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ABSTRACT

In this thesis the multivariate multiple regression model,
Yi:i - ':\Eij% + eij’ i=1,...,0; J = 1,...5P> is considered. The

{Y,,} are observatioms, {ﬁij} are q-vectors (q>1) of known

ij
regression constants, {eij:j-l,...,p} , i=1,...,n, are independent
and identically distributed error vectors and £ is a gq-vector of

unknown parameters.

Nonparametric tests and estimates for §, based on signed
rank statistics, are proposed using both the joint and separate ranking
procedures. The methods used are extensions of the ideas in Koul (1967
where only the univariate case is considered and the estimates are
based on Wilcoxon scores. In the present work the multivariate case

ig considered with more general scores (see conditions (6.1)).

The asymptotic distribution of the test statistics is
obtained under both the null hypothesis and a sequence of contiguous
alternatives. Also, the large sample existence and asymptotic
normality of the proposed estimates are discussed. To do this, some
needed convergence theorems in stochastic processes are proved in
Chapter V. Next the asymptotic efficiency of these procedures
relative to the classical ones is obtained. Finally, some examples

of score functions satisfying the conditions of Chapter VI are given.
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SUMMARY

In Chapter I, the regression model is described along with

some history of the problem, the assumptions and the notatioms.

In Chapter II a class of tests and estimates for g > based
on the .statistics Mh(X) (given by (2.2) for the separate ranking
case and (2.8) for the joint ranking case), are defined for the
multivariate case and the general rank scores. The proposed estimate
én for B is defined as the centre of gravity of a confidence
region determined by Mn(z). Koul (1967) defines this estimate for
the special case where the underlying distribution is univariate and
the scores are Wilcoxon. For this class of estimates, translation
invariance is proved and, when the exrror vectors are diagonally
symmetric {see definition 2.1), unbiasedness is shown. Both the
joint and the separate ranking procedures are defined and discussed
(see section 1.2). \ |

In Chapter III, the asymptotic distribution of the test
statistic Mn(z) is derived for both the joint and the separate
ranking procedures. For the separate ranking case (see lemmas 3.3,
3.4, 3.5, and 3.6) the results are extensions of the work of Héjek
(1962) and Mehra (1969). For the joint ranking case (see lemmas 3.7,
3.8, and 3.9) some additional conditions are needed on either the

underlying distribution oz the regression scores. Three such sets of



(vii)

conditions are discussed in (3.1), (3.4), and (3.6), and the

asymptotic distribution is found.

The principal result of Chapter IV is contained in theorem 4.4.
There, the asymptotic distributions of MR(X) is found under a sequence
of contiguous alternatives. Similar results were proved by Hajek (1962)
for the univariate case, and by Mehra (1969) for the multivariate case
with unsigned rank statistics. In the present work the multivariate
case is considered with signed rank statistics. Finally, conditions
[see (4.15)] .are given which ensure the asymptotic normality of the
least squares estimates. These results are used to obtain the asymptotic

efficiency of the tests of Chapter II relative to the classical tests.

Chapter V gives a number of convergence theorems for
stochastic processes. Theorem 5.1 is the main theorem of this chapter
and enables us to deal with the multivariate case. Lemmas 5.1 to 5.7
are the required but immediate extensions of the results of Koul (1967),
which, coupled with subsequent results - lemma 5.8 onward - enable
us to demonstrate, in Chapter VI and VII, the large sample existence

and asymptotic normality of the estimates.

In Chapter VI, the joint ranking case is considered.
Conditions on the score functions are given under which the large
sample existence of gn is proved [see theorem 6.6]. Theorem 6.7

gives the asymptotic distribution of én'

Chapter VII proves results similar to those of Chapter VI

but for the separate ranking procedure. The estimate based on the
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sign statistic is also considered. Finally it is shown that estimates
based on the joint and the separate ranking procedures are asymptotically

equivalent whenever the assumed conditions for both procedures are

satisfied.

In Chapter VIII, the efficlency of the proposed estimates with
respect to the least squares estimates is discussed. Also, some examples

of score functions satisfying the assumed conditions are given.

The Appendix consists of a few lemmas which are used in other
chapters. Lemmas A4 and A7 contain results which make it possible
to discuss the case of general scores by providing bounds for certain

remainder terms occurring in the proof of theorem 6.1.



CHAPTER I

INTRODUCTION

1.1 Historiecal Note
A statistical model with wide application is the regression
model which can be written as

(1.1) J=1,..,K,

Ynig © él Biaigk T Cnij i

i=1,...,n

where {Ynij} are the observatiomns, {xnijk} are known regression
constants, {Bjk} are unknown regression parameters, and

{e

nij:j=1,...,Ki} are independent random Vectors denoting the error

terms.

The problem of testing and estimation of the regression
parameter has been extensively dealt with in statistical literature.
The least squares (L.S.) estimates have been shown to be optimum
in the sense of minimum variance in the class of linear unmbiased
estimates. However, under severe departures of the underlying
distribution from normality, these estimates and test procedures
have been shown to be very inefficient. Thus if little is known

concerning the underlying distribution, tests and estimates based



on L.S. are of dubious value.

In view of this it is of benefit to attack such problems
from the nonparametric point of view, giving procedures that are
"robust" against changes in the underlying distribution. One of the
first attempts at comparing L.S. and nonparametric methods was the
consideration of the one and two sample problems of shift by Hodges
and Lehmann (1956). There it was shown that the sign and Wilcoxon
tests were more robust than the classical t and normal tests against
changes in the underlying distribution. They also showed that these

procedures were more robust against gross errors.

Hajek (1962) considered the univariate regression model
with two regression parameters, i.e. (1.1) with Ki =1, q= 2,
Blk = B> X 491 = 1, and {enil} independent and identically distributed
(.i.d.). He discussed the problem of testing 82 against a sequence
of contiguous (which he defines) alternatives, and found asymptotically
most powerful tests. The same model was discussed by Adichie (1967a)
and (1967b) where tests for (81,82) versus a sequence of contiguous

alternatives were obtained along with estimates for (81,82) using the

Hodges and Lehmann (1963) approach.

Mehra (1969) considered (1.1) under the assumptions

q= 2, xnijl -], Bjk = Bk’ and some restictions on the joint

distribution of {eij:j=1,...,Ki} and {xnijz} . He proved the
asymptotic normality of certain rank statistics under the hypothesis

= 0 and under a sequence of contiguous alternatives. This extends

By



some results of Hajek (1962) to the case where certain types of

dependence exist.

Koul (1967) considered (1.1) with Ki =1 (i.e. the
univariate case). Asymptotic normality of certain test statisties
and estimates based on Wilcoxon scores was proved. The estimates of
the B's were formed by taking the centre of gravity of an appropriate
confidence region. The present work is an extension of Koul's approach

to the multivariate case and more general scores.

(Recently a paper by Jureckova (1969) has appeared in the

Annals of Mathematical Statistics which considers (1.1) with

Ki = 1, and {eil:i=l,...,p} i.i.d. It is shown that certain rank
statistics based on fairly general scores can be uniformly approximated
in probability by a linear function of the B's for alternatives that
are "contiguous" to the hypothesis. The methods used there are,

however, different from the ones used in this thesis.

Also, Puri and Sen (1969) have considered, for the multivariate
multiple regression model, just the testing problem using statistics
based on unsigned ranks and the separate ranking procedure. Thelr

methods are aiso different from ours.)

1.2 The Problem: Testing and Estimation

The following regression model will be considered

= ! { =
(1.2) Ynij *nijé + enij i ly.ees
J = 1y..05D



where {Yni :i=1,...,n; j=1l,...,p} are the observatioms,

3

{ﬁéij} = {(xnijl""’xnijq

constants, {enij:j-l,...,p} are error vectors which are 1i.i.d.,

)} are known q-vectors of regression

and Q' = (Bl,...,Bq) are unknown parameters. If the subscript

"n" is suppressed, (1.2) may be written in the following equivalent

forms:

Yij = §ijé + eij i=1l,..0,n3 3 =1,...,D
(1.3) T, =X48tes i=1,...,n

I =XR*e
where

Y= ygaeeen¥y) ¥, s px 1D
Rpg = (ypoeeo%yp) Fpy s ax P
X, = (§n1""’§nn) X, is qx (np))
¥ = (Xi,...,X;) 4 is (ap)x 1)
gi = (eil""’eip) (gi is p x 1)

e = (sl,...,gn) (e is (up) x 1)

The approach used here for testing and estimation of £
involves ranking the observations {Yij}. For the multivariate case
there are two ways of doing this. One consists of ranking the jth

components of the vector observations separately for each J. This

is called the separate ranking procedure. The second is to rank all



the np Y,.('s jointly. This is known as the joint ranking procedure.

ij
Both methods seem justifiable if the marginal distributions of eij
and eij' are the same for all j ¥ j' - in the latter case at least
under some additional assumptions on the joint distribution (see

section 3.4). Joint ranking makes little sense, however, if the

marginal distributions are not the same.

In the sequel, the testing and the estimation problem using
both the separate and joint ranking procedures will be considered. 1In
the testing problem,a set of statistics will be introduced, and from
these a statistic, M_, will be obtained, appropriate for testing

n
H : é = Q . The distribution of M_ under H_ and a sequence of
o o n o
contiguous alternatives will be obtained. For estimation, the centre
of gravity of a confidence region involving Mh is considered. Its
asymptotic normality will be proved and asymptotic efficiency discussed.
The estimation procedure uses the ideas of Koul (1967) and generalizes

them to the multivariate case with more general scores than Wilcoxon.

Let us now introduce the following notation.

F(y) = P(gijx) where y' = (wi,...,wp)
(1.5) Fj(w) = P(eijjw)
Fy) = [Fy(a)-F, (=) 11(220)

The vectors g; are assumed to be independent and identically
distributed for different i. The following assumptions are made

throughout this work concerning F and {xijk} -—



(i) F(g) is continuous oa Ep.
max xz.k
l<i<n
(ii) 1lim == -
o f x2 0 for all j, k.
(1.6) { gm1 3K
(iii) X X' dis a q x q positive definite matrix and
nvn
lim n_lX X' exists and is positive definite.
\ oo wnvn

(iv) Fj(w) is symmetzric about zero, i.e. Fj(w) = ] - Fj(—w)
Note: Assumption (1.6)-(iv) can be dispensed with while proving

normality and other asymptotic results.

We now define the rank scores. Let e be
ay,1°° %N, N

sequences of real numbers such that a1 :-aN,i+1 for

i=1,...,N-1, and ay 1 < &N For each N, define

@) vy = by G = ay, for SF<us

, k=1,...,n

Z|=

1.7

(11) () “by(-w) for -1 <wuc< 0

Condition (ii) is not necessary. The extension of the domain of wN
to (-1,1) is a convenient device used to simplify the representation
of certain integrals (eg. (1.10)). Further, suppose there exists a
function ¢ on [0,1), and extended to (-1,1) by y(-u) = =),

which satisfies



(1) y(u) is monotone nondecreasing on [0,1)
(41) ¢(0) =0

1l 2
(141) [ v @du <=
(1.8) < o

1
(iv) 1lim f [\bn(u)-w(u)]zdu =0
or~ o0
max [y (k/ (@)1
[ um =T -0
O I I VL SRR 12
k=1

vhere T = ot ) o, (/ (o))
o k=1
The following assumption is also made concerning both the

{xijk} and Y .
(1.9) }. and ) = limz exist and are positive definite,
< A e B
where
( °11 ®1q
y =1
N~
O’ql . qu
Gpyy = E E Y vy kK" =1,...,0
kk =1 4151 i3 :L *14K°13 'k
(1.10)'< 1
Ay, =] vl(udu for all 3
33 °
Aygr = f_°° f_“ VI2F, (@) -119[2F (V)-11dH 4 (2,7
L j . v (u,v) -P(e LIPY y<v) for all 3 ¢ 3'.



CHAPTER 11

PROPOSED TESTS AND ESTIMATES

In this section the general testing and estimation problem
will be outlined and a condition for unbiasedness of the proposed

estimate given.

2.1 Separate Ranking Procedure

Let

(2.1) R,, = rank of |Y in the ranking of

13 ij |

7,/

o= l1,...50.

Consider the following signed rank statistics

( % 7§ Ry
Tk = Tk(X) = n iél i1 xijkwn (n+1) sign Yij
* * X o) %
=7 @ =2 121 ) %y b (Fy (Y35 10) sten ¥y
- jgl
(2.2)
- - —;5 3 * <
M =M () = T'Z;l'r
a v ") N




9.

-1
vhere ' = £'(D) = (Tp,...5T > ln issivem in (1.10), and

1139) - 1 where I is the indicator function.

Under certain further assumptions, it will be shown that MS

sign Yij = 2I(Y

provides a test for Ho : Q - Eo where éo is some fixed g-vector.

Now define

(2.3) R (D = (B T-F Ik, ) < By

where P[MQ(X)Zkha] = g undexr Ho : g - 9, and Eq is g-dimensional

Euclidean space. Let us define the "estimate"

- 1
2.4 £ = MR, Q] IR 62 O
n

where X 1is the Lebesgue measure on Eq. én(X) is the centre of
gravity of the confidence region Rn(X).
Lemma 2.1:

If én exists, én(x+§;k) = Qn(g) +p where b 8 any
q X 1 vector of constants.
Proof:

Follows as in lemma 2.1 of Koul (1967).
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Definition 2.1:

The random vector g'= (e;,... ,ep) 18 diagonally symmeirie

if e and - have the same distribution.

")

It may be noted that diagonal symmetry implies that for each

3> ej and -ej have the same distribution.
The next result is proved under the condition of diagonal

symmetry of [ i.e.

F(w) satisfies P(%ifz) = P(%isz) for all
(2.5)
e E
¥ =%

and shows that this is sufficient to ensure unbiasedness of én.

Lemma 2.2:

If én(z) existes and if F(X) satisfies (2.5), them

8, ~ 8, is diagonally symmetrically distributed about J .

Let Pé denote that the probability is calculated when
o

é - éo' We must §how

Py BoDsR) = Fp BaDR2R e F
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In view of lemma 2.1, it suffices to prove this for éo = ,Q only,
i.e. show Pg(gn(g)zk) - Pg(én(x)i—k). From (2.2), Tk(z) = —Tk(-x)
since the Rij remain unchanged and sign Yij- - gign (-Yij)' It
now follows that Mn(X) = Mn(—x). Therefore
Rn(-z) - {QtMn(-X-}ét'lﬁ)ikm}
= { Q:Mn(g-%;g)ikm}
BN - . - A
{E’an ’Sné)f-kna}

- - Rn(X) .

2 1
mhs, B < SER@T o FP
- v

1
- _____f (-s)dr(g) where - -t
AR (D] R_(D S)AAg 4 £

--8.D

Thgs, Pg[%n(x)f-kl - Pg[gn(—pi-k] since X and —x have the same

distribution, and so

= B [, (D=} - P 8, (D>p]-
~

2.2 Joint Ranking Procedure

In this case we let
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in the joint ranking of |Y

(2.6) R,, = rank of [¥ a.BI

ij i3 I

o= 1l,...o0n3 B = ly.04,D

To avoid the possibility of ties and to ensure that the obgervatlons

are comparable, it is assumed that

Fj(w) - Fl(w) for all w e (~=,»)
(2.7)
P(eij = eij') =0 1if j % 3'
Consider the following signed rank statistics
/ n R
- - E 1]
T =L@ =n iil E %y sk¥np GpiD) 5180 Yiy
= J-l
* * & = %
T, =T, () ==n ) E x, .. ¥ (F (]T,,])) sign Y.
e { F X U L 13

- 3 E *
S, = 5, (D =2 ) ) xijkw(Fl(IYijl)) sign Y,

[ |
oA
=~
ok
oA

Mﬁ = Mh(g)
where x' = 5'(2) - (Tl,...,Tq) and Zn is given in (1.10). Now
let us define the "estimate" based om joint ranks just as in (2.3)
and (2.4) but with M defined by (2.8). Since the proofs of
lemmas 2.1 and 2.2 do not depend on the ranking procedure, the

results apply here also and we have unbiasedness of the estimate if

F(g) is diagonally symmetric.



Remark:

Without loss of generality, when testing for Ho : é = Eo’

it may be assumed that éo = 0. If it is not, consider the model

AR R YRR (o RN

E = Qo is equivalent to E— go = E* = 0.



CHAPTER III

LIMIT THEOREMS UNDER THE HYPOTHESIS Ho TR = 0.

The object of this chapter is to prove the asymptotic
normality of x' = (Tl,...,Tq) for both the separate and joint
ranking procedures. To do this, additional conditions will be

needed in some cases.

3.1 A Definition and a Lemma

Definition 3.1:

A random vector e = (el,...,ep) i8 quadvant symmetric
if, for every p-vector g = (al""’“p) where ay = +1 or -1, j =1,...,D

50 ep) have the same distribution.

In terms of probability, if A is any measurable set in

Ep, then for any vector (el,...,ep) € EP’

(3.1) P(A) = P{(el,...,ep):(alel,...,apep)aA}
If a density £(e,,...,e_) of F exists, the condition can be more
1 P

simply stated as f(el""’ep) = f(]ell,-o-,lepl)- In the literature,

quadrant symmetric has also been referred to as sign exchangeable.
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Lemma 3.1:

If a distribution on Ep 8

(a) quadrant symmetric, then the vector of ranks of

{Ieijl:i-l,...,n;j-l,...,p} i8 independent of the vector

{sign eij:i-l,...,n;j-l,...,p} s

(b) diagonally symmetric, then the vector of ranke of
{|eijl:i-l,...,n;j-l,...,p} is independent of sign e g
for any fixed o, B.

Proof:

(a) Firstly, the components of {sign eij:i-l,...,n;j-l,...,p}

are mutually independent. This follows since

n

P(sign eij-aij:i-l,...,n) = .H P(sign ei.-aij:3=l,...,p) by

i=1 J

independence. Then, because of quadrant symmetry, the probability

mass in each of the 2P quadrants is the same-

P(sign e,

-aij:jnl,...,p) = 2_p, and the above expression is z-np.

ij P

n -
Similarly, I @ P(sign eij-aij) = 2 np, and the above claimed

{=1 §=1

independence is immediate.

*
Now consider p = P(]eijlggij:1-1,...,n;j-l,...,p| sign ey = 94y

i=l,...,n3j=1,...,p). Let us take the case aij = ] for all 1, j.

Then



16.

*

P(Qggijfgij:i-l,...,n;j-l,...,p)
p = P(sign eij=l:i=l,...,n;j-l,...,p)

- 2npp(oieij5xij:i-1,...,n;j-l,...,p)

From the definition of quadrant symmetry, because there are Zpl
quadrants and the eij are independent in 1,

*

p = P([eijlggij:i-l,...,n;j=1,...,p). The same is true for any choice
of {aij} . Hence {leijl} is independent of {sign eij} . Hence

any measurable function of {!eij]} is independent of {sign eij}'

The ranks are such a function, hence the result follows.

(b) If we show {Ieij]:i=l,...n;j-l,...,p} is independent
of sign.eas, the result follows by the concluding remarks of (a).
To show the above, consider P = P{Ieijlfgij,sign eae-l:i-l,...,n;
j=l,...5p) = P{]eijlfgij,Ojgasigasz(i,j)*(d,s)} = P{leijljgij:
igo,j=ly.e0 5Pt - P{Qigasigas,]eujljgaj:j#B} . Because of diagonal
symmetry e. and -85 have the same distribution. Hence

vl

1
P{O<e .<x lj}aj.j-l,...,p}'='5 P{leajlfgaj.j-l,...,p}

8Fag*| %3
- P{Ieajljgaj:j-l,...,p} * P{sign eaB-l} . The same results hold if

sign eaB = -1. Thus the above two equalities imply the result.

3.2 Asymptotic Distribution of g' = (Sl""’sq) unde? H° : g = 0.

{Sk}, as defined in (2.2) (separate ranking case) is
more general than that defined in (2.8). Thus any result proved for

the {Sk} of (2.2) will hold for that of (2.8).
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Lemma 3.2:

Under conditions (1.6), (1.8), (1.9), g' = (Sl,...,Sq)

comverges in law to a joint normal distribution with mean Q and

covariance matrix Z .

Proof:

From (1.6)-(iv), it follows that E(Sk) = 0 since

IYijl and sign Yij are independent.

(i) Calculation of covariance matrix of S.
From (2.2),

n
cov 5y, Si) = a2 g gy BOLEY (2 D10IES (15040 1D

)
1,i7=1 3,37=1

- sign Y., sign Y. ,..}

ij i'j
The terms for which i # i' wvanish since Fj is symmetric about zero
and the Y's are independent. Now for i = i', the above expectation

is Ajj' where Ajj' is given by (1.10). Hence the above expression

becomes

-1 2
cov (S, ,S,:) =1 X, 1 XygrirAzar
k>"k j=1 §,§'=1 1jkT13'k"" 3]

Thus the required covariance matrix is zn given in (1.10).
N,
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(i1) Asymptotic normality of § .

To prove asymptotic normality, we need to prove the asymptotic
normality of an arbitrary linear combimation of {Sk} . This follows

from Wald and Wolfowitz (1944), page 371. Define

n
T jgl kil w7 jgl kgl * izl g Ogp) st Ty

= izl Lin

%*
where U,. = F_(jY,. and
e Cij J(l iJl)

L,

- . -3
in E W(Uij) sign Yij kgl %™ *ijk

j=1

n
Let 32 =var L_= Z var L.
n n ia
i=1
Assume that Ln does not tend to a degenerate distribtuionm,
2

i.e. lim Bn = Bi > 0. The degenerate case can be treated separately.
brga-]

By the Lindeberg-Feller theorem (Loeve (1955), page 280), Ln is
asymptotically normal with mean 0 and variance Bi if for every
e > 0,

-2 3 2
B x dP(Lin;;) +0 as n-=+>®

D jal |x|>eB
n
From the above remarks, we need only to show that

n
2
o_ = ) [ x°dP(L, <x) > 0 as n~+o, Let T, =y(U, JIsign¥,,.
R B P i 13 i3 13



19.

2 2 -
Then X dP(L, <x) = x"dp( T, . n <x) .
f|x|>e o= f|x|>e jgl 4 kgl L

Thus (writing T:.| for T 13 since the distribution of Tij does not

depend on i),

(3.2) o 2 [ o0 (E .

isl M, jo1 3 k=1

2
§ ¢ n %xijk) dP(Tliyl,...,Tpﬁyp)

where M, = {(yl’””yp)eEp:ljzl Iy kzl & ;sxijk]n}

It follows from (1.6) that 1lim max n % lxi kl = 0. Thus,
o 1<j<p

given an integer M, 3N 3 ¥n > N, max s § lxi'kl < e/ (pMD,)
l<j<p k=1 I

where D, = max |c |.
b Lkeq *

Hence if = > N, it follows that
¥ o
Mi c {(yl30~o,y ) Z ijl [k(;l n I ijkl]>€}
c {(yl,---,yp)z(e/pM) jillyjln}

c {(yl,...,yp): max ]yj|>M} =5 , say. Thus (3.2)

1<j<p
implies
<31 J o fra f ¥ g n telxl, dP(T <yqseeesT ST
=4k 'y 14 13" 1 P~ p
(3.3) 4 < PaD, E ] ...fydP(Tl_yl,...,Tp_yp

=1 ¥
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n
where D, = max 2. pax ut ) E xijk
1<k<q 1<i<p i=1 3=1
n>0

2 2
Now, [ ¥:@P(Ty<¥qs-++>T <y ) = E(T))
E, il PP 3

L 1
= w"‘[F;’(IyI)dF’;(IyI) - [ pPwau
[o] []

From Munroe (1959), theorem 27.1, p. 191, Ve > 0,

38 > 02 4if, for S < Ep, P(S) < &, then
f yzdp(T.Ey T <y ) < e/(pqu ) for =1 p. But, for M
S j 1 l’-.., p_yp 2 sesegPe Y

sufficiently large, P{ mex |T3|>M} <§, i.e. P(W) < . Now, the use
1<j<p
of the preceding remarks in (3.3) dimplies Bn <g if a >N, i.e.

lim 6 = 0. Hence we conclude B_1 § ¢S, converges in law to a
n n k
e k=l

standard normal, and since the covariance matrix, Zn of é' - (Sl,...,Sq)

converges to z > 8 converges in law to a q-variate normal (Q,Z)
n n

distribution.

The singular case remains. If Bi + 0, then Ln tends to

a degenerate distribution which can be thought of as a degenerate

normal distribution.

3.3 Limit Theorems jor Separate Ranking Case under H  : 8 = 9.

In this section T will be shown to converge in the mean to

s - This will lead us to the asymptotic distribution of Mn (defined

in (2.2)).
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Lerma 3.3:

Under asswmptions (1.6), (1.8), and (2.2),
* 2

lim E(Tk-Tk) =0 .

e

Proof:

For fixed J, {Yij:i-l,...,n} are independent and identically
distributed with distribution symmetric about zero. Hence {]Yij[:i-l,...,n}
is independent of {sign Yij:i=l,...,n} . Thus {Rij’IYijI:i-l""’n}
is independent of {sign Yij:i-l,...,n}. Since E(sign Yij) = (0 for

*
all i and 3, E(Tk) = E(Tk) = E(Sk) = 0, and hence

R
Ty = iy (F, i 2
E(T, -T ) o E{igl jgl %y 31V GF D wn(Fj(IYijl)) sign Y.}

Now use the inequality |E(AB)| 5;% E(A2+Bz) to obtain

pa El E{ig x5 Vg (—i> =¥, (F, N 4101 sien Yij}z

and after squaring,

et ] R o 5
BT Sen L i’iZ_l £ 1 Vg G ¥, (Fy (Y44100]
Ray
S A o B (F (IY j[))] sign ¥, sign Yi,j}

From the initial remarks of the proof, it follows that terms

in the above, for which i ¥ i, are zero. Thus
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E(T,~T), igl ng El <n+1> b (F (IYlj“”

*
Because Fj(lYijl) has a uniform distribution, it follows from

lemma 2.1 of Hajek (1961) that

*_ 2 -1 2 2
E(T,-T,)° < pn = ] EX- 2 max |y (DY
k 7k i=1 g=1 3% 1cmen

n
calz ]t (Eph

m=l

Use of the Minkowski Inequality (see Loeve (1955), p. 156) and (1.8)
n

gields ot ] [v (/a1 0% < 1 v/ ()
m=1 m=1
1 2 1 2 -, B
= f wn(u)du - f P (u)du as n > . Hence Ja > 03 an Z .
o o] m=1

[wn(m/(n*l))-ﬁglz < 1 for all n. In view of this, the above

expression becomes

-1 2 B 2

* 2 -1
E(T, =T, ) §_2/§ Pa n D * max |¢( )- ¢ |
Kok gy gy T g, U
n
Cr] W TR
m=1

n
Now (1.6)-(iii) dimplies ot ) z x>, tends to a finite
=1 jm1 13K
nonzero limit, and (1.8)-(v) dimplies the product of the last two

factors tends to zero. Hence the result is immediate.

Lemma 3.4:

Under assumptions (1.6), (1.8), and (2.2),
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1im E(T -8, )2
S = 0
e

*
Proceeding as in lemma 3.3, E(Tk) - E(Sk) = 0, and

- g * *
2 TE{ ) f %y 41V (Fy Yy D0 (Fy ([ ¥;40)] sign Yij}z

*
E(Tk—Sk)z
i=1 j=1

-1 2 2 %* * 2
pnt T et R b (3 ]

<
- =1 ju1 13K
-1 B 2 ot 2
= p(n y E x5, [y (@-vp(u)1du
iil j=1 ijk o

From (1.6)-(iii) and (1.8)-(iv), the second and third factors tend
to a nonzero finite constant and to zero, respectively, as = increases.

Hence result is proved.

Lemma 3.5:

Under assumptions (1.6), (1.8), (1.9), (2.2), and (2.5),

'=
=G

1,...,Tq) converges in law to a normal (Q,Z) distribution.

Proof:

This immediately follows from lemmas 3.2, 3.3, and 3.4

and the fact that convergence in quadratic mean implies convergence in

law.
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Lemma 3.6:

Under assumptions (1.6), (1.8), (1.9), (2.2), and (2.5),
Mn(X) converges in law to a chi-square distribution with q-degrees

of freedom.

Proof:

Since M_(Y) is a continuous function of 7, and I
nv v v
-1
> . : = A
converges in law to a normal (Q,Z) distribution, Mn(z) T Zn T
will converge in law to the above chi-square distribution (see

Sverdrup (1952), corollary on page 5).

3.4 Limit Theorems for Joint Ranking Case under H 8= Q.

In this section results corresponding to those of lemmas
3.3, 3.4, 3.5, and 3.6 will be proved for the joint ranking procedure.
It turns out that these results are not valid unless certain further
conditions in addition to (1.6), (1.8), (2.2) and (2.5) are made.
Three sets of such conditions are listed and the above results are

proved in each case.

The lemmas following are similar to theorem 3.1 of Mehra (1969).
Here a signed rank rather than a rank statistic is considered, and the
conditions on the underlying distribution differ. Theorem 3.1 of

Hijek (1961) proves somewhat similar results for the univariate case.
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Additional Conditions

() Quadrant Symmetry - F is assumed to satisfy (3.2).
(i) Interchangeability — The following conditions are assumed.
3
X =0 for i=1,...,0n; J =1,...5P
jh 13k

(3.4) ﬁ

F(g) is the distribution function of an interchangeable

\ random vector g = (el,...,ep).

Recall that a random vector (el,...,ep) is interchangeable if

(el,...,e ) and (e_ ,...,e_ ) have the same distribution, where
) CH cp

(ol,...,op) is any permutation of (1,.+.5p)s i.e. 1if
F(eys.ss5e ) = F(e_ ,..0,8 ).
1 P oy GP
Although (3.4) makes an apparently unnatural assumption on

the {x }, model (1.1), in the exchangeable case, can be made to

ijk
satisfy this condition. This is dome by subtracting ?i. (where the
"dot" and "bar" signify that the mean has been taken over all values of

the missing subscript) from each observation Yij' This results in

an "adjusted" model,

(3.5) Yij - Yi- - kil (xijk-xi-k)sk + (eij_ei~)

The regression coefficients now satisfy (3.4), and the Joint
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distribution of (eij4zg.:j=l,...,p) is interchangeable and marginal
distributions are symmetric about zero if the same is true of
(eij:j-l,...,p). Also P(eij—ei'=eij'—ei-) = P(eij-eij')' Thus, in
the interchangeable case, if (l.6)-(iv) and (2.7) are true for
model (1.2), and (1.6)-(i), (ii), (iii), and (1.9) hold for

model (3.5), thea (1.6), (1.9), (2.7), and (3.4) hold for model

(3.5).

(i21) Certain sums of the {xijk} are zero -- In this case, the only

added conditions will be ones placed om the {xijk}' It is assumed that

4
E 3 = - =
jél %5 5% =0 for i=1,...,0; k=1,...,9
(3.6)
ol
\ '21 xijk =0 for j = 1l,...,p5 k=1,...,9
lﬂ

The first condition can be satisfied as in the exchangeability
case. The second one could be removed by subtracting Ylj from Yij
for each i and j . However, doing this makes all the adjusted
observations {Yij¥§.j} dependent, and treatment of this problem will

probably require more sophisticated techniques than are used here.

In some cases, however, it is possible to satisfy the second
condition of (3.6). Suppose, for example,that we are able to design
model (1.2) so that x-jk is independent of j, i.e. x-jk -X g
for j = 1,...,p. Then (1.2) can be written as

Yij - Yi- = kil (xijk_x-jk)ek + (eij—ei~)
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- n _
Then jgl (xijk_xi-k) - p(xi-k—xi-k) =0 and 1-2-1 (xijk-x-jk)

- n(x-jkfx~Fk) = 0. Hence (3.6) 1is satisfied.

Lemma 3.7:

Under conditions (1.6), (1.8, (2.7), (2.8), and one of (3.1),

(3.4), or» (3.6), 1lim E(T )
e

Proof:
() Suppose (3.1) is true. Then from lemma 3.1 it follows that
IY I:i-l,...,n} is independent of {sign Yij:ial,...,n;j-l,...,p}.

ij’
*
Thus from (2.8), E(Tk) = E(Tk) = E(SP) = O, and hence

* 2 i a j
(3.7 E(T,~Ty) %=1 5.3 % 41%1 14 115 Wnp G
. *
(F (]Yijl))][wnp mpel )Y Fl(IYi,j,|))]sign Yij sign Yi'j'}

From lemma 3.1 and (1.6)-(iv), the above expectation is zero unless
i=3i' and j = 3'. Thus
_1 n

_ T 2 (—=1.
(3.8) E(T T ) L _El 1JkE[wnP np+l) w

* 2
(F (Y. IM]
i=1 j= 1Y'74]3

*
Because Fl(lYij[) has a uniform distribution, It follows from
lemma A.9 and the fact that wnp(m/(n+l)) = wnp(m/np) for

m=1,...,np, (see (1.7)), that
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* 2 3/2 -1 2
E(T,-T,)° < (2p) E max |y (G- Vol
k Tk 121 Jml 1j l<m<np np+l

-1, 2.5

L [V Gt T ~¥p) }

As in the proof of lemma 3.3, the Minkowski inequality and (1.8)

imply Ja > 0 @2 ¥n > 1, an -1 Z [wn(m/‘(np+1))—7p-n]2 < 1, and so
n=1

n
* 2 2 -1 - 2
) 5_(2P)3/ o la7t ¥ X4 WaX lv,, ap

>b, |
K k i=1l j=1 3 l<m<np np+l

E(T

np _
IR e

n=1 op

The last two sentences of the proof of lemma 3.3 now apply and the

proof is complete.

(41) Suppose (3.4) holds. From (2.8)

-k e *
(3.9) E(T) == ,V; )~V Fl(IYij[)) sign ¥,.]

Ex Ely__ (==
i=l j=1 1ik™ " "ap np+l 3

Because the observations are independent in 'i' and interchangeable

Ts?

in 'j', the above expectation depends neither on 'i' mnor 'j .

Thus j§1 xijk
E(Tk) = E(Ti) = E(Sk) = 0. Now, from (2.8) it is seen that 3.7)

= 0 dimplies E(Tk) = 0. Similarly

is valid here also.

Due to interchangeability, the expectation on the R.H.S.

of (3.7) is independent of the pair (3,3") as well as (i,i") if
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i % i' . Denote this value by a . When i = i', it has a value, say
bn’ which is independent of i and the pair (j,3") if j ¥ 3', and
takes on a third value, ¢ if i=4i' and j = j'. Consequently,

(3.7) Dbecomes

E(T,-T.)% = o g E 2 +b 7
- = {c_ } X, . ' JU
k "k n i;l j=1 ijk ] 44§ '=1 1jkii'k
n
+ a xijkxi'j'k}

D oggiteml §,j'=1

* -1 2
and (3.4) implies E(T,-T )2 = (c_-b_)n ! 3 E x%. . From the
k "k a1 =1 §=1 ijk

well known inequality |E(AB)| <L gns?), |b| <c_, and so
-2 n' — 1

* 2 -1 ¢ 2 * 2
E(T, -T)" < 2n i§1 jgl xijkE[wnp (Rij / (np-*'l))—wnp (F, ( | Yy 1))1°.
Since the arguments following (3.8) employ only (1.6) and (1.8),

they apply here also and the result follows.

(i42) Suppose (3.6) holds. Then (3.9) can be obtained, and by
independence in 1 the expectation will only depend on j, say it is

n
a.. Then E(T,) =1 * E a, ) =%, =0 by (3.6). Similarly
k i=1 ijk

j. j=1 J

%
E(Tk) = E(Tk) = E(Sk) = 0.

From (2.8), (3.7) is valid here. The expectation on the
R.H.S. of (3.7) does not depend on the pair (1,i') if i # 1,
say it is anjj" and does not depend on i if i = 1', say it is

b It is now evident from (3.7) that

nji'’
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n n

x2 -1
E(T,-T,) = n = { X, . X, .1, D o+ Xy Xepa1..8 '}
Kk 121;1,3'-1 13%°13 "k nd3 i*iz,_lj,j._l 131" 3 "k%n33
In view of (3.6),
(3.10) . g tH2 =t ] %o X o ys (b y=8 aa 1)
at b1 g qfey THIKLTET R T gy

Now, from the inequality IE(AB)| 5;% E(A2+BZ), it follows
1 ( 2 2 b

|xijkxij'kbnjj'l =7 ®iPnii ™t and

that nj'j')

1l ,.2 2
]xiijij'kanjj'l <3 (xijkbnjj+xij'kbnj'j')' Substitution of these two
facts into (3.10) yields

* 2 -1 B 2 Rij * 2
E(T,-T,)" < pn 1§1 jgl xijkE[wnp(np_'_l)-wnp(Fl(IYijl))]

As in the previous two cases, the arguments following (3.8) give the

result.

Lemma 3.8:

Under conditions (1.8}, (1.8}, and (2.8),
x 2
1im E(Tk—Sk) = 0.
e

Proof:

*
Because neither 'I‘k nor Sk depend on the ranking procedure,

the proof follows almost verbatim that of lemma 3.4,
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Lemma 3.9:

Under conditions (1.6), (1.8), (2.7), (2.8), and one of

(3.1), (3.4), or (3.6),

(2) 3' = (Tl,...,Tq) comverges in law to a normal (Q,Z)

digtribution.

(42) M (Y) converges in law to a chi-square distribution with

q- degrees of freedom

Proof:

(i) TFollows from (3.2), (3.7), (3.8), and fact that convergence

in quadratic mean implies convergence in law.

(ii) TFollows by the same reasoning as in the proof of lemma 3.6.



CHAPTER 1V

LIMIT THEOREMS UNDER A SEQUENCE OF CONTIGUOUS

ALTERNATIVES, TESTING

In this chapter the limiting distributions of the

&' = (Tl,...,

under a sequence of contiguous alternatives. To do this some

Tq) defined both in (2.2) and (2.8) are found

additional conditions are necessary on the underlying distribtuilon.
From this, the limiting distributions of the two test statistics,

Mh(x) , defined in (2.2) and (2.8) are obtained. The arguments
resemble those of Mehra (1969). Also, Hijek (1962) and Adichie (1967a)

have vsed the same approach but for the univariate case.

The results following can be compared to those of theorems
6.4 and 7.4, from which the limiting distributions of T and Mh(x)
can be found under the same sequence of alternatives but with different

restrictions on the underlying distribution.

The idea of contiguity is discussed in some detail in

Hijek (1962). Let us comnsider the sequence of alternatives

(4.1) Q : 8" n'%é

where 2 € Eq is fixed.
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For the remainder of this chapter, assume

(

F(%) has a density, f(s), which is absolutely continuous

in each argument, f(J)(g) = af(qe;)/aej exists and is

(4.2) ﬁ ] .
finite for j = 1l,...,p and almost all ec€ Eq .
[f(j)(%)lz
| fE —__??57_—_ de < = (integrand is defined to be zero if
P £(e) = 0).
Now define
( 2
[ Cegsenesedll = (el-+----+e;);5
s(e) = Yi(e)
(4.3) § iy
35 T Vi T 7 Fagh
";E 1
L & =% Kk
n s(e -n_%x' z)
(4.4) w =2 ¥ { nd” g,
a 1ﬁl s(%i)
b3 .
(4.5) T = -0 f ] }oaree @iz
i=1 j=1

Lemma 4.1:

Under conditions (4.2) and (4.3)

s(eR)-s(®) , b ,
lim |f [-——HEHT———J de - !E {jgllﬂi%ﬂ s(j)(g)} de| =0
P

gl "k,
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Proof':

%!
Let bj = (bl,...,bj,O,...,O) and %3 = (0,...50,1,0,...,0)

where the "1" is the jth component. Now

[s(e-b)—s(e)] = { E [s(e-hy )—S(e &R 1)]}2
J-

b
b 2 (3 * 2
<P jg [s(e—b ) -s(e-b §R5- l) <p jgl [foj s 3 (%-kj_l-x%j)dx]

<P j§1 lb | f °3 (J)(e—b —xlj)] 24x . Thus it is evident

that

s(e-b)-s(g) ,
§R)-s(g P zlblf fj s ep* (o) dxde

A Ik SN Sl

P P

By changing the order of integration, it is seen that

s(g-p)-s(e) , .
(4.6) [ [————Jde=<rp E f [s(J)(g)lzd,% < w
E || &l j=1 E
P P
. (J)(e)
stnce [ [sPePag -3 gy 2£()de < = by (4.2).
E E
1 P

Also, it is evident that

(4.7)
Ep j=1 an j=1 Ep

Hence, from Schwartz inequality,
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s(e-p)-s(g) , BB
- d
pr I{———Wrgn———% {j:1 B s ()} | e
s(g-R)-s(g) Dy ), a2, ok
{ [——*]—n'—- (e)]17de}
= pr l]a jgl ,]?‘ s £ ~
s(e-b)-s(e) b
Cf % ~ &) 2, %
{JEP [__—__Tﬁgﬁ——- + jgl Wgﬁ's (e)] d%}

From lemma 4.1 of Mehra (1969), first factor on R.H.S. tends to
zero as ||p]| tends to zero. From (4.6) and (4.7) it follows
that the second factor is bounded uniformly fozx b e Ep' Thus the

result follows.

Lemma 4.2:

Under conditions (1.6), (1.8), (1.8), and (4.2),

n
1 -1
lim {E(W )+ &+ E E [ g § [ S .} Z Xy Xy yqr])
<o n’ 4 jal §'=1 kel k'=1 k7k j=1 i3kT1j'k

I gD 8 (/5 1ag} = 0

E
p

Proof':

n \
. 35 .
E(W ) =2 121 E{s(g;—n % ;5)/s(gy)-1}

v -k t 2
=2 ] | [s(e—n "X’ .Z)s(e)-s"(e)]de
i=1 Ep

g 2, 3, 2
=- L) e D28 (e D ()14
P
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by translation invariance of the integral.

n 2 2
izl fE [s(e-n §I'li,§‘>-5(g)] de
’ 23
s(e—n- ' z)-s(e)

5 1% N ]Zd%

oo ¥ ol
TR T B 1]

From (1.6)-(ii) and (iii), lim max “n%éi%“ = 0. Hence it
e l<i<n o

follows from lemma 4.1 that

P
- ' ( ) 2
By +f (L = Tpghe gV dgy| 0
p 3
s(j)(%) = %-f(j)(g)/ff(g) .

From (4.3) it is obvious that

Substituting into the above expression and squaring yields
T
£ (064" o)

|EW >+— Z g Z o (x g)(m.g)lf o)

gl >0

P

This implies the result.

Lomma 4.3:

Under conditions (1.6), (1.8), (1.9, and (4.2),

1lim E[Wn—E(Wn) "Tr';]
>

Proof:

From (4.3) and (4.5) it is seen that
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R T BN ¢))
T 2n igl jil ﬁijés (%i)/s(si). Then from (4.4),

P S Yo,
E[W_-E(W )-T'1" = 4 ) E{ -

i=1 s(g;) :

i
s(e,-n )
g Fai® ) § 2% g5s (g /s

'_E[
S(%i) 4=1 N

This follows because cross terms in i are zero, & fact which

follows from independence and the expectations being zero.

= (] (J)
n s(e.-n %§ .5)-s(e.) 8~ (e )
i ai’ i -, 17,2 2
=t 4 jEp { s(gy) i jgl ®H TGy ) 0%

s (%i'n_%%r'xﬁ) -s(ey)

- 3 a7l f S —=
e AT
n-%x'.g .
i ) 2
e e CRLLIN
A B Ay

Lemma 4.1 of Mehra (1969) implies that the integrals
tend to zero as n increases. Thus from (1.6)-(i1i) and (diii)

it is seen that the sum tends to zero as n increases, which completes

the proof.

Theovem 4.1:

Under conditions (1.6), (1.8), (1.9), and (4.2), T;

comverges in law to a normal distribution with mean zero and variance
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(4.8) c” = lim E E [ § n PN JURE
mr §o1 jiml kel k'=1  gmp WEAIE

I P @9 (/14
E
P

Proof:

Let B2 =var T', 32 = lim var T'. It is seen that
n n (o] n
2 _
E(T;) =0 for all n. If B = 0, then T; converges in law to
a degenerate distribution at zero, which can be thought of as a

normal distribution with both mean and variance zero.

It remains to consider the case Bi > 0. The Lindeberg-
Feller theorem will be used to show that 'I"/Bn converges in law to
the standard normal distribution. The theorem then follows after
calculating  var T;.
- B ()
| '
Let T . n L §ij€f (%i)/f(%i)' Consider the

j=1

expression

-2 ¢ 2
B ! x"dP(T} ;<x)
i=1 lx|>eBn

If it is shown, for all positive e , that this tends to zero as n
increases, the proof is complete. Since Bi > 0, this is equivalent
to showing that for all positive e , lim en = 0 where

e

s 2
6 = Yy x dP(T;iEF)-

i=l |x]|>e
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n

Now, @& = z f

2 % v L e(3)
x dP{- x'.z£ 7 (e, ) /£(e,)<x}
i=1 le>e jzl '\.iJ'g i i/ —

-1 2 2 v (3
= x“dp{ x'.z£9 (e,)/f(e,)<x}
iZl le|>en% jgl mijé ~3 V=

n
Note that wvar T' = Z var T'., and since E(T',) =0,
n 1=l ni ni

n '
cat] § fl Gigh Gig R £ (e3£3" (o) /£ (erae

i=] 4=1 7 "= ~id
i=1 j=1 3 p

This expression is the same as that given in (4.8) (except for

"1im" ). By arguments similar to those in (ii) of proof of lemma

nre
(3.2), it can be shown that 1lim en = 0.
honatd

Corollary 4.1:

W converges in law to a normal distribution whose mean

ig given in lemma 4.1, and variance by (4.6).

Proof:

Follows directly, in view of lemmas 4.2 and 4.3.

Lemma 4.4:

Under conditione (1.8) and (4.2), for all € > 0,

£(gy-% 3%

£Ge,) -1|>e] = 0.

lim max P[]
o> 1<i<n
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Proof:

Using Chebychev's inequality,

2
f('\e:i_n '}\.{ni'g)

max P[ e

1<i<n vi

1
£(g;-n “X14%) _

max E{]|
l<ixn f('%i)

1 1|}

-1] < e

£(g-ng! £)-E ()
5 o
o2 ||zl

-1 ] 1
= max X
€ e n “mniﬁ” IEP I

’ * ]
For simplicity, let n—%,xd;i,g = (bl,...,bp)', 'Ej = (bl,...,bj,O,...,O),

3 - (0,...,0,1,0,...,0) where the "1" is in the 4P position.

Consider ||br]| - |£(e-b-£Ce)]| < § 1672 - |eepD-£(ebs ]
VP %p %—jglj TRy TR

1 b

R ISl i BN P

=1 3 / £ (s—kj_l-x%j )dx. Hence
o

*
£(e-b )-£(e) -1 b . N
E | de < B3] 3 If(J)(e—b —x},)|dxde
e bl ‘”-jgl 3 IEPIO TRy 1R

b, :
= E b7 3 e P agex < 5 RN OIHORTER
=1 3 ) Ep j=1 Ep

Substitution of this into the first inequalities yields

£ (%i—n—%é;lié)

max P
l<i<n £ ('%i)

1) < et mex w7l § 1 159l
l<i<n 31 E,

it is evident from (1.6)-(ii) and (i) that, max a % “&uﬁ” +0
1<i<n



41.

as n increases and thus the result follows.

Now consider the function

n
(4.9) L= L log[£(g,-n K| 5)/£(g,)]

im

Theovem 4.2:

Under conditions (1.6), (1.8), (1.9), and (4.2),

(i) the sequence of distributions defined by {Qn} in (4.1) <s
contiguous to the distribution under H  : B =0

'\"
. . 1
(i) for all ¢ > 0, lim P(lwn-Ln- 7 var Wnliﬁ) 0.

Proof:

Because of lemmas 4.2 and 4.4, this follows just as in
lemma 4.1 of Hajek (1962). A similar comment is made preceding

lemma 4.1 of Mehra (1969).

Corollary 4.2:

(1) Under conditions (1.6), (1.8), and (2.2), for all ¢ >0

lin P(||s=zl]y 2¢) = O-
v 1

(i) Under conditions (1.6), (1.8), (2.7), (2.8) and one of (3.1),

(3.4), or (3.6), lim P(llg—allL Zg) = 0,
pes ] . 1
(it2) L converges in law to a normal distribution with mean

2 lim E(W) (given by lemma ¢.1), and variance given by (4.8).
>



(1) TFollows from lemmas 3.3, 3.4, theorem 4,2-(1) and the fact
that convergence in quadratic mean implies convergence in
probability.

(34) Similarly follows from lemmas 3.7, 3.8, and theorem 4.2-(i).

(iii) Follows from theorem 4.2-(ii) and corollary 4.1,

Theorem 4.3:

Under conditions (1.6), (1.8), (1.9), and (4.2),
s' = (Sl,...,Sq) comverges, under the sequence of alternatives,
{Qn}, given in (4.1), to a q-variate normal distribution with mean
vector p and covariance matriz ’%, where g' = (pl,...,pq),

and Pr ™ 1lim cov(Ln,Sk) where covariance ie ealculated under
nre

Ho H Q = Q.

Proof:

Firstly, by arguments almost identical to those of
lemma 3.2, it can be shown that, under Ho 1B = 9, (5',Ln)
converges in law to a (g+l)-variate normal with mean vector

(Q',—GZ/Z) and covariance matrix

-
(4.10) Is L 2
AS» R,""

where 02 is given in (4.6). Let R' = (bl,...,bq) and
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/[ n _;5 n
o Tl TR/ BT E(gy) > O
(4.11) z = {
n
0 if £ = 0
\ o (gy)
Then, using (1.3) and (4.1),
n n -
Q (D<) = [ no£(g)dg, = | T (g, -n KB

{g(}{)ﬂg} i=1 {g(g)ﬂa} i=]

n n
- -
= r I £(e.)de, + I f(e.-n “X'.r)de
I{@ )f_k} n =1 %1 %i !{S(%)f_k} 1=1 Nl ’En:u% vi
n{rf si)>0} n{‘n‘f(,%i)=0}

n
By the .contiguity result in theorem 4.2-(i), since p{ T f(gi)BO} = 0,
i=1

the last term in the above equation tends to zero as n increases.
From (4.10) and (4.11), r = exp(Ln). Hence if
Fn(qvl,w) = P‘é(%)i‘{’ Lniw), and F(x,w) denotes the distribution

described by (4.10) and preceding, then

Q_(s(D=p) ~ [ e"dF (y.w) - [ e"'aF (y,w)

{y<p! {y<p}

\"4

e
twpd ] o %em @

=]

1 2 -1 2
5 eXp {- 1 [x',w—c /ZJE%,L[;{',w—c /21" dydw

Make the transformation

-G - E-
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where a = [02/(62-R'2-1Q)]% and a' = -aog'z_l . Then

N

ot UG

After a routine but lengthy calculation

Qu(5<k) ~ {]Zh|*5c(2w)(q+l)/2}—1
1 o1 2. -1 2 2
: f{v<b} expl- 5 (v-R)']  (qRI-(207) 7 (zma,2"/270"/a ) ddydw
a—v
= (Zw)'Q/lel-% / expl- l’(v— )'z-l(v— ydv
oy v<b 2 WK £ R/ Y
v

This is the explicit form of the distribution mentioned in the statement

of the theorem. Hence the theorem has been proved.

Theorem 4.4:

(i) Under conditions (1.6), (1.8), (1.9), (4.2) and the sequence
of alternatives {Qn} given in (4.1), M_(¥) given by (2.2)
converges in law tc a chi-square distribution with q-degrees of freedom
. 1 -1 v
and noncentrality pavameter & =2g'% p «R' = (pl,...,pq) can be

v

caleculated from

: £ '1n ' = '
lim ) [n 121 xijk¥ij€] f_m fj(u)w[ZFj(u)-l]du

P
K e jul

(i1) Under (2.7), one of (3.1);, (3.4}, or (3.6), in addition to
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the above conditions, Mn(z) given by (2.8) converges in law to

the above distribution.

Proof:

(i) The fact that the limiting distribution is the above mentioned
chi-square follows from lemmas 3.3, 3.4, corollary (4.2)-(i), and the

corollary on page 5 of Sverdrup (1952).

To evaluate p,, note that from lemmas 4.3 and theorem 4.2-(ii),

for all e > 0, lim P[IT;—E(Wn)—Ln— %-var Wnlzp) = 0, In view of.
>

corollary 4.1, E(Wn) - - -i— 0’2 and wvar Wn - 02, where 0‘2 is given
in (4.8). Thus Llim P(|T'-L - 3 o°|2€) = 0, and from (4.10) and
nrxe

preceding, (é"TA) converges in law to a normal-distribution with
mean vector (Q',0) and covariance matrix is [ + But if
'U,\"
1lim cov (Sk,TI'I) exists, then by theorem 2la, page 114 of Cramer (1962),
o .
= lim cov (Sk’Tr'x)' Now, from (2.2) and (4.5), and fact that
nre

o A -
E(Sk) E(Tn) 0 under Ho’

Px

gg!.,gxi..k f 0
p ATl E, s

S

*
cov (S, ,T') = n TGN ARDY!
k n i-l j-l j'= J ij

- sign Yij' . f(Xi)dXi

If j # j', the integral in the above expression is

%* *
e v Ay by sien vy a9 = S £ awv(E], (Jv]))sign v dudv

Ep 5



46.

where fo(u,v) is the joint density of Yij and Yij' . Thus

-]

= w(F;,(Ivl)) sign vdv [ fél)(u,v)du, and using (4.2),

-0

! fil)(u,v)du - fo(u,v)l = 0. For j = j' the integral is similarly

-0 —c0

evaluated and the result follows.

(#2) The same arguments as in (i) are used except that lemmas 3.7

and 3.8 are referred to instead of lemmas 3.3 and 3.4.

Corollary 4.4:

. . -1 s -1, -1- :,
(4.12) A= iif §r R EDL @R XD, where
f L ] - -

én = (znl""’§nn)

(4.13) é §ni = (¥ilKl’°°"§ipr) for i=1,...,n

«. = {f f:'i(z.\)w[?_*sj(u)-:uduf2 For 4 = 1ye..sp

\ —c0

Effieiency and L.S. estimation

The efficiency of the test based on Mﬁ(g) will be compared
to that of the test based on the minimum variance least squares estimates
(see Scheffe (1959), page 21). Before a comparison can be made, the
least squares test statistic must be shown to converge in law to a
chi-square distribution with q-degrees of freedom. To this end, the

proof of asymptotic normality of the L.S. estimates will be established.
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Consider model (1.3), Y = &;g +e . Let the np x ap

covariance matrix of X be % . In our case g - [é C)] where é
a n () é

is the p x p covariance matrix associated with the distribution F.

~

%*
The minimum variance unbiased L.S. estimate 5 of E (see Scheffe

(1959), page 21) is given by

B - &3 3y y Iz 37y

B
ovn n® oo v

(4.14)
~k . -1, -1 . Py b -1
\ﬁ - E (gngn%§n ngn % ( Z vnin lgni) igl §nié Si
Let . . .
=t & (an')J,J'=1,---,p
- E ?
Then X B "e = [ X, 48..1€, 05005 2 X,., 8,,1€,31]
Anvn U i=1 §,§7=1 ij1 733" ij i=1 3,3"=1 ijq 33" 4]
Suppose
*
( = - i
(1) The constaats %, 4k ; £y iJ'k 45" satisfy (1.6)-(ii).
-1 .
(4.15){ (ii) éngn satisfies (1.6)-(1ii)
*
(11i) J_ and Z = lim Z satisfy (1.9) where
Aa e B
\ * -1 -
= '
I = 2 %k
Theorem 4.5:

Under asswmptions (1.6)-(%), (zv), and (4.15),
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(s) 7% ple comverges in law to a mormal (Q,)") distwibution,
v

(i2) n%(é:-g) converges in law to a normal (Q,z*_l) distribution,
: v

(i3i) Under the sequence of alternmatives Q, : B = n-kg, given in
(¢4.1), the quadratie form M;(X) - nX'Q;lzézz-lﬁng;lg
converges in law to a chi-square distribution with q-degrees of

freedom and noncentrality parameter % = 1im 5'2*5
e v
. n
= ln ] 2%k %Eéii y
oo im]

Pronf:

(i) follows in a manner similar to that of lemma 3.2. (¢7) and

(iii) follow by applying the corollary on page 5 of Sverdrup (1952).

Now consider a measure of efficiency due to Pitman and
generalized to the multiparameter case in definition 4.1 of Bickel (1965).
Equation (5) of Hannan (1956) can be applied if both Mh(x) .and
M:(X) converge in law to chi-square ditributions with the same number
of degrees of freedom (which is true under the conditions of theorems

4.4 and 4.5). Thus the A.R.E., es of the above nonparametric test
with respect to the L.S. test is
-1 [ - '
* A ¥y i

A
el-—A—-lim T 1. eyav-1, -Ls o,
me g R AN @ R ADE

Some properties of this expression are discussed in section 4 of Bickel(1965).
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Another measure of efficiency often used, which enjoys the
property of being independeant of the sequence of alternatives, is the
inverse ratio of the sample sizes needed to obtain the same generalized
variances of the estimates on which the tests are based. This will be

discussed in Chapter VIII.



CHAPTER V

CONVERGENCE THEOREMS FOR CERTAIN STOCHASTIC

PROCESSES

This chapter consists of a number of results concerning weak
convergence and convergence in probability. These results will be
used in Chapter VI for proving large sample existence and asymptotic
normality of the proposed estimates. This chapter is a generalization

of the appendix of Koul (1967).

The following assumptions are made on the underlying
distribution and the regression scores in addition to those of (1.6)

and (2.7).

/ (1) fi(x), and fl(x) = Fi(x) exist, are bounded and
continuous for all x g (-=,®). fl(x) =0 on at
most a finite number of intervals.

(ii) F(s) is such that there exist ny > 0, n e (%,1]

so that for all a,b,c,d & (—=,=®),

(5.1) ¢
n
P(ggpijgp,quij,fﬁ) :_nl[P(gigijip)-P(qggijjﬁ)]

» b_ >0,

(iii) For some a_> °

o}

0
n
2 2 b
( max x5..)/C) x;..)<a/n® forall j,k
1eicn LK gy THIKT 7o ’

(iv) For some a; > 0, bl > 0, either lxijkxij'kl =0

b
/ol

or [x; iyl 2 8y
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Condition (ii) is satisfied by a number of multivariate
distributions. TFor example, it may be shown that if (e, ij° ij') is
normal with correlation coefficient p , then (ii) is satisfied with
n, = (1_92)%’ n=11 If (eij’eij') is symmetric Cauchy (see Feller
(1966), page 69) then (ii) is satisfied with n, = /21 , n = 3/4.

Condition (iii) is a slightly stronger version of (1.6) - (ii).

For later reference, let us define, where E € Eq,

/ * -1
an(gyx) = (nP) iZl Jg I(lYij ijt|<x)
U (k%) = (np)-l iZl j§1 ij X jt<X) sign (Y j-z'g;_j,g)
(5.2)
Bpp (55%) = w[nPH np(,s »¥)]
k an(g,x) [np+l np(t »%) ]

Also define (where the expectation, E, is taken for HO:Q = Q)

( F*(,E,x) EF:p(,g,x)

~~
rt
-
»
o’
L]

(s.3)< B_(£.x) = EB_(£.%)

2 lu_ (£, 0 (550

t
~
ot
"
<
[ ]

| 2 IxD) 23/ 2/ (aprD) 1 [y (£,30-F (5501
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For any t' = (tl,...,tq) € Eq, a e (0,), let

( q
| &ll = |t |
< kzl k
(5.4) ﬁ v (a) = {teE_:|| £|| <an™%}
n q n, -_—
\ v(a) = {teEq:“ %I]fg}

Let us observe that

- -1 3 , .
unk(g,x) = (np) 121 jgl xijk[Fl(x+§ijg) sign x

- 2F(} )1 (x20)]

n
(5.5) ¢ F(e,x) = ((@p) 121 jil [F) Gty 4£)-Fy (25358 ]

if x>0
\ 0 if x<0.
Next define the stochastic process
A 3 -
(5.6) W (e =t ) § ey [ T(¥yy~m %gijggx)

1=1 j=1
- Fl(x+n_%§£j§)]

where {cijk} are constants.
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Theorem 5.1:

Let {xijk} and F eatisfy (1.6), (2.7), and (5.1)-(%), (ii).
Let {cijk} satisfy (5.1)-(iii) and (iv), and
-1 2 2 .
0<limn =~ ) ik < = Then for each fized k, L, where
e i=1 j=1

k=1,...5q, t € Eq’ {Wnk(,?,:x),"‘”ixi‘”} 2 {W(x) ,~=<x<=} where W 15 a

Gaussian process with continuous sample paths almost surely on [-»,=].

Algo, for fixed k, t,

(5.7) lim 1im P[ su |wnk(5,x>-wnk(£,y)|ie] =0
hro n+e |x-y|<h

Proof:

Wnk(g,x) is a stochastic process on [—=,»]. Also
Wnk(s,dm) = Wnk(£,+w) = 0 for all n, with probability one. Hence

Wnk(g,x) ¢ D[—0,»] where D[—=,»] is defined on page 109 of Billingsley

(1968) .

Define

Q () = W (5.F @), x e [0,1]

(5.8)

F_l(x) = inf {s:Fl(s)Bx}
1

Since fl(x) - Fi(x) is continuous, Fil(x) is continuous a.e., and

hence an(x) e DI[0,1].
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The theorem will be proved in the following steps:

(@) 1oy (0:xel0,11} 2 {QG):xe[0,1]} for Q) = W(FT ()
To prove this we must prove (%) tightness of {an(x)}

and (i) convergence of finite dimensional distributions
(see page 35 and theorem 6.1 of Billingsley (1968)).
(b) Q(x) has continuous sample functions a.s.

(e) W(x) has continuous sample functions a.s.

(a)-(1) Tightness. Note that from (5.6) and (5.8),

";in " -1
(5.9 Qu == 1 jgl LA YR SO

-1 '
- F,(F] (x)+n'%§ijg>]
Consider, for 0 < x; <X <X, < 1, the quantity
E* = E{[Q, 0)-Q_, (x)12[Q_, (x,)-0_, 1%}
Qi (¥)=Qqp () 110 (3900 y
It will be shown that theorem 15.4 of Billingsley (1968) is satisfied
after obtaining suitable bounds on E*.

Define

( - -
agy = T Gy o ) 5T O] = [pgy G-y (ep))

(5.10) { 8y, = TIF () <1, -0y £<F) ()] = [Py (xp)=pyy ()]

where p;,(x) = le(Fl(x)+n_%§ij£) i
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Hence, Q , (x) - Q, (x;) = n E E 13%%13
i=]l j=1
% ]
and (x,)-Q, &) =n=n ¢y5x5 -
*
Thus expanding E ,
CRTIE )
. = [o3 Cc s c c
1=l 3=l 1y3yk 10k tgdgk T d k
(6=1,2,3’4)
- E(a e, . B B ) .
i3y 13 13354,

Because the {uij} and {Bij} are independent for different i, and

E(ai

j) = E(Bij) =0 for all i, j, n, it follows that

(5.12) E(a ) = 0 unless one of

.6, . B, . B
1137 1535 4333 343,
the following holds:

i) i, =4, = i3 = :i.4

1 2
(ii) il = iz # i3 - i4
(1ii) il = i3 ¥ i2 = 14
(iv) il = i4 # 12 = 13 .

To find upper bounds for the remaining terms in (5.11), observe that

2 g2 3E(a %

) < {E(a N 8
= T3,7135 13,8,

(5.13) EG, . o, . B. . B .
1,37 1535 1535 340,



Set

(5.14)
byy ™ Pij (x,) - Pyj (x)

and square the expressions in (5.10). Then

2 _ el 5 - 2
aij I[ZFl (xl)_g_Yj -n X, j,‘\:,iF— (x)][l Zai:l + aij
(5.15)
52 = I[F (x)<Y Fol(x JI1[1-2b,.] + b2
i3 1385F1 (% ij i3 °
Because 0 < 84> 0 < bij’ 3 + bij <1, it follows from (5.10)
' ) 2
and (5.14) thatzif i1, E(aij i j') E{aij)E(Bi,j,)
2 2 2
= (aij_aij)(bij—bij) < aijbij' Similarly, E(aijsij) aijbij (bij

- * . . [} - 0
+ aij 3aijbij) < Za..bi.. Finally, if j # j', using (5.1)-(ii),

2 .2
E(aijBlj.) (alJle D)7 . Thus
: . o1
E(a lJBl.J W) < Zainl 5 if i41i
(5.16)
E(uz 82 ) <n.(a,.b..,)" where n, = max (n,,2) .
iji3"’ = 7277434y 2 1°

Substitution of (5.16) into (5.13), and the result, along with (5.12),

into (5.11) yields

56.
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x -2 = n/2
E <n*{ |e In (a )
izl jezl jlk i3, k¢ ij3k i, k"2 131 13, 133 13,
oY | :
+ c C,. 1.€,92 1.Cq4 2(a,, b,, 8,4, byys )°}
=1 3,71 TR ST e 5 TV E R A SN S PRE S PYE AR EYES )

Set Yiy = pij(xz) - pij(xl)° Then, 245 S Yyy and bij-f-Yij If it
is noted that for all real numbers a,b,c,d, it is true that

labed| < (a +b4+c4+d )/4, then

E* <n E E In—lc c |-in_lc c Iy n
-2 io1 je=l ijlk 1j2k ij3k ijak ij
n n
-1 2
+2[} ) [n e, c [v..1° -
=1 j,3'=1 ijk i 'k’ "1ij

n
From assumption (5.1)-(iii), if L = max n-l z c ’
a, =1 13k
b,/b -bgo/b
o/”1 o/P1 .
cij kcij4k -Laoa1 . From (5.1)-(iv),
bo/bl b /bl

3
-1 —l -1
either [n clJlk 1j kl or ln 1j kS 1j kl __]n cljlkcijzkl -La al

_l "bo —bl)

ln l E_Laon = (aln

-b./b
R _ - o/ "1
Thus if M = nzlLaoa1 s

n

%

E <M )
i=1 j,j'=1

E |n—lc . Il+-b /b1 on
13k%13'k Yij

g -1 2
+ 21 z E [n T, oy ly..]
i=l §,j'=1 ijkij'k’' "ij

n
-1

Next set n_ = min (1+b _/b.,2n), and = max z lessrCosr I'
° o’®1 e Ml Y 13k%44 "k

Then using the well known inequality, Zai+e j_(Zai)l+€ if a, >0 and
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e > 0, and the fact that there exists N such that if =n > N,

-1
max |n cijkcij'kl < 1 (a consequence of (1.6)-(ii) and (iii)),

1,3,3"
d 5'M[i§1 j,jg-lln—lciik°ij'k'Yij]l+n°
v o 121 j,jg.ll“_l°ijk°ij'k'Yij]1+n° '
Let G (x) = E E n_lcijkcij,kIFl(le(x)+n—%¥ij£), and

i=1 3,3'=1
1-ng ¢
M2 = max (M,Ml ). Since Yij = pij(xz) - pij(xl)’ it follows from

* 140
(5.10) that E 5-M2[Gn(x2)'cn(x1)] .

Now, following the argument on pages 129-130 in Billingsley

(1968), it is seen that
1} =4 "
(5.17) P(w"(Q_»8)28) < Ke (1)

where w" is defined in (14.44) of Billingsley (1968), and Z; and

"

3 1+n
) are both sums of the form Yy [6 (z)-6 (z__,)] © where
n =1 B W D m-1

0<z <...<z_<1 and max |z -z | <28 . Now
- o — = r— m m-1l' —
l<m<r

T 1+n
(5.18) | 1 e (26 (2, 1] | °
. m=]1

n
< suwp |G_(z)-G (z; )] °[6 (-6 (0]
l<m<r
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a
-1
Set G(x) = lim } E ln e . |x. Then
o i1 §,3°=1 ijk7ij'k

|l6_(0)-60x) ]

|A

) - -1 ' -1

n -1 n -1
+ x ]2 E |n cijkcij'k] - lim 2 E n cijkcij'kll

j=1 j,j'=1 oo iml §,j'=1
) a7 I
< 2§_ sup F'(x) E N €, 4.Cesrp ) T E
n 1o 3,57=1 13k°13'k

where § = max n_;s’é:;. j t and € is arbitrary, provided =n > N_ . Clearly
i,j
the R.H.S. tends to zero uniformly in x as an > =. Thus, from (5.18)

n
sup |G _(2)-6 (2, _p)| °-16,(1-€ (O]
l<m<r

n
> sup [6(z)-G(z_p)| “[6W-6(0)]
1<m<r

< 28[G(1)-G(0)] sup G'(x) = constant-$§ .
x

Thus, given € > 0, € ¢, it follows from (5.17) that
P(w"(an,G)ls) e provided n is sufficiently large and § 1is

sufficiently small. Hence by theorem 15.4 of Billingsley (1968),

{an(x) ,xe[0,11} is tight.

(a)-(ii) Asymptotic normality of finite dimensional distributions of

an(X) .

Consider {xS:s-l,...,r;xss[O,ll ,xs<xs+1} . Let
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x' = (yl,...,yr) be a given r-vector, and gé = (an(xl),...,an(xr)).
It is sufficient to show that I'Qn converges in law to.a normal
distribution. This is accomplished by the Lindeberg-Feller theorem
(see Loeve (1955), page 280). The argument is the same as that used

to prove lemma 3.2.
(b) Continuity of sample paths of Q(x).

Using (5.9), define

/ An(x,S) = an(x+5) - an(x)

n
- a7t ) E ¢ 5813 where

(5.19) g N iy

%14 £, jinl(x-i-é )+n";5§ )

ijv

\ - FI(F11(x+5)+n‘;‘§£j,€) + Fl(F—ll(x)-l-n—;%i j,g) .

Now, since E(§,,) =0 for all i and J,
ij

var £y = E(E?Lj) - Fl[rzl(m-a)m';i 148 - Fl[le(x)m";ﬁgij,E]
5 2

=

N

X
"
- {Fl[Fil(ma)m‘%;ég_j&]—rl[F;l(x)m ij,15]}2 + 6§ - 6 uniformly in

i and j as n increases, since Fi is bounded and max n_%x' t > 0.
1,3 A

Similarly

Lin cov (£4,.6540) = 118} () <usF] L Ger) HLIF, () <ve
besad E2

Byt k) 1A[H, , (u, ) =F) (@) Fy ()]
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where Hjj,(u,v) is defined in (1.10). Thus

o

-1
(5.20) lim var A (x,8) = lip n €, .1 Cpera EC(E, Easy)
neo jgl j' i1 e igl 13k13 13743

It is evident from (5.1)-(ii) and the above limiting

expression for cov (Eij’sij') that

Lin |5Gey48,00] < g {PLE] G <Y, < Ger0) P IR )<Y, <Fy Gerd) )4

52 + 52

n

This together with (5.20) implies

lim var 4_(x,8) > lim { E E 2 (6-62)— § 2t § le |
e -] jo1 ijk 141 7m1 i=1 ijk j__-]'k
. (nlés2 +52)
el
> E lim (o ) cz.k)[6-62—p(n162n+62)] .
j=1 ore i=]

Since n > 1/2, there exists & such that 1 =(ptl)8  + Pﬂlsin—la

and so for &8 < 50 , lim var An(x,S) > 0. Also, it is evident that
nve

lim 671 lim var A_(x,8) = } 1 § nlzjk.

é-+o o 3o j=1 npre iwl

Thus, for 6 < 60, var An(x,s) = 616 < 0, and 1lim Ts > 0 . By the
§+o
arguments of (a)-(i1) of this proof,
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lim [var An(x,s)]_%An(x,S) - (616)-%A(x,6) has a standard normal
e

distribution. To show continuity of sample paths, it will be shown

that Q(x) satisfies the condition of problem 3, p. 136 in Billingsley

(1968), which is

(5.21) lim  sup & TP(|Aax,6)|>e) = 0 for all € > 0.
§+0 O<x<l-s

For a given ¢ > 0, the above remarks impiy

2(|a0x,8)[>e) = P(6r ) F[8Gk,8) |5 (5r) )
-s/»’GT6 2
- 2/n | exp (-%t“)dt independently of

If 6. is chosen so that for all § < 61, § < ez/rs, then

1
exp (—%tz) < exp (t/2) for te (-w,—e/VGTG) and thus

vn  sup 8 IP(|aGx,8)|>e) < 2/37T lim &8 exp (-e/VoTy)
540

§+0 0<x<1-8

Hence (5.21) is satisfied and the sample paths of Q(x) are continuous.

(e) Continuity of sample paths of W(x).

Because of condition (5.1)-(1), [-~,»] can be partitioned

into a finite number of intervals (ai_l,ai), i=1,2,...,m such that
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for each given i, either fl(x) =0 or fl(x) >0 for x e (ai-l’ai)'

Assume (a,b), (b,c), and (ec,d) are three adjoining intervals

of the partition.

Case (i): £,(x) = 0 over (b,c).

Clearly Fl(b) = Fl(c) and F, is constant over [b,e] . Thus

according to (5.6), if Sn = ?a§ ¥1j5 , then Wnk(g,bl) - Wnk(g,cl)
L
for b-68 <b; <ec <c- S, - Taking limits as n -+ = (and hence
Sn + 0), and using the fact that fl(x) = Fi(x) is bounded, along with
the Chebychev inequality, it can be shown that W') = W(e') if

b <b'<e'<ec. Thus W(x) is continuous over (b,e) and right (left)

continuous at c(b).

Case (it): fl(x) > 0 over (b,c).

In this case FIl(x) is continuous over (b,c) and left
continuous at c. Thus the same result is true for W(x) with
probability ome,since for x e (b,ec], W(x) = Q(Fl(x)). To show right
continuity at b, note that Q(Fl(x)) = W(F;l(Fl(x)) for all x. Then,

since fl(x) >0 on (b,c),

lim W(x) = lim W(FII(Fl(x))) = lim Q(Fl(x))
x+b x+b x+b

- Q(F, (b)) = W(le(Fl(b))) = W(a') almost surely
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* *
where a = inf {u:Fl(u)-Fl(b)}. Thus it is seen that Fl(a ) = Fl(b)
*
and by case (1) , W(a ) = W(b) with probability one. Hence

1im W(x) = W(b).
x+b

The above two cases yield almost sure continuity of W(x).

Then (5.7) is a consequence of theorem (5.1) of Billingsley (1968).

Also, W(x) = wcrilcrl(x)) for all x, since in case (i) it
was shown that if Fl(b) = Fl(c), then W(b) = W(ec). Thus

Q(Fl(x)) = W(x) and since Q(x) 1is Gaussian, W(x) is Gaussian also.

Lerma S5.1:

Under the conditions of theorem 6.1, for any fized t, € Eq

ard ae (0,»),

lim 1lim su . sup lJn(£,x)-Jn(£,y)—Jn(go,x)+Jn(£°,y)| =0
svo m |x-y|<s |ig-g llka

n

where J_(£,%) = < 121 jzl ciijl(m_%é'ij%)'

Proof:

This is very similar to the proof of lemma Al in Koul (1967)
and hence the details have been omitted.
Lemma 5.2:

Inder the conditions of theorem 5.1, for each fized t € Eq,
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and for all ¢ > 0,

lim P[ sup ]wnk(g,x)—wnk(,g,x) |>e]l = 0
e —ecxse

Proof':

Theorem 8.2, page 55 in Billingsley (1968) is applied. Then

the result will follow if it is shown that for all ¢ > 0

(1) Il;: P LW, (6,30, (9,%) |>e] =0

(ii) lim P_[ su Mnk(g,x)—wnk(g,x)-wnk(,g,y)-*-Wnk(Q,y) |>e] = 0
biaaed |x-y|<8

(i) and (ii) imply that the stochastic processes
{Ith(t x)—Wnk(g,x)], —w<x<w} are relatively compact with degenerate

process, zero, as its limit. (1i) is an immediate consequence of

(5.7). Hence it remains to prove (i).

From (5.6),

- 2 E
W E,x) - Wnk(g,x) = Z ciijij(g,x)

(
nk iml j=1

(&,x) = IT(Y <x+n_%x' t) - I(Yijfg) - Fl(x+n_%§ij§) + Fl(x)

where Uij 145 %iy%

The Ui (E,x) are independent for different i and all have mean 0.

3
Thus
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var [Wnk( £5%) W1 (Q,%) ]

n

-1
= n C.,,C.. cov |[U t,x),U t,x
igl j’j'-l ljk iJ'k [ ij(’\" )’ ij'(,\" )]
n
-1 2
<n’p ) ¢, ., var U, (t,x)
jm1 gm1 3 i3

-1 ¢t 2 -1 ¢ 2
=apl ey ver U (82 + 0P ) ciyx VAT Uy 4 (8o

+ -
where ) (] ) 1is the sum over the terms where x;.t> 0 (%;;£<0).

\J
If ?\fij'e > 0, then

var Uij (£,x) = Fl(x-*'n—;ﬁisij,t\:') - Fl(x) - [Fl(m-!asij'ﬁ)-Fl(x)lz

< n—;%]!_j,g s:p £,x) ~0

uniformly in i, j and x as =n increases. This is a consequence
of (1.6)-(ii) and (diii). The same result holds if ’5:':..1'5 < 0.
Therefore it follows that var [Wnk(,e,x)—wnk(g,x)] ~ 0, and by the

Chebychev inequality, (i) is obtained.

Lemma 5.3:

Under the conditions of theorem 5.1, for each € >0, there

exigts n > 0 such that for awy fixed t € Eq,

1im lim P [ su sup [W_, (£,x)-W_, (£,¥9)-W_, (t_,%)
§+o0 > Ix—y <8 “'E_’Eolkn nk v nk v nk ‘vo

# G 2e) = 0
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Proof:

This follows closely the proof of lemma A3 in Koul (1967).

At one point the following result is needed.

%* %
lim lim P[ sup [W_ (£.,%)-W_, (£,y)[2¢] = 0 for-all e >0
§+vo =  |x-y|<8

where W (g,x) - n 2 § I(Y <xin kﬁljg-n n | Xis I
i=1l j=1 J

_;5 t -;5
- Fl(x+n éij&—n nl'*ij")
This can be proved in exactly the same way as (5.7) since

{n %ﬁigm_n n[|§13|[:i-l,...,n; j=1,...,p} satisfy the same conditions

as {n % ! t i=1,...,n; 3=1,...,p}.

Lemma 5.4:
Under the conditions of theorem 5.1, for all € > 0 and

a e (0,=)

.1im lim P [ sup sup |[W_, (£,x)-W . (£,y)-W (0,x)
80 o n |x—y|§§ %aV(a) ak ™ nk v nk

+ W, Q. 2] = 0

where V(a) i8 defined in (5.4).
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Proof:

Similar to lemma A4 in Roul (1967).

Lemma §.5:

Under the conditions of theorem 5.1, for all € > 0, there

exists n > 0 such that for fixed x and t

lim P [  sup lwnkcg,x)—wnk(go,x)lzgl =0
we || g ll<n

Proof:
Similar to lemma A5 in Koul (1967).

Lemma 5.6:

Under the conditions of theorem 5.1, for all >0 and

x € [-=,=],

1im P [ sup |W_,(£,x)-W_, (9,x)|>e] = O .
— ,t‘:‘eV(a) nk v ak v

Proof:

Similar to lemma A5 in Koul (1967) .

Theorem S5.2:

Under the conditions of theorem 5.1, for all ¢ > 0,
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lim P [ sup sup ILnk(,E,x)-Lnk(,Q,x) |>e] = 0
oo —o<x<e teV (8)
- “ 0
Consequently, lim L( sup sup Lnk(g,x)) = L' where L' i8 a
e —ecx<o eV (a)

law determined by a Gaussian process with continuous sample paths
almost surely, and Lk and Vn(a) are defined in (5.3) and (5.4)

respectively.

Proof:

In Wnk(g,x), defined by (5.6), let cijk = xijk , and use

(5.2), (5.3), and (5.5) to see that with probability one,
Wnk(g,x) - 2Wnk(£,0) if- x>0
- W (t,x) if x <0
The result then follows as in theorem A4 of Koul (1967).

Theorem S5.3:

Under the conditions (1.6), (2.7), and (5.1)-(2) and (22),

for all e > 0,

lim P_[ sup sup |Zn(5,|x])—2n(g,lx|)I3§] =0
biag —o<x < SEVn(a)

where zn(£,x) is defined by (5.3). Consequently
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1im Z( sup Zn(,g,x)) -Ll
e —e<x<e

lim L( sup Z_(%,%) sxe [-=,2]) = L(Z(x) :xe[-=,=])
nre ,EsVn(a)

wvhere Z 1is essentially a Gaussian process with continuous sample

paths, and L, ig determined by 2 .

Proof:

Set cijk=l for all i,j,k, and =n. Then from (5.6),

(5.3), (5.2), and (5.5),

(Z (¢ |x|) = n;‘(’p/(np'*'l) z E {I(IY n;%fﬁi ,El<|x‘)
i=1 j=1

% .
- Fl(x+n ﬁi t)+F (-xtn ﬁijt)}

(s.zz)ﬁ
Wnk(%,x) - Wnk('E’_x) if x>0

Wnk(%,—x) - Wnk(!\;,’x) if x<0

\ = Wnk('e’lxl) - Wnk(,s,—lxl) .
Then, as in theorem A5 of Koul (1967), result follows.

Corollary 5.3:

For each € >0 and a > 0, there existe A > 0 such that
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lim P_[ sup sup |Z_(t,|x])]|>A] <€ .
n ' ==
o —o<X<® ,Eevn(a)

Proof:

Note that for all t and x, |2 _(t,]x])]<[z_(£.[x])
-Zn(,Q,le)l + Izn(,g,lx])l. From theorem 5.3,

Ve>0IB3 lim Pn[sup sup I?n(,E,le)If_B] < & . Thus
e x tev (a)

P [sup sup |[Z (t,|x|)|>2B] < P_[sup sup |z_(t,]x[)-2_(0,]x|)|>B]
nox &eVn(a) n Tox ,Eevn(a) o n

+ P_[sup tsv‘.;p( )Izn(9,|x|)liB]
x tev (a
If limits as n + « are taken, the first term on the R.H.S. 1is
zexo (see theorem 5.3) and the second term is bounded by & . So, choosing

A = 2B, the result is immediate.

Now define

_l .
an(rté’y) = inf {xiO:an(,E,x)g_y}

—bl Rt
an(,s,y) = inf {xio.an(£,x)3y}

(5.23) 4

-1 . .
Knp('E’y) = inf {xiO.KnP(,E,x)z_y}

__l =
\ Knp(,€3Y) = inf ‘{xiO-Knp(,Esx)Z_y}

where an and an are defined in (5.2) and (5.3) respectively,

and



72.

-1 B
 Fplirlah = @™ § El 1(]¥, gyt <lxD)
)
aptl np(t lxl)
(5.24) ¢
Kop(Es %) = BB (g, |=]) = (ap+1) "t 21 jg [Fy Clx[+43g5 48
\

Fl(—lxl+§ij£)] np+1 F (£s [=])

Lerma §5.7:

%
Under the conditions of theorem 5.3, for all e > 0,

*
there exists a set A c [0,1) such that A(A) > 1 -¢ and

-1 _ *
Lin 2 [sup  sup [E (.3 (g0 2 &1 = 0
o yel 5&Vﬁ(a) P

Proof:

Because fl(x) = 0 on at most a finite number of intervals

[a,,b,], i =1,...,m, le(x) = inf {u:F(u)=x} is continuous on

m
(0,1) - i:1 {ci} where c, = F(ai) = F(bi)'

¥e>0, le(x) is continuous and hence uniformly continuous

m
on the compact set As = [g,l-e] - WV (ci-e,ci-*-e). Now observe that
i=1

because Fl is strietly increasing immediately to the right of b i
. -1 -1
(left of ai) for i=1,...,mn, Fl (ci—e) <a < bi < Fl (ci-l-e).

Thus
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{xzfl(x)>0} = (—w,®) - U [ai,bi]

m
. [le(e) ,F;_l(l-e)] - izl(le(ci.s)’le(ci+e)) = B_, say.

Because Be is compact, 38§ > 0 3 fl(x) > 28 1if x ¢ Be' Then, from

the facts that fi(x) is bounded,

lim max  max  sup lﬁijsl =0,
e l<i<n  1<i<p ,gsvn(a)

and fl(x) is symmetric, 3IN > 03 V¥an > N,

inf inf inf £¢( 'E) > 8
x<|ulsy lcicn geV, (a) ik
g

where x, ¥y € Be and 0 <y - x < n where

n = min [F-l(c +€)-F-l(c.-8)]
. 171 1 i
l<i<m

Using (5.24), this implies that V$ € Vn(a),

(5.25) Knp(g,y) - Knp(E’x) > 8(y=x) 1if x, y e Be

and 0 <y-x<n

From the definition of Bs, it is clear that BZe c Bs and

that
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no-l -1 -1 -1,
BZe c -j_:]_ [Fl (ci_l+2t-:),Fl (ci—2€)] n [Fl (25),1‘1 (1-2¢)]
A | -1 -1 -1
B_ Ci:l [F, (c;-€)»Fy (e;+e)]1 v [~=,F, (e)] v [F,"(e) »]
Thus B, ~and B; are subsets of disjoint compact subsets im the

extended real line. Hence for some 6 ,
in€ {|x-y|:x¢B_,yeB, } = 6 >0

From (5.22) and (5.28), K (5% - K (5% - a%2_(,%)-

Hence corollary 5.3 implies that Vt—:l > 0, 3N° 3 Vn > No

(5.26) P_[sup sup IKnp(,{:’,x)—Knp(g,x)lmo] >1-¢g
x ,Eevn(a)

where 0, = nin (n,9)

Since fnp('t\::’x) is continuous, the following two statements are valid

with probability at least 1 - €, if n> N, -

(1) Iy = yx) € B_ 3 Knp(,g,:c) = Knp(,g,y) Vx € B, » VL € v ().
Hence by (5.25) and (5.26),
(A1) Jy = y(x) ¢ Bs 3 6|y-x] < lKnp(j\:',x)-Knp(j\:‘,y)l <n, ¥xX € BZe’

Vi e Vn(a) .

-1 -1 *
Now let r ¢ AZs’ ¥y Knp(g,r) Knp(,g,r ), and

=-1
v, Knp(,t‘:',r). Then 7y, € st, and from (ii), the following string
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of inequalities is valid Vt e Vn(a), and Vyl € BZE with probability

at least 1 -¢, if n >N .
1 -0
-1 =1 -1, _* =-
lKnp(g,r)"Knp(,E’r)] = IKnp(,t\:’:r )-Knp("\:o’r)l = IYl'Yzl
< §YR _(£,3)K_( v | + 67 R (K (k5]
- np v>’1° “np L4 np % np XY
Using corollary (5.3), it is seen that Ja > 03

= %
P_[ sup sup |K__(t,y,)-K__(£,¥ )| >a el <€
np 717 “np 27! — -1
O<y,<1 ;\:IsVn(a)

Also, since the jump at each discontinuity of Knp is (np)_l,
-1
IKnp(,E,yl)—Knp(,g,yz)l < (ap) and the previous string of inequalities

*
yields, Ve > o,

-1 —1 *
P_[ sup sup IKnp(,t\:‘,r)—Knp(%,r)hs 1< 2,
rsA2e gevn(a)

and A(AZE) > 1 - (2mw+2)e. Since ¢ is arbitrary and €, can be
made arbitrarily small as long a8s 1 is sufficiently large, the

result follows.

Lemma 5.8:

Suppose Y (x) saticfies (1.8)-(2) and (1), V' 28
bounded and w—l(u) = inf {x:9(x)=u} is piecewise absolutely

eontinuous, i.e. there i& a finite set of points
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v(0) = a <8< ... <8 " $(1) sueh that w_l(u) 18 absolutely
continuous on (ai,ai+l), i=0,1,...,r .Then, under econditions (1.6),
(2.7), and (5.1)-(%¢) and (ii), for each € > 0 there 18 a set

A< [W(0),p(1)] such that A@) > w() -y(0) - =, where X\ i& the

Lebesgue measure, and

Lim sup  swp |B (e Fa(v | =0
e yeA ,EEVn(a) P P

Proof:

First consider the case where ¢-l si absolutely continuous

on [¢¥(0),p(1)]. From Tayloxr's expansion

(B (o0 = BYlgdy A CERY

(5.27) ﬁ = Ve F *(e01 + E 22 [E, (g,x>—1-‘ (£>%)]

np-l-l

(1-8)n
[np+l np(’s’ x)+ —p_-!-I—R F (t: x)1}

where € = 8(x) ¢ (0,1).

Thus, corollary Al and the fact that ¥' is bounded imply
that for each 6 > O there exists N such that for all =n z_Ne,

te Vn(a), the following holds

H (t,x) = w"’np (=) + 8 (t,%)
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where sup sup le(s,x)l < 0. Hence, for y e [0,1],
x teV (a)
% 'n
. | = =
y = an(g,ﬂnp(g,w) = “’[Knp(«t.’ﬂ (£-y))] + 6(t,x). Because '

ap
is bounded, w-l is strictly monotone increasing and hence

(5.28) Ve (E0) = E (5 E L (E.)

By the absolute continuity of w—l, ¥ >0, In> 09

sup W8 (g1 -v ()] < &
¥ (0)<y=<yp (1)

(5.29)

provided sup sup ler,x)l <n
x eV (a)

Hence, from (5.26), if =n > Nn

-1 = —a
v (3 - 6(,5:}') = Knp(;Eanp(,EsY))

(5.30)
where sup sup lé(g,y)] <8
¥ (0zy<p(1) eV (a)
Thus
-1, -1 =1 _ = , =1
(5.31) Kop [£:9 "M+ (e, = Knp[g,Knp(g,an(g,Y))]

Because fl(x) = 0 omn at most a finite number of intervals,
it follows that FIl(x) is continuous on (0,1) except perhaps at a

Fo
finite number of points. Thus F l(Q,x) is continuous on [0,1]
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except at a finite number of points, say 0 5-b1 < ... <b_< 1.

*—
For each el > 0, F l(,Q',x) is bounded on [0,1—91].
*—
Hence F 1(Q,x) is absolutely continuous, bounded, and strictly
increasing on each of the intervals Ai - [0,1—61] n (bi’bi+l)
i =0,1,...,m, where for convience bo = 0, bm+1 = ],

From (1.6), 3IN, ® ¥n > N., max sup |x!.t| < §/(2 sup £,(x)).
. 1 i, gevn(a) %ijm x 1

Then by arguments similar to those leading to (5.25), it is not hard
to see that, uniformly for t € V_(a), F*—l(g,x), and hence
E;i(g,x), is absolutely continuous and strictly increasing for

X € ? Bi where

iml

(5.32) Bi = [0,1—61—6] n (bi+6,bi—6)

Consider the L.H.S. of (5.31). From (5.32),

'E—J(t,w-l(y)+6(£,y)) may fail to be absolutely continuous for some

np v o
. -1
te Vn(a) only if ¢ “(y) - G(E,y) e [0,1] - i:o Bi
m
- (1-61-6,1] - .20 (bi+5,bi+l—6). Recalling (5.30), this implies
-1 3 " -1
v “(y) e (1—61-26,1] - u (b.+28,b,..-26), and since Y is monotone
{=o i i+l .
m
increasing and ¢' > 0, y € (w(l—el—ZS),w(l)] - u (w(bi+26),w(bi+l-26)) = B,
i=o
say.

From the absolute continuity of ¢y, and the fact that 61

and 8 can be chosen arbitrarily small provided =n is sufficiently
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large, it follows that ¥z > 0, 3 a set
B < [9(0),¥(1)] » A(B) > $(1) - %(0) - ¢/2 and an N> 0 3 ¥n > N,

=1, . -1 —1 -1
(5.33) sup sup |K_ [t ~(y)+8(L,y)I-K__(t,¥ GN| <«
yeB teVn(a) np v v mp v

Now consider the R.H.S. of (5.31). From (5.32), it is

= =1 . .
seen that Knp(g,an(g,y)) is strictly increasing for all te Vﬁ(a)

m
— _l . —_—
if for each such. L an(g,y) x, € i:1 Bi’ i.e. ¥y angg,xt).
Define
* _ m
A = {y:y = an(g,x) for some x ¢ i:1 Bis teV (a)l
_ m
= {y:y = an(g,x) for some x ¢ 1:0 (bi—G,bi+6) n [0,1],
t e Vn(a)}

* ,
From the remark above, it is seen that A is a superset of those y
= =1 . .
such that th(g,an(g,y)) is not strictly increasing for all
*
te Vn(a). It will be shown that A(A ) can be made arbitrarily

small.

Observe from (5.24), (5.2), and (5.3) that

sup |H__(t,x,)-H__(s,x.)]
é,gevn(a) np +“’"1° Tnp A
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VR Qox,H + sup BN (£,3))) b (K, (0,%, )0}

gevn(a) np

* * * *
< sup Y sup [F (£.x)-F (Q,%)) [+[F (Q.x))-F (Q.x,)]
x gevn(a)

* *
+ sup |F (g,xz)-F (Q,xz)l}
éevn(a)
*
Using the fact that F (g,x) is absolutely continuous in x, and
applying corollary A3, it is seen that ¥e > 0Jn > 0 and

N. >02 Vn >N

1 1

(5.34) sup |H__(£,x,)-E_ (s,x,)| < e/2m
é’&evn(a) np v’ 1 np %%

if lxl-xzi <n. Thus if § < n/2, then Va > N,

sup ]an(,s,bi+6)-an(,§,bi-6)I <g/am i=1,...,m.
SsLeV_(a)
Let CS,i = {Y€[¢(0>s¢(1)]=Y‘an(§,x) for some xa(bi—é,bi+6) n [0,1],
te Vn(a)}.
* m * =
Then A = v C; . and A(A) 2 YA€, ) <ef2 if n> N, .
jm1 O01 Tamp 5T -1

Thus it can be concluded that

=1, = =< =-=1
Knp [,E ’Knp (& :an (,E ,Y))] - an (,E »¥)
except possibly for y ¢ Al. Finally, combining this equation with

(5.31) and (5.33) yields



8l.

=1 -3, -1
- (5.35) sup sup |E__(£,y)-K (t,¥ (y))|.§ e
ysB—A* teV_(a) np np
von
*
for n sufficiently large. The result follows since B - A < [v(0),¥(1)]

and A(B-AT) > p(1) - ¥(0) - .

For the case where w_l is absolutely continuous only on
(ai,ai+l) i =0,...,m, (the {ai} are defined in the statement of this

lemma), the above arguments can be repeated. Then (5.29) becomes

sup lw'l(y—ecg,x>>-w'1(y>l < & where

yeQ
r

Q= [p@,p@)] - v (ai—n,ai+n).
i=1l

Finally, corresponding (5.35), it wiil follow that

=1 -1, -1, .y
sup sup |H_-(t,y)K__(£.0 "(yN| = ¢
yeE-a*ne gev @) T "

for n sufficiently large. Since n can be made arbitrarily small
so long as n is large, A(Q) can be made arbitrarily close to

(1) - ¢(0), from which the result follows.

Theorem 5.4:

Assume conditions (1.8)-(i) and (¢2), (1.6}, (2.7),
and  (5.1)-(2) and (%) hold. Also assume Y' 18 bounded and

w-l is piecewise absolutely continuous. Then for each ¢ > 0,
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there exists a set A c [Y(0),¥(1)] such that A(A) > y(1) - v(0) - ¢

and

. -1 —=-1
lim P_[sup  sup IHnP(,g,y)-an(,g,y)Iie] =0
P o yeA %eVn(a)

Proof:
From (5.2) and (5.24), an(g,x) = ¢[Knp(£,x)] for x > 0.
Since w_l is monotone increasing and one-to—one from (¥ €0),¥()]
onto [0,1],
-1 .
an(g,y) = inf {xzp:an(g,x)Zy}
= inf {3Zp=¢[Knp(£sx)]3y}

= inf {xzp:Knp($’x)iw—l(y)}

-1 _ -1 -1 .
Thus an(g,y) = Knp(g,w (y)). Now consider

-1 =1 -l -1,, -1
B E ) | = [ Gy K (v o)
-1, -1 =1, -1 =1, -1 =-1
i LS C R € PR e P |+ [R (5w () -H (5.3

If the previous equality, lemma 5.7, and lemma 5.8 are applied
respectively to the terms on the right of the above inequality, it

is found that the result folliows.
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Theorem 5.5:

Assume conditions (1.8)-(2) and (ii), (2.7), and (5.1)

hold. Also assume V' is bounded and w_l i8 piecewise absolutely

continuous. Then, for every ¢ > 0, there is a 8et A < [w(0),p(1)]

sueh that A(A) > (1) - ¥(0) - ¢ and

. -1 =-1
lim P_[sup sup ILnk(,{;,Hn (£-%))-L_, (£.H (£,x))[>€] = 0
o xcA geVn(a) P P

where Lnk(g,x) is defined in (5.3).

Proof:

Observe that ank(,t‘:‘,x)—Lnk(:.’,yH < |Lnk(£,x)-Lnk(Q,x)]

+ 1L (@)L, (0, + [T (Q.3)-Ly (£:3)

If in theorems 5.1 and 5.2, c.., = x,., , it follows
ijk ijk

that Ve > 0, ¥n > 0, 3N >0 and &§ >0 3 if =n > N,

Pn[ sup ank(E,x)—Lnk(Q,x)Izp/B] < n/é

%eVn(a)

P [ sup |L,(0,%)-L,(Q,y)|>e/3] <n/6
|x-y|<6

P [ sup [L,(Q,¥)-L,(£,y) |2e/3] < n/6

%eVn(a)

Thus, for n > N
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(5.36) P[ sup  sup |L_,(t,x)-L (£,y)|>€] < n/2
n Eevn(a) | x-y| <6 nk "% nk v

By theorem 5.4, Nl can be chosen large enough so that for all

n > N, = max (N’Nl)

2

-1 —1 ,
(5.37) Pn[sup sup lan(,E,y)-an(,E,Y)lf_G] < n/2
yeA ,Eavn(a)

where A < [¥(0),¥(1)] and a(4) > y() - p(0) - n. Hence

-1 =1
(5.38) ;gz tds,u%a)|Lnk(,g,an(g,y))—Lnk(,E,an(,E,y))I <€
% 'n

unless either

(i) sup sup

[H_l(t,y)-ﬁ_l(,t,y)[ < 6§ and (5.35) dis false, or
yeA teV_(a) np op
< n

(ii) sup  sup ln'l(g,y)—'ﬁ'l(g,y)l > & and (5.38) is false.
yeA tev_(a) np =P

The use of (5.36) and (5.37) shows that the union of

the two events described in (i) and (1i), respectively, has

probability not exceeding n if n > Nz. Hence the theorem follows.



CHAPTER VI

LIMITING DISTRIBUTION AND LARGE SAMPLE EXISTENCE OF

THE ESTIMATE, én’ FOR THE JOINT RANKING CASE

In this chapter the existence and asymptotic normality
of B are discussed. It is shown that the region R_(Y) defined
in (2.3) 1is bounded, and hence its cemtre of gravity, én’ exists,
with probability tending to one &s 1 increases. To show boundedness
of Rh(x), Mn(x) is approximated by another quadratic form about

which more is known.

The féllowing assumptions, which are stronger than those of
(1.8) and lemma 5.8, are made on the score function Y. Assume that

v 1is defined on [-1,1], and

( (i) ¢' is defined on [-1,1] and 3'(x) 20

(1i) P(x) = -p(-x) for = e [-1,1]

(6.1) (iii) O < V[0 I]w'(x) < ®

(iv) " 4is defined on (-1,0) v (0,1) and
VooV < (1-2)Yo(z) for 0<z<1

L (v) sup [¥"()| 5_(1-2)—%6(2) for 0<z<1
xe(0,2)

where V[a b]1;;(x) is the total variation of P(x) over [a,b], and
)
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8(z) is a finite real valued functiom on [0,1] such that 1im 6(z) =0
z>1

For simplicity, V will be written for V .
[—=,]

Recalling (5.1) and (2.8), it is seen that

© n
(T B D e = gl jgl Vp Ty 5/ (@PHL))

-0

e

(6.2) + (xy g /mp) sign (Y =gi.6) = (p/m)” ' (-0
vhere .= rank of IY l in joint ranking
\ over i=1l,...,n3 j=1l,...,p .

In the following, Tk(g) will be written in place of chg-§és) to

emphasize the dependence on t.

Let us define, where unk and an are given in (5.3)

and (5.5),

- -]

(6.3) %m%>-!‘DEmQbe£;ﬁgﬁ>

Theorem 6.1:

If eonditions (1.6), (2.7), (5.1), (6.1), Hozg =0, and

6.4  sup R s A o (e D10y an(g SEIPRD;
. |

- w[np+l np Q, »1x[)1}au k(0 x)| = o, (n ;5)



are satisfied, then for each ¢ > 0, there ¢ N > 0 8o that

Pl oo | [/ 2T, (£)-4,, (D 1-[ (/D 7T, (@)-4, (@) |26 < e,
teV_(a
n

provided =n > N.

Proof:

From (6.2) and (6.3),

(/DI (D) - A (0 = B (5) + B (§) + B_,(8) + R (p)

where

©

(B =S B Gl (b ()

©

Bua@® =) B G xDetu (B ()

(6.5) ¢

- -]

B_,(t) = f_m {H, (Es [x)H (e, 2] by (5%

-]

R =) (8 e lxD-E (s DD alugy (0w (50

\

The proof will be complete if ¥ > 03 N> 09 if =n > N, the

following four inequalities hold

b
(6.6) Pn{ts;;p( ) n IBnO(,E)—BnO(,Q)IZ_e} <e
tEVa'e

87.
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b
(6.7) P {tsw‘arp(a) n?|B_,(£)-B 4 (Q) |>e} < ¢
‘\;e n
3
(6.8) Pn{tzt{;p(a) n?|B_,(£)-B,(Q) |2} < €
A 1 ;
(6.9) P_{ sup n;ian(&)-Rn(.Q)b_E} <e€
b EeVn(a)

Proof of (6.6):

This follows directly from (6.4) and (5.2).

Proof of (6.7):
From (5.3) it is seen that

;5 N T

a8 (-3, @1 =] B, (s 1) ayy (£:%)
-1 Hop (Qs 1% dly (%)

and integrating by parts

= H (s lxhry ol - I L (£-0) (85 %D

- Qs %Dy Q.0 |+ I _ L, (@.x)dE (@, 1xD)

From (5.3) and (5.2) it follows that Lnk(,s,f) = (0, and

-H_np(,t\:l,lxi) is monotone increasing in le . Thus it readily follows

that
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;5 [--)
sup  |nf[B_. (£)-B_ (1| < sup {|f [T (&,%)-L ;5 (0,%)]
,‘EEVn(a) I nl*~ al™v .EeVn(a) - ak ‘v ak ‘%

—

ai(esl=D + 1S Ly (Qe0alE (e, [xD-E Q. 11}

_<_ sup sSup IL (t,X)—L (o,x)l .w(l)
X EeVn(a) nk nk

+ sup ILnk(Q,x)l sup V[an(g,lxl)-ﬂnp(g,lxl)]
X J‘:JeVn(a)
Applying theorem 5.2 to the first term, and theorem 5.2 and lemma A8
to the second term it is seen that their sum tends to zero in

probability as n increases, and hence (6.6) 1is proved.

Proof of (6.8):

From (6.5), observe that

208, (DB, @] = 2% (B G xDE (5 xD)

(6.10)

©

s (B5%) - I_& [ancg,lxl)-nnp(g,lx[)]dunp(g,x)
To find bounds on the above expression, first consider

the following Taylor series expansion. From (5.2), (5.3), and

(5.24),
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(
B s =] = VIR (g %))

(6.10) ﬂ - VIE (e [xDD T + ¥ Ry (8 [ DT IRy (o [T 8 12D

l " -3

+ 5 ¥ R (e =) SCNELPY

where ¥q is some real number depending on t and x and lying
between Knp(g,lxl) and Knp(g,lxl). After taking expectations on
each side,

= = 1 " = s
(6.12) B (6 =) = w(® (8, [xD1 + 5 BVGp) K, (&s XD (5o 1% D3

In view of (6.11) and (6.12), the first term on the right

of (6.10) becomes
(T IR (s IR IR, (s [xD K, (50

, - 2 .
(6.13) ﬁ + 3Ry e lxDE G D1V o

1 = : —
L L G IxD Ry e XD 7 iy o)

Now, it follows from (5.5) and (1.6)-(i1i) that w (g.x) 1s of
bounded variation uniformly in t and n. Also,

i —

n [Knp(g,]x|)—Knp(£,|x|)] = Zn(g,lxl), and corollary 5.3 shows the
supremum over t and X of this quantity is bounded in probability.

From (5.24) it is clear that ¥, < np/(npt+l).
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Thus, from the foregoing remarks, the absolute value of
the second term in (6.13) is bounded by %-nf%Aze(np/(np+l))

. sup sup V[E'k(g,x)] with probability at least 1 - ¢, where
&avn(a) n o
A is defined in corollary 5.3, and © is defined following (6.1).

Hence this term is op(l) since lim 6(anp/(ap+l)) = O.

n-—+-«<
Now consider the third term on the right of (6.13).
According to corollary Al, (5.24), and the above remarks, the supremum

over t € Vn(a) of this is op(l). Thus it follows that (6.13)

becomes
YR (XD Ry (o DT (e XD (50 + 0D

and substitution into (6.10) yields

]

s, (B, @1 = 2% [ ¥R IxD 1 Ry (e =)

T m 5 O .

R (G lxDldi g0 -2 [ V'R (s %11+ 1Ry, (s %)

Knp(g,lxl)]aunkcg,x) + op(l), where op(l) is
independent of £ for f € Vn(a). Further, this may be written as

(6.14) 5, ()-8, @] = Dy () + Dy + 23D

where



( D (t) = n

D (t) = n
(6.15) ﬁ

D (t) - n

92.

! '['inpcg,lxln-[Knpc,g,lxl>-inp<,g,lxl>]
a[H_y (£5%) -1y (95%)]

f V'R (o 1= 1 1R (s [xD Ky (85 12D
- Knp(,g,lxl>+inp(g,lx|)]dfnk(g,x)

I 'K,

CHEI P IR A CCRON PR

[Knp(,gs |x| )-Enp(,gy le)]dink(g’x)

First observe that

sup |D,(®)] <

&evn(a) 1

K (5

(6.1), theorem 5.3,

o
sup y'(x). sup sup |R__(t,[x])-
O<x<1l x teV_(a) mp
le)l'tzgp(a) V[unk(g,x)—unk(g,x)].

(5.3), and (5.24) imply that the product of the

first two factors on the right are bounded in probability. Finally,

the third factor is bounded by

sup (mp)~

gevn(a)

Because 1lim max
e i,]

this tends to zero as 1

Now consider DZ(E).

value is bounded by

izl Jgllx | {VIFy Geigg 0 -Fy (x) J+V[F, (-t d ) -F NCOME

sup |§ t[ = 0 it follows from lemma A.2 that

£eV (a)
increases and hence sup D (5) = o ).
£eV, (a)
From (5.3) and (5.24), its absolute
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sup v’ )+ sup  sup |Z_(£,]x1)-2,(Q, x| VI, (000
X x tev (a)
n
(6.1)—-(4i1i) and (5.5) imply the first and third factors respectively

are bounded, and theorem 5.3 implies the second factor tends to zero in

probability. Thus  sup lDz(E)l = o (1).
teV_(a) P
< 'n

Next, let us observe that iD3(E)| is bounded by

sup V" (npx/(aptl))-sup  sup rf (t,lx]);f (O,le)l
O<x<1 x 55Vn(a) np mp

- sup|z_(Q,|x[) |- VIu 5 (Q:2)]1.
X

Scrutiny of each factor, with references to (6.1)-(iv), theorem 5.3,

and some of the remarks immediately above, it follows that

sup |p @) = o ().
gsvn(a) 3 P

Thus we have shown sup ID (t)l =0 (1) for m=1,2,3.
m P
EEVn(a)

Thus (6.15) and (6.14) imply (6.8).

Proof of (6.9):

1t follows from (6.5) and integration by parts that
Hr (o] = [T (1A (6 XDy E0 S 6011
a np &° op v’ nk v’ ak %’ -

= I—“ Lnk(’E’x)d[an('E’ |XI )—ﬁnp(’s,lxl)] .
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From (5.2) it follows that the first term on the right is zero, thus

¥R (0] < R (&) + Ry, (f) where
° —
Ra (0 = 1] Ly (dla, (508, (0]
an(,s) = Uo Lnk(‘\t;’x)d[an('E’-x)-.ﬁnp('Fo’—x)]I

By changing the variable of integrationm, and letting D = [$(0),¥(1)],

it is seen that
R .(t) < f IL ] (t H—l(t ))-L (5 H 1(5 y))|dy
1 D ~ap ik nk v’ np v’

From theorem 5.2 it follows that ¥§ > 0, da 3 P[sup sup ILnk(,e,x)|>a]<6/2.
x ,Eevn(a)

From theorem 4.5, Ve > 0, 3 aset Ac [0,1] and N> 0 3

' -1
AA) > p() - Y(©O) - /20, and if =n > N, Pn{s:p te‘s}ulza)ank(,E,an(s,x))
v 1

-Lnk('\t‘,i;;'(,g,x))l > e/[2((1)-¢(0))]1} < §/2. Applying these remarks

to the above integral, Vt ¢ Vn(a),
R (0 = { +] L CE IG.yI-L (EE () |dy
nl v nk v’ np 2y nk ‘%’ np %’
A D-A
< €/2 + €/2 = ¢ with probability at least 1 - 8,

i.e. sup R _.(t) = o _(1).
'Esvn(a) al™v P
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A very similar argument shows sup R_,(t) = o_(1).
n2 v P
&eVn(a)

Hence  sup n%|R (£)| = o_(1), which implies n%lR (0| = o_(1),
&evn(a)
and these imply (6.9).

Hence (6.6) through (6.9) have been proved and the

theorem is true.

Theorem 6.2:
Under conditions (1.6), (2.7), (5.1), (6.1), and

H = 55 =
H :f =0, lim sup n &, (£) -8, Q)-8 ()48, (D] = 0,
we eV (a)

where

(6.16) Bl =] VIR (gs =) 1du (6o%)

Proof:
From (6.3) and (6.16), it is clear that

-~

BHAL (OB ] = At ] (G =D Ry (g D I (0,
and substitution from (6.12) yields

1 z = 2 —
Rl P NG PR C R LRI RA LN
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From corollary A.l and (6.1)-(iv), this is bounded by

o™ (ap+1) -8 (ap/ (aptL)DV[i_, (£,x)], and since Lim 8(z) = 0 and
z+1

V[unk(g,x)] is bounded uniformly in n and f ¢ Vn(a), the result

follows.

Theorem 6.3:

Under conditions (1.6), (2.7), (5.1), (6.1), and

L. .
H : 8= 9, 1lim sup n IBnk(g)-Bnk(Q)+2£'ék[ = 0,

o me  teV (a)
where
. _l n «® 2
(6.17) A = (@) ] E gy ] vTI2F GO-LIE ()dx
i=1 j=1 -
Proof:

In view of (6.16), (5.24), (5.5), and (5.3), it follows

that, if for simplicity ﬁij% is denoted by Gij’

)
dunk(g,x) = ((sign x)/np)iél i1 xijdel(x+6ij), and for x < 0,

n
_mp_ _* m g2 TV o (=
Ve F (e IxDD1 = —vIgT L j.z.l {F) Getd )=F) (-x+8, )} Hence
it follows that
-1 3 ” 13
(6.18) B_, (t) = (ap) ~ ) E x,., | vl ) E {F, (%6, 46,4 41)
nk v im1 j=1 ijk - ap+l 111 §'=1 1 ij 1'J
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Taylor series expansion of the argument of ¢ yields, since

fl(x) - fl(-x) s

n
( (np'*'l)— z E {F (x- 6 +6 i3 1 )-F (x'l's j+5 Uj')
{'=1 §'=1

[F (x)-F, (-x)-28 f (x)+pij ()]

p+l
4, 1 E
(6.19)ﬁ where (%) = (2np) "~ .Z_lj L {Gygag0m 855 f (x,)-

2c4
(Gi,j,+6ij) fl(xl)}, with % and X, depending on

k i,j,i' and 3', and |x,]| = |6i.j,—sij|, lel < |6i.'j'+6ij|'

Next let us substitute (6.19) into (6.18), and expand

by Taylor series. Then the integral in (6.18) becomes

- -]

[ lpey 1R GO-Fy (0314 =28, [ v [y {F; (0-Fy (-0}

-

up
£, (x)4F, (¥) + f 2 swery T {F, ®)-Fy (- )}y (x)dF, (%)

LI a8 v 1R

-—C0

+

where y is some value satisfying Taylor's formula. The £irst term

is zero since Y(-x) = -¥(x) and fl(x) = fl(—x), hence substitution

into (6.18) results in
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n [--

-1

+] W oy By E-F () ey, (R (O

1 2
+3 ] V=28, ) e (0] 7AF GO

-—C0

Using the facts that fl, fi , and ' are bounded, y" satisfies

(6.1)-(v), 1lim mex sup |x
me i,j gsVn(a)

1351 = 0, along with (1.6)-(iii) and

(iv), it can be shown by a tedious but routine calculation that the sum
-9

of the last two terms in the above expression is o(n ) uniformly for

te Vn(a). Hence it follows that

n
(6.20) sup  |B_, (£)+(2/ap) ‘E

fw[
£V (@) i51 351 %3 5% ap+l

(P, ()=F) ()Y 1€, (OF ) | = 0 (7D

To conclude the proof, note the following ——
(1) Bnk(g) = 0. This follows directly from (3.18).

an |f [ZBo (F, (0)-F, (=x))1-y" IF; (0)-F; (-x) 1}, (=) dFy (x)

aptl
rl— 1l/n
el v lgpir (-D1-v (2y-1) | dy
£y |
+a V'l (2y-1)-y' (2y-1) |dy
1-1/a P

where o = sup fl(x)
x
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The use of the mean value theorem and (6.1)-(v) yields

1 -1 1
<a sup [P"(ED)|(@- D (aprl) T + 20 sup ¥'(x) (1- )
O<x<1 | mtl | " O<x<1 2

- op(l).

Putting (i) and (ii) together with (6.20) gives the result.

Theorem 6.4:

Under. conditions (1.6), (1.9), (2.7), (2.8), (5.1), (6.1),
(6.4), one of (3.1), (3.4), or (3.6), and Ho : 8 =0, for each

e > 0 there exists N so that for all =n > N,

Pn[ sup n&l(l/pn%)[Tk(g)-sk]+2§'ék13§] < e
%eVn(a)

where S, 1is gitven in (2.8).

k

Proof:

If the .results of theorems 6.1, 6.2, and 6.3 are

combined, it .-follows that

P [ sup n%l(1/pn%)[Tk(g)—Tk(Q)]+2£'ék[3§] <e for n>N.
v geVn(a)

If lemmas 3.7 and 3.8 are now used, the desired result follows.
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Under the eonditions of theorem 6.4, for each € > 0 there

exigte N > 0 so that for gqll n > N

P [ sup [M (¥-X't)-Q (Y- 't)lz_E] e
’EsVn(a) n v Xan'\o n v ’Xun'\:

where

.
1] ] -1
Q (TR = %'An %

(6.21) < 5({' - ‘m"('t\:.)- (Sl-an;ﬁ't\:"él,...,Sq—an;E,‘tl'éq)

= (wl,...,wq)

Proof:

From (2.8),
M -0, G| < 5@ 1 T D @@
+ g1 @@

03 ! : .
where ;\r'(,t\:l) is the :E,(X §n'€) defined following (2.8). Now from

(1.9), lim Z‘l -] and from (6.17) and (1.6)
n+°°n

sup sup |2pn;5,5 'le is bounded. Thus from lemma 3.2 and
l<o<e  teV (a)

theorem 6.4, both Sk and Tk('E) are bounded in probability
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uniformly in n and t e Vn(a). Hence W, is bounded in probability.

Also, theorem 6.4 implies  sup ]]g(&)—y(g)ll < % sup lTk($)—wk(E)|
&eVn(a) k=1 %eVn(a)

tends to zero in probability. If the foregoing remarks are applied to

the above inequality, the result is obtained.

A direct consequence of (6.17) and (6.21) is

% R B co -1)£2
w(t) =g -2n iél & TP C ) I Y [2F, (x)-11£; (x)dx
(6.22) < =5 - Zn—%§n§;§ f_c w'[ZFl(x)—l]fi(x)dx

k .
where $ (Sl,...,Sq)

Let us define the following subset of Eq.

~n *_ - — - .
(6.23) R = {£:Q (T-Fr o)<k, 1= {5.¥'Zn w<k }

o - 0} \ - 3
where Lk is defined following (2.3). Qn(x—§n£) is a quadratic
*
form in £, and Rh is an ellipsoid in Eq whose centre of gravity

4"
is given by g in the equation

(6.24) g = n52n% , Where

1, 41 ' 2
X j_w ¥'[2F, (x)-1]1£] (x)dx

(6.25) Q= 2n
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The pﬁrpose of the following results, culminating in
theorem 6.6, is to show that Mi becomes large for values of t
which differ greatly from the true parameter point (assumed to be Q).
From this it will follow that R_(¥) is bounded (and hence 8
defined by (2.4) exists) with probability approaching one as =n

increases.

Let us define

g (v,9) = (g'gng)'*cg'g—n;’yg'ggng)
(6.26) ﬁ h_(y,8) = (8') 6)_;56'1(76)
n '’% VEnvt v At TA
_ 9 .
L e il = & o, | where ' = (815.+158,)

Lemma 6.1:

Under the conditicns of theorvem 6.4, for all € > 0 and

b > 0, there exists a > 0 so that zf n > N(e,b), then

(6.27) p [ inf  dinf g (y,@)[>b] 21 -c¢
®lej=1 jyl=anTE T :

(6.28) P [ inf inf ih_(y,8)|>b] > 1 -c¢

2 lell =1 |v|=an® T
6.29 P inf (G.8)| =0 ¥ || 8] =11 >1-
(6.29) n[IYl<2n';5 ERCH M lell=11>1-¢
(6.30) P [ inf lhnw,g)lf_e v]lell=11>1-¢

 |y|<an
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Proof:

The proofs of the above four statements are similar to the
proofs of similar statements in lemma 3.2 of RKoul (1967). Hence the

details have been omitted.

Lemma 6.2:

Under the conditions of theovem 6.4, for all e > 0 and

b > 0, there existe a >0 and N >0 such that

(6.31) P [ inf  dinf | |g (v,8)|>b]l > 1 -¢
gl ylzaa® P

(6.32) P [ inf inf  |h (v,8)izbl 21 - ¢
Pllell= |yl>an

Proof:

Proof of (6.31):

From (6.26) it follows that gn(y,g) is monotone

decreasing in y for each fixed § . From (6.27) and (6.29),

V0 € {geEq:||g|[-l}, 3vg ® ]yel < an-%, so that the following two

inequalities hold simultaneously.

P [ sup ]g (y e)l-O] >1-¢
n ”'%“_1 n-'8’%

P inf inf lgn(y,g)]>b] >1-c¢

[
2|l gll=1 [y]|=an"%



104 -

Therefore gn(y,Q) is monotone increasing for |y| _z_an_;5 and (6.31)

follows.

Proof of (6.32):

From (6.26) and (2.8),

(g';ng)%hn(v,g) - 8, T, (8)

I
[
=]

- ? E j‘j_ 1
L %y gic¥np GprD) S8R (3718339
where r.. is the rank of |Y .~yx!.68|] in the joint ranking over

ij ij "Adje

i=1,...,0; J = l,¢.05De

Tn lemma 2.2 of Koul (1967), it is shown that the right

side of the above equalities is monotome. To see this, set Koul's

== - \
X Lo xijkek %ijg . Hence (6.28) and (6.30? imply that with
probability at least 1 - 2¢, inf - inf |h_(y,8)]| <
| gll=z |y|=an® * "
inf inf |h_(vy,8)|. This implies (6.32).
leli=t |yl>an™®

Theorem 6.6:

Under the conditions of theovem 6.4, for all e > 0 and

b > 0, there exigsts N >0 and a > 0 such that

(6.33) P_[ inf M (Y-X'8)>b] > 1 - ¢
o) gl e T
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(6.34) P [ inf Q ( -%' )>bl > 1 - ¢
ol || gl ans 2

Proof:

Using the results at the bottom of page 48 of Rao (1965), it

follows from (2.8), (6.22), (6.24), (6.25), and (6.26) that

-1
A
M (Y-vX!8) =1 (Y,Q)Zm T(v9)

wn'v
-1 2 2
> @O0 = b (r.9)
Q (T-vE'8) = w' (I w(y8)
n v Y'\;n'\, L qu &n ~ Y'u
> (e'? 8) = Z(A 8)
— N L v gn b

Proof of (6.33):

If b > 0, then

2 2
P [ inf _ M (Y-}\("e)ib ] =P [ inf inf _ M (X‘Y§'2)ib ]
2 gl zane B gl =1 lylzanE 2T
>p [ inf inf ihn(Y’Q)iEP] >1l-c¢

TR el =1 |y[:an”E

if a dis chosen as in lemma 6.2.

Proof of (6.34):

Follows in the same way as (6.33).
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The next two results give the asymptotic distribution
of En .
Lemma 6.3:

Under the conditions of theorem 6.4, for all ¢ > 0 there

exists N > 0 such that for all a > N,
P [a%]| B (D-F @) 2] < e
n Qn VOooan v -_— -—
where, from (6.24) and (6.25),
v -;5 -1 = (] 2 -1 ;5 t -1
(6.35) En =1 Qn s = {2 f_w v [2F1(x)—l]fl(x)dx} n (§n§n) ]

Proof:

Although lengthy, the proof closely follows that of

lemma 4.1 of Koul (1967) and hence the details have been omitted.

Theorem 6.7:

Let conditions (1.6), (1.89., (2.7), (2.8), (&§.1), (6.1),
(6.4), and one of (3.1), (3.4), or (3.6) be satisfied. Let LB
")

denote the probability law of gn(z) if B e the true parameter

point. Then, if N denotes the normal probability law,

. % 2 s 2 -2, ~1¢ =1
Lin Zo[n* G, = H(Q:{2 [ w'I2F) (0-11£] (e} AT IAT)
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where A= lim n-l(x‘nﬁ'l) and Z is defined in (1.9).

n--e

Proof':

In view of lemma 2.1 it is sufficient.to prove the theorem
for ’% = 0. From lemma 3.2 it is evident that converges in law

R
n;{é'n converges in law
\

to N(Q,Z') as n -+ «, Now (6.35) dimplies
to the normal distribution given in the statement of this theorem.

S \
Finally, lemma 6.3 implies that n;ign and n %n converge in law to

the same distribution, and hence the theorem is true.



CHAPTER VII

LIMITING DISTRIBUTION AND LARGE SAMPLE EXISTENCE
OF THE ESTIMATE, én’ FOR THE SEPARATE RANKING CASE,

SIGN SCORES

The proofs for existence and asymptotic normality for the
separate ranking case will follow the same lines as in Chapter VI.
First of all, let us observe that if p = 1, theorem 5.1 remains valid
if the {cilk} merely satisfy (1.6)-(ii) dinstead of (5.1)-(iii)
and (iv), since the stronger assumptions are used oanly to bound terms
in which j ¥ j'. Notice also that (2.7) and (5.1)-(41) will not
apply, since now the distribution is univariate. Theorem 5.1 now

corresponds to theorem A3 of Koul (1967).

Thus, for p = 1, all the results of Chapter V remain valid
in the absense of the above mentioned conditions. (see also the

appendix of Koul (1967)).

In this chapter the following assumption is made oa the

underlying distribution in addition to those of (1.6).

( (i) fj(x) - F&(x), and fj(x) exist and are bounded for
all x e (==,»), j=1l,...,D.
(7.1) ¢
(ii) fj(x) = 0 on at most a finite number of intervals,
\ j=11,...,P-
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Corresponding respectively to the quantities defined in (5.2) and

(5.3), let us define, for j = 1l,...,p,

* -1 3
Gy (gsx) = m igl 1]y, iq 'uiJ'\al<X)
-1 2
vnkj(g,x) = n igl xijk ij ﬁijt<x) sign (Yijﬁﬁijg)
(7.2)
B =) = [+1 nJ(t »%) ]
n
\ j(t,x) - ¢n[n+l j(t »%) ]
( *
Gj (£,x) = EG j(,t\:' »X)
a3 Vol (E5%) = BV (£5%)
\ H°j(5,x) = ng (£,.%)

Define V (a), V(a), and ll£ll as in (5.4). Then, similarly to

(6.2), for j = 1,...,p

f H° (t» le)dv z % 5% (z, j/(n+l))
im=l
(7.4)
- sign (Yij—ﬁij&) = n—%Tkj(E), say,
where r,, = rank of IYij-ﬁijél in the separate ranking over

ij

i=1,...,n. It is clear from (2.2) that
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\ - -
(7.5) T (T-XIE) = T, (%) jgl Ty (&)
where Tk(g) is written in place of Tk(z-§é5) to emphasize

dependence on k.

The following four theorems will be stated without proofs.
The proofs are almost the same as theorems 6.1 through 6.4, respectively,

for the case p = 1.

Theorem 7.1:

If eonditions (1.6), (6.1), (7.1), Ho g =0, and

(s [ Gl e e I3 1-vigET 6y (6 1= D))

n
%eVn(a)

©

Sdv s (85%) - f_°° v =7 GnJ(Q =D 1wy nj(o ,|x]d13

(7.6) a

e

vy @0 | = 0 @™
are satisfied for j = 1,...,p, then for each ¢ > 0 there exists
N > 0 so that for all a > N,

P { sup %l[n-%Tk (t)—A° (t)] [n %Tkj(g) (0)]l>e} < e

5&V (a) 3
where

(7.7) j(:) f H° (t,]x])dv (t [x])
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Theorem 7.2:

Under conditions (1.6), (7.1), (6.1), and Ho : g =0,
lim sup n%lA;kj(fE)-A;kj ('Q)_B:lkj ('E)-*-B:zkj (Q)| = 0 , where
nro ,t‘:‘sVn(a)

(-]

° n * —
(7.8) By (B = [ VI 655 [xDIdvy, (e

Theorem 7.3:

Under conditions (1.6), (7.1), (6.1), and Ho : g = 9,

lim  sup n;5|13:ij (5)_B:xkj (,Q)+2,g'é.;jl = 0, where
me eV (a)

-]

. -1 2 . 2
(7.9) Apy = @ 121 *; 184 5 f_“ Y [2Fj(x)—l]fj(x)dx

Theorem 7.4:

Under conditions (1.6), (1.9), (2.2), (6.1), (7.1), (7.6)

and H : 8= 9, for each € > 0, there is N > 0 &o that for all

n > N,
P [ sup nliln_;i['l‘k ('E)—Sk ]+2,E'éi.lie] <€, 3=1,...5D,
'Eev (a) j j J
n
X 9 *
where Spj = :Lgl xijkW[Fj(lYijl)] sign Yij
Corol 7.4:

For each e > 0 there 26 N> 0 so tkat'forall n > N,



P [ sup n;iln_%[Tk(,t\:‘)-Sk].-*-Z,t\:"é;]ie] < g, where
Eevn(a)

(7.10) éﬁ = .E An

Proof:

P_[ sup n;El n_lﬁ[’l‘k(,g) -Sk]'*'Z,E',éii?_E]
,EsVn(a)

<P [ E sup n;ﬁ|n"15['l‘kj(fs)-skj]+2,t‘:"',é.l"c:l |>€l

T3=l tev (a)

Ia

n
=1 5svn(a)

From this, the result is immediate.

Let us now redefine Qn and v as follows

-1
an—é;x't\:a) = X{'z’n w where
(7.11) ﬁ
w' =w'(t) = (8 —Zn%t'.° S -2n;5t'A°)
km LAY 1 mé‘l”"’q N g
= (wl,...,wq)

It can now be shown similarly to theorem 6.5 that

Theovem 7.5:

Under the eonditions of theorem 7.4, for each & > 0

P_[ sup n;éln-';i['l‘kj (5)—Skj]+2,t\:",éijlze] < pe

112,
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there exigets N > 0 such that for all =a > N,

P [ sup |M (E-FL£)-Q (LRI [2€] < e.
EsVn(a)
Let us now define %n as in (4.13). Thus, equations (7.9),
(7.10), (7.11) and (4.13) dimply

= - _lé S 1 rm [} - 2
w, =S, -2 121 jgl xijk%ij& [ v [ZFj(x) llfj(x)dx

(7.12)
'%i X't

w(t) = s - 2n
N ~ ATAnN

Similarly as in (6.23), define

* )
(7.13) R, = {§:Qn(g—§n§)§kna}

-1
3 . '
{£'¥ Zn Eikna}

where kna is defined following (2.3). The quantity Qn(X_Eéﬁ)

*
is a quadratic form in £, and R.n is an ellipsoid in Eq whose

centre of gravity, E, is given by

s= n%gn% where

g =2 R &

(7.14)

The following additional assumption will be needed in
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proving the forthcoming results.

X is nonsingular for all n
An

(7.15)

A, = lim n—lén%; exists and is nonsingular

Now suppose gn(l,g) and hn(k,g) are defined as in (6.26) but
with gn given by (7.14) instead of (6.25), and T by (2.2)
instead of (2.8). The results of lemmac 6.1 and 6.2 are valid
under (7.15) and the conditions of theorem 7.4. The proofs

closely follow those of lemmas 6.1 and 6.2.

Then, corresponding to theorem 6.6,

Theorem 7.6:

If (7.15) and the conditions of theorem 7.4 are satisfied,
then for all € >0 and b > 0, there exist N> 0 and a >0

such that for all =n > N

P [ inf _ M (Y- 'g)>b] > 1 - ¢
o) gl e B W

inf = Qn(X—§;g)>b] >1l-c¢

gll >an

P [
il

This implies that the region Rh(x) given in (2.3) is

bounded with large probability if =n 1is large. Thus large sample
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existence of én is assured.

Lemma 7.1:

If (7.15) and the conditions of theorem 7.4 are satisfied,

then for all ¢ > 0, there is N so that for all =n > N,

P [ 8 (D-E,(D I 2e] < &

Proof:

The details will be omitted since it is similar to that

of lemma 4.1 of Koul (1967).

Theoreﬁ 7.7

Let conditions (1.6), (1.9), (2.2), (6.1), (7.1), (2.6)
and (7.15) be satisfied. Let L, denote the probability law of
én(x) if B is the true paramete; point. Then, if N denotes
the normal probability law,

iiz L%[n%(én_g)] = N(o’(*)égliégl> where 40 and E are given in

(7.15) and (1.9) respectively.

Proof:

From lemma 2.1,it suffices to prove the theorem for £ = 0.
Lemma 3.2 implies g converges in law to N(Q,z) as n > =, Then

(7.14) and (7.15) imply n&% converges in law to the normal
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distribution given in the theorem's statement. Thus, .the result is

immediate after applying lemma 7.1.

The Sign Score: wn(u) = y) =1 for uce [0,1]

Results. similar to those proved for tests and estimates
involving scores satisfying (1.8) and (6.1) will be proved.
As previously, the definitions of wn and Yy are extended to [-1,1]
by y(u) = -p(-u) for u e (0,1]. Hence wn(u) = y(u) = sign u for

ue [-1,1].

It is readily seen that the sign score does not satisfy

(1.8)-(4i) and (v) nor (6.1)-(i) and (ii) at x = O.
From (2.2) it is obvious that

o p

(7.16) T =T =S5 =n? oL ox sign Y
k "k °k 11 g=1 ijk i3

To £ind the limiting distribution of én’ the same quantities as in
(7.2) and (7.3) are defined. In this case, however,

(g5%) = HY (£,x) = B _,(£,x) = 1. Thus, from (7.4) and (7.7)

ﬁo
nj 3 J
respectively, it follows that

5 -1 3
n jk('s) - vnkj ('E,w) = n 121 xijk sign (Yij-z:;.j'e)
(7.17)

B2y (B = Vs (B5)
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Theorem 7.8:
Under eonditions (1.6), (7.1), (6.1), and Ho 1 f=0,
for each ¢ > 0,

oo B j\.:‘svn(a) 3

Proof:
From (7.17) it follows that
sup  |[n %I, (£)-A.,.(&)]-[n 7T, (0)-A° . (D)]]
Esvn(a) kj~v' Tmkj v kj v Tmkj v

- ,53;3 . |19 geq BV e (B 1= 1955 (Qo=) =V 5 (05=) ] |

= op(l) . The last equality follows from theoxem 5.2

with p = 1. Thus the result is proved.

Theovem 7.9:

Under conditions (1.6), (6.1), (7.1), and H° :8=0,

for each € > 0

lim sup n;EIA;kj(,E)—A;kj(Q)-l-Z,E'éij]-0, where
P o) Eevn(a)

o

. -1
© | -
Ak' 2n “£(0) .E x!jl*!‘
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Proof:

From (7.17), (7.3), and (7.2) it is evident that

nkj(t) 0, and

-3 _l e
Ankj(£) = n 121 xijk[l—ZF(ﬁljg)]
oL
= 121 X, jk[l -2F(0) 2x j:f(0) Z(Nijt) f (eijmljg)]

where 0 < eij < 1. Similarly to the arguments leading to (6.20),
the sum of the last terms in the above expressiom is o(n_%) uniformly

for te Vn(a). Then, since 2F(0) = 1, j(t) = -2n -1 z E xijk .
-k

i=l j=1
G51,8)ECO) + o(a s

) = -25'é£j + o(n ?), from which the result follows.

Corollary 7.9:

Under the conditions of theorem 7.9, for each e > 0O

lﬁmfh[ sup n%ln—%[Tk(g)—Tk(g)]—Zi'éi|3;] = 0
n>e gsvn(a)

where éi = E
Proof:

This is a direct consequence of (2.2), (7.17), and

theorems 7.8 and 7.9.
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Results similar to those of theorems 7.5 and 7.6, and
lemma 7.1 may be obtained for the sign score case. This leads to

the following result which corresponds to theorem 7.7.

Theorem 7.10:

Let conditions (1.6, (1.9), (2.2), (7.1), and
¢n(u) = y(u) = sign u be satisfied. Let Lé denote the probability
law of %n(z) if 8 ig the true parameter point. Then

VO

1in I, [0 _-B)] = 8(Q, G5 TATD
>

where Z is defined in (1.10) and j, = lim %n%; where %n

n->w
i defined in (4.13) but with <, = [fj<o>1%.

Asymptotie Equivalence of the Joint and the Separate Ranking Procedures

When Both Methods are Valid.

It is of interest to note that if, in the separate ranking
case, the marginal distributions are identical, i.e. Fj(x) = Fj,(x)
for all j and j', then the estimates based on both the joint and the
separate ranking procedures are asymptotically equivalent. By this it
is meant that the asymptotic distribution of the estimate is the same in

each case. To see this, notice that the covariance matrix of Bn given

in theorem 7.7 is, in view of (1.9), (4.13), and (7.15)

-]

ealg'Th;" = o Lim ¢ £} (@vl2ry (-Llaw} GO T TRED ™
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Now, integrating by parts and using the notation of theorem 6.7, this

becomes
(%)Q;lixg;l -{2] vJa'[2Fl(x)—1]fi(x)dx}’z((lﬂf1 .
v -0 n

Thus it is evident that when joint ranking is valid, i.e. one of (3.1),
(3.4), or (3.6) hold, then estimates based on joint and separate

ranking procedures are asymptotically equivalent.



CHAPTER VIII

EFFICIENCY OF PROPOSED ESTIMATES - CONCLUDING REMARKS

8.1 Efficiency

Under the assumptions of both theorems 4.5 and 7.7, both
the least squares estimate é: proposed in (4.19) and the
estimate én based on the separate ranking procedure are asymptotically
normal. The efficiency of én with respect to Q: will now be
considered in the sense of the inverse ratio of sample sizes needed
to obtain the same generalized variances. From theorem 4.5 - (i),

~

(4.15), and theorem 7.7, the efficiency of é with respect to R is

ua ol | e

e; = 1o -1 , hence
L7 )y
a1 1/p
(8.1) e, = 4 Lo

[Z[ lim |0 3% B1x!|
nn n
nre
It can easily be verified that if é is the nonparametric estimate
based on joint ranking, and if the conditioms of theorem 6.7 instead

of theorem 7.7 hold, thea (8.1) is valid in this case also.
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8.2 Special Cases

(2) Univariate Case (p = 1)

In this cagse B_= 621 where 02 = yar Y . Then from
un A il

1
(1.9), Z - f wz(u)du + 1lim In-l§h§;| . Also, from theorem 7.7,
o oo

- -] 2 -
Qo = I-Q w'[zpl(x)—l]fl(x)dx . iig |n l§n§;|. Hence, for this case

(8.1) reduces to

2, " 2 2t 2
(8.2) e, = 40°1[ '[2F) (0-11£) (x)ax} /[ v (u)du
-0 o]

For Wilcoxon scores, this further reduces to e, = lZcz{f fi(x)dx}z,
pos . . }

and for sign scores, it follows from theorem 7.10 that e, = Aozfi(O).

(i) Quadrant Symmetry and Identity of Marginal Distributions

From the definition of quadrant symmetry the correlation
coefficients of the underlying distribution are zero. Also, from

(1.10), =0 if j % j'. Thus the expressions for s Js
n

i3

and Qo are similar to those for the univariate case. It is easily

shown that (8.2) is valid in this case also.

In the above two cases, ey was found to be independent of
the regression constants, zn . In more general cases this is not
necessarily true and the choice of gn may be crucial in determining

the validity of the estimates. This gives rise to a further problem -
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~

that of designing the experiment so as to make En as ''good" as

possible, i.e. to make e; as large as possible.

8.3 Examples of score functions satisfying (6.1).

The score function for a signed rank statistic is derived
from a symmetric distribution function, G, by the relation

(8.3) ) = -’16 D /g6 ED)]

where G'(x) = g(x), provided G is stromgly unimodal, i.e.

-g'(x)/g(x) is monotone nondecreasing.

Hajek (1962) showed that certain one sided tests based on
such rank scores are asymptotically uniformly most powerful when the

underlying distribution is G.

Some examples are given in table I where v(u) satisfies
conditions (6.1). Note that in examples 2,4, and 3, Y(u), v' (),
and V"(u) are bounded on [0,1]. In example 3, the same is true if
1/2 < a < 3/4 or if a = 1; in fact, if a = 1, the Wilcoxon scores
are generated. If 3/4 < a < 5/6, y(u) and y'(u) are bounded but

¥"(u) is not, however (6.1) 1is still satisfied.

It is of interest to note that if G(x) has compact support,
is four times differentiable on its support, and its density, g(x)

is bounded away from zero on its support, then ¥(u), ¥'(u), and
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y"(u) are all bounded. The distributions in examples 2 and 4 satisfy

this property. Example 1 gives the sign score if a = 1.
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APPENDIX

Let VA(f) denote the total variation of £ . over the set
A c [-=,»]., For simplicity write V(£f) to denote V[_cp w](f). This
3>

agrees with the notation at the beginning of Chapter VI.

Lemma Al:

Let F:p and T be defined as in - (5.2), and (5.3) wheve

F., <& econtinuous. Then

1

% *
sup V{E[Fn ('E,|XI)—F (£,|XI)]2 < 2/n
£€Eq P

Proof:

It follows from (5.2) and (5.5) that

WElF, (6 xD)-F (g [x1%)

| A

_?-n ) v
ZV[O,Q]{(np) izl var[jgl {I(IYij-ﬁijgljg)—F(x+§ij£)

+ Fl-xrgy ) 1

| A

4/n  independently of k. Hence result follows.



127.

Corollary Al:

%* % 2
sup  sup E[F_ (&, |x])-F (£,]x[21° < 2/n
~o< <o gaEq P

Proof:

* %
Since E[an(g,w)-F (,E,w)]2 = O, the result is a direct

consequence of the above lemma.

Lemma A.2:

If g(x) <& an absolutely continuous function of bounded

variation, then lim V[g(xte)-g(x)] = 0.
e+0

Proof:

Since g(x) is of bounded variation,
¥ >03 M=m-123 V[-M M][g(x)] > V[g(x)] - §/12. Thus, if
H

€ < 1, Vig(xte)-g(x)] < §/3+V m][g(x+€)--g(x)]. Now, there is a

[—m’

set of real numbers {ai} where -m = a <8 <..< a =n so that

n

V[_m’m][s(r*'%:)-g(x)] <8/3 + kzl lg(ak-i-e)—g(ak)-g(a.k_l+e)+g(ak_l)|

Since g is absolutely continuous, € may be chosen 3% real a,

v o(x) < 8/4n if 0 < n < e . Using this fact together with the
[a,a+ 7] —

above inequalities, it is seen that Vg(x+e)-g(x)] < 6 provided ¢

is sufficiently small. This implies the result.
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Lemma A3:

If Fl(x) i8 absolutely continuous, and (1.6)-(i7) and

(222) are satisfied, then,

* *
1im sup V[F (£,|x])—F (Q,le)] = 0,
n>o EeVn(a)

Proocf:

* * n E
From (5.5), VIF (&,[|x[)-F (9,|x[)] < (2/ap) ] .
1=l §=1
{V[E_l_(k+éij$)—fi_(x)]+V[§_(_*P’§£j£)—§_(-x)]' It follows from (1.6) that

lim max sup lﬁ_ j,t\:'l = 0. Thus it follows from lemma A2 that the
e 1,j teV (a)

T 'n
R.H.S. of the above inequality tends to zero uniformly for f e Vn(a)

as n increases.

Corollary A3:

* *
lim sup sup |F (,E,Ix])—F (Q,|x|)| =0 .,
e —e<x<® ,EeVn(a)

Lemma A4:

Let eonditions (1.6)-(ii) and (ii2), (5§.1)-(Z), and (6.1)

be satisfied. Then

1 o * _ np. * -
Un  suwp VIV F (8, 2D I-vig g F (@, [xD1Y = 0
v
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Proof':

N p
. o
Given € > 0, let N > 0 be Slw(w)—xp(l)] < elh.
*
Now F (t,|x|) is absolutely coatinuous in x since F (x) is
absolutely continuous. Then, from the continuity of ¢ and

corollary A3, 3 N No, n>0,and A>03 1if n > Nl

l>

sup F(t,A) <1-n
gevn(a)
(A.1)
*
sup  |W[=2E- F (£,0)-p(L)] < e/2
&eVn(a) aptl v )
Using the notation of (5.24), i.e. E;p(g,]x]) = G%EI F*(E’lxl)’

it follows, in view of (A.l) and the monotonicity of ¢ , that
(a.2) VIVIR (8, [xDDI-vIR (0, [x[)11

< Wpo o VIR s 1D I-VIR Q. [x)]} + ¢
Hence, it is sufficient to prove that the first term on the R.H.S.
of (A.2) tends to zero as n increases. For simplicity this

term will be denoted by YA .

Let w(4) denote the set of all finite partitions {xi}
of [0,A], where O = I e <x = A and max Ix ~X._

From the definition of total variation, one sees that
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m

Uy " S Y IR (o )= (B (@5 ) 19 IR (o, 191, R, 1]
o O WIE (5 18Ry (o, D] B (Box )R (6, )
m(a) =l Ko (6% 0K (Box ) X X1
_ w[Knp(,str)]-w[Knp(Q,xr_l)] . Kng('q’xr)-Knp(’Q’xr—l) |x . l
XX, r Tr-1

Knp (,9 sxr) —Knp (,Q ’xr-l)

where the quotients are defined to be zero .if both numerator and
denominator are zero. Using the mean value theorem, there are real

numbers . {ar,sr,yr,ér:r-l,...,m}, all in (0,1), so that

m
- np ' %1 ot *! . -
VA :?f) np+l rgl lv (eli'-‘)F (5’A1r) v (GZr)F (3\5’>‘2r)I Ixr xr—ll

where

n * *
8., = ——IL-[arF (£,% )+(1-a )F (5%, ;)]

4 lr npt+l

- P (1
>‘21' np+l [Brx£+(l Br)xr—l]
ws

e8P —~ YE
Oor = Tptl [y F (Q,x )+ (1-y JF (9-%__;)]

\ - BB -
A2r ap+l [err+(l Gr)xr-ll

Thus

= , *! *?
(A.4) vycsup ) LTI F (52 0-F Qa2
w(A) =1

) ) *! ) * 1
S VA I ST CINRT b AR VR I L] AK CPUR B LR P
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*
-F (£,Alr)l}|xr—xr_1|.

To prove the desired result, i.e. that VA >0 as n -+ x, it will be
sufficient to prove the following: ¥ > 0, 3A >0 and N> 03 Vn>N

and all partitions w(a) = {x_:0sz<m}

*1 %1
(A.5) sup sup |F  (£,A,_)-F (Q,A, )| < ¢
Eevn(a) m(A) vl & 2z

(A.6) sup sup |v'(e, )-yp' (8 )l < g
£ev_(a) w(a) 1= 2x

* %
(A.7) sup sup ]F (0,2, )-F (&,A )l < g
tev_(a) w(d) v 1z
n
That the above three inequalities are sufficient follows from (A.4)

* 7
and the facts that both sup Y'(x) and sup F (Q,le) are
xe[0,1] xe (—=,)

finite, which follow from (6.1), (5.1)-(i), and (5.5).

Proof of (A.5):

Using (5.5), the mean value theorem, and the fact that a partitiomn
in 7w(A) has norm at most 4 , it follows that

e U *1 * 7 %1 %'
17 (A -F (@A, 0] = [F (5aA  D-F (82,0 | + 1F (82, 0-F @301 <

2 sup |F"(x)|[A+max sup léijgl]' Since A can be chosen
—oCx <o i,3 gevn(a)

arbitrarily close to zero, and by virtue of (1.6)-(ii) and (diii),

max  sup lﬁijgl + 0 as n > «, the above inequalities imply (A.5).
i3 ,Esvn(a)
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Proof of (4.7):

Similar to the proof of (A.5).

Proof of (A.6):

Application of the mean value theorem, the fact that

* %
) < F ((E,A), ] < F (,E,A), and (A.1), if =n > Nl (defined before

1r 2r
(A.1)), then for some v, between elr and le’

[0t 0, 0-u' @, ) = [¥"Gu- (0, —8,0] < sup [¥"Ga]- sup
1r 2r r lr "2r 0<x<1-n &evn(a)

lmax le, ¢ opl+ Now, scrutinmy of @, and 6, defined in (A.3)

<T<m

reveal that sup max ]elr—lel can be made arbitrarily small
,EsVn(a) l<r<m

as long as n is sufficiently large, and A is sufficiently small.

This completes -the proof.

Lemma A4.5:

If conditions (1.6)-(it) and (222), (5.1)-(¢) and (6.1)

are satisfied, then

1lim sup sup ['5__(t |x|)-§ 0,|x])| =0
o mexgm gV () PP P

where ﬁ_np ig defined in (5.3) and (5.2).

Proof:

Using (5.3) and (5.2), it follows that
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]H (t E3D) H (0 |%[)] < sup ¥'(w)- EIF (t E3P) F (0 |%[)] . Now
O<u<l

¥e>0, JN> 093 V¥n>N, max sup Iisijtl < ef[4 sup P'(u) -
i,3 ,\t‘eVn(a) O<u<l

sup Fi(x)] =€, say. Then (5.2) implies that

-0 XL
% * %
an(g,lxl-el) < rnp(g,lxl) < anQg,lx]+sl) VieV(a) and

x ¢ (~==,»), provided n > N. Hence,

|5, e |=|)-B (0 x| < 0332¢ y' (u)E{F Q> | x| +e - an(g »|x|-e )}

<4 sup Pp'(w) - sup Fi(x) sey =€ if n > N.
0_<_u§_l —00g X <D

Hence the result follows.

Lemma A.6:

If conditions (1.6)-(i2) and (i), (5.1)-(2), and (6.1)

are satisfied, then

(z) ¥ > 0, x ¢ (—=,=),

0< H o (&> |x|+e) - B (:,lxl) <2 sup ¥'(u: sup Fi(V)
O<u<l —0 < <o

ap (62 2> < [1-F (g, ]x]D)1 sup ¥’ (w

(¢2) 0 < (e
O<u<l

p+l

Arguments similar to those of lemma A.5 are used and thus

the details are omitted.
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Lemma A.7:

If conditions (1.6)-(id) and (i), (5.1)-(2), and (6.1)

are satisfied, then

lim sup  VIE__(t,|x|)-H__(9,|z[)]1 =0
we teV_(a) T " ap

Proof:

From lemma A.6 - (1), ﬁnp(g,lxl) is monotone nondecreasing

and continuous in ]x] . Further, it is a consequence of lemma A.6 - (41)

that Ve > 0,3JA> 0, n >0 and N> 03 V¥n >N,

%
F (,Q,A) _<_ 1 - n
(A.8)

H, (0,4) 2 v - e/12

Hence v[an(,E,lxl)-an(,g,lxl)] = 2[4 A [an(,s,x)—an(g,x)]

+ 2V o [Enp(£,|x])—-ﬁnp(g,]xl)]- By the monotonicity of ﬁnp(,g,lxb,
the choice of A, and lemma A.5, it is evident that
ZV[A"»][an(,s,lx])-an(QJxl)] < ¢ provided n is sufficiently
large. Thus it is sufficient to show that

(A.9) lim sup V [H (t,x)-H__(0,x)] = 0O
) ,Esvn(a) [0,A] "np v mp v

where A satisfies (A.8).
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Let w(An) be defined as in the proof of lemma A.4. Then,

in view of (5.2) and (5.24), if An > 0,

o
(5’3)—an(9’x)] = sup ) IE(Dnr(g))l, where

[ v
[ w(An) =l

0,4) (Bnp

(4.10) {

Dnr (E) - \U [Knp (,E 9xr) ] - ‘«P [Knp (,.s ’xr—l) ] - \P [Knp (,str) ]

\
+ w[KnP(Q,xr_l)]

and {An} is any sequence of positive real numbers. A routine

calculation leads to

m m
rgl IE(Dnr(£))l N rzl lE{ur[Knp(s’xr)-th(ﬁ’xr—l)]
(A.11)
+ Vr[Knp(E’xr)‘xnp<£’xr-1)'Knp(Q’Xr)+th(9’xr-1)]}|
where

i} w[Knp(g,xr>1-w[Knp(5,xr_1>] _ lenp(Q,xr)]-w[th(Q,xr_l)]

T th(g,xr)-th(g,xr_l) th(g,xr)-th(g,xr_l)

u

v = 4‘ [Knp (,Q 9xr) ]-‘J) [Knp (2 ’xr—l) ]
r Knp(g,xr)—Knp(Q,xr_l)

By the mean value theorem there is {ar,Br:r-l,...,m}, all in (0,1

so that
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lu | = |¢'[°rKnp(5’xr)+(l’“r)Knp(£’xr-1)]

- '8 K,(Q,x )+ (I-B IR L (Qux, )]

and in view of (5.24), and mean value theorem

*
lu_| < min {2 sup ¥'(x), sup ") | {]|a_[F__(E,x.)
r O<x<l ’ O<x<d rap

- F () 1 ma OE (i _)F (5 )]

% * % %*
+ B IF (0% )-F Qx| + o F (£,x )+(1-0 ) F (£, )

% %
- BrF (Q,xr)-(l—er)F (,Q,xr_l)l}}

*
where d = sup F ((E,A).
,Eevn(a)

*
It follows from (A.8), corollary 5.3, and the absolute continuity of F

that ¥e, > 0,3N; >0 Pn[df_l—n/ZJ >21-g provided =n > N;, and

hence that ¥ > 0, 3N > 0 9 ¥%¥n > N, P_[ max sup ]ur|>e:] <e
l<z<m teV _(a)

provided =n > N, and {xr:r-l,...,m} € ﬂ(An) where the {An} are

sufficiently small. Therefore

m
(A.12) :21 |E{ur[xnp(g,xr>-xnp(5,xr_l)]}I

o * * }
hl E{rgllurl [an("\:-’xr)-an('s’xr—l)]

2 * *
< E{ ) |u_|[[F__(t,x )-F__ (&% __ )1] max  sup |u_|<e}
=] © TPV T TP v r-1 1<r<m ’Eevn(a) r

« P_[ max sup lur|<e}
1<z<m  teV (a)
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> %* %*
+E{ ] |u |[F__(£,x)-F_ ( x__,)]} max sup |u_|>e}
re=l * np('v’ =’ ap 8- lar<m  keV (@) £

« P_[ max sup Iur|_>_s}
l<z<m teV (a)

< 2 if {xr:r-l,...,m} £ -n'(An) and n > N.

Now let us consider the second term on the R.H.S. of
(A.11). After some computation requiring cozollary 5.3, it follows that

*
¥e > 0, N> 09 Pn[ max ]vr-w'[F (,Q,xr)]|3_s] < e provided n > XN
l<r<m

and {xr:r-l,...,m} € v(An) where {An} are sufficiently small.

After some computation which involves corollary 5.3 and

(5.24), it follows (similarly to (A.1l2)) that

m
(A. 13) rzll E(v, [R (8% )R (Ex 1)K (Q:x MK, (Qsx,_1)13]

* *
< sup P&V, [F (£,x)-F (9,%)]

+ 2E[VIF, (£:3)-F, (0011}

In view of lemma A.3, the above expression can be made arbitrarily

small if n is sufficiently large.

Substitution of (A.13) and (A.12) into (A.1ll) yields

m
1im sup I |E(@__(£))| = 0 provided {4 } axe sufficiently small.

e w(An) r=] .
Thus it follows from (A.10) that (A.9) is proved and the proof is
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complete.

The following lemma is similar to lemma 3.1. It is an
extension of lemma 2.1 of Hajek (1961). Let {Uij:i-l,...,n;j-l,...,p}

be random variables, independent for different i. Let
(A.14) P(Uilggl,...,Uipggp) - F(xl,,..,xp)

where the marginal distributions of F are uniform on [0,1]. Also

assume P[Uij-uij'] = 0 to avoid ties with probability omne.

Let R,, = rank of Uij in the joint ranking of the

ij
{Uij:i-l,...,n;j-l,...,p} . Let Zl,...,an be the ordered
\ ] . -
Uij s @ Z1 < z2 € eee < an. Hence Za Uij if the rank of
Uij is a .

Let al,...,anp be a nondecreasing sequence of real

numbers, and define

a(d) = a, for (i-1)/mp < A < i/mp (1<i<np)

i

Note that a; = a(i/ap) = a(i/(ap+l)). Then

Lemma A.9:

- -1 2
Under the above mentioned conditions, if a = (up) 1 )) a,,
am]l

then



- up -
Ela(V,)-a®y /ap)] < 2p*/? max |aE] [ ] (a DA

l<i<np a=l
Proof:
. Using conditional expectation,
2 P 2
E[a(U;,)-a(R,,/op) ] = agl E{ [a(Uy )Ry, /ap) 17 |R  =a} -
{P(Rll-aIle-a for some j = 1,...,p)-P(le-a for some
Now P(le-u for some j=1,...,p) = n_l since the random vectors

(Uil""’Uip)’ i=l,...,n are di.i.d. Now let

P(Rly-u|R1j-a for some J=l1,...,p) = Ty * Then,

2 oP 2
The remainder of the proof closely follows that of
lemma 2.1 of HEjek (1961) and hence the details have been omitted.

At one point, the inequality E(K—-k)2 < pk(1l-k/np), where

n
K= Z E I[Uijfk/np], is needed. This can be verified by direct
im1 =1

calculation.
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