour dose maps' (Figure 4.23) used clinically (Battista et.al. 1984).
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Figure 4.22. A 2D doscdistribution calculated in Fourier space for 5.0 MeV photons.
‘a) Fourier transform of the fluence for a beam of 5.0 MeV photons (L/W = -200/2000)
b) Fourier transform of the total kernel for 5.0 MeV photons (L/W = 1000/2000)

¢) The element by element product of a) and b) (L/W = -200/2000)

d) The inverse transform of ¢) (L/W = 500/2000) - ,

Figure 4.23. Comparison of real space (a) and Fourier space (b) convolutions.
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4.3.2 Calculation Time Comparisons Between Real and Fourier Space

Convolutions

A
We have seen that the differences of the dose values calculated by Fourier

p

convolutions and real convolution are negligible. The major advamtage of the Fourier route
is therefore one of speed® . The relative calculation times of convolutions performed in real
i space to convolutions performed in Fourier space may be determined as follows.

From section §4.1 we determined that the computation time required to perform a

o

convolution in real space is given by

Treal - Creal N1N2 M1M2 CCF o (430)
where ' D
Creal represents the CPU time required to contribute energy from one

“kernel voxel to one dose paint. Section 4.1.2 crea) = 36.6 .

Hseconds. )

NiN, represent the size of the fluence’ matrlx

MM, represent the size of the kernél matrix :

CCF is the constramed convolutjon factor which accounts for a
reduction in the number &f multiplications by ignoring energy

deposition beyond the fluence m;trlx (see Appendix A).

P

Assuming square matrices for the kernel and fluence, equation 4.30 becomes

Treal = Creal N? M? CCF , (4.31)

From section §4.2.3.1, we dettermined that the computauon umc required to

“

perfonn a single 2D fast Fourier transform9 was given by *
.t gg\‘ﬁg ‘ . ) |
. . ' /
80Other benefits which have not been discussed include: interpgiafion by factors of 2, and the ability to apply
filters in Fourier space. o , ! ' S
% ' | | N

9'I‘hxs work used the row / column decomposition technique (§4.2.3) to evaluate the 2D FFT, A funhér
gain of 25% could be achieved if a true 2D/FFT is used.
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TFFT = CFFT N2 1092(N) (4.32). \ :

where v
CrrT represents the CPU time required to calculate one radix (2) &

butterfly. Section 4.2.3.1 found cfr7 = 63.5 useconds.
N is the linear dimension of the matrix. N2 log,(N) is the number of
butterflies which need to be evaluated in determining a 2D FFT.

Assuming a 2D kernel of size MxM andr and 2D fluence of size NxN, then both the
kernel and fluence arrays must be "padded” with zer;> values such that they aré both of size
P > N+M-1 and P=2Q, where Qs an integer. If N>M, and N=2R where R is integer
valued, then P =2N. i.e.itis necccssary to Fourier transform matrices that are twicc as
large as the fluence matrix (if thc fluence matrix size is a power of 2). ﬁ\s ‘mentioned
earlier, two forward transformations and one inverse transformation dre 1 ’rccjmred (Figure
4.16). We shall ignore the additional complex multiplication per point to actually perform
the convolution in Fourier space. Thus, the total calculation time to perform a Fourier

space convolution may be written as

Trourier = 3 CrrT (2N)2 log,(2N) : (4.33)
= 12 Crrr N2 T logy(N) + 11

~.

What are the expected speed gains for a 2D convolution performed in Fourier
space? 'Assuming the kernel and fluence matrix sizes are identical, taking the ratio of

cquatlon 4.31 and 4.33 we find

[ Treal ] Creal CCF M2 0.048 CCF M2
= (4.34a)
2D

Fourier - 12Crourier [10ga(N) +1] logo(N)+1

- where the mcasunj_:d values of Creq and Crourier have been §fib'sdmted. Similarjly, the ratib

of calculation times for 1D and 3D are given by

= : = - (4.34b)
3Crourier [10ga(N) +1] \  loga(N)+1.

[ Zreal ] Creal CCF M  0.192 CCF M
)

Fourier

o
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Creal CCF M3 0.004 CCF M3

: —- = (4.34c)
36Crourier (10ga(N) «1] 10ga(N)+1

Treal

Fourier 3D

Table 4.4 shéws the anticipated speed gains when "unconstrainéd" 1D, 2D, and 3D .
J convolutions are performed (i.e. CCF=1.0) with the sar;xe size kernel and fluence matrices
(M=N). The calculation speed gains (or losses) to be realized in Fourier space are l:cavily
dependent upon the size of the arrays being trarfsformed and convolved. For a typical dose
distribution (N=64), the Foutier route }is 1.76 times faster for a 1D convolution, 28 times
faster for a 2D convélution, and 150 times faster for a 3D convo.lutién. These ratios should
be compared with the more opiimistic csd@tcs of Boyer (1984), who ignored some
praétical considemﬁons (§4.1). Clearly the advantage of Fourier techniques is yet to be

explored in 3D dose calculations.

2D ratio

3D ratio

N . 1D ratio
L. 0.26 0.26 ~0.09
. 32 1.02 819 | - 21.85
. 64 1.76 28.09 149.80
- 128 3.07 98.30 . 1048.58 -
256 546 | 349.53 7456.54
- 1024 17.87 4575.60  |390451.57

Table 4.4. Relative calculation speed gains for an "unconstrained” real space calculation
w1th kernel and fluence matrices of the same size, versus a Founer space convolution,

1 A8

' Fxgure 4.24 shows the measured calculanon times for three algonthms calculating a
2D (64 x 64) dose matrix. The Fourier space calculanon is 14 times faster than the real
space calculations with a large kernel, but only 1 4 tines faster than the real space
calculations with a small kemnel. The 2D Fogmcr space calculanons are only 3.6 times
faster than our current 1mplementauon of the "CBEAM" program based on thc scatter
integration ; methods of Cunmngham (Johns and Cunnmgham 1983) _

How do thesc speed gains compare thh onrexpectanons? Fora oonsnmned 2D

convolution with kernel and fluence mamces of 64x64 clements, thc :educam inthe -

K]
/
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number of real space operations 1s 2% (Appendix A). Thus, the rato of real space
calculaton time to the Fournier space calculation time becomes 14,61 (e, 2809 x 0.52),

which s pood agreement with the measured result of 1.3

400
)
U -
c
g 00 -
m ’
) \ g Kernel (63X63)
[+ 9 -
EC i o CBEAM
- a Kernel (16X19)
. ] - Eouricr shice
= o Dourier space
)
S 1(X
<
\>' .
0 4 =T A T Y T v
0 1000 - 2000 3000 4000 SO0 # points
16 32 44 54 64 Equivalent square matrix

&
Dose Array Size

Figure 4.24. Calculation time comparisons.



’ ’ 149
4.4 Practical Limitations of the Convolution Method
This section deals with the considerations which limit the routine application of the
convolution method. The limitations arise because of:
+ the fundamental assumptions which led to the convolution integral as outlined
n section §3.2.
* the implementation of specific procedures or algorithms

= the practical limitations of current hardware and software.

Thus, the impact of the following-realities will be discussed:-
» energy spectrum of the incident beam ~
» finite Source to Surface Distance (SSD)
+ incident photon source specification
+ angular spectrum of the incident beam - '
+ finite heterogeneous phantom
» electron contamination of a photon beam
. res;n'ctions of this convolution implementation

» hardware and softwan: restrictions

4.4.1 Energy Spectrum of the Incident Beam
In the development of the convolution integral, a mono-energetic incident beam was
assumed in order to eliminate the integration (or summation) over all incident particle

energies. With the inclusion of the energy spectrum, cquatioh 3.5a could have been written
- 4 ’

-

N. .
D(r) = ¥ jdr‘ G20 ei(r’) Gegz>0 (Ei.rir‘) (4.35)
i=1 ]

where )
N is the number of components in the energy spectrum
Ei is the energy of the ith spectral component 4
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The incident photon energy is used in equation 4.35 to select both the convolution kernel,
and the attenuation coefficient used in the primary fluence calculation. If the incident beam
IS mono-energetic, then the appropriate mono-energetic kemel and ancnuatiPn coefficient
are casily selected. If the incident beam is poly-energetic, equation 4.35 sh(;vs that N
convolutions can be performed to yield the dose distributions for a poly-energetic incident
beam. However, this significantly increases the computational burden, depending on the
complexity of the energy spectrum. Let us examine a way of avoiding these N

convolutions.

—

If the incident beam is poly-energetic, then it may be possible to model the 'poly-
energetic beam by an "equivalent” mono-energetic beam through the selection of an
“effective cnérgy" and an "effective attenuation coefficient” (Mackie 1984, pg 339-343). If
this selection accurately models the poly-energetic beam according to the criteria of intewgst,
then we have avoideg the calculation of N convolutions. If a single "effective energy or
attenuation coefficient” proves to be inadequate, then the energy spectrum incide_nt on the
payent surface is indeed required and evaluation of cqua;ion 4.35 is unavoidable. An '
advantage of directly evaluating equation 4.35 is that beam hardening, v\;hich 1s the
preferential removal of low energy photons from the beam as it is attenuated, is accurately
modelled (Ahnesjo 1987). ,

Unfortunately, the incident energy spectrum is difficult to determine, and may vary
as a function of distance from the central axis of the incident beam (Mohan et.al. 1985).
One possible method of dctérming the incident energy spectrum on the surface of the
medium shall now be briefly discussed. The method is based on correlating measured and
computed depth dose data. The incident angular spectrum is assumed tope negligible.

Assume that convolution calculations have g:n performed for an incident narrow
”

"pencil” beam for each energy bin making up the spectrum. The dose distributton of such a

ﬁxred "pencil” beam can also be derived from measurements (Boyer, 1987). The
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4
.
measuredpencil beam distribution may be reigged to the calculated mono-energetic pencil

bearns as follows.

N
D(r) = ¥ a Di(r) A (4.36)
i=1 N
where _ A
D(r) is the total dose at a depth r along the ray through point on the
surface where the amergy spectrum is to be determined
N is the total number of energy components
aj is the weight of the ith energy component
Di(r) is the dose at depth r from the ith energy component

The weights of the spectral components may be determined by performing a multiple linear
regression analysis \yith\Rhe monoenergetic convolution pencil beam doses as the

independent variables and the measured bencil beam dose as the dependent variable,-as

~
N/

shown in equation 4.37 (Statworks 1985, pg 59) .

4

N ~ . -
Yi= 2 AiXij reb\e ﬁror . (4.37)
j & J \
where ha'

Yj is the measured dose at depth °j’

aj is the weight of the ith energy component

Xij is the mono-energetic pencil beam dose at depth 'j delivered by

the ith energy component
b is a constant :
error is the residyal error in the linear relationship

-

The coffstant term in equation 4.37 has no physical meaning except to say that there is a
uniform background energy deposition independent of depth and incident particle energy.
‘This method of analysis should be used with care, ensuring the coefficients are physically
mean'ingful‘(i.e. positive), and that the standard errors and confidence levels are acceptable.
We will now investigate the energy spectrum along the central axis of a 15 MV X-
ray beam. Dose distributions were caleulated for mono-energetic "pencil beams" (i.e. a -

- field size of "0"x"0"cm?) for incident photon energies qf energies 0.5, 1.25, 5.0, and 10.0
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MeV for which the kernels were rcadily available. The Tissue Maximum Ratio (TMR) for
a 15 MV X-ray pencil beam 1s shown in Figure 4.25 along with the four computed mono-
cnergetic pencil beams. The 5.0 MeV mono-energetic kermel reproduces the measured data
extremely well at depths below the depth of mzixirllum dose. The poorer agreement at

shallower depths is due to electron and low energy photon contamination from the field #

=

production sub-system (Map%ic 1984). This "effective energy” compares well with the

observations of other authors (Mackie 1984).
\

~ 100 4
E ;
-
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Figure 4.25. Depth dose curves computed for mono-energetic pencil bcafns of 0.5,
1.25, 5.0, 10 MeV. The 0x0 TMR is also shown for a 15 MV X-ray beam.

A multiple linear regression was also performed with the four mono-energetic
pencil beams and the 15 MV X-ray beam. Better fits for the depth dose curve were
achieved both in the "build-up” and post "build-up" region, but either negative spectral
weights were required or the standard error and confidence level were unacceptable. It
appears that additional constraints on thg,weights are required to determine a physically
meaningful spectrum. With such constraints, this approach may indeed be a novel way of
determining the cnt;rgy spt\actrum for a high energy X-ray beam.

Mohan et.al. (1985) have determined a 32 bin energy spectrum using Monte Carlo

techniques. This cnérgy spectrum was then verified bsy calculating a dose distribution
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using the full energy spectrum (Chui et.al. 1984). Excellent agreement was achieved with
a measured dose distribution. Unfortunately, a comparison between dose distributions
calculated using a 32 bin and a 1 bin spectrum were not presented.

Figure 4.26 compares the calculated 2D dose distribution fot a mono—%rgctic 50
MeV photon beam with that of a measured 15 MV X-ray beam. The measured dose
distribution was obtained with an automated measurement system developed in this
laboratory (Antolak et.al., in press). Each scan line of the dose distribution is obtaired by
driving a p-type diode across the radiation field incident on'a water phantom (Therados
RFA-3). Once a scan line is complete, the data is transfcmd%an IBM PC/XT compatible
computer, the depth of the probe is increased, and the probe is driven back across the

radiation field. Once the scanning process has completed (about_ one hour_) the entire 2D

hadaﬁsldsxzwflelOcmz measnedbnmlndanSSDoﬂOOan.whﬂeme
calculated beam had a SSD of infis

a) computed 5.0 MeV beam -~ - ‘ b)measmedlSMVX-raybeam

¢) computed "hotter” than measured d) computed coldex"thanmeasmd
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measured dose distribution can be transferred to a treatment planning computer for display
and detailed comparison with computed data.
Let us now examine Figure 4.26. As expected, there is a slight discrepancy in the
build-up region. The calculated dose is more penetrating than the measured dose. This
may be a result of ?lccdng beam divergence. The measured dose is "hotter” than the

calculated dose outSide the field edges by 5%. There are some discrepancies near the beam

edges, which will now be discussed. !

N\

4.4.2 Infinite SSD

In the formulgtion of the convolution integral, an infinite SSD was assumed in
order to force @ll incoming particles to travel along parallel rays. This allows us to ignore
the angular spectrum of the incident particles on the surface of the irradiated system. The
infinite SSD assumption also makes the primary fluence calculation trivial. In the absence
’ of field modifying devices, the primary fluence is constant across the field area and zero

outside the field. s

With the introduction of a finite SSD, these simplifications no longer hold, and the
primary fluence needs to be calculated along divergent rays. During the "convolution”
step, this in tum requires that the kernels be aligned along these rays prior to the deposition
of cncrgy’by the kernel. -This alignment of the kernels implies that the kemnel is no longer ' *
spatially invaﬁant and this calculation fncthod is more appropriately called a "superposition”
method. Unfortunately, the use of a superposition technique ncgaics the speed gains of
Fourler space. So, it is in our best interests (i.e. to reduce calculation time) to try and
conserve the spatially invariant kernel.

In the case of a divergent beam, a compromise m which we maintain a spatiaily N *
invariant kernel, but compute the primary fluence along divcrgcht rays may be acceptable.
The error involv‘ed in this hybrid approach is dependent upan the beam energy, the field
size, the SSD, and the depth within the medium. The literature reports a range of errors for



not tlting the kernel from 7% for a large field of 1.25 MeV photons with a small SSD at ‘
medium depth (Ahnesjo 1987, pg 100), to less than 0.5% for a medium field of 4 MV X-
ray beam with a medium SSD and medium depth (Mackie et.al. 1987, pg 109). For an
incident beam of 5.0 MeV photons, the errors are expected to be larger due to the increased
spatial extent of the kernel.

The importance of "tilting" the kernal in terms of the dose dcpositcd to an off-axis

[P}

point, can be answered using the "catcher's" point of view. The kernel can be centered on
the destination voxel in a tilted and untilted manner, and the dose determined to that one
pointonly. Any difference in the dose results is attributable to the kernel tilting. The effect
of kernel tilting for higher energy béams_has been left for future work. In this work, the
kernels were assumed to be spatially invariant.

Figure 4.27 illustrates the fluence calculated for a divergent and non-divergent
beam. The non-divergent fluence was used in the calculation of the dose distribution in

Flgure 4.27. Beam dlvel'gence lﬁd ol
Fluence caiculated for a non-divergent benm (a) and fora dlvcrgmt beam (b)
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Figure 4.26, and the divergent fluence was used for the calculation of the dose distribution
in Figure 4.28.

Figure 4.28 shows a comparison between the measured 15 Mv X-ray beam and a
dose distribution computed with a divergent fluence calculation. The computed dose
distribution agrees extremely well with the measured one. This measured distribution is the
one which now grows "hotter” with depth as is to be expected due to beam hardening. The
measured distribution still exhibits a 5% d?sc level well outside the field edges. The slight -
disagrecment near the beam edges (3%) may be due to a mismatch in field sizes. As

expected, the most significant area of disagreement is in the "build-up" region. Electron

contamination and the mono-energetic convolution kernel may be responsible for this
| ®

disagreement.

Figure 4.28. Comparison of dose distributions for a measured 15 MV X-ray beam and
one computed with a mono-energetic 5.0 MeV kernel. Both beams were computed fora
field size of 10x10 cm2, and an SSD of 200 cm. All other convolution assumptions were

met. '
a) computed 5.0 MeV beam . b) measured 15 MV X-ray beam

c) computed "hotter” than measured d) computed "colder" than measured



157
The algorithm currently in clinical use (CBEAM) was also compared to the

measured data in Figure 4.29. We see excellent agreement between the calculated
dist’n'b'iition and the measured distribution everywhere in the field. The measured data still
appears 5% high beyond dfe field edges, and is much "hotter” at the very surface of the
irradiated system. Such superb agreement is not surprising. CBEAM uses measured data
as its data base, a;ld_’in this situation it is simply reconstructing the mcasuréa data
(Cunningham, 1972). A situation requiring both calculation algorithms to be predictive
will be prescnkd next. .

Figure 4.29.

. } and
~ onccompuwdumngtheClEAMalgaitlm. Boti:beltmsl\aclaﬁcsldsizeofl()xl()cm2
andan SSD of 200 cm. .
a) measured 15 MV X-ray beam b) CBEAM 0 beam
c) measured "hotter" than computed d) méhsured "colder” than cBmputed

» °
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4.4.3 Incident Photon Source Specification

Another assumption of the convolution Algorithm was that all incident particles
travel along a 'ray’ from a point source. This assumption implies that; 1) the source is
infinitesimal in size, and 2) photons scattered bs' the field production and field shaping sub-
systems are either negligible or to be treated separately as a secondary photon source. This
climinates the angular spread of incident photons at each point on the medium surface,
although the angle of incidence will vary from surface point to surface poiqt. In other
words, every point on the surface sees particles coming along a single ray from the source.

To overcome the assumption of a single point source, it has been suggested that a
normalized Gaussian function be used to model the actual source (Jing and Boyer, 1987).
The procedure consists of performing a fluence calculation for a point éourcc, and then .
performing a 1D convolution of this fluence (a step function) with a gaussiar function in
lhq lateral direction. The finite source size is cspeéially imponam in modelling the beam
penufnbra (Cunningham CBEAM and IRREG, Mackie 1987 pg 109).

To date, cxogcﬁous photon scatter from the field production and-field shaping sub-
systems has not been modelled in convolution methods. Exogenous scatter requires the
speciﬁqation of energy and angular distributions (see section §4.4.4) of the photons
incident on the surface of the medium. Retracted "tissue compensators” are an example
where inadequate handling of exogenous scatter can account forferrors of up to 11%
(Robinson and Scrimger 1987). In this work, the exogenous scatter from field modifying
devices has been ignored. Hggvever, the primary fluence has been attenuated according to
the length of the ray-line piercing the field modifying device.

As a practical example, let us oompu,e the dose distribution for a 10 x 10 cm? field
when the central axis is occluded by a lead block 8.5 cm thi;k (i.e. 5 half value layers)
which casts a shadow of 1.5 cm.wide at the SSD (Fighrc 4.30). The bar extended
completely across the field in thé longitudinal direction. A divergent fluence is calculated
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for the effective energy of 5 MeV and subsequently modified to account for the primary

attenuation by the field modifying device. The voxel sizes are (0.5cm)3,

Figure 4.30. Dose calculauon for a 5 0 MeV photon beam computed w1th a /ehvergent
fluence and bar occluding the central axis.
a) Fluence calculated on divergent rays b) 5.0 MeV primary kernel

¢) Resulting dose distribution. /

The doxt dep}) of 5 cm has been plotted as a function of distance from central
axis for three dose distributions; one calculated thh the convolution methyd, one calculated
with the program CBEAM, and one which has been measuned (Mackie 1984). Figure 4.31
shows these data. We note: e y “ "

* in the area behind the block, that measured doses are slightly larger (4%) than
predicted by the convolution method and slgmﬁcantly larg/er (15%) than -
predxcwd by CBBAM.

. beyond the block edge, the tables tum, and the measured data i lessqhan
convolution and much less than CBEAM. - | -/

rd
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The major reason for the differences between the convolution and CBEAM algorithms is
that the convolution method spreads electron energy under the block, whereas the CBEAM

algorithm assumes on-the-spot energy absorption and hence disallows the spread of energy

to regions under the block.

&
-
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90 |
80 ]
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~3~ convolution
——@— measured

—O— CBEAM

Dose (% of maximum)
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T T T T ¥ T T T T T
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Figure 4.31. Dose profile plot at a depth of 5 ¢gm fora 1S MV X ray beam, blocked by a
lead shlcld g
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4.4.4 Angular Spectrum of the Incident Beam

The angular spectrum of incident particles at each point on the surface of the
medium has been mentioned as being required for a number of reasons; beam divergence,
finite source widt‘h, exogenous soattcr from field production and field shaping sub-
systems. An angular spectrum requires transportation of secondary particles in the
direction of the incident pmﬁclcs. This is turn requires (to be rigorous) the alignment of the
kernels along the incident direction and thus prohibits the use of the convolution tcchniq‘ue.

Reasonable agreement séems to be achieved for the beam divergence problem if the
fluence is calculated for a divergent beam and the kernels remain untilted. The finite source
width has been prcv.ousiy discussed. The angulax‘ﬁ)ec&um of incident particles resulting
from scattering by thg field production sub-system (i.e. field flattening filter and
tollimators) has been calculated from Monte Carlo techniques and appears significant only
in its contribution to the diffuseness of the ‘bcam‘l:oondarics (i.e. penumbra) (Mohan
1985). The modelling of the field shaping sub—sygtcm appears to be the largest unsolved
problem (Robinson and Scﬁmgc_r 1987). It has yet to‘ shown'whcthcr the coni(olution
method can actually solve this problem (e.g. by transporting primary pmﬁcles fromthe
ﬁeld shaping sub-syst¢m onto the patient sub-system).

4.4.5 Finite Heterogeneoué Phantom. ‘
| ‘The use of a homogeneous water equivalent medium i is required by thc convolution

-

formalism in ordcr o ,
1) match the medmm to that in which the kernels were generated. Thxs
chmmates the need to have kernels for eaqh atomxc number and densny
2) 1gnorc the mhomogenelty. problcm in wlﬁch the kernels must somchow be :
modified prior to "convolunon ‘ ! ° -
The infinite medxumisrequhedmordermavmdmodxfymgﬂwkanelnemlwmdmm

boundaries (€.g. onbeamentranceandexnsndeofphanwm) Thesecmtourcon'acnom

Vs .- B o = s -
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may be consi(fzrcd as "inhomogencity corrections”. Thus, a finite or an inhomogencous
medium rC(.]uircs the maodification of the coinvolution kemel. This zignin makes I|IIC kernel
spatially variant, requiring a “superposition” algorithm instead of a strict convolution.

A finite inhomogeneous (with respect to clectron density) medium zalso umpacts on
the primary fluence calculation although this does not pose a severe problem. The primary
ttuence calculation would proceed as follows:

- the incidt;nt fluence is specified everywhere ot the surface of the irradiated

system. This fluence may include an energy and angular spectrum.

+ the particles incident on the irradiated system are'tmnquned along their
incident direction to the surfz:(':} the phantom. *

+  The primary fluence may then be calculated everywhere within the phantom..
The “water equivalent” distance traversed in the phantom 1s obtain'cd by "ray-
tracing” and applied to\attenuate the primayy fluence within the hetefgcncous
phantotty:

The major difficulty with phantom inhomogcr;cidcs is the modificatiqn of the
kernel. As-shown carlier, the total kernel coﬁtains the transport of both charged ;)aniclcs ’
and scattered photons. Thus, any correction must consi(‘i.cr the mean path taken by both
particle typcs!' If electrons deposit their energy on-the-spot, then inhomogeneities require
kcmgl modification to account for the transport of photons only. If electrons do not deposit
their energy on—ﬂlc-spé)t, then both the photon and electron paths must be suitably .
corrected. Th_c current set of kernels contains tht energy zfcposidon from electrons set-in-
motioﬁ by the primary photon. However, the transp:ort of sccbndary pl’lOtOl:lS and the
energy depokitibn of-any electrons they set in motion are coupled together in the first,
second, and multiple scatter kemels.

. The transport of photons through inhomogeneities is generally modelled by a
simple density scalipg of the photon comporﬁcnts of the kemels (Maclde et.al. 1985, Mohan
ctal. 1986, Boycr et.al. 1986- Ahnesjb‘ 1987) ahd has produced remarkably good results
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in 1D. Other techniques have been suggested for scaling the electron component of the
kemels (Andreo and Brahme 1983, Komelson 1986). A discussion of these kemel-
modifying techniques is considered beyond the scope of this work. However, it should be
noted that the availability of the five kemel categories allows modification of each kernel in
a manner specific to the order of the scattered photon.

. lf atomic number inhomogeneities are to be considered, then a full set of kemnels
will be required for each type of material. This is probably not too-critical for the patient
sub-system since most tissues are "water equivalent”. However, kernels are certainly

required for matenals encountered in the field production, field shaping, and field

verification sub-systems. '

4.4.6 Electron Contamination of a Photon Beam

Although not one of the explicitly stated assumptions of the gonvolution algorithm,
we have assumed that only photons are incident on the irradiated system. In practice,
electron contamination from the field production sub-systcnq is present in most photon
beams (Mackie 1984). This may be modelled by pérfonning a convolution calculation for
an incident beam of electrons, prbvided suitable electron kemels are available. This dose
distribution would then be added to the dose distribution rcsultin.g from the _iﬁcidcnt photon
beam. The convolution algorithm has been applied to the electron beam dose calculation
problem and has met with limited success (Hogstrom et.al. 1982, Cygler et.al. l§87,‘
Mackie 1987). Further investigation is reqmred in thc modelling of electron beams with the
convolution method before the problcm of electron contammanon can be ngourouslry .
solv.cd In parucular the tmnsport of electrons in heterogencous materials rémnins asa

difficult problem today (Perry, 1988).
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4.4.7 Implementation Restrictions
The restrictions discussed in this section are imposed by this specific
iumplementation of the convolution algorithm and ake not restrictions of the convolution

algorithm in general.
4

As discu8sed earlier (§3.3), the convolution Kernels represent energy deposited
when a pnmary photon interacts in the center of the interaction voxel. In practice, photons
interact throughout the interaction voxel which are of finite size. Thus, it may be
neccessary to ‘blur' the kernels to account for the interaction of primary .particles
throughout the interaction voxel (Mackie, personal communication).

»  In the determination of the primary fluence in a voxel, we have attributed the
fluence at the voxel center to the entire voxel. If the voxels are small enough that the
fluence 1s'uniform (or changing linearly)!0 across the voxel, thea the fluence at the center is
a good approximation of the average fluence. However, if the fluence changes cannot be
assumed to be linear across a voxel, then a number of fluences should be calculated
through outthe voxel and the average of these fluences attributed to the voxel. This
complication has been addressed for thosd pixels at the edge of cither a field boundary or a
field modifying device. ) |

All Cancgian convolution kernels used in this work have contained cubic voxels.
This requires that the fluence matrix also Be comprised of cubic voxels. When a series qf
CT sli‘gcs is used to generate the fluence matrix, the linear dimensions of the voxel -*in the
'CT plane are the same. However, the spacing in the third longitudinal direction may be
‘ qmtc different. Thus, it may be advaftagous to use voxels which are roctangularly shaped.
The convolution kernels used in this work were the total kernels for a specific
energy. When attacking the inhomogeneity problem, it may be beneficial to perform

multiple supcrpositions, dhe for each kemel category.

10As noted earlier, ¢#X = 1 - yx, for small px.
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All convolutions performed in this work have been either 1D or 2D. Ultimately, we

may wish to perform a 3D convolution over the entire irradiated 3D volume of the patient.
The extension from 2D to 3D is straightforward. The only complications to arise should be
an escalation in calculation times and this may be remedied by hardware and software

advances.

4.4.8 Hardware and Software Restrictions
The hardware and software restrictions discussed here are related to the time taken
to perform a convolution calculation and the resources available in our laboratory.

ﬁ\ We have. seen that the size of physical memory limits the amount of data that can be
quickly accessed, and hence causes "page faults”. By increasing the size of the physical
memory, fewer page faults would be incurred, resulting in a decreased calculatidn time.
For example, a real space convolution with a resolution of 0.5 cm and a maximum phaatom
size of 40 cm3, would require physical memory of:

803 voxels/axray x 4 bytes/voxel x 3 arrays = 5.85 MBytes
to be able to "hold" all data arrays.required for thc convolution. Additional physical
niemory is also rcqulred by thq .program, other users of the computer, and the computcr
operating system. Memory sizes of this magnitude are rcadlly available with present
technology at reasonable cost. .

Another means of speeding up the convolution algonthm is by using a fastcr
computer or by using onal specmhzed hardware such as an array processor or custom
made arithmetic processors (AMI $28214 - a signal processmg chip which performs a
complex 32 point lDFFI'm 1. 3mllllswonds(oompamdtoanesnmatedumeof57

millisecol on a VAX 11/780 processor - Table 4.3)).
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On the software side, there may be some "tricks” for reducing the size of the kernel
and fluence arrays without greatly affecting the accuracy of the calculation, yet decreasing
the overall calculation time. These techniqulcs consist of modelling high gradient regions

(close to the interaction voxel) with fine resolution kernels, and low gradieng rcgiol:}"?m"‘\// /
3
Oyer

distance from the interaction voxel) with coarse resolution kermels (Mackje 1984 )
1986). Multiple convolutions are then required, but because of the reduction in kcnlél size,
the overall computation time may be improved without a losg in accuracy.

A decrease in calculation time can also be realized through software by using amore >
efficient FFT algorithm (e.g. using a full 2D FFT instead of the row / colump
decomposition method). If FFT's aré performed with input functions Comprised of rpal

numbers only, it is possible to "pack"” two real functions ingo an input function consisting

of complex numbers and perform two FFT's for “the price of one” (Brigham 1974, pg
N , ‘
166).

Other transforms, e.g. the Hartley transform (O'Neill, 1988), may a150 be useful in

reducing calculation times. &
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Discussion and Conclusions
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"Would you tell me, please, which way I ought to go from here?" ‘

"That depends a good deal on where you want to éet to," said the Cat.

Alice's Adventures in Wonderland Py
Lewis Carroll
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5.0 Discussion and Conclusions
This chapter summarizes the importance of the work performed to date, suggests
directions in which further investigation is required, and examines the fundamental

question - "Is convolution a useful technique in calculating dose distributions for

r

megavoltage photon beams?”

5.1 Discussion

In order to answer the question, it was necessary to document, review, and

investigate:
, r

 the energy deposition by the interaction of radiation with matter (chapter 2 and

§3.3) . /\

. ® .
+ the specification of the general dose calculation problem (section 3.1)

» amost general solution to the problem (section 3.2.1)
- the explicit restrictions placed on the general problem if a convolution is to be
applied (section 3.2.4) ‘ «

,

» the feasibility of the convolution algorithm in'solving the photon dose

i

‘ calculation problem routinely (chapter 4).

S ' Y,
Lo . .
5.1.1 Energy Depositiori by the Interaction of Radiation with‘ Matter
. Chapter 2 presented a concise and consistent overview of the interacticn of radiation
with Vniatter. In preQaring this overview, many ambiguous or inconsister{t descriptions
were found in various feferenccs and text books. These were reconciled in this Chapter.

For example, dose i‘s defined in many publications as dEap/dm (Johns and
Cunningham, 1983). This set of symiols mathematically means that the dose, DYm), is the
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differential o? the function, Egyp, with respect to m. That is, D(m) may take on a different
- value as m changes. This is not the intention of the vmacroscopic dose concept.

The kernels used in the convolution algorithm represent the energy deposition by
charged particles according to the order of the scattered photon which set the particles in
motion. It was confirmed that the energy contained m the primary spherical kernels for
incident photons of 1.25 and 5.0 MeV .agreed closély with tabulated values of the energy
absorbed, € ab, based on fundamental radiation physics. The fraction of incident photon
energy contained in each kemel type was noted in Table 3.4.

Conversion from the spherical geometry (optimal for the Monte Carlo generation of
the kernels) to-a Cartesian geometry (optimal for calcutaiion and display purposes) was
discussed (§3.3.2). Cartesian kernels were pictorially ex:mined in two dimensions (2D)
and appear cormrect. An cxicnsivc software "tool box" is now available for the display and
cxanﬁnation of the kernels. An error identified by this work in the Monte Carlo kernel
géneration has been remedied on subsequent mgcnemﬁ?n of the data by the National ;
Research Council of Canada. These‘ revised kemels have now been distributed worldwide
for general application to radiation physics problems. |

“The selection of the kernel extent and voxel size is critical to both the calculation
tifnc and accuracy!2, For éxample, a large kemel extent i§ required if field size effects are
being mocicllcd (i.e. the effect of increasing the field size inust be "fclt" by all ggse points); .
or, a fine resolution kcmel is requxred if the longltudmal dose "bu1ld up" rchon is bcmg
modelled Energy loss due to kernel extents should be kcpt as low as is masonably
achxcvable (ALARA) to avoid dose artifacts. The energy loss may be minimized by
' mcrcasmg the numben of kernel voxels (and computauon nme) or by i mcrcasmg the size of

the kernel voxels (dose resolution decmascs) o : ' x - |

v ,
' .

12waﬂ1ecnuealnanneofthmpammm msessenualﬂlatallpubhshedwaksusmgﬁw

convolutwn tbchmque clearly state the lmmel size and amnt. .
o ,



170
Another technique, used in this work, to decrease calculation time was to
"compress” the kemnel. This reduces a full 3D convolution to either a 2D or 1D convolution
with commensurate reductions in calculation time.
Futdre work in the validation of the kernel data includes: .
» acomparison of the kernels to theoretical energy-versus-angle distributions
for Compton scattered electrons and photons.
* acomparison of the kernels to similar ones used in the Equivalent Tissue Air
Ratio (ETAR) (Sontag 1979) and the "delta volume” methods (Wong 1983)

» the generation of first, second, and multiple scatter kernels by convolving

photon fluences with primary kernels of appropriate energy.

5.1.2 Statement of the General Dose Calculation Problem

In section 3.1, an arbitrary radiatioﬁ field was completely specified by the particle
source term, differential in particle type, direction, energy, and location on the surface of
an "irradiated system”. The "irradiated system" is defined by the electron dcnsiity and
atomic '_numbcr d'ism'bution within each element of the ‘éystem. The fundamental
interaction of d.le radiation with these clcmcr?ts was pre;riously described in Chapter 2.

In this thesis, the "irradiated system" was restrictcd to the "patient sub-system",
assum‘in g that effects from the sub-systems further upstream .(i.cf the field production and
field shaping sub-systems) would be incorporated i;ltO the particles ihcidcnt on the patient
sub-system. Similarly, particles cm;rging from the patient and incidcn‘n the "verification
;ub—system"' can be treated in this "bucket brigade" transport of particles. The pre- and
post-patient sub-systems have been ignored thr_bughput this work. H/owc\}cr, shou}d the
algorithms developed hem'provc to be successful in the paticnt‘sub-syétjcm then it should
be mssxblt. to deal with these othcr sub-systems The kerncls and interaction cocfﬁcxents

suxtablc for the higher atomic numbcrhnd electron densny of the ﬁeld-shapmg devices or
, . -
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verification detectors would then have to be generated in future work. Ultimately, this
would allow comparisons with the empirical exit dbscs, completing the verificatiQn loop
from treatment planning to patient dose delivery.

‘Altcrnativcly, a calculation could be performed for the entire irradiated system
(consisting of all sub—sy-stems) in which the source term describes the i);iniclcsAincidem
upstream on the field production sub-system. This source term would need to be
* determined (only once) by c;peri.mcntal or Monte Carlo methods. - Again, a full range of
kernels for all atomic numbers and electron densities encountered in the entire irradiateq

system is required to support this general approach.

5.1.3 Solution to the General Problem
' Oncé a specific problcm has been defined in terms of the radiation source term,
the electron and atomic number dengity distributions of a.ttenuators, and the coefficients
-describing the interaction of radia‘t‘;;n with matter; the problem is solved - t;:orctically :
speaking. The solutior to the gcnéral problem (cquatio_n. 3, 1) involves :
.+ the determination of the particle fluence differential in particle type and energy
evcfywhele within the irradiated system
* the 'lookmg-up of the avcragc energy deposited in a voxel as a function of
 the pamplc typcs and cncrgy mcxdcnt on a voxel, and of the elcctron dcnsuy
) and atormc number in that vgxcl ' _ : Y
Unfonunately, both these quantities are cxtmmely dlfﬁcult to measure or calculate inthe _
- general case? A repamtxomhg and repackaging of the above mformatmn was p;rformcd
. insection 3. 2.2, which eventually led to a supemosmon integral with assumptxons If a’
: situation arises in which the assumpnons are invalid and the calculawd results dxsagree

_thh empmcal results, then thc more complcx fundamcntal aoluuon wxll bereqmmd.



172

N

5.1.4 Restrictions Placed on the General Problem })y the Convolution
Ap proaéh,

In section §3.2.4 we explicitly made additional assumptions to reduce the
superpositon integral to a convolution integral. The violation of an assumption may not
prevent the use of the convolution algorithm (e.g. a monoenergetic photon beam). If, on
the other hand, the violation of an assumption produces results which differ from empirical
results in the dose region of interest (e.g. a heterogeneous irradiated system), then we must
revert to the more general superposition integral . The practical impact of these

assumptions is discussed in section §5.1.6.

5.1.5  Peasibility of the Convolution Approach
‘ E;'aluation of the convolution integral can be performed from one of two
‘viewpoints: the "pitcher”, or tﬁc “catcher”. The pitcher's for‘ward approach slowly
develops the entire dose distribution in an incremental fashion; whﬂe the catcher's reverse

approach determines the total dose received at a single point directly. If a complete dose

[

distribution is to be calculated, then there is no benefit of one approach over the other.

However, if the dose is only required at a few select points, the catcher's approach is
r ' :
computationally more efficient! >

Chapter 4 dealt with the .numerical evaluation of discrete convolutions in both the -
real (§4.1) and Fourier domains (§4.2'a’nd §4.3). The consequence of thc—assu_mptionsr- |

required 'by‘ the convolution algorithm and methods of overcoming these as'sumptions were
. . / .

&

discussed in section §4.4.
Y

_ The feasibility of using any dose calculation algorithm th a clinical setting is based
on ilt‘s. performance ip terms of: accuracy, speed, and ease of use. Each area will be

discussed separately. - ] - \
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3

S.1.5.1 Accuracy
If the criterion foAr accuracy is to compute the dose {o within an error of 3% in the
volume and critical regions, then the ;onvolution meets this demand in all
iparisons«with ex‘pcrimen_t performed in this work, with one exception. For dcbths’
‘between the surface and thc depth of maxirnum dose (3 cm for 15 MV X-_rays).\ th; -
CO{wolution algorithm errs in c)fccss of 3‘7&!1;bisdiffcgcnc¢iuxay be due to the failure of
the present convolution tec%hnique to accouﬁt for electron contaminants, and to experimental -
difficulties of pcrfbiming dosimetry .in this zone (e.g. diode response).

The convolunon calculation compared well to thg measured dose distribution for a \

10x10 cm2 field of 15 MV X-mys The conventional CBEAM calculation algorithm used

" * clinically hgreed more closely with the empirical data, but this is not surprising, since in
this situation this algorithm reproduces measured dat.a it uses as its starting data base!

© When both algorithms are forced to be predxcnve (€.g. the cxample of a bar occluding the
ccntral axis of a beam), the convolution algorithm outperforms CBEAM.

"Letus summarxzc the impact of the assumpuons requn‘ed by the convoluuon

. method (see section §4 4): '

v a monoenergetlc photon beam. Clinical X-ray bcams are: poly-cncrgetip

i ‘The convolution algonthm can acoomodatc thxs situation by cither usmg an
) cffecnvqenergy and attenuation coefﬁ ent, or by pcrfonmng a s(mcs of

: convplutxons one for each specua] coniponept of the energy spectrum The

g .lattcr method aocm'atcly models "beam harglemng (and is more nme

. : :consummg), whcrcas thc effeeuvc encrgy andatucnuanon coefﬁcxent mcthod

does not. - L 2 7 | IO :J‘_ o
Ou;msulggnmcaw thatan etfecnvemono—mgcuc bcamofS Mveas s

| sufﬁclmtreprescn "mforthelSMVX-ray}bem Amﬁxodwashicﬂy

I

g1



.spcctromcm'c methods.

-

explained for determining thcwcn::rgy spectrum of a clinical beam. Further
investigation is required into this new technique Aﬁd perhaps other

4

all incident photons travel along a ray from a ‘point source.
Reasonable agreement was achieved with the use of a "point"” source (Figure
4.26). Even betier'agroement in the penuinbra is ach'}'ev_able if the finite
source size is considered, pcrhaps.by "blun'ing" the kernels.

an infinite SSD. In this work, experimental measurements were made
with large SSD's in order to approach an infinité SSD. In these situations,

- :
the calculation of the fluence along mildly divergent rays was adequate

-

(Figure 4.26). For small SSD's, the convolution kernels may also need to be
»

“tilted"” prior to energy deposition. If this is the case (e.g. large fields, short
prio 5 ,

, SSD), the supcfposition model, instead of the convolution model, is

%" N .
necessary with a’concomitant sacrifice in calculation speed.

The large SSD may have also resulted in more en&gy being deposited
farther beyond the beam edges, than either the convolution or CBEAM
algorithms have predicted. Further experimental measurements are necessary
in these low dose zones beyond the beam “edge* (Figurg 4.26).
an irradiated system which is hbmogeneous al;:? ‘ﬂi'éter- 4
equivalent: An irradiated system which is mhomogeneous prevents the use
of a convolution algonthm since the kernel is spaually variant. For thls Case
the superposition integral m?eds to be evaluated and, again, kernels need to bc
generated for non-water materials. '
an irradiatéd éystem of inﬁnite‘ size. The Effécts of a finite phanto;n

e

should be mcst visible in the "bmld' -up" reglon where kernel modification

- might be required: The "build- up" reglon in a finite phantom was modelled

well b_y the c6nvolution model for Cobalt-60-(Figm'e 4.4). Thus, it ‘appears

174



* More advanced work needed in the next géncraﬁqn of the "convolg

(e.g. superpositioh) includcs:

B .such spanally varymg kcmcls

ﬁhotons and electmns produoe&by wtracted nssne pompcnsators)
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L4

that kemnel modificgfions are not netessary for radiation beams incident
o : _

Al
.
¥ e 3

normal to a flat surface. . . .- . IO
The oblique incidence of a radiation field on a flat surface needs to be -
\ cxammed in order to develop acceptablc patient "contour corrections”. The
performance of the conVOlunon modcl in the "bmld-down région at the exit’

side of the patient also needs to be tested.

H

Work required in the near futurg to evolve the convolution method includes: ~ : '

comparispn to more experimental data in ordpr to determine the yrac;ical £
sxgmficance of the convoluuon assumptions. ) o

comparison to Mo‘e Carloﬁ.lculauons to determine the agrccmem wuf?ihe

idealized 'convolution' situation. we e
| - y -

extension to 3D Although this is stxmght forward, is'it really nccessary?"

We need to mvestlgate the use of a "mulu~shce"dcscrxpuon of the pancnt and

dose dJstnbuuon vcrsus a "single-slice" approach with symmctry o e
&. . . ‘ - p // -

- .
v . : - -
. v . . i
~ . .
- - . e .
. ;
B .

assumpnons

o

a

estabhsh kernel mochﬁcauon algomhms to handle mhomogenemes And

" 3 . 1 . ‘ o
%ntourCorrecnOns' e ,,  o ' . - !
investigate the use of ﬁiters in Founcr spat:c asa techmquc for unplementing C
¢ ’ . - f~ ’

‘ transport partwles fmm one sub-systemto mthcr sub-system (e 8 scattcred’ o

. B
- N N . ', . oo PR o, -
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investigate the the application of the convolution technigue to electron beams.
This might also solve the electron contamination problem noted earlier

(section §4.4.6).
once the forward problem (i.e. the calculation of a dose distribution) is
solved, investigate the deconvolution of an "ideal” dose distribution in order

to determine the optimal position and shape of therapeutic beams. This could

greatly automnate the treatment planning procedure.

-

Calculation Speed

*  We established theoretical speed gains by performing the calculation in Fourier

space versus real space (section §4.3.2). Asan cxampl\éhwe found Fourier space

calculations for a 64X64 dose matrix were 16 times faster than the real space calculation

with a large kernel (63x63). 4 times faster than the present CBEAM algorithm, and 2 times

faster than the real space calculaéon with a small kermnel (16x15).

Areas deserving further investigation include:

L 4

specialized hardware (e.g. an array processor or specialized micro pr;)ccssors)
better FFT algorithm (e.g. a full 2D FFT, or by "packing’ the input function).
calculation of the dose at a minimum number of optimally-located points (e.g.
few points in regions of low dose ‘gradicnt and more points in regions of high
dose gradient)

the use of other types of transforms

the possibility of performing a convolution with a kernel in spherical

N
geometry and a fluence in a Cartesian or fan geometry
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S.1.5.3 EKase of Use

Because the convolution algorithin 1s based on a Green's function as a modular

building block, it has the versatility to be applied in d_iffcrcnl situations!? which previously

required mulliblc algorithms (e.g. CBEAM and IRREG). The benefits of a anified

approach to different problems are:

 the treatment planning process becomes more consistent from an operator's
viewpoint since only one set of "input” data is required

« maintenance of the software becomes easier because of reduced "bulk" and
t [}

redundancy 1n the program code. A -

- maintenance of the database is simpler since only one set of "tweakin’;‘,‘f

parameters is required

It is expected, that future work in this area will make the convolation algorithm

-

available for routine clinical use on the Alberta Treatmént Planning (ATP) computer.

13The convolution algorithm has the versatility to model dose distributions resulting from pencil beam

. ]
scanning hardware (Alonso 1980) which other algorithms would find impossible or very difficult to model.



S » ' | 178
5.2 Conclusions .

Table 5.1 summarizes the dose calculation algorithms discussed in this won:k which
make use of various fluence and kernel calculatiops m"detcr‘minc‘a dose distribution.
~ Figure 5.1 shows the hicrarchy of these algorithms; the most general élgoﬂmm at the top, -
) and the least gc‘neral atthe bottom.v ‘ h

r

o3 R -
. Kernel contains
Solution name | Fluence contains |energy deposition ﬂus
general ¥ and e transport nil -
’ approach One all ¥ transport ° et transport
approach Two | primary ¥ transport  |e* & sccoﬁdary ¥ transport
approach Three surface ¥ ¢t & all ¥ wansport

ble 5.1. Solutions to the dose calculatioh problem for a mcgavoltagc‘photo‘n beam.

A

The difficulty xith the general solution and approach One are the complexity of the

particle fluence calc%fau’o_ns. This is not the case for approach Two, which included the

. ' ) :
promising superposition and convolution algorifhms in which the calculation of the primary
fluerce is tnvial. However, the requirement of an invariant kernel by the convolution

algorithm limits its applicability to homogeneous irradiated systems in whichi the kernels do

&

NOT need to be 'aligned’ with the fluence ray-lines. If thekernel variance is too great,
then the superposition.algorithm is appropriate. If the results obtained by the sdpcrpoéi.tion

approach still disagtee significantly with experimental data, then development ofthe

"higher order” algorithms is ufoortunatcly required. »

The convolution algorithm requires the primary photon ﬂixcnqq cverywhem‘within.
the irradiated system, and convolution kernels describing the energy spread as a result of a
primary photon impulses. The extent of the kernel and size of the kernel voxels is critical

in order to correctly model the dosé situation of interest.

\‘[ .
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Fluence calculable RYes

: Use general solution.
for all particle types ? g

No
Fluence calculable JiAY ’ -
uence e es.
; Use approach One.
- for all photons ? > »C
t ' No |- - . )
Fluence calculable JYes Use approach Two. ' ,
for prim hotons ? . \ - N ~7
No L
Incident photon Inhomogencities orjJil Yes
No fluence known ? contours t?
Yes No - .
Use approach Three. I~ ‘£ “Tilt' kernels to align } Yes e
¢ with fluence ray-lines ? Use superposition.
. L)
Insufficient "input” data, No
- 7/

e Electron contaminants@ Yé® . | Add convolution for an electron beam
, 10...

Poly-energetic photonf Yes

beam ?
No
and kernel. ) Determine appropriate fluence °
Perform a single convolution. " and kernel.

Perform multiple convolutions.

»

Figure §.1. Which calculation algorithm should be used ? o
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The answer to the question "Is convolution a useful technique for calculating

mcgavoltagé photon beam dose distributions ?" depends upon the region in which the dose

distribution is desired! For homogencous situations (¢.g. a water calculation) the
J
convoluuon method is very useful but so are other well cstablxshcd algorithms (e.g.

CBEAM) The convolunon method has shown better a agnccmcnt thh experimental data in
situations of a prcdxctxvc rTzftﬁr'e than CBEAM The apphcanon of Fourier techniques has
been studied and yielded significant rcdgctxons in computanon tme. Other algorithms used '

for "inhomogeneous corrections” (e.g. TAR / SAR based) first require a calculation i

¥

water and would benefit significantly from this speed gain.

For inhompgeneous situations, fhc convolution tcchnique is noj appropriate;
b

,although its "@usm superposition techmque may be appllcd Unfonunatcly. the speed
' gains by using Fourier techmqucs are not reahzable for tlus case.
v ¢

The advantages of the convolution method ; well known:
Accuracy. Intrinsic modeling'of the build-up ourve, beam pcnumbra and other

situations of electronic dlsequlhbnum.

Speed Calculauon time savings by software (e.g. FFT's) and hardwarc (cg ~ e .

[}

! specialized processors) .

" Ease of use. Unification of algorithms t'or beams of any size, shape, and

' poss1bly partwle type (e-g. clectrons) - o+
This method is progcssmg well, with franuc dcvclopmcm sometimcs masldng the
underlymg assumpnons This work is an ob]ecuve appmsal of the method and its

potential. : : ‘

. This thesis has established the *scaffolding” and relationshlps of various dose
calculanonalgonmmsw’“mws:orneedmbedmloped The"plam"fonhcnnew

methodshavebecnpmposed. andeogsmmonofﬂwconvoluumdgoﬂﬂlmhuhem

¢ e o S N

. rl N .
. N F . . RN

& ”



completed in this work. The software "tools" devclopcd during the convolution phase will
bc useful diiring the development of the superposition algonthm

The author remains hopeful that the footmg developed thus far will pcmut ‘the
incorporation.of the convoluuon/superposmon algomhms into routine mcatment planmng

The ultimate _goal remains to treat the cancer pancrﬁ optirhally with radiation.

181
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Appendices

Of shoes - and ships - and sealing wax -
Of cabbages - and kings -

And why the sea 1s boiling hot -

And whether pigs’have wings.

Through the Looking Glass
Lewis Carroll )
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Appendix A - Calculation Times in Real Space

Let us determine the number of multiplications required to perform a convolution
when the dose and fluence array sizes are matched. This implies that we have | interest in
any dose that might be d=posited bcyvgndﬂic bounds defined by the fluence mat ix, as

shown in Figure 4.2. If this is the case, all operations which would deposit energy beyond

the fluence marix can be eliminated. This reduces the number of multiplications and hence
decreases the calgulation time of real space convolutions. The size of this decrease is the
subject of .this discussion. Using the catchers point of view, we can place the inverted
kernel's interaction voxel dn the dose voxel in question and perform the multiplications and
additions which lie within the fluence matrix. -
Restricting ourselves to 1D for the moment, we shall assume the fluence array and
the dose array are both N elements lohg, and the kemnel is M elements long (where M<N
and M=top+bottom+1). The process o(placing the inverted kernel origin,onto a dose
voxel is called a step. There will be N stcps required during the convolution process, since
there are N dose voxels upon which to "land"” the keme! origin. The number of
multiplications required at step 'i' is given by:
 the number of fluence kemels overlapping pixels upstream of the interaction
voxel, min( top, N-i)
* the number of fluence kernels overlapping pixels downstream 6f the
interaction voxel, min( bottom, i-1)

» one multiplication of the interaction voxel with the fluence element

Hence the number of multiplications (m) required for a 1D ‘constrained’ convolution ié:

N . ~
m = ¥ min( top, N-i) + min( bottom, i-1) ¢ 1
i=1

190
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N-top N bottom+1 N N
= 2top « FAN-1) + F(i-1) « Fbottom -+ 1
1= i=N-top+1 1:1 izbottom+2. =1

Evaluating each term. individually yields

N-top

2 (top) = (N-top)top

1=1

N 0 top-1 :
2(N-1) = 2(-1) = 21 = (top-1)top/2
i=N-tope1 iz1-top i=0 ¢

-

bottomse1 bottom

2(i-1) = ¥i = = bottom(bottome1)/2 ' f"“

1=1 1=0 s
N

: 2 bottom = bottom(N-bottom-1) -
izbottom+2 -

Hence, the total number of multiplications is given by

m = (N-top)top + (top-1)top/2 « bottom(bottom+1)/2 + bottom(N-
¢ bottom-1) +N

top[N-(top+1)/2] + bottom[N-(bottom+1)/2] + N \

n

N(tops+bottom+1) - [top(top«1) » bottom(’bottom»l)]/2

NM - [top(top+1) « bottom(bottoms1)}/2

Where wé have used the fact that M=top+bottom+1. Note that the number of \
multiplications is the number required for a full convolution (NM) less those terms that
distribute energy beyond the spatial extent of the fluence matrix.
simplest case 1:

top=bottom=0; i.e. 1 voxel kemel : 1

#multiplies = N(1)-[0+0)2 =N
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For a 1 element kernel the number of multiplies is simply. N, as expected.

kR

simple case 2: e

top=bottom=1;
#multiplies = N(\)» [2+2)2 =3N-2 .

For a three element kernel the number of muldplies is 3N less one pixel which

doesn't overlap on each end, for a total of 2 saved multiplications.

practical case: ' o ;|
top=10, bottom=40 "
#multiplies = N(51) - [10(11) + 40(41))/2 = 51N - 875
For N=64, the l;umber of multiplications required for the complete convolution is
51(64)= 3264 and the numbcr of multiplications for the restric'tcd convolution is 51(64) -

875=2389. i.e. only'73% of the multiplications required for a complete convolunon need

to be performed!!!

¢ N & _
L Table A.1 shows some estimated savings for a 1D constrained convolution with a

Y

ﬂuence"é}ic—i/ dose matrix of 64 elcme:nts. , :

}

. | top bottom _[% of full convolution

' 13 7 %0
13 50 67 !
10- 36 76
3 12 9 o,
31 31 75
23 23 82
15 15 88 -
7 7 .l w

TaBR A.1. Number o{.tmnltiphcmons saved in a "constrained” 1D convolution as 2
pcnccmagc of the number of multiplications mqumd in a full convqluum '

.
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Now, let us turn our attention to the 2D case. By symmetry we can write the

number of multiplications as : - ¢ _

m = { NyM, /. [top(top+1) + bottom(bottom+1)}/2 }
X { NjM, - [edge(edge+1) + edge(edge«1)1/2 }
= { NyM; - [top(top+1) + bottom(bottom+1)1/2 }

X {ﬁzm - edge(edge+1) }

. : ) )

Table A.1 can be used to determine the savmgs fora constmmcd 2D convolution.
For c'ach of the two dimensions, look up the reduction in the number of multplications

from Table A.1 and the product yields the savings for a constrained 2D convolution.

.
«
Similarly for 3D case, we can write the number of multiplications as

[top(top+1) + bottom(bottom+1)1/2 }
{NsM3 - edge(edge+1)}

#*multiplies = { RyM,
X {NM, - edge(edge+1)} X

D

Table A.2 shows the reduction in the number of multiplies by performing a

constrained convolutioh in 2D and in 3D.

top_| bottom | edge | 2D (% of fal)] 30) (% of full) -
15 &7 31 L) 39
13 50 23 54 44
10 | 36 15 67 59
3 12 7 86 81

Table-A.2.. Number of multiplications saved ina constramed" 2D and 3D convolunon
as the percentage of the nuriber of mulnphcanons required in a full convolution, )

Thus, we see that a substantial savings can be achieved when iargc kernels are used

=

in a constrained convolution. \ N
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Appendix B - The Software Toolbox -
3 ] \\
During this work, computer programs were whitten in a modular fashion so that

each step of the convolution process could be thqrqughly examined. The programs of .

9

interest are: N : ~
FCALC " perform a Fourier space convoludon,"givcn transformed flucncc and kernel

/ arrays. : .
FFT - pcrfofm a fast Fourier transform, given input array.

‘FLUENCE calculate the primary ary fluence dlstnbunon given mu, field size, SSD,
“description of any filter prcscnt, filter HVL ftucncc pixel spacing, ﬂucnpc

s +

array sme T

KERNEL :\ generate a 2D Cartesian kernel from the spherxcal database, given incident

-

energy, kemel category, kernel pixel size, kernel dimensions, and many ,
other pafamctcrs'uscﬁxl in examining the kernels. This program is a
modified version of SPH'I‘OCRT (Andmws and Maclne 1986).
RCALC perform a real spaCe convoluuon, given fluence and kernel arrays.
REFORMAT rcnormalwe, magnify, or trandlate an array of data. &nmw one ot: three

———
C}

_ types of output data files: colour image, black a.na'v'vhite’?mage, asciitext. <’

r S : \ / .
+ SHOW - display images ona graphics monitor as a black'and white image, ora -
* . colour image. Multiple images can be displayed. e <

7

1

.
a

Lol T . -
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Photon Dose Calculations Using Convolution in Real and Fourier Space:

Assumptions and Time Estimates
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