
 
 
 

Position-Aware Control of Myoelectric Prostheses 
 
 

by 
 

Heather E. Williams 
  
  

 
 
 
 

A thesis submitted in partial fulfillment of the requirements for the degree of 
 
 

Doctor of Philosophy 
 

 
 
 

 
 
 

Biomedical Engineering 
University of Alberta 

 
 
 
 
 
 
 

  
 
 

© Heather E. Williams, 2024  



 
 

ii 

Abstract 
As reported in 2020, millions of individuals worldwide have some form of upper limb amputation 

or congenital loss of limb that impedes execution of everyday actions like reaching for, grasping, 

transporting, and releasing objects. Although lost function can be artificially replaced via 

prostheses, there remains a problem—state-of-the-art robotic (myoelectric) devices continue to 

cause frustrating control challenges for users. 

The work herein focuses on mitigating the sources of myoelectric prosthesis control problems for 

those with below elbow (transradial) amputation. Wrist and hand movements of such devices are 

controlled by captured electromyographic (EMG) signals that are generated by muscles in a user’s 

residual limb. Advanced pattern recognition-based controllers now make device operation 

intuitive for users, with software models trained to recognize EMG signal patterns. Still, devices 

can become unreliable when limb position changes are introduced during device use. This specific 

problem is known as the limb position effect. Here, when a user attempts to use their prosthesis in 

a position not included in model training, the captured EMG signals are unrecognizable and 

misinterpreted by the controller. This scenario can cause control malfunctions that result in 

unexpected device movements. Understandably, unreliable control leads to user frustration.  

The broad goal of this thesis, therefore, is to reimagine upper limb myoelectric prosthesis 

control—offering persons with transradial amputation reliable, robust, and personalized device 

operation. Its specific objective is to develop an improved prosthesis control solution that mitigates 

the limb position effect.  

The work in this thesis addresses the limb position effect problem by implementing position-aware 

myoelectric prosthesis control. For such control, EMG data must be augmented with details about 
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a user’s limb position during device use. This was accomplished by capturing positional data via 

an inertial measurement unit (IMU) device worn on a user’s forearm, with blended EMG and IMU 

data handled using a deep neural network. Several complex recurrent convolutional neural network 

(RCNN) models for pattern recognition-based control were explored in this thesis, as they offer 

two major advantages: (1) they can be trained using large multimodal datasets (including EMG 

and IMU data), and (2) their architectures can learn features directly from input data to yield 

accurate movement predictions. After assessing the accuracy of both classification- and 

regression-based RCNN models, the three most promising were compared to a commonly 

implemented baseline classification model. Comparative testing sessions required participants 

without upper limb impairment to perform functional tasks in multiple limb positions. They wore 

a simulated prosthesis (controlled by each model), as a proxy for device use by individuals with 

limb loss. An RCNN regression-based model yielded the best task performance versus the baseline 

alternative. Given this, a participant with amputation was recruited to assess the novel control 

solution, confirming that it could indeed provide control across multiple limb positions that is 

accurate, simultaneous, and proportional to EMG signal intensity. 

This work contributes, for the first time, a position-aware deep learning regression-based 

myoelectric control solution for use by persons with transradial amputation. The solution is an 

exciting new direction for prosthesis control—a departure from commonly used classification 

approaches. After future refinements to and testing of this solution, a long-term goal is to see it 

incorporated into prosthesis designs of today and tomorrow. Future extensions to this work could 

see regression-based control implemented in context-specific human movement therapies and 

technologies. Ultimately, the benefits of reliable control are far-reaching.  
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Chapter 1. 

Introduction  

1.1. Problem Definition  

Activities of daily living often require motor skills such as reaching for, grasping, and 

manipulating objects. Unfortunately, millions of individuals worldwide have some form of upper 

limb amputation or congenital loss of limb that impedes execution of these skills, including loss 

of finger(s), hand, or arm [1], [2], [3]. For those with below elbow, or transradial amputation, 

prosthesis solutions must replace the functions of the wrist joint and hand. Replacing lost function 

with a robotic, or myoelectric, prosthetic limb, however, continues to pose control challenges for 

users, particularly as the device must reliably perform intricate hand movements in a range of 

positions around the body [4]. Although state-of-the-art prostheses are commercially available, 

unreliable control has been cited as the main reason for device abandonment [5]. 

Unreliable control is characterized by prosthesis actions that do not align with user intentions. 

Control of a myoelectric upper limb prosthesis is typically based on electromyographic (EMG) 

signals generated by the muscles of a user’s residual limb, to indicate their device movement 

intention [6]. That is, when they contract a specific muscle (myo in Greek), the resulting impulses 

are translated into electrical signals. These EMG signals then drive prosthesis control using various 

decoding methods, including proportional control, on-off control, finite state machine-based 

control, and pattern recognition-based control, to name a few [6]. With each such method, EMG 

signals are detected using surface electrodes that are housed within the device socket, after which 

they are transmitted to the device’s controller [6] (see Figure 1-1). For individuals with transradial 

amputations, electrodes can be placed over wrist flexor and extensor muscle sites of their residual 

limb, or an array of electrodes can be placed over all forearm muscles (as illustrated in Figure 1-1). 
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Controller software processes and interprets EMG data and transmits corresponding instructions 

to the device’s battery-powered wrist or hand motors [7]. Rehabilitation clinicians, including 

prosthetists and occupational therapists, work with persons with amputation to select and assemble 

user-specific hand, wrist, controller, and EMG electrode components of a prosthesis, and to guide 

device fit and control learning for daily use [8]. 

Myoelectric device use can be challenging, even when advanced pattern recognition-based control 

is employed [7]. Such control is based on machine learning, which uses algorithms to establish 

relationships between input data and intended outputs (without explicitly programming these 

relationships for every input scenario). In myoelectric control, pattern recognition solutions learn 

and recognize patterns of EMG signals (those associated with predetermined muscle contractions) 

to predict and execute user-intended device movements [9]. Pattern recognition-based control has 

garnered much focus in myoelectric upper limb prosthesis control research [6]. Indeed, many 

experimental prosthesis controllers (along with an increasing number of commercial solutions) use 

this method. 

To initialize a pattern recognition-based control algorithm (model), a device user must first 

perform a series of muscle contractions, known as a training routine [7]. For current pattern 

recognition-based control solutions, a training routine is usually performed in just one limb 

position; that is, with the user’s arm at their side, elbow bent at 90º with hand in front [10]. Once 

EMG signal patterns are learned by the model through training, all subsequent signals captured 

during device use can be recognized for movement prediction purposes. Understandably, if a 

training routine is long, and/or if it must be re-executed to calibrate control throughout the day, 

users must expend a lot of time and focus. This problem is known as training burden [11], [12]. 

 

Figure 1-1. The inner workings of an example myoelectric prosthetic limb on an individual with transradial 

amputation. In this example, EMG signals are captured via an electrode array. 
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Although pattern recognition-based solutions offer users predictive device control after model 

training [13], unexpected changes in EMG signals can still cause control to degrade [14]. One 

major cause of these changes is known as the limb position effect problem [15], [16], [17], [18]. 

Here, EMG signals become unpredictable when a user’s limb is used in a position different from 

that in which its control model was trained. Specifically, muscle activity changes when working 

against gravity, electrodes shift with respect to the muscles, and the topology of muscles vary [14]. 

In untrained positions, users often must struggle to maintain device control. An unintentional and 

potentially catastrophic drop of an object (a glass, for instance) might even result. Although this 

common problem is now well acknowledged, it remains largely unsolved [14]. 

To address the limb position effect problem, several studies have investigated augmenting EMG-

based pattern recognition models with the addition of contextual information—specifically, 

information about a user’s residual limb position during device use [14]. Some studies investigated 

capturing EMG data from multiple limb positions during model training routine execution, rather 

than from simply an elbow bent at 90º position. This approach yielded richer training datasets with 

improved device controllability outcomes [15], [16], [19], [20], [21]. Other studies found that 

information about a user’s limb position could be captured using an inertial measurement unit 

(IMU) worn on their forearm. As an IMU provides linear acceleration signals on three axes, a 

device control model can use this data to learn about the user’s limb in space. Indeed, outcomes 

from this experimental approach have shown improved model predictions [15], [16], [21], [22], 

[23]. Despite all such promising results, none of the controllers proposed by earlier studies have 

been translated from research to clinical applications, largely because prosthesis control research 

continues to focus on solutions that are simple to implement, require minimal data, and can 

coordinate sequential joint movements [24]. 

Capturing limb position data, in addition to EMG data, will create huge input datasets for a control 

model. This scenario poses a question: might some pattern recognition-based models be better 

suited to handle large amounts of data from different sources? This is not an easy question to 

answer, particularly as many machine learning models exist, including simpler classification- and 

regression-based solutions, along with more complex deep learning alternatives. For myoelectric 

prosthesis control, a simple classification algorithm, known as linear discriminant analysis, is 

traditionally employed [25], [26]. However, given the complexity of combining EMG and IMU 
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data, deep neural networks present another model approach. These networks can process large 

volumes of raw data and can form complex non-linear associations between input and output data. 

This capability enables such networks to tackle modelling challenges such as myoelectric 

prosthesis control. Neural networks, in fact, have been found to perform better with more data 

[27]. They are also capable of processing and learning from multimodal data [28]. As such, deep 

neural networks present a viable option towards the use of contextual information for position-

aware myoelectric control solutions. 

1.2. Research Objectives & Contributions 

The objectives of the work undertaken in this thesis focus on exploring and developing myoelectric 

prosthesis control solutions for those with transradial amputation. The broad goal of the work is 

to offer users reliable, robust, and personalized device operation. Its specific objective is to develop 

a solution that improves overall prosthesis control while addressing the limb position effect 

problem. To address this unresolved problem, the work turns towards an exploration of deep neural 

networks, with an aim of contributing the following: 

 An algorithmic approach that leverages multimodal data and the power of deep learning to 

mitigate the limb position effect and allow simultaneous control of multiple prosthetic 

joints with varied velocities  

 Strategies for reducing training burden to improve controller usability 

 Appropriate metrics for comparative myoelectric prosthesis controller research aimed at 

solving the limb position effect problem 

Ultimately, the work presented in this thesis bridges the gap between laboratory and real-use 

implementation of upper limb prosthesis control that uses pattern recognition. It presents an 

exciting new direction for myoelectric controllers of the future. 

1.3. Thesis Outline 

This thesis conforms to the University of Alberta’s Faculty of Graduate & Postdoctoral Studies’ 

paper-based format, with papers presented verbatim (that is, as they appeared in their published, 

accepted, or submitted format, but with some contextual changes introduced and grammatical 
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errors rectified). It is presented over a series of chapters, a summary of which is illustrated via a 

flowchart in Figure 1-2. The flowchart identifies the overarching objective of the work and 

includes specific research questions addressed, the publications resulting from that research, and 

subsequent research gap(s) that led to new questions. The thesis begins with a presentation of 

machine learning approaches for upper limb prosthesis control (Chapter 2). From there, more 

advanced methods of machine learning (recurrent convolutional neural networks, or RCNNs) are 

explored towards mitigating the limb position effect (Chapter 3). This exploration leads to a foray 

into an RCNN application with a modified model training paradigm (Chapter 4). As an alternative 

RCNN model training method, an RCNN solution with transfer learning (pre-training a model) is 

investigated and identifies a need for more comprehensive control assessment metrics (Chapter 5). 

This hurdle is overcome with the development of a novel set of metrics for comparative 

myoelectric prosthesis controller research (Chapter 6). With this toolset of metrics established, 

RCNNs are then more closely investigated to yield a feasible RCNN regression-based myoelectric 

control approach—a departure from commonplace classification-based approaches implemented 

to date (Chapter 7). The crowning accomplishment of this thesis is a case study that tested this 

RCNN regression-based solution using a person with transradial amputation (Chapter 8).  
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Figure 1-2. Summary of thesis chapters, with this work’s main objective and its outcome in yellow, research questions 

addressed in blue, chapter numbers with associated publications in green, and research gaps in orange. 
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Chapter 2. 

Machine Learning for the Control of 

Myoelectric Upper Limb Prostheses 

Chapter 2 presents “Machine learning for the control of prosthetic arms: using electromyographic 

signals for improved performance,” originally published in IEEE Signal Processing Magazine, in 

2021 [13]. It begins by describing conventional myoelectric prosthesis control strategies and the 

use of electromyographic signals. Thereafter, it discusses a variety of control strategies that employ 

machine learning, each with their own benefits and limitations. Finally, it identifies the well-

known but unresolved limb position effect problem, which should not be overlooked when 

investigating myoelectric control. An illustration of how the information presented in Chapter 2 

contributes to the overall work in this thesis is presented in Figure 2-1.  

 

 

 

Figure 2-1. Research question addressed by Chapter 2 and remaining gap. 
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Abstract 

The human hand can perform many precise functions and is relied upon for countless aspects of 

daily life. When upper-limb amputation is necessitated, an affected individual’s sense of 

independence is understandably impacted. Myoelectric prostheses are designed to restore some 

lost upper-limb motor function. Electromyographic (EMG) signals, generated by a user’s muscle 

contractions in the residual limb and detected by electrodes in the device socket, activate prosthesis 

movement. A device controller processes these signals, decodes them, and then sends electrical 

instructions to device motors. Machine learning has been introduced to both decode and interpret 

useful features that exist in EMG signals so that improved motor control instructions can result. 

Although machine learning has been shown to yield more physiologically natural myoelectric 

prosthesis control for a user in research environments, it is not yet widely accepted by clinicians. 

In this work, we present an overview of how machine learning is used in EMG signal-driven upper-

limb prosthesis control, along with a discussion about how it could be employed to improve the 

robustness and reliability of future devices.  

2.1. Introduction 

Upper limb prostheses are designed to restore lost hand and associated arm function for persons 

with amputation. Recreating dexterous hand function, however, poses a challenge as the upper 

limb is both complex in design and can perform coordinated movements across several degrees of 

freedom (DOFs). These DOFs include flexion/extension, forearm pronation/supination, fine finger 

joint movements, and more. Myoelectric prostheses are robotic devices (with motors, electronics, 

and control software) designed to mimic the movement and function of an anatomical arm and 

hand. A prosthetic device is connected to a user’s residual limb via a custom-fabricated socket. 

Surface electrodes within the socket detect electromyographic (EMG) signals when the user 

intentionally contracts specific muscles in their residual limb. These muscle signals are then 

relayed to the prosthesis controller, which uses signal processing routines along with a control 

algorithm to filter this raw data, extract signal features from it, and determine the intended 

movement. Thereafter, the resulting control signals are mapped to electrical signals and the device 

motors carry out the instructions. This EMG signal-driven upper limb prosthesis control process 

is illustrated in Figure 2-2.  
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Figure 2-2. Overview of EMG signal-driven upper limb prosthesis control. EMG signals are detected by device socket 

electrodes, during specific muscle contractions in a user’s residual limb. The prosthesis controller processes and 

transforms the raw EMG signals using signal processing routines, and a selected control strategy algorithm determines 

the intended prosthesis movements. Further mapping is required to translate the control signals to electrical signals 

capable of driving motors in a prosthesis. Finally, motors are activated and deactivated by these electrical signals. 

Decades of advancements in signal-driven prosthesis control have offered promising restorative 

movement options to persons with upper limb amputation [6]. Nevertheless, precise real-time 

decoding of movement intent from EMG signals has some notable limitations, and achieving 

accurate and intuitive prosthesis control remains a challenge [9].  

2.1.1. Conventional Control Strategies 

Conventional myoelectric prosthesis control strategies can be broadly categorized as either: (1) 

on/off, which enables binary opening and closing of a hand when EMG signals pass an activation 

threshold, or (2) proportional, which controls the speed of opening and closing of a hand, and 

thereby facilitates finer movement control. With either such control strategy, the actions of “hand 

open” and “hand close” are typically activated by contractions of two different residual muscles 

(with two different electrodes used to detect these opposing actions) [6]. Control of additional joint 

movements, then, requires the recruitment of other residual muscles. Although both on/off and 

proportional control strategies are considered robust [29], they are limited by the number of 

independent muscle signals in a user’s residual limb to control each DOF [7]. This limitation 

presents an operational challenge, given that advanced upper limb myoelectric prostheses typically 

offer more DOFs than the number of independent EMG signals that a device user can generate. In 

addition to this limiting factor, inherent variability in EMG signals can contribute to inconsistency 

in prosthesis control and lead to unintended prosthesis movements [14]. Variability in EMG 

signals can be introduced by changes in the user’s limb position, differences in the strength of their 

muscle contractions, fatigue, environmental factors, humidity, electrode shifting, and other 

within/between-day changes [14]. Despite offering functional dexterity to users, conventional 
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myoelectric prosthesis control strategies do not yet offer physiologically natural upper limb 

movements. 

2.1.2. Machine Learning Control Strategies 

To facilitate more dexterous and intuitive myoelectric device control, upper limb prosthesis 

researchers have been delving into the use of EMG signal-driven machine learning algorithms 

since the 1970s [30]. These algorithms have shown promise towards improving prosthesis control 

accuracy and ease of use for users, largely due to advances in signal processing techniques, 

computationally powerful processors, and enhanced battery technology. However, devices that 

employ machine learning algorithms are often not used in clinical settings because of their reported 

lack of robustness [29]. So, prosthesis researchers continue to investigate various EMG signal-

driven device control strategies to overcome this limitation [29]. This work provides an overview 

of how EMG signal processing is undertaken in upper limb myoelectric prosthetic device control, 

introduces existing control strategies that use machine learning, and discusses the potential for 

machine learning to result in more physiologically natural myoelectric prosthesis control. 

2.2. EMG Signal Processing Overview 

Most commercially available upper limb myoelectric devices use open loop control strategies, 

wherein the device does not receive feedback from its environment [31]. Instead, a user is left to 

rely on visual feedback after deliberately contracting a muscle in their residual limb to initiate and 

sustain control of the device’s movement. The electrical potentials resulting from this contraction 

generate raw EMG signals. These signals are typically sampled at a constant rate of between 200–

1000 Hz (depending on the type of EMG electrodes embedded in the prosthesis socket). The raw 

signals are then processed, which includes filtering and the extraction of useful features. 

2.2.1. Filtering 

In general, raw EMG signals are low-pass filtered at 450 Hz to remove noise and high-pass filtered 

at 20 Hz to remove movement artifacts (originating at the electrode-skin interface) [32]. A comb 

filter is also often used to remove power line interference (at 60 Hz in North America, and at 50 

Hz in Europe, Australia, most of Asia, and Africa), as well as to remove the harmonics of such 

interference [33].  
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2.2.2. Feature Extraction 

Next, representative features are extracted from the filtered EMG signals, to ensure that the control 

strategy algorithm receives useful information. Representative features can generally be 

categorized as time-domain, frequency-domain, or time-frequency [34]. Time-domain features are 

most commonly used in both research and commercially available prosthesis controllers, and 

include Mean Absolute Value, Zero Crossing, Slope Sign Change, and Waveform Length [9]. 

Common frequency-domain features are Mean Frequency and Median Frequency [34]. The most 

common time-frequency representation is the Wavelet Transformation [14]. To accomplish 

representative feature extraction, filtered EMG signals are separated into blocks of data called 

windows and then for each window, features are calculated [35]. For example, windows may have 

a length of 160 milliseconds and may be overlapped with an offset of 40 milliseconds. After 

representative features are calculated for each window, they are ready for use as input to a 

myoelectric prosthetic device’s control strategy algorithm.  

2.3. Machine Learning in EMG Signal-Driven Prosthesis Control  

Machine Learning is used in upper limb prosthesis control design to make devices more 

“intelligent”—that is, capable of predicting users’ intended movements. Myoelectric prosthesis 

researchers currently use various machine learning methods (based on elements of statistics and 

computing science), in the pursuit of more intuitive device control. Each method requires the 

development of a model that can be used to predict intended device movements, based on EMG 

signals captured during prosthesis use. A model, therefore, behaves as a mapping function that can 

take EMG signal input from socket electrodes (input channels) and map it to device motor 

instructions. To clarify machine learning terminology used herein, a “control strategy” refers to a 

type of model used in prosthetic device control, and an “algorithm” is a programmatic 

implementation of this strategy. Examples of control strategies presented in this section include 

Classification Control, Regression Control, Hybrid Control, Switching Control, and Movement-

Based Control. 

2.3.1. Classification Control Strategy 

A classifier is a type of model that can be used in prosthetic device control. Given one or more 

input signals, a classifier will predict the value of one or more movement outcomes (via output 
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signals). The user must perform an extensive training routine to yield a training dataset that, in 

turn, is used to build the classifier. The classifier is then capable of predicting single or multiclass 

movement output signals. For example, a prosthetic hand that can open and close typically requires 

a classifier to be trained for 3 different movement classes: hand open, hand close, and no movement 

(rest). For each movement class, users are prompted to contract their residual muscles in a unique 

and consistent manner, mimicking the class of movement they are training. Once data for each 

class are recorded, a classifier can be built for use by the prosthetic device as its control strategy. 

Commonly used classification control strategy algorithms currently used in upper limb prostheses, 

are as follows:  

A) k-Nearest-Neighbour is a simple classification algorithm that forms a cluster from the 

training data to represent each class. Each cluster is identified as a neighbour. During 

classification, this algorithm uses a distance measure relative to the k (a positive integer) 

closest neighbors of a point to assign new data to a given class [36]. k-Nearest-Neighbour 

classifiers require only a short training time. The performance of this algorithm varies, 

depending on the number of chosen neighbours (forming coarse, medium, or fine 

connections), as well as the chosen feature set used to train the algorithm. 

B) Linear Discriminant Analysis (LDA) is an algorithm that reduces the dimensionality of 

features while maximizing class separability. For instance, a system that consists of 8 EMG 

channels and has 4 features extracted per channel, would yield (8x4) 32 dimensions (which 

may not be initially separable). This algorithm finds the least number of dimensions that 

could possibly be used to map input features to output classes, while maximizing the 

distance between each class cluster. LDA makes the restrictive statistical assumption that 

each trained class follows a Gaussian (normal) distribution [36]. This algorithm is most 

commonly used in research and commercial prosthesis control, as it requires minimal 

processing time and low training time while still providing high classification accuracy [9]. 

C) Support Vector Machine (SVM) is an algorithm that attempts to maximize class 

separability by implicitly mapping input signal data into a high or even infinite dimensional 

feature space. The complexity of this algorithm varies depending on a chosen kernel [37], 

which is used to transform data into a desired feature space. Kernel functions that can be 

used by SVM [38] include: 
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a. Linear kernel, which assumes that all features are linearly related to the classes and 

finds linear coefficients that best fit the features with the trained classes’ data. The 

shape of the decision boundaries developed by this kernel are straight lines or 

planes between the classes (Figure 2-3a and b). 

b. Polynomial kernel, which models the relationship between the features and the 

trained movement classes as a nonlinear nth degree polynomial. The shape of the 

decision boundaries developed by this kernel are curves or surfaces (Figure 2-3c). 

c. Radial Basis Function kernel, which considers the Euclidean distance between each 

trained data point within a class and a computed centre between all the classes 

clusters. The Gaussian method is commonly used to compute this centre (Figure 

2-3d). 

Similar to the k-Nearest-Neighbour algorithm, SVM requires a greater training time than 

LDA, but may provide better classification accuracy than both algorithms. 

D) Artificial Neural Networks (ANNs) have been used in myoelectric control for more than 

30 years and are characterized by an increased capacity to form non-linear mappings 

between input channels and output classes [39]. In contrast to other algorithms discussed 

in this section, ANNs can learn complex relationships between input signals and desired 

outputs, all without the requirement for substantial inductive bias (such as assuming a  

 

 

Figure 2-3.  Visualization of class decision boundaries between hand open and hand close using LDA 

or SVM with a linear function kernel projected on a) a 2-dimensional vector space and b) 3-dimensional 
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vector space. Class decision boundaries using SVM with c) polynomial kernel and d) radial basis function 

kernel 

mathematical relationship between inputs and outputs or using hand-selected extracted 

features). But, such generality and nonlinearity comes at the cost of the computational 

resources required for intensive training with large, balanced datasets (i.e. similar amounts 

of data for each class) necessary to prevent overfitting, forgetting, and other known issues 

[27]. Already a range of small consumer electronic devices, such as smartphones, now 

regularly deploy ANNs for their principal functions. Therefore, the use of ANNs is 

expectedly on the horizon for upper limb device control. 

In summary, the number of EMG signals and the choice of the features set used to train an 

algorithm have a significant impact on the performance of a classifier [34]. One must consider the 

size of data used for training and the algorithm training time when selecting an algorithm. For 

instance, ANNs may provide higher performance for big data sets at the cost of higher training 

time. Conversely, LDA may provide lower performance but a significantly faster training time. 

The optimization of speed and performance may be achieved by using heuristics for selecting 

EMG signals, features, and feedback-based training protocols. 

Classification-based myoelectric control strategies enable the prediction of single or multiclass 

movement output signals. Classifiers are only capable of classifying discrete movements 

sequentially and do not provide speed control. However, by implementing multiple classifiers that 

compare different combinations of movement classes, classification algorithms can offer 

simultaneous control at the expense of accuracy, but still without direct control over speed [40]. 

To overcome these drawbacks, regression control strategies are used in upper limb prosthesis 

research, as they enable both simultaneous and independent speed control. 

2.3.2. Regression Control Strategy 

A regressor is another type of model that can be used in prosthetic device control. Unlike classifiers 

that predict single or multiclass movement output signals, a regressor learns relationships between 

input signals and one or more continuous-valued movement output signals. Rather than training 

classes, regressors build models using data from DOF movements. Each DOF movement may 

include 2 or more classes: for example, hand open/no movement/hand close would be considered 
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1 DOF. In other words, a single DOF is mapped in a continuous space that traverses 2 or more 

discrete positions. For a prosthetic hand that can open, close, and rotate wrist, the number of 

training sets is reduced from 5 classes for a classifier (hand open, hand close, no movement, rotate 

wrist clockwise, and rotate wrist counter clockwise) to 2 DOFs for a regressor. In addition to this 

reduction, regressors trained for 2 DOFs enable the control of both DOFs simultaneously while 

not allowing the activation of multiple movements within a DOF (i.e., while an action of hand 

open and close may not occur simultaneously, hand open and rotate wrist clockwise may occur 

simultaneously). 

Similar to classifiers, regressors require a training routine. This is known as dynamic DOF-based 

training and involves a series of special movements. For this training, users are prompted to slowly 

contract their muscles to move through the desired range of motion required by the regressor. Once 

data for each DOF are recorded and features are extracted, a regressor can be built, for use by the 

prosthetic device as its control strategy. Commonly used regression control strategy algorithms 

currently used in upper limb prostheses are as follows:  

A) Multivariate Linear Regression finds a relationship between several independent features 

and a target activation variable for a given DOF, while assuming that the relationship 

between these variables is linear [41]. Despite the simple implementation of this algorithm, 

the complexity of the dynamic input data poses a significant challenge to this linear 

relationship assumption. Figure 2-4a and b show a sample regressor output for 2 DOF 

trained data using a multivariate linear regressor.  

B) Support Vector Regression (SVR) has the same implementation as SVM but with a key 

difference — SVR uses dynamic DOF-based training data instead of class-based training 

data [42]. Figure 2-4c and d show a sample output for a 2 DOF trained data using SVR 

with a radial basis function kernel. 

C) ANN Regression has the same implementation as ANN classification, but uses dynamic 

DOF-based training data. As with ANNs for classification, regression training also often 

requires careful selection of large training datasets. ANNs have already been shown to be 

usable for regression control of myoelectric prostheses [43]. However, long training times 

may make current real-world prosthesis deployments of ANN-based EMG control 
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frustrating or intractable. However, as computation, actuation, and sensing component 

costs and performance improve through economies of scale, we expect ANN control 

strategies to show substantial gains in terms of clinically deployed performance in the next 

2-5 years.  

Although multivariate regression has a relatively simple implementation and is very fast to train, 

it is not recommended for control of more than 2 DOFs, given that its performance degrades 

significantly without implementing signal adaptation strategies and evoking activation thresholds. 

The procedure and prompts for recording training data from users affects the performance of these 

algorithms, since the dynamic change in signals and features drives the overall performance of the 

regressor. 

 

Figure 2-4.  Visualization of regressor output over DOF 1 rotation and DOF 2 hand open/close using (a and b) 

multivariate linear regression where the algorithm finds 2 weights (one for blue feature and one for red feature) that 

may predict the transition from one hand position to the next within a DOF, and (c and d) SVR with a radial basis 

function kernel 
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In summary, regression-based myoelectric control strategies enable simultaneous and independent 

device speed control. However, this comes at the expense of the relative robustness of classifier-

based control strategies that can manage unintentional muscle contraction variations introduced 

by users. Due to this lack of regressor robustness, classifiers are more commonly implemented in 

upper limb prosthetic devices [6]. 

2.3.3. Hybrid Control Strategy 

To mitigate the trade-off between increased control and decreased robustness when regression 

control strategies are solely used in upper limb device control, researchers have opted to combine 

classification and regression control strategy approaches. That is, SVM algorithms have been used 

for classifying DOF training data, with SVR algorithms used for DOF speed regulation [44]. This 

approach has reportedly resulted in improved intended device performance, yet at the expense of 

a long training time durations for all limb positions controlled (due to a large amount of training 

data) [44].  

An alternative hybrid control strategy that is anticipated to yield better control performance across 

various limb positions involves integrating inertial measurement unit (IMU) data in 3-dimensional 

space. This approach has been implemented using two different methods. One method is to provide 

a single classifier with both IMU data and EMG features [15], as shown in Figure 2-5a. The other 

is through the use of a classifier-classifier cascade, in which IMU data are used to classify the limb 

position, and then the limb position classification is used to select the appropriate EMG classifier 

[15]. Figure 2-5b shows this cascade method. These methods have already been shown to improve 

EMG classification accuracy across multiple limb positions [14]. We predict that deep learning 

may further improve this accuracy, given that it has been shown to handle multi-modal data [27]. 

Although both methods have been shown to improve the accuracy of EMG classification when 

various arm positions are introduced, we additionally propose that a “Position Regression – 

Movement Classifier” cascade would likely further improve this accuracy, given that arm positions 

are not discrete. Although such a regression-classifier cascade will demand higher processing 

power than a classifier-classifier cascade, it may require a shorter training time as compared to a 

regression-regression cascade.  
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Figure 2-5.  Hybrid control requiring 2 input signals to the prosthetic limb—an arm position signal and a control 

signal, with either a single classifier a) or a classifier-classifier cascade b). 

Overall, as additional data are required to implement hybrid control strategies, any resulting 

improvement in device performance tends to be coupled with increases in algorithmic complexity, 

computational time, and hardware costs. Therefore, the choice of a control strategy for an upper 

limb prosthesis should not be entirely assessed based on performance but rather on a trade-off 

between computational burden and performance (especially in embedded systems operating with 

limited processing power and memory). 

2.3.4. Switching Control Strategy 

Switching (or gated) control is another strategy that has been integrated with conventional 

myoelectric prosthesis control methods. This control strategy closes the gap between the number 

of DOFs offered by an advanced myoelectric device and the limited number of EMG signals that 
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a device user can physically generate using their residual limb muscles. In switching control, the 

device user can switch between activating multiple device DOFs (specifically, joint movements or 

grasp patterns) using muscle co-contraction or an external mechanical toggle (Figure 2-6). 

Although this method offers sequential control of multiple DOFs, it is reportedly slow and 

unintuitive for a user [7]. A subset of machine learning, known as reinforcement learning, has been 

investigated as an improvement to adaptive switching [45]. In this control strategy, the list of 

possible DOFs is continually reordered while a prosthesis user performs tasks, based on the 

predicted likelihood of each DOF being used next [45]. This strategy has been shown to decrease 

the number of required user switches, and the time necessary to complete tasks [45]. Autonomous 

switching extends the methods developed by adaptive switching. It further decreases the number 

of switches that the device user must trigger, as it uses predictions to switch between DOFs 

automatically [46]. Despite such advances towards control of multiple DOFs, switching methods 

of all forms remain somewhat unintuitive to users, and as such, have not frequently been explored 

in upper limb prosthesis research.  

2.3.5. Movement-Based Control Strategy 

Movement-based control, also known as synergistic or trajectory control, is another strategy that 

addresses the challenge of limited residual muscle DOF control for device users. The movement-

based control strategy requires that a user’s intact joint movement be measured using IMUs (such 

as the shoulder position). These measurements are then used to drive the movement of a prosthetic  
 

 

Figure 2-6.  Switching control requiring 2 input signals to the prosthetic limb—a switching signal and a control signal. 
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joint (such as the elbow) [47]. This strategy is advantageous, as it reduces the number of device 

DOFs that require myoelectric control and instead allows control to be isolated to more distal 

DOFs, such as hand open/close. Movement-based control is based on known physiological 

synergies between joints (established using artificial neural networks [47], or simply mathematical 

relationships between measured and controlled joint angles [48]). For instance, shoulder 

movements have been shown to synergistically drive elbow flexion/extension [47], as well as wrist 

rotation [48]. Movement-based control has been shown to yield prosthetic arm movements that 

perform closer to unimpaired ones, reduce compensatory movements that are common to 

prosthesis users [47], and reduce task performance time (as compared to conventional sequential 

control) [48]. Furthermore, movement-based control accuracy is reportedly improved when paired 

with contextual information [49] or upper arm EMG signals [50].  

2.4. Conclusion and Future Direction 

This work has presented several EMG signal-driven upper limb prosthesis control strategies that 

use machine learning. These control strategies collectively demonstrate that machine learning 

approaches can yield more accurate prosthesis control over conventional (on/off or proportional) 

alternatives. However, it has not yet been determined which of these approaches is most favorable 

in the pursuit of a truly “intelligent” robotic replacement limb design—one that adapts to its 

environment to achieve the user’s desired movement in real-time.  

Ideally, an intelligent prosthetic device should be able to integrate EMG signals and close the 

control loop within the prosthesis controller using captured sensory data and within the human-

prosthesis system by providing the user with sensory feedback. Although closing this control loop 

remains a challenge, prosthesis researchers have explored addressing this challenge by restoring 

the tactile feedback of human touch via tactors [51] or implantable electrodes [31], and augmenting 

it with biofeedback [52]. As a consequence, users reportedly feel more connected to their devices 

[31]. Although myoelectric prostheses represent the clinical state of the art, current commercial 

devices do not intentionally provide sensory feedback [53]. Therefore, closing the control loop 

within the controller becomes more appealing. 

Given that the fingers of some prosthetic hands have the capability of detecting pressure [54], the 

corresponding pressure data could be used by a device controller during a grasp action to halt hand 
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closure. This automatic action may contribute to reducing cognitive load for operating the device. 

Furthermore, closing the control loop through the provision of both user environment and task 

context will ultimately contribute to device performance improvements. For example, if an upper 

limb prosthesis user could train different device control algorithms for specific environments or 

daily routines (such as preparing breakfast in a kitchen or checking emails on a computer), a 

smarter controller would undoubtedly result. We predict that in the near future, novel device 

control algorithms that learn myoelectric prosthesis control in real-time using deep neural 

networks can be anticipated [55]. These methods are expected to offer transformative capabilities 

in delivering contextual device control with multiple sensory inputs (EMG, IMU, and others), and 

therefore greater clinical and user acceptance. Ultimately, it is our hope that soon, fully regained 

dextrous upper limb motor function can be offered to persons with amputations through the use of 

truly “intelligent” prosthetic devices.  
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Chapter 3. 

Recurrent Convolutional Neural Networks 

(RCNNs) for Position-Aware Control of 

Myoelectric Upper Limb Prostheses 

Chapter 3 presents “Recurrent Convolutional Neural Networks as an Approach to Position-Aware 

Myoelectric Prosthesis Control,” originally published in IEEE Transactions on Biomedical 

Engineering, in 2022 [10]. It considers how deep neural networks can be used for prosthesis 

control, in response to the limb position effect problem identified in Chapter 2. In this current 

chapter, neural network-based control models (both classifiers and regressors) are compared to 

commonly used control models (that do not use deep learning techniques). Two important lessons 

stemming from this work include the understanding that: (1) model training routines can result in 

user training burden, and (2) off-line control assessments might not represent real-use control 

experiences. An illustration of how the information presented in Chapter 3 contributes to the 

overall work in this thesis is presented in Figure 3-1. 

 
Figure 3-1. Research question addressed by Chapter 3 and remaining gaps.  
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Abstract 

Objective: Persons with normal arm function can perform complex wrist and hand movements 

over a wide range of limb positions. However, for those with transradial amputation who use 

myoelectric prostheses, control across multiple limb positions can be challenging, frustrating, and 

can increase the likelihood of device abandonment. In response, the goal of this research was to 

investigate convolutional neural network (RCNN)-based position-aware myoelectric prosthesis 

control strategies. Methods: Surface electromyographic (EMG) and inertial measurement unit 

(IMU) signals, obtained from 16 non-disabled participants wearing two Myo armbands, served as 

inputs to RCNN classification and regression models. Such models predicted movements (wrist 

flexion/extension and forearm pronation/supination), based on a multi-limb-position training 

routine. RCNN classifiers and RCNN regressors were compared to linear discriminant analysis 

(LDA) classifiers and support vector regression (SVR) regressors, respectively. Outcomes were 

examined to determine whether RCNN-based control strategies could yield accurate movement 

predictions, while using the fewest number of available Myo armband data streams. Results: An 

RCNN classifier (trained with forearm EMG data, and forearm and upper arm IMU data) predicted 

movements with 99.00% accuracy (versus the LDA’s 97.67%). An RCNN regressor (trained with 

forearm EMG and IMU data) predicted movements with R2 values of 84.93% for wrist 

flexion/extension and 84.97% for forearm pronation/supination (versus the SVR’s 77.26% and 

60.73%, respectively). The control strategies that employed these models required fewer than all 

available data streams. Conclusion: RCNN-based control strategies offer novel means of 

mitigating limb position challenges. Significance: This research furthers the development of 

improved position-aware myoelectric prosthesis control.  

3.1. Introduction 

Myoelectric prostheses are designed to restore lost upper limb motor function for individuals with 

amputation. Recreating the coordinated movements of a natural human wrist and hand, however, 

remains a challenge for those with transradial amputations. In response, researchers have 

developed control strategies that use pattern recognition models to predict and execute a user’s 

movement intent [7]. Electromyography (EMG) is currently the most commonly used input source 

for prosthesis control [6], whereby EMG signals generated by muscle contractions in a user’s 
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residual limb are captured by electrodes embedded in a device socket. Despite yielding reliable 

device movements in research environments, precise decoding of movement intent from EMG 

signals can be unreliable when a wide range of limb positions are introduced by users during daily 

activities [14]. 

This significant challenge to myoelectric prosthesis control is known as the limb position effect 

[18]. Often, detected surface EMG control signals are altered when a user’s limb is in a position 

different from that in which the prosthesis controller was trained (usually a comfortable, low 

position) [18]. Resulting EMG signal variations can cause prosthesis control to degrade and 

unexpected prosthetic wrist and hand movements to occur. Researchers have investigated various 

methods of mitigating this problem, including the use of intramuscular electrodes [56], [57], high-

density surface electrode arrays [58], [59], and wearable limb position sensors [15], [16], [17], 

[21], [22], [23]. However, a solution that provides reliable and practical position-aware control has 

yet to be found. As such, continued research is required.  

Various pattern recognition approaches have been explored to address the limb position effect on 

end effector control [15], [16], [19], [20], [21], [22], [23], [60], [61], [62], [63], [64], [65], [66]. 

Broadly, pattern recognition approaches have included Statistical Models and Neural Networks 

(including deep learning), each of which can use either classification or regression techniques [14], 

[61]. Typically, classification models (classifiers) and regression models (regressors) map EMG 

signal features, which are extracted from raw EMG data, to predict intended end effector 

movements [34]. Classifiers map signal features to one of a discrete set of known classes 

(categories) of degrees of freedom (DOFs), offer control over multiple DOFs, but do not provide 

proportional control over device movement velocity or simultaneous control over multiple DOFs 

[6]. Conversely, regressors can map signal features to continuous velocity values for each DOF 

(proportional to input signal strength), offer simultaneous control of separate DOFs [6], but tend 

to be less robust than classifiers due to the increased complexity of their predictions [30]. Whether 

classification or regression is used for control, all models require a device training routine to be 

undertaken by the user, to inform pattern learning [67]. Although more training data generally 

yields stronger models, long training routines are cumbersome for the user [6], [12]. Overall, not 

only does the chosen pattern recognition model influence the resulting device control, the duration 
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of its required training routine, the time needed to train the model and make predictions, and the 

complexity of the model algorithm are also considerations. 

Statistical models apply probability theory to learn patterns in data and are currently more often 

employed in position-aware prosthesis control research than deep neural network alternatives 

[3]. Some researchers have collected EMG data across multiple limb positions to inform statistical 

classifiers [15], [16], [19], [20], [21], while others have added positional information (quaternions 

or accelerometer data) to take limb orientation into account [15], [16], [21], [22], [23]. Statistical 

regressors have not been as extensively explored as classifiers in device control literature [30]. 

Nevertheless, both statistical classifiers and regressors offer the benefits of being straightforward 

to implement and having low computational costs [34]. Each such model requires representative 

feature extraction from EMG signals. This means that assumptions must be made regarding which 

features best inform movement prediction [34], [68], [69]. To avoid possibly making ill-informed 

or erroneous assumptions, researchers have also begun to explore the benefits of neural network 

methods for EMG-based control [27], [65]. 

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) may yield 

improved prosthetic movement prediction accuracies over statistical approaches, given the 

advantages that they offer. The first such advantage is that CNNs can predict intended movements 

from raw EMG signals (rather than from extracted features) [43], [70], [71]. This means that, given 

sufficient data, new features can be automatically learned, thereby avoiding the need for feature 

engineering. Another advantage is that CNNs offer the ability to combine a high volume of data 

from multiple sensors [27], [28]. This suggests that CNNs may prove to be effective towards 

learning the complex features of combined EMG and inertial measurement unit (IMU) signals 

across multiple limb positions. Furthermore, as time-domain features are commonly used for 

prosthesis control [34], recurrent neural networks (RNNs), which leverage the temporal behaviour 

of signals [72], might also be beneficial towards solving the limb position effect. Given that 

recurrent convolutional neural networks (RCNNs) can harness the collective advantages presented 

by CNNs and RNNs, they too offer a promising research direction for improving device control.  

Compared to statistical approaches, few studies have explored using RCNN or CNN-based models 

for prosthesis control. Xia et al. examined the use of RCNNs, with raw EMG data, for the 

prediction of shoulder position (irrespective of end effector function) [72]. Their proposed model 
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yielded higher predictive accuracy than an alternative statistical regressor (support vector 

regression, SVR). Amongst other things, this research demonstrated that an RCNN can indeed 

learn features from raw EMG data to inform limb position. Ameri et al. confirmed that a CNN can 

be used with raw EMG data to predict wrist movement, and yielded offline and real-time 

performances better than those of an SVR [43]. More recently, Bao et al. used an RCNN to extract 

EMG features for the prediction of wrist motion [73]. This approach outperformed CNN-only 

approaches during complex wrist movements, and further supports the predictive potential of 

RCNN models. In 2018, Phinyomark and Scheme reviewed the potential for developing more 

advanced applications of EMG pattern recognition using deep learning approaches [27]. 

Collectively, the abovementioned studies recommended the continued pursuit of deep learning, 

including combining CNNs with RNNs, further optimizing model architectures, conducting more 

online testing of such models, or testing with larger datasets [43], [72], [73]. 

The goal of this study was to investigate the novel use of position-aware RCNN-based myoelectric 

prosthesis control strategies, towards solving the limb position effect problem. To this end, this 

study examined device control strategies that: (1) combined EMG and IMU input data streams to 

inform prosthesis movements and limb positions, respectively; and (2) used RCNN models to 

make movement predictions from these data. For each RCNN model under investigation, resulting 

movement predictions were compared to those of commonly used statistical models, so that 

potential improvements could be ascertained. The criteria by which position-aware control 

strategies were evaluated included their movement prediction accuracy, along with the number of 

EMG and/or IMU data streams that they required. Based on these criteria, this study identified 

two promising RCNN-based myoelectric prosthesis control strategies that were found to be 

consistently accurate across multiple limb positions. 

3.2. Methods 

3.2.1. Participants 

A total of 19 participants with no upper-body pathology or recent neurological or musculoskeletal 

injuries were recruited. The data from 3 participants were incomplete and as such not used for this 

study. Of the remaining 16 participants, 3 had previous experience with EMG control, all had 

normal or corrected to normal vision, 15 were right-handed, 8 were male, and the mean age was 
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26.4 ± 8.7 years (± 1 standard deviation). Each participant provided written informed consent, as 

approved by the University of Alberta Health Research Ethics Board (Pro00086557).  

3.2.2. Experimental Setup 

Two Myo gesture control armbands (Thalmic Labs, Kitchener, Canada) were used to collect EMG 

and IMU data. Each armband contained 8 surface electrodes and an IMU. Each surface electrode 

collected 1 EMG data stream (sampled at 200 Hz). Each IMU collected 10 limb position data 

streams (3 accelerometer, 3 gyroscope, and 4 quaternion, all sampled at 50 Hz). Using Myo 

Connect software, the EMG and IMU data were streamed into Matlab. Hardware and software 

limitations required that each Myo armband be connected to a separate laptop, so two Lenovo 

ThinkPad laptops were employed. A custom Matlab script, running on one laptop, captured 

streamed data from one Myo armband and simultaneously displayed onscreen instructions for a 

participant to follow. At the same time, another custom script ran on the second laptop to record 

data from the second Myo armband. 

3.2.3. Data Collection 

Each participant donned two Myo armbands on their self-identified dominant arm, as shown in 

Figure 3-2A. One was worn on their forearm, with a mean distance of 6.0 ± 1.9 cm distal to the 

olecranon, and electrode 1 on the lateral side of their forearm. The second armband was worn on  

 

Figure 3-2. (A) The placement of each Myo armband, along with limb positions used in data collection, and (B) 

movements used in data collection. 
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their upper arm, with a mean distance of 12.0 ± 2.4 cm proximal to the olecranon, and electrode 9 

on the anterior side of their upper arm, over the biceps muscle.  

Participants followed onscreen instructions, performing various movements in 4 limb positions, as 

described below.  

 Movements included: rest (relaxed), wrist flexion, wrist extension, forearm pronation, and 

forearm supination, as shown in Figure 3-2B. These movements are functionally important 

for individuals with transradial amputation [74]. Notably, the hand open and close 

movements were not included in this study, given that wrist flexion and extension can 

instead be used to control the opening and closing of a prosthetic hand [43], [53], [75], 

[76], [77]. Similarly, forearm pronation and supination can be used to control prosthetic 

wrist rotation.  

 Limb positions included: arm at side, elbow bent at 90°, arm out in front at 90°, and arm 

up at 45° from vertical, as shown in Figure 3-2A. 

Data collection consisted of 6 trials: 3 static trials and 3 dynamic trials. Rest time was provided 

between each trial. 

 Trials 1–3 (static) required participants to perform various movements (shown in Figure 

3-2B) using sustained isotonic muscle contractions. All movements were held for 5 

seconds, separated by 5 seconds of rest. The movements were repeated in each of the 4 

limb positions (shown in Figure 3-2A). Participants were instructed to perform each muscle 

contraction at a moderate effort that could be sustained for 5 seconds. 

 Trials 4–6 (dynamic) required participants to perform movements that oscillated either 

between wrist flexion and extension or forearm pronation and supination. The timing of 

these oscillations was demonstrated onscreen (5 cycles with a period of 4 seconds). These 

oscillations were repeated in each of the 4 limb positions (shown in Figure 3-2A). 

3.2.4. Data Pre-Processing 

The EMG data from each Myo armband were filtered using a high pass filter at 20 Hz (to remove 

movement artifacts), as well as a notch filter at 60 Hz (to remove electrical noise). Then, the IMU 
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data streams were resampled to 200 Hz using linear interpolation to align them with the 

corresponding EMG data. The resulting data from the two Myo armbands were synchronized.  

The static trials were segmented into movements (rest, wrist flexion, wrist extension, forearm 

pronation, and forearm supination). For the dynamic trials, target sinusoids were generated to 

represent movement oscillations. Given that an offset was evident between participants’ 

movements and onscreen oscillations, their sinusoids were corrected as follows: forearm EMG 

signal peaks were identified and used to fit a sine wave to represent wrist flexion/extension 

oscillations, whereas forearm IMU signal peaks and valleys (specifically from the accelerometer) 

were used to fit a sine wave to represent forearm pronation/supination oscillations. The resulting 

target sinusoids were then used to segment the dynamic trials into movements in each DOF (wrist 

flexion/extension, forearm pronation/supination). 

Next, for the purposes of the RCNN models under investigation and their comparative statistical 

models, data were segmented further into windows (160-millisecond with a 40-millisecond offset). 

For the statistical models, time-domain features were then calculated for each EMG or IMU 

channel, in each window. These included 4 commonly-used EMG features (mean absolute value, 

waveform length, Willison amplitude, and zero crossings [9]) and 1 IMU feature (mean value). 

For the RCNN models, time-domain features were not calculated and instead, filtered signal data 

remained in each window. 

3.2.5. RCNN and Comparative Statistical Models 

3.2.5.1. RCNN Models – Architecture 

Matlab software was used to implement the RCNN models. Bayesian optimization automatically 

determined the number of convolution layers, number of filters, filter size, pooling size, and 

patience required in this study. Optimization was performed in two steps: first, the number of 

layers along with each hyperparameter being optimized were determined using a broad range of 

values; thereafter, values were refined using a narrower range (centered at earlier optimized 

values). 
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Figure 3-3. RCNN architecture: sequence input layer (Input); sequence folding layer (Folding); 4 blocks of 

convolution, batch normalization (Normalization), rectified linear unit (ReLU), and maximum pooling (Pooling); 1 

block of convolution, batch normalization, and ReLU; sequence unfolding layer (Unfolding); flatten layer; long short-

term memory (LSTM) layer; fully connected layer; and finally either (1) softmax and classification layers, or (2) a 

regression layer. Figure made using NN-SVG [78]. 

Our resulting RCNN models had architectures that consisted of 27 (classification) or 26 

(regression) layers, as shown in Figure 3-3 [78]. In these models, a sequence input layer first 

received and normalized the training data. Then, a sequence folding layer was used, allowing 

convolution operations to be performed independently on each window. This was followed by a 

block of 4 layers: a convolution, a batch normalization, a rectified linear unit (ReLU), and a 

maximum pooling layer. This block was repeated 3 more times. Each of the 4 maximum pooling 

layers had a pooling size of 1x2. A block of 3 layers followed: a convolution, a batch 

normalization, and a ReLU layer.  

 For limb position classification, the optimal number of filters in the convolution layers 

were determined to be 32, 32, 32, 64, and 64, respectively, and each had a filter windows 

size of 1x3. 

 For movement classification and regression, the optimal number of filters in the 

convolution layers were determined to be 64, 32, 64, 32, and 16, respectively, and each had 

a filter window size of 1x5.  

Subsequent layers included a sequence unfolding layer (to restore the sequence structure), a flatten 

layer, a long short-term memory (LSTM) layer, and a fully connected layer. Finally, either (1) a 
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softmax layer and classification layer were used, or (2) simply a regression layer was used. To 

prevent overfitting, a patience parameter was set that triggered early stopping. 

3.2.5.2. Comparative Statistical Model 

Given that linear discriminant analysis (LDA) is commonly used in prosthesis control research 

[15], [22], [23], this study opted to use LDA classifiers for comparisons to both RCNN limb 

position classifiers and RCNN movement classifiers. The chosen LDA discriminant type was 

pseudo-linear, since columns of zeros were occasionally present in rest classes for some features 

(including Willison amplitude and zero crossings). 

SVR regressors were used for comparisons to RCNN movement regressors, as per earlier research 

[43], [72]. The SVR regressors used a linear kernel for input data mapping, given that it yielded 

the most accurate movement predictions in earlier pilot work (compared to radial basis function 

and polynomial kernel alternatives). This pilot work was based on EMG and IMU data from 

multiple limb positions. The kernel scale parameter was automatically optimized by Matlab 

software and no kernel offset was used. 

3.2.6. Classification and Regression 

This study explored models that predicted limb positions and movements. Three model 

specifications (S1–S3) were investigated, in addition to a comparative baseline model. All model 

specifications were substantiated by earlier research: 

S1 – Model trained with EMG data from all limb positions [15], [16], [19], [20], [21] 

S2 – Model trained with EMG and IMU data from all limb positions [15], [21], [22], [23] 

S3 – Models trained with EMG data at each limb position, with subsequent predictions 

occurring in a 2-staged sequence: 1st, a limb position was classified using IMU data; 2nd, a 

corresponding model (trained at that specified limb position) predicted a wrist movement 

using EMG data [15], [16], [22], [23] 

Baseline – Model trained with EMG data from arm at side  

Note that S1 and the Baseline require only EMG data, whereas S2 and S3 require both EMG and 

IMU data. Specifications S1–S3 and the Baseline were each implemented using an RCNN 
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classifier, an RCNN regressor, an LDA classifier, and an SVR regressor (16 models total). The 

training and testing of each model were performed in Matlab using an Intel® Core™ i9-9900K 

CPU (3.60 GHz). 

3.2.6.1. Limb Position Classification 

RCNN limb position classifiers were compared to LDA limb position classifiers in this study. The 

RCNN classifier inputs were signals from each window and the LDA classifier inputs were time-

domain features from each window. Both classifiers outputted a predicted limb position class 

(shown in Figure 3-2A) for each window. Limb position classifiers were trained with Trials 1–2 

(static) data from a participant and subsequently tested using Trial 3 (static) data from that same 

participant. This approach was motivated by current myoelectric prosthesis use, wherein the user 

must train their device controller before it can predict movement intent.  

Prosthesis control research has shown that the use of numerous data streams (EMG and/or IMU) 

can result in longer machine learning processing times and/or increased hardware costs [22]. 

Taking these drawbacks into consideration, the specific data stream types that would most 

accurately inform limb position were initially investigated. Data from both Myo armbands were 

used in this investigation, with the RCNN and LDA limb position classifiers trained and tested 

using the following data stream combinations: 

 All EMG and IMU data streams from both Myo armbands 

 All EMG data streams from both Myo armbands 

 All IMU data streams (quaternions, gyroscope, and accelerometer) from both Myo 

armbands 

 Only accelerometer data streams [15], [16], [62] from both Myo armbands 

Note that gyroscope and quaternion data streams were not investigated independently. Earlier pilot 

work revealed that accelerometer data better informed limb position in comparison to gyroscope 

and/or quaternion data. 
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3.2.6.2. Movement Classification 

RCNN movement classifiers were compared to LDA movement classifiers. As with limb position 

classification, the RCNN movement classifier inputs were signals from each window and the LDA 

classifier inputs were time-domain features from each window. Both the RCNN and LDA 

movement classifiers outputted a predicted movement class (shown in Figure 3-2B) for each 

window. Movement classifiers were trained with Trials 1–2 data from a participant, and 

subsequently tested using Trial 3 data from that same participant.  

Movement classifiers were trained, tested, and compared under model specifications S1–S3. The 

predictive accuracies of these classifiers were compared to those of a baseline classifier (BC), 

trained with only EMG data collected with each participant’s arm at their side (as per standard 

prosthesis training). Additionally, to minimize the number of data streams necessary for movement 

classification, each classifier was trained with the following combinations:  

 Data (EMG and, when applicable, IMU) from only the forearm Myo armband 

 Data from both Myo armbands 

 EMG data from the forearm and IMU data from both Myo armbands (when applicable) 

3.2.6.3. Movement Regression 

RCNN movement regressors were compared to SVR movement regressors. The RCNN and SVR 

movement regressors used the same inputs as did the RCNN and LDA movement classifiers, 

respectively. However, the RCNN and SVR regressors outputted continuous movement 

predictions, denoting muscle activation intensity for each DOF (flexion/extension and 

pronation/supination) in each window. DOF range endpoints included: 

 full flexion = -1, full extension = 1 

 full pronation = -1, full supination = 1 

Within each DOF range, 0 indicated rest. Notably, a single RCNN regressor was capable of 

yielding movement prediction values for both DOFs simultaneously. In comparison, two SVR 

regressors were required to yield the same movement predictions, given that a single SVR 

regressor can only predict movements for one DOF.  
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RCNN and SVR movement predictions were then post-processed: (1) they were smoothed using 

the prediction from the previous window via a moving average filter [79]; (2) predictions between 

-0.2 and 0.2 were suppressed to 0 [42]; and (3) predictions greater than 1 or less than -1 were 

clipped to 1 or -1, respectively. 

Movement regressors were trained with Trials 4–5 (dynamic) data from a participant and 

subsequently tested using Trial 6 (dynamic) data from that same participant. Movement regressors 

were trained, tested, and compared under model specifications S1–S3. The predictive accuracies 

of these regressors were compared to those of a baseline regressor (BR), trained with only EMG 

data collected with each participant’s arm at their side (as per standard prosthesis training). For 

S3, when RCNN movement regression was investigated, RCNN limb position classification was 

used (that is, S3’s models were all RCNN). Conversely, when SVR movement regression was 

investigated, LDA limb position classification was used (that is, S3’s models were all statistical). 

As detailed in the previous Movement Classification section, each movement regressor under S1–

S3 and the Baseline was trained with the same three combinations of data streams. 

3.2.7. Outcome Measures and Statistical Analysis 

3.2.7.1. Prediction Accuracy Calculations 

Limb Position Classifiers: The predicted limb positions performed by the participants were 

compared to actual limb position classes, with resulting Trial 3 accuracies presented in the Results 

section as percentages (averaged across participants).  

Movement Classifiers: The predicted movements performed by the participants were compared 

to actual movement classes, with resulting Trial 3 accuracies presented in the Results section as 

percentages (averaged across participants).  

Movement Regressors: Unlike movement classifiers, which were trained with static data (discrete 

values), movement regressors were trained and tested with data from dynamic trials (continuous 

values). As such, the prediction accuracy of movement regressors was determined using R2 

(coefficient of determination) calculations. Recall that the dynamic data consisted of movements 

that oscillated between either wrist flexion and extension or forearm pronation and supination—

that is, in only one DOF at a time. Given this, two kinds of movement periods (or states) occurred 

for each DOF: active periods, wherein movements were observed in that DOF, and inactive 
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periods, wherein rest occurred in that DOF while movements were observed in the other DOF, as 

shown in Figure 3-4. 

 For active periods, R2 values were calculated by comparing movement predictions to the 

target sinusoids. Resulting Trial 6 values are presented in the Results section as percentages 

(averaged across participants). 

 For inactive periods, however, R2 values could not be calculated. This is because the actual 

movements in those periods form a horizontal line at 0 (see Figure 3-4), with R2 becoming 

an invalid measure of fit. As such, standard deviations of the movement predictions were 

calculated instead [42], to reveal the amount of predictive variation. A low standard 

deviation indicated a high prediction accuracy (that is, one with minimal unwanted 

movement predictions). Resulting Trial 6 values are presented in the Results section 

(averaged across participants). 

The Kolmogorov-Smirnov test was conducted and revealed that all prediction accuracies did not 

follow a normal distribution. Therefore, the non-parametric Friedman’s Analysis of Variance and 

post-hoc Wilcoxon signed-rank tests were used to identify significant prediction accuracy 

differences across combinations of data streams (for a given classifier or regressor). 

 

Figure 3-4. Active and inactive periods for each degree of freedom (DOF). An active period is when movements are 

observed in a given DOF, and an inactive period is when that DOF is in rest while movements are observed in the 

other DOF. 
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3.2.7.2. Confusion Matrices 

Of the movement classifiers and regressors under investigation, the best-performing were further 

analyzed using confusion matrices. When creating confusion matrices for regressors, predictions 

and target sinusoid values were categorized into rest, flexion, extension, pronation, and supination 

using the following rules: (1) values between -0.2 and 0.2 in both DOFs were categorized as rest 

(in accordance with the chosen post-processing threshold); and (2) for all non-rest values, 

flexion/extension predictions were compared to pronation/supination predictions, whereby the 

greater absolute values between them were used to identify movement categories. When creating 

confusion matrices for the classifiers under further investigation, such categorization was 

unnecessary. 

3.2.7.3. Overall Comparisons 

Finally, to facilitate direct comparisons between all movement classifiers and regressors under 

investigation, their root mean square errors (RMSEs) were calculated. RMSE provided a measure 

of the deviation between predicted and target values. Other studies have used similar measures to 

compare the performance of classifiers and regressors [44], [52], [80]. To calculate RMSE, 

movement classification predictions and actual movement classes were converted to values of -1, 

0, or 1 in each DOF. 

3.3. Results 

3.3.1. Limb Position Classification 

The mean limb position classification accuracies (across participants) of the RCNN and LDA 

classifiers, using four combinations of data streams from both Myo armbands, are shown in Figure 

3-5 and Table A-1 (in Appendix A). Notably, both the RCNN and LDA classifiers predicted limb 

positions most accurately when the IMU’s accelerometer data alone were used (99.01% for RCNN, 

98.66% for LDA; a 0.35% difference between these).  

The mean training and prediction times of the RCNN and LDA classifiers, using the same four 

combinations of data streams from both Myo armbands, are shown in Table B-1 (in Appendix B). 

In addition to yielding the highest prediction accuracies, both the RCNN and LDA classifiers 

resulted in decreased training times when only accelerometer data were used (RCNN: 1.68  
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Figure 3-5. Mean limb position classification accuracy (across participants) using RCNN and LDA classification for 

each combination of data streams: all EMG and IMU data streams from both Myo armbands (red); all EMG data 

streams from both Myo armbands (blue); all IMU data streams from both Myo armbands (black); and only 

accelerometer data streams from both Myo armbands (green). One standard deviation of each classification accuracy 

is shown with error bars, and significant prediction accuracy differences across combinations of data streams are 

indicated with asterisks (*: p < 0.05, **: p < 0.01, ***: p < 0.001). 

minutes, LDA: 38.48 milliseconds) versus when all data streams were used (RCNN: 2.52 minutes, 

LDA: 89.19 milliseconds). Of note, all classifiers took less than 1 millisecond per prediction, 

which is well below the 100-millisecond threshold for optimal controller delay [35] (although, 

admittedly, the computer used in this study was much faster than an embedded processor in a 

myoelectric prosthesis). 

Given these results, for subsequent movement classification and regression investigations, the 

quaternion and gyroscope data streams from the IMU were eliminated. Furthermore, the limb 

position classifier in model specification S3 used only accelerometer data streams. 

3.3.2. Position-Aware Movement Classification: S1–S3 

The mean movement classification accuracies (across participants) of the RCNN and LDA 

classifiers, under each specification and using three combinations of data streams, are shown in 

Figure 3-6 and Table A-2 (in Appendix A). As expected, the baseline RCNN classifier and baseline 

LDA classifier yielded the least accurate movement predictions (approximately 85% for each, 

when using only forearm Myo armband data streams). Overall, the RCNN classifier under S2,  
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Figure 3-6. Mean movement classification accuracy (across participants) using (A) RCNN classification and (B) 

LDA classification, under each classification specification: the baseline classifier (BC), specification 1 (S1), 

specification 2 (S2), and specification 3 (S3). Accuracies are provided for each combination of data streams: data from 

only the forearm Myo armband (red); data from both Myo armbands (blue); and EMG data from the forearm and 

accelerometer (Accel) data from both Myo armbands (when applicable, black). One standard deviation of each 

classification accuracy is shown with error bars, and significant prediction accuracy differences across combinations 

of data streams are indicated with asterisks (*: p < 0.05, **: p < 0.01, ***: p < 0.001). 

trained with EMG data from the forearm Myo armband and accelerometer data from both Myo 

armbands, yielded the most accurate movement predictions (99.00%). The LDA classifier under 

S2 using the same training data predicted movements with a slightly lower accuracy (97.67%). So, 

in comparison, this RCNN classifier was 1.33% more accurate than the corresponding LDA 

classifier. Generally, most of the position-aware RCNN and LDA classifiers yielded movement 

prediction accuracies over 95%, especially those under S2 and S3.  

The mean training and prediction times of the RCNN and LDA classifiers, under each specification 

and using three combinations of data streams, are shown in Table B-2 (in Appendix B). On 

average, the RCNN classifiers under S1 and S2 took approximately 2 minutes to train, whereas 

RCNN classifiers under S3 took 9 minutes to train. The LDA classifiers under S1 and S2 took 

approximately 26 milliseconds to train, whereas LDA classifiers under S3 took 84 milliseconds to 

train. When comparing training times across specifications, RCNN and LDA classifiers under S3 
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required more time than classifiers under other specifications. Of note, all classifiers took less than 

6 milliseconds per prediction, which is well below the 100-millisecond threshold for optimal 

controller delay [35]. 

Given that the RCNN classifier under S2, trained with EMG data from the forearm Myo armband 

and accelerometer data from both Myo armbands, predicted movements most accurately, its 

predictions were further investigated using confusion matrices for each limb position, as shown in 

Figure 3-7. The RCNN classifier under S2’s movement prediction accuracy was found to be 

consistent across all limb positions, with a roughly equal proportion of errors across classes. 

3.3.3. Position-Aware Movement Regression: S1–S3 

Recall that this study used two outcome measures to assess movement regression predictive 

accuracy: R2 values during active periods and standard deviations during inactive periods. The 

mean R2 values (across participants) of the RCNN and SVR movement regressors, under each 

specification and using three combinations of data streams, are shown in Figure 3-8 and Table A-

3 (in Appendix A). The corresponding mean standard deviations are presented in Table 3-1. For 

both flexion/extension and pronation/supination DOFs, the RCNN regressor under S2 yielded the 

highest R2 values during active periods and the lowest standard deviations during inactive periods 

(compared to standard deviations of predictions made with the other RCNN regressors). Overall, 

the RCNN regressor under S2, trained with EMG and accelerometer data from the forearm Myo 

armband, yielded high R2 values for both DOFs (84.93% for flexion/extension and 84.97% for 

pronation/supination), while reducing the required number of data streams. Conversely, the SVR 

regressor under S2, also using EMG and accelerometer data from the forearm Myo armband, 

yielded much lower R2 values (77.26% for flexion/extension and 60.73% for 

pronation/supination). The RCNN regressor had R2 values that were 7.67% greater in 

flexion/extension and 24.24% greater in pronation/supination than those of the corresponding SVR 

regressor.  
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Figure 3-7. RCNN movement classification confusion matrices, across participants for (A) arm at side, (B) elbow at 

90°, (C) arm out at 90°, and (D) arm up at 45° under S2 using EMG data from the forearm Myo armband and 

accelerometer data from both Myo armbands. Movement classes are rest, flexion (flex), extension (ext), pronation 

(pro), and supination (sup). 

 

 

Figure 3-8. Mean movement regression R2 values (across participants) using (A) RCNN flexion/extension regression, 

(B) SVR flexion/extension regression, (C) RCNN pronation/supination regression, and (D) SVR pronation/supination 

regression, under each specification: the baseline regressor (BR), specification 1 (S1), specification 2 (S2), and 

specification 3 (S3). R2 values are provided for each combination of data streams: data from only the forearm Myo 

armband (red); data from both Myo armbands (blue); and EMG data from the forearm and accelerometer (Accel) data 

from both Myo armbands (when applicable, black). One standard deviation of each R2 value is shown with error bars, 

and significant prediction accuracy differences across combinations of data streams are indicated with asterisks (*: p 

< 0.05, **: p < 0.01, ***: p < 0.001). 
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When comparing standard deviations, the RCNN regressor under S2 had a flexion/extension 

standard deviation of 4.20% and a pronation/supination standard deviation of 5.11%. Conversely, 

the corresponding SVR regressor had standard deviations of 3.19% and 8.10%, for these same 

movements. The RCNN regressor had a flexion/extension standard deviation 1.01% higher than 

that of the SVR regressor, and a pronation/supination standard deviation 2.99% lower than that of 

the SVR regressor.  

The mean training and prediction times of the RCNN and SVR regressors under each specification, 

using three combinations of data streams, are shown in Table B-3 (in Appendix B). On average, 

the RCNN regressors under S1 and S2 took approximately 1 minute to train, whereas RCNN under 

S3 took 3 minutes to train. The SVR regressors under S1 and S2 took approximately 21 seconds 

to train, whereas SVR regressors under S3 took 8 seconds to train. Of note, all regressors took less 

than 6 milliseconds per prediction, which is well below the 100-millisecond threshold for optimal 

controller delay [35]. 

 

Table 3-1. Regression standard deviations in inactive periods. Mean standard deviations (across participants) using 

the RCNN flexion/extension regression, SVR flexion/extension regression, RCNN pronation/supination regression, 

and SVR pronation/supination regression, under each specification: the baseline regressor (BR), specification 1 (S1), 

specification 2 (S2), and specification 3 (S3). Standard deviations are provided for each combination of data streams: 

data from only the forearm Myo armband; data from both Myo armbands; and EMG data from the forearm and 

accelerometer data from both Myo armbands (when applicable). 

Specification Data Streams 
Flexion/Extension 

Standard Deviation (%) 
Pronation/Supination 

Standard Deviation (%) 
RCNN SVR RCNN SVR 

BR 
Forearm EMG 10.76 4.85 16.01 13.50 
Both EMG 8.08 5.02 21.15 16.36 

S1 
Forearm EMG 5.74 3.47 11.14 7.59 
Both EMG 5.89 3.53 8.80 9.73 

S2 
Forearm EMG + Accelerometer 4.20 3.19 5.11 8.10 
Both EMG + Accelerometer 4.74 3.25 5.76 4.05 
Forearm EMG + Both Accelerometer 4.50 3.13 5.39 4.13 

S3 
Forearm EMG + Accelerometer 8.81 4.56 11.02 13.71 
Both EMG + Accelerometer 6.56 4.97 8.91 13.82 
Forearm EMG + Both Accelerometer 7.70 4.23 11.02 13.21 
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Given that the RCNN regressor under S2, trained with EMG and accelerometer data from the 

forearm Myo armband, predicted movements most accurately, its predictions were further 

investigated. These predictions were categorized into movement classes (rest, flexion, extension, 

pronation, and supination), and the resulting confusion matrices for each limb position were 

generated, as shown in Figure 3-9. The RCNN regressor under S2’s movement prediction accuracy 

was found to be consistent across all limb positions, but most errors were related to rest. 

3.3.4. Results Summary 

A comparative summary of the classifiers and regressors that were investigated in this study is 

presented in Table 3-2, wherein the RMSE was calculated for all movement predictions. Table 3-2 

identifies the position-aware control strategies that most accurately predicted movements — those 

with an RMSE less than 0.22 (this threshold was chosen as it represents the 70th percentile of 

accuracy).  

Overall, the best classifier was determined to be the RCNN classifier under S2, and the best 

regressor was the RCNN regressor under S2—both yielded the most accurate movement 

predictions, while using fewer than all available data streams. 

 

 

 

Figure 3-9. RCNN movement regression confusion matrices, across participants for (A) arm at side, (B) elbow at 90°, 

(C) arm out at 90°, and (D) arm up at 45° under S2 using data from the forearm Myo armband. Movement classes are 

rest, flexion (flex), extension (ext), pronation(pro), and supination (sup). 
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Table 3-2. Movement prediction accuracy summary. Root mean square error across participants for each movement 

prediction method (classification or regression), specification (BC, BR, S1, S2, and S3), type of model (RCNN, LDA, 

and SVR), and combination of data streams (data from only the forearm Myo armband; data from both Myo armbands; 

and EMG data from the forearm and accelerometer data from both Myo armbands, when applicable). Root mean 

square errors less than 0.22 are highlighted in green. 

Model and Specification 
Root Mean Square Error (calculated with different data streams) 
Forearm EMG 

+ Accelerometer 
Both EMG 

+ Accelerometer 
Forearm EMG 

+ Both Accelerometer 

Classifier 

BC 
RCNN 0.36 0.49  
LDA 0.40 0.50  

S1 
RCNN 0.24 0.20  

LDA 0.27 0.24  

S2 
RCNN 0.11 0.14 0.09 
LDA 0.16 0.15 0.15 

S3 
RCNN 0.23 0.22 0.22 
LDA 0.24 0.23 0.24 

Regressor 

BR 
RCNN 0.34 0.36  
SVR 0.37 0.36  

S1 
RCNN 0.26 0.24  

SVR 0.36 0.34  

S2 
RCNN 0.20 0.20 0.20 
SVR 0.28 0.27 0.28 

S3 
RCNN 0.27 0.25 0.27 
SVR 0.34 0.31 0.34 

 

3.4. Discussion 

The goal of this study was to investigate RCNN-based position-aware myoelectric prosthesis 

control strategies, using combined EMG and IMU input data streams. EMG signals primarily 

informed intended movements, whereas IMU signals primarily provided context about limb 

position. Classifiers and regressors used these signals to make position-aware movement 

predictions. Recall that three model specifications were explored:  

S1 – Model (classifier or regressor) trained with EMG data from all limb positions  

S2 – Model trained with EMG and IMU data from all limb positions 
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S3 – Models trained with EMG data at each limb position, with subsequent predictions 

occurring in a 2-staged sequence: 1st, a limb position was classified using IMU data; 2nd, a 

corresponding model (trained at that specified limb position) predicted a wrist movement 

using EMG data 

For this study, a favourable position-aware myoelectric prosthesis control strategy was considered 

to be one where a classifier or regressor yielded accurate movement predictions, using the fewest 

possible data streams. 

3.4.1. Position-Aware Classification 

This study corroborates and extends the findings of earlier prosthesis control strategy research that 

likewise used classifiers under model specifications S1–S3. Such research yielded improved 

movement predictions compared to a baseline classifier [6], [12], [81]. Fougner et al. found that 

LDA classification under S2 yielded the most accurate movement predictions [15], whereas Geng 

et al. concluded that LDA classification under S3 proved to be the most accurate [22], [23].  

Of the position-aware classifiers under S1–S3 that were investigated in this study, the most 

promising was the RCNN classifier under S2 (with EMG data from the forearm Myo 

armband and accelerometer data from both Myo armbands). It yielded the highest movement 

prediction accuracy (99.00%, versus the LDA’s at 97.67%) while requiring a reduced number of 

data streams. The success of this classifier under S2 is consistent with Fougner et al.’s observations 

[15]. Notably, classifiers under S1 performed less accurately compared to those under S2 because 

accelerometer data (and consequently limb position information) was not included under S1. 

Additionally, classifiers under S3 performed less accurately than those under S2, likely because 

the classification sequence of S3 (with two stages) introduced the potential to compound errors.  

This study’s RCNN classifier under S2 yielded more accurate movement predictions than did 

classifiers in earlier research. As such, this work offers encouraging results towards solving the 

limb position effect. 

3.4.2. Position-Aware Regression 

To our knowledge, only one other study has implemented a regression-based device control 

strategy in the context of addressing the limb position effect. Park et al. employed a position 
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decoder to accomplish position-independent regression, and tested their resulting predictive device 

control outcomes through real-time experimentation [61]. They predicted movements with smaller 

R2 values than those of this study, but caution should be taken when comparing their real-time 

results to those of this offline work.  

Of the position-aware regressors under S1–S3 that were investigated in this study, the most 

promising was the RCNN regressor under S2 (with EMG and accelerometer data from the 

forearm Myo armband). It yielded the highest movement prediction accuracy (with R2 values of 

84.93% for wrist flexion/extension and 84.97% for forearm pronation/supination, versus the 

SVR’s at 77.26% and 60.73%, respectively). It also required a reduced number of data streams. 

However, this RCNN regressor predicted movements with lower accuracies than the investigated 

classifiers. This is in keeping with previous research that found regression to be less accurate than 

classification, due to the increased complexity of regression predictions (continuous values for 

each DOF) [30]. Despite being lower in predictive accuracy than classification, regression may 

offer increased functionality, through both simultaneous and proportional control, and as such 

might outperform classification in real-time experimentation [80].  

Of the errors that contributed to the decreased accuracy of the RCNN regressor under S2, the 

majority occurred around the rest periods, as evidenced in Figure 3-9. These errors can be 

categorized as either false negatives (falsely predicting rest) or false positives (falsely predicting a 

movement instead of rest). False negatives occurred more frequently. Notably, false negatives can 

be considered acceptable in prosthesis control; that is, simply perceived as device responsiveness 

latency by users [82]. The detected false negatives may have resulted from prediction suppression, 

whereby prediction values between -0.2 and 0.2 were set to 0. Note that in future work, this 

suppression threshold can be adjusted. Finally, both false negatives and false positives may have 

been caused by offsets between the participants’ movements and the sinusoids chosen to represent 

these movements. Undoubtedly, without a perfect match between sinusoids and movements, slight 

inaccuracies can be expected. 

To mitigate the occurrence of such inaccuracies, participants’ movements must closely track 

training sinusoids. It is a common research practice to have participants follow an onscreen training 

target (such as a moving cursor or virtual hand) [42], [83], [84], [85]. But this practice can result 

in the introduction of participant movement delays. This study corrected the delay between 
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onscreen movement instructions and participants’ actual movements by using generated sinusoids 

for both wrist flexion/extension and forearm pronation/supination. To accomplish this, peak 

muscle contractions were extracted from the EMG signal data and used to produce wrist 

flexion/extension sinusoids, whereas accelerometer signals were used to generate forearm 

pronation/supination sinusoids. Despite making the necessary movement corrections in this study 

through the use of sinusoids, offsets may have still been present (although presumably smaller than 

without such corrections.  

To further reduce the occurrence of movement offsets, modifications could be made to the data 

collection methods for the regression training routine. For example, if a participant were to follow 

an onscreen sinusoid overlayed with their real-time EMG signals [86] (that is, afforded visual 

feedback), more accurate instruction adherence would likely result. That same sinusoid could then 

be used as a precise training target (as opposed to extracting muscle and position signals’ peaks 

for sinusoids). Additionally, if participants were required to complete a practice dynamic trial 

before data collection, the precision with which they follow the target sinusoid would likely 

improve. 

3.4.3. Promising RCNN Outcomes 

As expected, the RCNN-based control strategies investigated in this study predicted movements 

more accurately than statistical-based alternatives (which was especially evident when comparing 

RCNN and SVR regressors). This may be because RCNNs offer the advantage of learning new 

features from complex input data. Other studies have investigated the use of engineered feature 

sets to address the limb position problem, and as such did not harness this advantage [60], [62], 

[65]. Despite yielding position-aware movement predictions using engineered features, their 

models did not perform quite as well as this study’s RCNN classifier under S2. Although these 

studies examined more extensive limb position ranges and movements, their lower predictive 

accuracies may suggest that for position-aware myoelectric control, learning new features with 

RCNNs may be favourable over using engineered features. Naturally, further research is required 

to confirm this.  
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3.4.4. Limitations 

Limitations in this study included: the requirement for training routines with long durations; the 

number of limb positions and wrist movements used for training and testing models was not 

exhaustive; models were only tested on the 3rd or 6th trials; more training data may be required for 

accurate results in other limb positions; and only static limb positions were employed in this study 

(training with continuous limb positions may improve predictive accuracy [19], [21]).  

Notably, regressors were tested using data from oscillations in one DOF at a time. This testing 

method does not demonstrate model performance during simultaneous muscle contractions in two 

DOFs and consequently cannot translate directly to activities of daily living. Furthermore, data 

from only isotonic muscle contractions were recorded, rather than data resulting from isometric 

contractions (which are used to control a prosthesis). The performance of the models presented in 

this study may differ when isometric contractions are used. 

Finally, the feasibility of implementing RCNN-based prosthesis control strategies using existing 

hardware was not investigated in this study. However, as the capabilities of onboard prosthetic 

device processors continue to improve, it is expected that implementation might well be possible 

in the near future. 

3.4.5. Future Work 

Future work will focus on real-time testing of the promising RCNN-based control strategies 

(RCNN classifier and regressor under S2) presented in this study. Upcoming research will include 

real-time testing of these control strategies with both non-disabled participants (using a simulated 

prosthesis) and myoelectric prosthesis users. Testing using a simulated or actual prosthesis will 

require participants to use isometric contractions for device control. Participants will carry out 

functional tasks that simulate activities of daily living. These tasks will also allow for the 

assessment of regression control for simultaneous movements.  

Although the movement prediction accuracy of myoelectric control strategies may not always 

correlate with their real-time performance [23], [66], a reduction in the limb position effect can be 

expected in real-time experimentation (given that participants will have visual feedback and will 

be able to adjust their muscle contractions accordingly [79]). Improvements to the regression 
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training routine that were gleaned from this study will be implemented in future work. 

Additionally, as RCNN classifiers under S2 required training routines with long durations (relative 

to the baseline classifiers), a generalized RCNN classifier will be investigated, with the goal of 

eliminating the training routine (and consequently model training time) altogether. 

3.5. Conclusion 

This study has identified two promising position-aware myoelectric prosthesis control strategies 

towards solving the limb position effect problem:  

(1) An RCNN classifier trained with EMG and accelerometer (IMU) data (captured from 

participants across multiple limb positions) predicted movements best, while requiring a 

reduced number of data streams; and  

(2) An RCNN regressor trained with EMG and accelerometer data (captured from participants 

across multiple limb positions) performed much better than an SVR regressor, although 

not as accurately as the aforementioned RCNN classifier. It also required fewer than all 

available data streams.  

It is expected that both of these RCNN-based control strategies will likewise yield accurate, 

position-aware movement predictions in real-time experimentation. As such, results of this 

research are anticipated to improve the usability of myoelectric devices for individuals with 

amputation, particularly when faced with the challenges of the limb position effect. 

 

  



 
 

49 

Chapter 4. 

Composite RCNN Classification Control  

Chapter 4 presents “Composite Recurrent Convolutional Neural Networks Offer a Position-Aware 

Prosthesis Control Alternative While Balancing Predictive Accuracy with Training Burden,” 

originally published in the Proceedings of the International Consortium on Rehabilitation 

Robotics, in 2022 [11]. It investigates a novel control strategy (hereinafter referred to as a control 

solution) that addresses burdensome training routines identified in Chapter 3. In this current 

chapter, a composite recurrent convolutional neural network is developed and tested. The goal of 

this work was to minimize the need for model retaining/calibration during daily device use, thereby 

reducing overall training burden. An illustration of how the information presented in Chapter 4 

contributes to the overall work in this thesis is presented in Figure 4-1. 

 

 

Figure 4-1. Research question addressed by Chapter 4.  
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Abstract 

To mitigate the limb position effect that hinders myoelectric upper limb prosthesis control, pattern 

recognition-based models must accurately predict user-intended movements across a multitude of 

limb positions. Such models can use electromyography (EMG) and inertial measurement units to 

capture necessary multi-position data. However, this data capture solution requires lengthy user-

performed model training routines, with movements in many limb positions, plus retraining 

thereafter due to inherent signal variations over time. While a general-purpose control model 

(trained with a dataset that represents numerous device users) eliminates the user-training 

requirement altogether, it yields low movement predictive accuracy. Conversely, a user-specific 

control model (trained with a smaller dataset from an individual) yields high predictive accuracy, 

but requires retraining over time. This study capitalizes on the benefits offered by both such control 

options, and contributes an alternative control solution—a novel recurrent convolutional neural 

network (RCNN)-based Composite Model that combines the representation portion of a general-

purpose model, with the decision portion of a user-specific model. The resulting Composite Model 

offers moderate movement predictive accuracy across various limb positions and a reduction in 

user training routine requirements, suggesting a new research direction to help mitigate the limb 

position effect along with model training burden.  

4.1. Introduction 

Pattern recognition-based solutions for upper limb myoelectric prosthesis control use muscle 

activations from a user’s residual limb to predict user-intended movements [13]. These solutions 

are implemented via a control model that learns prediction rules based on muscle signal feature 

patterns that are gleaned from movement data—be it from offline pre-recorded data and/or online 

real-time data. This learning process is known as model training. Electromyography (EMG) 

surface electrodes embedded in a device socket can capture necessary movement data [6], whereas 

inertial measurement units (IMUs) can be used to capture complementary positional data [10]. 

Together, EMG and IMU data can inform a control model that functions across various upper limb 

positions [10], which is particularly important when addressing the challenge of the limb position 

effect [18]. This effect is a well-documented consequence of EMG signal alteration that occurs 

when a user attempts to use their device in a position different from that in which its pattern 
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recognition-based control model was initially trained [14], [18]. The limb position effect is known 

to cause degradation of device control, unexpected prosthesis movements, and user frustration 

[18].  

Training a pattern recognition-based model with both EMG and IMU data from multiple limb 

positions can effectively mitigate the limb position effect [15], [22]. However, a major drawback 

to this control solution is that device users must execute a long training routine before device use 

(to capture movement data from a broad range of limb positions). Such a training routine requires 

that wrist and hand movements be executed in positions ranging from arm at side to above head 

[10]. Another drawback is that pattern recognition-based control normally requires retraining, or 

the execution of a training routine again [87], [88], [89], in response to muscle fatigue and expected 

electrode shifts [14]. Repeated execution of a long training routine becomes quite burdensome for 

a prosthesis user—a negative consequence of offering device control across various limb positions 

[10]. 

To improve position-aware pattern recognition-based device control, some prosthesis researchers 

have turned to deep learning methods, including recurrent convolutional neural networks (RCNNs) 

[10], [28], [72]. RCNNs can be advantageous over traditional linear discriminant analysis (LDA) 

[10]. RCNNs offer the ability to: (1) learn new features from raw EMG and IMU signals (that is, 

to represent input signals), (2) combine high volumes of data from multiple sensors, and (3) 

recognize the nuances of the time-varying behaviour of EMG signals. RCNN-based control models 

can harness these abilities to classify user-intended limb movements and recognize movement 

patterns. With such control, RCNNs store the details learned through model training as weights 

(numbers which are initially random, but later are established through training). These weights are 

stored in layers, which together form an RCNN architecture. The general architecture of an RCNN-

based model includes: an input layer (that receives input signals); a representation portion (where 

information about how to represent the input signals is stored); a decision portion (where time-

related signal behaviours are taken into consideration, all details about the signals are brought 

together, and movement class decisions are made); and an output layer (that relays predicted 

movement instructions to the device motors). 

With RCNN-based model architecture understood, the challenge of how to mitigate the limb 

position effect with this type of model poses a prosthesis control solution trade-off. That is, would 
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it be more prudent to develop either: (A) a general-purpose control model, trained with a large 

dataset from a variety of device users—which expectedly would be robust to changes in EMG 

signals, but at the expense of a low user-intended movement predictive accuracy, or (B) a user-

specific model, trained with a smaller set of their personal data—which expectedly would have a 

high predictive accuracy, but would need to be retrained as conditions change over time? Consider 

that there might be a third option, wherein the representation portion of an RCNN-based model 

could be trained with data from numerous people (to learn robust model features), and the decision 

portion could be trained with data from one specific person (to tailor the model’s predictions to 

this individual). Such a combined upper limb device control solution might strike a user-oriented 

balance between movement predictive accuracy and training routine burden. 

This study verifies that a well-balanced control approach can be achieved by uniquely combining 

layers from a general-purpose RCNN-based model with those of user-specific RCNN-based 

models—as a means of addressing the impact of the limb position effect on myoelectric prosthesis 

control, while easing burdensome model training for users. Given that together, EMG and IMU 

(specifically, accelerometer) data can be used for position-aware control [10], both were used in 

the combined, or composite, control solution. Three RCNN-based model types were developed, 

using offline data collected from participants who performed specific movements in various limb 

positions and under time-delayed conditions: (1) a general-purpose control model (Generalized 

Model) offered a “one size fits all” solution, (2) personalized control models (Personalized 

Models) offered “custom to user” solutions, and (3) novel composite control models (Composite 

Models) uniquely combined the representation portion of the Generalized Model architecture with 

the decision portions of Personalized Model architectures. The Composite Models were expected 

to predict movements with a mid-range accuracy (between those of the Generalized Model and the 

Personalized Models), across all time-delayed conditions. This study contributes to the literature 

by proposing an alternative deep learning-based myoelectric device control solution—one that 

uniquely combines “best of” RCNN model architecture portions. 

4.2. Methods 

The same experimental methods were used to collect a large general-purpose dataset along with 

individual pilot study datasets, each of which were captured as participants performed 

specific movements in four limb positions. The pilot study participants had time-delays introduced 
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during their data collection trials, to simulate muscle signal variations over time. Model testing 

was conducted under initial versus time-delayed conditions. The predictive accuracies of the 

resulting models were subsequently analyzed. 

4.2.1. Participants 

General Participant Group: A total of 19 participants with no upper-body pathology or recent 

neurological or musculoskeletal injuries were recruited. 3 participants had previous experience 

with EMG control, all had normal or corrected to normal vision, 17 were right-handed, 10 were 

male, and the participants had a mean age of 26.4 ± 8.1 years (± 1 standard deviation).  

Pilot Study Participant Group: 5 new participants (who were not part of the general group) were 

recruited. Each was without upper-body pathology or recent neurological or musculoskeletal 

injuries. 2 participants had previous experience with EMG control, all had normal or corrected to 

normal vision, all were right-handed, 3 were male, and the participants had a mean age of 23.0 ± 

4.8 years.  

The experiment protocol was approved by the University of Alberta Health Research Ethics Board 

(Pro00086557). Each participant provided written informed consent. 

4.2.2. Experimental Setup 

A Myo gesture control armband (Thalmic Labs, Kitchener, Canada) was used to collect EMG and 

IMU data. The armband was equipped with 8 surface electrodes and an IMU. EMG data were 

collected by the electrodes (sampled at 200 Hz) and arm position data were collected by the IMU 

(sampled at 50 Hz). Using Myo Connect software, the EMG and IMU data were streamed into 

Matlab running on a laptop. A custom Matlab script captured the data and simultaneously 

displayed onscreen instructions for a participant to follow. 

4.2.3. Data Collection 

Participants in the general and pilot study groups donned a Myo armband on their self-identified 

dominant arm, as shown in Figure 4-2A. The armband was worn at approximately the upper third 

of their forearm (an average of 37.3 ± 1.6% of the way from the lateral epicondyle to the radial 

styloid).  
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Figure 4-2. (A) The placement of each Myo armband, along with limb positions used in data collection, and (B) 

movements used in data collection, adapted from Williams et al. [10] with permission. 

All participants followed onscreen instructions, performing 5 second static muscle contractions 

that resulted in rest, wrist flexion, wrist extension, forearm pronation, and forearm supination 

movements, as shown in Figure 4-2B. Participants were instructed to perform contractions at a 

moderate effort that could be sustained for 5 seconds. Short rest periods were provided to 

participants after each contraction. All contractions were repeated in 4 arm positions: arm at side, 

elbow bent at 90°, arm out in front at 90°, and arm up at 45° from vertical, as shown in Figure 

4-2A.  

General Participant Group Trials: Each general participant completed 3 data collection trials. 

The resulting data formed a large General Dataset of 57 trials (3 trials x 19 participants). 

Pilot Study (PS) Participant Group Trials: Each pilot study participant completed 9 data 

collection trials (Trials PS1–PS9), which were divided into 3 data blocks. 

Block 1: The first block of 3 trials (PS1–PS3) were conducted after the Myo armband was initially 

donned (initial use condition).  

Block 2: The second block of 3 trials (PS4–PS6) were conducted after a 15-minute break had 

elapsed (first time-delayed condition), during which the participants doffed the Myo armband, 

used their arm for non-testing purposes, and then again donned the Myo armband.  

Block 3: The final block of 3 trials (PS7–PS9) were conducted after another 15-minute break 

(second time-delayed condition), during which the participants doffed and donned the Myo 

armband again, as per Block 2. 
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4.2.4. Data Pre-Processing 

The EMG data from the Myo armband were filtered using a high pass filter at 20 Hz, as well as a 

notch filter at 60 Hz to remove electrical noise. Then, the accelerometer (IMU) data streams were 

resampled to 200 Hz to align them with the corresponding EMG data. The trials were segmented 

into individual muscle contractions (rest, wrist flexion, wrist extension, forearm pronation, and 

forearm supination). Then, the data from all trials were segmented further into 160 ms windows 

for RCNN-based model implementation. 

4.2.5. RCNN-Based Model Architecture 

Visual representations of the RCNN-based Generalized, Personalized, and Composite Model 

architectures are provided in Figure 4-3A, B, and C–G, respectively. The control models each 

consisted of 27 layers. The Generalized Model layers included all convolution layers and formed 

the representation portion of the Composite Model, from which EMG and accelerometer data 

features were extracted. The Personalized Model layers formed the decision portion of the 

Composite Model, wherein movements were classified based on learned EMG and accelerometer 

data features. The model architecture was developed using Matlab 2021a software, with the 

number of filters, the filter size, the pooling size, and the number of epochs determined through 

Bayesian optimization. All model development was performed using an Intel® Core™ i9-9900K 

CPU (3.60 GHz). 

4.2.5.1. Model Hyperparameters 

In this study, hyperparameters that were uniquely suitable to each model were selected. This 

ensured that each model was afforded the best opportunity for high predictive accuracy.  

Generalized Model: Hyperparameters suitable to all general participants were selected. Bayesian 

optimization was performed across the entire General Dataset in 2 phases: Phase 1 used a wide 

range for each of the hyperparameters that were being optimized; and Phase 2 used a narrower 

range of values centered at the optimal found in Phase 1. The resulting values are shown in Figure 

4-3A. 

Personalized Models: Hyperparameters suitable to all general participants were selected, as per 

the Generalized Model optimization methods. It would be infeasible to optimize hyperparameters 
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for each new set of training data, given that the Personalized Models were expected to require 

frequent retraining. The resulting values are shown in Figure 4-3B.  

Composite Models: Hyperparameters that were unique to each pilot study participant, as 

presented in Figure 4-3C–G, were selected using the Generalized Model optimization methods 

(performed for each pilot study participant). Unlike for the Personalized Models, it would be 

feasible to optimize hyperparameters for each new set of training data for Composite Models. This 

is because the Composite Models would require infrequent retraining in comparison, thereby 

leaving time available for optimization. As such, hyperparameters were optimized for each pilot 

study participant—affording each Composite Model the best opportunity to achieve high 

movement predictive accuracy. 

 

 

Figure 4-3. Generalized (A), Personalized (B), and Composite (C–G) RCNN-based myoelectric prosthesis control 

models—each composed of 27 layers. Layers included: sequence input layer; sequence folding layer; 4 groups of 

convolution, batch normalization, rectified linear unit (ReLU), and average pooling; 1 group of convolution, batch 

normalization, and ReLU; sequence unfolding layer; flatten layer; long short-term memory (LSTM) layer; fully 

connected layer; softmax layer; and classification layer. The dashed line separates the layers of the Generalized and 

Personalized Models that were used to form the Composite Models. Optimized convolution filter sizes, number of 

filters, pooling sizes, and number of epochs are shown for each model. 
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4.2.6. Model Training & Testing 

In this study, 1 Generalized Model was developed. In addition, for each of the 5 pilot study 

participants, 3 Personalized Models and 1 Composite Model were developed. All resulting models 

yielded a predicted movement class (rest, wrist flexion, wrist extension, forearm pronation, and 

forearm supination) for each window. These movement classes were learned (that is, associations 

between EMG signal data and movements were established) during RCNN-based Matlab model 

training using offline data. 

4.2.6.1. Model Training Process 

Generalized Model: The Generalized Model was trained using the movement classes and data 

from the entire General Dataset—to establish a once-generally-trained model. 

Personalized Models: 3 Personalized Models were custom-trained for each pilot study participant, 

using movement classes and data resulting from only the first 2 trials from each of their 3 data 

blocks (note that the third such trials were reserved for model testing). These 3 models were 

structurally the same, but trained with different data for each participant: 

 Block 1 Personalized Model was trained with the initial use condition data from Trials PS1 

and PS2 

 Block 2 Personalized Model was trained with the first time-delayed condition data from 

Trials PS4 and PS5 

 Block 3 Personalized Model was trained with the second time-delayed condition data from 

Trials PS7 and PS8 

Time-delayed conditions were introduced to simulate control model degradation over time (when 

model retraining might be required by a prosthesis user [87], [88]). Overall, this time-delayed 

training process established “retrained” Personalized Models for each pilot study participant.  

Composite Models: 1 Composite Model was developed for each pilot study participant and 

combined the first layers of the Generalized Model, with the last layers of only their Block 1 

Personalized Model. This process established a once-trained Composite Model for comparative 

analysis purposes. The use of only the Block 1 Personalized Model is intended to mimic actual 
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prosthesis control, wherein a model is first trained and then employed in real-time afterwards (that 

is, with Block 1 data captured prior to that of Blocks 2 and 3). 

4.2.6.2. Model Testing Process 

The testing process compared the pilot study participants’ predicted movements to their actual 

movements and yielded predictive accuracies for all models under investigation. Testing was 

conducted using each pilot study participant’s third data trial from each of their 3 data blocks 

(Trials PS3, PS6, and PS9). 

Generalized Model: Trial PS3, PS6, and PS9 data were used to test the Generalized Model. 

Consistently low predictive accuracies were anticipated, given that the Generalized Model was not 

participant-specific in nature.  

Personalized Models: Each pilot study participant’s Personalized Models were tested under the 

following scenarios to confirm that device model retraining would indeed improve user control 

[87], [88]. 

With retraining: Each Block 1 Personalized Model was tested using Trial PS3 (initial use 

condition) data. Each Block 2 Personalized Model and Block 3 Personalized Model were similarly 

tested using Trial PS6 (first time-delayed condition) and Trial PS9 (second time-delayed 

condition) data, respectively. High predictive accuracies under each condition were anticipated, 

given the retrained nature of these models. 

Without retraining: Each Block 1 Personalized Model was also tested using Trial PS6 (first time-

delayed condition) and Trial PS9 (second time-delayed condition) data. Given that new training 

data were not used to retrain Block 2 and 3 Personalized Models, diminished predictive accuracies 

under these testing conditions were anticipated.  

Composite Models: Trial PS3, PS6, and PS9 data were used to test the Composite Models. 

Predictive accuracies that were consistently higher than those of the Generalized Model and lower 

than those of the retrained Personalized Models were anticipated. 
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4.3. Results 

4.3.1. Generalized Model Performance 

The Generalized Model, as tested across all pilot study participants’ Trial PS3, PS6, and PS9 data, 

yielded mean (± 1 standard deviation) predicted movement accuracies of 75.55 ± 3.44%, 81.66 ± 

3.05%, and 77.11 ± 3.11%, respectively (Figure 4-4A, blue). As the Generalized Model did not 

require training by the pilot study participants (the General Dataset was used), the cumulative 

training routine duration remained at 0 minutes (Figure 4-4A, red). 

4.3.2. Personalized model performance 

With retraining: The retrained Personalized Models, as tested across all pilot study participants’ 

Trial PS3, PS6, and PS9 data, yielded mean (± 1 standard deviation) predicted movement 

accuracies of 97.06 ± 1.23%, 97.97 ± 0.72%, 98.13 ± 0.59%, respectively (Figure 4-4B, blue). The 

cumulative training routine duration for the retrained Personalized Models steadily increased, 

given that model retraining under each time-delayed condition required new data (Figure 4-4B, 

red).  

 

Figure 4-4. Mean predictive accuracy (blue) and cumulative training routine durations (red) for the (A) Generalized 

Model, (B) Personalized Models with retraining, (C) Block 1 Personalized Models without retraining, and (D) 

Composite Models, when tested across all pilot study participants’ Trial PS3, PS6, and PS9 data. 



 
 

60 

Without retraining: The Block 1 Personalized Models, as tested across all pilot study participants’ 

Trial PS3, PS6, and PS9 data, yielded mean (± 1 standard deviation) predicted movement 

accuracies of 97.06 ± 1.23%, 80.81 ± 6.05% and 68.85 ± 5.81%, respectively (Figure 4-4C, blue). 

The cumulative training routine duration for the Block 1 Personalized Models did not increase 

after the initial use condition, as no retraining took place thereafter (Figure 4-4C, red). 

4.3.3. Composite Model Performance 

The Composite Models, as tested across all pilot study participants’ Trial PS3, PS6, and PS9 data, 

yielded mean (± 1 standard deviation) predicted movement accuracies of 90.53 ± 1.36%, 90.24 ± 

2.16%, and 84.96 ± 2.30%, respectively (Figure 4-4D, blue). Interestingly, the predictive 

accuracies of the Composite Models under time-delayed conditions were higher than those of the 

Block 1 Personalized Models—testing with Trial PS6 data yielded 9.44% higher accuracy and 

testing with Trial PS9 data yielded 16.11% higher accuracy. The cumulative training routine 

duration for the Composite Models did not increase after the initial use condition, as no retraining 

took place thereafter (Figure 4-4D, red). 

4.3.4. Results Summary 

Figure 4-5 illustrates each model’s mean predictive accuracy across all pilot study participants as 

well as across Trial PS6 and PS9 data, in order of increasing predictive accuracy.  

Personalized Models without retraining: 74.83 ± 9.07% 

Generalized Model: 79.38 ± 4.66% 

Composite Models: 87.60 ± 3.44% 

Personalized Models with retraining: 98.05 ± 0.98% 

 
Figure 4-5. Mean predictive accuracy of the Personalized Models without retraining, Generalized Model, Composite 

Models, and Personalized Models with retraining, under time-delayed conditions when tested across all pilot study 

participants as well as across Trial PS6 and PS9 data. Error bars indicate ± 1 standard error of each mean. 



 
 

61 

4.3.5. Overfitting assessment 

To assess overfitting, the predictive accuracies of the Generalized, Personalized and Composite 

models were analyzed—their respective training dataset accuracies were compared to those 

resulting from their testing data as reported in this study. The Generalized Model achieved an 

accuracy of 95.18% when tested using the General Dataset. Although this value is 15.80% higher 

than the accuracy reported herein (and as such, could indicate overfitting), the model was only 

trained for 2 epochs, rendering it unlikely to be overfitted. Conversely, the Personalized Models 

achieved an average accuracy of 99.99% ± 0.02% when tested using their training and retraining 

data, which is only 1.94% higher than the accuracy reported herein. As this accuracy difference is 

small, there likely was no overfitting. Finally, the Composite Models achieved an average accuracy 

of 92.73 ± 6.46% when tested using the training data from each pilot study participant, which is 

only 5.13% higher than the accuracy reported herein. This small accuracy difference also suggests 

no overfitting. 

4.4. Discussion 

This study proposes a novel RCNN-based Composite Model concept for myoelectric prosthesis 

control towards addressing the challenge of the limb position effect, with the goal of reducing the 

training routine burden placed on users. This work confirmed that a Generalized Model performs 

as a “one-size fits all” control solution—offering low movement predictive accuracy, but with the 

benefit of requiring no user training. It also confirmed that Personalized Models offer user-specific 

control that can be retrained as required, thereby performing as “custom fit” control solutions—

offering high movement predictive accuracy across various limb positions, but at the expense of a 

high user training routine burden. The novel Composite Model concept, as presented in this study, 

proposed a “semi-custom fit” control solution whose concept is built upon the best aspects of both 

the Generalized and Personalized Model solutions combined—offering promising movement 

predictive accuracy, but with a reduction in required user training burden.  

With this understanding, we present a conceptual illustration in Figure 4-6 of how, based on the 

insights from the empirical results of this work, Generalized, Personalized, and Composite 

Models’ movement predictive accuracies might expectedly vary over longer durations of use well 

beyond the time-delayed conditions investigated in this study. The accuracy values presented are 
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purely speculative and as such, were not derived from calculations. Figure 4-6 also presents the 

conceptual cumulative training routine duration over an extended period of device usage time. 

Figure 4-6A shows that the Generalized Model would continue to predict desired movements with 

a consistently low accuracy over time, under conditions of no model retraining. Alternatively, 

Figure 4-6B considers that if the Personalized Model was retrained when control degrades, its 

predicted accuracy would remain high, but at the expense of a rapidly increasing cumulative 

training routine burden for the user. Figure 4-6C shows that if the Personalized Model was only 

trained once, it would initially exhibit high predictive accuracy, but then control would degrade 

over time. As a compromise control solution, Figure 4-6D illustrates that the Composite Model 

would initially offer better movement predictive accuracy than the Generalized Model, but then 

would very gradually deteriorate over time in response to residual limb changes. At some point, 

however, Composite Model retraining would be required to reinstate the model’s initial predictive 

accuracy (as indicated in the upward shift in predictive accuracy in Figure 4-6D). The Composite 

Model’s training burden, therefore, would be somewhat aligned with that of the once-trained 

Personalized Model, over a considerable duration of device use. Overall, the Composite Model 

control concept would expectedly yield promising and sustained movement predictive accuracy,  
 

 
Figure 4-6. Conceptual illustration of how movement predictive accuracy might expectedly vary over extended 

durations of use. Conceptual predictive accuracy (grey) and cumulative training routine durations (orange) are 

presented for the (A) Generalized Model, (B) Personalized Models with retraining, (C) initially-trained Personalized 

Models without retraining, and (D) Composite Models. 
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with the requirement for less frequent model retraining by a user, in comparison to a Personalized 

Model alternative.  

Ultimately, more work needs to be done to explore the movement predictive performance of the 

Composite Model concept for prosthesis control under conditions that require large data volumes 

and/or frequent model retraining by device users. Research regarding the use of a larger General 

Dataset to train a Generalized Model for the initial layers of a Composite Model should be 

undertaken. A larger General Dataset would provide a broader sampling of EMG signals and 

movement classes across individuals, to form the representation layers of a Composite Model. 

Furthermore, a Personalized Model could also be trained with more data. This richer dataset could 

be used to form a Composite Model’s last decision layers. Such training data could be collected 

over multiple days, under conditions of varied levels of muscle fatigue, specific shifts in electrode 

positioning, and/or more limb positions. In addition, the amount of training data required by a 

Composite Model should be investigated in future real-time work, to quantify the optimal trade-

off between model training time and desired movement predictive accuracy. An exciting future 

goal would see the application of the Composite Model solution used towards transfer learning-

based prosthesis control. With such control, a Composite Model could be used initially, and its 

training data augmented with smaller subsets of data as required. Transfer learning would both 

lighten the user training routine load and improve predictive accuracy of prosthesis control. 

This study had limitations. Notably, (1) it used a pilot study approach with a small sample size that 

could not yield statistically significant results, (2) the data testing was not exhaustive as only three 

sets of data trials were examined, and (3) only non-disabled participants were included in this 

work. Despite these limitations, the Composite Model concept is worthy of more rigorous 

examination in the future towards the reduction of user training routine burden required of pattern 

and deep learning-based control solutions. 

4.5. Conclusion 

This work introduced the innovative concept of a Composite RCNN-based myoelectric prosthesis 

control model as a means of reducing a prosthesis user’s requirement for repeated execution of a 

long training routine while also retaining accurate predictions of user-intended movements in 

various limb positions. This consideration is important given that position-aware control often 
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requires a high volume of training data. Results of this work are anticipated to improve the usability 

of myoelectric devices for individuals with amputation, particularly when faced with the 

challenges of the limb position effect. As such, this research advances myoelectric control towards 

eliminating the need for training routine execution altogether, so that one day, a myoelectric 

prosthesis user may be able to immediately perform activities of daily living after donning their 

device. 
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Chapter 5. 

RCNN Classification Control with Transfer 

Learning 

Chapter 5 presents “A Case Series in Position-Aware Myoelectric Prosthesis Control using 

Recurrent Convolutional Neural Network Classification with Transfer Learning,” originally 

published in the Proceedings of the International Consortium on Rehabilitation Robotics, in 2023 

[90]. It further investigates a novel recurrent convolutional neural network classification control 

solution that addresses the two important outcomes of Chapter 3—that lengthy model training 

routines can result in user training burden and that off-line control assessments might not represent 

real-use control experiences. In this current chapter, a position-aware transfer learning-based 

classification control solution that harnesses the benefits of transfer learning is trained and tested 

by participants without amputation wearing a simulated prosthesis. Note that this participant 

population is easier to recruit versus those with transradial amputation and has been shown to be 

a reasonable proxy for actual prosthesis use [77]. An important outcome of this work is the 

realization that existing control assessment metrics are lacking, particularly if incidents of the limb 

position effect problem are to be solved. An illustration of how the information presented in 

Chapter 5 contributes to the overall work in this thesis is presented in Figure 5-1. 
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Figure 5-1. Research questions addressed by Chapter 5 and remaining gap. 

Abstract 

Position-aware myoelectric prosthesis controllers require long, data-intensive training routines. 

Transfer Learning (TL) might reduce training burden. A TL model can be pre-trained using 

forearm muscle signal data from many individuals to become the starting point for a new user. A 

recurrent convolutional neural network (RCNN)-based classifier has already been shown to benefit 

from TL in offline analysis (95% accuracy). The present real-time study tested whether an RCNN-

based classification controller with TL (RCNN-TL) could reduce training burden, offer improved 

device control (per functional task performance metrics), and mitigate what is known as the limb 

position effect. 27 participants without amputation were recruited. 19 participants performed 

wrist/hand movements across multiple limb positions, with resulting forearm muscle signal data 

used to pre-train RCNN-TL. 8 other participants donned a simulated prosthesis, retrained 

(calibrated) and tested RCNN-TL, plus trained and tested a conventional linear discriminant 

analysis classification controller (LDA-Baseline). Results confirmed that TL reduces user training 

burden. RCNN-TL yielded improved task performance durations over LDA-Baseline (in specific 

Grasp and Release phases), yet other metrics worsened. Overall, this work contributes training 
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condition factors necessary for TL success, identifies metrics needed for comprehensive control 

analysis, and contributes insights towards improved position-aware control. 

5.1. Introduction 

Individuals with a transradial amputation often use myoelectric prostheses to restore or assist their 

impaired upper limb function. Prosthetic devices enable users to perform everyday tasks like 

eating, grooming, and getting dressed. Accomplishing such tasks requires execution of prosthetic 

hand and wrist movements in varied limb positions. These movements are driven by motors housed 

within the device, with instructions sent to the motors by a controller. Wearers operate their 

prosthesis using residual limb muscle contractions, and surface electrodes in its socket capture 

resulting muscle signals using electromyography (EMG) [6]. Myoelectric controllers, including 

those that use pattern recognition, can interpret EMG signals. When pattern recognition is 

employed for control, a prosthesis wearer must perform a series of specific movements, known as 

a training routine, prior to using their device [7]. Once a training routine is complete, patterns 

evident in the captured signal features are learned by the control model, the features are classified 

during device use, and the resulting classifications inform motor instructions. Pattern recognition-

based myoelectric controllers are commonly tested in research settings and are commercially 

available, but are not yet widely accepted clinically. 

Research has shown that EMG signals alone might not reliably inform intended prosthesis 

movement, particularly during instances when a user must hold their arm in untrained positions to 

accomplish tasks [18]. Limb position variations can result in degraded pattern recognition-based 

control, as evidenced by unexpected device movements and reported user frustration [18]. This 

challenge is known as the limb position effect. To mitigate this effect, some researchers have 

increased the number of surface EMG electrodes worn by users (high-density electrode arrays) 

[58]. Other researchers have successfully introduced the addition of an inertial measurement unit 

(IMU), worn on a user’s residual forearm for the capture of supplemental limb position data [15]. 

By combining EMG and IMU data, a position-aware pattern recognition-based controller can 

indeed provide reliable function across multiple limb positions [10]. 

To effectively mitigate the limb position effect, a control model training routine must include 

hand/wrist movements performed across multiple limb positions—not simply performed in a bent-
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elbow position as required by conventional controllers [10]. The time and muscle activation 

demands of such a routine, however, become burdensome for the user [6], [11]. In addition, 

retraining (or calibration) is typically required of myoelectric controllers in instances when device 

control degrades, such as due to muscle fatigue or electrode shifts. This retraining further 

contributes to user training burden. Overall, mitigation of the limb position effect necessitates a 

burdensome and data-intensive control model solution.  

Commercially available myoelectric controllers that employ pattern recognition typically use a 

statistical model known as linear discriminant analysis (LDA) [15], [22]. An LDA classification 

control model applies probability theory to discover patterns in EMG data, and then uses 

engineered features to inform control. Given that LDA-based control is commonly used in 

myoelectric prostheses, it has been adopted in research as a baseline for comparison to other 

controllers [10]. An emerging area of research that offers an alternative to LDA solutions uses 

deep learning [27]; in particular, recurrent convolutional neural networks (RCNNs) [10]. RCNNs 

offer the ability to learn new useful features from raw EMG signals (rather than requiring features 

to be extracted prior to pattern learning) and the ability to recognize the nuances of the time-

varying behaviour of EMG signals [27]. RCNN classification has been investigated for position-

aware prosthesis control, because it can combine large amounts of data from multiple sensors, 

including from EMG and IMU data streams [10].  

Transfer learning (TL) is an adjunct solution that may reduce the training and retraining burden 

placed upon a user, as necessitated by position-aware RCNN-based classification control (but not 

applicable to LDA-based control). With this solution, a classification control model (classifier) 

can be trained using a large dataset of EMG and IMU signals obtained from numerous individuals, 

to become the starting point for a new user’s device control. That new user would require only a 

reduced amount of personal movement data for training and retraining thereafter. Our earlier 

offline research determined that an RCNN-based classifier can indeed benefit from TL [91]. It 

relied on the capture of a large dataset of muscle data points for control pre-training. Our RCNN-

based classifier with TL achieved 95% accuracy in movement classification. This classifier was 

pre-trained using data from 19 participants and required just 4 seconds of data per movement in 

three limb positions for retraining. The favourable results of this earlier work showed both high 

classification accuracy and decreased training burden. 
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Still, it has been shown that offline myoelectric prosthesis research outcomes do not necessarily 

correlate with physical device controllability [23]. Our earlier work, therefore, could be furthered 

through real-time research—that is, through the use of a donned simulated prosthesis. Such devices 

have been shown to be a good proxy for actual myoelectric prosthesis use [77]. Experimentation 

using a simulated device could confirm whether an RCNN-based classification controller with TL 

can mitigate the limb position effect and decrease training burden. To conduct this real-time 

research: (1) testing should include use of a donned simulated prosthesis, (2) a training routine 

should include multi-position hand and wrist movements, (3) functional tasks should be used for 

testing, and (4) established kinematic metrics should be used for outcome analysis. 

The present study bridges the gap between reported offline myoelectric control outcomes and real-

time device controllability when an RCNN classification controller with TL (RCNN-TL) is 

systematically compared to an LDA baseline classification controller (LDA-Baseline). Here, a 

simulated prosthesis was worn by participants without amputation, each of whom executed 

training routines and performed functional tasks across varying limb positions to test control. This 

work contributes to the literature by offering valuable lessons towards addressing the limb position 

effect. We investigated whether TL can indeed reduce user training burden in conjunction with 

RCNN-based classification. Important implications were discovered regarding the conditions 

required for training, and the need for comprehensive metrics to fully interpret control results. 

5.2. Methods 

5.2.1. Participants 

Two distinct groups of participants were recruited for this study: a General Participant Group, 

whose data were used to pre-train RCNN-TL’s model, and a Simulated Prosthesis (SP) Participant 

Group, who further trained and tested both RCNN-TL and LDA-Baseline. All participants 

provided written informed consent, as approved by the University of Alberta Health Research 

Ethics Board (Pro00086557).  

General Participant Group (without simulated prosthesis): Nineteen participants without upper 

limb impairment were recruited. All had normal or corrected vision, 10 were male, nine were 

female, 17 were right-handed. They had a median age of 25 years (range: 19–58 years) and median 

height of 170 cm (range: 159–193 cm).  



 
 

70 

SP Participant Group (with donned simulated prosthesis): A total of nine new participants 

without upper limb impairment were recruited. One participant was removed due to their inability 

to reliably control the donned simulated prosthesis even after control practice. Of the remaining 

eight participants, all had normal or corrected vision, five were male, three were female, seven 

were right-handed. They had a median age of 22 years (range: 20–56 years) and median height of 

181 cm (range: 169–185 cm). No participants had experience with EMG pattern recognition 

control using a simulated prosthesis. The eight participants completed two data collection sessions 

on different days (with a median of 24 days between sessions, range: 18–45 days), during which 

half of the participants used RCNN-TL in their first session, and the other half used LDA-Baseline 

in their first session. Participants used the other controller in their second session. 

5.2.2. EMG and Accelerometer Data Collection 

Each participant in both groups wore a Myo gesture control armband (Thalmic Labs, Kitchener, 

Canada—discontinued) at approximately the upper third of their forearm (with the top of the 

armband at a median of 27.83% of the way down the forearm from the medial epicondyle to ulnar 

styloid process), as shown in Figure 5-2A. The Myo armband contained eight surface electrodes 

to collect EMG data at 200 Hz. The Myo armband also contained one IMU to collect limb position 

data (three accelerometer, three gyroscope, and four quaternion data streams) at 50 Hz. Myo 

Connect software was used to stream EMG and IMU data into Matlab. 

5.2.3. Donned Simulated Prosthesis 

The simulated prosthesis used in this study was the 3D-printed Modular-Adaptable Prosthetic 

Platform (MAPP) [92] (shown in Figure 5-3B). It was fitted to each SP Participant Group 

member’s right arm for simulation of transradial prosthesis use. The MAPP’s previously published 

design [92] was altered to improve wearer comfort in our study—the distal ring was made to 

resemble the oval shape of a wrist and the hand brace was elongated so that the distal ring would 

sit more proximally on the wearer’s wrist. A 3D-printed robotic hand [93] was affixed to the MAPP 

beneath the participant’s hand. Wrist rotation capabilities were also added to the device. Hand and 

wrist movements were each powered by a Dynamixel MX Series motor (Robotis Inc., Seoul, South 

Korea).  
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Figure 5-2. (A) Myo armband on a participant’s forearm and (B) donned simulated prosthesis on a participant’s 

forearm, with labels indicating the sleeve, 2 pieces of liner, hand brace, distal ring, cushions, wrist motor, and hand 

motor. Five motion capture markers are indicated with red circles. 

After placement of the Myo armband, each SP Participant Group member donned a thin sleeve 

and then the MAPP. To increase participant comfort, pieces of thermoplastic elastomer liner were 

placed inside the distal ring and just above the participant’s elbow, and 3D-printed cushions, made 

of Ninjaflex Cheetah filament (Ninjatek, Inc.), were placed throughout the device socket (shown 

in Figure 5-2B). The secureness of the device and each participant’s comfort were checked before 

proceeding with controller training. 

5.2.4. Control Model Implementation and Training 

RCNN-TL Implementation: Bayesian optimization automatically determined the number of 

convolution layers, number of filters, filter size, pooling size, and patience required for the 

classifier used in this controller. Optimization was performed in two steps: first, the number of 

layers along with each hyperparameter being optimized were determined using a broad range of 

values; thereafter, values were refined using a narrower range (centered at earlier optimized 

values). RCNN-TL’s model architecture consisted of 19 layers, as illustrated in Figure 5-3. In this 

model, a sequence input layer first received and normalized the training data. Then, a sequence 

folding layer was used, allowing convolution operations to be performed independently on each 

window. This was followed by a block of four layers: a 2D convolution, a batch normalization, a 

rectified linear unit (ReLU), and an average pooling layer. This block of layers was repeated once 

more. Each of the two average pooling layers had a pooling size of 1x4. A block of three layers 

followed: a 2D convolution, a batch normalization, and a ReLU layer. The optimal number of 

filters in the convolution layers were determined to be 4, 16, and 32, respectively, and each had a  
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Figure 5-3. Architecture of RCNN-TL’s model: sequence input layer; sequence folding layer; two blocks of 2D 

convolution, batch normalization, rectified linear unit (ReLU), and average pooling; one block of 2D convolution, 

batch normalization, and ReLU; sequence unfolding layer; flatten layer; long short-term memory (LSTM) layer; fully 

connected layer; softmax layer; and classification layer. 

filter window size of 1x3. The next layers included a sequence unfolding layer (to restore the 

sequence structure), a flatten layer, a long short-term memory (LSTM) layer, and a fully connected 

layer. Finally, a softmax layer and classification layer were used. To prevent overfitting, a patience 

parameter was set to trigger early stopping when the validation loss increased five times (e.g., 

similar to Côté-Allard et al. [71]).  

RCNN-TL’s Model Pre-Training Routine: General Participant Group members followed 

onscreen instructions, performing muscle contractions in 5 wrist positions, for 5 seconds each: 

flexion, extension, pronation, supination, and rest. The muscle contractions were performed twice 

in 4 limb positions: arm at side, elbow bent at 90°, arm straight out in front at 90°, and arm up 45° 

from vertical. This position-aware routine was similar to those used in other real-time control 

studies aiming to mitigate the limb position effect [10], [15], [23]). The resulting EMG and 

accelerometer data, plus corresponding classes of muscle contractions, were used to pre-train 

RCNN-TL’s model. 

RCNN-TL’s Model Retraining Routine: SP Participant Group members followed onscreen 

instructions, performing muscle contractions in the same 5 wrist positions, for only 2 (rather than 

5) seconds each. The muscle contractions were performed twice in only 3 (not 4) limb positions: 

arm at side, elbow bent at 90°, and arm up 45° from vertical. Note that this shortened/optimized 
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routine was uncovered in our previous offline research [91]. The resulting EMG and accelerometer 

data, plus corresponding classes of muscle contractions, were used to retrain RCNN-TL’s model.  

LDA-Baseline Implementation: Four commonly used EMG features were chosen for 

implementation of LDA-Baseline’s model: mean absolute value, waveform length, Willison 

amplitude, and zero crossings [9]. A pseudo-linear LDA discriminant type was used, given that 

columns of zeros were occasionally present in some classes for some features (including Willison 

amplitude and zero crossings). 

LDA-Baseline’s Model Training Routine: SP Participant Group members followed onscreen 

instructions, performing muscle contractions in the same 5 wrist positions, for 5 seconds each. The 

muscle contractions were performed twice, with the participants’ elbow bent at 90°. This single-

position routine mimicked standard myoelectric prosthesis training [18]. The resulting EMG data 

and corresponding classes of muscle contractions were used to train LDA-Baseline’s model. 

5.2.5. Data Processing 

For both model training and real-time control, the EMG data from the Myo armband were filtered 

using a high pass filter at 20 Hz (to remove movement artifacts), as well as a notch filter at 60 Hz 

(to remove electrical noise). Next, the accelerometer data streams were upsampled to 200 Hz 

(using previous neighbour interpolation) to align them with the corresponding EMG data. Data 

were then segmented into windows (160-millisecond with a 40-millisecond offset). These 

windows of EMG and accelerometer data were used for RCNN-TL. For LDA-Baseline, time-

domain features were calculated for each EMG channel, in each window. Each model was trained 

in Matlab using an Intel Core i9-10900K CPU (3.70 GHz) with 128 GB of RAM. RCNN-TL’s 

and LDA-Baseline’s models were retrained/trained in median times of 3.41 and 0.39 seconds, 

respectively. For real-time control, the classifiers predicted wrist and hand movements in Matlab, 

predictions were relayed to brachI/Oplexus [94], and control signals were sent to the simulated 

prosthesis’ motors. 
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5.2.6. Control Practice 

Each SP Participant Group member took part in a control practice period. They were taught how 

to operate the simulated prosthesis using their muscle contractions. This control practice took 

approximately 40 minutes.  

To determine whether participants could reliably control the simulated prosthesis, they completed 

an activity. Two cups were situated in front of them at two different heights, with a ball in one of 

the cups. Participants were asked to pour the ball between the two cups, and instances when the 

participants dropped the ball or a cup were recorded. If participants could not complete at least 10 

pours with a success rate of at least 75% within 10 minutes, they were removed from the study. 

Recall that one participant was removed (as stated in Section II.A), given that they could not 

complete this activity with LDA-Baseline in their first session. 

5.2.7. Motion Capture Setup 

An 8-camera OptiTrack Flex 13 motion capture system (Natural Point, OR, USA) was used to 

capture hand movements and task objects at 120 Hz. Six individual markers were placed on the 

simulated prosthesis hand to ensure reliable rigid body tracking (with at least 3 markers always 

trackable), five of which are shown in Figure 5-2B. Note that unlabelled markers in Figure 5-2B 

were not used for analysis. 

5.2.8. Functional Tasks for Control Testing 

Pasta Box Task (Pasta): Participants were required to pick up a box of pasta and move it between 

a side table and two shelves at varying heights on a cart (including across their midline), and then 

back to the side table [95], as shown in Figure 5-4A. Motion capture markers were placed on the 

cart, side table, and pasta box, as per Valevicius et al. [95]. Participants performed a total of 10 

Pasta trials. If participants dropped the pasta box, placed it incorrectly, performed an incorrect 

movement sequence, or hit the frame of the task cart, the trial was labelled as an error and not 

analyzed.  

Refined Clothespin Relocation Test (RCRT): Participants were required to move three 

clothespins between targets on horizontal and vertical bars [96], as shown in Figure 5-4B,C. To  
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Figure 5-4. (A) Pasta Box Task trial movement order; and Refined Clothespin Relocation Test (B) Up trial movement 

order, and (C) Down trial movement order, and (D) adjustable cart setup. 

simplify trial execution, RCRT was split into RCRT Up and RCRT Down trials. During Up trials, 

participants moved the clothespins from the horizontal bar (right to left positions) to the vertical 

bar (bottom to top positions), as shown in Figure 5-4B. During Down trials, participants moved 

the clothespins from the vertical bar to the horizontal bar, in the same order as in Up trials, as 

shown in Figure 5-4C. A height adjustable cart was set such that the top of each participants’ 

shoulder was aligned with the midpoint between the top two targets on the vertical bar, as shown 

in Figure 5-4D. Five motion capture markers were placed on the cart, three on the task base, and 

one on each clothespin. Participants performed a total of 10 Up trials and 10 Down trials. If 

participants dropped a clothespin, placed it incorrectly, or performed an incorrect movement 

sequence, the trial was labelled as an error and not analyzed. 

5.2.9. Experimental Data Analysis 

Motion capture data analysis in this study was conducted in accordance with Valevicius et al. [95]: 

the marker trajectory data were cleaned and filtered; for each task, the data from each trial were 

divided into distinct movements based on hand velocity and the velocity of the pasta 

box/clothespins; the data from each movement were further segmented into the phases of Reach, 

Grasp, Transport, Release, and Home (the Home phase was not used for data analysis); and 

movement segments of Reach-Grasp and Transport-Release were used in hand movement 

analysis. 

Commonly used task performance metrics were calculated as per Valevicius et al. [95]: task 

success rate (the percentage of trials that were error-free) was calculated for each task; trial 

duration was calculated for each trial; phase duration and relative phase duration were calculated 
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for each phase; and peak hand velocity, hand distance travelled, and hand trajectory variability 

were calculated for each movement segment.  

To investigate task performance differences between RCNN-TL and LDA-Baseline, the following 

statistical analyses were performed: 

Task success rate—Pairwise comparisons (t-test or Wilcoxon sign rank test) were conducted and 

deemed significant when the p value was less than 0.05. 

Trial duration—Participants’ results were averaged across trials, after which pairwise 

comparisons between the controllers were conducted. 

All other metrics—Participants’ results were averaged across trials and movements. If results 

were normally-distributed, a two-factor repeated-measures analysis of variance (RMANOVA) was 

conducted using the factors of controller and phase/movement segment. When the resulting 

controller effects or controller-phase/movement segment interactions were deemed significant 

(that is, when the Greenhouse-Geisser corrected p value was less than 0.05), pairwise comparisons 

between the controllers were conducted. If results were not normally-distributed, the Friedman test 

was conducted. When the resulting p value was less than 0.05, pairwise comparisons between the 

controllers were conducted. 

5.3. Results 

The functional task performance metrics for RCNN-TL versus LDA-Baseline are shown in Figure 

5-5. Significant differences are indicated with above-bar asterisks. Improvements in task 

performance are characterized by high success rates, low trial durations, low phase durations, high 

Reach and Transport relative phase durations, low Grasp and Release relative phase durations, 

high peak hand velocities, low hand distances travelled, and low hand trajectory variability, as per 

Valevicius et al. [95]. 
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Figure 5-5. Task performance metrics results with RCNN-TL (orange) and LDA-Baseline (grey) during Pasta, RCRT 

Up, and RCRT Down tasks are shown for: (A) success rate, (B) phase duration, (C) trial duration, (D) relative phase 

duration, (E) peak hand velocity, (F) hand distance travelled, and (G) hand trajectory variability. Panels B and D 

present results in phases (Reach, Grasp, Transport [Transp.], Release) and Panels E–G present results in movement 

segments (Reach-Grasp [R-G], Transport-Release [T-RL]). Medians are indicated with thick lines, interquartile ranges 

are indicated with boxes, and significant differences between RCNN-TL and LDA-Baseline are indicated with 

asterisks (*: p < 0.05, **: p < 0.01). Arrows indicate which controller performed better for each metric, with orange 

left arrows indicating RCNN-TL and grey right arrows indicating LDA-Baseline. 

5.3.1. Significant Differences Between Controllers 

Significant differences between RCNN-TL and LDA-Baseline were evident in 4 out of 48 total 

metrics. RCNN-TL outperformed LDA-Baseline in 2 metrics: Pasta Release phase duration 

(Figure 5-5B1) and RCRT Down Grasp relative phase duration (Figure 5-5D3). LDA-Baseline 

outperformed RCNN-TL in 2 metrics: RCRT Up success rate (Figure 5-5A2) and RCRT Down 

Release relative phase duration (Figure 5-5D3). 

5.3.2. Task-Specific Observations Between Controllers 

When considering all 48 task performance metrics (not simply those that exhibited significant 

differences) trends were evident for each of the three functional tasks (with 16 metrics per task). 
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Pasta: 12 of 16 metrics showed that RCNN-TL performed better (indicated by left arrows in 

Figure 5-5B1–D1, F1, G1); 3 of 16 metrics showed that LDA-Baseline performed better (right 

arrows in Figure 5-5D1, E1); and success rate showed no change (Figure 5-5A1). RCRT Up: 2 of 

16 metrics showed that RCNN-TL performed better (left arrows in Figure 5-5E2, G2); 14 of 16 

metrics showed that LDA-Baseline performed better (right arrows in Figure 5-5A2–G2). RCRT 

Down: 11 of 16 metrics showed that RCNN-TL performed better (left arrows in Figure 5-5A3–

E3, G3); 3 of 16 metrics showed that LDA-Baseline performed better (right arrows in Figure 

5-5B3, D3); and hand distances travelled showed only small changes (both less than 6 mm 

differences, Figure 5-5F3). 

5.4. Discussion 

This real-time study confirmed that TL reduces training burden when used with an RCNN-based 

classification controller [91]. Statistically, the functional task performance between RCNN-TL and 

LDA-Baseline was similar. However, compelling non-significant performance trends were 

identified, and many lessons were learned to direct future prosthesis control studies. 

5.4.1. TL Impact on Training Burden 

The General Participant Group members executed RCNN-TL’s full pre-training routine, which 

took 3.33 minutes. The SP Participant Group members, however, simply executed RCNN-TL’s 1-

minute retraining routine prior to device control testing—a 70% decrease in duration. This research 

demonstrated that TL is a valuable adjunct to RCNN-based classification control, as it offers a 

model starting point that needs only to be calibrated using a smaller amount of individual-specific 

data. Notably, a TL solution is not possible with LDA-based control. To further investigate the 

influence of TL, we will examine an RCNN-based controller without TL in future work (using this 

study’s model architecture). 

5.4.2. Pre-Training Conditions 

Despite our promising TL-based training burden reduction results, most task performance metrics 

did not yield significant control improvements. A realization from this outcome points to the 

principle that pre-training data should be captured under conditions that closely resemble those 

during use. The General Participant Group members performed wrist/hand movements while not 
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wearing a simulated prosthesis for RCNN-TL pre-training. The SP Participant Group members, 

however, wore a simulated prosthesis when retraining RCNN-TL and training LDA-Baseline. The 

training conditions between the participant groups were somewhat dissimilar, as the donned 

prosthesis introduced weight, and co-activation of muscles resulted [97]. Consequently, patterns 

learned from the muscle signals of participants without the donned simulated prosthesis may not 

have optimally transferred to conditions for device use. Future research should investigate whether 

prosthesis weight does, in fact, play a significant role in TL-based control. A fundamental lesson 

learned in this study is that pre-training data should ideally be collected under physical conditions 

that will create the same muscle co-activation patterns exhibited during device use. 

5.4.3. Comprehensive Metrics Needed 

In our earlier offline research, RCNN-TL’s model achieved a classification accuracy of 95% [91] 

and LDA-Baseline’s model achieved a classification accuracy of 85% [10], when tested in all limb 

positions. In this current real-time research, only two of the 48 task performance metrics showed 

RCNN-TL performing significantly better than LDA-Baseline—in Pasta Release phase duration 

and in RCRT Down Grasp relative phase duration. At first glance, these results might seem 

underwhelming and may simply point towards the notion that offline results are not always 

indicative of real-time control performance [23]. However, interesting limb position-related 

findings can be surmised from this work, all pointing to a need for more comprehensive control 

metrics for their verification: 

(1) RCNN-TL might offer improved position-aware control: RCNN-TL tended to perform 

better than LDA-Baseline in tasks that required high limb position Grasps—instances 

where control expectedly deteriorates due to the limb position effect. 

(2) A large phase duration interquartile range (IQR) might indicate a limb position effect 

occurrence: An instance where the limb position effect probably occurred was during 

RCRT Down Grasp phases, as evidenced by a large phase duration IQR under LDA-

Baseline control (3.19 s, as shown in Figure 5-5B3). This large IQR was likely due to 

control difficulties introduced when clothespins were grasped from the vertical bar over 

increasing heights. Moreover, as the same IQR was considerably smaller under RCNN-TL 
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control (1.33 s, shown in Figure 5-5B3), the limb position effect was seemingly mitigated 

by TL.  

(3) More conclusive control metrics are needed: The metrics analyzed in this work could not 

definitively confirm the limb position effect instances suspected in (1) and (2) above. An 

examination of control characteristic metrics, such as number of grip aperture adjustments 

[93] and grip aperture plateau time [98], however, would offer a richer understanding of 

what occurred during Grasp phases and why. Furthermore, a clearer understanding of user-

reported experiences would improve overall assessments of control. 

5.5. Conclusion 

The goal of position-aware myoelectric prosthesis control is to provide users with reliable device 

operation across all limb positions. As pattern recognition-based control solutions require the user 

to execute a training routine to inform the controller, solutions attempting to mitigate the limb 

position effect need lengthy and therefore burdensome routines. This research confirmed that TL 

can reduce such training burden. As a primary contribution, it offered important considerations for 

implementation of an RCNN-based classification controller with TL, be it for simulated or actual 

myoelectric prosthesis user research. It suggested that TL should work better when the physical 

conditions for pre-training and training are similar, particularly as a prosthetic device introduces 

muscle coactivation patterns. This work also identified the need for comprehensive metrics—to 

uncover control characteristics that can be mapped to user reported control experiences. 

Ultimately, this work offered insights towards feasible position-aware prosthesis control.  
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Chapter 6. 

A Suite of Metrics for Comparative 

Myoelectric Prosthesis Control Research 

Chapter 6 presents “A multifaceted suite of metrics for comparative myoelectric prosthesis 

controller research,” originally accepted for publication in PLOS One, in 2024 [99]. It addresses 

the need for conclusive control assessment metrics, as identified in Chapter 5. This current chapter 

introduces a comprehensive suite of myoelectric prosthesis control evaluation metrics that includes 

task performance, control characteristics, and user assessments of control. To demonstrate the 

suite’s value to prosthesis control research, it is deployed in a comparison of Chapter 5’s transfer 

learning-based classification control model versus a baseline classification model alternative. The 

suite proves to be a valuable research toolset, as analysis of its metrics facilitates identification of 

incidences and circumstances of the limb position effect problem. An illustration of how the 

information presented in Chapter 6 contributes to the overall work in this thesis is presented in 

Figure 6-1. 

 

 

Figure 6-1. Research question addressed by Chapter 6 and remaining gap. 
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Abstract 

Upper limb robotic (myoelectric) prostheses are technologically advanced, but challenging to use. 

In response, substantial research is being done to develop person-specific prosthesis controllers 

that can predict a user’s intended movements. Most studies that test and compare new controllers 

rely on simple assessment measures such as task scores (e.g., number of objects moved across a 

barrier) or duration-based measures (e.g., overall task completion time). These assessment 

measures, however, fail to capture valuable details about: the quality of device arm movements; 

whether these movements match users’ intentions; the timing of specific wrist and hand control 

functions; and users’ opinions regarding overall device reliability and controller training 

requirements. In this work, we present a comprehensive and novel suite of myoelectric prosthesis 

control evaluation metrics that better facilitates analysis of device movement details—spanning 

measures of task performance, control characteristics, and user experience. As a case example of 

their use and research viability, we applied these metrics in real-time control experimentation. 

Here, eight participants without upper limb impairment compared device control offered by a deep 

learning-based controller (recurrent convolutional neural network-based classification with 

transfer learning, or RCNN-TL) to that of a commonly used controller (linear discriminant 

analysis, or LDA). The participants wore a simulated prosthesis and performed complex functional 

tasks across multiple limb positions. Analysis resulting from our suite of metrics identified 16 

instances of a user-facing problem known as the limb position effect. We determined that RCNN-

TL performed the same as or significantly better than LDA in four such problem instances. We 

also confirmed that transfer learning can minimize user training burden. Overall, this study 

contributes a multifaceted new suite of control evaluation metrics, along with a guide to their 

application, for use in research and testing of myoelectric controllers today, and potentially for use 

in broader rehabilitation technologies of the future.  

6.1. Introduction 

Below elbow (transradial) is the most prevalent of major upper limb amputations [100]. A 

myoelectric prosthesis offers a means of restoring complex limb function to those with transradial 

amputation, ideally across a wide range of arm positions [12]. Conventional myoelectric device 

control is based on electromyography (EMG) [101]. Here, signals are typically detected by surface 
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electrodes that are housed within a donned prosthesis socket and then transmitted to the device’s 

onboard controller. The controller decodes user-specific muscle contractions and sends 

corresponding instructions to appropriate prosthesis wrist and hand motors. 

Myoelectric prostheses that employ pattern recognition offer predictive device control that is 

capable of learning a user’s intended movements [7], [13]. Despite the potential of such machine 

learning-based control solutions, device performance challenges persist for users, particularly 

when various limb positions are necessary [18]. In these instances, EMG signals change due to 

gravity, supplemental muscle activities, and electrode shifts resulting from changes in muscle 

topology [14]. Resulting control can be unpredictable and therefore frustrating for users [18]. This 

control challenge is well documented and referred to as the limb position effect [14]. Several 

pattern recognition-based control methods have been investigated to minimize the limb position 

effect [21], [22], [23], [60], [61], [62], [63], [64], [65], [66], [102], [103], [104], [105], [106]. These 

methods require a user to perform a training routine across multiple limb positions, prior to daily 

device use. A training routine involves execution of a specific sequence of forearm muscle 

contractions. EMG signals resulting from the muscle contractions are captured for use by the 

device controller’s model. The model learns to recognize various patterns of consistent and 

repeated muscle signal features [7], including patterns involved in wrist rotation and hand 

open/close. Learned features are subsequently classified during device use, with classifications 

informing motor instructions. 

Inertial measurement unit (IMU) data can provide a classification control model with additional 

and informative limb position-related data [10], [14]. Deep learning control methods, such as 

recurrent convolutional neural networks (RCNNs), can combine high volumes of EMG and IMU 

data from multiple limb positions. However, to capture all required muscle and limb position data 

(in low to high arm positions), lengthy and burdensome training routines must be performed by 

users [6], [11], [12]. Control model retraining is also required in instances when device control 

degrades, such as due to muscle fatigue or electrode shifts. The overall training burden poses 

drawbacks to position-aware myoelectric control methods. 

Our earlier study uncovered that the addition of transfer learning (TL) can alleviate the training 

burden necessitated by data intensive RCNN-based solutions [90]. In this previous work, an RCNN 

classification control model (classifier) was trained using a large dataset of EMG and IMU signals 
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obtained from numerous individuals with intact upper limbs, to become the starting point of new 

users’ control. Each new user required a reduced amount of personal data for training thereafter. 

To test control, participants wearing a simulated prosthesis [77], [107] performed two functional 

tasks: the Pasta Box Task [95] and the Refined Clothespin Relocation Test [96]. Control 

assessments were based on metrics established in the literature [77], [95], [107], [108], [109]. This 

research showed that RCNN-based classification control with TL reduces training burden and 

offers a control solution with a tendency towards better functional task performance across 

multiple limb positions (versus a linear discriminant analysis, or LDA, classification controller). 

Interestingly, the research also identified possible instances of the limb position effect during high 

grasping movements, however it was noted that more detailed measures of control were needed to 

confirm this [90]. As a corollary to the TL-based findings resulting from this work, metrics 

deficiencies were uncovered—control characteristics outcomes evidenced during task 

performance could not be fully understood, and user-reported control experiences were not 

considered [90]. 

Without question, our earlier work identified important omissions in the collective of metrics 

commonly used for prosthesis control appraisal, even amongst those of established task-based 

assessments meant to mimic activities of daily living. Such functional assessments include the Box 

and Blocks Test [110], Jebsen-Taylor Hand Function Test [111], Activities Measure for Upper 

Limb Amputees [112], Southampton Hand Assessment Procedure [113], and Assessment of 

Capacity for Myoelectric Control [114], [115]. These assessments typically require users to 

interact with a variety of objects (e.g., grasp, move, rotate, release of objects), but the scores used 

to summarize arm function are limited—either based on task completion durations [111], [113], 

number of objects moved [110], or a trained rater’s assessment [112], [114], [115]. Such scores 

cannot yield a complete understanding of the quality of participants’ hand, wrist, and arm 

movements [95]. Furthermore, they cannot adequately characterize the nature of device control, 

such as the identification of unnecessary grip aperture adjustments [90]. Even a recently introduced 

take-home assessment method left researchers unable to distinguish how available grips were used 

and how the effects of usage conditions affected control [116]. For all such reasons, we determined 

that RCNN-based classification control with TL (RCNN-TL) not be judged in future work by task 

performance alone, but rather that control characteristics also be considered. Then collectively, the 
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task performance and control characteristics can be weighed against subjective user experience, to 

provide a full complement of data-driven prosthesis control outcomes. 

This current work re-examines RCNN-TL control through the lens of comprehensive assessment 

metrics. As a primary contribution, it introduces a novel suite of metrics that aims to address the 

issue of inconclusive myoelectric controller assessment outcomes. The suite includes three broad 

categories of metrics: task performance, control characteristics, and user experience. As a 

secondary contribution, this work showcases the use and thoroughness of the suite by deploying 

these metrics to reinvestigate our earlier controller research findings [90]—examining whether 

RCNN-TL can indeed reduce training burden, offer improved device control over a comparative 

LDA baseline classification controller (LDA-Baseline), and if instances of the limb position effect 

can be pinpointed. In using the suite of metrics, this work provides a data-driven understanding of 

when and why TL-based neural network control solutions show great promise towards solving the 

limb position effect challenge. It is expected that the suite introduced by this research will guide 

future rehabilitation device control experimentation. 

What follows is a presentation of our collective of metrics, an overview of our reinvestigation 

research, and a detailed presentation of its methods, results, discussion, and conclusion. 

6.2. Introducing the Suite of Control Evaluation Metrics 

Performance-based assessments for the evaluation of real-time upper limb prosthesis control often 

require participants to either move a virtual arm to a target posture or a cursor to a target position, 

by performing appropriate muscle contractions in their residual limb [23], [40], [42], [43], [106], 

[117], [118], [119], [120], [121], [122], [123], [124]. For example, a virtual arm is presented on a 

computer screen in the Target Achievement Control test [125], and a cursor is presented on-screen 

in Fitts’ Law tests [126]. EMG sensors placed on participants’ limbs record the corresponding 

muscle signals in such assessments. However, limb kinematics and factors that change EMG 

signals (including the limb position effect) are not taken into consideration [117]. Consequently, 

research that employs on-screen assessments often recommend that future work be undertaken 

using alternative real-time methods [23], [124]. 

Other studies have taken a next step towards a deeper understanding of control, through the 

introduction of functional task assessments [35], [114], [115], [122], [127], [128], [129], [130], 
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[131], [132], [133], [134], [135], [136]. Here, either non-disabled participants wearing a simulated 

prosthesis or actual myoelectric prosthesis users, are required to perform upper limb tasks that 

mimic activities of daily living. One common clinical control assessment technique, known as the 

Assessment of Capacity for Myoelectric Control, has a trained rater assess control during 

functional task execution [114], [115]. However, a trained rater may not always be available. 

Alternative non-rater-based assessment approaches record the movement of participants’ upper 

limbs during task execution, using motion capture technology. From the resulting data, hand 

movement metrics, including hand velocity, hand distance travelled, and hand trajectory variability 

can be calculated (rather than rated) [95], [109], [137], [138]. As we had motion capture 

technology available to us, we used these three hand movement metrics, plus common task success 

rate and duration-based measures—collectively presenting them as Task Performance Metrics. 

All such metrics can be found in Table 6-1, with calculations derived from the work of Valevicius 

et al. [95]. Note that these metrics have already been validated [109] and have been employed to 

examine both myoelectric and body-powered prosthesis use [77], [108]. Furthermore, they have 

been compared to common clinical assessments with prosthesis users [139], [140]. Appendix C 

offers select examples of strong and weak outcomes resulting from these metrics. 

Task performance metrics alone, however, do not capture the nuances of device control 

characteristics, such as instances where a user introduces unnecessary hand/wrist movements when 

grasping or releasing an object [90]. Some studies have introduced metrics that quantify specific 

myoelectric prosthesis control characteristics, including misclassification rates [141], grasp force 

[141], [142], grip aperture plateau time [98], wrist rotation range of motion [141], workload 

(assessed via pupil size) [143], and measures of muscle activations [144]. We selected and derived 

metrics from the literature, plus developed additional novel metrics, and collectively present them 

as Control Characteristic Metrics. All such metrics can be found in Table 6-2, with select 

examples in Appendix C. 

Finally, whether any proposed control solution yields noticeable improvement depends on users’ 

assessments. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) 

is a survey tool, which measures subjective mental workload [145]. A recent literature review 

confirmed that the NASA-TLX has been widely employed in prosthesis use assessments [146]. 

Usability surveys offer yet another assessment approach and capture the users’ opinions of 
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alternative device control solutions [147]. We selected relevant survey questions from the literature 

and present them as User Experience Metrics. All such metrics can be found in Table 6-3. 

Table 6-1, Table 6-2, and Table 6-3, collectively describe the Suite of Myoelectric Control 

Evaluation Metrics introduced in this work. The Control Improvement Indicator column in each 

of these tables uses unimpaired limb movement as a yardstick for control assessment. To conduct 

such assessments, data collection protocols should include the following:  

 Control models under investigation should be trained by participants using a research-

specific series of hand/wrist movements that elicit forearm muscle signals for capture 

 Participants must either wear a myoelectric prosthesis or a simulated prosthesis 

 Participants must perform functional task(s) that can be split into the distinct phases of 

Reaches, Grasps, Transports, and Releases. All such task(s) should be standardized—using 

specific object sizes and locations for grasp and release actions. Examples of suitable 

functional tasks include, but are not limited to, the Pasta Box Task [95], Cup Transfer Task 

[95], Refined Clothespin Relocation Test [96], and the modified Box and Blocks test [148], 

[149].  

 Motion capture data, muscle signals, and device motor data should be collected during 

functional task execution 

 User experience survey responses should be collected at the end of each testing session 

 Data streams of interest (for each functional task trial) could include: the number of error-

free trials executed; trial time stamps; the 3D position of the device hand, its grip aperture 

and wrist rotation angles; plus the participants’ shoulder flexion/extension angles, EMG 

signal data, and post-testing session survey scores.  

 Given that standardized tasks are to be used, results calculated with the suite of metrics 

should only be compared within each task, not across tasks 

With adherence to the above-mentioned data collection requirements, the suite of control 

evaluation metrics presented in this work facilitates in-depth analysis that will uncover numerous 

upper limb prosthesis control insights. These insights are expected to be particularly beneficial in 

investigations that compare myoelectric device controllers. 
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Table 6-1. Description of Task Performance metrics used in analysis. For each metric, the following details are 

outlined: the metric’s name; a description of the metric; the data analysis level at which the metric is calculated 

(Controller, Task, Trial, Movement, Movement Segment, or Phase); the data required for the metric calculation; the 

metric calculation procedure; and indicators that constitute a control improvement. 

Metric Metric 
Description 

Metric Calculation Control Improvement Indicator 
(∵ means because) Data Analysis 

Level 
Required 

Data Calculation Procedure 

Success 
Rate 

Percent of trials 
that are error-free 

(%) 
Task 

Number of 
error-free 

trials 

The number of error-free trials 
divided by the number of possible 

trial attempts [95] 

A higher success rate ∵ participants 
make fewer errors 

Trial 
Duration 

Elapsed time for 
each trial 

(sec) 
Trial Timestamps 

The timestamp at the end of the trial's 
last phase minus the timestamp at the 

start of trial's first phase [95] 

A shorter trial duration ∵ participants 
complete trials quicker, also indicative 

of higher skill level [77], [98] 

Phase 
Duration 

Elapsed time for 
each phase 

(sec) 

Phase: Reach, 
Grasp, Transport, 

Release 
Timestamps 

The timestamp at the end of the 
phase minus the timestamp at the 

beginning of the phase [95] 

A shorter phase duration ∵ participants 
complete phases quicker, also indicative 

of higher skill level [77], [98] 

Relative 
Phase 

Duration 

Elapsed time for 
each phase, relative 
to the elapsed time 
for a Reach-Grasp-
Transport-Release 

movement 
(%) 

Phase: Reach, 
Grasp, Transport, 

Release 
Timestamps 

The phase duration divided by the 
movement duration (i.e., the 

difference between the timestamps at 
the beginning and end of a Reach-

Grasp-Transport-Release movement) 
[95] 

For Grasp and Release phases: A shorter 
relative phase duration ∵ participants 

manipulate objects with more ease [77] 
 

For Reach and Transport phases: Shorter 
Grasp and Release relative phase 

durations lead to longer Reach and 
Transport relative phase durations [77] 

Peak Hand 
Velocity 

Maximum velocity 
of the hand while 

moving 
(mm/s) 

Movement 
Segment: Reach-
Grasp, Transport-

Release 

3D Position 
of the Hand 
(mm, mm, 

mm) 

The maximum hand velocity 
achieved within a movement 

segment [95] 

A higher peak hand velocity ∵ 
participants move their hand quicker 

Hand 
Distance 
Travelled 

Total distance 
travelled by the 

hand while moving 
(mm) 

Movement 
Segment: Reach-
Grasp, Transport-

Release 

3D Position 
of the Hand 
(mm, mm, 

mm) 

Calculation steps:  
1. The distance between the 3D 
positions of the hand at successive 
sampled points in time are calculated 
2. The sum of these distances is 
calculated [95] 

A shorter hand distance travelled ∵ the 
hand movement paths of participants are 

more efficient [77] 

Hand 
Trajectory 
Variability 

How much the 
hand movement 

path varies 
between trials 

(mm) 

Movement 
Segment: Reach-
Grasp, Transport-

Release 
(Note that hand 

trajectory 
variability is 
calculated for 

each participant, 
rather than for 

each trial) 

3D Position 
of the Hand 
(mm, mm, 

mm) 

Calculation steps, used for each 
participant: 
1. The 3D position (x, y, z) of the 
hand is time-normalized to 101 
sampled points in time (0%, 1%, 
..., 100% of the movement segment) 
for each of the participant's trials 
2. At each sampled point, the 
standard deviation of the x, y, and z 
positions across the participant's 
trials are independently calculated 
3. The mean of the resulting standard 
deviations is calculated at each 
sampled point  
4. The maximum of these means is 
determined [95] 

A smaller hand trajectory variability ∵ 
participants do not explore a variety of 

hand movement paths  
(possibly indicating confidence in their 
chosen path with movements in keeping 
with those of unimpaired individuals) 

[77], [95] 

 

  

 

Table 6-2. Description of Control Characteristics metrics used in analysis. For each metric, the following details are 

outlined: the metric’s name; a description of the metric; the data analysis level at which the metric is calculated 

(Controller, Task, Trial, Movement, Movement Segment, or Phase); the data required for the metric calculation; the 

metric calculation procedure; and indicators that constitute a control improvement. (Table 6-2 found on next page) 
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Metric Metric 
Description 

Metric Calculation Control 
Improvement 

Indicator 
(∵ means because) 

Data Analysis 
Level 

Required 
Data Calculation Procedure 

Total Grip 
Aperture 

Movement 

Total amount of 
grip aperture 

variation 
(mm) 

Phase: 
Reach, Grasp, 

Transport, 
Release 

Grip 
Aperture 

(mm) 

1. The absolute differences between the grip apertures at 
successive sampled points in time are calculated 
2. The sum of these differences is calculated 

A smaller total grip 
aperture movement 
∵ fewer unnecessary 

hand open/close 
movements occur 

Total Wrist 
Rotation 

Movement 

Total amount of 
wrist rotation 

angle variation 
(deg) 

Phase: 
Reach, Grasp, 

Transport, 
Release 

Wrist 
Rotation 
Angle 

(degree) 

1. The absolute differences between the wrist rotation angles 
at successive sampled points in time are calculated 
2. The sum of these differences is calculated 

A smaller total wrist 
rotation movement 
∵ fewer unnecessary 

wrist rotation 
movements occur 

Number of 
Grip Aperture 
Adjustments 

Number of times 
that grip aperture 

variation 
commences or 

changes direction 

Phase: 
Reach, Grasp, 

Transport, 
Release 

(Note that 
Transport 

adjustments 
may not cause 
object drop) 

Grip 
Aperture 

(mm) 

1. The grip aperture velocity is smoothed using a moving 
average filter 
2. The sign of the smoothed velocity is used to detect the 
following: a change from 0 to positive; a change from 0 to 
negative; a change from negative to positive; a change from 
positive to negative 
3. The number of times that the above sign changes 
occurred is tallied [93] 

A smaller number of 
grip aperture 

adjustments ∵ fewer 
misclassifications 

are made [93] 

Number of 
Wrist 

Rotation 
Adjustments 

Number of times 
that wrist rotation 

angle variation 
commences or 

changes direction 

Phase: 
Reach, Grasp, 

Transport, 
Release 

Wrist 
Rotation 
Angle 

(degree) 

The number of wrist rotation adjustments were calculated as 
per grip aperture velocity detailed above (but with wrist 
rotation data rather than grip aperture data). 

A smaller number of 
wrist rotation 

adjustments ∵ fewer 
misclassifications 

are made [93] 

Grip Aperture 
Plateau 

Amount of time 
during which the 

grip aperture 
remains open 

before closing to 
grasp a task object 

(sec) 

Movement 
Segment: 

Reach-Grasp 

Grip 
Aperture 

(mm) 

1. The grip aperture and grip aperture velocity are both 
smoothed using a moving average filter 
2. Plateaus are identified when both of the following 
conditions are met: 
- the smoothed grip aperture is greater than 90% of the 
maximum grip aperture in the movement segment 
- the smoothed grip aperture velocity is less than 10% of the 
maximum grip aperture velocity in the movement segment 
3. The sum of the time duration(s) in which the above 
conditions are met is calculated 
(modified from Bouwsema et al.'s calculation [98]) 

A shorter plateau ∵ 
more natural 

movements are 
made (more closely 
mimicking those of 

unimpaired 
individuals) and 

higher skill level is 
evident 

[77], [98] 

Simultaneous 
Wrist-

Shoulder 
Movements 

Percent of the 
phase during 

which the wrist 
rotation is 

controlled while 
the shoulder is 

moving 
(%) 

Phase: Any 
phase that 

requires both 
wrist rotation 
and shoulder 
movements. 

Wrist 
Rotation 
Angle 

(degree) 
& 

Shoulder 
Flexion/ 

Extension 
Angle 

(degree) 

1. Wrist rotation and shoulder flexion/extension angular 
velocities are smoothed using a moving average filter 
2. The absolute values of the smoothed angular velocities 
are calculated 
3. Simultaneous movements are identified when both of the 
following conditions are met: 
- The smoothed wrist rotation angular velocity is above a 
threshold of 10% of the maximum wrist rotation angular 
velocity in the movement 
- The smoothed shoulder flexion/extension angular velocity 
is above a threshold of 10% of the maximum shoulder 
flexion/extension angular velocity in the movement 
4. The sum of the time duration(s) in which the above 
conditions are met is calculated 
5. The resulting sum is divided by the phase duration (i.e., 
the timestamp at the end of the phase minus the timestamp 
at the beginning of the phase) 

A larger percent of 
simultaneous wrist-
shoulder movements 

∵ participants 
control wrist 
rotation while 

moving their arm, 
rather than pausing 
arm movements to 

focus on device 
control—in keeping 

with unimpaired 
movements 

 

Total Muscle 
Activity 

Total amount of 
muscle activity 

expended 

Phase: 
Reach, Grasp, 

Transport, 
Release 

EMG 
signals 

(range of  
-1 to 1) 

1. The EMG signals are filtered and rectified 
2. Each EMG channel is normalized using training data: a) 
signals from the rest wrist position with the elbow bent at 
90° are obtained from that session's training data; b) step 2a 
rest signals are rectified; c) the mean of the step 2b rectified 
signals is calculated for each channel; d) each channel’s 
mean is subtracted from that channel's step 1 signals 
3. Step 2 signals are summed across channels 
4. The envelope of the step 3 signals is obtained 
5. The step 4 envelope is summed across time 
(similar to the calculation of Ingraham et al.'s composite 
sum EMG metric [144]) 

A smaller value ∵ 
participants exert 

less muscle activity 
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Table 6-3. Description of User Experience metrics used in analysis. For each metric, the following details are 

outlined: the metric’s name; a description of the metric; the data analysis level at which the metric is calculated 

(Controller, Task, Trial, Movement, Movement Segment, or Phase); the data required for the metric calculation; the 

survey question; and indicators that constitute a control improvement. 

Metric Metric Description 

Metric Calculation Control 
Improvement 

Indicator 
(∵ means 
because) 

Data 
Analysis 

Level 

Required 
Data Survey Question 

NASA-
TLX 

Mental 
Demand 

Workload 
demand 
resulting 
from each 
controller 

Controller Survey Scores 
(rating 0–100) 

How much mental and perceptual activity was required 
(e.g., thinking, remembering, looking, etc.)? Was the 
control easy or demanding, simple or complex? [145] 

A smaller score ∵ 
participants 

experience less 
workload demand 

Physical 
Demand 

How much physical activity was required (e.g., very 
strong muscle contractions, upper arm movements, 
trunk movements, etc.)? Was the control easy or 
demanding, restful or laborious? [145] 

Temporal 
Demand 

How much time pressure did you feel to complete the 
tasks with this control strategy? Was the pace slow and 
leisurely or rapid and frantic? [145] 

Performance How hard did you have to work (mentally & physically) 
to accomplish your level of performance? [145] 

Effort 

How successful do you think you were in 
accomplishing the goals of the task with this control 
strategy? How satisfied were you with your 
performance in accomplishing these goals? [145] 

Frustration 
How insecure, discouraged, irritated, stressed, and/or 
annoyed versus secure, gratified, content, relaxed, 
and/or complacent did you feel during the task? [145] 

Usability 
Survey 

Intuitiveness 

Usability of 
each 

controller 
Controller Survey Scores 

(rating 0–5) 

Intuitiveness is defined as how easy it was to learn how 
to use the controller. 
 
How easy is the controller to learn? [147] 

A larger score ∵ 
participants report 
greater ease of use 

(device 
controllability) 

Task 
Effectiveness 

Effectiveness is defined as how well the controller was 
able to perform the task. 
 
How well did the controller perform the task? [147] 
(asked for each task performed) 

Reliability 

Reliability is defined as how often the controller did 
something that was intended or expected. 
 
How often did the arm move in a way that you wanted 
or expected? [147] 

 

6.3. Overview: Reinvestigation using our Suite of Metrics 

As an example of how the suite of evaluation metrics introduced in this work can be used to 

advance prosthesis control research, we deployed them in a deliberately challenging experiment—

reinvestigating our earlier comparative classifier research findings [90]. Here, device control 

offered by two classifiers was compared: a proposed deep learning-based controller (RCNN-TL) 

intent on mitigating the limb position effect, versus a commonly used and commercially available 

controller (LDA-Baseline). Given that LDA-based control is commonly used in myoelectric 

prostheses, it has been adopted in research as a baseline for comparison to other controllers [10], 
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[25], [26]. Figure 6-2 presents an overview of how each control model was trained and tested, 

using two distinct groups of participants without upper limb impairment who wore an EMG and 

IMU data capture armband. 

(1) A large General Participant Group’s data created a control starting point for new users. 

RCNN-TL’s Model Pre-Training—Each General Participant Group member performed 

a training routine (isotonic forearm muscle contractions were executed in four limb 

positions), during which their forearm EMG and IMU signals were collected. Their 

collective, resulting signal data, along with the corresponding classes of muscle 

contractions, informed RCNN-TL’s pre-trained control model.  

(2) A new, smaller Simulated Prosthesis (SP) Participant Group wore a simulated prosthesis. 

RCNN-TL’s Model Retraining & Testing—Each SP Participant Group member 

performed a brief training routine (isometric contractions were held in three limb 

positions). The resulting participant-specific EMG and IMU data, plus classes of muscle 

contractions, were used to calibrate RCNN-TL’s model. Participants tested RCNN-TL by 

performing functional tasks across multiple limb positions—the Pasta Box Task [95] and 

the Refined Clothespin Relocation Test (RCRT) [96]. 

LDA-Baseline’s Model Training & Testing—The forearm muscle signals of each SP 

Participant Group member were also captured using a standard pattern recognition training 

routine that was not designed to mitigate the limb position effect (isometric contractions 

were held in one limb position) [10]. The resulting EMG data, plus classes of muscle 

contractions, were used to train LDA-Baseline’s model. Each SP Participant Group 

member tested LDA-Baseline by performing the Pasta Box Task [95] and RCRT [96]. 

6.4. Methods 

What follows are details about our reinvestigation research methods, including: participant 

descriptors; muscle signal data collection and processing techniques; a description of the simulated 

prosthesis donned by participants; specifications of the control models under investigation and 

their training requirements; setup of the testing environment; the functional tasks used to assess 

control; the participant survey administration process; control data processing techniques to yield  
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Figure 6-2. RCNN-TL and LDA-Baseline’s model training and testing. The blue panel (A) illustrates the step that the 

General Participant Group performed (training routine that yielded RCNN-TL’s pre-trained model) while wearing an 

EMG and IMU armband. The yellow panels illustrate the steps that the Simulated Prosthesis (SP) Participant Group 

performed: (B) respective training routines that yielded RCNN-TL’s retrained model and LDA-Baseline’s trained 

model, and (C) subsequent controller testing using functional tasks, all while wearing an EMG and IMU armband plus 

a simulated prosthesis. 

the suite of metrics; the statistical analysis of such metrics; and the identification of instances of 

the limb position effect resulting from this analysis. 

6.4.1. Participants 

Participants recruitment took place from March 2, 2022, to March 31, 2022. All participants 

provided written informed consent, as approved by the University of Alberta Health Research 

Ethics Board (Pro00086557).  

General Participant Group (without simulated prosthesis)—Nineteen participants without upper 

limb impairment were recruited. All had normal or corrected vision, 10 were male, nine were 

female, 17 were right-handed. They had a median age of 25 years (range: 19–58 years) and median 

height of 170 cm (range: 159–193 cm). Each of the 19 participants completed one data collection 

session. 

SP Participant Group (with donned simulated prosthesis)—A total of nine new participants 

without upper limb impairment were recruited. One participant was removed due to their inability 
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to reliably control the donned simulated prosthesis even after control practice. Of the remaining 

eight participants, all had normal or corrected vision, five were male, three were female, seven 

were right-handed. They had a median age of 22 years (range: 20–56 years) and median height of 

181 cm (range: 169–185 cm). No participants had experience with EMG pattern recognition 

control using a simulated prosthesis. The eight participants completed two data collection sessions 

on different days, with a median of 24 days between sessions (range: 18–45 days). Half of the 

participants retrained/tested RCNN-TL in their first (as shown in Figure 6-2B–C), and the other 

half trained/tested LDA-Baseline in their first session (also shown in Figure 6-2B–C). Each 

trained/tested the other controller in their second session. 

6.4.2. Signal Data Collection & Processing Procedure 

Participants in both groups wore a Myo gesture control armband (Thalmic Labs, Kitchener, 

Canada) over their largest forearm muscle bulk [15]. That is, at approximately the upper third of 

their forearm, as shown in Figure 6-3A (with the top of the armband at a median of 28% of the 

way down the forearm from the medial epicondyle to the ulnar styloid process). The Myo armband 

contained eight surface electrodes to collect EMG data at a sampling rate of 200 Hz. The Myo 

armband also contained one IMU to collect limb position data (three accelerometer, three 

gyroscope, and four quaternion data streams) at 50 Hz. Myo Connect software was used to stream 

and record EMG and IMU data in Matlab.  

 

 

Figure 6-3. A) Myo armband on a participant’s forearm and B) simulated prosthesis on a participant’s forearm, with 

labels indicating the sleeve, two pieces of liner, hand brace, distal ring, cushions, wrist motor, and hand motor. Adapted 

from Williams et al. [90]. 
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The EMG data from the Myo armband were filtered using a high pass filter with a cutoff frequency 

of 20 Hz (to remove movement artifacts), as well as a notch filter at 60 Hz (to remove electrical 

noise). The accelerometer data streams were upsampled to 200 Hz (using previous neighbour 

interpolation) to align them with the corresponding EMG data. Data were then segmented into 

windows (160-millisecond with a 40-millisecond offset). 

6.4.3. Simulated Prosthesis & Donning Procedure 

The simulated prosthesis used in this study was the 3D-printed Modular-Adaptable Prosthetic 

Platform (MAPP) [92] (shown in Figure 6-3B). It was fitted to each SP Participant Group 

member’s right arm for simulation of transradial prosthesis use. The MAPP’s previously published 

design [92] was altered to improve wearer comfort in our study—the distal ring was made to 

resemble the oval shape of a wrist and the hand brace was elongated so that the distal ring would 

sit more proximally on the wearer’s wrist. A nonproprietary 3D-printed robotic hand [93] was 

affixed to the MAPP beneath the participant’s hand. Wrist rotation capabilities were also added to 

the device. Hand and wrist movements (that is, with two degrees of freedom) were powered by 

two Dynamixel MX Series motors (Robotis Inc., Seoul, South Korea). 

After placement of the Myo armband, each SP Participant Group member donned a thin, protective 

sleeve and then the simulated prosthesis. To increase participant comfort, pieces of thermoplastic 

elastomer liner were placed inside the distal ring and just above the participant’s elbow, and 3D-

printed cushions, made of Ninjaflex Cheetah filament (Ninjatek, Inc.), were placed throughout the 

device socket (shown in Figure 6-3B). The secureness of the device and the participants’ comfort 

were checked before proceeding with controller training.  

6.4.4. Control Model Descriptions & Training Routines 

RCNN-TL’s Model—Bayesian optimization automatically determined the number of 

convolution layers, number of filters, filter size, pooling size, and patience required for the 

classifier used in this controller. Optimization was performed in two steps: first, the number of 

layers along with each hyperparameter being optimized were determined using a broad range of 

values; thereafter, values were refined using a narrower range (centered at earlier optimized 

values). RCNN-TL’s model architecture consisted of 19 layers, as illustrated in Figure 6-4. In this 

model, a sequence input layer first received and normalized the training data. Then, a sequence 
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folding layer was used, allowing convolution operations to be performed independently on each 

window of EMG and accelerometer data. This was followed by a block of four layers: a 2D 

convolution, a batch normalization, a rectified linear unit (ReLU), and an average pooling layer. 

This block of layers was repeated once more. Each of the two average pooling layers had a pooling 

size of 1x4. A block of three layers followed: a 2D convolution, a batch normalization, and a ReLU 

layer. The optimal number of filters in the convolution layers were determined to be 4, 16, and 32, 

respectively, and each had a filter window size of 1x3. The next layers included a sequence 

unfolding layer (to restore the sequence structure), a flatten layer, a long short-term memory 

(LSTM) layer, and a fully connected layer. Finally, a softmax layer and classification layer were 

used. To prevent overfitting, a patience parameter was set to trigger early stopping when the 

validation loss increased five times (similar to methods used in other works, including Côté-Allard 

et al. [71]). 

RCNN-TL’s Model Pre-Training Routine—General Participant Group members followed 

onscreen instructions, performing muscle contractions in 5 wrist positions (rest, flexion, extension, 

pronation, and supination; shown in Figure 6-2A), for 5 seconds each. The muscle contractions 

were performed twice in 4 limb positions: arm at side, elbow bent at 90°, arm out in front at 90°, 

and arm up 45° from vertical (shown in Figure 6-2A). This position-aware routine was similar to 

those used in other real-time control studies aiming to mitigate the limb position effect [10], [15], 

[23]) and took approximately 200 seconds. The resulting EMG and accelerometer data, plus 

corresponding classes of muscle contractions, were used to pre-train RCNN-TL’s model. 

 

Figure 6-4. Architecture of RCNN-TL’s model: sequence input layer; sequence folding layer; two blocks of 2D 

convolution, batch normalization, rectified linear unit (ReLU), and average pooling; one block of 2D convolution, 

batch normalization, and ReLU; sequence unfolding layer; flatten layer; long short-term memory (LSTM) layer; fully 

connected layer; softmax layer; and classification layer. Adapted from Williams et al. [90]. 
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RCNN-TL’s Model Retraining Routine—Our previous offline research [91] examined methods 

of reducing user training burden and uncovered a shortened/optimized routine that still yielded 

high predictive accuracy. In keeping with this, the SP Participant Group members followed 

onscreen instructions, performing muscle contractions in the same 5 wrist positions (shown in 

Figure 6-2B), for only 2 (rather than 5) seconds each. The muscle contractions were performed 

twice in only 3 (not 4) limb positions: arm at side, elbow bent at 90°, and arm up 45° from vertical 

(shown in Figure 6-2B). The resulting EMG and accelerometer data, plus corresponding classes 

of muscle contractions, were used to retrain RCNN-TL’s model.  

LDA-Baseline’s Model—Four commonly used EMG features were chosen for implementation of 

this controller’s classifier: mean absolute value, waveform length, Willison amplitude, and zero 

crossings [9]. These features were calculated for each channel within each window of EMG data. 

A pseudo-linear LDA discriminant type was used, given that columns of zeros were occasionally 

present in some classes for some features (including Willison amplitude and zero crossings).  

LDA-Baseline’s Model Training Routine—SP Participant Group members followed onscreen 

instructions, performing muscle contractions in the same 5 wrist positions (shown in Figure 6-2B), 

for 5 seconds each. The muscle contractions were performed twice, with the participants’ elbow 

bent at 90° (shown in Figure 6-2B). This single-position routine mimicked standard myoelectric 

prosthesis training [18] and took approximately 50 seconds. The resulting EMG data and 

corresponding classes of muscle contractions were used to train LDA-Baseline’s model.  

RCNN-TL & LDA-Baseline Implementation—Each model was trained using Matlab software 

running on a computer with an Intel Core i9-10900K CPU (3.70 GHz) with 128 GB of RAM. 

RCNN-TL’s and LDA-Baseline’s models were retrained/trained in median times of 3.41 and 0.39 

seconds, respectively. For both controllers, Matlab code was written to receive signal data and 

subsequently classify wrist movements. Code was also written to send motor instructions, based 

on the resulting classifications, to brachI/Oplexus software [94] (flexion controls hand close, 

extension controls hand open, pronation controls wrist counter-clockwise rotation, and supination 

controls wrist clockwise rotation). brachI/Oplexus relayed the corresponding control signals to the 

simulated prosthesis’ motors. The positions of the motors were recorded with a sampling rate of 

50 Hz. 
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6.4.5. Simulated Device Control Practice & Testing Eligibility 

During each testing session, SP Participant Group members took part in a control practice period 

(approximately 40 minutes), during which they were taught how to operate the simulated 

prosthesis using isometric muscle contractions, under three conditions: 

(1) Controlling the hand open/close while the wrist rotation function was disabled. They 

practiced grasping, transporting, and releasing objects at varying heights. 

(2) Controlling wrist rotation while the hand open/close function was disabled. They practiced 

rotating objects at varying heights. 

(3) Controlling the hand open/close function in concert with the wrist rotation function. They 

practiced tasks that involved grasping, transporting, rotating, and releasing objects at 

varying heights. 

Following their practice period, participants were tested to determine whether they could reliably 

control the simulated prosthesis. Two cups were situated in front of them at two different heights, 

with a ball in one of the cups. Participants were asked to pour the ball between the two cups, and 

instances when they dropped the ball or a cup were recorded. If participants could not complete at 

least 10 pours with a success rate of at least 75% within 10 minutes, the session was ended, and 

they were removed from the study. Recall that one participant was removed (as stated in the 

Participants section), given that they could not complete this activity with LDA-Baseline in their 

first session. 

6.4.6. Motion Capture Setup & Kinematic Calibrations 

For participants who were deemed eligible for controller testing, the following motion capture 

steps were undertaken: 

Step 1: Motion Capture Setup—An 8-camera OptiTrack Flex 13 motion capture system (Natural 

Point, OR, USA) was used to capture participant movements and task objects at a sampling rate 

of 120 Hz. Eight individual markers were placed on the simulated prosthesis hand, circled in Figure 

6-5 (one on the thumb, one on the index finger, and the remaining six throughout the back and side 

of the hand to ensure reliable rigid body tracking). Rigid marker plates were also placed on each 
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participant’s right forearm (affixed to the simulated prosthesis socket), upper arm, and thorax, in 

accordance with Boser et al.’s cluster-based marker model [150]. 

Step 2: Kinematic Calibrations—Each participant was required to perform two kinematics 

calibrations. As per Boser et al., the first calibration called for participants to hold an anatomical 

pose [150], for capture of the relative positions of the hand markers and motion capture marker 

plates when wrist rotation and shoulder flexion/extension angles were at 0°. The second calibration 

required participants to hold a ski pose [150], for the purpose of refining wrist rotation angles. 

Here, three additional individual markers were affixed to the simulated prosthesis, as shown in 

Figure 6-5: 

(1) One marker placed on the top of the prosthesis’ hand motor, with the device hand closed 

(2) One marker placed on the bottom of the prosthesis’ wrist motor, forming a line with the 

first marker (to represent the axis about which the wrist rotation occurred) 

(3) One marker placed on the side of the prosthesis’ wrist motor (to create a second axis, 

perpendicular to the axis of wrist rotation) 

Upon completion of the two kinematics calibrations, all Step 2 markers were removed. What 

remained were only those markers affixed during Step 1 for data collection purposes. 

 

 

Figure 6-5. Motion capture markers affixed to the simulated prosthesis. The eight motion capture markers that 

remained attached to the hand are circled, and the three additional individual markers for the ski pose calibration are 

labelled. 
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6.4.7. Functional Tasks & Data Collection 

Motion capture data were collected during the execution of the following functional tasks: 

Pasta Box Task (Pasta)—Participants were required to perform three distinct movements, where 

they transported a pasta box between a 1st, 2nd, and 3rd location (a side table and two shelves at 

varying heights on a cart, including across their midline) [95]. The task setup is shown in Figure 

6-6A. Motion capture markers were placed on all task objects, as per Valevicius et al. [95]. 

Participants performed a total of 10 Pasta trials. If participants dropped the pasta box, placed it 

incorrectly, performed an incorrect movement sequence, or hit the frame of the task cart, the trial 

was not analyzed. Pasta was the first of two functional tasks performed as it was considered easier.  

RCRT—Participants were required to perform three distinct movements using clothespins. They 

moved three clothespins between 1st, 2nd, and 3rd locations on horizontal and vertical bars [96]. To 

simplify trial execution, RCRT was split into RCRT Up and RCRT Down trials. The task setup 

for these trials is shown in Figure 6-6B. During Up trials, participants moved the three clothespins 

from the horizontal bar to the vertical bar, and during Down trials, they moved the clothespins 

from the vertical bar to the horizontal bar. A height adjustable cart was set such that the top of each 

participants’ shoulder was aligned with the midpoint between the top two targets on the vertical 

bar. Motion capture markers were placed on all task objects, as per our earlier research [90]. 

Participants performed a total of 10 Up trials and 10 Down trials. If participants dropped a 

clothespin, placed it incorrectly, or performed an incorrect movement sequence, the trial was not 

analyzed. Performance of RCRT Up and Down trials were alternated, and started with RCRT Up. 

6.4.8. Survey Administration 

At the end of each session, each participant completed two surveys: the NASA-TLX [145] and a 

usability survey [147]. The former was administered using the official NASA-TLX iPad 

application, where participants scored their device control workload demand on a continuous 

rating scale with endpoint anchors of low and high. The usability survey was administered on 

paper, where participants marked their usability scores on a continuous rating scale with endpoint 

anchors of 0 and 5. In their second session, participants were not reminded of their survey 

responses from their first session. 
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Figure 6-6. Task setup for (A) Pasta and (B) RCRT Up and Down. In panel (A), the 1st, 2nd, and 3rd pasta box locations 

are labelled. The pasta box movement sequence is 1st  2nd  3rd  1st locations. In panel (B), the 1st, 2nd, and 3rd 

clothespin locations on the horizontal and vertical bars are labelled. The clothespin movement sequences in RCRT Up 

are horizontal 1st  vertical 1st, horizontal 2nd  vertical 2nd, and horizontal 3rd  vertical 3rd locations. The clothespin 

movement sequence in RCRT Down follows the same order, but with each clothespin moved from vertical to 

horizontal locations. 

6.4.9. Data Processing & Calculation Procedures 

Motion Capture Data Cleaning & Calculations—Motion capture marker trajectory data were 

cleaned and filtered. As per Valevicius et al. [95], grip aperture was calculated as the distance 

between the motion capture markers on the simulated prosthesis’ index and thumb, and a 3D object 

representing the simulated prosthesis’ hand was generated using the remaining 6 hand motion 

capture markers. Then, through calculations modified from Boser et al. [150], wrist rotation was 

calculated using the forearm and hand motion capture markers, and shoulder flexion/extension was 

calculated using the upper arm and thorax motion capture markers.  

Data Segmentation—The task data were segmented in accordance with Valevicius et al. [95], as 

follows: 

 For each task, the data from each trial were first divided into distinct movements 1, 2, and 

3 based on hand velocity and the velocity of the pasta box/clothespins during transport. 

Pasta Movements 1, 2, and 3 differentiated between: (1) reaching for the pasta box at its 

1st location, grasping it, transporting it to its 2nd location, releasing it, and moving their 

hand back to a home position; (2) reaching for the pasta box at the 2nd location, grasping 

it, transporting it to its 3rd location, releasing it, and moving their hand back to the home 
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position; and (3) reaching for the pasta box at the 3rd location, grasping it, transporting it 

back to the 1st location, releasing it, and moving their hand back to the home position. 

RCRT Up Movements 1, 2, and 3 differentiated between: (1) reaching for the 1st clothespin 

at its 1st horizontal location, grasping it, transporting it to its 1st vertical location, releasing 

it, and moving their hand back to a home position; (2) reaching for the 2nd clothespin at its 

2nd horizontal location, grasping it, transporting it to its 2nd vertical location, releasing it, 

and moving their hand back to the home position; and (3) reaching for the 3rd clothespin at 

its 3rd horizontal location, grasping it, transporting it to its 3rd vertical location, releasing it, 

and moving their hand back to the home position. 

RCRT Down Movements 1, 2, and 3 differentiated between: (1) reaching for the 1st 

clothespin at its 1st vertical location, grasping it, transporting it to its 1st horizontal location, 

releasing it, and moving their hand back to a home position; (2) reaching for the 2nd 

clothespin at its 2nd vertical location, grasping it, transporting it to its 2nd horizontal 

location, releasing it, and moving their hand back to the home position; and (3) reaching 

for the 3rd clothespin at its 3rd vertical location, grasping it, transporting it to its 3rd 

horizontal location, releasing it, and moving their hand back to the home position. 

 Then, the data from each of the three movements were further segmented into five phases 

of (1) Reach, (2) Grasp, (3) Transport, (4) Release, and (5) Home (note that the Home 

phase was not used for data analysis) 

 Finally, two movement segments of (1) Reach-Grasp and (2) Transport-Release were 

defined for select metrics analysis 

 Six final levels for data analysis resulted: controller (either RCNN-TL or LDA-Baseline), 

task (either Pasta, RCRT Up, or RCRT Down), trial (1–10), movement (1–3), movement 

segment (Reach-Grasp or Transport-Release), and phase (Reach, Grasp, Transport, or 

Release) 

Grip Aperture & Wrist Rotation Re-Calculations—The grip aperture and wrist rotation angle 

were re-calculated using the data from the simulated prosthesis’ two motors, given that small (yet 

informative) adjustments in the positions of these motors may not have been detected by motion 

capture cameras. The positions of these motors were first upsampled to 120 Hz using linear 
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interpolation. Grip aperture re-calculation: motion-capture-calculated grip aperture was used to 

fit a trinomial curve to transform the hand motor data to grip aperture. Wrist motor angle re-

calculation: motion-capture-calculated wrist rotation was used to fit a binomial curve to transform 

the wrist motor data to wrist rotation angles. 

Final Suite of Metrics Calculations—The final suite of metrics was calculated using the 

procedures described in Table 6-1, Table 6-2, and Table 6-3. Note that the simultaneous wrist-

shoulder movements metric was calculated only for Reach and Transport phases of RCRT Up and 

RCRT Down trials, because these were the only phases that required the participant to rotate the 

device wrist while moving their arm to a different height.  

6.4.10. Statistical Analysis 

To investigate task performance difference between RCNN-TL and LDA-Baseline, the following 

statistical analyses were performed: 

For metrics that were analyzed at the phase or movement segment level—Participants’ results 

were first averaged across trials and movements. If results were normally-distributed, a two-factor 

repeated-measures analysis of variance (RMANOVA) was conducted using the factors of 

controller and phase/movement segment. When the resulting controller effects or controller-

phase/movement segment interactions were deemed significant (that is, when the Greenhouse-

Geisser corrected p value was less than 0.05), pairwise comparisons between the controllers were 

conducted. If results were not normally-distributed, the Friedman test was conducted. When the 

resulting p value was less than 0.05, pairwise comparisons between the controllers were conducted. 

Pairwise comparisons (t-test/Wilcoxon sign rank test) were deemed significant if the p value was 

less than 0.05. 

For metrics that were analyzed at the trial level—Participants’ results were first averaged across 

trials, then pairwise comparisons were conducted as detailed above.  

For metrics that were analyzed at the task or controller level—Pairwise comparisons were 

conducted as detailed above. 
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6.4.11. Limb Position Effect Identification 

The limb position effect has been shown to cause control accuracy degradation and large between-

participant control variation in offline research [123]. However, earlier works have not pinpointed 

specific instances of the effect in functional task execution data. Using the novel control 

characteristics metrics introduced in this work, identification of such instances is possible—larger 

medians and/or larger interquartile ranges (IQRs) can provide evidence of degraded control. To 

identify the limb position effect in this study, metrics’ medians and IQRs for Reach, Grasp, 

Transport, and Release phases were considered separately across movements 1, 2, and 3 of Pasta, 

RCRT Up and RCRT Down. An occurrence where movement variation was not due to the limb 

position effect is illustrated in Figure 6-7A, where the number of wrist rotation adjustments metric 

in RCRT Down Release phases have medians and IQRs that remain relatively constant at different 

limb positions. Conversely, an occurrence where movement variation was due to the limb position 

effect can be seen in Figure 6-7B. Here, the same metric in RCRT Down Grasp phases shows its 

medians and IQRs both increasing as the limb position changed. 

 

 

Figure 6-7. Box plots indicating LDA-Baseline number of wrist rotation adjustments in each (A) RCRT Down 

Release and (B) RCRT Down Grasp of each task movement (Mvmt). Medians are indicated with thick lines, and 

interquartile ranges are indicated with boxes. 
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The following limb position identification process was used to examine all control characteristics 

metrics for Reach, Grasp, Transport, and Release phases across the three movements of Pasta, 

RCRT Up, and RCRT Down: 

 First, the three medians were rescaled as percentages of the maximum of the three medians 

 Next, the three IQRs were rescaled as percentages of the maximum of the three IQRs 

 Then, the limb position effect identification rules outlined in Table 6-4 were developed—

through iterative trial-and-error comparisons of potential rules to visual representations of 

metrics’ medians and IQRs (as in Figure 6-7A, B) 

 The resulting rules were subsequently used to identify instances of the limb position effect. 

Note that for Pasta, two rule options were used, given that the limb position effect was most 

likely to be present in that task’s movements 2 or 3 (at the highest shelf location). For 

RCRT Up and RCRT Down, only one rule option was necessary, given that the limb 

position effect was most likely to occur in movement 3 (at the top clothespin location). For 

each rule, the limb position effect was identified only in instances where all conditions 

were met (that is, when all rules in a row of Table 6-4 were true).  

 

Table 6-4. Limb position effect identification rules for control characteristics metrics. The rules used for limb 

position effect identification are based on each movement’s median and interquartile range (IQR). In each row, all 

conditions had to be true for a positive identification of the limb position effect. 

Limb Position 
Effect  

Identification Rule 

Conditions Identifying Limb Position Effect 
Movement 
1 Median 

Movement 
2 Median 

Movement 
3 Median 

Movement 
1 IQR 

Movement 
2 IQR 

Movement 
3 IQR 

Pasta Reach and 
Grasp Rule < 90% < 75% = 100%  < 55% = 100% 

Pasta Transport and 
Release Rule  = 100% < 85%  = 100%  

RCRT Up and  
RCRT Down Rule < 55% < 85% = 100% < 25%  > 80 % 
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The abovementioned rules are applicable to metrics where smaller values are indicative of control 

improvements, as was the case with most control characteristics metrics in this work. The 

exception was the simultaneous wrist-shoulder movements metric, where larger values were 

indicative of improved control. To adjust for this exception, each of the three movements’ rescaled 

medians (represented as percentages) were subtracted from 100%. In doing so, these medians were 

altered to represent the percent of the phase in which simultaneous movements did not occur. After 

this adjustment, the limb position identification process could be followed. 

6.5. Results 

6.5.1. Task Performance 

The significant differences across the task performance metrics are reported in Table 6-5. Task 

specific outcomes derived from the table include: 

Pasta—RCNN-TL performed significantly better than LDA-Baseline in one metric: Release phase 

duration. 

RCRT Up—LDA-Baseline performed significantly better than RCNN-TL in one metric: success 

rate. 

RCRT Down—RCNN-TL performed significantly better than LDA-Baseline in one metric: Grasp 

relative phase duration. LDA-Baseline performed significantly better than RCNN-TL in one 

metric: release relative phase duration. 

Summary—Only 4 of the 48 Task Performance metrics showed significant differences, 2 of which 

demonstrated that RCNN-TL performed better than LDA-Baseline. It appears that a richer set of 

metrics is needed to better understand such outcomes—beyond those derived from task 

performance metrics alone. 

6.5.2. Control Characteristics 

The significant differences across control characteristics metrics are reported in Table 6-6. Task 

specific outcomes derived from the table include:  
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Pasta—RCNN-TL performed significantly better than LDA-Baseline in seven metrics. Examples 

of one such metric are illustrated in Appendix C (for Reach-Grasp grip aperture plateau). The limb 

position effect was identified in 12 metrics under LDA-Baseline control, and in one metric (Grasp 

total muscle activity) under RCNN-TL control. Four of the seven significant RCNN-TL versus 

LDA-Baseline differences were in metrics that showed evidence of the limb position effect.  

RCRT Up—No significant differences were identified, and no metrics showed evidence of the 

limb position effect.  

RCRT Down—RCNN-TL performed significantly better than LDA-Baseline in two metrics. 

Examples of one such metric are illustrated in Appendix C (for Reach simultaneous wrist-shoulder 

movements). The limb position effect was identified in four other metrics, with one such instance 

illustrated in Figure 6-7B (Grasp number of wrist rotation adjustments). 

Summary—9 of the 81 Control Characteristics metrics showed significant differences, all of 

which demonstrated that RCNN-TL performed better than LDA-Baseline. Furthermore, 16 metrics 

showed evidence of the limb position effect. All such metrics were only identified in Pasta and 

RCRT Down, suggesting that these outcomes are likely influenced by the position-aware nature 

of RCNN-TL control. 
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Table 6-5. Task Performance metrics results. Each cell contains the RCNN-TL median (and interquartile range in 

parentheses) in the first line and the LDA-Baseline median (interquartile range) in the second line. Green cells indicate 

metrics in which RCNN-TL performed significantly better than LDA-Baseline (solid green: p < 0.005, dense green 

grid: p < 0.01). Red cells indicate metrics in which LDA-Baseline performed significantly better than RCNN-TL 

(sparse red grid: p < 0.05). 

Task Pasta RCRT Up RCRT Down 

Success Rate (%) 95.00 (15.00) 
95.00 (10.00) 

75.00 (35.00) 
100.00 (5.00) 

100.00 (10.00) 
90.00 (20.00) 

Trial Duration (s) 25.28 (9.86) 
30.78 (16.28) 

31.62 (8.14) 
27.85 (13.40) 

31.12 (10.37) 
31.72 (6.87) 

Phase Duration (s) 

Reach 1.28 (0.75) 
1.38 (1.03) 

1.61 (0.88) 
1.52 (1.17) 

1.40 (1.21) 
1.35 (0.93) 

Grasp 1.59 (1.46) 
1.84 (1.33) 

2.09 (1.54) 
1.68 (1.31) 

1.67 (1.33) 
2.28 (3.19) 

Transport 2.40 (0.69) 
2.54 (1.04) 

2.90 (1.24) 
2.89 (2.04) 

2.56 (0.72) 
2.59 (1.44) 

Release 0.88 (0.62) 
1.11 (1.31) 

1.96 (1.28) 
1.48 (0.87) 

2.19 (0.93) 
1.57 (1.28) 

Relative Phase Duration (%) 

Reach 23.08 (4.81) 
20.80 (8.48) 

18.62 (6.49) 
19.49 (7.34) 

18.03 (8.17) 
15.83 (4.65) 

Grasp 24.95 (10.10) 
23.65 (10.34) 

23.68 (10.46) 
23.42 (8.01) 

22.77 (8.39) 
27.45 (14.61) 

Transport 38.07 (9.53) 
32.81 (11.95) 

33.62 (10.38) 
35.82 (7.46) 

32.15 (11.38) 
30.44 (10.80) 

Release 16.45 (9.30) 
18.57 (10.91) 

20.82 (13.73) 
19.75 (6.75) 

25.80 (7.39) 
20.23 (8.73) 

Peak Hand Velocity (mm/s) 
Reach-Grasp 780.06 (265.86) 

801.79 (291.61) 
559.84 (243.55) 
543.16 (254.90) 

855.12 (425.89) 
837.28 (322.24) 

Transport-Release 768.74 (387.29) 
789.18 (424.73) 

486.19 (272.47) 
495.46 (286.86) 

485.99 (281.39) 
444.93 (314.93) 

Hand Distance Travelled (mm) 
Reach-Grasp 689.38 (298.01) 

766.21 (379.84) 
537.06 (178.13) 
464.67 (192.90) 

679.54 (251.59) 
684.68 (543.83) 

Transport-Release 931.14 (420.62) 
978.56 (396.90) 

610.88 (324.93) 
584.27 (321.36) 

513.42 (303.34) 
512.70 (365.95) 

Hand Trajectory Variability (mm) 
Reach-Grasp 44.37 (42.81) 

68.58 (51.60) 
35.74 (21.68) 
32.56 (18.68) 

50.11 (32.74) 
70.92 (46.82) 

Transport-Release 53.92 (28.02) 
82.75 (52.25) 

39.32 (31.70) 
40.83 (37.77) 

33.74 (28.57) 
42.02 (32.92) 

 

Table 6-6. Control Characteristics metrics results. Each cell contains the RCNN-TL median (and interquartile range 

in parentheses) in the first line and the LDA-Baseline median (interquartile range) in the second line. Green cells 

indicate metrics in which RCNN-TL performed significantly better than LDA-Baseline (solid green: p < 0.005, dense 

green grid: p < 0.01, sparse green grid: p < 0.05). Dark grey cells indicate instances in which a metric was not relevant. 

Dark cell borders indicate metrics that displayed evidence of the limb position effect under LDA-Baseline control. A 

double cell border indicates the metric that displayed evidence of the limb position effect under both LDA-Baseline 

and RCNN-TL control. (Table 6-6 found on next page) 



 
 

108 

Task Pasta RCRT Up RCRT Down 

Grip Aperture Total Movement (mm) 

Reach 10.37 (13.46) 
4.77 (12.80) 

20.16 (41.19) 
18.53 (30.34) 

10.12 (23.23) 
11.87 (21.75) 

Grasp 66.02 (33.61) 
69.27 (33.10) 

77.88 (51.67) 
61.22 (29.51) 

72.50 (20.96) 
75.99 (58.61) 

Transport 18.55 (7.78) 
13.54 (15.50) 

13.05 (8.13) 
10.51 (13.76) 

11.88 (8.36) 
10.28 (7.56) 

Release 51.50 (15.89) 
56.90 (13.77) 

60.06 (19.01) 
57.85 (9.42) 

60.64 (9.82) 
56.49 (10.75) 

Wrist Rotation Total Movement (°) 

Reach 7.57 (14.51) 
4.92 (15.80) 

60.46 (55.57) 
41.64 (32.46) 

32.39 (44.86) 
16.04 (30.04) 

Grasp 14.89 (21.38) 
25.32 (37.22) 

22.87 (39.61) 
14.74 (25.36) 

17.82 (20.64) 
27.90 (80.36) 

Transport 13.13 (24.25) 
26.55 (45.64) 

73.90 (55.64) 
64.23 (53.11) 

66.91 (32.28) 
50.78 (49.08) 

Release 2.92 (9.78) 
20.38 (54.62) 

20.91 (42.18) 
8.05 (18.85) 

31.22 (25.14) 
18.35 (54.44) 

Number of Grip Aperture Adjustments 

Reach 0.44 (1.31) 
0.37 (1.56) 

2.33 (3.10) 
2.11 (2.49) 

1.00 (2.21) 
0.89 (1.94) 

Grasp 2.98 (4.00) 
3.74 (4.46) 

3.50 (4.81) 
3.20 (4.69) 

3.30 (1.79) 
5.38 (8.88) 

Transport 2.17 (1.68) 
2.84 (2.40) 

3.52 (2.33) 
3.40 (3.41) 

3.05 (2.40) 
2.90 (2.47) 

Release 1.78 (1.97) 
2.56 (3.84) 

3.80 (2.74) 
2.60 (2.81) 

4.11 (2.85) 
3.11 (3.40) 

Number of Wrist Rotation Adjustments 

Reach 0.68 (2.18) 
0.30 (1.84) 

2.32 (2.66) 
2.06 (2.60) 

2.50 (2.15) 
1.44 (2.56) 

Grasp 2.65 (4.65) 
4.72 (6.44) 

2.55 (2.04) 
2.05 (3.55) 

2.84 (3.38) 
4.47 (9.95) 

Transport 2.40 (4.29) 
4.43 (6.00) 

4.69 (3.38) 
4.20 (3.33) 

2.90 (2.78) 
3.94 (4.96) 

Release 0.68 (2.09) 
3.18 (5.89) 

3.10 (5.48) 
1.90 (3.44) 

3.35 (3.40) 
3.24 (6.88) 

Grip Aperture Plateau (s) Reach-Grasp 1.49 (0.84) 
1.91 (1.39) 

1.69 (0.61) 
1.66 (0.81) 

1.79 (1.02) 
1.66 (0.89) 

Simultaneous Wrist-Shoulder 
Movements (%) 

Reach  
27.36 (16.02) 
31.40 (17.10) 

23.77 (29.15) 
9.70 (13.46) 

Transport  
28.68 (13.48) 
22.25 (20.74) 

17.97 (14.10) 
10.57 (12.61) 

Total Muscle Activity 

Reach 87.60 (49.47) 
82.38 (100.06) 

159.53 (252.54) 
184.27 (137.85) 

130.99 (155.05) 
90.73 (102.13) 

Grasp 152.98 (168.33) 
186.28 (240.38) 

232.44 (220.79) 
153.28 (115.47) 

138.10 (150.30) 
190.20 (327.96) 

Transport 181.99 (88.61) 
183.95 (114.74) 

244.02 (133.68) 
208.27 (139.09) 

226.15 (138.11) 
248.58 (84.72) 

Release 85.77 (107.96) 
120.56 (150.44) 

207.73 (157.52) 
148.54 (96.00) 

226.28 (161.05) 
184.11 (161.54) 
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6.5.3. User Experience 

User experience metrics were calculated at the controller level, rather than for each task (detailed 

in Table 6-3). There were no significant differences between RCNN-TL and LDA-Baseline. Box 

plots illustrating the median controller-level scores across participants can be found in Figure 6-8.  

Of note, RCNN-TL scored better than LDA-Baseline in the NASA-TLX’s Mental Demand 

dimension and in the usability survey’s Intuitiveness dimension. These results suggest that RCNN-

TL offered more intuitive control. The two controllers had equal median scores in NASA-TLX’s 

Effort dimension. LDA-Baseline scored better than RCNN-TL in all other dimensions. 

6.6. Discussion 

The suite of myoelectric prosthesis control evaluation metrics introduced in this work (detailed in 

Table 6-1, Table 6-2, and Table 6-3) yielded informative limb position effect-related outcomes 

that could only be speculated upon in our earlier work [90]. What follows is a discussion about the 

metrics-driven findings from this current work, with a focus on understanding when and why limb 

position variations caused control challenges during participants’ execution of the Pasta Box Task 

(Pasta) and the Refined Clothespin Relocation Test (RCRT Up and RCRT Down). 

 

 

Figure 6-8. Box plots indicating user experience metrics results with RCNN-TL (orange) and LDA-Baseline (grey) 

for: (A) NASA-TLX, and (B) usability survey. Medians are indicated with thick lines, interquartile ranges are 

indicated with boxes, and outliers are indicated with circles. 
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6.6.1. Findings from Control Characteristics Metrics 

Limb Position Effect Identification—To our knowledge, no other study has identified 

occurrences of the limb position effect using functional task assessment outcomes. In this work, 

we used functional tasks to assess device control and found that analysis of our control 

characteristics metrics did uncover instances of the limb position effect. In LDA-Baseline results, 

instances were identified in Pasta and RCRT Down (16 of 81 cells with dark borders in Table 6-6), 

and never in RCRT Up. Note that for RCNN-TL, one instance of the limb position effect was 

uncovered—Grasp total muscle activity in Pasta. However, this instance may simply be due to 

inevitable positional EMG signal variations, rather than due to control degradation. Based solely 

on LDA-Baseline results, we surmised the following: 

 Raised arm positions in the sagittal plane caused grasp challenges for participants, as 

evidenced by the identification of the limb position effect only during the Grasp phases of 

RCRT Down (in four metrics).  

 Raised arm positions in the sagittal plane did not cause release challenges for participants, 

as evidenced by the absence of limb position effect identification in RCRT Up. Logically, 

as hand opening during object release phases is controlled by wrist extension muscle 

activation, classification of wrist extension was not affected by the limb position effect. 

 Arm movements along the frontal plane caused further control challenges for participants. 

Not only did Pasta require participants to perform arm raises in the sagittal plane, large 

cross-body and away-from-body movements had to be introduced to accomplish this task. 

The limb position effect was detected in three of four Pasta phases (four times in Reach, 

once in Reach-Grasp, three times in Grasp, and four times in Release).  

So overall, LDA-Baseline control often appeared to be impeded by shoulder position fluctuations 

in the frontal plane. Furthermore, arm raises limited to the sagittal plane caused only grasp control 

deterioration for this controller. Both such circumstances identify catalysts for limb position effect 

control challenges. 

Evidence of Limb Position Effect Mitigation—Recall that Table 6-6 also identified significant 

differences in control characteristics metrics, where green cells indicated instances where RCNN-
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TL performed significantly better than LDA-Baseline. Nine of the 81 metrics (cells) were 

significant (shaded in green), indicating that RCNN-TL always performed the same as, or 

significantly better than, LDA-Baseline for these metrics. Furthermore, all such significant 

differences presented in Table 6-6 occurred in Pasta and RCRT Down, and never in RCRT Up. 

This coincides with those tasks where instances of the limb position effect were identified, 

suggesting that RCNN-TL successfully mitigated such occurrences. 

Interestingly, RCNN-TL performed significantly better than LDA-Baseline in several Pasta 

metrics, even though Pasta involves numerous limb positions that were not included in RCNN-

TL’s pre-training/retraining routines. We speculate that the pre-training data from 19 individuals 

provided sufficient variety to result in a controller that is robust to limb positions not included in 

its training routines.  

Significant control characteristics differences between RCNN-TL and LDA-Baseline were not 

identified for RCRT Up. Recall that the limb position effect was not identified in RCRT Up, 

despite this task’s requirement for varied limb positions. So, if the problem did not cause control 

degradation for either controller, then perhaps: (a) LDA-Baseline simply performed well during 

this task and control improvements were not necessary, or (b) RCNN-TL control should be 

improved in instances when the limb position effect is not evident.  

Merits of Control Characteristics Metrics—Significant differences between RCNN-TL and 

LDA-Baseline were identified in at least one phase/movement segment for all control 

characteristics metrics analyzed, with the exceptions of total grip aperture movement and total 

muscle activity. Still, these two metric exceptions might yield outcomes beneficial to other 

controller comparisons and should not be discounted from the metrics introduced in this work. 

Total grip aperture movement, for instance, might help to identify grasping efficiency during task 

execution, and total muscle activity might help to identify muscle exertion required for task 

completion. Future controller comparisons are expected to determine whether these metrics are 

sensitive to controller variations. 

6.6.2. Findings from Task Performance Metrics 

Table 6-5 identified 2 of 48 metrics that showed RCNN-TL performing significantly better than 

LDA-Baseline (for Release phase duration in Pasta and Grasp relative phase duration in RCRT 
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Down), and 2 of 48 metrics that showed the contrary (for success rate in RCRT Up and Release 

relative phase duration in RCRT Down). These outcomes coincided with those of our earlier work 

[90], however, the control characteristics metrics introduced in this study facilitated a deeper 

understanding of why task performance deteriorated at times—specifically, when instances of the 

limb position effect hampered control. The following task performance insights were uncovered 

in this work:  

 RCNN-TL successfully mitigated the limb position effect, as evidenced by the two specific 

instances when its control was significantly better than that of LDA-Baseline—in Pasta 

Release and RCRT Down Grasp phases. Our control characteristics analysis revealed that 

participants struggled during these phases (identified as instances where the limb position 

effect occurred). Such struggles were apparent when participants used LDA-Baseline, but 

not so when using RCNN-TL. So, RCNN-TL likely remedied control degradation 

introduced by the limb position effect.  

 RCNN-TL may not have performed well in instances where the limb position effect was 

not evidenced. Consider that two task performance metrics showed that RCNN-TL 

performed significantly worse than LDA-Baseline: (1) the relative duration of the RCRT 

Down Release phases, and (2) the RCRT Up success rate. Furthermore, consider that 

analysis of control characteristics revealed that device control was not affected by the limb 

position effect in either the RCRT Down Release phase, or any phase of RCRT Up. 

Together, these outcomes support the hypothesis that RCNN-TL may not have performed 

well in instances where the limb position effect was not evidenced.  

o Of note, the lower RCRT Up success rate was due to clothespins being dropped by 

participants. This tendency towards unintended hand opening is in keeping with 

RCNN-TL’s control characteristics results versus those of LDA-Baseline, with 

higher medians in grip aperture total movement, higher medians in number of grip 

aperture adjustments, along with larger IQRs in Reach and Grasp phases of these 

same metrics. 



 
 

113 

6.6.3. Findings from User Experience Metrics 

Figure 6-8 presented the user experience metrics. Despite this work’s improved control outcomes, 

no significant differences were identified in the NASA-TLX and usability surveys. This work 

uncovered the following insights, to guide future use of user experience metrics:  

 Without the provision of participants’ scores from their first testing session upon return for 

their second session (following the washout period of at least one week), their initial anchor 

scores of “good” and “poor” were not likely to have been precisely recalled.  

 Given that participants were without limb loss, they only had a perception of fully 

functional control using their intact hand and wrist. They did not have a baseline perception 

of poor or diminished control, as none had prior experience with a simulated prosthesis. As 

a result, their subjective anchor scores of “good” and “poor” in their first session were 

likely influenced by their perception of perfect control, whereas in their second session, 

they might have been further influenced by their first session’s simulated prosthesis control 

experience. 

Overall, a specific question about which controller each participant preferred (asked at the end of 

their second session) would better gauge their controller partiality. In addition, reminding 

participants of their first-session scores immediately prior to their second session survey 

completion, might address expectation-related variability in anchor scores [151]. After this current 

study was conducted, a new Prosthesis Task Load Index (PROS-TLX) was developed and 

validated [152], and should be considered in future comparative prosthesis control research. 

6.6.4. Evidence of Training Routine Reduction 

The General Participant Group performed a long (200-second) pre-training routine prior to RCNN-

TL use. This pre-training duration is similar to that of position-aware controller solutions in the 

literature [15], [16], [19], [20], [21], [22], [23]. RCNN-TL retraining, as performed by the SP 

Participant Group, was accomplished using a shortened (60-second) routine. That is, a 70% 

decrease in model training duration resulted due to the introduction of transfer learning. This 

current research, therefore, confirms that TL is a valuable adjunct to RCNN-based classification 

control, as it offers a model starting point that needs only to be calibrated using a smaller amount 
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of individual-specific data. Notably, a TL solution is not possible with LDA-based control. 

Overall, this training routine reduction solution shows promise towards solving the limb position 

effect challenge—without the requirement of a burdensome training routine. 

6.6.5. Limitations 

As a first limitation of this study, participants without upper limb impairment were recruited rather 

than myoelectric prosthesis users. Although these participants learned how to control a simulated 

prosthesis, further practice may have been necessary to accurately represent the control capabilities 

of myoelectric prosthesis users. Secondly, the implementation of the surveys may not have 

adequately captured user experience data. Thirdly, previous work had suggested that the conditions 

under which the RCNN-TL pre-training data was collected could result in control flaws [90]—

because pre-training data from participants without a donned simulated prosthesis were too 

dissimilar from those with a donned simulated prosthesis (the conditions under which the retraining 

and device use occurred). This testing condition dissimilarity consideration was not examined in 

the current study. Finally, although our experimentation used optical motion capture technology 

to gather movement data, the use of this costly equipment might not always be feasible. As such, 

our suite of control metrics is not solely reliant on motion capture data for metrics calculations. 

Alternative sources that capture grip aperture and wrist rotation data (such as from device motor 

positions), along with shoulder flexion/extension data (such as from markerless motion capture 

technology or IMUs [153]) can be used for these calculations. Furthermore, other methods of 

segmenting functional tasks into Reach, Grasp, Transport, and Release phases (such as segmenting 

markerless motion capture data or IMU-captured data) can be implemented in preparation for 

metrics calculations. 

6.6.6. Future Work 

RCNN-TL future work—Next steps for RCNN-TL should focus on improvements to device 

control in instances when the limb position effect is least likely to occur. Improvements to pre-

training data collection conditions need to be studied. Examination of RCNN-TL using 

myoelectric prosthesis users is also a necessary step.  

Suite of control evaluation metrics future work—To verify whether the suite of metrics 

introduced in this study are beneficial, future work should examine different controllers, using 
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both participants without limb loss wearing a simulated prosthesis and actual myoelectric 

prosthesis users operating a commercial device. Further use of the suite of metrics in control 

research is expected to uncover recommended subsets of discriminant metrics, based on each 

study’s goals and experimentation methods—for instance, studies with tasks that do not require 

wrist rotation need not examine simultaneous wrist-shoulder movements; they should instead 

focus on metrics such as the number of grip aperture adjustments and grip aperture plateau time.  

6.7. Conclusion 

This work reinvestigated earlier comparative RCNN-TL versus LDA-Baseline research, which 

recommended that pattern recognition-based control not be judged by task performance alone, but 

rather, that control characteristics also be measured [90]. Then collectively, the task performance 

and control characteristics should be weighed against qualitative user experience [90]. The current 

study heeded these recommendations, and in doing so, contributed and tested a viable suite of 

myoelectric prosthesis control evaluation metrics for use in future comparative control model 

research. Using these metrics, this study has contributed insights into occurrences and implications 

of the limb position effect challenge and offered validation that TL-based neural network control 

solutions show promise towards solving this pervasive problem. The suite of metrics introduced 

and subsequently used in this work is expected to benefit future research intent on improving 

rehabilitation device control. 
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Chapter 7. 

A Comparison of RCNN Classification and 

Regression Control 

Chapter 7 presents “Myoelectric Prosthesis Control using Recurrent Convolutional Neural 

Network Regression Mitigates the Limb Position Effect,” originally submitted to Neural 

Computing and Applications, in 2024 [154]. It addresses the research gaps identified in Chapter 3 

and Chapter 6. In this current chapter, the novel recurrent convolutional neural network 

classification- and regression-based control solutions presented in Chapter 3 are again tested, with 

their resulting control assessed through an analysis of the suite of metrics introduced in Chapter 6. 

Notably, participants without amputation wore a simulated prosthesis during such testing. The 

promising outcomes of this work suggest that control testing using persons with transradial 

amputation is warranted. An illustration of how the information presented in Chapter 7 contributes 

to the overall work in this thesis is presented in Figure 7-1. 

 

Figure 7-1. Research question addressed by Chapter 7 and remaining gap.  
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Abstract 

Although state-of-the-art myoelectric prostheses offer persons with upper limb amputation 

extensive movement capabilities, users have not been afforded a reliable means to control common 

movements required in daily living. Many proposed prosthesis controllers use pattern recognition, 

a method that learns and recognizes patterns of electromyographic (EMG) signals produced by the 

user’s residual limb muscles to predict and execute device movements. Such control becomes 

unreliable in high limb positions—a problem known as the limb position effect. Pattern recognition 

often uses a classification algorithm; simple to implement, but limits user-initiated control to only 

one device movement at a time, at a fixed speed. To combat position-related control deficiencies 

and classification controller constraints, we developed and tested two recurrent convolutional 

neural network (RCNN) pattern recognition-based solutions: (1) an RCNN classification controller 

that uses EMG plus positional inertial measurement unit (IMU) signals to offer one-speed, 

sequential movement control; and (2) an RCNN regression controller that uses the same data 

capture technique to offer simultaneous control of multiple movements and device movement 

velocity. We assessed both RCNN controllers by comparing them to a commonly used linear 

discriminant analysis classification controller (LDA-Baseline). Participants without upper limb 

impairment were recruited to perform multipositional tasks while wearing a simulated prosthesis. 

Both RCNN classification and regression controllers showed improved functional task 

performance over LDA-Baseline, in 11 and 38 out of 125 metrics, respectively. This work 

contributes an RCNN regression-based controller that provides movements that are accurate, 

simultaneous, and proportional to EMG signal intensity, with all such capabilities amenable to 

other EMG-based technologies including prostheses, exoskeletons, and even muscle-activated 

video games. 

7.1. Introduction 

Despite the functional capabilities offered by state-of-the-art myoelectric prostheses for use by 

those with transradial (below elbow) amputation, users report that these modern devices are 

challenging to control and offer unnatural movement qualities [12], [155]. In response to user and 

clinical feedback, ongoing research aims to improve overall device usability, with an emphasis on 

control reliability [31]. Pattern recognition is a control method that has garnered much focus in 
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upper limb prosthesis research [6]. With such control, electromyographic (EMG) signals generated 

by the residual limb musculature of a user are captured by device socket electrodes, and then 

interpreted by a controller to predict and execute the user’s intended movements. Simply stated, a 

prosthetic limb moves in response to muscles deliberately contracted by its user, as coordinated 

by a control algorithm. 

Most advanced pattern recognition-based controllers tend to use a classification algorithm [30], 

which predicts one device action (or class) at a time [6]. The resulting prosthetic limb movements, 

consequently, appear sequential (robot-like) and are delivered at a pre-set speed—for instance, a 

device that offers wrist and hand capabilities cannot inherently move these components 

simultaneously or with varied velocity. Another control alternative uses a regression algorithm. 

This approach can predict multiple device movements at once, each of which are proportional to 

muscle contraction intensity. The outcome from this approach is that users can control their 

prosthetic wrist and hand more intuitively and in a smooth manner using varied velocities 

throughout reaching and grasping actions [6].  

Whether a classification or regression algorithm (known as a model) is used for control, pattern 

recognition-based prosthesis movement predictions are contingent on earlier-captured movement 

data. Prior to device use, a prosthesis user must perform a series of predetermined muscle 

contractions using their residual limb—known as a training routine [7]. Through training, patterns 

observed in the captured muscle signals are programmatically associated with corresponding 

device actions. A training routine should not take an excessive amount of time, particularly if it 

must be executed to recalibrate control during prosthesis use. Indeed, user feedback surveys report 

that above all else (even above improved control), upper limb prosthesis users want quick-setup 

control solutions [156], [157]. 

Classification control is often employed in prosthesis research for a number of reasons: (1) it can 

reliably predict discrete hand and wrist classes, which reduces model complexity [31]; (2) its 

simpler model form can yield fewer errors versus complex ones [10], [31]; and (3) its model 

training routines only require execution of static muscle contractions [158], making them 

straightforward to develop and quick to administer. Still, predicted movement errors are known to 

occur with classification control, particularly during transitions between hand and wrist classes 

[158]. Alternatively, regression control’s main advantage is that it offers the potential for fluid 
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prosthetic wrist/hand movements, even during transitions [31]. To achieve such fluidity, however, 

users must execute complex training routines that require dynamic elicitation of EMG signals with 

varying intensities. Choosing classification- over regression-based control evidently comes with a 

trade-off: movement reliability and model simplicity, over movement fluidity.  

Control reliability remains a research goal, particularly as a problem known as the limb position 

effect critically impedes device reliability [15], [16], [17], [18]. Here, surface EMG signals change 

when a prosthesis or other wearable device is used in untrained limb positions. It has been 

established that when the physical conditions for pre-training and training are dissimilar, muscle 

coactivation patterns can be introduced during limb movements and incorrect decoding of a user’s 

intent can result [18]. Muscle coactivations are introduced even among those without amputation, 

normally evidenced in high limb positions [10], [18]. The limb position reliability implications to 

prosthesis control are well acknowledged, yet remain largely unsolved [14]. To definitively solve 

it, a control model would have to be trained in every conceivable limb position, but in doing so 

would require an excessively long training time. Instead, training routines performed in selected 

low, midway, and high positions have been introduced to combat the limb position effect problem, 

with their models yielding statistically significant control improvements [15]. 

Researchers have also begun to add positional sensors (worn on users’ residual limbs during model 

training and testing) to address the problem, and have found that inertial measurement units 

(IMUs) can capture pertinent limb position data [15], [16], [21], [22], [23]. Our earlier work built 

upon this finding and successfully combined EMG and IMU data to train deep learning pattern 

recognition-based controllers [10]. Specifically, we developed a new type of recurrent 

convolutional neural network (RCNN), intended for upper limb prosthesis control. RCNNs are a 

network architecture for deep learning, capable of learning directly from data and handling large 

amounts of multimodal data [27], [28]. This makes them well-suited for training with EMG and 

IMU data from multiple limb positions, without requiring researchers to supply engineered 

features—instead, features are learned [43], [70], [71]. RCNNs have also proven to be 

advantageous as they can handle the intrinsic time-varying nature of muscle signals [72]. Our work 

capitalized on these benefits and established that position-aware RCNN controllers show promise 

towards mitigating the limb position effect [10]; as corroborated by our research that focused on 

the movements of participants without limb difference [10], [11], [90], [99].  
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Our body of control research led us to consider whether a more advanced RCNN-based 

classification and/or RCNN-based regression controller could offer improved control and 

functionality over earlier pattern recognition-based approaches that focused on reliability and ease-

of-implementation at the expense of movement fluidity. We aimed to recommend an RCNN-based 

controller that uses EMG and IMU sources of movement/positional data to effectively mitigate the 

limb position effect. Solving this prevalent EMG-based device control problem would make 

inroads towards acceptance of future control solutions—by rehabilitation clinicians and users 

alike.  

In the work presented herein, we investigate whether an RCNN classification controller (RCNN-

Class) and/or an RCNN regression controller (RCNN-Reg) might offer enhanced myoelectric 

prosthesis control versus a conventional linear discriminant analysis (LDA) classification 

counterpart. The latter is commonly used to control upper limb prostheses, and as such, is often 

adopted in research as a baseline for comparison to other controllers [6], [10]. This work equipped 

non-disabled participants with a simulated device, which has been shown to be a reasonable proxy 

for actual myoelectric prosthesis use [77]. With the device donned, they trained and tested either 

RCNN-Class or RCNN-Reg, along with an LDA baseline controller (LDA-Baseline). Participants 

executed functional tasks across multiple limb positions during testing, with EMG and IMU data 

collected. Task performance metrics analysis relied on motion capture data, control characteristics 

analysis was based on the prosthesis’ motor data, and participants’ control experiences were 

gauged from their responses to surveys. Both RCNN-Class and RCNN-Reg showed improved 

functional task performance over LDA-Baseline. RCNN-Reg, however, offers two fundamental 

control advantages to users: (1) it mitigates the limb position effect, plus (2) it reliably provides 

smooth and simultaneous device movements. Our RCNN regression-based findings contribute to 

the body of myoelectric prosthesis control research by presenting a novel and advanced control 

approach that provides fluid movements that more closely approximate those of an intact wrist and 

hand. What follows are details about this work’s experimental methods, results, and promising 

regression-based control outcomes. 
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7.2. Methods 

7.2.1. Overview 

In this work, we compared two RCNN-based pattern recognition controllers to an LDA 

classification controller baseline, which applies probability theory to discover patterns in EMG 

data and uses engineered features to inform control [6], [25]. We considered the control 

performance offered by: (1) RCNN-Class versus LDA-Baseline, and (2) RCNN-Reg versus LDA-

Baseline. For our investigation, three distinct controller testing sessions were undertaken, as 

described below. 

A) An RCNN-Class Session (outlined in Figure 7-2A) required participants to don a gesture 

control armband equipped with both EMG and IMU sensors, plus a simulated prosthesis. While 

wearing this equipment, participants performed a training routine that involved static, isotonic 

forearm muscle contractions in four limb positions (in doing so, they trained RCNN-Class’s 

model). After learning how to control the device through practice, participants performed 

functional tasks with motion capture data recorded. 

 
Figure 7-2. Overview of controller testing sessions: (A) RCNN-Class Session, (B) RCNN-Reg Session, and (C) LDA-

Baseline Session. Note that for all training routine and testing execution, participants wore a gesture control armband 

(equipped with EMG and IMU sensors), along with a simulated prosthesis.  
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B) An RCNN-Reg Session (outlined in Figure 7-2B) required participants to don the gesture 

control armband and simulated prosthesis, after which they performed a training routine that 

involved dynamic, isotonic forearm muscle contractions in four limb positions (in doing so, they 

trained RCNN-Reg’s model). After learning how to control the device through practice, 

participants performed functional tasks with motion capture data recorded. 

C) An LDA-Baseline Session (outlined in Figure 7-2C) also required participants to don the 

gesture control armband and simulated prosthesis, after which they performed a training routine 

that involved static, isotonic forearm muscle contractions in only one limb position (in doing so, 

they trained LDA-Baseline’s model). Notably, this training routine did not involve muscle 

contractions in multiple limb positions as required by the RCNN-based controllers’ models, for 

three reasons: (1) training in only one limb position mimics standard prosthesis controller training 

[18]; (2) the goal of this research was not to investigate a position-aware LDA-based controller, 

but rather to investigate the potential effectiveness of RCNN-based controllers for mitigating the 

limb position effect (as they can combine large volumes of EMG and IMU data); and (3) we have 

previously found position-aware RCNN-based classification to better mitigate the limb position 

effect versus position-aware LDA-based classification [10]. After learning how to control the 

device through practice, participants performed the same functional tasks as used with the RCNN-

based controller testing, with motion capture data recorded. 

7.2.2. Participants 

A total of 16 participants were recruited for this study. All participants provided written informed 

consent, as approved by the University of Alberta Health Research Ethics Board (Pro00086557). 

Each participant completed two testing sessions, with an RCNN-based controller tested in one 

session and LDA-Baseline tested in the other. A washout period of at least seven days was included 

between the two sessions to ensure that participants forgot details of their first session’s controller. 

The 16 participants were split into two groups. 

The first group compared RCNN-Class versus LDA-Baseline. Eight participants were recruited 

for this group. They had a median age of 25 (range: 22–29) and median height of 173 cm  (range: 

167–181 cm), four were male, four were female, and all were right-handed. One participant had 

minimal previous experience with EMG pattern recognition control. Four participants in this group 
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trained and tested RCNN-Class in their first session, whereas the other four participants trained 

and tested LDA-Baseline in their first session. Participants trained and tested the remaining 

controller in their second session, with a median of 27 days between the first and second sessions 

(range: 13–42 days).  

The second group compared RCNN-Reg versus LDA-Baseline. Eight participants were recruited 

for this group. They had a median age of 24 (range: 19–27) and median height of 176 cm (161–

193 cm), five were male, three were female, seven were right-handed and one was ambidextrous. 

No participants had previous experience with EMG pattern recognition control. Four participants 

in this group trained and tested RCNN-Reg in their first session, whereas the other four participants 

trained and tested LDA-Baseline in their first session. Participants then trained and tested the 

remaining controller in their second session, with a median of 17.5 days between the first and 

second sessions (range: 7–25 days). 

7.2.3. Muscle Signal Data Collection 

7.2.3.1. Myo Gesture Control Armband 

All participants wore a Myo gesture control armband (Thalmic Labs, Kitchener, Canada—

discontinued) over their largest forearm muscle bulk [15], to facilitate capture of EMG signal data 

during controller training and testing. The armband was worn at approximately the upper third of 

participants’ right forearm, as shown in Figure 7-3A (with the top of the armband at a median of 

28% of the way down the forearm from the medial epicondyle to the ulnar styloid process). The 

Myo armband contained eight surface electrodes to collect EMG data at a sampling rate of 200  
 

  
Figure 7-3. (A) Myo armband on a participant’s forearm; (B) simulated prosthesis on a participant’s forearm, with 

labels indicating the sleeve, two pieces of liner, hand brace, distal ring, cushions, wrist motor, and hand motor; and 

(C) motion capture markers affixed to the simulated prosthesis, with the eight motion capture markers that remained 

attached to the hand circled, and the three additional individual markers for the ski pose calibration are labelled. 

Adapted from Williams et al. [90]. 
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Hz. It also contained one IMU to collect limb position data (three accelerometer, three gyroscope, 

and four quaternion data streams) at 50 Hz. Note that from the IMU, only the accelerometer data 

streams were used to ascertain limb position. Myo Connect software was used to stream and record 

EMG and IMU data in Matlab.  

7.2.3.2. Simulated Prosthesis 

The simulated prosthesis used in this study was the 3D-printed Modular-Adaptable Prosthetic 

Platform (MAPP) [92] (shown in Figure 7-3B). It was fitted to each participant’s right arm, to 

simulate transradial prosthesis use. The MAPP’s previously published design [92] was altered to 

improve wearer comfort in our study—the distal ring was made to resemble the oval shape of a 

wrist and the hand brace was elongated so that the distal ring would sit more proximally on the 

wearer’s wrist. A non-proprietary 3D-printed robotic hand [93] was affixed to the MAPP beneath 

the participant’s hand. Wrist rotation capabilities were also added to the device. Hand and wrist 

movements (that is, with two degrees of freedom) were powered by two Dynamixel MX Series 

motors (Robotis Inc., Seoul, South Korea). 

After placement of the Myo gesture control armband, participants donned a thin, protective sleeve. 

The MAPP was donned over the sleeve and affixed with Velcro straps. Gel-coated pieces of fabric 

liner (that is, with thermoplastic elastomer) were placed inside the MAPP’s distal ring and just 

above the participant’s elbow to ensure a comfortable fit. In addition, 3D-printed cushions, made 

of Ninjaflex Cheetah filament (Ninjatek, Inc.), were placed throughout the device socket (shown 

in Figure 7-3B). The MAPP was checked for secureness, a visual inspection was performed to 

ensure that no components were loose, and a final participant comfort check was conducted 

verbally. 

7.2.3.3. EMG and Accelerometer Data Processing 

The EMG data from the Myo armband were filtered using a high pass filter with a cutoff frequency 

of 20 Hz (to remove movement artifacts), as well as a notch filter at 60 Hz (to remove electrical 

noise). The accelerometer data streams were upsampled to 200 Hz (using previous neighbour 

interpolation) to align them with the corresponding EMG data. Data were then segmented into 

windows (160-millisecond with a 40-millisecond offset). 
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7.2.4. Controller Descriptions: Model Architectures, Training Routines, & 

Implementation 

Each of the RCNN-based controllers and their LDA-Baseline counterpart are described below. 

The two RCNN-based controller descriptions include details about its model’s architecture, 

training routine, hyperparameters used, and number of weights. LDA-Baseline’s description 

includes details about its statistical model implementation, training routine, features used, and 

number of coefficients. For each of the RCNN-based controllers presented, all hyperparameters 

were determined using Bayesian optimization—this includes the number of convolution layers, 

number of filters, filter size, pooling size, and early stopping criteria of the model. Each model’s 

optimization process was performed in two steps. First, an initial broad range of values were used 

to optimize each hyperparameter. Thereafter, values were refined using a narrower range, centered 

at earlier optimized values. Given that each model’s hyperparameters were optimized separately, 

their resulting architectures had a unique number of such with different training durations to 

achieve their best possible accuracies—that is, the models did not require the same number of 

weights nor training times to each achieve this. 

7.2.4.1. RCNN-Class Controller 

Model Architecture—RCNN-Class’s model architecture consisted of 23 layers, as illustrated in 

Figure 7-4A. In this model, a sequence input layer first received and normalized the training data. 

Then, a sequence folding layer was used, allowing convolution operations to be performed 

independently on each window of EMG and accelerometer data. This was followed by a block of 

four layers: a 2D convolution, a batch normalization, a rectified linear unit (ReLU), and an average 

pooling layer. This block of layers was repeated twice more. Each of the three average pooling 

layers had a pooling size of 1x4. A block of three layers followed: a 2D convolution, a batch 

normalization, and a ReLU layer. The optimal number of filters in the convolution layers were 

determined to be 16, 32, 64, and 8, respectively, and each had a filter window size of 1x4. The 

next layers included a sequence unfolding layer (to restore the sequence structure), a flatten layer, 

a long short-term memory (LSTM) layer, and a fully connected layer. Finally, a softmax layer and 

classification layer yielded the final class predictions. RCNN-Class’s model had a total of 76,482 

weights. Note that to prevent model overfitting, an early stopping patience hyperparameter 

(criteria) was set. In doing so, model training would automatically stop when the validation loss 
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(calculated every 50 iterations) increased four times. This overfitting mitigation method chosen 

for this control model, is similar to that used in other works [71]. 

Model Training Routine—Participants followed onscreen instructions, performing static muscle 

contractions in five wrist positions (rest, flexion, extension, pronation, and supination; shown in 

Figure 7-2A), for five seconds each. The muscle contractions were performed twice in four limb 

positions: arm at side, elbow bent at 90°, arm straight out in front at 90°, and arm up 45° from 

vertical (shown in Figure 7-2A). This multi-limb-position training routine was similar to those 

used in other real-time control studies aiming to mitigate the limb position effect [10], [15], [23]). 

It took approximately 200 seconds. The resulting EMG and accelerometer data, plus corresponding 

classes of muscle contractions, were used to train RCNN-Class’s model. A median total of 4,836 

unique samples (where samples are defined as windows of 8 EMG and 3 accelerometer channels 

by 32 time stamps) were used for model training. Model training took a median of 5,275 iterations 

(meaning that a total of 25.5 million samples were observed), which required a median of 104.8 

seconds to complete (with computer specifications detailed in the Control Model Implementation 

section). 

 

 

Figure 7-4. Architecture of (A) RCNN-Class’s model and (B) RCNN-Reg’s model, including the size of each layer 

and connections between layers. 
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7.2.5. RCNN-Reg Controller 

Model Architecture—RCNN-Reg’s model architecture consisted of 18 layers, as illustrated in 

Figure 7-4B. The first layers of this model are a sequence input layer and a sequence folding layer. 

These were followed by a block of four layers: a 2D convolution, a batch normalization, a ReLU, 

and an average pooling layer. This block of layers was repeated once more. Each of the two 

average pooling layers had a pooling size of 1x4. A block of three layers followed: a 2D 

convolution, a batch normalization, and a ReLU layer. The optimal number of filters in the 

convolution layers were determined to be 64, 32, and 16, respectively, and each had a filter window 

size of 1x5. The next layers included a sequence unfolding layer (to restore the sequence structure), 

a flatten layer, an LSTM layer, and a fully connected layer. Finally, a regression layer yielded the 

final predictions. RCNN-Reg’s model had a total of 140,556 weights. Note that to prevent model 

overfitting, an early stopping patience hyperparameter (criteria) was set. In doing so, model 

training would automatically stop when the validation loss (calculated every 50 iterations) 

increased once. 

Model Training Routine—Participants followed onscreen instructions, performing three types of 

muscle contractions (shown in Figure 7-2B): 

1. The wrist was held at rest for five seconds; 

2. Dynamic muscle contractions, oscillating five times between full wrist flexion (that is, with 

a strong contraction that did not introduce discomfort) and corresponding full wrist 

extension; and  

3. Dynamic muscle contractions, oscillating five times between full forearm pronation and 

full forearm supination. 

All such muscle contractions were performed twice in four limb positions: arm at side, elbow bent 

at 90°, arm straight out in front at 90°, and arm up 45° from vertical (shown in Figure 7-2B). This 

multi-limb-position routine was developed in our previous offline research [10] and took 

approximately 300 seconds. Note that although this training routine was longer than that used for 

RCNN-Class, it is comparable as it allowed the model to be exposed to intermediate points 

between full muscle contractions. Rather than employing classes of muscle contractions in this 

work, two arrays with values between -1 and 1 were used to represent the flexion-extension and 
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the pronation-supination degree of freedoms, respectively. For the static rest muscle contractions, 

both arrays contained zeros. For the flexion-extension oscillations, the first array contained 

sinusoidal values between -1 (representing full flexion) and 1 (representing full extension), and 

the second array contained zeros. For pronation-supination oscillations, the first array contained 

zeros and the second array contained sinusoidal values between -1 (representing full pronation) 

and 1 (representing full supination). The resulting EMG and accelerometer data, plus 

corresponding values, were used to train RCNN-Reg’s model. A median total of 7,420 unique 

samples were used for model training. Model training took a median of 500 iterations (meaning 

that a total of 3.7 million samples were observed), which required a median of 21.4 seconds to 

complete. 

7.2.5.1. LDA-Baseline Controller 

Model Details—Four commonly used EMG features were chosen for implementation of this 

baseline classifier’s model: mean absolute value, waveform length, Willison amplitude, and zero 

crossings [9]. These features were calculated for each channel within each window of EMG data. 

A pseudo-linear LDA discriminant type was used, given that columns of zeros were occasionally 

present in some classes for some features (including Willison amplitude and zero crossings). LDA-

Baseline’s model had a total of 330 coefficients.  

Model Training Routine—Participants followed onscreen instructions, performing muscle 

contractions in five wrist positions (shown in Figure 7-2C), for five seconds each. The muscle 

contractions were performed twice, with the participants’ elbow bent at 90° (shown in Figure 

7-2C). This single-position routine mimicked standard myoelectric prosthesis training [18] and 

took approximately 50 seconds. The resulting EMG data and corresponding classes of muscle 

contractions were used to train LDA-Baseline’s model. Features calculated from a median total of 

1,210 unique samples (where samples are defined as windows of 8 EMG channels by 32 time 

stamps) were used for model training. Model training required a median of 0.7 seconds to 

complete. 

7.2.5.2. Control Model Implementation 

Each of the three control models implemented in this study was trained using Matlab software 

running on a computer with an Intel Core i9-10900K processor (3.70 GHz), a 
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NVIDIA GeForce RTX 2080 SUPER graphics card with 8GB GDDR6, and 128 GB of RAM. 

RCNN-Class’s, RCNN-Reg’s, and LDA-Baseline’s models were trained in median times of 104.8, 

21.4, and 0.7 seconds, respectively. After completion of all model training, the simulated 

prosthesis was programmatically controlled as follows: 

1. Matlab code was written to receive EMG and accelerometer data, from which the controller 

predicted intended wrist movements. Note that for RCNN-Reg, additional code was written 

to smooth predictions using a moving average filter (averaging the current prediction with 

the previous prediction) [10], [79].  

2. Matlab code was also written to enable predicted motor instruction transmission to the 

device wrist/hand, based on resulting classifications—that is, via brachI/Oplexus software 

[94], where received flexion signal data were translated to hand close, extension to hand 

open, pronation to move wrist in a counter-clockwise rotation, and supination to move wrist 

in a clockwise rotation. Note that for RCNN-Reg, small prediction values were suppressed 

to 0 as required [10], [42], with a median value of ±0.05 (range: 0.02–0.1), out of a total 

signal range of -1 to 1. 

3. brachI/Oplexus relayed the corresponding instructions to the simulated prosthesis’ motors. 

The motor instructions and positions were recorded with a sampling rate of 50 Hz. 

7.2.6. Simulated Device Control Practice & Testing Eligibility 

Recall that for each of the RCNN-Class, RCNN-Reg, and LDA-Baseline testing sessions, 

participants wore a gesture control armband (equipped with EMG and IMU sensors), along with a 

simulated prosthesis. With all such equipment donned and during each testing session, participants 

took part in 40-minute control practice periods. During this period, they were taught how to operate 

the simulated prosthesis using isometric muscle contractions, under three conditions: 

1. Controlling the hand open/close while the wrist rotation function was disabled. They 

practiced grasping, transporting, and releasing objects at varying heights. 

2. Controlling wrist rotation while the hand open/close function was disabled. They practiced 

rotating objects at varying heights. 
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3. Controlling the hand open/close function in concert with the wrist rotation function. They 

practiced tasks that involved grasping, transporting, rotating, and releasing objects at 

varying heights. 

For RCNN-Reg control practice, each of the three conditions also required participants to practice 

controlling device movement velocity (that is, trying to slow down and speed up device 

movements). Furthermore, Condition 3 included an opportunity to practice simultaneous control 

of the two degrees of freedom (that is, performing wrist rotation and hand open/close at the same 

time).  

Following all practice periods, participants were tested to determine whether they could reliably 

control the simulated prosthesis. For such testing, two cups were situated in front of them at two 

different heights, with a rubber ball in one of the cups. Participants were asked to pour the ball 

between the two cups, and instances when they dropped the ball or a cup were recorded. If 

participants could not complete at least 10 pours with a success rate of at least 75% within 10 

minutes, the session was ended, and they were removed from the study. All participants passed 

this test.  

7.2.7. Motion Capture Setup & Kinematic Calibrations 

After participants were deemed eligible for controller testing, the following motion capture steps 

were undertaken.  

Step 1: Motion Capture Setup—A 10-camera OptiTrack Flex 13 motion capture system (Natural 

Point, OR, USA) was used to capture participant movements and task objects at a sampling rate 

of 120 Hz. Eight individual markers were placed on the simulated prosthesis hand, circled in Figure 

7-3C (one on the thumb, one on the index finger, and the remaining six throughout the back and 

side of the hand to ensure reliable rigid body tracking). Rigid marker plates were also placed on 

each participant’s right forearm (affixed to the simulated prosthesis socket), upper arm, and thorax, 

in accordance with Boser et al.’s cluster-based marker model [150]. 

Step 2: Kinematic Calibrations—Each participant was required to perform two kinematics 

calibrations. As per Boser et al., the first calibration called for participants to hold an anatomical 

pose [150], for capture of the relative positions of the hand markers and motion capture marker 
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plates when wrist rotation and shoulder flexion/extension angles were at 0°. The second calibration 

required participants to hold a ski pose [150], for the purpose of refining wrist rotation angles. 

Here, three additional individual markers were affixed to the simulated prosthesis, as shown in 

Figure 7-3C: 

1. One marker placed on the top of the prosthesis’ hand motor, with the device hand closed 

2. One marker placed on the bottom of the prosthesis’ wrist motor, forming a line with the 

first marker (to represent the axis about which the wrist rotation occurred) 

3. One marker placed on the side of the prosthesis’ wrist motor (to create a second axis, 

perpendicular to the axis of wrist rotation) 

Upon completion of the two kinematics calibrations, all Step 2 markers were removed. What 

remained were only those markers affixed during Step 1 for data collection purposes.  

7.2.8. Controller Testing 

Testing required participants to execute functional tasks that mimicked activities of daily living 

across multiple limb positions, with motion capture data and participant survey results as outputs. 

7.2.8.1. Functional Task Execution 

Motion capture data were collected while participants executed the following functional tasks. 

Pasta Box Task (Pasta)—Participants were required to perform three distinct movements, where 

they transported a pasta box between a 1st, 2nd, and 3rd location (a side table and two shelves at 

varying heights on a cart, including across their midline) [95]. The task setup is shown in Figure 

7-5A. Motion capture markers were placed on all task objects, as per Valevicius et al. [95]. 

Participants performed a total of 10 Pasta trials. If participants dropped the pasta box, placed it 

incorrectly, performed an incorrect movement sequence, or hit the frame of the task cart, the trial 

was not analyzed. Pasta was the first of two functional tasks performed as it was considered easier.  

RCRT—Participants were required to perform three distinct movements using clothespins. They 

moved three clothespins between 1st, 2nd, and 3rd locations on horizontal and vertical bars [96]. To 

simplify trial execution, RCRT was split into RCRT Up and RCRT Down trials. The task setup 

for these trails is shown in Figure 7-5B. During Up trials, participants moved the three clothespins 

from the horizontal bar to the vertical bar, and during Down trials, they moved the clothespins 
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from the vertical bar to the horizontal bar. A height adjustable cart was set up—with its top surface 

height situated at 65 cm below the participant’s right shoulder. This setup ensured that the top of 

each participants’ shoulder was aligned with the midpoint between the top two targets on the 

vertical bar used in the RCRT Up and Down trials. Motion capture markers were placed on all task 

objects, as per our earlier research [90]. Participants performed a total of 10 Up trials and 10 Down 

trials. If participants dropped a clothespin, placed it incorrectly, or performed an incorrect 

movement sequence, the trial was not analyzed. Performance of RCRT Up and Down trials were 

alternated, beginning with RCRT Up. 

7.2.8.2. Perceived Control via Participant Survey Administration 

At the end of every controller testing session, participants completed two surveys: the NASA-TLX 

[145] and a usability survey [147]. The former was administered using the official NASA-TLX 

tablet application, where participants scored their device control workload demand on a continuous 

rating scale with endpoint anchors of low and high. The usability survey was administered on 

paper, where participants marked their usability scores on a continuous rating scale with endpoint 

anchors of 0 and 5. In their second session, participants were not reminded of their survey 

responses from their first session.  

 
Figure 7-5. Task setup for (A) Pasta and (B) RCRT Up and Down, including task dimensions. In panel (A), the 1st, 

2nd, and 3rd pasta box locations are labelled. The pasta box movement sequence is 1st  2nd  3rd  1st locations. In 

panel (B), the 1st, 2nd, and 3rd clothespin locations on the horizontal and vertical bars are labelled. The clothespin 

movement sequences in RCRT Up are horizontal 1st  vertical 1st, horizontal 2nd  vertical 2nd, and horizontal 3rd  

vertical 3rd locations. The clothespin movement sequence in RCRT Down follows the same order, but with each 

clothespin moved from vertical to horizontal locations. Adapted from Williams et al. [90]. 
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7.2.9. Analysis of Controller Testing Data 

Statistical data analysis was undertaken after the following steps were completed: processing of 

the motion capture data (with some measures estimated); finalization of estimated measures; task 

segmentation; and calculation of control assessment metrics. 

7.2.9.1. Motion Capture Data Processing 

Motion capture data were cleaned and filtered. As per Valevicius et al. [95], grip aperture was 

estimated using the distance between the motion capture markers on the simulated prosthesis’ 

index finger and thumb. In addition, a 3D object representing the simulated prosthesis’ hand was 

generated using the remaining 6 hand markers, for the purpose of calculating upcoming metrics 

[95]. Next, using calculations modified from Boser et al. [150], wrist rotation angles were 

estimated using the forearm and hand markers, whereas shoulder flexion/extension angles were 

calculated using the upper arm and thorax motion markers. 

7.2.9.2. Finalization of Grip Aperture and Wrist Rotation Measures 

The grip aperture and wrist rotation measures were finalized using data from the simulated 

prosthesis’ two motors. As small (yet informative) adjustments in the positions of these motors 

may not have been detected by the motion capture cameras, we chose not to ignore them. First, the 

positions of the motors were upsampled to 120 Hz using linear interpolation. Then, the estimated 

measures were finalized—Grip aperture: the motion-capture-estimated grip apertures were fitted 

to a trinomial curve, to facilitate transforming the hand motor data to final grip aperture measures. 

Wrist rotation: the motion-capture-estimated wrist rotation angles were fitted to a binomial curve, 

to facilitate transforming the wrist motor data to final wrist rotation angle measures. 

7.2.9.3. Task Segmentation 

The task data were segmented in accordance with Valevicius et al. [95]. For each task, the data 

from each trial were first divided into distinct movements 1, 2, and 3 based on hand velocity and 

the velocity of the pasta box/clothespins during transport.  

Pasta Movements 1, 2, and 3 differentiated between: (1) reaching for the pasta box at its 1st 

location, grasping it, transporting it to its 2nd location, releasing it, and moving their hand back to 

a home position; (2) reaching for the pasta box at the 2nd location, grasping it, transporting it to its 
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3rd location, releasing it, and moving their hand back to the home position; and (3) reaching for 

the pasta box at the 3rd location, grasping it, transporting it back to the 1st location, releasing it, and 

moving their hand back to the home position. 

RCRT Up Movements 1, 2, and 3 differentiated between: (1) reaching for the 1st clothespin at its 

1st horizontal location, grasping it, transporting it to its 1st vertical location, releasing it, and moving 

their hand back to a home position; (2) reaching for the 2nd clothespin at its 2nd horizontal location, 

grasping it, transporting it to its 2nd vertical location, releasing it, and moving their hand back to 

the home position; and (3) reaching for the 3rd clothespin at its 3rd horizontal location, grasping it, 

transporting it to its 3rd vertical location, releasing it, and moving their hand back to the home 

position. 

RCRT Down Movements 1, 2, and 3 differentiated between: (1) reaching for the 1st clothespin at 

its 1st vertical location, grasping it, transporting it to its 1st horizontal location, releasing it, and 

moving their hand back to a home position; (2) reaching for the 2nd clothespin at its 2nd vertical 

location, grasping it, transporting it to its 2nd horizontal location, releasing it, and moving their 

hand back to the home position; and (3) reaching for the 3rd clothespin at its 3rd vertical location, 

grasping it, transporting it to its 3rd horizontal location, releasing it, and moving their hand back to 

the home position. 

Then, the data from each of the three movements were further segmented into five phases of Reach, 

Grasp, Transport, Release, and Home (note that the Home phase was not used for data analysis). 

Finally, two movement segments of Reach-Grasp and Transport-Release were defined for select 

metrics analysis. Six final levels for data analysis resulted: controller (either RCNN-Class, RCNN-

Reg, or LDA-Baseline), task (either Pasta, RCRT Up, or RCRT Down), trial (1–10), movement 

(1–3), movement segment (Reach-Grasp or Transport-Release), and phase (Reach, Grasp, 

Transport, or Release). 

7.2.9.4. Control Assessment Metrics Calculated 

The Suite of Myoelectric Control Evaluation Metrics, introduced in our previous work [99], was 

used to compare prosthesis control resulting from RCNN-Class versus LDA-Baseline and RCNN-

Reg versus LDA-Baseline. A summary of these metrics can be found in Table 7-1.  
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Table 7-1. Summary of metrics used in this study, including details of whether a smaller or larger value indicates a 

control improvement.  

Metric 
Category Metric Metric Description Control Improvement 

Indicator 

Ta
sk

 P
er

fo
rm

an
ce

 Success Rate (%) Percent of trials that are error-free Larger 
Trial Duration (sec) Elapsed time for each trial Smaller 
Phase Duration (sec) Elapsed time for each phase Smaller 

Relative Phase Duration (%) Elapsed time for each phase, relative to the elapsed time 
for a Reach-Grasp-Transport-Release movement 

Grasp, Release: smaller 
Reach, Transport: larger 

Peak Hand Velocity (mm/s) Maximum velocity of the hand while moving Larger 
Hand Distance Travelled (mm) Total distance travelled by the hand while moving Smaller 
Hand Trajectory Variability (mm) How much the hand movement path varies between trials Smaller 

C
on

tr
ol

 C
ha

ra
ct

er
ist

ic
s 

Total Grip Aperture Movement (mm) Total amount of grip aperture variation Smaller 
Total Wrist Rotation Movement (deg) Total amount of wrist rotation angle variation Smaller 
Number of Grip Aperture 
Adjustments 

Number of times that grip aperture variation commences 
or changes direction Smaller 

Number of Wrist Rotation 
Adjustments 

Number of times that wrist rotation angle variation 
commences or changes direction Smaller 

Grip Aperture Plateau (sec) Amount of time during which the grip aperture remains 
open before closing to grasp a task object Smaller 

Simultaneous Wrist-Shoulder 
Movements (%) 

Percent of the phase during which the wrist rotation is 
controlled while the shoulder is moving Larger 

Total Muscle Activity Total amount of muscle activity expended Smaller 

U
se

r 
Ex

pe
ri

en
ce

 

NASA-
TLX 

Mental Demand 

Workload demand resulting from each controller 

Smaller 
Physical Demand Smaller 
Temporal Demand Smaller 
Performance Smaller 
Effort Smaller 
Frustration Smaller 

Usability 
Survey 

Intuitiveness 

Usability of each controller 

Larger 
Effectiveness – Pasta Larger 
Effectiveness – RCRT Larger 
Reliability Larger 

 

To identify occurrences where the limb position effect impeded control, we analyzed our resulting 

Control Characteristics metrics from the suite, as outlined in our previous work [99]—the 

thresholds used for identification of the limb position effect remained the same, with the total 

muscle activity metric eliminated from analysis thereof. Specifically, this present work’s limb 

position effect analysis considered trends across the Control Characteristics metrics’ medians and 

interquartile ranges (IQRs) for each task’s three movements, with larger medians and/or larger 

interquartile ranges providing evidence of degraded control. Figure 7-6A illustrates an example 

where the limb position effect was identified by the increasing medians and IQRs from movement 

1 (in the lowest limb position) to movement 3 (in the highest limb position). Conversely, Figure 

7-6B illustrates an example where the limb position effect was not identified.  
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Figure 7-6. Box plots indicating LDA-Baseline number of wrist rotation adjustments in (A) RCRT Down Grasp and 

(B) RCRT Down Transport of each task movement (Mvmt). Medians are indicated with thick lines, and interquartile 

ranges are indicated with boxes.  

Finally, to assess whether participants took advantage of RCNN-Reg’s simultaneous and 

proportional velocity control capabilities, we calculated two additional metrics from recorded 

motor instructions. To assess whether participants capitalized on RCNN-Reg’s simultaneous 

control capabilities, simultaneous wrist-grip movements were calculated—the percent of each 

phase in which the wrist rotation and the grip aperture velocities were simultaneously moving. Of 

note, this metric was only calculated for RCRT Up and RCRT Down tasks (given that wrist 

rotation movements were not necessary for Pasta). Furthermore, the metric was only applicable to 

Reach, Grasp, and Release phases (given that grip aperture adjustments were not necessary in 

Transports). To assess whether participants capitalized on RCNN-Reg’s proportional velocity 

control capabilities, instances where velocity fluctuated between 0 and full speed were counted—

as indicated by the percentage of each task in which wrist rotation and grip aperture respectively 

varied. These two motor-recorded metrics were only calculated for RCNN-Reg, given that neither 

simultaneous control nor proportional velocity control were possible under RCNN-Class or LDA-

Baseline alternatives. 
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7.2.9.5. Statistical Analysis 

To compare control resulting from RCNN-Class versus LDA-Baseline and RCNN-Reg versus 

LDA-Baseline, the following statistical analyses were performed using all Task Performance, 

Control Characteristics, and User Experience metrics: 

For metrics that were analyzed at the phase or movement segment level—Participants’ results 

were first averaged across trials and movements. If results were normally-distributed, a two-factor 

repeated-measures analysis of variance (RMANOVA) was conducted using the factors of 

controller and phase/movement segment. When the resulting controller effects or controller-

phase/movement segment interactions were deemed significant (that is, when the Greenhouse-

Geisser corrected p value was less than 0.05), pairwise comparisons between the controllers were 

conducted. If results were not normally-distributed, the Friedman test was conducted. When the 

resulting p value was less than 0.05, pairwise comparisons between the controllers were conducted. 

Pairwise comparisons (t-test/Wilcoxon sign rank test) were deemed significant if the p value was 

less than 0.05. 

For metrics that were analyzed at the trial level—Participants’ results were first averaged across 

trials, then pairwise comparisons were conducted as detailed above.  

For metrics that were analyzed at the task or controller level—Pairwise comparisons were 

conducted as detailed above.  

One participant’s data were not included in this study’s statistical analysis. That participant 

experienced difficulties with LDA-Baseline control in their second testing session (comparing 

RCNN-Reg versus LDA-Baseline). Although they passed their practice test, they only completed 

three error-free trials of Pasta and were unable to complete any error-free trials of RCRT Up or 

Down. Consequently, their data stemming from all controller testing sessions were excluded from 

analysis. 

7.3. Results 

The Suite of Myoelectric Control Evaluation Metrics [99] was used in this comparative controller 

study. The suite includes three broad categories of metrics: task performance, control 

characteristics, and user experience. Through an analysis of these metrics, numerous control 
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findings were uncovered. These findings included identification of significant improvements in 

RCNN-based controller performance over LDA-Baseline, metrics-substantiated evidence of the 

limb position effect, indications that prosthesis control improvements in high limb positions can 

be offered by RCNN-based controllers, and that RCNN-Reg’s simultaneous and proportional 

velocity control capabilities yield overall improved device performance. 

7.3.1. Significant Differences Between RCNN-Based Controllers and LDA-

Baseline 

Instances of significant improvements for RCNN-based control over LDA-Baseline are 

summarized in Figure 7-7—48 Task Performance and 67 Control Characteristics metrics for Pasta, 

RCRT Up, and RCRT Down tasks are presented. Here, 11 out of 115 metrics showed significant 

controller performance improvement by RCNN-Class over LDA-Baseline, and 38 out of 115 

metrics showed significant controller performance improvements by RCNN-Reg versus LDA-

Baseline. No significant differences between controllers were identified in User Experience 

metrics. All controller comparison results can be found in Appendix D. 

 

 

Figure 7-7. Number of significant differences between RCNN-Class versus LDA-Baseline and RCNN-Reg versus 

LDA-Baseline in Task Performance and Control Characteristics metrics. An average tally of performance 

improvement results is presented per task.  
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Two examples are presented below to illustrate controller outcomes during movements in high 

limb positions. One example presents a discrete metric, the other presents a continuous metric. 

Note that the LDA-Baseline results presented in these examples vary slightly between RCNN-

Class versus LDA-Baseline and RCNN-Reg versus LDA-Baseline, because they are specific to 

two different groups of participants.  

7.3.1.1. Discrete Metric Example: Number of Grip Aperture Adjustments 

To understand whether participants altered their device control behaviour when using the 

simulated prosthesis in high limb positions, the Number of Grip Aperture Adjustments made by a 

participant in RCRT Down Grasp phases were analyzed (an example of which is presented in 

Figure 7-8). Figure 7-8A illustrates the median number of such adjustments for RCNN-Class 

versus LDA-Baseline and for RCNN-Reg versus LDA-Baseline, with significant differences 

identified only between the latter. To further understand differences between RCNN-Reg versus 

LDA-Baseline, grip aperture examples from the same participant using RCNN-Reg and LDA-

Baseline control were analyzed (with Movement 3, which was at a high limb position and therefore 

where control was most difficult, presented in Figure 7-8B and C, respectively). In subplots 7B 

and 7C, the Grasp phases are highlighted, grip aperture adjustments in these phases are identified, 
 

 
Figure 7-8. (A) Median Number of Grip Aperture Adjustments in RCRT Down Grasp phases, comparing RCNN-

Class versus LDA-Baseline and RCNN-Reg versus LDA-Baseline, with interquartile ranges indicated with boxes and 

significant differences indicated with asterisks (*** indicates p < 0.05); (B) grip aperture in Movement 3 of one trial 

under RCNN-Reg Control from a participant; and (C) grip aperture in Movement 3 of the one trial under LDA-

Baseline Control from the same participant as panel B. The Grasp phases in panels B and C are highlighted in grey 

and each Grasp phase grip aperture adjustment is identified with a red line.  
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and these adjustments are tallied. Notably, only one grip aperture adjustment was identified in the 

RCNN-Reg example (Figure 7-8B) whereas five grip aperture adjustments were identified in the 

LDA-Baseline example (Figure 7-8C). Evidently fewer adjustments were required under RCNN-

Reg control. 

7.3.1.2. Continuous Metric Example: Grip Aperture Plateaus 

To further understand whether participants altered their device control behaviour when using the 

simulated prosthesis in high limb positions, Grip Aperture Plateaus of a participant in RCRT Down 

Reach-Grasp movement segments were analyzed (an example of which is presented in Figure 7-9). 

Figure 7-9A illustrates the median plateaus for RCNN-Class versus LDA-Baseline and for RCNN-

Reg versus LDA-Baseline, with significant differences identified only between the latter. To 

further understand differences between RCNN-Reg versus LDA-Baseline, grip aperture examples 

from the same participant using RCNN-Reg and LDA-Baseline control were analyzed (with 

Movement 3, which was at a high limb position and therefore where control was most difficult, 

presented in Figure 7-9B and C, respectively). In subplots 8B and 8C, Grip Aperture Plateaus are 

highlighted, and these plateaus are summed. Notably, only a 0.86 s plateau was identified in the  
 

 
Figure 7-9. (A) Median Grip Aperture Plateaus in RCRT Down Reach-Grasp movement segments, comparing 

RCNN-Class versus LDA-Baseline and RCNN-Reg versus LDA-Baseline, with interquartile ranges indicated with 

boxes and significant differences indicated with asterisks (*** indicates p < 0.05); (B) grip aperture in Movement 3 

of one trial under RCNN-Reg Control from a participant; and (C) grip aperture in Movement 3 of the one trial under 

LDA-Baseline Control from the same participant as panel B. The Grip Aperture Plateaus are identified with red 

shading. 
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RCNN-Reg example (Figure 7-9B) whereas a 2.61 s plateau was identified in the LDA-Baseline 

example (Figure 7-9C). Evidently more natural movements resulted under RCNN-Reg control. 

7.3.2. Metrics-Substantiated Evidence of Limb Position Effect 

LDA-Baseline—Under LDA-Baseline control, a total of 13 instances of the limb position effect 

were identified in Pasta and RCRT Down tasks’ Control Characteristics metrics. During Pasta 

execution, the following instances confirmed the limb position effect problem: in 1 of 4 metrics in 

Reach, 1 of 1 metric in Reach-Grasp, 4 of 4 metrics in Grasp, 2 of 4 metrics in Transport, and 2 of 

3 metrics in Release. During RCRT Down execution, 3 of 4 metrics in Grasp showed evidence of 

the limb position effect problem (one of which is illustrated in Figure 7-6A). Notably, the limb 

position effect was not identified in RCRT Up under LDA-Baseline control.  

RCNN-based Controllers—The limb position effect was never identified under RCNN-Class or 

RCNN-Reg control, suggesting that both such controllers might have mitigated the limb position 

effect. 

7.3.3. RCNN-Reg Simultaneous and Proportional Velocity Control Capabilities 

Participants in this study took advantage of the simultaneous and proportional velocity control 

capabilities offered by RCNN-Reg. Figure 7-10A illustrates simultaneous control use in Reach, 

Grasp, and Release phases of RCNN-Reg in RCRT Up and Down tasks. Figure 7-10B illustrates 

proportional velocity control use of grip aperture and wrist rotation using RCNN-Reg in all three 

tasks.  

7.4. Discussion 

In this work, RCNN control using either classification (RCNN-Class) or regression (RCNN-Reg), 

versus LDA-Baseline classification control were compared. Analysis of comprehensive 

myoelectric control evaluation metrics [99] yielded rich, limb-position-related outcomes. What 

follows is a discussion about such outcomes, with a focus on understanding control challenges 

experienced during participants’ execution of the Pasta Box Task (Pasta) and the Refined 

Clothespin Relocation Test (RCRT Up and RCRT Down). 
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Figure 7-10. (A) The median percentage of each Reach, Grasp, and Release phase of RCRT Up and Down where grip 

aperture and wrist rotation were simultaneously controlled using RCNN-Reg, and (B) the median percentage of each 

trial where grip aperture and wrist rotation were each controlled at a velocity between no movement and maximum 

velocity.  

The first major finding from this comparative controller research study is that RCNN-Reg offers 

more accurate and position-aware prosthesis control versus LDA-Baseline. This assertion is 

evidenced by four key findings: 

 RCNN-Reg performed significantly better than LDA-Baseline in 38 control evaluation 

metrics. 

 Fifteen of these 38 metrics were in the specific phases where instances of the limb position 

effect occurred (that is, in all phases of the Pasta functional task, and Grasp phases of RCRT 

Down task). As such, RCNN-Reg successfully mitigated these instances of the limb 

position effect. 

 Furthermore, RCNN-Reg performed significantly better than LDA-Baseline in every phase 

of each functional task performed in this study. Given this, RCNN-Reg can be said to 

provide accurate control under a variety of limb positions. 

 Finally, RCNN-Reg performed significantly better than LDA-Baseline in 12 Pasta task 

metrics. Recall that this task requires limb positions not included in RCNN-Reg model’s 

training routine (that is, cross-body and away-from-body movements). This suggests that 
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RCNN-Reg can maintain its predictive movement accuracy in limb positions for which it 

is not specifically trained. 

A second major takeaway from this study is that RCNN-Reg likely offers more accurate control 

as compared to RCNN-Class. Although RCNN-Reg and RCNN-Class were not directly compared 

in this work to respect participants’ time, their respective number of significant improvements over 

LDA-Baseline can be compared to offer evidence of this conclusion: 

 In the Pasta task, RCNN-Class was significantly better than LDA-Baseline in 1 metric and 

RCNN-Reg was significantly better than LDA-Baseline in 12 metrics  RCNN-Reg 

yielded 11 more control improvement instances. 

 In RCRT Up, RCNN-Class was never significantly better than LDA-Baseline, whereas 

RCNN-Reg was significantly better than LDA-Baseline in 14 metrics  RCNN-Reg 

yielded 14 more control improvement instances. 

 In RCRT Down, RCNN-Class was significantly better than LDA-Baseline in 10 metrics 

and RCNN-Reg was significantly better than LDA-Baseline in 12 metrics  RCNN-Reg 

yielded 2 more control improvement instances. 

A third major finding from this work is that RCNN-Reg offers more natural functionality versus 

LDA-Baseline or even RCNN-Class. RCNN-Reg affords users the ability to control multiple 

device movements at a given time (such as those of the wrist and hand), and to control device 

movement velocity. It is recognized in the literature that regression-based myoelectric control is 

natural and flexible—device functions can be accessed in combination, with their velocities being 

independently controlled [80]. This work examined whether participants took advantage of these 

control capabilities, as offered by RCNN-Reg. The following two observations were uncovered: 

 Participants did take advantage of simultaneous control. Under RCNN-Reg control, 

simultaneous movements during task execution were indeed evidenced (see Figure 7-10A). 

 Participants also took advantage of movement velocity control capabilities. Under RCNN-

Reg control, mid-velocity hand and wrist movements were evidenced during task execution 

(that is, velocities ranging between no movement and maximum velocity were found; see 

Figure 7-10B). 
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Despite the improved control outcome takeaways, particularly as offered by RCNN-Reg, no 

significant differences between controllers under investigation were identified in the NASA-TLX 

and usability surveys. Interestingly, though not statistically significant, participants did rate the 

mental demand required of RCNN-Reg to be high (see Appendix D). Mental demand had the 

largest difference between RCNN-Reg and LDA-Baseline scores, in comparison to all survey 

dimensions. This outcome aligns with the notion that progressive learning needs to be allocated 

for complicated hand-tasks, given that such tasks are mentally demanding [80]. As RCNN-Reg 

control offers both simultaneous and velocity control capabilities, it is reasonable to assume that 

introducing a revised and perhaps longer, progressive learning approach during controller practice 

sessions will improve users’ appreciation of these improvements. Our earlier research, which 

employed the same surveys, offered other important considerations—that users’ perceptions of 

poor or diminished control between sessions might change over time, and that reminders of earlier 

session control perceptions would have helped to establish first-session anchor scores [151]. This 

work concurs with these considerations and recommends that the Prosthesis Task Load Index 

(PROS-TLX) [152] be considered in future comparative prosthesis control research. 

It is understood in the literature that two key factors influence user-assessments of upper limb 

prosthetic devices (hands in particular)—intuitive control experiences and minimal burden placed 

on the user (including training burden) [156], [157]. This study’s RCNN-Reg offered control 

improvements over RCNN-Class and LDA-Baseline but required longer training routines (training 

routine durations of 300, 200, and 50 seconds, respectively). It is worth noting that improved 

control should not come at the cost of a burdensome training routine, as the latter will overshadow 

users’ perceptions of control benefits [158]. The longer training routine required of RCNN-Reg, 

therefore, must not be ignored despite the users’ benefits of simultaneous control over multiple 

degrees of freedom and movement velocity control. It is recommended that routines based on 

continuous hand movements be streamlined, to make model training less of a burden for users. In 

addition, transfer learning methods should be explored as a means of minimizing training burden 

introduced by RCNN-Reg [90]. 

This current study’s RCNN-Reg success is believed to be largely due to how the training routine 

was implemented (despite its length) and how the prediction smoothing was undertaken. 

Participants followed on-screen sinusoids during training, to ensure that they executed well-paced 
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continuous wrist and hand motions. This on-screen method kept them engaged and focused 

throughout all multi-limb-position training. Routine implementation methods are important, given 

that successfully training a control model in multiple limb positions is known to improve prosthesis 

control [15], [123], [159]. Along with use of an engaging multi-limb-position training method, 

prediction smoothing was rigorously undertaken in this study. It is recognized that smoothing a 

continuous model’s output, including that from RCNN-Reg, can improve model stability [160]. 

So together, the model training and prediction smoothing methods used in this work were key 

factors in RCNN-Reg’s performance success, its ability to mitigate the limb position effect, and 

its capacity to offer simultaneous wrist/hand movements with variable velocity.  

Future work should build upon the regression-based control successes uncovered in this study, 

including: introducing simultaneous wrist and hand movements to the model training routine; 

extending model training and testing to offer more degrees of freedom; averaging three or more 

predictions (rather than two, as used in this work) to potentially improve prediction smoothing; 

and investigating the window size and overlap used in data processing (given that RCNN-based 

models are not yet the norm in prosthesis control). Finally, to corroborate our finding that the limb 

position effect can indeed be mitigated, future control model training and testing should be 

conducted by persons with amputation.  

7.5. Conclusion 

This work contributes to upper limb myoelectric prosthesis research by offering a novel regression-

based controller that employs deep learning methods. The controller provides both simultaneous 

control of multiple device movements at a given time and control over device movement velocity, 

across numerous limb positions—capabilities much closer to the fluid movements of an intact 

wrist and hand. In this study, an RCNN classification controller and an RCNN regression 

controller were each compared to a commonly used LDA classification (baseline) alternative. Of 

these, the regression-based approach offered the most reliable and fluid prosthetic wrist/hand 

movements. Offering such position-aware control, however, required a training routine that was 

longer than that of baseline pattern recognition, and therefore could be considered burdensome to 

the user. Nevertheless, regression-based solutions should continue to be investigated in future 

RCNN control studies, as we expect newer models to yield similarly smooth and natural wrist and 

hand movements. We recommend that model architectures be reimagined, training routines be 
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altered to include simultaneous wrist and hand movements, and that transfer learning methods be 

applied to minimize training burden. Given that RCNN regression-based control considers the 

complex and dynamic process of a wrist and hand functioning in concert with varied velocities, 

we recognize this as a promising direction for myoelectric upper limb device control that satisfies 

user needs and wants. As such, next-step testing and validation of RCNN regression-based control 

should include persons with transradial amputation, to confirm the validity of our proposed 

controller’s benefits. Finally, as EMG-based controllers are not restricted to upper limb prosthesis 

applications, this research has far-reaching implications—towards use in rehabilitation 

exoskeletons and even EMG-activated video games. When the limb position effect is solved, 

acceptance of future device movement technologies by clinicians and users should become a 

reality. 
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Chapter 8. 

RCNN Regression Control: Tested by an 

Individual with Amputation 

Chapter 8 presents “Evidence that a deep learning regression-based controller mitigates the limb 

position effect for an individual with transradial amputation,” originally accepted for publication 

in the Proceedings of the Myoelectric Controls Symposium, in 2024 [161]. It presents a case study 

that furthers the work of Chapter 7. In this current chapter, the novel deep learning regression-

based controller presented in Chapter 7 is compared to a baseline classification controller 

alternative. Outcomes from the deep learning regression-based controller tested present an exciting 

new direction for upper limb control. The novel solution offers a participant with transradial 

amputation smooth and simultaneous prosthesis movements with varied velocities. An illustration 

of how the information presented in Chapter 8 contributes to the overall work in this thesis is 

presented in Figure 8-1. 

 

 

Figure 8-1. Research question addressed by Chapter 8. 
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Abstract 

Myoelectric upper limb prostheses provide wrist and hand movements to users yet remain 

somewhat unreliable and challenging to operate in high and cross-body limb positions. Hand and 

wrist movements are typically controlled sequentially and at a pre-set velocity. We have made 

significant inroads towards developing a novel controller that is reliable in multiple limb positions 

and offers fluid movements. Our recent work unveiled a promising deep learning regression-based 

myoelectric control solution. Herein we present results from our current study that tested device 

control using our solution versus a baseline (classification) alternative. A myoelectric prosthesis 

user with transradial amputation donned an experimental prosthesis and performed two functional 

tasks under each control option. The user exhibited superior device controllability across multiple 

limb positions using our regression-based solution. This work contributes evidence that a deep 

learning regression control approach can elicit accurate, simultaneous, and proportional device 

movements, while mitigating the limb position effect for a transradial prosthesis user.  

8.1. Introduction 

A myoelectric prosthesis connects to a user’s residual limb via a socket and is normally controlled 

using electromyography (EMG) signals. EMG signals are generated by residual muscle 

contractions, detected by surface electrodes within the socket, and transmitted to the device’s 

onboard controller. Pattern recognition-based controllers decode these signals to predict the user’s 

intended movements and send corresponding commands to the device’s motors. The most 

advanced controllers generally use a classification algorithm (model), which predicts one device 

action (or class) at a time [6]. The resulting prosthetic limb movements are somewhat robotic and 

are delivered at a pre-set velocity. That is, the wrist and hand cannot inherently move together 

simultaneously or with varied velocity. 

Typically, individuals with transradial amputation are capable of reliably performing a limited 

number of residual limb muscle contractions [6]. These distinct contractions are selected to control 

predetermined device grasp patterns (such as hand open or close) and wrist rotation [6]. To 

initialize their pattern recognition-based control model for daily use, they must first perform a pre-

determined series of muscle contractions, known as a training routine. Through training, patterns 

observed in captured EMG signals are associated with corresponding device actions [7]. A 
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prevalent control problem, known as the limb position effect, results when users attempt to use 

their devices in untrained limb positions [14]. Oftentimes, users struggle to regain control in 

response to this problem. To mitigate the effect, a control model must be trained in multiple limb 

positions [14]. 

Pattern recognition-based control models can be developed using a recurrent convolutional neural 

network (RCNN) approach. RCNNs are a type of network architecture for deep learning, capable 

of learning directly from and handling large amounts of multimodal data [27]. These capabilities 

lend themselves to the capture of limb position data for improved device control. In our prior work, 

we merged EMG data with accelerometer data from an inertial measurement unit (EMG+IMU) 

using an RCNN [10], [154]. We also tested an EMG+IMU regression-based control model 

(RCNN-Reg) [154] and found that regression models can yield smooth device movements, given 

that they can predict multiple movements at once, each proportional to muscle contraction intensity 

and across multiple limb positions [10]. In that study, we compared RCNN-Reg to a classification-

based alternative that is commonly used in control comparisons (linear discriminant analysis, 

LDA-Baseline) [154]. Model testing involved participants without amputation (with a simulated 

prosthesis donned, a reasonable proxy for a person with amputation [77]) who performed two 

functional tasks—the Refined Clothespin Relocation Test (RCRT) [96] and the Pasta Box Task 

[95]. Our work 1) found that RCNN-Reg mitigated the limb position effect; 2) substantiated that 

participants could perform simultaneous wrist rotation and hand open/closed movements at varied 

velocities, as offered by RCNN-Reg; and 3) reported that RCNN-Reg yielded better predictive 

accuracy than LDA-Baseline [10], [99]. 

This current investigation extends our earlier RCNN-Reg control model work by testing its 

translatability to those with upper limb loss. To accomplish this, one individual with transradial 

amputation donned an experimental myoelectric prosthesis that was controlled by RCNN-Reg in 

one session and then by LDA-Baseline in a separate session. All experimentation methods from 

our earlier research study ([154]) were followed. We were excited to find that RCNN-Reg indeed 

provided accurate, simultaneous, and proportional device movements for an individual with 

amputation, while mitigating the limb position effect. As such, RCNN-Reg might well offer a 

valuable control model alternative to traditional classification-based approaches for consideration 

in future myoelectric control research. 
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8.2. Methods 

One participant with amputation was recruited for this study. She was female, with an age of 50 

years, a height of 167 cm, and corrected-to-normal vision. She was right-handed prior to 

amputation. Two years prior to this study, she had a right-side transradial amputation. Her residual 

limb was 18 cm long with a circumference of 21 cm at the widest point. The participant typically 

used a myoelectric hand. She also had some at-home commercial pattern recognition-based 

prosthesis control experience with two degrees of freedom (wrist rotation and hand) at an estimated 

usage of 6 hours/day over 3 weeks. She provided written informed consent, as approved by the 

University of Alberta Health Research Ethics Board (Pro00086557). The participant trained and 

tested RCNN-Reg in her first session and LDA-Baseline in her second session, with 28 days 

between the two sessions. An overview of our equipment, experimentation methods, and control 

analysis metrics is illustrated in Figure 8-2. Full protocol details can be found in our earlier works 

[99], [154]. 
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Figure 8-2. Equipment, experimentation, and analysis metrics in order of use: A) donned Myo armband, B) donned 

prosthesis [92], C) training routine employed for RCNN-Reg and LDA-Baseline models, including overall training 

durations [154], D) control model architecture details for RCNN-Reg and LDA-Baseline [154], E) functional tasks 

performed to test control—the Pasta Box Task [95] and the Refined Clothespin Relocation Test (RCRT) [96], split 

into RCRT Up and RCRT Down, and F) select metrics calculated for control analysis from our suite of metrics for 

comparative myoelectric prosthesis control [99]. 

8.3. Results 

RCNN-Reg yielded comparatively better myoelectric prosthesis control than LDA-Baseline. 

RCNN-Reg’s improved control, barring a few exceptions, was evidenced by: 1) lower trial 

durations; 2) less total grip aperture and wrist rotation movement (indicators of corrections in mm 

and degrees, respectively); 3) simultaneous control of the prosthetic hand and wrist; along with 4) 
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fewer grip aperture and wrist rotation adjustments (number of corrections). Results are illustrated 

in Figure 8-3A–F, respectively, with Figure 8-3A–C,2E–F showing exceptions where some grip 

and wrist rotation corrections were made by the participant. It was also apparent that the participant 

took advantage of RCNN-Reg’s proportional control capabilities during task execution. That is, 

her hand and wrist movements occurred at a less-than-maximal velocity 100% of the time.  

In our previous work [154], under LDA-Baseline control, the limb position effect was identified a 

total of 13 times (as determined through analysis of median and interquartile range trends [99]). 

Ten instances were evidenced during the Pasta Box Task (in 1 reach, 1 reach-grasp, 4 grasp, 2 

transport, and 2 release metrics) and 3 instances during RCRT Down (all in grasp metrics). 

Conversely, in this present work, under RCNN-Reg control, the limb position effect was identified 

a total of 3 times, all during the Pasta Box Task (determined using our earlier work’s analysis 

methods [99]). Such instances were evidenced in 1 reach metric and 2 transport metrics. 

 

Figure 8-3. Controller comparison results (abbreviated as RCNN/LDA), including median A) trial duration, B) total 

grip aperture movement, C) total wrist rotation movement, D) simultaneous hand-wrist control, E) number of grip 

aperture adjustments, and F) number of wrist rotation adjustments. Medians are presented for each task, and for each 

phase (Reach in red, Grasp in orange, Transport in blue, and Release in green) where applicable. Interquartile ranges 

across trials are indicated with coloured error bars where applicable. Note that simultaneous hand-wrist control is only 

illustrated for RCRT Up/Down, as wrist rotation is not required in the Pasta Box Task (Pasta). 
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8.4. Discussion & Future Work 

Pasta Box Task Control Successes and Challenges: Although RCNN-Reg control was generally 

superior to LDA-Baseline, our participant exhibited some unexpected control challenges in the 

transport phases of the Pasta Box Task (Figure 8-3B,E’s abovementioned control exceptions)—

evidenced by increased total grip aperture movement and grip aperture adjustments. The Pasta Box 

Task requires a participant to transport a box in both cross-body and away-from-body limb 

positions (the specific instances where the limb position effect under RCNN-Reg control 

occurred). Notably, RCNN-Reg’s training routine did not include these specific limb positions. 

Given these circumstances, the addition of cross-body and away-from-body limb positions to 

RCNN-Reg’s training routine is advised. Future work should investigate which training positions 

improve device control. 

RCRT Up and Down Control Successes and Challenges: When testing RCNN-Reg, our 

participant did not experience the limb position effect during execution of RCRT Up and Down. 

The effect was likely mitigated because RCNN-Reg’s control model was trained in the same high 

limb positions required of these tasks. Despite this, the participant exhibited control challenges in 

transport phases of RCRT Up and Down (Figure 8-3B,C,E,F’s abovementioned control 

exceptions)—evidenced by increased total grip aperture and wrist rotation movement, along with 

more grip aperture and wrist rotation adjustments, versus under LDA-Baseline control. These 

outcomes indicated her need to perform movement corrections to maintain control. RCRT’s 

transport phases require a participant to rotate their wrist while not dropping the grasped 

clothespin, an inherently complicated movement. Although our participant exhibited challenges, 

she did make use of the simultaneous control capabilities offered by RCNN-Reg in transport 

phases (Figure 8-3D). As progressive learning needs to be allocated for complicated hand-tasks 

[80], we believe she could master simultaneous control and exhibit fewer adjustments in RCRT’s 

transport phases if afforded more controller-use practice.  

Training Routine Implications: RCNN-Reg’s 5-minute training routine might prove to be 

burdensome for a user if repeated multiple times throughout the day (for re-calibration purposes). 

Future work should be undertaken to shorten the training routine duration. For instance, reducing 
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the number of oscillations performed might be feasible. The incorporation of dynamic limb 

positions might also reduce routine duration and provide richer training data [66].  

Future Experimentation: We recognize that our work did not exhaustively investigate RCNN-

Reg. To corroborate our findings, the experimentation must be repeated by more participants with 

transradial amputation. 

8.5. Conclusion 

Our case study contributes, for the first time, evidence that an RCNN regression-based controller 

offers a user with transradial amputation control of their prosthetic wrist and hand simultaneously 

across multiple limb positions, using varied velocities. RCNN-Reg successfully mitigated the limb 

position effect during device use, given that our participant was able to retain control of their 

myoelectric prosthesis throughout numerous re-orientations of their limb in space during different 

tasks. Although regression-based control solutions have not garnered as much research attention 

as classification-based counterparts, the merits of RCNN-Reg, as presented in this work, suggest 

that it be strongly considered as a future prosthesis controller. 
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Chapter 9. 

Conclusions and Future Directions 

To the best of our knowledge, this thesis offers the first myoelectric prosthesis controller that 

successfully mitigates the limb position effect and provides users with simultaneous control over 

hand and wrist movements at varied velocities. Widespread acceptance of such methods for pattern 

recognition-based control of upper limb prostheses should ideally become a reality. Until this 

occurs, it is expected that state-of-the-art devices will remain challenging for users to control and 

will offer unnatural movement qualities. 

Collectively, the work presented in this thesis forms a foundation that will see translation of a 

novel deep learning regression-based myoelectric control solution beyond the laboratory, for use 

in advanced prosthesis controllers. All such work focused on methods to mitigate the limb position 

effect. Firstly, the control solution presented is based on the development of a position-aware 

RCNN regression-based model. Secondly, its associated training routine teaches the model about 

dynamic wrist and hand movements in varied limb positions. Thirdly, methods to reduce 

training burden were explored, with actionable approaches identified. Finally, the metrics 

needed to assess control across multiple limb positions were established so that future work 

undertaken to solve the limb position effect problem can be substantiated. Although regression 

controllers have not garnered as much research attention as classification counterparts, the merits 

of the RCNN regression-based control solution presented in this thesis suggest that it be strongly 

considered for future myoelectric prosthesis control. 

Figure 9-1 identifies future work to build upon the early RCNN regression-based control solution 

presented in this thesis. Here, three gap statements stem from the outcomes of Chapter 8, 

suggesting that: (1) RCNN regression-based control be assessed using a substantial number of 

individuals with amputation to yield statistically robust results—that is, valid results across varied 

conditions; (2) the model’s training routine be revised to reduce user training burden (possibly by 

implementing transfer learning techniques as explored in Chapter 5 and Chapter 6 of this thesis, 
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or a composite model method detailed in Chapter 4), and (3) the model’s training routine be 

augmented with new cross-body and away-from-body limb positions to further mitigate the limb 

position effect. In the end, a refined and rigorously tested RCNN regression-based control solution 

is expected to improve overall myoelectric prosthesis user satisfaction, and thereby decrease 

device abandonment.  

 

 
Figure 9-1. Summary of thesis chapters, with this work’s main objective and its outcome in yellow, research questions 

addressed in blue, chapter titles with associated publications in green, and intermittent research gaps in orange. Finally, 

gaps for future work are presented, each resulting from the work of Chapter 8. 
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Not only will the work undertaken in this thesis advance the myoelectric control field, but a 

final/refined RCNN regression-based model solution is expected to be translatable to several 

wearable rehabilitation technologies. For instance, its method to combine EMG and IMU data 

could be applied to other rehabilitation technologies that would similarly benefit from richer 

movement datasets. Examples include intelligent lower prosthetic limbs, exoskeletons that aid in 

spinal cord injury rehabilitation, and exoskeletons that augment muscle capacity to reduce user 

discomfort and fatigue. The same data combination methods might also be applicable to the latest 

in human movement wearables, including those for sport biomechanics outcome predictions and 

those used to learn and predict player movements to make video game content more dynamic and 

compelling. In these applications, optimal movement patterns might be more easily identified 

and/or predicted when using combined EMG and IMU data and deep neural networks. Finally, 

given that the number of people living with limb loss of any kind is expected to increase [162], 

this work’s novel deep learning regression-based approach for myoelectric prosthesis control has 

come at a most opportune time—providing evidence for a new approach towards solving a user’s 

need for smooth, reliable, and robust device operation. 
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Appendix A.  

Offline Analysis Prediction Accuracies 

This appendix contains the mean limb position classification accuracies (Table A-1), mean 

movement classification accuracies (Table A-2), and mean movement regression R2 values (Table 

A-3) resulting from this study. 

 

 

 

 

Table A-1. Mean limb position classification accuracies (across participants) using RCNN classification and LDA 

classification. Accuracies are provided for each combination of data streams: all EMG and IMU data streams from 

both Myo armbands (All Data Streams); all EMG data streams from both Myo armbands (EMG); all IMU data streams 

from both Myo armbands (IMU); and only accelerometer data streams from both Myo armbands (Accelerometer). 

Data Streams RCNN Accuracy (%) LDA Accuracy (%) 
All Data Streams 97.48 86.07 

EMG 85.83 79.59 

IMU 97.60 88.04 

Accelerometer 99.01 98.66 
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Table A-2. Mean movement classification accuracies (across participants) using RCNN classification and LDA 

classification, under each specification: the baseline classifier (BC), specification 1 (S1), specification 2 (S2), and 

specification 3 (S3). Accuracies are provided for each combination of data streams: data from only the forearm Myo 

armband; data from both Myo armbands; and EMG data from the forearm and accelerometer data from both Myo 

armbands (when applicable). 

Classifier 
Specification Data Streams RCNN Accuracy (%) LDA Accuracy (%) 

BC 
Forearm EMG  85.64 85.14 

Both EMG  76.52 77.34 

S1 
Forearm EMG  94.11 93.09 

Both EMG  95.76 93.86 

S2 

Forearm EMG + Forearm Accelerometer 98.46 97.30 

Both EMG + Both Accelerometer 97.99 97.53 

Forearm EMG + Both Accelerometer 99.00 97.67 

S3 

Forearm EMG + Forearm Accelerometer 95.09 95.13 

Both EMG + Both Accelerometer 95.33 94.77 

Forearm EMG + Both Accelerometer 95.53 94.93 
 

Table A-3. Mean movement regression R2 values (across participants) using the RCNN flexion/extension regression, 

SVR flexion/extension regression, RCNN pronation/supination regression, and SVR pronation/supination regression, 

under each specification: the baseline regressor (BR), specification 1 (S1), specification 2 (S2), and specification 3 

(S3). Accuracies are provided for each combination of data streams: data from only the forearm Myo armband; data 

from both Myo armbands; and EMG data from the forearm and accelerometer data from both Myo armbands (when 

applicable). 

Regressor 
Specification Data Streams 

Flexion/Extension 
R2 (%) 

Pronation/Supination 
R2 (%) 

RCNN SVR RCNN SVR 

BR 
Forearm EMG  77.85 76.54 38.98 20.28 

Both EMG  71.84 77.02 36.89 25.30 

S1 
Forearm EMG  84.73 76.18 63.77 21.95 

Both EMG  85.58 77.16 69.13 35.08 

S2 

Forearm EMG + Forearm Accelerometer 84.93 77.26 84.97 60.73 

Both EMG + Both Accelerometer 84.04 77.74 86.27 65.11 

Forearm EMG + Both Accelerometer 84.73 77.45 85.72 62.41 

S3 

Forearm EMG + Forearm Accelerometer 84.34 78.43 59.32 33.41 

Both EMG + Both Accelerometer 84.78 79.34 66.65 47.51 

Forearm EMG + Both Accelerometer 84.39 78.58 61.40 34.72 
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Appendix B.  

Offline Analysis Training and Prediction 

Times 

This appendix contains the mean limb position classification training and prediction times (Table 

B-1), movement classification training and prediction times (Table B-2), and movement regression 

training and prediction times (Table B-3) resulting from this study. 

 

 

 

 

Table B-1. Mean limb position classification training and prediction times (across participants) using RCNN 

classification and LDA classification. Times are provided for each combination of data streams: all EMG and IMU 

data streams from both Myo armbands (All Data Streams); all EMG data streams from both Myo armbands (EMG); 

all IMU data streams from both Myo armbands (IMU); and only accelerometer data streams from both Myo armbands 

(Accelerometer). 

Data Streams RCNN Training 
Time (min) 

RCNN Prediction 
Time (ms) 

LDA Training 
Time (ms) 

LDA Prediction 
Time (ms) 

All Data Streams 2.52 0.12 89.19 0.02 

EMG 1.40 0.11 76.57 0.01 

IMU 1.54 0.11 48.73 0.01 

Accelerometer 1.68 0.10 38.48 0.01 
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Table B-2. Mean movement classification training and prediction times (across participants) using RCNN 

classification and LDA classification, under each specification: the baseline classifier (BC), specification 1 (S1), 

specification 2 (S2), and specification 3 (S3). Times are provided for each combination of data streams: data from 

only the forearm Myo armband; data from both Myo armbands; and EMG data from the forearm and accelerometer 

data from both Myo armbands (when applicable). 

Classifier 
Specification Data Streams 

RCNN 
Training 

Time (min) 

RCNN 
Prediction 
Time (ms) 

LDA 
Training 

Time (ms) 

LDA 
Prediction 
Time (ms) 

BC 
Forearm EMG  1.97 0.10 18.61 0.002 

Both EMG  1.67 0.11 20.15 0.003 

S1 
Forearm EMG  2.02 0.10 23.08 0.002 

Both EMG  1.88 0.11 28.41 0.003 

S2 

Forearm EMG + Forearm Accelerometer 1.66 0.10 24.03 0.002 

Both EMG + Both Accelerometer 1.98 0.11 30.28 0.004 

Forearm EMG + Both Accelerometer 1.95 0.11 24.54 0.002 

S3 

Forearm EMG + Forearm Accelerometer 9.07 5.24 81.29 2.07 

Both EMG + Both Accelerometer 8.98 5.29 88.52 2.18 

Forearm EMG + Both Accelerometer 9.79 5.26 81.53 2.08 
 

Table B-3. Mean movement regression training and prediction times (across participants) using RCNN regression 

and SVR regression, under each specification: the baseline regressor (BR), specification 1 (S1), specification 2 (S2), 

and specification 3 (S3). Times are provided for each combination of data streams: data from only the forearm Myo 

armband; data from both Myo armbands; and EMG data from the forearm and accelerometer data from both Myo 

armbands (when applicable). 

Regressor 
Specification Data Streams 

RCNN 
Training 

Time (min) 

RCNN 
Prediction 
Time (ms) 

SVR 
Training 
Time (s) 

SVR 
Prediction 
Time (ms) 

BR 
Forearm EMG  0.48 4.43 2.41 0.56 

Both EMG  0.38 4.45 1.76 0.77 

S1 
Forearm EMG  0.94 4.42 26.38 1.32 

Both EMG  0.86 4.45 16.88 2.07 

S2 

Forearm EMG + Forearm Accelerometer 0.69 4.43 21.59 1.36 

Both EMG + Both Accelerometer 0.76 4.47 18.15 2.22 

Forearm EMG + Both Accelerometer 0.77 4.44 19.63 1.37 

S3 

Forearm EMG + Forearm Accelerometer 2.49 5.04 9.24 1.70 

Both EMG + Both Accelerometer 2.87 5.06 6.50 1.92 

Forearm EMG + Both Accelerometer 3.19 5.03 9.24 1.71 
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Appendix C.  

Table of Metrics Examples 

This table contains figures that exemplify “good” and “poor” results for selected metrics. For each 

metric presented, a description of the example figure precedes that associated good/poor graphs. 

 Poor Result Example Good Result Example 
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The black lines illustrate a given participant's hand movement paths throughout the movement 3 Reach-Grasp movement 
segments of Pasta in each trial. The blue shaded area illustrates the standard deviations at each sampled point. Both 
figures were generated using data from the same participant, with the poor result example illustrating a trial in which 
they were using the LDA-Baseline and the good result example illustrating a trial in which they were using the RCNN-
TL. The hand trajectory variability calculated in these examples are indicated in each figure. 

 
The poor result example illustrates a large standard deviation, resulting in a 

large hand trajectory variability (136.16 mm). 

 
The good result example illustrates a smaller standard deviation, resulting in a 

smaller hand trajectory variability (54.17 mm). 
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t The blue line illustrates the grip aperture throughout a movement 3 Grasp phase of Pasta. Both figures were generated 
using data from the same participant, with the poor result example illustrating a trial in which they were using the LDA-
Baseline and the good result example illustrating a trial in which they were using the RCNN-TL. The total grip aperture 
movement are presented in each figure. 
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The poor result example illustrates hand openings throughout the grasp phase, 

resulting in a large total grip aperture movement (201.75 mm). 
 

 
The good result example illustrates a grip aperture movement with less 

fluctuation. This resulted in a smaller total grip aperture movement (42.97 
mm). 

 Poor Result Example Good Result Example 
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The blue line illustrates the filtered grip aperture throughout a movement 3 Grasp phase of Pasta. The dashed vertical 
lines indicate grip aperture adjustments that were detected. Both figures were generated using data from the same 
participant, with the poor result example illustrating a trial in which they were using the LDA-Baseline and the good 
result example illustrating a trial in which they were using the RCNN-TL. The number of grip aperture adjustments are 
presented in each figure. 

 
The poor result example identifies several adjustments 

(73). 

 
The good result example identifies only 1 adjustment, at 

which the hand first started to close. 
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The blue line illustrates the grip aperture throughout a movement 3 Reach-Grasp movement segment of Pasta. The 
shaded area indicates the portions of the movement segment in which the grip aperture plateau requirements were met. 
Both figures were generated using data from the same participant, with the poor result example illustrating a trial in 
which they were using the LDA-Baseline and the good result example illustrating a trial in which they were using the 
RCNN-TL. Note that the same x axis scale was used in both figures to further illustrate the grip aperture plateau. The 
grip aperture plateau time is presented in each figure. 
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The poor result example identifies a long grip aperture 

plateau time (11.28 s). 

 
The good result example identifies a short grip aperture 

plateau time (0.97 s). 
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 Poor Result Example Good Result Example 
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The solid blue line illustrates the filtered absolute wrist rotation angular velocity throughout a movement 3 Reach phase 
of RCRT down, and the solid magenta line illustrates the filtered absolute shoulder flexion/extension angular velocity 
throughout that same phase. The dashed horizontal blue and magenta lines indicate the thresholds corresponding to these 
angular velocities. Finally, the shaded areas indicate the portions of the phase in which both angular velocities were 
above their respective thresholds. The figures were generated using data from the same participant, with the poor result 
example illustrating a trial in which they were using the LDA-Baseline and the good result example illustrating a trial in 
which they were using the RCNN-TL. The wrist-shoulder simultaneous movements are indicated in each figure. 

 
The poor result example identifies wrist rotation control when the shoulder is 

usually not moving, resulting in a small wrist-shoulder simultaneous 
movement (5.95 %). 

 
The good result example identifies wrist rotation control during shoulder 
movements, resulting in a large wrist-shoulder simultaneous movement 

(80.95%). 
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The 8 coloured lines illustrate the 8 EMG signals throughout a movement 3 Grasp phase of Pasta. The black line 
illustrates the Grip Aperture throughout that same phase, to aid in the understanding of the EMG signals. Both figures 
were generated using data from the same participant, with the poor result example illustrating a trial in which they were 
using the LDA-Baseline and the good result example illustrating a trial in which they were using the RCNN-TL. Note 
that the same x axis scale was used in both figures to further illustrate the differences in time required to close the hand. 
The total muscle activity is indicated in each figure. 

 
The poor result example identifies difficulties in closing the hand, resulting in 
a long phase and strong EMG signals. So, a large total muscle activity resulted 

(3006.32). 

 
The good result example identifies more ease in closing the hand, resulting in 
a shorter phase and weaker EMG signals. So, a smaller total muscle activity 

resulted (37.83). 
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Appendix D.  

Detailed Controller Comparison Results 

This appendix outlines results for both controller comparisons, all three tasks, and in all three 

groups of metrics (Task Performance, Control Characteristics, and User Experience). The two 

controller comparisons are as follows:  

- The recurrent convolutional neural network classification controller (RCNN-Class) versus 

the linear discriminant analysis baseline classification control (LDA-Baseline) 

- The recurrent convolutional neural network regression controller (RCNN-Reg) versus 

LDA-Baseline 

The controller comparison results are detailed in the three tables below—one table for each group 

of metrics. Each table displays the median within-participant differences between the controllers 

in question, calculated as RCNN-Class minus LDA-Baseline or RCNN-Reg minus LDA-Baseline. 

Interquartile ranges of these differences are presented in parentheses. Green cells indicate metrics 

in which RCNN-Class or RCNN-Reg performed significantly better than LDA-Baseline (p < 

0.05). Grey cells indicate instances where a metric was not relevant. Dark cell borders indicate 

metrics that displayed evidence of the limb position effect under LDA-Baseline control.  
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Table D-1. Task Performance Results 

Controller Comparison RCNN-Class versus LDA-Baseline RCNN-Reg versus LDA-Baseline 

Task Pasta RCRT  
Up 

RCRT  
Down Pasta RCRT  

Up 
RCRT 
Down 

Success Rate 0.00  
(15.00) 

5.00  
(10.00) 

5.00  
(25.00) 

0.00  
(17.50) 

0.00  
(17.50) 

0.00  
(7.50) 

Trial Duration (s) -0.93  
(10.60) 

1.04  
(10.18) 

-8.78  
(14.40) 

-3.03  
(11.73) 

-2.13  
(7.35) 

-5.43  
(16.64) 

Phase Duration 
(s) 

Reach 0.11  
(0.76) 

-0.03  
(1.23) 

0.07  
(0.74) 

-0.39  
(0.75) 

-0.63  
(0.90) 

-0.14  
(1.07) 

Grasp -0.14  
(1.01) 

-0.12  
(1.35) 

-0.44  
(1.35) 

-0.27  
(0.98) 

-0.37  
(1.02) 

-0.22  
(1.61) 

Transport -0.03  
(0.40) 

0.06  
(1.25) 

-0.10  
(1.40) 

-0.34  
(0.78) 

0.28  
(1.23) 

-0.65  
(1.43) 

Release -0.06  
(0.41) 

0.20  
(1.16) 

-0.29  
(2.47) 

-0.09  
(1.03) 

0.05  
(1.55) 

-0.10  
(1.07) 

Relative Phase 
Duration (%) 

Reach 0.99  
(6.25) 

-0.72  
(7.30) 

3.79  
(12.01) 

-1.07  
(6.39) 

-6.51  
(5.46) 

3.11  
(9.08) 

Grasp -2.35  
(8.65) 

-1.75  
(7.68) 

-0.37  
(12.47) 

-2.77  
(7.66) 

1.15  
(13.75) 

0.99  
(8.51) 

Transport 1.03  
(7.17) 

-0.47  
(8.35) 

2.07  
(6.47) 

3.20  
(6.39) 

4.15  
(5.45) 

-1.02  
(9.44) 

Release 0.91  
(4.95) 

0.28  
(5.32) 

-1.73  
(12.30) 

0.82  
(8.56) 

2.27  
(8.17) 

0.16  
(8.38) 

Peak Hand 
Velocity (mm/s) 

Reach-Grasp 32.71  
(163.96) 

-21.21  
(128.75) 

-35.18  
(252.92) 

99.01  
(335.58) 

111.25  
(152.43) 

49.38  
(216.65) 

Transport-
Release 

-20.45  
(110.08) 

-36.87  
(110.66) 

-39.07  
(129.35) 

117.66  
(269.54) 

4.13  
(141.52) 

46.48  
(102.92) 

Hand Distance 
Travelled (mm) 

Reach-Grasp -22.01  
(180.61) 

0.26  
(84.33) 

-16.69  
(63.15) 

-30.85  
(64.24) 

-27.17  
(50.41) 

-6.40  
(98.83) 

Transport-
Release 

-45.52  
(70.92) 

10.79  
(116.79) 

-31.29  
(151.25) 

-9.99  
(41.14) 

-1.14  
(52.19) 

-39.99  
(48.94) 

Hand Trajectory 
Variability 

(mm) 

Reach-Grasp -7.85  
(43.10) 

-3.02  
(10.15) 

-14.04  
(30.23) 

-21.77  
(30.55) 

-7.48  
(28.83) 

-8.01  
(25.14) 

Transport-
Release 

-17.11  
(53.22) 

1.98  
(22.24) 

-2.54  
(21.07) 

-6.06  
(47.51) 

-2.96  
(16.29) 

-8.54  
(15.74) 
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Table D-2. Control Characteristics Results 

Controller Comparison RCNN-Class versus LDA-Baseline RCNN-Reg versus LDA-Baseline 

Task Pasta RCRT  
Up 

RCRT  
Down Pasta RCRT  

Up 
RCRT  
Down 

Total Grip 
Aperture 

Movement 
(mm) 

Reach 7.21  
(13.11) 

-3.53  
(14.19) 

6.34  
(26.61) 

0.72  
(20.14) 

-8.07  
(24.73) 

-0.41  
(38.98) 

Grasp 5.30  
(13.85) 

-1.63  
(17.87) 

-5.61  
(22.50) 

-4.33  
(12.70) 

-9.38  
(25.33) 

1.40  
(22.87) 

Transport 1.45  
(9.79) 

2.06  
(10.31) 

0.82  
(12.50) 

-2.48  
(11.95) 

-2.47  
(12.35) 

-3.41  
(6.84) 

Release 2.16  
(11.57) 

3.62  
(14.30) 

-2.13  
(12.53) 

-9.41  
(31.62) 

-14.30  
(12.79) 

-21.29  
(8.90) 

Total Wrist 
Rotation 

Movement (deg) 

Reach -2.81  
(50.23) 

2.28  
(47.44) 

-2.36  
(35.41) 

-1.19  
(25.64) 

-30.25  
(31.33) 

9.48  
(32.87) 

Grasp -10.22  
(37.46) 

-6.53  
(32.63) 

-2.17  
(44.77) 

-20.21  
(37.39) 

2.05  
(40.14) 

-0.37  
(71.02) 

Transport -5.98  
(43.54) 

7.49  
(41.55) 

-8.63  
(31.44) 

-1.90  
(34.57) 

-2.78  
(30.73) 

-42.21  
(59.37) 

Release 2.97  
(25.76) 

6.67  
(36.36) 

-7.76  
(59.42) 

-5.45  
(25.19) 

-11.32  
(18.09) 

2.40  
(70.81) 

Number of Grip 
Aperture 

Adjustments 

Reach 0.42  
(1.03) 

0.04  
(1.22) 

0.06  
(2.00) 

0.30  
(2.16) 

-0.38  
(2.07) 

0.10  
(1.66) 

Grasp -0.60  
(3.03) 

-0.21  
(3.81) 

-0.58  
(2.41) 

-1.64  
(2.26) 

-2.21  
(2.12) 

-1.50  
(3.61) 

Transport 0.31  
(1.87) 

0.74  
(2.53) 

0.40  
(1.91) 

-0.61  
(1.54) 

-0.10  
(5.03) 

-1.11  
(1.37) 

Release 0.28  
(1.72) 

0.27  
(1.63) 

0.11  
(2.76) 

-1.50  
(1.98) 

-1.00  
(2.50) 

-0.70  
(1.96) 

Number of 
Wrist Rotation 
Adjustments 

Reach 0.19  
(2.79) 

-0.69  
(3.53) 

-0.63  
(3.34) 

-0.20  
(2.81) 

-2.12  
(2.25) 

-0.89  
(2.37) 

Grasp -2.19  
(5.51) 

-0.49  
(6.35) 

-1.02  
(4.85) 

-3.89  
(4.82) 

-3.50  
(3.56) 

-3.33  
(7.74) 

Transport 0.32  
(2.71) 

-0.10  
(3.46) 

-1.04  
(5.52) 

-0.90  
(5.88) 

-3.60  
(2.66) 

-4.72  
(3.43) 

Release 0.78  
(3.66) 

1.34  
(4.25) 

-1.07  
(7.70) 

-1.59  
(2.48) 

-3.00  
(2.71) 

-4.37  
(3.00) 

Grip Aperture 
Plateaus (s) Reach-Grasp -0.15  

(1.41) 
-0.13  
(1.20) 

-0.27  
(1.27) 

-0.51  
(1.15) 

-0.64  
(0.88) 

-0.69  
(1.32) 

Wrist-Shoulder 
Simultaneous 

Movements (%) 

Reach  0.04  
(0.17) 

-0.03  
(0.15) 

 0.03  
(0.42) 

0.30  
(0.23) 

Transport  -0.03  
(0.15) 

-0.01  
(0.11) 

 0.11  
(0.21) 

0.07  
(0.22) 

Total Muscle 
Activity 

Reach 5.04  
(129.59) 

-21.95  
(170.04) 

5.31  
(123.63) 

-38.75  
(104.36) 

-86.99  
(159.03) 

-13.78  
(181.33) 

Grasp -63.74  
(118.36) 

-56.77  
(95.99) 

-49.43  
(174.33) 

-35.67  
(132.40) 

-57.07  
(208.64) 

-21.62  
(150.71) 

Transport 2.20  
(83.41) 

22.61  
(125.16) 

-49.64  
(184.25) 

-13.10  
(127.34) 

66.54  
(241.71) 

-39.36  
(219.93) 

Release -9.37  
(73.74) 

-1.41  
(154.04) 

-67.13  
(342.45) 

-34.38  
(134.07) 

-15.10  
(187.42) 

0.36  
(185.66) 
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Table D-3. User Experience Results 

Controller Comparison 
RCNN-Class  

versus  
LDA-Baseline 

RCNN-Reg  
versus  

LDA-Baseline 

NASA-TLX 

Mental Demand -10.00 (22.50) 20.00 (22.50) 
Physical Demand -10.00 (27.50) 5.00 (23.75) 
Temporal Demand 5.00 (22.50) -10.00 (41.25) 

Performance -5.00 (12.50) -5.00 (13.75) 
Effort -2.50 (27.50) 0.00 (26.25) 

Frustration -5.00 (40.00) -5.00 (13.75) 

Usability 

Intuitiveness 0.40 (0.95) 0.00 (0.88) 
Effectiveness - RCRT -0.25 (0.85) 0.62 (1.15) 
Effectiveness - Pasta 0.40 (1.25) 0.62 (1.17) 

Reliability 0.00 (1.40) 0.38 (2.02) 
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