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Abstract

Most current models for the deposition of aerosol particles in the human lung

are based on a Lagrangian reference frame, which is ill-suited for modeling

transient effects. Deposition models based on an Eulerian reference frame are

much better at capturing instantaneous time-dependent effects, though they

are difficult to create. In the interest of developing such models, mathemati-

cal techniques were used to describe the velocity fields of simple particle flows.

Analytic expressions describing the time-dependent flow of particles through a

curved pipe were created and implemented numerically. The numerical simu-

lations were used to determine which flow regimes required the use of Eulerian

modelling for deposition prediction.



Preface

This thesis comprises six chapters. Chapter 1 outlines the current state of lung-

deposition simulations and describes the motivation for creating an Eulerian

framework for deposition. Chapter 2 describes attempted solution methods

that were unsuccessful. Chapter 3 describes the method that eventually suc-

ceeded and the derivation of the primary analytic solution. Chapter 4 demon-

strates the numerical implementation of the successful method. Chapter 5

describes and discusses the results and validation of the numerical simula-

tions. Finally, chapter 6 contains conclusions and potential next steps of this

work.
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1
Introduction

1.1 Background and Motivation

1.1.1 The Utility of Lung Deposition Simulations

The study of inhaled aerosols is very important because of the significant

impact, both positive and negative, that they can have on human health.

Many dangerous aerosols are present in industrial environments, and some can

even be found in residential environments (e.g. asbestos). But aerosols can

also be helpful; the field of pharmaceutical aerosols is continually expanding

because of the benefits this method of drug delivery has compared to others
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Chapter 1: Introduction

such as injection and ingestion [3]. These benefits include safety, convenience,

and rapid efficacy.

For both harmful and helpful aerosols, an accurate method of determining the

fraction of an inhaled aerosol that actually deposits inside the respiratory sys-

tem is very important. For harmful aerosols, this fraction combined with the

known toxicity of a given material can be used to determine safe exposure lev-

els. For medical aerosols, the efficacy of the treatment depends on the amount

of drug delivered, so a fairly accurate prediction of this amount is required

to prevent under- or over-dosing, either of which could be quite harmful to a

patient.

Performing experiments to calculate aerosol deposition, either in real humans

or using human respiratory system analogs, while feasible, can be difficult,

costly, and time-consuming. An alternative solution is to predict deposition

using mathematical models which are solved numerically. Such models can be

based either on empirical observations from the aforementioned experiments,

or on the physical laws governing the motion of particles in respiratory flow.

The latter is preferable because the resulting models will be more generalized,

though likely less accurate for a given specific case [4].

If a model can be created which accurately predicts deposition as a function of

case-dependent variables such as particle size and density, lung geometry, and

inhalation flow rate, such a model could be used with the new generation of

aerosol inhalation devices to create a simple, safe, and effective way of treating

a wide variety of diseases.

1.1.2 Eulerian Versus Lagrangian

Most existing aerosol deposition models use a Lagrangian reference frame in

which the coordinate system follows a cloud of particles as it moves through

2



Chapter 1: Introduction

the respiratory tract. The primary advantage of this type of reference frame

is its ease of implementation in numerical code. Usually, models of this sort

are steady state; this is because it is very difficult to capture time-dependent

effects using a Lagrangian reference frame [5]. Since respiration is transient by

nature, some degree of error will result from these simplified models. For slow

breathing cases this error may be negligible, but for high-acceleration cases

such as inhalation through a jet nebulizer the error may be significant.

The alternative to the Lagrangian reference frame is the Eulerian reference

frame in which the coordinate system is fixed to the respiratory tract geom-

etry and the inhaled particles move through it. This type of reference frame

is harder to implement, but it is inherently well-suited to modelling tran-

sient effects. There are some deposition models available which are based on

an Eulerian framework, such as [6], [7], and [8]. These models predict deposi-

tion by solving a time-dependent transport equation which determines particle

concentration throughout the lung, allowing them to accommodate transient

boundary conditions and to predict instantaneous deposition rates within each

lung generation. However, the underlying terms representing the physical de-

position phenomena which make up the transport equations are not themselves

transient, meaning that the time-history of the particles is neglected and in-

ertial effects are lost. A model with a fully transient basis is the eventual goal

of this project.

1.1.3 A Pseudo-Eulerian Method

The present work builds on that of [9], in which a more detailed discussion of

current lung deposition models can be found. The goal of that work was to

create a numerical conversion scheme which could be used to adapt standard

Lagrangian deposition models to an Eulerian framework. Two such schemes

were tested. The results were partially successful for the deposition mechanism

3



Chapter 1: Introduction

of sedimentation. In the end, this approach is more Lagrangian than Eulerian;

it allows for the calculation of instantaneous deposition rate, but still does not

account for the time-history of the particles and thus cannot properly model

flow acceleration.

1.1.4 One-Dimensional vs. Three-Dimensional Models

The model that the present work contributes to will be of the simplified one-

dimensional (1D) type that has existed for several decades. The examples of

Eulerian models given above belong to this type. A more modern alternative is

to model deposition using three-dimensional computation fluid dynamics (3D

CFD) simulations. This approach is gaining popularity with the increasing

power and decreasing cost of computer processors. The relative merits of 1D

models such as [10], [11] compared to 3D CFD approaches such as [12] are

discussed in Byron [13]. Byron concludes that CFD models are quite useful

for revealing localized deposition behaviour and can be especially helpful in

individualized cases such as targeted medication for a specific person’s lung

geometry. However, due to their high computational cost and lack of gen-

erality, CFD models cannot yet replace 1D models in the “development of

nonindividualized aerosol drug delivery”.

1.1.5 Goals

The present work sought to create a generalized Eulerian deposition model

which utilized transient, fully analytic mathematical expressions based on

physical laws. A full deposition simulation model is quite complex and large

in scale, so simplified geometry was used and focus was given to deposition

by inertial impaction. Impaction is the dominant effect for larger particles

and is of particular importance in the mouth-throat region; thus, most of the

4



Chapter 1: Introduction

modelling considered heavy particles depositing in a curved pipe, which can

be used as a rudimentary representation of the throat. Deposition also occurs

by sedimentation due to gravity and diffusion due to Brownian motion, but

these phenomena are less sensitive to transient effects and thus can be fairly

well represented by Lagrangian models.

Since the solution of transient analytic equations in one or more dimensions

is often difficult or even impossible, some simplifications were required to pro-

ceed. For this reason, rather than attempt to produce exact, accurate ex-

pressions for particle deposition, this work instead tried to merely identify

functional forms for deposition. These forms could be modified using some

number of fitting parameters to fit numerical and experimental results to cre-

ate an analytic predictive model. The main advantage of such a model is that

it is based on physical laws rather than being purely empirical, and thus it

should apply to a wider variety of flow cases.

1.2 Methods

1.2.1 The Continuum Approach

The original approach taken to solve particle flow behaviour involved treating

the aerosol particles as a separate continuum overlapping the fluid continuum.

Simple geometries were used for the fluid flow, such as a perpendicular jet

impinging on a flat wall and flow past a triangular wedge. These cases are

roughly representative of flow passing from the mouth to the throat and the

flow past a bifurcation in the lung, respectively. In this approach, the drag of

the fluid on the particles creates a force vector field which, along with boundary

conditions for the particle flow, was used to solve simplified versions of the

Navier-Stokes functions with the goal of producing velocity and concentration

5



Chapter 1: Introduction

fields for the particles. Though this approach can be successful for simple

cases, it ultimately proved unfeasible for flows with two spatial dimensions

and a temporal dimension on any sort of useful geometry. Thus, the decision

was made to switch to a single-particle approach.

1.2.2 The Single-Particle Approach

The alternative to an entire field of particles is to consider one particle at a

time. The same known fluid flow fields can be used, and the same expression for

the drag force, but instead of the Navier-Stokes equations, one or more PDEs

are created with the direct application of Newton’s second law. Solution of

the PDEs yields a particle trajectory function which depends on time, initial

conditions, and the fluid flow function. The trajectory function can be applied

to a group of particles numerically and deposition determined, or the function

can be combined with an appropriate geometric function to create an analytic

deposition function.

6



2
Solution Attempts:

The Continuum Approach

Initial attempts to solve particle motion in a fluid used the so-called “contin-

uum” approach, in which the aerosol particles were treated as a second separate

continuum overlaying the fluid continuum. With this method, particle-fluid

interactions are represented by a force vector field, and particle behaviour is

fully described by a vector field of particle velocity and a scalar field of particle

concentration. Such an approach is inherently Eulerian.

Simple geometries were studied using this approach: first, a particle-laden jet

impinging on a flat wall, which is representative of the flow through the mouth

hitting the back of the throat; and later, flow past a wedge, which is repre-

7



Chapter 2: Solution Attempts

sentative of any of the bifurcations in the lung. It was hoped that relatively

simple particle flow fields could be obtained by solving the the differential

equations describing these cases, which would then be extended to deposition

models utilizing more realistic lung geometry.

Unfortunately, the continuum approach requires the use of the Navier-Stokes

equations to describe particle motion, which are inherently difficult to solve

even in simplified cases. The requirement of the additional time-dimension

for the purposes of this work made the solution on any sort of useful geome-

try impossible beyond crude approximations. It was for this reason that the

continuum approach was eventually abandoned. Two techniques used in this

approach are described below.

2.1 The Perturbation Method

The perturbation method of solution of a differential equation involves iden-

tifying the dominant terms of the equation, eliminating the non-dominant

terms, and solving the resulting simplified equation [14]. This creates a base-

line solution to which a number of correction terms are added depending on

the level of accuracy desired. The first correction term is found by substituting

the baseline solution back into the original equation, and then solving a new

equation created by the next-most dominant terms, and subsequent correction

terms are found by repeating this procedure. The following section gives an

example of this method being applied to the particle flow problem.

8



Chapter 2: Solution Attempts

2.1.1 Application of the Perturbation Method to Sim-

plified Navier-Stokes Equations

For continuum particle flow, the Navier-Stokes equations are simplified as

follows: viscous and pressure forces are represented by a drag force term,

and all body forces are neglected. For small particles, Stokes’ Law can be

used to model drag force as a constant coefficient of drag multiplied by the

difference between the fluid and particle velocities. The PDE is thus

ρc

(
∂~v

∂t
+ ~v · ∇~v

)
= KD(~w − ~v) (2.1.1)

where ρc is particle mass concentration, ~v is particle velocity, KD is the coef-

ficient of drag, and ~w is the fluid velocity. The particle mass concentration is

calculated as the multiple of the number of particles per unit volume multiplied

by the mass of a single particle.

For this example, the case of steady stagnation in-plane flow is used, which is

a simplified form of the impinging jet in two dimensions. Near the stagnation

point, the fluid velocity in the x- and y-directions can be approximated as

wx = cx and wy = −cy respectively, where c is some constant. The PDE

becomes

ρc

(
u
∂u

∂x
+ v

∂u

∂y

)
= KD(wx − u)

ρc

(
u
∂v

∂x
+ v

∂v

∂y

)
= KD(wy − v)

Here the PDE has been separated into its x- and y-components, with u being

the particle x-velocity and v the y-velocity. Now, to begin using the perturba-

tion method, the dominant terms of the equations must be identified. The LHS

of the equation represents the inertia of the particles; this term is dominant

for relatively heavy particles. The RHS represents the drag force; this term

is dominant for relatively light particles. Heavy particles are assumed for this

example; thus, the LHS is dominant and the coefficient of drag is assumed to

9
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be relatively small. The following forms are assumed for the particle velocity

solutions:

u = Φ0 +KDΦ1 +K2
DΦ2 + ...

v = Ψ0 +KDΨ1 +K2
DΨ2 + ...

The zeroth order equation is created by substituting these forms into the PDEs

and gathering all of the terms of order O(KD)0. The zeroth order system is

Φ0
∂Φ0

∂x
+ Ψ0

∂Φ0

∂y
= 0

Φ0
∂Ψ0

∂x
+ Ψ0

∂Ψ0

∂y
= 0

The solution to this system is

Φ0 = c1

Ψ0 = c2

where c1 and c2 are constants. The x-velocity boundary condition at the

particle jet outlet is u = 0, and the y-velocity condition is v = −V = −cY ,

where y = Y is the location of the jet outlet (thus c = V/Y ). These conditions

must be satisfied by the zeroth order components of the velocity solutions, thus

Φ0 = 0

Ψ0 = −V

To solve for particle concentration, the conservation of momentum equations

must be supplemented by the continuity equation:

ρc

(
∂u

∂x
+
∂v

∂y

)
+ u

∂ρc
∂x

+ v
∂ρc
∂y

= 0 (2.1.2)

Assuming a similar form for the concentration function as for the velocity

functions and applying the same procedure, the zeroth order concentration

solution is

η0 = P

10



Chapter 2: Solution Attempts

where P is a constant representing the particle concentration at the jet outlet.

A constant was chosen for simplicity, but a function of x would also have

satisfied the PDE. Next, the PDE terms of order O(KD)1 are gathered; after

substituting in the zeroth order solutions, they are

− V P ∂Φ1

∂y
=

V

Y
x

−Y P ∂Ψ1

∂y
= −y + Y

P

(
∂Φ1

∂x
+
∂Ψ1

∂y

)
− V ∂η1

∂y
= 0

The solution of these equations is

Φ1 =
x

2P

(
1− y

Y

)
Ψ1 =

y

P
−
(
y2 + Y 2

2Y P

)
η1 =

3Y

4V

[
2y

Y

(
1− y

2Y

)
− 1

]
Further correction terms could be calculated, but they are unnecessary since

all terms in the original PDE have now been accounted for. Figure 2.1 shows a

sample plot of the particle paths given by Φ0 +KDΦ1 and Ψ0 +KDΨ1 overlaid

on streamlines of the fluid flow. The solution is physically reasonable; the

paths begin with the inlet velocity and deviate somewhat due to fluid drag.

The amount of deviation depends on KD and P . The concentration solution

generated is somewhat less useful since it depends on y alone; a solution that

also depends on x could have been generated by defining η0 = P (x) instead of

the constant P .

This solution shows the potential of the perturbation method; however, as

mentioned above, the addition of the third dimension makes the transient

versions of these PDEs too complex to solve using this method.

11



Chapter 2: Solution Attempts

Figure 2.1: Plot of the solution generated by the perturbation method for a steady

two-dimensional case of impinging jet particle flow; fluid streamlines are shown in

blue and particle paths are in red.

2.2 The Variational Iteration Method

The variational iteration method (VIM) was originally proposed in [15]. To

quote He, the method was created “to solve nonlinear partial differential equa-

tions without linearization or small perturbations.” The method is similar

to perturbation theory in that successive correction terms are applied to a

baseline solution. Rather than being based on sub-dominant terms, the cor-

rections are instead calculated using an integral formula that is constructed

using a problem-specific Lagrange multiplier. The steps of this procedure are

illustrated in detail using an example in the next section.

12
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2.2.1 Application of the Variational Iteration Method

The following example from [15] illustrates the procedure of the VIM. The

ODE to be solved is

dy

dt
+ y2 = 0, y ≥ 0, y(0) = 1

The VIM correction equation for this ODE is written as

yn+1(t) = yn(t) +

∫ t

0

λn

[
dyn(τ)

dτ
+ yn

2(τ)

]
dτ (2.2.1)

where yn is the old solution approximation, yn+1 is the new solution approx-

imation, λn is a general Lagrange multiplier, and the independent variable t

has been replaced with the integration variable τ in the integral on the RHS.

The selection of an appropriate Lagrange multiplier, which may change at each

iteration, is the key to the successful application of the VIM. To determine λn,

first make the following substitution in the correction equation:

yn(t) = ye(t) + δy(t)

Here, ye is the exact solution of the ODE and δy is the correction function

that must be applied to the current approximation to obtain the exact solution.

The correction function is chosen such that it is stationary at t = 0, meaning

that δy(0) = 0. With this substitution Equation 2.2.1 becomes

yn+1(t) = ye(t) + δy(t) +

∫ t

0

λn

[
dδy(τ)

dτ
+ 2ye(τ)δy

]
dτ (2.2.2)

where the definition y′e + ye
2 = 0 has been used and the δy2 term neglected

under the assumption that the correction function is small. Now, the goal

of the correction is to have yn+1 = ye; consequently, λn should be chosen to

minimized all of the terms of the RHS of Equation 2.2.2 after the first. It is

not immediately obvious what form λn needs to take, since the character of δy

and its derivative is unknown. To remove one of these unknowns, integration

13



Chapter 2: Solution Attempts

by parts is applied to the first term in the integral of Equation 2.2.2, yielding

yn+1(t) = ye(t) + δy(t)

[
1 + λn(τ)

∣∣∣∣∣
τ=t

]
+

∫ t

0

δy(τ)

[
2ye(τ)λn(τ)− dλn(τ)

dτ

]
dτ

From this equation, the optimum form of λn is apparent. It must satisfy the

ODE

dλn
dτ
− 2ye(τ)λn(τ) = 0

λn(t) = −1 (2.2.3)

Since ye is unknown, it is replaced with y0. The solution of Equation 2.2.3 is

λn(t, τ) = −e2
∫ τ
t y0(η)dη (2.2.4)

With the Lagrange multiplier known, only the initial solution approximation y0

is required to solve the correction equation. Obviously the initial guess should

be as close to the exact solution as possible under the circumstances, but the

only restriction placed on it by the VIM is that it must satisfy the boundary

condition(s) of the original ODE. This is a result of the correction function

δy being defined as stationary at t = 0. In this case the BC is y(0) = 1. A

very simple first guess of y0 = 1 is chosen first; if this is unsuccessful, a new

function can be tried. This makes the first Lagrange multiplier

λ0 = −e2
∫ τ
t y0(η)dη = −e2(τ−t)

Substituting λ0 and y0 into Equation 2.2.1 and solving gives

y1 =
1

2

(
1 + e−2t

)
Repeating the correction integral with y1 in place of y0 gives

y2 =
1

2

(
1 + e−2t

)
+

1

2
te−2t − 1

8

(
1− e−4t

)
The correction can theoretically be applied as many times as desired, and the

accuracy of the approximation should continue to improve if the Lagrange

14
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multiplier was chosen correctly; however, the integrals will quickly become

quite complicated. Since the exact solution to the example ODE is known,

it can be compared against the approximations produced by the VIM. This

comparison is shown in Figure 2.2. After just two iterations, the approximation

is very accurate in the neighbourhood of t = 0, which shows the potential of

this method.

Figure 2.2: The exact solution of the VIM test case ODE is compared to two levels

of the approximate solution.

After trying several applications to some simplified Navier-Stokes equations,

it was determined that the VIM is best suited to equations of only one depen-

dent variable. With two spatial dimensions plus time, three equations must be

corrected. This raises issues of which approximation is corrected first, whether

new corrections are included in the correction of other equations, and so on.

The end result is a huge number of possible combinations of Lagrange multi-

pliers, 0th order function approximations, and solution orders. This leads to

a method that is more about subjectivity and trial-and-error instead of the

15
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strict rigorousness that is desired. As a result, this method was abandoned for

use in the solution of the Navier-Stokes equations. The VIM is recommended

as a potential technique for transforming a steady-state solution of a parti-

cle velocity or density field into a transient solution, which only requires the

correction of one variable.

16



3
A Working Solution:

The Single-Particle Approach

It is simpler to solve the equations of motion of a single particle and extend

the solution to a collection of particles than to solve the equations for all of

the particles at once. Although this approach is Lagrangian in nature, the

resulting particle path functions can be adapted to an Eulerian framework

and used to create velocity and concentration field functions.

In order to solve single particle motion, a soluble equation must be formulated

which relates the motion of the particle to the forces acting on it. For this

solution attempt, an equation based on Newton’s second law of motion was

used. The only other pieces of information required are expressions for the

17
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mass of and forces acting on the particle.

3.1 Formulating The Equation

Calculating the actual exact mass of a given aerosol particle is difficult consid-

ering the irregularity and variability of the shape of such particles. However,

most aerosol particles can be sufficiently accurately approximated as spherical,

which makes the mass calculation trivial. This approximation also serves to

greatly simplify the calculation of the drag force. If, however, the spherical

approximation is not sufficiently accurate, a dynamic shape factor can be used

to scale the drag force. The dynamic shape factor describes the effect the true

particle shape has on the drag force as compared to a perfect sphere. This

correction can be applied at any time, including at the final solution; simply

divide the Stokes number (seen later) by the appropriate shape factor. The

Cunningham slip correction [16] can also be applied in this way.

The standard drag force formula, in which drag is proportional to the square

of the velocity difference, could be used, but the squared velocity term leads

to a highly nonlinear equation which is quite difficult to solve. Instead, the

small size of the particles of interest in this case allowed the use of Stokes’ law

for calculating drag [17],

~Fd = 6πµ
d

2
(~w − ~u)

where ~Fd is the drag force, µ is dynamic viscosity of the fluid, d is the particle

diameter, ~w is the fluid velocity, and ~u is the particle velocity. This expression

for drag is typically valid for Rep � 1, where Rep = d(~w−~u)/ν is the particle

Reynolds number and ν the kinematic viscosity of the fluid. Typical values

of Rep for the cases considered here range from ∼ 0.01 to ∼ 0.1. Combining

Stokes’ law and the formula for the mass of a sphere with the equation of

18
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motion gives

d2~x

dt2
=

~F

m

=
6πµd

2

4
3
π
(
d
2

)3
ρ

(~w − ~u)

=
18µ

d2ρ

(
~w − d~x

dt

)
(3.1.1)

where ~x is the particle position vector and ρ is the particle density. Now,

because the equation is linear, it can be split into Cartesian components:

ẍ =
18µ

d2ρ
(wx − ẋ)

ÿ =
18µ

d2ρ
(wy − ẏ)

Here a dot above a variable represents differentiation with respect to time.

3.1.1 Non-dimensionalization

To aid in manipulation and interpretation, the particle equations were non-

dimensionalized. The following quantities were defined:

x∗ =
x

R

y∗ =
y

R

t∗ =
W

R
(t− t0)

S =
ρd2W

18µR
(3.1.2)

where x∗, y∗, and t∗ are the dimensionless independent variables and R and

W are a (constant) representative length and speed of the particular fluid flow

field being considered, and S is the Stokes number of the flow. The Stokes

number represents the ratio of the particle stopping distance to a characteristic
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length of the flow. The non-dimensionalized equations are

ẍ∗ =
1

S
(wx

∗ − ẋ∗)

ÿ∗ =
1

S
(wy

∗ − ẏ∗)

For the remainder of the thesis, all variables appearing in equations will be

dimensionless unless otherwise specified, so the asterisk next to the symbols

will be dropped for the sake of clarity.

3.2 Solving the Equation

With the particle trajectory equation defined and written in a useful form, the

only remaining step before solution was to choose a fluid velocity function.

The geometry under consideration, in this case a curved pipe, dictates what

shape the fluid flow must take. Thus, two circular flow functions were chosen:

one with constant θ-velocity at all points, and one with θ-velocity increasing

linearly in the radial direction. The former was selected as a simple first case

and the latter because it is a better representation of the actual flow in a

curved pipe. Of course, neither function includes details such as boundary

layer effects or secondary flow, which were assumed to have little effect on the

bulk particle flow. If necessary, correction terms can potentially be added to

the solution a posteriori to account for the neglected phenomena. The pipe

geometry and flow field for each of the two cases is shown in Figure 3.1. The

characteristic length R chosen for this geometry is the pipe bend radius; also

defined are the pipe cross-section radius a and the ratio Rp = R/a, hereafter

referred to as the “pipe ratio”.
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Figure 3.1: The curved pipe geometry used in the solution of the single particle

trajectory ODE; also shown shown are the two fluid velocity profiles used: constant

(case 1), and linear (case 2).

3.2.1 The Radially Constant Flow Case

For the first case, the fluid velocity field is circular with magnitude independent

of radial distance from the origin; the origin is located at the center of curvature

of the pipe. Polar coordinates were used in this case to simplify the flow field

equations. Keeping in mind that the variable quantities are dimensionless, the
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equations are

r̈ − rθ̇2 +
1

S
ṙ = 0

rθ̈ + 2ṙθ̇ +
1

S

(
rθ̇ − f(t)

)
= 0

where f(t) is a time-dependent function describing the magnitude of the θ-

component of the fluid velocity. A solution to this system of highly nonlinear

ODEs was not readily apparent, so it was instead solved numerically in order

to provide some insight into its behaviour. A plot of the equilibrium solution

revealed that it had the shape of an Archimedean spiral, which has consecutive

loops equally spaced apart. The spiral follows the relation r = C1 +C2θ, where

C1 and C2 are constants. Substituting this relation into the ODEs allowed

them to be combined into one equation:(
2 +

1

C2
2 r

2

)
ṙ2 − 1

S
C2f(t) = 0

A constant fluid velocity function (f(t) = 1) was used for the first solution

attempt along with the boundary conditions r(0) = 1 and r′(0) = 0. The

result, provided by the symbolic toolbox of Matlab, is

C2
2sinh−1

(
r√
2C2

)
+
r

2

√
2C2

2 + r2 = C2
2sinh−1

(
1√
2C2

)
+
r

2

√
2C2

2 + 1 + t

√
1

S
C2

3

For this solution to be useful, the constant C2 must be determined. This

constant determines the distance between consecutive loops of the spiral, which

is equal to 2πC2. From the numerical solution, it was determined that C2 = S.

The equation becomes

sinh−1
(

r√
2S

)
+

r√
2S

√
1 +

(
r√
2S

)2

= sinh−1
(

1√
2S

)
+

r√
2S

√
1 +

(
1√
2S

)2

+
t

S

This equation cannot be solved explicitly for r, limiting its utility. Further

analysis revealed that, over the relevant range of S, the first term on the LHS is

much smaller than the second term and can be neglected. The corresponding

term on the RHS is also neglected to preserve the boundary condition. With

this simplification the equation can be solved for r, but the result is quite
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long and complicated. The equation can be further simplified by noting that

S << 1 in most cases and thus the square root terms can be approximated by√
1 +

(
r√
2S

)2

≈ 1

2
+

r√
2S

making the final equations

r =
1

2
+

1

2

√
1 + 8St

θ =
−1

2
+ 1

2

√
1 + 8St

S

This result shows the basic form of the trajectory of a particle at equilibrium

moving through a radially constant circular flow field. It is not practically

useful, however, since it only applies to a steady fluid flow and it cannot ac-

count for different particle initial velocities. Rather than proceed with a more

complex transient case using this type of flow field, a second flow field function

was introduced which more accurately represents the actual flow profile inside

a curved pipe.

3.2.2 The Radially Variable Flow Case

For the second case, the fluid flow field is circular, has a value of zero at

the origin, and increases linearly with distance from the origin. This field is

a better representation of the real flow in a curved pipe which slows down

slightly toward the inside edge and speeds up slightly toward the outside edge

[18]. In polar coordinates, the radial velocity of this flow is zero and the

angular component is given by vθ = rf(t) where f(t) is once again some

dimensionless function of time. This velocity field is simply represented in

Cartesian coordinates by wx = yf(t) and wy = −xf(t). The ODEs for this

case are also more simply written in Cartesian coordinates:

ẍ+
1

S
(ẋ− yf(t)) = 0

ÿ +
1

S
(ẏ + xf(t)) = 0
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Since a steady-state solution was already found for the previous case, a fully

transient solution was attempted straight away for the current case. The cho-

sen f(t) must be periodic to be an accurate representation of a real breathing

pattern. A sine wave has been shown to be a good approximation of inhala-

tion through a mechanical breathing device [19], while regular tidal breath-

ing patterns approximately vary between sine, triangle, and square waves

[3]. The function used, defined first in dimensioned terms and then non-

dimensionalized, was

f(tdim) = sin

[
2π

T
tdim

]
⇒ f(t) = sin [2π (Str t+ t0)]

where tdim is the dimensioned time, T is the period of the flow,

Str =
R

WT

is the Strouhal number of the flow, and

t0 =
t0,dim
T

is a dimensionless time representing the point in the flow cycle at which the

particle entered the pipe. Note that this time is not equivalent to the value of

the dimensionless time variable at which the particle entered the pipe; in fact,

that value is always zero because of the definition used for the dimensionless

time. It is more helpful to view the dimensionless time as a measure of how

long the particle has been in the pipe rather than an indication of the absolute

time as seen by the fluid flow function.

Unfortunately, a solution was not found using this fluid function. To simplify

the equation, the sine wave function was replaced by its first order Taylor

series approximation:

f(t) ≈ f(0) + f ′(0)t

= sin [2πt0] + 2πStr cos [2πt0] t
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Or, in general, f(t) = A + Bt, where A and B are constants. This approxi-

mation is accurate for most particles due to their short residence time in the

pipe. With this form for the fluid time-function, a solution was found for the

system of ODEs. To accomplish this, the complex number s = x + iy was

defined, which allowed the two equations to be combined into one:

s̈+
1

S
(ṡ+ isf(t)) = 0

The solution to this equation (equation A.1.1 in Appendix A.1) is given by

Mathematica as

s(t) = e−
t
2S

[[
(s0 + 2SV0)Bi(C)− 2k1/3Ss0Bi′(C)

]
Ai(D)

2k1/3S[Ai′(C)Bi(C)− Ai(C)Bi′(C)]

−
[
(s0 + 2SV0)Ai(C)− 2k1/3Ss0Ai′(C)

]
Bi(D)

2k1/3S[Ai′(C)Bi(C)− Ai(C)Bi′(C)]

]
(3.2.1)

where

C =
1− 4iSA

4k2/3S2

D = C + k1/3t

k =
−iB
S

and s0 = x0 + iy0 and V0 = u0 + iv0 are the complex initial conditions. Ai, Bi,

Ai′, and Bi′ are the Airy functions and their derivatives. The real functions for

the Cartesian coordinates are recovered from this complex solution by taking

x(t) = Re[s(t)] and y(t) = Im[s(t)]. The full explanation of this procedure is
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provided in Appendix A.1. The solution is

x(t) =

e
−t
2S

2(1 + α2)9/8(1 + γ2)1/8

{
coshf1

[
2(1 + α2)1/4[(g1h1 + g2h2)x0 + (g2h1 − g1h2)y0]cosf2

+
[
g2

(√
3(2Su0 + x0)− q(2Sv0 + y0)

)
− g1

(
q(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
sinf2

]

+ sinhf1

[
2(1 + α2)1/4[(g2h1 − g1h2)x0 − (g1h1 + g2h2)y0]sinf2

+
[
g1

(√
3(2Su0 + x0)− q(2Sv0 + y0)

)
+ g2

(
q(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
cosf2

]

− 2qB2/3S4/3

(1 + α2)

[(
(
√

3α− 1)g1 − (
√

3 + α)g2

)
coshf1sinf2

−
(

(
√

3α− 1)g2 + (
√

3 + α)g1

)
sinhf1cosf2

]}
y(t) =

e
−t
2S

2(1 + α2)9/8(1 + γ2)1/8

{
−coshf1

[
2(1 + α2)1/4[(g2h1 − g1h2)x0 − (g1h1 + g2h2)y0]cosf2

−
[
g1

(√
3(2Su0 + x0)− q(2Sv0 + y0)

)
+ g2

(
q(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
sinf2

]

− sinhf1

[
−2(1 + α2)1/4[(g1h1 + g2h2)x0 + (g2h1 − g1h2)y0]sinf2

+
[
g2

(√
3(2Su0 + x0)− q(2Sv0 + y0)

)
− g1

(
q(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
cosf2

]

+
2qB2/3S4/3

(1 + α2)

[(
(
√

3α− 1)g2 + (
√

3 + α)g1

)
coshf1sinf2

+
(

(
√

3α− 1)g1 − (
√

3 + α)g2

)
sinhf1cosf2

]}
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where

f1 =
γ2 + 2γ − 1 + (γ + 1)

√
1 + γ2

6βS
√√

1 + γ2 + γ
− α2 + 2α− 1 + (α + 1)

√
1 + α2

6βS
√√

1 + α2 + α

f2 =
−γ2 + 2γ + 1 + (1− γ)

√
1 + γ2

6βS
√√

1 + γ2 + γ
− −α

2 + 2α + 1 + (1− α)
√

1 + α2

6βS
√√

1 + α2 + α

g1 =

√√√√1

2
+

1

2
√

2

√
1 +
−1 +

√
3(α + γ) + αγ

2
√

(1 + α2)(1 + γ2)

g2 =

√
3(1− αγ) + α + γ

16
√

(1 + α2)(1 + γ2)g1(g2
1 − 0.5)

h1 =

√
1

2
+

1 +
√

3α

4
√

1 + α2

h2 =

√
1

2
− 1 +

√
3α

4
√

1 + α2

α = 4AS

β = 4BS

γ = α + βt

q = Sign(B)

The next chapter describes how this solution was numerically coded for use in

particle deposition simulations.
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4
Numerical Implementation

This chapter discusses the numeric implementation of the analytic particle

path solution from the previous chapter. Three types of numeric simulation

were coded: steady-state, which has a constant fluid flow function; quasi-

steady, which also uses a constant fluid function but updates the magnitude

every time step; and transient, which uses a fully time-dependent fluid function

and calculates instantaneous deposition rate at any point in the pipe. Each

simulation is explained in detail in this chapter.

The basic principle behind particle deposition is the same for all simulations.

The particle domain is treated as a curved cylinder overlaying the pipe; any

part of the cylinder that is outside the limits of the pipe represents particles

that have deposited. The pipe is fixed in space, and the beginning of the par-
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ticle cylinder is aligned with the pipe inlet. Further into the pipe, the cylinder

diverges and warps according to the motion of the particles. Though only

inertia and drag are modelled here, this framework allows for the inclusion

of other flow phenomena; for example, diffusion could be modelled by a ra-

dial expansion of the particle cylinder based on an appropriate mathematical

equation.

4.1 Steady Flow Simulation

A steady-state version of the deposition simulation was created despite the fact

that the particle path solution is fully transient. It was created primarily for

validation purposes; other analytic solutions and experimental results for the

transient case are not available for comparison, whereas they are for the steady

case. The steady-state simulation can also be used to approximate transient

deposition results by choosing a fluid velocity magnitude that results in the

same total inhaled volume as the integrated transient case. The accuracy

of such approximations can vary wildly depending on the specific flow under

consideration.

The steady case uses a constant fluid function, which is equivalent in the

particle path function to values of A = 1 and B = 0. Setting B to zero

creates indeterminacies in some terms of the particle function, so a new set of

equations had to be solved for steady flow. This involved simply taking the

limit as B goes to zero of each function containing it. The resulting steady

particle path functions are given below. Note that “steady” here refers to

the fluid function only; the particle functions still give particle position as a

29



Chapter 4: Numerical Implementation

function of time.

x(t) = e−t/2S

{
coshf̃1

[
x0cosf̃2 +

(2Su0 + x0)h2 − (2Sv0 + y0)h1

(1 + α2)1/4
sinf̃2

]
+sinhf̃1

[
−y0sinf̃2 +

(2Su0 + x0)h1 + (2Sv0 + y0)h2

(1 + α2)1/4
cosf̃2

]}
y(t) = e−t/2S

{
coshf̃1

[
x0cosf̃2 +

(2Su0 + x0)h2 − (2Sv0 + y0)h1

(1 + α2)1/4
sinf̃2

]
+sinhf̃1

[
−y0sinf̃2 +

(2Su0 + x0)h1 + (2Sv0 + y0)h2

(1 + α2)1/4
cosf̃2

]}
where

f̃1 =
1 + 2α3 +

√
1 + α2 + α(2 +

√
1 + α2) + α2(1 + 2

√
1 + α2)

4S
√

1 + α2(α +
√

1 + α2)3/2
t

f̃2 =
1− 2α3 −

√
1 + α2 + α(−2 +

√
1 + α2) + α2(1− 2

√
1 + α2)

4S
√

1 + α2(α +
√

1 + α2)3/2
t

and h1, h2 are the same as in the original solution.

This solution is implemented in the code steadyDep.m found in Appendix B.1.

Calculating particle deposition is much simpler in the steady case than in the

transient. All that is required is the deposited particle area fraction at the end

of the pipe, which, multiplied by the particle inflow rate, gives the deposition

rate in the pipe. The downside of this simple method is that only a total

deposition rate is produced; however, the method can be applied to each CV

within the pipe to calculate an approximate deposition rate per unit length of

the pipe at any point along it. Figure 4.1 shows a schematic of the geometry

used in the calculation of steady deposition for a typical case. As shown in

Figure 4.1, a radial cross-section of the deposition appears as an ellipse (the

particles) overlapping a circle (the pipe). The ellipse has a minor axis length

equal to the circle radius a, and their edges are aligned in radial direction.

The major axis length of the ellipse begins at a value of b = a at the pipe

inlet, where the particle cross-section is circular, and increases from there.
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Figure 4.1: On the left, the boundary of the bulk particle flow is compared to that

of the pipe for a typical steady flow case; the cross-sectional projection of the pipe

and particles in the radial plane at the pipe exit is shown on the right.

The function used to calculate the deposited area is

Adep = πab+ a

(
h
√

(a+ b)2 − h2

a+ b
− (a+ b)asin

[√
(a+ b)2 − h2

a+ b

])
The full derivation of this equation is found in A.3. The quantities b and h

(h being the center-to-center distance of the circle and ellipse) are determined

from the radially innermost and outermost points of the particle ellipse at

the pipe exit. These points have known (dimensioned) initial positions of

y0 = R − a and y0 = R + a respectively. The initial times of the points are

solved iteratively using the bisection method with the steady path functions

above, which then allows for the calculation of their radial positions at time

of exit.

Once calculated, the area Adep is divided by the ellipse area to get the fraction

of particles which are deposited for a given flow case; this fraction is multiplied

by the average inlet velocity and an arbitrary concentration to get deposition

rate. The concentration can be specified in whatever units are desired, such as

particles per unit volume or particle mass per unit volume. The concentration
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decreases as the particles flow through the pipe due to stretching of the ellipse,

but it does not affect the results because deposition is calculated as a fraction

rather than an absolute amount.

4.2 Quasi-Steady Flow Simulation

There are ways to improve upon the accuracy of a steady-state simulation

without actually simulating or solving the full complexity of a transient flow

field. One such way is to use a quasi-steady simulation. This approach still

uses the relatively simple steady-state fluid flow function, but updates its value

over time to follow the magnitude of the desire transient fluid flow. This means

that fluid acceleration constant remains at B = 0 throughout the simulation,

while the magnitude constant A varies; for example,

A = sin(2πt0)

for a sine wave time profile and

A = 4 t0

for the acceleration portion of a triangle wave time profile (0 < t0 < 0.25).

The quasi-steady method accurately captures true fluid velocity; the only in-

formation lost is the fluid acceleration and the time-history of the particles.

This method can greatly improve accuracy over the steady-state method while

only slightly increasing the calculation complexity of the simulation.

The code for the quasi-steady simulation, quasiDep.m, is included in Appendix

B.2. The quasi-steady deposition rate is calculated the same way as the steady

deposition described above; but rather than calculate it only once, it is re-

calculated at every time step of the simulation. Thus, the progression of time

is tracked in this code, with ti representing the simulation start time and tf the

end time. The instantaneous deposition rate for each time step is multiplied by
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the length of the time step to get total particles deposited, and these quantities

are summed, along with the particles entering the pipe at each time, to get

total deposition and inflow. The former is divided by the latter to get the

overall deposition fraction of the simulation.

An adaptive time step is used for the sake of efficiency, calculated by

dt =
πR

4NCV

1

WA(t)

where the pipe has been divided into NCV equal-length control volumes (CVs).

The first term in this equation represents the arc-length of half of one CV

along the central axis of the pipe, and the second term is the inverse of the

instantaneous fluid velocity. The result of this calculation is that a particle at

the center of the pipe moving at the fluid velocity (which is the limiting axial

velocity for any particle at a particular location) will travel about halfway

through a CV in any given time step. This is useful because very small time

steps are needed to accurately model fast-moving fluid, but they drastically

slow down the simulation for slow-moving fluids, and both speeds are present in

simulations spanning a half- or full-breath cycle. The time step is also limited

to a maximum value of 1% of the total simulation time to avoid extremely

large time steps that arise for extremely small fluid velocities using the formula

above.

The presence of CVs in the pipe is another departure from the steady flow

case. They are used to calculate the time step size as mentioned previously,

but more importantly, they are used to track the distance into the pipe that

the particles have penetrated. This is important for cases which start with

an empty pipe at ti = 0. For these cases, the transient particle path function

is used every time step to determine the deepest CV which has been fully

infiltrated by the particles; deposition is then calculated as before except that

the overlap area at the end of this CV, rather than at the pipe exit, is used.

Once the entire pipe has been infiltrated, deposition calculations proceed as
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normal without this additional calculation. Consequently, varying NCV will

affect the accuracy and computational intensity of the quasi-steady simulation,

though not nearly so much as it does the transient.

4.3 Transient Flow Simulation

The basic structure of the transient deposition code eulerDep.m, found in

Appendix B.3, is the same as the quasi-steady code. Time advances from ti to

tf using the same adaptive time step, and deposition is calculated at each step.

Pipe infiltration is also determined the same way. Beyond this, the similarity

ends. Deposition must be calculated separately for every infiltrated CV at

each time step, and the procedure for doing so is more complicated as a result

of the time-dependent particle history. Concentration changes must also be

taken into account; transient flow means that axial compression or expansion

of the particle field is possible. The procedures for calculating concentration

and deposition are explained in the following sections, as well as that for

calculating outflow.

Before the flux quantities of interest can be calculated, the values on which

they depend must be solved for. First, the minimum and maximum radial po-

sition values of the particles at each CV boundary must be calculated. With

these positions the shape of the particle cylinder is fully described on the dis-

cretized domain, because the particle cross-section always remains an ellipse.

Since initial position and current θ-position are known for these limiting parti-

cles, initial (injection) time and current radial position remain to be solved for.

Unfortunately, the complexity of the particle path solutions precludes their in-

version, which would allow for direct solution of the desired variables. Instead,

they must be solved numerically; this is done using the bisection method to

find the t0 value which gives the desired value of θ to an acceptable degree of

accuracy. Once the initial times for all limiting particles are known, they are
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fed back into the path equations to solve for current radial position.

Once the upper and lower limiting points are known at each CV boundary,

they are used to calculate the ellipse parameters b and h as well as other

required geometric quantities. They are also used to calculate particle radial

velocity. This is done using a simple first order approximation by adding a

small time increment (i.e. 1/100th of the current time step) to the current

time, calculating the change in radial position for each particle, and dividing

this change by the time increment. With all of these prerequisite values solved

for, the simulation moves on to calculation of the deposition solution.

4.3.1 Concentration

In contrast to the previous two simulation types, transient deposition is cal-

culated as an absolute quantity rather than a fraction. Consequently, the

transient simulation must account for the particle concentration change in the

radial direction which results from the changing shape of the particle domain

cross-section. Furthermore, as mentioned at the beginning of this section,

transient flow can also lead to density changes in the axial direction. For these

reasons, a method of calculating particle concentration C at a given point in

time and space is needed.

The method chosen to calculate concentration at a given point and time re-

quires the initial conditions of the particle occupying that point. If the particle

in question is not one of the limiting particles already solved for, its initial con-

ditions can be interpolated from its nearest neighbours. From the initial con-

ditions, a square area element is constructed at the particle’s initial location

and time. This requires three pairs of coordinates: first, the initial conditions

themselves, (t0, y0); second, a point offset in space, (t0, y0 + s0); and third, a

point offset in time, (t0 − dt0, y0). The element side length s0 must be small

relative to the pipe radius, and the offset time dt0 = s0/u0(t0, y0) is chosen so
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that both sides of the area element are equal.

The three pairs of initial conditions forming the area element are input into

the path functions to determine their new relative positions at the current

simulation time. The area of the new stretched element is calculated using the

formula

Anew = s1s2sinφ

where s1 and s2 are the lengths of the element sides and φ is the angle between

them. Relative concentration is then simply the ratio of the original element

area to the current element area. This procedure is shown graphically in Figure

4.2. Absolute concentration is found by multiplying the relative value by the

absolute value at the pipe inlet defined in the desired units.

Figure 4.2: The concentration C at a given point (x, y, t) is calculated by measuring

the relative size change of the transformed area element at that point; note that the

coordinates on the left refer to initial conditions (t0, y0) while those on the right refer

to current spatial position (x, y).
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4.3.2 Deposition

A deposition rate function was determined for a given CV by integrating the

particle mass flux over the surface of intersection between the pipe and the

particle cylinder. The mass flux is simply the multiple of the particle volume

flow rate and the relative concentration from the previous section. Figure 4.3

shows a three-dimensional visualization of the surface of intersection for a CV

spanning (θ1, θ2). The end result of the integration process, which is shown in

detail in Appendix A.5, is the following function for deposition rate Q̇:

Q̇ =
a

12k1

[
3[3a2c1 + 4R(c1R + c2)](k1θ + k2)

√
1− (k1θ + k2)2

+2a
√

1− (k1θ + k2)2
[
(2c1R + c2)[−8 + 2(k1θ + k2)2]

−ac1[(k1θ + k2) + (k1θ + k2)3]
]

+12a(2c1R + c2)(k1θ + k2)acos(k1θ + k2)

+3[3a2c1 + 4R(c1R + c2)]asin(k1θ + k2)
]θ2
θ1

The angles θ1 and θ2 locate the boundaries of the CV. The constants c1 and

c2 define the radial variation of the particle radial velocity in the CV, and the

constants k1 and k2 define the variation of the ellipse variables b and h with

θ.

4.3.3 Outflow

Particle outflow is not an essential part of the transient simulation as it is

unnecessary for the calculation of deposition; however, it was still included

so that it could be used in the mass balance equation to verify global mass

conservation. The calculation of outflow is relatively simple compared to de-

position; it is merely the particle mass flux through the pipe exit. As in the

steady flow simulations, the overlap area of the pipe cross-section and the par-

ticle ellipse is considered. This area cannot simply be multiplied by particle
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Figure 4.3: The pipe/particle intersection surface (shown as the shaded red area) is

plotted on a single CV for typical case; the red ellipses are the particle cross-sections

at the CV boundaries, and θ1 and θ2 are the CV limits.

exit velocity, because the exit velocity varies in the radial direction. Instead,

another integral must be performed where the integrand is the multiple of the

outlet area element, the local exit velocity, and the local concentration. The

solution of this integral is found in Appendix A.4.
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5
Results and Validation

In this section, the results generated by the deposition code are validated and

interpreted.

5.1 Validation

Two approaches were taken to validation of the particle deposition code de-

scribed in Chapter 4. First, the conservation of mass of the code was verified

by comparing the total mass of particles in to the sum total mass of particles

out, particles deposited, and particles resident at the end of the simulation.

Second, the code was externally verified by comparing results with another
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published analytic deposition model and available experimental results.

Three noteworthy approximations were made in the process of generating the

final deposition code, and thus some degree of inaccuracy is expected. The

sources of error and their anticipated effect are briefly discussed here. First,

the transient fluid flow function was replaced by its first order Taylor series

approximation. For sinusoidal fluid flow, this substitution will only have a

significant effect for relatively long particle residence times. Such long times

occur only near the beginning of simulations which start with zero velocity.

For triangle wave flow, which, while farther from an actual breath pattern than

sinusoidal flow, is preferentially used to study the effects of flow acceleration

on deposition due to its constant acceleration rate, there is no error due to the

Taylor approximation because it is identical to the original triangle function.

Second, the Airy functions which appeared in the original solution to the

particle path ODE were replaced by asymptotically equivalent (for large ar-

guments) exponential functions. The error contribution of these substitutions

is difficult to ascertain due to the number of Airy functions replaced and the

complex nature of their arguments. It is clear that the error will increase with

Stokes number, which appears in the denominator of all of the Airy function

arguments. Thus, there will be some maximum value of S beyond which the

asymptotic approximations break down and the numerical results are invalid.

Third, geometric approximations that were used in the numerical code itself

will create error in the calculation of flux and other quantities. Included in

this category are discretization approximations common to all numerical sim-

ulations (i.e. finite CV and time step lengths) as well as averages and other

approximations of length, area, and volume which were made necessary by the

complicated nature of the curved pipe domain. Finer grid and time spacing

will reduce the effect of both of these types of approximations to a point; the

latter type will also be affected by the relative magnitudes of fluid velocity,

flow period, and pipe ratio.
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It should be noted that only the third type of approximation will affect the

conservation of mass; the first two types relate to the accuracy of the physi-

cal model itself and are independent of the numerical implementation of the

model. They will potentially lead to disparity when the simulation results are

externally validated. Though they will not affect conservation of mass, the

first two approximations could still lead to erroneous simulation results due

to the particle path functions returning nonphysical values. Also, as they are

unaffected by the third type of approximation, the steady and quasi-steady

simulations do not need to be checked for conservation of mass.

5.1.1 Internal Validation

The sources of error described above suggest that once CV size and time step

have been sufficiently reduced to create grid independence of the solution, the

simulation error will depend only on the dimensionless quantities S, Str, and

Rp. Indeed, it was found that these three quantities determine the results of

the simulation in general. Dimensioned parameters such as particle diameter,

pipe radius, and fluid magnitude can be varied without affecting the results,

as long as the dimensionless quantities are maintained. One exception to this

rule is that extreme values of the parameters may lead to the failure of the

simulation for purely numeric reasons.

The pipe ratio is the least interesting of the dimensionless quantities, so it will

be held at a constant value of Rp = 10 for all of the simulations testing mass

conservation. This value is roughly equal to that of a typical mouth/throat

bend. For the remaining two quantities, S and Str, a series of simulations were

run over a wide range of values of each. The Stokes number was varied from

5E-3 to 5E-1, which corresponds to a particle size range of 5.8µm to 58µm for

W = 5m/s and R = 0.1m. The Strouhal number was varied from 1.25E-2 to

5E-2, which corresponds to a flow period range of 1.6s to 0.4s for the same

41



Chapter 5: Results and Validation

values of W and R.

Mass loss magnitude is plotted against S and Str in Figure 5.1. As expected,

the error increases with both the Stokes and Strouhal numbers. For a given

Stokes number, there exists a maximum Strouhal number beyond which the

corresponding fluid acceleration is sufficient to cause early particles to be sur-

passed by other particles which enter the pipe later. Overlapping particles lead

to mass conservation error because the simulation cannot distinguish between

them, and the larger the acceleration, the greater the effect.

Three points have been identified at which the mass loss is approximately 5%;

these points were used to generate a limit of Str as a function of S, shown in

black:

Str < 1.5E-3

(
9.85 +

1

3.7E-3 + S

)
Keeping S and Str within this limit should avoid any problems due to nonphys-

ical flow behaviour, and the conservation of mass error will be kept roughly

below 5%.

5.1.2 External Validation

The ideal validation of the transient numerical simulation code is compari-

son with appropriate experimental results. Unfortunately, such results are

unavailable at the present time for time-dependent particle deposition. In-

stead, results from the steady-state version of the code will be compared with

analytic and experimental results from the literature.

An analytic solution was obtained for particle deposition in steady curved-

pipe flow by Cheng and Wang [1] using a similar approach to the present

work. Specifically, the same differential equation was solved using the same

spatial fluid velocity profile but without the transient component. The actual

solution process used was different, but deposition was calculated the same
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Figure 5.1: Magnitude of mass lost (as a fraction of total mass in) is plotted versus

a range of Stokes and Strouhal numbers; the black line indicates a rough limit beyond

which error is > 5%.

way. This solution has been implemented numerically in chengDep.m, found

in Appendix B.4. Since it models steady flow, this solution depends on S and

Rp but not Str, which is the same as steadyDep.m. The deposition fractions

over a range of S and with Rp = 10 for the two steady solutions are plotted

in Figure 5.2. The experimental results of [2] are also included in this plot. In

that experiment, monodisperse aerosols were generated using a spinning disc

atomizer. The aerosols were passed through various bends and the deposited

fraction was measured using fluorimetry.

Figure 5.2 shows only a minor difference between the two analytic solutions.

This reflects well on the accuracy of the process used to create the analytic

functions in steadyDep.m; furthermore, it also lends confidence to the accu-

racy of the transient analytic solutions of eulerDep.m. This is because the
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Figure 5.2: The steady-state deposition predictions of steadyDep.m are compared

against the analytic results of [1] the experimental results of [2]

steady deposition functions of the present work were obtained a posteriori

from the previously solved transient differential equations, rather than from

steady differential equations as was the case for Cheng and Wang. However,

this favourable comparison says nothing about the accuracy of the physical

model underlying the analytic equations in terms of real-world deposition, as

both solutions have a purely mathematical basis. To test the model itself, its

results must be compared with those of physical experiments.

The goal of the present work was never to create an accurate and complete Eu-

lerian analytic deposition model; rather, as was previously mentioned, the goal

was to identify functional forms on which such a deposition model could be

based. For this reason, the only idea that needs to be taken from the compari-

son with the experimental results in 5.2 is that the deposition results are indeed

within a reasonable range suggested by experiment. Deposition proceeds from
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zero to near one hundred percent over the range of Stokes numbers roughly

predicted by experiment. Any conclusions more specific than this would be

fruitless, as there are many more factors affecting real-world deposition (such

as diffusion and sedimentation, turbulence, particle shape and hygroscopicity,

etc.) than are taken into account in a simple analytic model like the one pre-

sented here. Thus, with a fair degree of certainty that the physical principles

which underlie the deposition simulations are sound, and that they have been

properly implemented in the code, the results are examined.

5.2 Results

Since the accuracy of the transient results cannot be guaranteed, the discussion

of results is centered around comparisons of the quasi-steady and transient

results. The qualitative results should be reliable even if the quantitative

results are not. Conclusions can be drawn about which flow regimes demand

Eulerian modelling, and which can do without. Three different transient flow

profiles are examined below: the acceleration and deceleration phases of a

triangle wave, and a complete sine wave. Standard values of R = 0.1m and

a = 0.01m are used in the interpretation of all results; these values approximate

a curved-pipe analogue for a human throat. Also, all percentages reported

below refer to the relative difference between the two simulation types, so for a

transient result of 30% deposition and a quasi-steady result of 36% deposition,

it would be reported that the quasi-steady code predicted 20% more deposition

than the transient code, and not 6% more.

5.2.1 Constant Acceleration

Constant, positive flow acceleration is the simplest case, so it was tested first.

The fluid velocity was started at zero and accelerated to the maximum value
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of W , and the pipe began empty of particles. Quasi-steady and transient

simulations were run using the same flow parameters, time step, and number

of CVs. The flow parameters were varied over a wide range of Stokes and

Strouhal numbers, but kept within the validity limit established in the previous

section. The results are summarized in Figure 5.3.

Figure 5.3: Deposition results for transient and quasi-steady simulations are plot-

ted versus Strouhal number for a range of Stokes numbers; these simulations used

constant fluid acceleration.

In all cases, the quasi-steady code predicted equal or larger deposition than the

transient code; the reason for this is explained below. The relative difference

increases with Stokes number along with the absolute deposition fraction. De-

position is effectively equal for the two methods at the lowest Stokes number,

it increases with Strouhal number for the middle two values of S, and de-

creases slightly with Str for the highest S tested. This last result is likely due

to the flow parameters being near the limit of the range of validity previously

established and not some physical effect.
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The largest difference was 6.6%, occurring at values of S = 0.1 and Str =

0.026. This is equivalent to a peak inhalation speed of 8m/s and an inhalation

time of 0.24s for a 20µm particle, with a pipe Reynold’s number of about 5E3

(the pipe Reynold’s number is defined as Wa/ν). This is a fairly extreme

case that is unlikely to occur in a normal breathing situation, but it is pos-

sible during a sharp intake of breath such as a gasp, and if the particle size

increases just slightly, the corresponding inhalation speed and time become

much more reasonable. This case was examined in more detail by plotting the

instantaneous deposition rate as a fraction of inflow rate versus time for both

the quasi and transient simulations over their full duration, Figure 5.4. Note

that while deposition rate may differ, both simulations have the same inflow

rate.

Figure 5.4: Quasi-steady and transient instantaneous deposition rates are plotted

for the set of parameters corresponding to the largest total deposition prediction

difference in the constant acceleration case.

Figure 5.4 shows that both simulation types have the same deposition rate
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profile, with the quasi-steady simulation having a slightly higher magnitude

throughout. The deposition rates start at zero when the pipe is empty, and

begin curving upward. The curved portions of the plots appear bumpy; this

is a result of the discretized pipe domain and the fact that deposition is not

calculated for a given CV until it is fully infiltrated by the particles. This

is also the reason why there is a small period of zero deposition at the start

of the simulations. There is a discontinuity in the plots which coincides with

the time when the pipe becomes fully infiltrated; after this point deposition

increases approximately linearly with the fluid velocity.

The quasi-steady deposition is slightly higher because of the lack of time-

history of the particles. Because each new time step is treated as a new slightly

faster steady flow, the velocity change is felt instantly throughout the pipe by

all of the particles. By contrast, the particles in the transient simulation have

inertia and time-history, and thus there is a time lag before the particles reach

the new higher velocity that is reflected in the slightly lower deposition rate.

5.2.2 Constant Deceleration

Next, the second half of a triangle wave inhalation was simulated. The fluid

velocity started at W and steadily decelerated down to zero, and once again the

pipe started empty. The same ranges of flow parameters as in the acceleration

case were used. The results are summarized in Figure 5.5.

As in the previous case, the quasi-steady simulation predicted as much or more

deposition than the transient for all cases. Also as before, total deposition

decreased with Strouhal number. For both simulations, the deposition result

was slightly lower than the corresponding run in the acceleration case. The

maximum deposition result difference was 5%, for S = 0.3 and Str = 0.016.

This case is equivalent to a peak inhalation speed of 15m/s and an inhalation

period of 0.21s for a 26µm particle, and a pipe Reynold’s number of about
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Figure 5.5: Deposition results for transient and quasi-steady simulations are plot-

ted versus Strouhal number for a range of Stokes numbers; these simulations used

constant fluid deceleration.

9E3. Instantaneous deposition is plotted versus time for this case in Figure

5.6.

This plot is slightly more interesting than the last deposition rate profile. Both

rates are roughly the same as the pipe begins to fill up with particles, but once

all of the initial particles have deposited, the profiles diverge somewhat. This

point is represented by the first discontinuity in each of the plots, and it occurs

slightly earlier for the transient run. Note that the point of complete deposition

occurs for both simulations before the pipe is fully infiltrated; the dotted black

line denotes the time of full infiltration.

After complete deposition is reached, the deposition rate of the quasi-steady

run levels off at unity for about half of the remaining simulation time. During

this period, the fluid velocity is constantly decreasing, but still large enough
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Figure 5.6: Quasi-steady and transient instantaneous deposition rates are plotted

for the set of parameters corresponding to the largest total deposition prediction

difference in the constant deceleration case; the dotted black line denotes the point

at which the pipe is fully infiltrated.

for complete deposition to occur in the corresponding steady flow case. Once

the fluid velocity has decreased sufficiently to allow some particles to escape

the pipe, the quasi rate begins to drop off, reaching a value of zero at the end

of the simulation when the fluid velocity is also zero.

To understand the behaviour of the transient deposition rate, inertia and the

time-history of the particles must once again be taken into account. Before

depositing, particles entering the pipe must spend some time in it. In the

quasi-steady case, these resident particles simply appear in the pipe because

equilibrium is instantly achieved at each new time step. The result is that

the inflow rate will always equal the sum of the deposition and outflow rates.

For the transient case, however, two fluxes must be considered: the inflow

of particles adding to the resident particle mass, and the sum of deposition
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and outflow subtracting from it. Since the resident particle mass increases

throughout the constant deceleration simulation, the normalized deposition

rate must always be something less than unity. That said, the time-lag which

caused the transient rate to trail the quasi slightly in the constant acceleration

case has the opposite effect here. This means that the transient deposition rate

decreases at a slower rate than the quasi, eventually overtaking it near the end

of the simulation. Finally, the time-lag also leads to the inflow rate reaching

zero before the deposition rate, which causes the singular spike at the end of

the simulation for the transient case.

5.2.3 Sinusoidal Acceleration and Deceleration

The final flow profile tested was a sine curve which began and ended at zero

velocity, with the peak equal to W . Thus, for this flow, both the acceleration

and deceleration phases are included in the simulation. Other than the flow

profile, no other parameters were modified from the previous two cases. The

results are shown in Figure 5.7.

For the top three values of Stokes numbers, the quasi-steady simulations pre-

dicted more deposition than the transient as in the constant acceleration cases.

For the lower two values, the quasi-steady results can actually be seen to dip

slightly below the transient. However, the difference is very small and could

easily be due to simulation error. It can also be seen that the deposition dif-

ference is actually decreasing with Strouhal number for the top two Stokes

numbers. This is unexpected and could be due to these cases being outside

the range of validity of the simulation. The limiting function derived above

used the constant acceleration case, and may not apply as well to the sinu-

soidal flow. The maximum deposition difference is 3%, seen for S = 0.18 and

Str = 0.006. This is equivalent to an inhalation speed of 10m/s and period of

0.8s for a 25µm particle, and a pipe Reynold’s number of 6E3. The deposition
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Figure 5.7: Deposition results for transient and quasi-steady simulations are plot-

ted versus Strouhal number for a range of Stokes numbers; these simulations used

sinusoidal fluid acceleration and deceleration.

rates for this case are plotted in Figure 5.8.

Here, the characteristics of the two deposition rate profiles for the sinusoidal

flow case can be seen to be a combination of the previous two cases. At first,

the rates increase from zero as more of the pipe is infiltrated; next, there is

a discontinuity when full infiltration occurs, after which the deposition rates

continue to increase with fluid velocity. Once complete deposition is achieved,

the quasi-steady rate levels off at unity while the transient rate peaks at a

slightly lower value and begins to decrease. At the halfway point in time,

the flow begins to decelerate; soon the particles are once again moving slow

enough that some can exit the pipe. At this point, the deposition rates begin

to decrease more rapidly, with the transient rate overtaking the quasi rate

and spiking up at the end of the simulation. The positive and negative slopes
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Figure 5.8: Quasi-steady and transient instantaneous deposition rates are plotted

for the set of parameters corresponding to the largest total deposition prediction

difference in the sinusoidal flow case.

are steeper than the corresponding regions of the constant acceleration cases.

This is a result of the sine wave being steeper than the triangle wave at early

and late times. If lighter particles were used and peak deposition was not

100%, the slopes of the sinusoidal case would be shallower than those of the

triangular cases near the middle of the deposition profiles.

Finally, the cumulative deposition of both simulation types is plotted versus

time for the case above, Figure 5.9. The cumulative deposition for each type

has been normalized by the total deposition of that type. As seen in the figure,

the normalized deposition profiles are effectively identical for the two methods.

This means that, for this flow case at least, the quasi-steady simulation is a

very accurate substitute for the instantaneous deposition rate of the transient

simulation, as long the relative difference of the total deposition is known.

53



Chapter 5: Results and Validation

Figure 5.9: Normalized cumulative quasi-steady and transient deposition fractions

are plotted versus time for a sinusoidal flow case.

The specific deposition cases described here involve larger particles, higher in-

halation velocities, and shorter inhalation periods than those found in most

real-life aerosol inhalation and breathing scenarios. However, they also repre-

sent the highest predicted differences between the quasi-steady and transient

simulations. Differences of 1-2% could be found in more realistic cases; the

consideration of Eulerian acceleration effects could be used to refine an already

fairly accurate deposition model.
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6
Conclusions

6.1 Summary

Several mathematical techniques were tested to solve transient equations of

particle motion so that the solutions could be used to create an analytic Eule-

rian deposition model. The model would be used to predict aerosol deposition

in the human lung using simplified representative geometry. Initial attempts

used a continuum assumption for the particle field; this assumption was aban-

doned when the time-dependent Navier-Stokes equations proved too difficult

to solve even in simplified forms. Success was found in the path solution of a

single particle using an ODE based on Newton’s second law and Stokes’ law
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for drag.

The transient particle path solution was implemented numerically in three

different types of simulation: steady, quasi-steady, and transient. A dearth

of experimental results for transient particle deposition limited external vali-

dation to the steady flow simulation; the transient simulation was internally

validated using conservation of mass.

The results of the quasi-steady simulation, which models time-behaviour in a

similar fashion to most deposition models currently in use, were compared to

those of the fully transient (Eulerian) simulation. Using these two methods,

deposition by impaction was predicted for particle-laden flow in a curved pipe.

It was found that the difference in total deposition results for the two varied

increasingly with the Stokes and Strouhal numbers of the flow, corresponding

to heavier particles and shorter flow periods respectively.

Although the total deposition fractions varied, it was found that the instan-

taneous deposition rates predicted by the two methods were quite similar in

character, and varied only slightly in magnitude. It was also found that the

normalized instantaneous cumulative deposition fractions of the two methods

were nearly identical, which suggests that the quasi-steady formulation could

be used to determine an Eulerian instantaneous deposition rate as long as the

ratio of the total deposition predictions of the two methods is known.

6.2 Future Work

The next step of the present work is to account for flow phenomena which

were neglected in the particle path solution. The most important of these is

secondary flow of the fluid, which will cause particle motion in the pipe circum-

ferential direction. The Dean number of a typical flow case is approximately

2000, which suggests that secondary flow effects due to pipe curvature will
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greatly affect the pipe flow field and thus deposition. Indeed, it was shown by

[20] that the inclusion of this motion causes significant variation in the plot of

deposition fraction versus Stokes number as compared to the simplified flow

used here. In the simulation framework created here, secondary flow could be

accounted for by adding a term for circumferential concentration changes in

the particle ellipse, which would be tracked separately from the bulk particle

motion and then included in the deposition calculation.

The effects on deposition of particle motion due to sedimentation and diffusion

should also be included; the former is caused by gravity and the latter by

turbulence, particle-particle collisions, and, for small particles, fluid-particle

collisions. Sedimentation could be included in the simulation by adding an

extra velocity term to the particles in the direction of gravity; it also might be

possible to solve the particle motion ODE with the additional gravity term.

Diffusion could be modelled by a combination of an area increase in the particle

ellipse and a change in the concentration profile similar to that for secondary

flow.

It is also important to obtain direct validation of the transient deposition model

created here. If experimental data for instantaneous transient deposition are

not forthcoming, an experiment could be devised to obtain them. Alternately,

comparisons with other transient numerical simulations could be made.

Finally, separate from any additions to the model, the utility of the particle

path solutions could be increased through simplification. The primary goal of

this project was to identify functional forms for transient particle deposition.

The particle path solutions presented here are quite complex, and as a result

they require numerical solution before they can be used to calculate deposition.

If they could be sufficiently simplified to allow inversion (without an unaccept-

able loss of accuracy) then they could be combined with the geometry-based

deposition functions derived here to create a transient, fully analytic deposition

model which does not require any numerical solution. Whatever loss of accu-
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racy is required for inversion could be offset by the use of fitting coefficients

based on empirical results.
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A
Appendix A: Derivations

A.1 The Complex s(t) Solution

The solution to the time-dependent particle flow equation (equation 3.2.1 in Section

3) is given by Mathematica as

s(t) = e−
t
2S

[[
(s0 + 2SV0)Bi(C)− 2k1/3Ss0Bi′(C)

]
Ai(D)

2k1/3S[Ai′(C)Bi(C)−Ai(C)Bi′(C)]

−
[
(s0 + 2SV0)Ai(C)− 2k1/3Ss0Ai′(C)

]
Bi(D)

2k1/3S[Ai′(C)Bi(C)−Ai(C)Bi′(C)]

]
(A.1.1)

where

C =
1− 4iSA

4k2/3S2

D = C + k1/3t

k =
−iB
S

Ai, Bi are the Airy functions and Ai′, Bi′ are their derivatives, S is the Stokes num-

ber, and f(t) ≈ A(t0) +B(t0)t. The solution is first simplified using the asymptotic

62



Appendix A: Derivations

behaviour of the Airy functions as x→∞:

Ai(x) ∼ e−
2
3
x3/2

2
√
πx1/4

Bi(x) ∼ e
2
3
x3/2

√
πx1/4

Ai′(x) ∼ −e−
2
3
x3/2

2
√
π

[
x−5/4

4
+ x1/4

]

Bi′(x) ∼ −e
2
3
x3/2

√
π

[
x−5/4

4
− x1/4

]

The first term of the numerator in the parentheses of equation A.1.1:[
(s0 + 2SV0)Bi(C)− 2k1/3Ss0Bi′(C)

]
Ai(D)

≈

[
(s0 + 2SV0)

e
2
3
C3/2

√
πC1/4

+ 2k1/3Ss0
e

2
3
C3/2

√
π

(
C−5/4

4
− C1/4

)]
e−

2
3

(C+k1/3t)3/2

2
√
π(C + k1/3t)1/4

=

[
(s0 + 2SV0)C−1/4

+ 2k1/3Ss0

(
C−5/4

4
− C1/4

)]
e

2
3

[C3/2−(C+k1/3t)3/2]

2π(C + k1/3t)1/4
(A.1.2)

The second term of the numerator:[
(s0 + 2SV0)Ai(C)− 2k1/3Ss0Ai′(C)

]
Bi(D)

≈

[
(s0 + 2SV0)

e−
2
3
C3/2

2
√
πC1/4

+ 2k1/3Ss0
e−

2
3
C3/2

2
√
π

(
C−5/4

4
+ C1/4

)]
e

2
3

(C+k1/3t)3/2

√
π(C + k1/3t)1/4

=

[
(s0 + 2SV0)C−1/4

+ 2k1/3Ss0

(
C−5/4

4
+ C1/4

)]
e

2
3

[(C+k1/3t)3/2−C3/2]

2π(C + k1/3t)1/4
(A.1.3)
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The denominator:

2k1/3S[Ai′(C)Bi(C)−Ai(C)Bi′(C)]

≈ 2k1/3S

[
−e−

2
3
C3/2

2
√
π

(
C−5/4

4
+ C1/4

)
e

2
3
C3/2

√
πC1/4

+
e−

2
3
C3/2

2
√
πC1/4

e
2
3
C3/2

√
π

(
C−5/4

4
− C1/4

)]

=
−2k1/3S

π
(A.1.4)

Substituting equations A.1.2, A.1.3, and A.1.4 into equation A.1.1 gives

s(t) = e
−t
2S

{[
−(s0 + 2SV0)C−1/4

2k1/3S
+ s0

(
−C

−5/4

4
+ C1/4

)]
e

2
3

[C3/2−(C+k1/3t)3/2]

2(C + k1/3t)1/4

+

[
(s0 + 2SV0)C−1/4

2k1/3S
+ s0

(
C−5/4

4
+ C1/4

)]
e

2
3

[(C+k1/3t)3/2−C3/2]

2(C + k1/3t)1/4

}

=
e
−t
2S

2C1/4(C + k1/3t)1/4

{
s0C

1/2
(
e

2
3

[(C+k1/3t)3/2−C3/2] + e
2
3

[C3/2−(C+k1/3t)3/2]
)

−
[
s0 + 2SV0 + 0.5C−1

2k1/3S

](
e

2
3

[(C+k1/3t)3/2−C3/2] − e
2
3

[C3/2−(C+k1/3t)3/2]
)}

(A.1.5)

Each piece of this complex equation will now be expanded to create an entirely real

analytic function. First, the complex exponent of e:

2

3

[
(C + k1/3t)3/2 − C3/2

]
(A.1.6)

Factoring the expressions C and C + k1/3t gives

C =
1− 4iAS

4k2/3S2

=
(−i+

√
3)(i+ α)

8B2/3S4/3
(A.1.7)

C + k1/3t =
(−i+

√
3)(i+ α)

8B2/3S4/3
+

(
−iB
S

)1/3

t

=
(−i+

√
3)(i+ α+ βt)

8B2/3S4/3
(A.1.8)
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Here we have defined α = 4AS and β = 4BS. Equation A.1.6 becomes

2

3

[
(C + k1/3t)3/2 − C3/2

]
=

2

3

(
−i+

√
3

8B2/3S4/3

)3/2 [
(i+ α+ βt)3/2 − (i+ α)3/2

]
=

(
1− i

3
√

2βS

)[
(i+ α+ βt)3/2 − (i+ α)3/2

]
(A.1.9)

For further simplicity we define γ = α+ βt. Expanding the first term in the square

brackets of equation A.1.9 gives

(i+ γ)3/2

=
(
1 + γ2

)3/4
cos

(
3

2
arg(i+ γ)

)
+ i
(
1 + γ2

)3/4
sin

(
3

2
arg(i+ γ)

)
(A.1.10)

The second term in the square brackets of equation A.1.9 is expanded the same

way with γ replaced by α. The function arg(i + γ) is equivalent to atan(1/γ). We

thus define θ = atan(1/γ), which leads to the expressions cosθ = γ/
√

1 + γ2 and

sinθ = 1/
√

1 + γ2. Going back to equation A.1.10 above, we can create equations

for cos3
2θ and sin3

2θ using basic trigonometric identities. They are

cos
3

2
θ =

√
cosθ + 1

2
(2cosθ − 1) (A.1.11)

sin
3

2
θ =

sinθ(1 + 2cosθ)√
2(cosθ + 1)

(A.1.12)

It should be noted that these equations are only valid for −π < θ < π, which is

sufficient for this case since atan(x) is bounded by ±π/2. Combining equations

A.1.11 and A.1.12 and the expressions for sinθ and cosθ above with equation A.1.10

and simplifying, we have

(i+ γ)3/2 =
(i+ γ)(i+ γ +

√
1 + γ2)√

2(1 + γ2)1/4
√

1 + γ√
1+γ2
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Combining this expansion with equation A.1.9, we now have

2

3

[
(C + k1/3t)3/2 − C3/2

]
=

(
1− i
6βS

)(i+ γ)(i+ γ +
√

1 + γ2)

(1 + γ2)1/4
√

1 + γ√
1+γ2

− (i+ α)(i+ α+
√

1 + α2)

(1 + α2)1/4
√

1 + α√
1+α2


=

1

6βS

(γ2 + 2γ − 1 + (γ + 1)
√

1 + γ2) + i(−γ2 + 2γ + 1 + (1− γ)
√

1 + γ2)√√
1 + γ2 + γ

−(α2 + 2α− 1 + (α+ 1)
√

1 + α2) + i(−α2 + 2α+ 1 + (1− α)
√

1 + α2)√√
1 + α2 + α

]
= f1 + if2

For readability we have defined

f1 =
γ2 + 2γ − 1 + (γ + 1)

√
1 + γ2

6βS

√√
1 + γ2 + γ

− α2 + 2α− 1 + (α+ 1)
√

1 + α2

6βS
√√

1 + α2 + α

f2 =
−γ2 + 2γ + 1 + (1− γ)

√
1 + γ2

6βS

√√
1 + γ2 + γ

− −α
2 + 2α+ 1 + (1− α)

√
1 + α2

6βS
√√

1 + α2 + α

Returning to equation A.1.5, we can now expand the exponential functions inside

the curly brackets:

e
2
3

[(C+k1/3t)3/2−C3/2]

= ef1+if2

= ef1cos(f2) + ief1sin(f2)

= [cosh(f1) + sinh(f1)]cos(f2) + i[cosh(f1) + sinh(f1)]sin(f2)

e
2
3

[C3/2−(C+k1/3t)3/2]

= e−f1−if2

= e−f1cos− f2 + ie−f1sin− f2

= [cosh(−f1) + sinh(−f1)] cos(−f2) + i [cosh(−f1) + sinh(−f1)] sin(−f2)

= [cosh(f1)− sinh(f1)] cos(f2)− i [cosh(f1)− sinh(f1)] sin(f2)
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Adding and subtracting the exponential terms:

e
2
3

[(C+k1/3t)3/2−C3/2] − e
2
3

[C3/2−(C+k1/3t)3/2]

= [cosh(f1) + sinh(f1)]cos(f2) + i[cosh(f1) + sinh(f1)]sin(f2)

− [cosh(f1)− sinh(f1)] cos(f2) + i [cosh(f1)− sinh(f1)] sin(f2)

= 2sinh(f1)cos(f2) + 2icosh(f1)sin(f2) (A.1.13)

e
2
3

[(C+k1/3t)3/2−C3/2] + e
2
3

[C3/2−(C+k1/3t)3/2]

= [cosh(f1) + sinh(f1)]cos(f2) + i[cosh(f1) + sinh(f1)]sin(f2)

+ [cosh(f1)− sinh(f1)] cos(f2)− i [cosh(f1)− sinh(f1)] sin(f2)

= 2cosh(f1)cos(f2) + 2isinh(f1)sin(f2) (A.1.14)

We now consider the coefficient of the leading exponential in equation A.1.5:

1

2C1/4(C + k1/3t)1/4

Expanding this term using Mathematica gives

1

2C1/4(C + k1/3t)1/4
=

Abs(B)1/3S2/3

[(1 + α2)(1 + γ2)]1/8

[
cos

(
1

4
(θ1 + θ2)

)

−isin
(

1

4
(θ1 + θ2)

)]

=
Abs(B)1/3S2/3

[(1 + α2)(1 + γ2)]1/8
[g1 − ig2] (A.1.15)

Here we have expanded the expression using the same method as for equation A.1.10

with θ1 = atan[(
√

3−α)/(1 +α)] and θ2 = atan[(
√

3− γ)/(1 + γ)] using the quarter

angle formulas

cos
1

4
θ =

√
1

2
+

√
1 + cosθ

2
√

2
(A.1.16)

sin
1

4
θ =

sinθ√
(4 + 2

√
2
√

1 + cosθ)(1 + cosθ)
(A.1.17)

67



Appendix A: Derivations

and defining the functions

g1 =

√√√√1

2
+

1

2
√

2

√
1 +
−1 +

√
3(α+ γ) + αγ

2
√

(1 + α2)(1 + γ2)

g2 =

√
3(1− αγ) + α+ γ

16
√

(1 + α2)(1 + γ2)g1(g2
1 − 0.5)

(A.1.18)

Next, we move on to the constant terms inside the square brackets of equation A.1.5,

starting with s0C
1/2. Expanding this term as above gives

s0C
1/2 =

(1 + α2)1/4

2Abs(B)1/3S2/3
[x0h1 − y0h2 + i(y0h1 + x0h2)] (A.1.19)

where

h1 =

√
1

2
+

1 +
√

3α

4
√

1 + α2

h2 =

√
1

2
− 1 +

√
3α

4
√

1 + α2

noting that s0 = x0 + iy0 and V0 = u0 + iv0 are the complex initial conditions.

Finally from equation A.1.5,

s0 + 2SV0 + 0.5C−1

2k1/3S

=
2(
√

3 + qα)B2/3S4/3 + (1 + α2)[
√

3(x0 + 2Su0)− q(y0 + 2Sv0)]

4(1 + α2)Abs(B)1/3S2/3
(A.1.20)

+ i

(
2(
√

3 + qα)B2/3S4/3 + (1 + α2)[
√

3(x0 + 2Su0)− q(y0 + 2Sv0)]

4(1 + α2)Abs(B)1/3S2/3

)

where q = sign(B) has been defined for readability.

The expansions from equations A.1.13, A.1.14, A.1.15, A.1.19, and A.1.20 are sub-
stituted into equation A.1.5, and the complex terms are multiplied out. Simplifying
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the result and setting x(t) = Re[s(t)] and y(t) = Im[s(t)], we have

x(t) =

e
−t
2S

2(1 + α2)9/8(1 + γ2)1/8

{
coshf1

[
2(1 + α2)1/4[(g1h1 + g2h2)x0 + (g2h1 − g1h2)y0]cosf2

+
[
g2

(√
3(2Su0 + x0)− q(2Sv0 + y0)

)
− g1

(
q(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
sinf2

]

+ sinhf1

[
2(1 + α2)1/4[(g2h1 − g1h2)x0 − (g1h1 + g2h2)y0]sinf2

+
[
g1

(√
3(2Su0 + x0)− q(2Sv0 + y0)

)
+ g2

(
q(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
cosf2

]

− 2qB2/3S4/3

(1 + α2)

[(
(
√

3α− 1)g1 − (
√

3 + α)g2

)
coshf1sinf2

−
(

(
√

3α− 1)g2 + (
√

3 + α)g1

)
sinhf1cosf2

]}
y(t) =

e
−t
2S

2(1 + α2)9/8(1 + γ2)1/8

{
−coshf1

[
2(1 + α2)1/4[(g2h1 − g1h2)x0 − (g1h1 + g2h2)y0]cosf2

−
[
g1

(√
3(2Su0 + x0)− q(2Sv0 + y0)

)
+ g2

(
q(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
sinf2

]

− sinhf1

[
−2(1 + α2)1/4[(g1h1 + g2h2)x0 + (g2h1 − g1h2)y0]sinf2

+
[
g2

(√
3(2Su0 + x0)− q(2Sv0 + y0)

)
− g1

(
q(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
cosf2

]

+
2qB2/3S4/3

(1 + α2)

[(
(
√

3α− 1)g2 + (
√

3 + α)g1

)
coshf1sinf2

+
(

(
√

3α− 1)g1 − (
√

3 + α)g2

)
sinhf1cosf2

]}
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A.2 The Steady Particle Path Function

The case of steady fluid flow is modelled by setting B = 0 in the approximated fluid
velocity function f(t) ≈ A(t0)+B(t0)t. Doing so in the final particle path functions
results in an indeterminate answer; instead, we must begin with the asymptotic
approximation of the original Airy function solution from A.1:

s(t) ≈ e
−t
2S

2C1/4(C + k1/3t)1/4

{
s0C

1/2
(
e

2
3

[(C+k1/3t)3/2−C3/2] + e
2
3

[C3/2−(C+k1/3t)3/2]
)

−
[
s0 + 2SV0 + 0.5C−1

2k1/3S

](
e

2
3

[(C+k1/3t)3/2−C3/2] − e
2
3

[C3/2−(C+k1/3t)3/2]
)}

Taking the limit of this function as B → 0 and expanding out the complex ICs gives

s̃ = e
−t
2S

{
(x0 + iy0)

2

[
e

[(−i+
√
3)(i+α)]3/2

4
√
2S(i+α)

t
+ e
− [(−i+

√
3)(i+α)]3/2

4
√
2S(i+α)

t

]

+

√
2(−1)1/6[2S(u0 + iv0) + (x0 + iy0)]

2
√

(−i+
√

3)(i+ α)[
e

[(−i+
√
3)(i+α)]3/2

4
√
2S(i+α)

t − e−
[(−i+

√
3)(i+α)]3/2

4
√
2S(i+α)

t

]}

where s̃ has been defined as the steady particle function. Taking the same approach
to complex term expansion as in the transient flow case (A.1), we first find that

e
[(−i+

√
3)(i+α)]3/2

4
√
2S(i+α)

t − e−
[(−i+

√
3)(i+α)]3/2

4
√
2S(i+α)

t

= 2cosf̃2sinhf̃1 − 2isinf̃2coshf̃1

e
[(−i+

√
3)(i+α)]3/2

4
√
2S(i+α)

t
+ e
− [(−i+

√
3)(i+α)]3/2

4
√
2S(i+α)

t

= 2cosf̃2coshf̃1 − 2isinf̃2sinhf̃1

where

f̃1 =
α+
√

3(1 +
√

1 + α2)

4S
√

1 +
√

3α+ 2
√

1 + α2
t

f̃1 =
−1 +

√
3α+

√
1 + α2

4S
√

1 +
√

3α+ 2
√

1 + α2
t

Now the complex denominator of the coefficient of the exponential difference is
expanded: √

2

2
√

(−i+
√

3)(i+ α)
= g̃1 − ig̃2
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where

g̃1 =
1

4(1 + α2)1/4

√
2 +

1 +
√

3α√
1 + α2

g̃2 =
1

4(1 + α2)1/4

√
2− 1 +

√
3α√

1 + α2

Substituting these expansions into the original equation gives

s̃ = e
−t
2S

{
(x0 + iy0)

2

[
2cosf̃2coshf̃1 − 2isinf̃2sinhf̃1

]
+ [g̃1 − ig̃2](−1)1/6[2S(u0 + iv0) + (x0 + iy0)]

[
2cosf̃2sinhf̃1 − 2isinf̃2coshf̃1

]}

Finally, multiplying out all of the complex terms and setting x̃(t) = Re[s̃(t)] and
ỹ(t) = Im[s̃(t)] yields

x̃(t) = e
−t
2S

{
coshf̃1

[
2x0cosf̃2 +

[
g̃2

(
−
√

3(2Su0 + x0) + (2Sv0 + y0)
)

+g̃1

(
(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
sinf̃2

]
+sinhf̃1

[
2y0sinf̃2 +

[
g̃1

(√
3(2Su0 + x0)− (2Sv0 + y0)

)
+g̃2

(
(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
cosf̃2

]
ỹ(t) = e

−t
2S

{
coshf̃1

[
2y0cosf̃2 −

[
g̃1

(√
3(2Su0 + x0)− (2Sv0 + y0)

)
+g̃2

(
(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
sinf̃2

]
+sinhf̃1

[
−2x0sinf̃2 +

[
g̃2

(
−
√

3(2Su0 + x0) + (2Sv0 + y0)
)

+g̃1

(
(2Su0 + x0) +

√
3(2Sv0 + y0)

)]
cosf̃2

]
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A.3 The Area Overlap Function

To calculate particle deposition in the curved pipe, an expression is needed for the
area of overlap of an ellipse and a circle. As shown in 4.1, some restrictions apply:
the minor axis length of the ellipse is equal to the circle radius a, the circle remains
centered at r = R and z = 0, and the ellipse moves only in the radial direction.

First, equations are written for the boundaries of the two shapes:

Circle: r = ±
√
a2 − z2 +R

Ellipse: r = ± b
a

√
a2 − z2 +R+ h

Since the ellipse moves in the positive r direction relative to the circle, only the
negative half of the ellipse and the positive half of the circle need to be considered.
Next, the two equations are combined to determine the z-values of the intercept
points: √

a2 − z2 +R = − b
a

√
a2 − z2 +R+ h√

a2 − z2

(
1 +

b

a

)
= h

a2 − z2 =

(
h

1 + b
a

)2

z = ±

√
a2 −

(
ah

a+ b

)2

With the intercepts known, the overlap area can be calculated by integrating the
difference of the two boundary functions with the intercepts as the limits:

Aol =

∫ √
a2− ah

a+b

2

−
√
a2− ah

a+b

2

[√
a2 − z2

(
1 +

b

a

)
− h
]
dz

= a

(
−
h
√

(a+ b)2 − h2

a+ b
+ (a+ b)asin

[√
(a+ b)2 − h2

a+ b

])
Finally, the deposited area of particles is simply the difference between the ellipse
area and the overlap area,

Adep = πab+ a

(
h
√

(a+ b)2 − h2

a+ b
− (a+ b)asin

[√
(a+ b)2 − h2

a+ b

])
The numeric deposition simulations require the rate of change of the deposited area,
given by the derivative of the above formula:

dAdep
dt

=
∂Adep
∂h

dh

dt
+
∂Adep
∂b

db

dt
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The rate of change of b with respect to time is much smaller than that of h, so the
second term is neglected. Taking the derivative and simplifying,

dAdep
dt

=
2a
√

(a+ b)2 − h2

a+ b
vr

where vr is the radial velocity at the center of the ellipse.
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A.4 The Outflow Function

Volumetric flow rate is calculated by multiplying cross-sectional area by fluid speed
in the normal direction. At the outlet of the curved pipe the fluid speed is a linear
function of the radial distance, v = C1r+C2. The outlet flow rate could be approx-
imated by multiplying the average outlet speed by the particle overlap area, but
doing so would introduce error due to the asymmetry of the overlap area. Instead,
a better way is to integrate the differential volume flow rate across the overlap area.
The differential area element is the product of the overlap area width as a function
of r multiplied by the infinitesimal height dr, which is then multiplied by the value
of the fluid speed function at r. The limits of integration are the bottom of the
ellipse and the top of the circle. The integral must be broken into two because of
the discontinuity where the two shapes intersect. The equation and its solution are

Q̇out = 2

∫ ah
a+b

+R

R+h−b

[a
b

√
b2 − [r − (R+ h)]2

]
(C1r + C2)dr

+ 2

∫ R+a

ah
a+b

+R

[√
a2 − (r −R)2

]
(C1r + C2)dr

= π
a2

2
(C1r + C2) +

πab

2
[C1(R+ h) + C2]

−a2

{√
(a+ b)2 − h2

3(a+ b)

(
2C1a

[(
h

a+ b

)2

− 1

]
+

3h(C1R+ C2)

a+ b

)

+ (C1R+ C2)atan

(
h√

(a+ b)2 − h2

)}

−ab

{√
(a+ b)2 − h2

3(a+ b)

(
2C1b

[
1−

(
h

a+ b

)2
]

+
3h(C1(R+ h) + C2)

a+ b

)

+ (C1(R+ h) + C2)atan

(
h√

(a+ b)2 − h2

)}
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A.5 The Deposition Rate Function

The deposition rate of particles in a given CV in the curved pipe can be treated
as the volume flux of particles through the pipe surface. Volumetric flow rate (Q̇)
through a surface is found by multiplying the surface area by the magnitude of the
normal component of the velocity passing through the surface. If the normal velocity
is not constant across the surface, as in the case of the curved pipe, Q̇ must be found
by integration. Two integrals will be performed: one around the circumference of
the pipe and one in the θ-direction. The differential volume flow element is given
by

dQ̇ = vnorm adφ rdθ

where adφ is the length of the surface area element in the circumferential direction
and rdθ is the length in the θ-direction. The angle φ has been defined as the angle
between the r-axis and the circumferential location of the surface element. This
angle is related to r by cosφ = (r −R)/a.

The circumference integral is symmetric about φ = 0, so only half the integral needs
to be performed with the result multiplied by two. The outer limit of the integral
is the point of intersection between the pipe circumference and the particle ellipse.
This point is given by

z =

√
a2 −

(
ah

a+ b

)2

or

φ = acos

(
h

a+ b

)
The limits of the second integral are the angular limits of the CV in question, θ1
and θ2. With these limits, the full double-integral can be written:

Q̇ = 2a

∫ θ2

θ1

∫ acos( h
a+b)

0
rvnorm dφ dθ

To determine vnorm, only the radial component of the particle velocity must be
considered, since the axial component is tangential to the pipe surface. The radial
velocity varies linearly with r:

vr = c1r + c2

= c1(acosφ+R) + c2

and the normal component of the velocity is given by

vnorm = [c1(acosφ+R) + c2]cosφ

With these definitions, the complete equation can be written:

Q̇ = 2a

∫ θ2

θ1

∫ acos( h
a+b)

0
[acosφ+R][c1(acosφ+R) + c2]cosφ dφ dθ
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Evaluating the first integral gives

Q̇ =
a

6

∫ θ2

θ1

[
a (6φ(2c1R+ c2) + 3(2c1R+ c2)sin2φ+ ac1sin3φ)

+ 3[3a2c1 + 4R(c1R+ c2)]sinφ

]acos( h
a+b )

0

dθ

=
a

6

∫ θ2

θ1

{
a

[
6(2c1R+ c2)acos

(
h

a+ b

)
+ 6(2c1R+ c2)

(
h

a+ b

)√
1−

(
h

a+ b

)2

+ac1

3

√
1−

(
h

a+ b

)2

− 4

[
1−

(
h

a+ b

)2
]3/2]

+3[3a2c1 + 4R(c1R+ c2)]

√
1−

(
h

a+ b

)2
}

dθ

The constants c1 and c2 for a given CV vary only a small amount over that CV and
thus can be treated as constant. The ellipse parameters h and b vary linearly with
θ, so the following substitution is made in order to evaluate the second integral:(

h

a+ b

)
= k1θ + k2

As long as the correct values of the constants k1 and k2 are chosen and the magnitude
of θ2−θ1 is preserved, any limits can be used for the θ integral. To simplify the math
θ1 is set to zero and θ2 becomes θCV , the angle transcribed by each CV. The final
equation gives the deposition rate for a given CV, with the constants c1, c2, k1, k2
uniquely defined for each CV.

Q̇ =
a

12k1

[
3[3a2c1 + 4R(c1R+ c2)](k1θ + k2)

√
1− (k1θ + k2)2

+2a
√

1− (k1θ + k2)2
[
(2c1R+ c2)[−8 + 2(k1θ + k2)2]

−ac1[(k1θ + k2) + (k1θ + k2)3]
]

+12a(2c1R+ c2)(k1θ + k2)acos(k1θ + k2)

+3[3a2c1 + 4R(c1R+ c2)]asin(k1θ + k2)
]θ2
θ1
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B.1 steadyDep.m

function depFrac = steadyDep(D,W,R,a)
% This function approximates the results of the fully transient eulerDep.m
% using a fully steady method of deposition calculation. The same inputs and
% output are used. The simulation assumes a steady fluid flow at each time
% step, with the magnitude of the flow updated according to the transient
% flow function.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Initialize simulation parameters %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S = calcS(D,W,R); % Stokes number
tRes = pi/2*R/W; % approximate particle residence time
t0 = [0 0]; % initial time of limiting particles
y0 = [1-a/R 1+a/R]; % initial position of limiting particles
r = [0 0]; % current radial position of limiting particles

% The radial position of the limiting (upper- and lower-most) particles at
% the pipe exit are determined using the bisection method.
for i = 1:2

error = 1;
tLower = 0;
tUpper = 1.5*tRes;
while error > 1E-4

tMid = (tLower+tUpper)/2;
[x,y] = AirySolnSteady(S,y0(i),y0(i),0,W/R*(tMid),1);
error = abs(y);
if y > 0

tLower = tMid;
else

tUpper = tMid;
end

end
r(i) = R*sqrt(xˆ2+yˆ2);
t0(i) = tMid;

end
% The particle ellipse parameters are caculated and then used to determine
% the deposited area and area fraction.
b = (r(2)-r(1))/2;
h = (r(2)+r(1))/2 - R;
if h < a+b

A = a*((a+b).*asin(sqrt(1 - h.ˆ2./(a+b).ˆ2))...
- h.*sqrt((a+b).ˆ2 - h.ˆ2)./(a+b));

depFrac = 1 - A/(pi*a*b);
else

depFrac = 1;
end
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B.2 quasiDep.m

function depFrac = quasiDep(D,W,R,a,T)
% This function approximates the results of the fully transient eulerDep.m
% using a quasi-steady method of deposition calculation. The same inputs and
% output are used. The simulation assumes a steady fluid flow at each time
% step, with the magnitude of the flow updated according to the transient
% flow function.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Define simulation parameters %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S = calcS(D,W,R); % particle Stokes number
v0 = 0; % particle initial y-velocity [m/s]
ti = 0; % simulation start time [s]
tf = T/2; % simulation end time [s]
Ncv = 64; % number of pipe control volumes
Np = 0; % number of CVs penetrated by particles

% The transient component of the fluid velocity function is defined. Forms
% not in use are commented out.
% A sine wave:
f = @(t0) sin(2*pi*t0/T); df = @(t0) 2*pi*R/(W*T)*cos(2*pi*t0/T);
% The acceleration section of a triangle wave:
% f = @(t0) 4*t0/T; df = @(t0) 4*R/(T*W);
% The deceleration section of a triangle wave:
% f = @(t0) 2 - 4*t0/T; df = @(t0) -4*R/(T*W);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Initialize variables %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Qdep = 0; % particles deposited
Qin = 0; % particles in
t = ti; % absolute simulation time [s]
n = 0; % iteration counter

%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Begin main loop %%%
%%%%%%%%%%%%%%%%%%%%%%%%%
while t < tf

dt = pi*R/(4*Ncv*W*f(t)); % adaptive time step
if dt > (tf - ti)/1E3

dt = (tf - ti)/1E3;
end
% The deepest infiltrated CV is determined along with its angle.
if Np < Ncv

[xPs,yPs] = AirySolnFull(S,(R+a)/R,(R+a)/R*f(ti),v0,W/R*(t-ti),f(ti),df(ti));
if min(yPs) > 0

thetaMax = atan(xPs./yPs);
Np = floor(2*Ncv*thetaMax/pi);
thetaTarget = Np/Ncv*pi/2;

else
Np = Ncv;
thetaTarget = pi/2;

end
end
if Np > 0

% The radial position of the lower-most particle at the CV boundary
% identified above is determined using the bisection method.
y0s = (R-a)/R;
u0s = y0s*f(t);
tLower = 0;
tUpper = 1.2*pi/2*(R-a)/(W*(R-a)/R*f(t));

error = 1;
while error > 1E-4

tMid = (tLower + tUpper)/2;
[xs,ys] = AirySolnSteady(S,y0s,u0s,0,W/R*(tMid),f(t));
if ys > 0

theta = atan(xs/ys);
else

theta = pi/2 + atan(abs(ys)/xs);
end
if theta < thetaTarget

tLower = tMid;
else

tUpper = tMid;
end
error = abs(thetaTarget - theta)/thetaTarget;

end
rBottom = R*sqrt(xs.ˆ2 + ys.ˆ2);

% The radial position of the upper-most particle is determined.
y0s = (R+a)/R;
u0s = y0s*f(t);
tLower = 0;
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tUpper = 1.2*pi/2*(R+a)/(W*(R+a)/R*f(t));

error = 1;
while error > 1E-4

tMid = (tLower + tUpper)/2;
[xs,ys] = AirySolnSteady(S,y0s,u0s,0,W/R*(tMid),f(t));
if ys > 0

theta = atan(xs/ys);
else

theta = pi/2 + atan(abs(ys)/xs);
end
if theta < thetaTarget

tLower = tMid;
else

tUpper = tMid;
end
error = abs(thetaTarget - theta)/thetaTarget;

end
rTop = R*sqrt(xs.ˆ2 + ys.ˆ2);

b = (rTop - rBottom)/2; % calculation of ellipse parameters
h = (rTop + rBottom)/2 - R;

% The deposited fraction of particles is calculated.
if h < a+b

areaOverlap = a*((a+b).*asin(sqrt(1 - hˆ2/(a+b)ˆ2))...
- h*sqrt((a+b)ˆ2 - hˆ2)/(a+b));

depf = 1 - areaOverlap/(pi*a*b);
else

depf = 1;
end
dQin = pi*aˆ2*W*f(t); % The particle deposition rate is simply
dQdep = depf*dQin; % the deposited fraction multiplied by

% the inflow rate.
Qdep = Qdep + dQdep*dt; % increment deposition
Qin = Qin + dQin*dt; % increment inflow

end
t = t + dt; % increment time
n = n + 1; % increment iteration counter

end
depFrac = Qdep/Qin;
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B.3 eulerDep.m

function [depFrac,lossFrac] = eulerDep(D,W,R,a,T)
% This function calculates the deposition of solid particles flowing
% through a fluid-filled curved pipe with circular cross-section. The
% radius of curvature of the pipe is constant and the bend angle is 90
% degrees.
%
% The inputs of the function are:
% D - particle diameter [m]
% W - maximum fluid velocity at pipe axis [m/s]
% R - pipe bend radius [m]
% a - pipe cross-section radius [m]
% T - flow period [s]
%
% The fluid flow magnitude is transient and varies linearly in the radial
% direction, making the velocity function w = W*r/R*f(t), where f(t) is
% some function of time describing the flow behaviour. f(t) has a magnitude
% ≤ 1 and is periodic, usually with a sine or triangle wave shape.
% Simulations are only run on the part of the flow cycle where velocity is
% positive, and can be split into the acceleration or deceleration segments
% of the flow, which have a duration of T/4.
%
% The outputs of the function are:
% depFrac - the fraction of particles entering the pipe which were
% deposited
% lossFrac - the fraction of particles entering the pipe which were
% unaccounted for (either lost or gained)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Define simulation parameters %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A = pi*aˆ2; % area of pipe cross-section [mˆ2]
S = calcS(D,W,R); % particle Stokes number
v0 = 0; % particle initial y-velocity [m/s]
ti = 0; % simulation start time [s]
tf = T/2; % simulation end time [s]
Ncv = 64; % number of pipe control volumes
Np = 0; % number of CVs penetrated by particles
thetaCV = pi/2/Ncv; % angle transcribed by each CV

% The transient component of the fluid velocity function is defined. Forms
% not in use are commented out.
% A sine wave:
f = @(t0) sin(2*pi*t0/T); df = @(t0) 2*pi*R/(W*T)*cos(2*pi*t0/T);
% The acceleration section of a triangle wave:
% f = @(t0) 4*t0/T; df = @(t0) 4*R/(T*W);
% The deceleration section of a triangle wave:
% f = @(t0) 2 - 4*t0/T; df = @(t0) -4*R/(T*W);

% The particle initial x-velocity is defined.
% Equal to the fluid velocity:
u0 = @(y0,t0) W*y0/R.*f(t0);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Initialize variables %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t = ti; % simulation time [s]
n = 0; % iteration counter
Qin = 0; % particles in
Qout = 0; % particles out
Qdep = 0; % particles deposited
Qres = 0; % particles resident in the pipe
maxNp = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Begin main loop %%%
%%%%%%%%%%%%%%%%%%%%%%%%%
while t ≤ tf

dt = pi*R/(4*Ncv*W*f(t)); % An adaptive time step is used to speed
if dt > (tf-ti)/1E3 % up the simulation, with a maximum value

dt = (tf-ti)/1E3; % imposed to prevent over-stepping.
end
if Np < Ncv

% The number of CVs fully penetrated by the particles is calculated.
[xPs,yPs] = AirySolnFull(S,(R+a)/R,u0(R+a,ti)/W,v0/W,W/R*(t-ti),f(ti),df(ti));
if yPs > 0

thetaMax = atan(xPs/yPs);
Np = floor(2*Ncv*thetaMax/pi);

else
Np = Ncv;

end
% Once the first CV has been penetrated, the injection times t0 of the
% lowermost and uppermost particles at each penetrated CV boundary
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% are calculated by the subfunction t0solve. These are the
% particles with initial positions y0 = R +-a; quantities
% pertaining to the lower particles are denoted by an L, and those
% of the upper particles by a U. These calculations appear twice
% because different inputs are used once the pipe is fully
% infiltrated.
if Np > 0

[t0L,rL] = t0solve(ti,R-a,Np,@AirySolnFull,f,df,u0,v0,S,R,W,t,Ncv);
[t0U,rU] = t0solve(ti,R+a,Np,@AirySolnFull,f,df,u0,v0,S,R,W,t,Ncv);

end
else

[t0L,rL] = t0solve(t0L(Ncv),R-a,Np,@AirySolnFull,f,df,u0,v0,S,R,W,t,Ncv);
[t0U,rU] = t0solve(t0U(Ncv),R+a,Np,@AirySolnFull,f,df,u0,v0,S,R,W,t,Ncv);

end
if Np > 0

% The major axis radius b and center offset distance h of the
% particle ellipse are calculated.
b = (rU - rL)/2;
h = (rU + rL)/2 - R;

% A mask vector is created to negate the effects of any CV in which
% the particle ellipse is fully deposited.
mask = ((a+b-h) + abs(a+b-h))./(2*abs(a+b-h));
for i = 2:Np

mask(i) = min([mask(i) mask(i-1)]);
end
% The deposition within each CV depends on the line of intersection
% between the particle ellipse and the pipe circle at each CV
% boundary. Specifically, the initial conditions of the highest and
% lowest radial points on this line are required, which are
% calculated here.
y0mn = R - a./b.*(h - a*h./(a+b));
y0mx = R + a./b.*(a-h);
t0mid = (t0U+t0L)/2;
t0mn = t0mid - (t0mid-t0L).*(h - a*h./(a+b))./b;
t0mx = t0mid + (t0mid-t0L).*(a-h)./b;

% Two positions one time-step apart are calculated for each of the
% points mentioned above in order to calculate the particle radial
% velocity at those locations.
[xI,yI] = AirySolnFull(S,y0mn/R,u0(y0mn,t0mn)/W,...

v0/W,W/R*(t-t0mn),f(t0mn),df(t0mn));
[xF,yF] = AirySolnFull(S,y0mn/R,u0(y0mn,t0mn)/W,...

v0/W,W/R*(t+0.01*dt-t0mn),f(t0mn),df(t0mn));
[xI2,yI2] = AirySolnFull(S,y0mx/R,u0(y0mx,t0mx)/W,...

v0/W,W/R*(t-t0mx),f(t0mx),df(t0mx));
[xF2,yF2] = AirySolnFull(S,y0mx/R,u0(y0mx,t0mx)/W,...

v0/W,W/R*(t+0.01*dt-t0mx),f(t0mx),df(t0mx));

rI = R*sqrt(xI.ˆ2 + yI.ˆ2); % Initial and final radial positions
rF = R*sqrt(xF.ˆ2 + yF.ˆ2); % for the lower points...
rI2 = R*sqrt(xI2.ˆ2 + yI2.ˆ2); % ...and for the upper points.
rF2 = R*sqrt(xF2.ˆ2 + yF2.ˆ2);
vrmax = (rF-rI)/(0.01*dt); % upper and lower radial velocities
vrmin = (rF2-rI2)/(0.01*dt);

% The subfunction calcQdep is used to calculate particle deposition
% rate for each infiltrated CV.
dQdep = calcQdep(a,b,R,h,vrmin,vrmax,pi/2/Ncv);

end
% Particles in:
dQin = u0(R,t)*A;
Qin = Qin + dQin*dt;

if Np > 0
% Particle concentration is calculated for each CV.
Ccv = concSolve(y0min,t0mn,@AirySolnFull,f,df,u0,v0,S,R,W,t,a);
Cmid = ([1 Ccv(1:Np-1)] + Ccv)/2;

% Particles resident:
% Boundary values of geometric quantities are averaged to get the
% values for each CV.
Ares = a*((a+b).*asin(sqrt(1 - h.ˆ2./(a+b).ˆ2))...

- h.*sqrt((a+b).ˆ2 - h.ˆ2)./(a+b));
Amid = ([pi*aˆ2 Ares(1:Np-1)] + Ares.*mask)/2;
c = centroid(a,b,h,R);
cmid = ([R c(1:Np-1)] + c)/2;

Qres = sum(Amid.*cmid*thetaCV.*Cmid.*mask);

% Particles deposited:
Qdep = Qdep + sum(dQdep.*Cmid.*mask)*dt;

end
if Np == Ncv

% Particles out:
y0o = [(R-a) y0max(Ncv)];
t0o = [t0L(Ncv) t0mx(Ncv)];
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[xE,yE] = AirySolnFull(S,y0o/R,u0(y0o,t0o)/W,...
v0/W,W/R*(t-t0o),f(t0o),df(t0o));

[xE2,yE2] = AirySolnFull(S,y0o/R,u0(y0o,t0o)/W,...
v0/W,W/R*(t+0.01*dt-t0o),f(t0o),df(t0o));

vE = abs(R*(yE2-yE))/(0.01*dt);
VC = polyfit([rL(Ncv) R+a],vE*Ccv(Ncv),1);
K1 = VC(1)*R + VC(2);
K2 = VC(1)*(R+h(Np)) + VC(2);
K3 = a + b(Np);
dQout = pi*aˆ2/2*K1 + pi*a*b(Np)/2*K2 ...

- aˆ2*(sqrt(K3ˆ2-h(Np)ˆ2)/(3*K3)...
*(2*a*VC(1)*((h(Np)/K3)ˆ2-1) + 3*h(Np)*K1/K3)...
+ K1*atan(h(Np)/sqrt(K3ˆ2-h(Np)ˆ2)))...

- a*b(Np)*(sqrt(K3ˆ2-h(Np)ˆ2)/(3*K3)...
*(2*b(Np)*VC(1)*(1-(h(Np)/K3)ˆ2) + 3*h(Np)*K2/K3) ...
+ K2*atan(h(Np)/sqrt(K3ˆ2-h(Np)ˆ2)));

Qout = Qout + dQout*dt*mask(Ncv);
maxNp = max(mask(Ncv),maxNp);

end
t = t + dt; % increment time and iteration counter
n = n + 1;

end
if maxNp == 0 % If no particles exit the pipe, complete

Qdep = Qin; % deposition is enforced.
end
depFrac = Qdep/Qin; % deposited fraction
lossFrac = (Qin - (Qdep+Qout))/Qin; % mass loss fraction

function [t0LT,rLT] = t0solve(t0b,y0,Np,pathFunction,f,df,u0,v0,S,R,W,t,Ncv)
% This subfunction determines the start times of particles with initial
% positions y0 and current positions along the radial lines of the
% (penetrated) CV boundaries. The bisection method is used to find the
% roots.
t0LT = zeros(1,Np);
rLT = zeros(1,Np);

for i = Np:-1:1
n = 0;
t0a = t;
phi = 1;
while abs(phi) > 1E-4 && n < 1000

t0c = (t0a + t0b)/2;
[xPs,yPs] = pathFunction(S,y0/R,u0(y0,t0c)/W,...

v0/W,W/R*(t-t0c),f(t0c),df(t0c));
phi = atan(yPs/abs(xPs)) - pi/2*(1-i/Ncv);
if phi > 0

t0a = t0c;
else

t0b = t0c;
end
n = n + 1;

end
t0b = t0c;
t0LT(i) = t0c;
rLT(i) = R*sqrt(xPsˆ2 + yPsˆ2);
if i > Ncv/2 && i < Np

if rLT(i) > rLT(i+1)
t = t;

end
end

end

function [C,s0,xPlot,yPlot] = concSolve(y0,t0,pathFunction,f,df,u0,v0,S,R,W,t,a)
% This subfunction determines the particle concentration at the point with
% initial conditions (y0,t0) at time t.

[x,y] = pathFunction(S,(y0)/R,u0(y0,t0)/W,v0/W,W/R*(t-t0),f(t0),df(t0));
x = R*x; y = R*y;

s0 = 1E-2*a;
dt = s0./u0(y0,t0);

[xW,yW] = pathFunction(S,y0/R,u0(y0,t0+dt)/W,...
v0/W,W/R*(t-(t0+dt)),f(t0+dt),df(t0+dt));

xW = R*xW; yW = R*yW;
[xN,yN] = pathFunction(S,(y0+s0)/R,u0(y0+s0,t0)/W,...

v0/W,W/R*(t-t0),f(t0),df(t0));
xN = R*xN; yN = R*yN;

s1 = sqrt((x-xW).ˆ2 + (y-yW).ˆ2);
s2 = sqrt((x-xN).ˆ2 + (y-yN).ˆ2);
s3 = sqrt((xW-xN).ˆ2 + (yW-yN).ˆ2);

phi = acos((s1.ˆ2 + s2.ˆ2 - s3.ˆ2)./(2*s1.*s2));

C = s0.ˆ2./(s1.*s2.*sin(phi));
xPlot = [xW(1) x(1) xN(1)]; % These coordinates are for plotting the
yPlot = [yW(1) y(1) yN(1)]; % transformed area element.
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function dQdt = calcQdep(a,b,R,h,vrmin,vrmax,theta)
% This subfunction calculates particle deposition using a geometrically
% derived forumla.
n = length(b);

c1 = zeros(1,n+1);
c2 = zeros(1,n+1);

rmin = a*h./(a+n) + R;
c1(2:n+1) = (vrmax-vrmin)./(R+a-rmin);
c2(2:n+1) = vrmin - rmin.*(vrmax-vrmin)./(R+a-rmin);
c1 = 0.5*(c1(1:n)+c1(2:n+1));
c2 = 0.5*(c2(1:n)+c2(2:n+1));
hab1 = [0 h(1:n-1)./(a+b(1:n-1))];
hab2 = h./(a+b);
k1 = 1/theta*(hab2 - hab1);
k2 = hab1;
p = c1*R+c2;
q = 2*c1*R+c2;
s = k1*theta+k2;
dQdt = a./(12*k1).*(3*(3*aˆ2*c1 + 4*R*p).*s.*sqrt(1-s.ˆ2)...

+ 2*a*sqrt(1-s.ˆ2).*(-8*q - a*c1.*s + 2*q.*s.ˆ2 + a*c1.*s.ˆ3)...
+ 12*a*q.*s.*acos(s) + 3*(3*aˆ2*c1 + 4*R*p).*asin(s)...
- (3*(3*aˆ2*c1 + 4*R*p).*k2.*sqrt(1-k2.ˆ2)...
+ 2*a*sqrt(1-k2.ˆ2).*(-8*q - a*c1.*k2 + 2*q.*k2.ˆ2 + a*c1.*k2.ˆ3)...
+ 12*a*q.*k2.*acos(k2) + 3*(3*aˆ2*c1 + 4*R*p).*asin(k2)));

dQdt = (dQdt + abs(dQdt))/2;

function c = centroid(a,b,h,R)
% This subfunction calculates the centroid of the overlap area of a circle
% and ellipse using a derived formula.

c = ((a+b).*(3*a*pi*R + 3*b*pi.*(h+R)...
- 2*(a*sqrt(1 - h.ˆ2./(a+b).ˆ2).*(a*(-2 + (2*h.ˆ2)./(a+b).ˆ2)...
+ (3*h*R)./(a+b)) + 3*a*R*atan(h./sqrt(aˆ2 + 2*a*b + b.ˆ2 - h.ˆ2)))...
+ 2*(-b.*sqrt(1 - h.ˆ2./(a+b).ˆ2).*(2*b + (h.*(3*a*(h+R)...
+ b.*(h+3*R)))./(a+b).ˆ2) - 3*b.*(h+R).*atan(h./sqrt(aˆ2 + 2*a*b + b.ˆ2 - h.ˆ2)))))...
./(3*(-2*h.*sqrt(aˆ2 + 2*a*b + b.ˆ2 - h.ˆ2) + (a+b).ˆ2*pi...
- 2*(a+b).ˆ2.*atan(h./sqrt(aˆ2 + 2*a*b + b.ˆ2 - h.ˆ2))));
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B.4 chengDep.m

function depFrac = chengDep(S,R0)

K = 4*S/R0;
A = ((1 + (1+K.ˆ2).ˆ0.5)/2).ˆ0.5;
B = K./(2*A);
tz = zeros(1,length(S));
for i = 1:length(S)

t = 0;
dt = 1;
error = 1;
e1 = cos(B(i)*t).*(cosh(A(i)*t) + A(i)ˆ3/(A(i)ˆ2+B(i)ˆ2)*sinh(A(i)*t));
e2 = B(i)ˆ3/(A(i)ˆ2+B(i)ˆ2)*sin(B(i)*t).*cosh(A(i)*t);
direction = sign(e1+1E-8-e2);
while error > 0.001 | | changed == 0

t = t + dt;
e1 = cos(B(i)*t).*(cosh(A(i)*t) + A(i)ˆ3/(A(i)ˆ2+B(i)ˆ2)*sinh(A(i)*t));
e2 = B(i)ˆ3/(A(i)ˆ2+B(i)ˆ2)*sin(B(i)*t).*cosh(A(i)*t);
if direction 6= sign(e1-e2)

changed = 1;
direction = -direction;
dt = -0.1*dt;
error = abs((e1-e2)/e1);

end
end
tz(i) = t;

end
n = sin(B.*tz) .* (sinh(A.*tz) + A.ˆ3/(A.ˆ2+B.ˆ2).*cosh(A.*tz)) ...

+ B.ˆ3/(A.ˆ2+B.ˆ2).*cos(B.*tz).*sinh(A.*tz);

z = (1 - (R0ˆ2*(n - exp(tz)).ˆ2)./(n + exp(tz)).ˆ2).ˆ0.5;

depFrac = 1 - 1/(pi*R0) * ((exp(2*tz)./n.ˆ2 - 1).*((R0ˆ2+1)*z - z.ˆ3/3) ...
+ R0*(exp(2*tz)./n.ˆ2 + 1).*(z.*sqrt(1-z.ˆ2) + asin(z)));

84


	Prefatory Pages
	Title
	Examining Committee
	Dedication
	Abstract
	Preface
	Acknowledgements

	Contents
	Table of Contents
	List of Figures
	List of Symbols

	1 Introduction
	1.1 Background and Motivation
	1.1.1 The Utility of Lung Deposition Simulations
	1.1.2 Eulerian Versus Lagrangian
	1.1.3 A Pseudo-Eulerian Method
	1.1.4 One-Dimensional vs. Three-Dimensional Models
	1.1.5 Goals

	1.2 Methods
	1.2.1 The Continuum Approach
	1.2.2 The Single-Particle Approach


	2 Solution Attempts
	2.1 The Perturbation Method
	2.1.1 Application of the Perturbation Method to Simplified Navier-Stokes Equations

	2.2 The Variational Iteration Method
	2.2.1 Application of the Variational Iteration Method


	3 A Working Solution
	3.1 Formulating The Equation
	3.1.1 Non-dimensionalization

	3.2 Solving the Equation
	3.2.1 The Radially Constant Flow Case
	3.2.2 The Radially Variable Flow Case


	4 Numerical Implementation
	4.1 Steady Flow Simulation
	4.2 Quasi-Steady Flow Simulation
	4.3 Transient Flow Simulation
	4.3.1 Concentration
	4.3.2 Deposition
	4.3.3 Outflow


	5 Results and Validation
	5.1 Validation
	5.1.1 Internal Validation
	5.1.2 External Validation

	5.2 Results
	5.2.1 Constant Acceleration
	5.2.2 Constant Deceleration
	5.2.3 Sinusoidal Acceleration and Deceleration


	6 Conclusions
	6.1 Summary
	6.2 Future Work

	References
	A Derivations
	A.1 The Complex s(t) Solution
	A.2 The Steady Particle Path Function
	A.3 The Area Overlap Function
	A.4 The Outflow Function
	A.5 The Deposition Rate Function

	B Code
	B.1 steadyDep.m
	B.2 quasiDep.m
	B.3 eulerDep.m
	B.4 chengDep.m


