QUAECUMQUE VERA

— Motto of The University of Alberta

University of Alberta

Logic Programming with Constraints

by

Guohua Liu

A thesis submitted to the Faculty of Graduate Studies anddrels
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

©Guohua Liu
Spring 2010
Edmonton, Alberta

Permission is hereby granted to the University of Albertiararies to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly orrtifie research purposes only. Where the thesis is

converted to, or otherwise made available in digital forne University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rightsssociation with the copyright in the thesis and,
except as herein before provided, neither the thesis nosalngtantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever withioe author’s prior written permission.

Examining Committee

Randy Goebel, Department of Computing Science

Martin Mueller, Department of Computing Science

Liyan Yuan, Department of Computing Science

Jia-Huai You, Department of Computing Science

Marek Reformat, Department of Electrical and Computer Eegiing

Tran Cao Son, Department of Computer Science, New Mexice Shaiversity

To my parents Shufang Wang and Zhiyong Liu and my sister @gdjiu
for their measureless love and patience

Abstract

Answer set programming (ASP), namely logic programmingeurttie answer set seman-
tics, provides a promising constraint programming panagligue to its simple syntax, high
expressiveness, and effective computational properfiéss programming paradigm can
be viewed as a variant of SAT. A main drawback of ASP, like SaThat the framework is
primarily formulated for reasoning with individuals, wigeeach is represented by an atom
in the traditional sense. Recently, ASP has been extendexdltale constraints to facili-
tate reasoning with sets of atoms in an explicit manner. &lesstraints include weight
constraints, aggregates, and abstract constraints. lpoggrams with these constraints are
referred to as weight constraint, aggregate and abstrastreint programs.

We investigate the properties and computations of weighsicaint, aggregate, and ab-
stract constraint programs, respectively. For propertiasimprove the formulation of loop
formulas for weight constraint and aggregate programggse loop formulas for abstract
constraint programs, and characterize strong equivalehteese programs. For computa-
tions, we refine the existing constraint propagation meisinain the computation of weight

constraint programs and advocate a new approach to corgpaggregate programs.

Acknowledgements

| am indebted to my supervisor Dr. Jia-Huai You for providimg with the opportunity to
work with him. | have benefited a lot from his guidance on howniativate, carry out and
present a research, and his continuous support made ibp$si me to try various ideas.
Without his help, this dissertation would not have been ibtess

| am grateful to Drs. Martin Mueller, Randy Goebel, Li Yan Yyalran Cao Son,
and Marek Reformat for their detailed review of my thesis galtiable suggestions on the
revision.

| appreciate the administrative and technical support teahthe Computing Science
Department including Edith Drummond, Sunrose Ko, Linda J&nd Broderick Wood.
They created a really effective and friendly work enviromne

Special thanks to many friends, including Baochun Bai, £haa Guo, Yisong Wang,
and Qian Yang for their help and encouragement during myystund the preparation for
the defense.

Finally, I would like to thank my parents Shufang Wang andyBhig Liu and my sister
Guoijing Liu for their measureless love and patience.

Table of Contents

1 Introduction 1
1.1 Answersetprogramming i e e e 1
1.2 Answer set programming with constraints 3
1.3 Contributions 9
1.4 Outlineofthethesis, 10

2 Stable model semantics 11
2.1 Normallogicprograms i e 11
2.2 Weightconstraintprogramso 13

3 Level mapping induced loop formulas for weight constraintprograms 18
3.1 Motivation e 18
3.2 Level mapping characterization of stable models 19
3.3 Completion and loop formulas 21

3.3.1 Completion e 21

3.3.2 Loopformulas 22
3.4 Relation to weakly tight programs 25
3.5 Conclusion 25

4 Animprovement in computation of weight constraint programs 26
4.1 Motivation 26
4.2 Answer set computation BMODELS L. 28

4.2.1 Weightconstraintrules 8 2
4.2.2 Lookahead iSMODELS 29
4.3 Ineffectiveness of lookahead 32
4.3.1 Easysub-programs e 32
4.3.2 SPUniOUS PrUNiNg o v v v e e 34
4.4 Adaptivelookahead 53
441 Algorithm 35
4.4.2 Comparison withimited lookahead. 36
45 EXperiments 38
4.5.1 Randomlogicprograms 39
4.5.2 Adaptiveness of adaptive lookahead39
4.5.3 Experiments onareal applicaton 43

4.6 Conclusion 50

Answer set semantics for aggregate programs 51

51 Answersetsemantics 15
5.2 OtherSemantics 53
5.2.1 FLP-answersetsemantics 53
5.2.2 Ferraris'semantics o 54
5.2.3 PDB-answersetsemantics 54
Level mapping induced loop formulas for aggregate prograra 55
6.1 Motivation 55
6.2 Encodingofaggregates 56
6.3 Level mapping characterization ofanswersets 57
6.4 Loopformulas. 60
6.4.1 Completion 60
6.4.2 Loopformulas 60
6.5 Comparison e e e 63
6.6 Conclusion 64
Computing aggregate programs as weight constraint progras 65
7.1 Motivation L e 65
7.2 AstudyonsemanticCs 67
7.2.1 Coincidence between semantics 67.
7.2.2 Whenthe semanticsdisagree 9 6
7.2.3 Transformation to strongly satisfiable programs 71
7.3 An approach to computing aggregate programs 73
7.3.1 Encode aggregates as weight constraints 73
7.3.2 Aggregate programs to weight constraint programs 76
7.4 EXperiments 78
7.4.1 ALPARSEbased ooSMODELS 78
7.4.2 ALPARSEbasedorCLASP 80
7.5 Conclusion 91
Semantics for abstract constraint programs 93
8.1 Answersetsemantics e 39
8.2 Othersemantics 96
8.2.1 MR-answersetsemantics 96
8.2.2 MT-answersetsemantics 97
Loop formulas for abstract constraint programs 99
9.1 Motivation e 99
9.2 Completion 100
9.3 Loopformulas. 100
9.4 Relationto previousworks 105
9.4.1 Local power setrepresentation 105
9.4.2 Dependencygraph 106
9.43 Loopformulas 107
9.5 Application e 109
9.5.1 Pseudo-Boolean constraints 109
9.5.2 Encodingofaggregates 011

9.5.3 Encoding of global constraints 115

9.6 Conclusion e e 118
10 Strong equivalence of abstract constraint programs 119
10.1 Motivation e ai
10.2 Characterizations of SE under answer set semantics 120
10.3 Yet another characterization 123
10.3.1 Reduct of abstract constraint programs and opefator. 123
10.3.2 SE-models and strong equivalence 124
10.4 Conclusion e e 125
11 Future work: Integrating global constraints to ASP 126
11.1 Introduction e e e 261
11.2 Motivating experiments 128
11.2.1 Thegoal e 128
11.2.2 Thal l different constraint 128
11.2.3 Thecunul ative constraint 130
11.2.4 Thesort constraint 133
11.3 A property of global constraints 134
11.3.1 Global constraintsasc-atoms 135
11.3.2 Compactness of local powersets 135
11.3.3 Discussion e 136
11.4 Summary and futurework L 391
12 Conclusion 141

Bibliography 143

List of Tables

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

7.1
7.2
7.3
7.4

Graph coloring (“-” indicates no result is generatedhimttwo hours of

running time) L 46
Random 3-SAT 46
Queens . . . 47
Blocks-world problem 74
Gripperproblem 48
Seating e 48
Pigeon hole by weight constraint program 48
Hamiltoniancycle 914
USA-AQVISOr e 49
Benchmarks used lBMODELSY 84
Seating e 91
Pigeonhole e 91
SummanALPARSEandDLV 92

11.1 Summangl CSTUSandCLASP 139

List of Figures

4.1
4.2
4.3
4.4
4.5
4.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

111
11.2
11.3

A program for the pigeon-hole problem 32

A program for the Hamiltonian cycle problem 34

A program for the seating problem 42
Random logic programs 4 4
Random non-tight logic programs 45
expend callsingraphcoloring 45
15-Puzzle e 85
SchurNumber 85
Blocked N-queens 86
Weighted Spanning Tree 6 8
Bounded Spanning Tree 7 8
HamiltonianCycle 87
Towersof Hanoi e 88
Social Golfer 88
Weighted Latin Square 9 8
Weight Bounded DominatingSet 89
Traveling Sales Person Problem 90
CarSequencing 20
Pigeon-hole Problem 138
Scheduling e 138

SOrtiNg 139

Chapter 1

Introduction

1.1 Answer set programming

An intelligent agent must have the ability to acquire knayge and reason with it. In order
for an artificial intelligence (Al) system to possess thebditees, a computer readable
language for knowledge representation and reasoning (KRgededLogic programming
which uses logic as the basis for a programming languagéyéesa powerful tool for KR.

Initially, logic programming focuses on a subset of clagklogic, called Horn logic.
A Horn clause is an implication with an atom in the head and guwtion of atoms in
the body. This allows fast and simple inferences througblugien. But it was quickly
realized that Horn logic was not adequate for common-sezasoning. The reason is that
Horn logic is monotonic a conclusion entailed by a body of knowledge stubbornly re-
mains valid no matter what additional knowledge is added,common-sense reasoning
is nonmonotonicconclusions made with currently available knowledge mawithdrawn
in the presence of additional knowledge. This led to the lkbgvaent of the field ohon-
monotonic logi¢ and several nonmonotonic logics suchcasumscription default logic
auto-epistemic logicandnonmonotonic modal logiosere proposed. The Al journal spe-
cial issue of 1980 (volume 13, number 1 and 2) containedairtiticles on some of these
logics.

Theclosed world assumptioim databases was then imported to logic programming to
make it able to perform nonmonotonic reasoning [13]. Thedidga of the closed world
assumption in this context is that a logic program contalintdi@ positive information about
the objects in its domain, and a negative conclusion is drfime proof of its positive
counterpart failed. This way of generating negative infation is referred to asegation-
as-failure An operatomot was introduced to represent the negative information.

Logic programming under thenswer set semanticsoined agnswer set programming

(ASP), was proposed in late 1980s as an alternative langoagaowledge representation
and nonmonotonic reasoning. In ASP, a problem is repregdntex logic program and the
answer setgalso calledstable modelsof the program correspond to the solutions to the
problem. Intuitively, an answer set of a program is a set ofratthat satisfies every rule of
the program and each atom in it has@n-circular justificationby the program.

As an example, consider the 3-coloring problem, which isdioica graph with three
colors: red, blue, and yellow, so that any two nodes condelojean edge have different

colors. A typical logic program in ASP is as follows.

Example 1.1.

col(X,red) «— node(X),not col(X,blue),not col(X,yellow)

col(X,blue) «— mnode(X),not col(X,red),not col(X,yellow)

(
(
col(X,yellow) «— node(X),not col(X,red),not col(X,blue)
(

— edge(X,Y), color(C),col(X,C),col(Y,C)

The first rule in Example 1.1 says that a node is colored byfréds not colored by
blue or yellow. The second and third rules are similar. Theges together express all of
the possible colorings of the nodes in the graph. The fowth guarantees that adjacent
nodes get different colors.

Along with the facts that specify the nodes, edges and caach aspode(a), node(b),
node(c), edge(a,b), color(red), color(blue) andcolor(yellow), an answer set of this pro-

gram looks like
{col(a,red), col(b,blue), col(c,yellow), ...}.

It means that coloring the nodesb, ¢ with the colors red, blue, and yellow, respectively,

is a valid solution to the problem. O

Some programs may have no answer sets. This means that teepmrding problem
has no solution.

In Example 1.1, the upper case letters are variables. \lasadre allowed in imple-
mented ASP systems. But the semantics, properties and ¢atigms of a program are
studied only orgroundprograms, which are obtained by instantiating the non-ggiopro-

grams with the constants in the underlying langugde. order to make sure that such a

'Recently, there have been approaches to the computatiorgifams with variables based on partial or
dynamic grounding [56].

program is finite, no function symbols are allowed. In the ghis document, we only
discuss ground programs.

In general, a logic program consists of rules of the form
lo—1l1,...,lm,n0t lpyq,...,n0t 1, (1.2)

where eachi;, (0 < ¢ < n) is an atom. Intuitively, a rule of the form (1.1) says that
must be true ifly, ..., [, are true and,,,1,...,l, can be safely assumed to be false
(negation-as-failure).

It has been proved that all problemsMP can be solved within the paradigm of ASP
[52], i.e. ASP is sufficiently expressive for a wide rangerapbrtant computational prob-
lems including many combinatorial and optimization proleand constraint satisfaction
problems (CSP).

The previous research on ASP has laid a solid theoreticaldation with a large body
of building block results, e.g., equivalence between paotg, programming methodolo-
gies, and relationships to other nonmonotonic formalisiigese results are very useful in
the development of large knowledge bases.

There have been a number of ASP implementations, SMODELS [74], DLV [38],
CMODEL S[2], ASSAT [43], CLASP [30]. The performance of these systems has progressed
rapidly. They have been used in a number of applications aagilanning [22, 36], prod-
uct configuration [75], phylogeny reconstruction in congtistnal biology [82], and wire
routing in computer aided design [22], etc. The latest pFegrin systems and applications
is reported in [24].

In summary, ASP, as an alternative logic programming paragdhas become an inter-
esting topic in Al research. It has high expressivenessd slokoretical foundations, and

plenty of applications and implemented systems.

1.2 Answer set programming with constraints

Initially, ASP supported onlyormal logic programsi.e., each literal in the rule (1.1) is
either an atom or the negation of an atom. When working tosvapplications, it has been
observed that normal logic programs are inadequate for nirgayesting domains. They
cannot compactly express many commonly used constraiots asichoices over subsets,
cardinality and weight constraints.

In order to represent this type of knowledge, logic prograares extended to include

weight constraint$62, 75]. A weight constraint is of the form
llay = wy, ... ,Qpm = Wy, NOt Apyy1 = Wit - .., NOL @y = wylu 1.2

whereay, ...a,, are atoms. Atomay, ..., a,, and atoms that are precededrint , not a1,
..., hot a,, are callediterals. They are also callegositive literalsandnegative literals
respectively. Thew;, [, andwu are real numbersw; is theweightof the literala; (or not

a;). If aweight is 1, it is usually omitted. and« are lower and upper bounds respectively.
Either of the bounds can be omitted in which case the missiwgi bound is taken to be
—oo (no constraint on the lower bound) and the missing upper e@ur(no constraint on
the upper bound).

Intuitively, a weight constraint is satisfied by a set of asofh if the summation of the
weights of the literals amonfy, ..., a,,} thatare inS plus the summation of the weights
of literals amond{a, 11, ..., a,} that are notinS is in between andu, inclusive. Logic
programs with weight constraints are calledight constraint programs

Below are two examples of the use of weight constraint progta

Example 1.2.[75] Consider the product configuration problem, which carrdughly de-
fined as the problem of producing a configuration of a prods eollection of predefined
components. The input of the problem is@nfiguration modelwhich describes the com-
ponents that can be included in the configuration, the ruigsoav they can be combined to
form a working product, and the requirements that specifpesproperties that the product
should have. The output is@nfigurationwhich is an accurate description of a product
consisting of components that satisfies all of the rules aadirements in the configura-
tion model. The following example demonstrates some typgaans of knowledge in a
configuration model.

A configuration model of a PC could consist of a number of congmds which could be
different types of key boards, display units, hard disks, @®es, floppy drives, extension
cards and so on. It may contain rules such as a PC should hawess storage which
must be chosen from IDE hard disks, SCSI hard disks and floppgs] and a PC needs a
keyboard which could be either a Finish or UK layout. The gunfation model may also

contain a requirement, which is that no computer may haveerti@n 4 IDE hard disks.

The product configuration problem can be encoded as follows.

computer <
1[idedisk, scsidisk, floppydisk]l <« computer
1[finnishK B,ukKB] <« computer
1[idedisky, ..., idedisky]l <« idedisk

Olidedisky, ... idedisk,|4 «— computer
whereidedisky, ..., idedisk, are IDE hard disks to be chosen from. O

Example 1.3. The graph coloring program in Example 1.1 can be conciseljtesr as
follows.

1[color (X, red), color(X, blue), color(X, yellow)]1 «— node(X)
— edge(X,Y), color(C), col(X,C),col(Y,C)

O

Besides weight constraints, logic programs is also exigmaléncludeaggregateg76].
Aggregates specify, in a nature way, more constraints theigiw constraints, such as the
number, the summation, average, maximum, and minimum oétim@s (numbers) in the
set. An aggregate is a constraint on a set of atoms. A set ofsasatisfies an aggregate if
the constraints specified by the aggregate is satisfied bgethe-or example, lefl be the
aggregateCOUNT ({X | p(X)}) = 2, whereD(X) = {a,b}. A specifies a constraint on
D(A) = {p(a),p(b)}, which can (and can only) be satisfied by the sets whose nuafiber
atoms inD(A) equals to 2, i.e.A is satisfied by sets whose intersection wiliA) is the
set{p(a), p(b)}.

The standard aggregates &/ €@ UNT, SUM, AVG, MIN and MAX. The name of an
aggregate naturally denotes the constraint it specifies.s€ts that satisfy an aggregate are
called themodelsof the aggregate. Logic programs with aggregates are caligtegate
programs

There are a number of proposed semantics for logic prograithsaggregates. The
semantics proposed by Faber et al [25] define the answer Batdogic program with
aggregates as the least models ofréductof the program; Ferraris [27] define the answer
sets of a logic program as the answer sets of a proposititreary translated from the
program. Son et al [76] define answer set as the fixpoint of aotome operator applied to

the program; The semantics proposed by Denecker [18] amy F&3] deal with aggregates

by using an approximation theory and three-valued logigding the semantics on a three-
valued immediate consequence operator. It has been shavthéhsemantics of [76] and
[18, 63] coincide. The set of answer sets admitted by thensighaet of that admitted by
the semantics of [25].

Several answer set programming systems that support ageelgave been developed,
including DLV by Lenoe et al [38]SMODELS# by Elkabani et.al. [21], an€LASP by
Gebser et al [31]. They implemented the semantics propogé&alber et.al. [25], Son et al
[76], and Ferraris [27], respectively.

The concept olbstract constraint atom®r c-atom3 was proposed by Marek, Remmel
and Truszczyhski in [53, 54]. Logic programs with c-atoms @alledabstract constraint
programs Abstract constraint programs provide an elegant thezakfiiamework for inves-
tigating, in a uniform fashion, various extensions of logrogramming, including weight
constraint and aggregate programs.

A c-atom is a pair of set6D, C'), whereD is a finite set of atoms and is a collection
of subsets ofD. It expresses a constraint on the atomdirsuch thatC' is the collection
of admissible solutions to the constraint. Many kinds ofstaints can be represented as
c-atoms. For instance, the aggreg@t®@ UNT ({ X |p(X)}) = 1, whereD(X) = {a, b},
can be represented by the c-atofp(a), p(b)}, {{p(a)}, {p(d)}}).

Intuitively, a c-atomA represents a constraint on models of the program contaiding
and the description ofl includes an explicit description of what conditions aniiptetation
has to meet in order to satisfy. Abstract constraint programs subsume weight constraint
and aggregate programs.

The semantics of abstract constraint programs, i.e., tfia@itien of answer sets of
abstract constraint programs, has been a topic of intensteeest. Marek and Remmel
[54] proposed the first explicit definition of answer sets pasitive programs (programs
without the operatonot). An arguable shortcoming in this proposal is that unintait
answer sets (e.g. non-minimal answer sets) can be derivednie cases and it does not
coincide with some well-agreed semantics for aggrega®s23, 27, 67, 76].

Marek and Truszczyhski [53] revisited the semantics ofralss constraint programs by
focusing on programs witmonotoneconstraints. A c-ator# is monotonef, for any two
sets of atomd and I’ such that/ C I’, we have that whenevdr satisfiesA, I’ satisfies
A. The semantics is extended to deal witinvex constraintg49]. A c-atom isconvexif,
for any three sets of atomk W, andJ such that € W C J, we have that whenever

both I andJ satisfy A, W satisfiesA. Programs with convex constraints can be encoded as

programs with monotone programs, as pointed out in [49].

The main advantage of focusing on monotone and convex csaliesiin that mono-
tonicity provides a relative simple way to define answer aat$some results on monotone
c-atoms can be easily extended to convex c-atoms. But mgmyriemt constraints cannot
be expressed directly by monotone c-atoms. Consider thegaigA = MIN ({X|p(X)}) >
2, whereD(X) = {1,2,3}. The aggregate says thatis satisfied by sets of atomg of
the formp(X), where the minimal number of the intersection/ofX) and the set of ar-
guments ofp is greater than 2. Obviouslyl is not monotone, because for interpretations
I ={p@3)}andI’ = {p(3),p(1)}, we havel C I’ andI satisfiesA, but!’ does not satisfy
A.

Son et al [77] investigate the semantics of logic programtb arbitrary c-atoms, i.e.,
the c-atoms in a program could be nonmonotone as well as mo@oT hey introduce the
concept ofconditional satisfactionBased on this concept, a fixpoint semantics for abstract
constraint programs is developed. The semantics seemsintoitve than that proposed
in [54].

Liu et al [48] introduce several notions cbmputations They propose to use ttre-
sultsof the computations as the different definitions of answés && abstract constraint
programs. They give the relationships among these diftavemputations and among the
corresponding definitions of answer sets. The semantiesdb@s computations are gener-
alizations of semantics previously proposed in [49, 53, 77]

You et al [87] propose an unfolding approach to study the sgicgof abstract con-
straint programs. In the approach, an abstract constraigram is transformed to a nor-
mal logic program and the answer sets of the abstract camsgniagram are defined as the
answer sets of the translated normal program. The semaigiged by this approach coin-
cides with the semantics based on conditional satisfaati¢ri7]. The unfolding approach
can also be used to study properties of abstract constnaigtagms. It makes it possible to
characterize the properties of abstract constraint prograising the known properties of
the unfolded normal logic programs. This approach alsodéac definition of answer sets
of abstract constraint programs with disjunctive head.

Shen and You introduce a compact representation of c-at@fis Unlike the com-
monly used power set form representation of c-atoms, theapproach represents a c-atom
by a pair of sets, one being the prefix of the other. In manys;ake new representation
results in a substantial reduction of the size from its posadrrepresentation. Based on

this representation, the Gelfond-Lifschitz transforroat[33] is generalized to define an-

swer sets for abstract constraint programs. This definisoproved to coincide with the
semantics proposed in [77].

Several properties of logic programs with constraints Haeen studied. The definition
of loop formulas for a program is one of the most importantpgrties. There are two
reasons for the adoption of loop formulas. One is that loomidas can be regarded as a
characterization of semantics. It is known that every stahbdel of a program is a sup-
ported model of the program [13], but the converse is notitmggeneral. This is because an
atom in a supported model may be circularly justified, iwstified by itself. Loop formu-
las can capture the circular justification of atoms. Différeemantics have different loop
formulas. Another is that loop formulas are the key part @fldop formula approactio
answer set computation [43, 49]. In the approach answep§atprogram are computed in
the following way: firstly, computing theupported modelgnodels of thecompletiofl3])
of the given program; then filtering out the supported motteds do not satisfy the loop for-
mulas. Finding efficient methods for constructing loop fatas has been of much research
interest. We study loop formulas for aggregate and abst@tstraint programs.

Strong equivalence is another property of interest. Tw@ms are said to bequiv-
alentif they have the same set of answer sets. The notiostrohg equivalencés pro-
posed since the notion of equivalence is inadequate for sqpkcations such as program
optimization, where changes made on a program are ofterictest within a part of the
program.

Two programs are said to tsrongly equivalentf after adding any other program to
each of them the resulting programs are still equivalenfisdhiitz et al [40] propose to use
the logicHere-and-Therdo characterize strong equivalence between programs. 4lih [
shows that the notion of strong equivalence of logic prograxan be reduced to the en-
tailment of classic propositional logic theories. Turng®@] uses model-theoretic means to
characterize strong equivalence: two programs are stya@wlivalent if they have the same
set ofstrong equivalent modeld.iu and Truszczyhski [49] extend the characterizatiofis o
strong equivalence to logic programs with monotone c-atdMesgive characterizations of
strong equivalence for logic programs with arbitrary crato

A number of systems have been implemented to support abstrastraint programs.
ASP- CLP [20], developed by Elkabani and his colleagues, integritesnswer set solver
SMODEL S with the constraint solveECLi PSe . But it does not guarantee the minimal-
ity of answer sets and the cost of communication betwS8®BDELS and ECLi PSe is

significant. SystenBMODEL S [21], developed by the same group addresses the above

problems. ISMODELS# , an aggregate program is transformed to a normal logic pragr
then SMODEL S is applied to compute the answer sets for the normal logignarm. The
systenDLV [38] supports aggregate programs but does not allow aggpetmappear in the
heads of the rules. We propose an approach to compute aggmggrams and implement
itin the systemALPARSE .

Liu and Truszczynski [49] extend the loop formula appropobposed in [43] to logic
programs with monotone and convex c-atoms. They show thagia program with con-
vex c-atoms can be transformed to a pseudo-Boolean thedhasthe answer sets of the
program can be computed as the models of the pseudo-Bodieary; using off-the-shelf

pseudo-Boolean constraint solvers. This approach is imghéed inPbnodel s .

1.3 Contributions

We study three main classes of logic programs with congfaineight constraint, aggre-
gate, and abstract constraint programs. Our work focusés@aspects of these programs:
the properties and computations. On properties, we stuelyabp formulas and strong
equivalence. On computations, we improve the existing oustlior weight constraint pro-
grams and propose a new method for aggregate programs.

In more detail, the main contributions of this thesis areddigvs.

e For weight constraint programs, we

— present the level mapping characterization of stable nsodetl propose loop
formulas for weight constraint programs based on the cheniaation (the main
result is reported in [44]);

— revise the constraint propagation mechanisokaheado adaptive lookahead
thus make the computation of weight constraint programsenadficient for
SMODELS (the work and subsets of experiments were presented in [d&] a

[47]). The approach is also applicable to SAT solvers thatleynlookahead.
e For aggregate programs, we

— present the level mapping characterization of answer setgepose the loop

formulas (this work is published in [44]);

— propose an approach to computing the aggregate programsigistwonstraint

programs (the work is reported in [46]);

e For abstract constraint programs, we

— propose loop formulas (the work is published in [84]);

— give two characterizations of strong equivalence.

For future work, we propose the integrationgbbbal constraintdo ASP, as a promising
direction. We provide the experiments that show the effigjenf using global constraints
for problem solving. We then present a property of globalst@ins which is useful for the

study of the properties and computations of programs withal constraints.

1.4 Outline of the thesis

The first chapter is an introduction. Chapter 2 to Chapterep@rt main work of the thesis,
which consists of three parts, dealing with weight constrprograms, aggregate programs
and abstract constraint programs, respectively. Eaclstats with a chapter of background
knowledge, followed by the chapters where our work is presin

Part one begins with Chapter 2 that introduces the semaoftie®ight constraint pro-
grams. Then Chapter 3 is the study of level mapping and loaputas for weight con-
straint programs. In Chapter 4, we improve the computatiomeight constraint programs
by proposing the adaptive lookahead mechanism.

In Part two, we introduce the semantics of aggregate progtamed on conditional sat-
isfaction and then briefly survey other semantics in ChaptéV¥e take the semantics based
on conditional satisfaction as the semantics of aggregagrams. The loop formulas for
aggregate programs are put forward in Chapter 6, and an agpro the computation of
aggregate programs are proposed in Chapter 7.

In Part three, we present various semantics of abstractraimtsprograms in Chap-
ter 8. Similar to Part two, we choose the semantics based oditamnal satisfaction as
the semantics of abstract constraint programs. We propagefbrmulas for abstract con-
straint programs in Chapter 9. The characterizations oftreng equivalence of abstract
constraint programs are presented in Chapter 10.

Chapter 11 discusses the future work and we conclude thesinegShapter 12.

10

Chapter 2

Stable model semantics

We first introduce the stable model semantics for normalclggograms, followed by the

stable model semantics for weight constraint programs.

2.1 Normal logic programs
A (normal) logic programis a set of rules of the form
h <« ai, ..., am,not by, ..., not b, (2.1)

whereh, aq,...,am, b1,...,b, areatoms The atomh is called theheadof the rule. The
set{ay,...am,...,not by,....not b,} is called thebodyof the rule. The head of a rule may
be empty, in which case the rule serves as a constraint gpegithat the body must be
false in any intended model. The body of a rule may be emptyhichivcase we may drop
the symbol <. Such a rule serves as a fact. We call the expressioh b a not-atom
Atoms and not-atoms are both referred tdigsals. When necessary, we refer to atoms and
not-atoms agpositive literalsand negative literals respectively. We useélt(P) to denote
the set of the atoms that appear in the progranA program is called @ositive program

if every literal in it is positive.

In answer set programming, variables are allowed to appearagrams. In this docu-
ment, we assume that each rule of the form (2.1) in a prograsybban replaced by all its
ground instances, so that all the atoms in the resultingrarogre ground. Such a program
is usually called ayround program. To ensure that ground programs are finite, function
symbols are not allowed in answer set programnting.

A set of atoms (or an interpretatiody satisfiesan atoma, denotedM = a, if a € M,

M satisfiesnot a, denotedM [~ «, if a ¢ M. M satisfies a rule if it satisfies the head

!Recently, some languages re-introduce functions [9, 42].

11

of » whenever it satisfies the body/ is called amodelof a programP if it satisfies every
rule in P.
Let P be a program and/ a set of atoms. Theeductof P with respect ta\/, denoted

PM is a program obtained by

1. deleting each rule i that has a negative literalot z in its body such that € M,

and

2. deleting all negative literals in the remaining rules.

The reduct of a program is a positive program. It is known thiaa positive progran®,
there is an unique minimal model. This model, denoted’byP), is called thedeductive

closureof P.

Definition 2.1. Let P be a logic program. A set of atonid is astable modebf P if and
only if M = CI1(PM).

Example 2.1. Let P, be a program.
p <« not qg,r
q <« notp

r <« hot s

s «— notp

The setM; = {r,p} is a stable model oP because the redu;i?th1 of P; with respect
to M is

p =T

T

andM; = CI1(PM). Similarly, My = {q, s} is also a stable model d?,.
But M3 = {p, s} is not a stable model aP, because the reduq?tfw3 is{p < r} and

its deductive closure i. O
A program may have no stable model. The following is an exampl
Example 2.2. Consider the progran®,.

f' o~ not flf
f

12

Assume thaiP, has a stable modél. Thenf € S. If f’ € S, then the reduct i§f <}

and its deductive closure does not inclytlelf f” ¢ S, then the reduct is

= f
f
whose deductive closure contaiffs Thus, P, does not have a stable model. O

For a programP, if there is no negative literal in it, then for any set of aton, PM
is identical toP andC(P) is the unique stable model &f.

The definition of stable model captures the key propertiestatile models:

e Stable models arfounded each atom in a stable model has a justification in terms
of the program, i.e., it is derivable from the reduct of thegmram with respect to the
model.

e Stable models are minimal: no proper subset of a stable nimdedtable model.

The requirement of foundedness guarantees that a stablel wfadprogram is a subset
of atoms appearing in the head of the rules in the programsidena progranP = {a «
a}, the possible stable models d@nd{a}. But{a} is not minimal, i.e.{a} is not the
deductive closure aP{%}. (The deductive closure d?t%} is ().) Therefore, the only stable

model of P is ().

2.2 Weight constraint programs
A weight constraints of the form
lar = way, .., G = Wq,,,NOt by = wy, , ...,NOL by, = wp, | u (2.2)

where eachu;, b; is an atom, and each atom and not-atom is associated witbight
Atoms and not-atoms are also callbrals (the latter may be emphasized asgative
literals). The numbergandu are thelower andupper boundsrespectively. The weights
and bounds are real numbefsA weight may be omitted when it is 1. Either of the bounds
may be omitted in which case the missing lower bound is takidret-oc and the missing
upper bound bysc.

Given a weight constrairit” of the form (2.2), we define:

2In the current implementations only integer weights arepsued.

13

e The literal set oftV, denotediit(W), is the set of literals occurring ifV, i.e.,
lit(W) ={aq,...,am,not by,...,not b,}

e The atom set oft, denotedAt(W), is the set of atoms occurring W, i.e., At(W) =
{a :a € lit(W) ornot a € lit(W)}.

A set of atoms)M satisfies a weight constraifit” of the form (2.2), denoted/ = W,
if (and only if) I < w(W, M) < u, where
wW, M) = " wa, + Y wp, (2.3)
a; €M b M

M satisfies a set of weight constraidisf M = W for everyW € II.

Example 2.3. Let W = 2[a = 8,b = 2,n0t ¢ = 4|11 be a weight constraint antl/; =
{a,b,c} and My = {a} be two sets. We have/(W, M;) = 10 andw(W, Ms) = 12,
thereforeM; = W and M, (= W. O

A weight constraintiW’ is monotoneif for any two setsR and S, if R = W and
R C S, thenS = W; otherwise,IV is nonmonotone There are some special classes of
nonmonotone weight constraintd$}’ is antimonotonef for any R andS, S = W and
R C Simply R = W; W is convexif for any R andS such thatR C S, if S = W and
R =W, then for anyl such thatR C I C S, we havel = W.

A weight constraint that contains neither negative litenabr negative weights is of
interest. We call thenpositive weight constraints. Positive weight constraints are con-
vex; Positive weight constraints without the upper boural monotone; Positive weight
constraints without the lower bound are antimonotone.

When a weight constraint contains negative literals or tiegaveights, it may be non-
monotone and doesn't fall into any of the special classes.ekample, leth = 1 [a =
1,not b = 1] 2 be a weight constraintl’ is nonmonotone, but neither antimonotone nor
convex, as shown below: considgéf; =), My = {b}, and M35 = {a, b}, and it's clear
M, =W, My = W,andM; = W.

As pointed out by [74], negative weights and negative lleaae closely related in that
they can replace each other and that one is inessential uhesihier is available.

Negative weights can be eliminated by applying the follgpiransformation: Given a
weight constrain®?” of the form (2.2), ifw,, < 0, then replace;; = w,, with not a; =
|wg,| and increase the lower boundit |w,, | and the upper bound to+ |w,, |; if wy, < 0,
then replacenot b; = w;, with b; = |wy,| and increase the lower bound ite- |wy, | and

the upper bound ta + |wy,|.

14

For instance, the weight constraint
—1[a; = —1,a2 = 2,n0t by = 1,not by = —2| 1 (2.4)
can be transformed to
2[not a; =1,ap = 2,n0t by = 1,by = 2] 4 (2.5)

The transformation above is equivalence-preserving, énseénse that for any weight
constraintiW” and set of atomd/, M = W iff M &= W', whereW' is obtained fromi?/
by applying the transformation.

We assume that weights are non-negative if not said otherwis

Thereductof a weight constraint?” of the form (2.2) w.r.t. a set of atonl&/, denoted

by WM | is the constraint
M [a1 = Way s ooy G = Wg,,] (2.6)
wherel™ =1 -3, o wy,.

Example 2.4. Let W = 3[a; = 1,not b; = 2,not by = 3]5 be a weight constraint and
Sp = {b1} andSy = {by} be two sets. Thel 51 = 0[a; = 1] andW*? = 1[a; = 1].
]

The reduct of a weight constraint is monotone, since it idtpesand has no upper
bound.

A weight constraint prograns a finite set of rules of the form
Wo — Wl, ceuy Wn (27)

where each¥; is a weight constraint. In a rule of the form (2.7),W, is the head of
r, denotedhd(r); the sets of atoms il is the headset of, denotedhset(r); the set
{W1,..., W, } is the body ofr, denotedhd(r).

Given a programP, we define
e The atom set of?, denotedAt(P), as the set of atoms appearingim

e The head set oP, denotedhset(P), as the union of the headsets of all rulesAn
l.e., hset(P) = Upcphset(r) .

15

A weight constraint of the formi [I = 1] 1 will be simply written asl. A weight
constraint program, where each weight constraint is of thenfl [[= 1] 1 is essentially a
normal program.

Let P be a weight constraint program and a set of atoms. The redugt" of P, w.r.t.
M, is defined by

P ={p—wM WM | Wy~ Wi,.. W, €P,
p € lit(Wo) N M and w(W;, M) <wu foralli>1} (2.8)

For aruler € P, we call its counterpart i®" the reduct of-, denoted- .

Definition 2.2. [74] Let P be a weight constraint program and C At(P). M is astable

modelof P iff the following two conditions hold:
1. M P,
2. M is the deductive closure a?V.

Example 2.5. Let P be a program consisting of the following rules.

lla=1,b=12 « Ola=1b=1,not c=1]2 (2.9)
lla=1,b=12 « 0la=1,not b=1]1 (2.10)

Let M = {a,b}. PM is the program

a < Ofa = 1] (2.11)
b 0Ofa=1] (2.12)

We haveM = P and M is the deductive closure a?*. So, M is a stable model of
P. O

Note thatPM is a weight constraint program where all constraints are otmre and
the head of each rule is an atom. Thus its deductive closurdeaomputed by a fixpoint
construction, using the operatép defined in [49] as follows.

Let P be a weight constraint program, where the head of each rnae &om and the

body contains no negative literals. The operé&tpris defined as:

Tp(S) ={h | 3r € P of the form h « bd(r) and S |= bd(r)}. (2.13)

16

The least fixpoint off’p can be constructed by

Tp@) = 0 (2.14)
TE0) = Te(TH(0)) (2.15)
TF0) = UZ TH(0) (2.16)

Then, we have the following proposition.

Proposition 2.1. Given a weight constraint prograf, a set of atomd/ is a stable model
of Piff M = PandM = T75,(0).

Given a progranP, the least fixpoint of 5 is the deductive closure @, according
to the definition off'’». The proof of Proposition 2.1 is straightforward.

We will use the concept cfupported moddater.

Definition 2.3. Let P be a weight constraint program aid a subset ofA¢(P). M is a

supported model oP if
e M = Pand
e Forany atomu € M, there exists arule € P such that € hset(r) andM = bd(r).

Example 2.6. Let P be the progranr{a < 1[b = 1]} andM = {a}. M is a model ofP,
but not a supported model @f. O

It is easy to show the following proposition.

Proposition 2.2. Let P be a weight constraint program. If a sef C A¢(P) is a stable
model of P, thenM is a supported model a?.

The converse of Proposition 2.2 may not be true, i.e., a stgganodel of a program

may not be a stable model. The following is an example.

Example 2.7. Let P be the program{a <« 1[a = 1]} andM = {a}. M is a supported

model of P but not a stable model. O

17

Chapter 3

Level mapping induced loop
formulas for weight constraint
programs

3.1 Motivation

It is known that every stable model of a program is a suppartedel of the program, but
the converse is not true in general. The reason is that aniatarsupported model may be
circularly justified, i.e., justified by itself. For exampl®r the programP = {a < a}, the
setM = {a} is a supported model d?. But M is not a stable model, sinceis justified
by itself.

Loop formulas constitute a propositional theory that sfegithe requirement that an
atom must not be circularly justified. For the above examptg@amP = {a < a}, a
loop formula isa — L, which prevents: to be in any stable model.

Lin and Zhao [43] propose an approach to the computatiorabisimodels of a normal
program, where stable models are computed by firstly comguupported models of the
program and then usinigop formulasnot only to filter out the models that are not stable
models but also to generate new constraints on the rest abiingutation to make it more
efficient.

Liu and Truszczynski [49] extend the approach to logic paogs with positive weight
constraints. They define loop formulas for such programswéder, to transform an arbi-
trary weight constraint to a positive weight constraintwn@opositional atoms are needed
[49, 51]. The extra atoms may exert a heavy toll on SAT solwdren the number of them
gets too big (for instance, the default setting in the SAVe0OEATO allows only a maxi-
mum of 30,000 atoms). In the worst case, each extra atom mayl@the search space.

In this chapter, we address the question of whether the loapulas for arbitrary

18

weight constraint programs can be formulated without eateens.

The method of level mapping has been used to characteribte steodels of normal
logic programs in [23, 26]. We observe that such a charaatoin is closely related to the
formulation of loop formulas. From the level mapping poifhviw, a loop formula can be
satisfied by a supported model of a program if an atom in thp t@n be derived by the
atoms that are not in the loop and have a strictly lower level.

We present a level mapping characterization of the stabléetsmf weight constraint
programs. The characterization leads to a formulation @b fmrmulas for arbitrary weight
constraint programs, where no extra atoms are introduced.

The level mapping characterization of stable models isrgimeéSection 3.2. Section 3.3
presents the loop formulas for weight constraint prograwis.relate our work to previous

work in Section 3.4 . Section 3.5 contains additional reraank our approach.

3.2 Level mapping characterization of stable models

Notation: Given a weight constrairii” of the form (2.2) and a set of atondg, we define
° Ma(W) = {ai eM | a; € th(W)}
o My(W)={b; € M |not b; € lit(W)}.

SinceWV is always clear by context, we will simply writ®/, and Mj,.

In general, an atom may appear both positively and neggtiVéé call such an atom a
dualatom, e.g. atom is a dual atom in[a = 1,not a = 2]1. Given a set of atoma/, if
there are no dual atoms in a weight constraint then M, (W) N M,(W') = (), otherwise,
Mo (W) N My(W) # 0.

Following the notation in [77], for a set of atom&and a mapping from X to positive

integers, we define
H(X) =maz({\(a) | a € X}). (3.2)

For the empty sef, we definemax()) = 0 andmin () = cc.
Given a set of atoms(, alevel mappingof X is a function\ from X to positive

integers.

Definition 3.1. Let W be a weight constraint of the form (2.2)/ a set of atoms and a

level mapping of\/. Thelevelof W w.r.t. M, denotedL (W, M), is defined as:

19

LW, M) =min({H(X,) | X €M, andw(W,X,) > 1+ > w,}). (3.2)
b;e M\ X,

If there are no dual atoms W, M, N X, = 0. Thus}_, <\ x, ws, in formula (3.2)

becomes 5 ws, -

Example 3.1.Let W = 1[a = 1,not a = 1,not b = 1] be a weight constraint)/ =
{a} a set, and\ a level mapping of\/. Considering the subset @, X = (), we have
w(W,Xo) =2andl + > cap x, wo, = 1+ we =20 wW, Xa) > 1+ 30 can x, W,
Similarly, we can check that the other subsefi6f X’ = M, also satisfies the inequality in
formula (3.2). ThusL(W, M) = min({H(0), H({a})}). Note that the level of any atom
is a positive number. Then we haig¢W, M) = 0. O

Proposition 3.1. Let W be a weight constraint of the form (2.2)f and X be two sets of
atoms.w(WH, X,) > 1M iff w(W, Xo) > 14 34 can x, Wi

Proof. The reasoning is as follows.
(1) w(W, Xa) = w(WM, X,) + 3, o, wh,.

2) wWM X,) > 1 - Zbi€M wy, if and only if w(W,X,) > 1 — Zb#M wy, +
> bigx, Wh;» due to (1).

(3) w(W, X,) > 1M ifand only if w(W, X,) > 1+ 3 cpp x, @, due to (2).
O

Definition 3.2. Let P be a weight constraint program andl a set of atoms)/ is said to be
level mapping justifiethy P if there is a level mapping of M, such that for each € M,
there is a ruler € P, such that) € lit(hd(r)), M = bd(r), and for eachV € bd(r),
() > L(W, M).

In this case, we say that the level mapphistifiesM by P.

Using Proposition 3.1, we can prove the following theorem.

Theorem 3.1. Let P be a weight constraint program afd a set of atomsM is a stable

model of P iff M is a model ofP and level mapping justified b¥.
Proof. (=)

(1) M is a stable model oP.

20

(2) M =Tpu(0), due to (1).

(3) There is a level mapping : M — Z*: A(b) = kif b € TF,,(0) andb ¢ TE (),
due to (2).

(4) A justifiesM by P, due to (2) and (3).
(5) M is level mapping justified, due to (4).
(<)
(1) M = P andM is level mapping justified.
(2) Suppose that justifies M by P.
(3) Vb e M, thereisarule € Ps.t.b € lit(hd(r)) andM [= r, due to (1).
(4) Thereisarule™ ¢ PM st.bc lit(hd(r™)) andM = bd(rM), due to (3).
(5) b € CI1(PM), due to (4).
(6) M C Cl(PM).
(7) M = PM, due to ().
(8) CI1(PM) C M, due to (7).
(9) M = C1(PM), due to (6) and (8).
(10) M is a stable model aP, due to (1) and (9).
U

Example 3.2. Let P, be the program{a < 1l[a = 1,not a = 1,not b = 1]}. Let
W =1[a =1,not a=1,not b =1|, M = {a} and\ be a level mapping af/. We have
L(W,M) = 0 (cf. Example 3.1). Therefora(a) > L(W, M) and M is level mapping
justified by P;. Thus, M is a stable model of;. O

3.3 Completion and loop formulas
3.3.1 Completion
To characterize stable models by loop formulas, we needdheept ofcompletionof a

program. The models of the completion of a program are th@a@tpd models of the

21

program. Following [49], the completion of a weight consitgprogram P is defined as
a set of formulas built from weight constraints by means oblBan connectives, v and
—)1,

LetS = {f1,..., fn} be a set of weight constraints or formulas built from weigbi-c
straints. We denote the conjunctignA ... A f,, by AS and the disjunctiorf; Vv ... Vv f,, by
VS.

Let P be a weight constraint program. The completionyfdenoted” omp(P), con-

sists of the following formulas.
(1). Abd(r) — hd(r), for every ruler € P.
(2). x = V{Abd(r) | r € P,z € lit(hd(r))}, for every atomr € At(P).

3.3.2 Loop formulas

The formulation of loop formulas consists of two steps: ¢argdion of a dependency graph
and then establishing of a formula for each loop in the graph.

We now define the dependency graph for a weight constrairmrano.

Let P be a weight constraint program. Thiependency grapbf P, denotedGp =
(V, E), is a directed graph, where

o V = At(P),

e (u,v) is a directed edge from to v in E, if there is a rule of the form (2.7) i,
such that: € lit(Wy) andv € lit(W;), for some: (1 < i < n).

Let G = (V,E) be a directed graph. A sdt C V is aloopin G if the subgraph
of G induced byL is strongly connected. Recall that a directed graph is d@ateongly
connected if there is a path from each vertex in the grapheoyesther vertex.

For a loop in the dependency graph, the level mapping indiama formula is estab-
lished to enforce that the atoms in the loop must be justifiethb atoms that are not in
the loop and have a strictly lower level. Considering therdefin of L(W, M) (see the
formula (3.2)), the condition requires that an atom in a lbepderivable by a subséf of
M which contains no atoms in the loop and satisfies the indgualformula (3.2).

To enforce the above requirements, we defingdis&ictionof a weight constraint w.r.t.

aloop.

1The connective- is not needed, since no negative weight constraints (W) are allowed in weight
constraint programs.

22

Let W be a weight constraint anfl be a set of atoms. Thestriction of W w.r.t. L,

denotedV|;, is a conjunction of weight constraint®; ;, A W, ., where

e W), is obtained by removing the upper bound, all positive liethat are inL and

their weights fromi¥/;
e W, ., is obtained by removing the lower bound frdn.

Definition 3.3. Let P be a weight constraint program ahd loop inG p. Theloop formula
for L, denotedLF'(P, L), is defined as

LFE(P,L)=\/L—=\/{ /\ Wygl|rePLnlit(hd(r)) # 0} (3.3)

Webd(r)

Let P be a weight constraint program. Thmp completiorof P is defined as
LComp(P) = Comp(P)U{LF(P,L) | Lis aloopin Gp} (3.4)
With the definition of loop completion, we can prove

Theorem 3.2. Let P be a weight constraint program afd a set of atomsM is a stable
model of P iff M is a model ofLComp(P).

Proof. We consider rules of the forrh — W, whereb is an atom andV is a weight
constraint of the form (2.2). The proof can be extended gittfdrwardly to rules with
conjunctive body. In the proof below, we only show the satiibn of the lower bound
W1, the satisfaction of the upper bound1df,;, is trivial.

=)
(1) M = LF(P,L).
(2) Vb € M N L,3r € P, such thatd(r) N L # § andM = Wy, due to (1).
) w(Wy, M) > 1, due to (2).
(4) LetX = M, \ L,.
(6) w(W L, M) = ZaiGXa Wa; + ZbigM Wp; -
(6) > _uex, Was + Dop,gr W, > 1, due to (3) and (5).
(7) wWyr, Xa) = X a,ex, Wai T 2op,¢x, We;
(8) w(Wiy, Xa) 2 1 — Sy0ns Whi + X ex, w,» due to (6) and (7).

23

©) w(Wyz, Xa) > 1+ 3y x, wh,, due to (8).
(10) w(Wijr, Xa) = w(W, X,), due to (4).
(10) w(W, Xa) = 1+ 32y e x, Wh;» due to (8) and (9).
(11) The level mapping whereA(b) > maxz({\(a;) | a; € X}) justifiesM by P.
(12) M E Comp(P).
(18) M [= P, due to (12).
(14) M is a stable model aP, due to (11) and (13).
(<)
(1) M is a stable model oP.

(2) There is a level mapping from Atom(P) to positive integers satisfyingb <
M, 3r € P, such that\(b) > L(W, M), due to (1).

(3) LetL be aloop and € L. Let X be a set of atoms, such th&tC M \ L, such that
b € lit(hd(r)) andw(W, Xo) > 1+ 325, can x, Wo;-

@) w(WyL, Xa) = w(W, Xo).
(5) wWip, M) =32 ai € M\ Lwa, + 3, aps We;-
(6) w(Wyr, Xa) = Y a; € M\ Lwg, + Y2 4x, w,. due to (3).
() wWy, M) = w(Wyr, Xa) = 325, can x, Wh» due to (5) and (6).
(8) w(Wyp, M) > w(W, Xa) — Xy enn x. Wb, due to (4) and (7).
(9) w(Wy,, M) > 1, due to (3) and (8).

(10) M |= LF(P, L), due to (9).

(11) M = Comp(P), due to (1).

(12) M = LComp(P), due to (10) and (11).

24

Example 3.3. Consider the prograrn®; in Example 3.2. Thereisaloop in= {a} in Gp,.
The loop formula isF' : @ — 1[not a =1,not b =1] A[a = 1,not a = 1,not b = 1]
(the second weight constraint is irrelevant, since it hadomaends and can be satisfied by
any set). LetM = {a}. M satisfiest’ and is therefore a stable model Bf. O

3.4 Relation to weakly tight programs

A weight constraint program can be translated to a prograth maésted expressiorj28],
such that its stable models are precisely the stable moti#is original program.

In [86], the stable models of programs with nested expressawe characterized by the
concept ofweak tightnessthat is, given a program with nested expressions, a sebaisat
is a stable model of the program if and only if it is a suppomeatief and the program is
weakly tight on it.

It is easy to show that, if a weight constraint program is$farmed to a program with
nested expressions using the transformation proposed]ntf& level mapping character-
ization for stable models coincides with that based on wigditriess in [86], as stated in

the following theorem.

Theorem 3.3. Let P be a weight constraint program aid a supported model aP. M
is level mapping justified by iff [P] is weakly tight on)M, where[P] is the program with

nested expressions obtained by the transformation in [28].

3.5 Conclusion

We present a level mapping characterization of stable nsod&hsed on the characteriza-
tion, we define loop formulas for arbitrary weight consttgimograms. To construct the
loop formulas, it is not needed to transform arbitrary weigbnstraints to positive weight

constraints. Therefore, the extra atoms introduced byrtirestormation are avoided.

2A model M of a programP is a supported model aP if for any a € M, there is a rule inP, such that
a € lit(hd(r)) andM = bd(r).

25

Chapter 4

An improvement in computation of
weight constraint programs

4.1 Motivation

Complete SAT/ASP solvers are typically variants of the DRddarch algorithm [16], in
which unit propagation sometimes also calleBoolean constraint propagatio(BCP), is
considered a critical component. In the popular answerade¢sSMODEL S [74], the algo-
rithm that corresponds to BCP is called #gandfunction.

On top of BCPéxpand other deductive mechanisms have been proposed. One of them
is calledlookahead29] - before a decision on a choice point is made, for eaclssigaed
atom, if fixing the atom’s truth value leads to a contraditfithe atom gets the opposite
truth value. In this way, an atom may get a truth value fromtthéh value propagation
of already assigned atoms without going through a searctepso The above process is
carried out repeatedly until no unassigned atoms can be dixadh value in this way.

Lookahead, however, incurs high overhead. In the case of BaTull employment of
lookahead has the worst case complekityynn?), wherem is the size of the SAT instance
andn the number of distinct atoms in it. For the ASP sol8WMODELS , the complexity
becomes)(mn?) [83], due to the computation effounded atomis the expandfunction.

The (in)effectiveness of lookahead in SAT solvers was stlidti [34]. The main con-
clusion is that lookahead does not pay off when integratet l@dk-back methods. How-
ever, that is not necessarily the case. As an polynomial ¢iomstraint propagation scheme,
lookahead has the potential to allow the search to avoidtki®y subtrees that might take
it exponential time to explore. Thus it is always possibledntrive examples where the
(time) cost of lookahead pays off because it allows the $earavoid the exponential costs

of searching a particularly expensive subtree. The issyedatice is how often this hap-

26

pens and how much work is saved. In fact, lookahead could tyeafiécient for some SAT
benchmarks as shown in [3].

The high pruning power, along with non-ignorable overhdaals made lookahead a
somewhat controversial technique. There are two camps ®f/A3P solvers. In one of
them lookahead is employed during the search [3, 35, 39andlin the other it is not (e.qg.
[38, 59, 72, 88)).

In this chapter, on one hand we show that for some extremety r@blem instances,
lookahead can indeed significantly improve the search. @nother hand, we provide
some characterizations and identify the representativetmaarks for which lookahead
downgrades the search efficiency.

Based on these observations, we proposadaptive lookaheathechanism and imple-
ment it in the ASP solveBMODELS . The resulting system is call&&BMODEL S, in which
lookahead is carried out only when it tends to be beneficidbteo. Our experiments show
that, adaptive lookahead adapts well to different searel@mments it is going through - it
performs like (better than, for most cas&)ODEL S with lookahead for the problems that
benefit from the use of lookahead, and without lookaheadhfuse problems for which the
use of lookahead tends to slow down the search.

In the direction of efficiently using lookahead in ASP sobsétis proposed in [38] and
[60] to use lookahead in a limited manner, performing loaahon a subset instead of all
of the unassigned atoms. While [60] deals with normal logimgpams, [38] focuses on
disjunctive logic programs.

Adaptive lookahead deals with weight constraint prograntsral programs can be
considered as special cases of weight constraint prograffe main difference between
adaptive lookahead and the approach cdlladed lookaheadn [60] is that adaptive looka-
head turns on/off lookahead according to the observed nmdiion - the frequencies of
conflicts and dead-ends discovered during the search. édntdiokahead on the other hand
depends on the status of literals i.e. it chooses a literdbfikahead if assuming its value
leads to at least one inference. A more detailed comparisibbengiven later in this chap-
ter.

The general idea of adaptive constraint propagation is@isaterest in the constraint
satisfaction problem (CSP) [8, 37, 70]. The approach in [jB¢tementally applies arc-
consistency to obtain higher consistency and [8, 70] switetween different consistency
algorithms. But none of them deals with the lookahead teplei The relationship be-

tween lookahead and some consistency techniques in CSRdastudied in [85]. Adap-

27

tive lookahead is similar to [8] in the sense that they both ssme thrashing prediction
mechanism instead of the domain information as in [70].

The section 4.2 presents the answer set computation ims\@8MODEL S . Section 4.3
provides the characterizations by which we identify praidethat run much slower with
lookahead. The adaptive lookahead algorithm is given iti@ed.4. Section 4.5 provides

experimental results. The summary and future directioegyaten in Section 4.6.
4.2 Answer set computation inSMODEL S

4.2.1 Weight constraint rules

Following [74], the systenSMODEL S deals withbasic constraint rulesvhich include two

type of rules

e A weightrule of the form
h —lla1 = wqy, ..., Gm = Wa,,,NOt by = wy,, ...,NOt b, = wy, | 4.2)
where the lower bounéland all weights are non-negative.
¢ A choicerule of the form
{h1,...;hi.} — ay,....;ap, N0t by,...,NOt by,. 4.2)

Recall that a weight may be omitted when it is 1. The rule (&2ctually the short

hand for

O[h1, ..., hg) < m + nlay, ...,am, N0t by, ...,not b,]. 4.3)

A weight rule captures the lower bound condition for a singleight constraint. A
choice rule encodes a conditional choice stating that ibthdy of the rule is satisfied, then
any subset (including the empty one) can be selected frosethia the head but if the body
is not satisfied, only the empty subset can be chosen.

Any weight constraint program can be translated to a set sichzonstraint rules as
pointed out by [74].

The following are short hand notations for frequently uspecgal forms of basic con-

straint rules.

e A cardinalityrule h — klay, ..., a,, N0t by,...,not b,] corresponds to

h «—kla1 =1,...,a, = 1,n0t by =1,...,not b, =1]. (4.4)

28

e Anormalrule h < aq, ..., ay, ...,NOt by, ...,N0Ot b, corresponds to

h «— m +nlay,...,am, N0t by,...,not by). (4.5)

e An integrity constraint— aq, ..., a,,, Not by, ...,not b, corresponds to
f<—n+m+1ay,...,an,not by,....not b,,not f]. (4.6)

where f is a new atom used only in integrity constraints. Notice that program
contains such an integrity constraint, then it cannot hastable modelS such that
{a1,...,an} € S and{by,....b,} NS = 0.

4.2.2 Lookahead inSMODELS

Notations: Given a progran?, Literal(P) denotes the set of literals appearingfn A
conflictin a set of literals is a pair of complement literals, ea@ndnot a. A set of literals
is consistentif there is no conflict in the set. partial assignmenis a consistent subset of
Literal(P). At(P) denotes the set of atoms appearingFiriexcluding the special atom
1). The expressiomot(not «) is identified witha, andnot(a) is not a. Given a set of
literals A, AT = {a | a € A} andA~ = {a | not a € A}. Given a set of atoms§,
we definenot(S) = {not a | a € S}. A choice pointis a point during search where the
branching heuristic picks a literal to assign a truth valud.t In the literature, this is also
referred to asnaking a decision

Given a programP, SMODEL S begins with an empty partial assignment, and attempts to
extend the current partial assignment possibly to an anseteBefore making a decision,
SMODELS performs constraint propagation. When lookahead is nailwed, constraint
propagation is carried out by a function calleépand(P, A), whereP is a program and
A a partial assignment. When lookahead is employed, consfreopagation is carried out
as follows: for each unassigned atamassume a truth value for it, if it leads to a conflict,
thenz gets the opposite truth value. This process continuesategly, until no atom can
be fixed a truth value by lookahead (See Algorithms 1 and ZHedetails).

Algorithm 1 lookaheadP, A)
1: repeat
22 A=A
3. A:=lookahead_once(P, A)
4: until A=A’
5: return A

29

Algorithm 2 lookaheadonceP,A)
1: B = At(P) — Atoms(A)
2. B:=BuUnot (B)
3: while B # () do
4: Take any literakz € B
5. A :=expand(P,AU{x})
66 B=B-A
7
8
9:

if conflict(P,A’) then
return expand(P, AU {not (z)})
return A

In lookaheadonce, the functiomon flict(P, A) returns true ifA™ N A~ # () and false
otherwise. We say a conflict is detecteddh flict(P, A) returns true.

Truth values are propagated in lookahead by functiopand(P, A). The function
expand(P, A) consists of two functionsAtieast(P, A) and Atmost(P, A).

Algorithm 3 expandf, A)
1. repeat
22 A=A
3 A:=Atleast(P, A)
4. A=AuU{not z|x € At(P) and x & Atmost(P, A)}
5
6

cuntil A =A4'
s return A

Below, we follow the description given in [74].
Let P be a set of rules and let be a set of literals. For a weight rutec P of the form
(4.1) and a set of literal®, let

min,(B) = {hy E“iG.B Wa; +22not bien W = 1;
' f otherwise
be theinevitable consequena# B. Similarly, for a choice rule € P of the form (4.2), let

min, (B) = {ht, s gy N B if @y, .. @, 00t by, N0t by € B
0 otherwise.

In addition, for a weight rule- € P let

maz,(B) = {hy 13 g wa; + 2 not bgp+ wh = 1;
" 0 otherwise

be thepossible consequenod B. For a choice rule € P let

— - H —_ +'
maz,(B) = {h1,.... s} — B~ if a1, s A ¢ B~ andb,...,b, € BT;
0 otherwise.

30

Set

5(B) = {a€min.(B)|a¢€ At(P) andr € P}, 4.7)

2(B) = {not a|a € At(P) andVr € P,a ¢ maz,(B)}, (4.8)

3(B) = {not z|3a € B such that a € max,(B) 4.9
for only one rule r € P and a ¢ max,(BU{z})}

4(B) = {not z|3not a € Bandr € P (4.10)

such that a € min,(BU{z})}
and

_ [Au(P) if BtNB~ #0;
Tp(B) = { 0 otherwise.

Define Atleast(P, A) as the least fixpoint of
f(B)=AUBU fp(B)U f(B) U fp(B) U fp(B) U f2(B). (4.11)

Example 4.1. Let P be the program

a <« b,not ¢ (4.12)
d «— nota (4.13)
e «— notb (4.14)

We will computeA = Atleast(P, {d}). Sincec does not appear in the head of any rule in
P,not c € Aby f2. Asd € A, not a € Aby f}. It follows thatnot b € A by f3.
Finally, e € A by 1. Hence,Atleast(P, {d}) = {not a,not b,not c¢,d,e}. O

Let P be a set of rules and a set of literals. For a weight rulee P of the form (4.1)

and a set of atomsB, let

" () otherwise.

For a choice rule: € P of the form (4.2), let

¥ (B) . {hl,...,hk} if at,...,am € B— A" andby, ..., b, & A+;
U W/ otherwise.

Define Atmost(P, A) as the least fix point of (B) = U,epfr(B) — A™.

Example 4.2. Let P be the program

a < not b (4.15)
c+ not a (4.16)
Then, Atmost(P, () = {a, ¢} but Atmost(P, {not a}) = 0. O

31

4.3 Ineffectiveness of lookahead

We give two characterizations under which the use of loo&édhis totally or nearly totally
wasted. The first characterization describes the situsitidmere no pruning is ever gener-
ated by lookahead in the course of solving some parts of dgmglwhich are calle@asy
sub-programsThe second is callesburious pruningwhich describes the situations where

a literal added by lookahead to a partial assignment is inari@to the rest of the search.

4.3.1 Easy sub-programs

Let P’ and P be two ground programs?’ is called asub-programof P if P’ C P. A

programP is said to beeasyif any partial assignment can be extended to an answer set.

Proposition 4.1. Given a programP, if it is an easy program then lookahead is totally
wasted in that, ikxpand(P, A) = A thenlookahead(P, A) = A, for any partial assign-

mentA generated during the search.

Proposition 4.1 can be shown as follows. Lieéfe an easy program, amtl a partial
assignment. We have thatpand(P, A) generates no conflict, since any partial assignment
can be extended to an answer set. The eighth line of Algor2Hmnever executed, thus
lookahead_once(P, A) = A. Then we havéookahead(P, A) = A. This is the case where
lookahead does not do anything more than whaiund(P, A) does.

Examples of easy programs include the pigeon-hole problaerevthe number of holes
is greater than or equal to the number of pigeons; the gralaniicg problem where there
are as many colors as nodes, and in scheduling problems wWieeawailable resources are
always more than what are required. These problems are iedbyg sense that a solution
can be computed without backtracking, with or without |doéad.

A program for solving a hard problem may contain many noigliegasy sub-programs
for which lookahead in the search for answer sets is totaligted. Consider the pigeon-
hole problem, which is to pulV pigeons intoM holes so that there is at most one pigeon
in a hole and every pigeon must take some hole. A typical weighstraint encoding is as

below.

1{pos(P, H) : hole(H}1 <« pigeon(P). (4.17)
{pos(P, H) : pigeon(P)}1 < hole(H). (4.18)

Figure 4.1: A program for the pigeon-hole problem

32

The literalspos(P, H) : hole(H) andpos(P, H) : pigeon(P) in above program are
conditional literals A conditional literal is of the form

p(X) @ q(X) (4.19)

wherep(X) is a literal and;(X) is a domain predicate. If the extensionya$ {¢(a1), ..., g(an)},
the conditional literap(X) : ¢(X) is semantically equivalent to writing(a1), ..., p(an).

The first rule specifies that each pigeon has to be placed atlgxme hole. The second
rule states that each hole can only be occupied by at mostigeem

The problem can be very hard for DPLL-based solvers wher= N — ¢, for some
small positive integes.

To see that lookahead is totally wasted in solving some a#dsypsograms, consider any
partial assignment in the course of computing an answer set3WODELS . Here, letA
be such that some pigeons already take holes, e.g., suppage, ;) € A, for somei and
j- Note that wherlookahead(P, A) is invoked, propagation by thecpand(P, A) function
is completed, i.e.expand(P, A) = A. Thus, we havenot pos(p;, hi) € A, for any
hole h, different fromh;, due to the rule (4.18); angiot pos(py,, h;) € A, for any other
pigeonp,,, due to the rule (4.17). Now, suppog®kahead(P, A) is called, which calls
expand(P, AU{pos(p’, h')}) insidelookahead_-once(P, A). This is to assumgos(p’, h')
and attempt to derive a conflict. It can be verified that when#were are at least three holes
left unoccupied, no conflict can be found by lookahead.

In fact, lookahead begins to detect conflicts only when tlaeestwo holes left. When
one of them is assumed to be taken by one pigeon, all the oifpeoms that do not have a
hole will be competing for the only remaining hole (by the défon of expand(P, A), the
first rule makes the unassigneds(p, h) true for the only remaining:). In other words,
lookahead begins to find conflicts only when most of the hoteg heen assigned.

In this example, the sub-programs obtained by removing Saicts about pigeons so
that the resulting number of pigeons equals to the numbehethbles are typical easy
sub-programs that the search is going through.

Besides the pigeon-hole problem, the clique coloring mnabis another typical prob-
lem that has nontrivial easy sub-programs [19]. The pigeale-and clique coloring prob-
lems, among others, are known to be exponentially diffiaulahy conventional resolution-

based provers (including any DPLL implementation).

33

4.3.2 Spurious pruning

When lookahead finds a conflict, some search space is prungdthiB pruning may be
immaterial to the rest of the search. Suppose, by an inatatilookahead, a literal, sdy
is added to the current partial assignmdntThe addition of may not contribute to further

constraint propagation. This can be described by an equatio
expand(P, AU {l}) = expand(P, A) U {l}

for any partial assignment generated during search, such that the superset returned by
expand(P, A U {l}) is not an answer set. This is what we meanspyrious pruning In
this case, lookahead is unnecessary since the decisibraorbe delayed to any later choice
point.

We can use the number of calls to thepand(P, A) function during search to mea-
sure the effectiveness of lookahead. SuppSgeand N,,;;, denote the numbers of calls to
expand(P, A) in SMODELS with and without lookahead respectively. By the definitidn o

spurious pruning, we can easily derive its effect as stateld following proposition.

Proposition 4.2. Given a programP, if all the pruning by lookahead are spurious, then
Nuin < Nip-

An example where the search only generates spurious prisithg Hamiltonian cycle
problem for complete graphs. Given a graph, a Hamiltoniarhecyf the graph is a path that
visits each vertex of the graph exactly once and returnsdcthrting vertex. A complete
graph is a graph in which every pair of distinct vertices iamected by an edge. Itis known
that solving the Hamiltonian cycle problem for completegsican be very hard for ASP

solvers [43]. A typical program is given in Figure 4.2, whisitaken from [14].

— 2{he(X,Y) :edge(X,Y)}, node(Y). (4.20)
— 2{hce(X,Y) : uedge(X,Y)}, node(X). (4.21)
reach(U) <« edge(V,U), he(V,U), reach(V), not initial(V). (4.22)
reach(U) « edge(V,U), he(V,U), initial(V). (4.23)
— wertex(V), not reach(V). (4.24)

Figure 4.2: A program for the Hamiltonian cycle problem

The rules (4.20), (4.21) ensure that for each node exactyonrtgoing and incoming
arc belong to the path. The rules (4.22), (4.23) and (4.24¢ dhat the path forms a cycle

34

which visits all nodes and returns to the initial node. Therdl hc(u,v) being true in an
answer set meanslge(u, v) (from u to v) belongs to a Hamiltonian cycle.

Consider a complete graph on nodgsvs, ..., v,, for some sufficiently large.. Sup-
poseuv is the initial node and is the current partial assignment, where a path— vy «—
vz is established. Note thaiot hc(ve,vs3) € expand(P, A), due to the rule (4.21). At
this point, in the callookahead(P, A), expand(P, AU{hc(vi,vs)}) will derive a conflict,
since there must beewg, i > 4, such that botlkc(v;, v;) andnot hc(vq,v;) are derived due
to rule (4.23) and rule (4.20), respectively. Thaot hc(vi,v3) is added toA. However,
it is clear that the addition afiot hc(vy,v3) to A is immaterial to the rest of the search,

and choosing any othérc(v;, v;) is guaranteed to lead to an answer set.

4.4 Adaptive lookahead
4.4.1 Algorithm

Adaptive lookahead is designed to avoid lookahead whensistends to be ineffective.
Two pieces of information are useful for this purpose. Onihésnumber of conflicts and
the other is the number afead-endsietected during the search. In tBMODEL S system,
conflicts are generated Hgiled literals whose addition to the current partial assignment
causes both a literal and its negation to be included in thggapassignment by constraint
propagation. Note that conflicts do not necessarily meanbekiracking is needed since
the negation of the failed literal may be consistent with ¢bherent partial assignment. A
dead-end is a point during the search where both a literaitamegation are failed literals.
In this case backtracking is needed.

The idea in adaptive lookahead is that if after some runsctimélicts have been rare,
it is likely the search is in a space where pruning is insigaiit, and likely to remain
so for some time to come, so lookahead is turned off; if deatsédave been frequently
encountered after some runs, it is likely that the searchemésred into a space where
pruning can be significant, so lookahead is turned on.

SMODEL S with adaptive lookahead is calleeSMODELS (Algorithm 4). The control
of lookahead is realized by manipulating two scoliesk_score anddead_end_counter.
Thelook_score is initialized to be some positive number, then deductedh ¢ate looka-
head does not detect any conflict. When it becomes zero, healdhwill be turned off.
The dead_end_counter is initialized to be zero and increased each time a dead-®nd i

encountered. Lookahead will be turned onddad_end_counter reaches some thresh-

35

old. The counteriook_score will be reset after lookahead is turned on and the counter
dead_end_counter will be reset after lookahead is turned off.

In addition to the on/off control, lookahead will never bemayed in the later search
processes if it cannot detect any conflicts after a numbetoofisthave been assigned. This
is because the search efficiency cannot be improved muchobkgtead if the conflicts it
detects only happen in late stages of the search. The latén@seasured by a ratio of
number of assigned literals to all literals in the programheft the ratio gets to a threshold
before any conflict was found by lookahead, lookahead willtng down permanently

The initial value oflook_score, the amounts of increase and decrease, and the thresh-
olds are determined empirically. We set the amount of irsgétecrease to lgok_score
to 10, the thresholds afead_end_counter andratio to 1 and 0.8 respectively. Note that
there may not be a setting of these parameters that workengaily well for all kinds of
problems. The current setting is effective for the probleairet we have experimented on
and likely to work well for similar problems.

The correctness of the search algorithnSODEL S has been proved in [73ASMODEL S
does not change the search process of the algorithm, henceriectness is guaranteed.
ASMODEL S makes use of the existing data structures in the implenientat SMODELS .

It has the same computational complexity as$SMODEL S algorithm.

4.4.2 Comparison withlimited lookahead

The idea of limited lookahead [60] is that if assuming a &itdp be true does not lead to
any inference, lookahead is guaranteed to be wasted. Aslsogiahead is performed only
on what are callegropagating literals the literals whose assignment leads to at least one
inference.

The existence of some inferences is a condition that appedestoo weak. It is easier
to incur inferences than a conflict or dead-end, so perfogniokahead on propagating
literals may not generate any space pruning. The pigeom-palblem is an illustrative
example. It is known to be hard when the number of pigeonseatgr than the number of
holes by one. Suppose we have 10 pigeons and 9 holes, andtéstqartial assignment

is A = {pos(1,1)}. Consider the following rule
1« pos(2,2), pos(2,3).
Both pos(2,2) andpos(2,3) will be identified as a propagating literal. Because they are

unassigned, the head of the rulefigise; assuming eithepos(2,2) or pos(2,3) to be

36

Algorithm 4 ASMODELS (P, A, look, shut_down)

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

resetdead_end_counter
A «— expand(P, A)
if (look) then
A < lookaheadp, A)
if (no conflict detected by | ookahead)then
decreaséook _score
if (look_score = 0) then
look — false {lookahead is turned off
if (conflict()) then
conflict_found — true {a conflict is found
if (@ dead-end is found)then
increasealead_end_counter
if (! look and dead_end_counter > threshold; and ! shut_down) then
look — true {lookahead is turned gn
resetlook_score
return false
else if(A cover s At(P)) then
return true {A" is a stable mod¢l
else
ratio — 14l
. | Literal(P)]|)
if (ratio > thresholds and! conflict_found) then
shut_down «— true {shut down lookahead in later seajch
choose a new atomto assign
if (ASMODELS (P, AU {x}, look, shut_down)) then
return true
else
return ASMODELS (P, AU {not =z}, look, shut_down)

37

true allows us to infer the other is false. But as we have contetkin Subsection 4.3.1,
lookahead on pos(2,2) or pos(2,3) does not lead to any cobblicause there are more
than two holes left unoccupied. Actually, the same situmtinses for anyos(i, j), where
2<4i<10,2<j<9. ltis easy to see that limited lookahead reduces very littlerhead
in this case.

The above observation is also applicable to the computatidgtamiltonian cycles on
complete graphs (this is due to the rules (4.21) and (4.28)eprogram given in Subsec-
tion 4.3.2).

Instead of identifying propagating literals, adaptivekabead uses the information de-
veloped during the search about conflicts and dead-endsolNing the pigeon-hole in-
stances like the one above, adaptive lookahead will turtooahead after some invoca-
tions since it cannot detect any conflicts (w.r.t. the curpartial assignmentl). For the
problem of computing Hamiltonian cycles on a complete grapbkahead is also turned
off since the dead-end is rarely encountered because elieigecpoint during the search

may lead to a solution.

4.5 Experiments

To test how well adaptive lookahead works, we have conduatedries of experiments.
In Subsection 4.5.1, the general performanc&8MODELS is compared wittSMODEL S
using random logic programs, which are provided as bencksrfar the first ASP solver
contest [14]. The experiments reported in Subsection 4&n2 three purposes. First, they
confirm our findings of the problems where the performancdgsificantly deteriorated
by the use of lookahead; second, they show that lookahead terbe very effective for
a number of hard problems, especially for the problems ftieainlthe known regions of
phase transition; third, they suggest that adaptive loe&dlbehaves as if it “knows” when
to employ lookahead and when not to. Finally in Subsectiéri34we report experimental
results on a deployed application, the USA-Advisor project

We run SMODELS 2.32 with and without lookaheddand ASMODELS , respectively.
By default, SMODELS runs with lookahead. All of the experiments are run on Red Hat
Linux AS release 4 with 2GHz CPU and 2GB RAM. The cutoff timees to two hours. In
the tables that report the experimental results, we willthsesymbol “-” to indicate that no

result has been produced within two hours of running time.

1The SMODEL S system can be downloaded frdrht p: / / www. t cs. hut . fi / Sof t war e/ snodel s/ .

38

We shall mention that the branching heuristicSMODEL Sis related to lookahead. The
heuristic value of each atom is initialized according to hmany rules they are involved in.
During the computation, the heuristic value of an atom isated according to how many
other atom’s values can be determined by the addition oftitv@ #o the current partial as-
signment. With lookahead&MODEL S computes the heuristic value of every atom each time
lookahead is invoked. Without lookahead, the heuristiceabill not be computed until the
atom is chosen to be assigned. So the effectiveness of leallathould be considered on

both the search procedure and the branching heuristics.

4.5.1 Random logic programs

There are two sets of random logic programs provided in [1%he first is just called
random logic program$RLPs) and the secomdndom non-tight logic program@NLPS).
We runASMODEL S and SMODEL S on both of them. The results are plotted in Figures 4.4
and 4.5. The graphs show the ratio of the running timaS¥ODEL S to SMODELS . The
instances are arranged in descending order of this ratio.

For RLPs,ASMODEL S outperformsSMODELS on all of them except for three. The
average improvement 8% and maximum i$2%.

For RNLPs ASMODEL Siis faster tharSMODEL S except for five. The average improve-
ment is34% and maximum i656%. This result is better than [60], where the benefit of
limited lookahead is not so obvious.

For these benchmark®ySMODELS turned on and off lookahead once, respectively,
during the search. The above instances include both sehatd unsolvable ones. No

discernible difference between the performanceA®N¥ODELS on them is observed.

4.5.2 Adaptiveness of adaptive lookahead

The logic programs used in this section (except the one ®BHSAT problem) are taken
from [61].

Cases that benefit from lookahead

Graph coloring The problem is to find an assignment of one of 3 colors to eadiexef
a graph such that vertices connected with an edge do not haw&atne color. We use the
weight constraint program in Example 1.3.

We use Culberson’s flat graph generator [15] to generatehgregbances. By this gen-

erator, each pair of vertices is assigned an edge with imtkgre identical probability.

39

We use the suggested valuepofo sample across the “phase transition” region [12]. The
number of nodes of the graph is 400. For each data point, #@age running time of 100
instances is reported.

The extremely hard instances happen whésin [0.018, 0.020]. In this region, looka-
head speeds up the search drastically (Table 4.1). Not&SMaDEL S without lookahead
cannot finish the search in the cutoff time (fBr = 0.018, it runs for two days without
completion).

It is known that every DPLL-based solver spends the majofiiis time on BCP; in the
case ofSMODEL S, on theexpandunction. The savings by lookahead can also be measured
by the number of calls to thexpandfunctior?. We collect the number afxpandcalls. The
result is consistent with the running time. The reductiothim number of calls texpands
orders of magnitudes, by using lookahead (adaptively) épiiase transition region. This
is shown in Fig. 4.6. The savings of calls to tgpandfunction can also be observed for
other benchmarks where lookahead speeds up the search.
3-SAT The problem is to determine the satisfiability of a Booleamnfigla in conjunctive
normal form (CNF), where each clause in the conjunction isbsef at most three literals,

i.e., a CNF ofn clauses is of the form

x11 V212 V 13 /\ /\ Tn1 V Tpo V Ty (425)

A CNF of form (4.25) can be translated to a logic program inftiiowing way. For

each literal;;, two rules as below are introduced.
x;; < Nnot neg_x;;. (4.26)
neg-r;; <+ Not x;;. (4.27)
For each clause;, a literal sat_c; and the following rules are included in the program.
sat_c; «— wyg. k=1,2,3. (4.28)

Note that for a negative literalz;;, in a CNF, we haveot x;; instead ofx;; in the formula
(4.28).
In addition to the rules from (4.26) to (4.28), a new litesat and the following rules

are included in the program.

sat «— sat_cy, ...,sat_cy. (4.29)

1L < not sat. (4.30)

2In comparison, the number of choice points is usually nota@godicator, as a reduction may be achieved
in the expense of a huge overhead.

40

It can be verified that the CNF of form (4.25) is satisfiable nfdeonly if the logic
program consists of rules from (4.26) to (4.30) has an anseer

Random 3-SAT is another well-known problem with phase ftenms The instances are
extremely hard when the rati9is around 4.3 [58], whereis the number of clauses, and
the number of variables in the formula.

We fixed the number of variables to 300 and randomly generategunctive normal
formulas by the ratio from 1 to 10. For each ratio, we genet@ténstances and transform
them to logic programs. We compute answer sets for the pmogend report the average
running time in Table 4.2. Similar to the graph coloring desh, lookahead substantially
speeds up the search in the hard region.

QueensThe queens problem is to plagejueens to an x n board so that no queen checks
against any other queen. Itis a standard example in the @3&tlire, where the constraints
have a natural representation as logic program rules [61].

The experimental results are given in Table 4.3. It is cleat SMODEL S with looka-
head is significantly faster theBMODEL S without lookahead; further, adaptive lookahead
is tens of times faster than the original lookahead.

Blocks-world The problem is to re-arrange a number of blocks on a table ormitial
configuration to a goal configuration. The blocks world pesblis a standard planning
benchmark.

The problem instances are generated as follows.nHadocks, b1,... b, the initial con-
figuration isb; on the table and,,; onb; fori = 1...n — 1. The goal ish,, on the table,
b1 onb, andb;;1 onb; for i = 1...n — 2. We use this setting because, under it, each block
in the initial state has to be moved to get to the goal statéhes@roblem turns out to be
nontrivial. The minimum number of steps neededrns— 2.

The results are reported in Table 4.4. The upper sub-row cf eaw is the solvable
case and the lower one is the unsolvable case (similarly e 5).

Gripper The goal of the gripper problem is to transport balls frommo&1 to room R2.
To accomplish this, a robot with two grippers is allowed towedrom one room to the
other, pick up, and put down a ball. Each gripper of the rolamt lsold one ball at a time.

In our experiments two kinds of settings are used. In the fitsbf the balls are ink1
initially and should beR2 in the goal state. In the second, there is an equal numbetlsf ba
in R1 and R2 initially and in the goal state, balls initially i1 are in R2 and vice versa.
The results are reported in Table 4.5, where the first twornakiare the number of balls in

each room initially, and the third is the number of stepsvedid.

41

The results suggest that lookahead generates more perfoengains when the in-
stances become harder especially for the unsolvable itestan

For all of the problems in this sectioASMODEL S performs as well as or better than
SMODELS with lookahead (Tables 4.1, 4.2, 4.3, 4.4, and 4.5). For nmegances of
the graph coloring, queens, 3-SAT, and gripper problemskdbead is turned on and
off once, respectively. The blocks world problem is intéres For the solvable in-
stances ASMODELS turns off lookahead automatically and performs severaesifaster
thanSMODELS . Especially for the instance where the blocks number is dékdhead is
turned off twice and on once. A drastic improvement in thdgremance by this action can
be observed. This suggests that turning off lookahead whenmnecessary can effectively
speed up the search even if it is useful most of the time.

SeatingThe seating problem is to generate a sitting arrangemeatriamber of guests,
with m tables anch chairs per table. Guests who like each other should sit aghree table;
guests who dislike each other should not sit at the same. table

In [1] the seating problem was chosen to evaluate the pedoca of DLV , a well-
known ASP solver. The problem can be naturally encoded asegghtvwconstraint program
as given in Figure 4.3.

1jat(P,T) : table(T')]1 < person(P).
1 «— table(T),likes(P1, P2),at(P1,T),not at(P2,T).

1 « table(T),dislikes(P1, P2),at(P1,T),at(P2,T).
1 —n+1fat(P, X) : person(P)], table(X).

Figure 4.3: A program for the seating problem

The first rule says each guest sits at a table. The next twe guarantee that guests
who like each other sit at the same table and guests whodalislikh other does not sit at
the same table. The last rule ensures the number of peogethit table cannot be more
than the number of chairs around the table.

We consider 5 and 10 seats per table, with increasing nundfdedles and persons
(with the number of persons equals to the number of tablesstilme number of seats per ta-
ble), respectively. For each problem size, i.e., sealgaipnfiguration, we test the classes
with different numbers of like and dislike constraints tilaa¢ used by DLV!. They are :
1) no like/dislike constraints at all; 2) 25% like constiain3) 25% like and 25% dislike
constraints; 4) 50% like constraints; 5) 50% like and 50%ildisconstraints, where the
percentages are relative to the maximum number of dislike,(fespectively) constraints.

For the seating problem, lookahead significantly improfiesearch efficiencysSMODEL S

42

without lookahead couldn't solve any instance in two hoatspf them can be solved in
tens of seconds with lookaheadSMODEL S is about 2-3 times faster tha&MODEL S with
lookahead (Table 4.6).

Cases that suffer from lookahead

For the problems with easy sub-programs, like pigeon-Hotetkahead can detect conflicts
only near the end of the search. Employing lookahead foetpesblems makes the search
several times slower (Table 4.7 ASMODELS is 2 times faster thaisMODEL S without
lookahead and about 10 times faster tBAMDDEL S with lookahead.

As for computing Hamiltonian cycles on complete graphsk#bead cannot reduce the
depth of the search tree while bringing on extra constraiopggation. The experimental
results (Table 4.8) sho®BMODEL S can be hundreds of times slower tHalMODEL S without
lookahead.

For the above two problem#&SMODEL S works largely asSMODEL S without looka-
head. Its performance is slightly better thallODEL S without lookahead for the pigeon-
hole problem (Table 4.7ASMODEL Sturned off lookahead permanently after some literals
are assigned during the process of solving this problem.

For the Hamiltonian cycle problem, the performanceASMODELS is in between
SMODEL S andSMODEL Swithout lookahead - it is about 20 to 30 times faster tBMODEL S
and 2 to 10 times slower thaBMODEL S without lookahead (Table 4.8). We notice that if
the parametetook_score is set to be 2 andatio 0.1, ASMODELS will perform two times
faster than what we reported here but it is still several sislewer tharSMODEL S without
lookahead. The reason for that could be the effect of lockdlmn branching heuristic as
we mentioned before. More investigation on this is needed.

The Hamiltonian cycle problem on complete graphs has betansively tested by
a number of answer set systems in [43]. It turns out that fayelanstances, thousands
of seconds are needed to solve them. As shown in Table 4.B,ad#ptive lookahead,
SMODEL S can solve large instances in hundreds of seconds, and ilhmad is completely

shut down, only tens of seconds are needed to solve them.

4.5.3 Experiments on a real application

Thereaction control systerfRCS) is the system used to maneuver the Space Shuttle while
it is in orbit. It consists of jets, fuel tanks, pipes, andves used to deliver fuel to the jets,

and associated circuitry required to control the systemortter for the Space Shuttle to

43

perform a given maneuver, a set of jets must be prepared tolfirprepare a jet to fire, an

open, non-leaking path must be provided for the fuel to flamrfpressurized fuel tanks to
the jet. The flow of fuel is controlled by opening and closiryves. Valves are opened and
closed by either having an astronaut flip a switch or by imsing the computer to issue

special commands.

When everything is operating correctly, there are prepsed plans for each maneuver.
When some components of the system such as switches, vah@s;uits fail, a planner is
needed to generate plans to finish the required maneuvesyBtem USA-Advisor is such
a planner with a user-friendly interface, developed by Bedihi et al. [4]. The reasoning
module that is responsible for the plan generation in USAdéar is SMODELS .

Following [4], by test instancesve mean a maneuver to be performed by the shuttle
together with a collection of system faults. We randomlyegated 10 groups of instances
by setting the target maneuver. Each group contains 2(ncs$a generated by randomly set
5 system faults, of which 2 are mechanical and 3 are eletftitia situation is referred to
as the most interesting one from the standpoint of the US#igat experts). The reported
running time of each group is the average running time ofiséainces in the group.

From the experiment results (Table 4.9), one can see that th&o major difference
between the performance 8MODELS with and without lookahead. BUWASMODELS is
better than both of them.

Random Logic Program
11 T T T T

T
smodels +
A-smodels x

%
>
09 % i
>°<><>o<><x
0.8 X%0¢, i
X)O()(><>0<
o |)OOOO(X n
g o7 MW
E 0.6 X)<>°°°<><X><X>o¢o< -
c : DOOORRK,
g 50000006
s 05
o
o X%
kS %%
x 04F S0064]

03 q

0.2 | B

01 B

L L L L L
20 40 60 80 100
Instance ID

Figure 4.4: Random logic programs

44

Ratio of running time

Number of expand calls

Random Non-tight Logic Program

11 T T T T T T
X smodels +
1 XX A-smodels x
X,
X
09 + x E
XXX
08 X —
XXy
><><><><><><><><><XXX
0.7 | XXXXXXXXxxxxxxx T
XXXXXXXXXXX
XXXXXXXX
06 Fxoxoxx b
Xxog
05+ oo T
XX
04 | o]
03 | B
0.2 —
0.1 | -
L L L L L L L
10 20 30 40 50 60 70 80
Instance 1D
Figure 4.5: Random non-tight logic programs
1e+09 T T T T T T — T T
without lookahead —+—
with lookahead —<—
adaptive lookahead —x«—
1e+08
le+07
1le+06
100000
10000
1 1 1 1 1 1 1 1 1

0.012 0.014 0.016 0.018 0.02 0.022

Probability

0.024 0.026 0.028

Figure 4.6:expend calls in graph coloring

45

0.03

p | NoLookahead Lookahead| A-Lookahead
.014 0.33 0.33 0.09
.015 1.44 0.33 0.15
.016 53.55 0.37 0.32
.017 97.12 0.24 0.12
.018 - 209.68 183.41
.019 - 43.30 40.15
.020 - 55.38 23.34
.021 2649.80 9.47 10.14
.022 299.61 0.96 1.06
.023 18.89 0.92 1.05
.024 4.19 0.25 0.67
.025 3.52 0.23 0.22
.026 3.26 0.26 0.22
.027 1.97 0.21 0.29
.028 2.13 0.21 0.26
.029 2.06 0.17 0.29
.030 1.25 0.19 0.22

Table 4.1: Graph coloring (-

time)

indicates no result is genedawithin two hours of running

c/a | No Lookahead| Lookahead| A-Lookahead
1 0.01 0.04 0.01
2 0.02 0.05 0.02
3 0.08 0.06 0.05
4.3 6475.43 137.64 139.88
5 650.85 20.20 19.72
6 45.09 1.64 1.55
7 7.12 0.55 0.54
8 3.15 0.38 3.25
9 1.68 0.27 1.61
10 0.94 0.21 1.04

Table 4.2: Random 3-SAT

46

n | No Lookahead| Lookahead| A-Lookahead
14 32.975 0.43 0.18
15 205.898 0.86 0.27
16 1471.878 2.35 0.37
17 - 5.36 0.74
18 - 9.08 2.11
19 - 3.92 2.4
20 - 54.33 2.10
21 - 98.49 5.73
22 - 852.09 47.60
23 - 2465.09 418.22
24 - 1009.556 76.31
25 - - 370.56
26 - - 3349.53
27 - - -
28 - - 4051.11
Table 4.3: Queens
n | s | NoLookahead Lookahead| A-Lookahead
11 20 13.58 4.62 2.02
19 16.52 1.56 1.56
12 22 37.49 9.38 3.36
21 30.70 2.42 2.41
13 24 106.31 17.26 4.85
23 62.31 3.81 3.76
14 26 165.88 30.49 7.34
25 359.65 5.45 5.46
15 28 335.11 53.07 10.54
27 4673.35 7.35 7.35
16 30 375.20 6276.28 14.66
29 - 10.15 10.50
17 32 1197.65 145.59 21.24
31 701.86 16.48 16.40
18 34 - 145.48 29.28
33 - 21.42 21.39

Table 4.4: Blocks-world problem

a7

R1| R2 No Lookahead Lookahead| A-Lookahead
4 0.10 0.43 0.41
0.09 0.17 0.17
5 11 8.31 77.35 64.94
10 1824.55 189.40 97.12
6 11 263.75 1117.02 1084.31
10 2345.49 490.94 487.65
3 11 0.70 15.80 15.98
10 77.93 15.64 15.52
4 12 1749.35 419.42 412.64
11 5463.57 175.61 175.73
Table 4.5: Gripper problem
p | h | NoLookahead Lookahead| A-Lookahead
5130 - 2.67 1.40
5|35 - 4.89 2.47
5|40 - 8.50 4.04
5|45 - 13.99 6.54
5 | 50 - 20.96 9.24
10| 30 - 8.94 3.33
10| 35 - 16.88 5.72
10| 40 - 28.43 8.89
10 | 45 - 47.12 13.71
10| 50 - 71.94 20.74
Table 4.6: Seating
p | h | NoLookahead| Lookahead| A-Lookahead
5| 4 0.01 0.01 0.00
6 | 5 0.00 0.03 0.00
7|6 0.05 0.15 0.00
8 |7 0.03 0.11 0.02
9| 8 0.27 0.92 0.13
10| 9 2.56 8.58 1.27
11| 10 28.27 91.19 13.86
12| 11 337.32 1006.83 167.99

Table 4.7: Pigeon hole by weight constraint program

48

n | No Lookahead| Lookahead| A-Lookahead
30 0.46 3.62 1.07
40 1.11 16.90 3.19
50 2.25 64.92 8.57
60 3.91 183.59 19.74
70 6.31 467.28 40.18
80 9.58 986.85 74.02
90 13.77 1862.86 123.66
100 19.12 3522.24 194.24
110 25.56 6129.59 288.53
120 33.36 - 412.58
Table 4.8: Hamiltonian cycle
| | No Lookahead| Lookahead| A-Lookahead
1 1.24 1.31 0.84
2 0.75 0.95 0.75
3 1.39 1.23 0.82
4 0.63 0.63 0.58
5 2.50 1.46 0.93
6 0.81 1.70 0.72
7 1.07 1.30 0.89
8 1.21 1.30 0.89
9 1.27 1.26 0.90
10 1.94 1.59 1.04

Table 4.9: USA-Advisor

49

4.6 Conclusion

In this chapter, we have shown that lookahead could be a bimgdas well as an accelerator
to, the DPLL search. This may offer some clues for the apjatpuse of lookahead in
constraint solving systems. By experiments, we show thatdbead may significantly
speed up the answer set computation for hard problems, iaipdicose in phase transition
regions. We also analyze why lookahead sometimes slows tlensearch and characterize
some reasons as embedded easy sub-programs and spurioing pie shall mention that
this analysis is applicable to DPLL-based SAT solvers; ifiasimilar SAT encodings do
not benefit from the use of lookahead under these situations.

Based on these observations, we propose an adaptive l@akamechanism, by which
the decision on whether lookahead is invoked or not is madamycally upon the ob-
served information developed during the search. It takesratdge of lookahead while
avoiding the unnecessary overhead caused by it. We haveuctenta series of experi-
ments on benchmarks written as normal logic programs as agelbgic programs with
weight constraints. We have also applied adaptive lookhhedhe planning component
of the USA-Advisor project. Our experiments show that adegbokahead adapts well to
different search environments.

An interesting direction iselective lookaheadnstead of the entire set of unassigned
atoms, some subset of it is selected by lookahead for tedtiingited lookahead is a kind
of selective lookahead. But as we have shown, the selectipropagating literals may not
be very effective for the purpose of space pruning. The B&arior the selection of literals
for testing in selective lookahead is worth of investigatio future work.

After this work had been done, the ASP syst€IMASP was developed. It is currently
admitted as the fastest solver, where some state-of-theiniques from SAT solvers
are used, such asonflict-directed learningrestart and deletion of recorded conflicts
ASMODEL S is usually not as fast &8 ASP . But we find that, for the pigeon-hole problem,
ASMODELS is several times faster thaZLASP . The reason for that, and the combination

of lookahead with the established techniques in SAT solgen§ interest for further study.

50

Chapter 5

Answer set semantics for aggregate
programs

There are different semantics proposed for aggregate amug[25, 27, 66, 76]. Among
them, the semantics based on conditional satisfactionnsidered the mostonservative
in the sense that any answer set under this semantics is aerasst under others, but
the converse may not hold [77]. We take this semantics asdimaistics for aggregate
programs.

In the next section, we present the semantics based on woadisatisfaction, called
answer set semantider aggregate programs. Then, we briefly introduce otherasdits

and provide a comparison to them.

5.1 Answer set semantics

Following [76], we define the syntax and semantics of agdeegeograms.

An aggregate is a constraint on sets of atoms taking the form
aggr({X | p(X)}) op Result (5.1)

whereaggr is anaggregate functionThe standard aggregate functions &té\f, COUNT,
AVG, MAX,andMIN. The se{ X | p(X)} is called arintentional setwherep is a pred-
icate, andX is a variable, which takes its value from a detX) = {a,...,a,}, called
variable domain The comparison operatep is from {=, #, <, >, <, >} and Result is
either a variable or a numeric constant.

The domainof an aggregated, denotedDom(A), is the set of atomgp(a) | a €
D(X)}. The size of an aggregate|Bom/(A)].

Let M be a set of atoms.M is a modelof an aggregated, denotedM E A, if
aggr({a | p(a) € M N Dom(A)}) op Result holds, otherwisel/ does not satisfy4,

51

denotedM - A.

Example5.1.Let A = SUM ({X|p(X)}) > 1be an aggregate, whef&(X') = {—1,0,1}.
Let M; = {p(0),p(1)} and My = {p(—1),p(0)} be two sets. We have/; = A and
M, b A. O

An aggregate program is a set of rules of the form
h— Ay, .. A, (5.2)

whereh is an atom andd,, ..., A, are aggregatés For a ruler of the form (5.2),hd(r)
andbd(r) denoteh and{ 4, ..., A, }, respectively.
The definition ofanswer sebf aggregate programs is based on the notiorooiditional

satisfaction

Definition 5.1. Let A be an aggregate? andS two sets of atomsR conditionally satisfies
A, w.rt. S, denotedR =5 A, iff R = A and for every sef s.t. RN Dom(A) C I C
SN Dom(A), I = A.

Example 5.2. Let A = COUNT({X|p(X)} < 2 be an aggregate, whe@(X) =

{1,2,3,4}. LetR = {p(1)}, 51 = {p(1),p(2)}, andSy = {p(1),p(2),p(3),p(4)}. Then
R =g, A, sinceR = AandS; = A; R [~g, A, since for the sef = {p(1),p(2),p(3)},
we haveR C I C Sy andl [~ A. O

Let A be the set of aggregatgsl,, ..., 4, } or the conjunction 4; A ... A A,) and R
andS two sets of atoms. We defife =5 Aiff R g A;, 1 <i <n.
Given two sets? andS, and an aggregate prograf the operatoép (R, S) is defined

as:
Kp(R,S)={hd(r)|3r € P, R =g bd(r)}.
The sequence dk'L(R, S) is defined as
K%0, M) =0 and K% (0, M) = Kp(K& (0, M), M), for all i > 0.

It is easy to see thak'p is monotone w.r.t. its first argument, given that the second

argument is fixed. We have the following corollary.

In general,A; could also be atoms or negative atoms. We focus on positiyeeggtes in this chapter. The
results can be extended to the general case, where thei(ie@gdbms are treated in exactly the same way as
in normal logic programs [76].

52

Proposition 5.1([76]). Let P be an aggregate program amfla set of atoms. Then
K%(0,M) C Kp(0,M) C...C M (5.3)

Definition 5.2 ([76]). Let P be an aggregate program afd a set of atoms.M is an
answer sebf P iff M is the least fixpoint of< p(0, M), i.e., M = K¥ (0, M)

Example 5.3. Let P be the program

p(1) (5.4)
p(2) (5.5)
p(3) (5.6)
p(5) < ¢ (5.7)

g «— SUM{X |p(X)}>10 (5.8)

Any answer set of” must contairp(1), p(2), andp(3). Actually, M = {p(1),p(2),p(3)}

is an answer set @P, since

KY0,M) = 0 (5.9)
Kp(0,M) = {p(1),p(2),p(3)} (5.10)
Kp(0,M) = {p(1),p(2),p(3)}. (5.11)

|

5.2 Other Semantics
5.2.1 FLP-answer set semantics

The notion of answer set proposed by Faber et al. [25] is basetnew notion of reduct.
Given a programP and a set of atoms/, thereductof P with respect tal/, denoted by
I'(M, P), is obtained by removing the rules whose body is false wf.ti.e.

I'(M,P) = {r|reP,M k= bd(r)}. (5.12)

Then, an answer set of prografis defined as the minimal model &{ M/, P). Fol-
lowing [76], we call such an answer set FLP-answer set tandigish it from the answer set
based on conditional satisfaction given in Definition 5thads been shown that any answer

set is an FLP-answer set. But an FLP-answer set may not besareaset.

53

Example 5.4. Let P be the program that consists of the rules:

p(1) — SUM{X [p(X)}) =0 (5.13)
p(=1) < p(1) (5.14)
p(1) — p(=1) (5.15)

It can be checked thatl = {p(1), p(—1)} is an FLP-answer set, but we have thg¥ (0, M) =

(. SoM is not an answer set d@?. O

The FLP-answer set semantics has been implemented in thweasst programming

systemDLV .

5.2.2 Ferraris’ semantics

Ferraris [27] generalizes the answer set semantics toilequith logic and uses a general-
ized concept of answer set to define the semantics of aggrpgagrams. In the definition,
the concept of reduct in the definition of answer sets of Iqgiegrams is extended to
propositional theories. The answer sets of a proposititmadry are defined as the mini-
mal models of the reduct of the theory. An aggregate progsafinst translated to a set of
propositional theories and then the answer sets of the gggrgprogram are defined as the
answer sets of the translated propositional theories.

It has been shown in [27] that the semantic proposed by keisan extension of FLP-
answer set semantics. For the aggregate programs thastohsules of the form (5.2),

Ferraris’ semantics is identical to FLP-answer set seroanti

5.2.3 PDB-answer set semantics

Pelov et al. [65] use an approximation theory to define anseesfor aggregate programs.
In particular, they describe a fixpoint operator, calle$f’", operating on 3-valued inter-
pretations and parameterized by the choice of approximagygregates. The PDB-answer
set is defined as the first component of the least fixpdip} 6f 177", where the ultimate
approximating aggregates are employed, i.e., for a progt@rand a set of atoms/, M
is a PDB-answer set aP if and only if M = Ifp(®9"' (), M)), that is M is the first
component ofb%9" (0, M).

As pointed out in [76], PDB-answer sets coincide with thensrssets based on condi-

tional satisfaction given in Definition 5.2.

54

Chapter 6

Level mapping induced loop
formulas for aggregate programs

6.1 Motivation

Aggregate programs are closely related to weight condtpaimgrams, since many aggre-
gates can be encoded by weight constraints (this will be shater). The study on the loop
formulas for weight constraint programs and the effects=nof the loop formula approach
proposed in [49] motivates us to study the loop formulas fragate programs.

Loop formulas for answer set semantics are presented in [84he approach, given a
program, the construction of the dependency graph reqoegputing what is called "local
power set” for the constraints in the program in order to ueptonditional satisfaction.
The process takes exponential time in the size of the progféma question that we address
in this chapter is whether the construction of dependenaplycan be done in polynomial
time for aggregate programs. Again, we tackle the problermbgns of level mapping.

Son et. al. [77] give a level mapping characterization of dnewer set semantics.
In their approach, to compute the level of an aggregate, akitg process is needed to
capture the conditional satisfaction of aggregates. Tine tomplexity of this process is
exponential in the size of the domain of the aggregate.

We investigate level mapping for aggregate programs andffiai] for aggregates, the
conditional satisfaction checking can be reduced to thgnuohial time standard satisfac-
tion checking. Based on this finding, we define the levels gfregates. The definition
induces a formulation of loop formulas, where local powess se not needed and the
exponential process to compute them is avoided.

In the next section, we show the encoding of the aggrefjélitef by weight constraints.

In Sections 6.3 and 6.4, respectively, we present the leepiping characterization of an-

55

swer sets and the loop formulas for aggregate programs.ioBe@ts manifests the dif-
ference between the stable model and answer set semardtcis tlevealed by the level

mapping characterizations. Section 6.6 is a conclusion.

6.2 Encoding of aggregates

Let A = SUM({X|p(X)}) < k be an aggregate, whefe(X) = {ai,...am, b1,...,bn },
anda;s andb;s are positive and negative numbers, respectivelycan be encoded by the

following weight constraint.

W = [p(al) = az, 7p(am) = amap(bl) = blv ap(bn) = bn]k> (61)

Using the transformation in [74]) can be translated to
W(A) = [p(a1) = a1, ...,p(am) = am,not p(by) = |b1,...,not p(b,) = |by|]k" (6.2)

wherek/ =k + 3" | b;.

It is easy to show that for any set of atoths M = A iff M = W (A). We callIW(A)
theweight constraint encodingf A.

The notations in this chapter are the same as that used foewbemapping charac-
terization of stable models for weight constraint prograpresented at the beginning of
Section 3.2.

A good property of aggregates is that their weight constrantoding contains no dual
atoms. The property will be used in the proof later.

In Chapter 7, we will show that most standard aggregates eaenboded by weight

constraints. In this chapter, we focus on aggreg&teés/ only. The reasons are:

e Itis a representative aggregate in that the aggregé@&NT and AV G are special
cases ofSUM;

¢ Itis the most commonly used aggregate in the current pecfianswer set program-
ming, e.g., this is the case for the benchmarks in the firsivanset programming

system competition [14];

e There is no technical difficulty in extending the results ggeegate programs with

aggregates/A X and MIN, since they can be encoded by aggregatd/ .

Note that although the aggregaté/M is essentially the same as weight constraints,

the semantics that we consider in this chapter are diffdrent that in Chapter 3, i.e., we

56

consider answer set semantics for aggregate programssichiapter but the stable model

semantics for weight constraint programs in Chapter 3.

6.3 Level mapping characterization of answer sets

Recall that given a set of atord§, a level mapping oiX is a function\ from X to positive

integers.

Definition 6.1. Let A be an aggregatd/ a set of atoms and a level mapping of\/. The
answer set levadf A w.r.t. M, denotedL*(A, M), is defined as:
L*(A, M) = min({H(X) | X € M,w(W(4),Xo) =1+ > wy,, (6.3)
b,eM

and w(W(A), Xp) <u— Z Wq, })-
a; €M

Example 6.1.Let A = SUM({X | p(X)}) < 0be an aggregate, whefe(X) = {—1,1}.
ThenW(A) = [p(1) = 1,not p(—1) = 1]1. Let M = {p(—1),p(1)} and A be a level
mapping of M, whereX(p(—1)) = 1 and\(p(1)) = 2. It can be seen that the subsets
of M that satisfy the inequalities in formula (6.3) akg = {p(—1)} and Xy = M. So,
L*(A, M) = min({H({p(=1)}), H{p(=1),p(1)})}) = Alp(-1)) = L. O
Definition 6.2. Let P be an aggregate program and a set of atoms.M is said to be
strongly level mapping justifiedy P if there is a level mapping\ of M satisfying that
for eachb € M, there is a rule- € P, such that = hd(r), M |= bd(r), and for each
A € bd(r), A(b) > L*(A, M).

In this case, we say that the level mappigtrongly justifies\/ by P.

The main theorem of this section states that a strongly ieegdping justified model is
exactly also an answer set. Itis based on the following twores by which the conditional
satisfaction of an aggregate is reduced to the standamsfagzdion of its weight constraint

encoding.

Lemma 6.1. Let A be an aggregate antl a set of atoms.X = A iff w(W(A), X,) >
L+ . ex wp; andw(W(A), Xp) < u—3", o x wa,, Wherel andu are the lower and upper

bounds ofiV (A), respectively.

Proof. Sincew(W(A), X) = w(W(A), Xa) — >, cx wp, andw(W(A), X,) > 1 +
> bex Wh;» We havew(W (A), X) > 1. Sincew(W (A), X) = w(W(A), Xp)+) ;. c x Wa,
andw(W(A), Xp) < u — >, cx Wa;, We havew(W(A),X) < u. Therefore,X
W(A). O

57

Lemma 6.2. Let A be an aggregate ankl and M two sets of atoms such that C M.
X Eu Aiff w(W(A), Xa) > 1+ D2 cppwp, andw(W(A), Xp) < u— 3, s Way

wherel andu are the lower and upper boundsidf(A), respectively.

Proof. («<). By Lemma 6.1 we hav&X = A. We now show that for any such that
X € SC M,we haveS |= A.

(1) LetS be any set such tha C S C M. We haveX, C S, andS;, C M,
(2) w(W(A),S) > w(W(A), Xa) = 32}, car W, due to (1).
3) w(W(A),S) > 1, dueto (2).
(4) VS such thatX C S C M, we haveS, C M, andX, C S.
(5) w(W(A),S) <w(W(A), Xp) + Xy, cr Wa;» due to (4).
(6) w(W(A),S) < u, due to (5).
(7) S = W(A), due to (3) and (6).
(8) S |= A, due to (7).
(=)-
(1) LetS = M, U X,. We haveX C 5 C M andS |= W(A).
(2) w(W(A),S) =w(W(A), Xa) = 3 p.cnr we,, due to (1).
(3) w(W(A),S) > I Due to (1).
(4) w(W(A), Xq) > 143, cpr we,, due to (3).
(5) LetS’ = M, U X,. We haveX C ' C M andS’ = W(A).
(6) w(W(A),S") = X 4,enr Wai + Xpgx, Wo;» due to (5).
(7) 2bgx, wo, = w(W(A), Xp).
(8) w(W(A),S") =3, carWa, +w(W(A), X;), due to () and (7).
(9) w(W(A),S") < u, due to (5).

(10) w(W(A), Xp) <u—), cpr Wa,, due to (8) and (9).

58

Now, we are ready to present the main theorem.

Theorem 6.1. Let P be an aggregate program and a set of atoms is an answer set

of P iff M is a model ofP and strongly level mapping justified y.
Proof. (=)

(1) M is an answer set aP.

(2) M is a model ofP, due to (1).

(3) M = K¥(0,M), due to (1).

(4) There is a level mapping : M — Z*: A(b) = kif b € KE(0,M) andb ¢
K&1(0, M), due to (3) and Lemma 6.2.

(5) X strongly level mapping justified/ by P, due to (3) and (4).
(6) M is strongly level mapping justified, due to (5).
(<)
(1) M = P andM is strongly level mapping justified.
(2) Suppose that strongly justifiesM by P.

(3) ¥b € M, thereisarulee € PandasetR C M s.t. b = hd(r) andb ¢ R, and
R [=ps bd(r), due to Lemma 6.2 and (2).

(4) b e K (0, M), due to (3).

(5) M C K(0, M), due to (4).

(6) K (0, M) C M, due to Proposition 5.1 in Chapter 5.
(7) M = K (0, M), due to (5) and (6).

(8) M is an answer set aP.

O

Example 6.2. Let P, be the program
p(—=1) « (6.4)
p(l) — SUM{X |p(X)}) <0. (6.5)

59

Let M = {p(—1),p(1)} and X be a level mapping of\/, where A\(p(—1)) = 1 and
A(p(1)) = 2. We haveL*(A, M) = 1 (c.f. Example 6.1). Thereforg(p(1)) > L*(A, M)
and)M is strongly level mapping justified b#. It can also be verified thd/ is an answer
set of P, by Definition 5.2. O

6.4 Loop formulas

6.4.1 Completion

The completion of aggregate programs consists of the sanoéfeemulas as that of weight
constraint programs (Chapter 3), except that the weighsteaints in the formulas are
weight constraint encodings of aggregates.

Let P be an aggregate. The completion®f denotedComp(P), consists of the fol-

lowing formulas.
(1) Aa,eparyw(Ai) — hd(r), for every ruler € P.
(2. z — V{A4,ebayW (4Ai) | r € P,x = hd(r)}, for every atomr € Atom(P).

Theorem 6.2. Let P be a weight constraint program aid a set of atoms.M is a sup-

ported model ofP iff M is a model ofComp(P).

Proof. Recall that for an aggregaté and a set of atoma/, M = A iff M = W(A),
whereW (A) is the weight constraint encoding df

Let P be a program and/ a set of atoms)M satisfies the formulas of the form (1)
in Comp(P) if and only if M | P and further, according to the definition of supported
model, for any atona € M, there exists a rule € P such thats = hd(r) andM = bd(r)
if and only if M satisfies the formulas of the form (2) omp(P). O

6.4.2 Loop formulas

Let P be an aggregate program. THependency grapbf P, denotedG} = (V. E), is a

directed graph, where
o V = At(P),

e (u,v) is a directed edge from to v in E, if there is a rule of the form (5.2) i,
such that. = hd(r), and eithew or not v € lit(W (A4;)), for somei (1 < i < n).

Now we give thestrong restrictionof an aggregate w.r.t. a loop by defining the strong

restriction of a weight constraint. Lé¥ be a weight constraint anfl a set of atoms.

60

The strong restriction of/, w.r.t. L, denotedW|*L, is a conjunction of weight constraints

Wy AW*

L L where

° WITL is obtained by removing frorl” the upper bound, all positive literals that are

in L and their weights;

o W* |l is obtained by removing fromi’ the lower boundnot b; = w,, for each

bi € L, and changing the upper bound tode- >, ; ws,.

The strong restriction of an aggregatew.r.t. a loopL is defined as the strong restriction

of its weight constraint encoding w.r.t. the Iom*L(A)

Definition 6.3. Let P be an aggregate program ahd loop inG’%. The loop formula for
L, denotedL F*(P, L), is defined as

LF(P,L)=\/L—\/{ /\ Wi(A)|rePhd(r)ecL} (6.6)
Aebd(r)

Let P be an aggregate program. The loop completioiPpflenotedLComp*(P), is

defined as
LComp*(P) = Comp(P)U{LF*(P,L) | L is aloopin Gp} (6.7)
We can prove the following theorem.

Theorem 6.3. Let P be an aggregate program and a set of atomsM is an answer set
of P iff it is a model of LComp*(P).

Proof. For simplification, we use respectively/, W,

WITL(A) andW*‘ 1. (A4), since the aggregaté in consideration is always clear in context.

|z and Wy, to representV (A),

We consider a rule of formy < A. The proof is applicable to rules with conjunctive body.

The proof aboqu"*L is similar to that for Theorem 3.2. We show the partf/tzir*|L

the following.

(<)
(1) M = LF*(P,L).
(2) Yo e M NL,3r € P,such thatd(r) € L, andM = W:‘L, due to (1).
3 w(W;"L, M) <u—3 cr, wp;, due to (2).
(4) wWp, M) =w(W, M) =32, cr, W, + 2 pcr,nm, Wi

61

(6) wW, M) <u— 3" 1., W, due to (3) and (4).

(6) Let X, = M\ (M, N Ly).

(7) w(W, Xp) = w(W, M) = 3, cpr Wa; + 2p,er,nn, W, » due to (6).
(8) w(W, X)) <u—3", cprWa;, dueto (7).

(9) The level mapping where\(b) > maz({\(b;) | b; € X}}) strongly justifiesM by
P.

(10) M is strongly level mapping justified.
(11) M E Comp(P).
(12) M = P, due to (11).
(13) M is an answer set dP, due to and (10) and (12).
(<)
(1) M is an answer set aP.

(2) There is a level mapping from At(P) to positive integers satisfyingb € M, 3r €
P, such that\(b) > L*(A, M).

(3) LetL bealoopand € L. 3X C M \ L and a ruler € P such thato(WW, X;) <
U= g enr Wayr due to (2).

(4) w(W, My \ (My N L)) < w(W, Xp) Due to (3).
(5) w(W, My \ (My N Ly)) = w(W, M) = 3, cns Wa, + Dop,er,00, Whi-
(6) w(W, M) + 5y c s s, < u, due to (3), (4) and (5).
() wWyp, M) = wW, M) =37 e wo, + 22y, cpom Wer-
(8) w(Wy . M) <u— Y, wy,, due to (6) and (7).
9 M Wy,
(10) M | LF*(P, L).
(11) M = Comp(P), due to (1).
(12) M |= LComp*(P), due to (10) and (11).

62

O

Example 6.3. Consider the progrant» in Example 6.2. There is a loofp(1)} in Gp,.
The loop formula i(1) — [p(1) = 1,not p(—1) = 1]1 and satisfied by the sét/ =
{p(—1),p(1)}. So,M is an answer set aP;. O

6.5 Comparison

Weight constraint programs and aggregate programs are lbgit programs with con-
straints, but they have different semantics. Our level nrappharacterizations and loop
formulas reveal the difference between the stable modebsgos for weight constraint
programs and answer set semantics for aggregate programs.

Comparing the definition of the level of weight constraimsOhapter 3 formula (3.2)
to that of the answer set level of aggregates in formula (6v8)may see that the atoms in
X that are negative il” and the upper bound &% are not considered in formula (3.2),
while they are constrained by the second inequality in fdenf@.3).

Naturally, the difference is also manifested by the comsibns of dependency graphs
and formulations of loop formulas (the definitions of resion and strong restriction) for
weight constraint and aggregate programs, respectivaly.stable model semantics, neg-
ative dependencies between atoms do not contribute to ¢ips land loop formulas, while
they do for the answer set semantics. The following examgieahstrates how level map-

ping and loop formulas capture this difference.

Example 6.4. Let P; be the aggregate prografp(—1) «— SUM({X|p(X)}) < —1},
whereD(X) = {—1}. We denote the aggregate/ih by A. We havelV (A) = [not p(—1) =
1]0. The weight constraint program counterpartffis P;: {p(—1) <« [not p(—1) =
1]0}.

Consider the sed/ = {p(—1)}. For programPs and any level mapping, we have
L*(A, M) = A(p(—1)), since the only subset @ that satisfies the inequalities in formula
(6.3) isM itself. Namely,p(—1) depends on itself, even though it appears negatively in the
body of the rule. There is a loofp(—1)} in G%,. The loop formula isp(—1) — [] — 1.

The loop formula is not satisfied /. ThusM is not an answer set df;.
For programP; and any level mapping, we haveL (W (A), M) = 0, sincef) satisfies

the inequality in formula (3.2). There is no Ioop@pé. It can be verified thal/ is a stable

'[] - 1is a weight constraint where the literal set is empty and uppend is -1. It can not be satisfied by
any set.

63

model of P;. O

6.6 Conclusion

In this chapter, we give a level mapping characterizatioramgwer sets. Based on the
characterization, we develop an approach to build the looptlas for aggregate programs.
In the approach, for a prograifi, the dependency grapl;, can be constructed by going
through each rule and building an edgedip from the head of the rule to each literal in the
domain of aggregates in the body of the rule. The process take linear in the size aP
(number of rules plus the number of atomsAih The exponential time process required in
the approach [84] is therefore avoided. The establishmietitecformula for a loop is also
linear in the size ofP, since the restriction of an aggregate can be obtained éatitime
according to the definition.

It can be shown that any loop defined in [84] is a loop defined,Hart the reverse does
not hold. This is because we count negative dependenciedgas.eAs a result, there are
more loops under this definition. However, for many of thes®k, their loop formulas can
be satisfied by any supported model (need not to be condlricigactice). For example,

given the following program:
a<«<1not b=1 b« 1not a=1]

L = {a,b} is aloop by our definition. The loop formula éfis satisfied by any supported
model of the program.

Future works are needed for the aggregate programs. Fithylevel mapping and
loop formulas are defined on aggrega&t&)/ . For the aggregate®/A X and MIN, direct
definition may be desired for intuitiveness. Secondly, ahexe mentioned, there may be
many redundant loops. Thus, our result may be more apptefyrieegarded as evidence of
the existence of a polynomial time construction of dependemaph in order to formulate
loop formulas, rather than a practical proposal, ready ffgulementation. The impact of

the redundant loops on efficiency and methods to remove themvarth further study.

64

Chapter 7

Computing aggregate programs as
weight constraint programs

7.1 Motivation

We propose a computation approach to aggregate programsdstigating the relationship
between stable model and the answer set semantics

Weight constraint programs and aggregates are both logigrams with constraints.
They are closely related but have different semantics. Astiie arises as how the sta-
ble model semantics of weight constraint programs is rdladethe answer semantics of
aggregate programs. If differences exist, what is the patfithe differences and their po-
tential implications in applications. These questionsiamgortant since weight constraint
programs and aggregate programs have been used for berkshamar serious applications
(e.g. [32, 82]), and will likely be adopted in further endees/in applying the ASP technol-
ogy to real world applications.

Our study in this chapter show that for a subclass of weighstraint programs, called
strongly satisfiable programghe stable model semantics (w.r.t. Definition 2.2) agreids w
the answer set semantics (w.r.t. Definition 5.2). For exampkight constraint programs
where weight constraints are upper bound free are all slyosejisfiable. This result is
useful in that we are now sure that the known properties ofatier semantics also hold for
these programs. One important property is that any answes sevell-supported model
[77], ensuring that any conclusion must be supported by acionlar justification in the
sense of Fages [26].

We further reveals that for weight constraint programs whibie two semantics dis-

agree, stable models may be circularly justified, based @nnadi notation of circular jus-

1n the literature, stable model and answer set are integdetrie. We refer to them for different semantics.

65

tification. We then show that there exists a transformatiomfweight constraint programs
to strongly satisfiable programs, which provides a way towight constraint programs
under the current implementation of systems that impleptestable model semantics (e.qg.
SMODEL S andCLASP) without generating circular models.

We also find that most aggregates proposed for ASP can be etdndweight con-
straints and the size of the encoding is linear in the sizén@fdomain of the aggregates.
Accordingly, an aggregate program can be effectively tedad to a weight constraint pro-
gram. This leads to an approach to computing aggregate gragas weight constraint
programs using any system that implements stable modelrgmsiaWe implement the ap-
proach in the system calledl. PARSE (Aggregates to Lparse programs, which are weight
constraint programs.). The systefih PARSE consists of a translator and an ASP solver
for weight constraint programs. The translator transfomgven aggregate program to a
strongly satisfiable program. The ASP solver then comptieamswer sets of the resulting
program.

To evaluate this approach, we have conducted a series ofieques. In the first part
of the experiments, we use the well-known syst8eWMDDEL S as the solver oALPARSE
and compare it with the solveBMODEL S# andDLV on aggregate programs, respectively.
Our experiments show thAl. PARSE often runs faster, sometimes substantially faster, than
the two aggregate systems for the benchmarks tested.

The ASP systenCLASP is an efficient solver for weight constraint programs. In the
second part of the experiments, we WeASP as the ASP solver foAL PARSE and com-
pare withDLV on the benchmarks from the first ASP system competition. €helts show
that ALPARSE constantly outperformBLV . This suggests that representing aggregates by
weight constraints is a promising alternative to the exiphandling of aggregates in logic
programs.

Besides efficiency, another advantage is at the system lewelggregate language can
be built on top of an ASP solver supporting weight consteamith a simple front end that
essentially transforms standard aggregates to weightraimts in linear time. This is in
contrast with the state-of-the-art in handling aggregat&sSP, which typically requires an
explicit implementation of each aggregate.

In Section 7.2, we relate stable model semantics to answieseseantics. We show
that they coincide for strongly satisfiable programs, arad &m arbitrary weight constraint
program can be transformed to a strongly satisfiable progr&mction 7.3 provides the

transformation from standard aggregates to weight canstrand from aggregate programs

66

to weight constraint programs. The effectiveness of thesfiamation is demonstrated by

experiments in Section 7.4 and final remarks are given ini@ect5.

7.2 A study on semantics

Notation: Given a weight constrairid” of the form (2.2) and a set of atonig, we define
M,(W) ={a; € M | a; € lit(W)} andM(W) = {b; € M | not b; € lit(W)}. Since

W is always clear by context, we will simply writ®/, and M.

7.2.1 Coincidence between semantics

Definition 7.1. Let M be a set of atoms and” a weight constraint of the form (2.2).
W is said to bestrongly satisfiable by\/ if M = W implies that for anyV' C M,
wW, M\ V) <u.

Intuitively, strong satisfaction b/ requires that even if sonig’s are removed frormi/
(thus the value of the summation f@r increases), the upper bound1df is still satisfied.

W is strongly satisfiablef for any set of atoms\/, W is strongly satisfiable by/. A
weight constraint program istrongly satisfiabléf every weight constraint that appears in

the body of a rule in it is strongly satisfiable.

Example 7.1. The following constraints are all strongly satisfiableja = 1,0 = 2] 2,
1[a=1,not b=2]3,andl [a =1,not b=2]. Butl [a = 1,not b= 2]2is not, since
it is satisfied by{a, b} but not by{a}. O

Strongly satisfiable programs constitute a nontrivial €las programs. In particular,
weight constraint$?’ that possess one of the following syntactically checkableditions

are strongly satisfiable.
e [it(W) contains only atoms;
o > T we + > 7wy, <u.
Strongly satisfiable constraints are not necessarily coovenonotone.

Example 7.2.Let A = 2[a = 1,b = 1,not ¢ = 1] be a weight constraint. Sincé is

upper bound free, it is strongly satisfiable. Bditis neither monotone nor convex, since

{a} E A, {a,c} |~ A, and{a, b, c} = A. O

67

To present our results, it is notationally important to tifie concept of conditional
satisfaction to weight constraints. L8t be a weight constraint anfl and.S be two sets of
atoms.R conditionally satisfie$V’, w.r.t. S, denotedR =g W if VI such thatR C I C S,
we havel = . Answer sets of a weight constraint program are defined as$ fie@oints

of the operatop in Chapter 5.

Theorem 7.1. Let P be a weight constraint program add C At(P). Suppose for any
weight constraini?” appearing in the body of a rule iR, W is strongly satisfiable by/.

Then, M is a stable model oP iff M is an answer set faP.

Proof. Let M andS be two sets of atoms such th&tC M, and P be a program in which
the weight constraints that appear in the bodies of ruld3 ave strongly satisfiable by!.
We will prove a key lemma below which relatésk=;, W with S = W, The goal is to
ensure a one-to-one correspondence between the dervéigaed on conditional satisfac-
tion (Definition 5.2) and the derivations in the constructiaf the least model (Definition
2.1). Then it can be shown, by induction on the length of dgigwns, that a stable model of

P is an answer set for an instancef®f and vice versa. O

Lemma 7.1. Let W be a weight constraint of the form (2.2), aBdand M be sets of atoms
such thatS C M. Then,

(i) If S =y W thenS = WM andw(W, M) < u.
(i) If S = WM andW is strongly satisfiable by, thenS =y, W.
Proof. We prove (i) and (ii), respectively as follows.

(i) We prove it by contraposition. That is, we show thatifiV, M) > wor S = WM,
thenS £y W. The case ofv(W, M) > w is simple. It leads ta\/ = W hence
S FEu W.
AssumeS = WM, By definition, the lower bound is violated, i.es(W S) < I/,
wherel’ = [— ZbieM wy,. LetI = 1, U I, wherel, = S, andI, = M,. Since
w(WM_ S) =wW!,S)andw(WM, S) < ', we havew(W?,S) < I'. Then, from
I, = M, and the assumptiof = W, we getS (= W, It then follows from
I, = S, thatI = W. By construction, we havé N dom(W) C I € M, and

therefore we conclud§ =y, W.

(i) AssumesS £y W andW is strongly satisfiable by/. We showsS = WM.

68

We have eithelS = W or S = W. If S = W then clearlyS = WM. Assume
S | W. Then fromS =y W, we havedl, S N dom(W) C I C M, such that
I = W. SincelV is strongly satisfiable by, if M = W then foranyR = M \ V,
whereV C My, w(W, R) < u. AssumeM = W. Let R be such thaR, = I, and
I, C R,. It's clear thatw(W, R) < w leads tow(W,I) < w. Thus, sinceM = W,

I £ W follows due to the violation of the lower bound, i.ex(W, I) < I.

Now considerl’ = S, U M,; i.e., we restrictl, to S, and expand, to M,. Note that
by construction, it still holds tha N dom(W) c I’ C M. Clearly,I = W leads
to I’ = W, which is also due to the violation of the lower bound,@dV, I') <
w(W,I), i.e., we havao(W, I') < I. By definition, we haves(W!' I') < I’, where
I'=1->% qp wy. Note that sincd; = M,, we havel' =1 — >, ., wy,. Since
I' = S,, it follows thatw(W!',S) < I'. Now sinceWW!" is precisely the same
constraint a3¥™, we havew(W!',S) = w(W™S), and thereforav(W™, S) <
I. This showsS = WM,

O

By Theorem 7.1 and the definition of strongly satisfiable psogs, we can show that
for strongly satisfiable programs, the stable model sermswbincides with the answer set

semantics.

Theorem 7.2. Let P be a strongly satisfiable weight constraint program, &hd- A¢(P)

be a set of atomsV/ is a stable model oP iff M is an answer set faP.

7.2.2 When the semantics disagree
The following theorem can be proved using Lemma 7.1 and Elaim below.

Theorem 7.3. Every answer set of a weight constraint progr&nis a stable model oP,

but the converse does not hold.

In this section, we show what happens to the weight constprograms that are not

strongly satisfiable.

Example 7.3. Let P be a program consisting of a single rule:
a «— [not a=1]0. (7.2)

Let M; = () and My = {a} be two sets. The weight constraimot « = 1]0 in P is not

strongly satisfiable, since although, satisfies the upper bound, its subdé¢t does not.

69

By Definition 2.2, P has two stable modelst/; and M. But, by Definition 5.2,M/; is an
answer set fo? and M5 is not. Note thaf\/s is not a minimal model.
The reason that/, is not an answer set faf is due to the fact that is derived by its

being inM>. This kind of circular justification can be seen more cleddyow.

e The weight constraint is substituted with an equivalentregate:
a— COUNT({X | X € D}) =1, whereD = {a}.

e The weight constraint is transformed to an equivalent ortbauit negative literal, but

with a negative weight, according to [73} « [a = —1]—1.

For the claim of equivalence, note that for any set of atdmsve have:M = [not a =
1J0iff [a = —1]—-1iff M FCOUNT({X | X € D}) =1 O

The type of circular justification observed here is similar‘answer sets by reduct
in dealing with nonmonotone c-atoms [77]. But the constraiot « = 1] 0 is actually
monotone! One may think that the culprit fdf, above is because it is not a minimal
model. However, the following example shows that stable efsothat are minimal models

may still be circularly justified.

Example 7.4. Consider the following weight constraint prograf(obtained from the one

in Example 7.3 by adding the second rule):

a «— [not a=1]0 (7.2)
f < not f, not a (7.3)

Now, M = {a} is a minimal model of?, and also a stable model &f, but clearlya is
justified by its being in\/. O

We now give a more formal account oifcular justificationfor stable models, borrow-
ing the idea ofinfounded setgreviously used for normal programs [80] and logic programs

with monotone and antimonotone aggregates [10].

Definition 7.2. Let P be a weight constraint program aid a stable model of°. M is
said to becircularly justified or simply circular, if there exists a non-empty sét C M
such that/¢ € U, M \ U does not satisfy the body of any rule ifnwhere¢ is in the literal

set of the head of the rule.

2Caution: Due to an internal bu§MODEL S produced) as the only stable model, which is inconsistent with
the stable model semantics defined in [74].

70

Theorem 7.4. Let P be a weight constraint program afd a stable model of. If M is

an answer set faP, then/ is not circular.

Proof. Let P be a weight constraint program and be an answer set @f. Consider any
atoma € M. According to the definition of answer set, there is an nogatige numberk
such thatw € K} (0, M) anda ¢ K% (@, M). Then there must be a rutec P such that
K510, M) = bd(r) anda € hset(r). ThereforeM is not circular. O

Example 7.3 shows that extra stable models (stable modaiste not answer sets) of

a program may be circular. However, not all extra stable rsae necessarily circular.

Example 7.5. Consider a weight constraint prografhthat consists of three rules.

a <« (7.4)
b «— 2[a=1,not b=1] (7.5)
b «— [a=1not b=1]1 (7.6)

M = {a,b} is a stable model but not an answer set far However, it can be verified
that M is not circular under our definitionb is derived by the last rule, givem, and M
stabilizes by the first two rules. O

7.2.3 Transformation to strongly satisfiable programs

In this section we show that all weight constraint progras loe transformed to strongly
satisfiable programs. This is achieved by replacing eachieionstraint of form (2.2) in
a given program by two upper bound-free weight constraints.

Let W be a weight constraint of form (2.2). Throngly satisfiable encodingf 17/,

denoted by, W») consists of the following constraints:

Wy l[a1 = Wgqyy -y Oy = wan,not by = wbl,not by = wbm]
n m

Wy @+ —u+ Zwai + Zwbi[not a1 = Wgq,,...,N0t a, = w,, ,b1 = wp,, ..., by, = wy,, |
i=1 i=1

Intuitively, W, andWW5, are to code the lower and upper bound constraini§ ofespec-

tively. The encoding is satisfaction preserving, as shawthé following lemma.

Lemma 7.2. Let W be a weight constraintJ’;, Ws) be its strongly satisfiable encoding,
andM be a set of atomsM/ = W iff M = W, andM = Ws.

3 M is an answer set under the notiors6f computation [48]. However, it appears that the notion afiudiar
justification is still an open issue; there could be différi@tuitions and definitions.

71

Proof. The satisfaction ofi is trivial, sincel; is simply the lower bound part of tHé’ .
Next, we show thall; is the upper bound part 6¥.
The upper bound part aV is

Doi<icm @i - Wa; + X 1<icn bi s (—wp,) < w (7.7)
which is equivalent to
—u < Zlgigm ai - (—wq,) + Z1gign bi - we,. (7.8)

By the transformation that eliminates the negative weigintsoduced in Section 2.2),

the constraint (7.8) is equivalent to the weight constréliiat O
Using Lemmas 7.1 and 7.2, we establish the following theorem

Theorem 7.5. Let W be a weight constrain{J;, Ws) be the strongly satisfiable encoding
of W, andS and M be two sets of atoms, such th&tC M. S =y, W iff S = WM and
S = WM.

Proof. For the= part, W}" is the same a8’ ™. By (i) of Lemma 7.1, we havé = WM.
In the following, we shows' = W1,
The=- part:

(1) SEp WandS C M.
(2) SEWandvl,st.Snilit(W) CTandl C M Nlit(W), I = W, due to (1).
(3) Letl =1,U I suchthatl, = Sy, I, = M,.
(4) Snlit(W) C IandI C M nNlit(W), due to (1) and (3).
(5) w(W,I) < u,thatis,y", oy wa, + Zbiﬂb wp, < u, dueto (2), (4).
(6) > uent, Was + D pgs, < u, dueto (3) and (5).
(7) 2201 Wa; = D aygm, Way + 20500 Wo, = Dpes, Wh, < u, due to (6).
(8) Zbiesb Wy, > —u A Y i Way + D wh, — ZaigMa wq,, due to (7).
(9) Dopes W = —u+ 30 Wa, + D010 Wh, — Y400 Ways due to (8).
(10) S = WM, due to (9).
The < part:

72

(1) S E WM, S = WM and bothiW; and¥; are strongly satisfiable.

(2) S =p WhandS =)y Wy, due to (1) andii) of Lemma 7.1.

) VIst.SNlit(W) C ITandl C M Nlit(W), I =Wy andl = Ws, due to (2).

(4) VIst.SNlit(W) C Iandl C M Nlit(W), I =W, dueto (3) and Theorem 7.2.

®) SEuMW.

O

Theorem 7.5 guarantees the one-to-one correspondencedsethe derivations based
on conditional satisfaction (Definition 5.2) and the detivas in the construction of the

least model (Definition 2.2).

Theorem 7.6. Let P be a weight constraint prograri;-(P) be the program obtained by
replacing eact in the body of rules inP by the strongly satisfiable encoding df, and

M be a set of atomsV/ is an answer set faP iff M is a stable model df'r(P).

Example 7.6. Consider a progran® with a single rule.a < 0[not a = 3]2. Then,T'r(P)
consists of
a < 0[not a = 3|, 1[a = 3].

The weight constraints ifi'r(P) are all upper bound-free, henéé-(P) is strongly satis-
fiable. Both() and{a} are stable models aP, but () is the only stable model df'r(P),

which is also the only answer set fér. O

7.3 An approach to computing aggregate programs

7.3.1 Encode aggregates as weight constraints

This section shows that aggregates can be encoded as weitgttaints.

Definition 7.3. Let A be an aggregate in the form (5.1). A set of weight constraints
{W1,...,W,} is anweight constraint encodinpr encoding of A, denotede(A), if for
any modelM of A, there is a modelM’ of e(A) such thath//

|Dom(A)
model M’ of e(A), M is a model of4, whereM"S denotesM’' N S.

= M and for any
/
|Dom(A)
We show the encodings of aggregates of the form (5.1), whereperatorop is >.
The encodings can be easily extended to other relationabtmye except for the aggre-

gate SUM with operator== (more on= later in this section). For example, aggregate
SUM({X | p(X)}) > k can be encoded &8/M ({Y| p(Y)}) > k+ 1.

73

The encodings work for the aggregates whose variable doowaitains only integers.
For the aggregates whose variable domain contains real ensindach real number can be
converted to an integer by multiplying a factor (e.g. cotneb to 15 by multiplying 10).
In this case, thékesult also needs to be processed correspondingly.

For convenience, below we may write negative weights in heapnstraints. Recall

that negative weights can be eliminated by a simple transdton.

SUM, COUNT, and AVG

These aggregates can be encoded by weight constraints dately.
For instanceSUM ({X | p(X)}) > k can be represented by

kp(ai1) = a1,,p(an) = ayn). (7.9)

The aggregate€ OUNT({X | p(X)}) > kand AVG{X | p(X)}) > k can be
encoded simply by substituting the weights in (7.9) witanda; — k& (for AVG the lower

boundk is also replaced by zero), respectively.

MAX

LetA = MAX({X | p(X)}) > k be an aggregate. The idea in the encodingla$ that
for a set of numbers$ = {ay, ..., a, }, the maximum number if§ is greater than or equal

to k if and only if

n n

Y ai—k+1)>=> lai—k+1]. (7.10)

i=1 =1
For each atonp(a;), two new literalsp™ (a;) andp™(a;) are introduced. The encoding

e(A) consists of the following constraints.

0[p(a;) =—1,p"(a;) =1,p (a;) =10, 1 <i<n (7.11)
0 [p(a;) = —di,pt(a;) =d], 1 <i<n (7.12)
0 [p(as) = di,p~(a;) = —d], 1 <i<n (7.13)

1[p(ar) = di,p" (a1) = di,p~ (a1) = —du,
oy p(an) = dn, pT (an) = dn, p ™ (an) = —dy) (7.14)
1[plar) =1, ...,p(an) = 1] (7.15)

whered; = a; — k + 1.

74

In the following presentation, for any mod&! of the encodingg = 1 meansa € M
anda = 0 meanss ¢ M.

The constraints (7.11), (7.12) and (7.13) are used to enggde k + 1|. Clearly, if
a; > k—1,we havep™(a;) = p(a;) andp=(a;) = 0; if a; < k—1, we havep™ (a;) = p(a;)
andp™(a;) = 0; and ifa; = k — 1, we havep™ (a;) = p(a;) or p~(a;) = p(a;).

The constraint (7.14) encodes the relation (7.10) and thetcaint (7.15) guarantees
that a model ok(A) is not an empty set.

In the following we prove that the weight constraints froml(l) to (7.15) is the weight
constraint encoding ofi. We denote theniv’;, W5, W3, W4 and W5, respectively. We

have

Theorem 7.7.LetA = MAX({X |p(X)}) > k be an aggregate andA) = {W, Wy, W3, Wy, W5 }.
Then for any model o4, there is a model!” of ¢(A) such thatM, . ,) = M and for
any modelM’ of e(A), M|’D0m(A) is a model of4, WhereM|’S denotesM’ N S.

Proof. Let M be a set of atoms ant! = A. Suppos&(a;) € M anda; > k. Then, we

can construcf//’ as:
e p(a;) € M" andp™(a;) € M, if p(a;) € M anda; > k;
e p(a;) € M andp(a;) € M',if p(a;) € M anda; < k;

It is easy to check that the weight constraifits, 1/, and 13 are satisfied byl/’. Since
a; > k, we havep(ay) € M’ andp™(a;) € M'. Thereforelv, andW5 are also satisfied
by M'. SoM’ = e(A).

Let M’ be asetand!’ |= e(A). SinceM’ modelsiVy, W, andW3, we havep™ (a;) =
p(a;) andp~(a;) = 0, fora; > k; p~(a;) = p(a;) andp™(a;) = 0, for a; < k —1; and
pt(a;) = p(a;) orp~(a;) = pla;), if a; = k — 1. SinceM’ = Wy, there must be, such
thata; < k andp(a;) = 1. Thatisp(a;) € M|’D0m(A). Then, we havé/ = A. O

MIN

LetA = MIN({X | p(X)}) > k be an aggregate. The idea in the encodingla$ that
for a set of numbers = {ay, ..., a, }, the minimal number irb' is greater than or equal to
k if and only if

n n

> ai—k) = lai—kl. (7.16)

i=1 =1

75

Similar to MA X, the constraint in (7.16) can be encoded by weight conssiain

0[p*(a:) =1,p (@) = 1,p(a;) = ~1] 0 (7.17)
0 [p*(a;) = di,plas) = —di] (7.18)
0[p~(a;) = —di, p(a;) = di] (7.19)
0 [p(ar) = di,p*(a1) = —d1,p™ (a1) = di,
,(an) = dp, " (an) = —dp,p” (an) = d] (7.20)

'~'7p(an) = _dnaer(an) = dnapi(an) = _dn] (721)
1[p(ar) =1,...,plap) = 1] (7.22)

whered; = a; — k.

Similar to Theorem 7.7, we can show that the weight congsdmom (7.17) to (7.22)
are an encoding of the aggregate= MIN({X | p(X)}) > k.

We note that all the encodings above result in weight comsgravhose collective size
is linear in the size of the domain of the aggregate being @eato

In the encoding ofMAX (similarly for MIN), the first three constraints are the ones
between the newly introduced literais (a;), p~(a;) and the literalp(a;). We call them
auxiliary constraints The last two constraints code the relation betwgen) andp(a;),
wherei # j. We call themrelation constraints Let A be an aggregate, we denote the
set of auxiliary constraints ia(A) by a(A) and the relation constraints by A). If Ais
aggregateSUM, COUNT, or AVG, we have that(A) = e(A), because no new literals
are introduced in the encodings.

For a given aggregatd, the constraints ir(A) can be transformed to strongly satis-
fiable weight constraints. In the sequel, we assuf®) contains only strongly satisfiable

weight constraints.

7.3.2 Aggregate programs to weight constraint programs

We translate a logic program with aggregafédo a weight constraint program, denoted

7(P), as follows:
1. For each rule of form (5.2) i?, we have a weight constraint rule of the form

h —r(Ay),...,7(An) (7.23)

76

in 7(P). In the formula (7.23), we use(A;) to denote the conjunction of all the

weight constraints im(A4;), and

2. If there are newly introduced literals in the encoding gdi@gates, thauxiliary rule

of the form
W — p(a;) (7.24)

is included inr(P), for each auxiliary constrairit” of each atonp(a;) in the aggre-

gates.

By Theorem 7.5, it is easy to show the following theorem.

Theorem 7.8. Let P be an aggregate program where the relational operator ign&or
any stable modeM of Tr(7(P)), M| 4p) is an answer set faP. For any answer set/
for P, there is a stable modél/’ of Tr(7(P)) such thatM(At(P) = M.

Remark. For an aggregate where the relation operator is gdtthe aggregate can be
encoded by a conjunction of weight constraints as we hawsepted in this section. In this
case, logic equivalence leads to equivalence under condltsatisfaction. That is why we
only need to ensure that an encoding is satisfaction-prieger

For an aggregate where the relation operatog4’s two classes are distinguished. One
class consists of aggregates of the fo®@BUNT(.) # k, MAX(.) # kandMIN(.) # k.
For these aggregates, the operatércan be treated as the disjunction of the operators ’
and '<’. Consider the aggregaté = M AX(.) # k. Ais logically equivalent tod; v As,
whered; = MAX(.) > kandA; = MAX(.) < k. Let R andS be two sets of atoms, it
is easy to show thak =g Aiff R =g A; or R =5 As. The other class is the aggregate
SUM (.) # k and the related aggregateV’G(.) # k. For these aggregates, the operator
'#£' cannot be treated as the disjunction of 'and '<’, since the conditional satisfaction

may not be preserved. Below is an example.

Example 7.7.Let A = SUM({X |p(X)}) # -1, Ay = SUM({X [p(X)}) > —1 and
Ay = SUM{X |[p(X)}) < —1. Note thatA is logically equivalent tod; v As. Consider
S ={p(1)}andM = {p(1), p(2),p(—3)}. While S conditionally satisfiesi w.r.t. M (i.e.,
S B A), itis not the case thaf conditionally satisfiesA; w.r.t. M or S conditionally
satisfies4s w.r.t. M. O

To compute the answer sets of the logic programs with agtgeda the second class,

the transformation approach proposed in [87] may be used;hwh the worst case will

77

transform an aggregate program to a normal program whosdssexponential in the size
of the aggregate program. This is closely related to a redylt6], which shows that the
answer set existence problem of logic programs with aggesgd/M (.) # kor AVG(.) #
k, is of a complexity higher thaiv P.

7.4 Experiments

Our theoretical studies show that an aggregate program edrabslated to weight con-
straint programs for which the answer sets are exactly #iglesimodels. This leads to an
approach for answer set computation for aggregate programere the answer sets of an
aggregate program are computed as the stable models oftigsponding strongly satisfi-
able weight constraint program. We develop the sysdmARSE to evaluate the efficiency
of the approachALPARSE consists of two parts: a front-end translator which trateslan
aggregate program to a strongly satisfiable program usiedrémslation in Section 7.3.2
and an ASP solver which supports weight constraints. In &x¢two sections, respectively,
we useSMODEL S and CLASP as the ASP solvers fohL PARSE and compareAL PARSE
with other implementations for aggregate programs.

The experiments are run on Scientific Linux release 5.1 wilH3 CPU and 1GB
RAM. The reported execution time @&l PARSE consists of the transformation time (from
aggregates to weight constraints), the grounding timeirigal. PARSE for SMODEL S and
GRI NGOfor CLASP), and the search (b$MODELS or CLASP) time. The execution time
of SMODEL S* consists of grounding time, search time and unfolding tiowr(puting the
solutions to aggregates). The execution timéb¥ includes grounding time and search

time (the grounding phase is not separated from the seafoh\ih.

7.4.1 ALPARSEbased onSMODELS

We code logic programs with aggregates as weight consfpaigrams and us8MODEL S
2.32 for the stable model computation. If a benchmark progis not already strongly
satisfiable, it will be transformed into one, thus we can eedurrent implementation of
SMODELS for our experiments.

We compare our approach with two systet@MODELS4 andDLV .

78

A Comparison with SMODEL $*

We compare our approach to the unfolding approach implesaentthe systersMODELS?
[21].4

The experimental results are reported in Table 7.1, whereséimple size is measured
by the argument used to generate the test cases. The exetiotes are the average of
one hundred randomly generated instances for each sanzgle $he results show that
SMODELSs often faster thasMoDELS?, even though both use the same search engine.

The first set of problems in Table 7.1 is the company controbf@m. In the problem,
a collection of companies and the percentage of one compaighvs owned by another
company are given. A company controls another compan# if the sum of shares of
B owned either directly byd or by companies controlled by, is more than 50%. The
problem is to determine the control relationship between dbmpanies involved. The
aggregate used in the programSigM.

The second set of problems is the employee raise problerhisiptoblem, the working
hours for each quarter of a year of a set of employees are .giMsmproblem is to choose a
number of employees to be promoted. The requirement for i@@tion of an employee
is that the number of working hours of the employee in a yeaeignd a given threshold.
The aggregate used in the progran$isi .

The third set of problems is the party invitations problerwrsthis problem, a number
of persons are given. A person may be a friend of some otheppeiWe are planning a
party and want people that come to the party as more as pes#yperson will come to
the party only if the number of his or her friends that comen party is greater than some
number. The aggregate used in the prograf@@sUNT .

The fourth (NM1) and fifth (NM2) problems are benchmarks tedaby the authors of
smodelé'. The aggregates used in the programsdréX and MIN, respectively.

Scale-up could be a problem fSMODEL S , due to the exponential blowup of the size
of the unfolded program for a given aggregate program. Fstairce, given an aggregate
COUNT({a|a € S}) > k, SMODELS“ would list allaggregate solutions the unfolded
program, whose number @ﬁ*\- For a large domairy andk being aroundS|/2, this is a
huge number. If one or a few solutions are needdPARSE takes little time to compute

the corresponding weight constraints.

“The benchmarks and programs can be fouvdhat. ¢s. nnsu. edu/ ~i el kaban/ asp-aggr. htm .

79

A Comparison with DLV

In [1] the seating problem was chosen to evaluate the pedioce ofDLV °. The problem
is to generate a sitting arrangement for a number of guedtis ywtables and: chairs per
table. Guests who like each other should sit at the same @rsts who dislike each other
should not sit at the same table. The aggregate used in théepras COUNT. We use
the same setting to the problem instances as in [1]. Thetsestd shown in Table 7.2. The
instance size is the number of atom occurrences in the grpurgrams. We report the
result of the average over one hundred randomly generas¢ahices for each problem size.
The experiments show that, by encoding logic programs vgjthregates as weight con-
straint programsAL PARSE solves the problem efficiently. For large instances, theexe
tion time of ALPARSE is about one order of magnitude lower than thaDb¥ and the sizes

of the instances are also smaller than those in the languaDe\o.

Weight constraint programs vs. normal programs for global cnstraints

Some global constraints can be encoded by weight congtre@mhpactly. We have exper-
imented with the pigeon-hole problem modeled by #hé di f f er ent constraint. The
weight constraint program that encodssl di f f er ent is about one order of magnitude
smaller than the normal program encoding [61]. The exenudfahe weight constraint pro-
gram is 6-7 times faster than its normal program countefpaftard unsatisfiable instances
where the number of holes is one less than the number of pigemnthe same machine

under default settings. See Table 7.3 for the results.

7.4.2 ALPARSEbased onCLASP

We use the published programs for the benchmérlde set the cutoff time to 600 seconds.
The instances that are solved in the cutoff time are calletvéble”, otherwise “unsolv-
able”. In the figures of the experiment results, the runningetof unsolvable instances are
just plotted as 600 seconds. In the summary of the expersyiktile 7.4, the “Execution
Time “ is the average running time in seconds for the solvaidtances.

The experimental results are shown in Figures 7.1 to 7.12yHre summarized in
Table 7.4. It can be seen tha< PARSE is constantly faster thabDLV by several orders of

magnitude, except for the Towers of Hanoi benchmark.

5The program contains a disjunctive head, but can be eaaitgformed to a non-disjunctive program.
5The benchmarks and programs can be fouritt &fp: / / aspar agus. ¢s. uni - pot sdam de/ cont est /

80

During the writing of the thesisCLASP is progressed to support aggregatdsM,
MIN and MAX. The weight constraints are implemented as the aggretjaté. The ag-
gregates used in the benchmarks &t&\/ except for Towers of Hanoi, where the aggregate
MAX is used. We also tried theLASP program, where aggregafdA X is not replaced
by its weight constraint encoding (Note that, the answes gkthis aggregate program co-
incide with the corresponding weight constraint prograni.he performances dfLASP
on these two programs are similar.

As we have mentioned, the transformation approach indictitat it is important to
focus on an efficient implementation of aggregéfé\V rather than on implementing other
aggregates such asV’G and TIMES in CLASP, since they can be encoded By .’

The following is a description of the benchmarks.

15-Puzzle

In 15-puzzle, we have &% 4 grid where there are 15 numbers (1 to 15) and one blank. The
goal is to arrange the numbers from their initial configumatto the goal configuration by
sliding one number at a time to its adjacent blank positicet(k,) be the coordinates of

a number on the grid and, j) be those of the blank. Then, y) and(i, j) are adjacent if

@ —] + |y — 5 = L.

Schur Numbers

The input of the Schur number problem consists of two integerandn. We need to
distribute integers from 1 ta to m disjoint sets so that all of the sets are sum-free. By

sum-free, we mean if andy both belong to the set, then+ y is not in the set.

Blocked N-queens

The blockedN-queens problem is a variant of tidé-queens problem. In the blocked-
gueens problem we have & x N board andN queens. Each square on the board can
hold at most one queen. Some squares on the board are blaukedrnot hold any queen.
A conflict arises when any two queens are assigned to the sameaglumn or diagonal.

A blocked N-queens is an assignment of thequeens to the non-blocked squares of

the board in a conflict-free manner.

"The aggregatd IMES can be translated t8§UM, using the logarithm transformation.

81

Weighted Spanning Tree

Let G be a directed graph. Let every edge in the graph be assigneightwA spanning
tree isw-bounded if for every vertex the sum of the weights of the ourtg edges at this
vertex is at mosty.

In the weighted spanning tree problem we are given a diregtaphG = (V, E, W),
whereV is the set of verticesy is the set of edges ariif’ is a function that maps each edge
in the graph to an integer weight. We are also given an integendw. The goal is to find

aw-bounded spanning tree (.

Bounded Spanning Tree

Let G be a directed graph. A spanning treelibounded if for every vertex the number of
outgoing edges at this vertex is at mdst

In the bounded spanning tree problem we are given a directgrthg: = (V, E), where
V is the set of vertices an# is the set of edges. We are also given a bodind@ihe goal is

to find a d-bounded spanning treeGh

Hamiltonian Cycle

A Hamiltonian cycle (or HC for short) in an undirected gra@h= (V, E), whereV is the
set of vertices and’ is the set of edges. A set of edgéds a HC inG if every vertexv in
V" occurs exactly once i@. The input of the HC problem is an undirected graph. The goal

is to find a HC in the graph.

Towers of Hanoi

The classic Tower of Hanoi (ToH) problem has three pegsranlisks of different size.
Initially, all n disks are on the left-most peg in sorted order. The goal isaeenalln disks

to the right-most peg with the help of the middle peg. Thegalee:
1. move one disk at a time
2. only the top disk on a peg can be moved
3. larger disk cannot be placed on top of a smaller one

It is known that for a classic ToH problem withdisks, the shortest plan for moving all

disks from the left-most peg to the right-most peg consis&'c- 1 moves.

82

Social Golfer

In the problem, we have golf players, each of whom play golf once a week, and always in
groups ofm. The goal is to find @-week schedule with 'maximum socialization’; that is,
as few repeated pairs as possible, and finding a schedulenohom length such that each

golfer plays with every other golfer at least once ('full gdization’).

Weighted Latin Square

The weighted Latin-square problem is a variant of the Latjoare problem. Given anxn

weightswt (i, j) and a boundv, a weighted Latin-square is anx n arraya such that
1. each entry contains an integer frqm 2,...,n}
2. no row contains the same integer twice
3. no column contains the same integer twice
4. Vi, 1 <i<mn,a(i,1) x wt(i,1) + a(i,2) x wt(i,2) + a(i,n) x wt(i,n) < w
The goal in the problem is to find a weighted Latin square.

Weight-bounded Dominating Set

Let G = (V, E) be a directed graph. Each ed@e v) in G is associated with a positive
weightw, ,,. A subsetD of V' is aw-dominating set of5 if, for every vertexv in V, at

least one of the following conditions holds:

1. visinD;

2. Z{y | (v,y)€E and yeD} Wy > w;

3. Z{Z | (z,v)EE and zeD} Wz v > w.

The goal is to find av-dominating set of+ of size at mosk, wherek is an integer param-

eter.

Traveling Salesperson

Given an integetv and an undirected grapghl = (V, E), where every edgéu, v) is asso-
ciated with a positive weighw,, ,,, the goal is to find a Hamiltonian cycle @ (a simple
cycle that visits all vertices iF exactly once) such that the sum of the edges in the cycle is

at mostw.

83

Car Sequencing

The goal in the problem is to produce a number of cars. The a&rsot identical, be-
cause different options are available as variants on thie basdel. The assembly line has
different stations which install the various options (@nditioning, sun-roof, etc.). These
stations have been designed to handle at most a certaimpegeeof the cars passing along
the assembly line. Furthermore, the cars requiring a c¢edption must not be bunched
together, otherwise the station will not be able to cope. gegnently, the cars must be
arranged in a sequence so that the capacity of each statewas exceeded. For instance,
if a particular station can only cope with at most half of tlescpassing along the line, the
sequence must be built so that at most 1 car in any 2 requia¢®ption. The problem has
been shown to be NP-complete (Gent 1999).

The following two constraints must be satisfied.

1. The given number of cars for each class must be producethga is a subset of

options) .

2. The cars must be arranged in a sequence so that the caplae#tgh station is never

exceeded.

Program Sample Sizel ALPARSE | SMODELS#
Company Control 20 0.03 0.09
Company Control 40 0.18 0.36
Company Control 80 0.87 2.88
Company Control 120 2.40 12.14
Employee Raise 15/5 0.01 0.69
Employee Raise 21/15 0.05 4.65
Employee Raise 24/20 0.05 5.55
Party Invitation 80 0.02 0.05
Party Invitation 160 0.07 0.1
NM1 125 0.61 0.21
NM1 150 0.75 0.29
NM2 125 0.65 2.24
NM2 150 1.08 3.36

Table 7.1: Benchmarks used byioDELS?

84

Time(seconds)

15-Puzzles

Time(seconds)

0.1

0.01 L L L L
2 4 6 8
Instance Id

Figure 7.1: 15-Puzzle

Schur Number

dly ——

001 1 1 1
1 2 3 4 5
Instance Id

Figure 7.2: Schur Number

85

Blocked N-queens

o

°

c

o

153

)

ko3

£

e

01 L L L L L L L
5 10 15 20 25 30 35
Instance Id
Figure 7.3: Blocked N-queens
Weighted Spanning Tree
o
°
f=
o
o
17
2
kg
£
E
01 1 1 1 1 1
5 10 15 20 25 30
Instance Id

Figure 7.4: Weighted Spanning Tree

86

Time(seconds)

Time(seconds)

Bounded Spanning Tree

T T T T T d|v
clasp —8—

100 | 1
10 | 1
1 L L L L L

5 10 15 20 25 30

Instance Id
Figure 7.5: Bounded Spanning Tree
Hamiltonian Cycle
Clasp —&—
10 4
01 1 1 1 1 1
5 10 15 20 25
Instance Id

Figure 7.6: Hamiltonian Cycle

87

Time(seconds)

Time(seconds)

Towers of Hanoi

100

Idlv —

0.1 1 L ! ! L
5 10 15 20 25
Instance Id
Figure 7.7: Towers of Hanoi
Social Golfer
T T T T T t
div
clasp —&
m
100 O 4
o
[n]
n]
o
m
ul
m
n)
ul
O
ul ul
001 1 1 1 1 1 1
20 40 60 80 100 120
Instance Id

Figure 7.8: Social Golfer

88

Time(seconds)

Time(seconds)

0.1

0.01

Weighted Latin Square

T T T T T T
dly ——
clasp —8—

5 10 15 20 25 30 35
Instance Id

Figure 7.9: Weighted Latin Square

Weight Bounded Dominating Set

0.01

t t t t
dly ——
clasp —&—

5 10 15 20
Instance Id

Figure 7.10: Weight Bounded Dominating Set

89

Time(seconds)

Time(seconds)

Traveling Sales Person

' ' ' div ——
clasp
100 1
10 | 9
1+ -
0.1
0.01 L L L L
5 10 15 20
Instance Id
Figure 7.11: Traveling Sales Person Problem
Car Sequencing
— ——
dly ——
clasp —&—
100 =
10 =
1+ .
01 B
[=== o=
0.01 B
0001 1
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Instance Id

Figure 7.12: Car Sequencing

90

clT Execution Time Instance Size
ALPARSE | DLV | ALPARSE | DLV
41 3 0.1 0.01 293 248
4| 4 0.2 0.01 544 490
5|5 0.58 0.02 1213 1346
5110 0.35 0.31 6500 7559
5115 1.24 1.88 18549 22049
51|20 3.35 7.08 40080 47946
51|25 8.19 64.29 73765 88781
5130 16.42 152.45| 12230 | 147567
Table 7.2: Seating
o | n Execution Time Instance Size
ALPARSE | Normal | ALPARSE | Normal
51| 4 0.00 0.01 98 345
6 |5 0.01 0.01 142 636
716 0.01 0.06 194 1057
8|7 0.09 0.49 254 1632
9| 8 0.74 4.38 322 2385
10| 9 6.89 43.66 398 3340
11| 10 71.92 480.19 482 4521
12| 11| 827.85 | 5439.09 574 5952

Table 7.3: Pigeon hole

7.5 Conclusion

We show that for a large class of programs the stable modeiarstics coincides with the
answer set semantics. In general, answer sets are all stallels. When a stable model is
not an answer set, it may be circularly justified. We proposmsformation, by which a
weight constraint program can be translated to stronglgfeatle programs, for which all
stable models are answer sets and thus well-supported saodel

As an issue of methodology, we have shown that most standgmrégates can be en-
coded by weight constraints. Therefore the ASP systemsstiigtort weight constraints
can be applied to efficiently compute the answer sets of lpgigrams with almost all
standard aggregates. The syst&hPARSE demonstrates the efficiency of this approach.

As we have shown that stable models that are not sanctionetidwer set semantics
may or may not be circular under our definition of circulartjfisation. This left open
the question of what would be the desired semantics for weighstraint programs. It

seems that the notion of unfounded sets can serve as a defifoti a new semantics for

91

Benchmarks Number of Instances Solved Instances Execution Time
ALPARSE | DLV | ALPARSE | DLV
15 Puzzle 11 11 11 0.31 1.16
Schur Number 5 5 4 0.10 0.62
Blocked N-queens 37 37 12 8.94 328.92
Wt. Spanning Tree 30 30 30 0.12 0.17
Bd. Spanning Tree 30 30 5 1.91 414.42
Hamiltonian Cycle 29 29 29 0.84 29.22
Towers of Hanoi 29 29 21 21.61 18.35
Social Golfer 168 129 107 1.52 14.69
Wit. Latin Square 35 35 18 0.03 105.01
Wit. Dominating Sef] 30 23 3 0.26 192.53
Traveling Sales 24 24 23 0.11 12.74
Car Sequencing 54 23 0 0.08 -

Table 7.4: SummanALPARSE andDLV

weight constraint programs, since it appears to separatdahired stable models from the
undesired ones. Then, a question is whether a transformaiiists that eliminates only
circular models.

Another gquestion of interest is on the expressiveness ajht&onstraints. We know
there are difficulties representing aggregates with theatpe#. Then it is interesting to

investigate characterizations of the constraints thatoea@ncoded by weight constraints.

92

Chapter 8

Semantics for abstract constraint
programs

Logic programs withabstract constraint atom@®r c-atom3 is proposed as a general frame-
work for investigating, in a uniform fashion, various ex¢eéns of logic programming, in-
cluding weight constraint and aggregate programs. A c-a®presses a constraint over
a set of atoms. It takes the for, C'), where D is a set of atoms, the domain of the
constraint, and’ a collection of the subsets from the power sefbgerving as the set of
solutions to the constraint.

Different semantics have been proposed for logic prograiitis gvatoms. Similarly
to the case in aggregate programs, we take the semantias tas®nditional satisfaction
(also called answer set semantics) as the semantics of poggrams with c-atoms. We
present the answer set semantics in Section 8.1. In Secomw8 introduce other seman-

tics and the relationships between these semantics andsheaset semantics.

8.1 Answer set semantics

We assume a propositional language with a countable sebpbpitionalatoms Once a
programP is defined, we will denote byl¢(P) the set of atoms appearing in

A abstract constraint atonfc-aton) is of the form (D, C), where D is a finite set
of atoms (thedomainof the c-atoms) and’ C 2P (the admissible solutionsor simply
solutions of the c-atom). Intuitively, a c-atorfD, C') is a constraint on the set of ators
andC represents its solutions. Given a c-atein= (D, C'), we use4,; and A, to refer to

D andC, respectively.

Example 8.1. Consider the aggregaté = SUM ({X | p(X)}) > —1, whereD(X) =
{1,—2}. A can be written as a c-atofd = (D, C') whose domain iD = {p(1),p(—-2)}

93

and
C={S[5CD,SUM(S) = -1} = {0, {p(1)}, {p(—2), p(1) }}.
|

Let A be a c-atomA is said to beelementaryf it is of the form ({a}, {{a}}), which is
just written asa; A is monotonef forevery X C Y C Ay, X € A. implies thatY € A;

A is nonmonotonef it is not monotone;A is antimonotondf A, is closed under subset,
i.e., foreveryX,Y C Ay, if Y € A.andX C Y thenX € A.; A is convexif for every
X, Y, Z CAgsuchthatX CY C ZandX, Z € A, thenY € A..

A set of atoms\V/ satisfies a c-ator, written M = A, if M N A, € A.. OtherwiseM
does not satisfy, written M (= A. M = not A (or M | —A)if M [~ A. A c-atoms of
the form(D, 0) is not satisfiable. Itis often denoted hy On the other hand, some c-atoms
are tautologies. For example, all monotone c-atoms of ttma fd, 2°) are tautologies.

Satisfiability naturally extends to conjunctions of c-atbfaometimes written as a set)
and disjunctions of c-atoms.

A logic program with c-atoms, also calledabstract) constraint progranfor just pro-

gramin this chapter), is a finite set of rules of the form
A— A, ..., Ag,not Agiq,...,n0t A,. (8.1)

whereA and A;’s are arbitrary c-atoms. The literatot A; are callechegative c-atoms

For a ruler of the form (8.1), we define
hd(r) = Aandbd(r) = {A1, ..., Ag,not Agiq,...,not A,},

which are called thbeadand thebodyof r, respectively.

A rule r is said to bebasicif every c-atom in it occurs positively, and eithkd(r) is
elementary or is a constraint. A progran® is basicif every rule in it is basic;P is a
normal programif every c-atom in it is elementanf’ is amonotone-constraint prograih
every c-atom in it is monotone.

Following [77], a negative c-atomot A in a program is interpreted by its complement,
and substituted by c-atorh, whereA; = A, andA,. = 244\ A.. For example, the negative
elementary c-atomot ({a}, {{a}}) will be replaced by c-atont{a}, {0}).

Due to this assumption, in the sequel, if not said otherwdsastraint programs contain

only positive c-atoms.

94

A set of atomsM C At(P) is amodelof a programP if for each ruler € P, M =
hd(r) wheneverM |= bd(r). M is asupportedmodel of P if for any a € M, there is
r € P such that € hd(r)g andM = bd(r).

Answer sets for constraint programs are defined in two sthpthe first step, answer

sets for basic programs are defined, based ordhditional satisfactiorof a c-atom.

Definition 8.1. [77] Let M and S be sets of atoms. The sStconditionally satisfiea
c-atom A, w.r.t. M, denoted byS =y, A, if S E A and for everyl C A, such that
SNAg;CTandl C M N Ay we have thaf € A..

An operator?’p is then defined.

Definition 8.2. Let P be a basic program an&t and S two sets of atoms7»(R, S) is

defined as:
Tp(R,S)={a:3re Phd(r) =a# L, R =g bd(r)}.
The operatofl'» is monotonic at its first argument, with respect to its secamggiment.

Proposition 8.1. Let M be a model ofP, and letS C U C M. ThenTp(S,M) C
Tp(U, M) C M.

Definition 8.3. Let M be a model of a basic prograf. M is ananswer sefor P iff
M = TX(0, M), whereT3(0, M) = ¢ andTp (0, M) = Tp(TH(0, M), M), for all
1> 0.

Next, a constraint program is represented by its instanctwiform of basic programs,

and the answer sets of the former are defined in terms of theearsets of the latter.

Definition 8.4. Let P be a constraint program and € P. For eachr € hd(r)., the

instanceof r w.r.t. 7 is the set of rules consisting of
1. b < bd(r), for eachb € 7, and
2. L «— d,bd(r), foreachd € hd(r)q\m.

An instance ofP is a basic program obtained by replacing each rul@ afith one of its

instances.

Definition 8.5. [77] Let P be a constraint program and a set of atoms\/ is an answer

set forP iff M is an answer set for one of its instances.

95

Example 8.2. Let P be the program consists of the following rules.

cC < a (82)
({a, b}, {{a}, {b}}) < ({a,0},{0,{a},{b}}) (8.3)

The instances aP, denoted byP;, and P, respectively are; :

c «— a (8.4)

a «— ({a;b},{0,{a},{b}}) (8.5)

L~ b({a,0},{0,{a},{0}}) (8.6)
and Ps:

c — a (8.7)

b — ({a,b},{0,{a},{b}}) (8.8)

L~ a,({a,b},{0,{a}.{0}}) (8.9)

It can be checked thdu, ¢} and{b} are answer sets d?, and P, respectively. Thus, both

of them are answer sets 6f O

8.2 Other semantics
8.2.1 MR-answer set semantics

The concept of logic programs with c-atoms was originallydduced by Marek and Rem-

mel [54] where the programs with c-atoms were naseictonstraint programESC-programs).
The proposed semantics (let us call it MR-answer set seosuiti based on the upper-

closure of a c-atom, with respect to the domain of the c-atbor.a c-atom4d = (D, (),

the upper closure ofl, denotedA is a c-atom, wherel,; = D and
A, ={S|SC Dand3Z e C suchthat Z C S}.

Given an SC-progran® and a set of atom8/. The NSS transform, NS&(M), is
obtained by firstly removing fron® all rules whose body are not satisfied lf and then,

for each ruler of form A — Ay, ..., A, and an atonax € C'N M, generating a rule

a+— Cq,...,Cy

to replacer.

96

Let P be a SC-program antl/ a set of atomsM is an MR-answer set a? if M | P
andM is the least model of NS& M).

It was shown in [77] that any answer set of a program is an M&wvan set of the
program.

The MR-answer set semantics does not guarantee the mityirabinswer sets.
Example 8.3. Consider the prograng:

a <

d — ({a,¢,d}, {{a},{a,c,d}})

According to the conditional satisfaction semantic, thiggpam has only one answer
setM; = {a, c}. Butaccording to the MR-answer set semantids,= {a, ¢, d} is another

answer set, since the reductBfw.r.t. M is

a <«

d — (a,¢d}y, {{a}{a,c}, {a, d} {a, ¢, d}})

and{a,c,d is a minimal model of the reduct.
The reason that causes the non-minimal answer set is thasgtteen{a, c, d}, {{a}, {a,c,d}})

in the last rule ofP is replaced by its upper-closufda}, {a, c}, {a,d},{a,c,d}}). O

8.2.2 MT-answer set semantics

Marek and Truszczyhski in [54] propose semantics for Iqgimgrams with monotone c-
atoms (monotone constraint programs). In the proposalifletll it MT-answer set seman-
tics), the MT-answer sets are defined as the fixpointrafradeterministic one-stegperator

ng(P, M), whereP is a monotone constraint program ahfla set of atoms, that is,
TRYP, M) ={S | S C hset(P(M)) and S |= hd(r), for each ruler € P(M)}@8.10)

whereP (M) is the set of rules i® whose body is satisfied by/. Recall that, for a set of
rules P, hset(P) is the union of the atoms appearing in the heads of ruld3.in

Let P be a monotone constraint program where all c-atoms areymsi P-computation
is a sequenceéX}) (indexed with non-negative integers) such that (¥, = 0, (2).
Xjy1 € TpY(X,), and (3).X; = | J X..

1<k

97

Let P be a monotone constraint program with only positive c-atamd M a set of
atoms. M is an MT-answer set oP if M = P and M is the least fixpoint ofP-
computation. IfP contains negative c-atoms, a modél of P is an MT-answer sets if
M is the least fixpoint of?-computation on the program redugt, which is obtained by
firstly removing the rules fronP that are not satisfied b/ and then removing all negative
c-atoms from the bodies of the remaining rules.

It has been shown that, for monotone constraint prograngsatiswer set semantics,

MR-answer set semantics and MT-answer set semantics deinci

98

Chapter 9

Loop formulas for abstract
constraint programs

9.1 Motivation

In this chapter, we present a method for answer set computédr logic programs with
arbitrary c-atoms c-atoms, by formulating loop formulastfese programs, for the answer
set semantics. This semantics is known to coincide with itimaie stable semantics for
logic programs with aggregates [18]. Our work follows theypous work on loop formulas
for normal logic programs [43], and loop formulas for logimgrams with monotone and
convex constraints [49]. We show that answer sets of a logpgram with arbitrary c-
atoms are precisely the models of completion that satisfyl@ap formulas. Since the
semantics based on conditional satisfaction agrees watlséimantics for logic programs
with monotone and convex c-atoms, our loop formulas areiegigk to the latter. Actually,
for this class of programs, our loop formulas are simplemgtmesexponentiallysimpler)
than those proposed in [49]. Our results can be applied tocangtraint solver, where
models of completion can be computed. The next question ishadonstraint solvers are
suitable for this task.

In [49], it is shown how logic programs with cardinality aneeight constraints, called
Iparse programs, can be encoded by pseudo-Boolean (PB) theoriese, Me advocate
in addition that PB constraint solvers (e.g. [11]) are ative candidates for computing
models of completion for programs with arbitrary c-atomspexially for programs with
aggregates and global constraints. This is due to the cdtsemthat typical aggregates in
logic programs, as well as some global constraints, can beded as PB theories com-
pactly. That is, the size of the PB encoding of such a comgtiailinear in the size of the

constraint’'s domain. This is in contrast with the unfoldismgproach [21, 64] - translating

99

a logic program with aggregates to a normal program, whegedbulting normal program
could be of exponential size for the same constraint. We stwome encodings to illustrate
this connection.

In the next section, we introduce the concept of completioabstract constraint pro-
grams. The loop formulas are presented in Section 9.3. Tlhaae to previous work is
given in Section 9.4. In Section 9.5, we show that most agdesgand global constraints
can be encoded by PB theories. Section 9.6 contains theusioics.

9.2 Completion

In the sequel, for a set of atonts = {ay,...,a,}, we useS” to denote the conjunction
a1 A ... A ap, and—S to denote the conjunctiona; A ... A —ay,.
For a c-atomA, we may be interested only in the domain atoms that actupjiear in
some admissible solution of. We thus definedSet(A) = {a : a € 7, for somer € A.}.
Following [49], thecompletionof a constraint progran®, denoted byC'omp(P), con-

sists of the following formulas
e [bd(r)]" — hd(r), for eachr € P;
o z — \/{[bd(r)]" : r € P, x € ASet(hd(r))}, for each atomx € At(P).

The first formula above captures the if definition in a rulegndas the second completes
the definition by adding the only if part (Please refer ExaartpB).

The completion of a constraint program is a set of formulas wiatoms. The notion of
satisfaction and models for constraint programs extendsriatural way to formulas with
c-atoms.

Note that in the definition of [49], a negative literabt A in completion is interpreted
as—A, while in this paper it is interpreted by its complemeft The two are consistent
since for any set of atomsC At(P), I = -Aifandonlyif I = A,

Theorem 9.1.[49] Let P be a constraint program. A set of atohsis a supported model

of P if and only if M is a model ofComp(P).

9.3 Loop formulas

To define the loop formulas for a constraint program, we ihiice the notion abcal power

set

100

Definition 9.1. Let A be a c-atom. A pair of setsB3, T'), whereB C T' C Ay, is called a
local power set (LPS)f A, if B € A.,T € A. and for any sef such thatB C I C T, we
havel € A..

Intuitively, (B, T) represents an “extension” of the power 8ét”, where B is the
“bottom” element and’ is the “top” element.

A local power set B, T") of a c-atomA is said to bemaximalif there is no other local
power set B’, T") of A such thatB’ C BandT C T".

Example 9.1. Let A = ({a,b,c},{0,{a},{a,b,c}}) be a c-atom. The maximal local
power set ofd are(), {a}) and({a, b, c}, {a,b, c})}). Note that the local power set, 1))

and({a}, {a}) are not maximal. O
The LPS representation of a c-atom is defined as follows.

Definition 9.2. Let A be a c-atom. The LPS representation Af denoted byA*, is
(Ag, A%), whereA: = {(B,T) : (B,T)is amaximal LPS ofA}.

Example 9.2. Let A = ({a,b, ¢}, {0, {a},{a,b,c}}). Then,

A" = ({a, b, ¢}, {{0:{a}), ({a,b, ¢}, {a, b, ¢).

O

Let M be a set of atoms and be a c-atom. We say/ satisfiesA*, denotedV = A*,
if M = \V{B"A-(Ag\T):(B,T) e A%}.
The satisfaction of a c-atom can be characterized by thsfaetion of its LPS repre-

sentation.
Proposition 9.1. Let A be a c-atom and/ be a set of atoms. We havé = Aiff M = A*.

The proof of the proposition is straightforward by the deiom of the LPS representa-
tion of c-atoms.

A* can be seen as a compact representatiod.ofFor example, given a monotone
c-atomA = (D, 2P — {0}), A* = (A4, {(B, Ag) : B C Ay, B is singletor}).

To capture the loops in constraint programs, we define therdigncy graph for a

constraint program.

Definition 9.3. Let P be a constraint program. Thiependency grapbf P, denoted by

% = (V, E) (a stands for arbitrary c-atoms), is a directed graph, where

101

o V = At(P)

e (u,v) is a directed edge from to v in E if there is a ruler € P such thatu €
ASet(hd(r)) andv € B, for some(B,T) € A} andA € bd(r).

LetG = (V, E) be a directed graph. A sét C V is aloopin G if the subgraph of>
induced byL is strongly connected. A loop imaximalif it is not a proper subset of any
other loop inG. A maximal loop isterminatingif there is no edge i~ from L to any other
maximal loop.

For any nonempty seX’ C At(P), we denote by>%[X]| the subgraph of+$, induced
by X.

The idea of loop formula is that for any atom in a loop to be inaaswer set of a
program, it must be supported by atoms that are not in the. Idopcapture this idea, the

restriction of the LPS representation of a c-atom is defined.

Definition 9.4. Let P be a constraint programd be a c-atom, and. C At(P). The

restrictionof A* to L, denoted byA|*L, is (Aqg, AZ| 1), Where
AZ|L ={(B,T)e AL : LN B =0}

Definition 9.5. Let L be a set of atoms andbe aruled «— A;,...,A,. We define the

body formulaof r w.r.t. L as
ap(r)=m A ... Ny,

wherem; = \/{B" A —~(4;,\T) : (B,T) € AZ;\L}’ for eachi, 1 < ¢ < n. If there is a

c-atomA; such thatA;‘C‘L = 0, thenay(r) = false.
We are ready to give our definition of loop formulas.

Definition 9.6. Let P be a constraint program andbe a loop inG%. Theloop formula
for L, denoted by.P*(L), is defined as

\/L — \/{aL(T) :r € P, LN ASet(hd(r)) # 0}. (9.1)

The loop completionof a constraint progran®, denoted.Comp(P), combines the

completion ofP with the loop formulas for loops i7%,, and is defined as

LComp(P) = Comp(P)JU{LP*(L): Lisaloop inG%}. (9.2)

102

Example 9.3. Consider the following progrank®.

rip— ({a, b, C},{@,{(Z, b}v{av b, C}})
ro i a < p.
rg: b« p.

Let A = ({a,b,c},{0,{a,b},{a,b,c}}). The completion of is
Comp(P) ={A —p,p— A,p — a,a — p,p — b,b — p}.

The only model ofC'omp(P) is M = {a, b, p}. We will see thatM/ is not an answer set for
P.

A" = ({a,0,¢},{(0,0), ({a, b}, {a, b, c})}).

L ={a,b,p}isaloop inG%, and its loop formula is:
LP*(L)=aVbVp— ap(r)Vay(ry) Var(rs).
Sinceay(r1) = ~a A =b A —canday(re) = ar(rs) = false, we get
LP*(L)=aVbVp— (maA-bA-c).
As M = LP%(L), we conclude thad/ is not an answer set fap. O

Example 9.4. Consider the progrank:
d — ({a,b,c,d}{{a}.{a,b}{a,c}{a,b,c}.{d},{a,d}}).

a < .

Let A be the c-atom in the body of the first rule. We have

A" = ({a,b,¢,d}, {{{a}, {a, b, c}), ({a}, {a, d}), {{d}, {a, d})}).
The loop formula for the loofd = {d} is:
LPY(L)=d— (aAN—d)V (aA-bA—c)

As M = {a,d} is a model ofComp(P) andM = PL*(L), for the only loopL in G%, it

is an answer set faP. O
To establish the main theorem, we need the following lemma.

Lemma 9.1. Let P be a basic program. A s@tf C At(P) is an answer set faP iff M is
a model of LComp(P).

103

Proof. (=) Let M be an answer set fadP. Then, M is a supported model d?, soM =
Comp(P). LetL be aloop inG%. If LNM = 0, thenM |= LP*(L). If LNM # (there is
a smallesk such that, N T% (0, M) # G andLNTE (0, M) = 0. Letz € LOTE(D, M).
We haver ¢ Tp '(, M) andz € TE(D, M). By the definition ofTp, there is a rule
r € P with an elementary head such that(r) = =, andT5 (0, M) |=a bd(r). From
Proposition 9.1, we have for any c-atame bd(r), T3~ (0, M) f=ar A7y Then, by the
monotonicity of the operatdofs (Proposition 8.1 in Chapter 8), we ha&?%fl(@, M) C
Th(0, M) C T (0, M), fori > k, andTg°(0, M) = M. It follows from the definition
of conditional satisfactio’s (0, M) = Afy, fori > k. So, M = ar(r). Therefore
M = LP(L).

(«) AssumeM is a model ofLComp(P) and we showl, = Tg°((), M). The proof
of T°(0, M) C M is routine by an induction on the constructiong¥ (0, M). We show
the other direction)/ C T°(0, M).

Suppose the statement doesn't hold, i.e., for same M, « ¢ T5°(0, M). Then,
sinceT°(0, M) C M, it follows Tp*(0,M) ¢ M. Let M~ = M \ T (0,M). In
G%[M~], there are either loops or no loops. Gf,[M ~] doesn’'t have a loop, it's easy to
show thatz € Tp°(0, M), causing a contradiction. SuppoSé,[M ~| has a loop, then it
has a terminating loop C M~. SinceM = LComp(P), there existt € M~ andr € P,
wherehd(r) = x, such thatV = bd(r), and for anyA € bd(r),

(1) Mn Ay =t, forsomet € A, (due toM = bd(r)).
(2) I(B,T) € A suchthatB CtC T, B € A. (dueto (1)), and

(2.1) B = A (due to (1), (2))
(2.2) M = B " A—=(Ag\T)andBN L = () (due toM = LP*(L))

If we can showB C T];(@,M), for somej > 0, then from (2.1) above, and since it is
the case for anyl € bd(r), we will havex T{;’Ll((l), M), resulting in a contradiction.

Consider any € B. From (2.2), we knowy ¢ L. From (1) and (2) above, it is clear
y € M. It follows that eithery € M~ \ L, ory € T};((/), M), for somej > 0. In the
former case, sincé is a terminating loop irG%[M ™|, v is not in any loop inG%[M~]
andy doesn't depend on any loop % [M] (i.e., there is no path from to any loop in
G%[M™]). Itis then easy to show thgte T{;((Z), M), for somej > 0. Sincey is arbitrary,

we conclude thaB C T};((/), M), for somej > 0. O

104

Theorem 9.2. Let P be a constraint program. A s&f C At(P) is an answer set faP iff
M is a model ofLComp(P).

Proof. (=) Let M be an answer set of prograf It is an answer set of an instance /of
say P;. The proof of the satisfaction @fomp(P) is trivial. We show that\/ satisfies loop
formulas of P. By lemma 9.1, we have/ = Lcomp(P1). ThenM = T (0, M), that
is any atom inM can be derived without itself. Therefore, we halemodels any loop
formula of P.

(<) Let P be a program and/ be a set of atoms that/ = LComp(P). Let P,
be a instance of. The proof of satisfaction of'omp(P;) is easy. Since any loop in
the dependency graph of a instancefbfs a loop in the dependency graph Bfand M
satisfies the loop formula P, we have)! satisfies the loop formula d?;. ThereforeM
is an answer set aP,. By Lemma 9.1,M is an answer set aP;. We therefore have that

M is an answer set dP. U

9.4 Relation to previous works

9.4.1 Local power set representation

Similar constructions or definitions have been presentatiariterature for different pur-
poses. In [64],indexed pairsare used to translate aggregate programs to normal logic
programs; theaggregate solutiongor aggregates is given in [76] to capture conditional
satisfaction of aggregates; and In [77], the existencelefa mappingw.r.t. a model, is
formulated as a sufficient condition for the model to be anensset. Local power sets
are variants ofrefixed power setf/1], which are used to define a generalized form of
Gelfond-Liftchitz reduction.

Let A be a c-atom. It takes polynomial time, in the sizedgfto constructd*. A naive
algorithm would examine each pa¥,Y € A. such thatX C Y, in the partial order of
inclusiveness- a pair(X,Y) includesanother(X’,Y”) if X C X’ andY’ C Y, whereas
at least one of th€ is proper, to see if for any such thatX C 1 C Y, I € A.. Whenever
such a pairf X, Y) is identified, it is maximal, and thus all the included pairs dropped
from consideration.

For some special classes of c-atoms, the constructiett & much simpler. Below, we
show this for the classes of monotone, antimonotone, aneezasratoms.

Given a sefS of sets,r € S is said to beminimalin S if there is nor’ € S such that

7' C m; similarly for maximal sets irf.

105

e Ais monotone:A} = {(B, A;) : BisminimalinA.}
e Ais antimonotoneA; = {(0,T) : T is maximal inA.}
e Aisconvex:Ar = {(B,T): B CT,Bisminimal T is maximal inA.}

9.4.2 Dependency graph

In [49], positive dependency grahdefined for programs with monotone c-atoms. Pet
be a program with monotone c-atoms which consists of ruléiseoform (8.1). Thepositive
dependency grapbf P is the directed grapls’s = (V, E), whereV = At(P) and(u, v)
is an edge inE if there exists a rule € P such thatu € hd(r), andv € A,, for some
positive c-atomA € bd(r).

We make two remarks. First, the construction(df is not directly applicable to pro-
grams with nonmonotone c-atoms. For these programs, a headia a rule may also
positivelydepend on the atoms appearing inegativebody c-atom of the same rule. Sec-

ond, there are in general more loopgGf§ than inG%.

Example 9.5. Consider a program with nonmonotone c-atoms, denéted

a — not ({a,b}, {0, {0}}) (9.3)
b — not ({a,b},{0,{a}}) (9.4)

G5 contains no edges. So, it cannot be used to deny a model ofietompto be an
answer set. Indeed/ = {a} is a model ofComp(P), but not an answer set far.
Our dependency graph is based on the program where negatieens are replaced by

their complements. In this case, we have the following mogrdenoted®’

a — ({a,b},{{a},{a,b}}) (9.5)

b — ({a,b},{{b},{a,b}}) (9.6)
whereL; = {a} andL, = {b} are loops inG'%/, but L3 = {a,b} is not. Note thatLs is
also a loop inG'5,, in addition toL; and L.

The loop formula forL; in our case, for example, BP*(L,) = a — false. M }~
LP%(Ly), which shows thall/ is not an answer set far. O

Proposition 9.2. Let P be a constraint program. Any loop % is a loop inG'3, but the

converse does not hold.

106

Proof. Given a c-atomA, we have thatdSet(A) C Dom(A). Let P be a constraint
program, by the definition of/%, andG’z, we have that any edge @} is an edge irG'5.
Therefore any loop iz is a loop inG’5. The loopLs in Example 9.5 shows that a loop

in G’ may not be a loop 'S O

For monotone-constraint progranty the definition ofG¢% is consistent with that of
G'p. By definition, the complement of a monotone c-atom is antioione. As shown
earlier, if A is antimonotone, thed* is such that for everyB, T) € A%, we haveB = ().

It follows from the definition ofG% that a head atom does not depend on any body atoms
in an antimonotone c-atom.

However, since the extra loops @& are non-essential (e.g. the lodp in Exam-

ple 9.5), our loop formulas also work with the definition obfis inG'5.

Theorem 9.3.Let P be a constraint program, ada’ (P) = Comp(P)JU{LP*(L) | L is a loop inG'5 }.
AsetM C At(P) is an answer set faP iff M is a model ofLC(P).

9.4.3 Loop formulas
The loop formulas in [49] are defined as follows. For a rulehaf form
A— Ay, ..., Ag,not Agyq,...,n0t A,
define
BrL(r) =Ayp Ao NAyL A=At A A DAy,

whered|;, = (Ag\L,{Y : Y € A, Y nL=0}).!

The loop formula forL, denotedZ P (L), is defined as

VL—V{BLr):re P,LNhd(r)g #0}

For monotone-constraint programs (note that they do ndagonegative c-atoms), our
loop formula is equivalent to the one above. To show thislteste need the following

lemma.

Lemma 9.2. Let A be a monotone c-atom ard a set of atoms. For any set of atoths
M):A‘*L iff M = AL

The definition given in [49] is actuallyl;;, = (A4, {Y | Y € A.,Y N L = (0}), which didn’t work com-
pletely. As an example, assume a monotone-constraint@mr = {a «— ({a,b}, {0, {a}, {b}, {a,b}})}.
M = {a} is an answer set faP, but L = {a} is aloop inG% and its loop formula i& — ({a, b}, {0, {b}}),
which is not satisfied by/.

107

Proof. (=)
(1) M [47,
(2) There exist3B, A;) € A*st. LN B =0andM N A, = B", due to (1).
(3) Az is monotone, due to that is monotone.
(4) B C M, dueto (2).
(5) B C (A1)a, due to (2).
(6) B C M N (AjL)q, due to (4) and (5).
(7) B € (AjL)e, due to (2).
(8) M N (AjL)a € (AjL)e, due to (3) and (7).
(9) M = Az, due to (8).
(<)
(1) M (Ag\ L) € (Ap)e.
(2) 3Sst.SCM,SCA;, SNL=0,5¢€ A, dueto (1).
(3) Let B be the minimal sets.tB C S.
(4) M = B", due to (3) and the monotonicity of.
(5) M = AJ}, duetto (4).
U

Theorem 9.4. Let P be a monotone-constraint program ahtl C At(P). For any loop
LeGp,MELPYL)iff M = LP™(L).

Proof. We consider the rule of forml <— A;. The result can be extended to the rule with
conjunctive body.

Let P be a program and a loop inG'5. The case wherg is not a loop inG¢% is trivial.
We consider thaL is a loop inG%. Supposel/ |= \/ L. By Proposition 9.2, we have a
one-to-one correspondence between the satisfaction, @f) andjy, (r) for the ruler € P
andL N hd(r)y # (. Thus, Theorem 9.4 holds. O

108

Corollary 9.1. Let P be a monotone-constraint program. For any ldog Gz, no atom

in LP%(L) occurs negatively.

Thus, for any monotone-constraint progradfm{without negative c-atoms), for any loop
L in G'g orin G%, the size ofLP*(L) is no larger than that of. P (L). In many cases,

the former is substantially smaller; in some cases, thedoigiexponentially smaller.
Example 9.6. Consider the following monotone prograf
¢ — ({a,b,¢}, {{a},{a,b},{a,c}, {a,b,c}}). 9.7)
There is no loop irG%, but one loopl, = {c} in G'3. Our loop formula for this loop is
LPY(L)y=c—a (9.8)
while the loop formula of. P™ (L) is

LP™(L) = ¢ — ({a,b}, {{a}, {a,B}}). (9.9)

To scale up, replace the rule above with — A, whereA = ({ay,...,an},{m : 7 C
Ad,al € 7T}) O

9.5 Application

In this section, we show that some c-atoms (aggregates abdlgionstraints) can be en-
coded by pseudo-Boolean (PB) theories. The encodingsrieski this section are differ-
ent from that in Chapter 7. Firstly, the goal of the encodimgthis section is to illustrate
the possibility of computing answer sets by PB constraihtesse while the encodings in
Chapter 7 is for the computation of answer sets by weighttcaing program solvers. Sec-
ondly, the encodings in this section is more complex thahith&@hapter 7, since we have
to usePB variablesto encode the truth and falsity of c-atoms, and enforce thevalgnce
between c-atoms and their PB encoding.

We contrast the encoding approach with the unfolding amtres in [21, 64]. The

advantage is shown in Example 9.7.

9.5.1 Pseudo-Boolean constraints

PB constraints are integer programming constraints in kvkiariables have 0-1 domains.

They are generally written in the form of inequalities
wy Xxr1+ ... +wy, Xz, Rw (9.10)

109

whereR € {<,>,<,>,=}, w; andw are integer coefficients, anc are PB variables
taking values from the domaif0, 1}.

A PB theoryis a set of PB constraints. Let’s denote the set of varialnlesRB theory
by X. An assignment : X — {0,1} is asolutionto a PB theory if it satisfies every
constraint in the theory.

Given a programP, the scheme for the encoding 6fomp(P) by PB constraints is
given in [49], where all c-atoms need to be encoded.

There is a straightforward encoding of any c-atanin terms of a PB theory by enu-
merating all admissible solutions .. We are interested in the cases where the resulting
PB theories are linear in the size of a c-atom’s domain.

Let X be a solution to a PB theory antla c-atom whose domain = {ay,...,a,}.

In to encodeA, we will introduce a PB variable; for eacha;, and define thenembership
setof A to beM) = {a; € S : A(z;) = 1}.

To represent the satisfaction of a c-ataginwe introduce a PB variablg The intention

is that an assignmerXis a solution withy = 1 (resp.y = 0) to the encoded PB theory if

and only if the corresponding membership set satisfies .(idk®gs not satisfyA.

Definition 9.7. Let A be a c-atom. A PB theory is tHeB encoding(or encoding of A,
denoted by, (y = A), iff for any solution\ to 7,,,(y = A), we have\(y) = 1iff M), = A.

9.5.2 Encoding of aggregates

The syntax of aggregates is presented in Chapter 5. Fornidisity in the presentation,

we consider the aggregate of form
aggr({a | a € S}) op Result (9.112)

whereS is the domain of the aggregate, in this section. The form B &fuivalent to form
5.1 in Chapter 5, consideringandS asX andp(X), respectively.

For the aggregateSUM, COUNT, AVG, MIN, mathit M AX and their correspond-
ing PB encodings that we will introduce, the following thexar holds (A detailed proof will
be given for the aggregate/N) .

Theorem 9.5. Let A be an aggregate whose domairbis= {ay, ..., a,} andt(y = A) be
the PB encoding ofl. We have:

(I) There is a solution ta-(y = A);

(I) Let A be asolutionta(y = A). A(y) = 1ifand only if M) = A;

110

(1) The size ofr(y = A) is linear in|S]|.
SUM, COUNT, AVG

Let A be the aggregat§ UM ({a|a € S}) > k andM be a subset of. M = A if and
only if the summation of the elements M is not less thark. Lety be a PB variable. The

PB encoding,,(y = A) consists of the following constraints.

l‘:r +x; = uwz, foreachi, 1<i<n (9.12)
l‘:r ~a; > w;-ag, foreachi, 1 <i<n (9.13)
x; - (=a;)) > x;-(—a;), foreachi, 1 <i<n (9.14)

y-k (9.15)

\'M
®
s
AV

Z (ira;)) < (1-y)-(k—-1)+y- Z(Q«"j ca;+x; - (—aq)) (9.16)
j i=1

The PB variables;]” andz; are introduced for each; to encodéa;|. The constraints
(9.12) to (9.14) guarantees thgt = z; andz; = 0, if a; > 0; z; = z; andz = 0, if
a; < 0; andz; = x; orz; = m;, if a; = 0. Thereforex] - a; + z; - (—a;) = |ayl.

It can be verified that,, (y = A) always have a model. Latbe a model of,,(y = A).
The membership sétf, = A if and only if A(y) = 1.

The aggregat€ OUNT ({ala € S}) > k is the special case SFUM ({ala € S}) > k,
where eachs; in S equals to 1. The encoding fafOUNT ({ala € S}) > k can be
constructed simply by substituting 1 for eaghin constraints (9.12) and (9.13).

The aggregatel VG ({ala € S}) > k is essentially the aggregatd/M ({b|b € S'} >
0, whereS’ is {ay — k,,a,, — k}.

The proofs of the Theorem 9.5 for above aggregates are Istiaigyard.

To contrast with the unfolding approach, consider the foilg example.
Example 9.7. Let P be a program with a single rule:
h— A (9.17)

whereA = COUNT({a : a € {a1,a2,a3,a4}) > 3.

We introduce PB variableg andz for the aggregated and atomh, respectively. The
number of constraints im(y = A) is linear in the size ofS|, according to the formulas
from 9.12 to 9.16 (Note that eaeh is replaced by 1 here). The rule can be encoded by PB

111

constraintz + (1 — y) = 1. Thus, P can be encoded by a PB theory of size linear in the
size of|S].

The unfolded normal program @ would be:

h «— ai,a9,a3 (9.18)
h «— ai,a9,a4 (9.19)
h «— ai,a3,a4 (9.20)
h « as,as,ay. (9.21)

For an aggregat€ OUNT ({a : a € S}) > k, the number of rules in the unfolded normal

program isC"fﬂ, which is in general exponential 1§/ O
MIN

Let A be the aggregat®/IN ({a|a € S}) > k andM be a subset of. M |= A if and only
if the minimal element inV/ is greater than or equal ta
Lety be a PB variable. In addition tg, we introduce PB variables” andz; for each

atoma;. The PB encoding,;(y = A) consists of the following constraints.

xf +x; = z foreachi, 1<i<n (9.22)
zf (ai—k) > (xi—1)-(a; —k), foreachi, 1 <i<n (9.23)
x;, (k—a;) > (x;—1)-(k—a;), foreachi, 1 <i<mn (9.24)
Th-T < 2-(1—y)- Zn: (a; — k) (9.25)
sitsaty = 1 - (9.26)
TH-T > s (9.27)
Zn: x, < (1—s9)-n (9.28)

i=1
i x; > 1—s9 (9.29)

whereT} denotesy"" | z; - (a; — k) andTh denoteSy " (z - (a; — k) + x; (k — a;)).
The idea in the encoding of is that for a set of numberS = {ay, ..., ay, }, the minimal
number inS' is greater than or equal toif and only if

n n

> ai—k)=>lai—kl. (9.30)

i=1 =1

112

Similar to the encoding o§ UM, the first three constraints encofde — k|. T} andT,
are, respectively, the summation @f — k£ and|a; — k| for a;’s whose corresponding PB
variable x; is assigned to bé. The constrain (9.25) ensure that formula (9.30) holds, if
y = 1. Formula (9.30) is not satisfied by a setyif= 0. The constraints (9.26) and (9.27)
encodes the case where the set is empty; the constrain® énhé (9.29) encodes the case
where the set is not empty.

We give the proof of Theorem 9.5 for aggrega@td N ({a|la € S}) > k. For conve-
nience, we re-state the theorem for the aggre@éi® ({a|la € S}) > k.

Theorem 9.6. Let A be the aggregatd/IN ({ala € S}) > k whose domain isS =
{a1,...,a,} and7(y = A) be the PB encoding oft which consists of the PB constraints
from (9.22) to (9.29). Then, we have:

(I) There is a solution ta-(y = A).
() Let A be a solutionta-(y = A). A(y) = 1ifand only if M, = A.
(1) The size ofr(y = A) is linear in|S]|.

Proof.

e The proof of (I).

If 34, a; > k, saya; > k. The assignmenk, where(z1) = A(z]) = 1, A(z]) = 0,
Mzi) = Mzf) = Mzx;) =0foralli # 1, A\(y) = 1, and)(s1) = A(s3) = 0 is a solution.
i) =

If Vi, a; < k. The assignmemnt, whereX(z;) = /\(a:i) = Az; Oforalll <i<n,

Ay) = A(s1) = 0and\(sz) = 1is a solution.

e The proof of (Il).
We show that, for any solutiohto 7(y = A), if \(y) = 1 thenM, = A.

(1) LetA be a solution tar(y = A) where(y) = 1.
(2) A(s1) = A(s2) = 0, due to (9.26).

(3) T — T1 > 0, due to (2) and (9.27).

(4) T — Ty < 0, due to (1) and (9.25).

(5) Ty = T3, due to (3) and (4).

(6) >, x; > 1, dueto (2) and (9.29).

113

(7) M) |= A, due to (5) and (6).
We show that, for any solutiohto 7(y = A), if A(y) = 0 thenmin(M)) < k.

(1) Let\ be a solution ta-(y = A) where\(y) = 0.

(2) There are two cases: (i)\(s1) = 0andA(s2) = 1 and (ii). A(s1) = 1 andA(s2) = 0,
due to (9.26).

(3) A(s1) = 0and\(s2) = 1, which is the Case (i).
(4) >, z; =0, due to (9.28) and (9.29).
(5) M = (0 andM = A, due to (4).
(6) A(s1) = 1and\(s2) = 0, which is the case (ii).
(7) Ty > Ty, due to (9.27).
(8) >oi-,z; > 1, dueto (9.29).
(9) M, |~ A, due to (7) and (8).
¢ (ll1) holds obviously by the encoding. O

Example 9.8. Let A be the aggregat®//N ({a|a € {2,4}) > 3 andy be a PB variable.
Tpb(y = A) contains the following constraints.
o +x] =1, af <, xry > 21,
x3 4 x5 = @, x3 > x, x5 <
Th-T1<12-(1-y), si+sat+y=1 To—-T1 > s,
r1+r3<2-(1—=s2), z1+m22>1-59
whereTy = —z;+x andTy = —z] +x] +235 —, . We use a 9-ary 0-1 tuple to represent
the value assignment to the tugle,, ", 21, 22,75, 5 , y, s1, s2). It can be verified that
m(y = A) has four solutions.\; : (0,0,0,0,0,0,0,0,1), Ag : (0,0,0,1,1,0,1,0,0),
As @ (1,0,1,0,0,0,0,1,0), and A4 : (1,0,1,1,1,0,0,1,0). Among the four solutions,
only A2(y) = 1. Therefore, the only set that satisfidds M), = {4}. O

114

MAX

Let A be the aggregaterathitM AX ({ala € S}) > k andM be a subset of. M |= A if
and only if the maximal element if/ is greater than or equal ta

Lety be a PB variabler,,(y = A) consists of the following constraints.

xf +x; = wx, foreachi, 1 <i<n (9.31)
zf (ai—k) > (xi—1)-(a; — k), foreachi, 1 <i<n (9.32)
x, - (k—a;) > (x;—1)-(k—a;), foreachi, 1 <i<mn (9.33)
N+, >y (9.34)
s1+s2+y = 1 (9.35)
T +T < 2.(1—51)'271: (9.36)
i=1

Zn: z, < (1—s9)-n (9.37)

i=1
z”: x; > 1—s9 (9.38)

whereT; denotesy " | z; - (a; — k + 1) andT3 denotesy " | (x] - (a; — k + 1) +
z; (k—1—a;)).
The idea in the encoding of is that for a set of numbers = {a4, ..., a,, }, the maximal
number inS is greater than or equal toif and only if

n

Z(ai—k+1)>—zn:|ai—k+1|. (9.39)
=1

i=1

The proof of Theorem 9.5 fanathit M AX is similar to that forMIN.

9.5.3 Encoding of global constraints

A global constraint is a constraint that specifies a relatietween a set of variables. One
of the most extensively studied global constraintslis di f f er ent [81], which specifies
that each variable in the variable s€tmust take a value from the domain and different
variables must take distinct values.

LetX = {z1,...,z,} beasetofvariables ad = {d,, . .., d,} be the domain of the
variables. We use atom(z;, d;) to represent that variable; is assigned the valué;. The

global constrainal | di f f er ent (X) can be represented by a c-atotiDiff = (5, C),

115

where the domain of the constraint # = {a(z,d) : = € X,d € D}, andC is the
collection of sets satisfying, for each sein C, (1) for eachi, exactly oneu(z;, d;) is in
w, for somed;, and (2) ifa(x, d) anda(z’, d’") are inm andz # 2/, thend # d'.

LetG =al I di fferent (S,C) andy be a PB variable. We introduce the following

additional PB variables.
e z;; for each atomu(z;, d;).

e s, S;1, ands;o for each variabler;. Intuitively, s, = 1 indicates thate; is not
assigned to any value;; = 1 indicates that; is assigned to exactly one value; and

s;5 = 1 indicates that; is assigned to at least two values.

e t; for each valued;. Intuitively, if ¢; = 1 thend; is not assigned to any variable
(not used) or assigned to one variabletif= 0 thend; is assigned to at least two

variables.

The PB theoryr,,(y = G) consists of the following PB constraints.

Sio+ 8i1+si2=1, foreachi, 1 <i<m (9.40)
Zmij <(1—=s40) n, foreachi, 1 <i<m (9.41)
j=1
inj > 25840, foreachi, 1 <i<m (9.42)
j=1
injgn-(l—sﬂ)—l—sﬂ, foreachi, 1 <i<m (9.43)
j=1
Za:ij > si1, foreachi, 1 <i<m (9.44)
j=1
m
inj <m-(1—t;)+t;, foreachj, 1<j<n (9.45)
i=1
Za:ij >2-(1—t;), foreachyj, 1<j<n (9.46)
i=1
Zsil—i—th >(m+mn)-y (9.47)
i=1 j=1
Zsi1+2tj§(m+n—1)'(1—y)+(m+n)'y (9.48)
i=1 j=1

Theorem 9.7. Let G = AllDiff (S,C) andy be a PB variable. The following statements
hold for the encoding,;(y = G).

116

(I) The PB theoryr,,(y = G) has at least one model.
(1) Let X be a model of,,(y = G). The membership sétl) = A iff A\(y) = 1.
(Ill) The size ofry,(y = G) is linear in|S|.

Proof.

e The proof of (I).

If m > n, we construct an assignmeht whereA(x;;) = 0 forall 1 < i < m and
1 <7 <n;A(sio) =1, A(si1) = A(siz) =0forall 1 <i <m; Ay) =0; andA(t;) =1
forall 1 < j <mn. It can be verified thak is a solution tor (y = G).

If m > n, we construct an assignmektwhere\(z;;) = 1 forall i = j; A(x;;) = 0
foralli # j; A(sio) = 1, A(s;i1 = 1) = 1, and\(s;2) = 0forall 1 < i < m; A(y) = 1;
A(t;) = 1forall 1 < j <mn. Itcan be verified thak is a solution tor (y = G).

e The proof of (II).

Let A be a solution ta,,,(y = G). If A(y) = 1, thenVi. A(s;1) = 1 andVj. A(¢;) = 1,
due to (9.47). Then each variable is assigned to exactly alueyvdue to (9.43) and (9.44),
and each value is assigned to no more than one variable d@etf).(

If A(y) = 0, then3i. A(s;1) = 0 or3j. A(t;) = 0, due to (9.48). If\(s;1) = 0, we have
A(sip) = 1 0or A(s;2) = 1 due to (9.40). If\(s,0) = 1, thenz; is not assigned due to (9.41).
If A(si2) = 1, thenz; is assigned to more than one value due to (9.42)\(1f) = 0, we

haved; is assigned to more than one variable, due to (9.46).

e Obviously, (lll) holds by the encoding. O

Note that the membership setbin this case isM) = {a(z;,d;) € S : A(z45) = 1}.

Clearly, the unfolding approach would be undesirable, abénunfolded normal pro-
gram it would have to list all solutions i6' for the constraintAl[Diff (S, C), which is
exponential in.S|.

The all-different constraint has many applications, f@tamce, to represent the pigeon-
hole problem. A typical encoding of this problem by a normedgram [61] takes expo-
nential time to decide unsatisfiability by an ASP solver. Wiige problem is encoded as
a PB theory, unsatisfiability can be decided in polynomialetiby a PB constraint solver

[11]. Efficiency can be further improved by embedding spemastraint propagators [50].

117

9.6 Conclusion

This chapter extends the work in [49] in two aspects. Firstly extend the loop formula
characterization of answer sets for monotone constraiograms to arbitrary constraint
programs. We show that the loop formulas in our approachiampler than that in [49].
Secondly, we propose the PB encodings for some of the fréiguesed constraints: aggre-
gates and global constraints. Our results provide the m@acempute arbitrary constraint
programs by PB constraint solvers, comparing to the appraad49], which focus on

monotone constraint programs.

118

Chapter 10

Strong equivalence of abstract
constraint programs

10.1 Motivation

A logic program P; is said to beequivalentto a logic programP, under answer set se-
mantics, if P, and P, have the same answer sef3. and P, arestrongly equivalentf for
any programP, P, U P and P, U P are equivalent. Questions regarding whether two logic
programs are strongly equivalent are interesting for aearof reasons. For instance, in
order to see whether a set of rules in a program can alwayspecesl by another one
regardless of the other rules of the program, one shouldkclvbether the two sets of rules
are strongly equivalent. For example, the set of a singkefiuk— p} is strongly equivalent
to the empty set (of rules), therefore it can always be remidv@m any logic program.
However, the seP: {p < ¢, q < p} is equivalent but not strongly equivalent to empty set,
so the pair of rules cannot be eliminated regardless of théegt in the presence qf the
first rule of programP can be used to derive

Lifschitz et. al. [40] propose to use the logic of here-ahere (HT-logic) to charac-
terize the strong equivalence for normal logic programse Ploblem of determining the
strong equivalence of two logic programs can be done by ¢hgdkthe two programs have
the same set of models in HT-logic.

Turner [78] proposes a model-theoretical method to charaet the strong equivalence
between programs. Two programs are strongly equivalemdfanly if they have the same
set of HT-models. For a program, HT-models are exactly n®dékthe program in HT-
logic. So, Turner’s approach is essentially the same aspgpmach of [40].

Lin [41] presents a transformation from logic programs togwsitional theories. By

the transformation, the strong equivalence of logic progas converted to the entailment

119

of theories in classic logic.

For logic programs with constraints, Turner [79] shows tBRtmodels (which is essen-
tially the same as the HT-models proposed in [78]) can be tsetlaracterize the strong
equivalence between weight constraint programs. Liu angZazyhski extend the ap-
proach in [49] to monotone constraint programs. They sh@t/tiko monotone constraint
programs are strongly equivalent if and only if they haveshme set of SE-models.

In this chapter, we further extend Turner’'s approach toteahy constraint programs.
We present two characterizations of strong equivalencerlwfrary constraint programs
under answer set semantics.

In Section 10.2, we define SE-models for abstract const@imgrams and then use
them to characterize strong equivalence. We give anotraeacterization of strong equiva-
lence in Section 10.3, which is simpler than the previous die characterization is based
on the generalization of the concept of program reduct tarattsconstraint programs.

Section 10.4 concludes the work.

10.2 Characterizations of SE under answer set semantics

In this chapter, we consider the logic programs with c-aterhere each rule is of the form
a«— A, ..., Ay (10.2)

whereq is an atom and4,,...A,, are c-atoms. For the programs whose head is an c-atom,
the strong equivalence of two programs can be reduced totthegsequivalence of the

instances of the two programs.

Definition 10.1. Let P and @ be two programs. P strongly equivalento (), denoted
P = Q, if for any programR, AS(P U R) = AS(Q U R), whereAS(P) denote the set

of answer sets of the program.
We define the SE-models of a program.

Definition 10.2. Let P be a program. A pair of setSX,Y) is a SE-modebf P if the
following conditions hold: (1)X C Y; (2)Y = P; (3) Tp°(0,Y) C X, whereTp is the

operator based on conditional satisfaction given in Dédini8.2.

Lemma 10.1. Let P be a program and@” be an answer set adP. (Y,Y’) is the unique

SE-model ofP whose second componentis

Proof. Note that ifY is a answer set aP, then(Y,Y") is an SE-model of°.

120

(1) LetY be an answer set d?.

(2) T (0,Y) =Y, due to (1).

(3) Let(X,Y) be an SE-model oP.
(4) Y C X, due to (2) and (3).

(5) X CY,dueto (3).

(6) X =Y, dueto (4) and (5).

Notation: LetP be a programSE(P) denotes the set of SE-modelsf
Lemma 10.2.Let P andQ be two programs. IFE(P) = SE(Q), thenAS(P) = AS(Q).
Proof. We proveAS(P) C AS(Q). AS(Q) C AS(P) can be proved similarly.
(1) SE(P) = SE(Q).

(2) VY € AS(P), (Y,Y) is the unique SE-model d? whose second component¥s

due to Lemma 10.1.

(3) (v,Y) is the unique SE-model @, whose second componentY¥s due to (1) and
2).

(4) (15°(0,Y),Y) € SE(Q), due to (3), Definition 10.2, and Proposition 8.1.
(5) 75°(0,Y) =Y, due to (3) and (4).

(6) Y € AS(Q), due to (5).

Lemma 10.3. Let P and@ be two programsSE(P U Q) = SE(P) N SE(Q).
Proof. We proof=- part. The other part is similar.
(1) V(X,Y) € SE(PUQ),wehaveX CY,Y | PUQ andT,(0,Y) C X.
@QYEPYEQTXW®Y)CLX, andngO(@,Y) C X, dueto (2).

(3) (X,Y)e SE(P)and(X,Y) € SE(Q).

121

Theorem 10.1. Let P and@ be two programsP =, Q iff SE(P) = SE(Q).
Proof. (<)

(1) SE(P) = SE(Q).

(2) VR, SE(PUR) = SE(QU R), due to (1) and Lemma 10.3.

(3) AS(PUR) = AS(Q U R), due to (2) and Lemma 10.2.

@) P=Q.

(=) We proveSE(P) C SE(Q). SE(Q) C SE(P) can be proved similarly. L&tX,Y")
be an SE-model o but not an SE-model af). We consider two cases.
Case 1Y [~ Q.

(1) (X,Y) € SE(P).
(2) Let R be the program{a | a € Y}
@) Y =T ,(0,Y),i.e.,Y € ST(PUR), due to (1) and (2).
@) Y i Q.
(5) Y ¢ ST(Q U R), due to (4).
(6) A contradiction toP =, Q, due to (3) and (5).
(7) Y = Q, due to (6).
Case 27 (0,Y) £ X.
(1) LetX’ =T (0,Y)\ X.

(2) Let R be the programi{b «— a |a € X' and b € Y}, where(X',Y) = {S | X' C
SCY}.

(3) (X,Y) € SE(P).
(4) X =T ,(0,Y), due to (2) and (3).
(5) T3 (0.Y) Z X

(6) X # Y, dueto (5).

122

(7) Y ¢ ST(P U R), due to (4) and (6).

(8) Y € ST(QUR), due to (1) and (2).

(9) A contradiction toP =, Q, due to (7) and (8).
(10) T5(0,Y) € X

By case 1 and 2, we hav&,Y) € SE(Q). O

10.3 Yet another characterization

The SE-model defined in last section is based on the opé€fatorTo check if a pair of
sets(X,Y) is an SE-model of a program, a derivation process udiags needed. In
this section, we will give a definition of SE-model that is &don thereductof abstract
constraint programs. By the new definition, the derivablecpss is not necessary for the

verification of SE-models.

10.3.1 Reduct of abstract constraint programs and operatof »

Definition 10.3. Let A be a c-atom and/ be an set of atoms. Theductof A, w.r.t. M
denotedA™, is the c-atom(AA!, AM), whereAY = A, andAM = {s|s € Ac,s Eu
A}. Note that ifAM = (), AM is simply written asL..

Definition 10.4. Letr be a rule of the form (10.1) antl be a set of atoms. Theductof r

w.r.t. M, denoted-, is a rule of forma «— A}, ..., AM whereAM is the reduct ofA}.

Definition 10.5. Let P be a program consists of rules of the form 10.1 adde a set of
atoms. Thaeductof P, w.r.t. M denoted byP" is a program consists of the reducts of

the rules inP, whose body does not contain

Definition 10.6. Let P be a program with c-atoms arffla set of atoms. We define the

operator] p.
Tp(S)={a|3re P, s.t.a=hd(r)and S |= bd(r)}. (10.2)
By Definition 10.6, it is easy to show the following proposits.

Proposition 10.1. Let P be a program with c-atoms ard a model ofP. Let R and.S be
sets such thak C S C M. ThenTpu (R) C Tpar(S) C M.

123

Proof. We consider the rule of the form «— A, whereA is a c-atom. The proof can be
extended to rules with conjunctive body.

Ya € Tpu (R), there exists a rule™ of the forma — AM in M, s.t. R = AM. Then
there is a rule- of the forma — Ain P, s.t. R =) A. SinceR C S, we haveS =, A.
ThusS = AM. Soa € Tpa(S).

The proof ofTpa (S) C M is trivial. O

Similarly to the operatof’», we define the sequence
T9(0) =1, TE(0) = Tp(T51(0)).

Theorem 10.2. Let P be a logic program with c-atoms ardd a model ofP. The oper-
ator T» and Tp are defined in Definition 8.2 and Definition 10.6, respectivalVe have
T3 (0, M) = T3, (0).

Proof. We consider the rule of the form < A, where A is a c-atom. The proof can be
extended to rules with conjunctive body.

We show that for anys, T5(0, M) C T%,,
T9(0, M) = T9,,(8) = 0. The inductive hypothesis is for any< k — 1 T5(, M) C
Ti,, (D). Ya € TE(OM), there is aruler : a «— Ain P such thatTy ' (0, M) |=p; A.
Thusa € Tpar (Tl’i‘l(Q),M)). By the inductive hypothesis and Proposition 10.1, we have
TE0. M) C Th,,(0).

The statement that for arty Tl’iM(@) C TE(, M) can be proved in the same way]

() by induction. Base case holds since

10.3.2 SE-models and strong equivalence

We re-define the SE-models of a program as follows.

Definition 10.7. Let P be a program. A pair of setsX,Y) is a SE-modebf P if the
following conditions hold: (L)X CY; (2) Y = P; (3) X = PY.

The only difference between Definition 10.2 and Definition71i@ that the third con-
dition is re-defined using the reduct of prografh By Definitions 10.2, 10.7, and the

Theorem 10.2 the following theorem holds.

Theorem 10.3.Let P and@ be two programsP =, Q iff SE(P) = SE(Q).

124

10.4 Conclusion

The work in this chapter is an extension of the previous warkstrong equivalence of
normal programs [78] and monotone constraint programs. [present two character-
izations of strong equivalence of abstract constraint g@og, using SE-models. In one
characterization, SE-models are defined based on the opératand in the other, the
generalized reduct of logic programs. Given a pair of $&fsY), the first characteriza-
tion needs a derivation process to checkXf, Y) is a SE-model and the second does not.

Therefore, the second characterization is simpler thaffirtte

125

Chapter 11

Future work: Integrating global
constraints to ASP

11.1 Introduction

Global constraints [57] have been developed by researchéle field of constraint sat-

isfaction problems (CSP). A global constraint is a constrain a non-fixed number of

variables which specifies the values that these variabledeaassigned simultaneously.
For example, the global constraiat | di f f er ent (x4, ...,z,) specifies that the values
assigned to the variables, ..., z,, must be pairwise distinct.

Compared to the simple constraints like #, <, global constraints are more expres-
sive since it is more convenient to define one constraintesponding to a set of con-
straints than to define independently each constraint efgbi. Consider the constraint
al l different (zy,...,z,). Itis obviously simpler and clearer than a set of constsaint
{x1 # 22, oy Tp—1 # Tn }.

In addition to expressiveness, global constraints areadsantageous in computation.
Since a global constraint corresponds to a set of consdtdiris possible to deduce some
information from the simultaneous presence of constraifitsus powerful filtering algo-
rithms can be designed by taking into account the set of @ingt as a whole. By fil-
tering algorithm, we mean an algorithm that removes from dbmain of the variables
the values that cannot take part in any solutions of a canstr&uppose we have a CSP
with 3 variablesz;, x2, andxs and the sets of values that they can take{até}, {a,b}
and {a, b, c}, respectively. Consider the constraeit| di f f erent (z;,x2,23). The
filtering algorithm ofal | di f f er ent removes the values andb from the domain of
x3, while the filtering algorithm (for establishing arc-costgincy [17]) for the simple con-

straints{z; # x2, 1 # x3, x2 # w3} cannot delete any values.

126

In the practice of ASP, global constraints are employed fobfem solving in a very
limited way. ASP systems are usually less efficient to sdieefdroblems that can be nat-
urally modeled by global constraints. Let us use the wetiviim pigeon-hole benchmark

problem as an example.

Example 11.1. The ASP encoding is as below.

1{pos(P,H) : hole(H)}1 «— pigeon(P). (11.2)
{pos(P, H) : pigeon(P)}1 « hole(H). (11.2)

The first rule specifies that each pigeon has to be placed atlgxme hole. The second
rule states that each hole can only be occupied by at mostigaem

Consider the case where the number of pigeonsdad the number of holes is — 1.
After the first pigeon chooses a hole, the second one may thkéearom the remaining
n — 1 holes, then the third from the — 2 holes, ... The DPLL search must go through all
of then x n — 1 x ... x 2 assignments of holes to pigeons before it finds out there is no
solution.

Using the global constrairdl | di f f er ent , the problem can be encoded by only
one constraint specifying that each pigeon takes one arydomel hole. The filtering algo-
rithm specifically designed foal | di f f er ent [68] can find out there is no solution in

polynomial time. O

The effectiveness of global constraints for problem sgwimotivates us to incorporate
them in ASP. Thanks to the formalism of logic programs witktedict constraints [53, 77],
the theoretical foundation to integrate ASP with global staaints is ready. Essentially,
constraints of all sorts, whenever they can be specified lynaath and a set of admissible
solutions, can be embedded into a logic program.

This chapter is a preliminary study on the integration ofbglloconstraints to ASP. In
the next section, we provide motivating experiments thatgare the efficiency of global
constraints to that of ASP programs in problem solving. lotlea 11.3, we give a property
of global constraints which may be useful in the further gtod the computations and

properties of logic programs with global constraints.

127

11.2 Motivating experiments
11.2.1 The goal

In the study of constraint programming, many filtering altfons for global constraints
have been implemented. A well-known constraint prograngnsiystem with these imple-
mentations is th&l CSTUS PROLOG (or simply,SI CSTUS) system. It is a PROLOG
programming system featured with a libracgnstraint logic programming on finite do-
mains (CLP(fd)) where a number of global constraints and their correspanditering
algorithms are ready to use.

The goal of this section is to show the efficiency of the CLP({fdSI CSTUS as a
promising candidate for the computation of global constgai We experiment on three
widely used global constrainesl | di ff erent , curmul ati ve , andsort . For each
global constraint, we compare the performance of $h€STUS encoding and the ASP
encoding on randomly generated instances. The CLP(fd)dimg® are run by the system
SI CSTUS and the ASP encodings are run by the state-of-the-art ASRISOLASP .

All of the experiments are run on Scientific Linux releasewith 3GHz CPU and 1GB
RAM. The cutoff time is set to 600 seconds. The instancesatatsolved in the cutoff
time are called “solvable”, otherwise “unsolvable”. Theuks are shown in Figures 11.1,
11.2, and 11.3. In the figures, the running time of the undévanstances are plotted as
600 seconds. A summary of the experimental results is regart Table 11.1, where the

“Execution Time “ is the average running time in seconds ier $olvable instances.

11.2.2 Theal | di f f er ent constraint

Theal | di fferent (oral | _di sti cnt) constraint is probably the most studied global
constraint in constraint programming. It constrains thieiea taken by a set of variables to
be pairwise different. This constraint is used in a lot ofl kearld problems like rostering

or resource allocation. It is quite useful to express that tiings cannot be at the same

place at the same moment. An efficient filtering algorithmrigposed in [68].

Definition 11.1. [69] Let X = {1, x9, ..., x,} be a set of variables antd be the domain

of the variables, respectively. Tla | di f f er ent constraint i X, D, C'), where

128

The problem

The typical benchmark for the application of takel di f f er ent constraint is the pigeon-
hole problem. It is to place: pigeons inton holes satisfying that each pigeon has a hole

and one hole is occupied by more than one pigeon.

Sl CSTUSencoding

In SI CSTUS, theal | _di sti cnt constraint is described as of the foerthl _di sti cnt
(+Variables), whereVariables is a list of domain variables. Each variable is constrained
to take a value that is uniqgue among the variables.

Let the set of pigeons arl,...,m} and the set of hole$l,...,n}. We model the
pigeon-hole problem by the followingl CSTUS program.

place([Py, ..., Pyl,n) : — (11.4)
domain([Py, ..., Pn),1,n), (11.5)
al | disticnt ([P,..., Pnl), (11.6)
labeling([), [P, ..., Pn)). (11.7)

The formula (11.5) specifies the possible assignment oftogdeggeons. The formula (11.6)
constrains that each pigeon gets a hole and no more two @Eggetrthe same hole. The
last formula starts the search for an assignment of holebe@igeons that satisfies the

constraint.

CLASPencoding

We use the program in Example 11.1.

Experimental results

The solvable instances where the number of pigeons is anth#ia the number of holes
can be done in a fraction of a second by bGIPASP andSI CSTUS . Our tests focus on
the hard instances, where the number of pigeons is greaetiie number of holes by one.
We generate instances that the number of pigeons is from 8.tdr'the results show that
SI CSTUS solve all of them in almost no time, whifeL ASP solves them rather slowly. For
the instances where the number of pigeons is greater tha@GLI&SP even cannot solve
them butSI CSTUS can solve them instantly (Figure 11.1).

129

11.2.3 Thecunul at i ve constraint

An important application area of ASP is in solving NP-harthestuling problems. The
cunul at i ve constraint developed in constraint programming is for spakblems [6].
The cunul at i ve constraint matches directly the single resource scheglyimblem,
where we are given a collection of tasks, such that each tasissociated with atart
time adurationwhich is the amount of time that it takes to complete; argigghtwhich
is the amount of resources that it takes up while it executesaddition, we are given a
natural numbet which is the total amount of available resources that carhbeesl by the
different tasks. Theumul at i ve constraint states that, at any instarf the schedule,
the summation of the amount of resources of the tasks thaapvdoes not exceed the limit

1. Afiltering algorithm is detailed in [5]

Definition 11.2. [57] Let T' = {¢4,...,t,, } be a set of tasks. Eachis associated with 3
variables: s; representing the start time of which is in a rangeD, d; representing the
duration oft;, andh; representing the amount of resources needed during theteeof
t;. Letl be a natural number.

Thecunul at i ve constraint is the constrai)X, D, C'), where
o X ={s1,...,8n}.
e D is the range of possible start time.

* C={(a1, ...,an) | vil<i<mn, Z{j | a;<aj<a;+d;—1} hj < l}'
The Problem

We study the scheduling problem as follows. Iét= {t¢4,...,t,} be a set of tasks where
eacht; is associated with a ternary tuple;, d;, h;). Let! andu be natural numbers repre-
senting the limit of the resources and time, respectivelye §oal is to find a schedule of

the tasks that guarantees every task be finished beforeutime

SI CSTUSencoding

In SI CSTUSthe description of theunul at i ve constraint is the followingcurul at i ve
(+Tasks), whereTasks is a list of tasks. Each task is represented by a tewh(S;, D;, E;, H;, T;)
with S; being the start time]; the non-negative duratiorfy; the end time H; the non-
negative resource consumption, dfidthe task identifier. All fields are domain variables

with bounded domains, or integers.

130

Let n be the number of tasks amdhe resources limit and:

Hy = { ()HZ if S; =Jj< S; + D;;
otherwise.

The constraint holds if:

1. For every task, S; + D; = E;, and

2. Forallinstantg, Hy; + ... + H,; < L.

We model the problem by thel CSTUS program.

schedule(Ss,Es) : — (11.8)
Ss = [S1, ..., Snl, (11.9)
Es = [E1, ..., E,], (11.10)
Tasks = [T1(S1,d1, E1,h,1), ..., (11.11)

TTL(Sn7 dn7 Eﬂ7 hnu n)]?

domain(Ss, 1,u), (11.12)
domain(E's,1,u), (11.13)
curmul ati ve (Tasks, [limit(l)]), (11.14)
labeling([], Vars). (11.15)

The formulas (11.9) and (11.10) specify the sets of staresimnd end times, respec-
tively. The formula (11.11) gives the set of tasks. The fdam{11.13) and (11.14) specify
the domains of the start times and end times, respectivélg.fdrmula (11.14) enforces the
currul at i ve constraint. The formula (11.15) starts tBeCSTUS system to search for

an assignment of's that satisfies the constraint.

131

CLASPencoding

We model the problem by the followinQLASP program.

Wstart(I,T) : time(T)}1 :— task(I,D,H) (11.16)
use(I,T,H) :— start(I,T),task(I,D,H) (11.17)
use(I,T,H) :— start(l,T1),task(I,D,H),T1 <T,

T<T1+D (11.18)
use(T,R) :— R =sumluse(I,T,H):
task(I,D,H) = H] (11.19)
end(I,T) :— task(I,D,H),start(I,T1),
T=T1+D (11.20)
:— wuse(T,R),R > L (11.21)

:— task(I,D,H),end(I,T),T >u (11.22)

The formula (11.16) enumerates all possible assignmeritseaftart time of tas{ to
timeT'. The formulas (11.17) and (11.18) define the use of resolmgadask at an instant.
The formula (11.19) defines the end time of a task. The form(dd.21) and (11.22)
guarantee that the resources used at any instant cannoyteddahe limit and each task is

finished in the given time.

Experimental results

We randomly generate 100 instances half of them are satisfidiere exists a schedule)
and the other half are unsatisfiable (i.e. no schedule giatisthe constraint exists). For
the satisfiable instances, we set the limits of the resoués 15; the numbers of tasks
are 8, 10,11, 12, and 13 and time limits are 80, 100, 110, 180180, respectively. For
each setting, we randomly generate 10 instances whereskshave distinct durations and
heights. For the unsatisfiable instances, we set the linmgsgurces to be 15 and the height
of each task to be 14. By this setting, no tasks can overlapthéfe set total durations of
the tasks greater than the time limit.

The experimental results show that for most of the solvab#ancesSI CSTUS is
faster thanCLASP by several orders of magnitude except for two instances. riLimeber
of unsolvable instances I8l CSTUS is much less than that b@LASP (Figure 11.2). Ac-
tually, we found that when the number of tasks is greater flZBICL ASP cannot solve the

instances any more b& CSTUS can still solve them in fraction of a second.

132

11.2.4 Thesort constraint

Thesort constraint is proposed in [7]: “A sortedness constraintregp that am-tuple
(y1,.--,yn) IS equal to then-tuple obtained by sorting in increasing order the terms of
anothern-tuple (z1,...,x,).” The best filtering algorithm has been the one proposed in
[55].

Definition 11.3. Let{ay, ..., a,, } be a set of numbersy = {z,,,...,z,, } be a set of vari-
ables andD = {1, ...,n} be the domain of the variables. Thert constraint(X, D, C)

is the constraint where
C={(di,....dy) | Vi # j1<14,j <n, d; <djwheneveri < j}.
The problem

We model the problem of sorting a given set of numh&rs= {ay,...,a,} in increasing
order bySI CSTUS andCLASP . Note that we suppose the numbersXirare distinct.

Sl CSTUSencoding

The sort constraint inSI CSTUS is specified as follows:sorti ng (+X,+P,+Y),
whereX = [Xy,.., X,], P = [P,...,P,], andY = [Y1,...,Y,] are lists of domain vari-

ables. The constraint holds if the following are true:
1. Y isin ascending order,
2. Pis a permutation ofl..n|, and
3. foranyiinl,...n, X; =Yp,.

The problem can be modeled by the program below.

sort(P) :— (11.23)
X =lay,...,an], (11.24)
Y = [Yo,.... Y], (11.25)
P=[P,.., P, (11.26)
domain(P,1,n), (11.27)
domain(Y,1,u), (11.28)
sorting (X,PY), (11.29)
labeling([], P). (11.30)

133

The formula (11.24) givesy, the set of numbers to sort. The formulas (11.25) and
(11.26) specify that” is the sorted sequence of the numbers &rnd the positions of each
number inX, respectively. Then the constraisbr t is enforced in formula (11.29) and

the formula (11.30) starts the search for the assignmerteetaariables inP.

CLASPencoding

We model the sorting problem as follows.

H{place(X,Y) : position(Y)}1 : — number(X). (11.31)
Hplace(X,Y) : number(X)}1 : — position(Y). (11.32)
: — place(X1, Y1), place(Xs,Y3), (11.33)

X1 > X0, Y7 <YYo,

The predicateplace(X,Y) represents that the numbéf is the Yth number in the
ordered sequence. The first two formulas state that, in thered sequence, each number
has a place and there is a number at each place. The last foguatantees the ordered

sequence be increasing.

Experimental results

In our experiments, we generate a series of sets of numbd#rsl@idifferent sizes: 20, 30,
40, 50, 60, 70, and from 72 to 75. We randomly generated 1G@etmch size. We run all
of the 100 instances usir§) CSTUS andCLASP programs, respectivel\sl CSTUS solve

all of the instances using almost no time RWASP need considerable time when the size
of the set is greater than 70. Actuallgl. ASP cannot sort the set if its size is beyond 80,

while SI CSTUS still can sort it in a fraction of a second (Figure 11.3).

11.3 A property of global constraints

We present a property of global constraints, calleddtmpactnessf local power sets. As
an application of this property, we show that the propertkesait easier to construct the
dependency graph of a logic program with global constraings that of logic programs
with c-atoms in general case. Recall that the dependeng@hggindispensable to the

formulation of loop formulas.

134

11.3.1 Global constraints as c-atoms

In this section, we give the representation of global camsts as c-atoms. The concept
of conditional satisfaction and answer sets of logic progavith c-atoms are naturally
extended to logic programs with global constraints.

The domainof a variablex, denotedD(x), is a finite set of elements that can be as-
signed toz. For a set of variables(, we denote the union of their domains by X) =
Uzex D(z).

A (global) constraint is a tripléX, D, C'), whereX = {x1, ..., z,, } is a set of variables;
D = D(X) is the union of the domains of variables ¥y, C' is a subset of the Cartesian
product of the domains of the variables ¥, i.e.,C C D(x1) x D(z2) X ... X D(zp).

A tuple (dy, ...,d,,) € C'is called asolutionto C. Equivalently, we say that a solution
(di,...,dn,) € C'is an assignment of the valdg to the variabler;, forall 1 < i < m, and
that this assignment satisfi€s If C' = (), we say that it is inconsistent.

Let G = (X, D,C) be a global constraint. Theeatom representatioof G, denoted
A(G) = (A(G)q, A(G).) is a c-atom as follows.

o A(G)q = {zi(d;) | xz; € X, dj € D(x;)}. Intuitively, A, consists of all possible

assignments of the variables.

o A(G). = {{z1(di1),-.sszm(dimn)} | (din,...,dim) € C}, thatis, A. consists of all

solutions ofC.

Since the global constraixt is usually clear in a context, we may writ§G), A(G)4, and

A(G). asA, Ay, and A, respectively.

Example 11.2.Let G = (X, D,C) be a global constraint, whet® = {z;,z2}, D =
{1,2}, andC = {(1,2),(2,1)}. Note thatG is actuallyal | di f f erent (x;,z2). Then

the c-atom representation 6fis the c-atom
A= ({z1(1),21(2), 22(1),22(2)}, {{21 (1), 22(2)}, {21(2), 22 (1) }}).
O

In the sequel, when we talk about a global constraint, we tefthe c-atom represen-

tation of the constraint if not stated otherwise.

11.3.2 Compactness of local power sets

We present a property of global constraints, calledatimpactnessf local power sets.

135

Given a global constraint = (X, D, C') and its c-atoms representatieh the sets of
solutions inA, are all of the same size, i.e. for &) andS; such thatS; € A. andS; € A,

we have|S;| = |S;| = | X|. This fact leads to the following proposition.

Proposition 11.1. Let A be a global constraint an® C A; andS C A, If R € A,
S e A.andR # S, thenR ¢ SandS ¢ R.

Theorem 11.1.Let A be a global constraint. The local power set (LPS) repreientaf

A, A* is a c-atom such that
o A% = Ay, and
o A'={(5,5)|S €A}

Proof. The theorem can be proved by contraposition. Suppésé’) is a local power set
of A, whereB # T'. By Proposition 11.1, we havB ¢ T'. This contradicts tha{B, T') is

a local power set ofl. O

Theorem 11.1 shows that, for a global constradnteach LPS ofd* contains only one
solution in A.. Thus, we call this property as tllempactnessf LPS (orcompactnegsof
global constraints. We may writg5, S) simply asS. ThenA* is exactly the same a4,
ie., A" = (Ag, Ac).

Example 11.3. Consider thal | di f f er ent constraint4 in Example 11.2, which is

A= ({z1(1), 21(2), 22 (1), 22(2) }, {21 (1), 22(2)}, {21(2), 22(1)}}). (11.34)

The LPS representation of is

A" = ({21 (1), 21(2), 22(1), 22 ()}, { ({21 (1), 22(2)}, {21 (1), 22(2)}),
{21(2), 22(1)}, {21(2), 22D })}). (11.35)

For simplicity’s sake A* can be written as, i.e.
A* = ({21(1),21(2), 22(1), 22(2)}, {z1 (1), 22(2)}, {=1(2),22(1)}}) (11.36)
]

11.3.3 Discussion

We take the answer set semantics based on conditionalbssitisf (c.f. Section 8.1) as the

semantics for logic programs with global constraints.

136

Dependency graph

The concept of dependency graph is indispensable to thataefiof loop formulas, which
have been used to characterize the semantics and compuesiver sets for logic pro-
grams.

In Chapter 9, we define the dependency graph for logic prognaith c-atoms for the
formulation of loop formulas. In the definition, atoms in ttlemain of the head of a rule
depend on atoms that are in the first component of the locaépset (LPS) representation
of each c-atom in the body of the rule. Therefore, to constitue dependency graph, one
has to compute the LPS representation of each c-atom in thedidhe rules. For a c-atom
A, the time complexity of the algorithm to compute the LPS espntation ofl is O(|A.|?)
[84].

If a c-atom is a global constraint, the computation of LPSeepntation is not needed,
due to the compactness of global constraints (since the ep@sentation of the c-atom is

essentially the same as itself).

Example 11.4. Consider the progran® which consists of the rule
a+— A, B (11.37)

whereA is the constraint in Example 11.2 aftlis the c-atom({a, b}, {{a},{a,b}}). TO
construct the dependency graph, we do not need to computePtBeepresentation od.
The LPS representation @ is ({a, b}, {{({a},{a,b})}. Therefore the dependency graph
Gp = (V, E) where

o V={a,b,xi(1),22(2),22(1),22(2)}, and

o E= {(CL, CL), ((1, 1‘1(1)), (CL, T1 (2))7 (CL, 132(1))7 (CL, x2(2))}

Transformation to normal programs

The unfolding approach has been used for the study of contiquseand properties of logic
programs with c-atoms in the literature [20, 21]. In [87], gige an approach to unfold
a logic program with c-atoms to a normal logic program. In éipproach, three steps are
needed to unfold c-atoms in rule bodies, where the last tejgssire essentially to compute
the first components of the local power sets of the c-atomsglebal constraints, the last
two steps are not needed anymore, due to the compactnesdbaf gbnstraints. This makes

the unfolding simpler.

137

Example 11.5. Let P be the program{a <— A}, where A is theal | di f f er ent con-
straint in Example 11.2. It can be verified that the unfoldifig?, denoted/(P), is

Time(seconds)

Time(seconds)

a «— x1(1),22(2),not z1(2),not xo(1) (11.38)
a «— x1(2),22(1),not z1(1),n0t x2(2) (11.39)
U

Pigeon-hole Problem
1000 T T

T T T T T
clasp ——
sicstus —8—

100

10 |

01

B
B
B

0.01 = =

& & &
5 6 7 8 9 10 11 12 13 14
Number of Pigeons

Figure 11.1: Pigeon-hole Problem

Scheduling

T T T
/ clasp
sicstus

10 20 30 40 50 60 70 80 90
Instance Id

Figure 11.2: Scheduling

138

Time(seconds)

0.01

Sorting

clasp| ——
sicstus| —8—

10 20

30 40 50 60
Instance Id

70

Figure 11.3: Sorting

80

90 100

Benchmarksl Number of Instances Solved Instances Execution Time
SI CSTUS | CLASP | SI CSTUS | CLASP
Pigeon-hole 10 10 8 0.01 135.64
Scheduling 100 93 73 1.35 40.75
Sorting 100 100 89 0.01 22.29

Table 11.1: Summar$l CSTUS andCLASP

11.4 Summary and future work

This chapter is a preliminary study on the integration ofbgloconstraints to ASP. We
present the experiments that demonstrate the efficienciobibconstraints and their des-
ignated filtering algorithms. Then, we show that global ¢rists possess a property which
makes it more convenient to study the computation and ptiegenf logic programs with
global constraints than c-atoms in the general case.

Further investigations on language design and computatiemneeded for the imple-
mentation of logic programs with global constraints.

Regarding the language, a problem of interest is the syrfttheduilt-in predicates in
ASP language to represent the global constraints and mioelegal world problems.

For the computation, it is desirable to build a system thatiemthe filtering algo-
rithms for global constraints and the search procedurerewar sets. To implement such
a system, the following issues have to be explored: intenastetween the filtering algo-

rithms and the main search procedure; constraint propagatnvolving global constraint

139

and other constraints; and related data structures andtaigs.

140

Chapter 12

Conclusion

Weight constraint, aggregate and abstract constraintranag are recent extensions to logic
programs. We study the properties and computations of themgrams. For properties
we focus on loop formulas, since loop formulas are both aattiarization of a semantics
and key part of an approach to computing answer set of pragrdfor computation, we
improve the existing methods for weight constraint progsaand propose an approach to
computing the aggregate programs under answer set sesantic

Specifically, the main contributions of the thesis are th¥ang. For weight con-
straint programs, we present a formulation of loop formdased on the level mapping
characterization of stable model semantics. In the fortiariano new atoms are needed
thus avoid the extra search space brought by them. We stedgftbctiveness of a con-
straint propagation scheme, lookahead and observe thaofoe programs, lookahead is
totally a waste and reduces the performance of ASP solvasedon this finding, we in-
troduce an adaptive lookahead mechanism which invokesteedd dynamically upon the
information collected during the search. Adaptive lookathexploits the pruning power of
lookahead while avoiding the unnecessary overhead cayséd b

For aggregate programs, we introduce loop formulas basdbeolevel mapping char-
acterization of answer set semantics. The formulationtasbe procedure to compute the
local power sets of the aggregates, which takes expondintiaiin the size of the aggregate.
We show that aggregate programs can be translated to weaighktraint programs, so that
the answer sets of the aggregate programs are exactly thle stedels of the translated
weight constraint programs. Thus, the answer sets of agtgggrograms can be com-
puted using the state-of-the-art solver implemented ferabmputation of stable models
for weight constraint programs.

For abstract constraint programs, we define loop formulapriograms with arbitrary

141

constraints. We also characterize the strong equivalehabstract constraint programs.
For the future work, we believe that the integration of globanstraints to ASP is an
encouraging topic. This integration will make ASP more eiifee for problem modeling
and substantially more efficient for computation of ansvegs sAs a preliminary study in
this direction, we provide motivating experiments. Manguiss in the integration present

interesting questions for future research.

142

Bibliography

[1] D. Armi, W. Faber, and G. lelpa. Aggregate functions isjdnctive logic program-
ming: Semantics, complexity, and implementation in DL\ Aroc. IJCAI'03 pages
847-852, 20083.

[2] Y. Babovich. Cmodels. http://www.cs.utexas.edu/adag/cmodels.html, 2002.

[3] F. Bacchus. Exploring the computational tradeoff of mogasoning and less search-
ing. InProc. SAT'02pages 7-13, 2002.

[4] M. Balduccini, M. Gelfond, R. Watson, and M. Nogueira. ETUSA-advisor: A case
study in answer set planning. Rroc. LPNMR-01pages 439-442, 2001.

[5] N. Beldiceanu and M. Carlsson. A new multi-resource clatives constraint with
negative heights. IRroc. CP'02 pages 63—79, 2002.

[6] N. Beldiceanu and E. Contejean. Introducing global ¢@msts in chip. Journal of
Mathematical and Computer Modeling0(12):97-123, 1994.

[7] N. Bleuzen-Guernalec and A. Colmerauer. Narrowingneblock of sortings in @n
logn). In Proc. CP’97 pages 2-16, 1997.

[8] J. E. Borrett, E. P. Tsang, and N. R. Walsh. Adaptive aanst satisfaction: The
quickest first principle. TR CSM-256, University of Essek995.

[9] P. Cabalar. Partial functions and equality in answer @egramming. InProc.
ICLP’08, pages 392-406, 2008.

[10] F. Calimeri, W. Faber, N. Leone, and S. Perri. Declamtind computational proper-
ties of logic programs with aggregates. Rroc. IJCAI'05 pages 406—411, 2005.

[11] D. Chai and A. Kuehlmann. A fast pseudo-boolean comgtsolver. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits agdt&ns24(3):305-317,
2005.

[12] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where th#yréard problems are.
In Proc. IJCAI'9], pages 331-337, 1991.

[13] K. L. Clark. Negation as failureLogics and Databasepages 293-322, 1978.
[14] The First ASP System Competition. http://www.aspasags.uni-potsdam.de/.
[15] J. Culberson. http://web.cs.ualberta.ca/joe/dnfgmdex.html.

[16] M. Davis, G. Logemann, and D. Loveland. A machine pragfar theorem proving.
Communications of the ACNB(7):394—-397, 1962.

[17] R. Dechter.Constraint ProcessingMorgan Kaufmann, 2003.

[18] M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate wellinded and stable se-
mantics for logic programs with aggregates.Piroc. ICLP’01, pages 212-226, 2001.

143

[19] H. E. Dixon and M. L. Ginsberg. Inference methods for aymo-boolean satisfiability
solver. InProc. AAAI'02 pages 635—-641, 2002.

[20] I. Elkabani, E. Pontelli, and T. C. Son. Smodels with Cam its applications: a
simple and effective approach to aggregates in ASRPrae. ICLP’04 pages 73-89,
2004.

[21] I. Elkabani, E. Pontelli, and T. C. Sofimodels” — a system for computing answer
sets of logic programs with aggregates.Piroc. LPNMR’'05 pages 427-431, 2005.

[22] E. Erdem.Theory and Applications of Answer Set ProgrammiRgD thesis, Univer-
sity of Texas, 2002.

[23] E. Erdem and V. Lifschitz. Tight logic programsTheory and Practice of Logic
Programming 3(4):499-518, 2003.

[24] E. Erdem, F. Lin, and T. Schaub, editoRroceedings of LPNMR’'0%pringer, 2009.

[25] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregatalisjunctive logic pro-
grams. InProc. JELIA'04 pages 200-212, 2004.

[26] F. Fages. Consistency of Clark’s completion and eristeof stable modelslournal
of Methods of Logic in Computer Sciende51-60, 1994.

[27] P. Ferraris. Answer sets for propositional theoriesPtoc. LPNMR’05 pages 119—
131, 2005.

[28] P. Ferraris and V. Lifschitz. Weight constraints astedsexpressions.Theory and
Practice of Logic Programming:45—74, 2005.

[29] J. Freemanimprovements to propositional satisfiability search algjons PhD the-
sis, University of Pennsylvania, 1995.

[30] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T.h&8ab, and S. Thiele.
http://potassco.sourceforge.net/.

[31] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-drivesveer set solveclasp
Progress report. IRroc. LPNMR’09 pages 509-514, 2009.

[32] M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schautad M. Truszczyhski.
The first answer set programming system competitionPioc. LPNMR’07 pages
1-17, 2007.

[33] M. Gelfond and V. Lifschitz. The stable model semanfimslogic programming. In
Proc. 5th ICLR pages 1070-1080, 1988.

[34] E. Ginuchiglia, M. Maratea, and A. Tacchella. (in)efigeness of look-ahead tech-
niques in a modern sat solver. Rroc. CP’03 pages 842-846, 2003.

[35] M. Heule, M. Dufour, and J. van Zwieten. Marey:implementing additional reason-
ing into an efficient look-ahead sat solver.Rroc. SAT'04 pages 145-159, 2004.

[36] X. Jia, J. You, and L. Yuan. Adding domain dependent Kieoge to answer set
programs for planning. IRroc. ICLP’04 pages 400-415, 2004.

[37] E. Lamma, P. Mello, and M. Milano. An incremental consigy algorithm for adap-
tive constraint satisfaction. MR DEIS-LIA-97-002, University of Bolognh997.

[38] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, &rf, and F. Scarcello. The
DLV system for knowledge representation and reasori@M Transactions on Com-
putational Logi¢ 7(3):1-57, 2006.

[39] C. M. Li and Anbulagan. Look-ahead versus look-backdatisfiability problems. In
Proc. CP'97, pages 341-355, 1997.

144

[40] V. Lifschitz, D. Pearce, and A. Valverde. Strongly edléent logic programsACM
Transactions on Computational Logic,2(¢rages 526-541, 2001.

[41] F. Lin. Reducing strong equivalence of logic prograrosentailment in classical
propositional logic. IrProc. KR'02 pages 170-176, 2002.

[42] F. Lin and Y. Wang. Answer set programming with functonin Proc. ICLP’08
pages 454-465, 2008.

[43] F. Lin and Y. Zhao. ASSAT: Computing answer sets of adogiogram by SAT
solvers. Artificial Intelligence 157(1-2):115-137, 2004.

[44] G. Liu. Level mapping induced loop formulas for weighdnstraint and aggregate
programs. InProc. LPNMR'09 pages 444-449, 2009.

[45] G. Liuand J. You. On the effectiveness of looking aheasgdarch for answer sets. In
Proc. LPNMR’07 pages 303-308, 2007.

[46] G. Liuand J. You. Lparse programs revisited: semardins representation of aggre-
gates. InProc. ICLP’08 pages 347-361, 2008.

[47] G. Liu and Jia-Huai You. Adaptive lookahead for answetr @omputation. IrProc.
ICTAI'07, pages 230-237, 2007.

[48] L. Liu, E. Pontelli, T. C. Son, and M. Truszczyhski. Liogorograms with abstract
constraint atoms: The role of computations.Piroc. ICLP’07, pages 286-301, 2007.

[49] L. Liu and M. Truszczyhski. Properties and applicasaf programs with monotone
and convex constraintslournal of Artificial Intelligence Researcfi:299-334, 2006.

[50] A. Lopez-Ortiz, C. Quimper, J. Tromp, and P. van Beek.aétfand simple algorithm
for bounds consistency of the alldifferent constraint.Phoc. IJCAI'03 pages 245—
250, 2003.

[51] V. Marek, I. Niemela, and M. Truszczyhski. Logic pragns with monotone abstract
constraint atomsTheory and Practice of Logic Programming(2):167—-199, 2007.

[52] V. Marek and M. Truszczynhski. Stable models and arriadiéve logic programming
paradigm. In K.R. Apt et al., editoihe Logic Programming Paradigm: A 25-Year
Perspectivepages 375-398. Springer, 1999.

[53] V. Marek and M. Truszczyhski. Logic programs with abst constraint atoms. In
Proc. AAAI ‘04 pages 86-91, 2004.

[54] V. W. Marek and J. B. Remmel. Set constraints in logicgsaanming. InProc.
LPNMR’04 pages 167-179, 2004.

[55] K. Mehlhorn and S. Thiel. Faster algorithms for bourmhsistency of the sortedness
and the alldifferent constraint. IRroc. CP’0Q pages 306—319, 2000.

[56] V. S. Mellarkod, M. Gelfond, and Y. Zhang. Integratingsaver set programming and
constraint logic programmingAnnals of Mathematics and Artificial Integlligence
53(1-4):251-287, 2008.

[57] M. Milano, editor. Constraints and Integer Programming Combinetapter Global
Constraints and Filtering Algorithms. Kluwer, 2005.

[58] D. Mitchell, B. Selman, and H. Levesque. Hard and easjributions of sat problems.
In Proc. of AAAI'92 pages 459-465, 1992.

[59] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and QalM. Chaff: Engineer-
ing an efficient sat solver. IRroc. DAC'0Q pages 530-535, 2000.

145

[60] G. Namasivayam and M. Truszczyhski. Amodels system with limited lookahead
computation. IrProc. LPNMR’07 pages 278-284, 2007.

[61] I. Niemela. Logic programs with stable model sematis a constraint programming
paradigm.Annals of Math. and Artificial Intelligenc@5(3-4):241-273, 1999.

[62] I. Niemela, P. Simons, and T. Soininen. Stable modelasgics of weight constraint
rules. InProc. LPNMR '99 pages 317-331, 1999.

[63] N. Pelov. Semantics of Logic Programs with AggregateBhD thesis, Ketholieke
Universiteit Leuven, 2004.

[64] N. Pelov, M. Denecker, and M. Bruynooghe. Translatibraggregate programs to
normal logic programs. IRroc. ASP’03pages 29-42, 2003.

[65] N. Pelov, M. Denecker, and M. Bruynooghe. Partial stahbdels for logic programs
with aggregates. IRroc. LPNMR’04 pages 207-219, 2004.

[66] N. Pelov, M. Denecker, and M. Bruynooghe. Well-foundedl stable semantics of
logic programs with aggregate¥heory and Practice of Logic Programming 301—
353, 2007.

[67] N. Pelov and M. Truszczyhski. Semantics of disjunetprograms with monotone
aggregates an operator-based approackrde. LPNMR '04 pages 327-334, 2004.

[68] J. C. Régin. A filtering algorithm for constraints offfdirence in csps. IrProc.
AAAI'94, pages 362—-367, 1994.

[69] F. Rossi, P. Van Beek, and T. Walsh, editd#sand Book of Constraint Programming
chapter Global Constraints. Elsevier, 2006.

[70] H. E. Sakkout, M. G. Wallace, and E. B. Richards. An ins&of adaptive constraint
propagation. IrProc. CP’96 pages 164-178, 1996.

[71] Y. Shen and J. You. A generalized gelfond-lifschitastormation for logic programs
with abstract constraints. IIRroc. AAAI'O7 pages 483-488, 2007.

[72] J. Silva and K.A. Sakallah. Grasp—a new search alguoriitr satisfiability. InProc.
ICCAD’96, pages 220-227, 1996.

[73] P. Simons. Extending and Implementing the Stable Model SemantRisD thesis,
Helsinki University of Technology, Helsinki, Finland, 200

[74] P. Simons, |. Niemela, and T. Soininen. Extending anglementing the stable model
semanticsAtrtificial Intelligence 138(1-2):181-234, 2002.

[75] T. Soininen and I. Niemela. Developing a declarativke language for applications
in product configuration. liProc. PADL'99 pages 305-319, 1999.

[76] T. C. Son and E. Pontelli. A constructive semantic cbandzation of aggregates in
answer set programmingTheory and Practice of Logic Programming:355-375,
2006.

[77] T. C. Son, E. Pontelli, and P. H. Tu. Answer sets for logiograms with arbitrary
abstract constraint atomsJournal of Artificial Intelligence Researct?9:353—-389,
2007.

[78] H. Turner. Strong equivalence for logic programs anfhdk theories (made easy). In
Proc. LPNMR’01 pages 81-92, 2001.

[79] H. Turner. Strong equivalence made easy: nested esipresand weight constraints.
Theory and Practice of Logic Programmingages 609—622, 2003.

146

[80] A. van Gelder, K. Ross, and J. S. Schlipf. The well-foethidemantics for general
logic programs.Journal of the ACM38(3):620-650, 1991.

[81] W. J. van Hoeve and I. Katriel. Global constraints. InRiassi, P. van Beek, and
T. Walsh, editorsHandbook of Constraint Programminghapter 7. Elsevier, 2006.

[82] G. Wu, J. You, and G. Lin. Quartet based phylogeny retrangon with answer set
programming.lEEE/ACM Transactions on Computational Biology and Bioinfat-
ics, 4(1):139-152, 2007.

[83] J.Youand G. Hou. Arc consistency + unit propagationekithead. IriProc. ICLP’04
pages 314-328, 2004.

[84] J. You and G. Liu. Loop formulas for logic programs wittbdrary constraint atoms.
In Proc. AAAI'08 pages 584-589, 2008.

[85] J. You, G. Liu, L. Yuan, and C. Onuczko. Lookahead in Seisdtompared to local
consistencies in CSP. Froc. of LPNMR’05pages 266—-278, 2005.

[86] J. You, L. Yuan, and M. Zhang. On the equivalence betwaewer sets and models
of completion for nested logic programs. Rmoc. IJCAI'03 pages 859-865, 2003.

[87] J. You, L. Y. Yuan, G. Liu, and Y. Shen. Logic programs hvibstract constraints:
Representation, disjunction and complexities.Phoc. LPNMR’07 pages 228-240,
2007.

[88] H. Zhang. SATO: an efficient propositional prover. Pmoc. CADE’97 pages 272—
275, 1997.

147

