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Abstract

In process plants, alarms are configured to notify operators of any abnormal-

ities or faults. However, in practice a majority of raised alarms are false or

nuisance and create problems for operators as they face an increasing num-

ber of alarms to handle. In the past, many catastrophic incidents happened

only because of poor performance of alarm systems. Therefore, a dependable

and efficient alarm system is needed to ensure plant safety and uninterrupted

operation. To assess performance of a plant’s alarm system, it is necessary

to evaluate various performances indices. Motivated by this, this thesis de-

velops quantitative relationships among commonly used alarm attributes and

performance indices.

Alarm design techniques, like, deadbands and delay-timers can signifi-

cantly reduce false and nuisance alarms. However, these techniques introduce

some delay in raising the alarm (detection delay). In this thesis, detection de-

lays are calculated using Markov processes for deadbands and delay-timers. A

design procedure is then proposed that compromises between detection delay,

false alarm rate (Type I error) and missed alarm rate (Type II error) for an

optimal configuration. Inclusion of these indices in alarm design makes the

system more reliable and effective in nature.

Filtering is another widely used alarm design technique in industries. Two

most commonly used filter types in industry are the moving average filter and

the exponentially weighted moving average filter. However, the effect of filter



parameters on the alarm detection delay is not well known. We investigated

this relationship for the moving average filter and proposed a method to design

filter order.

We proposed a generalized delay-timer framework where instead of con-

secutive n samples in the conventional case, n1 out of n consecutive samples

(n1 ≤ n) are considered to raise an alarm. For the generalized delay-timer,

three important performance indices, namely, the false alarm rate (FAR), the

missed alarm rate (MAR) and the detection delay (EDD) are calculated us-

ing Markov processes. Also the performance and sensitivity of generalized

delay-timers are compared with conventional delay-timers. All theoretical de-

velopment and alarm design technique proposed in this thesis are validated

through simulations and several case studies are conducted to illustrate indus-

trial applications.
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Chapter 1

Introduction

1.1 Motivation

In any industrial setup, the most desired feature is smooth and uninterrupted

operation of the plant. Modern industries are therefore monitored by hundreds

and thousands of sensors. These sensors are installed in different areas and

they communicate through a medium to monitor physical or environmental

conditions of the plant. Under fault-free operating condition of the plant,

the operator carries out routine actions. Whenever a process variable exceeds

certain threshold, an alarm is raised to indicate abnormality. Operators are

informed of any problem by alarms indicating abnormal behavior of the plant.

To ensure cost efficiency, safety of the work force and plant, and quality of

products, faults must be identified promptly and appropriate actions should

be taken as soon as possible. Failure in such actions may result in serious

consequences, even human injuries and casualties. With virtually every as-

pect and location of the systems being monitored, the probability of an event

going undetected is very low. Furthermore, the consequences of any nontrivial

event are likely to be picked up independently by several sensors and reported

in many separate alarm messages causing nuisance alarms. It gives a false

impression about the nature of fault to the operator. Working under such a

stressful environment, the performance level of operators can go down causing

serious consequences in responding to a true alarm.

Too many configured alarms make the alarm system complex and opera-
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tors often face difficulties during abnormal events. The effectiveness of alarm

systems can be measured in terms of two functional requirements [1]. First,

a well designed alarm system must be able to warn operators about any ab-

normal situation in the plant so that operators can take immediate actions.

Second, the warning should be a true one, and must not mislead or over-

load operators while taking appropriate measures. Inefficient design and poor

performance of alarm systems caused serious accidents in the past.

1.1.1 Importance of Alarm Management

Process safety management is an important requirement to assure health and

safety of workplaces. Also environmental issues are getting more and more

attention since any major incident in process plants significantly affects sur-

rounding environment. With growing concerns for water, air and earth con-

taminations caused by incidents in the past, effective process monitoring and

alarm management have become important issues these days. According to

the Abnormal Situation Management Consortium, the US petrochemical in-

dustry alone loses 10-20 billion dollars annually because of issues including

equipment failure, environmental damage, human casualties and injuries, and

so on [2]. Although achieving the state of absolutely no risks in plant opera-

tions is the ultimate target, because of many practical limitations it is hardly

possible in practice. However, protection layers can be designed in such a way

to prevent incidents and improve lines of defense. An effective monitoring

and alarm system can significantly improve overall safety measures. Whereas,

poor alarm performance may cause catastrophic accidents. In the following

section we discuss a few of such incidents in the past.

1.1.2 Major Industrial Incidents

Petrochemical plants on average suffer a major incident once every three years

[2]. Surprisingly many of these incidents are not caused by major equipment

failure, but rather inefficient monitoring. The following incidents are often

cited in the literature that motivate for effective alarm system design:
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The Deepwater Horizon oil spill in 2010 in the Gulf of Mexico on the

BP operated Macondo Prospect is considered as the largest marine oil spill

accident in the history of petroleum industry. The explosion killed 11 workers

and many were injured. The drilling rig burned and ultimately sank in two

days later. BP reported $32 billion loss including compensation related to

this oil spill [3]. The incident was a result of poor risk management and

failure to observe and respond to critical indicators. A national commission

investigated the incident and one of the key recommendations in the report is

to build more sophisticated and automated alarms to alert the driller and the

mudlogger when anomalies arise as a future practice [4].

The Buncefield fire is known as a major conflagration caused by a series

of explosions in 2005 at the Hertfordshire Oil Storage Terminal [5]. The au-

tomatic tank gauging system that measured the level of Tank 912 stopped

registering the tank fuel level and all configured alarms were non-operational

as the indicated level never crossed the limit. Therefore, the control room su-

pervisors were not notified of a tank overfilling. The tank was also equipped

with an independent high level switch to close the control valve in case of

the tank reaching an unintended high level, as well as a sounding alarm to

report such incidents. However, this critical safety alarm did not work as well.

As a result large quantities of petrol overflowed eventually causing a massive

explosion. A total of 43 people were injured with surprisingly no death. The

overall cost of the incident was estimated to be $1.5 billion.

The BP Texas City refinery explosion in 2005 occurred at the ISOM pro-

cess unit killing 15 workers and another 180 were injured. The incident hap-

pened because of false indications by critical alarms that failed to alert oper-

ators of high level in the isomerization unit. The tower level indicator showed

a declining level when the tower was actually overfilling. As a result of the

accident, BP paid more than $1.6 billion as compensation to victims and

was charged with another $87 million fine by Occupational Safety and Health

Administration (OSHA) [6].

The explosion at Texaco refinery at Milford Haven in 1994 injured 26

3



workers and plant damage, costing $100 million to repair. The incident inves-

tigation revealed that operators received one alarm every two to three seconds

during the incident making it almost impossible for them to react. It was also

found that in the last 10 minutes prior to the incident, two operators had to

recognize, acknowledge and take actions on 275 alarms. In the DCS alarm

configuration, there was no clearly defined alarm philosophy as 87% of con-

figured alarms had high priority making it difficult for operators to recognize

critical alarms. As a result operators failed to recognize a stuck outlet valve

that lead to release of flammable hydrocarbon which subsequently exploded

[7].

In October 23, 1989, the Phillips 66 Company disaster at the Texas, USA,

killed 23 employees and injured 314. The accident was caused by release

of extremely flammable process gas through an open valve. The valve was

connected the wrong way only because both close and open ends of the valve

had similar outlook. As a result, the valve was open although the switch in

the control room was at the valve close position. No alarms were configured

to detect such anomalies that could prevent the deadly incident [8].

The Three-Mile Island (TMI) nuclear power plant accident is considered

as the worst one in US commercial nuclear power plant history. Although

there was no human casualty and very little radiation was reported in the

environment, the incident had serious economic and social impacts. It took

more than a decade to clean up the facility with a cost of $1 billion and

$2.4 billion in property damage. The TMI plant was designed with ability to

provide alarms for every small problem; but during the accident, operators

were flooded with information, much of it irrelevant and misleading [9].

All these major incidents had different causes, but it is important to re-

member that most could have been prevented with better monitoring and

alarm systems. Therefore an efficient alarm system is of paramount impor-

tance.
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Table 1.1: Independent protection layers [10, 11]
Layers Definitions Functions
IPL8 Community emergency response

Minimize
damage from an
incident

IPL7 Plant emergency response
IPL6 Physical protection (containment dikes)
IPL5 Physical protection (relief device)
IPL4 Automatic action SIS or ESD

Prevent an
incident from
happening

IPL3 Critical alarms, operators supervision and
manual intervention

IPL2 Basic control, process alarm and operator su-
pervision

IPL1 Process design

1.2 Alarm Systems in Process Safety Design

To provide protection from hazardous incidents, eight independent protection

layers (IPLs) as shown in Table 1.1 are largely followed in process design

and safety considerations [10, 11]. The IPL1 layer is the most important

one as it is possible to reduce overall risks significantly at the process design

level. The IPL2 layer is primarily involved with supervision of an operating

plant in the normal operating mode. At this level, operators are notified

of any abnormalities in the plant raising alarms when a monitored process

variable deviates from its normal operating range. In this layer of protection,

operators are expected to take corrective measures mitigating the problem

at the early stage of abnormality. The IPL3 layer represents critical alarms

and manual operator’s intervention may be required at this stage. Higher

levels of protection layers involve safety instrumentation systems, emergency

shutdown, plant emergency response and so on. Table 1.1 also illustrates

the importance of alarm systems in process safety indicating how an effective

alarm protection layer could prevent incidents from happening and therefore

saving associated costs. Alarms indicating faults should be unmistakable and

for each cause there should be no more than one alarm [12, 13].

Fault detection and isolation (FDI) form a very active area of research,

mainly on the basis of mathematical or knowledge based models. Several

model-based FDI methods were developed in the last decades [14, 15, 16, 17].
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Figure 1.1: Alarm management lifecycle [18]

The main focus in the model-based approach is to obtain a proper mathemati-

cal model which is relatively difficult to do for complex plants. An alternative

to model-based methods of fault detection is the signal-based methods. In

signal-based fault detection, process variables are directly monitored and com-

pared with some thresholds (or alarm limits) [16, 17]. Signal-based methods

of process monitoring are the most commonly used techniques in industry and

are readily implementable on almost all modern distributed computer systems

(DCS).

Once a fault is detected, an alarm should be raised to notify the concerned

operator about the fault. A detailed description of an alarm system is dis-

cussed in [18, 19]. According to the alarm management lifecycle (Fig. 1.1), the

philosophy part is defined at the very beginning to document objectives. After
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that potential alarm problems are identified. The need to change alarm set-

point, design, prioritization, etc., are documented in the rationalization stage.

Based on requirements of the documentation, alarm attributes are designed

in the detailed design part. Blocks of implementation, operation, mainte-

nance, and monitoring phases are quite self-explanatory. The total process is

reviewed periodically from time to time in the audit section.

Generally, alarm systems can be designed in two frameworks: univariate

and multivariate. In univariate design, which is the most commonly practiced

method of alarming, the alarm thresholds and processing technique (dead-

band, delay-timer, filter, etc.) are individually designed for each process vari-

able. In multivariate design, alarms are designed for some latent variables

which are typically linear combinations of multiple process variables. Several

multivariate design methods are available to group correlated alarms, iden-

tify statistical similarities and rationalize accordingly [2, 11, 20, 21, 22]. In

this work, we concentrate on univariate alarm design for commonly used tech-

niques balancing false alarm rate, missed alarm rate and detection delay not

addressed elsewhere earlier.

The signal based methods based on simple limit checking have the advan-

tage of simplicity and ease of implementation. However, incorrect settings

of the alarm limits or thresholds may result in problems of false, missed and

nuisance alarms [2, 12, 13]. An alarm that is raised in the fault-free operation

of a plant is known as a false alarm. An alarm that is true but redundant as

operator has already been notified of the fault by another alarm is a nuisance

alarm. On the other hand the situation where an alarm is not raised in the

presence of a fault is known as a missed alarm.

Another associated problem in the alarm system is delay in raising the

alarm. In case of a fault occurrence, alarms may not be raised instantly due

to different delays in the system. Also the alarm configuration (deadband,

delay-timer, etc) can cause delay in raising the alarm. The difference in time

between the actual moment of fault occurrence and the moment an alarm is

activated is defined as the detection delay.
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Table 1.2: The Engineering Equipment and Materials Users Association
(EEMUA) benchmark

EEMUA Oil and Gas Petrochemical Power
average alarms per hour ≤ 6 36 54 48
average standing alarms 9 50 100 65
peak alarms per hour 60 1320 1080 2100
distribution %
(low/med/high)

80/15/5 25/40/35 25/40/35 25/40/35

The performance measurement of alarm systems is an important concern in

industries. For the univariate alarm systems, the performance can be assessed

in terms of accuracy of the design and swiftness or latency to raise an alarm.

The false alarm rate (FAR) and the missed alarm rate (MAR) provide a

measure of alarm systems accuracy and the expected detection delay (EDD),

which is the averaged time required to activate an alarm provides a measure of

alarm system latency. There are a number of methods for alarm configuration.

It is widely accepted that proper implementation of these methods can improve

the performance of alarm systems. Table 1.2 presents a typical survey of

alarm counts and priority distribution from oil and gas, petrochemical and

power industries [2]. When compared with industry standards, it is clear

that the reality is far from what is recommended by standards. However,

very limited research is conducted so far on how to obtain optimal settings

for commonly used alarm configuration techniques. The exact quantitative

relationship between performance specifications and design methods is not

well known yet. This thesis aims at obtaining quantitative expressions that

relate each configuration technique to the performance measure. Later this

relationship is used to design the alarm system.

1.3 Thesis Contributions

The research on performance specifications of alarm systems is very limited

in literature. Many problems are unresolved to comply with available stan-

dards - the ISA 18.2 and the EEMUA 191. The main objective of this thesis
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is “developing quantitative relationship between commonly used alarm design

techniques and performance specifications of alarm systems”. In order to meet

the objective, we set the following goals to achieve for this thesis:

1. Deadbands, delay-timers and filtering techniques are widely used in in-

dustries. However, it is not well known the average time it may take to

notify operators of an abnormal event for different alarm configuration

settings and process types. Therefore, the first goal is to calculate de-

tection delays caused by these common design techniques that can be

used for optimal alarm configuration.

2. The next goal is to use the average delay information in alarm systems

design. The design should be such that it provides sufficient time to an

operator to respond to an alert of abnormality. Also the design should

balance false alarm rate and missed alarm rate depending on the process

type and other requirements.

3. As the next goal, extension of the commonly used delay-timer concept

to a more generalized setup with analysis of associated sensitivity and

accuracy indices is considered. In a conventional delay-timer setup, con-

secutive few samples are required to cross alarm limit to activate or

deactivate an alarm. Here instead of consecutive samples, n1 out of n

consecutive samples are considered, where n ≥ n1.

4. Finally, with industrial case studies we want to demonstrate application

of developed design methods and derived equations.

1.4 Organization of the Thesis

Chapter 2 includes preliminaries of alarm systems and literature review. A

short description of problem definition and Markov processes, which are used

as a tool for some of the main derivations, are also discussed in this chapter.

Chapter 3 discusses on calculation of detection delay for delay-timers,

deadbands and simple limit checking. Later an alarm design method is also

9



given considering detection delay, false alarm and missed alarm rates.

Chapter 4 focuses on detection delay calculation for filtering. Filtering is

a widely practiced method to suppress noise in signals and it is shown that

the downside of this advantage is delay caused by variable signal processing

time.

Chapter 5 introduces a new concept of generalized delay-timers. In a con-

ventional delay-timer, a consecutive few samples are considered to raise or

clear an alarm. The concept is extended to a generalized framework, where

instead of consecutive n samples, n1 out of n samples (n1 ≤ n) are consid-

ered. For the generalized setup, impacts on accuracy and sensitivity are also

discussed.

Chapter 6 includes application of derived equations and design methods to

industrial problems. Historical process and alarm data obtained from industry

are analyzed and based on that possible rationalization and effective alarm

configuration techniques are discussed.

Chapter 7 discusses on conclusion and future work. A summary of work

presented in the thesis is given, and directions for possible future extension

are also discussed.
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Chapter 2

Preliminaries

In this chapter the background material necessary to understand the contents

of this thesis is discussed. In the following section, a literature review of

the existing research related to alarm management and design is given. An

introduction to the performance specifications of alarm systems, which is focus

of this thesis is introduced. In Chapter 3 and 5, the detection delay caused by

delay-timers and deadbands is calculated using Markov processes. Therefore,

concepts of the Markov process used in later chapters are reviewed.

2.1 Literature Survey

The complexity and degree of automation of technical processes are continu-

ously increasing with growing demands for plant reliability, higher efficiency,

better performance and product quality. In the early days, a limited number

of selected variables were monitored and sensors were hardwired to the con-

trol room. Due to significant advancement in communications and computer

technologies nowadays a large number of process variables are monitored dur-

ing plant operations. A downside of this advancement, however, is a large

increase in the number of configured alarms. An alarm is an announcement

to the operator (in visual or auditory form) to inform about any abnormal-

ity in the plant; and an alarm system is the system to generate and process

alarms and presenting them to the operator. In this section, we review the

existing literature that covers different aspects of alarm systems design and

11



management.

Model-based vs Signal-based Design

There are several methods for fault detection as discussed in [14, 15, 16,

17]. These detection techniques can be broadly classified into two categories:

model-based, and signal processing based. Compared to signal processing

based, model-based fault detection is a more active area in the field of control

theory and engineering [16]. However, for most practical systems it is difficult

to obtain precisely known mathematical models or they are highly nonlin-

ear and not feasible for implementation from economic point of view [17].

Therefore the application of the model-based scheme is limited. Furthermore,

model creation is a time-consuming task and it is not always certain that the

model will be valid; a created model is also required to be revised if changes

are made in the process [12]. The most common and frequently used fault

detection method in industry is simple limit checking of a directly measured

variable (signal processing based fault detection) [12, 17]. This method has

the advantages of simplicity and ease of implementation. However, incorrect

settings of alarm limits or thresholds may result in problems of false, missed

and nuisance alarms as well as cause detection delays [2, 12, 13, 23, 24]. The

knowledge of FAR, MAR and EDD is therefore important to include preven-

tive measures in the system design. To reduce the number of unnecessary

redundant alarms, a conventional approach is to review top ten worst alarms.

In this method, from a list generated, alarms are reviewed one by one starting

from the most frequent one and the root cause is identified [25]. Many of

these generated alarms can simply be removed by properly adjusting alarm

thresholds [12]. Alarm thresholds are normally set considering certain confi-

dence range, e.g. µ± 3σ (where µ is mean and σ is standard deviation of the

process variable) [2]. In [26], a method of alarm threshold design is described;

adding a margin to the upper and lower boundaries of the normal process

fluctuation range is proposed in this method. But it does not discuss how to

justify the optimality of selected margins. If a margin is set too high, it poses
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the risk of high missed alarms; and a too tight margin may lead to higher

false alarms. In [27], considering the regulatory standard of EEMUA 191 [19],

alarm system management and optimization are discussed. But very little is

written about the trade-offs among false alarm rates, missed alarm rates and

detection delays except [2, 13, 24, 20]. In [2], trade-offs between the detection

delay and the false alarm, and between the false alarm rate and the missed

alarm rate are discussed. An ROC curve is a technique to visualize and select

classifiers based on their performance. In [13], a threshold design process is

discussed based on ROC curves balancing the false alarm rate and the missed

alarm rate for the filter, time delay and deadband.

Delay in Alarm Activation

An FDI method is judged satisfactory if it detects failure quickly [28]. To

quantitatively measure the effect of variable processing, it is necessary to es-

timate the detection delay. The designer must have a clear idea about how

long it will take to activate the alarm if a particular design scheme is used.

This knowledge is important to include preventive measures in system design

to compensate for activation delay. The detection delay has been discussed to

some extent in [29, 30] for some change detection algorithms, e.g., the CUSUM-

type algorithm. In [30], both analytical results and Monte-Carlo simulation

results for the probability distribution of the detection delay and the time

between false alarms are presented. The probability distribution of the fault

detection delay and the time between false alarms are investigated in [31]. The

authors derived analytical probability distribution expressions for sequential

fault-detection schemes: CUSUM and GLR-based methods. In [24, 23], detec-

tion delays caused by the simple limit checking, deadbands and delay-timers

are calculated; also a design method is proposed to balance the FAR, MAR

and EDD. The common alarm attributes (e.g. alarm limit, deadbands, delay-

timers) described in the ISA 18.2 standard [18] and EEMUA 191 [19] for basic

alarm design are important for effective monitoring; these were not addressed

elsewhere earlier. There are some popular methods such as the sequential
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hypothesis analysis or Wald’s test [29, 32] for change detection. However, for

offline analysis fault information and change point are mostly identifiable from

data historian using expert knowledge [33, 34].

Correlation of Alarms

A large increase in the number of monitored variables in recent days has sub-

sequently increased the number of alarms to be processed by an operator.

These monitored variables are not all independent. There have been some

studies on alarm systems based on correlation analysis [11, 25, 20, 35]. In

[20], a method of suggesting alarm limits is discussed considering correlations

between the process data and the alarm data. The idea is to study the simi-

larity of correlation maps of physical process variables and their alarm history

through causal maps. Then alarm limits should be set to reduce discrepancy

of correlations. This method requires the process connectivity information,

and in the presence of time lag, it cannot provide any solution. References

[25, 35] discussed an alarm reduction method based on finding the event cor-

relations from statistical similarities of alarms. In this method, alarms were

divided into a limited number of groups considering several factors, e.g., se-

quentiality in alarm generation. From these groups unnecessary alarms were

identified. The idea of event correlation analysis was first proposed in [11] to

improve the performance of independent protection layers (IPL) 2 and 3 and

evaluated the effectiveness in a chemical plant. Another important aspect of

alarm systems is the human factors or operators actions due to their direct

and indirect participation in handling of abnormal situations. Under a set

of assumed malfunctions an operator model to be used as virtual subject for

evaluating an alarm systems is discussed in [36]. Correlation of alarms and

virtual subject modeling is out of scope of this work.

Chattering and Nuisance Alarms

Another problem related to alarm systems is several alarms raised in a short

period of time for a single variable known as alarm chattering [37]. The chat-
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tering index is calculated based on the statistical properties of process variable

in [38]. It has been discussed in some literature how filtering, delay-timers and

deadbands can reduce the problem of nuisance and false alarms on a single

process variable [13, 19, 18, 39]. The relationship of deadband, chattering

and alarm limit is discussed in [40], where the authors also show that a fixed

threshold with increasing deadband is less effective in reducing chattering im-

pact. There are certain trade-offs in application of these techniques [2, 13].

For example, noise in signals may cause chattering for a fixed threshold and

by filtering the noise can be reduced. Subsequently the noise reduction may

result in reduced number of alarms. But to what extent filtering can be done

is a major concern as it causes delay in triggering the alarm [13]. The trade-off

between accuracy and latency is very important and must be taken into ac-

count before processing data. In [41], authors discussed about detection delay

for other techniques including filtering and provided a formula to compute

expected detection delay for moving average framework. But for moving aver-

age filter the correlation among contiguous samples of filtered data is ignored

in their work. If the process data is independent and identically distributed

(IID), after filtering the data no longer remains independent. Considering this

fact relationship between the alarm limit, filter order and the detection delay

is also derived later in [42].

Alarm Flood and Causality Analysis

The alarm flood is a very crucial problem in process industries which is de-

fined as the period when operators receive more than 10 alarms per 10 minutes.

Such incidents often lead to emergency shutdown or major plant upsets. In

[21], the authors discussed about grouping of alarm floods according to pat-

terns of occurrence using a nonlinear time alignment method of time depen-

dent sequences called dynamic time warping (DTP). It is discussed that the

root cause identification of historical alarm floods can be used as a signature

and may benefit operators in future to react at early stage of a plant upset

in similar cases. A similar work using a modified Smith Waterman algorithm
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is discussed in [43]. Since alarm flood is represented by a time-stamped se-

quence, the algorithm is modified to include time-stamp information and then

calculate the similarity index. An automatic alarm data analyzer (AADA) al-

gorithm is proposed taking into account causal dependencies in [44]. However,

the method has limitations in terms of detecting variation in sequence as well

as significant alarm dependencies. Graphical tools to analyze alarms could be

very effective in overall plant alarm assessments. But it is a real challenge to

present them graphically for longer time period analysis. For example, ISA

18.2 recommends considering at least 30 days of data to calculate the metrics.

However, it is quite difficult task to condense data from such large time frame

and usefully present them for information extraction. A high density alarm

plot to chart top alarms over a given time period and alarm similarity color

map to highlight redundant and similar alarms are presented in [45, 22]. Au-

thors also illustrated usefulness of the tool by industrial case studies involving

half a million observations for fifty alarm tags.

Rationalization of alarm systems is a key concern in process industries.

Nowadays use of DCS has made it possible to store large amount of data in

historian which can be used as a great resource for effective alarm rational-

ization [46]. Normally process engineers are well aware of normal behavior

of the plant and are expected to be able to differentiate between fault-free

and faulty process data. The calculated equations in this work can be ap-

plied to historical process data to get an accurate measure of performance

specifications, namely, FAR, MAR and EDD. Later, changing different tuning

parameters (delay-timer settings, alarm limits etc.) desired alarm settings can

be obtained with the help of these equations.

2.2 Performance Specifications of Alarm Sys-

tems

The performance of alarm systems can be seen from two perspectives. When

the overall macro scenario is considered, the performance can be measured by
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average annunciated alarm rate per operators, peak alarm rates, alarm floods,

chattering or fleeting alarms, and priority distribution [18]. However, at the

micro level it is not the overall system performance, rather how well alarms

are performing individually is more important. A systematic approach of

well-tuned individual alarm tags can improve overall performance significantly.

Whereas, a few bad actors can cause the overall performance metric to degrade

below the expectation level. The performance of alarm systems in this work

is considered at the individual alarm tag level. It is a reasonable bottom-up

approach where individual effectiveness adds to overall performance at the

macro level.

For univariate alarm systems, raising of an alarm can be discussed from the

perspective of two-class classification problem, where each instance is mapped

to a class. If P and N are number of positive and negative instances with out-

comes p (positive) and n (negative) respectively, then there are four possible

outcomes from the given classifier problem. In such case, the outcomes can

be described by a 2 × 2 confusion matrix (also known as contingency table)

(Fig. 2.1).

If both prediction and actual outcomes are true (p), then it is called a true

positive. But if the actual one is false (n), then it is a false positive. In the

literature of alarm systems, the false positive is termed as the false alarm rate

(FAR). On the other hand, a prediction outcome, n and an actual value, p

is known as a false negative, which is the missed alarm rate (MAR) in alarm

systems [12, 13, 24].

The performance measurement of alarm systems is an important concern

in industries. For univariate alarm systems, one way to assess the performance

is to compute accuracy of the design. The false alarm rate (FAR) and the

missed alarm rate (MAR) provide a measure of alarm systems accuracy. A

good design of higher accuracy indicates lower false and missed alarm rates.

For the process data shown in Fig. 2.2, for a high alarm limit some part of the

fault-free data falls above the limit causing false alarms and some part of the

faulty data falls below the limit causing missed alarms.
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Figure 2.1: Confusion matrix of two-class classification problem

The accuracy of an alarm system can be presented by the receiver operating

characteristics (ROC) curve [13]. In the signal detection theory, ROC curves

are used to describe trade-offs between hit rates (also known as true positive

rate) and false alarm rates [49]. However, in alarm systems ROC curves were

first introduced in [13], where instead of the hit rate the missed alarm rate

(1-hit rate or false negative) was used for convenience. If the objective of

the alarm system design is to minimize both the false alarm rate and missed

alarm rate, then the optimum point in the ROC curve is the point closest to

the origin (Fig. 2.3). The ROC curve and the optimum point also depend on

types of alarm design method used and weight given on FAR and MAR.

Another important performance index in alarm systems is the swiftness
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Figure 2.2: Process data and corresponding PDFs; p1, p2, q1, q2 denotes prob-
abilities and L0, L1 denotes likelihoods for fault-free and faulty classes.
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Figure 2.3: The receiver operating characteristic (ROC) curve

or latency to raise an alarm. Once an abnormality occurs, estimation of the

average time required to raise an alarm is a critical concern for safety reasons.

The average required time to activate a true positive outcome is known as the

expected detection delay (EDD), which provides a measure of alarm systems

latency.

In Fig. 2.2, the fault-free data is Gaussian distributed with mean 0, vari-

ance 1, and faulty data is also Gaussian distributed with mean 2, variance

2. If the high alarm limit is set at 2, alarm is activated instantly when fault

occurred. However, setting the limit at 4 in this example delays alarm acti-

vation by 7 seconds (assuming 1 sec sampling). It is therefore important to

know how alarm settings cause delay in raising alarms.

A quantitative relationship among alarm configuration and performance

indices is necessary for efficient alarm systems design. In the following sec-

tion, calculation of these three indices (FAR, MAR, and EDD) are discussed.

Calculation is mainly based on modeling the alarm systems by Markov chains.
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2.3 Markov Processes

A Markov process is an independent process where outcome at any time in-

stance depends only on the outcome that precedes it and none before that

[47]. The stochastic process (Xn)∞n=0 is called a Markov chain if, for any n and

any collection of states i0, i1, · · · , in+1

P(Xn+1 = in+1|Xn = in, · · · , X1 = i1, X0 = i0) = P(Xn+1 = in+1|Xn = in)

(2.1)

In this thesis Markov processes are used to estimate the detection delay for

deadbands and delay-timers. Consider a Markov process with a limited num-

ber of states. Assume that the transitional probability, pij, is the probability

of going from state i at time t to state j at time t+ 1 and define

P =


p11 p12 · · · p1j · · ·
p21 p22 · · · p2j · · ·
...

...
...

...
...

pi1 pi2 · · · pij · · ·
· · · · · · · · · · · · · · ·

 ,

The matrix P is known as transition probability matrix. A probability vector

π is called invariant for the Markov process if π = πP. In other words, π is a

left eigenvector of P with eigenvalue 1 [48]. It is a known fact that an invariant

vector π exists if the Markov process satisfies the following two conditions:

1. The sum of all entries in each row of P is 1 (
∑

j pij = 1).

2. All the entries of P are non-negative (pij ≥ 0).

To satisfy these conditions and the definition of Markov processes, we make

the following assumptions on the process data:

1. Process data is independent and identically distributed (I.I.D.), i.e., at

each sampling instant, the process data (random variable) has the same

probability distribution as the other instants and all are mutually inde-

pendent.
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2. Probability density functions of the fault free and faulty data are known.

These distributions can be estimated from historical data.

Therefore enough relevant data points must be available to estimate these

distributions that can be obtained from historical process data. Although

these two assumptions are restrictive to some extent, they are not impractical

[13, 23, 71]. Other cases of non-stationary distributions will be addressed in

the future.
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Chapter 3

Detection Delays for Deadbands
and Delay-timers

Deadbands and delay-timers are two widely exercised techniques in process

industries to mitigate problems of false and nuisance alarms. Unlike simple

limit checking, in deadbands alarms are raised and cleared according to two

different limits; and in delay-timers consecutive few samples are required to

cross alarm limits to raise or clear an alarm. Although these techniques may

significantly reduce false alarms, detection-delay is the unwanted consequence

in alarm activation. The detection delay is not often considered in the design of

alarm systems because of the common misconception that delay-timers equally

delay all alarms [12], which is not true in practice [23, 24]. In this chapter1,2,

detection delays for deadbands and delay-timers are calculated using Markov

processes. A design procedure is also proposed considering detection delay,

false alarm rate (Type I error) and missed alarm rate (Type II error) for an

optimal configuration. Inclusion of the detection delay in the alarm design

enhances reliability and provides better insight to the consequences.

In Section 3.1, detection delays are discussed in the simplest case of thresh-

old limit comparison. Sections 3.2 and 3.3 discuss detection delays due to

1 A shorter version of this chapter has been published as: N. A. Adnan, I. Izadi, and T. Chen,
Computing Detection Delays in Industrial Alarm Systems, in proceedings of the American
Control Conference (ACC 2011), pp. 786-791, June 29 - July 1, 2011, San Francisco, CA,
USA.

2 Sections of this chapter have been published as: N. A. Adnan, I. Izadi, and T. Chen, On
expected detection delays for alarm systems with deadbands and delay-timers, Journal of
Process Control, vol. 21, no. 9, pp. 1318-1331, 2011.
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deadbands and delay-timers, respectively. Section 3.4 presents an analysis

for finding the optimum set level of threshold and a design procedure. In

Section 5.6, concluding remarks and future work are discussed.

3.1 Detection Delay

In case of a fault occurrence, alarms may not be raised instantly due to differ-

ent delays in the system. The delay can be caused by various reasons including

network delays, bad implementation, hardware problems, sensor failure, data

loss. Also the alarm configuration (deadband, delay-timer, etc) can cause de-

lay in raising the alarm. Detection delay is the difference of samples between

the actual instance of fault occurrence and the instance of alarm raised. If a

process variable moves from fault-free region of operation into faulty region of

operation at time tf and alarm is raised at time ta, then detection delay (DD)

is given by,

DD = number of samples between ta and tf

In the ideal case fault should be detected instantly at the moment of oc-

currence, which is hardly seen due to different delays. In practical condition,

the problem is to detect the occurrence of the change as soon as possible [29].

Techniques like delay-timers, deadbands, and filters are widely used in alarm

systems to enhance the effectiveness of the limit checking method, but they

increase the detection delay. However, even if no delay-timer, deadband and

filter is configured, there may still be some detection delays as it is directly

related to the position of the alarm threshold limit. In this section, we discuss

detection delay for the simple threshold comparison alarm configuration.

In the fault free operating region assume the probability of one sample

exceeding alarm limit (ytp) is p1 and the probability of one sample falling

within the alarm limit is p2. Similarly under the faulty region of operation,

q1 is the probability of one sample falling within the alarm limit and q2 is

the probability of one sample exceeding limit. Therefore p2 = 1 − p1 and

q2 = 1− q1 as shown in Fig. 3.1.
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Figure 3.1: Process data with deadbands and fault occurrence instance
(left); corresponding probability density functions of fault-free and faulty data
(right). Only the upper threshold is considered for simple limit checking with
no deadband

Probability of zero detection delay is given by the probability of an alarm

being raised instantly at the time of fault; probability of detection delay one

means alarm activation is delayed by one sample from the fault instance. Sim-

ilarly detection delay of z samples denotes alarm is raised z samples later from

the actual instance of fault. Assume that, abnormality occurred at time t = tf ,

A denotes an alarm state and NA denotes a no alarm state. Probability of

detection delays are

P(DD = 0) =P(A at t = tf ) = q2

P(DD = 1) =P(A at t = tf + 1 & NA at t = tf ) = q2q1

...

P(DD = z) =P(A at t = tf + z & NA at t = tf + z − 1 &

. . . & NA at t = tf + 1 & NA at t = tf )

=q2q
z
1

(3.1)

Here the detection delays are in terms of samples, though the detection

delay is normally known as a measure of time. But it will not affect the real

Threshold, ytp 0 0.75 1.5 2.25 3 4 5
Expected detection 0.19 0.36 0.67 1.22 2.24 5.30 13.97

delay

Table 3.1: Effect of threshold change on expected detection delays
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scenario as in practice the sampling time is constant and these values can be

converted to actual time measurements.

From the above equations it can be seen that in the simple case the proba-

bilities of detection delay only depend on the probabilistic distribution of the

faulty data. Fault-free region of operation does not have any effect on raising

or clearing of alarm. The expected value of detection delay is

EDD = E(DD) =
∞∑
z=0

zP(DD = z) =
∞∑
z=0

zq2q
z
1 = q1/q2 (3.2)

Since the expected detection delay is directly related to the threshold limit,

changing the limit will greatly affect the detection delay. A comparative pic-

ture on change of threshold position can be found in Table. 3.1 for the process

data in Fig. 3.1. Here fault-free data has a Gaussian distribution with mean 0,

variance 1 and faulty data is also Gaussian distributed with mean 2, variance

2. It can be seen from Table 3.1, setting the threshold limit up to 3 results

in detection delay of 2.241 samples or lower. But after 3, the detection delay

increases rapidly as the number of samples able to cross the threshold decrease

significantly.

Expected value of detection delay (or average detection delay) is an impor-

tant parameter in alarm design as it indicates the average time it take to raise

an alarm once there is an abnormality in the system. Therefore, it is always

desired to reduce average detection delay to ensure more reliable operation of

the plant. A method of threshold limit design will be discussed in details in

Section 3.4.

3.2 Detection Delay for Deadbands

Deadbands are widely used in industry to eliminate repeating oscillations or

chattering alarms. With deadband configured, alarms are raised and cleared

according to two different limits, instead of the same limit in regular cases.

For example, for high alarms a limit is set, as usual, for raising the alarm.

However, once an alarm is activated it will not be cleared even if the variable
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falls below the limit. To clear the alarm, the variable must go below a lower

threshold.

When a variable transits from the fault-free state to the faulty state, due

to presence of noise, it crosses the alarm limit a few times before settling in

the abnormal state. This oscillation results in subsequent raising and clearing

of the alarm causing the chattering effect. Using deadband (i.e., separating

raising and clearing limits) is, then, helpful here in preventing alarm chattering

[37].

Deadbands should typically be configured based on the normal operating

range of the process variables, measurement noise, and type of the process

variables [18, 37]. There are certain standards for setting deadbands, e.g.

in ISA 18.2 [18] or EEMUA [19]. The correct configuration of a deadband

(setting limits appropriately) is essential in maximizing the benefits of the

deadband.

When deadband is configured, as it can be seen in Fig. 3.1, the probabilities

of one sample going over the raising limit and below the clearing limit do not

add up to one, i.e., p1 + p2 6= 1, q1 + q2 6= 1; where p1, p2, q1, q2 are defined as

before in Section 3.1.

To calculate the probabilities of false alarm and missed alarm, notice that

a process operating in either the fault-free or faulty region, can be in two

states from alarm point of view: alarm state (A) and no alarm state (NA).

These states can be modeled with a Markov chain [13]. A Markov process

for deadband is shown in Fig. 3.2 for fault-free operating region. The Markov

NA

1− p1

A

1− p2

p1

p2

Figure 3.2: Markov diagram of a system with deadband in the normal region
of operation
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model in faulty region is similar. Transitional probabilities from one state to

other are represented by transition probability matrix Pn, in the fault-free

region of operation and by Pf in the faulty region of operation:

Pn =

[
1− p1 p1

p2 1− p2

]
,Pf =

[
1− q2 q2

q1 1− q1

]
(3.3)

If the process remains in the fault-free operating region, after a transient

time the Markov process reaches its steady state and the vector of state prob-

abilities converges to the invariant vector. The steady state vector of proba-

bilities (invariant vector) for Pn is [13]

πn =
[ p2

p1 + p2

p1

p1 + p2

]
(3.4)

When a fault occurs, the Markov process changes from fault-free model

(represented by Pn) to the faulty model (represented by Pf ). Therefore,

the steady-state probabilities for the fault-free operation (i.e., πn) should be

used as the initial state probabilities for the faulty operation. The Markov

process considered here is an ergodic Markov process; aperiodic and positive

recurrent. For an ergodic process, the steady-state invariant vector is unique

[48]. Therefore the Markov process in the faulty operation always has this

unique steady-state invariant vector as initial condition.

If the system transfers from fault-free to faulty state at time tf , using

the forward Chapman-Kolmogorv equations [48], probabilities of alarm and

no-alarm states can be calculated as

[PNA(tf ) PA(tf )] = [PNA(tf − 1) PA(tf − 1)] Pf

= πnPf =

[
p1q1 + p2(1− q2)

p1 + p2

p2q2 + p1(1− q1)

p1 + p2

]
(3.5)

Therefore the probability of detection delay zero (probability of alarm being

raised immediately after transition from normal to abnormal) is

P(DD = 0) = P(A at t = tf )

= PA(tf ) =
p2q2 + p1(1− q1)

p1 + p2

(3.6)
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Threshold, ytp 0 0.5 1 1.5 2.01 3.01
EDD for

x=1 0.1 0.22 0.40 0.65 1.00 2.27
x=2 0.03 0.10 0.03 0.59 0.98 2.26
x=3 0.01 0.02 0.09 0.38 0.91 2.26
x=4 0.01 0.004 0.01 0.08 0.54 2.25

Table 3.2: Effect of threshold change on expected detection delays for different
deadbands (x)

The probability of detection delay 1 is

P(DD = 1) = P(A at t = tf + 1 & NA at t = tf )

= P(NA at t = tf ) P(A at t = tf + 1 |NA at t = tf )

=
p1q1 + p2(1− q2)

p1 + p2

× q2

(3.7)

where the first term is calculated from Chapman Kolmogorov equation dis-

cussed earlier in this section and second term from the transitional probability

matrix Pf .

Probabilities of higher detection delays can be similarly expressed in terms
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Figure 3.3: Changes in expected detection delays for different deadbands
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of conditional probabilities as

P(DD = 2) =P(A at t = tf + 2 & NA at t = tf + 1, NA at t = tf )

=
p1q1 + p2(1− q2)

p1 + p2

q2(1− q2)

...

P(DD = z) =P(A at t = tf + z & NA at t = tf + z − 1, ... ,

NA at t = tf )

=
p1q1 + p2(1− q2)

p1 + p2

q2(1− q2)z−1, z ≥ 1

(3.8)

The average detection delay (i.e., the expected value of the detection delay)

is then given by

EDD = E(DD) =
∞∑
z=0

z P(DD = z)

=
∞∑
z=1

z q2(1− q2)z−1p1q1 + p2(1− q2)

p1 + p2

=
p1q1 + p2(1− q2)

q2(p1 + p2)

(3.9)

In Fig. 3.3, changes in detection delays due to different deadbands config-

ured on the process data of Fig. 3.1 are presented. In industry, the normal

operating range of a process variable is known and the deadband is defined as

a certain percentage (%) of that range. However, since the normal operating

range is unknown here, we define the deadband as the absolute number (in

terms of units of measurement of the process variable). So, for example for

a high alarm limit ytp, x unit of deadband means the alarm will be cleared

at ytp − x. The threshold limit (ytp) is moved from minimum of the process

data to its maximum value with x unit [x = 1, 2, 3, 4]. It can be seen from Ta-

ble 3.2, for the considered process data, when deadband is changed from x = 1

to x = 4, expected detection delay varies. For higher deadbands [e.g. x = 4]

detection-delay remains low compared to lower ones till about ytp = 2.5. After

this point, changes in detection delay are almost the same for all x. This is

quite expected as very few samples will be able to cross that high threshold of

ytp. Beyond that limit, only threshold (ytp) is dominant in expected detection

delay and deadband (x) has hardly any role for the considered process data.

29



NA

1− p1

NA1

1− p1

NA2

A

1− p2

A1

p1

p1

1− p1

p1

p2

1− p2

p2

Figure 3.4: Markov diagram of a system with delay-timer n = 3 and m = 2
in the fault-free region of operation

3.3 Detection Delay for Delay-timers

A delay-timer is a simple yet effective technique that can reduce the number

of false and nuisance alarms significantly. By their intuitive nature, human

beings prefer to wait for a while before reacting to an abnormality to avoid any

temporary overreaction or underreaction. Delay-timers use the same concept

in alarm generation. If a delay-timer is configured on a variable, the alarm is

raised if n consecutive samples cross the alarm limit (ytp). This case is known

as on-delay. Similarly, once the alarm is raised, it will only be cleared if m

consecutive samples go below the limit, known as off-delay. For on-delay, if

the system goes back to normal operating state during the intermediate states,

alarm is not activated and vice-versa for the off-delay case. Alarm standards

(EEMUA [19] and ISA [18]) recommend some values for delay-timers based

on the nature of the process variable. Similar to the deadband case, we can

model the alarm/no-alarm states of a process variable with delay-timers by

Markov chains [13]. Fig. 3.4 shows the Markov model of a system in its fault-

free operation with n = 3 samples on-delay and m = 2 samples off-delay. A

similar Markov model with probabilities q1 and q2 can be constructed for the
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faulty region of operation.

In Fig. 3.4, assuming NA or no alarm state is the initial state for the

process, 1 − p1 denotes the probability that it will remain in the same state.

If the next sample exceeds alarm threshold with probability p1 then it moves

to state NA1, which is the first intermediate state for 3−samples delay case

before going to alarm state. Exceeding threshold by consecutive 3−samples

with probability p1 will take the system to the alarm state. If in between the

states NA and NA2, any sample falls below threshold with probability 1−p1,

then system will go back to no alarm state. Only consecutive 3-sample crossing

over threshold can raise the alarm, taking the system to the alarm state. Once

the system goes to alarm state, to clear the alarm same principal is followed

as raising. Consecutive 2 samples falling below threshold with probability p2

(where p2 = 1−p1) can only clear the alarm. In intermediate states as output,

the system will always provide either alarm or no alarm, depending on from

where these intermediate states started. Transitional probability matrices for

n−samples on-delay and m−samples off-delay for both the fault-free (Pn) and

faulty (Pf ) region of operations are given by

Pn =

[
Pn11 0n×(m−1)

Pn21 Pn22

]
, Pf =

[
Pf11 0n×(m−1)

Pf21 Pf22

]
(3.10)

where,

Pn11 =


1− p1 p1 0 · · · 0
1− p1 0 p1 · · · 0

...
...

...
. . .

...
1− p1 0 0 · · · p1

 ,

Pn21 =


0 0 · · · 0
...

...
...

...
0 0 · · · 0
p2 0 · · · 0

 ,Pn22 =


1− p2 p2 0 · · · 0
1− p2 0 p2 · · · 0

...
...

...
. . .

...
1− p2 0 0 · · · p2

1− p2 0 0 · · · 0

 ,

here, horizontal line in Pn is used to indicate, number of columns in Pn11 and

Pn21 or in 0n×(m−1) and Pn22 are not equal; similarly for Pf . Furthermore

Pf11, Pf21 and Pf22 have the same structures as Pn11,Pn21 and Pn22 respec-

tively, only p1 and p2 are replaced by q2 and q1. Pn11 and Pf11 are n× (n+1);
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Pn21 and Pf21 are m× n; and Pn22 and Pf22 are m×m. Hence, Pn and Pf

are of dimensions (n+m)× (n+m).

Similar to the deadband case, at the moment of fault occurrence, the

Markov model of the system switches from the fault-free model (represented

by Pn) to the faulty model (represented by Pf ). Therefore, to calculate the

probabilities of the state after fault occurrence, Pn is assumed to reach its

steady state; and the steady state probabilities of the fault-free model, should

be used as initial states for the faulty model. The steady state vector of

probabilities for the fault-free state of operation (e.g., the invariant vector for

Pn) is [13]

πn =
1

pm2

n−1∑
i=0

pi1 + pn1

m−1∑
j=0

pj2

×

[
pm2 p1p

m
2 · · · pn−1

1 pm2 pn1 p2p
n
1 · · · pm−1

2 pn1
] (3.11)

To calculate the detection delay for delay-timers, we use the concept of

hitting time [48]. In our context, hitting time is the minimum number of

samples required for system currently in the no-alarm state to switch to the

alarm state for the first time.

We divide the whole state space into two subspaces. The first subspace,

denoted by D, contains all the no-alarm state(s) (NA, ..., NAn−1). The second

subspace contains all the alarm state(s) (A, ..., Am−1) and is denoted by E .

With these definitions, the detection delay is the same as the hitting time: the

time required to switch to states E , assuming the system is initially started in

states D.

Let Q be the matrix of transitional probabilities from D to itself in the

faulty region. Q is obtained from Pf by keeping all the probabilities corre-

sponding to no-alarm states and replacing all other probabilities with zero.

For the Markov process in Fig. 3.4, Q is

Q =

[
Pf11 0n×(m−1)

0m×n 0m×m

]
(3.12)

It can be shown that probability of z−sample detection delay for delay-timer
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(e.g., hitting time for switching from no-alarm states D, to alarm states E) is

given by

P(DD = z) = πnPfQ
z
[
0 · · · 0 1 · · · 1

]T (3.13)

Here in the column vector there are n zeros and m ones. Similar to Section 3.2,

if the system transfers from fault-free to faulty state at time tf , using the

forward Chapman-Kolmogorv equations [48], probabilities of alarm and no-

alarm states can be calculated as

[PNA(tf ) PNA1(tf ) · · ·PNAn−1(tf ) PA(tf )

PA1(tf ) · · · PAm−1(tf )]

= [PNA(tf − 1) PNA1(tf − 1) · · ·PNAn−1(tf − 1) PA(tf − 1)

PA1(tf − 1) · · · PAm−1(tf − 1)] Pf

= πnPf

(3.14)

Let φ0 = πnPf . Then the distribution at time z, φz, is given by φz = φ0P
z
f

[48]. Now, the interest is to calculate the detection delay - time required to

move from no alarm states to alarm states in the Markov chain. Therefore

in the transitional probability matrix Pf , rows representing no alarm states

are required only and in the equation of the probability of detection delay, Pf

is replaced by the substochastic matrix Q, where all probabilities in alarm

state rows are zeros :

Q =

[
Pf11 P12

0m×n 0m×m

]
(3.15)

Finally, the structure of the column vector with n zeros and m ones is

quite self explanatory. At time z, the sum of all alarm state probabilities will

provide the probability of detection delay at that moment.

The expected detection delay for delay-timer can then be expressed as

(proof in Appendix A)
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Figure 3.5: Markov diagram of a system with 3-sample on-delay-timer only in
the normal region of operation

EDD = E(DD) =
∞∑
z=0

z P(DD = z) = πnPfQ(I −Q)−2
[
0 · · · 0 1 · · · 1

]T

=

pm−1
2

(
pn1q1

n−1∑
i=0

qi2 + p2

(
n−1∑
j=0

pj1

n−j−1∑
k=0

qk2 − qn2
n−1∑
i=0

pi1

))

qn2

(
pm2

n−1∑
i=0

pi1 + pn1

m−1∑
i=0

pi2

)
(3.16)

Since Q is a substochastic matrix, i.e. a matrix with nonnegative entries

whose row sums are less than or equal to 1 and Qn → 0 as n→∞; therefore,

all eigenvalues of Q have absolute values strictly less than 1; and the series in

the summation converges [48].

Special cases

Detection delays for delay-timers are calculated so far for n−samples on-delay

and m−samples off-delay. Some special cases based on these n and m will be

discussed now.
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3.3.1 No Delay-timer

In this case n = 1 and m = 1. The expected detection delay is then simplified

to

E(DD) =
p1q1 + p2(1− q2)

q2(p1 + p2)
(3.17)

which is consistent with the result we obtained in Section 3.2 for deadbands.

Furthermore if we assume there is no deadband, then p2 = 1−p1 and q2 = 1−q1

and the result is further simplified to

E(DD) = q1(1− q1)−1 (3.18)

which is again consistent with the result obtained in Section 3.1 for the simple

case (no deadband, no delay-timer).

3.3.2 Pure On-delay

In this case, only on-delay timer is configured, i.e., m = 1. To raise an alarm,

n consecutive samples should cross the threshold limit. But once the alarm

is raised, it will be cleared right away if one sample goes below the threshold

(Fig. 3.5). In this case the expected detection delay can be simplified to

E(DD) =

pn1q1

n−1∑
i=0

qi2 + p2

(
n−1∑
j=0

pj1

n−j−1∑
k=0

qk2 − qn2
n−1∑
i=0

pi1

)

qn2

(
pn1 + p2

n−1∑
i=0

pi1

) (3.19)

3.3.3 Pure Off-delay

In this case only off-delay is configured and on-delay is one sample, e.g., n = 1.

After an alarm is raised by one sample crossing the alarm limit, m consecutive

samples should fall within the acceptable limits before the alarm is cleared.

The expected detection delay for m−sample off-delay case is expressed by

E(DD) =
pm−1

2 (p2 − p2q2 + p1q1)

q2

(
pm2 + p1

m−1∑
i=0

pi2

) (3.20)
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In Fig. 3.7, Monte Carlo simulations [50] to verify the expected detection

delay (EDD) expression is presented. The expected detection delay is plotted

for different delay-timers (assuming m = n) as a function of the threshold.

Monte Carlo simulation is shown for two different distributions, Gaussian and

Gamma. Fault-free data has mean 0 and variance 1; faulty data has mean 2

and variance 2. The threshold was changed from 0 to 1.4 with an increment

of 0.1. The data was simulated for 2000 iterations and the mean EDD was

estimated for each value of the threshold. The proposed EDD equation is

also plotted with Monte Carlo simulation. It can be seen that, there is very

negligible differences between the Monte Carlo simulations and the calculated

EDD by our formula.

3.4 Design of Alarm Systems

Generally, alarm systems can be designed in two frameworks: univariate and

multivariate. In univariate design, which is the most commonly practiced

method of alarming, the alarm limits and processing technique (deadband,

delay-timer, filter, etc.) are individually designed for each process variable.

NA

1− p1

A

1− p2

A1

1− p2A2

p1

p2

p2

1− p2

p2

Figure 3.6: Markov diagram of a system with 3-sample off-delay-timer only in
the normal region of operation
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Figure 3.7: Verification of the EDD formula by Monte-Carlo simulation: (left)
assuming Gaussian data distribution; (right) assuming Gamma data distribu-
tion

In multivariate design, alarms are designed for some latent variables which

are typically linear combinations of multiple process variables. In this section,

we propose a technique for univariate alarm design. For multivariate design,

several data-mining methods are available to detect statistical similarities,

group correlated alarms and apply multivariate analysis for rationalization

[25, 11].

An alarm design procedure is described in [13] based on the receiver oper-

ating characteristic (ROC) curve. The ROC curve is the plot of the probability

of missed alarms versus the probability of false alarms when the alarm limit

or threshold changes from -∞ to +∞. As it can be seen in Fig. 3.8, lowering

the trip point decreases the probability of false alarms, but the probability of

missed alarms will increase. The ROC curve shows this trade-off between false

alarm and missed alarm rates when the trip point changes. A typical ROC

curve is shown in Fig. 3.8 [right] for the corresponding fault-free and faulty

data. However, setting the threshold merely based on these two facts may not

be desirable as it does not consider detection delay.

In the rest of this section, we focus our design on delay-timers only. For
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Figure 3.8: Process data (left); ROC curve for different delay-timers (right)

a given set of normal and abnormal data, the design parameters are then the

threshold (ytp), the number of on-delay samples (n) and number of off-delay

samples (m). For simplicity we assume m = n. An acceptable design should

not only minimize false and missed alarm rates, but also guarantee a small

detection delay. Therefore, for design of an alarm system, three performance

specifications are to be considered: false alarm rate (FAR), missed alarm rate

(MAR) and expected detection delay (EDD). For practical design, however,

the false and missed alarm rates are usually combined in a function that mea-

sures how far a point on the ROC curve is from the ideal point (zero false alarm

and zero missed alarm). In most cases the ROC curve is symmetrical, and it

can be assumed that at the optimal point FAR and MAR are approximately

equal. Therefore for simplicity we assume the optimal point is approximately

the point where FAR = MAR in design. For simulations, assume the fault-free

part of the data has a Gaussian distribution with average of 0 and variance

1. The faulty part of the data has also a Gaussian distribution with average

2 and variance 2. The data is sampled at 1 sec rate. To design a system
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with requirements FAR ≤ 4%, MAR ≤ 3% and EDD ≤ 6 samples, a four-step

procedure is followed.

In Fig. 3.8, the delay timer is changed to different values and the corre-

sponding ROC curves are plotted; it can be seen that as the delay timer is

increasing, the ROC curve is moving closer to the origin [13]. On the other

hand this increase of delay timer increases the expected detection delay as

well. Fig. 3.10 shows the expected detection delay for different delay timers

for the threshold where FAR = MAR; these equal thresholds were estimated

from Fig. 3.9, where FAR and MAR are plotted with corresponding threshold

limits and the intersecting points provide the required estimations. It can

be seen that as the threshold is increased the FAR decreases but the MAR

increases. The intersecting points of these two lines are the points of equal

FAR and MAR for different delay-timers.

Step 1

In this step, alarm thresholds that satisfy the optimality condition FAR =

MAR are estimated. These thresholds can be estimated from Fig. 3.9. For

the given process data, thresholds corresponding to the point of equal FAR and
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Figure 3.9: Estimation of the threshold when FAR = MAR
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MAR are shown by dots, for different values of delay timers. The estimated

thresholds are given in Table 3.3.

Step 2

In step 2, the smallest delay-timer n1 is selected from Fig. 3.9 or Table 3.3

such that FAR = MAR ≤ 3%; where n ≥ n1. The corresponding area for

FAR and MAR (for ≤ 3%) is shown by the shaded area in Fig. 3.8. The

smallest delay-timer that satisfies the condition is n1 = 4. Though the design

requirement was for FAR ≤ 4%, n1 is selected for the one with lower percent-

age (≤ 3%) requirements among FAR and MAR. Since n1 is selected for a

more conservative range, the selected delay-timer does not violate the original

requirements and is expected to provide better performance.

Step 3

The EDD is taken into account in step 3 for the design of delay-timer. The

largest value of delay-timer n2 is selected such that EDD ≤ 6; where n ≤ n2.

From Fig. 3.10, n2 = 4.

Figure 3.10: Effect on EDD for different delay-timers
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Table 3.3: Design parameter selection chart for delay-timers
Delay-timer (n) Threshold (ytp) FAR = MAR (%) EDD

1 0.67 25.26 0.21
2 0.67 13.76 1.26
3 0.67 6.37 2.89
4 0.67 2.63 5.04
5 0.67 1.01 7.66

Step 4

Once n1 and n2 are estimated, the next step is to select the range of delay

timers to finalize the design process. If n2 ≥ n1, any n satisfying n1 ≤ n ≤
n2 is a solution of the delay-timer. Here the only delay-timer that satisfies

the condition is, n = 4; from Table 3.3 the shaded row is the solution of

given design problem. n = 3 satisfies the condition of EDD but does not

satisfy the requirement of FAR / MAR; other delay-timers also do not satisfy

requirements. The optimum threshold of operation is 0.67 and delay-timer is

4 samples, and it is expected to take 5.04 samples to raise the alarm.

If such a range of delay-timer cannot be found; or in other words, if no

such n exists to satisfy n1 ≤ n ≤ n2, design requirements need adjustments.

Less demanding design requirements are recommended for such cases. For

example, if the requirement of EDD is changed to no more than 3 samples,

this particular process data cannot satisfy the requirement and no solution

exists. Therefore this technique can also be applied to check whether the

design requirement of FAR, MAR, and EDD are achievable or not.

A Monte Carlo simulation was performed to check consistency of the cal-

culated values. Setting the threshold to 0.67, associated false alarm rates,

missed alarm rates and detection delays were calculated. From a Monte Carlo

simulation of 5000 iterations (for Gaussian distributed fault-free data with

mean 0, variance 1 and faulty data with mean 2 and variance 2), the cal-

culated FAR is 2.58%, MAR is 2.84 %, and detection delay is 4.92 samples.

Which are consistent with the theoretical values.
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3.5 Conclusion and Future Work

The expected detection delay, as a measure of the time it takes for the alarm

system to respond to a fault, is an important parameter in the design of alarm

systems. In this chapter, the expected detection delay is calculated for two

common techniques in alarm systems, namely, deadbands and delay-timers.

We also presented a simple design procedure, based on three important perfor-

mance measures of an alarm system: false alarm rate, missed alarm rate and

the expected detection delay. To show the utility of the proposed method two

case studies are discussed later in application chapter. The proposed method

can also be applied to identify inconsistencies among design requirements and

investigate whether desired performance is achievable or not. As a future ex-

tension, a more systematic approach to the design of parameters of the alarm

system (on-delay timer, off-delay timer and the trip-point) can be considered.
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Chapter 4

Detection Delays for Filters

In modern DCS based systems, measured process signals are often filtered in

various ways. Primarily, filtering is applied to reduce noise in signals that

may affect control performance [39]. However there has been very limited

study on performance specifications of various alarm filtering methods, and

the quantitative relations between filter properties and alarm performance

indices are not well known. In this chapter1, we investigate the effect of

filtering on detection delay which is an important alarm performance index.

The rest of the chapter is organized as follows: in Section 4.1, the role

of filtering in alarm design is discussed. Section 4.2 discusses relevant works

in literature and the problem formulation. The detection delay for moving

average filter is calculated in Section 4.3. Selection of the trip point and filter

order are presented in Section 4.4. In Section 4.5, concluding remarks and

future work are discussed.

4.1 Filters in Alarm Management

The effectiveness of filtering in reducing false and nuisance alarms is mentioned

in [12, 13]. One of the main reasons of false and nuisance alarms is the presence

of noise in signals. This noise may cause chattering effect for a fixed threshold,

and by filtering, chattering can be reduced. The down side, however, is that

1 Sections of this chapter has been published as: N. A. Adnan, and I. Izadi, On detection
delays of filtering in industrial alarm systems, in proceedings of the 21st Mediterranean
Conference on Control and Automation, pp. 113-118, June 25-28, 2013, Crete, Greece.

43



filtering introduces delay in detection of the fault and activation of alarms.

For example, a 10-sample moving average filter may reduce the effect of noise

in the signal significantly; but it may delay activation of alarm due to the

averaging.

Detailed calculation of detection delays for deadbands and delay-timers are

discussed in [24, 33]. Some preliminary discussions of this performance index

is discussed for the filtering technique in [13]. However, discussion on filtering

is mainly based on simulation and no exact quantitative relation is given. In

[41], the detection delay is discussed for some techniques including filters and

an expression is given to compute expected detection delay for moving average

filters. However, in this study for moving average filter the correlation among

contiguous samples of filtered data is ignored. If the process data, Xi, i ∈ Z+,

is independent and identically distributed (IID), once filtered the data no

longer remains independent.

In this chapter, we address the issue of detection delay for moving average

filters. The detection delay for other filter types of filters may be addressed

as an extension of this work. In the following sections, while computing the

detection delay, the correlation factor among contiguous samples is taken into

consideration.

In the study of alarm systems, generally a discrete time random variable is

monitored to raise or clear an alarm. Suppose an independent random obser-

vation {Xi}i≥1 is collected, such that X1, X2, X3 · · · , Xtf are each distributed

according to a probability distribution function (PDF) pn known a priori and

Xtf+1, Xtf+2, Xtf+3 · · · each belongs to a PDF pab, also known. Here, pn and

pab are PDFs of Xi in normal and abnormal conditions of the process opera-

tion respectively. Generally, to raise an alarm Xi is monitored, processed, and

compared with a limit or trip point ytp.

In Fig 4.1, the normal data is Gaussian distributed with mean 0 and vari-

ance 1, and abnormal data is also Gaussian distributed with mean 3 and vari-

ance 4. When the high alarm limit ytp is set at 1.7, it causes 39 false alarms

and 263 missed alarms but alarms are activated almost instantly. However,
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Figure 4.1: Raw process data and corresponding PDFs (top); filtered pro-
cess data (moving average filter of window size 8) and corresponding PDFs
(bottom)

when a moving average filter of order 8 is applied on the process data, ac-

curacy increases significantly by reducing false alarms to 0 and missed alarm

to 31 [Fig 4.1 (bottom)]. On the other hand it introduces 6 seconds delay in

alarm activation. It is therefore important to know how alarm settings affect

these performance indices. Knowing the quantitative relationship is an essen-

tial requirement for efficient alarm systems design. In the following sections,

calculation of the detection delay is discussed for moving average filters.

4.2 Problem Formulation

In practice, when the process moves from “normal” to “abnormal”, one of the

aims of alarm design is to detect the change as quickly as possible. However,

this is not always achievable as swiftness of alarm activation is greatly de-

pendent on the design technique (e.g., delay-timers, deadbands, and filtering)

and parameter selection. For example, there is a common conception that

a 10-second delay-timer will delay the alarm activation by about 10 seconds

[12]. This is hardly true in practice. In [24], it is shown that actual activation

delay of a 10-second delay-timer varies based on types of data distribution,
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trip point ytp and a number of other factors. Let ta be the time that alarm is

activated. If fault occurs at time tf , then the detection delay is defined as

DD = ta − tf (4.1)

For an independent random observation Xi, a causal filter of length m is

an operator defined as

Zk = f(Xk, Xk−1, · · · , Xk−m) (4.2)

It can be shown that, if normal and abnormal data follows Gaussian distri-

butions and only change in mean is considered because of abnormality, the

optimal linear filter in terms of accuracy of design is a moving average filter

[51, 52]. Since most often an abnormality in the process moves the operating

point, changes in mean of the variable is the most common type of problem

[13]. Therefore, this work focuses on moving average filter and associated de-

tection delay calculation. The goal of the work is to establish quantitative

relationship between the trip point, filter order and the detection delay. For

simplicity, Gaussian distribution is considered; however, the method works for

any other distributions. No particular assumption on distribution is necessary

in practice as the PDF can be estimated empirically from historical data.

4.3 Moving Average Filters

The two most commonly used filters in industry are the moving average and

the exponentially weighted moving average filters. A moving average filter

is easy to implement and particularly useful in removing noise from process

data. It is also widely used to separate frequency components, extract fea-

tures and remove periodic effects when computed with the length of known

periodicity. From Fig 4.1, it can be seen that the application of a moving

average filter significantly reduced noise in process data making the trip point

more effective in generating an alarm with higher accuracy. However, at the

same time the filtering introduced higher detection delay. A filter is particu-

larly effective when it increases accuracy by reducing FAR and MAR with a

minimum detection delay.
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A moving average filter is defined as

Zi =
1

m
(Xi−m+1 + · · ·+Xi−1 +Xi), (4.3)

where m is the order of the filter to be designed and X is the pre-filtered

process data.

Filter of order 2

If pre-filtered data is assumed to be independent and identically distributed

(IID) with a Gaussian distribution, filtered data is also Gaussian distributed.

Let the normal and abnormal data follow Gaussian distributions withN (µn, σ
2
n)

and N (µab, σ
2
ab) respectively.

We first calculate the detection delay for a moving average filter of size 2

and then discuss the general case. Assume that the fault occurs at time tf .

For the moving average filter of order 2, the probability of the alarm being

raised at time tf (i.e., detection delay (DD) equals zero) is given by

P(DD = 0) =P{Xtf−1 +Xtf > 2ytp} = P{Ztf > 2ytp}

=

∫ ∞
2ytp

f(Ztf ) dZtf

(4.4)

where, Ztf (= Xtf−1+Xtf ) ∼ N (µn+µab, σ
2
n+σ2

ab) and the distribution function

is given by [47]

f(Ztf ) =
1√

2π(σ2
n + σ2

ab)
exp

{
− [Ztf − (µn + µab)]

2

2(σ2
n + σ2

ab)

}
(4.5)

The probability of detection delay being 1 (i.e., there is no alarm at time

tf and alarm is raised at time tf + 1) is calculated as

P(DD = 1)

= P{[Xtf−1 +Xtf ≤ 2ytp] & [Xtf +Xtf+1 > 2ytp]}

= P{[Ztf ≤ 2ytp] & [Ztf+1 > 2ytp]}

=

∫ 2ytp

−∞

∫ ∞
2ytp

f(Ztf , Ztf+1) dZtfdZtf+1

(4.6)

Here filtered data Ztf and Ztf+1
are no longer independent as they have Xtf

common in them; and only mean and variance are not sufficient to model the
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detection delay. Their covariance has to be considered with joint probability

distribution. The computation of the joint probability requires the calculation

of associated mean and covariance matrix.

The joint distribution function in equation (4.6) is given by

f(Ztf ,Ztf+1) =
1

2π
√
σ1σ2(1− ρ2)

exp

{
− 1

2(1− ρ2)

[
(Ztf − µ1)2

σ1

+
(Ztf+1 − µ2)2

σ2

− 2ρ
(Ztf − µ1)(Ztf+1 − µ2)

√
σ1σ2

]} (4.7)

where, µ1 = µn + µab, µ2 = 2µab, σ1 = σ2
n + σ2

ab, σ2 = 2σ2
ab and ρ is correlation

coefficient, ρ = Corr(Ztf , Ztf+1) = σ12/
√
σ1σ2 [47].

For the higher n-sample detection delay, the first n − 1 filtered samples

should be below the trip point and the n-th one above it. So, the probability

will be

P(DD = n)

= P{[Xtf−1 +Xtf ≤ 2ytp] & [Xtf +Xtf+1 ≤ 2ytp] &

. . .& [Xtf+n−1 +Xtf+n > 2ytp]}

= P{[Ztf ≤ 2ytp] & [Ztf+1 ≤ 2ytp] & . . .& [Ztf+n > 2ytp]}

=

∫ 2ytp

−∞

∫ 2ytp

−∞
· · ·
∫ ∞

2ytp

f(Ztf , Ztf+1, · · · , Zn) dZtfdZtf+1 · · · dZtf+n

(4.8)

The joint multivariate distribution function in Eq. (4.8) can be computed

similar to Eq. (4.7).

Filter of order m

For a general case of moving average filter of order m, the filtered signal will

be a multivariate normal one. To compute the probability of detection delay,

calculation of joint distribution function is required. The n-sample detection
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delay for a filter of order m is given by

P(DD = n)

= P{[Xtf−m+1 + · · ·+Xtf−1 +Xtf ≤ mytp] &

[Xtf−m+2 + · · ·+Xtf +Xtf+1 ≤ mytp] & . . .

& [Xtf+n−m+1 + · · ·+Xtf+n−1 +Xtf+n > mytp]}

= P{[Ztf ≤ mytp] & [Ztf+1 ≤ mytp] & . . .& [Ztf+n > mytp]}

=

∫ mytp

−∞

∫ mytp

−∞
· · ·
∫ ∞
mytp

f(Ztf , Ztf+1, · · · , Ztf+n) dZtfdZtf+1 · · · dZtf+n

(4.9)

The mean vector and covariance matrix for the probability of detection delay

n for joint distribution function is given by

Z̄(n+1)×1 =



(m− 1)µn + µab

(m− 2)µn + 2µab
...

µn + (m− 1)µab

mµab

mµab
...

mµab


Σ =

[
A11 A12

A21 A22

]
, (4.10)

where

A11 =


(m− 1)σ2

n + σ2
ab (m− 2)σ2

n + σ2
ab · · · · · · σ2

n + σ2
ab

(m− 2)σ2
n + σ2

ab (m− 2)σ2
n + 2σ2

ab · · · · · · σ2
n + 2σ2

ab
...

...
. . .

...
...

...
. . .

...
σ2
n + σ2

ab σ2
n + 2σ2

ab · · · σ2
n + (m− 1)σ2

ab



A12 =


σ2
ab 0 0 · · · 0

2σ2
ab σ2

ab 0 · · · 0
...

...
...

...
...

...
(m− 1)σ2

ab (m− 2)σ2
ab · · · · · · 0


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A21 =



σ2
ab 2σ2

ab · · · · · · (m− 1)σ2
ab

0 σ2
ab · · · · · · (m− 2)σ2

ab
...

. . .
...

...
. . .

...
0 0 · · · · · · σ2

ab

0 0 · · · · · · 0


and

A22 =


mσ2

ab (m− 1)σ2
ab · · · · · · 0

(m− 1)σ2
ab mσ2

ab · · · · · · 0
...

. . .
...

. . .

mσ2
ab


Example

This example is to validate the general equation of probability of detection

delay given in (4.9). The normal and abnormal data follow Gaussian distri-

butions N (0, 1) and N (3, 4) respectively. The sampling period is at 1 sec. In

Fig 4.2, a Monte Carlo simulation is shown to verify the theoretical results.

5000 Monte Carlo simulations are performed for different filter orders from

m = 2 to 4. The trip point is kept constant at ytp = 1.7 and the average

P(DD) is computed from Monte-Carlo simulation to get a single estimate.

The frequency of outcome for each P(DD) is plotted against the theoretical

value (theoretical value is multiplied by number of Monte-Carlo simulations

performed for consistency). To compute the joint distribution function of the

derived equations, the MATLAB function mvncdf is used. It can be seen that

the theoretical and simulation results are consistent.

The expected detection delay is given by

EDD = E(DD) =
∞∑
n=0

n P(DD) (4.11)

There is no closed form solution to compute the E(DD), but it can be calcu-

lated numerically.
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Figure 4.2: Verification of the P(DD) formula by Monte-Carlo simulations for
different filter orders (a) m = 2, (b) m = 3, (c) m = 4.

Detection delay for non-Gaussian distributions

The computation of detection delay requires numerical computation of multi-

variate distribution functions, which is much more complex than computation

of univariate distributions due to higher dimensional issue [53]. In this work,

Gaussian distributions of data are considered. However, if the data is non-

Gaussian, detection delay can be still computed similarly. For non-Gaussian

distributions, several integral approximating approaches by Monte-Carlo and

deterministic methods are discussed in [54]. This work is limited to Gaus-

sian distributions only and other types of distribution will be addressed in the

future.
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4.4 Alarm System Design

In the design of alarm systems three performance indices should be balanced

for optimal configuration, namely, the false alarm rate, the missed alarm rate

and the expected detection delay [13, 24]. In this section, the design of alarm

systems is considered to find the optimum settings of trip point and filter order

satisfying requirements of FAR, MAR and EDD. An optimal configuration is

expected to increase accuracy of the design, i.e., reduce FAR and MAR, and

also increase the swiftness of alarm activation, i.e., reduce EDD. The proposed

objective function including these constraints can be described by [51]

J(f) = k1

∫ ∞
ytp

fn(.)dZ + k2

∫ ytp

−∞
fab(.)dZ

subject to EDD ≤ η

(4.12)

Here, fn(.) and fab(.) are the PDFs of filtered signal for the normal and ab-

normal operations respectively; η is the maximum allowable delay; and the

two integrals represent FAR and MAR respectively.

The objective function is a weighted sum of FAR and MAR, which can be

represented by the receiver operating characteristic (ROC) curve. The ROC

curve is the plot of FAR vs MAR curve as the trip point ytp is moved from

minimum to the maximum of the process data (Fig 3.8). For a high alarm

limit, when the limit is kept at the minimum of normal process data the

FAR is the highest. As the limit goes up it decreases the FAR, but increases

the MAR. If equal weight (k1, k2) is given on both the FAR and MAR, then

the optimum point is the one closest to the origin. However, since filtering

introduces delay in alarm activation, the objective function is to be computed

subject to allowable expected detection delay. In this work, a four step alarm

design method is considered for filtering similar to the method introduced

earlier to design settings of delay-timers in alarm systems [24]. With a little

modification to that method a four step trip point and filter order design

process for alarm systems is described here. For a given set of normal and

abnormal data, the design parameters are the trip point ytp and filter order

m. The same set of data is considered here for design as given in the example
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of Section 4.3.

To design a system with FAR ≤ 5%,MAR ≤ 5% and EDD ≤ 2 seconds,

the procedure given below is followed. In Fig 4.3, filter orders are changed from

m = 2 to 8 and corresponding ROC curves are plotted; it can be seen that as

the order of filter is increased the accuracy is improved, moving the curve closer

to the origin. On the other hand the increased accuracy resulted in higher

detection delay. Fig 4.5 shows that higher filter order causes higher delay in

detection (EDD) for the same trip point. The trip point where FAR and MAR

are equal can be estimated from Fig 4.4.

Step 1

The first step is regarding accuracy of design. The ROC curve is plotted as the

performance curve for the filter order selection step satisfying accuracy criteria.

The smallest filter order, m1, that satisfy the FAR ≤ 5% and MAR ≤ 5% is

selected from Fig 4.3; where m ≥ m1. It can be seen that moving average

filters of order 3 and higher in this case satisfy the requirements of FAR and

MAR.

Step 2

Once filter orders that satisfy the requirement of accuracy is found, in the

second step the corresponding operating limit or trip point ytp is estimated

from Fig 4.4. Here, the plots from upper left are FAR and from upper right

are MAR curves obtained by changing trip points. Intersection of these two

curves are the points where FAR and MAR are equal and given in Table 4.1.

Step 3

In step 3, the expected detection delay is estimated for corresponding recorded

trip points in step 2. The largest value of filter order m2 is estimated from

Fig 4.5 for EDD≤ 2 seconds and given in Table 4.1; here m2 = 4.
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Figure 4.5: Effect on EDD changing filter orders

Step 4

Once m1 and m2 are estimated, the final step is to select the order of the

moving average filter to complete the design process. If m2 ≥ m1, any m

satisfying m1 ≤ m ≤ m2 is a solution for filter order satisfying the require-

ments. From Table 4.1, both moving average filters of order 3 and 4 satisfy

given requirements resulting in FAR/MAR between 4.2% to 2.3% and EDD

between 1.65 to 1.95 seconds respectively.

If a range of filter order is not available, or in other words no m satisfies

m1 ≤ m ≤ m2, then the requirements need adjustments. In that case it can

be concluded that the requirements are too stringent to achieve for the given

process type. Therefore this method not only provides a way to select filter

parameters, but also can be applied to check whether for the current design

the desired performance is achievable or not.
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Table 4.1: Design parameter selection chart for moving average filters
Filter order (m) Trip point (ytp) FAR = MAR (%) EDD

2 1 7.9 1.33
3 1 4.2 1.65
4 0.99 2.3 1.95
5 0.99 1.4 2.3
6 0.97 0.9 2.6
7 0.96 0.5 2.9
8 0.94 0.3 3.1

4.5 Conclusion and Future Work

The detection delay is an important parameter that measures the time it takes

to activate an alarm. The designer must have a clear idea of how long it will

take to raise an alarm once an abnormality occurs in the system for the prac-

ticed design method. In this chapter, the detection delay is computed for one

of the widely applied methods in alarm systems, moving average filters assum-

ing Gaussian distribution of data. A design method to select trip point and

filter order is also discussed. As a future extension, calculation of performance

indices for other filtering techniques and non-Gaussian distributions may be

considered.
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Chapter 5

Generalized Delay-timers

In this chapter1,2, a generalized delay-timer framework is discussed where

instead of consecutive n samples in the conventional case, n1 out of n consec-

utive samples (n1 ≤ n) are considered to raise an alarm. For the generalized

delay-timer, three important performance indices, namely, the false alarm

rate (FAR), the missed alarm rate (MAR) and the expected detection delay

(EDD), are calculated using Markov processes. Moreover, the performance

and sensitivity of generalized delay-timers are compared with conventional

delay-timers.

The rest of the Chapter is organized as follows: section 5.1 discusses the

conventional delay-timers in brief. Rules proposed by the Western Electric

Company are discussed in section 5.2. The generalized delay-timer is described

in section 5.3. Section 5.4 is devoted to the algorithm to formulate the Markov

chain for the generalized case. Comparison of performance and sensitivity

analysis are provided in section 5.5. Finally, some concluding remarks are

given in section 5.6.

1 A shorter version of this chapter has been published as: N. A. Adnan, Y. Cheng, I. Izadi,
and T. Chen, A generalized delay-timer for alarm triggering, in proceedings of the American
Control Conference (ACC 2012), pp. 6679-6684, June 27-29, 2012, Montreal, QC.

2 Sections of this chapter have been published as: N. A. Adnan, Y. Cheng, I. Izadi, and T.
Chen, Study of generalized delay-timers in alarm configuration, Journal of Process Control,
vol. 23, no. 3, pp. 382-395, 2013.
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5.1 Conventional Delay-timer

Generally alarms are raised and cleared based on a single sample comparing

with the threshold. For high alarms, if the sample is above the threshold, an

alarm is raised; and when it goes below the threshold the alarm is cleared. A

similar idea is applied in the case of low alarms. However, often this simple

limit or threshold checking is not considered as a good design due to the

problem of nuisance and false alarms [13]. To reduce nuisance and false alarms

delay-timer is a popular technique in industry. The idea of delay-timers is very

simple yet effective. In alarm systems two types of delay-timers are used: on-

delay and off-delay [13, 23]. For on-delay timers, an alarm is only raised

if n consecutive samples cross the threshold. In other words, the process

measurement remains in the alarm state for n units of time before activating

the alarm [18]. With off-delay configured, a raised alarm will only be cleared

if a number of consecutive samples fall below the threshold.

It is essential to conduct a careful safety analysis in tuning the delay-timer

parameters (time and alarm limit). From safety point of view, compared to

off-delay, on-delay timers are more sophisticated. Since on-delay is connected

with alarm activation, the setting should allow operators sufficient time before

the abnormal situation becomes an incident. Later in this section detailed

equations are provided that can be used to calculate this activation time for

any settings of delay-timers.

The Markov process for 3-sample on-delay and 3-sample off-delay is shown

in Fig. 5.1. Here p1 is the probability of one sample above the threshold

in fault-free region of operation (we only consider the case of high alarm for

simplicity). Therefore the probability of one sample falling below the threshold

is, 1 − p1 (Fig. 2.2). In cases where deadbands are applied with or without

delay-timers, p1 + p2 6= 1 [23].

Assume initially the process is in fault-free region of operation and no

alarm is raised, which is the state NA in the Markov process. It will require 3

consecutive samples with probability p1 to move the Markov process to state
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A and raise an alarm. Any intermediate sample with probability 1 − p1 will

bring the chain back to the original no alarm (NA) state. In this case, the

sample temporarily exceeding the threshold is treated as an outlier sample. A

similar process is followed in off-delay for clearing a raised alarm. Similar to

the fault-free region, there will be another Markov process in the faulty region

with probability q2 and q1 (see Fig. 2.2 for definitions).

5.1.1 False Alarm Rate

The most common practice in process monitoring is to compare a variable with

thresholds (also known as alarm limits or trip points) to detect out of range

conditions. A general situation is presented in Fig. 2.2, where L0 and L1 are

the likelihoods for fault-free and faulty classes. For the process data shown in

Fig. 2.2, some part of the probability distributions of the fault-free data falls

over the threshold and will cause false alarms (also known as Type I error or

false positive). Probability of false alarms from likelihoods or distributions

from Fig. 2.2 can be computed as

P(False Alarm) =

∫ ∞
ytp

L0(x) dx (5.1)

where ytp is the decision threshold or alarm limit. Equation (5.1) is the sim-

plest case when a single sample is compared with a threshold to raise an

NA2NA2NA1NA1

A

p1

1-p1

p1

1-p1

1-p21-p1

p1

NA

A1A1A2A2

1-p2
1-p2

p2
p2p2

Figure 5.1: Combined on- and off-delays for n = m = 3
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alarm. But in practical cases many other design constraints are added to the

simplest threshold comparison. For example, delay-timers are widely exer-

cised in industries where consecutive few samples are checked before raising

or clearing an alarm. For different cases of delay-timers probability of false

alarms calculations are discussed below:

For a conventional or regular delay-timer (Fig. 5.1), Markov processes are

used to calculate the probability of false alarms. There are three possible cases:

n-sample on-delay, m-sample off-delay and combined on- and off-delays. For

combined n-sample on-delay and m-sample off-delay the transition probabili-

ties in the fault-free region from one state to another is given as follows

Pn =

[
Pn11 0n×(m−1)

Pn21 Pn22

]
, (5.2)

where,

Pn11 =


1− p1 p1 0 · · · 0
1− p1 0 p1 · · · 0

...
...

...
. . .

...
1− p1 0 0 · · · p1

 ,

Pn21 =


0 0 · · · 0
...

...
...

...
0 0 · · · 0
p2 0 · · · 0

 , Pn22 =


1− p2 p2 0 · · · 0
1− p2 0 p2 · · · 0

...
...

...
. . .

...
1− p2 0 0 · · · p2

1− p2 0 0 · · · 0

 ,

here, horizontal line in Pn is used to indicate, the numbers of columns in

Pn11 and Pn21 or in 0n×(m−1) and Pn22 are not equal. Pn is of dimension

(n+m)× (n+m). After a transient time in the fault-free region, the Markov

chain reaches its steady state and converges to the invariant vector. For the

system operating in the fault-free region, the probability of false alarm is the

summation of all alarm state probabilities in the steady state and can be

calculated according to the theory of Markov chains [48]. It can be shown

that the probability of false alarm (the steady-state probability of all alarm

states) is
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P(False Alarm) = P(A+ A1 + · · ·+ Am−1) =

pn1

m−1∑
i=0

pi2

pn1

m−1∑
i=0

pi2 + pm2

n−1∑
j=0

pj1

(5.3)

5.1.2 Missed Alarm Rate

Missed alarms (also known as type II error or false negative) occur when the

system is in faulty state of operation but an alarm is not raised. From the

process data in Fig. 2.2, it can be seen that the missed alarm rate can be

decreased by lowering the threshold. However, it will increase the false alarm

rate. Therefore, it leads to the problem of balancing between the false alarm

rate and the missed alarm rate [13, 23]. Calculation of missed alarm rates

for different cases of delay-timers are similar to that of false alarm rates. To

calculate the missed alarm rate the probability density function of the faulty

data should be used (Fig. 2.2, likelihood function L1). Here q2 is the proba-

bility of one sample above the threshold and q1 (or 1 − q2) is the probability

of one sample below the threshold in the abnormal region. From Fig. 2.2, the

probability of missed alarm is

P(Missed Alarm) =

∫ ytp

−∞
L1(x) dx (5.4)

When delay-timers are applied, the missed alarm rate is the sum of all

probabilities of no alarm states in the Markov chain under the faulty region of

operation. For calculation of MAR, the probability distribution of faulty data

and the transition probability matrix, Pf , should be used, where Pf can be

obtained replacing probabilities p1, p2 by q2, q1, respectively, in equation (5.2).

For the n-sample on-delay and m-sample off-delay, the probability of missed

alarm is
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Figure 5.2: Divided zones for testing unnatural patterns

P(Missed Alarm) = P(NA+NA1 + · · ·+NAn−1) (5.5)

=

qm1

n−1∑
i=0

qi2

qm1

n−1∑
i=0

qi2 + qn2

m−1∑
j=0

qj1

Besides the false alarm and missed alarm rates, detection delay is another

important performance index in alarm systems which is discussed in details

for conventional delay-timer in Chapter 3.

5.2 Western Electric Rule

Based on the Shewhart control limits the Western Electric Co. proposed

the tests for instability in 1956. These tests are also known as the Western

Electric Rules [55]. In the tests, the area between the centerline (mean) of

the process data and one of the thresholds (either upper threshold or lower

threshold which is 3σ away from the mean, where σ is the standard deviation)

is divided into three zones; each zone has a width of σ (Fig. 5.2). According

to the rules, a pattern is unnatural and needs attention if any of the following

combinations are formed:

1. One sample falls outside of the three sigma threshold.

2. Two out of three successive samples fall in zone A or beyond.

3. Four out of five successive samples fall in zone B or beyond.
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Figure 5.3: Generalized on-delay with n1 = 3, n = 4

4. Eight successive samples fall in zone C or beyond.

The idea of test 1 is the same as a simple threshold checking. Here probability

of false alarm is p1 and probability of missed alarm is q1 based on a single sam-

ple. Tests 2 and 3 are similar to the generalized delay-timer (to be discussed

in section 5.3) for 2-out-of-3 and 4-out-of-5 on-delay timers. Test 4 is similar

to the conventional delay-timer (as discussed in section 5.1) for an 8-sample

delay-timer. Tests 2 and 3 suggest that from the industrial point of view, ap-

plication of a generalized delay-timer is not impractical. Rather it has certain

advantages over the conventional case, e.g., in section 5.5, it is discussed that

the generalized delay-timer is less sensitive to changes in thresholds than the

conventional one.

5.3 Generalized Delay-timers

Sometimes conditions to raise an alarm in the conventional delay-timer are

difficult to satisfy. For example, consider a system with 10 samples on-delay.

When the system enters from the normal state to the faulty state of operation,

consecutive 10 samples must cross the threshold to raise the alarm. It is

very likely to have some delay in raising the alarm during this transition

as first 10 samples may not satisfy the strict requirement. However if the

63



condition is relaxed to for instance 8 out of 10 samples crossing the threshold,

intuitively the probability of early detection is higher. Accordingly we propose

the following two definitions:

n1 out of n samples generalized on-delay: an alarm will be raised if n1 out

of n consecutive samples are above the threshold.

m1 out of m samples generalized off-delay: an alarm will be cleared if m1

out of m consecutive samples fall below the threshold.

The Markov process for n1 = 3 and n = 4 is shown in Fig. 5.3 where 3 out

of 4 samples are required to raise an alarm and no off-delay is configured. It

can be seen that in the generalized on-delay, the total number of intermediate

no alarm states (NAi) is 5. Compared to the conventional 3 samples on-delay

case (NA1, NA2 in Fig. 5.1), this requires more intermediate states. The

reason of this requirement can be explained by Table 5.1. Assume initially

the alarm is cleared and the Markov process is in the state NA. To raise

an alarm the Markov process has to reach state A with the condition that 3

samples out of 4 have probabilities p1. Unlike conventional on-delay where

there is a single path to reach state A from state NA (Fig. 5.1), the Markov

process here can achieve this in three different paths. Each row of Table 5.1

represents a path. The first element of each row is p1, which is required to

move to the first intermediate state NA1. From NA1 depending on probability

of next sample it can either move to state NA2 (with probability p1) or to

state NA3 (with probability 1 − p1). This process will carry on until the

Markov chain reaches state A. Since the number of paths is increased in the

generalized on-delay compared to the conventional on-delay, the number of

intermediate states has also been increased.

Table 5.1: Possible paths to reach from state NA to A: (∗) represents not
applicable

Sample 1 Sample 2 Sample 3 Sample 4
p1 p1 p1 ∗
p1 1− p1 p1 p1

p1 p1 1− p1 p1
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Due to the possibility of several paths, generalized delay-timer calcula-

tion is more complex than the conventional case. Therefore with larger n,

computational complexity increases significantly and it is difficult to provide

a general representation of the Markov diagram for all combinations. Below

some special cases of generalized delay-timers (2 out of n samples on-delay and

2 out of m samples off-delay cases) are discussed. In Section 5.4, a numerical

algorithm to calculate the FAR, MAR and EDD in the general case is given.

5.3.1 False Alarm Rate

2 out of n samples on-delay

Consider a 2 out of n on-delay, where n ≥ 2. To calculate the probabilities

of false alarms, Markov chain is used. The general Markov chain for n1 = 2

and any n is shown in Fig. 5.4(a). The corresponding transitional probability

matrix is

Pn =



1− p1 p1 0 · · · · · · 0 0
0 0 1− p1 · · · · · · 0 p1
...

...
. . .

...
...

...
. . .

...
0 0 0 · · · · · · 1− p1 p1

1− p1 0 0 · · · · · · 0 p1


, (5.6)

Here Pn is of dimension (n + 1) × (n + 1). The corresponding steady-state

invariant vector is

π =
[
P(NA) P(NA1) P(NA2) · · · P(NAn−1) P(A)

]
=

1

p1(1− pn−1
2 ) + p2(2− pn−1

2 )

[
p2 p1p2 p1p

2
2 · · · p1p

n−1
2 p1(1− pn−1

2 )
]

(5.7)

It can be shown that the probability of false alarm in the steady state is

P(False Alarm) = P(A) =
p1(1− pn−1

2 )

p1(1− pn−1
2 ) + p2(2− pn−1

2 )
(5.8)

2 out of m samples off-delay

Similar to the generalized on-delay, generalized off-delay will require m1 out

of m samples below the threshold to clear an alarm. As a special case, the
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Figure 5.4: (a) 2 out of n generalized on-delay; (b) 2 out of m generalized
off-delay
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Markov process for 2 out of m samples is considered (Fig. 5.4(b)). In the

fault-free region of operation, any 2 samples out of m will clear an already

raised alarm. The transitional probability matrix is

Pn =



1− p1 p1 0 0 · · · · · · 0
0 1− p2 p2 0 · · · · · · 0
p2 0 0 1− p2 · · · · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
p2 0 0 · · · · · · · · · 1− p2

p2 1− p2 0 · · · · · · · · · 0


, (5.9)

The steady-state invariant vector is

π =
[
P(NA) P(A) P(A1) · · · P(Am−2) P(Am−1)

]
=

1

p1(2− pm−1
1 ) + p2(1− pm−1

1 )

[
p2(1− pm−1

1 ) p1 p1p2 p2
1p2 · · · pm−1

1 p2

]
(5.10)

The probability of false alarm in steady state can be calculated as

P(False Alarm) = P(A+ A1 + · · ·+ Am−1) (5.11)

=
p1(2− pm−1

1 )

p1(2− pm−1
1 ) + p2(1− pm−1

1 )

Combined on and off-delay

Similarly, if both 2 out of n samples on-delay and 2 out of m samples off-delay

are applied together, the probability of false alarm is

P(False Alarm) =
p1(2− pm−1

1 )(1− pn−1
2 )

p1(2− pm−1
1 )(1− pn−1

2 ) + p2(1− pm−1
1 )(2− pn−1

2 )
(5.12)

Example 1

This example is to validate the expression of FAR derived in equations (5.8),

(5.3.1), and (5.12). The process variable is Gaussian distributed. Fault-free

data has mean 0, variance 1 and faulty data has mean 2, variance 1. The data

length is 1000 for both fault-free and faulty data. 1 sec uniform sampling is
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Figure 5.5: [a] Verification of the FAR formula by Monte-Carlo simulations;
[b] Verification of the EDD formula by Monte-Carlo simulations

used. The threshold is varied from 0 to 2 with 0.1 increment. In Fig. 5.5(a),

three different cases of only on-delay, only off-delay and both on- and off-delays

applied together are shown. For each cases, 2000 Monte Carlo simulations are

performed and averaged to get a single estimate. It can be seen that the

theoretical and simulated results are consistent.

5.3.2 Missed Alarm Rate

Calculation of the missed alarm rate is similar to that of the false alarm

rate. But the probability density function of the abnormal data should be

used. The transition probability matrix (Pn in Subsection 5.3.1) of the fault-

free operation would be replaced by the matrix for the faulty operation (Pf );

where probability entries p1, p2 would be replaced by q2, q1 respectively. The

probability of missed alarm for 2 out of n-sample on-delay and 2 out of m-

sample off-delay can be expressed as

P(Missed Alarm) =
q1(2− qn−1

1 )(1− qm−1
2 )

q2(1− qn−1
1 )(2− qm−1

2 ) + q1(2− qn−1
1 )(1− qm−1

2 )
(5.13)
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5.3.3 Detection Delay

2 out of n samples on-delay

The probability of z samples detection delay can be calculated using equa-

tion (3.10). Here the transition matrix is

Pf =



1− q2 q2 0 · · · · · · 0 0
0 0 1− q2 · · · · · · 0 q2
...

...
. . .

...
...

...
. . .

...
0 0 0 · · · · · · 1− q2 q2

q1 0 0 · · · · · · 0 1− q1


, (5.14)

The Q matrix can be obtained from Pf replacing all the alarm state rows

by zeros and the steady-state vector is given in equation (5.7). It can be shown

that the expected detection delay for 2 out of n samples on-delay is

EDD =

p2(1− qn1 + q1) + p1q1(1− pn−1
2 )(2− qn−1

1 ) + p1p2q1

n−2∑
i=0

pi2(1− qn−1
1 + qn−2−i

1 )

{p1(1− pn−1
2 ) + p2(2− pn−1

2 )}q2(1− qn−1
1 )

(5.15)

2 out of m samples off-delay

Similar to the previous 2 out of n samples on-delay, the expected detection

delay for 2 out of m samples off-delay is

EDD =
(p2 + p1q1 − p2q2)(1− pm−1

1 )

q2[p2(1− pm−1
1 ) + p1(2− pm−1

1 )]
(5.16)
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Combined on and off-delay

For the special case of combined 2 out of n on-delay and 2 out of m off-delay,

the expected detection delay is

EDD =
X1 +X2 +X3

Y1Y2

where

X1 = p2(1− pm−1
1 )(1− qn1 + q1), X2 = p1p2q1(1− pn−1

2 )(2− qn−1
1 )

m−2∑
j=0

pj1

X3 = p1p2q1(1− pm−1
1 )

n−2∑
i=0

pi2(1− qn−1
1 + qn−2−i

1 )

Y1 = p2(1− pm−1
1 )(2− pn−1

2 ) + p1(1− pn−1
2 )(2− pm−1

1 ), Y2 = q2(1− qn−1
1 )

(5.17)

Example 2

This example is to validate the expression of EDD derived in equation (5.15),

(5.16), and (5.17). The same process variable as in Example 1 is used. The

threshold is varied from 0 to 1.5 with 0.1 increment. In Fig. 5.5(b), three

different cases of only on-delay, only off-delay and both on- and off-delays

applied together are shown. For 2000 Monte Carlo simulations the averaged

EDD is estimated to compare with theoretical values. It can be seen that the

theoretical and simulated results are consistent.

5.3.4 Resetting Markov Processes

For the generalized delay-timer, in certain cases it may appear that there is a

conflict of logic. Consider a 3 out of 4 samples on-delay timer and 1 off-delay

timer for the series of samples shown in Fig. 5.6. The markov process for this

example is shown in Fig. 5.3. Assume initially there is no alarm. Conditions

to raise an alarm is satisfied at sample 4 and the Markov process moves to

state A. Then the alarm is cleared at sample 5 since it has probability 1−p1 to

fall back within the threshold and the Markov process moves back to the state

NA. Once it goes back to state NA, the next window to check for conditions

of alarm raising will start from sample 6; we call this window shifting resetting
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Figure 5.6: Resetting of the Markov process

of the Markov process. In this work resetting is important as otherwise it may

seem that conditions to raise and clear alarms are conflicting. For example, if

we consider the dotted rectangle in Fig. 5.6 it may appear that there should

be an alarm at sample 6; however, it is not true as resetting is done.

5.4 Numerical Calculation of FAR, MAR and

EDD

The calculations of FAR, MAR and EDD are based on the information of

the transition matrix (P). Except for some special cases discussed in earlier

sections, there is no closed form solution so far for the general n1 out of

n samples on-delay and m1 out of m samples off-delay. In this section we

propose an algorithm that can numerically generate the transition matrix,

which then can be used to calculate FAR, MAR and EDD. It can generate

and reduce the transition matrix for an n1 out of n on-delay and m1 out of m

off-delay timer whose one sample above threshold probability is p1.

The algorithm comprises three phases: the generating phase, the discard-

ing phase, and the lumping phase. In the generating phase, a full size tran-

sition matrix is generated, in the discarding phase, the transient states are

discarded, while in the lumping phase, states are lumped to the coarsest par-

tition and thus we obtain the reduced size transition matrix.
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5.4.1 Generating Phase

To generate the full size transition matrix, we firstly define the description

sequence of a state.

Definition: An l = max(n,m) bits binary sequence is called a description

sequence for the n1 out of n on-delay and m1 out of m off-delay timer. The

first bit of the sequence shows whether currently it is an alarm or no-alarm sit-

uation; while the rest bits provide the one sample above threshold information

of the current and l − 2 past samples.

Obviously, there are totally 2l states. Thus, we can obtain a Markov

chain with 2l states. For each state, it is easy to determine the next state

to move to in the cases that the next sample is greater and smaller than the

threshold, respectively. In other words, each state has two successor states

with probability p1 and 1 − p1, respectively. After this procedure, an 2l × 2l

full size transition matrix is established.

To make it clearer, we provide a simple example: A segment of the values

of a process variable is [1.3, 3.5, 5.7, 2.6, 10.2, 11.3]. The threshold is 8, and

the delay timer rule is 2 out of 3 on-delay. In this case, we need a total of

23 = 8 states. At instant 4, the current and previous values, namely, 2.6 and

5.7, are both less than the threshold, and it is in the no-alarm situation. As

a result, the description sequence is ′000′. At instant 5, although the new

value 10.2 exceeds the threshold, there is only 1 out of 3 values greater than

the threshold. Hence it is still in the no-alarm situation. So the description

sequence is ′001′. When the last value 11.3 comes, 2 out of 3 values are

greater than the threshold, which raises the alarm. Therefore, the description

sequence changes to ′111′.

The Markov chain represented by the full size transition matrix have one

ergodic set, and all the transient sets include only one state. This is reasonable

since the probability that the Markov chain moves to the ergodic set in finite

steps is 1.
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5.4.2 Discarding Phase

In this phase transient states are discussed. Based on the requirement we

mentioned above, the discarding procedure is straight forward:

Step 1: Search for such columns ik in the transition matrix that all the

elements in the column are zero. Assume that K 6= 0 columns, {i1, i2, · · · , iK},
are found, initialize the discarding states list to {i1, i2, · · · , iK}.

Step 2: For an index ik that appears in the discarding states list, set the

two non-zero entries in the ik-th row to zero, and check those two columns

containing these two non-zero entries. If any of them is all-zero column, add

its index into the discarding states list. Repeat step 2 for the new added

indices in the list until no more such state can be found.

Step 3: Remove all the columns and rows in the discarding list from the

transition matrix.

5.4.3 Lumping Phase

The goal of lumping is to group the states based on alarm or no-alarm as well

as to refine groups based on successor states. The lumping phase can further

decrease the size of the Markov chain.

The Markov chain applied in our work is in a special case: each state has

only two possible successor states, and there is a unique probability p1 for

all states. Because of this, the Markov chain is equivalent to a deterministic

finite automaton (DFA) with 2l states and 2 inputs that correspond to p1 and

1− p1.

The DFA minimization problem is a classical one in the field of computer

science that has been extensively studied. Since the goal of lumping the states

in our special Markov chain is exactly the same as the purpose of DFA mini-

mization, we can directly adopt the algorithm for the lumping phase.

The essence of the DFA algorithm is to first partition the states according

to their outputs (in our case alarm or no-alarm). Then the groups are repeat-

edly refined based on the successor states on a given input for the states in the

same group. If the successor states are in a single group, no further partition
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Figure 5.7: Flow chart for generation of transition probability matrices

is required; otherwise partition the group to subgroups whose successor states

are in a single group. When no further partition is needed, all states in the

same group can be lumped to one state. In reference [56], authors introduced

a method that speeded up the algorithm to an O(n log(n)) time bound, where

n is the number of states of the automaton.
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The reason why we need to reduce the size of the transition matrix is that

as the length of the delay-timer increases the size of the transition matrix

increases exponentially. Large transition matrices cause great computational

burden for invariant vectors, necessary for FAR, MAR and EDD calculation.

We conjecture from observation that the algorithm can reduce the size of the

transition from 2l to Cn
n1−1 +Cm

m1−1; where C represents combination. A flow

chart of the algorithm is given in Fig. 5.7.

Example: 3-out-of-4 on-delay timer, and 2-out-of-3 off-
delay time

Generating Phase: Since l = max(4, 3) = 4, the length of description sequence

should be 4. So there will be 24 = 16 states, which means that the size of the

initial transition matrix should be 16×16. The non-zero entries in the matrix

are designed as follows: The first state, state 0, has a description sequence

‘0000’. The first ‘0’ means no-alarm situation, the following three ‘0’ show

that all the latest three samples are under the threshold. The probability that

next sample exceeds the threshold is p1. Then the latest four samples become

‘0001’. Because of the 3-out-of-4 on-delay timer, the no-alarm situation can

be kept. So there is a probability of p1 that state 0 moves to state 1, namely,

‘0001’ (the first ‘0’ means no-alarm, the following sequence ‘001’ describe the

latest three samples). Similarly, there is a probability of 1− p1 that the state

is kept. So in the first row, the two non-zero entries are the first and second

entries. The values are of them are 1− p1 and p1, respectively.

Operate on the following 15 states in the same way, finally the initial

transition matrix is obtained as follows:
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

1− p1 p1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1− p1 p1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1− p1 p1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1− p1 0 0 0 0 0 0 0 0 p1

1− p1 p1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1− p1 0 0 0 0 0 0 0 0 0 0 0 0 p1

0 0 0 0 1− p1 0 0 0 0 0 0 0 0 0 0 p1

0 0 0 0 0 0 1− p1 0 0 0 0 0 0 0 0 p1

1− p1 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0
1− p1 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0
1− p1 0 0 0 0 0 0 0 0 0 0 0 0 p1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1− p1 p1

1− p1 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0
1− p1 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0
1− p1 0 0 0 0 0 0 0 0 0 0 0 0 p1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1− p1 p1


Discarding phase: Columns 8, 9, 11, 13 are zero columns. So these indices

are recorded as the initial discarding states list: {7, 8, 10, 12} (since states

begin from state 0). Then set the non-zero entries in rows 8, 9, 11, 13 to zero.

Then one more zero column, column 10, is found. The discarded states list

becomes {7, 8, 10, l2, 9,}. After set row 10 to a zero row, no more zero column

can be found. Rows 8, 9, 10, 11, 13 and columns 8, 9, 10, 11, 13 are removed,

and the transition matrix shrinks to the following:

1− p1 p1 0 0 0 0 0 0 0 0 0
0 0 1− p1 p1 0 0 0 0 0 0 0
0 0 0 0 1− p1 p1 0 0 0 0 0
0 0 0 0 0 0 1− p1 0 0 0 p1

1− p1 p1 0 0 0 0 0 0 0 0 0
0 0 1− p1 0 0 0 0 0 0 0 p1

0 0 0 0 1− p1 0 0 0 0 0 p1

0 0 0 0 0 0 0 0 0 1− p1 p1

1− p1 0 0 0 0 0 0 p1 0 0 0
1− p1 0 0 0 0 0 0 0 p1 0 0

0 0 0 0 0 0 0 0 0 1− p1 p1


Lumping phase: After the discarding phase, only 11 states are left. Among

them the first 7 states, states {0, 1, 2, 3, 4, 5, 6}, are no-alarm states, and

states {7, 8, 9, 10} are alarm states. For the no-alarm states group, the 1−p1

successor states set is {0, 2, 4, 6}, and the p1 successor states set is {1, 3,
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5, 10}. The 1 − p1 successor states set is a subset of the no-alarm group.

However, one element in p1 successor states set belongs to the alarm group

while others belong to the no-alarm group. So the no-alarm group should

be partitioned according to its elements’ p1 successor states. As a result,

the states are partitioned into three groups: states {3, 5, 6}; states {0, 1,

2, 4}; states {7, 8, 9, 10}. Repeat this procedure until no more partition

is needed. Finally, states {0, 4} are in one group; states {7, 10} are in one

group. All the other groups have single state. To lump states {0, 4}, pick up

a representative state for this group, say state 0; add column 5 to column 1,

and then remove column 5 and row 5. To lump states {7, 10}, pick up state

10 as the representative state; add column 7 to column 10, and then remove

column 7 and row 7. Eventually, the reduced size transition matrix is obtained

as follows:

1− p1 p1 0 0 0 0 0 0 0
0 0 1− p1 p1 0 0 0 0 0

1− p1 0 0 0 p1 0 0 0 0
0 0 0 0 0 1− p1 0 0 p1

0 0 1− p1 0 0 0 0 0 p1

1− p1 0 0 0 0 0 0 0 p1

1− p1 0 0 0 0 0 0 0 p1

1− p1 0 0 0 0 0 p1 0 0
0 0 0 0 0 0 0 1− p1 p1


5.5 Comparative Analysis

For a discussion of advantages and disadvantages of the proposed generalized

delay-timers and the conventional delay-timers, their performance is compared

in this section in terms of three criteria, namely, accuracy (ROC curve with

false and missed alarm rates), latency (detection delay with respect to change

in settings) and sensitivity (change in performance with any change in design

settings).
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Figure 5.8: (a) Changes in ROC curves for corresponding changes in the
threshold for n = 2 to 5, n1 = 2; (b) corresponding changes in EDD curves
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5.5.1 Accuracy and Latency

The receiver operating characteristic (ROC) curve is the plot of two alter-

natives when the decision variable is changed [57]. In our context, the ROC

curve is the plot of FAR vs MAR when the threshold changes. It is widely used

in signal detection theory for graphical sensitivity analysis. For simplicity of

analysis only on-delay timers are considered in this section.

Generally different costs are associated with false and missed alarm rates.

Selection of the appropriate point on the ROC curve depends on these costs.

Usually a weighted combination of false and missed alarm rates are used to

include these associated costs in the design. For simplicity, if (FAR)2+(MAR)2

is used as the performance index, then the optimum point on the ROC curve

will be the point closest to the origin; and the corresponding threshold of the

optimum point in the ROC curve will be the optimum operating threshold. In

this case, if the threshold is set higher than the optimum point, false alarms

will decrease at the cost of increased missed alarms. On the other hand, setting

the threshold lower than the optimum point will result in smaller number of

missed alarms but more false alarms.

A process variable is considered with Gaussian distribution where fault-

free data has mean 0, variance 2 and faulty data has mean 2, variance 2.

The data length is 1000 for both fault-free and faulty section; 1 sec uniform

sampling is used. The threshold is varied from minimum of the process data

to the maximum with 0.05 increment. In Fig. 5.8(a), the corresponding ROC

curves are obtained for different delay-timers (n1 = 2, n = 2− 5).

Example 3

It is normally desirable to minimize both FAR and MAR which account for

accuracy of the alarm design; better accuracy indicates lower false and missed

alarm rates. It can be seen from Fig. 5.8(a) that with use of the conventional 2

out of 2 samples delay-timer, the ROC curve is closer to the origin. But when

generalized n1 out of n idea is used, the curves move away from the origin. This

indicates that increasing of n with fixed n1 decreases the accuracy of alarm
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Figure 5.9: (a) Changes in ROC curves for corresponding changes in the
threshold; (b) corresponding changes in EDD curves

systems. On the other hand, in addition to better accuracy a lower detection

delay (latency) is also a desired feature. Fig. 5.8(b) indicates that increasing
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of n with fixed n1 results in lower detection delays. Here conventional delay-

timers cause lower FAR and MAR compared to the generalized cases, which

is expected; however, they also cause higher detection delays.

Example 4

In the previous example, only n was varied while keeping n1 fixed. Now a few

cases of different n and n1 in close range would be considered for comparison.

Here generalized 3 out of 5, 4 out of 5 and conventional 5 samples on-delay

cases are considered. Then the corresponding ROC and EDD curves in these

three cases are compared with conventional 3 and 4 samples on-delay timers.

Like the previous example, from Fig. 5.9(a) it can also be seen that a

conventional delay-timer has higher accuracy compared to a generalized one.

A 5 out of 5 on-delay is more accurate than 4 out of 4 case. Even a 4 out 4

on-delay yields more accurate design than a 4 out of 5 on-delay. The downside

is the higher delay in detection. In this case a conventional 5 samples on-delay

has the highest and a generalized 3 out of 5 on-delay has the lowest detection

delay.

5.5.2 Sensitivity

During practical process operations, it is very likely to adjust alarm design

parameters for many reasons. Therefore, it is necessary to investigate the

degree to which changes in alarm design parameters affect performance in-

dices. Here, the parameter that changes most frequently is the alarm limit

or threshold for a fixed delay-timer. We define sensitivity as the ratio of the

infinitesimal change in the function (FAR, MAR or EDD) to the infinitesimal

change in the alarm limit (ytp) for a fixed delay-timer:

SF :t = lim
∆ytp→0

Fractional change in the function, F

Fractional change in the threshold, ytp
(5.18)

= lim
∆ytp→0

∆F
F

∆ytp
ytp

(5.19)

=
ytp
F

∂F

∂ytp
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Here F can be any of the FAR, MAR, and EDD quantities derived in earlier

sections. As a specific example, equation (5.8) for the false alarm rate of 2

out of n on-delay is considered. Replacing p2 = 1− p1 and denoting p1 = p, it

can be shown that the sensitivity is

S = ytp
(1− p)n(np2 − p2 − np− 2p+ 3)− (1− p)2n − 2(1− p)2

p(1− p)n − (1− p)p2 − 3p− (1− p)n + 2
f(ytp)

here f(ytp) represents the value of likelihood function in Fig. 2.2.

Consider the sensitivity curves in Fig. 5.10(a) which are obtained for the

same set of data in Example 3 with the threshold changing from 0 to 2. It can

be seen that for the 2 out of n samples on-delay, a lesser value of n is more

sensitive to the threshold change comparative to a lower one. This indicates

the conventional delay-timer is more sensitive to changes in threshold than

the generalized one.

The following observation also shows that a generalized n1 out of n on-

delay timer gives a less sensitive design compared to the conventional delay-

timer. For Example 4, sensitivity curves are shown in Fig. 5.10(b). Here

the 3 out of 5 case is the least sensitive and 5 out 5 is most sensitive to any

change in the threshold. 4 samples and 4 out of 5 samples on-delays have very

similar profiles; similarly for 3 samples and 3 out of 5 samples on-delays. This

indicates that for sensitivity, n1 is more important than n in these cases.

Sensitivity analysis is very important as small changes in the distributions

of normal and abnormal data, which may be regarded equivalently as small

changes in the threshold, can cause significant deviations in FAR and MAR;

such sensitivity is not desirable in practice.

5.6 Conclusion and Future Work

Generalized delay-timers provide more flexibility in alarm design. In this chap-

ter, three performance specifications of alarm delay-timers, namely, the FAR,

MAR and EDD, are calculated for generalized delay-timers. Some prelim-

inary sensitivity analysis and comparison of performance of the generalized
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and conventional frameworks are also discussed. As a future extension, fur-

ther study on the sensitivity advantage of generalized delay-timers is required

by a systematic approach.
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Figure 5.10: (a) Sensitivity curves for Example 3; (b) sensitivity curves for
Example 4
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Chapter 6

Industrial Application:
Systematic Design and
Accuracy vs Latency Analysis

Alarm design and rationalization is a systematic work process of evaluating all

alarm settings to check for legitimacy, accuracy and rationale. An efficiently

rationalized alarm system is expected to have properly tuned alarm settings

with reduced alarm load on the operator. The overall work for alarm ratio-

nalization can be divided into several classes - selecting alarm to rationalize,

justification and prioritization, operator decision support, classification, set-

ting alarm limits, alarm tuning and advanced alarming, and safety analysis.

In practice, the rationalization team requires knowledge from control engi-

neering team, operations, maintenance and other disciplines. However, this

chapter focuses on possible applications of developed methods in earlier chap-

ters; some of the rationalization aspects are out of scope because of practical

limitations.

The rest of the chapter is organized as follows: in Section 6.1, a systematic

alarm design process is discussed based on the methods described in Chap-

ter 3. In Section 6.2, sensitivity vs accuracy is addressed for the generalized

delay-timer. Section 6.3 discusses the perturbation of Markov chain. Finally,

limitations and future works are discussed in Section 6.4.
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Figure 6.1: Flow variable from an oil-sand industry

Table 6.1: Design parameters selection chart for the case study 1
Delay-timer (n) Threshold (t) FAR = MAR (%) EDD

2 33.97 3.19 1.28
3 33.97 0.64 2.75
4 33.97 0.11 4.44
5 33.97 0.02 6.37

6.1 Systematic Alarm Design

A well designed univariate alarm configuration is expected to fulfill FAR, MAR

and EDD requirements. In this section, two case studies are discussed to

design an alarm system with optimal balance of these indices.

Case study 1

An actual flow variable from an oil-sand processing facility is considered for

case study here for high alarm. The sampling time is 1 sec and fault is assumed

to occur on March 25, 2009 at time 8:47:36 PM (Fig. 6.1). Histograms of the

corresponding fault-free and faulty data can be seen on Fig. 6.2. We want

to design an alarm limit such that, FAR ≤ 2%, MAR ≤ 2% and EDD ≤ 8

seconds. Since the sampling time here is 1 sec, EDD ≤ 8 samples.
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Figure 6.2: Histograms of the corresponding fault-free and faulty data

To design the delay timer, the same four-step process can be followed. Here

probabilities required for alarm design are estimated empirically. In step 1,

thresholds that satisfy the requirements of FAR = MAR = 2% are estimated

from Fig. 6.3. Estimated thresholds are represented by dots here as well and

highlighted in Table 6.1. In the next step, the smallest delay-timer n1 that

satisfies FAR = MAR ≤ 2% is selected from Fig. 6.3; here n1 = 3. In step 3,

the largest delay-timer n2 for EDD ≤ 8 samples is estimated from Fig. 6.4;

here n2 = 5. Since n2 ≥ n1, according to previous discussions, any n satisfying
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Figure 6.3: Estimation of threshold when FAR = MAR
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Figure 6.4: Effect on EDD for different delay-timers

n1 ≤ n ≤ n2 can be used for the design purpose. In step 4, it can be concluded

that, any delay-timer of length in the range n = 3 to n = 5 can be used for

the process data. Optimal threshold limit is approximately 34 and associated

detection delays are 2.75 samples to 6.37 samples respectively.

The obtained results can be compared with a 3-sigma control limit on the

Shewhart chart. Here the fault free data has a mean 32.8 and variance 1.04. If

a 3-sigma control limit is followed, the threshold will be at 35.84 and a delay-

timer of 4 samples result in ≈ 0% FAR but MAR is more than 90%. Whereas,

following the proposed method, a better performance can be achieved in terms

of both FAR and MAR.

Case study 2

Table 6.2: Design parameter selection chart for the case study 2; W1, W2 and
W3 represent three windows of faulty data

(n) Threshold (t) FAR = MAR (%) EDD
W1 W2 W3 W1 W2 W3 W1 W2 W3

2 ≈10.5 11.19 10.8 3.51 0.001 0.19 1.59 1 1.13
3 ≈10.5 11-11.3 10.8 0.77 0 0.01 3.35 2.02 2.25
4 ≈10.5 10.8-11.9 10.8-10.9 0.18 0 0 5.35 3.05 3.41
5 ≈10.5 10.7-12 10.7-11 0.35 0 0 7.64 4.04 4.6

In the case of different faults resulting in different distributions, it will
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Figure 6.5: Sludge header pressure process data for the second case study

require some experience to select a portion of faulty data suitable for the

design. This portion will most likely result in a conservative recommendation

of alarm settings, which ensures satisfactory performance for other faults. To

show this a second case study with multiple faults is considered. Another

actual variable (sludge header pressure) from the same oil-sand processing

facility is considered for the second case study for high alarm design. The

variable is slow sampled at a sampling period of 1 min. From 1 week duration

process data, three different steady-state faulty data windows (Fig. 6.5) are

considered for analysis using expert process knowledge. The same steady-state

fault-free data is used in three cases, as the distribution of fault-free data is

expected to remain constant in normal system operation. With the help of

three different faulty data sets, it will be easy to demonstrate how selection

of data window affects the design parameters.

Following the same 4-step design process, Table 6.2 is constructed. Anal-

ysis is presented in the table for delay-timers, n = 2 to 5. For the selected

variable, to design a system with FAR = MAR ≤ 5% and EDD ≤ 5 samples,

according to Table 6.2, n = 2 or 3 can be used if faulty window 1 is consid-

ered for design; whereas if window 2 or 3 is considered for analysis, any n

ranging from 2 to 5 can be selected. If faulty data window 1 is selected, the

optimal threshold of operation will be 10.5, delay-timers are n = 2 or 3 and

the associated EDD are 1.59 or 3.35 samples respectively. Other delay-timers
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Figure 6.7: Estimation of EDD for case study 2

do not meet the design requirements. Faulty data windows 2 and 3 provide

more flexibility in parameter selection which is well expected from the signals

as shown in Fig. 6.5. Associated FAR and MAR are also very small in later

cases. But if the design is implemented based on the window 2 or 3, it will

not be optimal for faults similar to window 1 with a lower mean value that

require more conservative design. For example, according to Table 6.2, for

faulty data window 2, n = 3 and threshold 11.3 are an acceptable design.

This design will result in detection delay of 17 samples for faults in window

1. Therefore, selection of fault types is very important and before any change

is made, careful safety analysis should be performed.
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6.2 Accuracy vs Latency of Design

The ROC curve is a popular way of displaying discriminatory accuracy of a

test between two classifiers. There are several ways to use ROC curves in

accuracy estimation. For example, if equal weight is given on both the false

and missed alarm rates, then accuracy increases as the curve moves closer to

the origin. Area under the curve (AUC) is another method widely used as

a measure of accuracy [66, 67]. In literature many methods are available to

estimate and compare the area under the curve [66, 68]. However, in this

work, we take the approach of closeness of the curve to the origin as described

in [13].

Case study 3

From an oil-sand processing facility, the same flow measurement as in case

study 1 is considered here (Fig. 6.1). Three different combinations of delay-

timers are applied on the measured variable to compare their results of FAR,

MAR and EDD. Performance of a conventional 5 samples on-delay is compared

with 3 out of 5 and 4 out of 5 samples generalized setup. A comparison of

FAR, MAR and EDD can be seen from Table 6.3. Here the mean of fault-free

Table 6.3: Comparison of FAR, MAR and EDD changing thresholds for case
study 3

On-delay timer Thresholds FAR MAR EDD
3 out of 5 32.8 30 1.65 3

33.82 4.65 15.6 4
34.84 0.1 57.01 5
35.85 0 90.34 5

4 out of 5 32.8 23.42 2.13 1
33.82 2.52 19.13 5
34.84 0.04 64.60 6
35.85 0 92.71 6

5 out of 5 32.8 15.44 2.73 5
33.82 1.23 24.08 6
34.84 0.01 73.81 7
35.85 0 94.13 7
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Figure 6.8: (a) ROC curves for case study 3; (b) EDD curves for case study 3
changing thresholds
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data is 32.8 and variance is 1.04. The chart is obtained following a 3-sigma

limit of Shewhart chart and setting thresholds at one sigma distance.

From Fig. 6.8(a) and 6.8(b), it can be seen that conventional setup is more

accurate if equal weight is given on false and missed alarms as the curve is

closest to the origin. However, the generalized configuration causes lower de-

tection delay, as was also observed in previous simulation examples in Chapter

5. This kind of chart can be followed to determine operating settings of the

delay-timer. Depending on design requirements of FAR, MAR and EDD, op-

erating thresholds and on-delay configuration can be fixed. For example, if

the requirement is ≤ 5% MAR and ≤ 10 samples EDD irrespective of FAR,

then either of generalized 3 or 4 out of 5 samples and conventional 5 sam-

ples on-delay timers can be used in setting the threshold at 32.8. But if

the requirement is changed to ≤ 5% FAR and < 5 samples EDD, then the

conventional setup cannot satisfy the conditions. A 3 out of 5 samples gen-

eralized setup is required in setting the threshold at 33.82. In practice, any

change in alarm configuration setting requires significant process knowledge,

and detailed safety analysis is a must before any change is made.

6.3 Perturbation in Markov Processes

The alarm design method case studies discussed here are primarily dependent

on historical process data and expert process knowledge. With advent of

modern DCS, a large quantity of data is normally stored nowadays in the

data historian. The historical process data and expert process knowledge can

be used in combination for effective alarm design. Once alarm settings are

configured, the next important question is how well the design performs under

changed circumstances. The process may change from time to time bringing

the question of effectiveness of design under varying process conditions. To be

precise, the question can further be narrowed down to the sensitivity of ergodic

Markov processes, which is the basis of developed methods discussed in earlier

chapters. Perturbation of Markov processes is a large area of research and is

beyond the scope in this thesis. However, some relevant work in the literature
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is highlighted in this section.

Suppose that an irreducible Markov process with transition matrix P is

perturbed by a matrix E such that P̃ = P−E is also irreducible. If π ∈ R1×n

denotes the stationary distribution of P, then πP = π and πu = 1 with u =

(1, · · · , 1)T ∈ Rn×1 and π̃ is the stationary distribution vector of perturbed

transition probability matrix P̃. Perturbation does not alter stochastic nature

of the matrix. For E = P− P̃, the relationship with invariant vector is given

by [58]

‖π − π̃‖ ≤ κ‖E‖∞

where, κ is the condition number.

Impact of changes in transition probabilities on stationary distribution and

fundamental matrix is discussed in [59]. Later, some other condition numbers

in terms of fundamental matrix of Markov chains are developed [60, 61, 62, 63].

However, the condition number in terms of mean first passage time is more

relevant for the transition probability matrices considered here as discussed

in [64]. If mij denote the mean first passage time from state i to state j in

the unperturbed chain, the absolute change in the jth stationary probability

is given by [64]

‖πj − π̃j‖∞ ≤
1

2
maxj

[
maxi 6=jmij

mjj

]
‖E‖∞

If the condition number is relatively small, it can be inferred that the station-

ary probability is not unduly sensitive to perturbation in P.

6.4 Conclusion and Future Work

The alarm design and rationalization process is heavily dependent on histor-

ical process data. Since from time to time process nature changes because

of many reasons, the design needs to be reviewed and updated regularly as

required. Furthermore, selection of data window is a real challenge because

of varying process conditions. Operators working in the control room also

behave subjectively and often differ in procedures followed. These limitations
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can be addressed in the future with virtual object modeling and work flow

data mining.
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Chapter 7

Concluding Remarks

Process safety is a critical concern nowadays in industries. Although it may

be far from reality to achieve inherent safety, an effective monitoring system

is an important step in designing protection layers. Because of the advantages

offered by modern DCS systems, it is nowadays possible to monitor virtually

every aspect of a process plant. However, the challenging part is to present

the information to the operator efficiently and assist in taking preventative

steps before any incident happens. Many of the major accidents in the past

happened only because of misleading and overwhelming information in the

control panel where operators failed to identify and acknowledge the problem

in a timely manner. Therefore, alarm management and design have paramount

importance for safe process operations.

This thesis explores quantitative relationship between the commonly used

univariate alarm design methods and associated performance measures. In

the literature model-based fault detection is covered extensively. Although

the signal-based method is most widely used and easy to implement compared

to model-based methods, it did not receive much attention in academia. The

ISA 18.2 and EEMUA 191 standards are recently published as a guideline

for alarm management and design; but industries are still far from what is

recommended by these standards. In order to comply with ISA 18.2 and

EEMUA 191, there is no alternate other than following a systematic alarm

system design and rationalization method.

Delay-timers and deadbands are two very common alarm design techniques
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used in the industry. These methods can be implemented easily in most mod-

ern DCS systems and are effective in reducing false and nuisance alarms.

However, there is a common misconception that 10-second or any other config-

uration of delay-timer delays the alarm activation by ten seconds or so, which

is hardly the case in reality. In Chapter 3, the detection delay is calculated for

simple limit checking, deadbands and delay-timers. The alarm systems with

deadbands and delay-timers are modeled using Markov processes; and histor-

ical process data is used to estimate the invariant probability vector. Also

an optimal alarm design method is discussed that allows compromise between

the false alarm rate, the missed alarm rate and the detection delay.

Filtering is another widely applied method in industry for noise suppres-

sion. Noisy signal often cause nuisance and chattering alarms and filtering

can effectively reduce this problem. However, the downside is filtering delays

alarm activation similar to that of delay-timers and deadbands. Two most

commonly used filters in the industry are the moving average filter and expo-

nentially weighted moving average filter. The main problem in computation

of the detection delay caused by filtering is correlation among the samples

of filtered data. In Chapter 4, the detection delay is calculated for moving

average filters considering the correlation among contiguous samples.

The idea of conventional delay-timer technique is extended to generalized

delay-timer in Chapter 5. The purpose of the delay-timer is to avoid unnec-

essary alarms when a signal temporarily overshoots or undershoots the limit.

In the conventional method, the process signal is required to stay in the alarm

state for a specified period of time before activating an alarm. The specified

period of time requirement for delay-timer settings is often rigid and sensitive

to process condition changes. For example, a 60-second on-delay high alarm

setting on a level variable requires the variable to remain constantly above

the limit at least for 60 seconds. If the measured variable falls below the limit

in that 60 second window even for 1 second, the alarm is not activated. It is

not impractical to imagine a case where in the considered 60-second window

few samples randomly fails to meet the requirement in an abnormal situation.
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Therefore in the proposed generalized delay-timer method the condition is

relaxed to n1 out of n consecutive samples requirement. When n1 = n, the

generalized and conventional methods are same. For the proposed general-

ized method, the false alarm rate, the missed alarm rate and the detection

delay are calculated. Advantages and disadvantage of the proposed method

are discussed in terms of sensitivity and accuracy of design.

Chapter 6 considered the application of developed methods to industrial

problems. Three case studies are discussed including alarm limit and delay-

timer settings, incorporating expert knowledge in alarm design, and accuracy

vs sensitivity comparison for the proposed generalized delay-timer setup. The

calculation of false alarm rates, missed alarm rates and detection delays for

various methods depends on historical process data to estimate probabilities.

Therefore, the question of effectiveness of design under changed process con-

ditions is an important one. Case studies 1 and 2 address this issue and

in case study 3 it is shown that the proposed generalized delay-timer is less

sensitive compared to conventional case. However, in terms of accuracy, the

conventional setup is more accurate.

7.1 Major Thesis Contributions

This thesis focuses on developing quantitative relationship among commonly

used alarm design methods and performance measures; and the major contri-

butions of this thesis are summarized below:

• Chapter 3 presented the hitting time concept to compute detection delay

for the simple alarm limit design, the delay-timer and the deadband

techniques. An alarm design method is also discussed that balances

among the false alarm rate, the missed alarm rate and the detection

delay.

• Chapter 4 discussed the detection delay caused by the moving average

filter considering correlation among contiguous samples. A method to

design filter order is also given.
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• Chapter 5 extended the conventional delay-timer method to a gener-

alized setup. Advantages and disadvantages of the proposed method

are compared with conventional delay-timers in terms of sensitivity and

accuracy.

• Chapter 6 presented application of the developed method to industrial

problems. With several case studies, possible application and rationale

are demonstrated.

7.2 Directions for Future Work

Alarm systems design, management and rationalization are comparatively new

area of research in academia. Recently published two standards, the ISA 18.2

and the EEMUA 191, have given an opportunity to the industry to compare

their performance index against recommended values. There are lot of oppor-

tunities to advance this study and the following are some suggested areas that

could be pursued in future research.

• Human Factors in Alarm Design

In the process plant, the action of operators sitting in the control panel is

very important. When abnormality occurs, alarms raised in the control

panel require appropriate corrective actions from operators to avoid any

damage. However, the critical issue here is subjective nature of opera-

tors sitting in front of the console. The purpose of the alarm system is

to alert, inform and guide an operator. But, human limitations cannot

be ignored and time required to respond to an alarm as well as possible

differences in interpretation of root cause may vary from one operator

to another. Therefore, it is quite natural that an effective alarm system

cannot be designed without taking human factors into consideration.

Some preliminary work is discussed on behavior simulation using a vir-

tual object model [69, 70]. There are scopes for extending the work to
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evaluate effectiveness of alarm systems in terms of operators’ action and

work flow mining to establish best practice.

• Alarm Flood and Causality Analysis

Alarm flood or alarm shower is a major problem in process industries and

is a main contributing factor of many catastrophic incidents in the past.

During alarm floods, operators are overwhelmed with information and

often fail to recognize the root cause of problems. The problem of alarm

flood is addressed based on similarity analysis and pattern matching in

[21, 43]. Apart from similarity analysis or pattern matching, another

method to identify root cause of abnormality is causality detection [71,

72]. Computation of dependent industrial alarms based on causality

detection is discussed in [44]. However, in the future this work can be

extended to prediction based alarm systems design to detect forthcoming

alarm floods and identify root causes of problems at an early stage.

• Sensitivity of Design

The computation of the false alarm rate, the missed alarm rate and the

detection delay discussed in Chapter 3 and 5 uses invariant probability

vectors of Markov processes obtained from the historical process data.

In a process plant, the operating conditions may change from time to

time. In this thesis, sensitivity of FAR, MAR and EDD is discussed

in terms of changes in alarm limit. However, another important topic

to be addressed is sensitivity due to perturbation of Markov processes,

which is the basis of calculation for the invariant probability vector or

stationary distributions. In [58], a comparative study of perturbation

bounds for the stationary distribution of a Markov chain is discussed.

The work can be further extended to the domain of alarm systems design

and analysis.

The historical process data is a great resource for effective alarm design.
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In this thesis, the distribution is assumed to be known a priori and data

is assumed to be independent and identically distributed (IID). The IID

assumption on data distribution, although restrictive to some extent,

is not impractical [71]. Therefore, application of the proposed method

has some limitations. However, in the future the problem of non IID

distribution can be addressed.
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Appendix A

Proof of Expected Detection
Delay for Delay-Timers

The proof of expected detection delay in Section 3.3 is presented here for

the general case. Assume n-samples on-delay and m-samples off-delay; the

expected detection delay is given by

E(DD) =
∞∑
z=0

z P (DD = z) = πnPfQ(I −Q)−2
[
0 · · · 0 1 · · · 1

]T

=

pm−1
2

(
pn1q1

n−1∑
i=0

qi2 + p2

(
n−1∑
j=0

pj1

n−j−1∑
k=0

qk2 − qn2
n−1∑
i=0

pi1

))

qn2

(
pm2

n−1∑
i=0

pi1 + pn1

m−1∑
i=0

pi2

)
First, we invert I −Q. It can be verified that

(I −Q)−1 =


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Now,

(I −Q)−1 ×
[

0 · · · 0 1 · · · 1
]T

=
[

1 · · · · · · 1
]T

(I −Q)−2 ×



0
...
0
1
...
1


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...
0
1
...
1
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...
...
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1
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For the rest of the proof, calculation for the n−th row of the matrix (I −

Q)−1 is shown only; calculation for rows 1 and (n + 1) to (n + m) are quite

straight-forward. For rows 2 to n − 1, the same procedure of calculation for

the n−th row can be followed. For row n of the matrix (I −Q)−1

[
1−q2
qn2

1−q2
qn−1
2

· · · 1−q2
q2

1
q2

1 0 · · · 0
]
×


1
...
...
...
1


=

1 + qn2
qn2

Let

S1 = (I −Q)−2 ×
[

0 · · · 0 1 · · · 1
]T

=


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n
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m
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T

and

S2 = Q(I −Q)−2
[

0 · · · 0 1 · · · 1
]T

= Q× S1
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For row n of matrix Q 1− q2 0 · · · 0︸ ︷︷ ︸
n

q2 0 · · · 0︸ ︷︷ ︸
m

× S1 =
1

qn2

Following a similar process for other rows
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Finally,
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