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Abstract

We consider the construction of designs for the general nonlinear model.
Using multiresolution analysis in wavelet theory, the classical nonlinear design
problem is transformed into a robust design problem for ‘approximately linear’
models with orthonormal wavelet basis on the design space S as regressors.

The minimax approach is used to construct designs which are robust against
small departures from the finite wavelet representation of the general nonlinear
model. We find that the D-optimal design obtained by Herzberg and Traves
(1994) is also G-, Q- and A-optimal (in the classical sense) if the Haar wavelet
basis is used in the approximation. We provide a proof which we feel is simpler
than that of Herzberg and Traves (1994). On the other hand, if the multiwavelets
with N = 2 is used, the design which chooses more points in a neighbourhood
of the midpoint of the design space and a few at the extremes is shown to be Q-
and D-optimal in the simplest case.

Using the nonparametric local averaging procedure with positive weights, we
construct optimal weights and designs under the restriction of unbiasedness. We
show that under this constraint, the ordinary least squares method is optimal
in estimating the parameters of the Haar regression model. In other words, the
optimal weight and design obtained were each uniform. For the general N =
2 multiwavelet regression model, we show that the optimal weight and design
density are concave and convex paraboloids respectively in each of the 2(m+!)
intervals of the design space S = [0, 1] with maximum points at the midpoints
and minimum points at the endpoints of each interval. We also show that the
design is symmetric about the midpoint of the design space.

Strategies for implementing the designs are discussed. The question of how

well these wavelets approximate nonlinear models is also considered using specific

examples.
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Chapter 1

1 Introduction

The title of this dissertation indicates that we will focus our attention on
constructing designs for nonlinear models using wavelet approximations. Wavelet
theory, which has been developing over the years, has proved to be useful in
signal processing, fast algorithms for integral transforms in numerical analysis
and function representation (see Daubechies (1992), Strang (1989) and Alpert
(1992)). This wide applicability has contributed to the growing interest in them.

Let y(x;) € R be an observable random variable; x; € § € 7 the ith vector
of some control variables and ¢; € R a sequence of uncorrelated random un-

2, In this work, our

observable errors with mean zero and common variance o
discussion will be centered on a model describing the relationship between the

response y(x) and the independent variables x in the following manner :
y(xi) =n(x:)+e, ¢ = 1,2,..,n, (1.1)

where 7(x;) is the value of some square integrable, possibly nonlinear function
n at x;. We observe that the precise structure of the nonlinearity present need
not be known in order to apply wavelet approximation techniques. The only
requirement is the choice of an appropriate wavelet basis and the order m of
the approximation. Often, if the form of n(x) is assumed known, it is only
a convenient approximation based on experience and prior information which
assumes that the deviations from the “true” model is negligible. In this case,
the assumed form of 7(x) also depends on some unknown vector of parameters.
say 0y € RP. These parameters in general, have some physical meaning which
makes them interpretable and of interest in their own right. However, since

information provided by the original parameters 6y cannot be obtained from the

1
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wavelet approximation, the formulation (1.1) provides a convenient framework
for our discussion. In Chapter 4, we find that the multiwavelet basis with V
= 1 and 2 can be used to approximate several nonlinear relationships. Thus
wavelet approximation techniques provide a flexible tool for analysing unknown
and approximately known nonlinear functional forms.

The three simplifications that arise from using wavelet expansions of nonlin-
ear models are :

(1) the regressors no longer depend on the unknown parameter o;
(2) the difficult problem of estimating the parameters of a

nonlinear model is eliminated; and
(3) the problem is transformed from a nonlinear design problem

to a linear one with disturbance function - the well known

robust design problem.

Thus, the problem of constructing classical designs for nonlinear models is made
equivalent to that of constructing robust designs for linear models where the
regressors constitute a system of orthonormal wavelet basis of the design space
S. Herzberg and Traves (1994) are probably the first to consider classical de-
signs for wavelet regression models using the Haar wavelets as regressors. The
approximation procedure is outlined in Section 1.3 of this chapter.

In what follows, we provide a brief introduction to the theory of classical
and robust design and some background on wavelets. More detailed discussions
and reviews can be found in Box and Draper (1959), Fedorov (1972), Steinberg
and Hunter (1984), Ford, Kitsos and Titterington (1989), Daubechies (1992)
and Pukelsheim (1993) amongst others. The classical design problem is defined
in Section 1.1 with some examples. We discuss the various approaches in the
literature for dealing with linear and nonlinear problems. The assumptions of
classical design theory discussed in Section 1.1 leads us naturally into the robust

design problem presented in Section 1.2. We review four types of robust designs

2
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in the literature. These are:

(1) robust designs for approrimately linear models;

(2) designs robust against autocorrelated errors;

(3) minimaz robust weights and designs for approrimately linear models; and
(4) model robust designs for nonparametric regression models.

Two approaches, the minimax and infinitesimal approach, are reviewed. In Sec-
tion 1.3 we provide some background on wavelet theory relevant to our work.
The results obtained in our investigation of robust designs for biased wavelet

regression models are summarized in Section 1.4.

1.1 The Classical Design Problem

We begin by considering an observable random variable y € £ which depends
on a design variable x € § C R? through the model (1.1).

An experimenter can take n independent observations on y at the points
X1,X2y eeeee- ,Xn, Dot necessarily distinct, choosen from the set S. Since the set S
often consists of more than n-points, the question that arises naturally is - which
n-point design, X1, X2, ...... , Xn, should we choose ? Classical design theory was
developed in an attempt to answer this question. If the response surface n(x)

can be written as
1(x) = n(x; 60) = q” (x)8o (1.2)

the problem is said to be a linear design problem; it is nonlinear otherwise. The
classical design problem for regression models with a pre-specified form for n(x)
has been discussed in great details by several authors. In this case, it is implicitly
assumed that the model (1.1) representing y(x) is exactly correct.

Smith (1918) was the first to consider the question of design optimality. Other
early contributors include Wald (1943), Hotelling (1944) and Elfving (1952).
However, Kiefer (1959) and Kiefer and Wolfowitz (1959) contributed signifi-



cantly to the area by extending the previous work. The subject of nonlinear
experimental design was perhaps first studied by Fisher (1922). White (1973)
proved the nonlinear version of the Kiefer-Wolfowitz equivalence theorem.

In order to apply optimal design theory to (1.1) a criterion is required for
comparing experiments. For parametric models, this criterion, sometimes called
the loss function, is often taken in optimal design theory to be a monotonic
increasing scalar valued function (M (é)) of the mean squared error (MSE)
matrix of an estimator of 8. If fis unbiased, the MSE reduces to the Covariance
matrix. Mathematically, the classical design problem can be stated as:

{x;..l:gg.?e 5 O(M(0)).
For mathematical convenience, we associate with the n-point design x,, x,...,
1

Xn a discrete design measure £(x) on S, which places equal mass ;- at each of

the design points x;,

£(x) = %Zéx. (1.3)

~

where 64 denotes the pointmass 1 at x. Then, we rewrite M () as M(&(x)).
This transforms the n-observation design problem to that of finding a discrete
probability measure £*(x) which minimizes ®(M(£(x))). A common approach
to this problem is to extend the definition of the MSE matrix to the set of
all probability distributions, denoted by X, on S and find £*(x) in & to mini-
mize ®(M(£(x))). We then hope that an n-observation design whose associated
probability distribution approximates £*(x) will be close to optimal for the n-
observation problem. We adopt this viewpoint, often called approzimate design
theory. For robust designs, this implies that admissible designs are necessarily
absolutely continuous (see Wiens(1992)).
Some optimality criteria commonly found in the literature are :

(1) D-Optimality - when the loss function is the determinant.

4
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(2) A-Optimality - when @(-) = trace(-).
(3) E-Optimality - when ®(-) = Anqz(-) where Anqr represents
the maximum eigenvalue.

(4) G-Optimality - when
O(M(¢)) = maxq” (x)M(£)a(x).

(5) Weighted-optimality - when ®(M(€)) = tr{WM~1(¢)},

where W is a known weight.

The Kiefer-Wolfowitz equivalence theorem mentioned earlier provides a link be-
tween D- and G-optimality. Chang (1979) constructed weighted optimal designs
for a linear model with linearly independent regressors belonging to the repro-
ducing kernel Hilbert space (RKHS) H(R) generated by a known continuous
and positive definite covariance reproducing kernel R(s,t) on S x §. For any
symmetric positive definite matrix W the optimal design was simultaneously A-,
D- and weighted optimal for S = [0, 1].

The linear design problem has been studied by several authors using various
loss functions and variations of the linear models. Interested readers can refer to
Fedorov (1972), Silvey (1980) and Pukelsheim (1983). Designs for nonparametric
regression models have also been studied by a number of authors. Chan (1991)
employs first order differences to construct designs for estimating variance in
nonparametric models with model function g(t) and independent errors having
zero mean and constant variance. The estimate considered was of the form
Gt = Y_’:% for some symmetric non-negative matrix D. Assuming that g satisfies
a uniform Lipschitz condition and D = (v;;), a tridiagonal symmetric matrix.
the asymptotic variance V was obtained. The uniform design was found to be
the minimizer of V if ~; is a one to one function of ({;y; — t;) where v; =
(vicit + %), Yo =71 =0, ( =1,..,n) and %,iz1 = —7i, (2 = 1,..,n — 1). Muller

(1984) considered a nonparametric model where the error Z(t) is a sequence

-
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of stochastic processes with E{Z(t)} = Cov{Z(t1), Z(t2)} = O(n™!), t1 # ts.
Var{Z(t)} = o?(t) + O(n"") and the response surface g € C*([0,1]). Based
on the Gasser-Muller estimator g, ,(t), ¥ > v, of the function g, with uniform
and non-uniform bandwidths, the asymptotic Integrated Mean Squared Error
(IMSE) of the estimate was derived. Under appropriate conditions, the design
densities minimizing IMSE in the class {f € C([0,1]) | |f(z)— f(y)| £ L¢lz—yl°.
Ly >0 and all z, y € [0, 1]} were

o(t)(R(t)Y? L #(t)
f(t)= ——fo‘ o(2)dz

for uniform and non-uniform bandwidths respectively, where h is the density of
a probability measure H, ¢(z) = [o(z)**-")glk)(z)22+1) p(g)2k+1]1/(4k+1-0) 354

0 < a < 1. We observe that the optimal design density derived in Chapter 3 of

IO = o)) ods

this thesis has the above structure.

Adopting a Bayesian approach Mitchell, Sacks and Ylvisaker (1994) defined
three design criteria, A-optimality (for average), G-optimality (for global) and
D-optimality (for determinant), for constructing designs when the response is
represented by a random function (stochastic process). In general, these criteria
do not have the properties which obtain in the classical setting. The main interest
of this work was to draw attention to the fact that certain asymptotics produce
a class of tractable Bayesian design problems from hard ones. Necessary and
sufficient conditions for D- and A-optimality were obtained and several exam-
ples considered. They also compared exact designs computed numerically for the
asymptotic criteria with exact designs computed for the original nonasymptotic
ones, in some simple cases. They found that designs based on the asymptotic
criteria were easier to compute and were quite efficient over a wide range of
the parameters of the prior process. Discussions on traditional Bayesian design
theory, where the prior for the response function is a random finite linear com-

bination of known functions can be found in Pilz (1983), Chaloner (1984) and

6



Bandemer, Nather and Pilz (1987) amongst others. In a related development,
Sacks, Welch, Mitchell and Wynn (1989) discuss the design and analysis of com-
puter experiments. One feature of computer experiments is that the output is
deterministic. Sacks et al (1989) treat the deterministic output as a realization
of a stochastic process Y(z) that includes a linear regression model with error
variance o2R, where R is the matrix of stochastic process correlations. Using
the IMSE criterion and a method called Kriging to evaluate the MSE, they
constructed sequential designs for a circuit-simulator model on the design space
[0.5,0.5].

Van der Linde (1985) discussed the question of estimating an unknown re-
gression function g(t), ¢ € [a,b] given a finite number of observations and in-
vited studies on optimal designs based on the global generalized smoothing er-
ror J* ed(t)dQ(t) where Q is a measure on [a,b] and e5(t) is defined by Van der
Linde (1985) to be the generalized smoothing error. Assuming that g € H(A),
a RKHS, the technique was to interpolate g and estimate the interpolating func-
tion. The Bayesian approach adopted was justified by interpreting interpolation
in RKHS as a Bayesian procedure. Fan (1992) also considered the problem of
estimating a nonparametric regression function g(z). Let f(z), the marginal
density of the random variable X and Var(Y|X = z) = o%(z) be independent
of g(z). Restricting to the class C; = {f(-,-) | |¢"(¥) — g(z) — ¢'(z)(y — )| £
£(y — )%}, and under some regularity conditions, Fan (1992) obtained the best

2
linear smoother to be the local linear regression smoother given by

N 2?::1 waJ
§(z)= -
7:1 wJ

where wj = K(52)[sn2 — (2 ~ 25)8na]s $ax = L7 K(Z2)(z —z;), 1 = 1,2
with K(z) = ¢[1 — 2°]4 and h, = %%:—;C(.—f); This method is sometimes called the
design adaptive regression method because it adapts to various design densities,

to both fixed and random designs and to both interior and boundary points.

7



For nonlinear models, the methods used in the literature so far produce a
mean squared error matrix which is a function of the unknown “true” parameter
6o. The dependence of the MSE on the unknown 6y has been a major difficulty
in obtaining good optimal designs. The following approaches have been used in
the literature to remedy this difficulty.

B1 Parameters are assumed to be close to certain specified values.
Designs obtained using this assumption are called locally optimal
designs (Chernoff (1953)).

B2 Use prior estimates either from previous experiments, or from a
pilot experiment conducted specially for the purpose, or merely
guesses (Box and Lucas (1959)).

B3 Propose some weighting function W(-) on the parameter space, (2,

which may or may not be a formal prior density and construct
M(e) = [_M(6,6)W(do)
or a new criterion

Bw(e) = [ B(M(0,6)W(db).

This approach has been criticized by Ford, Kitsos and Titterington (1989).
They also emphasize the effect of changes in the prior estimates of 8y on the
properties of locally optimal designs and static designs obtained by B2.

B4 Use a sequential strategy in which the parameter estimates are updated after
each trial and the next design point is then choosen with the aid of the
improved estimates (Box and Hunter (1965)). Box (1970) introduces a
criterion as a guide to the time when it is no longer worth changing points.
Chernoff (1953) studied locally optimal designs using minimization of the

trace of the inverse of Fisher’s Information matrix as the design criterion. He

used the design problem for quantal response data as an example. Box and

8
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Lucas (1959) obtained numerically a D-optimal design for a chemical reaction

model

b

(x) = n(x,0) = g—-leap(~0z21) — exp(~0iz1)] (14

by working with a linearized approximation and preliminary guesses 610 = 0.7,
6,0 = 0.2. The problem was to choose z;;, i=1,2,...,n so as to maximize the
determinant of FTF where F is the matrix of partial derivatives of n with re-
spect to 6. The significance of this criterion derives from the fact that if 7(x.9)
is assumed to be approximately linear in the neighbourhood of an initial point
6., the asymptotic variance of the estimate 6 is proportional to (FTF)~! and
det(FTF)~! is proportional to the volume contained within any specific ellip-
soidal probability contour for 8 about 6. in the space of the parameters. Thus
the D-optimality criterion ensures that any such probability contour includes
the smallest volume. That is, we minimize the volume of the linear approxima-
tion joint-confidence regions for the parameters. The problem was considered
for n = p = 2 so that the design points were choosen to maximize det(F).
Considering (1.4), Atkinson and Hunter (1968) describe a sequential procedure
for obtaining the design points using the same criterion. They found in several
chemical examples that with n a multiple of p, the optimum plan consist of %
replications at each of the p optimum sets of levels for the case n = p, under cer-
tain sufficient conditions on the design space. Box (1968) studied the case when
n is not a multiple of p. Haines (1993) show that the replication of the p-point
D-optimal designs obtained by Atkinson and Hunter (1968) and Box (1968) as
well as the result of Velilla and Llosa (1992) for heteroscedastic nonlinear models
follow directly from approximate design theory.

Several authors have applied optimal design theory to nonlinear models aris-
ing from clinical trials (Begg and Kalish (1984)), life testing (Maxim et al (1977))

and dynamic systems (Titterington (1980)). The design criterion most studied

9



is D-optimality and the sequential procedure is most favoured.

1.1.1 Examples of Classical Optimal Designs

In this section, we give five examples of classical designs. The first two are
based on the simple line fit model. Example 3 is based on the Haar wavelet
regression model adapted from the paper by Herzberg and Traves (1994). The
last two examples are on polynomial and nonlinear regression. The method of

parameter estimation in all the examples in this section is that of least squares.

Example 1: Consider the simple line fit model
y: = 0o+ 01z; +¢;, z; €5 = [—1,1] 1=1,2,..,n.

Using the least squares estimator of 6T = (6o, 0,) and applying elementary meth-
ods it can be shown that the D-optimal design is:

(a) choose I points z; at each of =1 when n is even;

(b) choose

at either +1 or —1 when n is odd; and

points z; at each of £1 and an extra point

[STE]

(c) choose 2 points z; at each of +1 and an extra point
at 0 when n is odd, if in addition we impose the condition } z; = 0.

Such designs are said to be exact because they are discrete and implementable.

Example 2: We continue with the model in Example 1 with z; € [—1,0]. Define
the vectors

xI =(1,z;) and T =(1,1).

1

Following Pukelsheim (1993) it can be shown that the unique optimal design
minimizing the variance of T4 is the design which takes one-third of the obser-

vations at z; = —1 and two-thirds at zo = 0. That is,
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Example 3 (Wavelet regression): Model (Herzberg and Traves (1994)):
m 2/-1
Elylzl = 8o+ Y Y Bosetbin(z) (1.5)

7=0 k=0

where ¥; x(z) = 2//%¢(2'z — k), S = [0,1] and

1 if0<z<}i
P(z)=4 -1 if;<z<1 (1.6)

0 otherwise.

Under the Haar regression model of order m given by (1.5) the design which

places equal mass 27(™+!) in the 2™*! intervals
[2-tm 0 2= (k1 1)), E=0,1,..., 27 ~ 1

is D-optimal. For m = 2 and n = 8 the design is implemented by taking the

eight observations at the points

2t 41
16

z; = , i=0,1,...,T. (1.7)

In Chapter 2, we show that the design described above is also Q-, A- and G-
optimal. We give a proof which we feel is simpler than that of Herzberg and
Traves (1994). We also provide a strategy for implementing the design, in Chap-

ter 4, of which the choice (1.7) is a special case.

Example 4 (Polynomial regression): Model (Hoel (1958)):

d
yi=00+ Y 0t +&, d>1 andS = [-1,1]. (1.8)

j=1
Hoel (1958) has shown that the unique D-optimal design places equal weight

at the (d + 1) solutions of the equation
(1 = #)Py(t) = 0, (1.9)

11
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where Pj(t) is the first derivative of the dth order Legendre polynomial Py(¢).

Example 5 (Nonlinear regression):

Hamilton and Watts (1985) proposed a quadratic design criterion for the
strictly nonlinear model of type (1.1) based on a second-order approximation of
the volume of the parameter inference region. The approximation is that the

volume is proportional to
VTV |"2|C|"2(1 + k*r{C'M})

where

dn(x; 0
k= ——p—-, p’ = ps*F(p,v;a), V= —L'—l, C=1-8B;
2p +2) a6
a is a fixed significance level and s? is an estimate of variance. The matrix B
measures the intrinsic curvature of the expectation surface. Under the assump-

tion of no intrinsic curvature, the matrix C becomes the identity matrix. If o

is known p? becomes a%x?(p; @). The matrix M is defined by
M =cc? + H+ [cT)[A], hij = tr{AiA;}, ¢ = (tr{A}, . tr{A T

where A = LT[UT][V.]L is a three dimensional array. The matrices U and L are
obtained from the decomposition V = UL™! and satisfies UTU = [ and LLT =
(VITV)~!. The square bracket multiplication (used to define multiplication by a
three dimensional array) [UT][V.] reduces the n x p x p array V. with elements
a_a?g?)j to a p X p X p array. Hamilton and Watts(1985) proposed to iteratively
minimize the approximation as follows:

2.2
gax‘(pa),

(a) choose an initial estimate, o2, for o?; select a and set k% = TS

(b) evaluate Vo, Cy and Mo using an initial estimate g of 0;
(c) iteratively minimize the quadratic approximation to obtain an

optimal design.
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Using the nonlinear model (1.4) and the procedure described above, they ob-
tained an optimal design under the assumption of no intrinsic curvature equiv-
alent to replacing C by its expected value. They used as initial estimates
8o = (0.7,0.2)T and the D-optimal design from Box and Lucas (1959), xp =
(1.23,6.86)T. They choose op = 0.1, so that po = 0.25 and ko = 0.0884. Their
iterative procedure led to the optimal design xg = (1.04,5.56)7.

Their work was motivated by the papers by Bates and Watts (1981) and
Cochran (1973). Bates and Watts (1981) suggested choosing the design to mini-
mize the parameter effects curvature. Cochran (1973) invited studies of the small
sample performance of the D-optimal design criterion after noting its asymptotic

nature.

1.2 Robust Designs

Robust designs became a subject of interest for two major reasons. These
are

(i) the model may not be exactly correct; and

(i1) the errors ¢; may not be uncorrelated
as earlier assumed implicitly or explicitly. It is well known that in most cases
where the form of n(x) is pre-specified, the assumed form is the model builder’s
best mathematical description of the process under study and often a convenient
approximation. We recall that in the nonlinear case, the designs constructed so
far have used a linear approximation of 7(x, o) with the hope that the remainder
terms are negligible. Under these conditions, the least squares estimator of
is biased and the classical designs which minimize variance alone are no longer
“optimal” due to the bias. Several authors including Box (1971), Cook, Tsai
and Wei (1986) and Bates and Watts (1980) have studied the problem of bias in

nonlinear regression models and provided approximations.

13
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In the linear case, Box and Draper (1959) outlined the effects of departures
from the assumed linear model on the optimal design. They criticized the clas-
sical optimality criteria, some of which have been defined in Section 1.1, and ar-
gued that a more appropriate optimality criterion is the Integrated Mean Squared
Error (IMSE) of the estimate 7j(z) of the “true” response surface n(z) over the

design space S. That is,
nf) . v
= ;;/SE{[T](J:) — )P}z = ISB + IV (1.10)

where ©, the Integrated Square Bias (ISB) and the Integrated Variance (IV) are
defined by

Q! = /Sd:z:, ISB = Z—Sz-/S{E'[ﬁ(x)] —n(z)}dz
and IV = ”;?- /s E{#(z) - Elii(z)]}dz.

They showed that if the assumed model is the simple linear model when the
true model is quadratic, the designs minimizing IMSE were similar to those that
minimized the bias component alone, but were quite different from those that
minimized the variance component.

Using the minimax approach, Huber (1975) studied the effect of departures
from linearity and agreed with Box and Draper (1959) in his conclusion. Huber
(1975) observes that deviations from linearity that are too small to be detected
are already large enough to tip the balance away from the (classically) optimal
designs shown in Example 1.

For nonlinear models no work has been found in the literature that is aimed
at studying the effect of departures from the assumed model. This is not surpris-
ing since the study of designs for nonlinear models has lagged behind partly due
to the inherent difficulty associated with the designs depending on the unknown
parameter values. However, White (1981), Steinberg and Hunter (1984) and

Ford, Kitsos and Titterington (1989) have noted the consequences of pretending

14



that a nonlinear regression model is exactly correct. Other related activities in
this area include designs that facilitate improvements in nonlinear models by try-
ing to highlight suspected inadequacies or that discriminate between competing
models. Studies in this area have been done by Hunter and Reiner (1965), Box
and Hill (1967), Hill , Hunter and Wichern (1968) and Atkinson and Fedorov
(1975).

Another point mentioned earlier is that of correlated errors. In this case,
the covariance matrix of the estimate 8 is a function of the unknown correlation
matrix of the errors. Therefore, designing to minimize an optimality criterion
which is a function of the covariance matrix under the assumption of uncorrelated
errors will lead to designs that will not optimize the loss function under correlated
errors. Thus the subject of robust designs is aimed at constructing designs which
are not sensitive to small departures from the assumptions on which the model
is based.

There are two basic approaches in the literature for constructing robust de-
signs. These approaches, the minimax and infinitesimal approach, were both
adapted from the theory of robust estimation. Huber (1964, 1975) introduced
the minimax approach to robust estimation and design. Hampel (1974) is the
first to use the infinitesimal approach for robust estimation. The infinitesimal

approach was first applied to robust design theory by Wiens and Zhou (1996c).

1.2.1 Approximately Linear Models

In order to investigate the sensitivity of designs to model misspecification,
several authors have studied various versions of a modification to the assumed

linear model. The “approximately linear model” is represented as
Elylx] = q" (x)Bo + f(x)
y(x;) = Elylxi] + 2. 1=12,...,n (1.11)

-
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where
q(x) € R?, fo € RP, x € S CRY, Var(e;) = o? (1.12)

and f(x) is some unknown contamination term belonging to some class . Ro-

bust minimax designs were constructed by solving the problem
min l}lea}cQ(M(f,é)) (1.13)

for some loss function ®(-), where M(f,&) is the MSE of B.

To motivate (1.11), suppose that an experimenter fits the model
Elylx] = q” (x)fo
knowing fully well that it is only a convenient approximation. Define
Bo = arg main/S[E[ylx] — qT(x)B)%dx (1.14)
and set
f(x) = Elylx] - q" (x) o (L.15)
Then the equations
y(x) = q’ (x)Bo + f(x) +¢
and
/Sq(X)f(X)dx =0 (1.16)

define o uniquely provided the matrix f5 q(x)q’(x)dx is non-singular. To pre-
vent the error due to bias from dominating that due to variance, Huber (1973)
and more recently Wiens (1990) placed a bound on the disturbance function

f(x) to obtain the condition
/sfz(X)dx < 7? (L.17)

16
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for some small and known number 7. From (1.16) and (1.17) the class

={f(x) '/sfz(x)dx < /Sq(x)f(x)dx=0} (L.18)

used by Huber (1975) and Wiens (1990, 1992, 1994, 1996) in their investigation
was constructed. The class F; has been criticized by Marcus and Sacks (1976)
and Li and Notz (1982) as being too large. They claimed that exact designs in
this class have infinite maximum loss; a claim which has been proved by Wiens
(1992). Therefore, robust designs constructed for deviations in F; are continuous
designs which are approximated by discrete designs in practice.

A class F; which has been used by Marcus and Sacks (1976), Sacks and
Ylvisaker (1978) and Pesotchinsky (1982) is

= {f(x) | If(x)] < ¢(x), forallxe S} (1.19)

where the function ¢(x) is known. This class often leads to designs whose mass
is concentrated at a small number of points in the design space, hence have
severely limited robustness against realistic departures from the assumed model
(see Wiens (1992)).

The class of functions f or its derivatives f’ satisfying a uniform Lipschitz

condition are also found in the robustness literature:
Fs = Fa(M)={f|If(z) = fy)l £ M|z —y], for all 2,y € 5}
O FAM)={f|If(z)| < M, for all z € S} D {constants}
Fi = FoM)={f]|f(z) € Fs(M)}
D FAM)= {f | fi(z) € .7::(,)(1\/1)} O {linear functions}.

Using IMSE loss and F;, Huber (1975) constructed robust designs for the
model (1.11) with qf(x) = (l,z) and S = [~0.5,0.5]. He showed that the
optimal design has density

mo(z) = (az? + b)* (1.20)

17
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with a and b choosen to satisfy

/Sm(:z:)d:c =1and / ?m(z)dz = 7. (1.21)
s
The parameter v is determined by v = ;1‘% As v — 0, the loss function is

dominated by the ISB and m(z) — 1 - the uniform density on [-0.5,0.5]. On
the other hand, the IV dominates as ¥ — oo. The solution then converges to
the classical optimal design which places equal mass at each of the points :t%.
Wiens (1990) extended the work of Huber (1975) to the case of multiple
regression with qT(x) = (1,x7) , xT = (z1,22,...,7,) and S the sphere of unit

volume

+2\] 5
5=t <7, o LGN n

He also obtained the density of the optimal design for the case of two interacting
regressors, where q7(x) = (1, z1, z2, z122) and § = [—0.5,0.5] x [-0.5,0.5]. The

minimax design density for multiple regression was shown to be of the form
m(x) = (allx||* + b)*

where a and b are determined so that m(x) is a density and [ [|x]|*m(x)dx = py.
2

For the range of values of the ratio %, where 70 = [5 23dx = ;3_’—5, the values of the

constants a and b as well as the form of the least favourable disturbance function

were obtained. As ;"o— — 1 the uniform design becomes minimax corresponding

2
E—‘-’;’,ﬁl = Ip& the optimal

ton — oo or v — 0. In the other directions, as v —
design places pointmass 1 at ||x|| = rp.
The density of the optimal design for the model with two interacting regres-

sors was shown to be

mo(z1,22) = (A + p(z? + z3) + §2ix3)*

18



where the multipliers are determined to satisfy
/smo(x)dx =1, /S:cfmo(x)dx = v and /szfa:gmo(x)dx = iz-

The uniform design becomes the minimax design if ¥ = {5. Using F; and the
loss functions
Lp(f,&) = det(M(f,£)), La(f,€) = trace(M(f,£))
Le(f,€) = Amac(M(f,€)) and Lo(f,€) = sup.es d(x; f,€))
where d(x; f,€)) = q7(x)M(f,£)q(x), optimal designs for the multiple regres-
sion model have also been constructed by Wiens (1992). Other robust designs
constructed using the class F; can be found in Wiens (1991, 1993, 1994, 1996).
Pesotchinsky (1982) considers the setup given by

k
y(xt) = ZoJfJ(xt) + w(xt) + €. i = 1727 L (1’23)

7=0
fo(x:) =1, fi(x:) = zij, xi = (Tir,oo0nTik) €S

where ¥(x) varies in the class F; and ¢(x) is a convex function of ||x||*> =
59:1 2. In constructing the designs it is assumed that the experimenter intends
to estimate the parameters of the model by means of the least squares method.

Using the optimality criterion

Led) = [ wl] 0 <p <o (1.24)

designs were constructed for the cases
(1) Lo(,%) = limy—or Lp(€, %) = {det M (€, )} 7+
(2) Loo(€,¥) = limpooo Lp(§, %) = Amac{M (€, ¥)}; and
(3) L1(&, %) = gqtrace{M(& )}

corresponding to D-, E-, and A-optimality criteria respectively. Restricting to

symmetric designs € with E¢(z;) = m;; = const = m and
S={x: |x|=Vkm =R}

19
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he showed that any symmetric design & supported only by points on the sphere
Spg of radius R = v/mk is D-optimal. The uniform design on a sphere of radius R,
= v/kv; and R = Vkvo were shown to be A- and E-optimal respectively, where
v1 and v are determined appropriately. Interested readers can see Pesotchinsky
(1982, pg 521). Other authors who have used the class F; are Li and Notz (1982),
Li (1984) and Liu and Wiens (1994).

Sacks and Ylvisaker (1984) used F3 and F; to construct minimax designs for

the nonparametric model
ye = f(t) + oe:, E(e:) =0, E(sf) =1, feF

where F is one of F3, F;. The exact design problem was converted to an easier

to solve approximate problem of choosing a measure C' to minimize

9

&

a2 k
J(k,tie) = — (Z lql) +sup(Cf - rf)?

i=1

where Cf = Y% | ¢;f(t:) = [s dC and T'f is any of the following

(i) Discrete : ['f = L, v, f(z;) = [s fdT;

(ii) Continuous : ['f = [sv(z)f(z)dz;

(iii) Derivatives : ['f = f'(zo).
For each of (i), (ii) and (iii) they proved the existence of an optimum C* under
appropriate conditions on n and k. Several examples and efficiency calculations
were provided to illustrate the construction of designs from the approximate
problem for fixed ['f. In Sacks and Ylvisaker (1985), their previous work was
extended to the case where f(t) is a realization of a stochastic process F' with
mean 0 and covariance function R(s,t) = EF(s)F(t), s,t € S. A connection was
made between the Bayesian approach in this study and the minimax approach
through a transformation to the RKHS associated with R. The specification of
F serves to represent the departure from the assumed “ideal” model or serves

as an approximation for the “real” f whose explicit form may never be known.
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A related problem which has been studied by Karson, Manson and Hader
(1969), Sacks and Ylvisaker (1978) and Marcus and Sacks (1978) is that of
finding new linear estimators of § when the model is approximately linear. The
strategy adopted by Karson et al (1969) is to construct an estimator which for
a given design

(1) minimizes [SB, the bias arising from terms of specified higher degree

being omitted from the fitted equation; and

(2) subject to achieving minimum bias, the estimator achieves minimum [V.

1.2.2 Linear Models With Autocorrelated Errors

When observations are taken sequentially in time, as in time series, it is often
a good idea to subject the errors in the model representing the data to a test
of independence or serial correlation. In most cases, it turns out that the errors
are correlated. However, the precise structure of the underlying correlation is
either unknown or the errors are only known to behave as a weakly stationary
stochastic process such as the autoregressive or moving average process. The
covariance matrix of the parameters in the model then depends on the unknown
autocorrelation matrix, which we shall denote by P. In the absence of knowledge
of P, the covariance matrix cannot be minimized to obtain optimal designs.

In the literature, robust designs for linear models with autocorrelated errors
are constructed in two stages. These are:

(1) find a design £* which is optimal for uncorrelated errors;

(2) order the design points to minimize the covariance matrix of the

parameter estimate under correlated errors.
Following this procedure, Berenblut and Webb (1974) obtained robust D-optimal
designs for the model

y=X0+¢, Var(¢) = o*P.
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The correlation structure they considered is when P = V(p), where p is the
parameter of the first order autoregressive process. Thus V(0) = [, the identity
matrix. Constantine (1989) constructed A-optimal designs which are robust

against autocorrelated errors when P = I + M where M = (m;;) and

pi, fi=j+loryj=1t+1 _
my; = (120)
0, otherwise.

Other contributions to the study of designs for exactly linear models with au-
tocorrelated errors can be found in Jenkins and Chanmugan (1962), Kiefer and
Wynn (1981, 1984), Bischoff (1992, 1993) and Pukelsheim (1993). Williams
(1952), Sacks and Ylvisaker (1966, 1968) and Bickel and Herzberg (1979) view
the error process £(t) as a time series with the experimenter sampling in time.
The most commenly studied process is the first-order autoregressive (AR(1))
process.

From the stages outlined above for the construction of designs robust against
autocorrelated errors, one can see that these designs are themselves classical
designs. Some work has been done in the area of constructing minimax designs
for approximately linear models of the type (1.11) with autocorrelated errors by
Wiens and Zhou (1996a, 1996b). In their work of 1996a they considered an error
process which follows a very general model of dependence. The error process

was assumed to have
E(e) =0, Cov(e)=a®P, P;=p(li —j|) (1.26)

where P is the autocorrelation matrix of a weakly stationary process. Under

some assumptions which include

Y lo(s)] < (1.27)

§==—=0

they obtained the asymptotic MSE(\/ﬁé). Based on the IMSE loss they showed

that the asymptotically minimax design £. for the approximately linear model
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with uncorrelated errors retains its optimality when the errors are correlated. if
the design points are randomly sampled from £.. The error process also have to

satisfy (1.26), (1.27) and
P=(1-a)[+aQ, a€]0,l1]. (1.28)

Following this work, they discussed (1996b) minimax designs for (1.11) when
the errors follow an AR(1) process. The parameter was estimated by the best
linear unbiased estimate (BLUE). They showed that the design £, with marginal
density (1.20) is an asymptotically minimax design for the BLUE provided the
sign of p, |p| < 1, is fixed.

For convex classes F and P of disturbance functions and autocorrelation

matrices define

fs=(1=s)fot+sfi, fo=0, LE€F (1.29)
sz(l'—t)Po'*-tPI, Po = I, P1€'P,0S_s,t§1 (130)

Let MSE(\/ﬁéLs,f,f,P) be the mean squared error matrix of \/ﬁéLs. The
change of variance function CV F(€, I, P;) for a design £ at [ in the direction £
is defined by

CVF(E 1, ) = SLMMSE(/Mes, for6 Po) lio - (1.31)

It measures the rate of change of MSE in the direction of a particular autocorre-
lation structure under small departures from the ideal model. Changes in MSE
due to increases in bias as departures from the ideal model towards a particular
disturbance function occurs is measured by the change of bias function (CBF).

The CBF of £ in the direction of f; is defined as

1 62 s
CBF(Evfl) = 5%C(MSE(\/50LS7th£7 [)) |s=0 . (132)
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Using the CVF and the CBF, Wiens and Zhou (1997) introduced the concept
of infinitesimal robustness. They defined three types of infinitesimal robustness.
A design € is said to be

(a) V-robust if it minimizes L(MSE(v/n8Ls, fo,£, I)) subject to a

bound on the change of variance sensitivity (CVS). That is,

CVF(E,I,P)
cv )= >
S T) = 50 MSE(Vrbss fo 1))

(b) B-robust if it minimizes £(MSE(v/n8Ls, fo,, I)) subject to a
bound on the change of bias sensitivity (CBS). That is,

~ CBF(¢, f)
CBSE Jo) = 208 P SE(rbrs, for£. 1))

(c) M-robust if € is simultaneously V- and B-robust.

a; (1.33)

<B; (1.34)

Pt K SRR

Restricting to the class of designs with 3°1-; z; = 0 and taking S = [-0.5,0.5]. V-
robust designs for the simple linear regression model were constructed for various
! range of values of a. They also derived the density for the B-robust design and
outlined an approach to constructing M-robust designs.

In a related development designs which are robust against heteroscedastic

errors in approximately specified regression models of type (1.11) with
feF, E()=0, Var(e:)) = o’g(z:)
2 < Q-—l
/S g°(z) <
were discussed by Wiens (1996). One of the main results of this work is that the

1 density ko(z) of the optimal design for polynomial fit, subject to a side condition

of unbiasedness, is proportional to the function

hq(z) = 0.5(Py(z) Py, (2) — Py(2) Pyya () (1.35)

9

where P,(z) is the gth Legendre polynomial on [~1,1]. It is not difficult to

show that the local maxima of hi(z), hence those of ko(z), are the zeros of
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(1 — z?)P)(z). From Example 4 of section 1.1.1, these are the support points of
the D-optimal design £p of the exact polynomial regression model. Therefore,

ko(z) can be viewed as a smoothed version of £p.

1.3 Some Background On Wavelets

In this section we introduce some theory on wavelets relevant to our work.
We restrict ourselves to the basic definitions and some of its properties. More
extensive discussions and examples can be found in Mallat (1989), Meyer (1992).

Chui (1992) and Daubechies (1992).

A wavelet system is the collection of dilated and translated versions of a

scaling function ¢(z) and the primary wavelet ¢(z) defined by
$ii(z) =2729(277z — k) (1.36)
and
inlz) =272z — k), j ke Z (1.37)

respectively. The functions ¢(z) and ¥ (z) are choosen to satisfy the equations

é(z) = V2 Y hpo(2z — p) (1.38)
pEZ
P(z) =V2Y 6.2z — 1), g = (1) hora (1.39)

rez

for a sequence {h,} of constants, called filter coefficients, with
/¢(z)dx =1, /z[;(:z:)da: =0, /t/}z(z)dm = 1.
The condition

Y by = V2 (1.40)
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ensures the existence of a unique solution to equations (1.38) and (1.39) (see
Daubechies and Lagarias (1988)). Orthogonality of the translates of ¢(z) is

ensured by the condition

Z hphp_zj = boj, JEZ. (1.41)

pPEZ

In the theory of wavelets, the space of square integrable functions, £,(S) (5 C

R), is written as the limit of a sequence of closed subspaces {V;} where

......... CVCVCVLCVC . CVopy C eeee. T Ly(S) (1.42)
ﬂ V; = {0}, U Vi = L2(S)- (1.43)
J J

Definition 1.1: Let {x«(z), ¥ € Z} be a complete system of functions in L(S5).
The system {xx(z), k € Z} is a Riesz basis if
(1) for any function f(z) € L£2(S) the series of the squares of the Fourier

coefficients is absolutely convergent. That is,
Z |dk|2 < o0
k=1
where
di = [ fl@)uula)de
(2) for any sequence of numbers {di} € l;, the set of square
summable sequences, there exists a function f(z) for which the
{d\} are its Fourier coefficients with respect to the set {xx(z), k € Z}.
The conditions (1.38) and (1.39) ensure that the set {¢;«(z), k € Z} is a Riesz
basis in each Vj. That is,
Vi = {r(z) : 7(z) = 3 djad, Ir||* < o0} (1.44)
k
for any fixed j € Z. Jaffard and Laurencot (in Chui (1992)) have shown that if

H is a Hilbert space and (ep) a Riesz basis of H and G the operator defined by

G(fy=>_ < f.ep>ep, (1.45)
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then ap = G~'/%(ep) forms an orthonormal basis of H. The Gram matrix G is
defined by G = (g(j, k))jxez, where g(j,k) = < ej,ex > and < .,. > is the
inner product on the Hilbert space H (see Meyer (1992) pg. 25). If in addition
to (1.42) and (1.43) the condition

r(z) €V, <= r(2z)e W (1.46)

is satisfied, the sequence of closed subspaces {V;,7 € Z} is said to be a mul-
tiresolution analysis of £3(S). Mallat (1989) has shown that given any multires-
olution analysis, it is possible to derive a function ¥(z) such that the family
{¥;x(z) : j,k € £} is an orthonormal basis of L;(S).

To construct ¥;x(z), we define for each j € Z the difference space W; to be

the orthogonal complement of V; such that
W; PV, = Via, W; LV, (1.47)

That is, any function r(z) € V;-; can be written as a linear combination or
direct sum of functions in W; and V;. It can be verified that W; is a dilate of

Wo
r(z) e W, < r(2z)eW, (1.48)
where
Wj={r(.1:)€£2 | r(z) chd)]k , Jir(z) ||<oo} (1.49)

Using (1.47), £2(S) can be decomposed into a direct sum of the spaces W;, so

that

Q;Wj = Uvj = L,4(5). (1.50)

This implies that £,(S) is spanned by the dilates and translates of ¥(z),
L2(S) = { Zc,kzﬁ,k ), Ir(z)]| < oo} . (1.51)
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The normalized dilates and translates ¥;(z) form an orthonormal wavelet basis

for CQ(S)

The Haar wavelet basis is the simplest example of a wavelet system on £3(S).

The scaling function is :

1, f0<z<l
#(z) = Ip,y(z) = { (1.52)

0, otherwise.

The refining relations for the Haar wavelet basis are
o(z) = ¢(2z — 1) + 4(22)
and
¥(z) = 6(2z) — 6(2z — 1).

The multiwavelet system constructed by Alpert (1992) will also be useful in
our study. The multiwavelet basis differ from other wavelet bases in that instead
of a single scaling function ¢(z), there are several functions @, ....... #n-1 whose
translates span the space V. Each scaling function is a dilated, translated and

normalized Legendre polynomial on the interval [0,1):

VETTP(2z~1), z€[0,1)
¢i(z) =

0 otherwise

(1.53)

where P;, (i = 0,1,.....,N-1), are the Legendre polynomials. The space V,, n€ Z

are dilates of V, and the difference spaces W, are as defined previously. The

primary wavelets denoted by ywo,......, ~ywy—1 vanish outside [0,1) and are or-

thogonal to polynomials of maximum degree,
/N%unﬂz=mi=0waN—l+j
s

It turns out that the multiwavelets coincide with the Haar wavelet basis if N =

1. The procedure for constructing these wavelets are outlined in Alpert (1992.
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pgs. 197-199). For N = 2 the scaling functions and primary wavelets are

1 f0<z<1
¢o(z) = { (1.54)

0 otherwise

V32zr—-1), 0<z<l
¢1(z) = . (1.55)
0, otherwise
V3(l—4z), 0<z<}
awo(z) =19 V3(4z-3), i<z« (1.56)
0, otherwise
6z—-1, 0<z<j
awi(z) =4 6z ~5 % <zr<l (1.57)
0, otherwise.
The refining relations for these multiwavelets (N=2) are:
do(z) = ¢o(22) + do(2z — 1)
#i(2) = Fdo(22 ~ 1) = do(20)) + 3(hi(22 ~ ) £ 6u(22)) |

2wo(z) = ¢1(2z — 1) — 1(22)
2wi(z) = 3(40(22) — do(22 — 1)) + 2 ($1(2 — 1) + $1(27)).

The graphs of the scaling functions and primary wavelets are shown in Figure 1.

1.4 Summary of Results

Beginning from Chapter 2, we construct robust designs for the ‘approximately
linear wavelet regression model’ of the form (1.11) with ¢ = 1. We adopt the
minimax approach. The wavelet bases on S = [0, 1] used in the construction of

the designs are the N = 1 (Haar) and NV = 2 multiwavelets.
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Figure 1: Scaling functions and Primary Wavelets: (a) ¢o(z) ; (b) #1(2) ;
() 2wo(z) ; (d) 2wi(z).
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In Chapter 2, we transform the problem of finding the least favourable distur-
bance function f(z) into an eigenvalue problem involving the symmetric positive
definite root of a matrix G. We show that this matrix is at least positive semidef-
inite and propose a procedure for approximating G if it is singular.

To fix ideas, we proceeded step by step to construct minimax robust designs
for the biased mth order Haar wavelet regression model. We found some evidence
that no non-symmetric design is admissible (see Sections 3.1.1 and 3.1.2). Our
conjecture is that this is true in general. Considering m = 0 and m = 1 we
have shown, in Sections 3.1.1 and 3.1.2, that among symmetric and absolutely
continous designs and for any f € F the uniform design is A-, Q- and D-optimal.
The results for m = 0 and m = 1 raised the suspicion that the uniform design
might be minimax robust for the general problem. This suspicion led us to begin
searching for a proof.

In the general case, we first considered the classical problem. We were able
to show that any design & with the property B(§) = Iam+: is simultaneously
A-, Q-, D- and G-optimal. It turns out that the design & which places equal
mass 2-(™+1 in each of the 2™*! subintervals of S has this property. Using
information from the results of the classical problem, it was not too difficult to
show that the continuous version of &;, the continuous uniform design is minimax
robust in a strong sense (see the remarks after the proof of Theorem 2.2).

Under the assumption that the order of approximation for the two primary
wavelets (m and p) of the N = 2 multiwavelet are equal (m = p = 0), we derived
minimax robust A-, Q- and D-optimal design densities for the biased N = 2
multiwavelet regression model. The minimax design derived places more mass
in a neighbourhood of the midpoint of the design space and a few at the extremes
(see Figure 2). We are only able to provide solutions to this simplest case due to
the complexity of the eigenvalue problem arising from the maximization of the

loss function with respect to f.
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In Chapter 3, we assume that the experimenter will use weighted least squares
in estimating the parameters of the wavelet model. Under this assumption, we
derived an optimal weight function and design density, with respect to the IMSE
criterion, for the general wavelet regression model subject to the condition of un-
biasedness. The condition of unbiasedness eliminates the complicated eigenvalue
problem mentioned earlier. The optimal design density is shown to be a func-
tion of the squared Euclidean norm of the vector of wavelet basis used in the
approximation and also inversely proportional to the optimal weight.

Using the Haar basis, we found that the optimal weight and design are each
uniform. Implying that the ordinary least squares method is optimal in esti-
mating the parameters of the Haar wavelet regression model if the model is
unbiased.

For the V = 2 multiwavelet regression model we first derived a closed form
for the squared norm of the vector whose components are the N = 2 multiwavelet
basis for m = p. Using the closed form, we showed that the squared norm is a
convex paraboloid in each of the 2™*! subintervals of S with a maximum value
of 2™+3 and a minimum value of 2™*!, attained at the endpoints and midpoint.
respectively, of each subinterval. The obvious implication of this finding is that
the optimal weight and design are respectively concave and convex paraboloids
in each of the 2™*! subintervals. By deriving some identities, we are able to
establish the fact that the optimal design is symmetric about z = ;. And
also that the value of the squared norm on the design space S is completely
determined by its value in only one of the 2™*! subintervals. The last result of
this chapter is the derivation of a recursive relation for the squared norm when
m # p.

In Chapter 4 we propose strategies for implementing the designs constructed
in Chapters 2 and 3. We also consider how well the multiwavelets used in

this study and the optimal weights derived can be used to approximate some
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commonly used nonlinear models and data with no pre-specified model. We find
that the general features of the models were picked up by the fitted wavelet

models with some features of the primary wavelet retained.
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Chapter 2

Robust Minimax Designs for Biased
Multiwavelet Regression Models: Ordinary

Least Squares

1 Preliminaries

We continue our discussion by considering the model which describes the ith

response y; € R in a nonlinear experiment as follows:
yi=n(z:) +ei, i=12,...n (2.1)

where z; € R is the ith design point of the explanatory variable = choosen from
some design space S C R; n(z;) € R is the value of some nonlinear function g
at the design point z;; and ¢; € R is a random sequence of uncorrelated and
unobservable errors with mean zero and constant variance o2 > 0.

In this chapter, we begin the construction of designs for wavelet approxi-
mations to the nonlinear model (2.1). First, we discuss the structure of the
approximation. Then, we provide some background on the general theory un-
derlying the construction of robust designs in Section 2. The problem of finding
the least favourable disturbance function f(z) arising out of the wavelet approx-
imation is considered in Section 2.1. It turns out that the general form of f(z)
can be obtained. However, we need a specific wavelet basis to construct the
designs. The multiwavelets with parameter N = 1,2 were used for this purpose.
We observed in Section 1.3 of Chapter 1 that the multiwavelets with N =1

coincides with the Haar wavelet basis.
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The main result of this chapter is the finding that any design & with B(&) =
I,m+1 is simultaneously A-, D-, G- and Q-optimal for the classical design problem
if the Haar wavelet basis is used in the approximation of any nonlinear function
n(z). That is, & minimizes trB~!(£) and maximizes the determinant of B(¢),
where the covariance matrix is proportional to B~'(£). We use the equivalence
theorem and orthonormality of wavelet basis to obtain G- and Q-optimality. We
also find that the continuous uniform design is Q- and D-optimal for the robust
design problem. For the multiwavelets with N = 2 we are only able to provide
solutions to the simplest case due to the complexity of the eigenvalue problem
arising from the maximization of the loss function with respect to f.

Let £ € S = [0,1] and n(z) € £2(S). The multiresolution analysis of £2(.5).
discussed in Section 1.3 of Chapter 1, leads to two wavelet representations of

n(z) defined by Meyer (1992) and Walter (1995) as :

n(z) = Y cit-jx(z) (2.2)
ke
and
n(z) =Y digos(z)+ Y, cixb-jk(z) (2.3)
lez Lk€Z4
where
di = / =)dou(z)dz, e = / (@)b-jslz)dz. (2.4)

Meyer (1992) also showed that (2.3) implies (2.2) and states that it is not known
whether (2.2) implies (2.3). Since actual computations require finite representa-

tions, we rewrite n(z) as :

m 27-1
n(z) =Y Y citb_jx(z) + f(z) (2.5)
j=0 k=0
and
m 2)-1
n(z) =Y. digou(z)+ Y. Y cirtb-jr(z) + f(z) (2.6)
lez J=0 k=0
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respectively. The range of £ has been restricted to (k > 0) so that at any level
J the orthonormal wavelet basis 1_;(z) will be zero on the complement of the
design space S = [0, 1], (see also (2.46) and (2.109)). The function f(x) is the

remainder satisfying
/; fi(z)dz < T2

for some small, known value 7 and m a finite non-negative integer. Define the

1 x 2™+! vectors

g
I
o

2

(do, €0, €105 C1y +-vvne- +Cm.2m_1); (2.
qf(z) = (doo(z), Yoo(T)s Yo1,0(T)s Y=1,1(T); vererers Yom2m_1 (T))
= (d(z), ¥(z), 2"%p(2z), 229 (2x — 1), .....

vy DM 2p(2™ — 2™ 4 1)) (2.8)
Then (2.1) can be written as
y(z) = q7(z)fo + f(z) +. (2.9)

To estimate the parameters 3, we employ the least squares method because
of it’s classical nature and mathematical convenience. We note that the design
problems discussed in this work remains the same if the robust M-estimate or
the Mallows-type Generalized (or “Bounded Influence”) M-estimate is used in-
stead of the Least squares method. This is a consequence of the fact that the
asymptotic variance of B}\/[ is a scalar multiple of the variance under ordinary
least squares estimation. The asymptotic variance of Beas is proportional to the
variance of BWLS- In both cases, the multiples are independent of the weights
and design. For details of the asymptotics see Wiens (1996a).

A special class of nonparametric regression smoothers of n(z) is the local
averaging procedure defined in general by

H(z)=n""! i Whi(z)Y;

i=1
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where {W,.;(z)}%, is a sequence of weights which may also depend on the points
z;. If the weights are positive and satisfy
n”t z”: Whi(z) = 1,
i=1
then A(z) is a least squares estimate. In this case, 7(z) is the solution to
rz}iinn’1 g Wai(z)(Y: — p)2
So, the least squares estimate is a special case of the nonparametric local av-
eraging procedure for estimating 7(z). The ordinary least squares method of
estimation which we have adopted in this chapter corresponds to the case where
the weights are uniform. In Chapter 3, we consider the case when the weights
are not uniform.

Antoniadis, Gregoire and Mckeague (1994) in their discussion of least squares
wavelet regression, observed that the wavelets used for least squares regression
should form a basis of the £, space on the design region S. This explains why we
considered a multiresolution of the design space S rather than of R in the early
part of this section. In recent years, several authors have considered the problem
of constructing wavelets which form a basis of £; on a closed interval [A.B].
They include Andersson et al (1993), Alpert (1992), Cohen, Daubechies and
Vial (1992), Chui and Quak (1992), Daubechies (1993) and Jaffard and Meyer
(1989). Antoniadis, Gregoire and Mckeague (1994) also examined the problem
of the best value of m and state that in practice, for sample sizes between 100

and 200, it suffices to examine only m = 3,4 and 5.

2 General Theory

The wavelet equivalent (2.9) of model (2.1) is precisely the ‘approximately

linear model’ discussed in Section 1.2.1 of Chapter 1. Following the technique
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outlined in that section, we approximate E(y|z) by q7(z)@o and define, by least

squares, the “true” parameter in the wavelet approximation g by

fo = argmin [ [E(ylz) - a7 (2)8)da.
Then with
f(z) = E(yle) — a7 (2)fo
we have that (2.9) holds, and that
[ a@)f(z)dz = 0.
We note that (2.9) and (2.11) define 3y uniquely since

JLa@)a"(2)dz = 1.

implying
Bo = /S E(y|z)q(z)dz.

(2.10)

Suppose that a sample of size n, {(z:.y:)}?, is taken from the model (2.1).

approximated by (2.9). The least squares estimate of 3o under the approximation

E(ylz) =~ q'(z)Bo is
8=(QTQ)"'Q"y(<)

where Q : n x 2™*! is given by

[ 8(z1) w(z1) 2Y%Qz1) . | | q¥(z1) |
d(z2) ¥(z2) 2V%(2z2) ... ... q’(z2)
Q = =
I #zn) W(zn) 2Y%(2z,) ... .. ] i q7 (z,) ]

and

yT(x) = (y(fl),y(l'Q), °°°°° ,y(l‘n))
f7(z) = (f(z1), f(22)s coenees f(20))-

38
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Define

B = B()= =3§:qz. o' (#) = [ al@)a(2)de(z)  (2.16)

Tf n
b = b(f6)= o) = LS a(@f(e) = [Lat@)f=)dela) (217
and express B in terms of &(z) to obtain

B=58" [ a@y(=)d() (2.18)

where £(z) is the distribution function of z; given by (1.3). Under the model
(2.9), the bias, ¢ and variance, ¥ of 3 are
2

= E(8 - fo) = B™'b(f.§) and T=—B"" (2.19)

n

q

respectively. For the uniform design, dé(z) = dz, B({) = [ and b(f,£{) =

This implies that,

0.2

I

p=0, and ¥ = —
n

Denoting the mean squared error matrix of B by M(f, £) we have

M(f,€)=puT +S
2
= B~'bbT B! + %B“. (2.20)

We recall that the idea behind (1.3) is to transform the n-observation design
problem into that of finding a probability measure £~, corresponding to an n-

observation design, such that
. _ - 9.9
min max S(M(f,£)) max O(M(f.€7)) (2.21)
for some real-valued monotone function ¢, and

F = { f(z)] fs F(z)dz < 2. [sq(z)f(z)dz =0 } (2.22)
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If we can find a £ to solve (2.21) then hopefully an n-observation design x. whose
associated probability distribution approximates £* will be close to optimal for
the n-observation design problem.
All loss functions we will be considering satisfy the following conditions:
(C1) Monotonicity: If M(f1,£) >
semidefiniteness, then ®(M(f1,£€)) > ®(M(f2,€)) ;
(C2) Unboundedness: ®(M(fa,€)) — oo if Chi(M(fn,€)) — oo

asn — oo, where C'h; denotes the maximum characteristic root.

M(f2,€), in the sense of positive

We also assume, to avoid trivialities, that if there is a point z¢ € S with q(zo) =
0, (e.g. q(1) = 0), then é{zo} = 0. Otherwise, since such a point zo would
contribute nothing to b or B, we could remove it from S and work with the
conditional design on S\{z¢}.

Under the above conditions, Wiens (1992) has shown that a necessary con-
dition for supr ®(M(f,€)) to be finite is the absolute continuity of the design
measure £. The loss functions we shall consider are:

(1) Integrated mean squared error loss (IMSE),

Lalf.€) = (M(£,6)) = [ El{i(a) ~ E(yla)}ldz
= /. E[{ﬂT (2) - B a(z) — f(a)}]dz
= [[d@)M(f,Oa(=)dz + [ f(a
Substitute for M(f,€) and simplify to obtain

2
Lo(f.€) =bTB b + fn—trB-‘ + /s F3(z)dz. (2.2

(V]
[ V]
(]
~

(2) Trace of M(f,£),

La(f,6) =bTB~2b + Z trB‘ (2.

[SV]
(V]
-
~—

(3) Determinant of M(f,¢§),

Lp(f.§) = ®(M(f.£)) =|M(f.€)l
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n

™ (14 (&)bTB"'b
- (%) { G {)Bl } (2.25)

Any design that is optimal with respect to these loss functions will be said to

be Q-, A- and D-optimal respectively. By optimal we mean the design which
minimizes the maximum (over f) loss. We observe that we can also define the

IMSE as

EQ(fvg) = tr{l‘/-[(fvf)} = EA(fv 6)7 (2.26)

since the maximum over f € F lies on the boundary of the first constraint in
(2.22) and therefore has no effect on the maximization problem (see discussion

before and after (2.31)). Expression (2.26) then implies that

o
[SV]
-1

min max Lo(f,€) = min max La(f, &) (2.

That is, Q- and A-optimality are equivalent for wavelet regression models.

2.1 Least Favourable Function f(z)
2.1.1 A-, Q-optimality

We first fix £ and maximize Lo over F. We consider only designs with finite
maximum loss; these are necessarily absolutely continuous. Denote by m(z) the

density of the distribution £(z). Then, our problem is,
mazimize J(f,€) = bTB™?b + [ f?(z)dz subject to (2.98)
(i) K1(f) = [sa(z)f(z)dz = 0, (&) K2(f) = [s fA(z)dz — 7> < 0.

To solve the above problem we either proceed as in Wiens (1990) or use the
Fritz John’s condition and the independence constraint qualification for mixed

constraints (see Bazaraa and Shetty (1976)) to obtain the same solution. We
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employ the latter approach. Let v; € R*", v, > 0 be Lagrange multipliers.

The maximizing fo must then satisfy the equations

—8J(fo, Af, &) + vI6 K1 fo, Af) + 126 Ka(fo, Af) =0
Ki(fo) =0 (2.
v Ka(fo) =0, forall Af € F

o
[ A]
[{e]
S—

where 8§J( fo, Af,£) is the Gateaux variation of the functional J( fo, Af,£) in the
direction of Af at fo € F. Now,

§J(fo, Af,€) = 2 [s BT (fo) B~ q(z)m(z)A f(z)dz
6K\ (fo,Af) = [sq(z)Af(z)dz (2.30)
6Ka(fo, Af) = 2[5 folz)Af(z)dz.

There are two possibilities for the multiplier v, :
(1) v2 = 0 implying K>(fo) is inactive or nonbinding.
(2) v > 0 implying K;( fo) is active.
We note from (2.28) that if case (1) holds then we have strict inequality in

constraint (iz). Otherwise, we have equality and
/Sf2(:z:)d:z —1r2=0.
Note that if fo(z) satisfies (¢) but
‘/;fg(:z:)da: = h%7r% < 72 for some 0 < A% < 1,

then
/s(h“fo)z(z)da: = 2.

The function h~! fo(z) satisfies the constraints (i) and (i), and

bT (k™' fo,£)B~H(E)b(R™ fo,6) = h™*bT(fo,€)B~'(€)b(fo. &)
> b (fo,6)B7H(E)b(fo.£).
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It follows that the maximum over f lies on the boundary of the second constraint

and case (2) holds. So, our problem becomes,

mazimize J(f,€) = bTB~?b subject to

(2.31)
(i) Ki(f) = [sa(z)f(z)dz =0, (i) Ko(f) = [s f(z)dz — 7% = 0.

The second term of the functional J(f,£), namely fs f?(z)dz, has been dropped
because constraint (iz) implies that it is a constant, 72. Hence, the second term
has no effect on the solution of the maximization problem.

Combining (2.29) and (2.30) we have
267 (fo) B q(e)m(z) — v a(x) = e fole)}A f(z)dz = 0.

If this equation holds for all A f, then the maximizing fo must satisfy the equation

2b7(fo) B~*q(z)m(z) — v{ q(z) — 2vafo(z) = 0. (2.32)
That is,
fo(z) = 4" (z)[B~*m(z)c + q (2.33)
where

Normalize (2.33) to satisfy (2.28i) to obtain
a=—-Blc.
Therefore,
folz) = q"(2)B~'[B™'m(z) - Ile. (2.34)

To show that the maximizing fo(z) is of the form (2.34), see Wiens (1990).
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From (2.24) we have that

2
Lollo.§) = b7 U B (alblnt) + (S ) B 472 (235)
If we define
¢ = [ a(e)a"(z)m?(z)dz,
then
b(fo,€) = (CB™* = I)c. (2.36)

Problem (2.31) becomes

mazimize J(fo,€) = cT(B~2C — )B~*(CB™?-1I)c
subject to (2.37)
r? = cTB~*(C - B%)B%c.

Let G = C - B? and G7 the symmetric positive definite root of G. The question
that arises in this context is whether G is positive definite. First, we show that
it is at least positive semi-definite. To see this. we note that G can be written

as’
G= /Sq(r)qT(m)mz(r)dr - B*= /S(m(z)l — B)q(z)q"(z)(m(z)I — B)dz.

So that,
aTGa = /5 (a7 (m(z)] ~ B)q(z)}2dz > 0,

for some vector a € R2™"'. Now, if G is not positive definite, we approximate it
as follows:

(i) Take any density m(z) for which G > 0 and put

m(z) = (1 = t)m(z) + tmy(z).

(ii) Evaluate G, = (C ~ B?)|m(z)=m.(z)-

(iii) Evaluate P(t) = |G¢|.- Then,
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(a) P(t) is a polynomial in £.

(b) P(0) = 0, P(1) = |Gyl > 0, which implies that P(¢) is positive
(since P is non-negative) for all sufficiently small ¢ > 0.

(iv) Put G, = G, > 0 for a sequence ¢, | 0.

(v) Use G, in place of G and take limits at (2.42).

If we define
L2
az &8¢ (2.38)
T
then
c= TBZG";"a,
and
folz) = 7q¥ (z)[m(z)] - B)G"%a (2.39)

for some a satisfying ||a]|? = 1. We rewrite (2.39) as
fo(z) = u’(z)a

where
ul(z) = rq¥(z)[m(z)] - B]G"%.

[t can be verified that the following hold :

Jsu(z)uf(z)dz = 721

fsu(z)qT (z)m(z)dz = G2

(2.40)
Js f3(z)dz = 72
b(fo,£) = TGia
and
bT(vaE)B—zb(fbv E) = TzaTG;—B—zG%a- (2.41)



Our problem is then to maximize (2.41) subject to lafj? = 1. Now,

max 72alG¥B~?G%a = r’Ch {G? B~*G*} (2.42)

llall=1
where a is the eigenvector corresponding to the maximum characteristic root

Chi(-). To find the eigenvalues of G:B~%Gz, we solve
|GEB~2G% — M| =0 or |G—AB*=0 (2.43)
where G = C ~ B2

2.1.2 D-optimality

Here, maximizing Lp over F is equivalent to maximizing the functional
b” B~'b. Proceeding as in Section 2.1.1, we have that the maximizing fo is
of the form

fo(z) = qF (z)[B~'m(z) — []c.
We transform the maximization problem into an eigenvalue problem by observing
that
b(fo,€) = B(B~'CB™! — I)c
bTB~'b = T (B-'CB' - )B(B"'CB~! - I)c (2.44)
12 = cT'B~}(C - B?)B'c.

So that we now solve

max 72aTGiB~'G%a = r*Ch {G?B'G7} (2.

llall=t

[
-
Ot
~

where a is defined by (2.38). That is, we solve |G;‘B‘1G;’ — M| = 0or
|G - AB| = 0.
For the purpose of illustration, we now consider examples using specific type

of wavelets which form an orthonormal basis of £;(S5).
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3 Examples

3.1 The Haar Wavelet

The Haar wavelet basis for £5(S) is given by (see Daubechies (1993), in

Recent Advances In Wavelet Analysis)
{Boo} U{t—ju; <0, 0< k<277~ 1} (2.46)
where the scaling function is defined by (1.52) and the primary wavelet is
U(z) = foczeyy — Ipgzcu- (2.47)

The wavelet coefficients defined in (1.38) and (1.39) are

Lif k=0,1 n (k=0
1 =
he=4{ V2 T ge=4 L if k=1
{ 0 otherwise V2

0 otherwise.

From the primary wavelet, we find that

<

-1
. =2 2 —
Yik(z) {1[21k5x<‘2"+2””] [[(zu;mu 5:<(k+1)21]}

(2.48)
2 (z) =27 {I axe1)2ry + Larsrya .
ik (k<z< BEELET (LD <re(k+1)27]

We suppose that an experimenter plans to approximate a nonlinear regression
model by the wavelet equivalent using the Haar wavelet basis. In the next

section, we construct robust designs for the Haar wavelet regression model.

3.1.1 A-, Q-optimality

To fix ideas, we proceed step by step to consider the cases m = 0, 1 and the

general case.

m = 0: Here, q7(z) = (é(z), ¥(z)),



B 1 Js ¥(z)m(z)dz (2.50)
Js¥(z)m(z)dz 1
and
c= Jsm?(z)dz  [s¢(z)m?(x)dz } . (2.51)
[sb(z)m¥(z)dz  [¢m?(z)dz

If for simplicity we set

then

p—(1+e2)(1+A) h —2e(l+ )

C-(1+MNB*=
h—2e(14+1) p—(L+e)(1+1A)

. (2.53)

There is some evidence, as seen in the theorem below, that no non-symmetric

design exist for Lg, L4 loss.

Theorem 2.1 Let y satisfy the biased m = 0 Haar regression model. Let S =
[0,1]. Then, among absolutely continuous designs §, non-symmetric designs are
inadmissible for Lo and L4. The uniform design is A- and Q-optimal for any
f € F. Also, mine max; Lo(f,€) = ming max; La(f,€) =2%.

Proof : The steps we follow in proving Theorem 2.1 are :
(i) Solve the eigenvalue problem (2.43).
(ii) From (2.35) and (2.42) set maz; Lo(f,€) = T*(Amar + 1) + ZtrB~" and
minimize with respect to m(z).
(iii) Use the result from (ii) to discuss the inadmissibility of non-symmetric
designs.
(iv) Restrict to symmetric designs and show that the minimax robust design

is uniform.



Solving for A in the equation
IC~(1+A)B=[p—(1+e)1+ AP ~[h—2e(1+A)]*=0,

we obtain two roots A;, A; satisfying

_(p=h) (p+4h)
M+ 1) = Fg e+ =g
Note that |e[ < | and
—2he? -2
Ao Ay = 2(he* — 2pe + h)

(1 —e?)?
is non-negative or negative depending on the sign of (he? — 2pe + k). Suppose

(he? — 2pe + h) < 0, so that Apaz = A;. We minimize

Js(1 = ¢(z))m?(z)dz 20° 5 =
m}@XL:Q(f’f) =722 Zz + (2 - a)n (2.54)
subject to the constraints
(i) /Sm(x)dz = 1, (i) /S(l—tl)(x))m(x)dx = o (2.55)

That is, we minimize
10 = (@)m*z) - u(l - d(e)mz) = vm(z)]de.

for some multipliers u and v. We obtain

_u(l—%(z)) +v
™) = =T g(x)

We note that the “density” (2.56) is not finite if z € [0,1). Similarly, if

(2.56)

(he? — 2pe 4+ h) > 0 so that A,.r = A2, we obtain
m(z) = u(l +¥(z))+v
T 21+ ()

This “density” is also not finite if z € [%, 1). Thus no non-symmetric density

(2.57)

is admissible. Qur conjecture is that this is true in the general case as well.
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So, restricting to absolutely continuous designs with density m(z) which are
symmetric about z = -;—, wehavee = h = 0and Moz = M = Ay = p—1.
That is,

Amaz = /S m¥(z)dz — 1

and o = 1. We then minimize

92
max Lo(f,§) = TZ/ m?(z)dz + — (2.58)
F s n
subject to the constraint
/sm(a:)dz =1 (2.59)

to obtain m(z) = Is, the continuous uniform design. To see this, we observe

that if (2.59) holds then

/sz(z)da: = /S(m — 1)*(z)dz + 1

which is clearly minimized by m(z) = Is.

m = 1: [n this case,

[ 4(a) $(z)  2Wp(2) 2w -1) |
2 oL 0 —9% (92 —
a(z)q(z) = lzb(z) :l) (z) 22¢p(2z) —22¢(2z — 1) (2.60)
27 (2z) 22 (2x) 22 (2z) 0
| 28p(2z - 1) 2520 — 1) 0 222z — 1) |

[s¥(z)m(z)dz = [s¢(z)m*(z)dz =0
Js¥?(z)m(z)dz = [sm(z)dz =1
Js ¥¥(22)m(z)dz = f m(z)dz = &
Js $*(2z — 1)m(z)dz = Ji m(z)dz = }.

(2.61)
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Also,

Is $(22)m(z)dz = (z)dz ~ JF m(z)ds
Js¥(2z — I)m(z)dz = fl z)dz — fa m(z)dz

It follows that

/;11)(‘21')m(z)d:1: = —/Slb(.?x — 1)m(z)dz

and

B = where a=‘2%/ Y (2z)m(z)dz.
1 0 s

_—aaOl

We also observe that

[s ¥¥(22)m?(2)de = [5v*(2 — L)m?(z)dz
Js¥(2z)m?(z)dz = ‘fs ¥(2z — 1)m?(z)dz
Js ¥?(22)m3(z)dz = [ m¥(z)dz = Jym*(z)dz
2 [s ¥?(2z)m*(z)dz = Qfo m¥(z)dz = [y m*(z)dz.

Therefore,
vy 0 3 -5
0
C v B
B B8 v O
-8 B 0 ~
where
— 93 2 = 2 - 2
3=2 /szb(Z:t)m (z)dz, and~ 2/ (22 dz /m (z

(2.63)

(2.64)
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Now,
[ 1 + 202 0 2a —2a
5 - 0 1 + 2a? 20 2a
2a 2a 1 +2a° 0
| —2a 20 0 1+ 202
E F
C—-(1+MNB*=| .. .
FT E
where
E=[y-Q1+MN(1+2?)]I and
Fe B~-2(1+ANa —[3-2(1+)\)q]
B-21+Na B-21+Na |
So that
|C —(1+ \B? = |E||[E - FTE'F|.
Now,
|El = [y = (1 +X)(1 +22%))?
E~l=[y = (1+A)(1+2a%)]]
FTE'F =2[y = (1 + A)(1 + 23] B = 2(1 + N)a]?I
E—-FTE'F = {[vy = (1 + A)(1 + 2a?)]
=20y = (1 + )1 +22)]7B —2(1 + A)a?}.
Therefore,

IC — (1 4+ MB? = {[v—=(1+A)(1+2%))*~2[8—-2(1 + Na]*}.

(V1]
[

—_——
o
-1
o
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For ease of computation, we rewrite the matrix B as

I P
B =
R I
with
I+ PH 'R PH1
B! =
—-H 'R H-!
where
—2a? 0
H=I~RP=
0 1 —2a?
and
I+ PH''R=H"'=(1-2%)""I.
So that

-1 _
trB™ = " 9a2

Theorem 2.2 Let y satisfy the biased m = 1 Haar regression model. Let

S = [0,1]. Then, the continuous uniform design is robust minimax among

symmetric and absolutely continuous designs & and for any f € F. Also.

ming max; Lo(f,€) = ming maxy La(f.£) = 45-.

Proof : The proof involves restricting to symmetric designs and using the steps
outlined in the proof of Theorem 2.1. We begin by solving the eigenvalue equa-

tion

IC—(1+MNBY=[y—-(1+MN1+2H)*=2[8-2(1+X)]*=0



bt

to obtain

BV2 -7

M+1l)=
(i +1) 20/2 — (1 + 2a?)

and

BV2 +7
20v/2 + (1 + 202)

Next, we find Anqz. To do this, we consider the difference

—2v2(2078 — 20y + B)

(1-2a2)2

(A2 4+1)=

A=A =

From the above expression, Apez = A; if f(@) = 2a?8—2a7+8 < 0. Otherwise.

Amaz = A2. Let us assume, for a moment, that A,.; = Az. It follows that.
o2
max Lo(f,€) = (A + 1)+ —n—tTB_l(E)- (2.76)

Using the expressions for A, and tr B~! we obtain

40?
(1 —2a?)n
2 ﬁ\/r+7 4o? PR
= T + - . (2.77)
20v/2 + (1 +2a%) (1 —2a?)n

max Lo(f,¢) (A +1) +

We then minimize,

2fs(l + 2u(2z))m?(z)dz 40 5 -
max Lo(f,&) =T 2av/2 + (1 + 2a?) T 0 200)m (2.78)
; ; = i) 27 | w2 = 9.7
subject to (1) /Sm(a:)d:z: 1, (22)2 ./;u(-z)m(:c)dz a (2.79)
and from symmetry
(i56) [ Ty reym(@)de = [ Iy cocamiz)dz = 0. (2.80)

Prior evaluation of the multipliers associated with the constraints show that the

second symmetry constraint

/SI[OSJK%]m(x)dJ: - /;I[%S,_.Q]m(:z:)da: =0
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is inactive or nonbinding in the sense that the multiplier associated with this
constraint is zero. It is therefore dropped from the list of constraints. For some

multipliers u, v, w, we minimize

/S (1 + 20(22))m*(z)dz — /S (w + V2u(2z))m(z)dz

- [ o cecyy = Tygecim(a)dz (2.81)
to obtain
2u(2 I —Iric e
() = Y2440+ ey — Iygecy) ¥ v (2.82)
2(1 + 2¥(2z))
We rewrite (2.82) as
1 1
m(z) = e(V2u+ w)logey + 5 (V2 = v —w)pcaey
1 1 .
Determining u, v and w to satisfy (2.79) and (2.80) we obtain
u=2V2+4e, v=14V2a and w = 2 + 22a. (2.84)
By substitution, the optimal design density is given by
m(z) = (1+ aﬁ)[l[ogxﬂ + [[%sxgl]]
+(1 = aV2)[Ipcocy + fipcocsl) (2.85)

We evaluate f(a) = 20?8 — 2av + §. Substituting for m(z), we have

1

B =23 {/0% m?(z)dz — /5 2(1:)(1.7:} = 2a and (2.

v=2 {/ 2(xd:c+/

Therefore, f(a) = 0. It follows from (2.75) that Apez = A2 = Ay for m(z)

oL

6)

~|- gt lad

©
[

m?(z) d:c} =1 +2a°. (2.87)

defined by (2.85). It turns out that using Ay or A as Anqr yields the same
optimal design density (2.85). Substituting 4 and = into (2.77) we have that

4o?

2 9 Q0
——(1 ~Sat)n +7 (2.88)

min max Lo(f,€) =
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which we minimize with respect to a. Obviously, a = 0, 7 = 0 minimizes (2.88).
It follows that the uniform design is Q-optimal and

1 L f —iliz. 2.89
min max olf,6) = —- (2.89)

Remark : We observe, from (2.85), that the minimax design for m = 1 is

actually the sum of uniform designs over each of the 2™+1 intervals.

General Case

The designs which are optimal for any m are presented in Lemma 2.1 and
Theorem 2.3. Lemma 2.1 provides the design £, which minimizes the ¢race of
the covariance matrix B~!(£). The remark that follows shows that this design

also maximizes the determinant of B(§).

Lemma 2.1 For the model (2.1) approzimated by the wavelet model (2.9) with
scaling function &(z) and primary wavelet (z) defined by (1.52) and (2.47)
respectively, any design & with B(&) = Iym+1 minimizes tr{B~'(€)}. In partic-

ular, any design £ which places equal mass 27(™*) in the 2™*! intervals
{[(i = 127t 2=t i) b L gmen (2.90)

is Q-optimal.

Proof : Consider the convex combination
£ = (1—t)éo + t&, for any & on S

and define
p(t) = trB7(&).
Then p(t) is a convex function (see Fedorov (1972) Theorem 2.9.1) and is min-

imized at t = 0 if and only if p'(0) > 0, for all §. In what follows, we evalu-

ate p’(0) and apply the condition B(&) = I;m+1. We then see that the result
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follows trivially if ||q(z)]|? is a constant for all z € [0,1). We conclude the
proof of the first part by using the properties of the Haar wavelets to show that
[la(z)}|?> = 2™*! for all z € [0,1). Finally, we show that B(&;) = [am+1. Now,

d d
pt) = (—EtrB“(f,) tr—B &)

where

d d

SB(E) = —B(E) 5 BE)B(&).
Therefore,

p(t) = —-tr{ -1(& B(ft) l(ft)}
= ~tr {B7(6) [ a@)a" (@)l - 60)B7(E0) }- (291)

Now, if B(&) = [ym+: then

p’(O) = —-tT/q EO)
= tr [ a@)a"(z)dlé - ). (2.92)

We now show that
P(0) = tr /S q(z)a%(z)d(6 — &) > 0 for all & on S.

That is,

2m+l
[ @aEie= T [ e
is maximized by &. The result follows if we can show that q¥(z)q(z) is constant
for all z € S. From the definition of ¢(z) and (z), we have that ¢;(1) = 0 for
all z. It follows from our assumption that £(1) = 0. Therefore, any design which
concentrates mass at 1, cannot maximize f5 q7(z)q(z)dé. Hence, it is sufficient

to show that q7(z)q(z) is constant for all = € [0,1).

-1

(1)}



At any level I, (I = 0,1, ....,m), there are 2! y-functions and 2! intervals.
For any arbitrarily choosen zg € [0,1), only one of these #-functions is non-zero
at a given level [, since the intervals are disjoint and zo belongs to one and only
one of the intervals. In fact, the only non-zero y-function takes the value +2/2,
Therefore, for any zo € [0,1),

21

3 ¥k u(zo) =2 (2.93)
k=0

and
q’ (zo)q(z0) = 2_: q:(zo)

m 21—t

= 6%(z0) + 2 Y ¥2i4(20)
=0 k=0
=1+ Y 2 =27 (2.94)

1=0
Since g is arbitrary, for any z € [0,1), q¥(z)q(z) = 2™*! and the first part of
the theorem is proved.
To complete the proof we show that any design £ which places equal mass
2-(m+1) in the intervals (2.90) has the property B(£;) = Iym+1. Now, at any level
[,(1=0,1,..,m), the diagonal elements of q(z)q¥(z) are

l
z/ﬁ:,k(:v) =2 {1[2-‘k5z<(2k+1)2-('+1)] + I[(2k+l)2“(‘+”51:<(k+1)2“]}

and the off diagonal elements are either zero or of the form

hIia, 6,)(T) = Lay,)]

where A, a1, as, b; and b, are constants such that b, —a; = b; —a; = 27+, So,
B(&) = [, ale)a’(z)dg; = Lomn.

Remark: In Fedorov (1972) it has been proved that the following assertions are

equivalent:

(W]
v
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(1) the design £* minimizes trB~'(£)

(2) the design &* minimizes maz ¢(z,£), where
é(z,€) = tr[B~(£)a()q" (=) B~ (€)] = )B~*(£)q(z)

(3) max; ¢(z,£7) = trB7H(£7).
So, if B~2(¢") = kB~!(¢£"), for some constant k, £~ is also G-optimal and hence
D-optimal. Now, B(&) = kI and Lo = L4 (see (2.26)). It follows that &
is simultaneously A-, D-, G- and Q-optimal considering only the variance. The
proof of D-optimality of & was also given by Herzberg and Traves (1994); we

feel that our proof is much simpler.

Theorem 2.3 For the model described in Lemma 2.1, the uniform design £
minimizes Lo(f,€) and La(f, ), among absolutely continuous designs £ and for
any f € F. Also,

Lalf.€) = Lalf ) = 2012

Proof: We shall show that £~ minimizes the two summands in Lg(f.€) simul-

taneously. For the continuous uniform design,

b(/,€) = [ a(e)f(2)d€™(2) = [ a(a)f

for all f € F. In the proof of Theorem 2.1, we have shown that q7(z)q(z) is

constant for all z € [0,1). It follows that the uniform design also maximizes

[ a" @)a(z)m(z)dz

This implies that £ minimizes tr B~'(¢). Therefore £* minimizes Lg(f.£™) since
it minimizes the two summands in Lo(f,£™) simultaneously. Under £, B(£™) =

[2m+1 and
2

2
Lo(f,€) = trBTHE) =27 = (2.95)

n
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The results of Lemma 2.1, Theorems 2.3 and 2.6 imply that if any nonlinear
regression model is approximated by the Haar wavelet basis, then the robust

minimax design is uniform among symmetric and absolutely continuous designs.
3.1.2 D-optimaliy

m = 0: Using the notation in Section 3.1.1 we have

p—(1+€)—A h—2e—el
h—2—ex p—(1+e€*)—2A

|C — B*-)\B| = (2.96)

Theorem 2.4 Let y satisfy the biased m = 0 Haar regression model. Let S =
[0,1]. Then, among absolutely continuous designs £, non-symmetric designs are
inadmissible for Lp. The uniform design is D-optimal for any f € F. Also,
mine max; £ (f,€) = (£)”.

Proof : The main features of this proof involve determining the maximum
eigenvalue and minimizing the maximum loss with respect to m(z). To determine
the maximum eigenvalue, we first solve |C — B? — AB| = 0 for A\. We obtain

two eigenvalues

(p—h)—(1+e)?

=T (2.97)
and
A= PR —(+e)f (2.98)

(1+e)

If Aner = A1, we minimize
-0.—2 2 1 + %T2A1
n |B|

(%) ; {1 Lo [/5(1 — b(z))m¥(z)dz — (2 — a)z]}

o2 -« ac?

]

max Lp(f,§)
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subject to the constraints {2.55). That is, we minimize

[ = w(e)m?(z)de. (2.99)

The solution is given by (2.56). Using Amaz = A2, leads to (2.57). Implying
that non-symmetric designs are inadmissible. Therefore restricting to absolutely

continuous designs which are symmetric about z = }, we minimize

max Lp(f,€) = (9;)2 {1 + %‘- [/s m*(z)dz — 1]} (2.100)
to obtain m(z) = Is, the uniform design. That is,
o?\?
mﬁin max Lp(f,&) = (-n—-) . (2.101)

m = 1: In this case, we restrict to symmetric densities to obtain

uv Vv
|C—-B*=AB|=| .. .. . (2.102)
vT . U

where

U=[7v=A)-(1+2*]IandV = 8-+ Na ~[F-(2+N)q] ](2.103)

B-(2+Na B-(2+Na

Theorem 2.5 Let y satisfy the biased m = 1 Haar regression model. Let S5 =
[0,1]. Then, the continuous uniform design is robust minimax among symmetric

and absolutely continuvous designs € and for any f € F. Also, min; max; Lp =

Proof : As usual, we begin by solving
IC ~ B2 = AB| = {[(7 = \) — (1 + 2a*) = 2[8 — (2 + N)a]?}* =0
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to obtain

(A +1) = Mj’)—:—% + a2 (2.104)
and
(Mg +1) = B2+ _ /s (2.105)

a2 +1

Suppose that Apn.z = Az, then we minimize

[ 4 1 T2n/\
max Lp(f,§) = —) (1_2a2)2[1+ — 2}

n
(2)° {1 L n [fs(l +2(20))m¥e)dz 1]}
(1 —2a2)? o? 1+ av/?2)

subject to the constraints (2.79) and (2.80). That is, we minimize
/S (1 + 20(2z))m?(z)dz. (2.106)

The solution is given by (2.82). It turns out that using Amaz = Ay leads to the

same solution. Under this solution,
B=2a, 7= (1+2a% and A\ =Xy =0.

So that
min max Lo(f,§) = (’;) (1 —2a2)2

is minimized by a = 0. Therefore, the uniform design m(z) = [s is D-optimal

and

: AN -
min max Lp(f,&) = (-——) . (2.107)

n

General Case : We state the result as a theorem.
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Theorem 2.6 For the model described in Lemma 2.1, the uniform design £~
minimizes Lp(f,€), among absolutely continuous designs £ and for any f € F.

Also,
0_2 2m+1
Lp(f,€) = (—n—) . (2.108)

Proof : The statement of the theorem follows from the fact that £ maxi-
mizes |B(€)| and minimizes b? B~'b simultaneously as shown in Lemma 2.1
and Theorem 2.3 respectively. To see this, we have shown in Theorem 2.3 that
b(f,£*) = 0. Also, under £*, B(£™) = [. It therefore follows from Lemma 2.1

and the remarks that £* maximizes [B(€)] as well.

Remarks : The optimality of the continuous version £~ of £ (see Lemma 2.1)
stated in Theorems 2.3 and 2.6 is a particularly strong version of minimax ro-

bustness. This follows from the fact that
L(f,€)=L(0s, &) < L(0F,E) < L(f,E),

for any design € and any f € F and £ is any of Lg, L4, Lp. The first inequality
follows from Lemma 2.1 and the second inequality follows from the definitions

of the loss functions. The equality is derived from (1.16).

3.2 Multiwavelets

For the purpose of our example, we take N = 2. We remind ourselves that
when N = 1, the multiwavelets coincide with the Haar wavelet basis. For NV =

2. the multiwavelet orthonormal basis for £2([0, 1]) is given by
{60, 1} U {205 (2), 2wy " (2); j<0,0< k<27 =1} (2.109)

where ywi*(z) = 2~ fyw(2~72—k), [ =0,1. The scaling functions and primary

wavelets are defined by (1.54), (1.55), (1.56) and (1.57). For multiwavelets the
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representations discussed in Section 1 of this chapter can be written as,

m 27-~1 271

n(z) =Y 3 cik 2w () + Z 3 ek 2w (z) + f(2) (2.110)
7=0 k=0 7=0 k=0
and
m 27—
n(z) Zdl¢01 )+ Z cik 2wy (z)
=0 7j=0 k=0
p 27-1
+ % ey (2) + fla). (2.111)
7j=0 k=0

We then write the model

y(z) = q¥(z)Bo + f(z) + ¢ (2.112)

where the vectors q(z) and S are defined in such a way that (2.112) is equivalent
to one of the representations in (2.110) and (2.111). We limit our consideration
to the representation described by (2.110) with m = p = 0 due to the complexity
of the eigenvalues arising from the maximization problem described previously

for values of m, p > 0. In this case,
qT(I) = (wo(z), 2w1(z)), and ﬂoT = (€q0, €00)- (2.113)

From previous results,

2

Var(B) = Z—B—I(f), bias(B) = B} (€)b(f,€)

n

where

B = B(¢) = [ a(z)a’(2)dé(z). b =b(f,€) = [ a(x)f(z)de(z).
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3.2.1 A-, Q-optimality

Recall that the Q-optimality problem is to minimize the maximum integrated
mean squared error over some design space, where the maximum is evaluated
over F the £, contamination neighbourhood. We also recall that for orthonormal

wavelets the Q-optimality and A-optimality problems are equivalent since
A= /Sq(:z:)qT(:c)dz = I, the identity matrix.
So, our problem is to solve
min max Lo(f,6)
where the loss function is defined by
Lo(f,6) =bTB?b + %:itrB“l +/Sf2(1:)d:z'. (2.114)

From previous results, maximizing Lo( f, £) over F involves evaluating the maxi-
mum characteristic root of the matrix G2 B~2G%. That is, we solve the equations

|G — AB?| = 0 where G = C — B? and

_— T 2
C—/Sq(r)q (z)m*(z)dz.
Using (2.113) we have

2w§(1') 2Wo(T)2w1(z)

q(z)q’(z) = (2.115)

2Wo(T)owr () 2wf($)

Restricting to densities that are symmetric about z = % we can show that

fo% zm(z)dz = 3 — f%l zm(z)dz

L (2.116)
JF?m(z)dr =1L - Zf%l zm(r)dz + f;l ’m(z)dz.

1
2
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Results simlar to (2.116) also hold if m(z) is replaced by m*(z). Using the result

in (2.116), it can be shown that the following hold:

Js 2w(z)m(z)dz = 3(326 — 48a +9)
Js 2wo(z)2wn(z)m(z)dz = 0

Js 2wi(z)m(z)dz = 728 — 120a + 25

(2.117)
Js 2wd(z)m?(z)dz = 6(16d — 24c¢ + 9a)
[s 2wo(z)2wn (z)m?(z)dz = 0
Js 203 (z)m?*(z)dz = 2(36d — 60c + 25a)
where
= [t zm(z)dz, 8 = [t z2?m(z)dz, a = [1 m¥(z)d
@ = ffom(a)ds, §= | mlale, a= f{mila)ds
c= f; zm?*(z)dzr and d = f%l ?m?(z)dz.
It follows that the matrices B and C can be written as
3(328 - 48+ 9 0
g |33 - 48at9) (2.119)
0 728 — 120 + 25
6(16d —24c+9 0
c=|% ¢+ 9a) (2.120)
0 2(36d — 60c + 25a)

The main idea behind (2.116) and (2.117) is to transform the problem from
S =[0,1] to a smaller space [0.5,1] using the symmetry constraint. Solving the

eigenvalue equation |C ~ (1 + A)B?| = 0 we obtain

6(16d — 24c + 9a) — 9(1 + A)(328 —48a +9)? =0

(2.121)
2(36d — 60c + 25a) — (1 + A)(728 — 120a + 25)2 = 0.
So, the eigenvalues of the matrix G B~2G ? are given by
2(16d — 2
A 2(16d — 24c + 9a) 1 (2.122)

T 3328 - 48a +9)2
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and

2(36d — 60c + 25a)

= - 1. 2.12:
(728 = 120a + 25)? (2.123)

A2

From this point we proceed as follows:
(1) assume that Apez = As
(ii) find the density mg(z) minimizing the maximum loss; and
(iii) check the condition A;(mp(z)) > A2(mo(z)).
If step (iii) fails, we then hope that Amar = Az, Taking Apaz = Ay, we

minimize
0.2
max Lo(f,6) =7 M +1)+ -n—trB—‘ (2.124)

subject to the conditions

(3) ﬁ m(z)dz = ; (ii)/: rm(z)dz = o, (iii)/: ?m(z)dz = 8. (2.125)

Using the expression for A; we have

272 fl(dz — 3)2m?(z)dz 2
i () +ZirB . (2.126)
3(328 — 48a + 9)? "

max Lo(f,§) =

miz) = (1 —t)mo(z)+ tmy(z)

At) = /:{(43: — 3)!m¥(z) + 2uwm,(z) + Svwzm,(z) — 32wzm,(z)}dz

where mo(z), mi(z) satisfy (2.125), for some multipliers u, v and w. It is not
too difficult to check that A”(¢) > 0. That is, A(¢) is convex with a minimum
at t = 0 if and only if A'(0) > 0 for all m(z), where

1
A'(0) = 2[ {(4z — 3)*mq(z) + uw + dvwz — 16wz} m; — mo)(z)dz(2.127)
3
It follows from (2.127) that the minimizing mg(z) must satisfy the equation
(4z — 3)*mo(z) + uw + dvwz — 16wz? =0, me(z) > 0.
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That is,

16wz? — dvwz — uw\ T 1
F— — 92 198
mo(z) ( @z -3y ) , T E [2, 1] (2.128)

with u, v and w determined to satisfy (2.125). We observe that if we write
162 —~dvr —u = (4z —3)* — (v — 6)(4z —3) — (u + 3v — 9)

and set r=v—6, t =u+ 3v —9 then

r t

* 1
molz) = '“’<1-(4z—3)"(4x—3)2) ”‘6[5’1]

r t 1 A
= maa:{O,w (1 - iz =3) - (43:—3)2)}’ T € [5 1] (2.129)

where w > 0, ¢ > 0 and r is arbitrary. For mathematical simplicity, we transform

mo(z) by setting y = 4z — 3 to obtain

1 y+3)_w root\" .
po(y)—4mo( 1 —4(1—y y2) .y € [—1,1]. (2.130)

We now express the conditions (2.125) in terms of po(y). It is easy to show that
1 1 1
J, male)dz = [ po(y)dy = 3. (2.131)
! -

From (2.125) (ii) we have

! ! y+3) (y+3)£i£_
/%zmo(x)d:r——/;l (——4 mo | = et

Use (2.131) and simplify to obtain

! 1
/1 ypPo(y)dy = 5(8a —3). (2.132)

Furthermore, (2.125) (iii) yields

/: z*mo(z)dz = /1 (%—3-)27710 (y 1_ 3) % = /_11 (%—é)zpo(y)dy = 3.

3 -1
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Again we use (2.131), (2.132) and simplify to obtain

/ y*po(y)dy

(328 — 48 +9). (2.133)

lol'—'

Also,

1 1
/: (4z — 3)*md(z)dz = / y2m? (y—+—3> (i—y
2

-1

4
1 +3
= / yimg (y 1 )po(y)dy

= w/ ( ———-t-)po(y)

Use (2.131), (2.132), (2.133) and simplify to obtain

/:(41: —3)’mi(z)dz = t—;’-{(323 —48a+9) —r(8a —3) —t}.  (2.134)

Substituting (2.134) into (2.126) we have

. _ w[(328 —48a +9) — r(8a — 3) — {]
min max Lo(/,€) = 7 { e

+utrB7'} (2135

where r, t and w are chosen to satisfy (2.131), (2.132) and (2.133). Furthermore,

on the interval [ ] the inequality

<z*<z<l1

e | -

holds. Multiply through by m(z) and integrate to obtain

1 1 ‘
3 <B<ac< 3" (2.136)
Similarly,
m{()a:) < zm(z), which implies i <a.
By the Cauchy-Schwarz inequality we have
1 ]
—<a’<= 2.137
6 =" =2 (2.137)
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Together, (2.136) and (2.137) imply that a and @ must satisfy the inequality
L
8

We surnmarize the results of this section in the following theorem:

<2a’ <

™
IN
Q

IN

(2.138)

Theorem 2.7 For A =(a,8) and § <2a® < B < a < 1 define the density

r

mo(x;A)=w<1—(4x_3 (42:_ ) (0.5<z<1)
where the non-negative constants w = w(A), r =r(A), t =t(A) are determined
to satisfy (2.125). Then mo(z; A) minimizes f%(4:1: —-3) m2(:z:)a':z: for fized A.
Define Ag to be the minimizer of (2.135). Then mo(z; Ag) is minimaz robust
for Lo and L4 for those values of v for which Ai(mo(z; Ag)) > A2(mo(z; Ag))-

The eigenvalue inequality holds for v > 4.45.

We observe that if r = ¢t = 0, the minimax robust design is uniform with

3 7 202
a=q ﬂ=:ﬂ, B = Ihx2 and CQ(f,€)=T+T2 (2.139)

which is the minimum loss for the Haar wavelet basis. To see that the eigenvalue
inequality holds for v > 4.45, we need to carry out the actual computations. Our

problem now is to choose & and B to minimize

w((328 —48a +9) — r(8a — 3) — ¢]
3(328 — 48a + 9)?

1
9
U{3(32ﬂ —48a +9) + (728 - 120a+25)} (2.140)
for fixed v = f;zi‘ over the range
1 1
8 <2’<pf<al 3
where r, t and w are determined to satisfy
(1) J2, po(y)dy = . (i2) S, ypo(y)dy = 3(8a = 3) (2.141)
(i) 2, y*po(y)dy = 4(328 — 48« +9).
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In addition, we require that A;(po(y)) 2 A2(pe(y)) at w* = w(a™,37), r" =
r(a®, ") and t* = t(a", ") where o, B~ are the values of a, # minimizing

(2.140). Expressing A in terms of (4z — 3) we have

9 f§(4x — 3)2ml(z)dz — 24c + 19a

A2(mo(z)) = 3(726 — 1200 1 957 -1 (2.142)
21 (3y — 1)*pa(y)dy o1
A2(po(y)) = (728 — 1200+ 257 (2.143)

The definition of po(y) indicates that there exist some constants k, [ such that

po(y) =0, k <y <! where -1 <k <0and 0 <! < 1. That is,

r t
l——-——<0, k<y<lI
y y? y

with equality at k£ and {. This implies that £ and [ are given by

L r—Vr? 44 nd | r+Vvr2 44t
= a = —_—
2 2

o<

(2.144)
From (2.141) (i) we have

1 1 w| [k r t ! rot
= L= [ (5= ) [ (-5 -35) 9]

We simplify to obtain

I 11
- 2+ )| =2 2.14:
kD +t( + 4 1)] (2.145)

Similarly, we obtain the following equations from (2.141) (ii) and (iii) respec-

w[(k—l+2)+rln(

tively,

w [(1&:2 B+ 2r(l—k—-2) +2tln<

%l)] = 4(8a — 3) (2.146)

w[2(k3 = B +2) +3r(* — k) +6t( — k — 2)] = 12(328 — 48a +9). (2.147)

The problem defined above is solved numerically in the following way:
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(a) Solve (2.144) for r and ¢ to obtain
r=k+1l, t==lk, -1<k<0,0<i<]1. (2.148)

(b) Rewrite (2.145), (2.146) and (2.147) as follows:
2

, : , .149
v [(/c—1+2)+r1n(|-,';|)+t(2+%—%)] (219)
o = §+ 3_9_ [ ) +2r(l -k —2)+ 2tin < i')] (2.150)
3 9
g = 5435+ 38—4[9(L3 B 42)+3r(* — k*) +6t(l — k — 2))2.151)

(c) Use (2.148), (2.149), (2.150) and (2.151) to write the objective

function (2.140) as a function of & and /.

(d) Use the S-plus function nlminb(-) (“nonlinear minimization with

box constraints”) in an S-plus program to minimize the objective

function with respect to & and [ for fixed values of v where

—l<k<O0andO<li<1.

(e) Solve for r, ¢, w, @ and B from (2.148) - (2.151) and check that

the side conditions (2.138) and (2.141) are satisfied.

(f) Evaluate the eigenvalues A (po(y)) and Az(po(y)) to check

if M(po(y)) 2 Aa(po(y))-
Some values of the constants and eigenvalues are shown in Table 1. Figure 2
shows the minimax densities for » = 6 and 20.

It turns out that A;(po(y)) = A2(po(y)) for values of v > 4.45 (approximated
to two decimal places) and fails otherwise. So, we hope that Az = Az for v <

4.45 and minimize
272 f%l(Ga: —5)2m¥(z)dz 42
(728 — 120 + 25)? n

max Lo(f, €)=

subject to (2.125) to obtain

rl t1 * 1 o
m.(z) = wl (1 - 62 —3) ~ (62 _5)2> , TE [;, 1] (2.153)




Table 1: Some Parameter Values Minimizing (2.140)

v k [ r t w a B AL Ao
0.005 | -0.0378 | 0.0390 | 0.001 | 0.002 | 1.081 | 0.375 | 0.292 | 1.000 | 1.013
0.05 |-0.1156 | 0.1259 | 0.01 | 0.015 | 1.293 | 0.374 | 0.292 | 1.006 | 1.043

0.5 |-0.3105 | 0.3682 | 0.058 | 0.114 | 2.270 | 0.364 | 0.282 | 1.093 | 1.164
1.0 {-0.3939 | 0.4753 | 0.081 | 0.187 | 3.071 | 0.357 | 0.274 | 1.187 | 1.258
4.0 |-0.5670 { 0.6920 | 0.125 | 0.392 | 6.858 | 0.335 | 0.244 | 1.619 | 1.629
4.45 | -0.5797 | 0.7072 | 0.128 | 0.410 | 7.366 | 0.333 | 0.241 | 1.672 | 1.672
5.0 |-0.5933 | 0.7234 | 0.130 | 0.429 | 7.975 | 0.330 | 0.238 | 1.736 | 1.722

10 |-0.6694 | 0.8109 | 0.142 | 0.543 | 13.15 | 0.314 | 0.215 | 2.233 | 2.092

20 |-0.7358 | 0.8824 | 0.147 | 0.649 | 22.54 | 0.295 | 0.188 | 3.017 | 2.621

50 |-0.8087 | 0.9556 | 0.147 | 0.773 | 48.17 | 0.269 | 0.150 | 4.775 | 3.673

where wl >0, t1 > 0 and rl is an arbitrary constant. We proceed as before to

put z = 6z — 5 in (2.153) to obtain

The side conditions (2.125) now take the form

(i) J1a pr(2)dz = § (id) [2; zp1(2)dz = j(12a = 5)
(i53) 1, 2*p1(z)dz = 1(728 — 1200 + 25).

Also, it can be shown that

1 rl ¢l
wl/_zz2 (I—T—z)pl(z) z

1
- %_[(72ﬂ ~ 120a + 25) ~ r1(12a — 3) — t1[2.156)

/:(6::: - 5)*m?%(z)dz

Substituting (2.156) in (2.152) we have
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. .2 wl[(726 — 120a + 25) — r1(12a = 5) — 1]
mfm mjg.x Lo(f€) = 7 { T

+ wvtrB7'} (2.157)

where r1, t1 and wl are chosen to satisfy (2.155). Proceeding as before, we

Figure 2: Q-optimal and D-optimal Densities mo(z): (a) v = 6 ; (b) v = 20.

m(x)

0.0 0.2 a4 0.6 0.8 L0

@)

8 10 2

mix)
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0.0 0.2 0.4 0.6 0.8 1.0

(h)

obtain, from (2.155), the following equations :

k=143 +rim (|2]) 40 (342 -1)| =3 (2158
w . rin 2 3 A ] = -.D)

T4
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wl [(k2 =2 = 3) +2r1({ — k — 3) + 2tlin ( %m = 6(12a —5) (2.159)

wl2(k® = B +9) 4+ 3r1(? — k* +3) + 6t1({ — k — 3)]
= 18(728 — 120a + 25). (2.160)

So, we choose a and 3 to minimize

wl[(728 — 120a + 25) — r1(12a — 5) — t1]
(728 — 120a + 25)°

+"{3(32ﬁ —148a+9) NG 1;0a +25)} (2.161)
for fixed values of v over the range (2.138), with r1, ¢1 and w1 choosen to satisfy
(2.158), (2.159) and (2.160). Some numerical solution to this problem is shown in
Table 2. The numerical solution shows that the condition A2(p1(y)) 2> Ai(pi(y))
fails to hold for all values of v. It follows that for ¥ < 4.45 no minimax solution
to the Q-optimality problem exist. We now discuss how this difficulty can be
overcome.

As at (2.129), we found that using Amez = A,

r t * 1
m°(x;“’ﬂ)=w(1_ (42 —3) (49:—-3)2> P T E [5’1]

minimizes maz ;Lq(f,£) where r, t and w satisfy (2.125).

Similarly, with Aper = Az,

: rl i1 \* 1
= ; ~7 = 1 - - b —7
m.(z; &, ) = w (1 (62 — 5) (63—5)2) TE [2 1]
minimizes maz Lo(f,€) where rl, t1 and wl also satisfy (2.125). For ease of

notation let us denote the expression (2.140) by Jo(«, 3) and (2.161) by J.(a, 3)-

We then proceed as follows:
(1) Determine (a., 8.) to minimize (2.140) subject to Jo(a, B) 2> Ju(a. 3).
(2) Determine (&.,B.) to minimize (2.161) subject to Ju(a, B) = Jo(e, 8)-

(b}
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Table 2: Some Parameter Values Minimizing (2.161)

v k { r ¢ w o B A A2

0.005 | -0.0667 | 0.0635 | -0.003 | 0.004 | 1.093 | 0.372 | 0.287 | 1.020 | 1.000
0.05 | -0.2193 | 0.1912 | -0.028 | 0.042 | 1.348 | 0.364 | 0.278 | 1.064 | 1.006
0.5 |-0.6549 | 0.4935 | -0.161 | 0.323 | 2.674 | 0.344 | 0.252 | 1.239 | 1.095
1.0 |-0.8503 | 0.6143 | -0.236 | 0.522 | 3.909 | 0.333 | 0.236 | 1.382 | 1.191
5.0 {-1.3105 | 0.8733 | -0.437 | 1.144 | 13.42 | 0.291 | 0.178 | 2.263 | 1.747
10 |-1.4748 | 0.9596 | -0.515 | 1.415 | 25.35 | 0.270 | 0.148 | 3.133 | 2.235
20 |-1.6053 | 0.9999 | -0.605 | 1.605 | 46.67 | 0.262 | 0.137 | 4.061 | 2.872
50 |-1.7353 | 1.00 |-0.735| 1.735 | 107.3 | 0.258 | 0.133 | 5.688 | 4.105

The minimax design is then defined by

m(z) = (2.162)

m.(z; &., 8.), otherwise.

{ mo(e; au Ba) 5 if Jo(@e, Ba) € Tul e, )

We have not provided explicit and numerical solutions for the above discussion
because the solutions are probably too complicated to be useful in practice.
3.2.2 D-optimality

Again, we recall that the D-Optimality problem involves minimizing the max-
imum determinant of the mean squared error matrix. In mathematical terms.

we solve
min max Lp(f,€),

where

2\? (14 (Z)bTB"'b
z:o(f,é):(%) { (; I)BI } (2.163)



Table 3: Some Parameter Values Minimizing (2.168)

v k [ r t w a B A Az
0.005 | -0.0380 { 0.0392 | 0.001 | 0.002 | 1.08 | 0.375 | 0.292 | 0.0002 | 0.014
0.05 |-0.1179 { 0.1293 | 0.011 | 0.015 | 1.30 | 0.373 | 0.292 | 0.007 | 0.053
0.5 |-0.3244 | 0.3967 | 0.072 | 0.129 | 2.41 | 0.361 | 0.278 | 0.193 | 0.302
1.0 |[-0.4115|0.5156 | 0.104 | 0.212 | 3.37 { 0.351 | 0.266 | 0.447 | 0.561
4.0 |-0.5844 | 0.7435 | 0.159 | 0.435 | 7.95 | 0.321 | 0.224 | 1.813 | 1.848
5.04 | -0.6109 | 0.7763 | 0.165 | 0.474 | 9.36 | 0.315 | 0.215 | 2.225 | 2.225
6.0 |-0.6302 | 0.7998 | 0.170 | 0.504 | 10.6 | 0.310 | 0.208 | 2.588 | 2.553
10 |-0.6835 | 0.8627 | 0.179 { 0.590 | 15.6 | 0.295 | 0.186 | 3.959 | 3.768
20 |-0.7480 | 0.9350 | 0.187 | 0.699 | 26.8 | 0.273 [ 0.155 | 6.798 | 6.199
30 |[-0.7818 | 0.9726 | 0.191 | 0.760 | 37.3 | 0.263 | 0.140 | 9.066 | 8.122
40 | -0.8047 | 0.9999 | 0.195 | 0.805 | 47.2 | 0.259 | 0.134 | 10.767 | 9.666

The maximization problem, as seen previously, leads to solving the equation

|G — AB| = 0 where G = C — B2 From (2.119) and (2.120) the matrix G

g 0
0w

where p, = 6(16d — 24c + 9a) — 9(328 — 48a + 9)% and g, = 2(36d — 60c +
25a) — (728 — 120a + 25)2. So, the equation |G — AB| = 0 leads to two linear

is given by

equations in A given by

6(16d — 24c + 9a) — 9(328 — 48a + 9)2 — 3A(328 — 48a +9) =0
2(36d — 60c + 25a) — (728 ~ 120 + 25)2 — A(728 — 120a + 25) = 0.

(2.164)



Solving these equations we obtain

_ 2(16d — 24c + 9a)

A =
17 (328 — 48a + 9)

—3(328 — 48a +9) (2.165)

and

2(36d — 60c + 25a)

Ao =
27 (128 - 120a + 25)

— (728 — 120a + 25). (2.166)

We now assume that ); is the maximum eigenvalue and minimize

0'2 2 1+ (a—n{) 7'2/\1 . ~
max Lp(f,&) = (‘;) {T} (2.167)

with respect to the density m(x), subject to the constraints (2.125). Under these
constraints the matrix B is fixed. So that minimizing (2.167) is equivalent to
minimizing

[1(41: - 3)?m*(z)dz.

2

This problem has been solved in Section 3.2.1 and the minimizing density is

given by (2.129). Using (2.134), we then choose a and 3 to minimize

_ w[(326 — 48a + 9) — r(8a — 3) — ] ) o
[B| 1{t/+ (326 —48a + 9) —3(32ﬂ—48a+9)} (2.168)

for fixed values of v over the range (2.138) with r, ¢ and w satisfying (2.141) where
|B| = 3(328—48a+9)(728—120a+25). Also, the minimizing a and 3 is choosen
such that the inequality A{(mq(z)) > A2(mo(z)) is satisfied. Some numerical
solution to this problem is shown in Table 3. We observe that A(mo(z)) >
A2(mg(z)) for values of v > 5.04 and fails otherwise. The results for D-optimality

are also summarized in the following theorem:

Theorem 2.8 For B = (a,8) and } < 2a® < B < a <} define the density

r t

(42 —3) (dz—3

mo(z;B) = w (1 -



Table 4: Some Optimal Parameter Values for Apaz = A2

v k { r t w a B A A2

0.005 | -0.0670 | 0.0637 | -0.003 | 0.004 | 1.09 | 0.372 | 0.287 | 0.021 | 0.0002
0.05 | -0.2240 | 0.1938 | -0.030 | 0.043 | 1.36 { 0.364 | 0.278 | 0.078 | 0.008
0.5 |-0.6880 | 0.5021 | -0.186 | 0.346 | 2.81 | 0.345 | 0.253 | 0.404 | 0.197
1.0 | -0.8883 | 0.6207 | -0.268 | 0.304 | 4.17 { 0.334 | 0.239 | 0.720 | 0.445
5.0 |-1.3249 | 0.8711 | -0.454 | 1.154 | 13.9 | 0.292 | 0.180 | 2.796 | 2.230
10 |-1.4751 | 0.9595 | -0.516 | 1.415 | 25.4 | 0.270 | 0.148 | 4.975 | 4.033
20 | -1.5987 | 0.9999 | -0.599 | 1.599 | 45.1 | 0.262 | 0.137 | 7.450 | 6.343

where the non-negative constants w = w(B), r = r(B), t = ¢(B) are determined
to satisfy (2.125). Then mo(z;B) minimizes f;f(ﬁl:z: ~ 3)2’m?%(z)dz for fized B.
Define Bp to be the minimizer of (2.168). Then mo(z;Bp) is minimaz robust
for Lp for those values of v for which \{(mo(z;Bp)) > Ax(mo(z;Bp)). The
eigenvalue inequality holds for v > 5.04.

Proceeding as in Section 3.2.1 we find that no minimax solution exist for v
< 5.04. In Table 4 we present some of the parameters when A,z = A, was
used. An approach similar to the discussion at the end of Section 3.2.1 can be
adopted to overcome this difficulty. We observe that as the size of n becomes

larger and larger, one would require 72 to be of the order of n~! (i.e 72 = O(1)),

n
so that the error due to random variation and that due to bias will be of the
same magnitude. In this case, v = ’—1‘% will be bounded away from 0 as n — oo.
That is, v >> 0 as n — o0. Thus the lack of definitive results for v near zero

isn’t a problem.



B anibhe bl

e S di A ol

Chapter 3

Optimal Weights and Designs for Multiwavelet
Regression Models: Weighted Least Squares

1 Preliminaries

In Chapter 2, we discussed briefly the relationship between the nonparametric
local averaging procedures and the least squares method. We noted that if the
weights are positive and uniform then the local averaging procedure is equivalent
to the ordinary least squares method which we used to estimate the parameters
in the wavelet regression model defined in Chapter 2. In this chapter we use
the local averaging procedure with positive weights. That is, the weighted least
squares regression method. The problem is then to find minimax weights and

designs under the wavelet regression model :

Elylz] = q'(z)Bo+ f(z) (3.1)
y(z:) = E(ylz:) +«i, (3.2)

where f(z) € F,

F={f@): [ F@dz < 7, [ a(e)fa)de =0}

and the errors ¢;, (i = 1,2,....,n) are uncorrelated with mean 0 and constant
variance o2. A similar problem has been considered by Wiens (1996) for approx-
imately specified multiple and polynomial regression models with heteroscedas-
tic errors. We have already mentioned one of the main results of that report in

Chapter 1.



The main results of this chapter are presented in Theorem 3.1, Lemma 3.1
and Theorem 3.2. We find that for the Haar model the optimal design and
weights are both uniform under the restriction of unbiasedness. This translates
into requiring the product of the optimal design and weights to be the uniform
density. We begin with a mathematical formulation of the problem we shall be
discussing in this chapter.

Problem

Find optimal weights and design if weighted least squares

regression is used to estimate the parameter fq.

Applying weighted least squares regression the estimate of 3o can be expressed
as

BWLS = (i q(xi)qT(zi)w(zi)) (zn: q(z;)w(x,—)y(:z:,-)) . (3.3)

=1

In matrix notation, we can write Swrs as

Bwrs = (QTWQ)™H(QTWy) (3.4)
where
QT = (a(z1),q(z2), - alzn))
W = diag(w(z1), w(z2), s w(T0))
and

y = (y(zl)vy($2)7 """ 7y(zn))

Using (3.2) we have that
Bwrs = (QTWQ)'QTW(QB +f(z) + ¢) (3.5)

where f7(z) = (f(z1),.... f(zn))-
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Let £(z) be the discrete design measure on the design space defined by (1.3).

Then, we can write expression (3.5) as

Bves = B+ B + 2 3 alaJu(z)e(a) (36)
where
B = B(w,€) = QTWQ q(z Jw(z)dé(z)
b =b(w, f,£) = QTWf = / z) f(z)dé(z)

From (3.6) the bias and covariance matrix of the estimate Bwrs are
R 2
bias(Bwrs) = B~'b, and cov(Bwrs) = %—B“DB“ (3.7)
where

D = D(w,€) = zq(x. zw(:) = [ a(z)a” ()w?(z)dg(2).

t—'l

It follows that the mean squared error matrix of BwiLs is
2
MSE(Bwes) = B-'bbTB~! + fn—B-‘DB-l. (3.8)

The loss function of interest in this study is the Integrated Mean Squared Error
loss defined by

IMSE = /S E[(§(z) - Ely|z))?ldz = trMSE(Bwrs)A + /s Pz)de.  (3.9)
However, since q(z) is a vector of orthonormal wavelets, the matrix
A= / qa(z)q I (the identity matrix).
Thus the loss function becomes
o2
L(f,0.6) =bTBb+ =trB7D + /sz(x)dz. (3.10)
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Following Wiens (1992) it can be shown that sup; £(f,w,&) is not finite unless

the distribution function £(z) is absolutely continuous. If we define
& (z) = k(z) and p(z) = k(z)w(z), (3.11)
then

B =B(p(z) = Bw,6) = [ a()a’(@)w(a)k(a)dz

= [ al@)d" @)p(a)dz (3.12)
b =b(f,p(2)) =b(f,w,6) = [ a@)f(@)w(a)kz)dz

= [ a@/ @) (3.13)
D = Dw,p(a)) = D(w,€) = [dG (2)k(z)dz

= [a@ (2)p(c)dz.  (3.14)

By the transformation (3.11) the loss function now depends on w(z) explicitly
only through the matrix D. Also, since Bw s remains invariant if the weights are
multiplied by a scalar, (z.e. w(z) — aw(z)), we can assume that the average of

the weights is 1. By this assumption, p(z) is a density on S and

1.—./Sk(z)dx G (3.15)

s w(z)
The problems defined in the early part of this section can be discussed in the
following ways:
P1: Take a fized weight, wo(z) and minimize(over p)
the mazimum(over f) of the loss function.

P2 : Take a fized density po(z) on S and minimize(over w) the

mazimum(over f) loss. Then ko(z) = ﬁi(%.
P3 : Solve min, min, maz L(f,w,€). Then ko(z) = 242

wo ()

Problem P1 has been discussed for the multiwavelets constructed by Alpert

(1992) with uniform weights when NV is equal to 1 and 2. The simplest case was
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discussed in the case of NV = 2 due to the complexity of the eigenvalues arising
from the maximization of the loss function with respect to f. In the next section
of this study, we discuss P2 for these multiwavelets as well. We find that we are
able to obtain optimal designs for the general case due to the simplicity arising

from fixing the density po(z). Results from Section 2.1 of Chapter 2 show that
max L(fyw,€) = 71 + Apar + vtrB™2D) (3.16)
where A,z is the maximum characteristic root of GzB~2G? for
G=C-B? and C= /s q(z)q% (2)p?(z)dz.
Now
trB-2D = tr B~ /s a(z)q" (z)w(z)p(z)dz = /5 L(z)w(z)p(z)de  (3.17)
where [,(z) = q¥(z)B~%q(z). Therefore

max £(/,w,€) =7° [1 + Amar + ¥ /s lp(z)w(z)p(m)dm] . (3.18)

2 Optimal Weight and Design for Fixed
Density py(z)

In this section, we minimize (3.18) with respect to w(z) subject to the con-
straint (3.15) for fixed po(z).
Theorem 3.1 For po(z) a fized density on S, define

-2
[lpo(l')]%

where u is determined to satisfy (3.15) and S is such that [¢dr = 1. Define

we(z; u)

ug = fs po(z)[ly(2)]2dz. Then wo(z;ug) is the optimal weight for Lo and L.
The optimal design density ko(z; ug) is inversely proportional to wo(z;ug). If in
particular we take po(z) = v > 0, then Iy (z) = L,(z) = ||q(z)||* and wo(z; ug).

ko(z;ug) are optimal subject to the condition of unbiasedness.

S4



Proof : Define

wi(z) = (1 —t)wo(z)+ tun(zx)
o(t) = /;lpo(:z)w,(:zz)po(z)dz+u2 Mda: (3.19)

S wt(.z')

for wo(z), wi(z) satisfying (3.15) and an arbitrary multiplier u. Differentiating

®(¢t) twice with respect to ¢ we obtain

v = | (m(
o(t) = 2 Polz ;

Clearly, ®"(t) > 0. So, ®(t) is a convex function of ¢ which is minimized at ¢

wo(2))* ) (3.21)

) J(wi(z) — wo(z))dz (3.20)
)

= 0 if and only if ®'(0) > 0 for all wi(z). The equation below, obtained from
(3.20),

2

&'(0) = /5 (1,,o(z) -~ wé‘(z)) po(z)(wi(z) — wo(z))dz (3.22)

suggests that we choose wo(z) to satisfy the equation

2

o () — ?“(J =0, wo(z)>0. (3.23)
That is,
u .
AT 324

where u is determined to satisfy (3.15). Using (3.15), it is easy to show that
u= [ pol@)llpo(2)]Hda. (3.25)

It follows that the optimal weight under fixed po(z) is

fSPO(z [lpo(x ] dr (3 '76)
(o ()]

wo(z) =

ol B
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and the optimal design density is

o(a) = Pl .
) (e (e )P 20
[t can be seen from (3.26) and (3.27) that
wo(x) o [l (z)]”7 while ko(z) wotx). (3.28)
Substitute for wo(z) and simplify to see that
. 2
[, ol wo(@)po(a)dz = ( [l Epoladc) (3.29)

Therefore we have, from (3.18), that
. 2
min max L(f ,w, &) =712 [1 + Amaz + v (L[lm(x)]ipo(z)dz) ] . (3.30)

Now we take po(z) = v, where ¥ > 0 is some constant chosen such that po(z) is
a density on S. This choice of po(z) is equivalent to the side condition

of unbiasedness and results in (3.30) reducing to

2 L 2
min £(w,£) = min max £(f,w,6) = T ([[L(=)tde)  (331)

where
T(z)q(
biz) = TEHE,
That is,
2 1 2
min £(0,6) = = ([ [a"(@)a(e)ldz) - (3.32)
3 Examples

In our examples we will use the multiwavelets constructed by Alpert (1992)

with NV = 1 and 2. We recall that when NV = 1 these wavelets coincide with the
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Haar wavelet. To avoid trivialities, we assume (as in Section 2 of Chapter 2)
that if there is a point £o € S with q(zo) = O (e.g. q(1) = 0), then £{z¢} = 0.
Otherwise, since such a point o would contribute nothing to b, B or D, we

could remove it from S and work with the conditional design on S\{zo}.

3.1 N =1 (Haar Wavelet)

As usual, our design space is S = [0, ] which implies that ¥ = 1. Results for
P1, with uniform weights, show that for any z € [0, 1)

o’ (z)q(z) = 2™+

for the Haar wavelet basis of order m. [t follows that applying the above as-

sumption we have, from (2.94), that
L(z) =2 we(z)=1. ko(z)=1, =z € [0,1) (3.33)
and

-2m+10.2
muiln L(w,€) =

(3.34)
Thus we have :

Corollary 3.1 Let po(z) = v, v > 0 a constant, be a fired density on the
design space S = [0,1]. Let the components of the vector q(z) be the Haar
wavelet basis of order m. Then, the design and weight minimizing Lq and L4
are each uniform. In other words, ordinary least squares is optimal for estimating
the parameters of the mth order Haar regression model under the condition of

unbiasedness.

3.2 N = 2 Multiwavelet

For N = 2 the vector q(z), as a function of the order m of the wavelet basis

is given by

[02]
-1
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qg(-’") = (¢0(1‘)7 ¢1($)7 ‘2w0(x)7 2w1($)7 seey 2‘w5m.0(1‘)’ eee

sy 2w6m'2m-1($)7 2w{-m‘0(x)7 seey 2w;m'2m_l(z)) . (335)
Here, we have used the expression (2.111) with m = p to define the vector (3.35).

The results for m # p are presented later in this section. If we set

-m,0

aZ (z) = (2wo(2), 201(), oes 205 ™ (), -

2wy ™ T (@), 0] ™0(2), e 2™ T () (3.36)
then
a%(z) = (do(z), 61(2),a%(z)) - (3.37)
It follows that
T . — 2 12 T 5 o
qm+1(:v)qm+1(1:) = ¢0(-7-') + @1(1:) + a7n+1(z)am+1(1') (3.38)
where
2mtl—g
al 1(z)amei(z) = ap(z)am(z) + 2™ 30 w2z — k)
k=0
2mtl_g
+ 27 N wl(2™ iz — k). (3.39)
k=0

We now use the expressions for the primary wavelets swo(z) and ;wq(z) to obtain

al . 1(2)amn(z) = al(z)am(z) +

omtl § 3 {[1 =427z = k) [peime g a-emenes b))
k=0

[4(2m+lm . k) _ 3]21[2_(m+1)(k+;—),2—(m+l)(k+1))} +
2m+l_q

gm+1 Z {[6(2”‘"’1:2 - k) - 1]2[[2—(m+1)k,2‘(m+l)(k+%)) +
k=0

[6(2m+11: — k) —_ 5]21[2—(m+1)(k+%)'2—(m+1)(k+l))} . (3.40)

S8



We expand the first and third squared terms in (3.40) to obtain
31— 42"z — K)? =3 — 242" — k) + 4827 — )?
[6(27+ z — k) — 1] =1~ 12(2™'z ~ k) + 36(2™ 'z — k)2
Adding these expressions we have

3[1 — 4(2™ 1z — k) + 627z — k) — 1]?
=4 —36(2™'z — k) + 84(2™ 'z — k)2 (3.41)

Similarly,

3[4(2™* 'z — k) =32 + [6(2" 'z — k) — 5]

=52 — 132(2™*z — k) + 84(2™* 'z — k)2 (3.42)
Using (3.41) and (3.42) in (3.40) we have that

al, (z)amsi(z) = al(z)am(z) +

am+l_1

™+l N [4-36(27F' s — k) +
k=0
84(2m+lg — k)z]I[g—(m+l>k.2—("‘+”(k+%)) +
gm+1 ngfl[sz —132(2™* Mz — k) +
k=0
84(2™*1z — k)2]1[2.-(m+1)(k+%)'2—(m+l)(k+l))' (3.43)

Now, for any z € [0, 1) we can find one and only one value of k,0 < k < 2™*! -1,

say k., such that
re€ [2‘<m+”k..2“<"‘+”(k t £)>
? - 2

or

€ [2—(m+1)(k‘ + é)’?‘—(m-(-l)(k- + 1))
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since the intervals are disjoint. So we can write
T — aT

Ant1(Z)ami1(z) = ag(z)am(z) +

2mtlg ~ 36(2™ 1z — k) +

84(2m+1$ - k‘)2]1[2"("""1)k.,2'("‘+l)(k.+%)) +

2mH[52 — 132(2™ 'z — k) +

Then, it can easily be verified that

qL(z)qm(z) = 4(3z* —~ 3z + 1) [y + i e(z;j) (3.45)

=0

where
e(z;j) = 2[4 — 36(2z — k.) + 84(2z — k.)2]1[2_,k_'2_,(,\__+%)) +
2[52 ~ 1322z — k) + 842z — k) Ny s 1y 2msgrry). (346)
It follows from (3.45) that
Q% (z)am(z) = G _1(2)am-1(z) + e(z;m). (3.47)

Next, we state and prove a theorem which provides a closed form for the squared

Euclidean norm of the vector q,,(z) for an arbitrary order m.

Theorem 3.2 Let the components of the vector q(z) be the multiwavelets of

order m with N = 2. Then,

2am+l_ g

lam(z)|* = LZ Im(z; k) (3.18)
=0

where

In(z; k) = 2™¥3[12(2™ )2 — 6(2™z)(1 + 2k) +

(1 + 3k(k + 1)][[2—(M+l)k'2—(m+l)(k+]_))' (349)
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The squared norm can also be written as,

2 _ gm+3 ' - - 3.5
llam ()| ooz, [ 3hom (5 k)] (3.50)
where
hom(z; k) = (2™ 2 — k)(k + 1 — 2™ z). (3.51)

Proof : If (3.48) is true, it implies that from (3.38) we can write

2mtlg
oi(z) + 3 (z) + = Y lu(zik). (3.52)
k=0
It then follows that
2m+2_1 2m+l_l
al . (z)ame1(z) — ak( = > Amp(z7) = Y l(zs k). (3.33)
r=0 k=0
Combining (3.38) and (3.47), it is easily verified that
al  (2)amn(z) — aL(z)an(z) = qhy1(2)qme1(z) — af(z)am(z)
= e(z;m+1). (3.54)

Therefore from (3.53) and (3.54), showing that (3.48) holds is equivalent to
showing that

2mt2_) amtl_y
> lmp(zir) = Y ln(zk) =e(zsm +1). (3.53)
r=0 k=0

So, if we are able to show that the identity (3.55) holds then it follows that (3.48)
also holds. It is not too difficult to see, from (3.55), that for an arbitrary value

of m,ifz € [2‘(’"*'2)7',2‘("‘*”2)(7' + 1)) , r=0,1,2,....,2m*2 — | then

if r is even

b=k ={ ? (3.56)
=L ifris odd
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We shall show that (3.55) holds for r even and r odd. Now, if z € [2‘('"*'2’7',

2-(m+2)(p 4 1)) and r is even we have

L 41(2)ams1(2) = &L (2)am(2) = bnsa(zi7) = In (21 F)
= 2™+ g12(2™ 1 2)? — 6(2™ M z)(1 + 2r) + (1 + 3r(r + 1))]

_9mg [12(2%)2 —6(2™z) (1 + %r) + (1 + 33’3 (g + 1))] . (3.57)
We simplify to obtain
o7 1 (2)amsa(2) — & (2)an(z) = bnss(2i7) = b (73 )
= gm#3 [34(2%)2 — 6(2"2)(3+7r) + (1 - ———3"(6: 7"))] . (359)

Also, from (3.46) we have that

2
e(zim + 1) = 2™+ [4 — 36 (2'"+1x . ;) +84 (2m+‘x - g) ] . (3.59)

4 r4

We simplify (3.59) to obtain

(3.60)

e(z;m+1) = 2m* [84(2%)2 ~6(2"z)(3 + Tr) + (1 + 3"(6: 7r))] .

Comparing (3.58) and (3.60) we observe that

Img1(z;7) = ln(z; k) = e(z;m + 1)

when r is even and z € [2‘(”‘+2)r,2‘('"+2)(r + 1)). Therefore, we have shown
that (3.55) holds when r is even and z € [‘2‘(’"“’2)7', 2-(m+2)(p 4 1)). Now if
€ [2‘(’"*’2)7',2‘('"*’2)(7' + l)) and r is odd then

L1 (B (2) = BE(E)am(2) = bnsa(2i7) b (25

= 2™+ 8[12(2™* )2 —~ 6(2™ z)(1 + 2r) + (1 + 3r(r + 1))]

L. [12(2”‘71;)2 —~6(2™z) (1 + 2(’"; 1))

<

+(1+3(r2_1) (r;1+1))]. (3.61)
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Simplifying, we obtain

a1{x+l(x)a1n+l(z) — al(z)am(z) = lna(z;7) — Im (17; - :.2— 1)

= g3 [84(2’"1:)2 — 6(2"z)(4 + Tr) + (7 i 3r(48 Ex 7r))] L (362)
We also have, from (3.46), that
e(z;m + 1) = 2™+ [52 ~ 132 (2m+‘x S 1)
+84 (2”‘+1z - 1)2]
= 2™+3 [84(2™z)? - 6(2™x)(4 + Tr)
N (7+3r(48+7r))}_ (3.63)

Again, comparing (3.62) and (3.63) we see that
lnti(zi1) ~ ln(z: k) = e(z5m + 1),

rodd and z € [2“(’"“‘2)r,‘2‘(”‘+2)(r+ 1)). Implying that, (3.55) holds when r
is odd and = € [2‘("“"2’7', 2-(m+2)(p 4 1)). We therefore conclude that (3.53)
holds for all r, (r =0,1,2,...,2™*2 — 1) which completes the proof for (3.48).

Next, to simplify notations, let us set y = 2™z and define
gr(y) = 129% — 6(1 + 2k)y + (1 + 3k(k + 1)). (3.64)

At the endpoints of the interval, z = 2=(™+Vk and z = 2-(m+1)(k + 1). When ¢
=2-(m+f y = £ and gk(%) = 1. Also, when z = 2-(m+(k +1), y = & and

gk(ﬁ‘;—‘) = 1. Therefore we have that

k k+1 g s
gk (§)=gk( 3 )=1 (3.65)

which is also the maximum value of gi(y) attained at the extremes of each

interval. We can then express gi(y) as

k
9r(y )—1+1)( —’2‘)
=1+3(2y — k)(2

(3.66)
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and write the function [,(z; k) as follows

Im(:l‘; k) = 2m+3[1 + 3(2m+l.'l: - k)(2m+12: - (k + 1))]I[z-(m+1)k,2—(m+l)(k+1))

= 2™F3[1 — Bhm(z; k)| I jk<om+iz(kir)) (3.67)

where hn,(z;k) = (2™*'z — k)(k+ 1 — 2™*!z). As a function of y, I/, can be

written as
In(y; k) = 2™P3[1 +3(2y — k)(2y — (K + 1))]1[;5;). (3.68)
Then, it is not too difficult to see that ||qm(z)[|? can be written as
llam (z)[]? = 2™ mingckcomtr—1[l — 3hm(z; k)] (3.69)

Lemma 3.1 Let the variable y satisfy the relationship described by the model
(3.2). Let the design space S be normalized such that [sdr = 1. Let the com-
ponents of the vector q(z) be the multiwavelets of order m with N = 2. If
the density po(z) = v := ([sdz)™', then the optimal weight wo(z) and design
minimizing Lo and L4 is given by

= qu("_jm and ko(z) = HEI’ZL)” (3.70)

respectively, where ||qm(z)||® is defined by (3.48) and

wo(z)

2m+l_g %
Km = [llan(@)lldz = [, [ > zm(m;m‘ dz

k=0

= 5520602 (2‘"‘:’”) : (3.71)

Proof : The fact that the optimal weight and design are

Km m T a3
wo(z) = m and ko(z) = “ilC(—)” (3.72)
respectively, where
2m+l_l .
ICm=/s||qm(:z:)Hd.1:= > /S[lm(a:;k)]zdsc (3.73)
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is a direct consequence of Theorems 3.1 and 3.2. Since the intervals are disjoint,

the expression (3.73) for K,, holds. To prove (3.71) we use (3.49) to write K,

as

am+l g 2—(m+1)(41)

=y ¥ I [gm (2 k)],

—(m+1)

where
Gm (z; k) = 3(2207+1)) 22 — 3(2™F1)(1 + 2k)z + (1 + 3k(k + 1)).
To simplify notations, let us define
a. = 32X b = —3(2™ ) (1 +2k) and c. = (1 + 3k(k + 1)).
Since
> 0 and A = da.c. — b2 = 3(22"+1) > 0,

it follows, from Gradshteyn and Ryzhik (1980}, that

(2a.z + b.)

4a,

lgm (5 R +

T

Substitute and simplify to show that when z = 2-(m+l

9
oo (22,

/[gm(z; k)7dz = NZN

2a.z + b. = —=3(2™*") and g (z;k) = 1.
For £ = 2-(m+1)(k 4 1), we have
2a.z + b. = 3(2™*!) and gnm(z; k) = 1.

The fact that g,(z;k) = 1 at the boundaries has been shown in the proof to

Theorem 3.2. Therefore, by substitution we can verify that

(m—

\/_

(m=3)

= 27[4\/'+ 2Arsh(V/3)] = 5. 2(2""2‘3).

Kn =

[4V3 + Arsh(V3) — Arsh(—V/3)]
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We observe that the value of K, is independent of k. The lemma that follows
provides a justification for this. We show that once the value of [,,(z; k) is known
in any of the intervals, it is completely determined over the interval [0, 1|. Figure

3 shows a plot of the squared norm of qu(z), we(z) and ko(z) for m = 1.
Lemma 3.2 The squared norm ||qn.(z)||? satisfies the inequality,
2™ < |lgm(2)|2 < 2™+3, for allz €0,1). (3.74)
The function l,(z; k) satisfies the identities,
In(z+ 27 b 1) = (23 k), k& =0,1,2,.,2™F -1 (3.75)
and

In(l = z;7) = ln(2; 2" = (r + 1)), 7 = 0,1,2,..,2™ ~ 1. (3.76)

Proof : First, we show that in each interval [2-(m+Dk 2-(m+U(k 4 1)), (k =
0,1,2,...,2m+! —1), the function /., is a minimum at the midpoint of the interval.

From elementary calculus, the stationary points of gi(y) must satisfy

d
—gi(y) =24y -~ 6(1 + 2k) = 0.
dygk(y) 4y —~6(1 +2k)=0

This implies that

or in terms of =

= 9-(m+1) (1 +2k).
2

Since d%gk(y) > 0, it follows that the point y = 1—‘{:‘% is a minimum point of

gr(y) with minimum value g (_i'_l 42’=) -

1 This shows that, in each interval
[2-(m+b) g, 2-(m+1)(k 4 1)), (k= 0,1,2,..,2™*! — 1), the squared norm of qu(z)

is a paraboloid (see Figure 3) with a minimum value of 2™*! attained at the
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midpoint 2~(m+1) (-1—"—'23'5) of each interval and a maximum value of 2™*+3 attained
at the endpoints 2-(™+1)k and 2-(m+1)(k+1) (see (3.67) and the discussion before
and after (3.67)). That is,

2+ < lgm(z)]]? < 2™*2, forall z € [0,1). (3.77)

Next, we show that the identity (3.75) holds. We observe that if z € [2~(m+Dk,

Figure 3: A Plot of ||q(z)]|?, Optimal Weight and Density for m = 1: (a)
lla:(z)||? 5 (b) wo(z) ; (c) ko(z)-

oyt rom
. . . "

2-(m+(k 4 1)) then £ 4 2-(m+1) g [2=(m+1)(k 4 1),2-(m+)(k 4 2)), (k =
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0,1,2,..,2™*! —2). So transforming z to =z + 27(™*!) implies y = 2™z be-
comes y + 3 and k takes the value k + 1. Based on the above, we can show
that
1
Gk+1 ('y + :)‘) = g(y)-

In terms of the function {,, this means that
ln(z + 27 k4 1) = [ (23 k).
The second identity,
In(l=z;7) = ln(z;2™' = (r + 1)), r = 0,1,2,..,2™ = |
follows from the fact that,

[[2-(m+l)r,2—(vn+l)(,-+1))(1 - -75) = [[1_2—(m+1)(,.+1)’1_2—(m+1),.)-

From the first identity (3.75), we can see that for z € [0,27(m*1))

[n(2;0) = Iln(z 427"+ 1)
= la(z+227):2) = (z+3 2-(m+1). 3)

........

= = ln(z + (2™ = D270mHigmHt ) (3.78)

This implies that the value of the squared norm of the vector qn(z), ||am(z)]]%
is completely determined by its value in only one of the intervals [2-(m+D)
2=(m+1) (k4 1)), (k=0,1,2,..,,2™*! —1). The second identity (3.76) provides
the following relationships :
m = 0:
lo(1 — z;0) = lo(z;1).

h(1—z;0) = h(z;3); L(l —=z;1) = li(z;2).
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l(1 = z;0) = L(z;7) 5 (1 —z;1) = lx(z;6)
lo(1 = z;2) = la(z;5) 5 (1 —z;3) = l5(x;4).
and so on. This shows that ||gm(z)||? is symmetric about z = } (see Figure 3).

[t follows that the optimal weight and design derived using the multiwavelets

W
.

when N = 2 is also symmetric about z =
As at (3.35) the vector q(z) was defined for m = p and the results that

followed were based on this definition. Theorem 3.3 provides the results for m
# p-

Theorem 3.3 Let the variable y satisfy the relationship described by the model
(3.2). Let the components of the vector q(z) be the N = 2 multiwavelets with
m # p. Then,

llam ()11 + H(z;m,p) form <p

|la(z; m, p)||* = {
llap(z)||* + D(z;m,p) form >p,

where
H(z;m,p) = H(z;m,p—1)+bl(z;p), H(zim,m)=10
D(z;m,p) = D(z;m —1,p) +b2(z;m), D(z;p,p) =0.
and ||qm(2)|?, |lap(z)|? satisfy (3.48). For k = 0,1,..,2°*' — 1 and ¢ €
[2-(P+V g 2-(+1) (K 4 1)), bl(z; p) is defined by
‘ k 2 rp
bi(z: p) = 2P [6 (2”:1: - 5) - 1] 2, if k is even
2 [6(2z — 55L) 5], ifk is odd.

For k = 0,1,...,2™%! — 1 and z € [2-(™*Vk, 2-(m+ (L + 1)), b2(z;m) is

2m [1—-4(2’"1‘—%)]2, if k is even
om [4(2mz = 558) = 3]°, ik is odd.
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Proof : For m # p, we have,

q’(z;m,p) = (¢0($)v¢1(1?)’2wo($),2w1(l‘) 2wy ™(z), ...
e 23 ™ (2), 207 P(2), oy 2w PN (2)) (3.79)
So that,
m 27-1
lla(z; m, p)II* = #3(z) + ¢i(z) + D D 22wi(2z ~ k)

7=0 k=0

+Z Z Law?(z — k). (3.80)
7=0 k=0

Let us, for a moment, assume that m is less than p. Then, we can write (3.80)

as
P 27-1 )
lla(z;m, p)I® = llam(@)I*+ Y. Y 2wi(2z k). (3.81)
j=m+1 k=0
Define,
2-1 ’
bl(z;j) = 2wtz — k),
k=0

and substitute for sw;(2’z ~ k) to obtain

27-~1

JEHEEDY {[6(2% = k) = UPlesims(ied)) +

[6(91‘7: — A} 5] 1[2—:(k+ )2-J(k+l))} (3.82)
This implies that
p
lla(z; m, p)II? = llam(2)|P + D bl(z; ). (3.83)
j=m+l

Following previous discussions we can find some &, 0 < k < 27 — 1, say k., such

that

b1(z; ) {[6("’1' = k) = Ui ams(rrt)) +

[6(2'z ~ k.) - 5]° I[z—:(k +1).2 "J(k.+l))}' (3.84)
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It is not too difficult to see, from (3.84), that for & = 0,1,....2°*! — 1 and
z € [2(P+VE, 2-(P+(k 4+ 1)) we have,

%, if k is even _
ke = (3.85)
kL i kis odd
and
2?16 (2Pz — £) — 1|7, if kiseven
bl(z;p) = [ ( 2) ] ) (3.86)
2 [6 (2P — £5L) — 5], if k is odd.
Alternatively, for { = 0,1,2,....,27 — 1, we have
w62k — 1) — 17, ifze[27P 2~ + 1
ey = | TOEm0=1E itzel L)
2 [6(2°x —[) —5]°, ifz e 2720 +1), 27P(1 + 1)).

If we define the recursive relation,
H(z;m,p) = H(z;m,p— 1) + bl(z;p), where H(z;m,m) =0, (3.88)
then, for m < p we have
lla(z; m, p)II” = llam(z)|1* + H(z;m, p) (3:89)

where b1(z;p) is given by (3.86) or (3.87) and ||qm(z)||? is defined by (3.48).
On the other hand, if m > p we have, from (3.80)

lla(z;m, p)II* = llap()I + > b2(z; ), (3.90)

j=p+l1

where
b2(z; ) = ¥ {[1 ~ (22 = k) st s (s ) +
[4(27z — k.) — 3]21[2_,(M%)',_,_,(k_“))} (3.91)

for some k. € (0,1, ...,2 ~1). From previous discussions, it can be easily verified

that for m > p,
lla(z; m, p)|I* = llap(2)II* + D(z;m, p) (3.92)
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where
D(z;m,p) = D(z;m — 1,p) + b2(z;m), D(z;p,p) =0, (3.93)
and for k =0,1,...,2™* —1 and z € [27(m+Vk, 2-(m+U(k 4 1)),

m [1 -4 (2’":1: - g)]z , if kis even

om [4 (22 — 551) ~3]°, if ks odd. (394

b2(z;m) = {
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Chapter 4

Applications

1 Preliminaries

Thus far we have only constructed optimal designs for wavelet approxima-
tions to the nonlinear regression model (4.1) without suggesting strategies for
implementing these designs. This chapter is devoted to strategies for implemen-

tation. We recall that the model of interest is
E(ylz) =n(z), €S
approximated by
E(ylz) = n(z) = q’ ()0 + f(z) (4.1)

where f(z) is the remainder term arising from the approximation and the ele-
ments of the vector q(z) form a wavelet basis on the design space S.

In the introduction to Chapter 1 we mentioned that the precise mathematical
structure of n(z) need not be known in order to apply wavelet approximation
techniques. We only need to decide on the appropriate wavelet basis to be used
and the order m of the approximation. In situations where the precise form
of 7j(z) is assumed known with parameters having some physical interpretation,
experimenters may wish to consider using the techniques outlined in this work to
design their experiments rather than choosing their design points in an arbitrary
fashion. Then the assumed form of p(z) can be used to estimate the parameters

after the experiment has been performed and measurements taken at the design

points.
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The design space S we have considered in this study is the unit interval, [0, 1].
To apply our results to a more general design space 5™ = [a, b], we transform

any point z* € S* to z € S by,

T —a
sz = ) 2
T z =5 (4.2)
So that if z; is an optimal design point in S, then
z;=a+ (b—a)x; (4.3)

is optimal in S*.

2 Multiwavelets with Ordinary Least Squares

2.1 N =1 (Haar Wavelet)

We have shown in chapter 2 that the design which minimizes the trace of

the covariance function is that which places uniform weight 2-(™*1!) in the 2m+!

intervals
{[27 Dk, 270D (k4 1)) hmo,.amti o1 (4.4)

We also showed that this design is A-, D-, and G-optimal. Introducing the bias
term, we found that the optimal design density is the uniform density.

To implement this design, the number of design points n has to be a multiple
of the number of sub-intervals 2™*!. The points are then selected uniformly
from each of the 2™*! intervals. In the literature, if the design is uniform over
[—~1,1], the n-observation design is choosen to satisfy

2(i — 1)

L i=12.n (4.5)

i

This transforms to
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on [0,1]. However, this will include the point z, = | for which q(z,) = 0.
Since this point does not contribute to the estimation of fo we avoid z, = 1 by

choosing the points as follows:

L i=1,2,....n (4.7)

on [0,1], where n = 2™*!a for some integer constant, a > 0. One approach will
be to take "a” repeated measurements at z;’s choosen for n = 2™+!. It turns out
that the optimal n-observation design proposed by Herzberg and Traves (1994)
is a special case of (4.7) with @ = 3 and m = 2.

Another approach for selecting uniform design points will be to use the fact
that ¢ € {[2-0m*Vk, 2-("+O(k + 1))} implies z + 270 ¢ {[2-(m+D(k +
1), 2-m+U(k 4+ 2))}. So, for n = 2™+! we first choose any z; € [0,27(™*1)

then subsequently we choose
zi=zn,+ (@ -1)270F i =2 . n (4.8)

If we choose z; = 2-(™*2) then we have (4.7) as proposed previously. More

generally, if n = 2™*!1a we propose to choose,

T € [0, T:L”) , and (4.9)

. 2—(m+l) .
;=1 + (2 - 1)-—7—', 1= 2,...,72.

One can also consider taking "a” repeated measures at z;’s choosen from (4.8).

If in (4.9) we take z; = 2—(:+2), then we obtain (4.7) as before.

2.2 N = 2 Multiwavelet

Instead of the Haar wavelet basis, one may decide to use the multiwavelets
of order m with NV = 2 in the approximation (4.1). Under the transformation,

y = 4z — 3, we showed that for m = 0, the minimax design £, has density



That is,

0, k<y<l
po(y) = (4.10)
2(1-t~4%), -1<Sy<k I<y<l

4 v

for some k and [ satisfying —1 < k < 0,0 < [ < 1, where w, r and ¢ depends on
v = {% Some optimal values of w, r and ¢ are given in Table 1 for fixed v. As
v — 0, k, | — 0 and po(y) — 1, the uniform density. On the other hand, as
v — oo, k — 1 and | — —1. However, k goes faster to 1 than [ goes to ~1.
That is, the design chooses most of its points at the middle of the interval and

a few at the extremes.

To implement the minimax design with density po(y) we randomly sample
design points from & as follows:

(i) Let P(y) be the distribution function of y corresponding to po(y).

(1) Select
2—1

47?.1

yi=P-1( ), i=1,2,...,n1.

(iii) Then, z; = gi;-"’-, i=1,2,...,n.
We observe that choosing y € [—1,1] is equivalent to choosing = € [% 1]. Due
to symmetry about z = % the points in [0,% can be obtained by using the fact
that (1—z) € [0, %] for every z € [%, 1]. So, if we require a total of n points, we
first choose n; = 5 points in [%, l] then the other no = n; points are obtained
by symmetry.

For v = 5, we have

if —1<y<—0.5933
poly) =4 * v 717 nd 07234 <y <1 (4.11)
0, —0.5933 < y < 0.7234.

7.975 (1 __0.1301 __ 0.4292)

A set of Q- and A-optimal design points randomly selected as described above

for n; = 16 (n = 32) are (approximated to four decimal places):
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0.5335 | 0.5767 | 0.5561 | 0.5028 | 0.599 | 0.5479 | 0.9954 | 0.9745
0.9857 | 0.5653 | 0.5205 | 0.5269 | 0.9607 | 0.5404 | 0.5144 | 0.5085

When v = 50, the Q- and A-optimal density is

48.17 (1 01469 __ 0.7728) if —1<y<-0.8087
: v and 0.9556 <y < 1 (4.12)
0, —0.8087 < y < 0.9556.

po(y) =

The points randomly choosen from the distribution function of this density are:

0.5196 | 0.5125 | 0.5326 | 0.5009 | 0.5027 | 0.5171 | 0.5223 | 0.9948
0.5045 | 0.5147 | 0.5104 | 0.5378 | 0.5064 | 0.5083 | 0.5286 | 0.5253

Similarly, we choose D-optimal design points for » = 6 and 40 with n, = 8 and

16 respectively,

0.5345 | 0.9566 | 0.5616 | 0.5467 | 0.5138 | 0.5045 | 0.5237 | 0.9902

and

.5308 | 0.5166
5273 | 0.5215

0.5009 | 0.5243 | 0.5190 | 0.5026 | 0.5350 | 0.5044
0.5143 | 0.5122 | 0.5062 | 0.5101 | 0.5410 | 0.5081

3 Multiwavelets with Weighted Least Squares

In Chapter 3, we constructed optimal weights and designs for multiwavelet
approximations when the method of estimating the parameters is weighted least
squares. For N = 1, we found that the optimal weight and design were uniform.
We have discussed strategies for implementing uniform designs in Section 2 of
this chapter. Our discussion in this section is therefore restricted to strategies for
implementing the optimal weight and design constructed for N = 2 in Section

2.1.2 of Chapter 3.
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We recall that in Section 2.1.2, we found the optimal weight and design to

be,

Km l|am(z)l|
WolT)= ——————, k T})= ——F——
"= Nant@n © = K.
where
(m=3) et
K. = 5.520692 (2 ; ) and [|gm(@)| = 27 3 gm(z: k)
k=0
with

gm(l‘;k) = [0-132 + b.z + C-][[2—(m+1)k,2-("'+1)(k+1))’

a. =3 (22"}, b= -3 (2m+1) (1 4 2k), ca = L+ 3k(k + 1).

To implement the design and weight, we select n design points from the distri-
bution function of k¢(z), then evaluate the corresponding weights at the selected
points. For fixed m we proceed as follows:

(i) Let Ko(z) be the distribution function of z corresponding to ko(z).

It can be shown that

2mtl g 9
R _ (m+3) [(2a.y + b
Ko(z)=K;' >, 2 [E__i/_a_)_ gm(y; k)
k=0 =
1 2a.y + b.
+ ——Arsh (———)] .
8\/a. V. [0,z]n[2=(m+ 1k, 2~(m+1) (k41)]

(i) Select z; = Kg' (42L), i=1,2,..,n.

A set of n = 16 and 24 randomly choosen points for m = 0 and 1 respectively
are shown in Tables 5 and 6.

Sometimes, experimenters partition the design space S into two subspaces S;
and S, such that S = S$;(JS2. Then, based on prior experience and knowledge
of the experiment, they perform more experiments at points choosen from. say
51, and the remainder at points choosen from S;. That is, they choose n; design
points from S; and n; from S; where ny >> n; and n = n; + n,. Such designs

are common in chemical kinetics and drug related experiments in pharmacology.

The strategy we propose for choosing the design points as described above is:

108



Table 5: Randomly Selected Design Points and Weights for m = 0, n = 16

Design Point | 0.98 | 0.928 | 0.023 | 0.793 | 0.708 | 0.523 | 0.868 | 0.478
Weight 0.859 | 0.932 | 0.861 | 1.150 | 1.151 | 0.860 | 1.034 | 0.859
Design Point | 0.428 | 0.293 | 0.573 | 0.133 | 0.208 | 0.633 | 0.073 | 0.368
Weight 0.932 | 1.150 | 0.933 | 1.036 | 1.151 | 1.035 | 0.934 | 1.033

Table 6: Randomly Selected Design Points and Weights for m = 1, n = 24

Design Point | 0.403 | 0.598 | 0.051 | 0.485 | 0.654 | 0.7 | 0.736 | 0.153
Weight 1.133 | 1.136 | 0.982 | 0.869 | 1.133 | 0.979 | 0.868 | 1.134
Design Point | 0.45 | 0.2 |0.097 [ 0.516 | 0.95 | 0.551 | 0.301 | 0.265
Weight 0.977 { 0.978 | 1.135 | 0.872 | 0.978 | 0.98 | 0.983 | 0.871
Design Point | 0.985 | 0.235 | 0.347 | 0.766 { 0.016 | 0.848 | 0.801 | 0.904
Weight 0.87 | 0.869 | 1.135 | 0.872 | 0.873 | 1.137 | 0.981 | 1.132

(1) Let Sy = [a,b1), S2 = [b1, ] and p1 = Ko(b1).
(2) Select n; design points from 5, to satisfy

(: = 0.5)p

; 1= 1,2,...,7’11.
ny

Iy = [(0—1 (
(3) Select the remaining n, design points from S; to satisfy

) — 0.5)(1 —
na

= K ((n2 ~J+038)p +(J — 0-5)) ,j

ng
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4 Some Examples of Multiwavelet
Approximations

In what follows, we consider some nonlinear models commonly used in prac-
tice and see how well the wavelets used in this work can approximate these
models. We also show how well the multiwavelet regression models fit a data
set with no underlying pre-specified model. For each of the nonlinear models we
proceed as follows:

(i) Generate n values of the nonlinear function 5(z,8) for fixed 6

and z;, 1 = 1,2,...,n, z € [a, b];

(ii) Transform z as in (4.2);

(iii) Fit the Haar wavelet regression model by ordinary least squares;

(iv) Fit the N = 2 multiwavelet regression model by weighted least

squares using the optimal weights constructed in Chapter 3;

(v) Overlay plots of the values of n(z,6) from (i) and the fitted values

from (iii) and (iv) on same page

(vi) Simulate the model
Vi = T](l‘,’,g) +é, e~ N(Ov 02)1

for some known value of 02 and repeat (ii) - (v).

We observe that the fitted wavelet regression models picked up the main
features of the data in all our examples. However, the fitted models appear to
have retained some features of the primary wavelets used in the approximation.
For instance, the fitted Haar wavelet regression models exhibit the step function
feature of its primary wavelet ¥(z) (see (2.47)). On the other hand the fitted
N = 2 multiwavelet regression models appear to exhibit the sharp-curve feature
of one of its primary wavelets ;wo(z) (see (1.56) and Figure 1) especially at

points where the functions being approximated change direction.
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1 Ion Transport Model:

Figure 4: The Ion Transport Model Function: (a) Haar Wavelet (m = 2) ; (b)
N = 2 Multiwavelet With Optimal Weights (m = 1).

10 15 20 25 30 35 40

0.0 02 04 0.6 o8 1.0

(a)

40
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0.0 02 04 0.6 0.8 1.0

®)

The model function
n(z,0) = 6,(1 — bz2exp(—baz))

is commonly used to describe data from ion transport experiments (e.g. chloride
ions), through blood cell walls.The function 5(z,8) measures the concentration
of the ions at time z. In this model, the parameters have physical meanings.
The parameter 0, is interpreted as the final percentage concentration, 8 is a rate
constant and 6, accounts for the unknown initial and final concentrations and
the unknown initial reaction time. The parameters, g = (39.09, 0.828. 0.159)7.

we used are the estimates obtained by Bates and Watts (1988, pg. 93) from real
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data with n = 50. The range of z, z € [0, 32], which is slightly different from the
interval used in Bates and Watts (1988), was transformed as discussed earlier.
Figure 4 shows the plots obtained by following steps (i) - (v) outlined above.
Using the values generated from n(z;8) (see step (i)) as data we calculated the
mean squared error (MSE). The MSE from the Haar fit is approximately 5.24
and 0.509 from the N = 2 multiwavelets.

Following step (vi) with 62 = 3.534 we obtained Figure 5. The MSE from

the Haar fit is approximately 8.732 and 5.313 from the N = 2 multiwavelets.

Figure 5: Simulated Data from the lon Transport Model: (a) Haar Wavelet (m
= 2); (b) N = 2 Multiwavelet With Optimal Weights (m = 1).

" n » <

2 The Quadratic Michaelis - Menten Model:
The Michaelis - Menten Model

911'
77(‘1:70) - 02 +I+03x2

is popular in enzyme kinetic experiments. It relates the “velocity” of an en-
zymatic reaction to the substrate concentration z. Bates and Watts (1988 pg.

114) also used this model to analyse data from an experiment on the utilization
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Figure 6: The Quadratic Michaelis-Menten Model Function: (a) Haar Wavelet

(m = 3) ; (b) N = 2 Multiwavelet With Optimal Weights (m = 2).
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of nitrite in bush beans. The parameters, 8 = (1254, 20.5,350.44) were carefully
choosen to obtain the shape seen in Figure 6. The sample size was n = 100
and z € [0,16] was transformed as in Section 1. The mean squared error for
the Haar and N = 2 multiwavelets models are approximately 0.162 and 0.008
respectively.

Again, we apply step (vi) with 62 = 0.694 to obtain Figure 7. The MSE from
the Haar fit is approximately 1.136 and 1.102 from the N = 2 multiwavelets.

Figure 7: Simulated Data from the Quadratic Michaelis-Menten Model: (a) Haar
Wavelet (m = 3) ; (b) N = 2 Multiwavelet With Optimal Weights (m = 2).

Q 2 4 L] ]

3 Metabolism of Saccharin Compounds:

Here, we use real data from an experiment on the metabolism of saccharin
compounds provided by Renwick (1982). A rat is given a single bolus of saccha-
rin. At given time intervals, the amount of saccharin accumulated in the urine
of the rat is measured. The response is the level of radiocactivity of the urine

which was converted to amount of saccharin in micrograms (ug). The proposed
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Figure 8: Amount of Saccharin versus Time(hrs) Interval: (a) Haar Wavelet (m

= 2); (b) N = 2 Multiwavelet With Optimal Weights (m = 1).
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integrated model is

T](X,e) = @-e‘ﬁrx(]_ . 6—8112) + gie—gzzl(l _ 8—9232)
01 92

where 7 is the amount of saccharin excreted during an interval, r, is interval
starting time, and z, is the length of the interval.

In Figure 8, we plot the observed excreted amount versus the time interval,
(e.g. 0 - 5), scaled as discussed in step (ii) above. This example is aimed at

showing that the Haar model performs better in approximating step functions.

4. The Motorcycle Data:

Figure 9: A Plot of the Motorcycle Data Set: (a) Haar Wavelet (m = 3) ; (b)
N = 2 Multiwavelet With Optimal Weights (m = 2).

T R )

Our next example illustrates the flexibilty of wavelets in describing nonlinear
experiments even when the precise mathematical structure of the function de-
scribing the experiment is unknown. The motorcycle data set taken from Hardle
(1990) are measurements of the head acceleration (y) of a post mortem human

test object after a simulated impact with motorcycles in a given time (z). The
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nonlinear model which describes the experiment is unknown. A plot of the fitted
models are shown in Figure 9.

We observe that the higher the degree of nonlinearity of the experiment,
the higher the value of m, hence more design points required to obtain a good

approximation.

5 Concluding Remarks

In this work we have outlined the results of our investigation into the use of
wavelets in designing nonlinear experiments. Wavelets was introduced into the
problem by transforming the nonlinear regression model describing the exper-
iment into a wavelet regression model with disturbance function. Throughout
our discussion the mathematical structure of the underlying nonlinearity was not
assumed known. Using examples, we have shown that the multiwavelet bases is
capable of capturing the general features of any nonlinearity in an experiment,
though still retaining some features of its primary wavelets. This calls for fur-
ther studies into the use of wavelet bases with smoother properties in designing
nonlinear experiments.

For the simplest case (m = 0) of the mth order Haar wavelet regression model
we have been able to show that no non-symmetric design will be optimal. We
also observe that the optimal weights and designs constructed in Chapter 3 (with
no symmetry constraint) were symmetric. Our conjecture is that, in general, no
non-symmetric design will be optimal. Investigation into a formal proof is also
another area for further research. We have also shown that the classical D-
optimal design proposed by Herzberg and Traves (1994) is simultaneously Q-,
A-, D- and G-optimal and provided a proof we sense is much simpler. The
continuous uniform design which we showed to be optimal for the biased Haar

model can be considered a smoothed version of this design.
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The optimal weights and designs constructed in Chapter 3 are for general
wavelet regression models. Therefore, once the wavelets to be used in the ap-
proximation is choosen, the corresponding optimal weights and designs can be
constructed. Strategies for implementing the designs have been outlined includ-
ing a situation where the experimenter wishes to take more observations from
some region of the design space.

Apart from the problems mentioned earlier which require further studies,
some other open problems are :

(1) D-, E- and G-optimal weights and designs for wavelet regression

models subject to the condition of unbiasedness.

(2) Robust minimax weights and designs for the general N = 2 multiwavelet

regression model.

(3) Robust infinitesimal designs for wavelet regression models.

(4) Robust designs for nonlinear models when the nonlinear function 7(z) is

estimated by wavelet versions of kernel estimators (see Antoniadis

et al (1994)).

(5) Robust weights and designs for wavelet regression models when the

estimators of the parameters are generalized M-estimators or other

robust estimators.

(6) Robust designs for biased wavelet regression models with autocorrelated

errors.

(7) Robust minimax weights and designs for biased wavelet regression models

with heteroscedastic errors.

We hope that this work will motivate further research in the direction of con-

structing designs for wavelet regression models and the construction of wavelets

for design purposes.
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