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ABSTRACT

An artificial neural network (ANN) model was developed and used to provide 

short-term predictions of wastewater inflow rate that enters the Gold Bar Wastewater 

Treatment Plant (GBWWTP), the largest plant in the Edmonton area (Alberta, Canada). 

The neural network model uses rainfall data, observed in the collection system 

discharging to the plant, as inputs. The model was trained and validated using rainfall- 

flow data for the summers (May to October) of 1995 to 1997. The model has proven to be 

adequate for predicting the wastewater inflow rate.

Studying how and to what extent effluent total suspended solids (TSS) and 

chemical oxygen demand (COD) are related to influent TSS, COD, and flow in a full- 

scale primary sedimentation process was done using ANN and Box-Jenkins transfer 

function models. The analysis was based on data collected hourly over two periods of 

sampling, each lasted one week, conducted during the summer of 1999 at the GBWWTP. 

With the Box-Jenkins approach, stochastic and transfer function components were 

combined to form a dynamic model and the relative importance of the two components 

were quantitatively assessed. The models were proven to be adequate for predicting the 

TSS and COD concentrations in the primary effluent. The combined stochastic-transfer 

function models gave overall better predictions than the ANN models that utilized the 

same data set, however, the ANN models had the advantage that they only use 

information about the input data and no previous values of the output variable are used as 

inputs.
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A hybrid model was used to predict the quality of effluent wastewater from a full- 

scale activated sludge process at the GBWWTP. Two components were included in the 

model: (1) a mechanistic component, which was a simplified version of the Activated 

Sludge Model No. 1 (ASM1) by the International Water Association (IWA); and (2) a 

black-box component that was an ANN in some cases while a time series component in 

other cases. The function of the black-box component was to predict the error between 

the actual experimental data and the predictions of the mechanistic model component. An 

extensive sampling campaign was conducted on one of the activated sludge tanks at the 

plant during the summer of 2000. By including the black-box component in the hybrid 

model the predictions were significantly improved.
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1

CHAPTER 1. GENERAL INTRODUCTION

1.1 BACKGROUND

Since wastewater treatment consists of a sequence of complex physical and 

biological processes, currently in most wastewater treatment plants (WWTPs), process 

control is generally accomplished through operator’s experience. Due to the lack of 

reliable instrumentation and the harsh environment in which these instrumentation are 

housed and operated, the introduction of advanced control technology in WWTPs has 

been slow. However, within the past few years, the topic of real time control (RTC) of 

WWTPs has quickly become a promising and active area of research and the 

improvement of the computer-based infrastructure for WWTPs has been identified as an 

important priority. Many factors have contributed to this surge of interest in the field of 

WWTP automation and control. Among those factors are: (1) increasingly stringent 

legislation concerning pollutant discharge; (2) increased concern about the effects that 

untreated or partially treated sewage has on surface water quality; (3) advances and 

investment in communication, computing, and sensor technology; and (4) the potential 

for long-term cost-effectiveness. Thus, providing autonomous, reliable and stable process 

control with highly efficient throughput at minimum cost has been recently identified as 

the long-term objective of wastewater treatment process operation (Katebi et al., 1999). 

Novotny et al. (1992) identified the alternative objectives, that have been presented in the 

literature, of RTC of urban sewerage systems to be: (1) minimization of discharges of 

untreated overflows; (2) stability of the treatment process and compliance with effluent 

standards; (3) minimization of total pollution load; and (4) avoidance or minimization of 

“bottleneck” situations, in which the hydraulic and/or mass loading capacity of a process 

unit within the system is exceeded.

In existing wastewater treatment plants, current control strategies are highly site- 

specific and depend on the level of technology available at the plant. Many older plants 

possess little or no monitoring equipment; such plants usually rely heavily on the 

experience of the operator. Control strategies are usually quite simple, e.g., maintaining a
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2

constant mixed liquor suspended solids (MLSS), sludge residence time (SRT), or food to 

microorganism ratio (F/M), based on simple analytical measurements or observations 

(Gall and Patry, 1989). Many newer plants are equipped with a wide range of monitoring 

equipment, including dissolved oxygen (DO), suspended solids (SS), pH, and/or a 

turbidity meter, for real time monitoring and control. In such plants, operational strategies 

are usually based on traditional control algorithms applied to local control situations, e.g., 

air flow control to maintain a preset dissolved oxygen level in the aeration basin. In the 

past few years more research has been directed towards the field of dynamic modelling of 

wastewater processes for the purpose of real-time control. By far, the activated sludge 

process has gained the most attention. Enhanced primary sedimentation with the 

supplemental addition of chemicals and anaerobic digestion are examples of other unit 

processes, on which few studies exist in the literature that describe using a RTC system to 

optimize the performance of the process (Wilcox et al., 1995; Premier et al., 1999).

The main components that compromise a RTC system are: (1) a measurement 

device (sensor) that is used to monitor the process, for example, a turbidity meter; (2) a 

corrective regulator (actuator) that manipulates the process, for example, gates, valves, 

and similar devices; (3) a controller that causes the regulator to bring the process back to 

its desirable value (set point); and (4) a communication system by which the measured 

data are carried from the sensor to the controller and the signals of the controller are 

carried to the regulator. The controller of a RTC system uses a dynamic model of some 

kind in order to relate the inputs that it receives from the measurement device (or 

devices) to an output that is sent to the regulator in order to correct the process.

The capacity to control successfully the dynamic behavior of a system depends 

essentially on three factors (Beck, 1989): (1) the ability to observe the state of the process 

and its response to various perturbations (i.e., monitoring); (2) the ability to relate inputs 

to outputs (causes to effects) through the interpretation of field observations; and (3) the 

capacity to act, i.e., to manipulate the controlled inputs in order to control undesirable 

effects or to bring about more desirable effects. In order to obtain an effective RTC of a 

WWTP, the following dynamic processes have to be modelled: (1) input to the system,
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3

i.e., rainfall-nmoff-sewer flow and quality models; and (2) system response to the input, 

i.e., models that have the ability to relate causes (inputs, controls) to effects (outputs, 

responses).

In order to relate the inputs of an unsteady state system to its output, dynamic 

modelling techniques have to be utilized. In the terminology of process control, building 

a dynamic model for a system is referred to by “system identification”. System 

identification can be said to be about the use of models for the interpretation of field data 

(Beck, 1989). The procedure of system identification comprises the following component 

parts: (1) experimental design; (2) selection of the type of model and the model structure; 

(3) estimating the values of the model parameters (i.e. calibrating the model); and (4) 

verification of the calibrated model. The concepts of model identifiability and 

experimental design are closely intertwined (Beck, 1989). An unidentifiable model 

structure can be made identifiable by an appropriate choice of the input and output 

vectors. Selecting the type of model used to represent a dynamic system for the purpose 

of real time process control is very important. A model for control purposes should not be 

too complex (Olsson, 1989). The many interacting species and substrates in a wastewater 

treatment plant, however, suggest extremely complex models. The resolution of the trade

off between relatively simple on-line models and complex-structured models seems to be 

the major problem in automation of biological treatment plants (Olsson, 1989).

1.2 DYNAMIC MODELS FOR WASTEWATER TREATMENT PROCESSES

Dynamic models of wastewater treatment processes can be divided into two main 

categories; linguistic and mathematical models. Linguistic models, such as expert 

systems, can relate cause to effect and they do not demand the construction of a 

mathematical model. Linguistic models are most suitable for describing phenomena in 

environmental systems that are very hard to represent by a mathematical model. The 

dynamics of algal populations, the clarification and thickening functions of the secondary 

clarifier, or the development of a bulking sludge are likely candidates (Beck, 1989). Most 

of the expert systems that have been developed in the field of wastewater treatment have
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been directed into diagnosis. This category of applications helps identify the causes of 

and remedies for malfunctions in pollution control facilities. Diagnostic expert systems 

have been developed for activated sludge wastewater treatment systems and anaerobic 

digesters (Rossman and Siller, 1987; Rossman, 1989; Bruce and Party, 1989).

Mathematical models can take many forms. At one extreme, some models are 

highly mechanistic. These are most useful to the researcher seeking to understand the 

events occurring in a system. Generally such models are deterministic and incorporate 

direct links between inputs and outputs through ordinary and partial differential equations 

that seek to mimic reactions mechanisms. Such models are large in scope and require a 

detailed knowledge of the system and the evaluation of a large number of parameters. An 

example is the Activated Sludge Model No. 2 (ASM2) developed in 1995 by the 

International Water Association (IWA; formerly the International Association on Water 

Quality IAWQ) task group which is an extension of the very well known Activated 

Sludge Model No. 1 (ASM1). The full version of ASM2 contains 19 processes, 19 

variables, 43 kinetic parameters, and 22 stoichiometric parameters.

Deterministic models can be divided into two categories; lumped-parameter models 

and distributed-parameter models (Beck, 1989). Lumped-parameter models assume that 

all the properties of the system are uniform across a given spatial volume of the reactor. 

These models imply complete mixing of the fluids within the designated volume, and 

frequently, this volume is taken to be the entire volume of the reactor. Therefore, a 

lumped-parameter model is a continuous flow stirred tank reactor (CFSTR) 

approximation. The lumped-parameter model has been the primary vehicle for the 

development of chemical, biochemical, and microbiological hypotheses about the 

behavior of unit processes of wastewater treatment (Beck, 1989). In a lumped-parameter 

model, a vector of state variables is used to quantify the internal state of the process 

(usually in terms of concentrations of dissolved or suspended substances) within the 

designated volume (space), and hence, the lumped-parameter model has its alternative 

designation as a state-space model. Because the majority of control problems focus on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5

manipulation of changes with respect to time, they are strongly geared to the use of 

lumped-parameter models (Beck, 1989).

All systems exhibit behavior that varies with both time and space, and for some 

processes, both spatial and temporal variability may be important to the behavior of the 

process in practice, for example, a predominantly plug-flow reactor (PFR). In such 

situations, a distributed-parameter model is used to describe the system, in which, state 

variables are allowed to vary in time and space. The obvious motivation for the 

development of a distributed-parameter model is that fluid and mass transport phenomena 

are crucial to the dynamic behavior of a given process, and in such cases, momentum and 

energy balances may form part of the model, with fluid velocity being a constituent 

element of the state vector (Beck, 1989). Instead of expressing spatial variation explicitly 

in the model, as in the case of a distributed-parameter model, a system can be simulated 

by a series of CFSTR elements, in which case spatial variations would be implicit in the 

model.

Much more research will be required before it will be possible to develop 

mechanistic models which accurately describe the interactions between various organic 

substances, both inhibitory and biogenic, in wastewater treatment systems. Therefore, 

another type of model has been used by researchers in order to represent hard-to-describe 

systems. These are called empirical or “black-box” models. They are most useful to the 

operator because they can reflect real world responses. They are, however, highly system 

specific. As a result, they have to be developed specifically for the set of data under 

study, and hence, they are not easily transportable to new situations. Examples of the 

class of black box models are time series models and Artificial Neural Networks (ANNs).

Between the extremes of highly mechanistic models and black-box models lie many 

alternatives. A dynamic model may contain a mechanistic component and a black-box 

component. In such a hybrid model, the objective of the mechanistic component is to 

describe the physical phenomena within the system that is thought to be well-understood. 

The role of the black-box component is to bias the predictions by the mechanistic
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component towards the experimental data. As a result, the black-box component of the 

hybrid model will compensate for the processes that were not included as part of the 

mechanistic model component because knowledge about them is not yet sufficient to 

allow this to be done. As the understanding of the processes that were not included in the 

mechanistic model because of lack of knowledge improves, they can be added to the 

model resulting in reduced load on the black-box (or error-predictor) component of the 

hybrid model.

1.2.1 Time Series Models

Time series models can be used in three important areas of application: forecasting 

of future values of a time series from current and past values; the determination of a 

transfer function of a system, i.e., the determination of a dynamic input-output model that 

can show the effect on the output of a system subject to inertia, of any given series of 

inputs; and the design of simple feed-forward and feedback control schemes by means of 

which potential deviations of the system output from a desired target may be 

compensated, so far as possible. Forecasting time series can provide a basis for control 

and optimization of industrial processes (Box and Jenkins, 1976).

Time series forecasting methods are analytical in nature; i.e., they use a variety of 

mathematical and statistical concepts and techniques to extract information from time 

series data, establish relationships among relevant factors, and extrapolate past behavior 

into the future. A wide class of processes called autoregressive-integrated moving- 

average processes “ARIMA” (often called “Box-Jenkins” methodology) provides a range 

of models that adequately represent many time series found in practice. The types of 

models employed in the Box-Jenkins methodology have been around for many years, 

however, it was not until the 1960’s that Box and Jenkins recognized the importance of 

these models in the area of economic forecasting and developed the Box-Jenkins 

forecasting methodology to take advantage of them (Hoff, 1983).
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The important characteristic of these models is that they were developed in terms of 

statistical concepts under the assumption that the processes being modelled are dynamic 

and subject to statistical fluctuations. The assumption is quite compatible with the 

behavior of environmental time series. The Box-Jenkins method is often referred to as 

univariate Box-Jenkins. The methodology and concepts employed in univariate Box- 

Jenkins, however, have also been extended to the cause-and-effect approach. The 

resulting method is known as mutivariate Box-Jenkins or the Box-Jenkins transfer 

function method. The study of process dynamics is a topic of considerable industrial 

interest and the reason for that is to achieve better control o f existing plants and to 

improve the design of new plants. Several methods have been proposed for estimating the 

transfer function of plant units from process records. Classical methods for estimating 

transfer function models based on deterministic perturbations of the input, such as step, 

pulse, and sinusoidal changes, have not always been successful, and this because the 

response of the system may be masked by uncontrollable disturbances collectively 

referred to as “noise” (Box and Jenkins, 1976). Statistical methods for estimating transfer 

function models that make allowance for noise, such as the Box-Jenkins transfer function 

models, can be employed with adequate results for the identification of dynamic systems.

1.2.1.1 Application of Time Series Analysis in Environmental and Water Resources 

Engineering

Huck and Farquhar (1974) applied ARIMA modelling techniques to model both 

dissolved oxygen and chloride concentrations in the St. Clair River near Corcenna, 

Ontario. The Box-Jenkins methodology was successful in modelling hourly water quality 

data by explaining 60% to 70% of the variation while producing adequate forecasts. 

Berthouex et al. (1975) utilized a first order auto-regressive model to study hourly 

influent biochemical oxygen demand (BOD) series data collected at the Madison Nine 

Springs plant, Wisconsin, USA. They concluded that time series models derived from 

actual field data show promise for describing system performance. Barnes and Rowe 

(1978) applied time series analysis to model volumetric flow data from the combined 

sewer treatment plants in Springfield, Ohio, USA and in Anderson, Indiana, USA. Chow
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et al. (1983) utilized transfer function models in order to predict flood levels of the Saint 

John River at Fredericton, New Brunswick. The stochastic dynamic models produced 

reasonable forecasts for lead times up to two days. Caroni et al. (1984) successfully 

utilized single-input single-output transfer function models for determination of the 

rainfall-runoff-sediment yield relationship in the Pigeon Roost Creek in Mississippi, 

USA. Gumell and Fenn (1984) studied the use of Box-Jenkins transfer function models 

applied to suspended sediment concentration-discharge relationships in a stream. Of all 

models considered, the transfer function gave by far the best forecasts. Thomstone et al. 

(1985) successfully demonstrated that starting with a “de-seasonalized” ARMA model of 

the inflow series and adding transfer functions for the rainfall and snowmelt series could 

provide a useful model in predicting quarter-monthly (i.e., near-weekly) natural inflows 

to the St. Jean reservoir in the province of Quebec, Canada. Lee (1986) studied the 

application of time series analysis to treatment plant data including BOD, water supply, 

and influent series. It was found that the Box-Jenkins type ARIMA models can be 

successfully used to model a treatment plant system. Jayawardena and Lai (1989) studied 

the mean monthly water quality data in the Pearl River in southern China using Box- 

Jenkins type ARJMA model. It was found that the forecasting of future water quality data 

using a Box-Jenkins type model was satisfactory. Capodaglio et al. (1990) applied an on

line system-identiflcation technique, including a recursive estimation algorithm, to obtain 

one-step-ahead predictions of the daily influent inflow to the Fusina Wastewater 

Treatment Plant in Italy utilizing daily rainfall data. Lemke (1991) used single input- 

single output and multiple input-single output transfer function models for daily 

suspended sediment concentration for two drainage basins in Iowa.

1.2.2 Artificial Neural Networks (ANNs)

Artificial neural networks go by many names such as connectionist models and 

parallel distributed processing models. The ANN modelling approach is an artificial 

intelligence technique that attempts to simulate some important features of the human 

nervous system; in other words, the ability to solve problems by applying information 

gained from past experience to new problems or case scenarios. Artificial neural network
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ideas were developed in the fifties, went into decline in the sixties, and only in the middle 

eighties did their true potential become evident. A book credited with the renewed 

interest was Rumelhart and McClelland’s Parallel Distributed Processing (Rumelhart et 

al., 1986), which was published in 1987 and contains, among other things, the first well- 

known description of the back-propagation training algorithm. Analogous to a human 

brain, an ANN uses many simple computational elements, named artificial neurons, 

connected by variable weights. Although each neuron, alone, can only perform simple 

computations, the hierarchical organization of a network of interconnected neurons, or 

architecture, makes an ANN capable of performing complex tasks such as pattern 

classification and prediction.

Among the many different architectures, the multi-layer perceptron architecture is 

commonly used for prediction, in which neurons are arranged in layers, an input layer, 

hidden layers, and an output layer. Input neurons, or nodes, receive values of an instance 

of the input parameters that are fed to the network after being scaled into a numeric range 

that is efficient for calculations by the neural network model. Outcomes to the output 

parameters for the instance under consideration are assigned by the output neurons. 

Hidden neurons connect the input neurons to the output neurons and provide nonlinearity 

to the network. Each neuron is connected to every neuron in adjacent layers by a 

connection weight, which determines the strength of the relationship between two 

connected neurons. The output from a neuron is multiplied by the connection weight 

before being introduced as input to the neuron in the next layer. Each neuron, except 

those in the input layer, sums all of the inputs that it receives and the sum is converted to 

an output value according to a predefined activation, or transfer, function.

For prediction problems, a supervised learning algorithm is often utilized for 

teaching the network how to relate input data patterns to output data. The main reason for 

the popularity of the multi-layer perceptron architecture in recent years is the 

development of new training algorithms like the back-propagation algorithm. The 

algorithm requires a continuous differentiable nonlinearity to be used as the transfer 

function by the neurons. The back-propagation algorithm consists of the following steps:
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(1) all weights are assigned initial small random values; (2) input data are propagated in a 

feed-forward manner through the network to produce output data according to the 

weights and the transfer function; (3) the outputs produced are compared with the target 

outputs which are known in advance; (4) the errors generated are then propagated 

backwards in a certain manner through the network for adjustments of the present 

weights using two factors, namely, a learning factor and a momentum factor; and (5) this 

procedure is repeated for each training example in the training set; a cycle (an epoch) 

represents one pass over the whole training set; multiple epochs are required until a 

satisfactory data mapping is achieved.

The main advantage of neural network models over a parametric approach is that 

neural networks can generate complicated relationships through examination of only the 

data points in the training set without assuming a pre-specified functional form. The 

prediction capability of neural networks, and the ability to quickly adapt to the changes in 

the status of a dynamic process make them easily-integrated into a control scheme. 

Although the neural network approach has its advantages, it also suffers from a few 

limitations. The traditional limits on learning speed and network size have been reduced 

by hardware improvement and more efficient algorithms. The main limitation that still 

exists is the one resulting from insufficient database for training the neural network. Two 

cases may occur: (1) an important input that is not included in the model or not 

measurable; and (2) scarcity of learning points in a certain region, which may cause the 

ANN to extrapolate to erroneous results without warning. To avoid the first case, the 

modelled physical system has to be well-represented by a set of measurable input and 

output variables. The remedy to the second case is trying to collect a data set that 

includes all possible scenarios for the system under study. Even so, a neural network may 

perform successfully at the beginning but after a while, its validity starts to decrease 

because of changes in the modelled system or operating conditions that occurred after 

training and have not been seen before by the neural network. As a result, a regular 

training schedule must be established as a check of the neural network validity.
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1.2.2.1 Application of ANNs in Environmental Engineering

Capodaglio et al. (1991) applied artificial neural network models to the analysis of 

bulking conditions. The sludge volume index (SVI) was used to represent bulking 

conditions. The artificial neural system analysis was conducted using a time series input 

scheme. A feed-forward neural network was utilized. The input to the network consisted 

of time-lagged values of BOD/N ratios, N/P ratios, mixed liquor DO, mixed liquor 

temperature, and the food to microorganism ratio. A 5-day lag was chosen as it 

corresponded to the average mean cell residence time of the system. Each input pattern 

fed to the system consisted of five values representing the previous 5 days for each of the 

input variables and the one-day-ahead prediction of SVI value was the output of the 

network. The back-propagation algorithm was used in training. It was found that the 

neural network has a better prediction capability than the other stochastic models 

investigated.

Su and McAvoy (1992) studied a pilot scale wastewater treatment facility with 

biological removal of C, N, and P. Three networks were used to model the three 

processing units, the anaerobic pretreatment column, the aeration tanks and the 

sedimentation vessel, individually. Aeration was intermittent to achieve denitrification. 

For the course of 4 days, samples were taken every 7 minutes from the influent and 

effluent o f each of the three units and were analyzed for NH4+, NO3", and PO43’. The 

oxygen consumption rates at the aeration tanks were also recorded. The outputs of 

interest were the concentration measurements for the effluent of the three processing 

units while the inputs were the concentration measurements for the influent and the 

oxygen consumption rates. The one-step-ahead prediction by a feed-forward network for 

each system was found to be good.

Tyagi and Du (1992) demonstrated the application of neural network techniques for 

kinetic model building of heavy metals inhibition in activated sludge process. Feed

forward neural network based models for the cases of both unacclimated and acclimated 

microorganisms were developed. After trying different activation functions and different
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sizes of the hidden layer, the sigmoid function was chosen and 6 neurons were used. The 

learning procedure of the neural network was based on the back-propagation algorithm. 

The task of the neural network model was to predict the maximum specific growth rate 

corresponding to different combinations of heavy metals present in the wastewater. The 

ratio o f the maximum specific growth rate in the presence and that in the absence of 

metal, pm/|im°, as the index for the growth rate was the model output, while the ratio of 

the metal concentration and the initial concentration of the suspended solids, M/X0, was 

the model input data. The ANN model was able to predict the index of the growth rate 

Pm/P m *

A neural network approach was proposed by Tabak and Govind (1993) in trying to 

estimate a biodegradation kinetic constant of a compound based on the type and number 

of chemical groups that compose this compound. After a linear first order model was 

tested, it was found that it was necessary to develop a nonlinear method in order to 

incorporate the nonlinear interactions between the chemical groups. A three layer neural 

network was used with eight input nodes, eight hidden nodes, and one output node. The 

sigmoid transfer function was used in the hidden layer. Each input node corresponded to 

a specific functional group. The inputs to the network corresponded to the number of 

each type of chemical group present in the chemical structure. The biodegradation kinetic 

constant value was the output of the network. The back propagation algorithm was used 

in the training of the network. Results showed that the method was able to predict the 

kinetic constant values for compounds that were not in the training set.

A simple ANN model that takes into account the bioreactor, the settler, and their 

interaction, was built by Tyagi et al. (1993) for the prediction of the recycle ratio and the 

wastage rate that are required to have effluent substrate concentrations at a given set- 

point using the influent flow rate and influent substrate concentration as inputs to the 

model. A steady-state simulation using mass balance equations around the bioreactor and 

the limiting flux theory for the sedimentation analysis was used to generate the data 

patterns for training and testing the network. The sigmoid function was used as the 

transfer function and the back-propagation algorithm was used in the training of the
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network. The hidden layer comprised of only two neurons. It was found that the neural 

network model exhibited an excellent performance in terms of both data fitting and 

prediction for the system. Trying to fit the same data, different polynomial equations with 

different orders were tested, however, the performance of the ANN model was still much 

better.

Tyagi et al. (1993) collected data from a pilot plant and analyzed it using a feed

forward ANN model to study the effect of the recycle ratio, a , and the clarifier overflow 

rate, U0, on the concentration of the mixed liquor suspended solids, X, entering into the 

settling tank and the recycle suspended solids, Xr, leaving from the bottom of the tank. 

The data showed that the relation between those variables has a certain degree of 

nonlinearity. A neural network was used to predict the values of X and Xr based on the 

values of a  and U0 at steady state condition. It was found that an adequate agreement 

between prediction and observation was achieved.

A neural-net-based model was developed by Du et al. (1994) to predict the 

solubilization of six heavy metals from sewage sludge using the bioleaching process. The 

sigmoid function was used as the transfer function. One hidden layer was used and it 

comprised of 16 nodes. Data from batch reactor experiments were used in training the 

network using the back-propagation algorithm. It was shown that the network is capable 

of predicting the metal solubilization using the pH and the initial concentrations of metals 

in the sludge as inputs to the network. The ANN model was used to predict the pH 

(which can be easily monitored during the course of the bioleaching process) at which the 

bioleaching process should be terminated which is a major advantage in terms of process 

control (Du et al., 1994).

An ANN was used by Pu and Hung (1994) to predict the performance of a medium

sized municipal wastewater treatment plant using rotating biological contactors and 

activated sludge process in treating medium strength municipal wastewater. Two years of 

average daily data were used in training and testing the network. The data used in the 

ANN modelling included raw wastewater flow rate, influent and effluent TSS and BOD5
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of primary settling tank and secondary settling tank. A multi-layer network was trained 

using the back propagation algorithm. One hidden layer was used and the number of 

nodes in the hidden layer was varied from 1 to 8. The sigmoid function was used as the 

transfer function in the hidden layer. Two general ANN models were used to predict the 

five-days biochemical oxygen demand (BOD5) and the suspended solids (SS) 

concentrations in the secondary effluent. To test the validity of ANN model, the ANN 

results were compared with those of a multiple regression analysis. The results of the 

ANN models were superior.

A procedure has been developed by Cote' et al. (1995) to improve the accuracy of 

an existing mechanistic model of the activated sludge process, previously described by 

Lessard and Beck (1993). The first step was the optimization of the numerous model 

parameters to minimize the sum of squares of the errors between predicted and 

experimental values. Then the second step was using ANNs to predict the remaining 

errors of the optimized mechanistic model. A hybrid model was the result of the coupling 

of the mechanistic model with the ANN model. The neural network models were the 

error predictors of the key variables of the mechanistic model. A three layer feed-forward 

neural network was developed using the sigmoid transfer function. The size of the hidden 

layer was varied between 3 and 6 neurons and the optimum value was retained. For the 

hybrid model, a neural network was developed for each of the five key variables 

describing the activated sludge process, namely the suspended solids, total chemical 

oxygen demand (CODt) and ammonium (NHJ) of final effluent, dissolved oxygen (DO) 

in mixed liquor, and volatile suspended solids (VSS) in the returned activated sludge. For 

each variable, the inputs of the neural network models were selected among the available 

process variables using a cross-correlation algorithm between input and output variables, 

and a blend of trial and error and good judgment. Hourly data were used in training and 

testing the network. The resulting hybrid model was found, in general, to simulate with 

an adequate accuracy the dynamics of the activated sludge process.

Hack and Kohne (1996) used a feed-forward neural network to correlate process 

parameters of interest with simple and directly measurable parameters. They tried to
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compensate for the breakdowns that occur in a process analyzer, that is part of a control 

loop, by estimating the respective process parameter using values of other parameters that 

were believed to have strong correlation with the process parameter of interest. In order 

to estimate the plant influent chemical oxygen demand (COD) and ammonium (NH4-N) 

concentrations, the strength of the correlation, that exists between each of these two 

parameters and auxiliary parameters, such as conductivity, turbidity, nitrate, pH, redox 

potential, flow rate, and water temperature, were examined. A database that consisted of 

hourly sampling for a period of two consecutive weeks was used. One week was used for 

training the network and the other was used for verification. The back-propagation 

algorithm was used in training the network. By comparing the neural network estimates 

for influent COD and NH4-N with measured data for the testing period, the relative 

deviations were found to be 7.4% and 9.2% respectively.

Zhao et al. (1997) investigated the application of a hybrid model that integrates a 

mechanistic model and ANN to biological phosphorus removal in a sequencing batch 

reactor (SBR). A bench-scale SBR was used for generating the data and samples were 

taken at 15 minutes intervals. A simplified version of the Activated Sludge Model No. 2 

(ASM2) was used. As a result of the reduced number of parameters in the simplified 

model, the calibration task was much easier, however, when testing the model with 

another data set, the predictions were in error. A neural network was integrated with the 

simplified model in order to improve the prediction capabilities of the hybrid model by 

learning how to bias the mechanistic model towards the measured values. A feed-forward 

neural network with 6 nodes in the hidden layer was utilized. Among the different 

activation functions, the sigmoid function was chosen for the hidden neurons. After 

training the hybrid model, the neural network error estimator improved the predictions.

1.2.3 The Box-Jenkins Transfer Function Methodology vs. Artificial Neural Networks 

(ANNs)

The main advantage of using the ANN modelling technique over the Box-Jenkins 

methodology is that ANNs have the ability to model nonlinearities in a system. However,
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in order to obtain adequate predictions by an ANN model, a relatively large set of 

historical data is needed for training. The Box-Jenkins transfer function methodology 

offers the following advantages over ANNs: (1) a systematic approach for model 

identification using statistical measures such as cross-correlations between system inputs 

and outputs; (2) the statistical concepts that form the basis of the Box-Jenkins 

methodology allow the estimation of the confidence limits for the model predictions; and 

(3) the methodology offers a comprehensive system of model verification by the means 

of parameter and residual diagnostic checks. One disadvantage of the Box-Jenkins 

transfer function methodology (and any time series analysis method for that matter), is 

that the data set used has to have no gaps.

1.3 STUDY AREA -  THE GOLD BAR WASTEWATER TREATMENT PLANT

(GBWWTP)

The Gold Bar Wastewater Treatment Plant (GBWWTP) is the largest plant in the 

Edmonton area. The plant was constructed in 1956 on the southwest shore of the North 

Saskatchewan River. The present capacity of the plant is 950 ML/d for primary treatment 

and 420 ML/d for secondary treatment based on both hydraulic and process capacities. 

Approximately 95% of the sewage from the City of Edmonton are treated at the 

GBWWTP. The plant is typical of many conventional activated sludge plants designed 

for carbonaceous BOD and suspended solids reduction. It provides both primary and 

secondary treatment for the incoming raw sewage. Primary treatment consists of grit 

removal, mechanical screening, and primary sedimentation. The secondary treatment 

provides biological treatment in a suspended growth activated sludge system, final 

settling and microorganism reduction.

1.4 PROBLEM DESCRIPTION

The main scope of this research project was to develop dynamic models that can 

describe the following: (1) the wastewater inflow entering the plant; (2) the dynamic 

nature of the primary sedimentation process at the plant; and (3) the activated sludge
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process at the plant. The objective of the modelling effort was to develop models which 

have the potential of being used as part of a RTC system that can be designed to improve 

the performance of the different processes at the plant. These models had to be adaptive 

and predictive.

This research program was designed to achieve several objectives. Those objectives 

included:

(1) development of an artificial neural network model that utilizes rainfall data 

collected from the different rain gauges in the Edmonton area in order to 

provide short-term predictions of the wastewater inflow volume entering the 

plant;

(2) studying the dynamics of the primary sedimentation process at the plant, and 

developing models that can describe the process and are able to provide short

term predictions of the quality parameters of the effluent wastewater leaving the 

process; and

(3) studying the dynamics of the activated sludge process at the plant and 

developing a hybrid model that consists of two components: (a) a mechanistic 

component that is a simplified version of the Activated Sludge Model No. 1 

(ASM1) developed by the International Water Association (IWA; formerly the 

International Association on Water Quality LAWQ); and (b) a black-box error- 

predictor component that can predict the error between the predictions by the 

mechanistic component and the actual experimental data.

1.5 ORGANIZATION OF THIS DISSERTATION

This dissertation is paper-format. In Chapter 2, the development o f a wastewater 

inflow model utilizing ANNs has been presented. The development, training, and 

validation of the neural network model have been discussed in detail.

In Chapter 3, the development of neural network models for a full-scale primary 

sedimentation tank at the GBWWTP has been presented. Description of the sampling
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program, development, training, and validation of the models have been discussed in 

detail.

In Chapter 4, the development of transfer function models for the primary 

sedimentation tank has been presented. Model identification, estimation, and validation 

have been discussed in detail.

In Chapter 5, the development of a simplified version of the ASM1 for a full-scale 

activated sludge process at the GBWWTP has been presented. Description of the 

sampling program, model development, and model testing have been discussed in detail.

In Chapter 6, the development of a hybrid model, that is composed of a 

deterministic and ANN/time series components, and describes the activated sludge 

process has been presented. Model development, training, and validation have been 

discussed in detail.

In Chapter 7, the conclusions on the modelling effort and model performance has 

been presented. Finally, suggestions on future research along these topics have been 

recommended.
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CHAPTER 2. WASTEWATER INFLOW PREDICTION USING AN ARTIFICIAL

NEURAL NETWORK*

2.1 INTRODUCTION

The wastewater inflow rate entering a treatment facility depends on the 

characteristics of the area and population served by the sewer system discharging to the 

plant and the occurrence of meteorological events. The influent wastewater flow may 

increase substantially during rainfall events. Variations in flow of over two orders of 

magnitude are not uncommon in combined sewer systems (Capodaglio, 1994). As a 

result, during such events, the hydraulic capacity of the plant may be exceeded and upsets 

to the biological processes may occur. Short-term predictions of the wastewater inflow 

rate during rainfall events would be essential if real-time control of different unit 

processes in a treatment plant is to be utilized.

Hydraulic load prediction is usually derived from hydrological (rainfall/runoff) and 

hydraulic (sewer flow routing) simulation models. The majority of these models that are 

developed to date are deterministic. Such models require detailed knowledge of the 

drainage area under study and usually incorporate a large number of parameters that may 

vary in time following a stochastic dynamic pattern, and therefore, calibrating this type of 

model is a very tedious job. Although deterministic models provide a solid foundation for 

the understanding of the physical phenomena, their characteristics make them inadequate 

for application in real-time control (Capodaglio, 1994). Another type, or group, of models 

is the so-called “black-box” class of models. These models do not try to describe the 

internal functions of a system; however, they can recognize relationships that exist 

between measurable inputs and outputs of the system. In a recent study conducted by 

Carstensen et al. (1998), prediction of the hydraulic load to a treatment plant one hour 

ahead was done using three different models. The models represent three different levels 

of complexity, ranging from a simple regression model over an adaptive grey-box model 

(composed of a simple deterministic regression model and a stochastic model

A part of this chapter has been published. Gamal El-Din, A. and D.W. Smith, Water 
Research 36: 1115-1126 (2002).
Another part of this chapter has been accepted for publication. Gamal El-Din, A. and 
D.W. Smith, Journal of Environmental Engineering and Science (April 2002).
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component) to a complex hydrological model, which was calibrated based on extensive 

measurement campaigns in the sewer system. They showed that the simple regression 

model and the grey-box model performed better than the complex hydrological flow 

model and they recommended that for model-based predictive control, models should be 

kept simple and identifiable from measured data. Among the “black-box” class of models 

are artificial neural network (ANN) models. Presented in this paper, a case study for the 

Gold Bar Wastewater Treatment Plant (GBWWTP) in Edmonton, Alberta, Canada, in 

which an ANN model was built and used to provide short-term predictions of wastewater 

inflow rate at the entrance to the plant.

2.2 DESCRIPTION OF THE AREA UNDER STUDY

In 1956, the GBWWTP was constructed on the south bank of the North 

Saskatchewan River. The plant is typical of many conventional step-feed activated sludge 

plants designed for carbonaceous BOD and suspended solids removal. It provides grit 

removal, screening, primary settling, biological treatment in a suspended growth 

activated sludge system, final settling, and microorganism reduction. The initial dry- 

weather flow capacity of the plant was 91 ML/d, serving the needs of a population of

250.000. The present capacity of the plant is 950 ML/d for primary treatment and 420 

ML/d for secondary treatment based on both hydraulic and process capacities. The plant 

treats domestic and industrial sewage from the City of Edmonton. Approximately 95% of 

the sewage flows from the City are treated at the GBWWTP.

The City of Edmonton’s sewerage and drainage facilities include 1619 km of 

sanitary sewer, 934 km of combined sewer, and 1808 km of storm sewer. The City’s 

sewerage system covers a drainage area of 35,768 ha and serves a total population of

610.000. Figure 2.1 shows a schematic o f the drainage area and the location of the plant. 

The City of Edmonton’s Drainage Branch operates a network of approximately 30 

permanent flow monitors in the sewerage system. The GBWWTP is one of the permanent 

flow/water-level installations, which are supplied with power and are equipped with a 

modem so that data can be downloaded from a remote location. The GBWWTP uses a
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measuring flume in conjunction with a water level sensor. The City of Edmonton 

operates a network of 18 tipping bucket rain gauges. These gauges are shown in Figure

2.1 and are numbered according to their site identification numbers in the maps provided 

from the City of Edmonton Drainage Branch. These rain gauges are normally in 

operation for the period from May through September. The incidence of a tip of the 

bucket is recorded by the rain gauge, which represents 0.2 mm of rainfall since the last 

bucket tip occurred. Rain gauges are calibrated prior to re-installation each May. Each 

rain gauge is connected to a data logger on site, and each site is downloaded 

automatically by modem from Branch headquarters.

14□  Click — Enlnrpnd Ar«a 
—  Sanitary Trank t w * r  
<m » Combined Trank St w h  
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3 1 *

*57
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Figure 2.1 The City of Edmonton drainage area.

2.3 OVERVIEW OF ANN

Artificial neural networks go by many names such as connectionist models and 

parallel distributed processing models. The ANN modelling approach is a computer
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methodology that has the ability to apply information gained from past experience to new 

problems or case scenarios. An ANN uses many simple computational elements, named 

artificial neurons, connected by variable weights. Although each neuron, alone, can only 

perform simple computations, the hierarchical organization of a network of 

interconnected neurons makes an ANN capable of performing complex tasks such as 

pattern classification and prediction. Among the many different architectures, the multi

layer perceptron architecture is commonly used for prediction. In multi-layer perceptron 

architecture, neurons are arranged in layers, an input layer, hidden layers, and an output 

layer. Figure 2.2 shows a schematic diagram of a multi-layer neural network.

Connection Weights

v_____
Input layer Hidden layer Output layer

Figure 2.2 A schematic diagram of a multi-layer neural network.

Input neurons, or nodes, receive values of an instance of the input parameters that 

are fed to the network after being scaled into a numeric range that is efficient for 

calculations by the neural network model. Outcomes to the output parameters for the 

instance under consideration are assigned by the output neurons. Hidden neurons connect 

the input neurons to the output neurons and provide nonlinearity to the network. Each 

neuron is connected to every neuron in adjacent layers by a connection weight, which
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determines the strength of the relationship between two connected neurons. The output 

from a neuron is multiplied by the connection weight before being introduced as input to 

the neuron in the next layer. Each neuron, except those in the input layer, sums all of the 

inputs that it receives and the sum is converted to an output value according to a 

predefined activation, or transfer, function.

For prediction problems, a supervised learning algorithm is often utilized for 

teaching the network how to relate input data patterns to output data. The main reason for 

the popularity of the multi-layer perceptron architecture in recent years is the 

development of new training algorithms like the back-propagation algorithm (Lippmann,

1987). Since its development, the back-propagation algorithm has been widely used for 

training multi-layer neural networks. The algorithm uses a gradient search technique to 

minimize a cost function equal to the mean square difference between the desired and the 

actual net outputs. It requires a continuous differentiable nonlinearity to be used as the 

transfer function by the neurons. The algorithm consists of the following steps: (1) all 

weights are assigned initial small random values; (2) input data are propagated in a feed

forward manner through the network to produce output data according to the weights and 

the transfer function; (3) the outputs produced are compared with the target outputs 

which are known in advance; (4) the errors generated are then propagated backwards in a 

certain manner through the network for adjustments of the present weights using two 

factors, namely, a learning factor and a momentum factor; and (5) this procedure is 

repeated for each training example in the training set; a cycle (an epoch) represents one 

pass over the whole training set; multiple epochs are required until a satisfactory data 

mapping is achieved. A mathematical description of the training algorithm is provided 

elsewhere (Rumelhart et al., 1986 1, 2). The learning factor (ranges from 0 to 1) 

represents the step size by which the weights are updated and is problem-specific. For 

noisy data, it is better to keep it below 0.1 (Gallant, 1993). In order to speed convergence 

of the back-propagation algorithm, a momentum factor (also ranges from 0 to 1) can 

sometimes be used. The idea is to keep weight changes on a faster and more even path by 

adding fractions of previous weight changes. A reasonable value for the momentum 

factor is 0.9 (Gallant, 1993).
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2.4 DEVELOPMENT OF THE MODEL

2.4.1 Input and Output Variables

The neural network model was built to provide in-advance prediction of the 

quantity of wastewater flow that enters the treatment plant during rainfall events. The 

selection of the input variables had to be done in a way that enables the neural network 

model to accomplish this task. Among the 18 rain gauges that cover the major drainage 

basins of the City’s sewerage system, 8 rain gauges (gauges #18, 19, 20, 21, 29, 30, 31, 

and 32) were chosen to be used by the neural network. As shown in Figure 2.1, these 

gauges were selected because they are located in drainage areas that have high percentage 

of combined sewers. An index to represent the day-of-the-week and another index to 

represent the hour-of-the-day were used as inputs to the neural network model, and this 

way, the model can learn the diurnal pattern of wastewater flow entering the plant on 

different days of the week during dry weather flow conditions, and hence, the network 

can have the ability to differentiate between two storms having very close characteristics 

but occurring at different times.

2.4.2 Source Data Screening and Analysis

Records of wastewater raw influent entering the plant were downloaded from the 

City of Edmonton’s Drainage Branch computer network for the summers (May- 

September) of 1995 to 1997. Flow records were at 10-minute intervals. The raw data flow 

records had some negative values, which indicated segments of faulty data. By visually 

examining these periods of faulty flow data, it was found that these periods contained 

sequences of very high, very low, and negative values of flow and it was easy to identify 

the starts and ends of these periods of faulty data. These segments of data were 

eliminated, and hence, were considered as data gaps. Flow records were averaged over 

30-minute intervals. As it was mentioned before, the rain gauges used by the City of 

Edmonton’s Drainage Branch are tipping bucket rain gauges that record the incidence of 

a tip of the bucket, which represents 0.2 mm of rainfall since the last bucket tip occurred. 

As a result, the data had to be arranged in a way that can be understood by the neural
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network model. In order to do that, the accumulative rainfall recorded by each of the 8 

rain gauges over 30 minute periods was calculated. A rainfall data record at time t refers 

to the amount of rain accumulated from t-0.5 hours to t hours, which means the amount 

of rain collected during the past 30 minutes.
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-- 60.00% «a  20 -
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-  40.00%
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Figure 2.3 A histogram of the total amount of rainfall recorded during rainfall events.

The objective of the modelling effort was to predict the inflow to the treatment 

facility during rainfall events. The data set used in the present study contained 114 

rainfall events. These events differed substantially in both the total amount of rainfall as 

well as the maximum intensity. Out of the 114 rainfall events that were encountered in 

the data set, 90 events caused the secondary capacity of the plant to be exceeded and 

secondary bypass had to be used during those events. Figure 2.3 shows a histogram of the 

total amount of rainfall (averaged for the 8 gauges) recorded for the rainfall events 

encountered in the data set. The total amount of rainfall ranged from 0.5 to 64.8 mm. 

Around 75% of the rainfall events had less than 6 mm of total rainfall; 16% had total 

rainfall in the range 6 to 20 mm. Only 10 rainfall events had total amount of rainfall that 

exceeded 20 mm; of these events 3 storms had total rainfall over 45 mm. Each of these 3
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events lasted more than 15 hours with the one that had the maximum total amount of 

rainfall of 64.8 mm lasting about 46 hours.

After training a neural network on historical data, the network has to be tested 

against a data set (usually called a testing or validation or verification set) that was never 

been seen before by the network during the course of training. The ability of the network 

to generalize from the training data set to the validation data set will determine its 

performance. Therefore, a thorough source data analysis has to be conducted when 

dividing the available data set into the two parts for training and validation. The 

validation data set has to be within the range of the training set, otherwise, the network 

will extrapolate beyond the scope that it has been trained for. Extrapolation may give 

erroneous results, and hence, the performance of the neural network model will be 

misjudged.

In the present study, the important features in the data that the network should 

recognize are the rainfall events. The available data set contained 114 rainfall events and 

was divided into three sets, namely, set #1, set #2, and set #3 as shown in Figure 2.4. 

Data set #1 was always used as part of the training data set. Data sets #2 and #3 were 

used as validation data sets and each contained 22 rainfall events. It is clear from Figure

2.4 and Figure 2.5 that each of the two validation data sets included rainfall events that 

covered a wide range of total amount of rainfall, maximum intensity, maximum flow at 

the entrance to the plant that was encountered during the rainfall event, and total inflow 

(amount of flow, conveyed to the plant during a rainfall event, that was above the normal 

dry weather flow).
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Figure 2.4 Total inflow above dry weather flow.
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Figure 2.5 Maximum flow encountered at the entrance to the plant.
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2.4.3 Architecture of the Neural Network Model

Much of the success in applying neural networks to engineering problems is mainly 

attributed to the achievements of the multi-layer feed-forward neural network architecture 

with back-propagation training algorithm (Lippmann, 1987; Tyagi and Du, 1992; Cote' et 

al., 1995; Zhao et al., 1997; Djebbar and Kadota, 1998). In this ANN architecture, 

information is processed in a forward manner through the network while the prediction 

error is propagated backwards through the network. A feed-forward neural network with 

back-propagation training algorithm was used for the modelling that was conducted in 

this study. As was mentioned before, the day-of-the-week index, the hour-of-the-day 

index, and rainfall data were the input parameters to the neural network model. Seven 

input nodes were used for day-of-the-week indicators, each of which corresponds to one 

weekday. If the day was Sunday, the corresponding node takes a value of “1” and all 

other 6 nodes take the value of “0”. The hour-of-the-day index was modelled using 24 

input nodes. Similarly to day-of-the-week indicators, only one hour-of-the-day indicator 

would take the value of “1” at any time step, with the other 23 nodes having a value of 

“ 0” .

1.000Y

O O O n O i—' O  —< <N— C N C d t N c o m c n

Rain gauge

B Average correlation coefficient w.r.t. total amount of rainfall 
■  Average correlation coefficients w.r.t. maximum intensity

Figure 2.6 Maximum flow encountered at the entrance to the plant.
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After analyzing the rainfall data recorded by the 8 gauges during the 114 rainfall 

events encountered in the present study, a correlation matrix was calculated for the 8 

gauges with respect to the maximum intensity recorded during the event as well as the 

total amount of rainfall recorded. For each of the 8 gauges, the 8 correlation coefficients 

were averaged and the results are shown in Figure 2.6, from which it is clear that the 

variability among the 8 gauges with respect to the maximum intensity recorded during a 

rainfall event is almost two times the variability with respect to the total amount of 

rainfall recorded. However, this is expected for such a large drainage area.

From Figure 2.6 and from the visual examination of the rainfall data, recorded by 

each of the 8 rain gauges, it was clear that most of the 8 gauges recorded rainfall during 

most of the events that occurred. However, the intensity of rainfall events differed 

substantially from one gauge to another. During some rainfall events, the intensity of the 

rainfall recorded by different gauges varied by almost two orders of magnitude. During a 

few of the rainfall events, some of which lasted for more than 15 hours, a few gauges did 

not record any rainfall. This simply could be due to a malfunction of the gauge during the 

event or due to the spatial variations in the rainfall on such a large drainage area. Because 

of the non-homogenous characteristics of rainfall events encountered, it would be 

misleading to use only one gauge to represent the whole drainage area serviced by the 

treatment plant.

For the sake of simplifying the neural network model, the rainfall data records that 

were recorded by the 8 gauges were averaged and the averaged data were used to reduce 

the dimensionality of the input layer of the neural network. It is evident from Figure 2.6 

that gauge #21 showed less agreement with the other 7 gauges. From the source data 

analysis, it was found that the reason for that was a malfunction of the gauge for almost 

one and half months of the summer of 1997. During this period, 18 rainfall events had 

occurred that were not recorded by gauge #21, but were recorded by all the other 7 

gauges. Despite this fact, the data for gauge #21 were utilized without any modifications 

in order to demonstrate that using averaged rainfall data of the 8 gauges has the 

advantage of reducing the effect of a malfunction, that may occur to one or more gauges
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in a real-life situation, on the predictions of a neural network model that can be utilized 

online as a part of a real-time control system.

In order to present the rainfall data records to the neural network, a moving window 

of past records had to be used, however, the size of the moving window was still to be 

determined. Using a very small window may hinder the ability of the network to provide 

adequate predictions because the whole picture is not fully seen by the neural network 

model. On the other hand, if a very large window size was to be used, the dimensionality 

of the input layer will increase which will necessitate the utilization of more parameters. 

In neural networks, this means more hidden nodes, and as a result, more connection 

weights. In the present study the size of the moving window was changed incrementally 

from 3 hours horizon (6 rainfall records) to 10 hours (20 rainfall records) with increments 

size of one hour. This, as will be shown later, allowed the selection of the time span that 

gives the best predictions and, at the same time, kept the model as simple as possible.

Using these input parameters, predictions of the wastewater flow entering the plant 

30-minute ahead were made by the neural network, and hence, the output layer consisted 

of only one node. If the neural network model was to be used as a part of a real-time 

control system, this forecast horizon would allow an operator on duty to take an action 

like bringing a primary sedimentation unit back to service or changing an activated 

sludge unit from plug flow mode to step-feed mode, which are two normal procedures 

that are used by the operators at the Gold Bar Wastewater Treatment Plant in periods of 

wet weather flows. However, expanding the forecast horizon can be easily conducted by 

retraining the neural network model to adapt with the new forecast horizon. For example, 

expanding the forecast horizon from 30-minute to one hour will shift the moving window 

one rainfall record.

In large part, the architecture of a neural network is determined by the format 

selected for its inputs and outputs, however, still to be determined is how many hidden 

layers should be used in the network and of what sizes should they be. Many researchers 

in the field of artificial neural networks suggest that it is usually unnecessary to use more
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than one hidden layer in a multi-layer feed-forward network and varying the number of 

hidden nodes in the one hidden layer is usually sufficient for delivering distinct results. 

Most applications of back-propagation to neural network problems make use of only one 

hidden layer. A major reason for this is that intermediate cells not directly connected to 

output cells will have very small weight changes and will learn very slowly (Gallant, 

1993). In the present study only one hidden layer was used.

Although the relationship between network performance and the size of hidden 

layer is not well understood, there are some principles which can be used as a guide. 

Among these, the most important one is the principle of generalization versus 

convergence, two aspects of network behavior, which often work against one another. 

Generalization means the ability of the network to produce reasonable results when 

applied to a data set that has not been seen before by the network during the course of 

training. Convergence is simply the ability of the network to learn the training data. In 

general, the likelihood of convergence will increase when more hidden neurons are used, 

however, using too many hidden nodes will make the network generalize poorly, 

memorizing the training data rather than focusing on its significant features. This 

principle is similar to the principle of fitting versus forecasting in time-series analysis. 

The objective is to use as many hidden nodes as needed for convergence without 

inhibiting the ability of the network to generalize, so the network would be able to focus 

on the important features in the data rather than fitting the noise that is an inherent 

component of any environmental field data set. In the present study, from the initial 

testing of the model, it was found that the smallest size of the hidden layer that allowed 

the network to converge was 3 nodes. The size of the hidden layer was increased 

incrementally from 3 nodes to 10 nodes with an increment size o f one node and the 

parsimonious model that gave the best results was selected.

2.4.4 Training the Network

In the modelling that was undertaken in this study, a batch-mode (weight updates 

were done after each epoch and not after each training pattern) back-propagation
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algorithm was used in the course of training and the network was saved at the point of 

minimum training error. This mode of training is insensitive to the selection of the value 

of the learning and momentum factors, and hence, was used in the present study to reduce 

the dimensionality of the variables’ space when the network is to be trained. Training was 

conducted using NeuroShell 2 software from Ward Systems Group Inc.

Before data patterns can be presented to a neural network, they have to be scaled 

into a range that is suitable for the calculations by the training algorithm. In the present 

study, data were scaled linearly into the range « 0 , 1 » .  Because of its favorable 

characteristics, the logistic function is perhaps the most widely used transfer function 

with the back-propagation algorithm. From the initial model testing conducted in the 

present study using three different transfer functions by the hidden layer (logistic, tanh, 

and Gaussian), the logistic function was found to yield the best results. A linear, rather 

than a logistic, function in the output node was used as the initial testing of the model 

showed better results when using a linear function in the output node.

A big dilemma, which is always involved in training feed-forward back-propagation 

neural networks, is when to stop training. In other words, after how many cycles (epochs) 

should training be stopped in order to allow the neural network to learn the important 

features from the data without memorizing them, so that it can generalize well when 

applied to the validation data set. In the present study training was stopped after 10, 20, 

30, 40, 50, 75, 100, 150, 200, 300, 400, 500, 750, and 1000 epochs, for every candidate 

model that was tested. Each time training was stopped, the model was tested against the 

verification data set. It will be seen later that using this systematic approach, the point at 

which training should be stopped so that generalization could be maximized was 

identified.

The historical data set contained a total of 16,001 data records, which were a blend 

of dry and wet weather flow data records for the summers of 1995 to 1997. Around 80% 

of the data were dry weather flow records that were used only to enable the network to 

learn the dry weather flow patterns during different days of the week. The other 20% are
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the wet weather flow patterns, which represent the important features in the data. The 

objective was to predict the flow entering the plant during wet weather flow conditions, 

and as a result, the performance of the candidate models (with respect to training and 

validation) was judged only using the wet weather flow patterns. As was mentioned 

before, the historical data set contained 114 rainfall events, which were divided into three 

sets, namely data sets #1, #2, and #3. When any of data sets #2 or #3 was used as the 

validation set the other two sets were used as parts of the training set.

2.5 RESULTS AND DISCUSSION

The performance of the network was measured using the coefficient of 

determination (R2), which is a statistical indicator that compares the accuracy of the 

model to the accuracy of a trivial benchmark model wherein the prediction is just the 

mean of all the samples. The coefficient of determination, R2, is mathematically 

described as follows:

i=n _ o
I(Yi -Yi)2

R2 = 1 _ m-------------  [2.1]
i=n _ 0
i (Y i - y)2i=1

where yi is the actual output value, y; is the output value predicted by the network, y is 

the mean of y values, and n is the total number of data records. A perfect fit would result 

in an R2 value of “1” while R2 value of “0” means a very poor fit.

In order to try 8 different sizes of the moving window, 8 different sizes of the 

hidden layer and stopping training at 14 different number of epochs, a total of 896 

(8*8*14) runs were conducted twice. Once when data set #2 was used as the validation 

data set (while sets #1 and #3 were used as part of the training data set) and the second 

when data set #3 was used for validation (while sets #1 and #2 were used as part of the 

training data set). For each size of the moving window, 8 different sizes of the hidden
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layer were tried, and for each one of them, training was allowed for 14 different number 

of cycles.
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It was found that for almost all the candidate models that were able to converge, as 

the number of epochs that was used in training increased, the value of the R for the 

training set increased and the maximum value was obtained when training was allowed 

for 1000 epochs (the maximum number of epochs that was used). On the other hand, the 

maximum value of the R2 for the validation data set was always obtained at a much lower 

number of epochs (in one instance was as low as 30 epochs).

0.95 -|

0.9 - 

0.85 - 

0.8  -  

0.75 - 

0.7 - 

0.65 - 

0.6 -

0 2 4 6 8 10

Size o f  m oving w indow  (hr)

Figure 2.8 The effect of increasing the size of moving window.

Figure 2.7 shows the number of epochs, at which the maximum value of the R for 

the validation data set was obtained. It is clear from Figure 2.7 that when the 

dimensionality of the network increased (either the size of the moving window or the size 

of the hidden layer is in the higher range) the maximum value of the R for the validation 

data set was obtained at low number of epochs and allowing training beyond this point 

hindered the ability of the network to generalize.

Data sets #1 and #3 when used in training 

Data set #2 when used for validation 

Data sets #1 and #2 when used in training 

-®- Data set #3 when used for validation
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Only when using a moving window of sizes 3 and 10 hours, were all the 8 candidate 

models able to converge to an adequate solution. However, for all the other sizes, one or 

more model could not converge to an adequate solution. For example, using a moving 

window of size 4, the performance of the network when using a hidden layer of size 3,5,  

and 7 was much lower than that when using other sizes of the hidden layer. This could be 

because the neural network was trapped in a local minimum. Although increasing the 

dimensionality of a network increases its chances to converge, a network that is trained 

with a gradient descent algorithm, like the back-propagation, is not guaranteed to find a 

global minimum, even if it converges (Gallant, 1993).

0.9 -

"a 0.7

0.6 -

0.5

0.4

- Data sets #1 and #3 when used in training

- Data set #2 when used for validation

• Data sets #1 and #2 when used in training 
■ Data set #3 when used for validation

10

Figure 2.9

Size of hidden layer

Results obtained using a moving window of 8-hr.

12

When averaging the results of the candidate models that were able to converge to an 

adequate solution, Figure 2.8 was obtained, which clearly shows that increasing the size 

of the moving window up to 8 hours had the effect of improving the performance of the 

network with respect to both training and validation. Expanding the moving window 

beyond 8 hours had very little effect on the performance. Therefore, and because a
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parsimonious model is always the objective of any modelling effort, a moving window of 

size 8 hours was chosen. Figure 2.9 shows the results obtained using the 8 hours moving 

window with different sizes of the hidden layer. It is clear from Figure 2.9 that even 

though increasing the size of the hidden layer always improved the R2 value for training, 

the generalization ability of the model, represented by the R2 value of the validation set, 

did not have any substantial improvement beyond a hidden layer of size 5. It is also clear 

from Figure 2.9 that increasing the size of the hidden layer from 3 to 5 had a substantial 

improvement in the ability of the network to learn the training data, however, increasing 

the size beyond 5 nodes had a much lower effect. A network that utilizes an 8 hours 

moving window and a 5 node hidden layer was chosen to be the final model.

0.9

Data sets #1 and #3 when used in training 

Data set #2 when used for validation 

Data sets #1 and #2 when used for training 

Data set #3 when used for validation

Pi

0.6

0.5

0.4

0 600 800 1000 1200200 400
Number of epochs elapsed 

Figure 2.10 Results obtained by the final model.

Results obtained by the final model are shown in Figure 2.10, from which it is 

evident that continuing training beyond 400 epochs did not improve the value of the R2 

for validation and had a slight improvement in the value for the training set. Therefore, it
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was decided to stop training of the final model after 400 epochs had elapsed. Dry weather 

flow patterns simulated by the final model are shown in Figure 2.11.
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Figure 2.11 Dry weather flow patterns simulated by the neural network model.

It is evident that using the two indices of day-of-the-week and hour-of-the-day, the 

neural network was able to learn the diurnal changes of the dry weather flow at the 

entrance to the plant as well as the lag that existed between the weekend patterns and the 

weekdays ones. As was mentioned before, the main objective was to build a neural 

network that, when trained, would be able to generalize well to the validation data set that 

has never been seen by the network during the course of training. Model predictions for 

data set #1 that was used in training are shown in Figure 2.12 to Figure 2.19. The 

predictions shown in Figure 2.12 to Figure 2.19 were obtained when data set #3 was used 

as part o f the training data set while data set #2 was used for validating the neural 

network. Figure 2.20 and Figure 2.21 show the model predictions when applied to the 

validation data. Data set #2 is shown in Figure 2.20 while data set #3 is shown in Figure 

2.21. Figure 2.22 shows the prediction errors for the validation data.
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Figure 2.12 Actual versus predicted flow values for data set #1 -  Part 1.
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Figure 2.13 Actual versus predicted flow values for data set #1 -  Part 2.
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Figure 2.14 Actual versus predicted flow values for data set #1 -  Part 3.
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Figure 2.15 Actual versus predicted flow values for data set #1 -  Part 4.
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Figure 2.16 Actual versus predicted flow values for data set #1 -  Part 5.
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Figure 2.17 Actual versus predicted flow values for data set #1 -  Part 6.
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Figure 2.18 Actual versus predicted flow values for data set #1 -  Part 7.
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Figure 2.19 Actual versus predicted flow values for data set #1 -  Part 8.
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Figure 2.20 Actual versus predicted flow values for validation data set #2.
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Actual versus predicted flow values for validation data set #3.
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Figure 2.22 Prediction errors for the validation data.
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For both the training and validation data sets, the neural network model performed 

extremely well. When tested against the validation data that had not been seen by the 

model during the course of training, the model had excellent generalization ability and 

was able to predict fairly well the quantity of wastewater flow entering the plant for 44 

different rainfall events that ranged widely in both the total amount o f rainfall and the 

maximum intensity.

As was mentioned before, periods of faulty flow data had been visually identified 

and eliminated from the data used by the neural network model. However Figure 2.23 

shows some periods of apparently erroneous flow data that are substantially above dry 

weather values without any corresponding rainfall data. These data records were left in 

the training data set in order to see their effect on the model behavior after being trained 

on a data set that are mostly of good quality except for very few cases of erroneous 

records. As evident from Figure 2.23, the model was not confused by these rare occasions 

which means that it can be updated (or re-trained) online without visual examination of 

training data that are presented to the model as long as the overall quality of the data is 

good.

One discrepancy existed between the model predictions and the actual flow data 

which is clear from Figure 2.21 (a) (Data records #160 to 180) and Figure 2.21 (b) (Data 

records #530 to 580). In each of these two cases, a rainfall event lasted more than 12 

hours, and long after the event has stopped, the flow entering the plant was still above the 

normal dry weather flow values. This is because of the delayed inflow that took more 

than 8 hours (the size of the moving window) to reach the plant. As a result, the neural 

network model under-estimated the actual flows recorded at the entrance to the treatment 

plant for these data records. However, from a process-control point of view, this 

discrepancy is minor as long as the flow peaks are well predicted. Figure 2.20 to Figure 

2.22 clearly indicate that the model did not have any obvious tendency to either over

estimate or under-estimate the flow peaks and there was no obvious lag between the 

actual peak recorded during a rainfall event and the one predicted by the neural network 

model.
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Figure 2.23 A portion of the training data set that contained erroneous flow data.
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2.6 CONCLUSIONS

Wastewater flows at the GBWWTP can increase rapidly during rainfall events. The 

existing maximum capacity of the plant can only be achieved if warning is available that 

increased flows are expected. Therefore, a model that can predict the quantity of 

wastewater flow entering the plant during rainfall events is very beneficial for the 

operation of different unit processes during these events. The neural network model 

presented in this study can be utilized online to give short-term predictions of wastewater 

flow entering the plant. The model uses rainfall data recorded by 8 of the gauges that 

cover the City of Edmonton drainage area. A systematic approach was used in building 

the neural network model, which enabled it to give R2 values in the range of 0.85 to 0.93 

when it was tested against the validation data sets that were never seen before by the 

network during the course of training. The model can be integrated into a real-time 

control system with the ultimate goal o f minimizing the total pollution load from the 

wastewater treatment system.
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CHAPTER 3. MODELLING A FULL-SCALE PRIMARY SEDIMENTATION 

TANK USING ARTIFICIAL NEURAL NETWORKS*

3.1 INTRODUCTION

Removing readily settleable solids and floating material and thus reducing the 

suspended solids content is the objective of primary treatment. Primary sedimentation 

tanks generally provide suspended solids (SS) and biochemical oxygen demand (BOD) 

reduction before further processing of the wastewater by secondary treatment. Modelling 

the performance of full-scale primary sedimentation tanks has been commonly done 

using regression-based models. These models are empirical relationships that are derived 

strictly from observed daily average influent and effluent data. A relationship of this type 

has been proposed by Smith (1969) based on data collected at a large number of different 

plants with different flow rates. The equation proposed by Smith (1969) relates the total 

suspended solids removal to the overflow rate in a nonlinear fashion suggesting that the 

performance of a sedimentation tank will always deteriorate at higher flow rates. Using 

only the overflow rate to model the total suspended solids removal by a sedimentation 

basin is basically derived from the theoretical consideration of the process.

Tebbutt (1969) conducted pilot-scale studies over a wide range of hydraulic 

loadings and showed a lack of correlation between the overflow rate and the settling 

performance of sedimentation tanks and he attributed these findings to the flocculent 

nature of wastewater solids which can cause the formation of readily settleable solids in 

the presence of the type of velocity gradients created by turbulence and density currents. 

Since flocculation will be more pronounced at higher suspended solids concentrations, 

other workers (Steel, 1960; Voshel and Sak, 1968; Tebbutt and Christoulas, 1975) have 

suggested that both the hydraulic loading and the influent suspended solids concentration 

affect the removal efficiency of a sedimentation tank. In addition, the characteristic of the 

solids in terms of their ability to stick together upon impact is also important. Therefore, 

a tank treating an influent that is low in suspended solids with relatively low removal 

might be more efficient at removing settleable solids when it is given a stronger influent.

A version of this chapter has been published. Gamal El-Din, A. and D.W. Smith, Env. 
Tech. 23: 479-496 (2002).
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A mathematical model of sedimentation performance that has been commonly used is of 

the general form (Tebbutt and Christoulas, 1975):

E = a • e“(b/s+cq) [3.1]

where

E = the fractional removal of suspended solids,

S = the influent suspended solids, 

q = the surface overflow rate, and 

a, b, and c = constants.

It is clear from the above equation that at the same hydraulic loadings, when 

wastewater influent that is rich in total suspended solids is introduced to a sedimentation 

tank, the removal efficiency of the tank will increase due to the more pronounced 

flocculation that will occur within the tank.

The primary role of sedimentation units in a conventional treatment plant is the 

removal of suspended matter, however in terms of the effect of sedimentation on the 

downstream biological processes the removal of organic matter in the primary stage is of 

considerable importance (Tebbutt and Christoulas, 1975). The organic content of 

domestic wastewater as measured by chemical oxygen demand (COD) is present in three 

forms, large suspended matter, colloidal solids, and soluble compounds. All of the large 

solids and some of the fine material are potentially removable by sedimentation, 

however, most of the fine material and soluble organics are not removable to any 

significant extent. The removal of organic matter by primary sedimentation has been 

commonly done using empirical models that utilize daily average data and correlate the 

removal of organic matter to the removal of suspended matter.
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3.2 DYNAMIC MODELLING

A wastewater treatment plant usually has a satisfactory performance under steady- 

state conditions because these conditions are similar to design conditions. However, load 

variations constitute a large portion of the operating life of a treatment facility and most 

of the observed problems in complying with permit requirements are due to these load 

transients. Inflow to wastewater treatment facilities is a random variable that necessarily 

affects the performance of the facility. The resulting transient performance as well as the 

need to characterize the impacts of this variability on the removal efficiency of the 

facility has been widely recognized (Alarie et al., 1980). Although several levels of 

sewage treatment are practiced throughout North America, primary sedimentation is a 

unit treatment process common to the wastewater treatment facilities for most medium to 

large cities, and therefore, improvements in the operation of a sedimentation tank, the 

first major unit process in the train of processes, are likely to produce a pronounced 

impact on the quality of overall treatment (Alarie et al., 1980).

Hydraulic efficiency models have been used to characterize the dynamic behavior 

of sedimentation tanks (El-Baroudi, 1969; Thirumurthi, 1969). These models recognize 

that real flows are turbulent and encounter a certain degree of mixing or eddy diffusion. 

The developers of these models utilize tracer studies to characterize the performance of 

model sedimentation tanks based on eddy diffusion. Using these models to predict the 

dynamic response of a full-scale sedimentation tank is very difficult as the development 

of such models has been done using controlled studies of model tanks (Alarie et al., 

1980). In order to model the dynamic behavior of a sedimentation tank under transient 

conditions, some deterministic models are available in the literature (Takamatsu et al., 

1974; Shiba and Inoue, 1975) that are based on a mathematical formulation that takes 

into consideration the physical configuration of a sedimentation tank and depicts the 

physical phenomena of deposition and resuspension occurring within the tank. Although 

these models permit detailed simulation of primary sedimentation performance, they 

were theoretically derived and have not been tested with actual field data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Another type of model is the so-called “black-box” class of models. As the name 

implies, these models do not try to describe the internal functions of a system, however, 

they can recognize relationships that exist between measurable inputs and outputs of the 

system. Among these models, are those using the univariate and multi-variate Box- 

Jenkins modelling approach and artificial neural networks (ANNs). The main advantage 

of neural network models over a parametric approach is that neural networks can 

generate complicated relationships through examination of only the data points in the 

training set without assuming a pre-specified functional form (Djebbar and Kadota, 

1998). Therefore, neural networks have been successfully applied in many areas in the 

environmental engineering field. The objective of this study was to model the 

performance of a full-scale primary sedimentation tank at the Gold Bar Wastewater 

Treatment Plant (GBWWTP) under dynamic loading conditions using an artificial neural 

network model. An overview of ANN is provided by Gamal El-Din and Smith (2002).

3.3 DESCRIPTION OF THE TREATMENT PLANT

The Gold Bar Wastewater Treatment Plant (GBWWTP) was constructed in 1956 on 

the south west shore of the North Saskatchewan River. The present capacity of the plant 

is 950 (ML/d) for primary treatment and 420 (ML/d) for secondary treatment. The plant 

treats domestic and industrial sewage from the City of Edmonton. The GBWWTP is 

typical of many conventional activated sludge plant designed for carbonaceous BOD and 

suspended solids removal. It provides both primary and secondary treatment for the 

incoming raw sewage. Primary treatment consists of a raw influent distribution chamber, 

two Venturi flume installations, five aerated grit chambers, six bar screens and eight 

rectangular primary settling tanks. The secondary treatment provides biological treatment 

in a suspended growth activated sludge system, final settling, and microorganism 

reduction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

Table 3.1 The physical parameters of primary settling tanks group 2 (PST 2).

Primary Settling Tanks Group 2 (PST 2)

No. of tanks 4

Tanks # #5, 6, 7, and 8

Length (m) 51

Width (m) 20

Total volume (m3) 19,000

Total surface area (m2) 4,160

Weir length (m) 302

Peak design loading per tank (ML/d) 112

There are two primary sections in the plant, Primary Settling Tanks Group 1 (PST 

1), which includes settling tanks #1, 2, 3, and 4, and Primary Settling Tanks Group 2 

(PST 2) which includes settling tanks #5, 6, 7, and 8. The distribution of the incoming 

wastewater flow between the two sections is controlled by two manually activated sluice 

gates located upstream of the Venturi flume installation and by the difference in throat 

width between the two flumes.

Downstream from the bar screens the effluent flows into four channels, each 

controlled by a sluice gate, and feeding wastewater to two primary tanks. These gates are 

operated as isolation gates, and are either fully opened or fully closed. The flow into each 

tank is controlled by opening or closing the inlet ports. The arrangement o f primary tanks 

on common influent channels is: #1 and 2; #3 and 4; #5 and 6; and #7 and 8. All eight 

primary sedimentation tanks operate in a similar manner. Each tank is divided into four 

cells. Each cell has two inlet ports, a sludge and scum collection system, and two effluent 

weirs. Primary sedimentation tank #5 (one of the four tanks of PST 2) was chosen for 

sampling. Table 3.1 shows the physical parameters of tanks of PST 2.
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3.4 SAMPLING PROGRAM

The influent wastewater to the tank was sampled at the common channel that feeds 

both tanks #5 and 6. The effluent wastewater from the tank was sampled from the first 

trough at the first cell from the left of the tank as access of sampling the effluent from the 

sedimentation tank was only available at this point. The flow of wastewater received by 

PST 2, measured by the Venturi flume installation, was averaged over 30-minute 

intervals. Two weeks of continuous sampling were conducted. The first week started on 

June 28, 1999 at 6:00 hours and ended July 5, 1999 at 6:00 hours. The second week 

started on August 20, 1999 at 6:00 hours and ended August 27, 1999 at 6:00 hours.

For both periods, grab samples for the total suspended solids (TSS) analysis were 

taken every hour, from both the influent and effluent. At 7:00 hours of every day during 

the sampling period, the TSS samples of the previous 24-hour were taken to the 

laboratory at the University of Alberta for immediate analysis. From July 2, 6:00 hours 

till July 5, 6:00 hours and from August 20, 6:00 hours till August 27, 6:00 hours, grab 

samples for the chemical oxygen demand (COD) analysis were taken every hour, from 

both the influent and effluent and were acidified by concentrated sulfuric acid to pH less 

than 2 for the purpose of preservation. At 7:00 of every day, the COD samples of the 

previous 24-hour were taken to the laboratory at the University of Alberta and stored in
O

the cold room at 4 C to be analyzed later. Both air and influent wastewater temperatures 

were recorded every hour.

3.5 METHODS

The analysis of total suspended solids was according to the Standard Methods 

(APHA, 1995). For both influent and effluent TSS samples, the analysis was done in 

three replicates for each sample and the average was utilized. Before the three replicates 

were drawn off a sample, blending the sample for one minute was done in order to have 

representative samples. Whatman grade 934AH glass micro-fiber filters were used 

(Whatman catalog #1827 024). The filters have a diameter of 24 mm and a pore size of
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1.50 pm. In practice, it is unlikely that particles smaller than 1.50 pm would be 

removable by primary sedimentation. Tebbutt (1979) stated that particles much smaller 

than 50 pm would be unlikely removed by sedimentation. Therefore, using a filter of a 

pore size 1.5 pm was thought to be appropriate for the modelling of the sedimentation 

tank and, at the same time, facilitated the analysis of the large number of samples (144 

samples) that had to be analyzed daily utilizing all the analytical support staff that was 

available.

The analysis of chemical oxygen demand was done according to the Standard 

Methods (APHA, 1995) using the closed reflux colorimetric method. For effluent COD 

samples, the analysis was done in three replicates for each sample and the average was 

used. For influent COD samples, the analysis was done in five replicates and the average 

was utilized. Before the five replicates were drawn off an influent sample, blending the 

sample for one minute was done in order to have representative samples.

3.6 RESULTS OF THE SAMPLING PROGRAM

Descriptive statistics of the data sets that were collected during the sampling 

periods are shown in Table 3.2. The wastewater inflow to PST 2 recorded during the first 

and second weeks of sampling is shown in Figure 3.1 (a) and (b), respectively. During the 

sampling periods, few rainfall events occurred which differed in intensity as well as 

duration. During the first week of sampling five rainfall events occurred and are indicated 

in Figure 3.1 (a). Only one rainfall event occurred during the second week of sampling 

and is indicated in Figure 3.1 (b). Event #6, which commenced on August 21, 17:00, had 

the highest intensity and during this event the flow increased by more than 200% of the 

normal dry weather values. The second largest event was #5 which commenced on July 

3, 15:00 and during which the increase in flow was recorded to be around 100% of the 

normal dry weather values. The flow data indicated that the normal dry weather flow 

values recorded in the days of August were higher by around 25% than those values of 

June and July.
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Table 3.2 Descriptive statistics of the data.

Sampling period Parameter Average

(mg/L)

Standard

deviation

(mg/L)

Min.

(mg/L)

Max.

(mg/L)

June 28 -  July 5, 99 Flow 179a 65a 66a 375a

June 28 -  July 5, 99 Influent TSS 207 95 80 682

June 28 -  July 5, 99 Effluent TSS 47 20 13 117

July 2 -  July 5, 99 Influent COD 534 81 384 683

July 2 -  July 5, 99 Effluent COD 358 59 237 477

August 20 -  27, 99 Flow 224a

eQo00 76a 658a

August 20 -  27, 99 Influent TSS 226 65 113 598

August 20 -  27, 99 Effluent TSS 48 24 13 239

August 20 -  27, 99 Influent COD 671 103 399 1058

August 20 -  27, 99 Effluent COD 450 71 281 626

aML/d

From August 22, 6:00 hours till August 27, 6:00 hours no rainfall events occurred. 

This was the longest period of continuous dry weather flow conditions for these data sets. 

The flow profiles were averaged over the 5-day stretch in order to visualize a typical dry 

weather flow profile, which is shown in Figure 3.2 after being normalized with respect to 

the average. Between 2:00 and 11:00 hours, the flow is below average with a minimum 

value of 0.53 at 6:30 hours, and between 11:00 and 2:00 hours the flow is above average 

with a maximum value of 1.32 at 14:00 hours. During the early morning hours minimum 

flows occur when water consumption is lowest and when the base flow consists of 

infiltration and smaller quantities of sanitary wastewater. Two peak flows are evident 

from Figure 3.2. The first peak flow generally occurs in the afternoon, around 14:00 

hours when the wastewater from the peak morning water use reaches the treatment plant. 

A second lower peak generally occurs in the evening, around 22:30 hours when the 

wastewater from the evening water use reaches the plant.
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Figure 3.1 Wastewater flow recorded during the sampling periods.
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Figure 3.2 Dry weather flow profile.

3.6.1 Total Suspended Solids Data

Both the hydraulic and organic loadings to wastewater treatment plants have a 

fluctuating component with the fluctuations in quality of wastewater being more difficult 

to describe and quantify. Both long-term (seasonal, monthly or weekly) and short-term 

(diumal, hourly, and even shorter frequency) fluctuations exist. Figure 3.3 (a) shows the 

TSS values measured for the influent samples collected during the first week of sampling. 

The influent TSS values for the second week of sampling are shown in Figure 3.3 (b). 

Table 3.2 shows that for the first week of sampling, the standard deviation of the influent 

TSS data was approximately 46% of the average, however for the second week of 

sampling it was only 29% of the average value and the reason for that is the different 

weather conditions experienced during each week.

■ ■
■ ■ ■■ ...........

Average = 212.2 ML/d
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Figure 3.3 Influent total suspended solids.
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During the first week, 5 rainfall events occurred, however during the second week, 

only one event occurred. During wet weather conditions the flow entering the plant is 

composed of wastewater and rainfall runoff that contributes to the system. Generally 

storm runoff will contribute a larger amount of flow which is of better quality than the 

wastewater, and therefore, COD and fecal coliform bacteria concentrations in the 

wastewater inflow are expected to be generally low during a rainfall event. On the other 

hand, suspended solids concentrations in the influent wastewater are normally elevated 

during a rainfall event, mainly due to the effect of the first flush. Factors that affect the 

magnitude of the first flush effect include the length of the period of dry weather flow 

that preceded the rainfall event, the combined sewer slopes (which influence the velocity 

of the flow), street and catch basin cleaning frequency and design, rainfall intensity and 

duration, and the frequency of cleaning the sewers (Metcalf & Eddy Inc., 1991). In the 

present study, the influent TSS increased substantially during most of the six rainfall 

events that were encountered during the sampling periods. These findings have been 

found elsewhere (Vanderborght and Wollast, 1990; Bertrand-Krajewski, 1992; Bertrand- 

Krajewski et al., 1995). Among the 6 events, rainfall event #6 had the highest flow 

contribution to the plant. At the time of the commencement of the event, the flow was 

around 275 ML/d and during the event, the flow increased rapidly to a value of 657 ML/d 

as shown in Figure 3.1 (b). This event caused the influent TSS to increase from values 

around 260 mg/L to a value of 600 mg/L, which means that during this event, the influent 

TSS increased by more than 120% of the dry weather values.

As was mentioned before, August 22, 6:00 hours to August 27, 6:00 hours was the 

longest period of continuous dry weather flow conditions. The influent TSS hourly 

profiles were averaged over the 5 day stretch in order to visualize a typical hourly 

influent TSS profile during dry weather conditions, which is shown in Figure 3.4 after 

being normalized with respect to the average. It is clear from Figure 3.4 that a diurnal 

pattern exists, which is less evident than the one for the wastewater inflow. Between 5:00 

and 13:30 hours the influent TSS is lower than average with a minimum value of 

approximately 0.8 of the average at around 9:00 hours. The influent TSS increases
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gradually from 9:00 till around 17:00 hours then stays slightly above average till around 

5:00 hours.

Average = 228 mg/L

0.9

0.7

0.6

0.5
6:003:0018:00 21:00 0:009:00 15:006:00 12:00

Time of day

Figure 3.4 Influent total suspended solids profile during dry weather conditions - 

August 22 to 27,1999.

3.6.2 Chemical Oxygen Demand Data

Figure 3.5 shows the COD values measured for the influent samples collected for 

the 10 days period of sampling for COD. The influent COD hourly profiles were 

averaged over the 5 day stretch of August 22, 6:00 to August 27, 6:00 hours, during 

which no rainfall events occurred, in order to visualize a dry weather profile for the 

influent COD which is shown in Figure 3.6 after being normalized with respect to the 

average. A diurnal pattern exists which is more evident than the one for the influent TSS. 

Between 6:00 and 14:00 hours the influent COD is lower than average with a minimum 

value of approximately 0.85 of the average base line at around 10:00 hours. The influent 

COD increases gradually from 10:00 till around 18:00 hours when it reaches a peak value
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of 1.10 then decreases gradually from 18:00 till 23:00 hours then stays slightly above 

average till around 5:00 hours.
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August 20, 6:00 - August 27, 6:00«  200 - July 2, 6:00 - July 5, 6:00

Tim e (days)

Figure 3.5 Influent chemical oxygen demand.

During the period of COD sampling, 4 rainfall events occurred, namely events #3, 

4, 5, and 6. Each of these events had a pronounced effect on the influent COD values 

measured, which dropped substantially during each of the rainfall events encountered due 

to the dilution effect of the storm water, and then after each of these storms, when the 

combined flow was mainly wastewater, concentrations increased. This phenomenon was 

most evident for event #6 which had the most contribution of storm runoff to the sewer 

system as indicated by the flow records during the period of this rainfall event. During 

this event, the influent COD values had a steep drop from approximately 730 mg/L to 

around 450 mg/L then increased gradually after the end of the event.
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Average = 664 mg/L
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Figure 3.6 Influent chemical oxygen demand profile during dry weather conditions - 

August 22 to 27, 1999.

3.7 MODELLING THE EFFLUENT TOTAL SUSPENDED SOLIDS AND 

CHEMICAL OXYGEN DEMAND

3.7.1 Theoretical Detention Time

The total volume of the four sedimentation tanks in PST 2 (tanks #5, 6, 7, and 8) is 

equal to 19,000 m3. During the two week sampling periods, the flow entering the four 

tanks averaged 202 ML/d. The minimum flow was 66 ML/d and the maximum was 658 

ML/d. Assuming equal flow distribution between the four tanks, the theoretical detention 

time for each tank is shown in Figure 3.7. The four sedimentation tanks in PST 2 have 

been designed based on an average flow to the process of 204 ML/d which corresponds 

to a theoretical detention time of 2.24 hr. This design value is very close to the average 

flow that entered PST 2 during the sampling periods. It is clear from Figure 3.7 that the 

minimum flow received by PST 2 corresponds to a theoretical detention time of 6.91 hr 

while the maximum flow corresponds to a 0.69 hr theoretical detention time. It should be
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mentioned that there is a delay between the time of recording the flow and the time of the 

wastewater entering the sedimentation tank. This delay is equal to the residence time of 

the wastewater in the aerated grit chambers upstream from the primary settling tanks of 

PST 2. Based on the average flow of 200 ML/d received by PST 2, and the theoretical 

detention time of the grit chambers, this delay is approximately 15 minutes which is 25% 

of the sampling frequency (one hour), and as a result, this discrepancy was ignored.

10

ee

4>
Q

800400 500 600 700 9000 100 200 300

W astew ater flow to process # 2 (M L/d)

Figure 3.7 Theoretical detention time.

3.7.2 Tracer Studies

The theoretical residence time curve that is shown in Figure 3.7 never exists in 

practice, especially for full-scale sedimentation basins. The ideal settling plug-flow 

conditions are never attained in practice and all sedimentation tanks are subject to some 

degree of hydraulic turbulence, short circuiting, and density currents.
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Figure 3.8 Tracer studies.
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Therefore, the actual detention time is likely to be less than the theoretical detention 

time calculated from the tank volume and the rate of flow. Two simple slug-input tracer 

studies for sedimentation tank #5 were conducted using water softening salt (brine) as a 

tracer. For both studies, a slug input of tracer was dumped at the influent channel and the 

conductivity of the effluent wastewater from the tank was measured at the same point that 

was used for sampling the effluent TSS and COD. Measurements of the conductivity 

were made every three seconds and were averaged over 60 seconds intervals as shown in 

Figure 3.8. The outcome of the first study is shown in Figure 3.8 (a) while Figure 3.8 (b) 

shows the outcome of the second tracer study. Time zero on the horizontal axis represents 

the time at which the slug was dumped.

For the first tracer study, the wastewater flow received by PST 2 was approximately 

255 ML/d at the time of dumping the tracer. From the outcome shown in Figure 3.8 (a), it 

is evident that the peak concentration reached the effluent sampling point approximately 

50 minutes (0.83 hr) from the time of dumping the tracer. The flow to PST 2 of 255 ML/d 

recorded at the time of dumping the slug for the first tracer study corresponds to a 

theoretical detention time of 1.8 hr.

For the second tracer study, the wastewater flow received by PST 2 was 

approximately 125 ML/d at the time of dumping the tracer. At the time of dumping the 

slug, the baseline conductivity was approximately 9 mmhos/cm. After approximately 60 

minutes, a first peak of 9.35 mmhos/cm was observed. A second peak of 9.55 mmhos/cm 

appeared after 3 hours from the time of dumping the tracer. The flow of 125 ML/d at the 

time of dumping the tracer corresponds to a theoretical detention time of 3.65 hr.

It is clear from the outcomes of the tracer studies that the sedimentation tank suffers 

from short circuiting. The presence of short circuiting in full-scale sedimentation tanks 

has been observed in many studies in the literature. Tebbutt (1979) stated that the effects 

of hydraulic turbulence and density currents were observed to produce tracer peaks after 

less than one hour from full-scale sedimentation tanks in England with theoretical 

retentions of approximately 10 hours.
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3.7.3 Neural Network Models Developed

The objective of the neural network modelling effort was to predict the TSS and 

COD of the effluent wastewater from the sedimentation tank. Two separate networks 

were trained for this task. One was trained to predict the effluent TSS and the other to 

predict the effluent COD. As suggested by Equation 3.1, the TSS network used the flow 

and influent TSS data as inputs. The COD network utilized the flow and influent COD 

data as inputs in order to predict the COD of the effluent wastewater from the tank.

When the characteristics of the effluent wastewater from the sedimentation tank are 

modelled, there should be a lag time between the effluent and the influent data used in 

modelling. This lag time is equal to the actual detention time of the tank and will depend 

on the flow volume entering the tank at that time. The outcomes of the tracer studies 

suggest that this lag time could be as low as less than one hour at high flows. Therefore, 

limited by the sampling interval of one hour that was used in the present study, the 

modelling was conducted using a lag (or delay) time that was equal to one hour.

In order to present the input data records to the neural network, a moving window 

of past records had to be used, however, the size of moving window had still to be 

determined. Using a very small window may hinder the ability of the network to provide 

adequate predictions because the whole picture is not fully seen by the neural network 

model. On the other hand, if  a very large window size was to be used, the dimensionality 

of the input layer will increase which will necessitate the utilization of more parameters. 

In neural networks, this means more hidden nodes, and as a result, more connection 

weights. In the present study the size of the moving window was changed incrementally 

from 1-hour horizon to 5 hours with increments of one hour. This systematic approach, as 

will be shown later, allowed the selection of the time span that gives the best predictions 

and at the same time kept the model as parsimonious as possible.
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3.7.4 Structure of the Neural Network Models

Much of the success in applying neural networks to engineering problems is mainly 

attributed to the achievements of the multi-layer feed-forward neural network architecture 

with back-propagation training algorithm (Lippmann, 1987). In this ANN architecture, 

information is processed in a forward manner through the network while the prediction 

error is propagated backwards through the network. A feed-forward neural network with 

back-propagation training algorithm was used for the modelling that was conducted in 

this study. Many researchers in the field of artificial neural networks suggest that it is 

usually unnecessary to use more than one hidden layer in a multi-layer feed-forward 

network and varying the number of hidden nodes in the one hidden layer is usually 

sufficient for delivering distinct results. In the present study only one hidden layer was 

used. A systematic approach was used to identify the size of the hidden layer. This 

approach is discussed in detail by Gamal El-Din and Smith (2002). In the present study, 

from the initial testing of the model, it was found that the smallest size of the hidden layer 

that allowed the network to converge was 3 nodes. The size of the hidden layer was 

increased incrementally from 3 nodes to 10 nodes with increments of one node and the 

parsimonious model that gave the best results was selected.

3.7.5 Training the Networks

In the modelling that was undertaken in this study, a batch-mode (weight updates 

were done after each epoch and not after each training pattern) back-propagation 

algorithm was used in the course of training and the network was saved at the point of 

minimum training error. The input data were scaled linearly into the range « 0 , 1 »  

before being presented to the networks. From the initial model testing conducted in the 

present study using three different transfer functions by the hidden layer (logistic, tanh, 

and Gaussian), it was found that the logistic and tanh functions yielded the best results, 

and therefore, were used for further modelling efforts. A linear, function in the output 

node was used as the initial testing of the model showed better results when using a linear 

function in the output node.
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A systematic approach suggested by Gamal El-Din and Smith (2002) was used to 

determine the number of training epochs at which training was stopped. It will be seen 

later that this approach allowed the neural network to learn the important features from 

the data without memorizing it. In the present study training was stopped after 25, 50, 

100, 150, 200, 300, 400, 500, 750, 1000, 1250, 1500, 1750, 2000, 2500, 3000, 3500, 

4000, 4500, and 5000 epochs for every candidate model that was tested. Each time 

training was stopped, the model was tested against the validation data set. For the TSS 

modelling, 14 days of hourly data were available for modelling. The data for the period 

of July 3, 6:00 hours till July 5, 6:00 hours were used for validating the network and the 

rest of the data set was used for training. For the COD modelling, 10 days of hourly data 

were available for modelling, out of which, the two-days stretch of July 3, 6:00 hours till 

July 5, 6:00 hours was used as the validation data set and the rest of the data were used 

for training.

3.8 RESULTS OF THE NEURAL NETWORK MODELLING

The performance of the networks was measured using the coefficient of 

determination (R2), which is a statistical indicator that compares the accuracy of the 

model to the accuracy of a trivial benchmark model wherein the prediction is just the 

mean of all the samples. A perfect fit would result in an R2 value of “1”, a very good fit 

near “1”, and a very poor fit near “0”. The coefficient of determination, R2, is 

mathematically described as follows:

i=n ~ o
Kyi - Yi)

R2 = 1 _ J=l----------  [3.2]
KVi -y )2i=1

where yi is the actual output value, y-, is the output value predicted by the network, y is 

the mean of y values, and n is the total number o f data records.
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For each of the TSS and COD models, in order to try 5 different sizes of moving 

window, 8 different sizes of hidden layer and stopping training at 20 different numbers of 

epochs, a total of 800 (5*8*20) runs was conducted twice. Once when the logistic 

function was used by the hidden nodes and the second when the tanh function was used 

as the transfer function in the hidden layer. For each size of moving window, 8 different 

sizes of hidden layer were tried, and for each one of them, training was allowed for 20 

different number of cycles.
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The effect of increasing the size of moving window.

It was found that for almost all the candidate models that were able to converge, as 

the number of epochs that was used in training increased, the value of the R2 for the 

training set increased and the maximum value was obtained when training was allowed 

for 5000 epochs (the maximum number of epochs that was used). On the other hand, the 

maximum value of R2 for the validation data set was always obtained at a much lower 

number of epochs (on one instance was as low as 50 epochs). Candidate models that were 

able to achieve a value of R2 higher than 0.5 for both training and validation sets were
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considered as being able to converge. For any candidate model that was able to converge, 

the model was allowed to train on the training data set for a number of epochs that 

allowed the model to generalize the best, i.e., the number of epochs after which the 

maximum R2 value for the validation data set was obtained.
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60004000 50001000 2000 30000
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Figure 3.10 Results obtained by the TSS model.

When averaging the results of the candidate TSS models that were able to converge, 

the results are shown in Figure 3.9 from which it is evident that using a moving window 

of size 3 hours yielded the best results for the validation data set for the TSS model. 

Similar findings were obtained for the COD model. Among the candidate TSS models 

tested that used a 3 hour moving window, the model structure that used 9 hidden nodes 

with the tanh function as the transfer function yielded the best performance in terms of 

the ability of the network to learn the training data set and to generalize well when tested 

against the validation data set. The results obtained by this model structure are shown in 

Figure 3.10 from which it is clear that continuing training beyond 500 epochs did not 

improve the value of R for validation and had a slight improvement in the value for the
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training set. Therefore, it was decided to stop training of the final model for TSS after 

500 epochs had elapsed and the model predictions for the effluent TSS are shown in 

Figure 3.11 and Figure 3.12 for the training and validation data patterns, respectively.

300 n
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300200 250100 1500 50

Pattern #

Figure 3.11 Predictions obtained by the TSS model for the training data set.

It is clear from Figure 3.12 that the neural network model for the TSS was able to 

generalize well when tested against the validation data set. Figure 3.11 shows that the 

actual effluent TSS values were generally underestimated by the model during dry 

weather periods of the first week of sampling, while were overestimated during dry 

weather periods of the second week. Both the flow and influent TSS during dry weather 

flow periods of the second week of sampling were higher than that of the first week, and 

despite that, the effluent TSS values were similar. The higher temperature encountered 

during the second week of sampling can explain the better removal of TSS. When the 

temperature of wastewater increase, the viscosity of the water will decrease, and as a 

result, the settling velocities of the particulates will increase and better removals will be 

attained.
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Figure 3.12 Predictions obtained by the TSS model for the validation data set.

The model predictions were better during wet weather conditions. The quality data 

of untreated wastewater always has an inherent random component which is more 

pronounced during dry weather conditions. When a rainfall event occurs, depending on 

the intensity and duration of the storm, the flow will increase and in most cases the 

influent TSS will also increase due to the first flush effect. During such events, the 

increase in influent TSS will mask the inherent random component within the data and as 

a result, it will be easier for the neural network to recognize the increase in both the flow 

and the influent TSS and predict the TSS of the effluent wastewater, and therefore, the 

prediction capability of the neural network model was much better during rainfall events. 

From a process control point o f view, it is important to predict the performance of the 

tank during process upsets such as rainfall events.

Among the candidate COD models tested that used a 3 hour moving window, the 

model structure that used 9 hidden nodes with the tanh function as the transfer function
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yielded the best performance. Figure 3.13 shows the results obtained by this model 

structure from which it is clear that allowing the network to train beyond 3500 epochs did 

not have any pronounced improvement in the ability of the model to generalize to the 

validation data set. Therefore, training of the final model for COD was stopped after 3500 

epochs and the model predictions for the effluent COD are shown in Figure 3.14 and 

Figure 3.15 for the training and validation data patterns, respectively. When tested 

against the validation data set, the ability of the COD neural network model to generalize 

well is evident from Figure 3.15. The model was able to predict the decrease in effluent 

COD values during the course of rainfall events that were encountered during the 

sampling periods. The reason that the COD model gave better predictions than that of the 

TSS model is the strong correlation that existed between the influent and effluent COD 

data. The Pearson correlation coefficient was calculated between the effluent and influent 

COD data sets lagged by one, two, three, and four hours and was found to be 0.804, 

0.779, 0.726, and 0.649, respectively.
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Figure 3.13 Results obtained by the COD model.
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Figure 3.14 Predictions obtained by the COD model for the training data set.
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Figure 3.15 Predictions obtained by the COD model for the validation data set.
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3.8.1 The Neural Network Models Against Traditional Regression Models

The prediction ability of the neural network models developed was tested against 

that of traditional regression models of the form of Equation 3.1 In order to do that, 

nonlinear regression was used to estimate the values of the parameters a, b, and c. The 

influent flow values recorded during the preceding three hours were averaged to calculate 

the surface overflow rate q. Similarly, the influent TSS and COD values measured during 

the preceding three hours were averaged to calculate the influent concentration S. The 

one-hour-ahead effluent TSS and COD values were used to calculate the fractional 

removal E. The R2 value obtained by the regression model for the effluent TSS was

0.281, which is very low compared to the values obtained by the neural network models 

(0.586 for training and 0.629 for validation). The regression model for the effluent COD 

gave an R2 value of 0.191, which is also much lower than that of the neural network 

model (0.868 for training and 0.744 for validation).

3.9 DISCUSSION

Models such as the ones presented here may have two potential uses. The first, for 

simulating the response of the sedimentation tank to different flow and influent quality 

profiles in order to choose between different operation strategies. The response of the 

sedimentation tank to different load conditions then can be used as an input to the models 

of the downstream biological processes. The second, for online control of the 

sedimentation basin. This could be of great value especially if chemicals are to be added 

to raw sewage to enhance TSS and COD reduction or for the purpose of phosphorus 

reduction. However, in order to use this current model for the purpose of online control, 

the inputs to the model have to be measured online.

The flow volume is measured online and can be incorporated into such a use. On 

the other hand, it is impossible to measure the TSS online. However, the quality of 

wastewater with respect to colloidal and suspended matter may be measured by turbidity. 

Linear relationships between total suspended solids and turbidity of wastewater treated
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by an activated sludge system have been established. Although this type of relationship 

for untreated wastewater is much more difficult to establish, some researchers 

(Vanderborght and Wollast, 1990; Bertrand-Krajewski, 1992) have developed such 

relationships for the purpose of monitoring the total suspended solids on real-time basis.

Online COD analyzers are available, however, they are expensive and therefore 

more frequently used in the control of biological processes. They utilize ozone for the 

oxidation of the organic matter. Londong and Wachtl (1996) used a COD analyzer to 

monitor the influent untreated wastewater to a treatment plant in Germany. Instead of 

monitoring the COD itself, other parameters that can be correlated to the influent COD 

and in the same time can be measured online may be utilized. Among these parameters 

are the conductivity and turbidity. They have the ability to give information about the 

dissolved and suspended load in the wastewater flow. Hack and Kohne (1996) found very 

strong correlation between each of the conductivity and turbidity and the influent COD to 

a treatment plant. Finally, it should be mentioned that, although the models were trained 

on a limited amount of data, they still were able to give adequate predictions. If online 

analyzers were to be used this would facilitate the collection of more data that can be 

used to train and validate the model, and in such case, a scheduled retraining of the 

networks may be performed in order to check the validity of the models.

3.10 CONCLUSIONS

Most of the modelling of full-scale sedimentation tanks has been done using 

empirical models that utilize daily average data. In the present study a neural network 

model was developed to predict the dynamic behavior of a full-scale sedimentation tank. 

The model makes one hour in-advance predictions of the total suspended solids and 

chemical oxygen demand in the effluent wastewater from the sedimentation tank using 

flow data as well as influent TSS and COD data. A systematic approach was used in the 

building process of the model. The identified model for predicting the primary effluent 

TSS gave an R2 value of 0.63 and 0.59 for the training and validation data sets, 

respectively. R2 values of 0.87 and 0.74 were obtained by the model used to predict the
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primary effluent COD for the training and validation data sets, respectively. The 

predictions of the effluent COD were better than that of the effluent TSS and the reason 

for that was the stronger correlation that was found to exist between the influent and 

effluent COD data. The few rainfall events that occurred during the sampling period had 

a pronounced effect on the quality of the effluent wastewater from the sedimentation 

tank. During these events, the total suspended solids for the effluent increased, however, 

the effluent chemical oxygen demand decreased. The models were able to distinguish 

those deviations from the dry weather values. Such models have the potential to be 

utilized for the purposes of simulation and online process control.
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CHAPTER 4. A COMBINED TRANSFER FUNCTION-NOISE MODEL TO 

PREDICT THE DYNAMIC BEHAVIOR OF A FULL-SCALE PRIMARY

SEDIMENTATION TANK*

4.1 INTRODUCTION

In order to reduce the pollutional load on receiving streams, more stringent water 

quality standards will be applied in the near future, and therefore, many wastewater 

treatment plants will be forced to improve their performance in order to comply with 

these future standards. The conventional remedy to this problem is to enlarge the existing 

facility, which is costly and not always feasible. The alternative option is to improve the 

management and operation scheme of the plant.

Most of the existing treatment facilities have been designed using traditional time- 

invariant criteria that are derived from rather simple models that are identified by 

parameters obtained from steady state treatability studies and/or historical data (Novotny 

et al., 1992). Such facilities are then operated using an invariant (steady state) mode of 

operation which dictates that the input cannot exceed the bottleneck capacity of the 

treatment process and any excess is bypassed prior to the bottleneck and discharged to the 

receiving environment without treatment. In contrast, input into the system and the same 

treatment process dynamics are subject to high variability. The conflict between the 

modes of design and operation on one hand, and the modes and types of input and 

processes on the other, is one major reason why existing wastewater treatments plants 

often do not comply with applicable water quality standards (Novotny et al., 1992). 

Therefore, a conversion of operation to a dynamic real-time control (RTC) scheme may 

be a promising solution to this problem.

It is only recently that RTC systems have been used to control treatment plants 

(Capodaglio, 1994). The system requirements, objectives and components of RTC 

systems have been discussed elsewhere (Novotny et al., 1992; Capodaglio, 1994).

A part of this chapter has been accepted for publication. Gamal El-Din, A. and D.W. 
Smith, Water Rsearch (February 2002).
Another part of this chapter has been accepted for publication. Gamal El-Din, A. and 
D.W. Smith, Journal of Environmental Engineering and Science (April 2002).
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The ideal operational models in a RTC system for control of flow and/or pollution load 

discharges from urban sewerage and industrial wastewater treatment plants ought to be 

adaptive in response to both changes of the input waste loads and to the variation in the 

system parameters (Novotny et al., 1992).

One of the adaptive modelling technologies available to accomplish this task is the 

methodology developed by Box and Jenkins (Box and Jenkins, 1976), where both 

univariate and multivariate (transfer function) models may be used for analyzing time 

series data. These models are stochastic system models that are obtained by the system- 

identification strategy. They may retain the most important characteristics of the dynamic 

system they represent, without the need for extensive knowledge of the physical system 

being modelled. Since only observations of measurable inputs and outputs are needed for 

the identification of stochastic models, such models have to be developed specifically for 

the set of data under consideration, and then they constitute an adequate representation of 

the physical system only until a major change in the population generating the 

observations occurs (Capodaglio et al., 1990). When such changes do take place, 

stochastic models describing the system can be re-identified and/or re-estimated. This 

updating task is minimal in contrast to the tedious calibration process required by 

conventional deterministic models.

Stochastic models have been used in several applications to represent different 

types of dynamic systems with random features (Box and Jenkins, 1976). In the present 

paper, the Box and Jenkins methodology is utilized in order to study the performance of a 

full-scale primary sedimentation tank at the Gold Bar Wastewater Treatment Plant 

(GBWWTP), the largest treatment plant in the Edmonton area. The motivation behind the 

current modelling efforts is to improve the performance of the existing plant by exploring 

possible control strategies that might be implemented in the future. Firstly, it was 

necessary to study the stochastic nature of the influent and effluent streams, and the 

dynamic relationship between them.
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4.2 STUDY

The Gold Bar Wastewater Treatment Plant (GBWWTP) was constructed in 1956 on 

the southwest shore of the North Saskatchewan River. The present capacity of the plant is 

950 ML/d for primary treatment and 420 ML/d for secondary treatment. The plant treats 

domestic and industrial sewage from the City of Edmonton. There are two primary 

sections in the plant, Primary Settling Tanks Group 1 (PST 1), which includes settling 

tanks #1, 2, 3, and 4, and Primary Settling Tanks Group 2 (PST 2), which includes 

settling tanks #5, 6, 7, and 8. Primary sedimentation tank #5 was selected for sampling. 

Detailed description of the GBWWTP and the sampling that was conducted is provided 

elsewhere (Gamal El-Din and Smith, 2002).

Table 4.1 identifies the two data sets that were collected. The first survey was 

conducted between 6:00 a.m. June 28 and 6:00 a.m. July 5, 1999 and grab samples were 

taken manually every one hour. The laboratory work included total suspended solids 

(TSS) of primary influent and TSS of primary effluent. The second survey was conducted 

between 6:00 a.m. August 20 and 6:00 a.m. August 27, 1999, and as for data set #1, grab 

samples were collected manually every one hour. The survey program for the second 

week was expanded to include the following: (1) TSS of primary influent; (2) TSS of 

primary effluent; (3) chemical oxygen demand (COD) of primary influent; and (4) COD 

of primary effluent. For both surveys, the flow rate of the primary influent entering PST 2 

was also recorded. All analyses were performed in triplicates in accordance with standard 

accepted practice (APHA, 1995). Figure 4.1 shows the data collected during the first 

survey. Data set #2 is shown in Figure 4.2 and Figure 4.3.

Table 4.1 Data obtained from God Bar Wastewater Treatment Plant.

Survey# 

(Data set #)

Sampling

frequency

Dates Data

1 Hourly June 28-July 5, 1999 Flow rate, influent TSS, effluent 
TSS

2 Hourly August 20-27, 1999 Flow rate, influent TSS, influent 
COD, effluent TSS, effluent COD
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Figure 4.1
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data set #1.
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Figure 4.2
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4.3 QUALITATIVE DATA ANALYSIS

Some of the common patterns encountered in a time series are: an overall trend 

pattern (increase or decrease), a seasonal pattern, and a statistical pattern. The first two 

patterns are visual patterns that can generally be recognized when a time series is 

displayed in graphical form. On the other hand, statistical patterns cannot be identified by 

plotting the values of a time series and a statistical tool, like the Box-Jenkins method, has 

to be utilized. It is evident from Figure 4.1 to Figure 4.3 that there is no obvious trend in 

any of the series plotted. This was expected as the short duration over which each data set 

was collected (one week) did not allow any overall trend pattern to be obvious.

Seasonal behavior in a time series is simply the tendency of the series to repeat a 

certain pattern of behavior at regular time intervals called “seasons” (Box and Jenkins, 

1976). The number of time series periods within a season is called the “periods per 

season”. In the current study, seasonal behavior is expected due to the strong diurnal 

variation in wastewater flow data, and because hourly data were collected, the number of 

periods per season (denoted “S” in time series literature) is 24. One would expect 

relationships to occur between observations for successive hours in a particular day and 

between the observations for the same hour in successive days. Therefore, the situation is 

somewhat like that in a two-way analysis of variance model. Figure 4.1 to Figure 4.3 

show an apparent seasonal pattern in the flow series, however, a much less evident 

seasonal pattern exist in the quality series (TSS and COD).

During the first survey, five rainfall events occurred and are indicated in Figure 4.1. 

Only one rainfall event occurred during the second week of sampling and is indicated in 

Figure 4.2. In the present study, the influent TSS increased substantially during most of 

the six rainfall events that were encountered during the sampling periods. During rainfall 

event # 6, which occurred during the second survey, the influent COD values had a steep 

drop from approximately 730 mg/L to around 450 mg/L, then increased gradually after 

the end of the event.
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4.4 M ODEL DEVELOPMENT

In the following sections a brief description of the model development is provided. 

Detailed conceptual and mathematical representation of the Box-Jenkins methodology 

can be found elsewhere (Box and Jenkins, 1976).

4.4.1 The Box-Jenkins Methodology

When representing the behaviour of a time series by the Box-Jenkins methodology, 

two general approaches may be used: the linear filter model approach and the transfer 

function model approach. The linear filter model approach is based on the idea that a time 

series in which successive values are highly dependent can be usefully regarded as 

generated from a series of uncorrelated independent “shocks” a t , which are random 

drawings from a fixed distribution, usually assumed normal and having mean zero and 

variance o 2a . Such a sequence of random variables a t ,a t_,,at_2,... is called a “white 

noise process”.

A “linear filter” is a model that transform the white noise process at to the process 

that generated the time series, z t , and can be represented mathematically by the equation 

z t = i|/(B)at . This transformation is accomplished through the operator

oo

v|/(B) = l + i|/1B + i|/2B2 +... = ^M / jBJ with\|/0 = l [4.1]
j=0

where B is the backshift operator such that Bja t = a t_.. In order to have a parsimonious

representation of the stochastic process represented by Equation 4.1, it is usually 

advantageous to write
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i|/(B) = ^  [4.2]
m

where 0(B) is the moving average operator of the stochastic model, and is defined as 

0(B) = 1 -  0jB -  02B2 - . . .  -  0qBq; <[)(B) is the auto-regressive operator of the stochastic 

model, and is defined as c|)(B) = 1 -  (j),B -  (j)2B2 - . . .  -  (|>pBp; p and q are the orders of the 

stochastic model.

The linear filter model can represent any univariate Auto-Regressive Integrated 

Moving-Average (ARIMA) (p, d, q) model where d is the order of regular differencing 

needed to achieve stationarity. ARIMA models for time series with regular seasonal 

fluctuations have the general notations ARIMA (p, d, q)x(P, D, Q)s. The term (p, d, q) 

gives the order of the nonseasonal part. The order of the seasonal part is given by the 

term (P, D, Q)s where S is the number of observations in a season (24 in the current 

study). For example, the notation ARIMA (1, 0, 2)x(l, 0, 1)24 describes a seasonal 

ARIMA model for hourly data with the following mathematical form:

(1 -  0tB -  02B 2 )(1 -  0 tB 24) 

( l - f B X l- O h B 24)
Yt =H + ^......-1-...,.^ .................... [4-3]

where p is a mean term; are the regular moving average and auto-regressive

parameters; Q ,,® , are the seasonal moving average and auto-regressive parameters.

In contrast to ARIMA models, which describe the behaviour of single time series in 

terms of white noise, transfer function models can represent more complex systems in 

which the output is the stochastic response to one or more measured input series. The 

general form of a transfer-function noise model for the single input case is
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Y t = o ( B ) X t_b + N t [4.4]

where Yt is the output series at time t; u(B) is defined as o(B) = (o0 + u,B + u 2B2 + • • •) 

and is known as the impulse response function (it is the transfer function part of the 

model); X t_b is the input series at time t - b ,  where b is a delay parameter; and N t is a 

noise process at time t, defined by the linear filter N t = v|/(B)at and known as the 

stochastic model component (it is the noise part of the overall model). For the multiple 

input case, the model is

Yt = Oj (B)Xu _bi + u 2 (B)X2>t_bj + • • • + N t [4.5]

The transfer function can be written

u(B) = [4.6]
6(B)

where the numerator co(B) = (ro0 -co ,B ------------- cosBs) ; the denominator

6(B) = (1 - 6jB  8rBr); s and r are the orders of the polynomials. Combining

Equations 4.5 and 4.6 yields

«>i(B)x  { co2(B)
1 5j(B) 62(B)

Yt = T Y ^ XM-b, + l T 7 ^ X 2,-b2 + -  + N t [4.7]

Models represented by Equation 4.7 are usually called “transfer-function noise” models. 

The general approach for building such models of this type consists of identification, 

estimation (or fitting), and diagnostic checking.
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4.4.2 Model Identification and Estimation

In the current study, the identification of a combined transfer function-noise model 

employed two separate steps; the first was the identification of the transfer function part 

of the model and the second was the identification of the stochastic part of the model. 

The first step was accomplished by calculating the sample cross correlation function 

rxy (k) at various lags k (see for example Figure 4.4), and then comparing it to theoretical

impulse response functions of different orders in order to obtain some idea of the delay 

parameter b and the orders r and s of the operators in the transfer function (Box and 

Jenkins, 1976).

Before a cross correlation function between an output and an input series was 

calculated, both series were transformed using the same linear filter that produces a white 

noise having the input series as its input. This transformation process is called “pre

whitening” and was first introduced in 1976 by Box and Jenkins (1976). In cases when 

the estimated impulse response function suggested the consideration of more than one 

model, candidate models were estimated and diagnostic checking was performed on them 

in order to select the best model representing the system.

In the modelling effort presented in this paper, models were estimated using the 

maximum likelihood method outlined by Box & Jenkins (1976), in which the likelihood 

function is maximized via nonlinear least squares iterations. After a satisfactory model 

for the transfer function part has been identified and estimated, study of the sample 

autocorrelation and partial-autocorrelation functions of the residuals N in Equation 4.7 

was used to identify the ARIMA model that represented the noise part at the output (see 

Box & Jenkins (1976) for details).
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Figure 4.4 Cross correlation functions for prewhitened variables. Top left graph is 

flow and effluent TSS - survey #1; top right graph is influent TSS and 

effluent TSS - survey #1; middle left graph is flow and effluent TSS - 

survey #2; middle right graph is influent TSS and effluent TSS - survey 

#2; bottom left graph is flow and effluent COD - survey #2; bottom right 

graph is influent COD and effluent COD - survey #2. Solid lines represent 

the 95% confidence limits of two standard deviations.
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4.4.3 Diagnostic Checking

After a model had been identified and estimated, it was checked to see whether it 

was an adequate model for the series. This step is called “diagnostic checking” of the 

model. Diagnostics that are applied to the fitted model include residual diagnostics and 

parameter diagnostics. In the current study, a variety of checks were applied to each 

model, and the test results were considered as a group. One technique which can be used 

for diagnostic checking is “overfitting”. After the identification of what is believed to be 

the correct model, a more elaborate model, that contains additional parameters covering 

feared directions of discrepancy, is fitted to the data in order to put the identified model 

in jeopardy. In the present study, when a model was overfit, only one parameter was 

overfit at a time; numerator and denominator parameters were not overfit simultaneously.

4.4.3.1 Parameter Diagnostics

Parameter diagnostics included parameter confidence limits and correlations 

between parameters. In the current study, the 95% confidence limits (two standard errors) 

of a parameter were used to test the importance of including this parameter in the model. 

If the 95% confidence range included zero, then there is a strong possibility that the true 

value of the parameter is in fact zero (i.e., the parameter is not significant). A relatively 

high correlation between two parameters may indicate that one of them may probably be 

eliminated without affecting the adequacy of the model, and therefore, examining the 

measure of correlation between parameters was helpful in determining if  a model was 

overspecified.

4.4.3.2 Residual Diagnostics

The statistical assumptions about the random error component a t , implied by the

theoretical Box-Jenkins methodology are such that the model residuals should be white 

noise, in other words, should be uncorrelated and normally distributed around a zero 

mean. Residual diagnostics are tools by which these assumptions can be tested. Further
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more, models that have met these assumptions are compared using closeness-of-fit 

statistics applied to the residuals. Some of the statistics that can be computed as part of 

the residual diagnostics are the residual mean (mean error) and mean percent error.

Assuming that the form of the model is correct, the estimated autocorrelations of 

the residuals would be uncorrelated and distributed approximately normally about zero 

(Box and Jenkins, 1976). Therefore, correlograms of the residuals (see Figure 4.5 for an 

example) were examined for correlations greater than two standard deviations since large 

correlations may have indicated model inadequacies, especially if  they were at lower 

lags.

Because of the fact that individual autocorrelations may fall within acceptable 

limits, but, for example, the first 20 autocorrelations combined as a group may be too 

high, a white noise check that considers groups of residual autocorrelations was 

important. In order to test the null hypothesis that a current set of autocorrelations is 

white noise, test statistics were calculated for different total numbers of successive lagged 

autocorrelations using the Ljung-Box formula (Ljung and Box, 1978)

m -.2

Q = n(n + 2 ) £ — 4—  [4.8]
£ ? ( n - k )

where m is the total number of lagged autocorrelations under investigation and rk is the 

sample autocorrelation of the residuals at lag k (Box and Jenkins, 1976). The test is made 

by comparing the Q-statistic with a critical test value (the chi-square value) and if  the Q- 

statistic is larger than the critical test value, then one would conclude with a certain 

degree of confidence that the residual autocorrelations, being tested as a whole, are 

significant. The Q-statistic is compared to the chi-square value at (m -P )  degrees of 

freedom, where P is the number of parameters estimated. The Q-statistic was calculated 

for m = {l2,24,36, and 48}.
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Figure 4.5
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Autocorrelation and partial autocorrelation functions for residuals. Top 

graph is from model M -l; middle graph is from model M-2; bottom graph 

is from model M-3. Lags from 0 to 50 are shown on the vertical axes. 

Solid lines represent the 95% confidence limits of two standard deviations. 

For description of the models, see Table 4.2.
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Figure 4.6
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Cumulative periodogram check on residuals. Top graph is from model M- 

1; middle graph is from model M-2; bottom graph is from model M-3. 

Lags from 0 to 50 are shown. Dashed lines represent the 95% confidence 

limit lines of the Kolmogorov-Smimov white noise test. For description of 

the models, see Table 4.2.
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When modelling seasonal time series like the ones encountered in the present study, 

it may be feared that the periodic characteristics of the series have not been adequately 

taken into account. Such departures from randomness most probably will not be 

identified by the correlogram of the residuals because periodic effects will typically dilute 

themselves among several autocorrelations (Box and Jenkins, 1976). On the other hand, 

the periodogram is a device that is especially designed for the detection of periodic 

patterns in a background of white noise. It is another way of analyzing a time series based 

on the assumption that it is made up of sine and cosine waves with different frequencies 

(Box and Jenkins, 1976). This device is used by the Box-Jenkins methodology to provide 

an additional residual check that is strongly recommended when dealing with seasonal 

series, and hence, was one of the checks that were used in the current study. The 

definition of the periodogram assumes that the frequencies are harmonics of the 

fundamental frequency 1/n where n is the number of residuals. If this assumption is 

relaxed and the frequency is allowed to vary continuously in the range 0-0.5 cycles, the 

periodogram is then referred to as the sample power spectrum. It has been shown by 

Bartlett (1955) that the power spectrum for white noise has a constant value 2a 2a over the 

frequency domain 0-0.5 cycles where cs2a is the variance of the white noise. Therefore, 

for a theoretical white noise process, if the normalized (with respect to c 2a) cumulative

power spectrum is plotted against the frequency/ one would have a theoretical straight 

line running from (0, 0) to (0.5, 1). If the model is adequate, then the plot of the estimated 

normalized power spectrum against the frequency /  (see Figure 4.6 for an example) 

would be scattered about the theoretical straight line joining the points (0, 0) and (0.5, 1). 

Using the Kolmogorov-Smimov white noise test, 95% confidence limit lines were placed 

about the theoretical line (Box and Jenkins, 1976) (see Figure 4.6 for an example).

The normality of residuals was checked by examination of the histogram (see 

Figure 4.7 for an example) and normal probability plot (see Figure 4.8 for an example) of 

the residuals.
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Figure 4.7
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models, see Table 4.2.
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Figure 4.8 Normal probability plot of the residuals. Top graph is from model M -l;

middle graph is from model M-2; bottom graph is from model M-3. For 

description of the models, see Table 4.2.
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Figure 4.9 Residuals vs. predicted values. Top graph is from model M -l; middle 
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description of the models, see Table 4.2.
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Figure 4.10 Residuals vs. input series. Top graphs are from model M -l; middle graphs 

are from model M-2; bottom graphs are from model M-3. Left graphs are 

residuals vs. flow; right graphs are residual vs. influent TSS (influent 

COD in the case of model M-3). For description of the models, see Table 

4.2.

The residuals were also checked for homoscedasticity (constant error variance over 

all observations). This was done by examining a plot of the residuals versus the fitted 

values (see Figure 4.9 for an example). Finally, the independence of the residuals from
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the input series was determined by examining a plot of the residuals versus the input 

series (see Figure 4.10 for an example) for any evidence of trends.

4.4.3.3 Closeness-of-Fit Statistics

Among the closeness-of-fit statistics are the mean absolute error, residual standard 

error, mean absolute percent error, and the index of determination “R ”. These are 

descriptive statistics that are useful for comparing different models that all passed the 

diagnostic checking step. For each candidate model that has been tested, all of the above 

mentioned statistics were calculated. In addition, plots of the correlogram, periodogram, 

histogram, and normal probability of residuals were drawn and white noise checks of the 

residuals were conducted in order to check the validity of the models.

4.5 QUANTITATIVE DATA ANALYSIS

It is the goal of this section to describe the building of a useful stochastic dynamic 

model which explains how and to what extent influent flow rate, TSS and COD and noise 

affect effluent TSS and COD. Before turning to transfer function models, one should see 

how much of the variation in Yt can be explained by a stochastic time series model

alone, which does not rely on any input variables as a predictor and it would be 

disappointing if  a combined transfer function-noise model cannot do better (Box and 

Jenkins, 1976). Later in this section, it will be seen that the addition of a transfer function 

component will improve the prediction, and with the use of a transfer function model by 

itself (no noise component), the performance was worse than with a noise model by itself 

(no transfer function component).

In all the modelling that has been conducted, time series data were split into two 

parts, one for estimating the model parameters (i.e. calibrating the model) and the other 

for validating (i.e. verifying) the model. After a model has been estimated, the validation 

data set was used to judge the accuracy of the forecasts generated by the estimated model. 

This was done by calculating the R2 value for the validation data set and comparing it to
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the value computed for the estimation data set. Each of the two surveys conducted lasted 

one week. Data of the first five days of the week were used in estimation while data of 

the last two days were used in validation.

Table 4.2 Mathematical representation of the models.

M
od

el
no

.

Su
rv

ey
no

.
Output Inputs Model form and parameter estimates

M-l 1 Effluent
TSS
(Yt)

Influent 
flow (X ,t)
and
influent TSS
(X2lt)

CD, n CD, n 1
Yt = — Xlt , + - ^ X 2t , + --------------- at

4 1 ’ 1 ' (1 -  cjijB) *
co,0 = 0.222(0.022)
cd20 =0.034(0.015)

(1), =0.716(0.07)

M-2 2 Effluent
TSS
(Yt)

Influent 
flow (Xl t ) 
and
influent TSS 
(X2,t)

CD. n CD, n 1
Yt = - ^ X lt , + - ^ X 2t , + -----------at

1 M1 1 2,tl (l-<t>,B) 4
co10 =0.173(0.025)
cd20 =0.053(0.024)

f  =0.648(0.072)

M-3 2 Effluent
COD
(Yt)

Influent 
flow (Xl t ) 
and
influent 
COD (X2>t)

G>1 n CO? n
Yt = - * x u l +------^ — X 2t ,

1 ’4 (1 -6 2]B) 2,t' 1

1
+ (l-( |)1B -(t,2B2) a4

cd, 0 =-0.135(0.046) 
cd20 =0.170(0.024)
821 =0.757(0.036)

cj), = 0.648 (0.097) c()2 =0.182 (0.096)

Number in parentheses indicates standard error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

4.5.1 Survey #1

The objective was to build a transfer-function noise model that links the effluent 

TSS, denoted by Yt, with the influent flow rate, denoted by Xi)t, and the influent TSS, 

denoted by X2,t. This model is denoted by M-l in Table 4.2. As was mentioned 

previously, in order to identify a transfer function model component that links an input 

variable X, to an output variable Yt , the prewhitened cross correlation function between 

the two series has to be estimated. In order to do so, a stochastic model that can 

adequately transform the input series X, into white noise was first identified, estimated, 

and validated. For the flow data, an ARIMA (2, 0, 0)x(0, 0, 1)24 model was found to 

represent the data the best, and hence, was used to transform both the flow and effluent 

TSS series before estimating the cross correlation function between the two series, which 

is shown in the top left graph of Figure 4.4. The influent TSS data series was represented 

the best by an ARIMA (1, 0, l)x (l, 0, 0), and hence, this linear filter was utilized to 

prewhiten both the influent and effluent TSS series before estimating the cross correlation 

function between the two series, which is shown in the top right graph of Figure 4.4.

Some transfer of input to output has been detected, as indicated by the significant 

spikes at lag one and two. It was clear from Figure 4.4 that the delay parameter, b, is one 

hour. Considering the 2.5 hour theoretical detention time for the tank, calculated based on 

the average flow rate recorded during the survey conducted (201 ML/d), having a delay 

parameter equal to one hour clearly indicates the presence of short circuiting in the tank. 

Theoretical residence time curves never exist in practice, especially for full-scale 

sedimentation basins, because ideal settling plug-flow conditions are never attained in 

practice due to the existence of hydraulic turbulence, short circuiting, and density 

currents (Tebbutt, 1979). Therefore, the actual detention time is likely to be less than the 

theoretical detention time calculated from the tank volume and the rate of flow.

In the present study two tracer studies (one at high flow and the other at low flow) 

for sedimentation tank #5 were conducted using water softening salt (brine) as a tracer. 

For both studies, a slug input of tracer was dumped at the influent channel and the
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conductivity of the effluent wastewater from the tank was measured at the same point that 

was used for sampling the effluent TSS and COD. At the time of dumping the tracer, the 

wastewater inflow to PST 2 was recorded to be 255 and 125 ML/d for the first and 

second tracer study, respectively. The outcome of the first study is shown in Figure 4.11. 

Time zero on the horizontal axis represents the time at which the slug was dumped. It is 

evident from Figure 4.11 that the peak concentration reached the effluent sampling point 

approximately 50 minutes (0.83 hr) from the time of dumping the tracer. The flow to PST 

2 of 255 ML/d at the time of dumping the tracer corresponds to a theoretical detention 

time of 1.8 hr. Although not shown here, the outcome of the second tracer study also 

indicated the presence of short-circuiting. These findings support using a delay parameter 

“b” of one hour in the transfer function component of the model.

10.5 -

R2 = 0.846

♦ ♦♦
Su
o

- Sss

■oaoU

0 20 40 60 80 100 120

Time (min)

Figure 4.11 Outcome of the first tracer study conducted at high flow.

Although it was not possible to identify from Figure 4.4 whether the system 

behaves approximately according to some first-order transfer function, or whether a 

second-order model would be better, the cross correlation function indicated that a 

transfer function model with a numerator order of zero or one, and a denominator order 

of zero might be appropriate. Therefore, it was decided to fit several reasonable models
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and select the best one that represents the data based on the diagnostic checks that were 

discussed earlier. It was found that the parsimonious model that best represented the data 

had a transfer function model component of order (0, 0, 1), that is both the numerator and 

denominator were of zero order and the delay parameter was equal to one time unit (one 

hour), and a noise model component of the form ARIMA (1, 0, 0). The equation for this 

model is shown in Table 4.2 along with values of the estimated parameters and their 

standard errors of estimate.

4.5.2 Survey #2

For the data that were collected during this survey, two transfer-function noise 

models were built in order to represent the dynamics of the primary sedimentation tank. 

The first model, denoted by M-2 in Table 4.2, links the effluent TSS, denoted by Yt, with 

the influent flow rate, denoted by Xi;t, and the influent TSS, denoted by X2,t. The second 

model, denoted by M-3 in Table 4.2, links the effluent COD, denoted by Yt, with the 

influent flow rate, denoted by Xi,t, and the influent COD, denoted by X2,t. An ARIMA 

(1,0,2) model was used in order to transform the input flow series into white noise before 

estimating the cross correlation function between it and the effluent series. The influent 

TSS series was prewhitened using an ARIMA (1, 0, 0) model. An ARIMA (1, 0, 1) 

model was used to transform the influent COD series into white noise.

After the prewhitening process, the estimated cross correlation functions were 

estimated and are shown in middle and bottom graphs of Figure 4.4 from which it is 

evident that the delay parameter is equal to one hour. For model M-2, it was not clear if  a 

transfer function model with a numerator order of zero or one should be used, however, it 

was clear that a denominator order of zero should be used. It was found that the model 

that best represented the TSS data had a transfer function model component of order (0, 

0, 1), and a noise model component of the form ARIMA (1,0, 0). This model structure is 

identical to that of model M -l developed for the TSS data of survey # 1. For model M-3, 

the cross correlation function between the transformed influent and effluent COD series 

clearly indicated a transfer function model with a denominator of first order. On the other
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hand, the type of transfer function that links the flow data with the effluent COD data was 

not clear from the estimated cross correlation function between the two transformed 

series. It was found that the parsimonious model that best represented the COD data had a 

transfer function model component of order (0, 0, 1) relating the influent flow series to 

the effluent COD series while of order (1, 0, 1) relating the influent COD series to the 

effluent COD, and a noise model component of the form ARIMA (2, 0, 0). Table 4.2 

shows the equations describing the models along with values of the estimated parameters 

and their standard errors of estimate.

4.5.3 Diagnostic Checking of the Models

As was mentioned previously, overfitting was used in order to test the validity of 

final models that were selected. In all instances, the 95% confidence limits associated 

with the extra (or overfit) parameters indicated that the additional parameters were not 

significantly different from zero. Additionally, there was little difference in the degree to 

which the overfitted models provided a better representation of the series being 

investigated.

For all of the three models M -l, M-2, and M-3, the standard errors for the 

parameter estimates, shown in parentheses in Table 4.2, indicated that the model 

parameters were significantly (with 95% confidence level) different from zero. Statistics 

calculated for the residuals as part of the diagnostic checks of the models are shown in 

Table 4.3. These statistics were calculated for the whole data set (including both the 

estimation and validation data sets), from which it is clear that for all of the three models, 

the mean error was not significantly (with 95% confidence) different from zero.

Residual diagnostics shown in Figure 4.5 to Figure 4.10 were performed on the 

whole data set. Figure 4.5 shows the autocorrelation and partial autocorrelation functions 

for the residuals from the models and indicates that both functions do not follow a 

specific pattern. Although few autocorrelations in Figure 4.5 appeared to be significantly 

different from zero, they were not clustered and were at high lags. In addition, they
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hardly exceeded the confidence limits. A result that is significant in the statistical sense 

need not be important in the engineering sense, and therefore, these statistically 

significant spikes were felt to be unimportant from an engineering point of view.

Table 4.3 Model diagnostics.

Model3 MEb s ca nd

2*Sfl
Vn

MPEe MAEf MAPE8 R2h

M -l 0.18 8.93 168 1.38 -2.97 6.58 15.00 0.80

M-2 -1.02 12.39 168 1.91 -7.70 8.21 18.94 0.73

M-3 1.54 21.73 167 3.36 0.17 15.43 3.47 0.90

aFor description of the model, see Table 4.2.

Mean error (mg/L).

cStandard deviation of the residuals (mg/L). 

dNumber of residuals. 

eMean percent error.
r
Mean absolute error (mg/L). 

gMean absolute percent error.

h 2 y > t)2R = 1 -  -------- - where u is the mean of the original series values Yt.
E < Y.

Table 4.4 shows the Ljung-Box white noise test for residuals and it is evident that it 

supports the serial independence of the residuals as a group. The cumulative 

periodograms for the residuals are shown in Figure 4.6, from which it is apparent that the 

points clustered closely about the theoretical line and there was no evidence of periodic 

characteristics buried in the residual series. In addition, the Kolmogorov-Smimov white 

noise test accepts the null hypothesis that the residuals series represents white noise. 

Histograms and normal probability plots of the residuals are shown in Figure 4.7 and 

Figure 4.8, respectively, which clearly support the assumption of normality. Figure 4.9 

shows plots of the residuals against predicted values. These plots show a random scatter
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around zero. Plots of the residuals versus the input series are shown in Figure 4.10. In all 

instances, the residuals appear to be independent of the input series.

Table 4.4 Ljung-Box white noise test for residuals.

Model Ljung-Box Q statistic

Lag 6 Lag 12 Lag 18 Lag 24 Lag 30

M-l 1.10(3) 7.05 (9) 20.25 (15) 40.19(21) 46.89 (27)

M-2 4.95 (3) 13.10(9) 19.19(15) 30.57 (21) 35.34 (27)

M-3 2.19(1) 7.31 (7) 12.88(13) 17.23 (19) 20.29 (25)

aFor description of the model, see Table 4.2.
L

Number in parentheses indicates degrees of freedom.

As indicated by the value of R2 shown in Table 4.3, model M -l, which is a 

combined transfer-function noise model, was able to account for approximately 80% of 

the variations within the effluent TSS data. Using only a noise component, an ARIMA (2, 

0, 0)x(l, 0, 1)24 was found to best fit the effluent TSS data of survey #1 and was able to 

account for 75% of the variations within the data. Using only a transfer function model 

component (without a stochastic component), that has the same structure of the transfer 

function component of model M -l, 60% of the variations within the data was accounted 

for. Approximately 73% of the variations within the effluent TSS data of survey #2 were 

accounted for by the model M-2. Using only a noise component, an ARIMA (1, 0, 0) was 

found to best fit the effluent TSS data of survey #2 and was able to account for 61% of 

the variations within the data. Using only a transfer function model component, 60% of 

the variations within the data was accounted for. Model M-3 accounted for approximately 

90% of the variations within the effluent COD data of survey #2. Using only a noise 

component, an ARIMA (1, 0, 0) was found to best represent the data and was able to 

account for 86% of the variations within the data. Using only a transfer function model 

component, 82% of the variations within the COD data was accounted for.
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4.5.4 Validating the Models

The one-step-ahead predictions of the models as well as the values for the R 

computed for the estimation and validation data sets are shown in Figure 4.12 to Figure 

4.14.
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Figure 4.12 One-step-ahead forecasts by model M -l. For description of the models, 

see Table 4.2.

Even though models M-l and M-2 (the TSS models) have the same structure, the 

accuracy of their forecasts for the validation data sets were different. Model M-l gave an 

R value of 0.74 for the validation data set, which was very close to the value of 0.77 

obtained for the estimation data set. However, for model M-2, the R2 value for the 

validation data set was almost half the value for the estimation data set. As it is clear from 

Figure 4.1, both the data sets used in estimating and validating model M-l included 

rainfall events that had similar characteristics in terms of the flow measured during the 

event. Therefore, because of the fact that both of the two data sets included similar
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features, model M-l was able to generalize well when it was validated with the data set 

that was not seen by the model during the course of estimation.
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Figure 4.13 One-step-ahead forecasts by model M-2. For description of the models, 

see Table 4.2.

On the other hand, during survey # 2, only one rainfall event took place (labeled 

“rain event # 6” in Figure 4.2). This Event, which commenced on August 21 at 17:00 

hours, had the highest intensity among the rainfall events that were encountered during 

the sampling periods conducted in the study. During this event the flow increased by 

more than 200% of the normal dry weather values. Because of the fact that this event was 

included in the estimation data set for model M-2, the values for the model parameters 

estimated were biased toward fitting the data points of this extreme event. Therefore, 

when the estimated model was tested against the verification data set, the accuracy of the 

forecasts was dramatically reduced as indicated by the value of the R2. The accuracy of 

the forecasts could have been improved if the sampling period would last more than one 

week in order to collect more data, especially, during rainfall events. However, this was
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not possible due to labor limitations. The COD model M-3 gave an R2 value of 0.84 for 

the validation data set, which was very close to the value of 0.88 obtained for the 

estimation data set.
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Figure 4.14 One-step-ahead forecasts by model M-3. For description of the models, 

see Table 4.2.

4.6 POSSIBLE APPLICATIONS OF THE MODELS

The primary sedimentation process at the GBWWTP is followed by biological 

treatment in a suspended growth activated sludge system, final settling, and 

microorganism reduction. However, during many of the rainfall events the capacity of the 

secondary treatment is exceeded and secondary bypass is utilized. During such events, 

real-time control of the primary sedimentation process would be of a great value in order 

to minimize the pollutional impact on the receiving water. The stochastic models 

described in the present study may be integrated into such a control scheme. The effluent 

TSS and COD would be the output variables that need to be targeted at a certain “target
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value”, which may be estimated using water quality modelling of the receiving stream. A 

combined feedforward-feedback control scheme may be implemented for the primary 

sedimentation process. The effect of measured uncontrolled sources of disturbance (such 

as influent TSS and COD), represented by the transfer function components that relate 

influent TSS and COD to effluent TSS and COD, may be accounted for by feedforward 

control. Only the effect of unmeasured sources of disturbance (such as hydraulic 

turbulence, density currents, short circuiting, measurement errors, etc.) on the output, 

represented by the “noise” process Nt in Equation 4.7, may be accounted for by feedback 

control. In such control scheme, the influent flow may be used as the measurable 

controlled variable that is utilized in order to bring the output variable back to its target 

value. Controlling the flow entering a primary sedimentation process may be 

implemented by means of flow equalization and/or flow redistribution (bringing one or 

more out-of-service tanks back to service during rainfall events).

In order to implement such a control scheme in reality, online measurements of the 

flow and quality parameters (TSS and COD) are needed. The flow volume is measured 

online at the GBWWTP and can be incorporated into such a use. On the other hand, it is 

impossible to measure the TSS online. However, the quality of wastewater with respect 

to colloidal and suspended matter may be measured by turbidity. Linear relationships 

between total suspended solids and turbidity of wastewater treated by an activated sludge 

system have been established. Although this type of relationships for untreated 

wastewater is much more difficult to establish, some researchers (Vanderborght and 

Wollast, 1990; Bertrand-Krajewski, 1992) developed such relationships for the purpose 

of monitoring the total suspended solids on real-time basis. Online COD analyzers are 

available, however, they are expensive and therefore more frequently used in the control 

of biological processes. They utilize ozone for the oxidation of the organic matter. 

Londong and Wachtl (1996) used a COD analyzer to monitor the influent untreated 

wastewater to a treatment plant in Germany. Instead of monitoring the COD itself, other 

parameters that can be correlated to the influent COD, and in the same time can be 

measured online, may be utilized. Among these parameters are the conductivity and 

turbidity. They have the ability to give information about the dissolved and suspended
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load in the wastewater flow. Hack and Kohne (1996) found very strong correlation 

between each of the conductivity and turbidity and the influent COD to a treatment plant.

The development of such a control scheme should be iterative. Using operating data 

such as the ones collected in the current study, preliminary transfer function and noise 

models are postulated and used to design a pilot control scheme. The operation of this 

pilot scheme can then be used to supply further data. As additional data for a time series 

are made available, the same model for the original series can be re-estimated and then 

used to generate new (revised) forecasts based on this additional data by moving the 

forecast origin forward in time with the length of the additional data. When the model is 

updated, either the current model is re-estimated by using the new data or a change is 

made to the model structure, i.e., a new model must be identified and estimated. 

However, since it is unlikely that the basic relationships that existed in the original series 

will change drastically because of the new data, a new model will seldom need to be 

identified. In the current study the TSS models (M-l and M-2) had exactly the same 

structure but the estimated values of the parameters were different which reflected the 

different operating conditions (such as temperature) during the two surveys conducted 

(one in May-June of 1999 and the other in August of 1999). The models described here 

are highly adaptive. In other words, they can be updated (re-estimated) on regular basis 

with minimal efforts.

4.7 CONCLUSIONS

Understanding and modelling the dynamics of a process is one of the essential steps 

towards designing a control scheme for that particular process. The objective of this study 

was to study the dynamics of a full-scale primary sedimentation tank using combined 

transfer-function noise models. The methods reported here represent a way by which 

plant data speak for themselves about the dynamics of the process. The procedure for 

identifying the models was described. A comprehensive system of diagnostic checks was 

utilized in order to validate the models. It was possible to build stochastic transfer 

function models which describe the data well. These models accounted for approximately
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76% and 90% of the total variation in the primary effluent TSS and COD response series, 

respectively. This is judged satisfactory considering normal measurement errors.

The relative importance of the two components, namely the transfer function model 

component and the stochastic (noise) component, comprising the models has been 

assessed. These results showed that the stochastic part of the model is extremely 

important, especially for the modelling of the TSS data. It was also evident that the 

transfer function component between the influent and effluent COD data was more 

pronounced than that between the influent and effluent TSS data. In other words, the 

primary sedimentation process had the ability to dampen out the variations of the influent 

TSS more effectively than its ability to dampen out the variations of the influent COD 

and this is due to the nature of the process itself. Dissolved and colloidal solids are not 

removed by the primary sedimentation process, and because a big part of the primary 

influent COD is in these forms, the variability in the influent TSS is more effectively 

dampened out by the primary sedimentation process than that of the influent COD.

With respect to the hydraulics of the tank, it was found that the tank suffers from 

short-circuiting. Despite this fact, the increase in TSS load entering the tank during 

rainfall events, that were encountered during the surveys conducted, was dampened out 

by the primary sedimentation process. In the plant studied in this project, there is no 

process control applied to primary sedimentation. The findings of the present study 

suggest that with the current operational strategy implemented at the plant, during dry 

weather flow conditions, no real-time process control is needed for the primary 

sedimentation process. However, during rainfall events, during which the secondary 

capacity of the plant is exceeded, on-line process control of the primary sedimentation 

section would be valuable in order to minimize the pollutional load on the receiving 

stream. The present paper demonstrated the ability of the Box-Jenkins transfer function 

methodology to represent the stochastic dynamic nature of the primary sedimentation 

process and to provide short-term predictions of the quality data of the primary effluent 

wastewater.
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CHAPTER 5. DYNAMIC MODELLING OF A FULL-SCALE ACTIVATED 

SLUDGE PROCESS USING A SIMPLIFIED VERSION OF THE IWA-ASM1*

5.1 INTRODUCTION

In general, the activated sludge process is a continuous or semi-continuous (fill- 

and-draw) aerobic method for biological wastewater treatment (Ganczarczyk, 1983). The 

first activated sludge treatment plant was put into operation in England in 1916. The 

activated sludge process is still one of the most widely utilized secondary treatment 

processes for treating municipal and industrial wastewaters. The main function of the 

process is the removal of biodegradable organics and the production of an effluent, which 

is low in both degradable organics and suspended solids. Both nitrogen and phosphorus 

can impact receiving water quality. As a result, research has determined several methods 

for nutrient removal from wastewater prior to disposal. One method of removal is the 

biological nutrient removal (BNR) method. BNR processes are modifications of the 

activated sludge process that incorporate anoxic and/or anaerobic zones to encourage 

nitrogen and/or phosphorus removal.

The modelling of biological wastewater treatment systems has passed through a 

sequence of events: first, the removal of organic matter only; second, nitrification; third, 

nitrogen removal by biological denitrification; and forth, phosphorus removal by 

biological treatment of wastewater. Monod (1949) described the different growth phases 

of a bacterial culture and introduced the kinetics that describe the relation between the 

exponential growth rate of bacteria and the concentration of a limiting nutrient; an 

empirical relationship that was the origin of mathematical models of continuous growth 

microbial systems. Examples of these models that describe the activated sludge process 

are McKinney (1962), Lawrence and McCarthy (1970), and Eckenfelder (1985).

Realizing the benefits to be drawn from mathematical modelling, the International 

Water Association (IWA; formerly the International Association on Water Quality 

IAWQ) formed a task group in 1983 to promote the development of practical models to

A version of this chapter has been submitted for publication. Gamal El-Din, A. and D.W. 
Smith, Journal of Environmental Engineering and Science (May 2002).
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the design and operation of biological wastewater treatment systems (Henze et al., 1987). 

Reviewing existing models was the first goal of the task group and the second goal was to 

reach a consensus concerning the simplest model able to predict the performance of an 

activated sludge system carrying out carbon oxidation, nitrification and denitrification 

(Henze et al., 1987). Activated Sludge Model No. 1 (ASM1) was the model developed by 

the IWA task group in 1987. ASM1 has proved to be an excellent tool for modelling 

nitrification-denitrification processes (Barker and Dold, 1997, Daigger and Nolasco, 

1995, Henze et al., 1995 and Zhao et al., 1997).

In order to model biological nutrient removal in complex activated sludge 

processes, the model structure requires a high dimension and the model possesses a large 

number of stoichiometric and kinetic parameters. As a result, the models have grown 

more complex over the years, from ASM1, including nitrogen removal processes, to 

ASM2, released in 1995 and including biological phosphorus removal processes, and to 

ASM2d released in 2000 and including denitrifying Phosphorus Accumulating 

Organisms (PAOs). Scientific research and model application in engineering practice 

have different goals. Whereas the detailed structure of the models is used in order to 

describe new mechanisms which have been identified in advanced research projects, 

manageable models with a moderate number of parameters but a high potential to predict 

system behavior should be the basis for model application in engineering practice (Henze 

et al., 2000). A simplified version of ASM1 is utilized in the current study in order to 

model a full-scale activated sludge tank at the Gold Bar Wastewater Treatment Plant 

(GBWWTP), the largest plant in the Edmonton area.

During the months of July and August of every year the GBWWTP, usually suffers 

from settling problems occurring in the secondary clarifier. In order to gain insight into 

the process, an extensive sampling campaign was conducted on one of the activated 

sludge tanks at the plant during the summer of 2000 and as part of this campaign two 

sampling surveys were conducted, one in May/June and the other in July/August. 

Dynamic modelling of the activated sludge process was conducted using the 

experimental data that were collected. Description of the study, model development,
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results of the modelling effort as well as conclusions and further research objectives are 

presented in the following sections.

5.2 STUDY

5.2.1 The Gold Bar Wastewater Treatment Plant (GBWWTP)

The GBWWTP was constructed in 1956 on the southwest shore of the North 

Saskatchewan River. The initial dry-weather flow capacity of the plant was 91 ML/d, 

serving the needs of a population of 250,000. The plant was expanded in 1971-72 and in 

1979-81. The present capacity of the plant is 950 ML/d for primary treatment and 420 

ML/d for secondary treatment based on both hydraulic and process capacities. 

Approximately 95% of the sewage flows from the City of Edmonton are treated at the 

GBWWTP. The Gold Bar Wastewater Treatment Plant is typical of many conventional 

activated sludge plant designed for carbonaceous BOD and suspended solids removal. It 

provides both primary and secondary treatment for the incoming raw sewage. Primary 

treatment consists of grit removal, mechanical screening, and primary sedimentation. The 

secondary treatment provides biological treatment in a suspended growth activated sludge 

system, final settling and microorganism reduction.

5.2.2 The Activated Sludge Process at the GBWWTP

At the GBWWTP there are ten rectangular aeration basins which are numbered 1 

through 10. Each aeration basin has a corresponding rectangular secondary clarifier. 

Listed in Table 5.1 are the physical dimensions of the activated sludge tanks. In the 

current study, activated sludge tank #8 was sampled. The tank is part of a unique 

configuration at the GBWWTP that is composed of activated sludge tanks #6, 7 and 8. 

This configuration is shown in Figure 5.1. The three tanks are identical in dimensions and 

configuration. The mixed liquor from the three aeration basins is combined in a 

distribution chamber that distribute the mixed liquor among the three secondary clarifiers 

#6, 7 and 8. The return activated sludge (RAS) from each of the three clarifiers is 

combined in a distribution chamber that divides the RAS among the three aeration tanks.
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The reason that aeration tank #7 is in dotted line format in Figure 5.1 is that this 

bioreactor is normally out of service while the three secondary clarifiers are normally in 

service. This was the case in both of the sampling surveys that were conducted. The 

operating strategy at the GBWWTP is to control the value of the mixed liquor suspended 

solids (MLSS) in the aeration tank by changing the flow rate of the waste activated 

sludge (WAS) and keeping the flow rate of the RAS from each of the secondary clarifiers 

#6, 7 and 8 at the same value of approximately 20 ML/d. By controlling the value of the 

MLSS in the aeration tank, the operator can control the solids residence time (SRT) of the 

activated sludge process.

Table 5.1 Physical dimensions of the activated sludge tanks.

Physical dimension Aeration basin Secondary clarifier

Number of passes 4 N/A

Length (m) 97.5 76

Width (m) 6.2 26

Depth (m) 4.5 3.9

Tank Volume (m3) 10570 7530

As shown in Figure 5.2, the aeration basin is divided into four longitudinal 

compartments or passes. Passes are connected at alternating ends. From the influent 

channel to the aeration basin, primary effluent flows northward in a Y wall channel 

between the second and third pass of each basin and at the north end of the Y wall 

channel is another channel running west that is used for discharging primary effluent into 

the beginning of the first pass. In addition to the first pass gate, set along each side of the 

Y wall channel are a number of gates for feeding primary effluent into the second and 

third pass of each basin. These gates are used in order to allow the operator to switch 

from plug flow mode to step-feed mode of operation. The normal strategy at the 

GBWWTP is to switch aeration tanks from plug flow mode (the normal mode of 

operation) to step-feed mode during the months of July and August of each year in order 

to accommodate the higher wastewater flow rates usually encountered during these two
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months. The white thick arrows in Figure 5.2 represent the points of feed of the primary 

effluent to the aeration basin.

Coarse air bubble diffusers are used to supply air for mixing and oxygen transfer to 

the mixed liquor. Control of the aeration system is done through a combination of 

automatic and manual controls. At the north end of the second and fourth pass in the 

aeration basin are two dissolved oxygen (DO) probes. Through a modulating air valve, 

DO probes automatically control the amount of air supplied to maintain a specified DO at 

the probe location. The operating strategy at the GBWWTP is to control the dissolved 

oxygen concentration in the aeration basin at 2 mg/L at all times.

After mixing and aeration, mixed liquor is discharged into a short distribution 

channel running width wise across the front of the corresponding secondary clarifier. Air 

is supplied to the mixed liquor channels to keep the solids in suspension and to provide 

final process aeration prior to clarification. At Gold Bar, rectangular secondary clarifiers
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are divided lengthwise into a number of cells. Each cell is equipped with a chain and 

flight collector and scum trough. Secondary Clarifiers #6, 7 and 8 each have four cells. 

Each cell has two manual inlet slide gates located at the south end for distributing mixed 

liquor into the tank. Just beyond the inlet slide gates is a wooden baffle wall. The baffle 

helps maintain quiescent conditions and reduces short circuiting in the clarifiers. Final 

effluent from each secondary clarifier flows over effluent weirs into common channels 

which combine together to direct the wastewater flow to the Ultra violet (UV) building 

where microorganism reduction of the secondary effluent takes place prior to discharge 

into the North Saskatchewan River.

North

Mixed 
liquor to

secondary
clarifier

Figure 5.2 A schematic diagram of aeration tank #8 -  Step-feed flow mode.

5.2.3 The Sampling Campaign

Samples were collected from both the primary effluent entering aeration tank #8 

and the secondary effluent from secondary clarifier #8. Samples were also collected from
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the mixed liquor in the 4th pass of the aeration tank and from the RAS line out of 

secondary clarifier #8. Two sampling surveys were conducted. The first survey started on 

May 23, 2001 at 9:00 hours and ended June 2, 2001 at 7:00 hours while the second 

survey started on July 28, 2001 at 9:00 hours and ended August 2, 2001 at 7:00 hours. 

During both of the sampling surveys, the wastewater flow was measured continuously at 

the effluent weir of each of the secondary clarifiers. Also both of the RAS flow rate and 

the waste activated sludge (WAS) flow rate from each of the secondary clarifiers #6, 7 

and 8 were continuously monitored. Effluent wastewater, RAS, and WAS flow rate data 

were available for download using the Supervisory Control and Data Acquisition 

(SC AD A) system at the plant.

In both surveys, bi-hourly samples were collected from both the primary effluent 

and the secondary effluent. Mixed liquor and RAS samples were collected every 6 hours. 

At 7:00 of every day during the sampling periods, the primary and secondary effluent 

samples of the previous 24 hour were taken to the laboratory at the University of Alberta. 

Each sample was divided into three portions. The first was used for total suspended solids 

(TSS) analysis. The second portion of the samples was preserved using concentrated
O

sulfuric acid and stored in the cold room at 4 C to be analyzed later for chemical oxygen 

demand (total COD, C O D tot) , total Kjeldahl nitrogen (TKN) and total phosphorus 

(T P tot)- The third portion of the samples was filtered using membrane filtration and the

filtrate was preserved using concentrated sulfuric acid and stored in the cold room at 4°C 

to be analyzed later for chemical oxygen demand (soluble COD, C O D sol) , ammonia, 

nitrate and total phosphorus (Soluble TP, T P sol)- At 7 :0 0  hours of every day during the 

sampling periods, the mixed liquor and RAS samples of the previous 24 hour were taken 

to the laboratory at the GBWWTP and were analyzed for both TSS and volatile 

suspended solids (VSS). In both of the two surveys air temperature was recorded every 

two hours. Also, both the temperature and the pH of the primary effluent and mixed 

liquor were measured every two hours. All the analysis was conducted according to the 

Standard Methods for the Examination of Water and Wastewater (APHA, 1995).
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5.2.3.1 The First Survey -  Plug Flow Mode

This survey started on May 23, 2001 at 9:00 hours and ended June 2, 2001 at 7:00 

hours. During this period all the activated sludge tanks at the plant were operated in the
O

plug flow mode. During this survey the air temperature averaged 11.8 C while the
O

temperature of the primary effluent averaged 16.6 C.
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Figure 5.3 Wastewater flow measured at the effluent weir of each of the secondary 

clarifiers #6, 7 and 8 during the first survey.

Presented in Figure 5.3 are the data for the wastewater flow measured at the effluent 

weir of each of the secondary clarifiers #6, 7 and 8. It is evident from Figure 5.3 that the 

wastewater flow values measured for each of the three clarifiers are very close indicating 

that the flow is distributed approximately equally among the three tanks. The wastewater 

flow measured at the effluent weir of secondary clarifiers #6, 7 and 8 averaged 26.7, 27.4 

and 26.6 ML/d, respectively. Two rainfall events took place during the 5th and 6th days of
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the survey, as shown in Figure 5.3, during which the flow of wastewater measured at the 

effluent weirs of the clarifiers increased substantially above normal dry weather values.
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Figure 5.4 COD of the primary effluent samples collected during the first survey.

The TSS in the primary effluent averaged 95 mg/L. Figure 5.4 presents the COD 

data for the primary effluent samples collected from which it is evident that a weak 

diurnal pattern existed in the data. The total COD averaged 521 mg/L while the soluble 

COD averaged 274 mg/L. It is evident from Figure 5.3 and Figure 5.4 that during the two 

rainfall events that were encountered during the first sampling survey the COD 

concentrations decreased below average values.

The TKN and ammonia-nitrogen data for the primary effluent samples collected are 

shown in Figure 5.5. The TKN in the primary effluent averaged 40.5 mg/L-N while the 

ammonia-nitrogen averaged 29.5 mg/L-N. It is clear from Figure 5.5 that both the TKN 

and ammonia-nitrogen in the primary effluent followed the same general trend. A strong 

diurnal pattern existed in the data presented in Figure 5.5.
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Figure 5.5 TKN and ammonia nitrogen concentrations in the primary effluent 

samples collected during the first survey.

5.2.3.2 The Second Survey -  Step-Feed Mode

The second survey started on July 28, 2001 at 11:00 hours and ended August 4, 

2001 at 7:00 hours. The step-feed mode was used for operating aeration tanks #6, 7 and 8
O

during this survey. During this survey the air temperature averaged 20.9 C while the
O

temperature of the primary effluent averaged 20.5 C. These temperatures are higher than 

those recorded during the first sampling survey. As was the case in the first sampling 

survey, the wastewater flow data measured at the effluent weir of each of the secondary 

clarifiers #6, 7 and 8 were very close indicating equal flow distribution. The wastewater 

flow measured at the effluent weir of secondary clarifiers #6, 7 and 8 averaged 30.8, 32.4 

and 30.8 ML/d, respectively. These average flow values are higher than that encountered 

during the first sampling survey.
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The TSS in the primary effluent averaged 74.7 mg/L. It should be noted that TSS 

data for the primary effluent were available for only six days of the 7-days sampling 

survey. The total COD averaged 407 mg/L while the soluble COD averaged 220 mg/L. 

These values are lower than the average values for the first survey. Both the total and 

soluble COD in the primary effluent followed the same general trend. As was the case in 

the first survey, a weak diurnal pattern existed in the primary effluent COD data. The 

TKN in the primary effluent averaged 39.5 mg/L-N while the ammonia-nitrogen 

averaged 29 mg/L-N. These values are very close to the average values for the first 

survey. As was the case in the first survey conducted, both the TKN and ammonia- 

nitrogen in the primary effluent followed the same general trend and a strong diurnal 

pattern existed in the data.

5.2.3.3 Comparison between the Two Surveys

Table 5.2 Average values for the parameters measured for the primary and

secondary effluents.

Parameter Units First Second First Second

survey survey survey survey

Primary effluent Secondary effluent

Total COD mg/L 521.5 406.7 70 54.5

Soluble COD mg/L 273.9 219.8 35.3 46.4

TKN mg/L 40.5 39.5 20 14.1

Ammonia-N mg/L-N 29.5 29 17.6 12.5

Nitrate-N mg/L-N 0.1 0 0.4 4.3

Total P mg/L-P 5.2 5.6 0.8 2.5

Soluble P mg/L-P 4.1 3.9 0.6 2.4

pH 7.3 7.2 NMa NMa

Temperature °C 16.6 20.5 NMa NMa

TSS mg/L 94.8 74.7 9.8 2.4

aNot measured
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Average values for the parameters measured for both the primary and secondary 

effluent from activated sludge tank #8 are listed in Table 5.2. Table 5.3 lists the average 

values for the parameters measured for the mixed liquor samples from the 4th pass and the 

RAS samples. While the ammonia-N concentration in the secondary effluent averaged 

17.6 mg/L during the first sampling survey, it only averaged 12.5 mg/L during the second 

survey. This was because partial nitrification took place during the second survey. 

Although nitrification in the group of activated sludge tanks 6,7 and 8 was not one of the 

treatment objectives at the GBWWTP, partial nitrification took place in the second 

survey due to the elevated water temperature of the mixed liquor in the aeration tank. 

Examining Table 5.3 reveals that the water temperature of the mixed liquor averaged
O 0

21 C during the second survey while it only averaged 16.9 C during the first one. The 

nitrate-N concentrations shown in Table 5.2 also clearly indicate that nitrification took 

place in the aeration tank during the second survey while only very slight nitrification 

occurred during the first survey.

Table 5.3 Average values for the parameters measured for the mixed liquor and

return activated sludge.

Parameter Units First Second First Second

survey survey survey survey

Mixed liquor from the Return activated

4th pass sludge

pH 7.1 7.1 NMa NMa

Temperature 0
C 16.9 21 NMa NMa

TSS mg/L 1808 1263 4196 3171

VSS mg/L 1479 1050 3386 2566

aNot measured

It will be shown later that the modelling results clearly indicate that denitrification 

was taking place in the secondary clarifiers during the second survey. This phenomenon 

was also observed during the settling tests that were conducted by the plant operators for 

the mixed liquor from the 4th pass during the period of the second survey. After
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approximately 30 minutes from the beginning of a test, sludge started to rise which was 

attributed to the release of nitrogen gas. Besides the change in the operational mode from 

plug flow in the first survey to step-feed in the second, the partial nitrification- 

denitrification that took place during the second survey were the main differences 

between the conditions encountered during the first and the second surveys.

5.3 MODEL DEVELOPMENT

The model used in the current study is a simplified version of the Activated 

Sludge Model No. 1 (ASM1) developed by the International Water Association (IWA). 

ASM1 is able to predict the performance of an activated sludge system carrying out 

carbon oxidation, nitrification and denitrification (Henze et al., 1987). In the following 

sections of this paper, this simplified version of ASM1 will be called “ASMlsp“.

ASMlsp has ten soluble and particulate components and six different processes. 

The model is presented in the matrix format in Table 5.4. This format for model 

presentation makes it easier to trace all the interactions of the different components in the 

model (Henze et al., 2000). Listed across the top of Table 5.4 by symbol are the different 

components in the model. The index i is assigned to each component. In this case, i 

ranges from 1 to 10 for the ten compounds in the model. Listed in Table 5.5 are the 

symbols, names and units of the different components in ASMlsp. In conformity with 

IWA nomenclature, insoluble constituents are given the symbol X and the soluble 

components S. Subscripts are used to specify individual components: B for biomass, S 

for substrate and O for oxygen.

The ASMl$p contains six biological processes which are conversions or transformations 

that affect the different components listed in Table 5.5. These processes are listed in the 

leftmost column of Table 5.4. The index j is assigned to each process; in this case, j 

ranges from 1 to 6 for the six different biological processes in the model. Recorded in the 

rightmost column of Table 5.4 in the appropriate row are the kinetic expressions or rate 

equations for each process.
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Table 5.4 Process kinetics and stoichiometry for ASMsp.

Component3
i-»
j'J' Processs Xs XBB,H X b ,A A iXt Xp Ss So >NO

10

>NH Process Rate pj, ML'3! ”1

1 Aerobic growth of 
heterotrophs

1 1 -  Yu lN /X B
A h ŷ Ks + Ss j V ^ o .h  y

X B,H

heterotrophs
of 1 1 i - y h 1N /X B

Ah
Ss t f  K ^O.H

Y h 2.86Yh vKs +SSy

NO

V ^ N O  +  ^NO J
hgx

3 Aerobic growth of
autotrophs

4 Death and lysis of l - f P
heterotrophs

5 Death and lysis of l - f P
autotrophs

6 Hydrolysis of -1 
particulate
organics 

Observed conversion 
rates, ML'3T''

-1

-1

4.57 - Y a

r. = Y 'F -r .i Z - i  u j 
j=i

-1 N/XB Y a Aa

^ N /X B  f p ^ N / X P

^ N /X B  ^ p i N / X P

(  S ^°NH r  S  1O

V^NH + ^NH j 

b L,B

^  X-Q.A +  ^ 0  y

X B,H

B̂,A

^ l,aX b,̂

x s / x BH
K i> d ,1T y

K x + (Xs /X BH) B’H

aAll organic compounds (1 to 7) and oxygen (8) are expressed as COD; all nitrogenous components (9 to 10) are expressed as nitrogen.
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Table 5.5 Different components in ASMlsp.

Component Symbol Component Name Units

Xs Slowly biodegradable substrate [M(COD)L'3]

X b ,h Active heterotrophic biomass [M(COD)L'3]

X b ,a Active autotrophic biomass [M(COD)L"3]

Xi Particulate inert organic matter [M(COD)L‘3]

x P Particulate product arising from biomass decay [M(COD)L'3]

Si Soluble inert organic matter [M(COD)L‘3]

Ss Readily biodegradable substrate [M(COD)L'3]

So Oxygen (negative COD) [M(-COD)L'3]

Sno Nitrate and nitrite [M(N)L'3]

S nh NH* + NH3 nitrogen [M(N)L'3]

The kinetic parameters in ASMlsp are defined in Table 5.6. Process rates are 

denoted by pj in Table 5.4 where j corresponds to the process as numbered in the leftmost 

column of the table. The elements within the matrix comprise the stoichiometric 

coefficients, vy, which set out the mass relationships between the components in the 

individual processes. The coefficients, vy, are greatly simplified by working in consistent 

units. In this case, all organic constituents have been expressed as equivalent amounts of 

chemical oxygen demand (COD); likewise, oxygen is expressed as negative oxygen 

demand. The sign convention used in the matrix is negative for consumption and positive 

for production. All stoichiometric coefficients are defined in Table 5.7.

The concentration of a single component within a system may be affected by a 

number of different processes. The matrix representation of the model allows easy 

recognition of the fate of each component, which aids in the preparation of mass balance 

equations (Henze et al., 2000). The basic equation for a mass balance within any defined 

system boundary is:
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Input -  Output + Reaction = Accumulation [5.1]

The input and output terms are transport terms that depend on the physical characteristics 

of the system being modelled. The system reaction term, p, for component i is obtained 

by moving down the column representing the component and summing the products of 

the stoichiometric coefficients Vjj and the process rate expression pj for the component i 

being considered in the mass balance:

h=ZvijPj t5-2]
j

For example the rate of reaction for heterotrophic biomass, X b ,h , at a point in the system 

would be:

rx B,H “ H-h

Pr

^K s + Ss j ^B,H +

yKs + Ss j
K

[5.3]
O.H

V ^ O . H  +  S 0  J
NO

V ^ N O  "*■ ^NO J
B,H

Another benefit of the matrix presentation is that continuity may be checked by 

moving across the matrix, provided consistent units have been used because then the sum 

of the stoichiometric coefficients must be zero. For example, considering the death and 

lysis process for the heterotrophic biomass, two continuity checks, one for COD and the 

other for nitrogen, can be done. The COD continuity check for the death and lysis of 

heterotrophic biomass would be:

(1 ~ fP) *1 + (-1)*1 + fP *1 + (iN/XB - fPiN/XP) *0 = 0 [5.4]

The nitrogen continuity check for the death and lysis of heterotrophic biomass would be: 

( l - f P)*0  + ( - l ) * iN/XB + fp * iN/XP + (iN/XB - f PiN/XP)* l = 0 [5.5]
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Table 5.6 Kinetic parameters in ASMlsp (Grady et al., 1999).

Symbol Kinetic Parameter Units Value @ 

20°C

Ah Maximum specific growth rate for 

heterotrophic biomass

hr'1 0.25

Ks Half-saturation coefficient for 

heterotrophic biomass

mg/L as COD 20

Ko,h Oxygen half-saturation coefficient for 

heterotrophic biomass

mg/L as O2 0.1

Kno Nitrate half-saturation coefficient for 

denitrifying heterotrophic biomass

mg/L as N 0.2

bL,H Decay coefficient for heterotrophic 

biomass

hr'1 0.017

Correction factor for heterotrophic 

growth under anoxic conditions

dimensionless 0.8

Kh Maximum specific hydrolysis rate mg COD(mg 

biomass COD.hr) '1

0.092

Kx Half-saturation coefficient for 

hydrolysis of slowly biodegradable 

substrate

mg COD(mg 

biomass COD) '1

0.15

Aa Maximum specific growth rate for 

autotrophic biomass

hr'1 0.032

Knh Ammonia half-saturation coefficient 

for autotrophic biomass

mg/L as N 1

Ko,a Oxygen half-saturation coefficient for 

autotrophic biomass

mg/L as O2 0.75

bL,A Decay coefficient for autotrophic 

biomass

hr'1 0.004
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Table 5.7 Stoichiometric coefficients in ASMlsp (Grady et al., 1999).

Symbol Stoichiometric coefficient Units Value

Yh Heterotrophic yield mg biomass COD formed/mg 0.6

COD removed

fp Fraction of biomass yielding mg debris COD/mg biomass 0.08

particulate products COD

^N/XB Mass N/Mass COD in mg N/mg COD in active 0.086

biomass biomass

^ / X P Mass N/Mass COD in mg N/mg COD in biomass 0.06

products from biomasss debris

Ya Autotrophic yield mg biomass COD formed/mg N 0.24

oxidized

Similar to ASM1, ASMlsp is a complex model that contains many soluble and 

particulate components and as the number of continuous flow stirred tank reactors 

(CFSTRs) used to represent the aeration tank increases the degree of complexity 

increases and numerical techniques had to be used in order to solve the mass balance 

equations for the different constituents in the model. Several organizations have 

developed computer codes for solving the simultaneous mass balance equations for the 

constituents in ASM1 and ASM2, allowing their application to a variety of bioreactor 

configurations (Grady et al., 1999). One such code is ASIM (Activated Sludge 

SIMulation Program) written by the Swiss Federal Institute of Environmental Science 

and Technology. ASIM is a flexible modelling tool that implements both ASM1 and 

ASM2. It was used in the present study. The flexibility in ASIM allows the selection of 

the different constituents and processes to be modelled. This feature allowed us the 

freedom to choose the model structure to be used in ASMlsp.

5.3.1 Conceptual Model

Similar to ASM1, ASMlsp uses COD as the measure of the concentration of 

organic material in wastewater. COD provides a link between electron equivalents in the
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organic substrate, the biomass and the oxygen utilized (Henze et al., 2000). Therefore, 

continuity checks and mass balances can be easily made in terms of COD. Consequently, 

the concentrations of all organic materials, including biomass are in COD units.

Based on biodegradability, the organic matter in ASMlsp is subdivided into two 

categories: non-biodegradable organic matter and biodegradable organic matter. Non- 

biodegradable organic matter is biologically inert and passes through an activated sludge 

system unchanged in form. Depending on their physical state, inert organic matter are 

further divided into two fractions: soluble and particulate. Inert soluble organic matter, Si, 

leaves the system at the same concentration that it enters. Inert particulate organic matter, 

Xi, becomes enmeshed in the activated sludge and is removed from the system through 

sludge wastage. In ASMlsp biodegradable organic matter is divided into two fractions: 

readily biodegradable and slowly biodegradable. For purposes of modelling, the readily 

biodegradable material, Ss, is treated as if it were soluble, whereas the slowly 

biodegradable material, Xs, is treated as if it were particulate (Henze et al., 2000).

The readily biodegradable material consists of relatively simple molecules that may 

be taken in directly by heterotrophic bacteria and used for growth of new biomass, 

whereas the slowly biodegradable material, consisting of relatively complex molecules, 

must be acted upon extracellularly and converted into readily biodegradable substrate 

before it can be used (Henze et al., 1987). It is assumed that conversion of slowly 

biodegradable substrate into the readily biodegradable form (hydrolysis) involves no 

energy utilization and thus there is no utilization of electron acceptor associated with it.

In ASM1 sp decay of biomass is assumed to result in the conversion of biomass into 

slowly biodegradable substrate and particulate products, Xp, which are inert to further 

biological attack (Dold et al., 1980). The latter are similar in concept to the endogenous 

mass of McKinney and Ooten (1969) and act to reduce the viability of the mixed liquor 

suspended solids in a bioreactor. In ASMlsp the ammonia nitrogen serves as the nitrogen 

supply for synthesis of heterotrophic biomass and as the energy supply for growth of 

autotrophic nitrifying bacteria. The autotrophic conversion of ammonia nitrogen to nitrate
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nitrogen (nitrification) is considered to be a single step process which requires oxygen. 

The nitrate formed may serve as terminal electron acceptor for heterotrophic bacteria 

under anoxic conditions yielding nitrogen gas. Both ammonia nitrogen, Snh, and nitrate 

nitrogen, Sno, are expressed as nitrogen.

Similar to ASM1, ASM lSp employs the concept of switching functions to turn 

process rate equations on and off as environmental conditions are changed which is 

necessary for processes that depend upon the type of electron acceptor present such as 

nitrification. Autotrophic bacteria are able to grow only under aerobic conditions and 

their rate of growth will fall to zero as the dissolved oxygen concentration approaches 

zero, regardless of the concentration of their energy yielding substrate (Henze et al., 

1987). This is modelled in ASMlsp by including a dissolved oxygen switch in the rate 

equation for nitrification. The oxygen switching function has the form:

[5.6,
K 0 +S0

where So is the concentration of dissolved oxygen. The selection of a small value for Ko 

means that the value of the switching function is near unity for moderate dissolved 

oxygen (DO) concentrations but decreases to zero as the DO concentration approaches 

zero (Henze et al., 1987). The fact that the function is mathematically continuous helps to 

eliminate problems of numerical instability which can occur during simulations with 

models which include rate equations that are switched on and off discontinuously (Henze 

et al., 1987). Processes which occur only when dissolved oxygen is absent, such as the 

anoxic growth of heterotrophic bacteria (denitrification), are modelled using a switching 

function of the form:

K r

K 0 +
[5.7]
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The selection of a small value for Ko means that the value of the switching function 

approaches zero for moderate dissolved oxygen (DO) concentrations but approaches 

unity as the DO concentration approaches zero.

5.3.2 Components in ASM1SP

The components of the model are shown in the top of Table 5.4 and in Table 5.5. 

Soluble inert and particulate inert organic matter, Si and Xr, ( i = 6 and i = 4 ) are not 

involved in any conversion process, and therefore, their columns in Table 5.4 contain no 

stoichiometric coefficients. Nevertheless, they are included because they are important to 

the performance of the process (Henze et al., 1987). Soluble inert organic matter is part of 

the secondary effluent COD while particulate inert organic matter becomes part of the 

mixed liquor volatile suspended solids (MLVSS).

Moving down the i = 7 column, it can be seen that the readily biodegradable 

substrate, Ss, is removed by growth of heterotrophic bacteria under either aerobic or 

anoxic conditions and is formed by hydrolysis of particulate organic matter. The i = 1 

column reveals that slowly biodegradable organic matter, Xs, is removed by the 

hydrolysis process and is formed by the death and lysis of both heterotrophic and 

autotrophic bacteria.

The biomass in the system are represented by columns i = 2 and 3, with Xb,h 

denoting the heterotrophic biomass and Xb,a denoting the autotrophic biomass. The 

heterotrophic biomass is removed by death and lysis and is formed by growth under 

either aerobic or anoxic conditions. The autotrophic biomass is destroyed through decay 

and is formed by growth under only aerobic conditions.

The i = 5 column represents the particulate products arising from biomass decay, 

Xp (McKinney and Ooten, 1969). According to ASMlsp, it is formed by decay of both 

heterotrophic and autotrophic biomass, but is not destroyed. In actuality, this fraction of 

biomass is probably not completely inert to biological attack, however, its rate of
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consumption is so low that it appears to be inert within the solids residence times (SRTs) 

normally encountered in activated sludge systems (Henze et al., 1987).

The sum of the five particulate terms: X s, X b,h, X b ,a, Xp and X i is the volatile solids 

concentration in the activated sludge system, but in COD units. Therefore, an appropriate 

conversion factor can be applied to convert from COD units to volatile suspended solids 

units (Henze et al., 1987).

The dissolved oxygen concentration, So, is represented in column i = 8. It can be 

seen that the processes included in ASMlsp only act to remove oxygen from solution and 

none is given for its addition or transfer as only biological processes are included in the 

matrix. Oxygen utilization is associated only with aerobic growth of the heterotrophic 

and autotrophic biomass and none is consumed by microbial decay. This approach differs 

from the more traditional approach (Grady et al., 1999). Decay is assumed to result in the 

release of slowly biodegradable substrate which is converted, through hydrolysis, to 

readily biodegradable substrate that is used for cell growth. Thus the oxygen utilization 

normally associated directly with decay is modelled in ASMlsp as if it occurs indirectly 

from growth of new biomass on released substrate (Henze et al., 1987). This approach of 

modelling biomass decay is called the “lysis regrowth approach” (Grady et al., 1999). 

The fact that the heterotrophic yield is less than unity, so that the amount of new biomass 

grown from released substrate must always be less than the amount of biomass lost 

through decay, results in the net loss of biomass associated with decay (Grady et al., 

1999). The 4.57 term in the stoichiometric coefficient for aerobic growth of autotrophic 

bacteria is the theoretical oxygen demand associated with the oxidation of ammonia 

nitrogen to nitrate nitrogen (Grady et al., 1999).

The other electron acceptor included in the model is nitrate nitrogen, Sno, which is 

represented in column i = 9. It is produced by aerobic growth of autotrophic bacteria and 

removed by heterotrophic growth under anoxic conditions. Although nitrite nitrogen is an 

intermediate formed during nitrification, for simplicity in modelling ASMlsp assumes 

that nitrate is the only oxidized form of nitrogen present. The factor 2.86 in the
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stoichiometric coefficient for denitrification is the oxygen equivalence for conversion of 

nitrate nitrogen to nitrogen gas (N2) and is included to maintain consistent units (Grady et 

al., 1999). Although not expressed explicitly in the model, nitrate nitrogen will also be 

removed by biomass decay which is accomplished by the recycling of organic matter 

during decay, making it available for anoxic growth of the heterotrophs (Henze et al., 

1987).

Column i = 10 contains soluble ammonia nitrogen, Snh, which is assumed to be the 

sum of the ionized (ammonium) and un-ionized (ammonia) forms. Ammonia nitrogen is 

utilized by growth of the biomass and is assumed to be released by biomass decay. The 

major sink for the ammonia nitrogen is as the energy source for the aerobic growth of 

autotrophic bacteria (-1 /Y A) (Henze et al., 1987). However, ammonia nitrogen is also 

incorporated into biomass during cell synthesis which is represented by the term 

( i n/ xb ) in the stoichiometric coefficient for Snh in the growth process of both 

heterotrophic and autotrophic bacteria.

5.3.3 Processes in ASM 1 sp

Listed in the leftmost column of Table 5.4 are the biological processes incorporated 

into the model, while their rate expressions are listed in the rightmost column. Three 

fundamental processes are considered: growth of biomass, decay of biomass and 

hydrolysis of particulate organics which are entrapped in the biofloc.

The first row in Table 5.4 represents the growth of heterotrophic bacteria under 

aerobic conditions. Soluble substrate is consumed which results in the production of 

heterotrophic biomass. Associated with this is the utilization of oxygen. Since COD units 

are used for both substrate and biomass and because oxygen can be considered as 

negative COD, continuity requires that the oxygen requirement equal the net COD 

removal (soluble substrate removed minus cells formed) (Henze et al., 1987). It is clear 

from the first row that ammonia nitrogen is utilized and incorporated into cell mass. The 

mathematical expression for the rate of the aerobic growth of the heterotrophs utilizes a
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double nutrient limitation, with the concentrations of both readily biodegradable substrate 

and DO being rate determining, and a Monod-type saturation function is used to model 

the effect of each constituent. The primary purpose of the oxygen term in the rate 

equation is as a switching function which stops aerobic growth at low DO concentrations 

and thus the value of the saturation coefficient, K0,h, is small (Henze et al., 1987). 

Similar to ASM1, ASMlsp does not model directly the phenomenon of soluble substrate 

storage as removal of soluble substrate is considered to be proportional to growth. 

However, this event is handled in the model through the immediate entrapment of slowly 

biodegradable substrate.

The growth of heterotrophic bacteria under anoxic conditions (denitrification) is 

represented in row j = 2 in Table 5.4. The process occurs at the expense of readily 

biodegradable substrate and results in heterotrophic biomass. Nitrate serves as the 

terminal electron acceptor and its removal is in proportion to the amount of readily 

biodegradable substrate removed minus the quantity of cells formed (Henze et al., 1987). 

Ammonia is removed from the solution and incorporated into the cell mass. Examining 

the rate equation for the denitrification process reveals that the effect of readily 

biodegradable substrate on the process rate is identical to the one for the aerobic growth 

represented in row j = 1, including the value for the saturation coefficient, Ks. It is 

known that the maximum rate of substrate removal under anoxic conditions is often less 

than the one under aerobic conditions, which could either be because |iH is lower under 

anoxic conditions or because only a fraction of the heterotrophic biomass is able to 

denitrify (Henze et al., 2000). In order to handle this phenomenon, an empirical 

coefficient, t |g, where r|g < 1, is used in the rate equation for the denitrification process

(Henze et al., 1987). Denitrification depends on the concentration of nitrate nitrogen in a 

manner analogous to the way in which aerobic growth depends on the dissolved oxygen 

concentration (Henze et al., 1987). Therefore, a Monod-type term is included in the rate 

equation to model the effect of nitrate concentrations. Because of the fact that anoxic

K
growth is inhibited by the presence of dissolved oxygen, an inhibition te rm  --1- is

K-O.H +  S 0
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included in the rate equation. The coefficient K o,h has the same value as in the expression 

for aerobic growth so that as aerobic growth declines, anoxic growth increases (Henze et 

al., 1987).

Represented in row j = 3 in Table 5.4 is the aerobic growth of autotrophic biomass 

(nitrification). Ammonia nitrogen is removed from solution and used by the nitrifiers as 

the energy source for growth with the production of autotrophic cell mass and nitrate 

nitrogen as end products. In addition, a small amount of ammonia nitrogen is 

incorporated into cell mass and is represented by the term - i N/XB in the stoichiometric

coefficient for Snh- In order to model the dependency of the autotrophic specific growth 

rate upon the soluble concentrations of both ammonia nitrogen and oxygen, a double 

nutrient limitation using Monod-type saturation functions is used in the rate equation for 

nitrification.

Biomass
Xa

Decay
Loss of COD

Debris
Xo

Figure 5.6 The traditional approach for modelling biomass decay (Adapted from 

Grady et al., 1999).

Growth
Loss of CODSoluble
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The most common technique to model biomass decay under aerobic conditions is 

using a rate expression which is first order with respect to the concentration of active 

biomass and to let the loss of COD due to biomass decay occurs at the expense of

both growth and decay of biomass are represented. Each unit of biomass COD lost results 

in the utilization of an equivalent amount of oxygen (Grady et al., 1999). Although this 

approach has worked well for the modelling of activated sludge systems performing only 

carbon oxidation and nitrification, it has been found that a modified approach would be 

warranted to model biomass decay under conditions in which oxygen is not the dominant 

electron acceptor (anoxic and anaerobic conditions) (Henze et al., 1987). For example, 

most studies suggest that biomass decay continues under anoxic conditions, at least for 

the fraction of the biomass that can denitrify (Grady et al., 1999).

In ASMlsp, the approach adopted for modelling heterotrophic biomass decay is the 

death-regeneration concept of Dold et al. (1980), and is represented in row j = 4 in Table 

5.4. A sechematic representation of this approach is shown in Figure 5.7.

Figure 5.7 The death regeneration approach (Adapted from Grady et al., 1999).

oxygen. A schematic diagram of this traditional approach is shown in Figure 5.6 in which

Loss of COD BiomassSoluble
Substrate

Death and lvsis
No Loss of COD

Growth

Hvd
No I

Particulate
Substrate

Debns
XP
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It is clear from Figure 5.7 that decay acts to convert biomass to a combination of 

particulate products or biomass debris, XP, and slowly biodegradable substrate and no 

loss of COD is involved in this transformation and no electron acceptor is utilized. 

According to this modelling approach, decay continues at a constant rate regardless of the 

environmental conditions (Henze et al., 1987). As depicted in Figure 5.7, the slowly 

biodegradable substrate produced from biomass decay is then hydrolysed, as represented 

in row j = 6 in Table 5.4, resulting in the release of an equivalent amount of readily 

biodegradable COD. In the case of aerobic conditions, that released substrate will be 

utilized to form new cells at the expense of dissolved oxygen, while in the case of anoxic 

conditions cell growth will occur with concomitant nitrate nitrogen uptake. Only under 

anaerobic conditions the released substrate will not be utilized and will accumulate.

Depicted in row j = 5 in Table 5.4 is the decay of autotrophic bacteria which is 

handled by ASMlsp in exactly the same manner as the decay of heterotrophs. The decay 

of the nitrifiers and the growth of the heterotrophs are interrelated as the released slowly 

biodegradable substrate produced from the autotrophic decay will be hydrolysed and then 

consumed by the heterotrophs.

As indicated by row j = 4 and row j = 5 in Table 5.4, ASMlsp assumes that 

biomass decay results in the production of nitrogen in the form of soluble ammonia 

instead of particulate organic nitrogen as in the case of ASM1. Because of this 

simplification two processes were eliminated: hydrolysis of particulate organic nitrogen 

into the soluble form and the conversion of soluble organic nitrogen into ammonia 

nitrogen (ammonification). These processes are very hard to characterize and a lot of 

uncertainty exists regarding the values for the parameters describing these processes in 

the literature (Grady et al., 1999).

Although hydrolysis is one of the most difficult processes to model in an activated 

sludge system, simple reaction rate expressions have been suggested by several 

researchers in which hydrolysis is assumed to be a first order process with respect to the 

concentration of heterotrophic biomass (Grady et al., 1999). In ASMlsp hydrolysis is
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modelled in a manner that is similar to that in ASM1 with one simplification that 

ASMlsp assumes that the hydrolysis process occurs at the same rate regardless of the 

environmental conditions. The process is depicted in row j = 6 in Table 5.4. In the rate 

expression of the hydrolysis process kh is the hydrolysis coefficient (hr-1) and Kx is a 

half-saturation coefficient (mg particulate substrate COD/mg active biomass COD). An 

important characteristic of this expression is that even though the rate is first order with 

respect to the heterotrophic biomass concentration, it is controlled by the ratio of 

particulate substrate concentration to heterotrophic biomass concentration, rather than by 

the particulate substrate concentration alone (Grady et al., 1999). This is necessary 

because the reaction is thought to be surface-mediated, depending on the presence of 

extracellular enzymes whose quantity is thought to be proportional to the biomass 

concentration (Grady et al., 1999).

5.4 STEADY STATE SIMULATIONS

Influent

Effluent

Figure 5.8 A schematic of the configuration of tanks used to represent the activated 

sludge process.

In order to gain insight into the process, steady-state simulations using ASMlsp 

were conducted for activated sludge tanks #6, 7 and 8. Because of the unique 

configurations of this group of activated sludge tanks that were discussed earlier, the 

three tanks were modelled as one tank that has an aeration basin of a volume equivalent 

to the sum of the volumes of two aeration basin units at the GBWWTP and a secondary 

clarifier that has a volume equivalent to the sum of the volumes of three secondary
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clarifier units. The aeration basin was modelled as eight continuous flow stirred tank 

reactors (CFSTRs) in series as depicted in Figure 5.8. Each of the eight CFSTRs has a 

volume of 2640 m3.

The steady state simulations were conducted for two operating modes: the first is 

plug flow and the second is step-feed mode. As shown in Figure 5.2, there are six feed 

points (represented by the thick white arrows) to each of the aeration tanks #6, 7 and 8: 

one at the entrance to the first pass; two in the second pass (start and middle) and three at 

the third pass (start, middle and end points). When any of activated sludge tanks #6, 7 

and 8 is operated in the full step-feed mode, all the six gates are fully open. This 

configuration could not be simulated as flow measurements at these feed points were not 

available. Instead, an approximation had to be done in which only two equal feed streams 

were simulated: one to CFSTR #1 and the other to CFSTR #5.

Because the operating strategy at the GBWWTP is to control the dissolved oxygen 

concentration in the aeration basin at 2 mg/L, the dissolved oxygen concentration in the 

aeration basin was fixed at this value during the course of simulations. Because the 

operating strategy at the GBWWTP is to keep the return activated sludge (RAS) flow rate 

constant at 20 ML/d for each one of the activated sludge tanks at the plant, the steady 

state simulations for the group of tanks #6, 7 and 8 were conducted at a RAS flow rate of 

60 ML/d.

Simulations were conducted at the following influent flow rates: 40, 80 and 120 

ML/d. The solids residence time (SRT) used in the simulations varied from one day to 

eight days. Finally it should be mentioned that only the aeration basin was modelled in 

these simulations, i.e., the secondary clarifier was not modelled in the steady state 

simulations.
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5.4.1 Characterization of the Wastewater

Listed in Table 5.8 are the characteristics of the influent wastewater which were 

used in the simulations. These characteristics are considered to be representative of the 

wastewater following primary sedimentation at the GBWWTP.

Table 5.8 Wastewater characterization of the primary effluent.

Soluble Concentration Particulate Concentration

components components

Si 30 mg/L as COD Xs 235 mg/L as COD

Ss 270 mg/L as COD X b ,h 0 mg/L as COD

So 2 mg/L as COD X b ,a 0 mg/L as COD

Sno 0 mg/L as N X i 35 mg/L as COD

S nh 36 mg/L as N x P 0 mg/L as COD

Listed in Table 5.6 are the values for the kinetic parameters in ASMlsp that were 

used in the simulations while the values for the stoichiometric coefficients are listed in

Table 5.7. These values are typical at neutral pH and 20 C for domestic wastewater 

(Grady et al., 1999).

5.4.2 Results -  Plug Flow Mode

Presented in Figure 5.9 are the mixed liquor suspended solids (MLSS) 

concentrations in COD units in the eight CFSTRs representing the aeration basin for an 

influent wastewater flow of 80 ML/d. The MLSS concentration is the sum of the Xb,h, 

Xb ,a ,  Xi and XP concentrations. It is clear from Figure 5.9 that the MLSS profiles along 

the length of the aeration basin are constant. It is also evident that the MLSS 

concentration increases as the SRT increases. Presented in Figure 5.10 is the MLSS 

concentration in the last CFSRT (#8) at different SRTs and different influent flow rates.
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It is clear from Figure 5.10 that the MLSS concentration increases as the influent 

wastewater flow increases.
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-SR T = 4  days

SRT = 5 days

Figure 5.9 Mixed liquor suspended solids (MLSS) concentration profiles -  Plug flow 

mode.
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Figure 5.10 Mixed liquor suspended solids (MLSS) concentration in CFSTR #8 -  Plug 

flow mode.
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Figure 5.11 Slowly biodegradable substrate concentration profiles -  Plug flow mode.

Shown in Figure 5.11 are the concentration profiles for the slowly biodegradable 

substrate at different SRTs for an influent wastewater flow of 80 ML/d. It is evident that 

the slowly biodegradable substrate has a declining concentration profile along the length 

of the aeration basin. However, because its contribution to the MLSS concentration is 

relatively small, the profiles shown in Figure 5.9 are still fairly constant. Figure 5.12 

presents the readily biodegradable substrate (Ss) concentration in secondary effluent from 

which it is clear that almost complete utilization of this fraction of the substrate occurs at 

an SRT as low as one day. It is also clear from Figure 5.12 that increasing the SRT 

beyond two days does not have a pronounced effect on the Ss concentration in the 

secondary effluent.

The ammonia nitrogen concentration in secondary effluent is shown in Figure 5.13 

while Figure 5.14 depicts the nitrate nitrogen concentration in secondary effluent for 

different SRTs.
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Figure 5.12 Readily biodegradable substrate in secondary effluent -  Plug flow mode.
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Figure 5.13 Ammonia concentration in secondary effluent -  Plug flow mode.
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Figure 5.14 Nitrate concentration in secondary effluent -  Plug flow mode.

The simulations shown clearly indicate that nitrification does not take place in the 

aeration basin when the SRT is less than two days. However, at an SRT of three days 

almost full nitrification can be established in the tank and increasing the SRT beyond 

three days does not have a pronounced effect on the percent nitrification. Comparison of 

the values used for p for heterotrophic and autotrophic bacteria in Table 5.6 reveals that 

the value for autotrophs is almost an order of magnitude lower than that for heterotrophs, 

suggesting that the minimum SRT for nitrifying bacteria is almost an order of magnitude 

larger (Grady et al., 1999).

The value used for the half-saturation coefficient, which is the substrate 

concentration at which the bacteria grow at half of their maximal rate, for the autotrophs 

in Table 5.6 is 1.0 mg/L-N. This value is very low, thus nitrification will take place 

whenever the SRT is large enough to ensure stable growth and the ammonia-N 

concentration will rise rapidly as the SRT is decreased to the point of washout (Grady et
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al., 1999). This explains the reputation of being all-or-none phenomenon that nitrification 

has gained (Grady et al., 1999). This phenomenon is clear in the simulations shown in 

Figure 5.13 and Figure 5.14.

5.4.3 Results -  Step-Feed Mode

The mixed liquor suspended solids (MLSS) concentration profiles for an influent 

wastewater flow of 80 ML/d (40 ML/d to CFSTR #1 and 40 ML/d to CFSTR #5) are 

shown in Figure 5.15 from which it is clear that the MLSS profiles along the length of the 

aeration basin have a sharp drop between CFSTR #4 and 5. This is due to the fact that 

two equal influent flow streams were simulated, one fed to CFSTR #4 and the other fed 

to CFSTR #5. In the actual full step-feed configuration shown in Figure 5.2, there are six 

feed points. This actual configuration would have made the MLSS profiles decline 

gradually along the length of the aeration basin. However, the MLSS in the first and last 

CFSTR should not differ between the actual and simulated configurations.
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Figure 5.15 Mixed liquor suspended solids (MLSS) concentration profiles -  Step-feed 

mode.
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Figure 5.16 depicts the MLSS concentration in the last CFSRT (#8) at different 

SRTs and different influent flow rates from which it is clear that the MLSS concentration 

increases as the influent wastewater flow increases. Comparing Figure 5.16 to Figure 

5.10 shows how the MLSS concentration leaving the aeration tank decreases when the 

mode of operation is changed from plug flow to step-feed.

The readily biodegradable substrate concentration in secondary effluent is depicted 

in Figure 5.17 from which it is clear that almost complete utilization of this fraction of 

the substrate occurs at an SRT as low as one day. Comparing Figure 5.17 to Figure 5.12 

shows that only very slight increase in the readily biodegradable substrate concentration 

in the secondary effluent would occur if the mode of operation is switched from plug 

flow to step-feed.
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Figure 5.16 Mixed liquor suspended solids (MLSS) concentration in CFSTR #8 

Step-feed mode.
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The ammonia nitrogen concentration in secondary effluent is shown in Figure 

5.18 while Figure 5.19 depicts the nitrate nitrogen concentration in secondary effluent for 

different SRTs. Similar to the results of the steady state simulations for the plug flow 

mode of operation, the step-feed simulation results clearly indicate that nitrification does 

not take place in the aeration basin when the SRT is less than two days. At an SRT of 

three days almost full nitrification can be established in the tank and increasing the SRT 

beyond three days does not have a pronounced effect on the percent nitrification. 

Comparing Figure 5.18 to Figure 5.13 shows that, at an SRT of three days, there is a 

slight increase in the ammonia-N concentration in the secondary effluent when the step- 

feed mode of operation is used instead of the conventional plug flow, however, beyond 

an SRT of three days both Figure 5.18 and Figure 5.13 are virtually identical.
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Figure 5.17 Readily biodegradable substrate in secondary effluent -  Step-feed mode.
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Figure 5.18 Ammonia concentration in secondary effluent -  Step-feed mode.
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Figure 5.19 Nitrate concentration in secondary effluent -  Step-feed mode.
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5.5 DYNAMIC MODELLING UTILIZING THE EXPERIMENTAL DATA -

RESULTS AND DISCUSSION

Dynamic modelling of the activated sludge tank was conducted using the 

experimental data that were collected during the two sampling surveys. Using the average 

values, listed in Table 5.2, for the quality parameters that were measured for the primary 

effluent, average concentrations were estimated in terms of the different components in 

ASMlsp. This was done according to the procedure suggested by Grady et al. (1999) with 

two approximations. The first was that the soluble inert organic matter concentration in 

the primary effluent is equal to the average experimental value of the soluble COD in the 

secondary effluent minus the value of the soluble biodegradable substrate in the 

secondary effluent that was obtained from the steady state simulations at similar values of 

the solids residence time (SRT). This approximation assumes that all of the inert soluble 

substrate in the secondary effluent already existed in the primary effluent and passed the 

treatment without any change. In other words, no inert soluble organics originated from 

the decay of biomass. The second approximation assumed that soluble biodegradable 

organic nitrogen is readily available for the biomass in the form of ammonia nitrogen. 

This approximation was used in order to eliminate the need to simulate the 

ammonification process. The values of estimated primary effluent concentrations of the 

different components in ASMlsp are listed in Table 5.9.

Typical diurnal patterns were drawn from the experimental data that were collected 

during the sampling surveys. These diurnal patterns were used as inputs to ASMlsp and 

typical values for the stoichiometric coefficients listed in Table 5.7 were used. Values for 

the kinetic parameters were corrected for operating temperatures using the following 

equation:

r(t) = r(20) * exp(temp_ coeff * (t -  20)) [5.8]

where r(t) is the value of the kinetic parameter at the operating temperature t, r(20) is the 

base value of the kinetic parameter at 20 C and tem pcoeff is the temperature coefficient
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which was set equal to 0.069 (Grady et al., 1999). Typical values of the kinetic
0

parameters that were listed m Table 5.6 were used as the base values at 20 C.

Table 5.9 Average primary effluent concentrations during the two sampling surveys.

Component Concentration Units

First survey Second survey

Si 33 45 mg/L as COD

Ss 241 175 mg/L as COD

So 2 2 mg/L as COD

Sno 0.09 0 .0 2 mg/L as N

Snh 33.3 32.75 mg/L as N

X s 208 155.5 mg/L as COD

X b ,h 0 0 mg/L as COD

X b ,a 0 0 mg/L as COD

x , 40 31.5 mg/L as COD

x P 0 0 mg/L as COD

Average values of the WAS flow, total suspended solids concentration in the RAS 

and total suspended solids concentration in the mixed liquor from the 4th pass of the 

aeration tank were used to calculate the solids residence time in the aeration tank. The 

SRT was calculated using the solids inventory in the aeration tank alone, i.e., it was 

assumed that no biological transformations occur in the secondary clarifier. Based on this 

assumption, the SRT calculated for the first and second sampling surveys were 2.3 and

2.1 days, respectively. A declining MLSS concentration profile similar to the one found 

from the steady state simulations for the step feed case was used to estimate the average 

MLSS concentration in the aeration tank based on the total suspended solids 

concentration in the mixed liquor collected from the 4th pass of the aeration tank.

As in the steady state simulations, the aeration tank basin was modelled as eight 

CFSTRs in series. The secondary clarifier was modelled as two compartments of equal
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volume. These compartments are thought to model the clear water zone in the upper part 

of the secondary clarifier and they contain only soluble species and no biological 

processes are active in them (Henze et al., 1987). Under unsteady state conditions the 

volume of these compartments may dampen the peak concentrations in the effluent from 

the biological reactors. Based on the average values measured for the depth of the sludge 

blanket in the secondary clarifier during both surveys, approximately two thirds of the 

volume of the secondary clarifier can be assumed to be clean water while the other third 

is the depth of the sludge blanket in the tank. Because the operating strategy at the 

GBWWTP is to control the dissolved oxygen concentration in the aeration basin at 2 

mg/L, the dissolved oxygen concentration in the aeration basin was fixed at this value 

during the course of the dynamic modelling.

Figure 5.20 shows the ammonia nitrogen concentration in the secondary effluent 

samples collected during the first survey. The predictions by ASMlsp were in relatively 

good agreement with the experimental data. One discrepancy existed between the 

experimental data collected during the second survey and the results from the unsteady 

state simulations by ASMlsp. This discrepancy is clear from Figure 5.21. The squares 

represent the nitrate nitrogen concentration in the secondary effluent samples collected 

during the second survey without modelling the denitrification process in the secondary 

clarifier. The predictions by ASMlsp were consistently higher than the experimental data.

On the other hand, the actual ammonia nitrogen concentrations in the secondary 

effluent samples that were collected during the second survey were in relatively good 

agreement with the predictions by ASMlsp. These findings suggested that denitrification 

was taking place in the secondary clarifier during the second survey. This conclusion was 

also supported by the fact that during the settling tests that were conducted by the plant 

operators on the mixed liquor samples from the 4th pass, the sludge had always risen after 

approximately 30 minutes from the beginning of a test, which was attributed to the 

release of nitrogen gas. Therefore, in the ASMlsp modelling that was conducted on the 

experimental data that were collected during the second survey, it was decided to include
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the denitrification occurring in the secondary clarifier as part of the activated sludge 

process configuration presented to ASMlsp.
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Figure 5.20 Ammonia nitrogen concentration in the secondary effluent -  First survey.

The biological processes in the sludge blanket in the secondary clarifier were 

modelled by choosing the first biological reactor in the configuration file with the volume 

of the sludge blanket and the influent wastewater to the aeration tank was fed to the 

second bioreactor. The dissolved oxygen concentration in the sludge blanket in the 

secondary clarifier was assumed to be zero. As shown in Figure 5.21, after including the 

biological processes occurring in the secondary clarifier as part of the configuration, the 

predictions by ASMlsp for the nitrate nitrogen concentration in the secondary effluent 

were in much better agreement with the experimental data.

Comparing Figure 5.22 to Figure 5.20 reveals that the agreement between the 

experimental data for the ammonia nitrogen concentration in the secondary effluent 

samples and the dynamic simulation by ASMlsp for the second sampling survey was
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relatively better than that found for the first survey. This could be partially due to the two 

rainfall events that were encountered during the 5th and 6th days of the first sampling 

survey. Another reason that accounted for the departure of the simulated concentration 

profile from the actual data collected during the first few days of the first sampling 

survey was a sludge bulking problem that took place in the secondary clarifier. The 

results of the activated sludge analysis that was performed by the laboratory of the 

GBWWTP indicated high filamentous length. The sludge bulking in the secondary 

clarifiers caused some of the microorganisms to escape with the effluent wastewater, 

which caused the quality of the effluent to deteriorate. In order to remedy this bulking 

condition, the staff in charge at the GBWWTP decided to seed the aeration tanks #6, 7 

and 8 using activated sludge from the 4th pass of aeration tanks #9 and 10 which are 

biological nutrient removal (BNR) tanks. The seeding was conducted twice and in each 

time lasted for two hours. The objective was to enhance the settling characteristics of the 

activated sludge in the secondary clarifiers #6, 7 and 8.
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Figure 5.21 Nitrate nitrogen concentration in the secondary effluent -  Second survey.
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Figure 5.22 Ammonia nitrogen concentration in the secondary effluent -  Second 

survey.

The suspended solids concentration in the mixed liquor samples that were collected 

from the 4th pass of aeration tank are shown in Figure 5.23 compared against the 

predictions by ASM lSp. A conversion factor, i o / x B , T  =1.2 mg COD/mg TSS, was used to 

covert the MLSS predictions by ASMlsp from the COD units into TSS units. This 

conversion factor is suggested by Grady et al. (1999) for converting the heterotrophic 

yield coefficient, YH, from the conventional mg biomass TSS/mg substrate COD 

removed units into the mg biomass COD/mg substrate COD removed units which are 

compatible with ASM1. It is clear from Figure 5.23 that the agreement between the 

experimental data and the dynamic simulation by ASMlsp for the second sampling 

survey was relatively better than that found for the first survey. Again, this could be 

attributed to the two rainfall events and the sludge bulking condition that were 

encountered during the first sampling survey. As shown in Figure 5.23, during the 3rd and 

4th days of the first sampling survey the actual MLSS concentrations were higher than the 

model predictions. This could be due to the seeding that was performed on the aeration 

tanks using the heavier mixed liquor from the BNR tanks at the GBWWTP.
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Figure 5.23 Mixed liquor suspended solids concentration.
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5.6 CONCLUSIONS

Although the activated sludge tank was operated at an estimated SRT value of 2.1 

days during the second survey while the estimated SRT value during the first survey was 

2.3 days, partial nitrification took place in the aeration tank during the second survey. 

This was mainly due to the higher temperatures encountered during the second survey.
th 0The temperature of the mixed liquor from the 4 pass averaged 21 C while only averaged

016.9 C during the first survey. Based on the steady state simulations that were conducted
o

at 20 C, a SRT value between two and three days will cause partial nitrification to take 

place in the aeration tank.

Visual experimental observations during the settling tests conducted on the mixed 

liquor from the 4th pass of the aeration tank as well as the unsteady state simulations by 

ASMlsp indicated that denitrification took place in the secondary clarifier during the 

second survey, and therefore, the biological transformations occurring in the sludge 

blanket of the secondary clarifier had to be included as part of the activated sludge tank 

configuration. Although denitrification took place in the sludge blanket of the secondary 

clarifier during the second survey, the effluent quality in terms of total suspended solids 

did not deteriorate. This was probably because nitrification did not occur at full extent in 

the aeration tank, and therefore, the nitrate feed to the sludge blanket in the secondary 

clarifier did not produce nitrogen gas at a rate that was enough to cause the sludge floes 

to rise to the effluent launders.

The modelling that was conducted herein gave insight into the activated sludge 

process and helped identify the occurrence of operational problems such as denitrification 

in the secondary clarifier. In addition, this type of modelling can be beneficial in 

predicting the quality of the secondary effluent discharged to the receiving stream.
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CHAPTER 6. A HYBRID MODEL FOR A FULL-SCALE ACTIVATED SLUDGE 

PROCESS THAT INCORPORATES A MECHANISTIC AND ANN/TIME

SERIES COMPONENTS*

6.1 INTRODUCTION

Mathematical models for wastewater processes can take many forms. At one 

extreme, some models are highly mechanistic. These are most useful to the researcher 

seeking to understand the events occurring in a system. Generally such models are 

deterministic and incorporate direct links between inputs and outputs through ordinary 

and partial differential equations that seek to mimic reactions mechanisms. Such models 

are large in scope and require a detailed knowledge of the system and the evaluation of a 

large number of parameters. An example is the Activated Sludge Model No. 1 (ASM1) 

developed by the International Water Association (IWA; formerly the International 

Association on Water Quality IAWQ). ASM1 contains 5 stoichiometric parameters and 

14 kinetic parameters, some of which are difficult to estimate. Also, some of the 

processes included in mechanistic models are theoretical in nature. For example, the 

fermentation and hydrolysis processes in the ASM1. Deriving rate equations for such 

processes is difficult, thus rendering the calibration of the model more difficult. In order 

to use a mechanistic model like ASM1 in practice, a detailed characterization of the 

wastewater as well as a thorough calibration of the numerous model parameters included 

are essential. In some cases, tedious bioassays are needed in order to estimate some of the 

parameters.

At the other extreme, some models are highly empirical and they constitute the so- 

called “black box” class of models. They can be stochastic and can reflect real world 

responses. Examples of the class of black box models are time series models and 

Artificial Neural Networks (ANNs). They are, however, highly system specific, and as a 

result, they have to be developed specifically for the set of data under study, and hence, 

they are not easily transportable to new situations. Although the identification of the 

model structure for such types o f models could be in some cases a tedious job, estimating

A version of this chapter has been submitted for publication. Gamal El-Din, A. and D.W. 
Smith, Water Research (June 2002).
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the model parameters can be easily done with the modem developments in computing 

technology. Regular updating of these models, i.e., re-estimating the model parameters, 

can be easily and automatically performed, thus rendering these models highly adaptive. 

The adaptiveness of the black-box class of models renders them very attractive in the 

field of on-line real-time process control and optimization. In the current climate of 

higher power costs and increasing stringent regulations, real-time control of wastewater 

treatment processes will be the coming step in the wastewater treatment system 

development.

Many alternatives lie between the two extremes of highly mechanistic models and 

highly empirical models. These alternatives are generally called “gray-box” class of 

models. The objective of this study was to explore a hybrid gray-box model that can be 

used to describe the activated sludge process at the Gold Bar Wastewater Treatment Plant 

(GBWWTP), the largest plant in the Edmonton area. The model consists of two 

components; one is mechanistic and the other is a black-box component. The mechanistic 

component of the hybrid model is a simplified version of the ASM1. The black-box 

component is an ANN in some cases while it is a time series model in other cases. In 

order to validate the model, its predictions were compared with actual field data that were 

collected during two field-sampling surveys. Discussion on the modelling of the activated 

sludge process, description of the study, model development, modelling results, possible 

applications of the model are presented in the following sections.

6.2 MODELLING THE ACTIVATED SLUDGE PROCESS

Modelling of the activated sludge process has passed through a sequence of events: 

first, the removal of organic matter only; second, nitrification; third, nitrogen removal by 

biological denitrification; and forth, phosphorus removal by biological treatment of 

wastewater. Monod (1949) described the different growth phases of a bacterial culture 

and introduced the famous Monod kinetics that describe the relation between the 

exponential growth rate of bacteria and the concentration of a limiting nutrient; an 

empirical relationship that was the origin of mathematical models of continuous growth
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microbial systems such as the ones developed by McKinney (1962), Lawrence and 

McCarthy (1970), and Eckenfelder (1985).

Realizing the benefits to be drawn from mathematical modelling, the International 

Water Association formed a task group in 1983 to promote the development of practical 

models to the design and operation of biological wastewater treatment systems (Henze et 

al., 1987). Activated Sludge Model No. 1 (ASM1) was the model developed by the IWA 

task group in 1987 to predict the performance of an activated sludge system carrying out 

carbon oxidation, nitrification and denitrification (Henze et al., 1987). ASM1 has proved 

to be an excellent tool for modelling nitrification-denitrification processes (Barker and 

Dold, 1997, Daigger and Nolasco, 1995, Henze et al., 1995 and Zhao et al., 1997).

In order to model biological nutrient removal in complex activated sludge 

processes, the model structure requires a high dimension and the model possesses a large 

number of stoichiometric and kinetic parameters. As a result, the models have grown 

more complex over the years, from ASM1, including nitrogen removal processes, to 

ASM2, including biological phosphorus removal processes and to ASM2d including 

denitrifying PAOs. The ASM1 contains 8 processes and 12 soluble and particulate 

components while the full version of ASM2 contains 19 processes and 19 components.

Scientific research and model application in engineering practice have different 

goals. Whereas the detailed structure of the models is used in order to describe new 

mechanisms which have been identified in advanced research projects, manageable 

models with a moderate number of parameters but a high potential to predict system 

behavior should be the basis for model application in engineering practice (Henze et al., 

2000). Realizing this fact, in 1998 the IWA task group decided to develop a new 

modelling platform, the Activated Sludge Model No. 3 (ASM3), in order to create a tool 

for use in the next generation of activated sludge models (Henze et al., 2000). The ASM3 

was published in 2000 and was designed to satisfy primarily the requirements for model 

application. At the same time it still keeps as many details as are necessary to obtain 

some insight into the interconnected processes (Henze et al., 2000). ASM3 relates to the
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same dominating phenomena as does ASM1: oxygen consumption, sludge production, 

nitrification and denitrification in activated sludge systems treating wastewater of 

primarily domestic origin. ASM3 is designed to be the core of many different models. 

The complexity of ASM3 is comparable to ASM1, however, there is a shift of emphasis 

from hydrolysis to storage of organic substrates, a process which has been postulated and 

observed by many researchers (Henze et al., 2000). In the current study a simplified 

version of ASM1 was used as the mechanistic component of the hybrid model. In the 

following sections, this model component will be denoted by “ASMlsp”.

6.3 STUDY

The GBWWTP was constructed in 1956 on the southwest shore of the North 

Saskatchewan River. The present capacity of the plant is 950 ML/d for primary treatment 

and 420 ML/d for secondary treatment based on both hydraulic and process capacities. 

The GBWWTP provides both primary and secondary treatment for the incoming raw 

sewage. Primary treatment consists of grit removal, mechanical screening, and primary 

sedimentation. The secondary treatment provides biological treatment in a suspended 

growth activated sludge system, final settling and microorganism reduction. Detailed 

description of the GBWWTP was provided in the previous chapters.

At the GBWWTP there are ten rectangular aeration basins which are numbered 1 

through 10. Each aeration basin has a corresponding rectangular secondary clarifier. 

Listed in Table 5.1 are the physical dimensions of the activated sludge tanks. In the 

current study, activated sludge tank #8 was sampled. The tank is part of a unique 

configuration at the GBWWTP that is composed of activated sludge tanks #6, 7 and 8. 

This configuration is shown in Figure 5.1. The three tanks are identical in dimensions and 

configuration. The mixed liquor from the three aeration basins is combined in a 

distribution chamber that distributes the mixed liquor among the three secondary 

clarifiers #6, 7 and 8. The return activated sludge (RAS) from each of the three clarifiers 

is combined in a distribution chamber that divides the RAS among the three aeration 

tanks. The reason that aeration tank #7 is in dotted line format in Figure 5.1 that this
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bioreactor is normally out of service while all the three secondary clarifiers are normally 

in service. This was the case in both of the sampling surveys that were conducted. The 

operating strategy at the GBWWTP is to control the value of the mixed liquor suspended 

solids (MLSS) in the aeration tank by changing the flow rate of the waste activated 

sludge (WAS) and keeping the flow rate of the RAS from each of the secondary clarifiers 

#6, 7 and 8 at the same value of approximately 20 ML/d. By controlling the value of the 

MLSS in the aeration tank, the operator can control the solids residence time (SRT) of the 

activated sludge process. At the GBWWTP, aeration tanks can be operated in either the 

plug flow mode or the step feed mode of operation.

During the months of July and August of each year, the normal strategy at the 

GBWWTP is to switch aeration tanks from plug flow mode (the normal mode of 

operation) to step feed mode in order to accommodate the higher wastewater flow rates 

usually encountered during these two months. The white thick arrows in Figure 5.2 

represent the points of feed of the primary effluent to the aeration basin. The operating 

strategy at the GBWWTP is to control the dissolved oxygen concentration in the aeration 

basin at 2 mg/L at all times. After mixing and aeration, mixed liquor is discharged into a 

short distribution channel which feeds the mixed liquor into the secondary clarifiers. At 

Gold Bar, rectangular secondary clarifiers are divided lengthwise into a number of cells. 

Each cell is equipped with a chain and flight collector and scum trough. Secondary 

Clarifiers #6, 7 and 8 each have four cells. Each cell has two manual inlet slide gates 

located at the south end for distributing mixed liquor into the tank. Just beyond the inlet 

slide gates is a wooden baffle wall. The baffle helps maintain quiescent conditions and 

reduces short-circuiting in the clarifiers. Final effluent from each secondary clarifier 

flows over effluent V-notch weirs into common channels which combine together to 

direct the wastewater flow to the Ultra violet (UV) building.

6.3.1 The Sampling Campaign

Samples were collected from both the primary effluent entering aeration tank #8 

and the secondary effluent from secondary clarifier #8. Samples were also collected from
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the mixed liquor in the 4th pass of the aeration tank and from the RAS line out of 

secondary clarifier #8. Two sampling surveys were conducted. The first survey started on 

May 23, 2001 at 9:00 hours and ended June 2, 2001 at 7:00 hours while the second 

survey started on July 28, 2001 at 9:00 hours and ended August 2, 2001 at 7:00 hours. 

Description of the sampling surveys was provided in detail in the previous chapter.

The first survey started on May 23, 2001 at 9:00 hours and ended June 2, 2001 at 

7:00 hours. During this period all the activated sludge tanks at the plant were operated in
O

the plug flow mode. During this survey the air temperature averaged 11.8 C while the
O

temperature of the primary effluent averaged 16.6 C. Presented in Figure 6.1 (a) are the 

data for the wastewater flow measured at the effluent weir of each of the secondary 

clarifiers #6, 7 and 8 from which it is evident that the wastewater flow values measured 

for each of the three clarifiers were very close indicating that the flow was distributed 

approximately equally among the three tanks. The wastewater flow measured at the 

effluent weir of secondary clarifiers #6, 7 and 8 averaged 26.7, 27.4 and 26.6 ML/d, 

respectively. Two rainfall events took place during the 5th and 6th days of the survey, as 

shown in Figure 6.1 (a), during which the flow of wastewater measured at the effluent 

weirs of the clarifiers increased substantially above normal dry weather values. The TSS 

in the primary effluent averaged 95 mg/L while the total COD averaged 521 mg/L. 

Figure 6.2 (a) presents the COD data for the primary effluent samples collected from 

which it is evident that a weak diurnal pattern existed in the data. The soluble COD 

averaged 274 mg/L. The TKN and ammonia-nitrogen data for the primary effluent 

samples collected are shown in Figure 6.3 (a). The TKN in the primary effluent averaged

40.5 mg/L-N while the ammonia-nitrogen averaged 29.5 mg/L-N. It is clear from Figure

6.3 (a) that both the TKN and ammonia-nitrogen in the primary effluent followed the 

same general trend. A strong diumal pattern existed in the data presented in Figure 6.3

(a).

The second survey started on July 28, 2001 at 11:00 hours and ended August 4, 

2001 at 7:00 hours. The step feed mode was used for operating aeration tanks #6, 7 and 8

during this survey. During this survey the air temperature averaged 20.9°C while the
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temperature of the primary effluent averaged 20.5°C. These temperatures are higher than 

those recorded during the first sampling survey. The data for the wastewater flow 

measured at the effluent weir of each of the secondary clarifiers #6, 7 and 8 are presented 

in Figure 6.1 (b). As was the case in the first sampling survey, the wastewater flow data 

measured at the effluent weir of each of the secondary clarifiers #6, 7 and 8 were very 

close indicating equal flow distribution. The wastewater flow measured at the effluent 

weir of secondary clarifiers #6, 7 and 8 averaged 30.8, 32.4 and 30.8 ML/d, respectively. 

These average flow values are higher than that encountered during the first sampling 

survey. The TSS in the primary effluent averaged 74.7 mg/L. Presented in Figure 6.2 (b) 

are the COD data for the primary effluent samples collected. The total COD averaged 

407 mg/L while the soluble COD averaged 220 mg/L. These values are lower than the 

average values for the first survey. Both the total and soluble COD in the primary effluent 

followed the same general trend. As was the case in the first survey, a weak diumal 

pattern existed in the primary effluent COD data. Presented in Figure 6.3 (b) are the TKN 

and ammonia-nitrogen data for the primary effluent samples collected. The TKN in the 

primary effluent averaged 39.5 mg/L-N while the ammonia-nitrogen averaged 29 mg/L- 

N. These values are very close to the average values for the first survey.

Average values for the parameters measured during the two surveys are listed in 

Table 5.2 and Table 5.3. While the ammonia-N concentration in the secondary effluent 

averaged 17.6 mg/L during the first sampling survey, it only averaged 12.5 mg/L during 

the second survey. This was because partial nitrification took place during the second 

survey. Although nitrification in the group of activated sludge tanks #6, 7 and 8 was not 

one of the treatment objectives at GBWWTP, partial nitrification took place in the second 

survey due to the elevated water temperature of the mixed liquor in the aeration tank. It 

will be shown later that the modelling results clearly indicate that denitrification was 

taking place in the secondary clarifiers during the second survey. This phenomenon was 

also observed during the settling tests that were conducted by the plant operators for the 

mixed liquor from the 4th pass during the period of the second survey. After 

approximately 30 minutes from the beginning of a test, sludge started to rise which was 

attributed to the release of nitrogen gas.
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Figure 6.1 Wastewater flow measured at the effluent weir of each of the secondary 

clarifiers #6, 7 and 8.
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Figure 6.2 COD of the primary effluent samples.
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Figure 6.3 TKN and ammonia nitrogen concentrations in the primary effluent 

samples.
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While the TSS concentration in the secondary effluent averaged 9.8 mg/L during 

the first sampling survey, it only averaged 2.4 mg/L during the second survey. During the 

second and third days of the ten-day period of the first sampling survey, the values of the 

secondary effluent TSS increased substantially above the average value. This was mainly 

due to a sludge bulking condition in the secondary clarifiers which was confirmed by the 

results of the activated sludge analysis performed by the laboratory of the GBWWTP 

which indicated high filamentous length. The sludge bulking in the secondary clarifiers 

caused some of the microorganisms to escape with the effluent wastewater, which caused 

the quality of the effluent to deteriorate. In order to remedy these bulking condition, the 

staff in charge at the GBWWTP decided to seed the aeration tanks #6, 7 and 8 using
thactivated sludge from the 4 pass of aeration tanks #9 and 10 which are biological 

nutrient removal (BNR) tanks. The seeding was conducted twice and in each time lasted 

for two hours. The objective was to enhance the settling characteristics of the activated 

sludge in the secondary clarifiers #6, 7 and 8. Besides the change in the operational mode 

from plug flow in the first survey to step-feed in the second, the sludge bulking condition 

that occurred during the first survey and the partial nitrification-denitrification that took 

place during the second survey were the main differences between the conditions 

encountered during the first and the second sampling surveys that were conducted.

6.4 DESCRIPTION OF THE HYBRID MODEL

A schematic of the hybrid model is shown in Figure 6.4. The model consists of two 

components; a mechanistic component (a white-box component) and a black-box 

component. The mechanistic component “ASMlsp” is a simplified version of the ASM1. 

ASMlsp, is a complex model, which has many kinetic and stoichiometric parameters that 

need to be estimated in order to calibrate the model. Some of these parameters are very 

difficult and time consuming to estimate. Therefore, it was decided to use typical values 

of the kinetic and stoichiometric parameters in ASMlsp that are available in the literature 

for domestic wastewater after primary sedimentation and by incorporating a black-box 

component in the hybrid model, prediction errors can be compensated for. Therefore, the 

ASM1 sp provides only a preliminary prediction of the process behavior while the
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function of the black-box component is to predict the error between the actual data and 

the predictions by ASMlsp. As shown in Figure 6.4, two types of the hybrid model were 

used. The first uses a neural network model as the error-predictor while the second uses a 

time series model.

OutputInputs

V -ural E rror  
P redictor

(a) ASMlsp + ANN component

Inputs

Output

Past errors A T im e S eries  
Error Predictor

(b)ASMlsp + Time series component 

Figure 6.4 The hybrid model.

6.4.1 The Mechanistic Component of the Hybrid Model; ASMlsp

ASMlsp has ten soluble and particulate components and six different processes. 

The model is presented in the matrix format in Table 5.4. Detailed description of the 

conceptual model, the different components and processes in the model, the values o f the 

stoichiometric and kinetic parameters, and the simplifications in ASMlsp is provided in 

the previous chapter. ASIM (Activated Sludge SIMulation Program) was used in the
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current study for solving the simultaneous mass balance equations for the constituents in 

ASMlsp.

As clear from row j = 4 and row j = 5 in Table 5.4, ASMlsp assumes that biomass 

decay results in the production of nitrogen in the form of soluble ammonia instead of 

particulate organic nitrogen as in the case of ASM1. Because of this simplification two 

processes were not simulated: hydrolysis of particulate organic nitrogen into the soluble 

form and the conversion of soluble organic nitrogen into ammonia nitrogen 

(ammonification). These processes are very hard to characterize and a lot of certainty 

exists regarding the values for the parameters describing these processes in the literature 

(Grady et al., 1999).

Although hydrolysis is one of the most difficult to model processes in an activated 

sludge system, simple reaction rate expressions have been suggested by several 

researchers in which hydrolysis is assumed to be a first order process with respect to the 

concentration of heterotrophic biomass (Grady et al., 1999). In ASMlsp hydrolysis is 

modelled in a manner that is similar to that in ASM1 with one simplification that 

ASMlsp assumes that the hydrolysis process occurs at the same rate regardless of the 

environmental conditions.

6.4.2 The Black-Box Component of the Hybrid Model

As was mentioned previously, two types of the hybrid model were utilized. The first 

uses an artificial neural network-type model as the black-box component in order to 

predict the error between the actual data and the predictions by the deterministic 

component ASMlsp, while the second uses a Box-Jenkins time series-type model as the 

error-predictor component. Overview of ANN and the Box-Jenkins time series 

methodologies was provided in the previous chapters.

Among the many different architectures, the multi-layer perceptron architecture is 

commonly used for prediction, and therefore, was utilized in the current study. In the
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current study, the input data were scaled linearly in the range [-1,1] before being 

presented to the network. The logistic function was utilized as the transfer function in the 

hidden nodes. The linear function was used for transfer by the output nodes. In the 

current study, only one hidden layer was used and the number of hidden nodes was 

increased incrementally from 2 nodes to 10 nodes with increments size of one node and 

the parsimonious model that gave the best results was selected. In the modelling that was 

undertaken in this study, a batch-mode (weight updates were done after each epoch and 

not after each training pattern) back-propagation algorithm was used in the course of 

training and the network was saved at the point of minimum training error. Training was 

conducted using NeuroShell 2 software from Ward Systems Group Inc. In the present 

study training was stopped after 25, 50, 75, 100, 150, 200, 300, 400 and 500 epochs, for 

every candidate model that was tested. Each time training was stopped, the model was 

tested against the verification data set. It will be shown later that using this systematic 

approach, the point at which training should be stopped so that generalization could be 

maximized was identified. After training a neural network on the training data set, the 

network has to be validated or tested against another set of data that is usually called the 

“validation data set” that has never been seen before by the network during the course of 

training. The ability of the network to generalize from the training data set to the 

validation data set will determine its performance. In all the neural network modelling 

that has been conducted, the experimental data collected were split into two parts, one for 

training and the other for validation. After a model has been trained, the validation data 

set was used to judge the accuracy of the predictions generated by the trained network. 

This was done by calculating the R2 value for the validation data set and comparing it to 

the value computed for the training data set. In each of the two sampling surveys 

conducted data for the last two days were used for validation while the rest of the data set 

was used for training.

The identification, estimation, and diagnostic checking of time series models were 

described in detail in Chapter 4. The same procedure of model building that was 

described in Chapter 4 was used herein. In the current study, a variety of checks were 

applied to each model, and the test results were considered as a group. The statistical
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assumptions about the random error component a t implied by the theoretical Box-

Jenkins methodology are such that the model residuals should be white noise, in other 

words, should be uncorrelated and normally distributed around a zero mean. Residual 

diagnostics are tools by which these assumptions can be tested. Further more, models that 

have met these assumptions are compared using closeness-of-fit statistics applied to the 

residuals. Some of the statistics that were computed as part of the residual diagnostics are 

the residual mean (mean error) and mean percent error. Assuming that the form of the 

model is correct, the estimated autocorrelations of the residuals would be uncorrelated 

and distributed approximately normally about zero with variance 1/n, and hence, with a

standard error 1/Vn (Box and Jenkins, 1976). Therefore, correlograms of the residuals 

(see Figure 6.5 for an example) were examined for correlations greater than two standard 

deviations since large correlations may have indicated model inadequacies, especially if 

they were at lower lags. The normality of residuals was examined by plotting the 

histogram and normal probability plots of the residuals. Among the closeness-of-fit 

statistics that were calculated are the mean absolute error, residual standard error, mean 

absolute percent error, and the index of determination (R2). These are descriptive 

statistics that are useful for comparing different models that all passed the validation step. 

Besides examining the R2 value, a time series plot of the measured output values and the 

values predicted by a model was also examined as an indication of the accuracy of the 

model. For each candidate model that has been tested, all of the above mentioned 

statistics were calculated. In addition, plots of the correlogram, histogram, and normal 

probability of residuals were drawn and white noise checks of the residuals were 

conducted in order to check the validity of the models. In all the time series modelling 

that has been conducted, time series data were split into two parts, one for estimating the 

model parameters (i.e. calibrating the model) and the other for validating (i.e. verifying) 

the model. After a model has been estimated, the validation data set was used to judge the 

accuracy of the forecasts generated by the estimated model. This was done by calculating 

the R2 value for the validation data set and comparing it to the value computed for the 

estimation data set. In each of the two sampling surveys conducted, data for the last two 

days were used for validation while the rest of the data set was used for estimating the 

model parameters.
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Figure 6.5 Correlogram of the residuals from the hybrid model that was used to 

predict the nitrate-nitrogen concentration in the secondary effluent for the 

second sampling survey. Solid lines represent the 95% confidence limits 

of two standard deviations.

6.5 MODEL DEVELOPMENT

As was mentioned previously, the hybrid models consisted of two components: a 

deterministic model component, ASM lSp, which is a simplified version of Activated 

Sludge Model No. 1, and a black-box component or error-predictor component. The 

black-box component was an artificial neural network in some cases while it was a time 

series model in others.

6.5.1 ASMlsp - Unsteady State Simulations

The experimental data that were collected during the two sampling surveys were 

first compared to the predictions provided by ASM lSp alone (dynamic unsteady state
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simulations) and then were compared to the predictions obtained by the hybrid model 

after including the black box component. Using the average values, listed in Table 5.2, 

for the quality parameters that were measured for the primary effluent, average 

concentrations were estimated in terms of the different components in ASMlsp. This was 

done according to the procedure suggested by Grady et al. (1999) with two 

approximations. The first assumed that the soluble inert organic matter concentration in 

the primary effluent is equal to the average experimental value of the soluble COD in the 

secondary effluent minus the value of the soluble biodegradable substrate in the 

secondary effluent that was obtained from steady state simulations that were conducted 

using ASMlsp at similar values of the solids residence time (SRT) using wastewater 

characteristics, which are considered to be representative of the wastewater following 

primary sedimentation at the GBWWTP, and typical values for the kinetic and 

stoichiometric parameters. According to this approximation, all of the inert soluble 

substrate in the secondary effluent already existed in the primary effluent and passed the 

treatment without any change. In other words, no inert soluble organics originated from 

the decay of biomass. The second approximation assumed that soluble biodegradable 

organic nitrogen is readily available for the biomass in the form of ammonia nitrogen. 

This approximation eliminated the need for the ammonification process. The values of 

estimated primary effluent concentrations of the different components in ASMlsp are 

listed in Table 5.9.

Typical diumal patterns were drawn from the experimental data that were collected 

during the sampling surveys. These diumal patterns were used as inputs to ASM lsp in 

order to perform the dynamic unsteady state simulations. Typical values for the 

stoichiometric coefficients listed in Table 5.7 were used. Values for the kinetic 

parameters were corrected for operating temperatures using the following equation:

r(t) = r(20) * exp(temp _ coeff * (t -  20)) [6.1]

where r(t) is the value of the kinetic parameter at the operating temperature t, r(20) is the 

base value of the kinetic parameter at 20 C and temp coeff is the temperature coefficient
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which was set equal to 0.069 (Grady et al., 1999). Typical values of the kinetic 

parameters that were listed in Table 5.6 were used as the base values at 20°C. Average 

values of the flow of waste activated sludge (WAS), total suspended solids concentration 

in the return activated sludge (RAS) and total suspended solids concentration in the
f i .

mixed liquor from the 4 pass of the aeration tank were used to calculate the solids 

residence time (SRT) in the aeration tank. The SRT was calculated using the solids 

inventory in the aeration tank alone, i.e., it was assumed that no biological 

transformations occur in the secondary clarifier. Based on this assumption, the SRT 

calculated for the first and second sampling surveys were 2.3 and 2.1 days, respectively. 

Because of the unique configurations of activated sludge tanks #6, 7 and 8 that were 

discussed earlier, the three tanks were modelled as one equivalent tank that has an 

aeration basin of a volume equivalent to the sum of the volumes of two aeration basin 

units at the GBWWTP and a secondary clarifier that has a volume equivalent to the sum 

of the volumes of three secondary clarifier units. A schematic diagram of the 

configuration used to represent the equivalent activated sludge tank is shown in Figure

6.6 for a plug flow mode of operation.

In fluen t w astew ate r

W A S

Effluent
C lear 

w a te r zone  
o f  th e  

c la rifie r
0 ®

R A S

 ► W as te  ac tiv a ted  sludge

 -► Influent w astew ater (Prim ary effluent)

b io re a c to r#

Figure 6.6 A schematic of the configuration used to represent the equivalent activated

sludge tank - Plug flow mode of operation.
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The aeration basin of the equivalent tank was modelled as eight continuous flow 

stirred tank reactors (CFSTRs) in series. The clear water zone of the secondary clarifier 

of the equivalent tank was modelled as one compartment. This compartment is thought to 

model the clear water zone in the upper part of the secondary clarifier and it contains only 

soluble species and no biological processes are active in it. Under unsteady state 

conditions the volume of this compartment may dampen the peak concentrations in the 

effluent from the biological reactors. Based on the average values measured for the depth 

of the sludge blanket in the secondary clarifier during both surveys, approximately two 

thirds of the volume of the secondary clarifier were assumed to be clear water while the 

other third represented the depth of the sludge blanket in the tank. Therefore, and because 

partial nitrification took place in the aeration tanks during the second sampling survey, 

the biological transformations in the sludge blanket had to be accounted for. In order to 

do so, a biological reactor that depicts the sludge blanket was added to the configuration 

file upstream of the eight CFSTRs representing the aeration basin of the equivalent 

activated sludge tank. This bioreactor is assigned #1 in Figure 6.6. The volume of this 

reactor was set equal to the volume of the sludge blanket of the secondary clarifier of the 

equivalent activated sludge tank and the dissolved oxygen concentration in this reactor 

was assumed to be zero. As indicated in Figure 6.6, the influent wastewater to the 

aeration tank was fed to CFSTR #2.

The unsteady state simulations for the first sampling survey was conducted using 

plug flow mode of operation while a step feed mode was used for the simulation 

conducted for the second sampling survey. As shown in Figure 5.2, there are six feed 

points (represented by the thick white arrows) to each of the aeration tanks #6, 7 and 8: 

one at the entrance to the first pass; two in the second pass (start and middle) and three at 

the third pass (start, middle and end points). When any of the activated sludge group of 

tanks #6, 7 and 8 is operated in the full step feed mode, all the six gates are fully open. 

This configuration could not be simulated as flow measurements at these feed points 

were not available. Instead, an approximation had to be done in which only two equal 

feed streams were simulated: one to CFSTR #2 and the other to CFSTR #6. Because the 

operating strategy at the GBWWTP is to control the dissolved oxygen concentration in
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the aeration basin at 2 mg/L, the dissolved oxygen concentration in the aeration basin 

(CFSTRs #2-9) was fixed at this value during the course of the unsteady state 

simulations.

6.5.2 The Hybrid Model

A hybrid model that utilizes an artificial neural network as the error-predictor 

component was used to predict the ammonia nitrogen concentration in the secondary 

effluent. A schematic representation of the ANN error-predictor component is shown in 

Figure 6.7. The neural network takes the TKN, ammonia nitrogen, total COD, soluble 

COD and water temperature of the primary effluent (PE) at t -  6 and t -  8 hours as well
tPias the last value measured for the mixed liquor volatile suspended solids in the 4 pass of 

the aeration tank as inputs in order to predict the ammonia nitrogen concentration in the 

secondary effluent at time t hours. For the first survey, the size of the hidden layer used 

was six neurons, while only three hidden neurons were needed in the neural network that 

was trained and tested against data collected from the second survey.

As was mentioned previously, the performance of the neural network was 

monitored during the course of training by stopping training and calculating the R2 value 

for both the training and validation data sets. In this manner, the point at which training 

was stopped was visually determined from a graph such as that of Figure 6.8, which 

indicates that training was stopped after 100 epochs. Beyond this point, there was no 

further pronounced improvement in the network performance with respect to the training 

data set, however, the generalization ability of the network, measured by the value of the 

R for the validation data set, started to decline.

A hybrid model that utilizes a time series model as the error-predictor component 

was used to predict the nitrate nitrogen and the soluble COD concentration in the 

secondary effluent. The error component is a time series model that utilizes the 

information about the past errors in order to predict the next one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



190

TKN in PE at t - 6

TKN in PE at t -

Ammonia-N in PE at t - 6

Ammonia-N in PE at t -

Total COD in PE at t - 6

Error between actual 
experimental and 
ASM1SP a t t

Total COD in PE at t -

Soluble COD in PE at t - 6

Soluble COD in PE at t -

Temperature o f PE at t - 6

Temperature o f PE at t -

Last measurement o f MLVSS

Input Layer Hidden Layer Output Layer

Figure 6.7 Artificial neural network error-predictor for ammonia 

concentration in secondary effluent.
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Figure 6.8 Monitoring the performance of the neural network error-predictor -  Data 

of the first survey.

From the model identification step and after trying different candidate models, it was 

decided to use an autoregressive time series model of the first order as the error-predictor 

component for predicting the nitrate nitrogen concentration in the secondary effluent. 

Correlograms of the autocorrelation and the partial autocorrelation of the error series 

during the second sampling survey are shown in Figure 6.9. The autoregressive operator 

was estimated to be 0.851 with a standard error of 0.052 for the first survey while it was

0.798 with a standard error of 0.077 for the second survey.

Table 6.1. The structure and parameter values for the time series models used as the 

error component in the hybrid model for predicting the soluble COD in the 

secondary effluent.

Structure and parameter values First survey Second survey

Model structure ARMA(1,1) AR(1)

Autoregressive parameters AR(1) AR(1)

0.841(0.081)a 0.527(0.112)a

Moving average parameters MA(1) N/A

0.377(0.141)a

a Numbers in parentheses indicate the standard error
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Figure 6.9. Correlograms of the autocorrelation and partial autocorrelation functions 

for the nitrate error series of the second survey. Solid lines represent the 

95% confidence limits of two standard deviations.
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For predicting the soluble COD concentration in the secondary effluent, a 

ARMA(1,1) model was used as the error-predictor component for the hybrid model for 

the data collected during the first survey, while a AR(1) error component was used in the 

hybrid model representing the data collected during the second survey. Table 6.1 lists the 

parameter values estimated for the models.

6.5.3 A Combined Transfer Function Noise Model for the Secondary Clarifier

The hybrid model that was described in the previous sections can only model the 

biological processes taking place in the activated sludge process, i.e., the physical settling 

characteristics of the mixed liquor in the secondary clarifier were not modelled by the 

hybrid model.

A simple transfer function noise model was used to predict the total suspended 

solids concentration in the secondary effluent at time t hours, using the flow of 

wastewater measured at the effluent weir and the total suspended solids in the mixed 

liquor entering the secondary clarifier both lagged by two hours, i.e., at time t -  2 hours. 

Different lagging periods within the range of theoretical detention times of the secondary 

clarifier were tried and the two-hour lag suited the data better.

Table 6.2 shows the structure of the models and the values estimated for the 

parameters. It is evident from Table 6.2 that some of the transfer function parameters 

estimated are lower than or almost equal to their standard error of estimate indicating that 

they might be insignificant. However, they were still included as both of the wastewater 

flow and the influent MLSS to the secondary clarifier are essential information for any 

kind of modelling for a secondary clarifier.
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Table 6.2. The structure and parameter values for the models used to predict the total 

suspended solids concentration in the secondary effluent.

Survey no. Output Inputs Model form and parameter estimates

1 Effluent

TSS

(Yt)

Flow

(X1;t)

MLSS

(X2,)

Yl = <OloX , t l  + tt’M Xl t l + (1“ 0|BL t
i 1,1-1 i 24-1 ( l - ^ B )  1

co10 = 0.060 (0.175)a 
co20 =0.0028 (0.0029)a 

= 0.868 (0.07)a 
0, = 0.155 (0.136)a

2 Effluent

TSS

(Yt)

Flow

(Xu )

MLSS

(X2,t)

v  ®1,0 v  , ® 2,0 v  1Y. — A, t , l A ? t . + ■ a,
1 14-1 1 241 (1 — (f)jB) ‘ 

co10 =0.028(0.019)“ 
co20 =0.0011(0.0005)“

<(>, = 0.334 (0.170)a

1 Numbers in parentheses indicate the standard error

6.6 RESULTS AND DISCUSSION

As was mentioned previously, for each of the two sampling surveys that were 

conducted, data for the last two days were used in verifying the hybrid model while the 

rest of the data was used in training or fitting. Figure 6.10 shows the experimental data 

for the ammonia nitrogen concentration in the secondary effluent versus model 

predictions from which it is evident that the inclusion of the neural network error 

component substantially improved the predictions. Figure 6.10 shows that the cyclic 

nature of the actual data was well picked by the mechanistic component ASMlsp. 

However, the peak values were in disagreement with the values predicted by ASMlsp 

alone. The neural network component enabled the hybrid model to give peaks values that 

are in relatively good agreement with the actual experimental data.
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Figure 6.10. Actual data of the ammonia nitrogen concentration in the secondary 

effluent versus model predictions.
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Figure 6.11. Actual data of the nitrate nitrogen concentration in the secondary effluent 

versus model predictions.
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Figure 6.12. Actual data of the soluble COD concentration in the secondary effluent 

versus model predictions.
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Figure 6.13. Actual data of the total suspended solids concentration in the secondary 

effluent versus model predictions.
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The experimental data for the nitrate nitrogen concentration in the secondary 

effluent versus model predictions are shown in Figure 6.11. The simulation results from 

ASMlsp for the first sampling survey did not indicate any nitrification taking place in the 

aeration basin of the equivalent activated sludge tank. However, from the actual 

experimental data shown in Figure 6.11 (a), very low (< 1 mg/L) nitrate nitrogen 

concentrations were found in the secondary effluent samples collected. This discrepancy 

between the predictions by ASMlsp and the actual data was accounted for by the time- 

series error-predictor component that was included in the hybrid model. The simulation 

by ASMlsp during the second sampling survey indicated that partial nitrification took 

place in the aeration tank while denitrification took place in the sludge blanket of the 

secondary clarifier. As was mentioned before, the settling tests that were conducted by 

the plant operators during the period of the second survey clearly indicated that 

denitrification was taking place in the sludge blanket. In order to verify this finding, 

ASMlsp simulations, with and without the inclusion of the sludge blanket of the 

secondary clarifier as part of the configuration, were conducted for the second sampling 

survey and the results are shown in Figure 6.11 (b). The modelling results shown in 

Figure 6.11 (b) clearly indicate that the denitrification in the sludge blanket had to be 

accounted for by the mechanistic component ASMlsp in order to better describe the 

actual experimental data.

Figure 6.12 shows the experimental data for the soluble COD concentration in the 

secondary effluent versus model predictions. Although low values for the R2 were 

attained by the hybrid model, the predictions by the mechanistic component ASMlsp 

were substantially improved by the inclusion of the error-predictor component in the 

hybrid model. It is clear from Figure 6.12 that the deterministic model component, 

ASMlSp, was not able to predict the dynamic variation in the secondary effluent soluble 

COD data. At the range of solids residence times (SRTs) encountered herein, almost all 

of the biodegradable soluble COD in the influent wastewater would be removed in the 

activated sludge process and only an extremely weak diumal pattern could be identified 

in the unsteady state simulations provided by ASMlsp. However not shown here, results 

of the steady state simulations that were conducted using ASMlsp at similar values of the
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SRT using wastewater characteristics, which are representative of the primary effluent at 

the GBWWTP clearly supported this finding. This discrepancy resulted from the fact that 

the inert soluble COD in the influent wastewater could not be measured on bi-hourly 

basis like the rest of the parameters measured. Therefore, an approximation had to be 

made in order to estimate an average value for the soluble inert COD in the influent 

wastewater. In addition, ASM lSp does not model either the production of soluble 

microbial products by the microorganisms as they degrade the organic substrate in the 

influent to the reactor or the release of soluble cellular constituents through biomass lysis. 

Although little is known on the characteristics of these two types of soluble microbial 

products, they are thought to be biodegradable, although some at a very slow rate (Grady 

et al., 1999).

The experimental data for the total suspended solids concentration in the secondary 

effluent versus model predictions are shown in Figure 6.13. For the first sampling survey, 

reasonable agreement existed between the actual data and the predictions provided by the 

model. This was not the case for the second sampling survey. However, it should be 

noted that the total suspended solids concentrations during the second survey were in the 

lower range and averaged only 2.4 mg/L.

6.7 CONCLUSIONS

The sampling campaign that was conducted in the present study showed that partial 

nitrification took place in the activated sludge tank during the second survey, mainly due 

to the elevated temperatures encountered. Visual experimental observations during the 

settling tests and the unsteady state simulations by ASMlsp indicated that denitrification 

took place in the secondary clarifier during the second survey. Therefore, the biological 

transformations occurring in the sludge blanket of the secondary clarifier had to be 

included as part of the activated sludge tank configuration.

Although ASMlsp was able to give reasonable predictions for the ammonia 

nitrogen concentration in the secondary effluent, there were pronounced disagreement
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between the actual data and the model’s predictions for the soluble COD and nitrate 

nitrogen concentrations. Few simplifications were made in the model development of 

ASMlsp as well as in the configuration that was used to depict the activated sludge 

process at the GBWWTP. In order to compensate for these simplifications, the hybrid 

model included a black box component that was used to predict the error between the 

actual data and the predictions by the deterministic component ASMlsp. By including 

this error component in the hybrid model, the predictions by ASMlsp were substantially 

improved.

For predicting the ammonia nitrogen concentration in the secondary effluent an 

artificial neural network model was used as the error component, while time series 

models were developed for the soluble COD and nitrate data using the Box-Jenkins 

methodology for model building. From a process-control point of view, the neural 

network error component used in the present study is better than the time series models 

that were used as the error-predictor components in the hybrid model. The reason is that 

the neural network model only utilizes information about the inputs to the system, 

however, the time series models use information about the past errors in order to predict 

the value for the next one. The problem with artificial neural networks that they need a 

substantial amount of training data in order for them to learn. Limited amount of data 

were available and therefore, in some cases artificial neural networks failed and time 

series models were used instead as the error-predictor component in the hybrid model.

In the present study, typical values that were available in the literature were used for 

the different kinetic and stoichiometric parameters in ASMlsp. Although some of these 

parameters do not differ significantly from one domestic wastewater to another, and thus 

their values may be assumed, other parameters, such as YH and B l ,h , should be evaluated 

experimentally using treatability studies. By doing so, the deterministic component of the 

model will be improved and the load on the error-predictor component of the hybrid 

model will be reduced.
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

7.1 GENERAL OVERVIEW

Within the past few years, the topic of real time control (RTC) of wastewater 

treatment plants (WWTPs) has quickly become a promising and active area of research 

and the improvement of the computer-based infrastructure for WWTPs has been 

identified as an important priority. In order to obtain an effective RTC of a WWTP, the 

following dynamic processes have to be modelled: (1) input to the system, i.e., rainfall- 

runoff-sewer flow and quality models; and (2) system response to the input, i.e., models 

that have the ability to relate causes (inputs, controls) to effects (outputs, responses). In 

order to relate the inputs of an unsteady state system to its output, dynamic modelling 

techniques have to be utilized.

The main scope of this research project was to develop dynamic models that can 

describe the following: (1) the wastewater inflow entering the Gold Bar Wastewater 

Treatment Plant (GBWWTP); (2) the dynamic nature of the primary sedimentation 

process at the plant; and (3) the activated sludge process at the plant. The objective of the 

modelling effort was to develop models which have the potential of being used as part of 

a RTC system that can be designed to improve the performance of the different processes 

at the plant.

An artificial neural network (ANN) model was developed to provide short-term 

predictions of the wastewater inflow rate that enters the GBWWTP. The neural network 

model uses rainfall data, observed in the collection system discharging to the plant, as 

inputs. Among the 18 rain gauges that cover the major drainage basins of the city’s 

sewerage system, 8 rain gauges were chosen to be used by the neural network. These 

gauges were selected because they are located in drainage areas that have high percentage 

of combined sewers. In order for the neural network model to learn the diumal pattern of 

wastewater flow entering the plant on different days of the week during dry weather flow 

conditions, an index to represent the day-of-the-week and another index to represent the
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hour-of-the-day were used as inputs to the neural network model. The available data set 

contained 114 rainfall events that were divided into three sets, namely, set #1, set #2, and 

set #3. Data set #1 was always used as part of the training data set. Data sets #2 and #3 

were used as validation data sets and each contained 22 rainfall events. Each of the two 

validation data sets included rainfall events that covered a wide range of total amount of 

rainfall, maximum intensity, maximum flow at the entrance to the plant that was 

encountered during the rainfall event, and total inflow (amount of flow, conveyed to the 

plant during a rainfall event, that was above the normal dry weather flow). A moving 

window was used to present the rainfall data to the neural network model. The building 

process of the model was conducted in a systematic way. Different sizes of the moving 

window were tried. Only one hidden layer was used while different sizes of the hidden 

layer were tried. The 30-minute-in-advance wastewater flow was the output of the neural 

network. The objective was to predict the flow entering the plant during wet weather flow 

conditions, and as a result, the performance of the candidate models (with respect to 

training and validation) was judged only using the wet weather flow patterns.

The artificial neural network modelling approach was used to predict the dynamic 

response of a full-scale primary sedimentation tank at the GBWWTP. The neural network 

model consists of two separate networks, one uses flow and influent total suspended 

solids data in order to predict the effluent total suspended solids from the tank, and the 

other makes predictions of the effluent chemical oxygen demand using data of the flow 

and influent chemical oxygen demand as inputs. Two weeks of hourly sampling were 

conducted in order to collect a data set to be used in training and validating the networks. 

A systematic approach was used in the building process of the model. In order to present 

the input data records to the neural network, a moving window of past records was used. 

Two days worth of hourly data were used for validation while the rest of the data were 

used for training the models. The Box-Jenkins transfer function methodology was used in 

order to study how and to what extent effluent total suspended solids (TSS) and chemical 

oxygen demand (COD) are related to influent TSS, COD, and flow in the primary 

sedimentation tank. With the Box-Jenkins approach, stochastic and transfer function
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components were combined to form a dynamic model and the relative importance of 

these two components was quantitatively assessed.

A hybrid model was used to predict the quality of effluent wastewater from a full- 

scale activated sludge process at the GBWWTP. The model consisted of two 

components: (1) mechanistic component, which is a simplified version of Activated 

Sludge Model No. 1 and was denoted by ASMlsp; and (2) black-box component, which 

is an artificial neural network in some cases while a time series component in other cases. 

The function of the black-box component was to predict the error between the actual 

experimental data and the predictions from the mechanistic model component. By 

including the black-box component into the hybrid model, the simplifications that were 

applied to the ASM1 were compensated for. Because the objective was to calibrate and 

verify the model based on experimental data collected from full-scale operation, an 

extensive sampling campaign was conducted on one of the activated sludge tanks at the 

plant during the summer of 2000. Two sampling surveys were conducted as part of the 

campaign, one in May/June, during which the tank was operated in the plug flow mode, 

and the other in July/August during which the step-feed mode was used.

7.2 CONCLUSIONS

Based on the theoretical and experimental studies conducted in this research 

program, the following main conclusions can be drawn:

1. For almost all the candidate models that were able to converge, as the number of 

epochs that was used in training increased, the value of the R2 for the training set 

increased and the maximum value was obtained when training was allowed for the 

maximum number of epochs that was used. On the other hand, the maximum value 

of the R for the validation data set was always obtained at a much lower number of 

epochs (on one instance was as low as 30 epochs).

2. When the dimensionality of the network increased (either the size of the moving 

window or the size of the hidden layer is in the higher range) the maximum value of
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the R2 for the validation data set was obtained at low number of epochs and 

allowing training beyond this point hindered the ability of the network to 

generalize.

3. Although a network that is trained with a gradient descent algorithm, like the 

back-propagation, is not guaranteed to find a global minimum, even if it converges, 

the systematic approach of ANN model building that was used herein allowed the 

avoidance of local minimum.

4. For the ANN flow model, increasing the size of the moving window up to 8 hours 

had the effect of improving the performance of the network with respect to both 

training and validation. Expanding the moving window beyond 8 hours had very 

little effect on the performance.

5. The two indices of day-of-the-week and hour-of-the-day allowed the ANN flow 

model to learn the diumal changes of the dry weather flow at the entrance to the 

plant as well as the lag that existed between the weekend patterns and the weekdays 

ones.

6. For both the training and validation data sets, the ANN flow model performed 

extremely well. When tested against the validation data that have not been seen by 

the model during the course of training, the model had excellent generalization 

ability and was able to predict fairly well the quantity of wastewater flow entering 

the plant for 44 different rainfall events that ranged widely in both the total amount 

of rainfall and the maximum intensity.

7. The ANN flow model was not confused by erroneous flow records in the training 

data set, which means that the model can be updated (or re-trained) online without 

visual examination of training data that are presented to the model as long as the 

overall quality of the data is good.

8. For the ANN models for the primary sedimentation tank, using a moving window 

of size 3 hours yielded the best results for the validation data set. Based on the 

results of the simple tracer studies conducted, the lag time between the effluent and 

the influent data used in modelling was set equal to one hour. When tested against 

the validation data set, the models were able to generalize well. The ANN model for
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predicting the COD in the primary effluent gave better predictions than that of the 

model for TSS. The model predictions were better during wet weather conditions.

9. The sampling that was conducted on the primary sedimentation tank showed that 

during periods of rainfall events the TSS in the influent wastewater increased 

substantially due to the first flush effect while the COD values decreased due to the 

dilution effect of the storm water.

10. The ANN models for the primary sedimentation tank were superior than 

traditional non linear regression models.

11. For the combined transfer function noise models that were developed for the 

primary sedimentation tank, the addition of a transfer function component improved 

the prediction, and with the use of a transfer function model by itself (no noise 

component), the performance was worse than with a noise model by itself (no 

transfer function component). The identification of the delay parameter in the 

transfer function component clearly indicated the presence of short circuiting in the 

sedimentation tank. The two models used for the prediction of the effluent TSS (one 

for each week of sampling) had identical structures, however, they had different 

values for the estimated parameters, which means that updating such models could 

be done automatically without the need to change the structure of the model. The 

combined transfer function noise models gave overall better predictions than the 

ANN models that utilized the same data set, however, the ANN models have the 

advantage that they only use information about the input data (no previous values of 

the output variable are used as inputs).

12. The steady state simulations that were conducted for the activated sludge process
0

@ 20 C showed that almost complete utilization of the readily biodegradable 

substrate would occur at an SRT as low as one day. Only very slight increase in the 

readily biodegradable substrate concentration in the secondary effluent would occur 

if the mode of operation is switched from plug flow to step-feed. The simulations 

also showed that nitrification does not take place in the aeration basin when the

SRT is less than two days. However, at 20 C and an SRT of three days almost full 

nitrification could be established in the tank and increasing the SRT beyond three 

days would not have a pronounced effect on the percent nitrification. At an SRT of
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three days there would be a slight increase in the ammonia-N concentration in the 

secondary effluent if the step-feed mode of operation is used instead of the 

conventional plug flow, however, beyond SRT of three days both the plug flow and 

the step-feed simulations gave virtually identical results.

13. The results of the two sampling surveys that were conducted on the activated 

sludge tank showed that although the tank was operated at an estimated SRT value 

of 2.1 days during the second survey while the estimated SRT value during the first 

survey was 2.3 days, partial nitrification took place in the aeration tank during the 

second survey. This was mainly due to the higher temperatures encountered during 

the second survey. Visual experimental observations during the settling tests
thconducted on the mixed liquor from the 4 pass of the aeration tank as well as the 

unsteady state simulations by ASMlsp indicated that denitrification took place in 

the secondary clarifier during the second survey, and therefore, the biological 

transformations occurring in the sludge blanket of the secondary clarifier had to be 

included as part of the activated sludge tank configuration. Although denitrification 

took place in the sludge blanket of the secondary clarifier during the second survey, 

the effluent quality in terms of total suspended solids did not deteriorate. This was 

probably because nitrification did not occur to the full extent possible in the 

aeration tank, and therefore, the nitrate feed to the sludge blanket in the secondary 

clarifier did not produce nitrogen gas at a rate that was enough to cause the sludge 

floes to rise to the effluent launders.

14. Although ASMlsp was able to give reasonable predictions for the ammonia 

nitrogen concentration in the secondary effluent, there were significant 

disagreements between the actual data and the model’s predictions for the soluble 

COD and nitrate nitrogen concentrations. The black-box error-predictor component 

of the hybrid model compensated for the few simplifications that were made in the 

model development of ASMlsp as well as in the configuration that was used to 

depict the activated sludge process at the GBWWTP. For predicting the ammonia 

nitrogen concentration in the secondary effluent an artificial neural network model 

was used as the error-predictor component, while time series models were 

developed for the soluble COD and nitrate data using the Box-Jenkins methodology
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for model building. By including this black-box component in the hybrid model, the 

predictions by ASMlsp were substantially improved.

7.3 RECOMMENDATIONS

In this study, dynamic models were developed for predicting the wastewater inflow 

to the GBWWTP and for describing the dynamics of full-scale primary sedimentation 

and activated sludge tanks at the plant. Based on the achieved goals and the drawn 

conclusions, several recommendations have to be addressed in further future research:

1. Updating of the ANN flow model with recent data needs to be done. Using the 

same model structure, the new set of data that would be applied to the network for 

the purpose of re-estimating the weights. As the neural network model is presented 

with more scenarios of rainfall events, its prediction ability would improve.

2. The full-scale implementation of the ANN flow model is needed. In order to use 

the model as a part of an on-line control system, real-time predictions should be 

made during rainfall events. For this to be done, the rainfall data have to be 

downloaded from the remote locations of the rain gauges every 30 minute then 

prepared to be presented as inputs to the neural network, then the array of inputs 

can be processed through the trained network in order to predict the wastewater 

flow 30-minute-in-advance. This task has to be done every 30 minute in order to 

use the model on real-time basis. A simple computer program can accomplish this 

task.

3. More detailed tracer studies should be performed on the primary sedimentation 

tanks in order to verify the existence of short circuiting that was found from both 

the simple tracer studies that were performed and from the modelling effort that was 

conducted.

4. A more elaborated and detailed settling model for the secondary clarifier is 

needed. In order to do so, more data needs to be collected during periods of 

hydraulic and organic loading stresses.
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5. In order to implement the type of quality models that were described herein as 

part of a real-time control scheme, a reliable on-line analyzer has to be installed at 

the influent and effluent points of both the primary sedimentation and the activated 

sludge tanks in order to collect the data needed. Pilot-scale testing of the different 

analyzers available for domestic wastewater should be done in order to select the 

most reliable one.

6. In the present study, typical values that were available in the literature were used 

for the different kinetic and stoichiometric parameters in ASM lSp. Although some 

of these parameters do not differ significantly from one domestic wastewater to 

another, and thus their values may be assumed, other parameters, such as Yh and 

B l,h, should be evaluated experimentally using treatability studies. By doing so, the 

deterministic component of the model would be improved and the load on the error- 

predictor component of the hybrid model would be reduced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


