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Abstract

In digital signal processors (DSPs) variables are accessed using k address regis-
ters. The problem of finding a memory layout, for a set of variables, that minimizes
the address-computation overhead is known as the General Offset Assignment (GOA)
Problem. The most common approach to this problem in the literature is to partition
the set of variables into k partitions and to assign each partition to an address register.
Thus effectively decomposing the GOA problem into several Simple Offset Assignment
(SOA) problems.

The complementary problem of finding the addressing code that minimizes address-
computation overhead for a fixed memory layout and a fixed instruction schedule has
been solved by Gebotys in [6]. This paper implements Gebotys’ solution using an
integer linear programming formulation. To find the memory layouts that have the
minimum address-computation overhead, the overhead for all possible memory layouts
for a given sequence of instructions can be computed. Since the number of possible
memory layouts grow exponentially, we can only find the memory layout with minimum
overhead for access sequences with less than 12 variables. The quality of the solutions
obtained with heuristic-based algorithms proposed in the literature [11, 14, 18, 22] are
then compared with the set of all possible solutions.

1 Introduction

The extensive use of data in digital signal processing applications requires frequent
memory accesses. Many digital signal processors (DSPs) provide dedicated address
registers to facilitate the access of variables stored in memory through indirect ad-
dressing modes. These addressing modes often support post-incrementing and post-
decrementing of the address stored in the address register. Post-incrementing and
post-decrementing allows the processor to update the address register without addi-
tional cost. Thus, the placement of data in memory affects how effectively the post-
increment or post-decrement addressing modes can be used. This placement is also
called a memory layout. When two subsequent memory accesses indexed by the same
address register are not adjacent in the memory layout, an extra address-computation
instruction is required.

Given a memory layout and an instruction sequence, Gebotys’ network-flow solu-
tion finds the optimal usage of address registers to access the data [6]. Although the
technique minimizes the address computation overhead according to a fixed memory
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layout, the initial memory layout greatly affects the final code performance. We dis-
covered that even in small test cases that access 12 variables, some memory layouts
require addressing code with twice as much address-computation overhead as other
memory layouts.

Several heuristic algorithms have been proposed to generate a memory layout that
minimizes the address computation overhead [12, 14, 18, 22]. These algorithms assume
that all accesses to a single variable use the same address register. Thus, the variables
accessed in a sequence of instructions are first partitioned, and each partition is as-
signed to an address register. We call this partitioning problem the Address Register
Assignment (ARA) problem. Individual sub-layouts are generated for each variable
partition by approximating a solution to the Simple Offset Assignment (SOA) prob-
lem [14]. The ordering that these sub-layouts are concatenated into a single layout is
non-trivial and can have a significant impact on the solution generated by the network-
flow technique. We call this ordering problem the Memory Layout Permutation (MLP)
problem.

Although all the proposed algorithms find a memory layout using similar techniques,
there are very few comparisons of the algorithms [12, 22]. Furthermore, the address-
computation overhead of the memory layouts produced has only been measured using
the cost models of the heuristic algorithms, and not by an optimal technique such
as Geboty’s network-flow formulation. The experiments reported in this paper show
that different orderings of sub-layouts have the most significant impact on address-
computation overhead, producing layouts with overhead ranging from optimal to very
sub-optimal. Conversely, using different algorithms for the ARA and SOA problems
does not significantly impact the overhead of the resulting memory layouts.

The main contributions of this paper are:

• a demonstration that existing heuristic solutions to the GOA problem produce
poor approximations to the minimization of address-computation overhead;

• the formulation of a new optimization problem, the memory-layout permutation
problem, that has to be solved in order to use a minimum-cost circulation (MCC)
technique to evaluate the minimum address-computation overhead incurred in
memory layouts produced by heuristic solutions to GOA;

• an experimental evaluation, based on the MCC technique, of heuristic-based ARA
and SOA algorithms.

This paper is organized as follows. Sections 2 and 3 present the background to
the offset assignment problem and a motivating example. Section 4 discusses how
the address-computation overhead of a memory layout can be computed. Current
algorithms used to find memory layouts are proposed in Section 5. The experimental
evaluation of offset assignment algorithms is presented in Section 6. Finally, related
work and conclusions are presented in Sections 7 and 8.
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2 Background

2.1 Processor Model

Most DSPshave a set of address registers that is used to access variables stored in
memory. Post-incrementing and post-decrementing addressing modes allow an address
register r to access a variable v and modify the content of r by one word in the
same instruction. Thus, if the next variable accessed using r is either v, the variable
immediately before v, or the variable immediately after v, then r can be updated
without any additional cost. However, if r has to access a variable that is farther
from v, then an explicit address computation is necessary to update r. This additional
address computation increases the code’s final address-computation overhead.

The amount of computation overhead required to initialize or update an address
register, through an address-computation operation, depends on the actual DSP. In
the formulation of the address-register allocation and offset-assignment problems, these
costs are parameterized by INIT and JUMP.

2.2 The Offset Assignment Problem

Given a set of variables stored contiguously in memory, the memory layout of these
variables is the ordering of the variables in memory. Each basic block in a program
accesses n variables. The order in which these variables are accessed by the instructions
in the basic block defines an access sequence. The Offset-Assignment Problem can be
stated as follows:

Given k address registers and a basic block that accesses n variables, find a
memory layout such that the address-computation overhead is minimum.

Memory layouts with minimum address-computation overhead are called optimal mem-
ory layouts. This problem is called “offset assignment” because the address of each
variable can be obtained by adding an offset to a common base address. If k = 1, then
the problem is know as the Simple Offset Assignment (SOA). If k > 1 the problem is
referred to as the General Offset Assignment (GOA).

In the Simple Offset-Assignment (SOA) problem, a single address register is avail-
able to access all the variables in the memory. Liao et al. [14] convert the access
sequence to an access graph. The vertices of this undirected graph are the variables
and the weight of the edges indicate the number of times two variables are adjacent
in the access sequence. Liao et al. [14] show that the SOA problem can be solved by
finding the maximum-weight path cover (MWPC) of the access graph. Because the
MWPC problem is NP-Complete, they propose a heuristic to solve SOA in polynomial
time (see section 5.1).

In the General Offset-Assignment (GOA) problem, each access to one of the n
variables in an access sequence must be assigned to one of k address registers. This
assignment creates multiple access sub-sequences — one for each address register. A
memory sub-layout can then be found for each sub-sequence. The sub-layouts cannot be
computed independently from one another because a variable may appear in multiple
address registers. Nonetheless, the union of all sub-layouts must still form a contiguous
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layout. Liao et al. [14] propose to simplify the GOA problem by assigning variables,
instead of variable accesses, to address registers. This simplification produces sub-
sequences that access disjoint sets of variables. A memory layout can be obtained
by solving the SOA problem for each sub-sequence. We call the problem of assigning
variables to address registers the Address-Register Assignment (ARA) problem (see
section 5.2).

Figure 1 illustrates the traditional approach to produce a memory layout for the
access sequence of a basic block. The sequence of memory accesses for a basic block
is produced by the instruction scheduler. Then the ARA problem is solved to pro-
duce sub-sequences. Offsets are assigned to these sub-sequences by solving several
instances of the SOAproblem. This paper examines All the heuristic-based algorithms
for the ARA and SOA problems examined in this paper generate approximate solu-
tions. Alternative techniques to reduce address-computation overhead are discussed in
Section 7.

3 Motivating Example

The processor model used in this paper is based on the TI C54X family of DSPs.
Initializing an address register (INIT) has a latency of 2 cycles; modifying an address
register by more than one word (JUMP) has a latency of 1 cycle. For this example,
consider the access sequence with 6 variables, as shown in Figure 2. The offset assign-
ment problem is to find a placement of the 6 variables in memory such that multiple
address registers can access the variables with a minimum amount of overhead. We
present 4 examples of how the variables can be accessed and the associated overhead
of each solution.

The traditional approach to find an offset assignment requires partitioning the
variables into disjoint sets. Each set can then be accessed exclusively with a single ad-
dress register. For example, variables {a,b,c} can be assigned to address register A1,
and variables {d,e,f} to address register A2. The variables assigned to each address
register can then be independently arranged in memory to form two independent sub-
layouts, as shown in Figure 3. Address registers A1 and A2 can independently access
the variables, as shown in Figures 4(a) and 4(b). In this example, the address register
assigned to each layout must perform one initialization operation and one jump oper-
ation. Thus, the address-computation overhead is 3 cycles for each address register –
resulting in a total of 6 cycles of overhead.

In the traditional approach to the GOA problem, the sub-layouts in Figure 3 are
considered “optimal” for two reasons. First, there does not exist an ordering for each
variable subset, {a,b,c} or {d,e,f}, that has less than 3 cycles of overhead. Second,
there does not exist a partitioning of the 6 variables that can produce sub-layouts with
a total overhead that is less than 6 cycles. Do these sub-layouts minimize the address-
computation overhead of the input access sequence? The answer is no. The problem is
that in this solution each set of variables must be accessed by a single address register.

Figure 5 demonstrates that address-computation overhead can be reduced if a vari-
able can be accessed by more than one address register. The memory layouts in Figure 3
can be placed in memory to form the single, contiguous memory layout shown in Fig-
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Figure 1: The traditional approach to generate a memory layout for the access sequence of a
basic block. The sub-sequences generated by address register assignment access disjoint sets
of variables. The resulting set of sub-layouts can then be placed independently in memory
to form the final memory layout.

‘a d b e c f b e c f a d’

Figure 2: Memory access sequence

a b c

(a) Sub-layout assigned to
A1

d e f

(b) Sub-layout assigned to
A2

Figure 3: Two memory sub-layouts
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access instruction overhead
A1 = &a 2

a A1+ = 1
b A1+ = 1
c A1− = 1
b A1+ = 1
c A1− = 2 1
a A1

(a) Instructions for address register A1

access instruction overhead
A2 = &d 2

d A2+ = 1
e A2+ = 1
f A2− = 1
e A2+ = 1
f A2− = 2 1
d A2

(b) Instructions for address register A2

Figure 4: Instructions for address registers A1 and A2

ure 5(a). A1 is now used for the last access of variable d (originally assigned to A2)
without requiring additional overhead cycles. Similarly, A2 is used for the last access
of variable a (originally assigned to A1). This solution has an address-computation
overhead of 5 cycles, instead of 6.

Now, consider an alternative sub-layout to 3(b), with the variables ordered as
{b,c,a}. Variables {d,e,f} are kept in the same order. Similar to Figure 4, if vari-
ables {d,e,f} are assigned to A1 and variables {b,c,a} are assigned to A2, the total
overhead of both address registers is 6 cycles. If the two sub-layouts are placed con-
tiguously in memory, as shown in Figure 6, the minimum address-computation is still
6 cycles.

However, if variables {b,c,a} are placed before variables {d,e,f}, producing the
memory layout shown in Figure 6(a), and each variable can be accessed by more than
one address register, then the address computation overhead is reduced to 4 cycles, as
shown in Figure 7(b). Despite the similarities with memory layouts 5(a) and 6(a), the
layout in Figure fig:ex-layouto is that only one that allows for the minimum amount of
address-computation overhead.

The objective of offset assignment is to minimize address-computation overhead.
The traditional approach to solving GOA by using address register assignment and
SOA does not minimize overhead because of the restriction that each variable must be
accessed exclusively by a single address register. However, the network-flow technique
(see Section 4) can reduce the overhead of a memory layout by allowing multiple address
registers to access a variable. When the network-flow technique is applied to find a
solution to GOA the following questions arise:

• How do different methods of address-register assignment and simple offset assign-
ment affect the overhead of the combined layouts?

• How to arrange a set of sub-layouts in memory to minimize the address-computation
costs?

• How to determine whether a given memory layout is optimal?
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a b c d e f

(a) Layout formed by 3(a) and 3(b)

access instruction overhead
A1 = &a 2
A2 = &d 2

a A1+ = 1
d A2+ = 1
b A1+ = 1
e A2+ = 1
c A1− = 1
f A2− = 1
b A1+ = 1
e A2+ = 1
c A1+ = 1
f A2− = 5 1
a A2

d A1

(b) Accessing variables with A1 and A2

Figure 5: When the sub-layouts of Figure 3 are placed contiguously in memory, variables
d and a can be accessed by multiple address registers, reducing the address-computation
overhead to 5 cycles.

4 Computing Address-Computation Overhead

The example in Section 3 demonstrates that although the address-computation over-
head of an access sequence S is influenced by the memory layout M , the overhead
is ultimately determined by the addressing code used to access S. The traditional
method of finding an addressing code is to assign variables to address registers. How-
ever, Section 3 also demonstrates that in order to find an addressing code with minimum
overhead, multiple address registers need to access the same set of variables. Thus, an
optimal addressing code for M is an assignment of accesses to address registers such
that S can be accessed with the minimum possible overhead. In order to evaluate the
overhead of memory layouts, the optimal addressing code is required.

An algorithm to find the optimal addressing code is proposed by Gebotys [6]. Gebo-
tys shows that the assignment of accesses to address registers can be found in poly-
nomial time by transforming S and M into a directed cyclic network-flow graph. The
minimum cost circulation (MCC) of the graph represents the optimal addressing code,
and the cost of the circulation represents the minimum overhead for the given memory
layout. The MCC for a fixed memory layout can be computed using integer linear pro-
gramming where the constraint matrix is totally unimodular, and thus, can be solved
in polynomial time. All memory layouts in this paper evaluate the quality of a mem-
ory layout using this technique. Gebotys’ MCC technique is reproduced here for the
reader’s convenience.
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d e f b c a

(a) Layout formed using alternative
sub-layouts

access instruction overhead
A1 = &a 2
A2 = &b 2

a A1− = 5 1
d A1+ = 1
b A2+ = 1
e A1+ = 1
c A2− = 1
f A1− = 1
b A2+ = 1
e A1+ = 1
c A2+ = 1
f A1

a A2− = 5 1
d A2

(b) Accessing variables with A1 and A2

Figure 6: Placing sub-layouts contiguously in memory does not always guarantee a reduction
in overhead. Variables d and a are accessed by both address registers, but the overhead is
still 6 cycles.

b c a d e f

(a) An alternative layout with 6
variables

access instruction overhead
A1 = &b 2
A2 = &a 2

a A2+ = 1
d A2+ = 1
b A1+ = 1
e A2+ = 1
c A1− = 1
f A2− = 1
b A1+ = 1
e A2+ = 1
c A1+ = 1
f A2

a A1+ = 1
d A1

(b) Optimal Usage of A1 and A2

Figure 7: An optimal memory layout
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Let G = (V,E) be a network-flow graph with vertices V and edges E. V is com-
posed of the accesses ai ∈ S, and two special vertices, source as and sink ak. Let (ai, aj)
represent an access to ai, immediately followed by an access to aj . E is composed of
directed edges (ai, aj), for all ai that are accessed before aj . The cost, ci,j, associated
with each edge, (ai, aj), represents the overhead for a single address register to consec-
utively access ai then aj . E also contains special edges that connect the source and
sink vertices, (as, ai) and (ai, at),∀ai ∈ S. These edges do not represent actual accesses
in S, thus their cost is zero. E also has a special edge connecting the sink to the source,
(at, as). Each unit-flow through this edge represents an address register initialization,
thus its cost is ct,s = INIT .

To find the minimum cost circulation of G, a set of linear constraints are placed on
the flow through each edge in E. Let ei,j represent the amount of flow through edge
(ai, aj) ∈ E.

Since (at, as) represents address register initialization, the flow through this edge
cannot exceed the number of available address registers, r:

0 ≤ et,s ≤ r

All other edges represent an access by a single address register, thus the flow through
these edges must be non-negative and not greater than 1.

0 ≤ ei,j ≤ 1, i �= k, j �= s

The minimum cost circulation must also satisfy the conservation of flow property [8],
thus the total flow into a vertex must equal the total flow out of the vertex:∑

j

ei,j −
∑

ej,k = 0

Finally, the model must ensure that each access, aj ∈ S, is executed exactly once. This
condition can be expressed by adding a constraint on each directed edge ending at aj .

for each j �= s,k,
∑
i�=j

ei,j = 1

Thus, the minimum cost circulation of G is found by minimizing the total cost of the
flows:

z =
∑

ei,j∈E

ci,jei,j

subject to the constraints described above.
Since variables ei,j have non-negative, integer bounds, the flows are guaranteed to

be integers as well [6, 8]. Thus, the MCC of a given memory layout can be solved in
polynomial time with a linear programming library or solver.

5 Offset Assignment Algorithms

All heuristic-based algorithms that find a memory layout for the GOA problem use the
approach illustrated in Section 3. Given an access sequence S and k address registers,
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a memory layout can be found by finding answers for three problems: (1) First, the
address-register assignment (ARA) problem assigns each variable v ∈ S to a single
address register Ai, 1 ≤ i ≤ k (see Section 5.2). (2) Next, the SOA problem, which is
reducible to the maximum-weight-path cover problem [14], finds a memory sub-layout
mi for the variables assigned to each address register Ai (see Section 5.1). (3) Last, the
memory-layout permutation (MLP) problem combines all sub-layouts m1 . . . mk into a
single contiguous memory layout (see Section 5.3).

The SOA and ARA problems and their proposed algorithms are presented in Sec-
tions 5.1 and 5.2, respectively. The MLP problem, presented in Section 5.3, is not dis-
cussed in the literature because all previous formulations of the GOA problem impose
the constraint that each variable be accessed exclusively by a single address register.

5.1 Simple Offset Assignment

Bartley introduced the SOA problem in 1992 and solved it as a maximum-weight
Hamiltonian-path problem [2]. A path in the access graph represents the ordering of
variables in memory. Liao et al. refine the problem formulation to a maximum-weight
path-cover problem (MWPC) [14]. They improve the run-time complexity of Bartley’s
algorithm to approximate a solution to the SOA problem. This improved algorithm
marks all edges of the access graph as removable and sorts them in decreasing order of
weight. If the heaviest removable edge, e, is part of a cycle of unremovable edges, edge
e is removed; otherwise, e is marked unremovable. If e is incident to two unremovable
edges, then all removable edges incident to e are removed. The algorithm terminates
when all edges have either been removed or marked as unremovable. The unremovable
edges form an approximate maximum-weight path cover.

Leupers proposes to extend Liao’s algorithm by using a tie-break function to decide
between edges that have equal weights [12]. This function computes the sum of the
weights of incident edges to the edge being evaluated. When a tie occurs, the edge
with the lowest sum is selected. Using this tie-break function usually increases the
weight of path cover, resulting in memory layouts with lower address-computation
overhead [12, 9].

Sugino et al. propose a greedy algorithm to approximate a MWPC called ALOMA [18].
The ALOMA algorithm greedily removes edges from the access graph until a path cover
is found. Each edge e = (u, v) is evaluated using two metrics, the fork value of the
endpoints u, v, and the cycle value of the edge e. The fork value of a vertex v is defined
as:

fork (v) = max{degree(v) − 2, 0}
The cycle value of an edge e is defined as:

cycle(e) =
{

1 if e is part of a cycle
0 otherwise

Using the two metrics, the benefit of each edge e = (u, v) access graph is defined as:

benefit(e) =
fork(u) + fork(v) + cycle(e)

weight(e)
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In each iteration of the algorithm, the edge with the highest benefit is removed. The
benefit of each edge is re-evaluated and the process continues until the access graph
becomes a path.

For evaluation purposes (see Section 6), we also implemented a naive and an optimal
algorithm to find a memory layout for the SOA problem. The naive algorithm produces
a memory layout based on the declaration order of variables. Two variables, u and v,
are adjacent in memory if and only if there are no other variables that are declared
between the declaration of u and the declaration of v. The algorithm is known as the
Order First Use (OFU) algorithm [9, 14]

Liao et al. propose an algorithm that finds an optimal layout for the SOA problem
using the branch-and-bound technique [13]. The algorithm has an exponential running
time but can compute the MWPC for graphs with 12 vertices in a reasonable amount of
time. The algorithm is based on the observation that an access graph with n variables
has n − 1 edges in a maximum-weight path cover. Given a partial path cover p with
m < n − 1 edges, there is a set of valid edges that can be added to p. An edge e is
valid if adding e to p does not form a cycle in p and does not cause a vertex in p to
have a degree greater than two. Let p′ be the partial cover p augmented with e. An
upper bound on a path cover subsuming p′ is the weight of p′ plus the n − m heaviest
valid edges. If the upper bound of p′ is greater than the current maximum weight path
cover, the procedure is recursively called. Otherwise, p′ is discarded and another valid
edge is added to p. When there are no more valid edges to add to p, the MWPC is
found, producing an optimal memory layout for the SOA problem.

5.2 Address Register Assignment

In the GOA problem, k > 1 address registers are used to access variables in memory.
Liao et al. decompose the GOA problem into multiple instances of the SOA problem by
assigning each variable to an address register Ai. Let C(Ai) be the address-computation
overhead for an optimal SOA solution to variables assigned to Ai. Liao et al. define
the GOA problem as follows:

Given an access sequence S, the set of variables V , and k address registers,
assign each v ∈ V to an address register Ai, 1 ≤ i ≤ k, such that

∑k
i=1 C(Ai)

is minimum.

Solving this problem does not produce a memory layout — it only produces an as-
signment of variables to address registers. Additionally, as shown in the example in
Section 3, assigning variables to address registers may not necessarily minimize the
overall address-computation overhead. Thus, this problem should not be considered as
the real GOA problem. We call this problem the Address-Register Assignment (ARA)
problem. Since the SOA problem is NP-complete, we conjecture that the ARA problem
is NP-hard (since SOA is an instance of ARA).

We examine several algorithms that approximate a solution to the ARA problem.
In order to approximate the minimum overhead, an approximation of C(Ai) is required.
Any one of the SOA algorithms in Section 5.1 can be used as a sub-routine for the
following ARA algorithms to approximate the overhead of assigning a variable to an
address register.
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Leupers and David propose to solve the ARA problem by using a greedy algorithm
based on selecting edges [12]. Given an access graph G, the algorithm assigns the k
heaviest disjoint edges of G to each address register. Each remaining variable v ∈ V is
assigned to the address register Ai for which v causes the minimum increase to C(Ai).

Sugino et al. use an heuristic-based algorithm for the ARA problem [18]. Their
algorithm requires two disjoint partitions of all the variables. They claim that starting
with one partition with all variables and one partition with no variables works best.
Each variable is initialized as not-yet-moved. The algorithm moves one variable at a
time from one partition to the other. The gain of moving a variable from Ai to Aj is
the reduction of C(Ai) + C(Aj). At each iteration, the algorithm moves the not-yet-
moved variable that yields the highest gain. The algorithm saves all the intermediate
partitions and their costs. When all the variables have been moved, the intermediate
partition configuration that has the lowest total cost is selected. If there are k > 2
address registers available, the procedure is repeated on each pair of address registers
until no movement occurs.

Zhuang et al. propose a technique to simplify offset assignment problems using
variable coalescing [22]. They propose an algorithm to assign variables to address
registers that is independent of the variable coalescing technique. The algorithm assigns
a single variable to a single address register at a time. Each unassigned variable v ∈ V
is added to each address register Ai and the increase in C(Ai) is computed. The
assignment that results in the lowest increase is committed. If there is a tie, a weighted
access graph G is used. Let weight(v, u) be the weight of the edge connecting v and u
in G. Let (v,Ai) be an assignment of v to Ai. For each (v,Ai) that is tied, the following
score is computed:

w1(v,Ai) =
∑

u∈Aj ,j �=i

weight(v, u)

The assignment with the maximum w1 score is selected. This process continues until
all variables are assigned to an address register.

5.3 Memory Layout Combinations

After performing simple offset assignment for the variables assigned to each address
register, the variables must be placed in memory, as shown in Figure 8. Address reg-
ister assignment produces a set of disjoint access sub-sequences that can be treated
as independent SOA problems. The memory layout produced by solving each SOA
problem is called the ARA sub-layout; that is, a sub-layout resulting from address reg-
ister assignment. However, finding an ARA sub-layout for each SOA problem involves
finding a maximum-weight path cover. By definition, the path cover can be a set of
disjoint paths. Each path represents an ordering of variables in memory, which we call
the SOA sub-layout. Unless otherwise stated, the term sub-layout refers to an SOA
sub-layout. An address register accessing one variable at the end of sub-layout will
never subsequently access a variable at the end of another sub-layout; if such an access
occurred, the two sub-layouts could form a single sub-layout. Thus, the traditional
approach to generating a memory layout implies that each sub-layout can be placed
independently in memory without affecting address-computation overhead.
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Figure 8: Performing address register assignment followed by simple offset assignment gener-
ates memory sub-layouts that must be placed in memory. The problem of finding a placement
that minimizes overhead is called the memory-layout permutation problem.
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a b c d e f

(a)

a b c f e d

(b)

c b a d e f

(c)

c b a f e d

(d)

f e d c b a

(e)

d e f c b a

(f)

f e d a b c

(g)

d e f a b c

(h)

Figure 9: Permutations of two sub-layouts

However, the example in Section 3 demonstrates that if a variable can be accessed by
multiple address registers, address-computation overhead may be reduced by placing
each memory sub-layout contiguously in memory. Since the MCC technique allows
variables to be accessed by multiple address registers, the sub-layouts can no longer
be placed independently in memory. Let Mi be a sub-layout and M r

i be a sub-layout
with the variables of Mi in reverse order in memory. We introduce the memory-layout
permutation (MLP) problem as follows:

Given an access sequence S and a set of m disjoint memory sub-layouts,
find an ordering of the sub-layouts {(M1|M r

1 ), . . . , (Mm|M r
m)} such that

address-computation overhead is minimum when the sub-layouts are place
contiguously in memory.

The solution space for the MLP problem is extremely large. Given m sub-layouts,
there are m! permutations of sub-layouts. For each permutation, each sub-layouts can
be place in memory in two ways, as Mi or M r

i . Thus, there are a total of (m!)(2m)
possible memory layouts using m sub-layouts. However, given an ordering of lay-
outs M1, . . . ,Mm, a reciprocal layout can be produced by M r

m, . . . ,M r
1 . The address-

computation overhead of a layout is the same as its reciprocal since all variables have
the same relative offset to each other. Since each layout has a reciprocal layout with
the same address-computation overhead, the MLP solution space is effectively (m!)(2m)

2
memory layouts. Figure 9 shows how 2 sub-layouts can form 8 possible layouts, half
of which are reciprocals of another.

An offset assignment problem, as described in Section 2.2, with n variables, has a
solution space of n! memory layouts. The existence of reciprocals effectively reduces
the solution space to n!

2 memory layouts. If we let each variable be a sub-layout, then
m = n and the MLP problem is reduced to the offset assignment problem. This implies
that if an algorithm can solve the MLP problem, the same algorithm can be used to
solve the offset assignment problem.

In practice, a sub-layout usually consists of at least two variables, because a single
address register can access any two adjacent memory locations without any JUMP
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overhead. Thus, m is usually less than n
2 . Furthermore, in small GOA problems,

address-register assignment may produce SOA problems that result in only a single
SOA sub-layout for each ARA sub-layout. In problems where an SOA algorithm only
produces a single sub-layout, m is the number of address registers used by an ARA
algorithm, which cannot exceed the number of address registers in a DSP. Thus, it
may be possible to exhaustively search the entire MLP solution space when the GOA
problem has few variables, or the SOA algorithms only produce a single SOA sub-
layout (disjoint path). Indeed, exhaustive search is used to find optimal solutions for
the MLPproblem in the comparison of offset assignment algorithms in Section 6. For
each set of m sub-layouts produced by an ARA and SOA algorithm, the overhead of
(m!)(2m)

2 memory layout permutations are evaluated using the MCC technique.

6 Evaluating Offset Assignment Algorithms

This section presents results from an extensive empirical evaluation of the available
algorithms that produce approximated solutions to the offset-assignment problem. The
main findings of this evaluation are:

• Contrary to the conjectures of other authors [6], the selection of memory layout
has a significant impact on the address-computation overhead. Amongst the
access sequences examined, less than 0.1% of the possible memory layouts result
in the minimum overhead. Thus a system that only solves MCC may result in
the generation of sub-optimal code.

• Existing heuristic algorithms seldom produce memory sub-layouts that can be
ordered in memory to produce layouts with a minimum address-computation
overhead. For some access sequences, none of the algorithms ever produces sub-
layouts that can form an optimal solution.

• The choice of algorithm for the ARA problem has significant impact on the quan-
tity and quality of possible memory layouts permutations. On the other hand,
the choice of algorithm for the SOA problem has very little impact.

6.1 Experimental Methodology

An outline of the experimental methodology is shown in Figure 10. For each access
sequence, a combination of algorithms from Sections 5.1 and 5.2 are used to approxi-
mate solutions to the ARA and SOA problems. The 3 ARA and 5 SOA algorithms can
be combined to produce 15 heuristic solutions to the offset assignment problem. Each
combination produces a set of memory sub-layouts (see Figure 8). If m sub-layouts
are produced, then there are p = (m!)(2m)

2 possible memory layout (see Section 5.3).
The address-computation overhead of each memory layout is computed using the MCC
method described in Section 4. The results of this empirical evaluation are examined
in terms of the distribution of overhead values for the layouts produced by each com-
bination of ARA and SOA algorithms.
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Figure 10: Experimental procedure for evaluating offset assignment algorithms. There are
15 unique paths in the chart, representing the 15 combinations of ARA and SOA algorithms.
Let m be the number of sub-layouts produced by each combination. The total number of
memory layouts evaluated is then p = (m!)(2m)

2
.

16



Kernel Length Variables No. of Memory Layouts
iir arr 21 8 20,160
iir arr swp 33 12 239,500,800
latnrm arr swp 30 10 1,824,400
latnrm ptr 30 10 1,824,400
latnrm ptr swp 30 10 1,824,400

Table 1: Size of problem and solution space for kernels evaluated in the UTDSP Benchmark
Suite

6.2 Test Environment

This experimental evaluation uses a processor model based on the TI C54X family
of DSPs. This architecture has an overhead of 2 cycles to initialize address registers
(INIT) and an overhead of 1 cycle to access non-adjacent memory locations (JUMP).

Given an access sequence with n variables, we compute the optimal memory layout
by evaluating the MCC of all possible n!

2 memory layouts (see Section 5.3). Compar-
ative experiments are restricted to sequences with up to 12 variables. For n = 12
this exhaustive search took over 30 hours and 240MB of disk space on a 14-node dual
Opteron 248 cluster.

Access sequences are obtained from several kernels in the UTDSP benchmark suite.
Each kernel is compiled with gcc version 3.3.2, using -O2 optimization. The compiler is
modified to output the access sequence from the inner-most loop, prior to register allo-
cation. Only five kernels produce access sequences with n ≤ 12. The access sequences
evaluated are presented in Table 1.

6.3 The Efficiency of Offset Assignment Heuristics

Table 2 shows a summary of the address-computation overhead for all memory layouts
evaluated in this study. The Exhaustive column shows the number of memory layouts
with a particular overhead in the solution space for each GOA problem. The average
overhead of all layouts in each GOA problem ranges from 49% to 75% higher than
minimum. Additionally, at least 98% of all layouts have an overhead 33% to 100%
higher than minimum. Thus, even when the MCC technique is used to find optimal
addressing code, the selection of memory layout has a significant impact on address-
computation overhead.

The Algorithmic column of Table 2 shows the combined distribution and average
address-computation overhead for memory layouts produced by all 15 combinations of
the ARA and SOA algorithms. The distribution of the overhead obtained using the
heuristic-based algorithms presented in Sections 5.2 and 5.1 indicate that, in general,
they are not very effective. The average overhead of layouts produced by the algorithms
for each access sequence ranges from 40% to 60% higher than minimum and is only
slightly lower than average overhead of all layouts in the solution space. Moreover, the
layouts formed by combining sub-layouts produced these heuristic-based algorithms
have address-computation overheads that range from the best (minimum) to the worst
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(maximum).

6.4 The Efficiency of of ARA Heuristics

This section studies impact of individual ARA algorithms on the address-computation
overhead. Each of the three ARA algorithms — Leupers, Sugino, and Zhuang —
can be combined with five SOA algorithms (see Figure 10) to generate an algorithm
that produces a memory layout. All of the layouts produced by an ARA algorithm are
combined into a set and the overhead distributions of these sets of layouts are presented
in Table 3. For instance, for the iir arr swp access sequence, the combination of
Leupers’ ARA algorithm with the five SOA algorithms produces 204 memory layouts
that have an overhead of 8 cycles.

The total number of memory layouts in each column varies because each ARA al-
gorithm can use a different number of address registers which in turn, yields a different
number of memory-layout permutations (see Section 5.3). The results in Table 3 in-
dicate that ARA algorithms that produce fewer layouts, such as Sugino’s, also tend
to produce better layouts. This result indicate that it is better better to user fewer
address registers even when more registers are available in the processor. For instance,
in the iir arr swp access sequence, Leupers and Marwedel’s ARA algorithm yields
9600 memory layouts. But only 2 layouts have an overhead of 7 cycles. On the other
hand, the ARA algorithm proposed by Sugino et al. generates 2688 memory layouts
with 61 layouts having an overhead of 7 cycles. Similar distributions occur for the
other access sequences.

Locally optimal sub-layouts do not lead to globally optimal memory layouts. When
more address registers are used by an ARA algorithm, there are less variables assigned
to each register. In the case of Leupers and Marwedel’s algorithm, and occasionally
Zhuang’s algorithm, as few as two variables may be assigned to an address register.
Two variables can be trivially accessed without incurring JUMP overhead and can
be considered locally optimal. However, if the two variables are not adjacent in the
optimal memory layouts, then the MLP solution space will never contain an optimal
layout.

6.5 The Efficiency of SOA Heuristics

The distributions in Table 4 Are complementary to the distributions in Table 3. Here
the focus is on the layouts produced by each of the five SOA algorithms when it is
combined with each of the three ARAalgorithms. For instance, for the iir aar swp
sequence the combinations of Sugino’s SOA algorithm with the three ARAalgorithms
together produce 1,187 layouts have an overhead of 9 cycles.

A SOA algorithm is used to estimate the increase in overhead when assigning vari-
ables to address registers. The number of estimations produced affect the number
sub-layouts produced by the ARA algorithms. This variation appears in the table as
a different total number of layouts in the various column. Low variability between the
columns indicates that the SOA algorithms can usually find an optimal or near-optimal
SOA solution for the sub-layouts created by the ARA algorithm for that sequence.
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Exhaustive Algorithmic
Access overhead Number of % of Number of % of
Sequence (cycles) Layouts Layouts Layouts Layouts

iir arr

4 5 0.02% 0 0.00%
5 281 1.39% 125 34.72%
6 5707 28.31% 235 65.28%
7 10526 52.21% 0 0.00%
8 3641 18.06% 0 0.00%

Average overhead 6.87 5.65

iir arr swp

6 144 0.00% 0 0.00%
7 19557 0.01% 72 0.33%
8 1514917 0.63% 2240 10.23%
9 21757157 9.08% 6515 29.77%

10 90478895 37.78% 10496 47.95%
11 104101226 43.47% 2565 11.72%
12 21628904 9.03% 0 0.00%

Average overhead 10.51 9.60

latnrm arr swp

6 323 0.02% 117 0.60%
7 10785 0.59% 303 1.55%
8 253379 13.96% 7067 36.26%
9 918134 50.60% 8198 42.07%

10 631779 34.82% 3803 19.51%
Average overhead 9.20 8.78

latnrm ptr

6 1449 0.08% 28 0.21%
7 29682 1.64% 481 3.68%
8 456647 25.17% 6093 46.58%
9 929244 51.21% 6268 47.92%

10 397378 21.90% 210 1.61%
Average overhead 8.93 8.47

latnrm ptr swp

6 323 0.02% 5 0.04%
7 7706 0.42% 138 1.04%
8 225109 12.41% 3734 28.19%
9 905303 49.90% 5881 44.39%

10 675959 37.26% 3490 26.34%
Average overhead 9.24 8.96

Table 2: Number of layouts with a specific address-computation overhead, for the entire
solution space. The Exhaustive column shows distribution of memory layouts in the solution
space. The Algorithmic column shows the combined distribution of layouts produced by the
15 different ARA and SOA combinations.
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No. of Memory Layouts
Access overhead
Sequence (cycles) Leupers Sugino Zhuang

iir arr
4 0 0 0
5 5 0 120
6 115 120 0
7 0 0 0
8 0 0 0

Average overhead 5.96 6.00 5.00

iir arr swp

6 0 0 0
7 2 61 9
8 204 1483 553
9 2089 1018 3408

10 4740 126 5630
11 2565 0 0
12 0 0 0

Average overhead 10.01 8.45 9.53

latnrm arr swp

6 5 112 0
7 205 80 18
8 2455 96 4516
9 4990 0 3208

10 1945 0 1858
Average overhead 8.90 6.94 8.72

latnrm ptr

6 0 24 4
7 220 198 63
8 4350 850 893
9 5030 1238 0

10 0 210 0
Average overhead 8.50 8.56 7.93

latnrm ptr swp

6 0 5 0
7 15 115 8
8 1230 840 1664
9 4865 0 1016

10 3490 0 0
Average overhead 9.23 7.87 8.38

Table 3: Number of memory layouts, produced by each ARA algorithm, with the specified
overhead. Each column is the combined distribution of 5 sets of layouts, each produced with
5 different SOA algorithms, but using the same ARA algorithm.
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The naive Order First Use (OFU) algorithm consistently produced more memory
layouts. The OFU algorithm generates poor sub-layouts and leads the ARA algorithms
to create more variable partitions. However, larger number of sub-layouts do not
predicate the success of the SOA algorithm.

The results in Table 4 confirm that combining optimal sub-layouts does not result
in optimal layouts. For instance, in the latnrm ptr swp access sequence, the OFU
algorithm generates sub-layouts that can be combined to form optimal memory layouts,
while the Branch and Bound (B&B) algorithm, which finds optimal sub-layouts, does
not form any optimal memory layouts.

There is no SOA algorithm that consistently produces sub-layouts that can form
the most number of optimal or near-optimal layouts. In two access sequences, OFU
is best, while in two other sequences, the SOA algorithm proposed by Sugino et al. is
best.

7 Related Work

In 2003, Leupers presented a comprehensive experimental evaluation of algorithms for
the simple offset assignment (SOA) problem [9]; however, there has not been an evalu-
ation of algorithms for the general offset assignment (GOA) problem. Our comparison
of offset assignment problems has three distinguishing features:

• The GOA problem is evaluated as three separate problems: address register as-
signment (ARA), simple offset assignment (SOA), and memory-layout permuta-
tion (MLP).

• All known heuristic-based algorithms that generate a single approximate solution
to the ARA or SOA problems are compared against each other, and against the
optimal solutions.

• The minimum address-computation overhead of each memory layout generated
is computed using a minimum cost circulation (MCC) technique.

Some algorithms for generating a memory layout were not included in our study.
Atri et al. propose an SOA algorithm that iteratively improves a given memory lay-
out [1]. Similarly, Wess and Zeitlhofer propose to approximate a solution to the
GOA problem by iteratively modifying offset assignments and address register assign-
ments [20]. One reason these algorithms are exclude from the experiments is because
their performance is dependent on the initial memory layout produced. Leupers and
David propose to find a memory layout for the GOA problem using a genetic al-
gorithm [11], while Wess and Gotschlich propose to generate memory layouts using
simulated annealing [11, 21]. One drawback of using a genetic algorithm or simulated
annealing is that finding a fast, but accurate, fitness function is difficult. Another
drawback is that the algorithms require many simulation steps to find a memory lay-
out with a minimum overhead, which may require too much time to be practical in a
production compiler.

The original offset assignment problem presented by Bartley focused only on scalar
variables [2]; thus, this study did not examine algorithms that optimize array accesses
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No. of Memory Layouts
Access overhead
Sequence (cycles) Liao Leupers Sugino B&B OFU

iir arr
4 0 0 0 0 0
5 25 25 25 25 25
6 47 47 47 47 47
7 0 0 0 0 0
8 0 0 0 0 0

Average overhead 5.65 5.65 5.65 5.65 5.65

iir arr swp

6 0 0 0 0 0
7 6 6 10 6 44
8 293 293 357 293 1004
9 960 960 1187 960 2448

10 2154 2154 2124 2154 1910
11 619 619 354 619 354

Average overhead 9.77 9.77 9.61 9.77 9.26

latnrm arr swp

6 25 25 25 25 17
7 45 45 45 45 123
8 1523 1523 1523 1523 975
9 1598 1598 1598 1598 1806

10 673 673 673 673 1111
Average overhead 8.74 8.74 8.74 8.74 8.96

latnrm ptr

6 1 1 25 1 0
7 124 110 54 110 83
8 1173 1187 1051 1187 1495
9 1006 1006 1006 1006 2244

10 0 0 0 0 210
Average overhead 8.38 8.39 8.42 8.39 8.64

latnrm ptr swp

6 0 0 0 0 5
7 28 28 28 28 26
8 605 605 605 605 1314
9 973 973 973 973 1989

10 698 698 698 698 698
Average overhead 9.02 9.02 9.02 9.02 8.83

Table 4: Number of memory layouts, produced by each SOA algorithm, with the specified
overhead. Each column is the combined distribution of 3 sets of layouts, each produced with
3 different ARA algorithms, but using the same SOA algorithm.
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in loops. Leupers et al. propose an algorithm to find a good usage of address registers
for array accesses in a loop body [10]. Cheng and Lin also propose an address register
allocation algorithm, but also discuss how array data can be reordered to further reduce
address-computation overhead [4]. Chen and Kandemir present a scheme to transform
arrays and reschedule array accesses to reduce overhead [3].

Although our study only focuses on algorithms that directly generate a memory
layout, address-computation overhead can also be reduced by manipulating the ac-
cess sequence through instruction scheduling and variable extraction (see Figure 1).
Rao and Pande propose to apply algebraic transformations (such as commutativity)
on expression trees to produce a least-cost access sequence [17]; Lim et al. propose
to manipulate the entire instruction schedule [15]. Kandemir et al. propose an algo-
rithm to change the access sequence of variables after a full or partial memory layout
is formed for each basic block [7]. These three studies focus only on reducing over-
head for the SOA problem; however, the optimizations can be applied independently
of the offset assignment optimizations. Choi and Kim propose a unified algorithm to
find simultaneously find an instruction schedule and offset assignment with low over-
head [5]. However, the unified approach still uses an offset assignment algorithm as a
sub-routine. Thus, finding an improved offset assignment algorithm does not interfere
with scheduling optimizations.

After an instruction schedule is found, the access sequence of variables must be
extracted. Ottoni et al. propose to simultaneously coalesce variables and find a mem-
ory layout for SOA problems [16]. Similarly, Zhuang et al. propose algorithms that
coalesces variables for both the SOA and GOA problems [22]. Although the coalescing
algorithms in both works simultaneously find memory layouts, it is still possible to
perform an additional offset assignment pass to further reduce address-computation
overhead.

Regardless of the optimizations performed, the ultimate objective of generating
a memory layout is to reduce code size and address-computation overhead. Given a
memory layout, we computed the minimum overhead using a minimum-cost circulation
(MCC) technique [6]; however, an alternative approach to find the minimum overhead
is to use a minimum-weight perfect matching (MWPM) technique [19]. The running-
time complexity of the two approaches can be stated in terms of the length of the
access sequence l, and the number of address registers k. The complexity of finding
a minimum-weight perfect matching is O((l + k)3), which is theoretically higher than
the O(l4 log l) time complexity to find a minimum-cost circulation [19]. In practice, k
is small and bounded, so the MWPC can be found in less time. However, solutions to
both problems can be quickly implemented using a linear program, which makes the
complexity of both problems the same. Thus, for our implementation, there was no
benefit to using the MWPC approach.

8 Conclusion and Future Work

The minimum cost circulation technique (MCC) produces the optimal addressing code
for fixed memory layout and access sequence by allowing variables to be accessed by
multiple address registers. However, the initial memory layout still has a significant
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impact on the address-computation overhead. Current offset assignment algorithms can
be used to generate the initial memory layouts. However, by solving offset assignment
problems as an address register assignment problem, the algorithms introduce a new
combinatorial problem we call the memory-layout permutation problem.

We see that layouts generated by different ARA algorithms have different distri-
butions of overhead values. Distributions with fewer memory layouts (due to less
address registers used by the ARA algorithm) consistently produce more layouts with
low overheads. Thus, the average overhead of memory layouts produced by Sugino’s
ARA algorithm was usually the lowest. When an ARA algorithm uses more address
registers, it is easier to find optimal sub-layouts. However, locally optimal sub-layouts
do not necessarily produce globally optimal memory layouts. We observe problem in-
stances where using the naive OFU algorithm produces naive sub-layouts that can be
combined to form optimal layouts. Conversely, using the branch and bound algorithm
produces optimal sub-layouts can only be combined to form non-optimal layouts.

Our experiments show that different ARA algorithms have a significant impact on
the number and quality of memory layouts produced, while the heuristic-based SOA
algorithms have very little impact. However, the minimal differences between the SOA
algorithms can be attributed to the small problem sizes. The SOA algorithms are only
given SOA instances with 6 variables or less, and the same MWPC is usually found
between the different algorithms. Thus, for GOA problems with 12 variables or less,
we find that using an ARA algorithm that generates fewer sub-layouts (such as the
algorithm proposed by Sugino et al.) combined with any SOA algorithm produces
sub-layouts that can be most easily combined to form a memory layout with low or
minimum overhead.

As shown in this paper, regardless of the ARA and SOA algorithm used, placing
the resulting sub-layouts contiguously in memory is necessary in order to minimize
address-computation overhead in a basic block. This is what we call the memory-
layout permutation (MLP) problem. The placement of sub-layouts has a significant
impact on the final memory layout’s overhead, especially when the number of sub-
layouts is high. Additionally, as more variables are assigned to individual sub-layouts,
the MLP problem is reduced to the GOA problem itself. Thus, if we can find an
algorithm to address the MLP problem, the same algorithm can be used to address the
GOA problem itself!

Our experimental study shows evidence that we should explore new directions for
the GOA problem. One direction is to explore better ways to solve the MLP problem
that we highlighted in this paper. The alternative direction is to avoid addressing the
ARA, SOA, and MLP problems separately and find a combined method to generate a
memory layout that minimizes the overhead as computed by the MCC technique.
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