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Abstract  

Derived from Doll’s (1993) seminal conceptualization of a post-modern curriculum with 

the criteria of 4Rs (i.e., richness, relations, recursion and rigor), the present research continues 

the effort to complexify and theorize recursion and recursive curriculum. This study re-

conceptualizes mathematics curriculum as recursive through the lens of complexity thinking 

(Davis & Sumara, 2006), which studies complex systems that are adaptive, such as cognition and 

knowledge. A mathematics curriculum often seems be designed or delivered as linear: a 

sequence of predetermined, sometimes unrelated, topics with few chances for learners to revisit 

them from different perspectives. This suggests learning as accumulation with predictable 

outcomes. Learning, observed through a complexified world view, is neither linear nor 

predictable. Learning is a self-organizing process through which a learner and her environment 

co-evolve, and a recursive elaboration through which a learner transforms her previous 

understanding (Davis & Sumara, 2002; Davis, Sumara, & Luce-Kapler, 2008). Both learners and 

school subjects are complex systems with a biological structure (Davis & Sumara, 2002) that 

emerges. This view demands a recursive curriculum that centers on reviewing previously 

encountered ideas with an orientation towards newness and changes along its formation. What 

might such mathematics curriculum be like, particularly at high school level, in theory and 

practice is my research focus. 

The research methodology follows the tradition of hermeneutics (Gadamer, 1989/2013) 

that attends to language and emphasizes emerging understanding through iterative loops of 

interpretations. The interpretations in this research are informed by three kinds of entry texts, my 

personal reflections about recursive curriculum, teaching documents (i.e., programs of studies 

and textbooks), and conversations with teachers, serving to provoke my thinking and generate 
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further reflection subjected to new rounds of interpretations. Several high school mathematics 

teaching documents from Canada and China were examined to see in what ways a planned 

curriculum might afford recursion. Conversations with experienced high school mathematics 

teachers were conducted in professional development workshops and/or individual meetings. 

Teachers were invited to reflect on their learning and teaching experiences and comment on 

several teaching and learning practices (e.g., reviewing), and work with me to revise or generate 

curriculum materials to promote such practices orientated towards helping students to learn 

something new from what they have encountered before. 

This study aims to make a contribution in the field of mathematics education by 

addressing the gap between the perceived importance of recursive mathematics curricula and the 

insufficiency of research about them. I expect that this study speaks to a reinterpretation of 

reviewing, and potentially provokes learners (both teachers and students) to interpret 

mathematics and curriculum differently and inspires learners to (re)embark a complexified 

hermeneutic inquiry on recursive mathematics curricula for the purpose of both learning and 

teaching. This study has led to a metaphorical and iconic image (see the image on p. v or Figure 

9.4.8) of recursive curricula that represents abundant curriculum possibilities rather than a fixed 

one. Such visualization can provide theoretical and practical references for mathematics 

educators and education researchers to draw inspirations from when designing towards recursive 

mathematics curricula. 
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1 A Calling to Recursion 

“There is always a story that happened once upon a time”, and such story is exactly 

where a hermeneutic work starts (Jardine, 2015, p. 238).   

I was called to the idea of recursion.   

The first time I encountered “recursion”, I was in Bill Doll’s graduate class.  Along with 

richness, relations, and rigor, recursion was introduced to me as one of the four criteria of Doll’s 

(1993) post-modern curriculum. It reminded me of Confucius’s teaching in Analects (论语 lun 

yu): 温故知新 wen gu zhi xin, translated as “gain new knowledge by reviewing old; understand 

the present by reviewing the past” (Chinese Academy of Social Sciences, 2002, p. 2003). The 

concept of recursion appeared to me as iterations of the common emphasis of reflection (反思

fan si), review (复习 fu xi), and repetition (重复 chong fu) throughout my schooling and living in 

China. Still, revisiting these ideas and connecting them to recursion in a new context (i.e., post-

modernism, complexity thinking), I thought of them differently (e.g., I learned to reflect by 

thinking critically and aim reflection towards relations and different understandings rather than 

the truth) and came up with some practical applications of recursion in teaching (see Luo, 2004). 

Yet, I found the concept of recursion suspiciously straight forward.     

The idea of recursion got more puzzling when I started to implement it in my 

mathematics classes. Interpreting recursion as recursive reflection, I tried out various methods to 

encourage students to reflect, including reflection journals, retests, learning method reviews and 

mathematics content reviews. It was my hope that through learning from what I modeled and 

promoted in class, students could become more reflective. Meanwhile, my professional growth 

benefited tremendously from constantly rereading the textbooks, reflecting on my practices and 

modifying them, and mostly by teaching the same course or courses related to each other in 
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different classes over years. While my learning process seemed to be recursive, my students’ 

learning processes appeared to remain primarily linear: Many students showed little willingness 

and efficiency to learn from their previously learned topics and mistakes. The activities I used to 

encourage reflection remained at the margin of the lived curriculum. We spent most of class time 

rushing through topics: There seemed so little time for so many curriculum contents for which 

my students showed low readiness. I sensed, somehow, there was more to do to make a 

curriculum recursive than simply allocating space and time for reflection and offering time 

between reflections.  

Confused, I revisited Doll’s concept of recursion during the first year of my doctoral 

program. This reencounter with recursion brought forth new insights about the concept (see Luo, 

2014). Subtly yet saliently, my focus, on my interpretation of recursion as “recursive reflection”, 

shifted from “reflection” to “recursive”. This emphasis, following complexity thinking, suggests 

recursion more as a continuous generative looping back movement. The question in recursion, 

then, is not just how to reflect, but also how to loop back. With this new interpretation, I 

reconsidered the idea of recursive curriculum, stressing practices with a structure of looping back. 

Reviewing, in which students go over what they have learned before, logically came to focus. I 

started to wonder, what kind of reviewing can afford recursion? More generally, how can one 

design looping back processes that help learners build connections and see something new from 

what they have encountered before? Or, what might a recursive curriculum be?  

These questions are worth asking. As shown in the literature review in Chapter 3, there is 

a gap in how little we (i.e., mathematics educators and mathematics education researchers) know 

about and enact a recursive curriculum and how important it is for mathematical learning. The 

word curriculum here refers to braid that includes (at least) planned, lived and hidden dimensions.  
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Although mathematics curricula may be designed with a recursive quality, my teaching 

experience in Canadian high schools led me to a concern that the lived mathematics curricula 

tend to be linear: Mathematics topics tend to be covered with little chance of being revisited from 

different perspectives later, resulting in a fragmental view of mathematics knowledge. As such, 

mathematics learning can easily become a process of linearly accumulating disconnected topics. 

To enhance cognitive growth, a nonlinear curriculum centered on recursion is a promising 

direction through the lens of complexity thinking. A recursive mathematics curriculum fits with 

how mathematical understanding is thought to develop: According to Pirie and Kieren’s (1994) 

model, the growth in mathematical understanding follows a recursive path.  

Motivated by the rich potential of recursion, I embarked on a hermeneutic inquiry about 

recursive mathematics curricula. The leading question in this research is, “What might a high 

school recursive mathematics curriculum informed by complexity thinking be?” To answer this 

question, I sought inspirations through reinterpreting multiple texts, including autobiographical 

reflections, teaching documents (i.e., programs of studies and textbooks), and conversations with 

experienced teachers. Three sub-questions are used to guide my text generation and 

interpretation: 

1) How do my teaching and learning experiences inform my understanding of recursive 

mathematics curriculum? 

2) How do teaching documents inform my understanding of recursive mathematics 

curriculum? 

3) How do conversations with experienced high school mathematics teachers inform my 

understanding of recursive mathematics curriculum? 
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The purpose of the research is to enrich the interpretations of the concept of recursive 

mathematics curriculum. This research aims to contribute to mathematics education by 

narrowing the gap between the perceived importance of the recursive mathematics curriculum 

and the insufficiency of research about it. Given that I entered this study with an initial focus on 

the affordance of a recursive curriculum for students’ mathematics learning but was charmed 

later (as one can see in Chapter 4 on the research process) by a recursive curriculum’s affordance 

for the mathematics learning of teachers, I believe an inquiry about recursive curriculum is 

beneficial for the inquirer to develop mathematical and pedagogical understanding thus it is 

worthwhile for both teachers and students to take on. I use “learners” in this dissertation to refer 

to both students and teachers and use a learner’s pedagogical understanding to refer to an 

understanding of learning process that can be used to guide one’s and others’ learning. I expect 

that this research speaks to a reinterpretation of reviewing, and potentially provokes learners to 

interpret mathematics and curriculum differently and inspires learners to (re)embark on a 

hermeneutic inquiry on recursive mathematics curricula for the purpose of both learning and 

teaching. In short, the goal of this study is to inspire, to rekindle, and to continue growing the 

seed(ling) that has been planted.   

Before moving on to the details of the study, it is necessary to specify a few writing 

strategies used in this thesis. First, italics are frequently used as a way to interrupt, nudge and 

perturb, and to call for rereading, re-sensing and reconsideration, particularly towards any subtle 

differences that one’s reading might bring forth. Second, all the figures I created during this 

study were heuristic visualizations, meaning that their generation was my process of thinking 

through images instead of outputting completed thoughts. Therefore visual spatial elements, such 

as layout, line, curve, shape, color, font, empty space etc., were not used for decorative purpose 
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but for eliciting unconscious knowing and incurring emerging possibilities. Particularly, I often 

used colors and fonts in certain ways without rational reasons until their appearance spoke to me 

some unnoticed relations, which prompted me to visualize again. Some figures turned out having 

multiple elements to signify the same message. For instance, I used both font and capitalization 

to differentiate class from case in Figure 8.2.3. In addition, many images are like doodling 

instead of clear-cut diagrams, signifying their incompleteness and organic becoming. The 

redundancy and incompleteness of the images are kept in this thesis to preserve the role of 

images as both medium and unfinished product of my thinking process, and to invite readers to 

review the images and visualize again. Third, to emphasize part-whole relationship, sections and 

figures are labeled in a way indicating their respective relations to a bigger whole where they 

locate (e.g., section 8.2 is the second section in Chapter 8, and Figure 8.2.3 is the third figure in 

section 8.2).   

One must note that although I am interested in nonlinearity in this study and the research 

(including writing) process is nothing but linear, this does not negate a “final” text of this study 

presented as a linear document. Given that spiral movements are well presented through multiple 

rounds of reinterpretations of the same idea (e.g., a form of re-viewing, re-viewing as a whole, 

recursion, recursive curriculum) in one chapter or across chapters, this linear form is recognized 

as an adequate one before a more effective form of writing is established. Given that I got to 

experience recursion in different ways in this study and consequently transformed my 

understanding of hermeneutic research process, recursion, recursive curriculum, mathematics, 

education, and self, it would not be surprising for a reader to hear similar stories resonating when 

reading different parts of the dissertation. Meanwhile, as a result of this study being influenced 

by hermeneutics and complexity thinking, each attempt of looking at the study as a whole or 
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ending the writing led to a new round of reinterpretation. This is reflected particularly in the last 

three chapters, with each chapter trying to offer a holistic view of the study outcome yet only 

resulting into renewed interpretations of recursion and recursive curriculum.  

Another thing worth noting is that several metaphors (e.g., loops of spiral, hermeneutic 

circle, story, fractal tree-spiral) are used in this thesis as mediums for thinking, expressing, and 

playing with ideas. My affinity with metaphors came more from my experience of growing up in 

Chinese language and culture, in which analogies (including metaphors) are omnipresent, and 

less from literature related to metaphors. While I agree with Lakoff and Johnson (1980) that 

metaphors influence thoughts, how the particular metaphors used in my research influence my 

study and how metaphors in general influence thoughts is not the focus of the research at current 

stage. Rather, the returning to metaphors as mediums of thoughts and contemplating on their 

influences on thinking belong to the next research cycle.  

Here I give an overview of the rest of the thesis. In Chapter 2, I set up my study by 

articulating its theoretical framework (i.e., complexity thinking) and methodology (i.e., 

hermeneutic inquiry). In Chapter 3, I provide a working definition of recursion based on a 

preliminary concept study. I then establish the rationale of the study, by arguing for the 

importance of recursion in education through drawing support from complexity thinking and 

mathematics education research and by contrasting the insufficient amount of research about 

recursive curricula with their importance. In Chapter 4, I describe the research design and its 

dynamic process, reflect on how the process transformed my understanding of hermeneutic 

inquiry and recursion, and propose an interpretation of the hermeneutic study process as fractal-

like. Chapter 5 is a review of the process of reviewing through which I complexify it as re-

viewing, a form of recursion. I propose and conceptualize three forms of re-viewing (i.e., re-
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languaging, re-imaging, and re-inbodying) in Chapter 6 by drawing concepts and terminology 

from semiosis and by interpreting and reinterpreting some lived experiences of re-viewing. I then 

look at these three forms of re-viewing as a whole and reinterpret it as re-storying in Chapter 7. 

In Chapter 8, I re-theorize re-viewing as re-encountering and reinterpret recursion and recursive 

curriculum, before moving on to consider the implications of such interpretations in curriculum 

design in Chapter 9. This attempt brings forth new visualizations of recursive curricula. Chapter 

10 looks into the practicality of recursive curriculum in classroom contexts where there often are 

overarching linear curriculum frameworks at play. This connects back to my personal struggling 

as a classroom teacher and my relationship with mathematics, resulting into transformations in 

both self-understanding and interpretations of recursive curriculum.   
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2 Theoretical Underpinning and Methodology 

Complexity thinking is the theoretical framework for this study, and hermeneutic inquiry 

is chosen as a suitable methodology for it. In this chapter, I provide an overview of complexity 

thinking and an interpretation of education from this theoretical perspective. Then I examine the 

hermeneutic inquiry as a research methodology in general. Lastly, I connect complexity thinking 

and hermeneutics and explain why hermeneutic inquiry is an appropriate methodology for my 

research.  

2.1 Complexity Thinking  

The historical development of complexity thinking  

Complexity thinking, Davis and Sumara (2006) explain, “arose in the confluence of 

several areas of Western research, including cybernetics, system theory, artificial intelligence, 

chaos theory, fractal geometry, and nonlinear dynamics” (p. 7). Although many of these lines of 

inquiry started to develop in the 1950s and 1960s, the origin of complexity thinking can be 

traced back to many earlier works, such as Giambattista Vico’s book New Science published in 

1744, Henri Poincaré’s work related to the three-body problem in 1903, Ludwig Von 

Bertalanffy’s general system theory developed in the 1940s and 1950s, and Gregory Bateson’s 

work on cybernetics in the 1940s1.  

In the 1960s, the establishment of chaos theory supported Poincaré’s idea of 

unpredictability, a key notion in complexity thinking. Also, Prigogine’s study on thermodynamic 

systems furthered Bertalanffy’s ideas about open systems, and brought forth some key 

characteristics of complex systems (i.e., “dissipative structure”, “far from equilibrium”, and 

“self-organization”).  

                                                           
1 My understanding of the historical development of complexity thinking is largely informed by Davis and Sumara’s 
(2006), Doll’s (1986, 1989, 2002, 2008), Capra’s (1996), and Fleener’s (2005) works.   
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Starting from the 1970s, complexity research gained great momentum through the use of 

computer technology. Hypotheses and conjectures related to complexity systems were tested. 

Through computer simulations of various systems, complexity theory started to emerge as a field 

of inquiry in the late 1970s and early 1980s. Particularly, Benoît Mandelbrot’s (1967, 1977, 1983) 

establishment of fractal geometry and its wide application in various disciplines further 

supported a new world view: “Nature embraces not simplicity but complexity” (Doll, 2002, p. 

45).  

The development of complexity research sped up after 1986. Complexity thinking was 

popularized through the increasing use of computer technology in the 1980s and 1990s. By the 

1990s, complexity research was a discernible domain. Its focus shifted to the stimulation and 

development of complex systems. At the end of the 1990s, complexity theory had developed 

such rigor that it was renamed as complexity science. Complexity thinking, commonly called 

complexity science, was not a distinct term until the 1990s. Based on Richardson and Cilliers 

(2001), complexity thinking refers to a school of thinking that “focuses on the epistemological 

consequences of assuming the ubiquity of complexity” (p. 7), which means an attitude that “is 

concerned with the philosophical and pragmatic implications of assuming a complex universe, 

and might thus be described as representing a way of thinking and acting” (Davis & Sumara, 

2006, p. 18).  

Key ideas in complexity thinking  

Complexity thinking focuses on the study of complex systems, which are pervasive in the 

world. Anthills, climates, ecosystems, economies, cultures, brains and living units are all 

examples of complex system. A complex system is a self-organizing and adaptive system that 

exhibit attributes that are not possessed by any of its components (Capra, 1996; Davis & Sumara, 
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2006). For a complex system, the whole is greater than the sum of the parts. Thus one needs to 

understand a complex system both holistically and analytically.  

Complex systems’ self-organization is sustained through the nonlinear feedback in them 

(Capra, 1996). The feedback loops enable the influence of one change in a system to loop back 

to the system itself. Complex systems are also open systems as they consistently exchange 

energy and matter with their environment (Davis & Sumara, 2006). Because of their self-

organization and openness towards the outside world, complex systems can maintain their 

current structures while being open to emerging possibilities at the same time. They are 

unpredictable and nondeterministic: Changing one part of a system in one way does not 

guarantee certain behaviors from the other parts.  

A complex system is fractal-like, meaning that the system demonstrates self-similarity 

across various scales and its development is recursive (Davis & Sumara, 2006). Fractal was 

coined by Mandelbrot from the Latin adjective fractus, which means “irregular or fragmented” 

(Mandelbrot, 1977, p. 4) to refer to and depict a self-similar phenomenon. Self-similarity 

describes a signature property of fractals, that each portion of a fractal can be viewed as a 

reduced-scale image of the whole (Mandelbrot, 1967), or simply put, that you can see the whole 

through a part of it. While the similarities between parts and whole in a strictly self-similar 

fractal (e.g., the Koch snowflake in Figure 3.1.2) are exact, the ones in a fractal-like system are 

approximate—if you zoom in on different parts of it and you see slightly different copies of the 

whole. Fractals are formed by recursion through infinitely many stages (Mandelbrot, 1977, 1983). 

The fascinating and powerful aspect of fractals is that the complexity of fractals originates from 

following some simple recursive rules. Often a simple recursive formula can generate 
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complicated fractals, such as the Mandelbrot set and the Julia sets. More details can be found in 

an extended interpretation of recursion in Chapter 3.   

Moreover, complex systems have embedded structures: A complex system often 

composes and comprises other complex systems. Due to the openness of the complex systems, 

the boundary between complex systems is heuristic rather than fixed (Davis & Sumara, 2006). 

The system and its environment have a nonlinear coupling relationship (Sumara & Davis, 1997). 

The word “coupling” refers to Maturana and Varela’s (1998) notion of structural coupling, which 

denotes that “there is a history of recurrent interactions leading to the structural congruence 

between two (or more) systems” (p. 75). A coupling relationship is a mutual adaptive 

relationship between two or more self-organizing systems. With such relationship, a complex 

system and its environment co-specify each other and evolve together simultaneously. In other 

words, they co-emerge. Hence, to understand a complex system, one has to think relationally and 

holistically by connecting it with its context. 

Complexity thinking and education  

 Education scholars started to pay attention to complexity thinking in the 1980s. Notably, 

Sawada and Caley (1985) and Doll (1986, 1989) are among the first group of scholars who wrote 

about complexity thinking in education. Over the years, other scholars (e.g., Davis & Sumara, 

2000, 2006; Davis & Simmt, 2003; Davis, Sumara, & Luce-Kapler, 2008; Davis & Renert, 2014; 

Fleener, 1999, 2002, 2005; Gough, 2012; Reeder, 2002; Simmt & Kieren, 1999; Thom, 2012) 

have advocated and studied the use of complexity thinking in education. Through the lens of 

complexity thinking, common terms in education such as learners, learning, knowledge, and 

curriculum are reinterpreted and reimaged.   
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For example, a learner is viewed as a complex system that is a part of many embedded 

living systems, such as a classroom, a school, a country, a culture, and the universe. Essentially, 

each human being is “a ‘complex fabric of relations,’ fundamentally and inextricably intertwined 

with all else - biologically and phenomenologically” (Sumara & Davis, 1997, p. 415). One’s 

historical conditions affect oneself through the feedback loops. Hence each learner embodies 

his/her history. A learner also interacts with his/her surrounding constantly, consciously or 

unconsciously. Each learner and everything related to him/her are in constant flux and they adapt 

to each other (Sumara & Davis, 1997). Since complex systems tend to fold into one another as 

the boundary between complex systems and their surroundings is blurry, it is hard to distinguish 

self and others. Thus a learner is an integral part of the context rather than a solitary object 

situated in the context (Sumara & Davis, 1997).  Whenever a part of a context changes, be it a 

learner or the learner’s surrounding, the whole context changes. Then the learner’s identity, 

which depends on the relationships between the learner and the context, changes. This fluid 

identity is documented in Sumara and Davis’s (2009) paper reporting an action-research study 

they did. The teachers in the study initially referred to the students’ parents as “they”, which was 

changed to “we” after their first book discussion session with the parents. Through the discussion 

around the book they both read, teachers and parents’ relationships changed and their identities 

as expressed through the interaction appeared to change too. This example shows that learners’ 

identities emerge through their constant interactions with their surroundings and are in constant 

flux.  

As a complex system, a learner is an active agent that self-organizes and is capable of 

adapting itself to new conditions or, in other words, capable of learning. Although learning is 

associated with particular experiences or situations, experiences or conditions do not cause 
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learning to happen. Learning is a kind of transformation in the learner that is simultaneously 

physical and behavioral, thus structural (Davis & Sumara, 2006). Learning happens as a 

contingent result of the interactions between a learner’s historical and biological structure and 

her surrounding. Neither the learner’s structure nor the environmental stimulus can specify what 

learning will happen. Hence learning is unpredictable: It can only be occasioned rather than 

caused (Davis & Sumara, 2006). Here the word “occasion”, as used by other researchers (e.g. 

Kieren, Simmt, & Mgombelo, 1997) influenced by complexity thinking, is in consistent with 

Maturana and Varela’s (1998) idea of trigger to differentiate from a cause-effect relation: “To 

trigger an effect” refers to 

the fact that the changes that result from the interaction between the living being and its 

environment are brought about by the disturbing agent but determined by the structure of 

the disturbed system. The same holds true for the environment: the living being is a 

source of perturbations and not of instructions. (p. 96)    

Knowledge, viewed by complexity thinking, is no more a thing existing internally or 

externally. It is knowledge-as-(inter)-action (Sumara & Davis, 1997). Rather than as objective 

information of the outside world that one needs to absorb, or some understanding a learner 

generates solely, knowledge is created through the interactions among the complex systems that 

the learner comprises and is composed of. Actions, seen as products of these interactions, are 

themselves understandings and knowledge (Sumara & Davis, 1997). The locus of cognition, 

therefore, is no longer understood as within an individual and neither is there a solitary truth-

determining agent for knowledge (Sumara & Davis, 1997). Rather, knowledge exists and 

consists in the possibility for joint or shared action (Sumara & Davis, 1997) and it is determined 

by the shared action.    
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The above interpretations of learner, learning, and knowledge, through the lens of 

complexity thinking, have implications on curriculum. A traditional curriculum, which centers 

on teaching towards pre-set learning outcomes and on assessments, becomes problematic. Such 

curriculum, based on Doll (1986), is a measured one and is one example of the pervasive 

influence of classical-scientific world view summarized and guided by Newton. Newton’s world 

is “simple, spiritual2, and uniform or universal” (Doll, 1986, p. 11), thus a measured curriculum 

focuses on reductionism, certainty, quantification, and universality, and it views change as 

reversible and predictable. Such curriculum reflects and perpetuates control, separation, and 

domination (Fleener, 1999, 2002). Complexity thinking informs us that the world is not like a 

mechanical clock that follows universal and fixed rules. Rather, the world constantly changes 

through self-organization. Its change is irreversible and unpredictable. The world is “multiple, 

temporal, and complex” (Doll, 1986, p. 15). The measured curriculum, modeled on Newton’s 

closed system, cannot reflect this new world view and needs to be changed. Complexity thinking 

invites us to understand the world as open, adaptive, emergent, unpredictable, and recursive 

(Davis & Sumara, 2006; Fleener, 2002, 2005; Gough, 2012). This change of worldview calls for 

a curriculum that is modeled on complexity.   

In summary, complexity thinking has triggered a paradigm shift in many disciplines, 

including education. By urging educators to see learners as adaptive self-organized complex 

systems and learning as an emergent and unpredictable phenomenon, complexity thinking 

compels us to reimagine our curriculum.   

                                                           
2 “Spiritual” refers to a quality of being static, uniform, and external controlled and it is used to describe a view of 
universe through God’s eyes (Doll, 1986).  
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2.2 Hermeneutic Inquiry  

Hermeneutic inquiry is a qualitative research methodology informed and guided by 

hermeneutics, “the tradition, philosophy, and practice of interpretation” (Moules, 2002, p. 2). 

Sometimes hermeneutic inquiry is used interchangeable with interpretative inquiry (e.g., in Ellis, 

1998; Moules, 2002). Such conflation seems inevitable, as Guba and Lincoln (1994) point out, 

doing interpretive inquiry situates one in a paradigm, which accepts that “individual 

constructions can be elicited and refined only through interaction between and among 

investigator and respondents” (p. 111) and commits to hermeneutical and dialectical 

methodology. However, not all interpretive inquiries can be viewed as under the influence of 

hermeneutics beyond simply employing hermeneutic circles as an interpretation method. 

According to Prasad (2005), an inquiry that employs hermeneutics in a strong sense is “research 

that actively engages in the interpretation of texts, and that is informed by the epistemological 

insights of hermeneutic philosophy”, rather than only using hermeneutics to “denote the 

interpretive and phenomenological dimensions of qualitative inquiry” (p. 30). To avoid 

confusion in terminology and ensure a strong focus on understanding hermeneutic philosophy 

and its implication on research methodology, I use only “hermeneutic inquiry” in my following 

writing, and limit it as a kind of interpretative inquiry guided by hermeneutics.  

Hermeneutics’ textual interest and central themes   

 Hermeneutics views understanding as interpretation (Gadamer, 1989/2013); the one 

doing hermeneutics is keenly interested in interpreting with texts of all kind (Prasad, 2005). A 

text in hermeneutic study can be any instance of “mute evidence” – “things that have endured 

physically and that can be separated across space and time from their authors or producers” 
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(Prasad, 2005, p. 38), such as written records or documents, films, literature, and technology. It 

can also be metaphorical text, such as conversations, interactions and events (Prasad, 2005).   

Hermeneutics acknowledges that interpretation is tricky, as a text does not have a fixed 

and uniform meaning. A text is layered, including its appearance or obvious meaning, and 

subtext, which is “the text underneath the surface-text” (Prasad, 2005, p. 36) or the text’s 

possible/hidden meanings. The task of hermeneutic researcher is to discern this subtext. However, 

this subtext is not a possession of the text or simply intended by the text’s immediate author. 

Rather it is shaped by the text, its context (e.g., the author’s cultural milieu) and the interpreter’s 

presuppositions and context. A good interpretation of a text cannot be achieved without 

connecting these areas together. As Davis (1996) puts it, “Within a focus on the deliberate act of 

interpretation, the interpreter, the interpreted, and the interpretive community are simultaneously 

presented” (p. 23). The stress of interpretation is “not upon the subjective interests of the 

interpreter nor upon the objective features of the work itself, but on the act of interpreting and the 

significance of the interpretation that is produced” (Silverman, 1994, p. 12).  

According to Smith (1991), Schleiermacher has pointed out three central themes of 

hermeneutics. The first theme is the inherently creative character of interpretation. Interpretation 

is a creative action. As Gadamer (1989/2013) writes, “understanding [same as interpretation] is 

not merely a reproductive but always a productive activity as well” (p. 307). Interpreting a text is 

not simply reproducing what the author has intended to say. The meaning of a text always goes 

beyond its author and it is always determined by the text, the interpreter, and their historical 

conditions (Gadamer, 1989/2013). Further, understanding is not understanding better, but 

understanding in a different way (Gadamer, 1989/2013). So an interpreter needs to creatively 

suggest possible meanings and show relations between things in new ways (Smith, 2006).  
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The second theme is the interplay of part and whole during the process of interpretation. 

The hermeneutic rule is that “we must understand the whole in terms of the detail and the detail 

in terms of the whole” (Gadamer, 1989/2013, p. 302). A good interpretation “involves a playing 

back and forth between the specific and the general, the micro and the macro” (Smith, 1991, p. 

190). A good interpreter works with the text holistically. This means that she pays close attention 

to the whole-part relationship as one cannot understand the part without seeing how the part is 

situated in the whole and vice versa. It is important to note here that for a text, the whole 

includes the text and its context, which includes the interpreter as well. A good interpretation of 

the text is inseparable from the interpreter situating the meaning of the text in relation to the 

whole of her own meanings or situating herself in relation to it (Gadamer, 1989/2013). For 

example, to understand teachers’ perspectives about reviewing, it helps if an interpreter can also 

understand their perspectives about teaching and learning in general and their cultural milieu. 

She needs to relate teachers’ perspectives to her own understanding of reviewing and cultural 

milieu too.  

The third theme is the pivotal role of language in human understanding. As Ellis (1998) 

says, “the language available to the interpreter both enables and limits the understanding that is 

possible” (p. 16). This is particularly true when the interpreter and the participant are using the 

same word (e.g., review). Both people might think they understand each other well by viewing 

the word as a shared vocabulary. However, they might understand it very differently, particularly 

if they come from different cultural backgrounds. Thus it is important for the interpreter to ask 

different questions regarding key vocabularies so that a fusion of horizons can be achieved 

between the interpreter and the participant. A hermeneutic interpreter pays close attention to 

language as “hermeneutics is about an attentiveness to language, recognizing that language has a 
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forgetfulness to it” (Moules, 2002, p. 3). Since language is a social, cultural and historical 

construct, hermeneutics’ attentiveness to language demands a serious consideration of the text’s 

broad context in a hermeneutic inquiry. 

The hermeneutic task  

Where to start? Hermeneutics starts with “what happens to us over and above our 

wanting and doing” (Gadamer, 1989/2013, p. xxvi). It begins, as Jardine (2015) interprets, with a 

kind of experience that Gadamer considers aesthetic as it draws us out of our subjectivity and 

into a world of abundant relations. There is something intriguing in the experience. It might be as 

simple as a look, a word, and a gesture or as holistic as the impression of the whole experience. 

These things “strike us, catch our fancy, address us, speak to us, call for a response, elicit or 

provoke something in us, ask something of us, hit us, bowl us over, stop us in our tracks, [make] 

us catch our breath” (Jardine, 2015, p. 236). Yet, we do not fully understand them. In these 

moments “we are drawn out of ourselves and our constructions and our methods and our ‘our’-

centeredness and get caught up by something, charmed by it, drawn into its sway, into its play, 

into its Spiel” (Jardine, 2015, p. 237). This is opposite to the way of studying an object that 

comes to meet us in our world as if it can exist without us nor reference to any other things; “it 

[the experience] is much more a world into which we ourselves are drawn” (Gadamer, 1994, p. 

191-192; as cited in Jardine, 2015, p. 240).  

Besides being rich and memorable and having something that demands our attention, 

such experience has something that seems both familiar and strange “as the moment of address 

occurs somehow ‘between’ this new eruption of life and some older that is awoken” (Jardine, 

2015, p. 239), and “something to teach us that we could not know by ourselves” (Gadamer, 

1989/2013, p. xxxiii). Such experiences have us experience the limits of our experience while 
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being called to go beyond the limits (Jardine, 2015, p. 237). Being addressed and noting the 

limitation of our experience, we venture to understand. Such venture is “more a passion than an 

action” (Gadamer, 1989/2013, p. 375). A hermeneutic question “‘occurs’ to us”, meaning “that it 

‘arises’ or ‘presents itself’ more than that we raise it or present it” (Gadamer, 1989/2013, p. 374). 

“A question presses itself on us; we can no longer avoid it and persist in our accustomed opinion” 

(Gadamer, 1989/2013, p. 375) and such question “places us and our being-in-the-world into 

question” (Jardine, 2015, p. 237).  

“Understanding begins… when something addresses us” (Gadamer, 1989/2013, p. 310). 

This is the first condition of hermeneutics, as “it is always something that happens that awakens 

our interest in pursuing interpretations” (Jardine, 2015, p. 238). 

How to proceed? This question does not lead to a fixed step-by-step instruction or 

method. In fact, such method is exactly what hermeneutics criticizes (Jardine, 2015). In a 

hermeneutic inquiry, “it is impossible to establish ‘correct method’ in advance of an encounter 

with what is being investigated. This is because what is being investigated holds at least part of 

the answer to how it should be investigated” (Smith, 2006, p. 110). Therefore, the methods used 

in a hermeneutic inquiry cannot be predetermined totally.  

Rather than following a method, a hermeneutic inquiry is guided by metaphors. A 

hermeneutic inquiry can be visualized as “a series of loops in a spiral” (Ellis, 1998, p. 19), which 

is specified as:   

Each loop in the spiral represents a separate inquiry activity within the study. Each loop 

may represent a separate ‘data collection and analysis’ activity or it may represent a 

return to a constant set of data with, however, a different question. Often the question for 
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each new loop has been influenced by what was uncovered in the inquiry represented by 

the previous loop. (Ellis, 1998, p. 20)  

This description shows hermeneutic inquiry as an organic movement: Its path emerges through 

its process and is shaped by what the researcher has learned from previous activities. After a loop, 

researchers might refocus or reframe their questions for the next loop of inquiry, or they collect 

or generate different kinds of texts. Since the action a hermeneutic researcher takes to approach 

the entry question often takes the forms that are “apparently global and unfocused” (Ellis, 1998, 

p. 21), it is not surprised that a major turning point often comes after the first loop due to the 

researchers’ changed understanding of the problem or question of interest and their relationships 

with research participants established in the first loop. Particularly, if one has powerful activities 

in the first loop, one’s study can unfold in directions that few would have predicted (Ellis, 1998). 

A hermeneutic study often includes multi-loop and single-loop inquiries (Ellis, 1998). 

The number of loops is not important and cannot be predetermined, as the goal of hermeneutic 

inquiry is to reach “an interpretation as coherent, comprehensive, and comprehensible as possible” 

(Ellis, 1998, p. 27). To that end, it is essential for one to work holistically in the spiral process: 

At the end of each text generation/collection, the researcher “works again with all transcripts, 

field notes, research notes, and artifacts, experiencing them as a whole or single text” (Ellis, 

1998, p. 26).  

Hermeneutic inquiries develop as a flow: A hermeneutic inquiry unfolds itself and the 

researcher “makes the path by walking it” (Ellis, 1998, p. 16). Therefore a hermeneutic inquiry 

proceeds with tentative methods that are subject to change along with the study. Moreover, a 

hermeneutic attitude of letting (Jardine, 2006) is essential: Letting the path unfold and wait and 

see. Such letting, as discussed later in Chapter 4 about my research process, is rather uneasy for 
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one who lacks embodied faith in hermeneutic study. Yet, as my study will also exemplify, such 

letting is both a precondition and goal for a hermeneutic inquiry.    

How to interpret?  Again, this question leads not to methods but metaphors. The 

hermeneutic circle is a metaphor of the interpretation process in a hermeneutic inquiry (Gadamer, 

1989/2013; Moules, 2002). It is not a method for uncovering meaning. Rather, it provides a way 

to conceptualize the hermeneutic researcher’s process of understanding and interpretation 

(Moules, 2002) and “describes an element of the ontological structure of understanding” 

(Gadamer, 1989/2013, p. 305). The hermeneutic circle refers to an iterative back and forth 

movement between the micro and macro, the particular and general, the text and its context 

(Gadamer 1989/2013; Moules, 2002; Prasad, 2005; Smith, 1991).  

The hermeneutic circle “is integral to establishing the linkage between a text and its 

wider context” (Prasad, 2005, p. 34). Since hermeneutic researchers recognize that they are 

“simultaneously affecting and affected by both the particular and the general, thus wholly 

embedded in the situation” (Davis, 1996, p. 22), while trying to connect a text to a broad context 

in hermeneutic circles, hermeneutic researchers welcome changes in their understanding of self, 

text, and context.  

The movement of understanding and interpretation, based on Gadamer (1989/2013), is 

constituted of a constant process of new projection: “Interpretation begins with fore-conceptions 

that are replaced by more suitable ones” (p. 280). Our fore-conceptions are the fore-structures 

and prejudices that we have formed before we interpret a text. When we try to understand a text, 

we bring ourselves with us and our fore-conceptions are constantly revised along with the 

interpretation process. This movement is elaborated in Ellis’s (1998) interpretation of 
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hermeneutic circle. Ellis divides a hermeneutic circle into two arcs, the forward arc centered on 

projection process and the backward arc centered on evaluation process:   

In the forward arc…one uses ‘fore-structure’ to make some initial sense of the research 

participant, text, data. That is, one uses one’s existing preconceptions, pre-understandings 

or prejudices – including purposes, interests, and values – to interpret…in the backward 

arc, one evaluates the initial interpretation and attempts to see what went unseen before. 

In this evaluation process, one reconsiders the interpretation by re-examining the data for 

confirmation, contradictions, gaps, or inconsistencies. (p. 26) 

Embracing hermeneutics requires one to address one’s fore-structures or prejudices 

(Moules, 2002). The hermeneutic inquirer recognizes the impossibility of objectivity. Moreover, 

treating a text as a self-identical substance is exactly an act of severance and purification that 

hermeneutics critiques (Jardine, 2015, p. 240). Rather than keeping her subjectivity constantly at 

bay, the hermeneut keeps it on check. Gadamer (1989/2013) differentiates prejudices into two 

kinds - the true or productive prejudices that enhance one’s interpretation and the false or 

unproductive ones that hinder one’s understanding. Believing that “detachment [from the text] 

distances the interpreter from the text, and consequently fosters unproductive prejudices” (Prasad, 

2005, p. 37), hermeneutic researchers work with their prejudices. In practice, they can focus on 

making good use of their prejudices to understand in the forward arc of a hermeneutic circle, and 

on reflecting and addressing how their prejudices affect the ways they interact with participants, 

what they hear and see, and how they interpret text in the backward arc. They can also, as 

Gadamer (1989/2013) suggests, “not to approach the text directly…but rather explicitly to 

examine the legitimacy – i.e., the origin and validity – of the fore-meanings dwelling within 

[them]” (p. 280), as “understanding realizes its full potential only when the fore-meanings that it 
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begins with are not arbitrary” (p. 280). In other words, there could be things that hermeneutic 

researchers can learn from their own (un)conscious prejudices.   

Since interpretation in hermeneutics aims not the “authentic” message of the text 

irrelevant to its interpreter, but an understanding shaped by interaction between the text and the 

interpreter, the interpretive process needs to get beyond a text’s superficial meaning and the 

interpreter’s prejudices and seek deeper or more profound understandings. Therefore, sometimes 

interpretation involves discerning the subtext that constitutes latent and hidden meanings, such as 

“subjugated voices trying to speak out and express their hidden dreams, desires, and fears” and 

“the deceptions [that the ideological texts] practice” (Prasad, 2005, pp. 36-37). Sometimes 

interpretation brings forth possible and important meanings. As Moules (2002) states, 

interpretation starts from reflection and it  

involves careful and detailed reading and rereading of all the text, allowing for the 

bringing forth of general impressions, something that catches the regard of the reader and 

lingers, perturbing and distinctive resonances, familiarities, differences, newness, and 

echoes. Each re-reading of the text is an attempt to listen for echoes of something that 

might expand possibilities of understanding.  (p. 14)  

Here, interpretation is to hear echoes and find inspirations rather than merely uncovering hidden 

meanings or reproducing what has been said yet unheard. Such process might say more about the 

interpreter than the text.  

Regardless, interpretation is an endless process and it does not stop until “some 

satisfactory level of understanding is achieved” (Prasad, 2005, p. 37). Each circle of 

interpretation provides certain understanding of the text and self to enable the researcher to 

reinterpret the text with more meaningful questions and different pre-conceptions in the next 
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hermeneutic circle. “Alternate interpretive frameworks are purposely searched for and ‘tried on’” 

to facilitate an interpretive process (Ellis, 1998, p. 27). This recursive back and forth movement 

between text study and self-introspection in hermeneutics is viewed as a dialogue or 

conversation between the text and its researcher, “in which the interpreter puts questions to the 

text, and the text in return questions the interpreter” and through which both textual and self-

understanding become achievable (Prasad, 2005, p. 37). Again, interpretation is a generative 

rather than merely a reproductive process (Gadamer, 1989/2013). Its significance lies in its 

affordance of bringing forth meaningful, important, and different understandings of the 

interpreted and the interpreter. 

How to converse with a partner? Within research, a hermeneutic conversation with 

participants differs from an interview in the nature of its questioning and the relationship 

between participants and the researcher. In an interview, a participant is viewed as informant; the 

interview question “involves an effort to gather information about perceptions or practices” 

(Carson, 1986, p. 78). Whereas, in a conversation, a participant works with the researcher 

together; the conversational question “implicates a revealing of something held in common” 

(Carson, 1986, p. 78). This common meaning might not be present in either party of the 

conversation prior to the conversation.  

To conduct a hermeneutic conversation means to be open, to allow oneself to be 

conducted by the conversation, to interrogate the way we speak about the topic under discussion, 

and to let the language bring forth thoughts and ideas not hitherto present (Carson, 1986). 

Questioning, in a conversation, is to keep possibilities open: “to question means to lay open, to 

place in the open. As against the fixity of opinions, questioning makes the object [under 

discussion] and all its possibilities fluid” (Gadamer, 1989/2013, pp.  375-376). Therefore it is 
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necessary for the researcher to “prevent questions from being suppressed by the dominant 

opinion” (Gadamer, 1989/2013, p. 376). Conversing is essentially a way for the researcher to 

think with others together. As Gadamer (1989/2013) says: “Dialectic consists not in trying to 

discover the weakness of what is said, but in bringing out its real strength. It is not the art of 

arguing… but the art of thinking” (p. 376).  

To reach an understanding in a conversation, both parties of the conversation do not 

merely assert their individual points of views and understand what each other is saying; they are 

also “transformed into a communion in which [they] do not remain what [they] were” (Gadamer, 

1989/2013, p. 387). In a successful conversation, conversation partners are influenced by the 

object under discussion and bound to each other (Gadamer, 1989/2013, p. 387). What emerges in 

a successful conversation belongs to neither party of the conversation but is the common 

meaning formed through conversation (Gadamer, 1989/2013). In other words, in a hermeneutic 

conversation meanings are co-constructed by both parties of the conversation. A hermeneutic 

conversation allows the knowledge-as-(inter)-action (Sumara & Davis, 1997) to emerge.  

Evaluating a hermeneutic inquiry  

Ellis (1998) suggested two criteria to evaluate a hermeneutic account: validity and 

practicability. Validity refers not to the issue of true or false, but “whether the interpretative 

account can be clarified or made more comprehensive and comprehensible” (Ellis, 1998, p. 29). 

Practicability points to the questions like, “Whether or not it [an inquiry or interpretation] reveals 

of a solution to the difficulty that motivated the inquiry” and “Whether our concern has been 

advanced” (Ellis, 1998, pp. 29-30).  

Drawing from multiple authors’ works, Moules (2002) emphasizes two criteria for 

hermeneutic/interpretive inquiry: rigor and validity. Rigor, or trustworthiness, is tied to 
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believability. A hermeneutic research demonstrates rigor in multiple ways. First, the researcher 

shows interest not in absolute truth but rich understanding. For example, when the researcher 

consults participants regarding her interpretations of the collected/generated text, she searches 

not for “an expert evaluation of truth, but an opportunity to open the interpretations from the 

narrowness of one’s vision, prejudices, and focus” (Moules, 2002, p. 16). Second, the research 

raises more questions and is capable of extension. Here, hermeneutic research is judged not by 

the criteria of transferability but by the criteria of suggestiveness and potential, which seems to 

echo Ellis’s criteria of practicability. Third, the researcher provides sufficient and effective data 

evidences to help the readers to understand how she came to the interpretations she chose. Fourth, 

the research is consistent with the philosophical ground of the hermeneutic inquiry. For example, 

the researcher demonstrates that her interpretations “are arrived at in a referential and relational, 

rather than absolute way” (Moules, 2002, p. 16), and that she appreciates the generative nature of 

interpretation through creatively constructing something new out of the research text, even when 

the text is a combination of contradictions or differences, rather than agreement.  

Validity is not tied to absolute truth, even though a valid hermeneutic research rings true 

to the readers. As Moules (2002) says, “A good interpretation takes the reader to a place that is 

recognizable, having either been there before, or in simply believing that it is possible” (p. 17).  

The interpretations in a valid hermeneutic research are more readily accepted than others are. 

These interpretations seem, based on Madison (1988, as cited in Moules, 2002), more “fruitful 

and promising”, and they seem to “make more and better sense of the text… [and open] up 

greater horizons of meaning” (p.15).  In some ways, while Moules’s criteria of rigor and Ellis’s 

(1998) criteria of practicability seem to point at different qualities of an interpretation, with 

Moule’s having less concern on solutions but more about advancing relational understanding and 
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questioning and keeping more check on the researcher’s adherence to hermeneutics tradition 

compared to Ellis’s, Moules’s criteria of validity overlaps with Ellis’s version: Both emphasize 

the fullness, richness, and comprehensivity of the interpretation.  

Other than the criteria mentioned above, it is reasonable to say that a good hermeneutic 

study should demonstrate a fluid identity of the researcher. As the ideal of hermeneutic inquiry is 

to deepen both textual and self-understanding (Prasad, 2005) and hermeneutic researchers 

change as a result of their study and they live differently (Moules, 2002), it is important for 

hermeneutic research to show how the researcher has changed along with her research project. 

2.3 Connecting Complexity Thinking and Hermeneutic Inquiry  

I see hermeneutic inquiry as recursive due to its consistent reexamination of the research 

text holistically in hermeneutic circles. I agree with Moules (2002) that “the hermeneutic circle is 

the generative recursion between the whole and the part” (p. 15). In this sense, doing a 

hermeneutic inquiry embodies the process of recursion. Moreover, the unfolding quality of a 

hermeneutic inquiry process and the co-construction of meaning in hermeneutic conversations 

can find support in complexity thinking, which values emergence and openness rather than 

predetermination and control. Furthermore, both complexity thinking and hermeneutic inquiry 

stress the interplay of part and whole and they agree that to understand a whole one needs to 

think holistically. Therefore, hermeneutic inquiry is a suitable methodology for my research on 

recursion informed by complexity thinking.  
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3 Recursion and Recursive Curriculum 

3.1 Recursion and Cognitive Development 

Recursion used here is a concept derived from Doll’s (1993) post-modern perspective of 

curriculum and shaped by Bateson’s (1979/2002) theory of mind and complexity thinking. As 

recursion is frequently used in mathematics and computer science and its key connotations in 

these two fields are also present in Doll’s and Bateson’s works and complexity thinking, I start 

this section by examining its common definitions in mathematics and computer science. Then I 

analyze recursion’s connotations and its roles in cognitive development based on Doll’s and 

Bateson’s ideas and complexity thinking.  

Recursion in mathematics and computer science  

Recursion is a familiar word in mathematics. An example of recursion can be seen in this 

recursive formula 𝑡 = 𝑡 + 10, 𝑡 = 1. Basically, this formula says “To find any term (but 

the first term) of this sequence, add 10 to the value of the previous term”, and it produces a 

sequence {1, 11, 21, 31, 41, ...}. From this example, we can see that recursion has connotations 

of continuity and repetition with variations.  A recursive process reproduces earlier stages to 

form a later stage, but with a difference.  

Recursion is also frequently used in computer science. A recursive procedure or function 

calls itself. Figure 3.1.1 shows an example of recursive function written as pseudo code.  

function Product(n: integer): integer; 
begin 
 if n > 1 then  
  Product := Product (n-1) * n 

else  
 Product := 1 

end; 

Figure 3.1.1. A recursive function example. 
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This function calculates the nth factorial, which is the product of the first n consecutive positive 

integers. For instance, a call to the Product function with a parameter of n = 3 (i.e., Product (3) ) 

will trigger a recursive process: 

a) In function Product (3), since n = 3 > 1, Product (3) = Product (2) × 3, and this calls 

the function Product (2) before completing the multiplication.  

b) In function Product (2), since n = 2 > 1, Product (2) = Product (1) × 2, and this calls 

the function Product (1) before completing the multiplication.  

c) In function Product (1), since n = 1 is not > 1, Product (1) = 1, and this value is 

returned to its previous level of pending calculation.   

b’3) In function Product (2), the pending calculation for Product (2) executes and finds 

Product (2) = 1 × 2 = 2. This value is returned to its previous level of pending 

calculation. 

a’)  In function Product (3), the pending calculation for Product (3) executes and finds 

Product (3) = 2 × 3 = 6. This value is returned to the user as the final answer for 3 

factorial.   

The above example shows that a recursive function or procedure has a nested structure and each 

layer is self-similar: A recursive function or procedure is applied within its own definition. 

Recursion in computer science has connotations of looping back, reflexivity, and self-referencing.   

Recursion, as articulated by Doll 

Drawing from post-modernism and complexity thinking, Doll (1993), a former 

mathematics teacher and a curriculum theorist, proposes a post-modern perspective of 

curriculum that envisions a transformative curriculum centering on richness, relations, recursion, 

                                                           
3 The use of b’ and a’ here is to signify them being related to the beginning two steps (i.e., b and a) respectively. In 
each of the last two steps, computer returns to a previously unfinished calculation and completes it.  
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and rigor (the 4Rs). Doll views recursion sharing the same spirit with what T. S. Eliot (1944) 

writes in his poem Little Gidding:  

We shall not cease from exploration  

And the end of all our exploring  

Will be to arrive where we started  

And know the place for the first time. (p. 43) 

Recursion is referred as “a looping back to what one has already seen/done, to see again for the 

first time” (Doll, 2008/2012, p. 27) and it has multiple layers of meanings.  

First, recursion is currere-oriented. Doll (1993) connects recursion and currere through 

tracing the root of recursion: “Recursion (as well as recur) is derived from the Latin recurrere (to 

run back). In this way recursion is allied with currere (to run), the root word for curriculum” (p. 

194). Currere, meaning to run the course, or the running of the course, is conceptualized by 

Pinar and Grumet as a way to understand curriculum from an autobiographical and biographical 

perspective (Pinar, 1975/2000; Pinar & Grumet, 1976). Currere refers to “experience in 

educational contexts” (Pinar, 1975/2000, p. 413). The method of currere attempts to disclose in 

what ways one’s educational experience is affected by individual and collective histories and 

hope (Pinar, Reynolds, Slattery, & Taubman, 2008). The study of currere entails a turning 

inward, a study of individual experience from a phenomenological and psychoanalytic 

perspective. Thus, the association between recursion and currere points to the importance of 

experience and process in education. A recursive curriculum, being currere-oriented, encourages 

learners to experience and to reflect upon their experience; it makes self-reflection central (Doll, 

1993).  
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Second, recursion is recursive reflection. As Doll (2010/2012) says, “It is in this second, 

yet first, seeing that the richness of a situation begins to emerge; and as we become more aware 

of our participation in the situation, recursion turns into recursive reflection” (p. 181). In other 

words, revisiting a previous learned topic offers one a chance to reflect on both the content 

related to the topic, one’s previous thought about the topic, and how one thinks about one’s 

previous thought about the topic. In this sense, revisiting a topic can trigger a repetitive looping 

of thoughts on thoughts, or in other words, recursive reflection.  

Third, recursion is hermeneutic reflection. This layer of meaning is also brought through 

Doll’s emphasis on recursion’s Latin root recurrere (run back). Doll (1993) says, “ ‘running 

back’ means that each statement or proposition is reexamined in terms of re-looking at its 

original foundational assumptions” (p. 123). In other words, recursion is a reflective process 

during which one’s interpretation of a text studied before and one’s prejudices associated with 

the text are examined together, thus it is hermeneutic. This hermeneutic reflection allows 

learners to examine their process of thinking along with its products.  

Fourth, recursion is neither repetition nor its synonym iteration. Doll (1993) makes it 

clear that repetition aims to reproduce the same action or result: In a process of repetition, 

“reflection plays a negative role; it breaks the process” (p. 178). Thus to secure the completion of 

repetition, change is not welcomed and reflection is to be avoided. The frame of repetition is 

closed (Doll, 1993). On the other hand, recursion, aiming to facilitate cognitive growth, 

welcomes changes and needs reflection: Reflection plays a positive role in recursion. The frame 

of recursion is open (Doll, 1993).  

In short, Doll’s recursion is a process of looking at one’s previous thoughts critically and 

hermeneutically from a different perspective. It stresses on-going reflection, hermeneutic inquiry, 
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and personal experience, affects both the process and products of thinking activities, and breeds 

new ideas.  

Recursion lies at the heart of Doll’s understanding of curriculum from a post-modern 

perspective. Recursion in human thoughts enables humans to make meaning and form 

consciousness (Doll, 1993). Through the process of recursion one can see relations among 

isolated topics and one’s understanding becomes richer and deeper. Thus recursion brings forth 

the other 3Rs of Doll’s post-modern curriculum - richness, relations, and rigor.   

Recursion, as articulated by Bateson  

Bateson’s ideas, such as theory of mind and theory of levels of learning, help me to 

understand the process of recursion and see the connections between recursion and cognitive 

growth. 

Bateson’s (1972/1990, 1979/2002, 1987) theory of mind emphasizes recursion. For 

Bateson, mind is a much broader concept than brain. Any aggregate of phenomenon or any 

system can be viewed as mind as long as it fulfills the following six criteria: 

1. A mind is an aggregate of interacting parts or components. 

2. The interaction between parts of mind is triggered by difference. . . . 

3. Mental process requires collateral energy. 

4. Mental process requires circular (or more complex) chains of determination. 

5. In mental process, the effects of difference are to be regarded as transforms (i.e., 

coded versions) of events which preceded them. . . .  

6. The description and classification of these processes of transformation disclose a 

hierarchy of logical types immanent in the phenomena. (Bateson, 1979/2002, pp. 85-86) 
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Such category of mind covers a wide range beyond living systems, such as organisms, systems 

of them, and any parts of them; it includes any complex self-organizing systems consisting of 

living and/or nonliving parts (Bateson, 1987). Essentially Bateson’s category of mind includes 

all complex systems. It is beyond the scope of this dissertation to explain all the six criteria of 

mind. Here I focus on the fourth criterion that is tied to recursion, i.e., mental process being 

circular. Following Bateson’s conceptualization of mind, mental process is not limited to the 

process that happens in one’s brain; rather, it can be any process (e.g., sensorimotor process) that 

happens in a system viewed as a mind.  

Bateson (1979/2002) understands mind as a system having rich feedback loops that 

“carry messages about the behavior of the whole system” to the system itself, hence following a 

circular causality (p. 118). When a difference is perceived by a part of the mind, the feedback 

loops in the mind allow its influence to be carried through the whole system and affect every part 

of the system, including the beginning part. Hence, “a change in any part of the circle can be 

regarded as cause for change at a later time in any variable anywhere in the circle” (Bateson, 

1979/2002, p. 56). For Bateson, this structure of mind is recursive and it allows mind to fold 

back to itself thus producing autonomy: “Autonomy – literally control of the self from the Greek 

autos (self) and nomos (a law) – is provided by the recursive structure of the system” (p. 118). It 

is clear that mental process has a looping back, circular and self-referencing nature, which is 

essential for a recursive process.   

A recursive process can bring forth difference, which might engender a new recursive 

process. Difference is needed for a mental process to begin, as Bateson’s (1979/2002) theory of 

mind states, “the interaction between parts of mind is triggered by difference” (p. 89). The 

difference can be either a difference between two things or a change between a thing in time 1 
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and the same thing in time 2 (Bateson, 1979/2002). A looking-back activity initiated by a learner, 

such as revisiting and reflecting on the same topic later in time or from different perspectives, 

can enable the learner to perceive difference between thoughts generated in different contexts. 

Hence, I view that recursion invites difference, which triggers one’s cognitive system to operate 

and perceive new difference, thereby making one’s recursive mental development possible.  

Another role of recursion is related to Bateson’s (1972/1990) theory of levels of learning. 

Based on this theory, there are three levels of learning in humans and animals. In Learning I, one 

learns to deal with a specific problem. For example, one learns to solve a particular linear 

equation, such as . In Learning II, “the subject discovers the nature of the context itself, 

that is he [sic] not only solves the problems that confront him, but becomes more skilled in 

solving problems in general” (Berman, 1981, p. 216). Learning II is the start for a person to see 

the pattern within a type of problems. For instance, one learns to generalize how to solve various 

linear equations in the form of , or later more general equations in the form of 

, or even mathematical problems in general. In Learning III, “it is not a matter of one 

paradigm versus another, but an understanding of the nature of paradigm itself. Such changes 

involve a profound reorganization of personality – a change in form, not just content” (Berman, 

1981, p. 217). The experience in Learning III has profound influence on one’s worldview. For 

example, if a learner realizes that these patterns generalized in mathematics essentially are 

human generated rules, and that mathematics is contextual rather than universal, then the learner 

is in Learning III (See Luo, 2004 for a non-mathematical example of these three levels). 

Bateson’s theory of levels of learning does not imply that learning is a process of going from a 

lower level to a higher level in a linear incremental manner or that a learner can only be at one 

level of learning at one time. Rather, it emphasizes the qualitative difference between different 
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levels of learning. It suggests that generalization is essential for learning and it requires one to 

see the whole through the parts.   

Seeing the whole and seeing the parts are different logically. Bateson (1979/2002) points 

out that the message about part and the message about whole (e.g., the message about a tree and 

the message about the forest to which the tree belongs, or the message about an orange and the 

message about fruit) belong to two different logic types: One is about an object while the other is 

about the context of the object. Learning about the parts only is not enough for cognitive growth. 

Learners who can only see parts not the whole often have difficulty to solve a problem in a 

context that they are not familiar with or to solve a “new” problem because they fail to recognize 

the family to which these seemingly different problems belong. Cognitive growth demands 

learning about the context of the parts (Bateson, 1979/2002). As an eminent Chinese poet, Su Shi 

(1037–1101), writes: “不识庐山真面目，只缘身在此山中 (You cannot see the real look of 

Mountain Lu because you are in the mountain)”. One cannot learn about the mountain (context) 

without seeing the mountain (system) as a whole, and one has to leave the mountain (system) to 

learn about the mountain (context). This does not imply that an objective position is possible. 

Rather, it emphasizes the importance of holistic thinking in one’s learning about context.   

Helping one to learn part-whole relations is another role that I think recursion can play in 

one’s cognitive development. As recursion “requires that the user step outside the system” 

(Kilpatrick, 1985, p. 5) and is a process of stepping back or distancing one’s self from one’s 

creation (Doll, 1993), recursion can help learners to learn about the contexts of their questions. 

Although teachers cannot cause the recursion in students’ mind, they can use certain practices 

that have a potential to occasion students’ recursion. For example, having students to revisit a set 

of questions one previously solved and reflect on them as a whole might trigger the process of 
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recursion in students’ mind, which helps students to see a holistic view of the questions, thus 

making their cognitive growth to a higher level of learning possible.   

In summary, based on Bateson’s theory of mind, which stresses the mind’s recursive 

structure and recursive process, I understand that Bateson’s concept of recursion has 

connotations of circularity, looping back, and self-referencing. An examination of Bateson’s 

theory of mind and theory of levels of learning suggests that recursion plays important roles in 

one’s cognitive development.   

Recursion in complexity thinking   

My understanding of recursion is also influenced by complexity thinking through reading 

the works of Bateson, Doll, and other scholars (e.g., Capra, 1996; Davis & Sumara, 2006; 

Mitchell, 2011). Bateson’s and Doll’s ideas overlap with complexity thinking in various degrees, 

as Bateson’s ideas are influential to complexity thinking through his contributions to cybernetics 

and Doll’s ideas are inspired by complexity thinking. So, it is not surprising to see that the idea 

of recursion in complexity thinking shares some similar meanings suggested by Bateson’s and 

Doll’s works. Here I focus on the meanings of recursion suggested by the parts of complexity 

thinking that are not covered in Doll’s and Bateson’s sections.   

Recursion is the central 

process in the formation of complex 

systems and it is similar to the one in 

the fractal geometry. Fractals are 

formed through recursion 

(Mandelbrot, 1977, 1983). For 

example, to generate a Koch snowflake (see Figure 3.1.2), start with an equilateral triangle in the 

Figure 3.1.2. A Koch snowflake formation. 
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stage 0 and repeat the following two steps to each side of the figure in each stage of the 

repetition infinitely: 

a) Divide each side of the figure into three equal portions; 

b) Replace the middle portion with an equilateral triangle whose bottom side is removed.   

The formation of a Koch snowflake exemplifies a recursive process that is “a repetitive one in 

which, at any particular level of computation, the new input is the output from the previous level 

(and the subsequent output is the input for the next round)” (Davis & Sumara, 2000, p. 827). It is 

through recursion that fractals gain an infinite level of self-similarity, a hallmark of fractals. This 

logic also applies to complex systems, which are fractal-like.   

Through the lens of complexity thinking, cognition is also viewed as fractal-like. As 

Davis and Sumara (2000) state,  

the dynamics of cognition/knowledge are seen in much the same terms as the procedure 

used to generate a fractal image. It is seen as a matter of recursion, of elaborating what 

has come before, subjected to emergent contingencies, embedded in and part of a 

similarly recursive context. (p. 834) 

Recursion plays an essential role in cognitive development. 

In summary, complexity thinking informs us about the pervasiveness of recursion in the 

world. The concept of recursion emphasized in complexity thinking is a self-referencing looping 

back process, which consists of repetition of variations and has an open framework, and it is a 

central process in cognitive development.  

A working definition of recursion  

To conclude, recursion is a process. Recursion can be either a mental thinking process, or 

a process used to invoke the process of recursion in the mind. Recursion has connotations of 
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continuity, repetition with variations, looping back/reflexivity, and reflection (see Figure 3.1.3). 

When used in educational contexts, recursion is hermeneutic and currere-oriented. It is important 

to note that the definition of recursion is not final and the list of connotations is not exhaustive. 

Also, the identified four connotations are not isolated from each other, symbolized in the model 

as categories overlapping with each other.  

To further clarify the concept of recursion, it is necessary to differentiate recursion with 

some of its synonyms, such as reflection, review, and repetition. Recursion is closely tied to 

reflection but is more than reflection: Recursion, with its association to hermeneutics and currere, 

includes a process of continued and repeated reflecting, interpreting, and experiencing. It does 

not aim for the closure of one’s interpretations or seek universal truths. Rather it emphasizes and 

promotes interpretations that are personally relevant and meaningful. It invites the learners to go 

through their unique learning processes rather than controlling their learning trajectories. 

Recursion is not the same as review. A recursive curriculum treats reviewing as a central process 

for learning, yet not all reviews can invoke the process of recursion for a learner. Recursion is 

not repetition. Repetition avoids change and reflection whereas recursion welcomes changes and 

needs reflection. Such difference in change, however, is the one between recollection and 

repetition in Kierkergaard’s words: According to Caputo (1987), Kierkergaard differentiates 

Figure 3.1.3. Four working connotations of recursion. 
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recollection and repetition, one as reproducing a prior presence and the other as producing 

something and bringing forth something anew. Given the existence of contradicting 

interpretations of repetition, recursion is a more helpful name for a process involving novelty.  

Based on the above working definition of recursion, a few guiding principles of recursive 

curriculum can be established:  1) a recursive curriculum aims to facilitate learners’ cognitive 

development by trying to occasion the process of recursion in learners’ mind; 2) a recursive 

curriculum is hermeneutic and currere-oriented; 3) a recursive curriculum has qualities of 

continuity, repetition with variations, reflexivity and reflection; and 4) a recursive curriculum 

emphasizes learning new through a running or looping back process, thus it centers on re-

viewing, re-experiencing, and re-interpreting. These principles are heuristic rather than 

conclusive: They help to envision the practices in a recursive mathematics curriculum and they 

serve as a guideline for the text generation and interpretation in this study. Inevitably, these 

principles are subjected to recursive examination in this study.   

3.2 Recursion and the Growth of Mathematical Understanding 

In this section, I zoom in on cognitive development and focus on the growth in 

mathematical understanding. I examine the problems of a linear mathematics curriculum and the 

role recursion can play in the development of a learner’s mathematical understanding.  

The problems of a linear mathematics curriculum   

The problem of a linear mathematics curriculum has been observed by many scholars 

(e.g., Davis & Sumara, 2000; Doll, 1986; Ernest, 1991; Thom, 2012). Here I focus on Ernest’s 

arguments as they are justified from both the perspectives of mathematics and mathematics 

curriculum.  



TOWARDS RECURSIVE MATHEMATICS CURRICULA 40 

Ernest (1991), in his influential book, The Philosophy of Mathematics Education, argues 

forcefully that there is no a unique and fixed hierarchy in both mathematics and mathematics 

learning. Given that most curriculum theorists argue that “the curriculum should reflect both the 

knowledge and processes of inquiry of the subject discipline” (Ernest, 1991, p. 236), the 

mathematics curriculum should reflect the attributes of mathematics and the learners’ 

mathematics learning process. However, as Ernest suggests, “the discipline of mathematics does 

not have a unique hierarchical structure, and cannot be represented as a collection of ‘molecular’ 

propositions” (p. 236).  

Drawing support from cognitive science and psychology studies, Ernest (1991) rejects the 

view that mathematics learning is hierarchical, “meaning that there are items of knowledge and 

skill which are necessary prerequisites to the learning of subsequent items of mathematical 

knowledge” (p. 238). Ernest argues that the learners’ understanding of one or multiple 

mathematical topics cannot be subsumed to a single fixed hierarchy, as there are no fixed 

hierarchical relations of dependence among concepts and skills and “the uniqueness of learning 

hierarchies is not confirmed theoretically or empirically” (p. 239). Moreover, as Ernest points out, 

“acquiring a concept is the process of effecting an idiosyncratic personal construction” (p. 241) 

that can last one’s life time rather than “an all or nothing state of affairs” (p. 240). Consequently, 

whether one determinately forms a concept or not is an invalid claim and the proposition that one 

has to learn certain mathematical knowledge before the others is rejected.   

Since mathematics and mathematics learning do not have a unique hierarchical structure 

and there is not a sequence that can best describe mathematics learning for all students, it is 

unjustified to impose a unique fixed hierarchical mathematics curriculum for all students. Ernest 

(1991) contends that the mathematics curriculum should avoid offering a collection of separate 
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facts and skills but “allow for different ways of structuring mathematical knowledge” to reflect 

that “the components of mathematics are variously structured and inter-related” (p. 237). In this 

sense, any linear mathematics curriculum, reflecting mathematics and mathematics learning as 

fixed hierarchical, is ill-founded.   

The recursive nature of the growth in mathematical understanding 

Several mathematics education researchers view the growth of mathematical 

understanding as a recursive phenomenon. Here I offer three theories (i.e., Sfard, 1991; Sawada 

& Pothier, 1993; Pirie & Kieren, 1989, 1994) to situate my work.  

Sfard (1991) applies an ontological-psychological outlook to research the formation of 

mathematical concepts (e.g., number or function) and develops a theoretical framework to 

describe the nature of mathematical conceptions and their development. A concept’s conception 

is defined as “the whole cluster of internal representations and associations evoked by the 

concept” (Sfard, 1991, p. 3). By analyzing different mathematical definitions and representations, 

Sfard concludes that a mathematical abstract concept can be conceived in two ways, structurally 

and operationally. While structural conception refers to treating mathematical concepts or 

notions as if they were abstract static objects, operational conception refers to treating them as 

processes, algorithms, and actions.  

Drawn from historical examples and cognitive schema theory, Sfard (1991) shows that at 

both individual learning and historical development levels, mathematical concept formation 

tends to follow a cyclic process of transiting from operational conception to structural conception: 

“various processes [have] to be converted into compact static wholes to become the basic units 

of a new, higher level theory” (p. 16). Each recurrent transition is a long and difficult process and 

it follows three steps: interiorization, condensation, and reification.  
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At the stage of interiorization, “a learner gets acquainted with the processes which 

eventually give rise to a new concept” and these processes, such as counting cubes, are 

“operations performed on lower-level mathematical objects” (Sfard, 1991, p. 18). When a learner 

can carry out the processes mentally without actually performing the actions, she has interiorized 

the processes. At the stage of condensation, a learner becomes capable of thinking about the 

internalized process as a whole without noting the details of the process. Sfard (1991) says, “The 

phase of ‘condensation’ is a period of ‘squeezing’ lengthy sequences of operations into more 

manageable units” (p. 19). In other words, a vague entity of the concept starts to form. However, 

this idea remains tightly connected to a certain process so much so that the entity often serves as 

a shorthand for the process, e.g., viewing natural numbers as a shorthand of the process of 

counting. It is not until the stage of reification that this entity becomes a clear object that can be 

manipulated in diverse contexts (e.g., dividing natural numbers to form rational numbers). 

Reification, “an ontological shift – a sudden ability to see something familiar in a totally new 

light” (Sfard, 1991, p. 19), differs from interiorization and condensation for being a qualitative 

change rather than a quantitative one:  

[Reification is] a process solidifies into object, into a static structure. Various 

representations of the concept become semantically unified by this abstract, purely 

imaginary construct. The new entity is soon detached from the fact of its being a member 

of a certain category… Processes can be performed in which the new-born object is an 

input. New mathematical objects may now be constructed out of the present one. (Sfard, 

1991, p.20) 

Thus the stage of reification of a lower-level concept (e.g., natural numbers) overlaps with the 

stage of interiorization of higher-level concepts (e.g., rational numbers).  
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It is not Sfard’s (1991) interest to propose a fixed hierarchy of mathematical learning by 

identifying lower-level concepts and higher-level concepts. A concept’s level varies for each 

individual and might change over time or in different contexts. Sfard’s focus is the recursive 

movement in one’s formation of mathematical conceptions: The development of mathematical 

understanding consists of “an intricate interplay between operational and structural conceptions 

of the same notions” (p. 1). One’s operational and structural conceptions are different sides of 

the same coin. Although the operational conception tends to develop at first, any side can 

develop further than the other side at a particular time. The development of the two conceptions 

is neither linear nor a one-time event. Rather, two conceptions inform each other and they cannot 

be fully developed without the other. The development from one lower-level concept to a higher-

level concept is not linear either. Since the phase of reification of a concept is hard to achieve, 

learners might develop other higher-level concepts based on mostly the operational conceptions 

of the concept if one can put up with a feeling of insufficient understanding and keep on drilling, 

and in turn further developing the concept’s structural conceptions later. Overall, Sfard’s 

mathematical concept formation framework describes a recursive development of mathematics 

understanding.    

Sawada and Pothier (1993) recognize the recursive nature of the growth in mathematical 

understanding and advocate a recursive learning that benefits children’s mathematical 

imagination. They use a working definition of recursion: “A representation (or a process in 

general) is recursive if at a certain point in working with it the medium becomes the message” (p. 

15), which becomes the medium of further messages, and on and on. A recursive cognitive 

experience is a process in which one’s previous thoughts (medium) becomes the message that 

invites further thoughts, which become the subsequent medium in the next round. Sawada and 



TOWARDS RECURSIVE MATHEMATICS CURRICULA 44 

Pothier state that the mathematical experience for mathematicians is pervasively recursive and 

urge educators to allow “the freedom to explore where destinations emerge from the exploration” 

to promote recursive learning (p. 19).  

Pirie and Kieren (1989, 1994) established a theory of mathematical understanding - 

transcendent recursion. This theory characterizes mathematical understanding as a leveled but 

non-linear phenomenon (see Figure 3.2.1). In this model, “each level of understanding is 

contained within succeeding levels” and “any particular level is dependent on the forms and 

processes within and, further, is constrained by those without” (Pirie & Kieren, 1989, p. 8). This 

theory views mathematical understanding as fractal-like: Every level/layer is similar to its 

previous levels/layers yet it transcends them. Also, “inspection of any particular primitive 

knowing will reveal the layers of inner knowings” (Pirie & Kieren, 1994, p. 68): An example 

here can be that a primitive knowing of quadratic functions contains the inner layers of 

understanding of linear functions.       

Figure 3.2.1. A recursive mathematical understanding model (adapted from Pirie & 
Kieren, 1994, p. 63). 
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Although the growth of any particular mathematical understanding always starts from 

primitive knowing and has a tendency to move to an outer level, it does not follow a 

monodirectional linear path. Rather, as Pirie and Kieren (1994) say, 

When faced with a problem or question at any level, which is not immediately solvable, 

one needs to fold back to an inner level in order to extend one’s current, inadequate 

understanding. This returned-to, inner level activity, however, is not identical to the 

original inner level actions; it is now informed and shaped by outer level interests and 

understandings. Continuing with our metaphor of folding, we can say that one now has a 

‘thicker’ understanding at the returned-to level. This inner level action is part of a 

recursive reconstruction of knowledge, necessary to further build outer level knowing. (p. 

69)  

The growth of mathematical understanding follows a recursive process while “recursion is seen 

to occur when thinking moves between levels of sophistication” (Pirie & Kieren, 1989, p. 8). 

Evidently, Pirie and Kieren’s idea of recursion includes folding back to an inner level and 

returning to an outer level. And whenever one moves from one level to another, one has some 

newer understanding, which changes the problem one faced in the past. Thus one might repeat 

similar actions, but with a different focus.  

In summary, the above three different groups of mathematics education researchers 

describe the development of mathematical understanding as recursive. Their concepts of 

recursion share the qualities of continuity, repetition with variations, self-referencing, and 

reflection in various degrees.  

This section draws support from mathematics education literature to justify the 

nonhierarchical nature of mathematics and mathematical learning, which problematizes linear 
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mathematics curricula and urges us to reimage and reimagine mathematics education. In line 

with the interpretation of the growth in mathematical understanding as a recursive phenomenon, 

recursive mathematics curricula become imperative.  

3.3 Recursive Curricula  

Some scholars, such as Doll, Bruner, Davis, and Thom, have envisioned a curriculum that 

has a quality of recursion with or without explicit discussion or conceptualization of recursion. 

These curricula are categorized as recursive here without implying that they interpret and/or 

emphasize recursion in the same way as I do. In this section, I examine these scholars’ ideas and 

identify the similarities and differences between their works and my research. 

Doll’s post-modern curriculum  

Doll’s (1993) concept of recursion and its importance in his post-modern curriculum have 

been addressed in section 3.1. Doll problematizes the linear and deterministic nature of modern 

curricula, and advocates a transformative post-modern curriculum centering on 4Rs (richness, 

relations, recursion, and rigor). Recursion is viewed as an implication of complexity thinking 

(Doll, 2010/2012). Since my understanding of recursion is derived from Doll’s concept of 

recursion, my vision of recursive curriculum is closely aligned with his post-modern curriculum. 

Despite being recursive, Doll’s post-modern curriculum is directed towards education in general, 

with no particular focus in mathematics. It also remains largely visionary and theoretical with 

limited empirical study. My research is an implementation of Doll’s idea of recursion in high 

school mathematics education. It also develops Doll’s theorization further and engenders richer 

interpretations of recursive curriculum in general.    

Bruner’s spiral curriculum  
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Bruner (1962) advocates a spiral curriculum “that turns back on itself at higher levels” (p. 

13). Bruner believes that all subjects can be taught to anybody at any age in some form because 

there are simple but powerful basic ideas at the heart of all subjects. He suggests a spiral 

curriculum that urges students to revisit these basic ideas and develop them gradually over time. 

Bruner writes,   

To be in command of these basic ideas, to use them effectively, requires a continual 

deepening of one’s understanding of them that comes from learning to use them in 

progressively more complex forms…The early teaching of science, mathematics, social 

studies, and literature should be designed to teach these subjects with scrupulous 

intellectual honesty, but with an emphasis upon the intuitive grasp of ideas and upon the 

use of these basic ideas. A curriculum as it develops should revisit these basic ideas 

repeatedly, building upon them until the student has grasped the full formal apparatus that 

goes with them. (p. 12-13) 

A continual process of repetition with variations is central to Bruner’s spiral curriculum. Spiral 

curriculum challenges the linear metaphor of mathematics curriculum (e.g., viewing mathematics 

knowledge as building blocks). I see recursion in Bruner’s spiral curriculum as it invites students 

to revisit the profound ideas of a subject again and again to generate new understanding.  

However, a spiral curriculum can become linear when executed if it is assumed that 

students will see the basic ideas connecting their new learning content to previous one by 

themselves easily. In this case, the lived spiral curriculum is like many concentric circles and 

when students move to different circles they are unaware of the existence of the concentric 

circles or they do not know where the center lies. Bruner (2006) does point out this danger:   
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Many curricula are originally planned with a guiding idea much like the one set forth 

here [(i.e., the spiral curriculum)]. But as curricula are actually executed, as they grow 

and change, they often lose their original form and suffer a relapse into a certain 

shapelessness. It is not amiss to urge that actual curricula be reexamined with an eye to 

the issues of continuity and development. (p. 56) 

For a curriculum to be spiral, its affordance in connecting different content is crucial. Here is 

where I envision a recursive curriculum can help, by making relations the central and explicit 

focus. Spiral curriculum is also criticized as a linear sequence of preset tasks converging to a 

fixed ending (Davis, Sumara, & Luce-Kapler, 2008). A recursive curriculum inspired by 

complexity thinking is worth exploring as a nonlinear alternative that is emergent and open to 

possibilities.  

Since Doll’s recursion is influenced by Bruner’s ideas and my understanding of recursion 

is derived from Doll’s recursion, it is not surprising to see that I view recursive curriculum close 

to spiral curriculum. But they are not the same. A recursive curriculum not only focuses on 

developing and redeveloping key ideas in a subject, but also stresses hermeneutic processes and 

openness towards novelty. Also, a recursive curriculum does not have to start with simplified 

problems associated with the basic ideas of a subject; it can start with complex fractal-like 

phenomena.   

Davis and colleagues’ fractal-informed curriculum 

Informed by complexity thinking, fractal geometry and neurology studies, Davis and 

Sumara (2000) emphasize recursion when proposing a curriculum with a fractal-informed 

sensibility. They view cognition as fractal-like and recognize that recursion plays an essential 

role in the cognitive development. Such recursive development is incompressible, in other words, 
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“there are no shortcuts to the eventual products” (Davis & Sumara, 2006, p. 43). Thus, the new 

structure of cognition can only be achieved by going through the entire learning process: “the 

structure emerges or the path that unfolds has to be lived through for its endpoint to be realized” 

(Davis & Sumara, 2000, p. 841). In this sense, Davis and Sumara’s fractal-informed curriculum 

shares with Doll’s post-modern curriculum the same focus on recursion and currere, thus it is 

compatible with my version of recursive curriculum.  

Davis’s later work with his colleagues offers general recursive curriculum design 

guidelines. Viewing a recursive curriculum as a sequence of elaborations, Davis, Sumara, and 

Luce-Kapler (2008) point out what matters in designing such sequence is not the linear 

predetermined steps, but “the manner in which each element of the sequence calls for recursive 

elaboration of already-established products” (p. 201). To help with thinking about how to 

organize tasks with a structure of recursive elaboration, they offer several lived curriculum 

examples. One of them is a poem writing activity. The activity started with generating a story 

character based on a self-selected button, it then processed through multiple rounds of alterations 

by adding restrictions (i.e., having two buttons meet, given a photo for the story setting), and 

ended with a poem writing exercise following a study of several poem examples. Based on such 

an example, Davis et al. suggest an image of growing a fractal tree (see an example in Figure 

3.3.1) as a mnemonic device for ordering curriculum tasks and 

depict the tree growing process as:  

One begins with a seed (e.g., an enabling constraint, such as 

“Pick a button, and then imagine the garment it came from 

and what the wearer of the garment is doing”), elaborates on 

the product (e.g., “Have the person meet up with another 

Figure 3.3.1. A fractal 
tree  
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person”), elaborates on that product, and so on. (p. 201)  

Guided by this growing a fractal tree metaphor, it seems that one can develop a recursive 

curriculum by choosing an entry task as a seed to bring forth some product, then proceed to add 

multiple rounds of tasks to elaborate a previously established product. There are two different 

developmental stages in this process: 1) initialization, during which the entry task is executed 

and an entity is generated as a result, or in the tree growing analogy, a seed is developed into a 

young plant, or a seedling; 2) elaboration, during which multiple tasks are executed in a 

sequence, recursively elaborating on the same entity at different stages of becoming, or a smaller 

tree grows into a bigger tree. Of course, the choice of seed is important for this fractal tree 

growing process. Davis et al. offer enabling constraints as one possible kind of seed and define 

them as “the sorts of questions and tasks that support both individual and collective learning” (p. 

193) and specify that enabling constraints have sufficient structure to limit possibilities and also 

sufficient openness to allow for flexible and unanticipated responses. Put it differently, enabling 

constraints are “not prescriptive (i.e., they don’t indicate what must be done), but expansive (i.e., 

they indicate what might be done, in part by indicating what must not be done)” (Davis et al., 

2008, p. 193). 

Other than specifying how a recursive curriculum can start (i.e., using an enabling 

constraint as seed) and differentiating the two stages of development, Davis et al.’s tree growing 

description offers little practical advice for elaboration. The use of a fractal tree seems to serve 

more as a conceptual metaphor to emphasize seeing the product as fractal-like and each new step 

in the curriculum sequence calling for a new round of elaboration, rather than suggesting what an 

elaboration looks like or what element in a curriculum sequence can call for elaboration, even 

though interesting implementations of this metaphor can be observed in Davis’s later work with 
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his colleagues, such as Davis and Renert’s (2014) developing a concept study methodology in 

mathematics teacher education and mathematics classrooms. Similar to Doll’s work, Davis and 

his colleagues’ idea of fractal-informed curriculum is inspiring for education in general and 

demands further exploration for its practical implementations. I will return to this fractal-

informed curriculum later in Chapter 9.  

Thom’s recursive curriculum (4Rs of recursion)  

Recognizing the linearity of the usual elementary mathematics curriculum that interprets 

mathematical understanding growing through an additive action, Thom (2012) reinterprets 

mathematical growth, i.e., the growth of mathematical understanding, as a recursive co-emergent 

phenomenon through the lens of complexity thinking:   

If mathematical growth is viewed from an enactive perspective, like other forms of 

knowing, it is an embodied phenomenon that develops through relating and re-

experiencing mathematics from an opposite side – a contrasting point of view, or seen 

suddenly through the eyes of an outsider. Because of this, students’ learning is not 

achieved through repetitious acts of reproduction or sequential assembly lines of task. 

Doing so implies learning to be a matter of practising by redoing what one already knows 

or taking what one knows and adding to it in a piecemeal manner.  

Mathematical growth as a recursive event connotes the actual changing of one’s 

mathematical understanding in ways that are complex and emergent. While its evolution 

possesses qualities of self-similarity based on primitive knowings, what it becomes and 

what it occasions upon each recursion is something qualitatively rather than 

quantitatively different. (p. 206)  
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Thom’s concept of recursion has clear connotations of repetition with variations, looping back, 

reflexivity, self-referencing, and reflection.  

For Thom (2012), conceptualizing mathematical growth and learning as recursive 

phenomena points to a need for a kind of teaching that opens ecological learning spaces for 

students: “It places importance on making space for students to reflect on their mathematical 

patterns of thinking and to revisit their mathematics inside different contexts so that they may 

critique what they understand from their current place of knowing” (p. 207).  Thom states that 

opening learning spaces like this allows students to re-view and reflect on what they have seen 

before and relate to the mathematics in multiple ways, thus creating possibilities for students to 

renew their understandings in a qualitatively different manner. Thom envisions a recursive 

curriculum to create an ecological sense of space, which allows mathematics teaching and 

learning be conceived as “holistic, organic, recursive, and co-emergent” (p. 33) rather than 

“linear, hierarchical, static and deterministic” (p. 365).  Thom identifies four qualities of 

recursion as reflecting, re-viewing, relating, and renewing (p. 206) and she views them 

“complement[ing] the curricular 4Rs, richness, relations, rigor, and in particular, recursion as 

explicated by Doll Jr. (1993)” (p. 373).  

Thom’s (2012) empirical study explores the ways mathematics teachers can consciously 

enable recursive forms of learning and create an ecological space in the classroom. Thom ran a 

two-year program in her mixed grade (grade 2 and 3) elementary classroom. She actively created 

opportunities for her 4Rs to take place – “to engage the students to reflect on, re-view, relate, and 

renew their mathematical understandings” (pp. 207-208). In her program, students often re-

viewed what they had seen before in various contexts. Sometimes students were asked to reflect 

on and apply the same set of knowledge in various ways (e.g., create a riddle for others and solve 
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a riddle created by others); sometimes students watched a mathematics film repeatedly; 

sometimes they revisited the same mathematics task a few times during a school year and 

addressed the task using their current understanding on each revisit; sometimes students worked 

on the same mathematics problem in various contexts (e.g., generate a statement to describe a 

data set, then modify this statement to fit two data sets when working with a peer, after that 

modify the new statement to fit four data sets when working in a group of four); and sometimes 

students “returned to familiar contexts but investigated them in completely different 

mathematical ways than before” (Thom, 2012, p. 223) (e.g., after students had investigated 

triangle numbers and identified square numbers, Thom invited students to study both kinds of 

numbers together). For Thom, this teaching structure is recursive and it opened spaces for her 

students to “experience recursion as an exploration of the unfamiliar within the familiar” (p. 235).   

Thom (2012) summarizes some features of her teaching:  

Scripting unscripted lessons, mapping out potential as opposed to certain mathematics as 

part of her lesson preparation, distinguishing mathematics as both a residue and a source 

for learning, making familiar mathematics unfamiliar through recursive teaching structure 

and, attending to the class’ individual and collective work. (p. 365)  

She highlights that there is no predetermined path for building a recursive curriculum that has an 

ecological sense; one has to lay down the path while walking on the path. And rather than 

breaking away from their teaching methods and ways of knowing, Thom suggests teachers “re-

searching [their] teaching in a systematic way” to produce prompts and means in order to lay 

down a different path (p. 365). In other words, similarly to students’ mathematical growth, a 

recursive curriculum needs to be developed in a recursive path, through teachers’ exploration of 

the unfamiliar within the familiar.   
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Thom’s (2012) recursive curriculum is aligned with my vision of recursive curriculum. 

However, Thom’s research differs from mine in research context and methodology: Thom’s 

focuses on elementary mathematics education and it is a study on her own class teaching, while 

mine focuses on high school mathematics education and it is a hermeneutic inquiry about both 

lived and planned curriculum with experienced mathematics teachers involved. While Thom’s 

recursive teaching structure is inspiring, it might have benefited from the curricular flexibility 

that she has as an elementary teacher who normally teaches a range of subjects to the same class. 

The difference in how learning is organized in high school level compared to the elementary 

level leaves questions about what a recursive teaching structure in a high school setting might be 

like.  

In summary, although some scholars have explored recursive curriculum in general 

educational contexts and in recursive mathematics curriculum in particular, the amount of 

research directly addressing recursive high school mathematics curriculum is limited.  

3.4 Research Necessity  

Up till now, I have argued for the importance of recursion for education by drawing 

support from complexity thinking and mathematics education research. The importance of 

recursion has been exemplified in its pervasiveness in the development of many complex 

phenomena, including cognitive growth and mathematical understanding. Given the importance 

of recursion, the amount of research into recursive mathematics curriculum is insufficient. 

Particularly, there is no research about a recursive high school curriculum that centers on re-

viewing or re-experiencing. Hence, this literature review establishes the rationale and 

significance of my research.   
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4 Path Unfolding While Walking 

This chapter describes the research design and its dynamic process. The trace of the 

research journey is a spiral of loops, each of which is resulted from its previous loop(s) and 

affects what the next loop might be. Each loop can be divided into two chronological stages with 

different emphasis. Stage one focuses on generating an entry text, such as a personal reflection, a 

teaching document or a conversation with teacher participants. Such generation is affected by my 

interpretation of what is going on and what has happened before. Stage two focuses on 

interpreting the entry text and reinterpret the text existing prior to this loop. Such interpretation 

generates texts for further interpretation and affects the next loop. These two stages are not 

corresponding to data collection and data analysis executed linearly. Rather, each of them is a 

period of text generation and text interpretation weaving together and informing each other 

reciprocally. In this chapter, I specify the three categories of entry texts and then elaborate on 

three phase shifts, i.e., periods during which the research and I transformed. I end this chapter by 

offering an interpretation of the hermeneutic study process as fractal-like.  

4.1 Entry Texts 

The three categories of entry texts, i.e., autobiographical reflections, teaching documents, 

and conversations with teacher participants, correspond to different generation processes: writing, 

gathering, and conversing respectively. Their generation occupies different time periods in this 

study. The teaching documents were mostly gathered and interpreted at the beginning of the 

study, overlapping a 13-month period for generating autobiographical reflections and 

conversations with teachers. The interpretations of these three categories of texts are different, 

yet sharing similar methods such as contemplation, mind mapping, and freewriting. Throughout 

the study, these three categories of texts were woven into a whole, constantly informing my 
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interpretations of recursive curriculum and hence affecting each other’s generation and 

interpretation.  

Autobiographical reflection 

 As stated in my introduction of this study, recursion is a topic that addresses me. Over the 

years, my personal learning, teaching, and academic experience have shaped my understanding 

of recursion profoundly. Certain personal experiences happened prior to the study have always 

obsessed me. During this study, some experiences were remembered and some incidents 

happened. All of these experiences and incidents were intriguing, demanding my attention. They 

are exactly where hermeneutics starts to work:  

Hermeneutics can only start to substantively and imaginatively appear in the face of “a 

case” (even though hermeneutics does not produce “case studies”). It is always something 

that happens that awakens our interest in pursuing interpretation. (Jardine, 2015, p. 238) 

My work with this category of text was to hear them through doing reflective activities 

and attending to my bodily feelings, take note of them whenever they occurred to me, and 

experience them as speaking to me and as “having something to say to [me] beyond what [I] 

might be able, as yet, to say of it” (Jardine, 2015, p. 239). I tried general reflective tasks such as: 

Think back to a period (e.g., my high school years) with mathematics or learning in general. 

What people, event, and places do you remember? How did they make you feel? What was 

significant to you in shaping your teaching and learning practices? I also did the specific 

reflective tasks given to the teacher participants, such as “Complete the following sentences. 

‘Reviewing mathematics is like__________’ ”. These allowed me to recall some personal 

experiences, such as the two stories of re-naming that I present and interpret in section 6.1, as 

examples of lived re-viewing experiences. Some texts started with unexplained intriguing 
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experiences and later developed into multiple levels of reflective writings, i.e., a reflection on 

this noticing, a reflection on this reflection, and so on. My story of re-experiencing the concept 

of negative numbers, for example, started with my initial unexplained resistance towards the 

negative tokens when they were introduced to me during the Re-experiencing Workshop. My 

contemplation on my initial discomfort brought forth a new understanding of negative numbers 

and integer tokens, and this learning experience became the entry text for the next round of 

reflection and interpretation. This phenomenon of one entry text emerging after an interpretation 

of a previous entry text exemplifies the hermeneutic quality of this study. This phenomenon is 

common in all three categories of texts in this study.   

My reflection text was often (re)interpreted through contemplation and freewriting. The 

key in freewriting, in consistent with Elbow’s (1998) version, is to write continuously, as long as 

I can, whatever comes to my mind without editing and worrying about the end-product. Here, 

writing is thinking and enacting hermeneutics and complexity thinking by letting things unfold. I 

often started with something intriguing in ways I did not fully understand. As I continued to 

write, trying to verbalize what seems interesting, what it might mean, what ideas are related to it, 

what I am learning from it, and/or what it reminds me of, ideas would flow and lead me to places 

that I had not thought of before.  

This process of generating and interpreting personal reflection is essentially my 

hermeneutic conversation with myself. It is to uncover and examine the legitimacy of my 

assumptions and prejudices, which allows me to relate to other texts. It is also a way to learn 

about myself, interpret myself hermeneutically and live a hermeneutic life. A hermeneutic study 

needs to bring forth a better self-understanding, and the mission of hermeneutic researcher is 

“engaging Life hermeneutically” (Smith, 2006, p. 105). The process of personal reflections 
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serves as a way to keep myself conscious about my use of language and my context, keep 

interpretation going, and occasion change in self-understanding. Moreover, generating and 

interpreting personal reflection is to learn something bigger than myself through learning from 

myself. It is not to reveal nothing more than my idiosyncrasies. Human experiences are always 

experiences of something: They are worldly and happen to us over and above our wanting and 

doing (Jardine, 2015, p. 248). My interpretation is unavoidably linked to me,  

However – and here is the paradox – what the interpretation is henceforth about, is not 

“me” but that topography of which I have had certain experiences: initiation. Initiation 

and its kin from a world in which I am “housed.” They are not housed inside of me. 

(Jardine, 2015, p. 248) 

Therefore, the process of interpreting my experiences and what addressed me is a movement 

shaping and making something of the instances, their human topographies, and myself. Through 

my experiences, I see the world I find myself in. Such movement is also an enactment of 

hermeneutic circle – considering back and forth between the part and the whole, the specific and 

the general. Thus through reflecting on my experiences with recursion, I begin to understand 

what recursive curriculum might be for other people.  

Document interpretation 

As teaching documents, i.e., program of studies and textbooks, largely represent the 

planned curriculum and play a significant role in teaching, it is important to draw inspiration 

from them in terms of in what ways a planned curriculum can afford recursion. Any reading of 

the recursive quality of a planned curriculum is a perceived potential rather than an innate quality.  

Since the use of documents is for provocation rather than comprehensive overview, I 

focused on texts around a single topic, i.e., function, to ensure the study was feasible. This topic 
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was chosen due to its significance across grades in the high school mathematics curriculum. 

However, the choice of one important topic over another should have little effect on the result of 

the document interpretation, because the recursive quality of a mathematics curriculum is a 

structural attribute rather than a content-based one. Similarly, a teaching document in any 

geographical or historical contexts could be informative for my inquiry. In this study, 

considering potential contributions for generating more relevant conversations with the teacher 

participants, which were recruited in Alberta due to geographical convenience, I chose the 

current high school (grade 9-12) mathematics program of studies and a commonly used grade 10 

textbook, i.e., Davis et al. (2010) (called Alberta Math10 textbook in the rest of the writing), in 

Alberta as an entry point for document interpretation.  

Other teaching documents were added to my reading and interpreting as the path 

unfolded itself. Following Bateson’s (1979/2002) idea that mental process is triggered by 

difference, I pursued reading a document along with a reference to heighten my susceptibility to 

new experiences. I read the secondary program of studies alongside the elementary version, and 

the grade 10 mathematics textbook alongside other textbooks, including a grade 9 Chinese 

textbook, i.e., Department of Secondary Mathematics of the People’s Education Press (2001) 

(called Chinese Math9 textbook in the rest of the writing), an old textbook (i.e, Jacobs, 1970, 

Mathematics: A Human Endeavor), and Saxon’s (1990) Algebra 1 textbook, and a unit plan 

example (i.e., the function unit plan in Kalchman & Koedinger, 2005). All of these extra 

resources address the introduction of functions. I encountered them before and during this study, 

by accident or by choice, and found them relevant and intriguing for the study, so I gradually 

included them in my document interpretation. 
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Document interpretation included attuning to the resonance a document brought forth in 

me while reading it, pondering on the association, memory, image, emotion or sensorimotor 

response that it suggested or invoked, multiple rounds of rereading and re-categorizing texts, 

working difficulties out and generating new insights through freewriting, and following where 

the document interpretation led me to. I firstly read through the texts and wrote down general 

impressions and anything interesting. For example, both Alberta elementary and secondary 

programs of studies have no words about recursion or how mathematical ideas evolve over time; 

the summary table through which how the same theme develops across grades can be observed 

in the Alberta elementary program of studies does not exist in the high school version; and the 

tables of contents in all the texts I studied are in list rather than nonlinear forms such as diagrams 

or networks.  

I then categorized the textbooks in an excel chart, using the four working qualities of 

recursive curricula identified earlier (i.e., continuity, repetition with variations, reflexivity, and 

reflection), showing how these texts embody these qualities and any possible new criteria if there 

was any. This process included multiple attempts and many struggles, as often when I added a 

text example as an embodiment of a particular quality (e.g., repetition with variations) I was 

confronted with an awareness that I could also add it to another category (e.g., continuity). So I 

had to rethink what I meant by these two categories and refine them. Often this was worked out 

through freewriting, followed by the next attempt for categorization. This categorization served 

as a hermeneutic conversation with the texts, aiming to propel thinking about recursive 

curriculum further rather than trying to get a comprehensive view of them. This process of 

repeatedly categorizing and writing helped me to redefine the four qualities of recursion and 
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renew my interpretation of recursion and recursive curriculum (see Figure 4.1.1 for the old and 

new visualizations of the four working connotations of recursion).  

 

These new understandings affected my later generation and interpretation of conversation 

and reflection, as they sensitized me differently and oriented me towards different ways to 

embody or enact recursion in curricula. For instance, I started to consider repetition with 

variations and looping back as the same kind of movement in opposite directions, reflection in 

relation to self-similar concepts, and continuity in two directions: development among cases of 

the same class (symbolized by the shorter two-way arrow) and development across classes 

(symbolized by the longer two-way arrow)4. Some intriguing examples from the document text 

were repeatedly reinterpreted, when I interpreted the other two layers of text or renewed my 

                                                           
4 These two developments are not exactly the same as Freudenthal’s (1991) horizontal and vertical mathematising. 
Horizontal mathematising “leads from the world of life to the world of symbols” (p. 41) and an example might be a 
pupil recognizing counting 5 times can be expressed as number 5. Vertical mathematising “effects the more or less 
sophisticated mathematical processing” (p. 41) and in the process “symbols are shaped, reshaped, and manipulated, 
mechanically, comprehendingly, reflectively” (pp. 41-42). An example might be a secondary student recognizing 
linear and quadratic expressions are example of polynomial expressions. However, the line between life and world is 
relative to the learner doing the mathematising and particular situation and environment. Therefore, the same 
vertical mathematising example mentioned above could be an example of horizontal mathematising for a 
mathematician whose life mathematical objects have become parts of. So the distinction between horizontal and 
vertical mathematising is mostly at one focusing on objectifying and symbolizing whereas the other focusing on 
increasing abstraction. In my model, there is no such distinction between the world of life and the world of symbol, 
only the distinction between development within a class and development between classes. Whether a development 
is among cases of the same class or across classes is subject to individual observers. For a pupil who is trying to 
understanding counting 5 times as an example of number 5, this development is across classes, yet it is within the 
same class for her teacher while teaching natural numbers. Nevertheless, both the vertical mathematising and 
development across classes share a process of increasing level of abstraction.   

Figure 4.1.1. Two visualizations of recursion: a) the old version (on the left), and b) the new 
version (on the right). 
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understanding of recursion or recursive curriculum. Eventually I saw them anew: A fractal-like 

structure emerged alongside with a binary-tree curriculum design model (see section 8.2 for a 

detailed explanation).  

Conversation with teachers 

Much effort in this study was devoted to generate and interpret my hermeneutic 

conversations with experienced high school mathematics teachers. This layer of text is necessary 

due to the significant role that teachers play in shaping planned and lived curricula, and the need 

of others for one’s reflection.  

“Hermeneutics chooses the best players, on purpose” (Moules, 2002, p. 14). The best 

participants in a hermeneutic inquiry are those who can best inform understanding of the 

research topic (Moules, 2002; Smith, 1991). I chose to work with experienced (i.e., in-service, 

former, and retired) high school mathematics educators who are interested in better 

understanding review practice or recursive process in mathematics classrooms, as they, 

compared to pre-service teachers, 1) would have formed some perceptions about the recursive 

quality of a lived or planned mathematic curriculum through their experience of reencountering 

the same idea during teaching, such as teaching something students have encountered before, 

helping students review what they have learned before, learning something anew, and etc., and 2) 

would have a richer teaching experience to reflect upon, and consequently might have more to 

add to the discussion of recursive curriculum.  

All participants could participate in this research, by 1) attending any number of monthly 

professional development workshop(s) in a sequence of six, and/or 2) joining an individual 

conversation. Such flexible involvement was allowed to attract participants while encouraging 

high participation and in-depth conversation. The conversation generated in both cases was used 
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to inform my interpretations of recursive mathematics curriculum, consequently who said what is 

far less relevant for this study than what has been said. The participants in this study were 

viewed as a collective other, collaborating with me to provoke my thinking.  

The number of participants in my research was not predetermined, since hermeneutic 

inquiry is not validated by numbers but by the fullness and depth of the interpretation of the topic 

under study (Moules, 2002; Smith, 1991). Participants were recruited in an on-going basis. In 

total, there were eleven participants in this study: Six of them only participated in the workshop 

activity (3 hours each, audio and video recorded), three of them only participated in the 

individual conversation activity (1.5- 2.5 hours each, audio recorded), and two of them 

participated in both activities. Most participants worked with me once or twice. One teacher 

participated fully in the six workshop series (see Appendix A for conversation dates, formats and 

topics).  

Since recursion is an abstract concept and the idea of recursive curriculum is neither well-

known nor well-established, it was inappropriate to assume that teachers consciously view 

curriculum recursive and they can talk about their interpretations of the recursive quality of the 

mathematics curriculum directly. Therefore, a conversation often started with individual 

reflective activities about a practice as a form of recursion (e.g., reviewing), and then discussion 

in group to identify the major themes within the group’s interpretations of the practice, later 

continued with the group commenting on a curriculum material selected or created by the 

researcher or the participants. The participants were invited to examine, critique, and revise these 

materials with the intention to facilitate a recursive curriculum or promote the practice, and also 

to reflect on previous works at the end of a workshop, or at the beginning of a new one. Each 

conversation was designed with a tentative protocol that was informed by the work prior to it and 
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subjected to change during its execution. The first workshop and the first individual conversation 

shared the same protocol. The later ones had a similar structure with different contents, or 

evolved into an extended conversation of the previous one(s).  

In each conversation, my role as a hermeneutic conversation partner demanded me to 

interpret the conversation text along with its generation, and act tentatively and thoughtfully to 

move the conversation forward. I often wrote down my own interpretation of participants’ ideas 

and my ideas that arose in conversation on a shared whiteboard or notebook, in order to provoke 

our collective thinking. After a conversation, I jotted down my impressions of the sessions, 

including any provocative ideas, new insights, difficulties, and possible modifications for the 

next session. Sometimes I continued to work on the mathematical problems I encountered in the 

workshop and ponder on whatever puzzled me. Before a new conversation, I went over the 

recording from the previous conversation, and transcribed, paraphrased, or took notes of parts 

that were intriguing. This resulted into a chronological text that resembled session minutes with 

my comments. Then I reviewed the text and I noted whatever called or beckoned by highlighting 

words, adding comments or coding it. When sensible or necessary, I also went over some 

previous sessions’ digital records or notes and made new notes on them with a different color to 

signify revisions. Based on this work, I generated my new conversation plan. Before the final 

workshop session, I reviewed all previous collected texts and their associated notes, and added 

more notes. Upon finishing all the sessions, some sessions had been reinterpreted multiple times.  

Not surprisingly, my on-going interpretation of conversation text occasioned changes in 

both inquiry direction and interpretation focus. Each conversation and its interpretation 

influenced the study in various degrees, by bringing forth new ideas or directions, (re)sensitizing 

me towards certain words (e.g., equivalent), consequently affecting further text (re)generation 
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and (re)interpretation. For example, the idea of a re-imaging workshop came to me in the second 

workshop on re-viewing, and the idea of continuous narrative was formed during the first 

conversation, later became one of the foci in my interpretation of the teaching documents, and 

eventually turned into one of the workshop topics, i.e., re-storying. Despite constant changes in 

conversation plans and executions, and in my understanding of self, my study and hermeneutic 

conversation, a common structure remained in all conversations: We examined recursion or a 

form of recursion and envisioned how to design curriculum to promote this process or what 

might a recursive curriculum be (see Appendices B and C for original and modified plans).  

4.2 Phase Shifts 

I started my study with actions suitable for hermeneutic studies, actions that are 

“apparently global and unfocused” (Ellis, 1998, p. 21). Therefore, it was not a surprise but an 

affirmation of my hermeneutic work when I encountered some turning points later, during which 

both myself and my study were transformed to a new phase. The emergence of such phase shifts 

exemplifies the heuristic and generative quality of a hermeneutic study. Here I elaborate on three 

phase shifts, their contexts and associated significant changes in conversing, interpreting, and 

writing respectively, without implying any cause-effect relationship between events or their 

influences being limited in one dimension only.  

The resolution of my struggles in conversations  

The first phase shift happened after the first five conversations (i.e., three individual 

conversations and two workshops). While each of the sessions after the first one was the 

modification of its previous one(s) with changed reflective activities and curriculum example, all 

five sessions ended up using a protocol close to the original ones (i.e., the plans in Appendix B) 

with the same topic - reviewing. Although each session moved my study forward in some ways 
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(e.g., bringing forth two conversation topics: re-imaging and re-storying), I did not seem to hear 

much new from my participants. I became increasingly unsatisfied with the conversations; I felt 

confined.   

Before my work with participants, I had experienced getting lost in a conversation that 

seemed to have a spirit of its own, flew by itself and moved me to think of something new 

unexpectedly. Those first five conversations had less flow and openness than I had expected. I 

found myself caught in paradoxes. On the one hand, I understood that my involvement would 

inevitably affect what my participants would say to me. So I was cautious to avoid putting my 

words in others’ mouths. This seemed to make me act like an observer and interviewer, 

contradicting with my expected role of conversation partner. I was also suspicious of my effort 

and found it futile to distinguish their opinions from mine and avoid influencing them. On the 

other hand, my effort in moving from a practical space to a theoretical space in one conversation, 

by including activities on the practice of reviewing at the beginning and then questions about 

recursion and recursive curriculum directly, seemed to limit both myself and the participants. 

While all teachers had much to say about reviewing, they responded little to my questions with 

the terms “recursive curriculum” and “recursion” (e.g., “In what ways do you see this kind of 

reviewing embodying a recursive curriculum?”). Such questions also forced me to battle between 

a need to elaborate the terms and a fear of not having a good enough explanation that would not 

converge participants’ thinking towards mine or lead the inquiry to a wrong path. Given the high 

stake of each conversation, I was so concerned about my influence in it that I could move little. 

My struggles led me to understand my study, hermeneutic inquiry and conversation anew. 

There seemed a connection between my study and hermeneutics that I overlooked before. As an 

inquiry into the implication (i.e., the curriculum) of an idea (i.e., recursion) that is informed by 
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this study, my research entails circular movements: A study of an idea and a study of its 

implementation influence each other and themselves in return. This circular movement is one 

beyond the one already existing in a hermeneutic inquiry with “a moving target” (Davis, 1994, p. 

21) 5. There are two moving targets (i.e., the two concepts - recursion and recursive curriculum) 

that influence each other in this study: Not only does each concept transform itself when I 

interpret it, it also transforms the other. So my feeling of not knowing when and what is good 

enough to share with the participants was both a cause for and a result of moving in circles; my 

struggle was legitimate. Such understanding made exits immediately clear: 1) if I try to get a 

good enough version of my participants’ opinions or a good enough term definition to share with 

my participants, I could be forever stuck in an infinite loop. Therefore I need to set off at a point 

and see what happens next; 2) since I am coming back to refine my understanding later, I do not 

have to set off at a good enough point – I can set off at any point that is good-enough-for-now.  

My effort, then, needs not concentrate at making sure I heard enough the participants’ 

ideas before I bring in my ideas or juggling between being a listener/interviewer and being a 

speaker/conversation partner. My effort needs to be at how to keep our thinking going. My 

conversation, as hermeneutic, needs to be about what the concept might become if we were to 

interpret it this way, or in Jardine’s (2015) words, “What difference does it make if we read these 

words this way? What possibilities open up?” (p. 245) Therefore, the focus of conversations 

should be what comes out in-between rather than who said what, what each one of us has, or 

whether what we have is good enough. Let’s start moving and then we will see. Thus I can feel 

free, after diligent preparation before a conversation, to share my thinking of recursion and 

                                                           
5 As Davis (1994) points out, “For [Gadamer], an interpretation involves first an appropriation of an event and, as 
one comes to meaning (interprets), a transformation of that event” (p. 21). What one interprets in a hermeneutic 
inquiry is affected by the exact process of interpretation. Thus, “the ‘object’ of the hermeneutic inquiry is a moving 
target” (Davis, 1994, p. 21). 
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recursive curriculum and comment on others’ ideas, but only as a way of thinking and provoking 

collective thinking further.  

This good-enough-for-now attitude and refocusing in the space in-between released me 

from juggling between conflicting roles. It became easier for me to be a genuine conversation 

participant who thinks in the conversation and is led by the conversation. Thinking how to 

provoke conversation allowed me to notice task design questions, such as “how to design tasks to 

promote or facilitate a recursive curriculum,” might be impractical for my participants. Hence I 

replaced them with more practical ones that have a pragmatic definition of recursive curriculum 

such as, “In what ways might we design/modify tasks to help students to build connections and 

learn something new from what they have learned/experienced/encountered before?” and “Given 

what a recursive curriculum does, what might a recursive curriculum look like?” I also noticed a 

limitation of having participants critique my curriculum examples: It did not seem to help me 

notice something new; rather it seemed to funnel participants’ ideas towards mine. Upon 

consultation with my supervisor, I altered the workshop plans: I gradually stopped showing 

participants my examples, and invited them to generate examples and/or modify their own 

examples. A similar change was made on the individual conversation plan: I replaced the 

curriculum examples with a general question (see Appendix C for renewed protocols).  

After the above changes in my questions, curriculum example tasks, attitudes, and foci, 

my workshops became far more unpredictable and much more interesting. By the time I got to 

the third workshop in the series (i.e., Workshop 3.3 on Re-experiencing), the second phase shift 

of the study emerged.  

The emergence of an alternative interpretative framework and the unseen third dimension 
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There were only Maxine and I in Workshop 3.3 (Re-experiencing). Our conversation 

brought forth an unusual mathematics problem involving negative numbers that was new to both 

of us. We ended up, unexpectedly, spending an hour working on it with no final solution. This 

experience allowed me to re-experience some mathematics ideas. Later, I redid the mathematics 

problem and reflected on my experiences, with a newly heightened sensitivity towards the need 

for teachers to relearn mathematics as part of the demand of a recursive curriculum, which is 

credited to a conversation with a colleague, Tom Kieren, about recursive curricula. I was 

overjoyed by how much I had relearned mathematically while studying mathematics curriculum.  

Connecting this experience to my earlier obsession in the idea of continuous mathematics 

narrative, I re-interpreted the previous two workshop texts (i.e., Workshop 3.1 on re-viewing and 

Workshop 3.2 on re-interpreting) with a focus on mathematics content development: I 

categorized the mathematics ideas and tasks touched in a particular workshop, traced their 

developments over the workshop period, and re-categorized and rearranged them towards a 

continuous logical development. A cognitive map and two recursive curriculum development 

models (see Figure 4.2.1) were established based on Workshop 3.1 (Re-viewing). A third 

recursive curriculum development model was also created for the mathematical tasks in 

Workshop 3.2 (Re-interpreting). All these models were new to me, even though the related 

mathematical concepts and tasks were not. The process of model establishing and visualizing 

helped me to renew my understanding of the related concepts and tasks, and also recursive 

curricula. I was thrilled for finally being able to see something new, mathematically and 

pedagogically, in these workshop texts. At that point my confidence in my study increased and 

started to learn more mathematics as my study progressed.  
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By the time I reached the second last workshop, Workshop 3.5 (Re-storying), it was clear 

that I had experienced a recursive curriculum of mathematics and mathematics curriculum in my 

inquiry about recursive curriculum: I was compelled to review what I have seen before 

repeatedly, be it a mathematical idea focused in a single workshop or multiple workshops, or the 

pedagogical concepts of the study, i.e., reviewing, recursion, and recursive curriculum. In each 

workshop (and also individual conversation), I worked with participants, switching between 

interpreting a form of re-viewing and designing curriculum to implement this process. Along 

with this back and forth movement, I re-viewed not only recursion and recursive curriculum but 

also mathematics. The above realization emerged and solidified through the process of 

Figure 4.2.1. A cognitive map (top left) & two recursive curriculum development models 
(bottom left and right). 
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visualizing all workshops/conversations. Figure 4.2.2 shows the final result of this visualization. 

The loops returning to the concept of recursion represent different workshops, each of which 

focused on a recursive process, i.e., re-viewing or a form of re-viewing. The study of all these 

processes informed me of the concept of recursion and recursive curriculum. Note that the first 

workshop loop (the left most loop) represents all the workshops and individual conversations 

focusing on re-viewing. The figure 8 loops at the bottom right represent the actions repeatedly 

conducted in each of the workshops: analyzing a form of re-viewing, designing curriculum to 

promote it, and re-viewing related mathematics contents. 

 

Figure 4.2.2. A holistic view of all workshops/conversations.  

This learning of mathematics was an unexpected dimension in my study. It exemplified 

the generativity of a recursive curriculum and the boundlessness of one’s growth in mathematical 

understanding. It also turned a study of recursive curriculum into an experience of it and a learn-

by-doing process. Noting the existence of this dimension urged me to pay attention to possible 
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mathematical content developments in conversation texts and my own experience of re-

encountering mathematics afforded by this study; and to use them, as planned and lived recursive 

curricula, to inform my study of recursive curriculum. This turned out to be fruitful for my 

inquiry and in return reinforced my faith in hermeneutic inquiry and recursion.  

The above experience, like my earlier struggles with conversations, taught me once again 

the importance and necessity of working out what came to address me over my wanting and 

doing in a hermeneutic inquiry and in a recursive learning journey. “Understanding begins… 

when something addresses us” (Gadamer, 1989/2013, p. 310). It became clear to me that this 

learning from oneself and from one’s process of experiencing is exactly what a hermeneutic 

study and a curriculum as currere entail.   

The arising of stories as attractors  

The third phase shift happened quietly without much noticing during the dissertation 

writing process, dividing the process into two stages with different anchors. During the first stage, 

my writing was directed by themes. After I had come up with some themes for each form of re-

viewing, I continued my interpretation through writing about them. Writing was used as thinking, 

rather than outputting complete thoughts. I tried to write, firstly, what kind of process each form 

might be, and then in what ways we might promote it through curriculum design. While writing 

about each theme, I intended to include at least one planned curriculum example or a lived 

curriculum story for provocation. However, I soon found this one to one (example or story to 

theme) relationship problematic. Not only were planned curriculum examples and lived 

curriculum stories not parallel, each of them was also not necessarily corresponding to only one 

theme.  Some of them, like my story of re-experiencing negative numbers, were so complex that 
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they seemed to have many things to say. Meanwhile, there seemed to be too many themes to be 

meaningful.    

To condense the themes, I went through multiple rounds of mind mapping and outlining 

my writing in point form, focus on only theorizing each form of re-viewing without concerning 

curriculum design to promote the process at the same time. While doing so, some lived recursive 

curriculum stories consistently attracted my attention. To accommodate their roles of provoking 

my thinking rather than confirming a theme, I started to write from story to theme: I opened a 

section with a story and talked about how it led me to interpret a form of re-viewing in a 

particular way. 

This reversion of order of writing was generative. My writing started to revolve around 

these provocative stories. Sometimes while I was writing a story and its related theme in one way, 

new perception and/or interpretation of the story would occur to me. These often prompted me to 

go back to contemplate on the story, sometimes reshape my writing of the story, and see what the 

story was trying to say and revising my existing themes and writing accordingly. There were 

often many rounds of such back and forth movements. It turned out that these stories had much 

to teach me than I had ever expected. A process of writing about a particular story often led me 

to understand the story and its related theme anew, and then this experience became a new lived 

recursive curriculum story for me to ponder on and write about. Through these activities, I 

renewed my understanding of a particular form of re-viewing, re-viewing as a whole, recursion, 

and recursive curricula. As such, my writing about each story became a hermeneutic inquiry into 

the story, propelling the overarching hermeneutic inquiry into recursive curriculum.   

The arising of stories as attractors in writing marked the third phase shift in my inquiry. 

Once again, like what happened in the previous two phase shifts, I was educated greatly. I 
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relearned how to trust my sense of being addressed by something, how to endure and learn from 

my struggles and puzzlements, and how to leave a work at a good-enough-for-now stage and 

come back to it later. These three phase shifts exemplified an affinity among recursion, 

hermeneutics, and currere-oriented process. Evidently, “the generativity of a hermeneutic 

learning process is inseparable with its recursiveness” (Luo, 2019, p. 99), and “being 

hermeneutic, recursion is inevitably currere oriented” (p. 100).  

4.3 A Fractal-like Hermeneutic Inquiry  

When I looked back my inquiry as a whole, a fractal-like image appeared. Figure 4.3.1 

shows a sequence of texts in a chronological order of generation. Each circle in red represents an 

entry text and each oval represents an interpreted text. Other than the first one, all circles have 

some colored circular boundaries, representing the influence of the previous work on the 

generation of an entry text. Each oval encloses all the previously generated texts, representing 

that each interpreted text is produced through interpreting the already present texts as a whole. 

For example, the first interpreted text (represented as the oval in black) was generated after the 

Figure 4.3.1. A visualization of the recursive structure of a hermeneutic inquiry. 
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first entry text (represented as the circle in red) got interpreted. Its influence on the next text 

generation is represented as the black circular boundary added to the red circle in Entry Text 2. 

The second interpreted text (as the oval in blue) was generated through interpreting all the 

previous texts, and this is represented by having the blue oval enclosing all the previous texts 

(i.e., Entry Text 1, Interpreted Text 1, and Entry Text 2). This image shows a sequence of inquiry 

cycles and each of them is led by the generation of a new entry text and completed with an 

interpretation of the current existing text, which includes the new entry text and the old text. The 

result of this interpretation becomes the old text for the next loop, informing the generation of a 

new entry text and later the text interpretation.  

This visualization is no doubt self-similar as it has a common pattern appearing across 

scales: Parts at different scales look like the whole. It can easily be formed through following a 

simple recursive formula:  

Interpreted_Text(n) = Interpret ( Interpreted_Text(n-1), Entry_Text(n) )  

This formula depicts two sub-procedures in each round of iteration: 

In the nth round, one  

1) generates an entry text, labeled as Entry_Text(n), and then  

2) interprets the current existing text, which include the previously interpreted text, 

i.e., Interpreted_Text(n-1), and the newly generated entry text, i.e., Entry_Text(n).  

The result of this interpretation becomes the interpreted text for the next round of 

iteration, i.e., Interpreted_Text(n).   

Such a recursive structure exemplified itself in this study, more or less, at both macro and 

micro levels. The generation of the text as a whole and a particular layer of the text, notably the 

conversation text, followed this spiral process. This continuously interpreting one’s previous 
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work and subjecting oneself to its influence also presented during the generation of each entry 

text and the dissertation writing process, which was used as a way to think and interpret 

differently rather than outputting mature completed thoughts hence made of loops of rewriting.  

However, as my study has taught me, this recursive movement is not a procedure to 

follow but a calling to respond to. Hermeneutics begins with something addresses us and draws 

us in (Jardine, 2015). Not only does this tell me where to start and continue to ponder on, it also 

tells me where to go back to. During a text generation, where to go and inquiry about further was 

often led by what puzzled or provoked me. During a text interpretation, what to review, how 

much and how often was also often a response to a call to go back. For example, it puzzled me 

that I could not see much new in the text of Workshop 3.1 (Re-viewing), so I went back to the 

video text often. A breakthrough finally happened on its fourth reinterpretation. This being 

drawn back again and again to a particular experience or text happened even more frequently 

during my dissertation writing process, resulting into recursive interpretations of the same story 

or rounds of rewriting. 

To enact a recursive inquiry as a response to a calling instead of a mechanical procedure, 

a hermeneutic attitude of letting is essential. Such “letting”, as in “Let Eric’s age be ‘x’” (Jardine, 

2006, p. 63), reflects a willingness to work with uncertainty, a courage to move on with a 

tentative good-enough to explore further, a patience to see what it brings later, a trust in learning 

from oneself, and a faith in the process’s generativity and recursiveness (that one will be brought 

back to where one starts and sees it differently). Such letting, walking a path while letting the 

path unfold and letting one be led by the process, is rather uneasy for one who lacks embodied 

faith in hermeneutic study. I was led to hermeneutic inquiry by my appreciation of the theory. 

But I was more or less stuck in walking in circles rather than loops at the beginning of my study 
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because I worried that my starting definition and study design might not be good enough. Once I 

found a way out through legitimizing leaving with a good-enough-for-now understanding in 

hermeneutic studies, my faith in “letting” and hermeneutic inquiry was further strengthened 

through seeing novel ideas emerging along my walk on the path. My hermeneutic inquiry 

experience has taught me that one cannot walk on a path that unfolds itself without a 

hermeneutic attitude of letting as it is both the precondition and goal for hermeneutic study.   
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5 Re(view): Re-view Reviewing 

5.1 Make the Familiar Strange – Troubling Reviewing 

Reviewing literally means seeing again. In my inquiry, it refers to a mental process that a 

learner (i.e., a student or teacher) can experience and an educational process that one can design 

and/or go through. The term reviewing, instead of review, is used in this study to emphasize the 

process of doing a review, since review can have so many meanings (e.g. the task, action, 

process, material, and session of a review). As a process, reviewing can be both lived and 

planned.  

The importance of reviewing for mathematics education seems to be well recognized, 

easily suggested by the abundance of reviews in a planned curriculum and their frequency in a 

lived curriculum. For example, the Alberta Math10 textbook examined in this study has regular 

explicit reviews. There are review sections at the beginning of each lesson (i.e., Make 

Connections) and in the middle of a chapter (i.e., Checkpoint 1 and 2). Review sections also 

appear at the end of a teaching session, such as a lesson (i.e., Reflect), a chapter (i.e., Study 

Guide and Review, and Practice Test), or a unit made of two or three chapters (i.e., Cumulative 

Review and Project). In a lived curriculum experienced by myself and mentioned by the teacher 

participants, reviews are often dedicated sessions. Some appear as frequently as in Emma’s grade 

7- 9 mathematics classes – each of her teaching sections includes two days for new lessons and 

one day for review, as predictable as the ones in the high schools I taught – all grade 9-12 

mathematics classes schedule a review period before tests and exams, or as grand-scaled as the 

ones in Dean’s school – his junior high school has a six-day teaching cycle and each cycle 

includes a checkpoint (e.g., an assignment due day). All of these reviews offer students 
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opportunities to see again what they have learned before. Apparently, reviewing is a routine 

teaching and learning process in mathematics curricula.   

Yet, reviewing seems to be taken for granted both in lived and planned mathematics 

curricula. During my four years of teaching high school mathematics in Toronto, review sessions 

in class across grades took a consistent form of a period of seatwork, with students answering 

questions chosen from the textbook review sections or worksheets that their teacher copied from 

other textbooks or exercise collections. There were few discussions among teachers or between 

teachers and students about the process of reviewing. How to review was rarely addressed in 

mathematics textbooks or professional development sessions for teachers.  

This taken-for-granted attitude towards reviewing seems to exemplify in teacher 

education programs as well. The lack of serious effort to disseminate the results of research on 

reviews to the educational community, observed in as early as 1991 by Dempster6, is also 

noticed in the teachers’ education program that I went through in Canada: Much of our effort 

was guided towards how to teach a new concept rather than how to review an old concept, 

despite that we all learned that a review of prerequisite skills at the beginning of a new lesson 

and a recap of the daily lesson are important for effective teaching and learning.  

This lack of interest in reviewing in the mathematics education community is further 

demonstrated in the lack of publications about reviews in mathematics classes. An extensive 

literature review found between the years of 1972 and 20167, Suydam’s (1984) brief paper on the 

                                                           
6 Dempster’s (1991) literature synthesis might be the first and the latest comprehensive review on reviews in general. 
7 This result is based on a ProQuest search, conducted in the fall of 2016, on the 52 databases accessible for the 
libraries at the University of Alberta, including the three major education databases (CBCA Education, ERIC and 
ProQuest Education Journals).  The search category is “su.Exact("review (reexamination)") and all("mathematics" 
OR "mathematical" OR "math")”, aiming to locate citations that use review (reexamination) as a subject term and 
include any of the three specified words anywhere but the whole text.    



TOWARDS RECURSIVE MATHEMATICS CURRICULA 80 

role of review in mathematics instruction is the only discussion of mathematics reviews as a 

whole. Suydam’s literature review is insufficient and the paper has been infrequently cited.  

Does this indifference in reviewing imply that reviewing has been understood well by 

students and educators and effectively applied in mathematics teaching and learning? I doubt it.  

Taking the frequency, timing, and content of reviewing as an example, there seems an 

interesting discrepancy between theory and practice: The spacing effect and the interleaving 

effect well recognized in educational psychology studies seems not utilized sufficiently in 

mathematics curricula. The spacing effect has been long documented in the memory literature 

(Kang, Lindey, Mozer, & Pashler, 2014), and exemplified in several mathematics education 

research (e.g., Gay, 1973; Rohrer & Taylor, 2006). The spacing effect describes a phenomenon 

whereby one learns more when one can study a material in spread out sessions rather than 

studying the same amount of time in one single session or a few sessions that occur close by 

(Dempster, 1991; Kang et al., 2014). Reviews of the same material spreading out in increasing 

intervals (e.g., study on day 1, 3, 9, 28) are more effective, possibly by affording effortful and 

successful restudy (Kang et al., 2014, p. 1549). Massed reviews, reviews that are too close 

together, tend to give rise to a false sense of knowing or confidence (Zechmeister & 

Shaughnessy, 1980). Students might think they know the materials while they do not, resulting in 

inactive reviewing process and lower performance in tests.  

The interleaving effect recognizes that “interleaving rather than blocking practice of 

different skills (e.g. abcbcacab instead of aaabbbccc) usually improves subsequent test 

performance” (Taylor & Rohrer, 2010, p. 837). This effect has been demonstrated in 

mathematics learning (Rohrer, Dedrick, & Stershic, 2015; Taylor & Rohrer, 2010): The students 

who participated in interleaved mathematical practices (solving problems of different kinds 
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juxtaposed in one practice session) performed better than the students who did the block 

practices (solving problems of the same kind). Interleaved practices demand learners to identify 

the problem and choose a strategy rather than repeating the same strategy. Together, the spacing 

effect and the interleaving effect suggest a frequent use of comprehensive reviews that make 

good use of forgetting.   

In this line of thinking, a reading of the Alberta Math10 textbook shows me questionable 

implementations. The reviews in the textbook include end-of-lesson discussion questions 

reflecting on the key ideas in one lesson, two checkpoint reviews in each chapter summarizing 

what one has learned, either between a checkpoint and the beginning of the chapter or between 

two consecutive checkpoints, chapter reviews covering what one has learned in each chapter, and 

three comprehensive reviews with each covering all the previous chapters one has learned. There 

seems some yet inconsistent implementation of spaced reviews. As for the review content, most 

exercises address the freshly learned materials and the comprehensive reviews include a list of 

exercises categorized by learning sessions, all giving strong clues of what strategy the learner 

needs to use. There seems more avoidance of forgetting than taking it into good use as suggested 

by the interleaving effect.   

Besides the frequency, timing, and content of reviewing, its form is also not well 

understood. In the Alberta Math10 textbook, a dominant form of reviewing is summarizing key 

contents and doing more exercises. Reviews in the forms of games, projects, and group works 

are limited. Multiple representations and embodiments of the same mathematical material are not 

evident.  

However, it is not my interest in this study to identify effective review approaches. 

Rather, I am here to make the familiar strange and problematize the discrepancy between the 
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obvious indifference in reviewing and the pervasiveness of reviewing in mathematics curricula. 

The above discussion about the frequency, timing, form and content of reviewing is to trouble 

the taken-for-granted attitude towards reviewing.  

5.2 Return to the Original Difficulty – What is Reviewing?  

We do not know reviewing well enough, I argue. What does review mean? What is the 

process of reviewing? What is reviewing for? How does reviewing help learning? These 

questions are largely ignored. The mathematics education literature related to reviews addresses 

mostly on particular approaches or forms of reviewing practice (and some of them do not specify 

their connection to reviewing), such as reviewing pre-requisite materials (e.g., Mokry, 2016), 

note taking (e.g., Hwang, Chen, Shadiev, & Li, 2011), doing assignment (e.g., Rohrer et al., 

2015), using games (e.g., Goldstein, 1994), going over homework (e,g., Otten, Cirillo, & Herbel-

Eisenmann, 2015), summarizing (e.g., Shimizu, 2006), and testing (e.g., Dempter, 1991).  Even 

Dempster’s (1991) comprehensive literature synthesis on reviews in general, which broadens 

reviews’ roles in learning and forms of reviews, defines neither review nor reviewing. Rather, 

the word review seems to be used interchangeably with practice and repetition.  

Compared to Dempster’s paper, Suydam’s (1984) paper about the roles and effective 

forms of mathematics reviews is much less comprehensive. It does start with a hermeneutic 

question “what does the word [review] mean?” (p. 2), but Suydam immediately closes the 

inquiry with an answer: “Re-view. Look again. See from a new perspective, in time if not in 

space” (p. 2). This short interpretation brings forth something worth noticing - Suydam continues 

to write: “The word carries a hidden promise of excitement or potential that we seem to miss” (p. 

2).  I appreciate Suydam’s approach of looking for inspiration through interpreting a word. But 

her paper does not go further to interpret review or specify what is missed. Without answering 
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the ontological and teleological questions such as what reviewing is as a mental learning process 

and what is it for, it seems impossible to answer methodological and pedagogical questions such 

as “What do we do in reviews? What should we review, how often and in what forms?”  

 So what is reviewing? What kind of process it is? What is it for? To answer these 

questions, one has to answer questions such as “What are mind, knowledge, and learning?” at 

first, for depending on what we think they are, we see reviewing differently.  

Here I focus on three perspectives that have been or are currently influential in education: 

behaviorism, cognitivism, and enactivism. While recognizing that many alternative 

categorizations are possible, this particular categorization is chosen to subsume a range of 

educational theories in European and North American English literature while conserving their 

distinct views on mind, knowledge and learning. This brings a possibility that some of the 

theories with multiple variations, such as constructivism, might belong to two different 

categories in this categorization.   

Behaviorism is an educational psychology theory that formed around the 1910s and 

established in the 1930s.  For behaviorists, mind is an object situated in the brain. By viewing 

brain as a black box whose processes are unobservable and unmeasurable, behaviorism centers 

on observing, measuring and manipulating human behaviors. Knowledge is considered as an 

organized accumulation of connections and associations among elementary mental or behavioral 

units, which “may be elementary sensory impressions that combine to form percepts and 

concepts, or stimulus-response associations, or abstract elements of parallel, distributed networks” 

(Greeno, Collins, & Resnick, 1996, p. 17). Learning is viewed as a process of forming and 

strengthening or weakening and extinguishing associations, which one often acquires through 

experience (Greeno et al., 1996). Since the behaviorist view interprets a person’s behaviors as 
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responses to stimuli in her situation, the educational models that embrace behaviorism treat 

learners as passive and view teaching as designing suitable stimuli to reinforce needed responses 

(Ertmer & Newby, 1993/2013). Since knowledge is viewed as a collection of particular stimulus-

responses, the goal of education can be expressed as a list of detailed behavioral objectives, and 

correspondingly curriculum tasks can be analyzed and organized into a sequence of responses, 

ordering from simple to complex (Greeno et al., 1996). Based on such views of knowledge and 

learning, it is not strange for one to see reviewing as a reinforcing process to strengthen 

previously established stimulus-response associations. Thus drills and practices, during which 

similar stimuli are presented to students in expecting similar responses from them, seem to be 

ideal forms of reviewing. From a behaviorist perspective, the goal of reviewing is to acquire and 

reproduce the same.   

Cognitivism gained acceptance during the cognitive movement in the 1950s as an 

alternative to behaviorism, in recognizing behaviorism’s failure to explain complicated human 

behaviors, such as language learning. In contrast to behaviorism, traditional cognitivism views 

learners as active and their behaviors are not simple responses to stimuli but sophisticated 

outcomes of complicated mental cognitive processes, such as reasoning, solving problems, 

comprehending language. Mind, although still situated mainly in the brain, is like a computer 

from the perspective of cognitivism: It follows an input-central processing unit (CPU)-output 

model and it processes stimuli as input information and produces mental or behavioral changes 

as output. The mental action and process, or cognition, is  

the manipulation of symbols after the fashion of digital computers. In other words, 

cognition is mental representation: the mind is thought to operate by manipulating 
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symbols that represent features of the world or represent the world as being a certain way. 

(Varela, Thompson, & Rosch, 1991/1993, p. 8) 

Knowledge, then, is understood as the organized abstract structures of information (Greeno et al., 

1996) and representations of the objective external worlds stored in the mind. Learning is a 

process of developing conceptual understanding and cognitive abilities (Greeno et al., 1996). 

Therefore, the educational models influenced by cognitivism emphasize teaching cognitive 

strategies to handle information and metacognitive skills (Ertmer & Newby, 1993/2013) and 

analyzing cognitive structures of subject knowledge (Greeno et al., 1996). Based on the above 

understanding of mind, knowledge and learning, reviewing can be interpreted as a process of 

enhancing one’s memorization and conceptual understanding of previous learned knowledge. 

Hence getting students to practice and use cognitive strategies to elaborate, organize, construct 

their knowledge structure seems to be suitable forms for reviewing. The goal of reviewing is to 

acquire and reproduce the knowledge structures representing the objective world.  

Over the years, cognitivism has developed into many different traditions, notably 

constructivism in the 1970s, distributed cognition, and situated cognition theories around the 

1990s. Under the influence of these theories, while the focus on cognition remains unchanged in 

cognitivism, learning for a learner has become actively constructing their individual meaningful 

knowledge structure systems in a particular time, space, and environment, which include other 

participants, tools and artifacts. Not only do different individuals create rather than acquire 

different understandings, thus knowledge of the same thing, what they learn is also inseparable 

from where, how, and for what purposes they learned. From these perspectives, reviewing is 

interpreted as a process of elaboration and reconstruction and it is both individual and social at 

the same time. Thus the forms of reviewing can extend to include having students encounter 
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multiple interpretations and representations of the same idea and having students study in groups 

or in various contexts. The acknowledgement of knowledge being contingent and individually 

meaningful allows reviewing to be interpreted as a process of generating something new rather 

than reproducing the old.  

Although these later developed theories in cognitivism have challenged the original 

assumptions of cognitivism, such as learning is independent and individual, knowledge is 

processed by individuals and it can be transmitted, and they even started to embrace 

postmodernism by rejecting the idea of an objective external world and valuing individual 

understandings, a sense of mechanism (Bredo, 2015) emphasized in behaviorism remains. In 

other words, mind is still understood as an information processing machine and the mind-body 

dualism remains. Also knowledge is still understood as an object stored somewhere in the mind, 

thus can be quantified and measured. There is still a finite end of mastery for learning. Thus 

reviewing remains an add-on process for learning: Reviewing is only needed when one has 

forgotten or not mastered something; the ideal learning is to learn something once for all. Also, 

since cognition is still understood as a brain’s function, physical body’s engagement in learning 

in general is overlooked.  

Enactivism is a theory of self-organized systems and enactive cognition, influenced by 

works in multiple disciplines, including philosophy (e.g., Merleau-Ponty’s works, 

phenomenology), psychology (e.g., Piaget’s works, radical constructivism, situated and 

embodied cognition theories), and biology (e.g., Maturana & Varela’s works on biological 

autopoetic systems). Enactivism, as an illustration of complexity thinking, shares compatible 

views on mind, knowledge and learning with complexity thinking. Enactivism broadens the 

concept of mind and defines it as any autopoetic self-organized system, which includes all living 
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systems. In other words, all living systems can learn and exemplify cognition. In enactivism, 

cognitive processes are no more limited in one’s brain and separated from physical behaviors. 

Rather, “all doing is knowing and all knowing is doing” (Maturana & Varela, 1998, p. 27). 

Cognitive or mental processes are the ones that a living system engages to maintain structural 

congruence with its environment, and through which both the system and its environment 

evolve.8 Therefore, different from cognitivism, physical actions are also cognitive processes. In 

this sense, enactivism breaks the dualism of mind-body. It echoes the emphasis of body’s 

constitutive role in cognition as described in embodied cognition theory: “Cognition is embodied 

when it is deeply dependent upon features of the physical body of an agent, that is, when aspects 

of the agent's body beyond the brain play a significant causal or physically constitutive role in 

cognitive processing” (Wilson & Foglia, 2016).  Enactivism is also aligned with connectionism 

in criticizing computational and representational models of mind centered in cognitivism. 

Actually, Varela et al. (1991/1993) proposed the term enactive cognition to  

emphasize the growing conviction that cognition is not the representation of a pre-given 

world by a pre-given mind but is rather the enactment of a world and a mind on the basis 

of a history of the variety of actions that a being in the world performs. (p. 9) 

The enactive cognitive science is presented as “a middle path between the cognitivist version of 

an essentially representational mind and connectionist models of the emergence of mind from 

networks of neuron-like units” (Toscano, 2006, p. 169). 

In enactivism, learning is defined as a kind of transformations that is simultaneously 

physical and behavioral thus structural for a learner (Davis & Sumara, 2006). Learning happens 

as a contingent result of the interactions between a learner’s historical and biological structure 

                                                           
8 Cognition is exemplified through enaction, which denotes “the process whereby a world is brought forth by the 
interaction or structural coupling between an embodied agent and its medium or environment” (Toscano, 2006, p. 
169).   
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and her surrounding environment. A learner’s self-organization can be occasioned by 

environment stimuli but it is not caused by it; the learner is unpredictable and generative. 

Through learning, a learner and her environment co-evolve.  

With the emphasis of contingence, relation, and evolution in enactivism, knowledge is no 

more an object stored in a learner’s mind or in her external environment, or solely generated by 

the learner. Rather, knowledge is a contingent relationship located neither in the learner nor in 

the environment. Knowledge exists and consists in the possibility for joint or shared action 

(Sumara & Davis, 1997) and it is determined by the shared action. Thus, actions, seen as 

products of these interactions, are themselves understanding and knowledge (Sumara & Davis, 

1997). It is knowledge-as-(inter)-action (Sumara & Davis, 1997). The locus of cognition is no 

more individual and there is not a solitary truth-determining agent for knowledge (Sumara & 

Davis, 1997). Knowledge evolves, like biological systems do. 

From the perspective of enactivism, learning is not building representation to mirror the 

objective external world nor does it lead towards to a fixed end of universal truth. With the 

rejection of fixed outcome for cognitive development, comes the inevitability of reviewing for 

cognitive growth. Reviewing, interpreted through an enactivist perspective, is a contingent 

transformative self-organization affording emergent creativities for both a learner and its 

environment. Therefore reviewing, as a learning process, no matter how repetitive it might 

appear, can never be reproducing the same. Further, since a learner’s development trajectory 

cannot be preset and is unpredictable, it is impossible to expect that the same reviewing task can 

have the same effect on different learners or even on the same learner at different reviews.  

Now then, what might reviewing be like from the perspective of enactivism, or more 

generally, complexity thinking?  
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5.3 From Reviewing to Re-viewing  

On the one hand, the reviewing process supported by enactivism can look much the same 

like the one supported by cognitivism. Albeit both theories see the end of learning differently, 

they both support treating learners as active agents and reviewing as a process of generating 

something new. Therefore, the cognitive strategies advocated in cognitivism to help one 

understand what one has learned before differently can still apply to the reviewing process under 

the theory of enactivism. So reviewing could be a process of connecting, summarizing, extending, 

applying, forming a bigger picture, or reconstructing. What makes a reviewing process based on 

enactivism different from the one based on cognitivism (particularly traditional cognitivism) is 

the orientation: Reviewing under the influence of enactivism is an endless regenerating process 

towards creativity rather than a finite process that leads to a pre-determined and objective truth.  

Cognitive theories, as Bredo (2015) observes, have suggested that what one learns from a 

task is affected by how the task is perceived by the learner (e.g., Chomsky, 1959), and the task 

can also be appropriated in interaction (e.g., Newman, Griffin, & Cole, 1989). This is not hard to 

understand from an enactivist/complexity thinking perspective. So in terms of reviewing, to 

enact complexity thinking, it is necessary to orientate the leaner away from treating reviewing as 

a process to get the objective truth but towards a creative process. With a different awareness, a 

review task can be negotiated differently in the learner’s interaction with it.   

On the other hand, reviewing supported by enactivism can also look quite different. 

Different from cognitivism, the role that environment plays in one’s cognitive development has 

been highlighted further in enacativism: The environment shifts from being peripheral to 

constitutive. Therefore, designing suitable curricula is as important as educating students’ 

awareness to occasion them to attend to the generative power of reviewing. Little is known what 
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different forms a reviewing process might have from the perspective of complexity thinking and 

enactivism.  

To specify my interest in re-interpreting reviewing practice and distinguish a new 

interpretation from existing ones, I use re-viewing to denote reviewing process interpreted 

through the lens of complexity thinking. This re-viewing process is similar to reviewing process 

in having a structure of looping back, yet differs from it with an affordance in novelty: Through 

re-encountering what they have encountered before, learners understand it anew. How we might 

loop back, i.e., the forms of re-viewing, is the focus in this study. 
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6 Forms of Re-viewing 

The forms of re-viewing that I propose are: re-languaging, re-imaging, and re-inbodying. 

Each of these forms is informed by related lived re-viewing experiences, in which a learner 

learned something new through encountering what s/he had encountered before. In this chapter, I 

first situate my inquiry with some needed assumptions about signs in mathematics and prepare 

necessary terms to use in later sections. Then I present my inquiry into each form of re-viewing, 

starting with related experiences followed by interpretations of them. By looking into how these 

lived re-viewing experiences were triggered and what happened in them, I try to understand the 

re-viewing process in different forms, and seek inspirations for curricular implications to 

promote re-viewing. In short, to think about planned re-viewing processes I learn from the lived 

re-viewing processes.  

Since I will be talking about re-viewing process in two dimensions, as planned and 

experienced, it is necessary to clarify that as a planned activity, re-viewing is a process with an 

orientation towards newness, and as a lived experience, re-viewing is a process with an outcome 

of understanding something anew. In both dimensions, re-viewing has a structure of 

encountering what one has encountered before again. In addition, there are many pairs of words, 

like re-viewing and reviewing, in this writing differing only in their prefixes. While both share a 

connotation of repetition, it is the one with the prefix “re-” that emphasizes the connotation of 

generating something new. To avoid the loss of emphasis due to an overuse of the prefix “re-“, I 

limit the use of “re-“ to the forms of re-viewing, connotations of recursion (e.g., re-interpreting, 

re-experiencing, re-encountering), and the word “re-cognize” (and its associated noun “re-

cognition”), which is used for its secondary meaning as “know again” (“Recognize”, 2019, also 
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see “Recognize”, 2009 & “Cognize”, 1989)9 to refer to an experience of a learner learned 

something that she most likely had learned before yet forgotten. Additionally, in order to talk 

about some actions that might be the initial one or an iteration, I use “(re)” in front of a verb to 

imply these two possibilities. So a word such as “(re)enact” means “enact” or “reenact”.   

6.0 Assumptions – Signs in Mathematics  

Agreeing with Presmeg, Radford, Roth, and Kadunz’s (2016) emphasis of the 

significance of semiosis for mathematics, I understand that mathematics is full of signs. Aligned 

with complexity thinking, I follow Peirce’s sign theory10 and interpret sign as a system of three 

elements: object (the signified), representamen, and interpretant. Peirce wrote in 1908 that:  

I define a sign as anything which is so determined by something else, called its Object, 

and so determines an effect upon a person, which effect I call its interpretant, that the 

later is thereby mediately determined by the former. (Peirce Edition Project, 1998, p. 478) 

When something (e.g. an object, quality, or event) or part of it indicates something else in some 

respects upon one’s interpretation, it becomes a sign. The object, understood as the signified (e.g., 

Arkin, 2013; Presmeg et al., 2016), can be a person, thing, event, space, or idea. The 

representamen, understood as the sign vehicle (e.g., Arkin, 2013; Presmeg et al., 2016) or the 

signifier (e.g., Davis, 2012; Presmeg et al., 2016)11, is the concrete or material form of the sign 

and it can be word, sound, smell, image, gesture, and any accessible or tangible element. The 

interpretant can be understood as “an effect determined by the sign vehicle upon a person” 

                                                           
9 Such interpretation of “recognize” has been emphasized by other scholars (e.g., Felman, 1982; Kupfer, 1983; 
Thom, 2012). 
10 My reading of Peirce is based on Atkin’s (2013) and Presmeg et al.’s (2016) interpretations.  
11 According to Atkin’s (2013) interpretation of Peirce’s sign theory, Peirce uses terms such as sign and 
representamen to refer to the elements that belong to something (i.e., a physical form) signifying something else and 
are responsible for such signification. Atkin suggests using “sign vehicle” instead to refer to such elements. This 
interpretation is different from Presmeg et al.’s (2016) treating the whole of the physical form as the sign vehicle, 
which she uses to refer to “the representamen/signifier” (p. 2). To avoid confusion, in the following writing I use 
these three terms (i.e., representamen, signifier, sign vehicle) interchangeably to refer to the whole physical form.  
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(Presmeg et al., 2016, p. 7) or “as the understanding that we have of the sign/object relation” that 

is determined by the sign “using certain features of the way the sign signifies its object” (Arkin, 

2013).  This three-fold model allows us to talk about the physical form of the sign as something 

accessible, sharable and distinct from its interpreted meaning, and explore the potential influence 

of the form on the sign user, while noting that sign vehicle co-exists with sign in interpretation. 

As Atkin (2013) says, “A sign signifies only in being interpreted”. I see no limitation in what can 

be a sign, but only the difference in how commonly one thing is socially interpreted as a sign.  

Mathematical sign vehicles “are not the mathematical objects themselves but stand for 

them in some way” (Presmeg et al., 2016, pp. 1-2). The pervasive use of sign vehicles in 

mathematics is inevitable: “the objects of mathematics are ideal, general in nature, and to 

represent them – to others and to oneself – and to work with them, it’s necessary to employ sign 

vehicles” (Presmeg et al., 2016, pp. 1-2). Other than common signifiers, such as letters or 

characters, mathematical sign vehicles include numbers, mathematical symbols and notations, 

tables, lists, diagrams, graphs, photos, concrete manipulatives, gestures, and models.   

According to Peirce, sign can be categorized by the interpreted relationship between the 

sign vehicle and its object. When the sign vehicle and its object are perceived to share a physical 

resemblance, e.g., a drawing of three apples representing 3 random apples or 3 items, the sign is 

iconic. When the sign vehicle and its object share a physical connection, e.g., a half finished 

mathematics equation 3+2 =, the sign is indexical as it invokes computation or it is a directive to 

perform computation. When the sign vehicle is related to its object through convention, e.g., 3 

representing the concept of number 3, the sign is symbolic12. Note that a sign is essentially an 

                                                           
12 I see this categorization of sign overlapping with Bruner’s (1966) typology of representations, i.e., iconic (image-
based), enactive (action-based), and symbolic (language-based) representations. Although I prefer the term “enactive” 
than “indexical”, I keep the later term to be in consistent with Peirce’s and Presmeg’s works that I used as main 
references for signs and images later.  
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interpretation. So a sign is idiosyncratic: “different individuals may construct different 

interpretants from the same sign vehicle, thus effectively creating different signs for the same 

object” (Presmeg et al., 2016, p. 7). Therefore, categorizing sign vehicles universally is 

impossible. All mathematical sign vehicles can bring forth the above three types of signs as they 

all have spatial shapes (e.g., number 1 can be viewed as resembling one counting stick or action) 

thus possibly iconic, they all have element of convention (e.g., number 1 can be viewed as a 

conventional denotation used by a learner or a mathematical community) thus symbolic, and they 

can be pointers for certain actions (e.g., numbers can be viewed as an invitation of counting) thus 

indexical.  

These multiple possibilities of the same sign vehicle allow us to consider a sign vehicle’s 

affordances for different interpretations other than a dominate one. This opens space for us to 

study a sign vehicle differently, by attending to different aspects of it. For example, when 

viewing letters, characters, and denotations, as symbolic signs, we pay more attention to their 

linguistic features and historical social-cultural meanings; when viewing them as indexical, what 

they do or invoke us to do matters more, so we focus more on their common usages and the 

associated human actions; and when viewing them as iconic, their appearances or perceptual 

affordances matter more, thus we pay more attention to their visual-spatial and other sensible 

forms.  

The above sign related assumptions are needed to support the following inquiry into the 

forms of re-viewing. Although my inquiry was not directed at signs in mathematics, it still led 

me to semiosis, which suggests considering a mathematics sign vehicle from multiple aspects. 

The re-languaging section stresses the linguistic and social-cultural meaning aspect of a sign 

vehicle often viewed as symbolic. The re-imaging section concerns the visual-spatial form of two 
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dimensional (2D) sign vehicles. The re-inbodying section stresses the sensorimotor invitations of 

a sign vehicle.  

6.1 Re-languaging 

Re-languaging refers to a process of changing the language used to express or explain 

something with an orientation or outcome of understanding it anew. Re-languaging is closely 

tied to re-interpreting, yet not the same in this study. Re-languaging is a form of re-viewing with 

a linguistic focus, while situated in hermeneutics, re-interpreting is a more overarching category: 

It is often interchangeable with re-understanding, and can be achieved through both linguistic 

and non-linguistic means. Re-languaging also appears closely tied to paraphrasing and rewording, 

and verbalizing again. Yet, the term re-languaging is used to ensure that it is more than using 

different words to convey the same meaning: The language used can belong to different language 

systems (e.g., English, Chinese, sign language, computer language, and etc.) and the meaning 

needs not to remain the same. Re-languaging is an attempt to use linguistic means as a heuristic 

tool for learning.  

As shifting focus  

Living between two national languages (Chinese and English), I am familiar with re-

languaging. Over the years I have moved from a stage of translating for the sake of translating to 

a stage of using translation for a better understanding. I have initiated this process more 

frequently after I became comfortable with using English to interpret English: I interpret a word, 

familiar or not, in both Chinese and English. This language changing process has done more than 

adding new vocabularies to me; the benefit is at the level of conceptual understanding. 

Sometimes, the corresponding translations of a concept (e.g., epistemology) in two different 

languages, neither of which made sense alone, worked together and helped me to understand it 
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better. Sometimes, two corresponding translations of the same thing, neither of which was hard 

to understand, worked together and transformed my understanding. The following is one of such 

experiences in mathematics.     

Circle. I was planning for teaching the equation of a circle after having just taught the 

distance formula to my grade 10 students. I have known the Chinese definition of circle 

(“[在同一平面内]到一个固定点等距离的点的集合”) by heart since high school. While 

reading the same definition in English - “a set/collection13 of points [on a plane] equal 

distanced away from a fixed point”, I suddenly re-cognized that this definition is the 

same as the circle equation, had we written a circle equation using the distance formula, 

or more fundamentally, applying the Pythagoras theorem. The wording, “a collection of 

points”, made much more sense to me, compared to its Chinese counterpart “点的集合”. 

I suddenly (re)realized that this is the key feature of circle, through which a circle 

equation becomes a transformation of the distance formula and/or the Pythagoras 

theorem, and failing to appreciate this idea can lead to frustrations with algebraic 

representations of circles and graphs in general. There appeared a vague memory of I 

struggling during my high school years to understand a graph as a collection of points 

even though I was taught so, and I lacking flexibility to solve graph related problems, 

many of which can be easily solved if one realizes an implementation of the idea of 

“graph as a collection of points” is that one can use (x, y) to represent any point on a 

graph. This re-cognition of circle as a collection of points helped me to see that I can 

teach many circle related problems as implementations of the circle definition.  

                                                           
13 Albeit the word “set” is used in the English definition of circle, I read it as “collection”, which was more familiar 
and less technical for me.   
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Obviously, this story is not about translation between two languages, but about re-

languaging: understanding something anew through language changing. The two wordings 

involved in the re-languaging process had identical literal meanings with similarly low demand 

in terminology: A translation between them can be done with little need for special mathematical 

vocabularies. Yet, the slight difference in the wordings seemed to make a huge difference in my 

mathematical understanding. Not only my conceptual understanding of circle but also that of 

graph in general was transformed: The change of language aided the establishment of a central 

idea (i.e., a graph as a set/collection of points) responsible for solving a wide range of problems 

compartmented in different categories before.  

Literally, these two definitions of circle differ slightly in the order of their wordings. A 

verbatim translation of “到一个固定点等距离的点的集合” is “to a fixed point equal distance 

points set” in Chinese grammar order, meaning “a set of points equal distance away from a fixed 

point” in English grammar order, which is also the English definition of circle. So the Chinese 

and English definitions of circle are identical literally. Yet, “the set of points” is at the end of 

Chinese definition but beginning of the English definition. This difference in the wording, 

collaborating with other conditions at that time, contributed to my reading of this English 

definition in two parts with a hierarchy ordered by level of generalization (see Figure 6.1.1).  

Chinese definition    到一个固定点等距离的点的集合  

(verbatim translation)   (to a fixed point equal distance points set) 

 

English definition   a set of points  equal distance away from a fixed point 

 

My reading  1) Circle is a collection of points (圆为点的集合) 
2) Each point on a circle is equal distance away from a fixed point  
(圆上各点均到一个固定点等距) 

Figure 6.1.1. Re-languaging circle’s definition. 
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This hierarchy shifted my focus to the first part. With the idea of “a collection of points” 

emphasized, my understanding of circle was reconstructed using this idea as the core, and so did 

my understanding of graph in general.  

Such attentional shifts and cognitive growth, no doubt, are inseparable with many 

conditions at play during that time, such as my feeling closer to the word “collection” than “集合 

(ji he)” 14, my being new to the circle definition in English, my English reading habit (i.e., 

reading word by word from left to right and concentrating on the main clause to facilitate my 

understanding), and my enhanced appreciation towards the distance formula and graph-point 

relation after finishing teaching the line equations and the distance formula prior to the circle unit. 

Therefore, this story is offered here neither to argue for a particular way to change language nor 

to attribute my conceptual growth to language change alone, but to suggest an interpretation of 

re-languaging as a process of wording something in a way with a different focus and its 

affordance for shifting attention for a deeper understanding. The fact that my mathematical 

understanding grew while I was reading a previously known Chinese definition in English does 

not suggest the language change from one national language to another is a decisive factor, rather 

it suggests us to attend to moving a reader out of an automatic habitual reading zone through 

language change. Such move might have been possible through addressing the same language 

differently, e.g., rereading the same wording in a sequence of parts, with certain parts highlighted, 

or more reflectively.  

As repeatedly making language more meaningful and less arbitrary  

                                                           
14集合(ji he) is a technical term in Chinese for the concept of set. I felt less connected to the term ji he due to my 
uneasiness towards technical terms in general and the concept of set in particular. Despite that ji he is also 
commonly used in daily life, meaning such as “get together” (Chinese Academy of Social Sciences, 2002, p. 908), 
while ji he is used in the Chinese definition of circle, I read it contextually as a technical term. Since ji he can be 
translated into group, collection or set, all of which are read mostly as daily used words in English for me, when I 
interpreted both ji he and set as collection, the circle definition in English became less technical and more common 
sensed for me.  
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Two personal stories repeatedly came to mind when I thought about re-languaging a 

mathematics idea. One is about using English to interpret a previously learned mathematical 

concept with an obscure Chinese name. Another is an experience of returning to Chinese to 

interpret a previously learned mathematical concept with a hard-to-remember English name. 

Albeit these two stories are similar to the previous one, in that they involve language translation, 

I use them here as spring boards for interpreting re-languaging differently.  

幂 (mi). When I was introduced to the exponential relations during my high school years 

in China, I was taught a Chinese term “幂 (mi)”, a character that I barely knew and 

seemed to use rarely in non-mathematical contexts. mi remained as an arbitrary, thus 

alien, term for me for a long time. This arbitrariness of many mathematical terms made 

me feel disconnected with the corresponding mathematics concepts and added to my 

frustration towards mathematics education in general for its seemingly irrelevance to a 

learner’s daily life. When I started to teach mathematics in English, I learned “power” 15 

as the English translation for mi in mathematics. “Power” was a plain and familiar word 

for me. Suddenly exponential relations made lot more sense to me: Raising a number to 

its nth power is indeed a powerful process as the number’s absolute value can get larger 

fast, and exponential growth is important for us to know because it is a powerful 

phenomenon. Since then, I started to feel more comfortable with the word of mi, the 

concept of exponential relations and mathematics in general.   

                                                           
15 Since 𝑎  is read as “a 的 n 次方/幂 (the nth fang/mi of a)” in Chinese, “the nth power of a” in English, it seems 
like mi = power. However, mi, by definition “表示一个数自乘若干次的形式” (Chinese Academy of Social 
Sciences, 2002, p. 1334) translated literally as “the form of the representation of the multiplication of a quantity by 
itself several times”, only refers to the form and the whole of 𝑎 , whereas power can also refer to n, which is the 
exponent (指数 zhi shu) or index.  
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Asymptote. Before I taught asymptote in high school mathematics classes in English, I 

rarely remembered the word “asymptote”: I had to look it up in a Chinese-English 

dictionary whenever I encountered it, and I thought of nothing beyond translation. When 

I started to teach asymptote in English and needed to remember the word, I checked its 

Chinese translation again. This time, I re-cognized that “渐近线 (jian jin xian)” is not an 

arbitrary name or a simple translation of asymptote. It actually tells me the key feature of 

asymptote. Literally translated, jian jin xian is “[a] gradually approaching (or getting 

closer) line” or paraphrased as “a line [that a graph is] gradually approaching” or “a line 

that is gradually approaching [a graph]” to me. It can be interpreted as an abbreviated 

version of the definition of asymptote, i.e., “A line which approaches nearer and nearer to 

a given curve, but does not meet it within a finite distance” (“Asymptote”, 1989), without 

losing the key mathematical feature of this concept. Along with this interpretation, an 

image came to me - I saw a person walking closer and closer to a line. Once I visualized 

it, a funny metaphor came too - an asymptote is like a dream lover whom one tries to 

approach but is never able to meet. With the establishment of the image and metaphor, I 

sensed a better understanding of asymptote and found easy to remember the word 

“asymptote”. I added the Chinese name of asymptote to my lessons and the dream lover 

metaphor always made my students laugh. Since then, I started to treat mathematical 

terms as a source of meaning, expecting them enriching my understanding of 

mathematical contents and bringing forth interesting metaphors.  



TOWARDS RECURSIVE MATHEMATICS CURRICULA 101 

In both mathematics related stories, I had difficulty to remember or understand a 

mathematical term. My difficulty was not about whether the term was new to me or not, but its 

perceived lack of meaning. I had seen neither asymptote nor mi outside their mathematical 

contexts. In fact, asymptote has only one meaning as a mathematical term (“Asymptote”, 2019) 

while mi’s other two meanings as “cloth cover” and “cover” (Chinese Academy of Social 

Sciences, 2002, p. 1334)  are rarely observed in contemporary Chinese context. Meanwhile, both 

asymptote and mi had no recognizable pictographic or semantic parts for me, at that time. Hence, 

they were meaningless, serving as indecomposable arbitrary signs, with a sole function of 

pointing away for meaning. Such 

signs demanded extra memorization 

and brought forth alienation and 

discontinuity in meaning (see Figure 

6.1.2a for a visualization of the status 

before re-languaging).  

Replacing these terms using 

more familiar words that have 

meaning beyond mathematical 

contexts changed the story. Both jian 

jin xian and power include words used 

widely in daily living contexts; there 

are recognizable parts (in the case of 

jian jin xian, which essentially is a 

compound word) or whole (in the case of power) for me. So they enlarged the meaning space 
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b. After re-languaging: Term 1 and Term 2 are connected 
through referring to the same meaning (i.e., Topic A). The 
connection between Term 1 and Topic A strengthens 
(representing as a solid line) through gaining access to other 
meanings associated to Term 2. 

a. Before re-languaging: Term 1 and Term 2 are 
disconnected, referring to disconnected topics. The 
connection between Term 1 and its referred meaning is 
presented as broken line to signifying an arbitrary 
connection. 

Figure 6.1.2. A visualization of the statuses before and 
after re-languaging 
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from which I can draw to understand the mathematical referents. The terms that were initially 

strange became less alien, because of their respective associations to a more familiar word and 

consequently an enlarged meaning network (see Figure 6.1.2b for a visualization of the status 

after re-languaging).  

More significantly, the literal meanings of both new 

terms are in consistent with their mathematical referents. 

Being informative for what they are referring to, these two 

terms serve as more than arbitrary languages pointing away for 

meaning (see Figure 6.1.3a) but also self-referential pointers 

that point back to themselves for a consistent meaning (see 

Figure 6.1.3b). By pointing towards multiple places (as 

discussed at the end of this section, this includes the terms and 

the language, knowledge, and culture systems in which they 

are situated) for a coherent meaning, the new terms afford 

more meaning making: Not only can multiple perspectives of 

the same referent become possible, also inconsistencies, if there is any, between these 

perspectives can become perceivable, offering opportunities for one to renew one’s 

understanding. Therefore, the re-languaging process described in both stories involves a change 

of language at the level of familiarity and coherence. 

Through engaging words connected better with the learner and sharing a consistent 

meaning with what they are referring to, the new language allows meaning making at the 

language level (i.e., at the sign vehicle level) possible and beneficial: The language is no more 

considered as a transparent bridge to some meaning waiting to be conveyed, but an integral part 

 

Object 

Name 

Object 

Name 

a. Sign as a pointer pointing 
away for meaning 

b. Sign also working as a self-
referential pointer 

Figure 6.1.3. Sign as two 
different types of pointers. 
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of the meaning. Making sense of the language is part of making sense of its referent. The 

increase of familiarity and coherence allows learning to resume as a continuous growth of new 

meaning on the old, allowing one to make sense of the referent using already familiar meaning 

and demanding less on rote memorization. Re-languaging, hence, is a process of meaning 

making and sense growing through changing a language to less arbitrary and more meaningful 

one.  

A re-languaging process is essentially endless, as suggested by the later development of 

my re-naming story. My finding the two sensible names pointed me back to the two names that I 

initially found senseless and later back to the two sensible ones again:  

Why 幂 (mi), asymptote, and power? After I noted the existence of meaningful names 

and their affordances in sense making, the arbitrariness and meaninglessness of names 

such as mi and asymptote became questionable. There must be some good reasons why 

they were chosen or invented as names, and knowing these reasons could help me 

understand more about the related concepts (e.g., when and how these concepts emerged). 

This led me into etymology. I found that asymptote does have a meaningful connection 

with what it refers to and it has interpretable parts, as it derives from “modern Latin 

asymptota (linea) ‘(line) not meeting,’ from Greek asumptōtos ‘not falling together’, and 

from a ‘not’ + sun ‘together’ + ptōtos ‘apt to fall’” (“Asymptote”, 2019). As for mi, it 

was used to represent exponent by Chinese mathematician Liu Hui in 263 BC. While not 

knowing how Liu Hui connected this Chinese character with a general meaning “cloth 

cover” as a noun and “cover” as a verb (Chinese Academy of Social Sciences, 2002, p. 

1334) to the mathematical concept of power, I started to see mi having meaning from 

somewhere. Once mi became a legitimate source of meaning, my imagination took root. 
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A connection between mi and exponent through the visual similarity between the image 

of the cloth covering something and the image of Pascal’s Triangle, as suspected by my 

colleague Xiong Wang, seemed possible. In all, this inquiry into meaning drew me closer 

to these two names: I was more contented with them as names for believing that my 

further inquiry into their origins would bring forth more meaning. Later my supervisor 

promoted me to check the origin of the name “power”. It turned out that “power” has a 

root of poti- i.e., “powerful, lord”, corresponding well with “powerful” exponential 

results (Schwartzman, 1994, p. 170).  So then I asked “Why was jian jin xian chosen as a 

name for asymptote? What other names have been used for the same mathematical 

concept in different times and spaces?”  

The initial re-languaging processes that seemingly sent me away from the two alien terms 

actually paved a path for me to come back to them later. Finding more meaningful terms to 

replace asymptote and mi motivated me to proceed further in making language meaningful. 

Through questioning the origins of new and old terms, I saw the same language differently: 

Asymptote becomes a whole with meaningful parts and is consistent with its referent; mi and 

power have a story of becoming to tell. Essentially, both terms became self-referential pointers 

for meaning. This also opened the door for drawing meaning from the wholes (e.g., the language, 

knowledge, culture systems) in which the terms are situated, hence further enlarging the meaning 

space for their referents.    

As a whole, my story with asymptote and mi illustrates a back and forth meaning making 

process through re-languaging, in which the strange is made familiar and the familiar is made 

strange repeatedly, and in which coherence between language and meaning is questioned and 

pursued.  
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As using equivalent languages to move inquiry forward and backward 

Looking back at the previous re-languaging stories, I see re-languaging as a process of 

meaning making through changing between equivalent languages. Here “equivalent” is not 

“equal” in mathematical sense. Equivalent languages can be different wordings of the same 

information (as the circle definition story shows) or different languages with different 

information yet serving the same function (as the story of renaming shows), e.g., as a name, 

definition, question, answer, instruction, and so on. In both situations, re-languaging moves the 

learner away from the initial wording and back.  

This is easy to understand when languages with the same information are involved as one 

basically stays in the same meaning and functional space. Different wordings of the same 

information serve as alternative interpretations that help to inform each other and the information. 

When languages with seemingly different information are involved, like asymptote and jian jin 

xian, the re-languaging process starts with a change of anchor – the languages are no longer 

anchored in the same meaning but the same function. A shift of consideration can happen, from a 

part to a bigger whole (e.g., a particular information about a topic to the topic itself), and from 

what the part means to what it does in the context of a bigger whole. This is a step backward to 

see a bigger picture and to recall where one is heading. For example, in my renaming terms 

story, my fundamental goal was to understand the mathematical concepts referred by the terms, 

but the inconsistency between the concepts and their names got into my way of sense making. 

Changing names allowed me not to get stuck with the meaning of some words but continue 

getting familiar with the concepts. The significance of this change of anchor has in keeping 

thinking and learning going is also illustrated in the following story of a teacher participant.   
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What is my question? When asked to provide an experience in which he re-interpreted a 

mathematical idea during Workshop 3.2 (Re-interpreting), Bill drew a diagram (see 

Figure 6.1.4) and explained:   

“I drive a lot… I needed to 

travel 10 km at 120 km/h. So I 

was thinking how many minutes 

I need. If I use the standard way, 

10km divided by 120 km/h, so 

it’s hard to have mental math, 

right? 1 divided by 12, it’s not 

easy. So, usually I think, maybe 

I can think in another way. In my mind it’s easy to think if [I] change 120 km/h to 

per minute. So 120 divided by 60 is 2. So 2 km/minute. If I know that, then it’s 

easy. I know 10 km divided by 2 km/h is 5 minutes. This is much quicker. So this 

is based on my experience. I need to do the division, but how do I do division?” 

When asked whether this is breaking the task into a smaller one, Bill responded:  

“Just change the solving method, I think. I was dividing, but I was changing, so 

either 10 km/ 120 or 10 km/2, which one do I divide by? So I have to rethink the 

question. I have to figure out “What is my question?” [upon hearing this, I wrote 

“re-questioning, asking a different question” on the board as an interpretation of 

re-interpreting] Although the question is so apparent: I need to find the time. But 

how do you find the time and which [method] do you use, how do you divide? So 

this is how I make it a little bit simpler to have mental math.”  

 Figure 6.1.4. Bill’s diagram. 
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Illustrated in Bill’s story, when he encountered difficulty in his task, he stepped back and 

reconsidered where he needed to go by asking “What is my question?” This led him to reword 

the problem to be solved, changing “What is the time in hours?” into “What is the time in 

minutes?” These two problems, albeit different, served the same function (i.e., guiding question) 

in Bill’s task, hence they were equivalent. This change of languages moved Bill’s thinking 

forward and kept it going, and subsequently, he solved both problems. This is similar to my 

renaming experience, in which my language change helped me understand and/or relate to the 

mathematical concepts differently and triggered me return to the names I got stuck and interpret 

them again.  

 In a sense, re-languaging is like using a different placeholder for something that one is 

trying to understand and employ in order to move on in the inquiry, with an openness and 

patience to see where one can get to later, a confidence that one can figure out what the 

placeholder is holding later after one goes further enough, and a commitment to come back to 

resolve issues later if there is still any. I see this moving on with a tentative placeholder the same 

as the one underlying algebra. In contrast with arithmetic, which works only with known facts 

towards knowing the unknown, algebra works with both known and unknown, including both of 

them in our logical reasoning and waiting to see where we get to then (Boole, 1909). “This 

method of solving problems by honest confession of one’s ignorance”, Boole writes, “is called 

Algebra” (p. 14). The process of re-languaging, like algebra, is also motivated by an 

acknowledgement of temporary limitations and a faith in the generative nature of the process.   

 On the other hand, re-languaging is not just changing placeholders to maintain a flow or 

continuity in process, nor is it moving on with something totally unknown. It is driven by 

meaning and essentially a meaning-making process. So coherent meaning is the primary focus. 
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Re-languaging demands the learner to use a contingently more meaningful placeholder to replace 

its previous one. Pragmatically, it enlists a good-enough-for-now placeholder for the learner to 

move on with a sense of coherence, continuity and confidence. The learner’s mathematical 

understanding developed later might challenge her previous one and problematize the previously 

perceived coherence (i.e., the one between the more meaningful placeholder and its referent) and 

incoherence (i.e., the one between the less meaningful placeholder and the same referent). The 

same need for coherence would bring the learner back to address these issues, affording a 

renewed understanding of the same language and its related topic and a new sense of coherence. 

In my case, changing “asymptote” to “jian jin xian” as equivalent in function eventually allowed 

me to come back to see them as equivalent in meaning and consistent with what they refer to. So 

this moving away from one language to its equivalence is a beginning for a recursive inquiry 

about the same topic. Re-languaging is a process moving forward with a determination to move 

backward. Using equivalent languages, it keeps inquiry going and returning.   

As attending to and enlisting equivalent languages’ different affordances for thinking  

My further contemplation of my renaming experience provoked me to interpret re-

languaging in the light of language’s affordance for thought in general.   

The affordances of language in thinking. When pondering on the linguistic changes 

involved in the two renaming stories, I noticed that the two names jian jin xian and power 

are telling me different things about their referents: The term “jian jin xian” describes the 

visual look of asymptote and paints a vivid image for me, and the term “power” captures 

a sense of exponential relations (i.e., quantity changing fast) as a whole. In comparison, 

the first name depicts the look of the whole and the second name depicts the sense of the 

whole. Viewed together, both names have a focus on the individual referent. This 
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categorization quickly put many Chinese names in a contrast group: They inform both the 

referent and its relation to others. Many things belonging to the same class, mathematical 

or not, are named with a shared character in Chinese. For example, 2D shapes are named 

ending with the character of “形 xing (shape)” (e.g., triangle = 三角形 san jiao xing, 

square = 正方形 zheng fang xing), many properties of a circle are named starting with the 

character of “圆 yuan (circle)” (e.g., circumference = 圆周 yuan zhou, center of the circle 

= 圆心 yuan xin), and all two-digit numbers have “十 shi (ten)”, located often between 

the names of two figures (e.g., 10 = 十 shi, 11 = 十一 shi yi, 12 = 十二 shi er, 20 = 二十 

er shi, 21 =  二十一 er shi yi, 22 = 二十二 er shi er).  

Exactly as Pimm (1995) says, “names stress and ignore” (p. xiii), these three 

kinds of names, in comparison, stressed differently for me: the appearance or feature of 

the whole (hence parts), the sense of the whole, and the referent’s relations with others 

respectively. Consequently, they led me to think about their individual referents 

differently, eliciting more visual thinking, analogical thinking, and relational thinking 

respectively. Obviously these three ways of thinking are helpful in my learning of the 

concept.  

The significance of the above reflection is not just to offer some practical suggestions for 

creating equivalent languages, but to provoke me to think about how re-languaging might offer 

learners a chance to work with different kinds of languages and benefit from their different 

affordances for thinking, and become aware of the influence of language in thought.  

Experience with equivalent languages for the same referent could bring forth conscious 

or unconscious differentiation and equalization. While trying to match different languages to the 

same referent, the different affordances of each language become noticeable: Different languages 
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can reflect different assumptions, point to different directions, or suggest things not in harmony 

with each other. Such experience with equivalent languages is promising to lay a foundation for 

later reflections on the influence of language in thinking in general.  

Re-languaging has affordance for bringing the influence of language into learners’ 

awareness and urging them to actively use languaging as a thinking process. By inviting a learner 

to encounter and work with the equivalent languages of the same referent, a re-languaging 

process could invoke different ways of thinking and encourage reflection on the influence of 

language on thinking in specific or in general. In this sense, re-languaging is a process of using 

equivalent languages to attend to and enlist their different affordances for thinking.  

Back to re-languaging as a whole  

Many mathematics sign vehicles can be interpreted as symbolic when noting them as 

conventionally chosen signifiers. Rarely do etymological questions about them seem to arise. 

When their legitimacy is taken for granted, they become more arbitrary and less meaningful. A 

combination of a meaningless signifier and an abstract signified hampers the meaning making of 

a learner. Re-languaging, a process that problematizes arbitrary mathematics language and 

demands contingent meaning from it, could be helpful here. It turns language from a transparent 

medium for meaning delivery to a part of the meaning and a tool for meaning making. Re-

languaging allows the learners to build up their understanding of the idea using language that fits 

their current understanding level, enabling later returns to the original wording for different 

interpretations. The purpose of re-languaging is not to find the perfect language, but to sustain a 

combination of coherence and incoherence, which is tentatively good enough for one to continue 

with one’s inquiry yet unsatisfying enough to attract one to return and tackle later. Meaning is 

generated through this recursive movement, rather than at the end of this movement, and it is the 
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drive for meaning and coherence that moves one away and back. Using equivalent languages, re-

languaging ensures both coherence and continuity; it also enlists the affordances of language for 

thinking and opens space for the learner to think about mathematics and language differently.  

6.2 Re-imaging 

Re-imaging is a process of generating a different image to present something with an 

orientation or outcome of understanding it anew. An image can be physical (sharable and 

accessible for other people) or mental (accessible only for the self). Here, I use “physical” and 

“mental” for lack of better terms without stressing the division of external objective world and 

internal subjective world, and that of body and mind. A physical image contains all the 

information accessible for humans to generate mental images. A mental image contains the 

visual and spatial information perceived and interpreted by an individual viewer of a physical 

image, and consequently it can exclude certain details of the given image yet include information 

beyond what is given. Therefore, mental images are idiosyncratic: When presented the same 

physical image, different viewers can generate different mental images (Presmeg, 1992; Presmeg 

et al., 2016).  

The word image is used to refer to a spatial and visual construct. In mathematical 

contexts, an image can be composed of elements that are commonly viewed as linguistic 

symbolic elements (e.g., letters, numbers, mathematical symbols and notations), elements that 

are commonly viewed as pictorial graphical (e.g., mathematical graphs, diagrams, drawings, 

pictures, and photos), spatial (e.g., three dimensional manipulatives, models), or kinesthetic (e.g., 

gesture, motion), and empty space (for physical images) or blurry unknown content (for mental 

images). My use of image here is a conflation of Presmeg et al.’s (2016) “sign vehicle” 

(corresponding to physical image) and “visual image” (corresponding to mental image). Yet I 
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chose the term image in my writing 1) to include both mental and physical images; and 2) to take 

advantage of the common association of image and pictures in order to emphasize the picture-

like aspect of a sign vehicle and destress its linguistic symbolic or kinesthetic aspect. Although 

the physical images discussed in this section are limited to two dimensional spatial and visual 

constructs, it is acknowledged that all sign vehicles have an imagery dimension, offering a sign 

user certain spatial-visual stimuli.  

Since a re-imaging process includes image changes, I need to clarify certain image 

related terms and image categorizations to situate my interpretation. As I have talked about sign 

vehicles and their types in section 6.0, here I focus on visual images. Visual image is “a mental 

construct depicting visual or spatial information” (Presmeg, 1992, p. 596). This deliberately 

loose definition, as Presmeg (1992) conceives it, allows a broad coverage of multiple imagery 

possibilities without confining to the common form of imagery - “pictures-in-the-mind” 

(Clements, 1982, p. 36; called “concrete images” by Presmeg, 1992, p, 596). It includes 

imageries that “depict shape, pattern or form” (Presmeg, 1986, p. 42), which covers the “number 

forms” (Paivio, 1971, p. 482) generated through arranging verbal, numerical, or mathematical 

symbols spatially, beyond the kinds of imagery that “attains the vividness and clarity of a picture” 

(Presmeg, 1986, p. 42). Therefore, visual images might have a visible form: gestures, motions, 

three dimensional objects, photos, drawings, paintings, diagrams, graphs, tables, lists, and etc. 

The synonyms of visual image include visual imagery, visual representation, and mental image. 

Visual images are tied to visual processes or visual modes only, whereas mental model, mental 

representation and mental imagery (sometimes called imagery, e.g., Presmeg, 1992, p. 596) are 

not, as they can be constructed based on sensorimotor information in multiple modalities – visual, 

auditory, tactile, gustatory, and olfactory. Visual/mental images can be categorized as concrete, 
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pattern, formula, kinesthetic, dynamic as Presmeg (1992) suggests. Yet, this categorization is 

also individually contextualized: A mental picture of an equation, such as 𝑎𝑏 = 0, can be 

concrete when the viewer is taking it as a special case of the pattern – a product of two quantities 

equals to 0, formulaic when the viewer is taking it as a formula, or pattern when it is used to 

represent a class of cases.  

Given that the term of image in this section is a conflation of both sign vehicle and visual 

image and neither construct cannot be categorized without the image user’s interpretation, the 

type of an image is relative – it is interpretive and contextualized, and an image can have 

multiple types at the same time. For instance, the same image of 𝑎𝑏 = 0 can also be viewed as 

symbolic (presenting an abstract and conventional mathematics equation), iconic (presenting an 

image made of lines and shapes), or indexical (pointing towards solving the equation) by 

different viewers or by the same viewer at different times.  

Albeit an image’s type is fluid, when comparing one image with another, we can still say 

that one image has more affordances to be viewed as one type than the other in certain contexts. 

For example, for a high school student (e.g., when reviewing solving factored equations for 

roots), 2(0) = 0  is more likely be viewed as representing a specific individual case when 

comparing with ( )( ) = 0, which is more likely be viewed as representing a general case. But 

this can change when ( )( ) = 0 is compared with 𝑎𝑏 = 0: The previous equation might be more 

likely viewed as a concrete case than the later one16. It is in this kind of situation of comparison, 

Presmeg’s (1992) two categories of visual images, i.e., concrete and pattern images, can be 

applied to physical images too. The change between a more concrete image and a more general 

pattern image will be the focus in later section.    

                                                           
16 This comment is made based on my experience with students. The presence of symbols seems to disturb students 
(out of their uneasiness with variables) quickly. In comparison, the presence of blank or a box seems less daunting. 
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The following three rounds of interpretation of re-imaging start with two related 

experiences of re-imaging a mathematical idea, based on which I tried to understand what 

changes are possible during a re-imaging process and under what conditions a re-imaging 

process might happen.  These two experiences also led to a journey of seeing that contributed to 

my further interpretation of re-imaging. Although my stories are related to sighted people only, 

my interpretations of re-imaging are general enough to apply to images constructed based on 

sensorimotor information in multiple modalities. 

As seeing/sensing the same image differently 

Maxine’s seeing a division bracket. Maxine 

mentioned that she used to have difficulties to 

teach students polynomial division using algebra 

tiles. Students didn’t seem to understand it; they 

often had troubles with where to place what in 

their display of division work. One day, she was 

looking at a drawing of polynomial division with 

algebra tiles (e.g., (2𝑥 + 4𝑥) ÷ 𝑥 in the top 

section of Figure 6.2.1), she suddenly saw a 

division bracket (as highlighted in the bottom section of the Figure 6.2.1) standing out. 

She realized that she could teach polynomial division by drawing connection to the 

number division topic that students had learned in their primary grades. Once she started 

to draw a division bracket when teaching polynomial division with algebra tiles, her 

students had no difficulties to remember where to place what.   

Figure 6.2.1. Maxine’s seeing a 
division bracket. 
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Lixin’s seeing a triangle area formula. A few months later, I was typing “Seeing proof 

without words, e.g., 1+2+3+…+n= n(n+1)/2” 17 on a computer while preparing for the 

Re-imaging Workshop 3.4. Suddenly, I saw the triangle area formula A=bh/2 emerged 

from “n(n+1)/2”. I could not recall that I had noticed this before. Given that I have been 

further sensitized towards re-imaging by Maxine’s example, I knew that this seeing the 

same image differently might lead me to somewhere useful. I started to think how I could 

make a triangle to represent 1+2+3+…+n.     

Both stories illustrate a kind of experience in which one gains a new insight of a 

mathematical idea/situation after one suddenly sees the image representing the idea/situation 

differently. This sudden revelation, or aha experience, is a kind of thinking and problem solving 

process interpreted through Gestalt psychology. Gestalt psychologists view thinking and problem 

solving mainly as finding the right representation of the problem, which “basically means a 

restructuring of the problem representation” (Schnotz et al., 2010, p. 14). A problem solver 

might mentally change, amplify, reorganize the given problem material and suddenly perceive 

new relations between elements of the material (Montgomery, 1988, cited in Schnotz et al., 

2010), resulting in an altered mental representation of the problem (Schnotz et al., 2010). When 

the perception of the problem situation is suddenly reorganized into the “right” one, the correct 

solution becomes immediately obvious as it can be read off from this new perception (Schnotz et 

al., 2010).  

Maxine’s experience of revelation happened unconsciously, triggered by a noticing of 

“things that look alike”. Maxine did not intend to see something different in the image; she was 

                                                           
17 I need to keep the expression n(n+1)/2 in this format because this is exactly what I typed. I gradually saw a 
triangle formula as I typed one symbol after another. The sequence of typing is important, I think, as it coincides 
with my habitual memorization of triangle area formula as “base times height divided by 2”, or symbolically, as 
bh/2. To emphasize the visual similarity that I perceived in the two expressions, i.e., n(n+1)/2 and bh/2, I highlighted 
them in bold in the following sentence.    
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just looking at it while considering students’ difficulties. Suddenly she noticed something new: 

The two intersecting lines in the representation of the polynomial division with algebra tiles 

became a division bracket or division sign. This “looking alike” led to a connection of 

polynomial division to number division, mathematically and pedagogically. With a similarity in 

form matched by a similarity in mathematical structure, the teaching and learning of polynomial 

divisions becomes a review of one’s prior learning of real number divisions. Maxine found a way 

to make the strange and new topic (i.e., polynomial divisions) familiar and old. Maxine’s 

teaching problem was solved.  

Similar to Maxine, I also experienced a process of sudden seeing an image anew without 

purposefully trying: I saw n(n+1)/2 as bh/2. These two images have a level of appearance 

similarity relatively lower than the two in Maxine’s example: At a glimpse, they do not look 

identical. Even both of them have a similar part “/2”, but given how many specific cases can be 

related to this part, this similarity is not informative enough. Seeing them identical requires me to 

compare the two images at the level of whole and draw upon semiotic meanings: These two 

images became identical for them sharing the same pattern image - half the product of two 

quantities. When a casual notice of similarity in form was matched with mathematical structure 

similarity through my later semantic interpretation, this resulted into connecting two initially 

different topics and solving my proof problem.  

The image change in Maxine’s and my re-imaging experience is subtle yet salient: It only 

involves highlighting (and/or modifying) small parts of the original image yet it produces a 

different image structure that links to a different topic, consequently making this new topic’s 

related meanings and/or associated images usable for the topic at work.  Our experiences 

illustrate a re-imaging process that is seeing/sensing the same image differently, and it involves a 
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change of the referent (i.e., the signified) of the initial image (i.e., the sign vehicle) and might be 

triggered by asking what the image or parts of the image look like.  

As changing between equivalent images 

Before the next round of interpretation of re-imaging, let’s read the second part of my re-

imaging experience which has a development different from Maxine’s.  

Lixin’s seeing a triangle area formula (continued). After I saw a triangle area formula 

in n(n+1)/2, I started to think how I can make a triangle to represent 1+2+3+…+n.  I went 

through multiple tries, representing the sequence of n consecutive numbers as a triangular 

stack of dots, and later squares, and 

squares with a triangle embedded 

(see Figure 6.2.2 for three images at 

different stages). The final image 

made the problem solution immediately obvious: The addition of n consecutive numbers 

becomes calculating the area of a quasi-triangular shape, and it is equal to the area of the 

triangle plus an extra area beyond the triangle, which can be found by n/2. Thus 

1+2+3+…+n = n(n)/2 +n/2 = n(n+1)/2.  

It seemed to me that both Maxine’s and my re-imaging processes started with two 

isolated18 sets of image and topic associations (see Figure 6.2.3a). Upon noticing a common 

structure in the respective images, both Maxine and I connected images and then the two initially 

unconnected topics (see Figure 6.2.3b). These connections came, with one image turning into a 

pattern image of the other or two images becoming two concrete images for the same pattern 

                                                           
18 This isolation might be the result of not having consciously connected these two topics before (e.g., grade 12 
students who have never connected fraction with limit), or having forgotten that they have connected them before 
due to automation (e.g., experienced learners who forget that they have connected the sum of numbers to area of 
triangle before). This isolation is my interpretation from an observer’s perspective, based on how surprised both 
Maxine and I were by our “newly” discovered connections. 

Figure 6.2.2. Representing the sum of n 
consecutive numbers. 
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Topic A 

Image1 

Topic B 

Image2 

a. Two initially unrelated topics and their associated images 

Topic A 

Image1         

Topic B 

Image2 

b. Two seemingly unrelated topics are connected after a 
connection between their associated images is built 

Figure 6.2.3. A visualization of a re-imaging process. 

image. Simply put, our re-imaging processes involved a change between concrete image and 

pattern image.              

However, there is more to 

the story. In Maxine’s case, since 

the two connected topics are 

mathematically equivalent, there 

could be an emergence of a new 

mental class (i.e. division) that 

subsumes these two topics and a 

new pattern image (i.e., the 

division sign with/out dividend, 

divisor, quotient parts) that 

captures the mathematical structure in the two related images (see Figure 6.2.4a). With a 

formation of a class and its associated pattern image at a higher abstract level, the two topics 

become two specific or concrete cases for the class and the two images become two specific or 

concrete cases of the pattern image. So, the re-imaging process in Maxine’s example is solely a 

change between concrete image and pattern image.  

In my example, the connected two topics (sum of consecutive numbers and area of a 

triangle) are not mathematically equivalent. This connection brought forth, not a new topic class 

or pattern image, but a process of constructing a novel image that can represent both topics (see 

Figure 6.2.4b). The identification of the topic connection through the same pattern image 

inspired me to create a hybrid concrete image that might be otherwise unthinkable for me. 

Therefore, the re-imaging process in my example is a generation of mathematically equivalent 
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concrete images. Essentially, both Maxine’s and my re-imaging processes involve a change 

between equivalent images. 

 

As learning from equivalent images’ affordances and limitations   

My contemplation of re-imaging was further benefited from a journey of seeing that 

happened along with my inquiry into recursion.  

A journey of seeing. I knew algebra tiles little before my PhD program and I rarely used 

it in my teaching. Intuitively, I felt it somewhat arbitrary thus confusing. In Workshop 3.2 

(Re-interpreting), after provoked by Maxine’s story of seeing a division bracket in 

polynomial division, I tried to connect polynomial division with area formula and 

multiplication table in order to help students understand division done by algebra tiles. I 

started to see area formula, multiplication table and division done by algebra tiles sharing 

Topic  
 Class of A+B 

Pattern of 
Image1+2 

Topic A 

Image1         

Topic B 

Image2 

Image
3 

Topic A 

Image1 

Topic B 

Image2 

a. Concrete images -> pattern image 

b. Concrete images -> new equivalent concrete image 

Figure 6.2.4. Two kinds of change between equivalent images. 
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the same image. The strangeness of algebra tiles decreased, yet my initial discomfort 

towards it remained.  

Later after Workshop 3.3 (Re-experiencing), I came up with different number line 

representations of the same mathematics equation (i.e., −6 − 2 = −8) that we worked on 

during the workshop. I sensed that these different images invoked me to think differently. 

This experience further increased my sensitivity towards the affordances of images for 

thinking before Workshop 3.4 (Re-imaging).  

At the beginning of Workshop 3.4, Maxine mentioned that some students still go 

back to draw a diagram to check their multiplication of two mixed numbers, even though 

they had moved away from that beginning stage and could multiply by changing the 

numbers into improper fractions at first. I invited her to show me the diagram (see Figure 

6.2.5a).  

 Maxine explained that the process involved in generating this diagram is the 

same as the one involved in the long multiplication (i.e., 27 × 35). From there, we went 

on to connect many forms of the same process (see Figure 6.2.5 presenting images drawn 

                                                           
19 Grade labels are credited to Maxine. Two of her labels (i.e., G6 for Figure 6.2.5e and G6 for Figure 6.2.5f) are 
different from the categorization in the Alberta programs of studies (i.e., G8 and G4/5 respectively). I kept the lower 
grade for both cases here.  

 
a. 
Multipli-
cation  
Chart 
 

 
b. 
Multiplying 
Binomials 

 
c. 
Multiplication / 
Division with 
Algebra Tiles 

 
d.        
Division with 
Polynomials 

 
e.    
Distributive 
Property 

 
f.               
Long 
Multiplica-
tion 

 
g.      
Area 
Model 

 
h. 
Multiplica-
tion Chart + 
Area Model 

G7/8 G10 G9 G10 G619 G4/5 G7 G3/4 

Figure 6.2.5. Equivalent images. 
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on the whiteboard and arranged chronologically from left to right) and identify the grade 

in which a learner might start to see each of the forms.  

We saw them essentially representing the FOIL method and distributive property. 

We agreed that learners actually encounter the same model across grades, and it would 

help learners to see this if teachers can bring them back to the same model image 

repeatedly over grades.  

For such image, I recommended the area model, because it is more meaningful 

than a multiplication table that only shows numbers: You do not have to multiply, e.g., a 

by c in the top-left rectangle in Figure 6.2.5g, because your teacher tells you to do so; you 

multiply because that is how you can find the area of the rectangle (you can even draw 

many unit squares in the rectangle to show why this multiplication works to get the area), 

treating a as its width and c as its length. Then it is logical to add all the areas up to get 

the total area of the big rectangle in which all the small rectangles reside, rather than 

being told to do so as a rule.  

While agreeing with me, Maxine mentioned something different: Her students 

had problems to understand how to get x square tile from x tile, even after she drew a 

diagram of a x tile besides a x square tile and told them to multiple x length and x width to 

get x square. So she took the algebra tiles out, and she put a x tile along one side of a x 

square tile and then the other side while explaining “Look, a x tile and a x square tile have 

the same length, [and then] the same width”. Her students finally got it: “Oh, that’s how 

you get the square.” Maxine said that they finally saw the area. Maxine’s story provoked 

me to think about my own uneasiness with the algebra tiles. Yes, the x tile is confusing: 

As a rectangle, it invoked me to view it as an area of 𝑥 × 1, i.e., a two dimensional 
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construct (2D), yet to understand how it is related to the x square tile, it should be a one 

dimensional construct (1D), i.e., a length of x.   

By the time I looked back at the video clips of the Re-interpreting Workshop, I 

connected my initial seeing and later seeing. Yes, an image showing multiplication can 

also be read as representing division. Yes, the division in algebra tile, the area model, and 

the multiplication table are also the same. But, wait, they are also different. When 

merging the algebra tile division and area model, seeing division in algebra tile model 

implies that Area / Area = Area (i.e., 2D / 2D = 2 D). When merging the multiplication 

table and area model, seeing division in a multiplication table implies that Length / 

Length = Length (i.e., 1D / 1D = 1D). Both implications are in conflict with the area 

model, which suggests 1D × 1D = 2 D.  In addition, a multiplication table can represent 

grouping situations but it seems impossible in the algebra tile model. All these thinking 

led me to see 𝑎 × 𝑏 = 𝑐 anew: This equation can be interpreted, before a learner 

encounters algebra tiles, as Quantity × Quantity = Quantity, # of groups × Group size = 

Quantity, Length × Length = Area, and maybe Length × Area = Volume. However none 

of these seems to help a learner to understand what multiplication/division with algebra 

tiles is about. Algebra tiles are all two-dimensional objects. Hence it can draw one away 

from using an algebra tile to represent a one-dimensional quantity, such as number of 

groups or a number. Rather it induces one to think of area model, and lead to an illogical 

conclusion, i.e., Area × Area = Area. I finally see what my students might see in these 

images that I could not see before.  

In the above journey of seeing, I went through a process of seeing many different images 

the same and then a process of seeing the same images different. In other words, I went through a 
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process of re-imaging in reverse directions: first changing different concrete images to the same 

pattern image, later changing the same pattern image back to concrete images. Of course the first 

change is important as it is a process of abstraction thus a key aspect of mathematising 

(Freudenthal, 1991). But the problem is once one sees some images the same, it can be hard to 

undo that and see them differently. It is harder when certain way of seeing has become a habit. 

The details that one experiences to reach an insight could be forgotten or simply not accessible 

for remembering due to automation, as Davis (2015) says, drawing support from Ericsson, 

Charness, Feltovich, and Hoffman’s (2006) study of experts’ and novices’ strategies of 

engagement: Expert knowers tend to lose track of the difficulties encountered in their past 

learning and helpful parts (e.g., metaphors, exemplars) integrated in their understanding. This 

helps to explain why my students tend to make mistakes like 𝑠𝑖𝑛(𝑎 + 𝑏) = 𝑠𝑖𝑛(𝑎) + 𝑠𝑖𝑛 (𝑏) but 

I cannot understand why this tendency is hard to change. For students, this equation might be 

logical as 𝑠𝑖𝑛(𝑎 + 𝑏) looks like 3(𝑎 + 𝑏), but I can no longer see that as I have seen the pattern 

image of 𝑠𝑖𝑛(𝑎 + 𝑏) as 𝑓(𝑎 + 𝑏) for so long.  

My above journey of seeing illustrated well how working with multiple equivalent 

images helped me to see what I cannot see anymore. Through comparing and equalizing these 

images, I noticed their different affordances and limitations and had to negotiate between what 

they induced me to think about a certain mathematics idea and what my (un)conscious 

understanding of the idea is. Through these activities, I learned something new mathematically 

and pedagogically. In all, my journey of seeing suggests a re-imaging process as learning from 

equivalent images’ affordances and limitations. 

Back to re-imaging as a whole 
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All mathematics sign vehicles can be viewed as a spatial-visual construct thus having an 

imagery dimension. Recognizing this possibility, a re-imaging process invites one to attend to 

the spatial pictographic aspect of a sign vehicle and consider what it might be imaged/imagined 

like, and what the same mathematics idea can be represented otherwise. Such a reflective process 

aims to help one to see/sense the same image differently or generate an equivalent image, and 

eventually understand the shared mathematics idea anew. A re-imaging process also invites one 

to attend to how the spatial-visual elements of a sign vehicle invokes and limits one to think 

differently about the same mathematics idea. It is a back and forth process of working with 

equivalent images of the same idea. Thus, it subjects one to the different influence of different 

images, and affords one opportunities to understand the idea anew by collaborating with one’s 

automatic and unconscious understanding. Just like how the role of language changes in the 

process of re-languaging, the role of image in the process of re-imaging also changes from the 

medium of meaning to an integral part of meaning and a tool for meaning making.  

6.3 Re-inbodying 

Re-inbodying is a process of one attending to and/or using one’s body differently to 

engage with an idea with an orientation or outcome of understanding it anew. Here body is 

referred to the biological matter that a learner has and includes both brain (i.e., the central organ 

of a person’s nervous system) and non-brain parts. Following complexity thinking, cognitive 

activities are no more limited to thinking in one’s head but also include physical doing (e.g., 

sensing, moving) and undergoing (e.g., perceiving, which includes both body responding to 

sensorimotor stimuli and interpreting it) that engage one’s sensorimotor systems. Learning is 

inevitably affected by the learner’s physical engagement or experience. Here, following Dewey’s 

(1934/1980) view, experience is referred as a unity of doing and undergoing.  
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The inquiry about re-inbodying is an attempt to stress that having a body matters for 

learning and invites contemplation on the affordance of conscious and unconscious physical 

actions (i.e., sensation, motion, and perception) in the process of re-viewing. This opens 

considerations of whole body engagement, beyond the ones emphasized in re-languaging and re-

imaging. Re-inbodying is closely tied to re-experiencing. Yet, they differ in the same way as how 

re-languaging differs from re-interpreting: Re-inbodying is a way to re-experience but re-

experiencing can be achieved through means other than physical ones. 

The word “re-inbody” is used here, rather than its more contemporary form “re-embody”, 

to activate the sense of incorporating into a body or forming a body, one of the less used 

meanings of “embody”, i.e., “To cause to become part of a body; to unite into one body” 

(“Embody | Imbody”, 1989), while still maintaining the more frequent used meaning of 

“embody”, which is “to give a concrete form to (what is abstract or ideal) (“Embody | Imbody”, 

1989). These two meanings will be reflected in various degrees in the three rounds of 

interpretation of re-inbodying. Before that, let me tell an entry story that anchors the 

interpretations.  

Re-doing as re-viewing. In Workshop 3.1 (re-viewing), both Emma and Maxine 

mentioned students doing the exercises they have done before as an important review 

process. Maxine observed that students who just flip through the notes without doing the 

exercises during a review do not learn well:  

They just look at it and say yah, I remember adding the opposite, yah, I remember 

the LCD [lowest common denominator]. But you give them harder number, 

different numbers, then they say “No! I don’t know how to do it”. 

Emma agreed and continued to stress doing exercises again for reviews: 
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… the ones [i.e. students] getting really high Bs and [those getting] As, that’s the 

number one difference that I notice between them, is that they are not actively 

studying, that they are just passively flipping through the notes.  

Somehow Emma and Maxine’s comments stroke a chord with me. I wrote down “re-

doing” and then “re-experiencing” on the group brainstorm paper as an interpretation of 

re-viewing.  

The significance of Emma and Maxine’s emphasis in students doing the same exercises again is 

not at reinforcing practice as a reviewing process; it is at how it seemed to have something 

intriguing to say about what physical reengagements of the same mathematics idea might be.  

As making sense of one’s bodily sense    

Emma and Maxine’s comments resonated with an experience of mine.   

Re-sketching a heart figure. I was given a problem while attending a working group 

session during the CMESG (Canadian Mathematics Education Study Group) 2014 

meeting. The problem says:   

The figure (given at left) is made up of three semicircles. The line 

through Q divides the perimeter of this figure into two parts. What 

can you say about the lengths of these two parts as you move the 

points P and Q?   

After reading the question, I automatically started to copy the figure on paper. This is a 

habit formed through years of geometry study in China, even when a figure has been 

provided. I drew the bottom semicircle (SC1) and then the two semicircles (SC2 and SC3) 

above it. While drawing them, I noticed something seemingly unnoticed before. My hand 

movement was informing me some mathematical features of the shape: Where I started 
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and stopped on the diameter of SC1 to draw SC2 and where I started and stopped on the 

same line segment to draw SC3 told me the relationship between the three semicircles’ 

diameters (d), i.e., d_SC1 = d_SC2 + d_SC3. I wrote down the equation; intuitively I felt its 

significance for solving the problem at hand. I continued to redraw this figure a few times 

and put P at different locations to examine the relationships between the two perimeters. 

A solution came easily through these activities. 

In this experience, I perceived how my hand movements were confined by the geometry figure 

while sketching it, and how this limitation informed me of its properties. This unusual level of 

intimacy between a mathematics idea and my body sensations and movements was intriguing. I 

realized afterwards that I had witnessed how certain mathematics ideas, like circle and other 

geometric figures, can be meaningfully grounded in my body actions. Such experience and 

realization of embodied mathematics has been rare for me.  

Sketching a given figure or sketching the same figure again is similar to the process of 

doing the same mathematics exercises again, mentioned earlier in the Re-doing as Re-viewing 

story: They both involve a physical reengagement with the same mathematics idea beyond 

rethinking in one’s brain. It is the affordance of such physical reengagement for mathematics 

learning that I heard resonating in Emma’s advocating and categorizing redoing mathematics 

exercises as learning actively. 

A physical engagement with something subjects one to certain stimuli and entails certain 

bodily responses and hence some perceptions. Not all of these (i.e., sensations, motions, 

intuitive/automatic associations and interpretations, perceptions) are noticeable for the learner. 

As Polanyi (1966/2009) famously says, “we can know more than we can tell” (p. 4), there is a 

tacit dimension of knowing. In instances such as we know something yet hard to explain verbally 
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how we know it (e.g., recognizing the mood shown on someone’s face, sensing something wrong 

in a situation, or knowing where to start to solve a problem without being able to tell by what 

signs we know it), or we know something unconsciously (e.g., avoiding certain 

people/things/situations without knowing that we are avoiding them), tacit knowing is at display. 

As Davis and Renert (2014) interpret, tacit knowing is highly personal and hard to symbolize, 

thus it is hard to be shared, with others and even with oneself (p. 26). We are only aware of our 

tacit knowing to a level good enough for us to attend to something else, but not good enough for 

us to tell the particulars in it (Polanyi, 1966/2009). We only know these particulars in terms of 

their meaning, e.g., what they signify, what their effects are on the things to which we are 

applying them (Polanyi, 1966/2009). Using Polanyi’s language, in the case that I sketch a figure, 

I rely on my awareness of a combination of muscular acts for attending to my performance; I 

attend from the elementary movements to the achievement of their joint purpose. Hence I am 

often unable to observe or specify these elementary acts. I know them only in terms of their 

effects on my task of sketching. They function as a pointer pointing away for meaning.  

Enhancing one’s sensitivity to one’s tacit knowing and its particulars, or in other words, 

making sense of one’s sense, is possible as my experience shows, and it could have mathematical 

significances. Besides my heightened awareness of embodied mathematics in general prior to the 

incident, my physical reengagement with the same figure could have helped to activate and 

facilitate this reflection too.  

A learner’s physical reengagement with the same mathematics idea might be repeating 

exactly what she has done previously, such as sketching or feeling about the same geometric 

figure again. More frequently, it would take a different form: One might follow the same 

mathematics procedure in a different mode of doing (e.g., enacting subtraction after working 
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with paper and pencil), interact with the same embodiment differently (e.g., drawing a cube after 

touching it), or manipulate a different representation of the same mathematics idea (e.g., playing 

with Dienes and Golding’s (1971) base three triangles after using their base three blocks, 

graphing a function after generating its table of values). Given such rich possibilities for one to 

interact with a mathematical idea, a physical reengagement of the same idea might enlist the 

same or a different sensorimotor system and sign vehicle. Regardless of its form, a physical 

reengagement with a mathematical idea can bring a repetition or a contrast of something sensed 

before (e.g., certain visual-spatial, audio, tangible, olfactory, tactile, kinesthetic, temporal 

information, or a holistic impression), inducing a general sense or feeling of something staying 

the same or being changed. This intuitive perception about change, a tacit knowing, could have 

mathematical affordance, when it is noticed and reflected upon.   

Without a deliberated search for or a heightened sensitivity towards perceptual difference, 

one might notice this information about change easier when it is contradicting with one’s 

expectation. For example, when one unknowingly follows the same mathematical procedure to 

solve different problems, certain sensible information, such as the same type of kinesthetic 

movements corresponding to the same procedure, or the same type of aural/visual/spatial stimuli 

corresponding to the same type of problem, can be reinforced, inducing an unexpected sense of 

rhythm or harmony. Then, one’s reflection on this sense and its particulars affords one a chance 

to notice the common sensuous cues that resemble or hint at the shared procedure or problem. 

One of such experiences is offered in Samson and Schafer’s (2011) vignette: A grade 9 student 

arrived at a general expression for a given figure pattern (made of matches) based on a counting 

procedure in which he repeatedly alternated between top and bottom matches. Rhythm has been 

recognized as part of mathematical cognition (e.g., Radford, Bardini, & Sabena, 2006) and a 
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crucial semiotic device in the process of perceiving the general in the particular or mathematical 

generalization (e.g., Radford, Bardini, & Sabena, 2006, 2007). Alternatively, as my experience 

of (re)enacting in the next section shows, when one knowingly reengages with the same 

mathematical idea embodied differently, one might be induced to think of this idea in a different 

way due to certain automatic associations between sensible information and mathematical 

meaning. A reflection on the particulars of this unexpected difference and where the difference 

came from could lead one to notice and learn from one’s unconsciousness. In both situations, 

triggered by a perceived harmony or conflict, one could become aware of the particulars of one’s 

tacit knowing, what function they fulfill and what mathematical meaning they resemble or hint at. 

Therefore, these particulars, the elementary acts of one’s body, no longer simply point away for 

meaning; they are also self-referential pointers that point back to themselves for meaning. The 

body, in this case, is no more a transparent medium to deliver meaning, but an integral part of 

the meaning.  

Acknowledging this possibility, a re-inbodying process invites one to attend to one’s 

bodily sense while reengaging with a previously encountered mathematical idea, and make sense 

of it. This can be a process of decomposing the same physical engagement and sensing it 

differently, similar to shifting focus on the same wording in a re-languaging process or seeing the 

same image differently in a re-imaging process.  

As changing between equivalent physical engagements – a case of (re)enacting  

Following the same logic used for considering re-languaging as changing between 

equivalent languages and re-imaging as changing between equivalent images, re-inbodying can 

also be interpreted as changing between equivalent physical engagements. This is well supported 
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and informed by my experience of (re)enacting (meaning enacting and reenacting) negative 

number subtraction. 

(Re)enacting negative number subtraction (−6 − 2 =). In Workshop 3.3 (Re-

experiencing), Maxine brought up integer tokens as an example of manipulatives while 

reflecting about re-experiencing mathematics. Being new to integer tokens, I asked her to 

explain. Maxine wrote −6 − 2 = on the board and showed me, through explaining, 

gesturing, writing, and drawing on the board, how students can use integer tokens to get 

the answer −8:    

You draw six negative [tokens], then you want to take away two positive, but 

there is no positive to take away. You make zeros. Zero is positive and negative. 

So by drawing zeros, my number is still −6. I can draw as many zeros as I want. 

It doesn’t change it. Now I do have two [positives] to take away, so I take away 

two positives. Then I have negative 8 left over. So the answer is −8.   

After that, we continued the workshop reflective activities and discussed how we can 

promote re-experiencing in curriculum design. At one point we talked about having 

students to show others mathematical ideas and procedures, and one way to show is to 

actively act out the mathematical ideas and processes. Maxine commented, “All the 

additions can be done on the number line too”. This brought me a question about the 

equation −6 − 2 = −8: “Can this be done on the number line too?” Neither Maxine nor I 

knew the answer. We spent about an hour trying to parallel the actions in two different 

representation systems to represent the same integer addition and subtraction equation. 

Unexpectedly, we struggled and ended the activity with confusions.  
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Later I watched the workshop video and reworked on the parallelizing actions 

task. I was overjoyed by how much I had learned about mathematics ideas (i.e., number, 

operation, and zero), representations, and strategies, and about re-experiencing 

mathematics. I had re-experienced some familiar mathematical ideas in this workshop 

through physically reengaging with the same mathematical task and ideas in novel ways. 

These reengagements brought forth several perceptual conflicts that stimulated 

conceptual growth.  

During the workshop, I firstly redid the task “Determine −6 − 2” by following 

Maxine’s actions on tokens. Essentially Maxine enacted −6 − 2 = −6 + (+𝟐) +

(−𝟐) − 2 = −6 + (−2) = −8.  I had to legitimize Maxine’s enactments. While doing so, 

I sensed some resistance towards the negative tokens but could not explain why. Later, I 

needed to reenact the equation on the number line. When I intuitively mapped absolute 

numbers to steps, “+ (plus)” and “– (minus)” to “walking right” and “walking left” 

respectively but could not reproduce an action to parallel with “taking away two negative 

tokens” that represents “−  − 2”, I re-cognized that number is a quantity with sign and 

thus negative numbers exist like tangible objects. I felt somewhat conflicted and later 

realized that unconsciously I did not perceive that negative numbers exist. Then when I 

added two representations for positive and negative numbers (i.e., Positive number n = a 

walk n steps to the right, Negative number n = a walk n steps to the left) and found 

unable to deal with tasks such as “Determine −6 − −2”, I re-cognized the dual meanings 

of a symbol (i.e., + and –) hence the necessity of different representations for them. I 

realized that I had conflated multiple meanings of a symbol without knowing. By the 

time I solved the paralleling task by mapping generating 0 by taking out two pairs of 
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positive and negative tokens to generating 0 by writing two opposite walking actions as 

two instructions on a script, and taking out two positive tokens as crossing out a 

redundant instruction, I renewed my understanding of zero and negative numbers, and 

found that two powerful problem solving strategies used in higher grades, i.e., 

introducing needed symbols through making 1 or 0 (e.g., to solve grade 12 limits 

problems), simplifying mathematical expressions before calculations, have already 

appeared in lower grades through the use of negative tokens.  

I finally understood that my initial discomfort towards negative tokens was to do 

with my previously embodied understanding of negative numbers. Unconsciously, I 

related negative numbers with owing something thus not existing, also with being 

opposite to their corresponding positive ones. Therefore, representing negative numbers 

using negative tokens made me feel contradictory: How can not having something be 

represented by having something? On the contrary, enacting negative numbers as steps 

opposite to their positive counterparts seemed harmonious. This explains why once I re-

cognized that zero can take many forms and negativity in mathematics exists in relation 

to a positive counterpart making zero together (hence no need to be opposite to each 

other), the existence of negative tokens and their being only differ from positive ones in 

color was justified, and my discomfort towards them resolved. I had come to understand 

that any two random objects can represent positive and negative numbers as long as we 

define them making zero together.   

I also understood that my initial struggles and later growth are related to the 

affordances and limitations of a representation system. The token system afforded 

differentiating two meanings of the same symbol (i.e, + and –) by representing them 
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differently (e.g., negative number as negative token, minus as taking away), whereas the 

number line system helped me notice the existence of such difference through inducing 

me to enact both negative numbers and subtraction the same (i.e., as walking left) but 

only find the enactment erroneous. The token system afforded me a chance to work with 

various forms of zero (as any pair of positive and negative tokens) to generate equivalent 

expressions, whereas the number line system’s inability to support addressing zeros in a 

linear execution made me come up with simplifying before execution. Each system 

brought forth a powerful problem solving strategy - making something out of nothing by 

using the identity property (of addition, i.e., any number plus zero is the original number, 

and that of multiplication, i.e., any number times one is the original number), and 

simplifying before computation respectively - through what is doable and not doable in 

the system.  

My above experience illustrates that a learner’s mathematical and pedagogical growth is 

benefited from (re)enacting a previously learned idea in novel ways. Acting out a mathematical 

idea or process physically demands learners to generate a consistent one-to-one correspondence 

between symbol/concept and object and between relation/procedure and action. This offers them 

chances to confront with their related unconscious embodied understanding, in turn facilitating 

their conceptual understanding development. In this situation, a learner actually benefits from 

being unaware of what she assumes, what she automatically follows, and what she used to know 

but now has forgotten, or from a condition of, in Davis and Renert’s (2014) words, one “not 

having immediate conscious access to what is known” (p. 60). Particularly, my experience 

exemplifies how a learner can benefit from a re-enacting task that requires her to parallel the 

physical actions in two or more representation systems or models to represent the same 
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mathematical idea/process. With their different affordances and limitations, different models can 

trigger certain mindsets and perceptions that are in conflict with each other and sometimes draw 

the learner unconsciously closer to one than the other, reflecting her unquestioned embodied 

assumptions and interpretations of the related mathematical ideas. Working with two systems 

requires repeated comparison and equalization, affording the learner many chances to confront 

her (un)conscious understandings and re-view them. Therefore, working with multiple models 

can offer learners opportunities to mathematical conceptual growth20.  

My experience has a process of (re)enacting: One reengages with the same idea through 

enacting the idea, justifying the enactment and/or creating one or more kinds of physical 

enactments of the same idea. (Re)enacting is a case of re-inbodying as changing between 

equivalent physical engagements of the same mathematics idea. The involvement of equivalent 

physical engagements could entail different objects for a learner to interact with and/or entail 

different kinds of interaction, thus affording a chance for one to notice and reflect on any 

incongruent perception of the same idea.    

As invoking different ways of thinking and enlisting different modes of knowing through 

using the body differently or forming a different body 

Emma and Maxine’s comments also resonated with my contemplation on the role of 

“laboring” the body in mathematics learning. 

                                                           
20 Kinach’s (2002) study has a similar conclusion. Without knowing, my re-enacting negative number subtraction 
task reverses Kinach’s task design in her mathematics education course – the same explanation task repeats in two 
contexts (firstly on number line and then later with algebra tile) – and my struggle resonates with what she observed 
when she assigned preservice teachers to explain integer subtraction such as 5 – (–3) to eighth graders on the 
number line. Supported by the preliminary success of such task design on the preservice teachers’ pedagogical 
content understanding, Kinach proposes a teacher education model requiring teachers’ explanation of mathematics 
topics in two instructional contexts. I see Kinach’s task design an example of (re)enacting. However, while Kinach 
deliberately uses the first context to raise confusions and then the second context to resolve such tension and 
requires no paralleling actions in two contexts, I advocate using both contexts to elicit tacit knowing and raise 
tension, particularly through requiring paralleling actions in different contexts.  
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Laboring the body in mathematics learning. In my experience of solving mathematics 

problems and helping others in mathematics, I have encountered many times that the 

learner (myself included) knew what to do immediately after she wrote down what she 

knows and is thinking. The conversation often goes like: “I know I can take this factor 

out, but then what?” “Write that step down. Then you will know what to do next.” “[after 

writing things down] Oh, I see.” I have also encountered many times that when I did the 

physical work myself to (re)write detailed lesson notes for a lesson that I had taught 

before or write solutions for a test that I just (re)generated, I noticed something I seemed 

to miss before and learned something new about the test topic. Supported by my positive 

experiences with hand writing, I insisted my students to write down test corrections rather 

than taking photos of my detailed solutions and to take lesson notes and graph by hand. 

My reflection on hand writing in mathematics learning has gone deeper over time. Of 

course, hand writing helped me to decrease the demand on my working memory and 

reflect by having my thought externalized. It provided me a sense of making something 

and being active21. It offered time needed for my reflection. But there seemed more to it, 

something to do with the process of writing, using hands, or “laboring” the non-brain 

parts of the body in general. 

Emma’s categorization of doing the same exercise again as active learning and reading the 

previous written solution as passive, and advocating one over the other at first spoke to me the 

necessity of “laboring” one’s body. Later I found Emma’s words speaking less about preference 

or hierarchy but more about the different influences of using one’s body differently on 

mathematical learning.   

                                                           

21 The externalization effect and generation effect (i.e., things generated by the learner is easier to recall than reading 
alone) of writing have been well studied.  
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As shown in the previous section, using one’s body differently to reengage with the same 

mathematics idea can enlist or bring forth different representations of the idea and invoke 

perceptual conflicts that can stimulate mathematics growth. It also can bring forth different 

modes of doing (i.e., seeing, listening, writing, typing, walking, and so on) and/or incorporate 

different things (i.e., pen, keyboard, handheld sensors) into the body. One can argue that such 

incorporation forms a different body (De Freitas & Sinclair, 2014; Polanyi, 1966/2009).  

Undoubtedly, these changes affect what one can do and perceive, in other words, one’s 

sensorimotor experiences. How these changes influence ways of thinking is interesting.  

A study on the influence of different note taking strategies in learning is provocative here. 

Mueller and Oppenheimer (2014) found students who took notes longhand performed better on 

conceptual questions than students who took notes on laptops. They attribute this to the extra 

mental processing such as summarizing, paraphrasing, and concept mapping needed for taking-

note by hand contrasted with the laptop note takers’ tendency of transcribing lectures verbatim. 

This study speaks to me that how to take notes affects how one thinks, in particular, typing notes 

induces detailed oriented thinking whereas writing notes encourages holistic thinking, and 

suggests the significance of the process of doing. It points me to consider physical limitations as 

enabling constraints22 (i.e., restrictions that are empowering rather than limiting) for mathematics 

learning.  

Here I reconsider hand writing for a thought experiment. Confined by the hand 

movement speed and the physical writing space, hand writing is slower and more limited by time 

and space compared to many other modes of doing, such as seeing, listening, speaking, and 

typing. This physical slowness affords time needed for the kind of thinking that is slower and 

                                                           
22 This is different from Davis, Sumara, and Luce-Kapler’s (2008) enabling constraint, which has been mentioned in 
section 3.3 and refers to curriculum tasks and activities. However, my usage of the same phrase and theirs share the 
same idea of considering restrictions positively instead of negatively.  
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requires more effort, such as thinking deliberatively, logically and reflectively23, yet necessary 

for mathematics learning. Also, the time and space restriction on hand writing can encourage a 

learner, particularly when facing a discrepancy between how much information one is handling 

and what one can write down in a limited time and space (e.g., in a note taking or reading 

situation), to abandon details oriented techniques (e.g., transcribing words verbatim and writing 

long notes) and pay more attention to the key ideas and the structure of the whole. Hence, in 

certain situations, hand writing can help to promote holistic thinking and representing, which is 

part of generalization and abstraction thus essential for mathematics learning. When a learner 

writes while thinking, writing might help one to focus attention to a small range of information 

and space due to the physical need to control one’s hand movement. This could be helpful when 

nuance (particularly the spatial-visual one) needs to be noticed. The linear execution of hand 

writing, producing information one after another, also seems compatible with linear processing, 

one thing after another, which is part of thinking logically thus mathematical thinking. 

Of course, the above affordances of hand writing can be activated differently, sometimes 

at the expenses of dropping other kinds of affordances, depending on which mode of doing one 

is changing from. For example, switching from listening or speaking to hand writing might not 

change much one experiencing a sequence of ideas in a temporal order, but decrease affordance 

for auditory imageries and spatial reasoning. Changing from seeing to hand writing can establish 

                                                           
23 In Thinking, Fast and Slow, Kahneman (2011/2013) explains two modes of thinking in the mind: 

System 1 operates automatically and quickly, with little or no effort and no sense of voluntary control. 
System 2 allocates attention to the effortful mental activities that demand it, including complex 
computations. The operations of System 2 are often associated with the subjective experience of agency, 
choice, and concentration. (pp. 20-21) 

While System 1 is in charge of automatic activities, such as unconscious doing, intuitive knowing, and learned 
habitual actions and associations, all operations of System 2 “require attention and are disrupted when attention is 
drawn away” (p. 22). So System 2 only takes over when System 1encounters difficulty, such as when one tries to 
compute 123 x 456, and “only the slower System 2 can construct thoughts in an orderly series of steps” (p. 21). In 
general, System 1 is fast, automatic, intuitive, and analogical, whereas in comparison, System 2 is slower, more 
effortful, deliberate, and logical.  
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a clear temporal order and decrease the amount of information demanding for attention at once, 

thus enhancing affordance for effortful logical thinking, yet decreasing affordance for holistic 

and visual-spatial thinking.  

Now, if we also consider what kinds of writing tool one is using and how familiar one is 

with each tool, the affordance of hand writing would change too. For example, compared to 

writing on paper with a pen, writing on paper with a pencil induces a more welcoming attitude 

for me towards errors thus decreasing my anxiety, due to the higher removability of pencil marks 

and my stronger association of pencil with draft. This might not be the case for learners who 

grew up with abundant stationary supply and higher interchangeability between these two tools: 

The difference between pen and pencil is too insignificant to make a difference. For such 

learners, writing on a computer screen with a digital pen might permit more trails and errors yet 

invoke less memorization due to computer’s even higher removability and storage power.   

Nevertheless, both the gains and losses in affordances are subjective to individuals and 

they both can be constructive for mathematics learning; what matters is the change of 

affordances. Different modes of doing and forms/unities of body engage sensorimotor systems 

differently, allowing different physical features to influence one’s mathematics learning and 

enabling different representations of the same mathematical idea to appear. Re-inbodying is 

interpreted here as redoing with the focus to afford different (e.g., pictographic, auditory, tactile, 

kinesthetic, olfactory) representations of mathematics ideas and alternative ways of thinking 

(e.g., holistic, relational, sequential-logical, visual-spatial, reflective) through diverse physical 

limitations of different modes of doing and forms of body.  

Back to re-inbodying as a whole  
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Given that a learner has the capacity to engage with an idea using multiple sensorimotor 

systems and any encountering with an idea involves the learner’s body inevitably, mathematics 

learning is both mental and physical. One’s physical experience can have mathematical 

significance as its particulars might resemble or hint at certain mathematical ideas, unveil certain 

bodily knowing, or invoke certain mindsets, perceptions or ways of thinking. Thus it is necessary 

to think about re-inbodying, an attempt to (re)ground abstract mathematical ideas to a concrete 

tangible physical world, particularly to one’s doing and undergoing, and mobilize one’s tacit 

knowing. Re-inbodying, as physically reengaging with the same mathematics idea, is a process 

of one paying attention to one’s body and listening to what it says about mathematics. It affords 

learners a chance to sense and feel the properties of the mathematics idea embodied and ground 

the abstract idea to one’s sensorimotor experiences when possible. When equivalent physical 

engagements of the same mathematics idea are used, e.g., in a reenactment of the idea, a process 

of re-inbodying can enlist different kinds of representations, interactions, and thinking and 

activate one’s unconscious knowing. Re-inbodying opens a space for considering multiple modes 

of doing that engage different sensorimotor systems, afford diverse ways of thinking, and 

connect multiple representations for the same idea. It brings the modes and forms of 

experiencing and representing into focus. 

6.4 Back to Re-viewing as a Whole 

Up till now, I have interpreted reviewing as re-viewing and theorized three forms of re-

viewing: re-languaging, re-imaging, and re-inbodying. These forms serve as different 

interpretations of the same process, i.e., re-viewing. They stress different dimensions (i.e., 

linguistic, visual-spatial, bodily) of one’s reengagement with a mathematical idea. Such 

categorization is neither exhaustive nor absolute. There could be other forms of re-viewing and 
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the three forms of re-viewing overlap and crisscross. For example, re-languaging and re-imaging 

can be subsumed under the category of re-inbodying as verbalization and visual-spatial 

perception belong to bodily sensorimotor capability. Re-languaging can include re-imaging and 

re-inbodying when both visual-spatial construction and bodily movements count as a kind of 

language. Re-imaging can happen along with re-languaging and re-inbodying as equivalent 

languages and physical engagements might appear differently or engender different mental 

images, or different wordings or physical engagements might reinforce the same spatial-visual 

stimuli to occasion the same mental image. However, in responding to the dominance of visual 

perception in human perceptions and the lack of emphasis in modes of doing beyond seeing in 

traditional learning environments, there is still value to have a dedicated interpretation of re-

imaging and re-inbodying respectively. The dedicated conceptualization of these three forms of 

re-viewing is also an acknowledgement that all signs can be re-languaged, re-imaged, or re-

inbodied, since any sign can be interpreted as symbolic, iconic and indexical.  

This categorization of forms of re-viewing is also incomplete. To acknowledge the 

possible existence of other forms of re-viewing and the limitation of my current inquiry, the 

unknown forms are labeled as re-visiting. A heuristic visualization of the forms of re-viewing 

was conducted to further understand the relations among these forms (see Figure 6.4.1. for a 

working representation). For each of the three forms, there seems be promising trigger question: 

What might it be worded like? What might it be imagined like? What might it be 

embodied/enacted/perceived like? The word “it” refers to the mathematics idea that one re-views. 

Of course, these questions are general examples. More specific questions such as “What might it 

look/sound/smell/taste/feel/move/act like?” can also be asked to invite re-viewing that stresses a 
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particular modality. 

 

The three forms of re-viewing are presented in a similar shape of different sizes, to 

signify that they closely resemble each other yet they are different enough to draw our attention 

to them separately. All three forms of re-viewing use a sign vehicle (i.e., a wording, an image 

and a physical engagement respectively) for meaning, and use the means and process to inform 

mathematical meaning making. They are a process of making a sign vehicle more 

mathematically meaningful, either through seeing/sensing it anew or changing between 

equivalent ones. The sign vehicle is no more a conventional pointer pointing away for meaning 

but also a self-referential one pointing back to itself for meaning. As such, the signifier becomes 

(part of) the signified.  Besides this change, in all three forms of re-viewing, there exists a 

reflection triggered by some change and directed towards the re-viewing process and experience 

as whole, e.g., trying to make sense of what seemed to change or not change, what one does, 

where one is led to, how one feels, and so on. This reflection also helps one to understand the 

idea that one is reviewing anew. Therefore, not only does the signifier that signify a message 

become (part of) the message in all three forms of re-viewing, the process of working with such 

Re-languaging 
Linguistic Dimension 

“What might it be worded like?” 

Re-imaging 
Visual-Spatial Dimension 

“What might it be imagined like?” 

Re-inbodying 
Bodily Dimension 

“How might it be embodied/enacted/perceived like?” 

Re-visiting 
Other Dimensions 

“What might it be ____ like?” 
 

Re-
viewing 

Figure 6.4.1. A tentative categorization of the forms of re-viewing (“it” refers to a mathematics 
idea one re-views). 
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signifier also becomes (part of) the message. This process of a medium (a signifier or a process) 

that one works with becoming the message is what Sawada and Pothier (1993) define as 

recursion.   

Given how closely these three forms are related together and how similar they are, we 

now turn to the next chapter to interpret them further holistically.   
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7 Re(Re(view))24: Re-view Re-viewing 

When looking at the three forms of re-viewing together, a new interpretation of it 

emerges: They suggest re-viewing as a re-storying process. What this re-storying process might 

be is the focus of this chapter.  

My interpretation, once again, was provoked by certain experiences. One experience is 

my sensing story emerging and changing during my reengagement with a text multiple times: 

(Re)storying while re-teaching. I taught a particular grade 12 mathematics course six 

times and the courses that feed into it multiple times in four years. Over this period, more 

and more mathematical problems started to look the same to me, and I sensed that they 

were telling me the same story. So I began to categorize examples and exercises in a 

lesson or multiple lessons by fewer and fewer question types and asked my students to do 

the same. I encouraged my students to think of these seemingly different problems (that 

for me were essentially of the same type) as cousins and categorize them by families. 

Meanwhile, a vague sense of story was forming while I re-cognized more and more 

topics (e.g., linear, quadratic, and polynomial relations; division, slope, tangent ratio, 

rational relation, and limit) across grades as variations of the same big idea. They 

appeared to me less as cousins but more the same person with different looks or outfits, a 

character developing with increasing complexity over time. Thinking and describing 

related mathematical objects as human characters in the same family or the same 

character developing over time made me feel closer to math. I also felt it was easier for 

me to stress mathematical relations in my teaching, when I used language such as family 

member and story to talk about mathematics ideas.  
                                                           
24 The word “view” here is both noun and verb, representing both the content and process of viewing. “Re()” means 
repeating the process of viewing the scene (signified by the content in the bracket) as a whole again. Since the result 
and the process of this viewing become the content for the next loop of re-viewing, hence the notation of “Re(Re())”.   
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Another experience is an intriguing example emerging during my work with three participants in 

the Re-storying workshop:  

From a division error story to a multiplication error story. While implementing 

Rachel’s idea of folktale to promote re-storying mathematical ideas, Valet suggested 

having students divided into two different groups and asking one group (say Group A) to 

retell a mathematical story that they heard to another group (say Group B). I asked what 

the Group B should do after hearing the story. We thought of it quietly. Then Maxine 

suggested that the group can have a story about a different question. Valet agreed and 

added that the new story should use the same mathematical knowledge. Pointing to the 

division error story mentioned by Valet earlier, in which a student’s work that followed 

the right logic but used a “wrong” presentation was marked “wrong” by her teacher, I 

asked what mathematical knowledge students should learn in this story. Maxine answered, 

“Place value. ‘Lining up’ requires understanding place value”. After some more 

discussion about Group B’s story, Valet came up with an example for the division error 

story: “[A story in which a learner produces] the same error using the same logic 

reasoning, maybe not in division, but in multiplication”. Later, Valet refined her idea: 

“Both stories are about place value. Teachers can ask group B to generate the same error, 

using multiplication. Or, leave it open. Students might come up with a story of division, 

addition, or subtraction”. Here I saw an emerging idea: “Re-storying as (re)generating a 

similar story that has the same type of mathematical events to do with the same 

mathematical concept/idea”. I noted that on the white board. 
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These two experiences addressed me – they were to tell me something about re-storying and re-

viewing. My contemplation on them propelled and supported an interpretation of re-viewing as 

re-storying.  

In this chapter, I extend Dietiker’s (2013, 2015) three-layer narrative model to 

conceptualize mathematical story at both mathematical text interpretation and mathematical 

understanding levels. This modified theory is then used to define two kinds of story change in a 

re-viewing process and support interpreting re-viewing as re-storying. This chapter closes with 

the new understandings of re-viewing that are brought forth by such a reading.    

7.1 Mathematical Story  

Using literary story as a metaphor for mathematical planned and enacted curriculum, 

Dietiker (2013) conceptualizes a framework to support a narrative reading of mathematical texts. 

Dietiker considers mathematical ideas, a phrase that refers to “the milieu of mathematical 

concepts and processes” (p. 19), such as “mathematical objects, relationships, properties, and 

procedures” (p. 15), as story characters. She defines a mathematical event as a change of a 

character’s mathematical state or a mathematical change for short. A mathematical narrative, 

Dietiker theorizes, is a system of three layers, i.e., text, story and fabula. Text is “the media 

(including its narration) in which a story is told” (p. 14)”. Take a textbook as an example. This 

text layer includes the textbook’s physical form (i.e., bound paper), the signs on paper, and their 

configurations (e.g., content layout design).  Story “describes the chronological sequence of 

mathematical events encountered and experienced by a reader throughout a mathematics text” (p. 

15). There is not necessarily a direct mapping between a given text and story because a story can 

include events beyond the text layer. The events in a mathematical story might be the ones as 

interpretation of a given text (e.g, when reading a mathematical solution or a sequence of topics), 
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and/or the ones generated by the reader (e.g., when solving a task after reading it). Nevertheless, 

a mathematical story is the unfolding of mathematical content and developing of the 

mathematical ideas identified by the reader during her interaction with the text. It is a reader’s 

sense of certain mathematical content changing across the sequence of events that the text offers 

the reader an experience similar to that of a literary story. Fabula is defined as “a reader’s logical 

re-construction of the mathematical events beyond the text and story layers” at first and later as 

“a reader’s reorganization of the logic around how certain mathematical ideas support or connect 

the meaning of other mathematical ideas” (p. 16). Although Dietiker’s concept of fabula seems 

obscure and remains peripheral in her later works, it is clear that while mathematical story 

depends on time thus linear, mathematical fabula depends on reasoning thus not necessarily 

linear. A fabula is formed through, Dietiker says, not only resequencing but also “re-defining, 

noticing a pattern, connecting, and conjecturing” (p. 16). In short, “any point at which a reader 

confronts a conflicting mathematical idea that requires the logical recognition of prior 

mathematical understanding, the mathematical fabula is involved” (p. 16). So, essentially fabula 

is a non-linear construct of connected events and ideas and it is resulted from the logical 

reconstruction of events and logical (re)construction of ideas within and beyond the story layer. 

In a sense, I see fabula as a form of mathematical understanding, which is part of the reader’s 

current mathematical knowing.  

Dietiker’s theory is about the role of texts in both mathematical learning and 

understanding, with a particular focus on texts with sequential parts. Not only can such texts 

afford a reader an experience of story composition or storying, affect what the story is and have a 

potential aesthetic effect on the readers’ mathematics learning experience, but also these texts 

can influence the mathematical understanding that the reader might form. The sequence of parts 
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in a text influences the fabula that is generated through changing how different aspects of the 

mathematical content is introduced or emphasized, thus changing its meaning (Dietiker, 2015, p. 

291). Moreover, a reader’s aesthetic experience while perceiving the tension between 

expectation and realization in a mathematical story and the reader’s logical construction of 

fabula affect each other reciprocally (Dietiker, 2015, p. 300). In short, “the way in which the 

mathematical content temporally unfolds can affect both the experience for the reader and the 

nature of his or her mathematical conclusions” (2013, p. 19). Dietiker’s theory suggests that both 

story and fabula are individual contingent constructs that emerge through the reader’s interaction 

with a text and affect each other. 

Seemingly, based on Dietiker’s theory, mathematical story can include the stories alluded 

to at the beginning of this chapter: the stories I formed and changed while revisiting the same 

mathematical text and the two equivalent stories generated in a workshop. These two kinds of 

stories differ in their characters: My stories have human-like mathematical ideas as characters 

acting in the story, whereas the workshop story examples have fictional human characters doing 

something mathematically. Dietiker’s theory recognizes that both mathematical characters and 

human characters can act in mathematical story, however the theory does not consider 

mathematical characters as actors: Mathematical ideas can only act when a human reader “acting 

as a mathematical character” in the story (2015, p. 295). These two kinds also differ in their 

formation: My stories were formed during my revisiting the same text, whereas the story 

examples were generated as mathematical story. There is an intriguing difference between 

“forming a story while reading a text and changing a story while text changed” and “forming a 

story while revisiting a text and changing a story while no text changed”. The later pair is 
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integral for interpreting re-viewing as re-storying yet not addressed in Dietiker’s theory that 

focuses solely on storying.   

Therefore, changes to Dietiker’s theory are necessary to support re-storying. Here I 

propose three. The first is to include a wider range of potential factors in a text that can influence 

storying and understanding. Dietiker (2015) theorizes that any text can be read as a story: 

Despite some curriculum sequences make no sense when reading across the parts for a connected 

story, “all mathematical texts can be read with a narrative lens by attending to how the parts alter 

and constrain the meaning of the others, if they do” (p. 290).  Noting that such text can be at 

various scales (e.g., tasks, lesson, chapter, textbook, course and beyond), Dietiker (2015) stresses,  

Fundamentally, for any sequence of “chunks” A-B-C at any grain size, it is how B builds 

from A and changes what we know about both A and B (and similarly how C then builds 

from B and changes what we know about A, B, and C) that engenders the mathematical 

story. (p. 291) 

While these general comments suggest that the relationships among parts of a text is not limited 

to temporal ones, Dietiker’s story layer includes only a temporal sequence thus confining the 

reading of a text as linearly ordering its parts. Moreover, while the text layer “focuses on the 

media’s role for the narrative” (Dietiker, 2015, p. 288), the planned and enacted curricula 

discussed in Dietiker’s work involve textbook and seat work only. The non-temporal (e.g., 

visual-spatial, semantical) relations among parts and other types of medium (e.g., oral, auditory, 

tactile, kinesthetic) are not the focus of Dietiker’s work.   

Second, although Dietiker (2015) notes that a mathematical story can be recognized in a 

text at various scales (e.g., tasks, lesson, chapter, textbook, course and beyond) (p. 290), all 

stories theoretically possible in her work seem linked to texts that can be read into a sequence of 
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mathematical events. In a sense, all texts are read as a self-contained story. This excludes micro 

texts (such as a symbol or a term) and non-linear interactions with a text (e.g., perceiving a text 

holistically). This can change if we consider how the text parts affect and limit each other non-

temporally and acknowledge that texts at any scale can be viewed as a story through being read 

as a part of a bigger story. For example, how the parts of a circle connected spatially can be read 

into a story of a character of point moving and jumping across the center and leaving a circular 

trace. Or a shape of circle can be read as a part of a bigger story of graphs or that of symmetry.  

Third, while Dietiker’s work recognizes fabula similar to story as a contingent and 

individual construct whose formation is affected by a reader’s experience rather than a timeless 

one, little aesthetic dimension is theorized in this layer. I see this is possible if we emphasize 

fabula as a historical construct always in the status of becoming. Dietiker’s theory is in consistent 

with complexity thinking that acknowledges the contingence of one’s mathematical 

understanding and its emergence through one’s experience. Dietiker’s emphasis in the temporal 

quality of mathematical texts is a critique of how little the mainstream mathematics curricula 

reveal “how mathematical ideas are expected to emerge through a reader’s experience” (2013, p. 

19). Similar to how a learner’s being is affected by her becoming and always in the status of 

becoming, a learner’s mathematical understanding is also a personal historical construct that 

continues to evolve over time. With such idiosyncrasy and historical experiential contingency, 

mathematical understanding can have an aesthetic dimension (i.e., different mathematical ideas 

might have different development paths associated with different experiences and sensations) 

and it is applicable to draw an analogy between a mathematical idea and a human character. 
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Even without the reader imagining herself as the mathematical character25 as Dietiker proposes, 

it is possible to interpret a mathematical idea human-like.  

With these three changes, it is possible for us to read any text, metaphorically, as a 

mathematical story. That is, such reading can happen regardless whether we can read it into a 

sequence of mathematical events. Also, regardless whether a mathematical idea is human-like 

character or not, a reader’s mathematical understanding, at any particular moment, can be 

interpreted as a contingent logical construct made of many stories of mathematical ideas together, 

thus a grand story of stories. Each of these idiosyncratic stories depicts certain mathematics 

character’s past and present and is suggestive, logically, for certain kinds of future.  

7.2 Re-viewing Interpreted as Re-storying  

Following the above theorization, I see two kinds of story changes possible during a re-

viewing process. One is changing text as changing story. A reader might read a text itself as a 

story or as part of a story. In the first situation, a perceived text and media change is literally 

changing the story, while in the second situation it can be used to infer a change in the story in 

which the text is part of. Either way, a text change can be mapped to certain kind of story change 

even though the stories in the two situations might not be the same nor mathematically 

meaningful. What matters is the change perceived or interpreted. For example, I can consider the 

text “asymptote” as a self-contained story of letters, or I can consider it as a part in the story of 

asymptote. Regardless, the text change from “asymptote” to “jian jin xian” might be interpreted 

as a language change signifying a wording change for both stories, whereas the text change from 

“asymptote” in black to “asymptote” in yellow might be interpreted as a sentimental feature 

                                                           
25 Albeit there are multiple definitions of mathematical characters in Dietiker’s writings, two characteristics, i.e., 
something objectified and something got fleshed out, are useful here. Dietiker (2015) writes,  

mathematical characters are “figures” brought into existence (objectified) through reference or inference in 
the text (e.g., naming, defining, or otherwise drawing attention to them) and which are given specifying 
features (a process that Bal refers to as “fleshing out”). (p. 292) 
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change, signifying a change in the protagonist or moral of the stories. Since a re-viewing process 

engages different texts to represent the same thing, such text change corresponds to a story 

change that happens between equivalent stories. The other is changing mathematical 

understanding as changing story. In a re-viewing situation, there exists some understanding of a 

particular idea that one is about to reencounter. So a story of the idea exists before the re-viewing 

process and gets reconstructed through the process. This story enables and influences its own re-

construction.  Since a re-viewing process helps one to understand an idea anew, such 

transformative change in understanding corresponds to a significant story change, such as a 

protagonist’s identity shifts after character redefinition. Given how stories of different 

mathematical ideas can be interconnected, one story’s transformation could bring forth 

transformation in many other stories. Putting these two kinds of story changes together, re-

viewing is a process in which a different story of the same thing is used with an orientation or 

outcome of generating a new story of certain mathematical idea(s).  

Now let’s turn to interpreting the lived re-viewing processes as re-storying to see what 

space such interpretation might open up. Although many stories can be composed based on one’s 

interaction with a text, it is possible that a change in any of the stories triggers the same kind of 

change in other stories. For instance, I can read a text “asymptote” as a story of letters, part of a 

story of asymptote, line, graph, or terminology, part of story of my mathematical understanding 

or my experience with mathematics, and so on. Regardless, a change of text from asymptote to 

jian jin xian could be viewed as a change of wording in all these stories. Therefore, it is 

overcomplicating if I were to specify and differentiate stories. Here I use story to refer to any of 

these possible stories so that I can focus on the type of story change that might bring forth 

understanding something anew. To keep the following interpretation as a contingent possibility 



TOWARDS RECURSIVE MATHEMATICS CURRICULA 153 

rather than something guaranteed, I use past tense consistently without implying that every single 

event happened.  

In the two renaming examples discussed earlier in section 6.1, the linguistic change 

happened from mi to power and from asymptote to jian jin xian seemed like rewriting the same 

story using different words. The one written in more familiar words appeared friendlier for me at 

first, and then was interpreted as more informative, signifying that the story changes from an 

unapproachable senseless story with little content to a friendly sensible one with useful details. 

Such change further colored the story character(s): In the mi-to-power example, the characters of 

exponent and exponential relations seemed to change from a characterless person to a superhero 

due to my interpreting power as telling me that exponential relations are powerful; in the 

asymptote-to-jian jin xian example, the character of asymptote seemed to change from a boring 

person to a humorous/charming one due to my visualizing asymptote as a dream girl being 

forever unapproachable. In short, the characters became more friendly and impressive in both 

stories. This sentimental change in my feeling towards a few particular mathematical ideas was 

far from trivial: In terms of mathematical understanding, it helped me to redefine these 

mathematical ideas as total different characters, and it changed my understanding of mathematics 

terminology and my relation with mathematics more broadly.      

In the circle definition example, as a byproduct of my translating from Chinese to English, 

the words in the circle definition were reordered: The phrase “a collection of points” got moved 

from the end of the sentence to the beginning of the sentence. This change seemed like 

reordering events in a story, helpful to bring forth a change of story center or emphasis. By the 

time I redefined circle and graphs as a collection of points, the change on my story of circle and 



TOWARDS RECURSIVE MATHEMATICS CURRICULA 154 

story of graphs was like an identity shift for the protagonist, as significant as the one from “a 

Canadian Chinese” to “a Chinese Canadian”.  

Not surprisingly, such change of story emphasis can also be resulted from highlighting 

different parts of the text. When Maxine saw a division sign standing out in the polynomial 

division image, the story change seemed like getting a clearer storyline (if we draw an analogy 

between the division sign and a storyline based on their shared function of weaving different 

parts of the story together) or story center (if we see the division sign as a part of the text, hence 

a part of the story). A polynomial division story was turned into a division story as a result; the 

story protagonist changed.  

In the negative tokens example, the physical enactments of the negative equation 

−6 − 2 = −8 were changed from moving tokens to walking on a number line. This seemed like 

casting different actors for the same character in a different setting with different actions yet 

keeping the story the same. This brought a need to negotiate any mismatches between actor and 

character (e.g., the actor of negative tokens vs. the character of negative numbers), and between 

actions in the old and new acting. This negotiation redefined the character of negative numbers. 

Other stories, with characters logically connected to negative numbers, such as numbers and 

subtraction, were also transformed.  

Story change can happen when there is no apparent text change. How we experience and 

perceive the same text change over time, hence a different story can be formed. Similar to one’s 

experience of noticing different things while watching the same movie again, I noticed different 

things while drawing the circle again. My story of circle changed to a more personally related 

one by my noting how the character of circle controlled my body. It also became a story of 

embodied mathematics. The same kind of story change happened in my teaching the same course 
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again, when there was no text change at the topics level. Over time, the same text told me a story 

of a different character (e.g., the story of linear functions becomes the story of polynomial 

functions, the story of limit becomes the story of slope and eventually the story of division) or a 

story about the same character rather than multiple different ones (e.g., a story of quadratic 

equations, quadratic trigonometry equations, and quadratic exponential equations is a story of 

quadratic equations, taking different forms at different times). Here the story change, sometimes, 

was like the change from one person’s story to another person’s story, and sometimes like the 

change from a story of an individual to a story of a collective. Such reading of one mathematical 

story into another helped me to feel closer to these mathematical ideas and to mathematics in 

general. It also transformed my mathematical understanding as it is essentially a process of 

pattern noticing, connection building, abstraction, and generalization.  

7.3 Space Opening Up  

The above interpretation of re-viewing as re-storying stresses that changing time or text 

(including the content, form and media) can help to invoke a re-viewing process. No doubt that 

changing what is being said, how it is being said, and when it is being said about the same thing 

can affect a learner’s interpretation aesthetically and/or logically. The change in either dimension 

has a potential to transform the other dimension and also the learner’s mathematical 

understanding.  

Also emphasized in the above interpretation, it matters little whether a text is read as a 

story in a re-viewing process. It is the perceived difference between two texts in a re-viewing 

process that suggests certain story change and makes a difference in a reader’s understanding. 

Drawing an analogy between re-viewing and re-storying is to seek inspirations from story 

change to help with text design.  
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Thinking re-viewing as re-storying enlarges the space of potential equivalent texts. Two 

texts might appear dramatically different yet equivalent as telling the same story. How 

differently two equivalent stories appear is relative to which level of abstraction they are 

equivalent at for a reader. For instance, the two place value stories generated in the re-storying 

workshop are considered the same, albeit appearing to do with different mathematical events (i.e., 

multiplying and dividing), for they repeating the same kind of mathematical errors (i.e., not 

lining up the units with the same place value). In a particular context and at a particular 

abstraction level, they differ in degree not in kind. This is the same logic why sometimes a word, 

a painting, a sitcom can tell the same story as a piece of music does. Similarly, any text can 

become a contingent equivalent pair for a mathematical one as long as they can be read as 

equivalent stories at a particular level of abstraction, e.g., with the same moral. Therefore, 

thinking re-viewing as re-storying points us to connect seemingly different stories across 

contexts with mathematical or non-mathematical characters together through analogy, breaking 

boundaries that alienate mathematics, such as the boundaries between mathematics on paper and 

embodied mathematics, between mathematics at school and mathematics in daily-life, and 

between mathematics and other subjects, including arts. Through stories, re-viewing stresses the 

importance of relational and analogical thinking for learning, and broadens the possibilities of 

building connections across contexts and noting the patterns that are connected26.  

Thinking re-viewing as re-storying is partially premised on a conviction of mine: That 

one’s mathematical understanding is a story because they both are idiosyncratic contingent 

constructs always in the status of becoming. Considered as individual interpretation, both 

                                                           
26 In his book Mind and Nature, Bateson (1979/2002) identifies a pattern, which is mind, that different living 
creatures share. He calls this pattern as “the pattern which connects” (p. 7). His work suggests to me that there is 
shared commonality among different complex phenomena. Such commonality or connectedness, observed through 
the lens of complexity thinking, is multiple. In other words, many patterns we observe are connected, and possibly, 
in many different ways.  
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mathematical understanding and story are hermeneutic truth that is “very fragile, very mortal, 

very close to what happens to us” (Jardine, 2015, p. 250): They are not there to last forever. 

Mathematical understanding is not timeless, but instead a time bound construct. Thinking 

mathematical understanding as stories urges us to emphasize its aesthetic dimension and 

hermeneutic mortal quality, attend to what happens to us while learning mathematics, value the 

memories, feelings, images, and sounds evocated through our interaction with a mathematical 

text, and encourage us to envision mathematics learning as an aesthetic experience. Therefore, 

for learners who view mathematics as universal objective truth thus lifeless, re-viewing as re-

storying has potential to breathe life into their mathematics learning and understanding through 

stories. In this case, re-viewing is a reviving process.   

Considering re-viewing as re-storying can trigger the possibility of any of the three forms 

of the re-viewing process, e.g., by asking “What might a story about it be like?” (“it” refers to a 

certain mathematical idea at focus) or “How I can tell the same story?” when given a certain text. 

Each of the three forms of re-viewing can be considered as changing different dimensions of the 

same story. Thus, re-storying is similar to each of the three forms of re-viewing and to the whole 

of the three. At the same time, re-storying moves away from semiosis to narratives, in a sense, 

from a narrower focus on individual sign vehicles to a border view of mathematical texts. To 

signify such complicated relations and propel further thinking on them, I renewed the tentative 

visualization of re-viewing (see Figure 6.4.1) previously established. The new image (see Figure 

7.3.1) presents re-storying as a form of re-viewing that transcends the other three forms and 

merges into the whole of re-viewing.  

To deemphasize the eyes, consciousness, and logical analytical mode of knowing, to 

stress the whole body with kinesthetic, tacit, and analogical modes of knowing, and to 



TOWARDS RECURSIVE MATHEMATICS CURRICULA 158 

acknowledge re-viewing as both planned and lived processes, I was compelled to change re-

viewing to re-encountering. The word “encountering” was also chosen for its connotation of 

meeting something unexpectedly and informally, in order to have the theorization of re-

encountering to lend support for designing a recursive curriculum that changes along its 

unfolding hence open for novelty and serendipity. My use of “encountering” here is somewhat in 

line with Badiou’s idea of encounter. An encounter with an event, as den Heyer (2009) 

interpreting Badiou, extends beyond a static state as the potential beginning of one’s “becoming-

subject” (p. 453), a status of one being simultaneously oneself and in excess of oneself. Worded 

it differently, Badiou’s encounter is a prospective start of a re-engagement with familiar terms of 

understanding. In my theorization of recursive curriculum, it is the word “re-encountering”, 

which refers to the later experiences of encountering what was perceived or considered as 

familiar or known, that echoes Badiou’s notion of an “eventful” encounter. This is neither to 

exclude the possibility of first encounter in Badiou’s sense nor to deemphasize it in curriculum 

design. Rather this is to acknowledge the pervasiveness of the phenomenon of a learner 

Re-storying 
Analogical Dimension 

“What might a story about it be 
like?” 

Re-visiting 
Other dimensions 

“What might it be ____ like?” 
 

Re-languaging 
Linguistic Dimension 

“What might it be worded like?” 

Re-imaging 
Visual-Spatial Dimension 

“What might it be imagined like?” 

Re-inbodying 
Bodily Dimension 

“How might it be embodied/enacted/perceived like?” 

Re-
encountering 

Figure 7.3.1. A renewed categorization of the forms of re-viewing. 
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encountering something she has previously encountered before and the lack of attention in 

orientating re-encountering towards transformation in theory and in practice. It is beyond the 

scope of this thesis to discuss Badiou’s notion of encounter.       

As I specified at the beginning of the methodology section, essentially, my interpretation 

of reviewing is an attempt to understand recursion. So now we can look back the concept of 

recursion to envision a recursive mathematics curriculum, with a renewed understanding of 

reviewing.  
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8 Re-encountering Recursion and Recursive Curriculum 

Recursion centers in re-encountering. This does not mean that recursion is equal to re-

encountering, but more so that re-encountering is a part similar to the whole of recursion. Thus, 

they reflect and inform each other. Re-encountering, as a renewed interpretation of the practice 

of re-viewing, is situated in both theory and practice. So a look at all previously discussed forms 

of re-encountering (including re-storying) as a whole can suggest to us some interesting qualities 

of both recursion and recursive curriculum. Albeit the following interpretation is divided into 

two parts, focusing on recursion and then recursive curriculum, these two parts are two 

perspectives of the same process. Therefore, it is important for one to read them as enriching and 

informing each other.  

8.1 Recursion 

At the beginning of the study, I established that recursion is a process of repetition of 

variations, and a process of re-interpreting and re-experiencing. Here, with the establishment of 

some forms of recursion, these interpretations take on new meanings and senses.  

Recursion as playing with equivalency  

Recursion as repetition with variations is reflected in all forms of re-encountering as 

learner working with equivalent ideas and texts. New understanding often emerges when a 

learner establishes or revises a sense of equivalency by seeing different objects as the same, 

seeing the same or equivalent objects differently, or generating something equivalent. Obviously, 

the idea of equivalency is central for re-encountering, hence recursion.  

Equivalency or equivalence in general is defined as “The condition of being equivalent; 

equality of value, force, importance, significance, etc.” (“Equivalence”, 1989). It has some 

special meanings in different disciplines, for example, an equivalence relation in mathematics is 
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“a relation between elements of a set that is reflexive, symmetric, and transitive” (“Equivalence”, 

1989), while equivalence means “Equality of energy or effect” in physics and the same ability to 

combine in chemical reactions in chemistry (“Equivalence”, 1989). The idea of equivalency in 

re-encountering for mathematics learning, illustrated in the previous interpretation of its four 

forms, comprehends various kinds of equivalency; it is more comprehensive. For example, the 

different definitions of circles are equivalent in meaning; the different names of asymptote are 

equivalent in function; the different images of the division sign are equivalent in appearance and 

in both visual-spatial and mathematical structure; the paralleled actions for negative numbers 

subtraction are equivalent in embodiment; the story of linear functions and the story of quadratic 

functions are equivalent in origin (such that one can develop into the other) or logic class (such 

that one can be embedded in another or share the same type with the other). Putting these 

examples together, I see equivalency in re-encountering is a condition of two things 1) being 

identical, or 2) sharing certain quality, which can be physical (e.g., appearance, sense, 

impression), conceptual (e.g., meaning, interpretation), practical (e.g., function, process, value, 

effect), structural (e.g., pattern, structure, logic, type), historical (e.g., origin, development), and 

etc.  

Noting that the story of multiplication and the story of division were also viewed as 

equivalent in the re-storying section, there seems the third condition of equivalency in re-

encountering: Two things having a coupling relation (i.e., sharing a relational quality) can also 

be equivalent. As mentioned earlier in section 2.1, the word “coupling” used in complexity 

thinking refers to Maturana and Varela’s (1998) notion of structural coupling, which is a mutual 

adaptive and co-evolving relationship between two or more self-organizing systems (e.g., an 

organism and its environment). Two mathematics ideas can related to each other in a structural 
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coupling relation when they are observed as complex systems through the lens of complexity 

thinking. This means that a change in one idea can occasion changes in the other. Here I use 

“coupling” in a more general way by using the literal meaning of “couple”: “Two individuals 

(persons, animals, or things) of the same sort taken together; properly used of such as are paired 

or associated by some common function or relation” (“Couple”, 1989). This notion of coupling 

subsumes structural coupling, as two things in a structural coupling relation can be considered 

together by an observer as the same sort of things, and it also opens other possibilities. In the 

context of equivalency in re-encountering, I see mathematical ideas that have a reflexive, 

opposite, reverse, inverse, symmetrical, or reciprocal relationship as good candidates for coupled 

ideas as these relations are common in mathematics and knowing one of the ideas can easily lead 

to knowing the other since they share the same knowledge base. For example, multiplication and 

division can be coupled as one can use the same grouping knowledge to understand 

multiplication and division, and one can get one from the other through reversion. 

Fundamentally, coupling relations are a kind of one-degree separation relation, which I refer to 

the relation between two things that are one step away from each other and associated together 

by rule, norm or manipulation. This interpretation opens space for equivalency established 

through personal rules and social norms beyond mathematical conventions and through various 

kinds of (un)conscious manipulations (including intuitions, habits, resonances, and imaginations) 

beyond common mathematical operations and logics. Obviously, the more familiar the rule or 

norm connecting two things is and the easier the manipulation is for a learner, the stronger tie 

these two things have for her. Once a learner reaches to a level of automation such that seeing 

one from the other costs little effort in thinking, we can say that these two things are coupled for 
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this particular learner. This seems to explain why the rational expression  looks equivalent to 

-1 for me but not so for many of my students for a long time.  

Apparently this seemingly third condition of equivalency overlaps with the second 

condition, as there are often meaningful, rather than arbitrary or manipulative, connections for 

things that one considers equivalent. Taken  and -1 as example again, they are equivalent in 

numerical value. They can also be viewed as equivalent in appearance for a learner who has got 

used to -1 in the form of  or . Nevertheless, it is still helpful to recognize this third 

interpretation of equivalency. This allows re-encountering to be triggered by questioning how 

any two things that one has learned to associate together might be equivalent in other dimensions 

(e.g., the conceptual). Bringing conditions two and three together, we can see that some 

equivalency is established through partial similarity or correspondence. In other words, drawing 

on the interpretation of analogy as “correspondence or resemblance between things” (“Analogy”, 

2010), we can say that some equivalency is established through analogy.  

Obviously, equivalency is a contingent relative observation. Whether two mathematical 

ideas or texts are equivalent is subjective to the learner’s current understanding and learning 

situation. A statement of equivalency is always made in referencing to certain conditions, e.g., a 

linear function can be viewed as equivalent to a quadratic function when one considers them in 

the context of polynomial functions or in relation to rational functions. As a learner improves 

mathematical understanding and broadens her view of mathematics over time, her sense of 

equivalency changes too. More and more mathematical ideas would be viewed as associated, 

coupled and eventually equivalent in meaningful dimensions. This can happen even for some 

mathematical ideas that are initially considered as disconnected (e.g., division and limit) or 

multiple steps away (e.g., (𝑎 + 𝑏)  and 𝑎 + 2𝑎𝑏 + 𝑏 ). This identification of equivalency helps 
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a learner to collapse many ideas into one, encouraging her to see a broader mathematics territory 

with a greater simplicity. The shifting from one kind of equivalency to another (e.g., functionally 

equivalent  conceptually equivalent) and the establishment of equivalency in multiple 

dimensions definitely help the learner to deepen her understanding. 

This contingency of equivalency demands a heuristic use of equivalency in a re-

encountering process: Learners shall be encouraged to use a tentative interpretation of 

equivalency to further thinking, while remaining open for other possible interpretations to 

emerge. There needs to be a hermeneutic and experimental attitude towards equivalency in re-

encountering. Contingent equivalent sign vehicles might be multiple representations (e.g., 5, 5 

objects) of the same idea (e.g., 5) or multiple representations (e.g., 5, 6 objects) corresponding to 

equivalent ideas respectively (e.g.,5, 6, they are equivalent when one sees them both as integers).  

Essentially recursion is a play with equivalency.  

Recursion as thinking with the mediums of thought and living through the process of re-

encountering 

Recursion facilitates new thought about an idea looping back to previous thought, hence 

affording new interpretations. However, besides one’s previous thought, recursion also allows 

one to work with the medium (i.e., a signifier/representation and process) of thought to afford re-

interpreting and re-experiencing. Different forms of re-encountering engage different types of 

mediums: language, image, body, and story, or worded differently, linguistic, visual-spatial, 

physical, and narrative representation, and the process of expressing, representing, and working 

with the medium itself. Each type of mediums enables the learner to express and/or engage with 

ideas in a certain way. So mixing different types of media in a re-encountering process can help 
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one to interpret and experience the same idea differently. However, re-interpreting and re-

experiencing can happen without changing the type of medium too.  

For one, re-interpreting and re-experiencing can happen through the use of equivalency in 

re-encountering. Such use allows the co-existence of sameness and difference. Working with 

equivalency requires a learner to interpret and experience the same idea differently yet negotiate 

the differences to maintain a sense of coherence. This demands the learner to differentiate but 

also synthetize and generalize, in other words, both diverge and converge. As illustrated in 

different forms of re-encountering, this process of diverging and converging helps to bring forth 

new interpretation(s) of the same idea.   

Re-interpreting and re-experiencing can happen, also, when the medium is enlisted to 

help to shape thinking rather than being used as a transparent vehicle of thought. An expression 

or representation of a thought is treated different from the thought in re-encountering; rather it is 

a process affected by the medium of the thought. In each form of re-encountering, it is 

acknowledged that a medium has certain affordances and limitations for thinking: A medium 

affects what and how a learner perceives, feels and senses, and can induce the learner to think in 

certain ways. Thus a message cannot be transmitted but interpreted, and a medium can be used to 

activate a learner’s unconscious or tacit knowing, engage a different mode of doing, and invoke a 

different way of thinking. In other words, how an idea is presented and expressed affects thought. 

Moreover, in a re-encountering process, the medium of a certain message that one works with is 

turned into a message (such as a name, an image, a body action, a story, or the experience of 

working itself become a self-referential pointer for meaning), inviting alternative interpretations 

of the initial message. This change from medium to message is inseparable with the use of 

equivalency in a re-encountering process, which subjects a learner to the influences of two 



TOWARDS RECURSIVE MATHEMATICS CURRICULA 166 

different mediums (including the same medium encountered at a different time or different 

mediums encountered at the same time) the same idea, affords her opportunities to perceive 

difference needed to trigger her to re-interpret the idea. Such difference is what Bateson 

(1979/2002) calls the difference that makes difference: It exists in comparison, as “it takes at 

least two somethings to create a difference” (p. 64), and it is needed to trigger a mind to work, as 

“the interaction between parts of mind is triggered by difference” (p. 85). The above 

contemplation on a medium’s role in re-viewing is echoing McLuhan’s (1964) theory “the 

medium is the message”, in which he argues that “it is the medium that shapes and controls the 

scale and form of human association and action” (p. xxx). Yet this connection is beyond the 

scope of this study.   

Nevertheless, this acknowledgement of medium shaping thought, combined with the 

assumption that mathematics understanding is an infinite process, has its significant implication: 

It makes an expression of thought neither necessary nor possible to be final and complete. Rather, 

expressions (both the outcomes and processes) are tentative heuristic tools for thinking in a re-

encountering process. Hence the process of thinking with different mediums of thought, being 

affected by them, and learning from one’s experience, becomes more important than getting a 

particular result of thinking. In other words, currere (as discussed in section 3.1), the running of 

the course and reflecting on the running, is more significant. Once again, we are reminded that 

there are no shortcuts for cognition development: Cognition construction is noncompressible 

(Davis & Sumara, 2006, p. 43); “the structure emerges or the path that unfolds has to be lived 

through for its endpoint to be realized” (Davis & Sumara, 2000, p. 841). A living through the re-

encountering process is needed for cognition development to be realized. As to experience is “to 

meet with; to feel, suffer, undergo” (“Experience”, 1989), through encouraging a learner to 
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experiment with different expressions of the same idea in order to learn from how they influence 

her differently, and through demanding the learner to live through the whole process, re-

encountering becomes a re-experiencing process.  

One must note that it is the interest in this experiencing the difference between multiple 

expressions and mediums that separate recursion from a process of changing forms of 

communication to cater to individual differences, even though it would be a byproduct of the 

process. As Sfard (2010) conceptualizes,  

Learning mathematics means changing forms of communication. The change may occur 

in any of the characteristics with the help of which one can tell one discourse from 

another: words and their use, verbal mediators and the ways they are operated upon, 

routine ways of doing things, and the narratives that are being constructed and labelled as 

“true” or “correct.” (p. 217) 

Learning through change is exactly what recursion encourages. There is no interest to label a 

form as good or bad absolutely or settling down with any of the forms in a recursive process. The 

harmony or tension that arises from the comparison of forms is the source of insights in recursion. 

The space for growth is in between.   

Recursion as unclogging and playing with time  

Recursion can bring forth something new for a learner. Sometimes this is not to do with 

something brand-new but something that the learner has known before yet somehow forgotten, 

or as Davis and Renert (2014) phrase, something that the learner does not have immediate access 

to. There are many examples in this study. In my story of re-languaging the circle definition, I re-

cognized the relation between graph and points and how this relation can be implemented in 

solving various types of analytical geometry problems. Given how frequently I was taught to 
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understand why a formula works in Chinese education system, this connection must have been 

made long ago during my high school years. In my story of renaming asymptote, I re-cognized 

the meaning of its Chinese name. I must have come to this realization before when I was learning 

asymptotes in high school. But after years of automatic use of knowledge of asymptotes, I had 

forgotten the name’s significance and just used it as a label. In Maxine’s story of seeing the 

bracket sign in polynomial tile divisions, it is also reasonable to believe that Maxine had seen it 

before due to her familiarity with the topic.   

However, this seeing something one has seen before yet failed to remember is different 

from recollecting a lost memory. Exemplified in my re-enacting −6 − 2 = −8 experience, there 

is more to this process. In that incident, I did not realize that I have conflated multiple meanings 

of the same “−” sign together until I had been compelled to enact −6 − 2 = −8 on the number 

line using actions parallel with the ones executed on the negative tokens. This remembering that 

a “−” sign has multiple meanings allowed me to understand where my students’ difficulty with 

negative numbers subtractions may lay and see what I used to see but could no longer see. 

Moreover, it urged me to reconstruct my concept of “−” sign and number as a whole at a new 

comprehensive level. But most significantly, it made me aware of my own recursive blindness, a 

phenomenon that Tom Kieren (Feb 4, 2016, personal communication) explained, while citing 

Maturana, as that experienced mathematics learners are not aware of what they used to know or 

experience. Such blindness blocked me from seeing what my students see and how I might have 

struggled like my students before. I had observed, as Freudenthal (1983) did,  

that sources of insight can be clogged by automatisms. One finally masters an activity so 

perfectly that the question of how and why is not asked any more, cannot be asked any 

more, and is not even understood any more as a meaningful and relevant question. (p. 469) 
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Automation brings recursive blindness. It also makes experienced learners unable to notice what 

they unconsciously notice or pay attention to. I remember how strangely I felt when I suddenly 

saw, literally, quadratic trigonometry equations as quadratic equations after I had taught them for 

a few semesters. “Aha, this is what my students need to see too”, I thought to myself. Albeit 

delighted for seeing this new image, I could not believe that I had never seen something this 

obvious before. Now I think I was blocked by automation to see the pattern image that I can 

unconsciously notice.    

A re-encountering process can help to undo this automation. Re-encountering something 

that a learner is familiar with affords her the kind of unclogging exercises that proposed by 

Arcavi and Nachmias (1989), “to direct our attention to reviewing the ‘source of our insights’ 

which somewhere in the past were incorporated to our mathematical background as automatisms” 

(p. 81). By inviting us to reencounter what we have encountered before and by engaging our 

senses and thoughts, a re-encountering process demands us to trouble what we have taken for 

granted. This can make our unconscious sensing and knowing conscious for us, thus undoing the 

automation process. This knowing what we know unconsciously not only enhance our content 

understanding but also provide new insights for pedagogical considerations. This makes re-

encountering helpful for both subject learning and metacognition learning.   

Thinking of recursion as unclogging reflects, once again, the underlying assumption of 

mathematical understanding as an infinite process. One can always understand a mathematics 

idea differently. Therefore, recursion is a process for learners at all mathematical fluency levels.  

Thinking of recursion as unclogging, also, reminds me of the merit of forgetting. As I 

have understood, from my reading of the spacing effect (as explained in section 5.1), a certain 

degree of forgetting is needed to afford an effortful and successful reconstruction of previously 
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learned knowledge. One’s forgetting what one has learned or struggled before due to automation 

over time actually makes reconstruction of understanding inevitable and allows it to be 

significant. Exactly as Gadamer (1989/2013) writes,  

only by forgetting does the mind have the possibility of total renewal, the capacity to see 

everything with fresh eyes, so that what is long familiar fuses with the new into a many 

leveled unity. “Keeping in mind” is ambiguous. (p. 15) 

Forgetting is necessary for one to learn things anew. Recursion needs forgetting. Time comes 

into play in recursion: It takes time to forget; it also takes time for difference between thoughts to 

arise thus making the old new again. Recursion works with, not against, time.  

8.2 Recursive Curriculum  

In this section, we move into a planned curriculum space and think about designing 

towards a recursive curriculum. Here, I propose two perspectives that are worth stressing in 

curriculum design if we were to promote recursion in mathematics curricula. One is to think 

curriculum as fractal-like and the other is to view it as a biological structure always in the 

process of becoming. 

Recursive curriculum as fractal-like and as a continuous interplay of part and whole 

It has been emphasized repeatedly that one works with equivalent things in recursion. 

Comparison is inevitably essential in a recursive curriculum. Comparison refers to “the action, or 

an act, of comparing, likening, or representing as similar” and also “a simile in writing or 

speaking” (“Comparison”, 1989) as the likening of things of different sorts based on certain 

levels of likeness, similarity or resemblance, such as a teacher and a gardener. Thus it makes 

sense that comparison is alternatively interpreted as “an analogy or the quality of being similar or 
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equivalent” (“Comparison”, 2019). This implies that the things compared are somewhat 

considered as similar yet different, or in our words, equivalent. 

Comparison, often coming in the form of parallel display of two texts side by side, seems 

to have been used widely in planned mathematics curricula. For example, each lesson worked 

example in the Alberta Math10 textbook is placed at the left side of a similar looking exercise 

question. In the Chinese Math9 textbook, many lesson examples and exercise questions appear in 

pairs: Two similar worked examples or exercise questions are often displayed side by side, and 

sometimes a worked example is placed on top of an exercise question on the same page. This 

popularity of comparison in textbooks does not suggest that there is no need for more study of 

comparison. Actually the study on comparison in mathematics education continues to show room 

for improvement in our understanding about the topic. For instance, Star et al. (2015) study the 

effect of an Algebra I supplemental comparison curriculum on students’ mathematical 

knowledge. In this trial curriculum, students need to compare worked solutions of algebra 

problems. Such comparison appears less frequently in regular textbooks. The study shows that 

“greater use of the supplemental curriculum was associated with greater procedural student 

knowledge” (p. 41). It also suggests to me that more study on comparison is necessary. Given the 

significance of comparison for a recursive curriculum, the popularity of comparison in planned 

curricula actually demands us not to take comparison for granted but to trouble its form: In what 

ways might we design comparison in order to promote recursion? 
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To answer this question, let’s follow Bateson’s (1979/2002) “comparative study of the 

comparative method”, which compares instances of comparison (p. 81).  Figure 8.2.1 shows a 

comparison of two comparison examples. To focus on the form of comparison, only information 

related to the content and layout of the comparison (i.e., what the two items for comparison are 

and how they are displayed) is presented. For the purpose of comparison across textbooks, the 

wordings of the questions cited are simplified. For example, The example in Design 1 “Graph 

f(x) = −2x + 7" was changed from “Sketch a graph of the linear function f(x) = −2x + 7”. 

 The example in Design 2 “Graph y = x + 0.5” was changed from “画出函数y = x + 0.5的图

像 (literally translated as: sketch a graph of the function y = x + 0.5 )” (see Appendix D for 

more details of the original texts).  

These two examples are both the first27 graphing a linear function example. They are also 

comparable at both question and solution (i.e., find at least two points on the graph then connect 

them) level. In both designs, a worked example and a similar-looking exercise question are 

                                                           
27 The Chinese Math9 textbook has a lengthy introduction, which includes explaining how to graph𝑦 = 𝑥, before 
this first example. 

  

Example:  

Graph 𝑓(𝑥) = −2𝑥 + 7 
𝑓(𝑥) = 4𝑥 − 3 

Exercise:  

Graph  

Design 1 

Side-by-side two-columns display 

Design 2 

Example: Graph 𝑦 = 𝑥 + 0.5  

Exercise: Graph 𝑦 = 0.5𝑥 

Up-down display 

Figure 8.2.1. Two comparison design examples. Design 1 is summarized based on the example 
in the Alberta Math10 textbook, p. 315. Design 2 is based on the example in the Chinese Math9 
textbook, p. 91 
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displayed close by. Albeit neither design deliberately instructs the learners to compare the 

example and the exercise, their visual and spatial proximity is likely sufficient enough to induce 

comparison.  

Both designs include two equivalent problems. But the pair in Design 2, compared with 

the pair in Design 1, looks more alike: While two numbers changed in Design 1, a number was 

moved and a symbol was removed in Design 2.  In comparison with this close resemblance, the 

mathematical difference between the two in the Design 2 could become relatively more 

significant. In this context, this pair differs subtly yet saliently (see Luo, 2015 for more 

discussions on subtle yet salient differences). This sharper contrast between the similarity in 

appearance and the difference in mathematical behaviors is helpful for getting a learner’s 

attention: Seeing how a subtle change in appearance can bring forth such a dramatic behavior 

change can be both surprising and liberating. It draws a learner’s attention to the mathematical 

structure of both objects and urges her to learn to discern determining factors from trivial ones. 

When the two objects resemble each other, seeing one can remind the other thus making learning 

about one is like reviewing the other.    

More importantly, this addition of one thing closely resembling the previous one yet 

dramatically different affords one to both differentiate and connect them. This helps to bring 

forth abstraction and generalization. When there is a chance to interpret two things as separate 

categories making up a new category together, moving away from one to another is no more 

trivial but empowering and transformative because learning about one is no longer about one 

specific case but a class of cases. There is a change in logic type, producing embedded 

categories. For example, the two functions compared in Design 2 can represent two separate 

categories (i.e., linear functions with a non-zero y-intercept and linear functions with a zero y-
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intercept) and together they can make up a higher level category (i.e., linear functions). Of 

course, whether two things in comparison closely resemble each other is a contingent 

observation, and it is relative to what the learner has encountered before and what she encounters 

later. Therefore, the learner might not think much about categories until much later with either 

comparison design.  

The issue now becomes how to trigger a learner to compare what she encounters at 

present more frequently with what she has encountered in the past. This takes us out of the small 

scale. Let’s look at a sequence of four comparison examples extracted from four sections in the 

Chinese Math9 textbook in Figure 8.2.2. Again, similar to the questions in Figure 8.2.1, the 

questions here (see Appendix D for more details) were translated from Chinese and worded in a 

simplified format to ensure comparison across samples.  

 

Comparison 1 Comparison 2 Comparison 3 Comparison 4 

Example:  
Graph 𝑦 = 𝑥 + 0.5  
 
Exercise:  
Graph 𝑦 = 0.5𝑥, 
each in a different 
Cartesian plane. 

Example:  
Graph two linear 
functions  
(𝑦 = 0.5𝑥,  
𝑦 = −0.5𝑥) 
each in a different 
Cartesian plane. 

Example:  
Graph two linear 
functions 
(𝑦 = 2𝑥 + 1,   
𝑦 = −2𝑥 + 1), in 
the same Cartesian 
plane. 

Exercise:  
Graph four linear 
functions  
(𝑦 = 3𝑥,   
 𝑦 = −3𝑥,  
𝑦 = 3𝑥 + 3,  
 𝑦 = −3𝑥 + 3), in 
the same Cartesian 
plane. 

from Lesson 13.3, 
p. 91 

from Lesson 13.5, 
p. 99 

from Lesson 13.5, 
p. 100 

from Lesson 13.5, 
p. 101 

Figure 8.2.2. Four equivalent comparisons.  
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These comparisons are from two lessons that are one lesson apart. Looking at them 

together, it is not hard to see that they consistently use the same repetition with subtle yet salient 

changes to design each comparison and comparisons over time. Comparison 2 starts with a 

previously learned function (i.e., 𝑦 = 0.5𝑥) and compares it with a new yet similar function (i.e., 

𝑦 = −0.5𝑥). Comparison 3 can be viewed as a modification of Comparison 2 or it includes two 

modified versions of any of the two functions in Comparison 1. Comparison 4 is a modification 

of the previous two comparisons. This design allows a learner to be consistently reminded of her 

past at multiple levels: Each new addition of function or comparison is a resemblance of its 

immediate past or the past as a whole. It is also different enough to urge one to think about 

category as each new addition can bring forth new whole(s). For example, when the learner 

encounters a comparison between 𝑦 = 0.5𝑥 and 𝑦 = −0.5𝑥, she might (un)consciously view 

them as different cases rather than classes. But when she moves to a comparison between 

𝑦 = 2𝑥 + 1 and 𝑦 = −2𝑥 + 1, many classes might emerge (e.g., linear functions with zero y-

intercept and non-zero y-intercept, linear functions with positive and negative slope).  

An analogy (see Figure 8.2.3a) of this design of using multiple levels of similarity to 

trigger comparisons in both part and whole is helpful here. Starting from showing you an orange, 

if I put a lemon besides it, you can tell that they are different. By the time I add an apple, you 

might notice that orange and lemon are more alike than you thought before. Now if I add a bottle 

of apple juice, you would most likely see the three fruits the same. Each addition brings in 

multiple new wholes, not just a part. This design of each new addition of curriculum resembling 

and differing from the past at both part and whole level affords a recursive curriculum: Each new 

addition invites re-encountering the previously established whole. Such curriculum is self-similar 
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– a part at any scale represents the whole. It can be represented differently as a binary fractal tree 

(see Figure 8.2.3b), displayed in comparison with the analogy image.  

When the same design is used to organize content at various scales, the resulted 

curriculum text exhibits the same pattern across scales. Such is observed in the three chapters 

about function in the Chinese Math9 textbook. Each new chapter introduces a new kind of 

function using a similar plot design (i.e., each kind of function goes through a similar sequence 

of transformations: vertical stretch/compression/reflection  vertical shift) and has task 

organization in consistent with the binary tree design. Hence, each chapter is a new part that 

reminds one of the previous whole yet differs from it. A representation of the outline of the 

curriculum also shows a fractal-like structure (see Figure 8.2.4). Such fractal-like structure, with 

its abundant use of comparison and self-similar parts, supports and promotes a constant part-

 

a. An analogy of the curriculum design of using multiple levels of 
similarity. 

b. A binary tree. 

Figure 8.2.3. A fractal-like curriculum design. 
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whole interplay.  

 

Figure 8.2.4. A visualization of three chapters about function. 

Given that a fractal-like structure entails the same pattern observed across scales, one can 

learn to design a fractal-like mathematics curriculum by drawing inspirations from mathematics 

education literature in curriculum elements (e.g., task, example, event, process) design, such as 

the ones emphasizing variations (e.g., Marton & Booth, 1997; Watson & Mason, 2005, 2006), 

multiplicity of representations (e.g., Dienes & Golding, 1971; Radford et al., 2007), seeing the 

general in particular (e.g., Mason & Pimm, 1984), stressing and  ignoring (e.g., Gattegno, 1970), 

educating attention and awareness (e.g., Gattegno, 1970, 1988; Hewitt, 1994, 1999), reflection 

(e.g., Freudenthal, 1991), and so on. Of course, changing one single curriculum element without 

changing the elements across scales is insufficient to make a recursive curriculum possible, as a 

recursive curriculum has holistic considerations embodied in parts. However, a thoughtful 

planned curriculum is insufficient either; it is even a harmful goal to strive for if it does not 

encourage self-transformation during its enactment. As one will read in the next section and later 

chapters, a more radical change in one’s ways of seeing mathematics, curriculum, and one’s 

relationship with them is critical. 

Function –> linear function–> quadratic function  –> inverse function –> Function 

Linear function –> 𝑦 = 0.5𝑥, 𝑦 = −0.5𝑥 –> 𝑦 = 𝑘𝑥 –> 𝑦 = 2𝑥 + 1 , 𝑦 = −2𝑥 + 1–> 𝑦 = 𝑘𝑥 + 𝑏  
–> Linear function  

 

Quadratic function –> 𝑦 = 𝑥 , 𝑦 = 2𝑥  ; 𝑦 = −𝑥 , 𝑦 = 𝑥   –> 𝑦 = 𝑎𝑥  –> 𝑦 = 𝑥 + 1 , 

𝑦 = 𝑥 − 1; 𝑦 = − (𝑥 + 1) , 𝑦 = − (𝑥 − 1) ;  𝑦 = − 𝑥 , 𝑦 = − 𝑥 − 1, 𝑦 =

− (𝑥 + 1) − 1 –>  𝑦 = 𝑎(𝑥 − ℎ) + 𝑘  –> Quadratic function  

Inverse function –> 𝑦 = , 𝑦 = −   –> 𝑦 =  –> Inverse function  
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Recursive curriculum as process-oriented and as a biological structure in the state of 

becoming   

It has been established, through the concept study on recursion at the beginning of this 

inquiry, that a recursive curriculum is currere-oriented. This was interpreted, earlier in section 

3.1, as that a recursive curriculum encourages learners to experience and to reflect upon their 

experience and it emphasizes process in education. My running a course of interpreting recursive 

curriculum has transformed this understanding. The following is an important experience that 

afforded the transformation.  

Mapping. Before my conversation with a participant about her words given in Workshop 

3.1 (Re-viewing), I needed to summarize the workshop. I had interpreted the workshop 

Content & Task 
Development Map 

Figure 8.2.5. Curriculum development maps (set 1). 



TOWARDS RECURSIVE MATHEMATICS CURRICULA 179 

before and found the curriculum tasks, which the three participants and I generated 

together in order to help students to learn something new from reviewing what they have 

encountered before, seem scattered. This time, thinking re-viewing as re-storying, I 

interpreted these tasks with a focus on storyline (i.e., the development of mathematical 

events): I categorized mathematics ideas and mathematics tasks, and analyzed how ideas 

are related and how one mathematics task developed into another. Unexpectedly, three 

content and task development maps (see Figure 8.2.5) emerged along with the process. 

From there, I could see that these seemingly incoherent tasks can be generated through 

following the two task development maps and shifting attention in the content map, along 

with many others that we did not mention. Not only did these three maps offer me novel 

views of linear relations, but also bring 

forth a recursive curriculum 

development model that participants 

and I had been using partially without 

conscious theorizing and that is helpful 

for future curriculum planning.  

Days later, I used the same 

method to interpret Workshop 3.2 (Re-

interpreting) again. I made another set 

of  recursive task development maps 

(see Figure 8.2.6), by following which 

one could regenerate the diverse word 

problems proposed in the workshop to 

Figure 8.2.6. Curriculum development maps (set 
2). 
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encourage students to reinterpret what they have interpreted before and learn something 

new and also generate more than we did. This map allowed me to see diverse speed-time-

distance problems as a whole in a novel way. I further noticed that it can be extended to 

subsume any system of three elements relations that fulfill a ~ b=c (where ~ represents an 

operator). Once again, I realized that I had benefited mathematically and pedagogically 

from a process of mapping the territory that I have gone through, and a back-and-forth 

movement between map and territory seems important for a recursive curriculum.     

The above story elaborates a process of re-viewing during which new mathematical and 

curricular understanding emerged. This process, as both re-imaging and re-storying, is also a 

mapping process. As Bateson (1979/2002) says, the map is not the territory. Map and territory 

differ in the level of abstraction. With only the structure of the territory in focus while ignoring 

many details, a map offers a holistic view of the territory and emphasizes how the items on the 

map relate to each other. Mapping, as zooming out on a territory, is essentially an abstraction 

process of a system of (spatial, temporal, procedural, conceptual) relations, thus significant for 

any mathematics curricula that intend to promote relation and mathematisation. Interestingly, 

given how mathematics is full of embedded ideas – so many mathematics ideas are related in a 

self-similar way, one can always remap a map at a more or less abstract level and in relation to a 

broader or narrower territory. So mapping in mathematics can be both zooming out and zooming 

in. While zooming out is abstraction and seeing bigger patterns in a wider territory, zooming in is 

a return to concrete examples or regenerate the finer details of a narrower territory.  Both 

zooming in and zooming out are necessary for mathematical development. Although my story 

seems to focus mostly on the zooming out process, I ended up generating a kind of map that also 

depicts the details one can see when one zooms in.  
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Such a map is actually a set of simple rules for generating fractal-like territory. All the 

content and task development maps show how a set of knowledge contents and curriculum tasks 

are variations of the same thing. The maps are made of a common core (i.e., the shared 

mathematical object) with self-reflexive lines labeled with a particular change, showing the 

development of content and task as reviewing what one has encountered before. Compared to the 

forms used frequently in mathematics textbooks, e.g., the list in the table of content or the 

scattered idea bubbles in a review summary, such visualization of a curriculum is nonlinear and 

dynamic and it focuses on mathematical events rather than static mathematical objects. It 

signifies that both mathematics knowledge content and curriculum develop in a recursive path 

and they are fractal-like, and suggests us to view a recursive curriculum as a source of spring 

water and as process-oriented.   

The above interpretation of my mapping story, like those of many other experiences that I 

encountered during this study, helps me to re-inbody the idea of recursive curriculum as currere-

oriented. Yes, this idea points to the importance of experience and process. But it refers more 

than personal experience and learning process; it also refers to mathematical process. Both 

mathematical learners (again, leaners refer to teachers and students) and mathematical 

knowledge are complex systems - which Bateson (1979/2002) calls minds - with a biological 

structure that Davis and Sumara (2002) refer as “emergence” and “is always in process” (p. 412). 

The system of mathematical knowledge emerges and evolves like any human culture, and all 

human mathematical activities contribute to its evolution. Albeit the mathematical contents 

included in public education can remain unchanged for decades, a learner’s mathematics 

understanding of the same content can change over time and, more or less, affect the whole body 

of mathematical knowledge in return. My study has shown no matter how familiar one is with a 
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particular mathematics idea one can always interpret it differently and this change is not simply 

additive but often transformative. This possibility of transformation makes a learner’s or a 

learning community’s mathematical activities at the public school level no different from a 

mathematician’s28: Observed from the perspective of complexity thinking, mathematical ideas 

that are novel and transformative for the discipline can emerge in a mathematical community at 

any level. This potential for new possibilities for both mathematics learners’ understanding and 

the field of mathematics is what Doll (1999) means by saying that a state of becoming exists in 

ourselves, also in school subjects. Doll writes, 

Becoming is being that moves beyond being, away from the centered state of equilibrium 

to the exciting, dynamic, and perilous state of far-from-equilibrium. This state opens each 

of us up to the potential that exists: within life, ourselves, and the creative spirit which 

infuses the universe. Such a state also exists within the primordial nature of the school 

subjects we teach. There is an aliveness to both these subjects and ourselves (as creative 

creatures) if we are but willing to explore this realm far-from-equilibrium and near the 

edge of chaos. (p. 43) 

A recursive curriculum, as a curriculum interpreted through the perspective of complexity 

thinking, acknowledges and supports this state of becoming in both the learner and the subject 

matter. It, inevitably, also has a biological structure always emerging. A curriculum, observed 

through the lens of complexity thinking, is not a thing but a process: It is “a learning organization” 

                                                           
28 This is different from Bruner’s (1962) seeing a mathematics learner as a mathematician. Bruner (1962) says 
“intellectual activity anywhere is the same, whether at the frontier of knowledge or in a third-grade classroom….The 
difference [between these activities in different contexts] is in degree, not in kind” (p. 14). He advocates having 
learners of a subject to act like an intellect working in that particular field, and rather than centering upon mastering 
a middle language, which means “classroom discussions and textbooks that talk about the conclusions in a field of 
intellectual inquiry”, their activities should center upon the inquiry itself (p. 14). I agree with Bruner’s opinions and 
I go one step further by invoking complexity thinking: While stressing that the intellectual activities at different 
academic levels are the same for that they are the same kind of inquiry, I emphasize that they are the same for they 
both affording transformations of a particular field of knowledge and even knowledge as a whole.   
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that adapts and evolves (Fleener, 2002, pp. 174-175); it is “an ongoing conversation” emerging 

through the interactions of teachers, students and their developing mathematical understanding 

(Reeder, 2002, pp. 251-253). Such curriculum cannot have a predetermined fixed ending point; 

what a learner and mathematics can evolve into can only be known through living through their 

development process. In this case, how the path that a learner took to engage with mathematics 

unfolded actually matters for what the future will become. Therefore, a learner’s idiosyncratic 

learning and mathematical processes are no more luxury decorations or add-ons for mathematics 

classrooms, ones that only get promoted when there is extra time beyond a planned curriculum. 

Instead, they are the essential processes that sustain the state of becoming in the learner and in 

mathematics; they generate an uncharted personal territory and a novel mathematical territory as 

well.           

Understanding recursive curriculum as being fractal-like, process-oriented and always in 

the process of becoming compels all learners to focus on both educational and mathematical 

process and to give time for self, others, mathematics, and also mathematics curriculum to unfold 

a recursive path. It requires learners to only use any established fractal-like curricula, such as the 

ones interpreted in this study, to think with rather than think towards. A planned curriculum, no 

matter how thoroughly designed, is always a map, not the territory. It is significant for learners 

to continuously learn both mathematics and recursive curriculum through designing towards 

recursive curricula.   
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9 Design towards Recursive Curricula 

     To see a World in a Grain of Sand 
     And a Heaven in a Wild Flower 
     Hold Infinity in the palm of your hand 
     And Eternity in an hour 

—William Blake, Auguries of Innocence, 1863  

What could be possible implications of this study? This study has renewed the 

interpretations and forms of reviewing and resituated it in learning as central instead of 

peripheral or remedial. Meanwhile, it re-conceptualized recursion and recursive curricula. These 

could have implications for curriculum design, teaching, and learning. Although my study is 

situated in mathematics curricula, its focus on recursion makes it a good reference for curricula 

of other disciplines wherever the subject knowledge is also viewed as fractal-like phenomena. 

Therefore, the contemplation of possible implications in this chapter can be read for inspirations 

across subjects.  

The following discussion is built as recursive elaborations on Davis, Sumara, and Luce-

Kapler’s (2008) work about recursive curriculum, with a particular interest in generating a more 

iconic fractal-like image that can resemble a recursive curriculum both conceptually and 

physically (i.e. representing both its structure and finer details) for its theoretical and practical 

affordances. To keep a hermeneutic and complexified sensitivity alive, it is better for one to read 

on while considering the images discussed and proposed in this chapter as playful emerging 

analogies to provoke and inspire, instead of rigid completed models to prescribe and instruct. 

Given that recursive curricula can only be prepared for rather than prescribed, curriculum design 

is used as thought experiments rather than predetermining a fixed curriculum. It is intended to 

emphasize certain ways to cultivate and enact one’s sensibilities towards recursive curricula in 

order to make them possible while one is learning or teaching. 
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9.1 Re-encountering Davis et al.’s Recursive Curriculum Design Process  

A recursive curriculum, like any other curricula, is made of a sequence of elements, such 

as topics, events, tasks, activities, questions, exercises, and so on. Yet one important difference is 

that the elements in a recursive curriculum are related to each other as recursive elaborations. To 

design such a sequence, three considerations are inevitable: where to start, what to elaborate on 

and how to elaborate or activate elaboration.   

As discussed in section 3.3, Davis et al. (2008) propose a fractal-

tree growing (see an example in Figure 9.1.1) as a mnemonic device to 

help one to think about recursive curriculum design: start from a seed, 

grow it into a product, then keep on growing by rounds of elaborating on 

the previously established product (p. 201). While Davis et al. suggest 

using an enabling constraint as a seed and define the enabling constraint 

as a question or task that is equipped with sufficient structure and openness 1) to limit 

possibilities and allow novelties and 2) to support both individual and collective learning, they 

offer little advice for elaborations, other than two intriguing curriculum examples and some 

general considerations for elaboration in a collective learning context. 

The two examples are in English and mathematics. The poem writing activity starts with 

generating a story character based on a button chosen (the seed can be interpreted as “Pick a 

button, and then imagine the garment it came from, who the wearer of the garment is and what 

she or he has done”), processes through multiple rounds of changing the story with added 

restrictions (i.e., having two buttons meet, given a photo for the story setting), and ends with a 

poem writing exercise following a study of several poem examples. The multiplication of 

integers example starts with a prompt of “What’s 3 × 4? Show how you know” (p. 197) then 

Figure 9.1.1. A 
fractal tree  
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activates repeated comparisons of equivalent products across nested learning systems: Learners 

first work in a small group to create a poster to show their interpretation, and then they group 

their posters into clusters based on common interpretations, following with a whole-class 

discussion to look for themes and variations. 

These examples are to show elaboration as a means to represent and knit the collective 

knowledge that is “needed to deal with a new topic” and “usually present in the classroom 

collective, although not necessarily within a single person” (Davis et al., 2008, p. 202). The 

activities enable multiple levels of learners, i.e., nested learning systems, such as “individuals, 

dyads, small groups, clusters of groups, and the whole class”, which are “mutually supportive 

and intelligent, unfolding from and enfolded in one another” (Davis et al., 2008, p. 202), to have 

access to each other’s interpretation and elaborate knowledge at multiple systems’ levels together. 

Given that the learning products of nested learners are similar to each other, when we visualize 

Davis et al.’s growing a fractal tree process as Figure 9.1.2, the fractal tree represents the 

collective learning product at different times (or phases) and also the learning product of any of 

the nested learners or learning systems through having parts that are similar to the whole.  

Situating my study in relation to Davis et al.’s, it is clear that their work offers 

provocative recursive curriculum design advice for collective learning settings, whereas my work 

Figure 9.1.2. A visualization of growing a fractal tree. 
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offers finer details of recursive elaborations and broadens the possible starting points of a 

recursive curriculum for both individual and collective learning settings. My study has theorized 

elaborative processes as re-encountering and proposed its four possible forms, i.e., re-languaging, 

re-imaging, re-inbodying, and re-storying, that can be used during individual or collective 

learning, at micro and macro content levels. With these forms of elaborations, what can be 

elaborated is a contingent and relative judgement as making an equivalent form of something is 

always possible. Worded differently, anything that can be viewed by a learner as a whole can be 

elaborated, or equivalently yet more provocatively, we make a whole by invoking an elaboration. 

Therefore, we can start to design a recursive curriculum, by using a curriculum text or content 

that is of any scale (e.g., a notation, an image, a gesture, a task, a problem, a topic, a lesson, a 

unit, and so on) and is accessible for a learner’s present level, and by using prompts to trigger 

forms of the re-encountering process. In other words, a recursive curriculum can start anywhere. 

At the same time, given that an elaboration as re-encountering involves changing something to 

its equivalence that is contingent, there are endless possibilities for one product to develop into. 

Therefore, a recursive curriculum can proceed in many different paths with different tentative 

endings. In other words, a recursive curriculum can end anywhere too.  

However, not all curricula with a recursive structure matter. Just like drilling on statistics 

computation matters less than contemplating on the effects of potential data bias, what is chosen 

for elaborations is worthy of more considerations. As Bruner (1962) says, “a curriculum ought to 

be built around the great issues, principles, and values that a society deems worthy of the 

continual concerns of its members” (p. 52). Thus, the core around which multiple elaborations 

revolve in a recursive mathematics curriculum can be anything that is profound, general, and 
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valuable for emergent29 mathematics and mathematical thinking. In addition to the basic 

underlying and general mathematical structures and ideas, any self-similar ideas (such as 

recursive curricula, philosophical ideas, ways of thinking, sensitivities, and attitudes) that 

mathematical ideas or thinking are a part of could be a possible core.  

9.2 Re-imaging Recursive Curriculum: Growing two Fractal Trees 

Davis et. al.’s (2008) fractal-tree image (see Figure 9.1.1) and the formation image above 

(see Figure 9.1.2) tell us what a recursive curriculum does and when, more than what it looks 

like. Since many complex phenomena, such as cognition, individual understanding, recursive 

curriculum, artifact, and human knowledge (e.g., school subject like math), are fractal-like 

observed from a complexity thinking perspective, a fractal-tree can represent many things. When 

a curriculum is designed as following the development of a self-similar idea with nested parts 

similar to the whole or with many equivalent forms, both curriculum formation and idea 

formation follow a recursive path and both can be represented as growing a fractal-tree. In this 

case, the development of the idea and that of the curriculum mirror each other. A representation 

for this is growing two fractal trees as a reflection of each other at the same time (see Figure 

9.2.1), suggesting that curriculum development and idea development can draw inspiration from 

each other, and a study of one can inform the study of another. While this close affinity30 

between idea development and curriculum development seems common for all subjects and all 

kinds of curriculum development, it is not often that curricula are organized as a recursive 

development of a self-similar idea. Two potential practical implications of this growing two 

fractal trees interpretation are: 1) one can design and study recursive curricula by following a 

                                                           
29 Here, I invoke Davis and Renert’s (2014) notion of “profound understanding of emergent mathematics” and join 
them to emphasize a complexfied conception of mathematics knowledge being “ever-evolving” thus not possible 
thorough for any individual or community (p. 118). 
30 This close affinity is questioned by Davis, Drefs, and Francis (2015): “this conflation of curriculum structure with 
logical arguments may actually be an error” (p. 61).  
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self-similar idea’s development; and 2) one can learn subject knowledge through mapping or 

creating a recursive curriculum of it. So designing a recursive curriculum is not a task solely for 

teaching; it is also for learning. The line between teaching and learning is blurred. This blurring 

is not to eradicate the difference between teachers’ and students’ works in an educational setting, 

but to emphasize that both teachers and students are learners of the subject matter in a recursive 

curriculum and all learners can better their subject learning through (re)designing curriculum for 

self or others. Such curriculum designing process is essentially a process of mapping knowledge 

territory mentioned in section 8.2.   

9.3 Re-imaging Recursive Curricula: Growing a Fractal Tree-Spiral  

 Albeit the above two tree image shows us what a recursive curriculum looks like and 

what it does, its resemblance to a recursive curriculum still more conceptual than iconic as it is 

hard to map it to a sequence or sequences of curriculum elements. To that end, a blended image 

of a spiral, a fractal tree, and a binary tree is more promising (see Figure 9.3.1). The image was 

Figure 9.2.1. Idea development & curriculum development as two fractal trees growing in 
reflection of each other. 
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resulted from a re-imaging process similar to the one used to generate the hybrid triangular pile 

image in section 6.2. That is, the process was one to generate an equivalent image for the two 

trees and the spiral and it was triggered by my noticing a visual similarity among three images.   

In this blended image, the fractal tree is the three previously constructed fractal trees 

(representing learning product, idea and curriculum respectively, as shown in Figure 9.1.2 and 

9.2.1) merging together, and it is essentially a balanced version of the binary tree. The blended 

image represents abundant possibilities in learning products, contents, content developments and 

curricula applicable for both individual and collective learning settings.  

Each node (see the highlighted dots in Figure 9.3.2) represents a possible learning 

product (or contents as each learning product is associated with certain subject content) at a 

a. A spiral curriculum model 
displayed horizontally. 

b. A fractal tree displayed 
horizontally.   

c. A binary tree (a recursive 
curriculum analogy discussed in 
section 8.2) displayed 
horizontally. 

d. A blended-image: A fractal tree-spiral. 

Figure 9.3.1. Blending three images (i.e., the spiral, the fractal-tree and the binary tree). 
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particular development stage. Here, the seed (the leftmost node in Figure 

9.3.2) is also viewed as a learning product: Given that the content it has 

needs to come from somewhere, thus it also has a historical becoming. 

Different from that in the vertical tree representation, the seed in this 

horizontal version is shown at the branch end of the tree truck instead of 

the root end, so that the model can show multiple learning products 

emerging after the first elaboration. More significance in this move will be explained later. The 

use of two branches connecting to the seed is symbolic rather than iconic, implying multiple 

possibilities existing rather than only two possibilities are possible. Multiple learning products 

are possible particularly when the seed is an enabling restraint that encourages novel responses 

or when a seed is used in a classroom learning setting with multiple learners. They are also 

possible when one learning product can have multiple forms or versions to be morphed into 

logically (e.g., 𝑦 = 𝑎𝑥 + 𝑏 can morph into 𝑦 = 3𝑥 + 𝑏, or 𝑦 = 3𝑥 + 6). 

Each branch represents a developmental/inheritance relation between the nodes at its two 

ends, meaning that one learning product can develop or morph into the other through elaboration. 

This means each learning product is a completed whole and makes one a different version of the 

other, and the change can go both ways. Note that this relation is atemporal (e.g., in a 

mathematics context, it might be mathematical, logical, visual spatial, and etc.) and directional. 

Put it differently, each branch that connects two nodes (say A and B) corresponds to two 

curriculum elements that can activate such morphing process from one node to another. The 

element that activates a change from A to B might be the same or different from the one activates 

a change from B to A. For example, a task of generating examples can enable one to change 

Figure 9.3.2. A 
fractal tree with 
all nodes 
highlighted. 
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𝑦 = 𝑎𝑥 + 𝑏 into 𝑦 = 3𝑥 + 𝑏, and a task of generalization can activate a change from 𝑦 = 3𝑥 +

𝑏 to 𝑦 = 𝑎𝑥 + 𝑏.  

Recall that each elaboration on a fractal tree is represented through adding two branches 

for each existing branch (see Figure 9.1.2), there are certain number of branches growing 

together in the same direction at each developmental stage/phase. These branches in the blended 

image represent the same curriculum element at work and thus the resulted nodes represent 

equivalent learning products or different forms of the same learning product, given that they all 

derived from the same seed through the same sequence of curriculum elements. The nodes 

formed at different developmental stages represent the different versions of the same seed.  

Given that all products are derived from the same seed, they are essentially variations of the 

same thing. For instance, after the question “What’s 3 × 4? Show how you know” is asked, 

using the mathematics content 3 × 4 in the question, eight students come up with eight 

individual interpretations. These interpretations are eight possible forms of the same Stage 1 

product, which is the meaning of a particular mathematical equation. They are also eight possible 

new versions of the content seed (i.e., 3 × 4).  

A spiral (noted in red in Figure 9.3.3) connects nodes across 

developmental stages. Each loop of the spiral represents a particular 

developmental stage. A sequence of loops, then, represents a 

sequence of stages. This spiral represents the space of possible 

products that a seed can gradually grow into, or in other words, the 

space of possible variations of the same content. Meanwhile, the 

spiral provides alternative curriculum path for different products to morph into each other, as 

there exists suitable curriculum element(s) to activate the process needed for any two products 

Figure 9.3.3. An infinite 
fractal tree-spiral. 
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connected on the spiral to morph into each other. To include the possibility of different products 

on the same loop emerging at the same time or one after another (e.g., when multiple results are 

possible in a group learning setting or simply provided), a walk between nodes on the same loop 

can also signify a connection at first made merely through time.    

The loops or developmental stages are ordered by the level of abstraction and 

generalization rather than in time. So the products at a smaller loop have content that is more 

abstract or general than those at a bigger loop. Given that there are infinite levels of abstraction 

and generalization as any category can have a subcategory and a meta-category, this spiral and 

fractal-tree are infinite at both ends. This, again, justifies the beginning move of the seed from 

one end to the other: The content in the seed is also developed from certain content in a 

previously established learning product. For example, a cycle of inquiry into “What is 3 x -4?” 

might be developed after a cycle of inquiry into “What is 3 x 4?” or after an invitation to 

generate a multiplication example of two integers for studying the meaning of multiplication. 

This move therefore opens a quest for the origin of the seed, and suggests that a seed for a 

recursive growth can be at anywhere in this tree. Here it is better to replace seed with entry point 

to avoid habitual associations between seed and upright growing direction and to broaden the 

direction of growth. Again, a recursive curriculum can start anywhere. With its openness 

towards emerging possibilities, it can end anywhere too. This is exactly what Doll (1993) 

envisions: “In a curriculum that honors, values, uses recursion, there is no fixed beginning or 

ending” (p. 178). 

The multiple spirals (noted in lighter red in Figure 9.3.4) between two random loops are 

to acknowledge the possibility that any loop might be bypassed or shorten as long as a suitable 

curriculum element can be constructed. In the same logic, jumping across nodes on the same 
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loop is also possible. Therefore, in this blended image, many 

possibilities of different paths exist for one to move from 

one node to another. Through branches, loops and mini 

spirals, a recursive curriculum starting from any node in this 

image can move in multiple directions: 1) to the node(s) on 

the same loop, i.e., those at the same level of abstraction and 

generalization; or 2) to the node(s) at a different loop, i.e., 

those at a higher or lower level of abstraction and 

generalization. Since each path is a curricular one made of a sequence of curriculum elements, 

this blended image shows the abundant possibilities of recursive curricula and content 

developed from one entry point.  In a sense, we can say that this image shows growing many 

fractal trees together.   

9.4 Curricula Design as Recursive Learning (as thought experiments to enact, engender 

and experience recursive curricula)  

How might this blended image/analogy help with recursive curriculum design then? 

While this blended image by no mean exhausts the possible visualizations of recursive 

curriculum, it is a complexified interpretation of recursive curriculum that affords more 

interpretations. In other words, this representation is recursive, exactly in the way as Sawada and 

Pothier (1993) define: “A representation (or a process in general) is recursive if at a certain point 

in working with it the medium becomes the message [, which becomes the medium of further 

messages, and on and on]” (p. 15). Here I consider two areas for further interpretations: 

curriculum visualization and curricula formation. Before that, it is helpful to recall that 

essentially nodes represent contents and branches represent mathematical or curricular event(s) 

Figure 9.3.4. A blended 
representation of recursive 
curricula: A fractal tree-spiral. 
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that allow one node to change into or connect to another. Since a math task and a learning 

product include some content (thus ideas), a node can represent an idea, a task or a learning 

product. When the nodes represent learning products, the link between nodes on the same loop 

can be temporal relation, meaning that no manipulation needs to be done for one learning 

product to change into another. This way, the tree can be used to visualize situations including 

multiple learning products appearing at once in a group learning setting. 

Recursive curriculum visualization  

The blended image can support mapping and envisioning a recursive mathematics 

teaching and learning journey. Yet, again, map is not a territory; visualizing a curriculum is for 

provocations rather than precisions and prescriptions. Curriculum visualization is a way of 

thinking and learning hermeneutically about mathematics and recursive curriculum. Here is an 

example of such study that involves the following two visualizations.  

Figure 9.4.1 shows the development of Davis et al.’s (2008) mathematics curriculum 

example, discussed earlier, with the seed of “What’s 3 × 4? Show how you know”. The 

number of students, unknown in their example, is set to eight here to permit a feasible 

Figure 9.4.1. A recursive mathematics curriculum path (Seed: What is 3 x -4?). 
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visualization. The visualization of the curriculum formation shows a recursive curriculum path 

that led back to where it started31. The content or learning product developed in this curriculum 

is the meaning of the mathematical expression of 3 x -4. A quest for meaning brought forth 

multiple equivalent group interpretations (represented by the four nodes connected by the same 

loop), which then got converged to a few meaning clusters (represented by two nodes connected 

by the loop that has a higher abstract level) and later a synthesis of a class’s interpretations 

(represented by merging back to the seed), hence renewing the meaning of the expression as a 

coherent whole again at the original abstraction and generalization level. This process of re-

interpreting the same expression happened multiple times at both the individual learner level and 

the collective understanding level.  

Figure 9.4.2 shows the development of the poem curriculum example, used by Davis et al. 

(2008), with the seed of “Pick a button, and then imagine the garment it came from and what the 

                                                           
31 Note that a reading of this curriculum development as a mathematical story could be a story of the mathematical 
character of 3 x -4. Or we can read this path as the development of any learner’s, including the teacher’s, 
understanding of this particular expression. 

Figure 9.4.2. A recursive poem writing curriculum path (Seed: some buttons).  
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wearer of the garment is doing”. The learning product developed in this curriculum is the story 

related to buttons. It shows a recursive curriculum path that diverged at first (producing many 

equivalent individual stories related to a button), converged in the middle (dropping the number 

of stories by half), and went on developing products with more refined details (firstly getting a 

restricted story setting and later a form of poetry).  

The above two visualizations seem to point to two types of prompts for elaboration: 

While both the mathematics and poem examples employ comparing equivalent learning products 

at the same development stage, the poem example also includes direct invitations for changing 

parts of one’s previously established learning product. These two approaches, using the fractal 

tree growing analogy, are like, respectively, changing the tree through changing its environment 

(i.e., what other trees it is situated with) at first and changing the tree through changing its parts 

at first. We can say these two approaches as changing references and changing parts for a 

learning product. However, these two approaches are essentially two names of the same thing for 

fractal-like products, depending on what counts as a whole at a particular time. For instance, if 

we view 𝑦 = 𝑥 as a whole, then moving from it to 𝑦 = −𝑥 is changing its reference; the same 

move would be changing its parts (i.e., changing from + to −, as like changing one person’s eyes 

from one type to another), if we view 𝑦 = ±𝑥 as a whole that is similar to both 𝑦 = 𝑥 and 

𝑦 = −𝑥 (meaning that three equations are equivalent rather than that 𝑦 = ±𝑥 has two parts). 

Similarly, if we view an individual learner as a whole, then having two learners to access each 

other’s interpretation is a prompt for changing references; the same invitation would be aiming 

for changing its parts if we view a dyad as a whole that is the similar to any of the two learners. 

This understanding suggests that we can use contents or learning products, which (seemingly) 

belong to different systems (e.g., learning systems, knowledge categories, or contexts) yet can be 
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viewed as equivalent in a bigger whole, to invoke each other’s elaboration and invite 

consideration in what ways these contents or products might be related to a whole as its fractal 

parts. This way, we encourage creation of novel categories through pairing two or more 

seemingly unrelated ideas up. Such playing with ideas and throwing ideas into every 

combination possible is what keeps knowledge alive (Doll, 2005).   

Recursive curricula formation  

The blended image, as a representation of recursive curricula possibilities, can help a 

learner to cultivate the sensitivity and flexibility needed to generate a recursive teaching and 

learning journey in responding to her own or others’ emerging mathematics and mathematics 

thinking. To that end, growing a fractal tree-spiral is a key exercise. Again, this task is not for 

precisions or prescriptions but for provocations.  

The binary tree analogy discussed in section 8.1 can help here: One starts with a 

content/task (e.g., an orange), then repeatedly add another (e.g., lemon, then apple, apple juice 

and so on) that resembles its immediate past yet different enough to invoke one to consider it 

separated from everything in the past as a whole. Essentially, each new addition is a recursive 

elaboration of the previous established ideas yet bringing a new whole. This way we can have a 

sequence of nested contents (ideas/tasks) and the sequence’s being is inseparable with its 

becoming. To illustrate, imagine we add apple instead of lemon to compare with orange, this 

new addition brings forth a whole that is not “citrus fruit” any more. Once a sequence is 

visualized in the form of an unbalanced binary tree, one can easily use symmetry to flesh out 

other parts to balance this tree. This means using the existing nodes on a particular branch at a 

particular developmental stage as references to generate their corresponding nodes at the same 

stage yet located on different branches. Figure 9.4.3 shows an example (returning to function 
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again) for these two stages of the tree formation process.  

While the above tree growing process can produce many different trees including similar 

or different content developments, each tree, once turned into a blended fractal tree-spiral after 

the spirals are added to it, can be walked on in many different ways, generating different 

curricula. Figure 9.4.4 shows a path allowing the 

concept of polynomial functions (in the form of 

𝑦 = 𝑎𝑥 + 𝑏) to develop from one version (i.e., 

linear function, in the form of 𝑦 = 𝑎𝑥 + 𝑏) to 

another (i.e., quadratic function, in the form of 

𝑦 = 𝑎𝑥 + 𝑏)) with each version changing from 

one form to another (i.e., with b=0  with b≠0). 

This path is a loop of loops of loops, or a loop of 

nested loops. The ideas and tasks involved in 

parallel loops belong to the same developmental stage hence these loops are equivalent. This 

path might represent a learner going through all the ideas and tasks in order. It can also represent 

Figure 9.4.3. A recursive curriculum formation (developing from a to b). 

 

a. A binary tree (before getting 
balanced, b<>0 means b≠0) 

b. A balanced binary tree (the purple 
nodes represent possible future hence 
their related branches are not fully 
developed) 

Figure 9.4.4. A recursive curriculum path on 
the polynomial function binary tree.  
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a group learning path. For example, a class can be divided into two groups, each of which study 

a different set of functions (e.g., 𝑦 = 𝑎𝑥, 𝑎 > 0; or 𝑦 = −𝑎𝑥, 𝑎 > 0), before having the two 

groups meet and re-interpret 𝑦 = 𝑎𝑥 together. After all, the interpretive affordance of a fractal 

tree-spiral image is unlimited.     

The formation of such an image, though, does not have to be linear, as like growing a 

binary tree from a relatively smaller category to a bigger one. A fractal tree-spiral is a logical 

structure before one reads it into some temporal sequences by moving on it. So the tree can grow 

from root to branch, branch to root, branch to branch, or a mix of different possible directions, as 

long as one pays attention to the relationship between nodes: Essentially they are related to each 

other as repetition with variations and one node can become another through a mathematical 

change or curricular arrangement, which includes nonmathematical manipulations such as 

comparing/contrasting, re-imaging, and etc. Also at each developmental stage there can be more 

than two branches (i.e., possibilities) coming out from each node, making this tree not binary any 

more. Here we take a look at two more experiments. 

In Experiment 1, I tried to form a fractal tree through re-imaging and asking two different 

sets of questions to help me form nodes at different developmental stages. Situating at the 

beginning of function and graph unit (learners have learned graphing using table of values), I 

started with 𝑦 = 𝑎𝑥. I thought of its variations that look alike and came up with 𝑦 = 𝑎/𝑥 and 

𝑦 = 𝑥/𝑎. Then I use them to build two fractal trees by asking two sets of questions that can be 

interpreted as implementations of re-storying:  

1) “From what sources might these three equations be derived? What content can these 

lead to?”  
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2) “What question might these three equations be the answers for? What answers might 

a question about any of these equations lead to?”  

The first set stresses mathematics ideas development. I constructed a seedling by organizing the 

three equations in a binary tree format (see the left image in Figure 9.4.5a). The second set 

focuses on curriculum tasks development. A task (generated through implementing re-imaging 

again) that might bring forth the three equations could be: “Use four symbols (- k, x, y, =) and 

any of the two operations (/, *), create as many different equations as you can. Reorganize them 

into y =___ format32”. So I constructed a seedling with one node and three branches (see the left 

image in Figure 9.4.5b). Once a seedling has been generated, it can be easily extended in two 

ends as long as one makes sure that parallel nodes have equivalent contents and parallel branches 

can be actualized through the same curriculum element.  

This experiment brought forth an unbalanced binary tree that stresses a fractal-like idea 

(i.e., 𝑦 = 𝑓(𝑥)) with nested self-similar ideas (see the right tree in Figure 9.4.5a) and a fractal-

like tree that stresses a fractal-like task (i.e., use some given symbols and operations to make 

functions for function study) with nested self-similar tasks (see the right tree in Figure 9.4.5b). 

Regardless how they started to grow, these two trees inevitably include both self-similar ideas 

and tasks. Of course, these two trees are contingent results; there could be many possibilities for 

these two experiments, even starting with the same seedlings. The focus of this experiment, 

therefore, is not at the end of the process, but the generativity of the process itself.  Such 

experiment is helpful not merely for exploring, but more importantly for generating self-similar 

ideas and tasks. It shows what contents could be made as a repetition with variations of each 

other and be studied together in the same way in one learning unit.  

                                                           
32 The tasks here are for planning purpose, thus the wording might be different for the same task given in class to 
suit particular learners’ background. 
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In experiment 2, I tried out a different start to form a tree like structure that is beyond 

fractal-like by letting the number of branches coming out from each node differ when possible. 

Instead of beginning with a more concrete form of a self-similar idea/task, I started with a more 

 

a. Growing a fractal-like tree, focusing on nested ideas. 
Showing that the seedling (image on the left) grew into a binary tree (image on the right). 

b. Growing a fractal-like tree, focusing on nested tasks. 
Showing that the seedling (image on the left) grew into a fractal-like tree (image on the right) 

 (Each activity is displayed in two parts: mathematics content represented by a node and event 
represented by branch. Branches at the same level represent the same event. 

Figure 9.4.5. Two recursive curriculum formations.  



TOWARDS RECURSIVE MATHEMATICS CURRICULA 203 

abstract form of the idea/task and proceeds to generate many possible fractal parts of it (such that 

I can generate more loops/elaborations to explore the same idea or execute the same task), with 

an openness to redefine the idea/task when necessary. Figure 9.4.6a presents a tree for a self-

similar idea: equivalency, a concept that a recursive curriculum can play with (see section 8.1 for 

its definition).  Figure 9.4.6b presents a tree of a self-similar task, i.e., “In how many ways can 

you divide ___ in half?”, which has sufficient structure and openness to be used as an entry task 

for studies or preambles of many different types of quantity, such as even and odd integers, real 

numbers, length, area, volume, fraction, and etc.  

Analogically speaking, in Experiment 1, I took look at a grain (referring to a fractal part) 

and tried to see or define a universe (referring to a whole) that the grain can embody, and in 

Experiment 2, I took a look at a universe and tried to see or define a grain that embodies the 

universe. In return, I understood both the universe and the grain differently. Both experiments 

are helpful for one to identify/generate self-similar constructs (e.g., ideas or tasks) and practice 

discerning the same whole across scales and contexts. These constructs can be mathematical, 

curricular, and theoretically speaking, personal too.  

Now, taking one step back and looking at self-similar ideas/tasks as a whole and 

connecting with the forms of re-encountering, a different kind of fractal view of self-similar 

ideas and tasks can be formed. Figure 9.4.7 presents a fractal view of a self-similar idea and a 

fractal view of a self-similar task. Both fractals are formed by collapsing a fractal tree into one 

cell.  

Recall that each branch represents certain mathematical/curricular event(s) that allow the 

equivalent contents (represented by the nodes connected through the branch) change into or 

connect to each other, and the branches at the same development level represent the same event. 
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All the above tree formations then help to bring forth self-similar teaching and learning cycles 

with the same pedagogical focus. An experience in these cycles, interpreted as an 

a. A fractal tree of a self-similar idea (i.e., Equivalency) 

b. A tree of a self-similar task (i.e., “In how many ways can you divide ___ in half?”)  

Figure 9.4.6. Forming a self-similar a) idea and b) task. 
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implementation of re-inbodying, is helpful to induce a sense of harmony or rhythm that hints at 

the underlying conceptual connections among contents. It can also be interpreted as an 

implementation of re-storying, focusing on or resolving around the same story, which becomes 

the focal or anchored story. With continuous practices and creative categorizations, it is possible 

to use a tree formation activity to identify or create fewer focal or anchored stories significant for 

mathematical learning and education over a longer time span. This opens space for increasing 

frequency for re-encountering the same story through exploring and generating multiple fractal 

parts of the story while keeping the emergence of novel fractal-like stories possible33. Such 

formation of recursive curricula is an enactment of Whitehead’s (1929/1959) teaching aphorisms, 

i.e., keeping the main ideas one teaches few and important, teaching them thoroughly, and 

throwing them into all possible combinations, which, as Doll (2005) emphasizes, are important 

to keep knowledge alive. It is also in line with what Davis et al. (2008) advocate, to have the 

educational intentions be “embedded and embodied in every aspect of the learning experiences, 

as opposed to being identified as goals to be met by the end of a sequence of instruction” (p. 211). 

It actualizes a fractal-view of mathematics, seeing it as a complex system understood not through 

discovering some underlying truth or “secret in the middle”, but through observing it as 

“holograph” in which “every piece contains the information of the whole” (Fleener, 2002, p. 

138).  

There is no end for recursive curriculum design and there shall not be one. All the above 

presented curricula representations are contingent outcomes of a thinking process that unfolds 

                                                           
33 Two emergent curricula led by a few themes are worth noting here. Fowler’s (1996) fractal curriculum 
exemplifies an emergent fractal-like mathematics curriculum, which has a few planned general themes (i.e., 
dimension, shape, change, quantity, uncertainty, symmetry, and discourse), uses certain fractal objects as attractors 
of elaborative activities, and leaves the details of the curriculum for students to construct. Reeder’s (2002) case 
study of a middle school mathematics teacher also depicts a teacher who keeps a global perspective of curriculum 
and selects tasks as parts of a large and ongoing conversation emerged through the whole class community 
engagement with mathematics related to linear relations, variables, and functions throughout the year.  
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itself and cannot be compressed. What matters is the affordances of the process rather than what 

it produces in the end. Designing towards a recursive curriculum is not really about generating a 

specific sequence of tasks to be delivered or executed. Rather, it is a reflective and creative 

thought experiment to inquire and generate self-similar or fractal-like contents, tasks and to 

enact, experience, and engender recursive curricula. It aims for the process’s generativity for rich 

possibilities in both teaching and learning and it affords recursive learning experience. Teaching 

in class, from a complexity thinking perspective, is mindful participation in the unfolding of 

possibilities (Davis et al., 2008). The complexity sensibilities and hermeneutic attitude needed 

for such kind of teaching are exactly what designing towards recursive curricula is meant to 

exercise and enact. Meanwhile, the “mathematical awareness” (Mason & Davis, 2013, p. 183) 

entailed by such teaching could also be nurtured through engaging in designing recursive 

curricula. Educating awareness implies “noticing more” possibilities and “knowing more deeply 

and richly in the sense of having possible actions – mathematical, pedagogic, and didactic – 

come to mind when they are needed” (Mason & Davis, 2013, p. 192) rather than knowing more 

facts or theories. This is in line with designing recursive curricula towards potentials instead of 

prescriptions.  

Here, to make my position clearer, a change from my original leading research question 

“What might a high school recursive mathematics curriculum informed by complexity thinking 

be?” to “What might high school recursive mathematics curricula informed by complexity 

thinking be?” is necessary, even though I had no intention to find a singular answer to start with. 

Consequently, the previously used research title is changed from “Towards a Recursive 

Mathematics Curriculum” to “Towards Recursive Mathematics Curricula”. Moreover, the 

blended representation of recursive curricula (i.e., Figure 9.3.4) is renewed to render a fractal-
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like image (see Figure 9.4.8) to better represent abundant curriculum possibilities. The 

possibility of some nodes lying on different spirals signifies that any self-similar content can be 

an entry point for many recursive curricula resolving around different cores.  

Figure 9.4.8. A fractal-like representation of recursive curricula. 
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10 The End is Also the Beginning  

A hermeneutic inquiry has no end, yet a closure of the process can be imposed when 

meaningful interpretations have reached (Prasad, 2005). When I tried to do so, two well-

remembered yet seemingly unrelated stories started to speak louder to me. One story is my first 

experience of emerging curriculum and the other is about the readiness test in my classes.  

An Emerging Curriculum of Pi. I got a fresh taste of emerging curriculum during my 

first teaching practicum. In a lesson of circle for grade 9 students (with grade 5 or 6 level 

mathematics knowledge level), I started with a plan of telling students the circumference 

formula directly after we identified circumference on circular objects using a string. The 

object of the lesson was to apply formulas, not to discover pi. I did not know how to 

introduce pi meaningfully in a short time either. When I posed “How can we find the 

circumference of a circle?” to the class, I was looking for a reply related to the 

circumference formula, such as radius or diameter. A student, who was weak in 

mathematics and seemed engaged when I showed them where circumference is found on 

the circular lids that I brought to the class, volunteered an answer: “Just measure the 

outside of the circle”. I was not sure how I can go from his answer to my original lesson 

plan, yet I wanted to encourage him. So I decided to follow his lead and then see what I 

can do. I invited him to demonstrate what he meant. He repeated what we had done: He 

used a string to go around the edge of a circular lid. He went on to measure how long the 

string is and got a number. I suddenly sensed that his action nicely connected us back to 

the formula. I wrote down his number on the board, put an equal sign besides it, and 

asked the class for a possible circumference formula. One student said, “2 times radius”. 

“Oh, that's getting better, although he might have said this because he confused 
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circumference with diameter,” I thought. “Yes, very good,” I said, “it is indeed related to 

radius. But it's not just 2 × 𝑅, there are other things there. It might be 2 × 𝑅 × 3 + 7 , or 

2 × 𝑅 × 8 − 1, something like that. What do you think? What should be there?” One 

student, who was the strongest mathematics student in the class, said “times 3”. “Wow, 

that's even better, although he might have said that because he knows the formula,” I 

thought to myself and said, “Okay, let's test it.” So we found the radius of the circle 

measured at the beginning and calculated its circumference using the proposed formula 

2 × 𝑅 × 3. We compared it with the measurement of the circumference. They were not 

the same. I said, “they are very close, but they are not the same. So the number in the 

formula is not 3, let's find out what number it is.” So we divided the circumference by 2𝑅, 

we got 3.10. I stopped the investigation there due to time consideration, and told the 

students a logic conclusion I drew while seeing how the lesson unfolded: that ancient 

people must have done exactly what they did, i.e., measuring a circle’s circumference and 

then dividing it by 2𝑅, on many circular objects, and ended up finding a constant value pi, 

which is about 3.14. I was inspired by how this lesson developed its own path, leading 

both my students and I to an unplanned investigation. Since I had not questioned how pi 

was discovered before, this method was also new to me. So this investigation was 

engaging for both my students and I.  

Readiness? After I encountered a readiness test used in an undergraduate course at the 

University of Waterloo, I designed similar ones for my students to take at the beginning 

of a course. It was used as a formative assessment of students’ existing levels and a 

device to motivate and guide them to review. For students who scored rather low in this 

test, I would check their student records and suggest those with a record of low 
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mathematics marks in previous grades to take a different mathematics course instead. 

Given the one-time usage of the readiness test, it was unclear how much the test 

motivated and helped students to review, other than giving me more works and marks 

correlated with students’ previous grade’s marks. So I faded the test out eventually. 

When I mentioned the readiness test to my mentor Bill Doll, he suggested me to use the 

test to teach from. Instead of getting students to a certain level of readiness so that I can 

start teaching a new topic, Bill Doll urged me to start right from what they know. I 

wondered how I can do that in a class with diverse mathematics backgrounds.  

These two seemingly unrelated accounts are memorable for me, I now understand, 

because they both remind me of the paradoxes that I lived in as a classroom teacher. For one, 

although I appreciated emergence and improvisation, I was confined by curriculum objectives 

and the limitation of my knowledge. There were always concerns about how to meet the 

curriculum goals and how to face questions that I do not have an answer for if I let the 

curriculum emerge. Although the emergence that I encountered during my practicum was 

surprisingly educational for both students and I, there was also a constant pull towards the 

planned lesson expectations thus its openness seemed not genuine, as if limited by a glass ceiling. 

For another, although it was important for me to teach from students’ current knowledge level, 

the diversity in students’ levels that I could handle in a group learning setting was limited by a 

modularized curriculum and my understanding of deficits. In a linear curriculum made of 

different learning units built on each other as if modules in an assembly line, if one had not 

learned the prerequisite topics or learned them well enough before a new course, one has a 

deficit that requires remedy. Such work is often an additional burden for both students and class 

teacher. Here readiness is like a concrete floor. Deep down, these two stories reflect the 
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confinement a classroom teacher is often subjected to in a linear curriculum through speaking 

about restrictions at two opposite ends: where a curriculum ends and where it starts.  

Now, these stories reemerged again, asking me to consider the enactment of recursive 

curricula in a linear curricular framework (e.g., program of studies) from which a classroom 

teacher is still hard to escape. Looking back the personal transformations I experienced through 

this inquiry, I see hope in transcending both ends through designing towards recursive curricula.  

I have come to understand “deficits” differently. I started my PhD program with 

confidences along with many self-doubts and rejections. In terms of learning, I was eager to 

learn everything, but I was slow. Reading was like feeding a black hole: I was distracted and 

intrigued by many things yet found them hard to remember or recite as a coherent whole without 

time consuming reviews. Writing took forever: My ideas were often too fragmentary and fuzzy 

to be verbalized and too noisy and messy to flow. All these struggles made me feel inadequate 

and hopeless to become knowledgeable. My theoretical study of hermeneutics, while reasserting 

the inevitability of human limitations and recursive movements in learning, it legitimized them 

as essential. This started a positive spin on my understanding of my own deficits and needs for 

repetitions and recursive movements. During my research journey, I learned mathematics anew 

from my own recursive blindness and different mathematic representations’ limitations. This 

helped me to realize that my deficits, exactly like the prejudices and the limitations of a 

mathematic representation, can enable rather disable learning. Also, I was repeatedly led to 

fruitful reinterpretations as I being called by some stories or puzzlements without knowing why. 

This taught me to listen better to myself and take my confusions as the beginning and spring 

water of my learning. Similarly in writing, many writings came together through freewriting, 

wrestling with the difference among what I wrote, what I thought, and what I knew, and a 
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process of letting go, moving on with unsatisfied incomplete pieces and coming back to them 

later. This allowed me to practice enduring struggles and following their lead. I finally learned to, 

not avoid, not merely accept or accommodate, but appreciate my deficits as enabling relative 

limitations. I became more patient with myself.  

I have also come to understand “newness” in mathematics learning differently. Over the 

years of teaching high school mathematics, as I became more familiar with the course materials 

and students’ works, I saw less new in my students’ works. Albeit I still learned something new 

in mathematics through teaching the same course again, I thought my newness is like my 

students’: They are not new for the field of mathematics. My study showed me otherwise. 

Having experienced (re)learning something profound and beyond mathematics domain (i.e., zero 

is not nothing, mathematic objects are defined by humans) through re-encountering ordinary 

mathematic objects such as −6 − 2 = −8, learned to appreciate some mistakes of students such 

as treating 𝑓(𝑎 + 𝑏) like 2(𝑎 + 𝑏) as creative use of pattern rather than mindless imitation after I 

considered re-imaging, and heard Tom Kieren, with rich knowledge in both mathematics and 

mathematics education, reciting excitingly stories of observing something profound in school 

students’ works, I was deeply moved. 

I realized that it is actually limitless what I can learn about the familiar school 

mathematical concepts through teaching infused with complexfied sensitivity, because my 

encountering with the subject and the students is a process of growing into the space in-between, 

through which all parties (i.e., I, subject, and students) involved evolve. Essentially the process is 

an encountering of three open complex systems. Such encountering has an “I-Thou” or subject-

subject relationship (a dialogue, no objectification of the other being) instead of an “I-It” or 

subject-object relationship (a monologue, treating the other being as an object used to serve 
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one’s interest), fitting Buber’s (1937) definition. Such encountering is a process of becoming, in 

the sense of evolution and also the sense of “bringing forth” as Tom Kieren specifies:  

[Becoming for me] is closely related to “bringing forth a world of Significance with 

others that can be observed to “contain?” or be mathematics or mathematical. This 

Becoming or Bringing Forth allows for the arising of mathematical inter-objects. (Jan 10, 

2018, personal communication) 

Therefore, the mathematics content at public education level is no more an established, 

relative static land, compared to the frontier of mathematics. It is alive. It is ontologically, not 

epistemologically, abundant (Jardine, Friesen, & Clifford, 2006, p. 88). This means that different 

understandings of the same mathematics topic are not multiple ways of knowing the topic that 

has a fixed meaning. They are ways to understand a topic that is “abundant, nonfoundationally 

fluid, and inherently complex” adequately, as “interpretation doesn’t simply provide multiple 

ways of complicating a topic that is simple. Rather, interpretation transforms what it meant to be 

a topic – to be is to be-in-abundance” (Jardine et al., 2006, p. 88). Meanwhile, the connection 

between school mathematics and mathematics and human knowledge at large is not one-way 

such that it is only changed when the bigger field changes. Rather, it is connected to them as a 

fractal part in relation to a dynamic evolving whole. So, one can understand the whole through 

reengaging with this part, and whatever generated in this part can have both instant and long 

term effects on the whole. In other words, whatever happens in public education level is not 

simply reproducing well-known human knowledge; it is creating and transforming human 

knowledge as a whole. Such viewing of mathematics as a fractal-like dynamic complex system 

allowed me to see that the newness generated through learning mathematics in public education 

is not bound by the scale or categorization of the subject. Such view also made knowing 
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mathematics as developing a sense of personal intimacy or relationship with mathematics as an 

other, as Handa (2011) proposes by following Buber’s (1937) I-thou theory, more sensible. To 

iterate differently, Figure 10.1 depicts the change of my perspective. Instead of seeing myself 

and my students as independent unsynchronized learners of mathematics (i.e., learning about 

different mathematics contents at different spaces and times) and each one’s learning as to reach 

the level of a more knowledgeable knower’s knowledge (i.e., I reach the mathematical 

community’s knowledge level, my students’ knowledge reaches my level), I now see 

mathematics subject content as a multi-dimensional fractal-like whole that is embedded in a 

bigger fractal-like whole (i.e., human knowing) and within which my knowing and my students’ 

mathematical knowing, as fractal-like parts, are embedded. A recursive curriculum can enable 

my encountering with my students in a mathematics classroom to bring forth new mathematical 

objects in a new dimension, transforming my students’ and my mathematical understanding 

related to the same mathematics contents, and also mathematics and human knowing as a whole. 

All these parties’ growth is synchronized and none of the parties is insignificant for each other’s 

growth. Such change of perspective, as an implication of changing language in describing 

learners and cognitions, turned around and made further language change necessary. As shown 

Figure 10.1. A visualization of perspective change. 

a. A static view of mathematics b. A fractal-like view of mathematics.  
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in Figure 10.1b, “knowledge” is replaced by “knowing” to emphasize each knowledge system’s 

complexity dynamics. As Davis and Renert (2014) explain: “Knowing signals an inseparability 

of knowledge and knower” and “reminds us of the dynamic characters of both knowers and 

knowledge”, which are “ever-changing, evolving forms” inseparable with their similarly 

dynamic contexts (p. 23). Knowing also connects knowledge to doing and highlights what a 

knower knows bodily and tacitly.   

             Looking deeper, my initial self-rejection and seeing less new from my students’ work 

reflect a diminished susceptibility to the self and others. I was gradually becoming, not 

experienced, but an “expert” who feels able to end a venture early for having seen, heard, or 

done enough and who become less susceptible “to the difference that the next case might bring” 

and “to being addressed” (Jardine, 2015, p. 252). My being out of tune with these potentials, 

however, might have more to do with a sense of lack than contentment. There was impatience 

with my own ignorance and slowness and a longing to know more and learn faster. Being busy 

combating with my ego or my urge to move on, I was insensitive to be addressed by self and 

others (including other beings, processes, and anything that can be experienced as a Thou). Deep 

down, I lacked the kind of learning experience that my inquiry brought forth: experiencing self 

and others as abundant, experiencing “trivial” and familiar as profound, and experiencing 

learning as an aesthetic process in which I was enchanted by something bigger than myself 

calling to be born.  

From the onset of responding to a compelling call to a satisfactory culmination, my 

inquiry followed an organic path that unfolded while I walked on it, and took me to an end that is 

not external to but within my activity as it could not be achieved by compressing the inquiry 

process. Such experience was so therapeutic and aesthetic that I could not agree with Dewey 
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(1929/2004) more that the starting point of an educational process locates in the learner. My 

experience taught me that personal questions, confusions and struggles should be central not 

peripheral for learning. Rather than limitations or barriers, they are the driving forces for 

learning. Struggles are difficult, but they do not have to be painful. Each of us comes to meet 

each other in the midst of life, already full of stories, relations, and puzzlements that are ready to 

be called for and puzzled about. We are ontologically abundant (Jardine et al., 2006); each of us 

is “pregnant with thought, however inchoate or obscure” (Kupfer, 1983, p. 18). It is not the issue 

how we can get self and other people ready for a learning, rather to lead out what is already there, 

as the Latin origin of educate, educere “lead out” (“Educate”, 2012), suggests. To educate 

ourselves and others is to conduct ourselves in a way to help one (self or others) hear one’s 

personal story resonating.  

My experience also convinced me that learning is always a creative process, maybe even 

more so in mathematics classes. Learning is neither reproducing known truth nor for preparation 

for future living (Dewey, 1929/2004). Everything a learner creates is original, no matter how it 

seems like repeating ordinary common sense. There is value “that intelligent search could reveal 

and mature among the things of ordinary experience” awaited to be realized (Dewey, 1929/1958, 

p. 38). Mathematics, a study of patterns made of ideas and what is possible in an imaginary land 

rather than what is practical, is arguably the most creative art form of mankind (Lockhart, 2009). 

Creating such an art work requires problems naturally arose in situations, time and space to 

contemplate and struggle, and openness towards unforeseen changes; teaching mathematics 

requires “an honest intellectual relationship with our students and our subject” (Lockhart, 2009, 

p. 43).   



TOWARDS RECURSIVE MATHEMATICS CURRICULA 218 

With all the above changes in myself, I see designing towards recursive curricula not just 

an ontological necessity, but also an ethical necessity. It might offer a way for educators who 

disagree with linear predetermined curricula to live subversively in an overarching linear 

curricula framework. Recursive curricula have a focus in self-similar entities (ideas or tasks). 

This makes the beginning and end of a planned learning process easily modifiable through 

changing into its equivalent. Wherever we choose to enter an educational process, there are 

always stories that the current beginning reminds us of and equivalent entities that the current 

beginning is derived from. This is particular the case when using enabling constraints (Davis et 

al., 2008) as entry points. Wherever we end a process, there are always equivalent entities that 

we can generate from the existing one. Given that the equivalence is contingent, we can change 

the direction of the curriculum by inviting something that resembles the past yet invites a 

different future. As such, we can play with different ideas’ combinations and create something 

new, at the same time, having the curriculum keep an order by resolving around some big ideas 

(e.g., equivalence, symmetry, substitution/representation). Recognizing many topics are parts of 

the same fractal-like idea, we can have recursive elaborations on one topic rather than rushing 

through many topics (e.g., an introduction to trigonometry lesson might take a form of re-

encountering similar triangles or equivalent ratios). In this way, we can transcend the start and 

the end of a linear curriculum by considering the bigger idea of which the start and the end is a 

fractal part respectively.  

Teaching and learning, I believe, are two sides of the same coin: Educating others and 

educating self inform and propel each other. A curriculum that only invites students but not 

teachers to re-view the subject matter is not recursive. A curriculum that only changes students 

but neither teacher nor curriculum and subject matter is not transformative, because a 
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transformative curriculum “continually regenerates itself and those involved within it” (Doll, 

1993, p. 87).  Education for students alone perpetuates domination and control and disregards 

teachers’ growth thus unethical. Designing towards recursive curricula is essentially an invitation 

for learners (i.e., teachers and students) to enter a recursive educational process in order to 

cultivate a capacity to learn recursively from self and others. It aims to bring forth 

transformation in all parties involved (the learners, the subject matter, and the curriculum) and 

cultivate an I-Thou relationship with self and others. Therefore it is not just to ask “What 

relationship do we want our students to have with mathematics?” as Fleener (1999) proposes for 

building a transformative process-oriented mathematics curriculum around experience and 

relationship (p. 100), but also to ask “What relationship do we as mathematics teachers want to 

have with mathematics?” Teachers and students are essentially co-learners of the same subject 

matter in a recursive curriculum, although they still have different roles to play in a recursive 

curriculum. Curriculum, as the running of the course, means not “students running towards an 

end where the teacher stands” but “students and the teacher running side by side together 

towards an emerging ending that is both familiar and strange for all runners”. The line between 

the acts of teaching and acts of learning should not be rigid. Just like the act of producing 

examples is not just an act of teaching but an act of learning due to its affordance in developing 

mathematical understanding (Watson & Mason, 2002), designing towards recursive curricula is 

not a task for the teacher alone. I have come to believe, through my mathematics learning 

experience afforded in this study, that both teachers and students can learn mathematics and self 

through designing towards recursive curricula together.  

It has been difficult to conclude this study, as every single time I did so, new ideas 

emerged, invoking a renewal of my understanding of recursive curricula. So an ending here is, 
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like what Dewey (1934/1980) says about one having an experience “when the material 

experienced runs its course to fulfillment”: “Its close is a consummation and not a cessation” (p. 

35). Currently, my experience with recursive curricula has connected itself to curriculum in 

abundance (Jardine et al., 2006), aesthetic educational experience (Dewey, 1934/1980; Kupfer, 

1983), and ethical encountering (related to Badiou, 2001 and Buber, 1937). The future is wide 

open.    

What we call the beginning is often the end  
And to make an end is to make a beginning.  
The end is where we start from. … 

—T.S. Eliot, Little Gidding, 1944  
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Appendix A: Conversation Dates, Formats, and Topics 

 

Date Format (order) Topic Participants (in pseudonyms)  

Part I* 

Apr 8, 2015 Conversation 1 Re-viewing Violet  

Aug 6, 2015 Workshop 1 Re-viewing Violet, Lisa 

Aug 10, 2015 Workshop 2 Re-viewing Bill, Nancy, Emily 

Sep 9, 2015 Conversation 2 Re-viewing Dean 

Nov 3, 2015 Conversation 3  Re-viewing Tania  

Part II 

Nov 22, 2015 Workshop 3.1  Re-viewing Maxine, Bill, Emma 

Dec 12, 2015 Workshop 3.2 Re-interpreting Maxine, Bill 

Jan 16, 2016 Workshop 3.3 Re-experiencing Maxine  

Feb 20, 2016 Workshop 3.4  Re-imaging Maxine,  

Apr 23, 2016 Workshop 3.5 Re-storying Maxine, Violet, Rachel  

Apr 25, 2016 Conversation 4 Re-view re-viewing, 

Workshop follow up 

Emma 

May 15, 2016 Workshop 3.6  Re-view re-viewing Maxine, Violet  

*The two workshops in Part I were conducted with different groups of participants who were former 

school teachers. Most of them chose to participate in one workshop only.   
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Appendix B: Original Workshop and Individual Conversation Plans 

Original Workshop Plan 

Topic: Reviewing in the Mathematics Curriculum 

Part I:  Reflect on the practice of reviewing – individual work, group discussion 

A list of possible facilitation activities or questions:  

1) Make two drawings showing what things were like for you and your students before and 

after a mathematics review is completed. Feel free to use thought bubbles or speech 

bubbles. 

2) Make a list of 20 important words that come to mind for you when you think about 

reviewing mathematics. Then divide the list into two groups and copy them into two 

separate lists.   

3) Complete the following sentences. “Reviewing mathematics is like___________.” 

4) Close your eyes for 10 seconds and think about the practice of reviewing…is there any 

particular memory that comes to your mind or any particular bodily sense that you 

notice? … for example, a happy student, a tighten body?   

5) If you were going to give advice to new mathematics teachers about the practice of 

having students review something they have learned before and its role in students’ 

learning, what would you say?  

Each participant will complete some activities individually before sharing their responses with 

the group.  

Part II: Connecting participants’ interpretations and mine  

1) Identify the common themes in participants’ interpretations of reviewing – brain storm;       

2) Connect them to a recursive mathematics curriculum by 
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 Linking the themes to the concept of recursion if possible – led by the researcher  

 The researcher introducing a recursive curriculum as one that emphasizes learning new 

through a running or looping back process  

Part III: Re-view reviewing   

Examine, critique and revise the review examples provided by the researcher – group work & 

discussion  

For example, an exercise that focuses on connections might give students an answer and ask 

them to find possible questions for it.   

e.g.1, What can the question be to which x=5 is an answer? 

e.g.2, What can the question be to which “solving a linear equation” is a part of the 

algorithm or solution? 

Facilitation questions or activities:  

1) In what ways do you see having students to engage with this kind of exercise as a form of 

reviewing?  

2) In what ways do you see this kind of reviewing embodying a recursive curriculum?   

3) Modify the exercise or propose a different form of reviewing to facilitate a recursive 

curriculum that fits your interpretation and imagination   

Part IV: Back to the beginning  

Re-visit Part I activities and questions and discuss new insights if there is any - Group discussion 
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Original Individual Conversation Plan 

For the participants who chose to only participate in the conversation activity:  

The conversation will have the same basic structure used in the workshops (see the sample 

workshop plan). In other words, a conversation will also include  

1) both parties of the conversation sharing their interpretations of the recursive quality of 

the mathematics curriculum, 

2) reflecting on a common teaching and learning practice or shared curriculum material, 

3) discussing how the practice or material might be different in a recursive curriculum. 

For the participants who chose to join both workshop and conversation activities:  

The focus of the conversation will be around students’ experience of re-encountering what they 

have learned before and how educators can help students learn something new from this 

experience. Two possible questions to start a conversation can be  

1) If you were going to give advice to new mathematics teachers about the practice of 

having students review, revisit, or reencounter something they have learned before 

and its role, what would you say? 

2) While looking back your experience in the past workshop(s), do you see any changes 

in your understanding regarding mathematics teaching and learning? In what ways 

did it change or not change?  

The rest of the conversation can have the same basic structure used in the workshops (see the 

sample workshop plan). In other words, a conversation will also include  

1) both parties of the conversation sharing their interpretations of the recursive quality of 

the mathematics curriculum, 

2) reflecting on a common teaching and learning practice or shared curriculum material, 
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3) discussing how the practice or material might be different in a recursive curriculum. 
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Appendix C: Examples of Revised Workshop and Individual Conversation Plans 

Workshop 3.1 (Re-viewing) Plan 

Part I:  Reflect on the practice of reviewing – individual work, group discussion  

Complete one or two tasks selected from the following list individually before sharing with the 

group:  

1) Complete the following sentences: “Reviewing mathematics is like___________.” 

2) If you were going to give advice to your younger self about the practice of reviewing and 

its role in students’ learning, what would you say?  

3) Make two or three drawings with different colours that symbolize how your 

understanding of the practice of reviewing has changed for you over time 

4) If you are to study the practice of reviewing, what questions would you ask to lead your 

study?   

5) Have your students surprised you in any way ...with what they did, said, or wanted to 

do.....anything at all…… related to reviewing? 

Part II: Connecting participants’ interpretations and mine  

1) Identify the common themes in participants’ interpretations of reviewing – brain storm;       

2) Connect them to a recursive mathematics curriculum 

Recursive curriculum: stresses students' common experience of re-encountering what 

they have learned before and aims to help students learn something new from this 

experience.  

A recursive curriculum is defined as one that emphasizes building connections and 

learning something new through a running or looping back process. 
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Part III: Re-view reviewing  

Examine, critique and revise the review curriculum examples provided by the participants and 

researcher – group work & discussion  

Leading question: In what ways might we design/modify tasks to help students to build 

connections and learn something new from what they have learned/experienced/encountered 

before?  

Possible activities:  

1) Review and modify a review task brought by participants,  

a. Give an example of a review task that you like. Specify what you like and wish to 

improve.   

Each participant writes down the task on a large piece of paper before sharing in 

the group 

b. Choose one to work on for the group  

2) Generate review tasks that fit the participants’ current teaching needs  

a. What are you teaching currently? Or pick a topic that you want to develop better 

tasks for  

3) Review and modify a task brought by the researcher 

Part IV: Back to the beginning 

Re-visit Part I and the leading question in Part III, discuss new insights if there is any - Group 

discussion  
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Curriculum Examples for Workshop 3.1 

1. Given the following questions: 

1) ? +3 = 27 

2) Solve 𝑥 + 3 = 27 

3) Solve 2𝑥 + 3 = 27 

4) Solve -2𝑥 + 3 = 27 

5) Solve + 3 = 27 

6) Solve + 3 = 27 

7) Solve 𝑠𝑖𝑛𝜃 + 3 = 27 

8) ET added 3 to a number, he got 27. What is the number?  

9) ET is 3 years older than his sister. ET is 27 this year. How old is his sister?  

10) Where do the lines y=27 and y=x+3 meet?  

11) Solving a linear system:  

y=27 

y=x+3 

12) Given a sequence 4, 5, 6, 7,…, which term of the sequence will be 27? 

Consider:  

a)  How are these questions similar?   

b) If they are all related to the same problem, what other forms might this problem have?  
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Workshop 3.5 (Re-storying) Plan 

Pre-workshop Invitations:  

1) Bring an example of good math story or a curriculum example that promotes 

generating math stories  

2) Think about one or a set of topics, lessons, assessments, units or courses in which you 

want to promote (re)generating math stories  

Part 0: Look back and look forward (10 minutes)  

A recursive curriculum aims to help students  

build connections and learn something new through re-encountering what they have 

learned before 

Given what a recursive curriculum does, what might a recursive secondary mathematics 

curriculum look like?  

Where have we been? Where are we now? Where are we going? 

 

In this section, we ask: what if re-storying is a form of re-viewing, then 
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In what ways might we design curriculum to help students build connections and learn 

something new from what they have learned/ experienced/encountered before? 

Part 1:  Reflect on the process of re-storying (30 minutes)  

Complete Tasks 1–4 individually, and organize the answers for Tasks 2–4 by following the 

format of Table 1. 

Write down or draw your answers on the flip chart paper provided.  

1) What comes to your mind when you hear the phrase “math story”?  Write down or draw 

as many answers as possible.  

2) Write down, respectively, the words or phrases that come to your mind when you think 

about good stories in general and think about good math stories. Write as many as 

possible.  

3) Make two drawings or writings, each on a separate piece of paper, to show an experience 

in which you re-story a story and an experience in which you re-story (or generate a story 

related to) a math idea. Feel free to use icons, symbols, thought bubbles or point forms.   

4) Complete the following sentences:  

“Re-storying in general is like___________.”  

“Re-storying in mathematics is like ___________.” 

Table 1: Re-storying in General & in Math 

 In General  In Math  

Good story is 

related to… 

  

An experience    

Is like…   
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Part 2: Connect participants’ interpretations (40 minutes)  

Identify the common themes in participants’ interpretations of re-storying – brain storm       

****10 minutes break**** 

Part 3: Re-story together – What might the story be? (40 minutes)  

The group works together to  

1) Generate stories related to one or a family of mathematical ideas (e.g., concept, process)  

a) What story might we generate to facilitate our understanding of the idea(s)? 

b) In what ways might we present the story?  

2) Identify what mathematics ideas might be related to a given story  

Part 4: Design curriculum to promote re-storying process (40 minutes) 

Design or revise curriculum examples – group work & discussion. Possible activities:  

1) Review and modify a curriculum example brought by the participants or the researcher 

2) Generate a curriculum example that fits the participants’ current teaching needs  

Part 5: Back to the beginning (10 minutes)  

Re-visit the leading workshop question in Part 0 and the results from Part 1–2, discuss:  

What could a process of re-storying mathematics be? 

How could a process of re-storying mathematics be prompted in curriculum design? 
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Curriculum Examples for Workshop 3.5 

 

What math ideas might be related to the following story? What could this math story be?  

1) Given a math story in picture book format with drawings of concrete objects  

 

2) Given a math story in abstract pictorial form, e.g., 

 a. 

     

 

b. 
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Revised Individual Conversation Plan 

Questions & Activities 

Study Title: Towards a Recursive Mathematics Curriculum 

Note:  

1) You can answer question c about recursive curriculum only.  

2) If you find question c too general, you can try part I about reviewing.   

3) You are welcome to go through all the questions and activities in both Part I and Part II.  

Part I: Reviewing  

a)      Please do any number of the following activities:   

1) Complete the following sentences. “Reviewing mathematics is like___________.” 

2) Close your eyes for 10 seconds and think about the practice of reviewing…is there any 

particular memory that comes to your mind or any particular bodily sense that you 

notice? … for example, a happy student, a tighten body?   

3) Make two or three drawings with different colours that symbolize how your 

understanding of the practice of reviewing has changed for you over time. You can also 

describe your changes in writing.   

4) Have your students surprised you in any way ...with what they did, said, or wanted to 

do.....anything at all…… related to reviewing? 

5) If you were going to give advice to new mathematics teachers about the practice of 

having students review something they have learned before and its role in students’ 

learning, what would you say?  
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b) What can reviewing in a secondary mathematics curriculum be like if we want to help 

students build connections and learn something new through a re-viewing process, which is a 

process to invite students to re-encounter what they have learned before? 

Part II: Recursive Secondary Mathematics Curriculum  

c)      If we say that a recursive curriculum helps students to build connections and learn 

something new through re-encountering what they have encountered before, given what it does, 

what might a recursive secondary mathematics curriculum look like?  

Note: You can mention general qualities of curriculum and/or give particular examples of 

curriculum. A curriculum example can include task, assignment, lesson plan, unit plan, course 

plan, assessment, and even k–12 curriculum as whole.   
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Appendix D: Textbook Excerpts  

One comparison example from the Alberta Math10 textbook (adapted from Davis et al., 2010, p. 
315) 

Example 2: Sketching a graph of a linear function in function notation 

Sketch a graph of the linear function 𝑓(𝑥) = −2𝑥 + 7. 
 
[Solution provided below] 
 

CHECK YOUR UNDERSTANDING  
 
2. Sketch a graph of the linear 
function 𝑓(𝑥) = 4𝑥 − 3. 
 
[Answer provided below] 
 

 

Four comparison examples from the Chinese Math9 textbook (adapted from People’s Education 
Press, 2001, respectively p. 91, p. 99, p. 100, p.101) 

Chinese Text English Translation  
例：画出函数𝑦 = 𝑥 + 0.5的图象。 
【解】 
 
练习 
1. 画出函数𝑦 = 0.5𝑥的图象（先填下表，

再在所给直角坐标系内描点、连线）： 
 

Example: Sketch a graph of the function𝑦 = 𝑥 + 0.5.  
[Solution provided below] 
 
Exercise:  
1. Sketch a graph of the function 𝑦 = 0.5𝑥 (fill out the 
following table at first, then plot the points in the given 
Cartesian plane and connect the points). 
[A table of value, with x values filled and y values empty, 
provided below] 

下面画正比例函数𝑦 = 0.5𝑥与𝑦 = −0.5𝑥的

图象。先各选取两点： 
 
 
 
再描点连线： 
 

Next, sketch the graphs of two directly proportional 
functions 𝑦 = 0.5𝑥 and 𝑦 = −0.5𝑥. Firstly choose two 
points for each function:  
[two tables of values are displayed side by side] 
 
Then plot the points and connect the points:  
[two graphs are displayed side by side] 

例 1：在同一直角坐标系内画出下列函数

图象：𝑦 = 2𝑥 + 1， 𝑦 = −2𝑥 + 1. 
【解】 

Example 1: Sketch the graphs of the following functions 

on the same set of Cartesian plane：𝑦 = 2𝑥 + 1， 𝑦 =
−2𝑥 + 1. 
[Solution provided below, with two tables of values 
displayed side by side and two graphs on the same 
Cartesian plane down below] 

练习 
1．在同一直角坐标系内画出下列函数图

象：𝑦 = 3𝑥, 𝑦 = −3𝑥, 𝑦 = 3𝑥 + 3， 𝑦 =
−3𝑥 + 3. 
 

Exercise:  
1. Sketch the graphs of the following functions on the 
same set of Cartesian plane：𝑦 = 3𝑥, 𝑦 = −3𝑥, 𝑦 =

3𝑥 + 3， 𝑦 = −3𝑥 + 3. 
[A Cartesian plane provided down below] 

 


