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Abstract

Answer set programming (ASP), namely logic programming under the answer set seman-

tics, provides a promising constraint programming paradigm, due to its simple syntax, high

expressiveness, and effective computational properties.This programming paradigm can

be viewed as a variant of SAT. A main drawback of ASP, like SAT,is that the framework is

primarily formulated for reasoning with individuals, where each is represented by an atom

in the traditional sense. Recently, ASP has been extended toinclude constraints to facili-

tate reasoning with sets of atoms in an explicit manner. These constraints include weight

constraints, aggregates, and abstract constraints. Logicprograms with these constraints are

referred to as weight constraint, aggregate and abstract constraint programs.

We investigate the properties and computations of weight constraint, aggregate, and ab-

stract constraint programs, respectively. For properties, we improve the formulation of loop

formulas for weight constraint and aggregate programs, propose loop formulas for abstract

constraint programs, and characterize strong equivalenceof these programs. For computa-

tions, we refine the existing constraint propagation mechanism in the computation of weight

constraint programs and advocate a new approach to computing aggregate programs.
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Chapter 1

Introduction

1.1 Answer set programming

An intelligent agent must have the ability to acquire knowledge and reason with it. In order

for an artificial intelligence (AI) system to possess these abilities, a computer readable

language for knowledge representation and reasoning (KR) is needed.Logic programming,

which uses logic as the basis for a programming language, hasbeen a powerful tool for KR.

Initially, logic programming focuses on a subset of classical logic, called Horn logic.

A Horn clause is an implication with an atom in the head and a conjunction of atoms in

the body. This allows fast and simple inferences through resolution. But it was quickly

realized that Horn logic was not adequate for common-sense reasoning. The reason is that

Horn logic is monotonic: a conclusion entailed by a body of knowledge stubbornly re-

mains valid no matter what additional knowledge is added, but common-sense reasoning

is nonmonotonic: conclusions made with currently available knowledge may be withdrawn

in the presence of additional knowledge. This led to the development of the field ofnon-

monotonic logic, and several nonmonotonic logics such ascircumscription, default logic,

auto-epistemic logic, andnonmonotonic modal logicswere proposed. The AI journal spe-

cial issue of 1980 (volume 13, number 1 and 2) contained initial articles on some of these

logics.

Theclosed world assumptionin databases was then imported to logic programming to

make it able to perform nonmonotonic reasoning [13]. The basic idea of the closed world

assumption in this context is that a logic program contains all the positive information about

the objects in its domain, and a negative conclusion is drawnif the proof of its positive

counterpart failed. This way of generating negative information is referred to asnegation-

as-failure. An operatornot was introduced to represent the negative information.

Logic programming under theanswer set semantics, coined asanswer set programming
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(ASP), was proposed in late 1980s as an alternative languagefor knowledge representation

and nonmonotonic reasoning. In ASP, a problem is represented by a logic program and the

answer sets(also calledstable models) of the program correspond to the solutions to the

problem. Intuitively, an answer set of a program is a set of atoms that satisfies every rule of

the program and each atom in it has anon-circular justificationby the program.

As an example, consider the 3-coloring problem, which is to color a graph with three

colors: red, blue, and yellow, so that any two nodes connected by an edge have different

colors. A typical logic program in ASP is as follows.

Example 1.1.

col(X, red) ← node(X),not col(X, blue),not col(X, yellow)

col(X, blue) ← node(X),not col(X, red),not col(X, yellow)

col(X, yellow) ← node(X),not col(X, red),not col(X, blue)

← edge(X,Y ), color(C), col(X,C), col(Y,C)

The first rule in Example 1.1 says that a node is colored by red if it is not colored by

blue or yellow. The second and third rules are similar. Theserules together express all of

the possible colorings of the nodes in the graph. The fourth rule guarantees that adjacent

nodes get different colors.

Along with the facts that specify the nodes, edges and colors, such as,node(a), node(b),

node(c), edge(a, b), color(red), color(blue) andcolor(yellow), an answer set of this pro-

gram looks like

{col(a, red), col(b, blue), col(c, yellow), . . .}.

It means that coloring the nodesa, b, c with the colors red, blue, and yellow, respectively,

is a valid solution to the problem.

Some programs may have no answer sets. This means that the corresponding problem

has no solution.

In Example 1.1, the upper case letters are variables. Variables are allowed in imple-

mented ASP systems. But the semantics, properties and computations of a program are

studied only ongroundprograms, which are obtained by instantiating the non-ground pro-

grams with the constants in the underlying language.1 In order to make sure that such a

1Recently, there have been approaches to the computation of programs with variables based on partial or
dynamic grounding [56].
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program is finite, no function symbols are allowed. In the rest of this document, we only

discuss ground programs.

In general, a logic program consists of rules of the form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln (1.1)

where eachli, (0 ≤ i ≤ n) is an atom. Intuitively, a rule of the form (1.1) says thatl0

must be true ifl1, . . . , lm are true andlm+1, . . . , ln can be safely assumed to be false

(negation-as-failure).

It has been proved that all problems inNP can be solved within the paradigm of ASP

[52], i.e. ASP is sufficiently expressive for a wide range of important computational prob-

lems including many combinatorial and optimization problems and constraint satisfaction

problems (CSP).

The previous research on ASP has laid a solid theoretical foundation with a large body

of building block results, e.g., equivalence between programs, programming methodolo-

gies, and relationships to other nonmonotonic formalisms.These results are very useful in

the development of large knowledge bases.

There have been a number of ASP implementations, e.g.SMODELS [74], DLV [38],

CMODELS [2], ASSAT [43], CLASP [30]. The performance of these systems has progressed

rapidly. They have been used in a number of applications suchas planning [22, 36], prod-

uct configuration [75], phylogeny reconstruction in computational biology [82], and wire

routing in computer aided design [22], etc. The latest progress in systems and applications

is reported in [24].

In summary, ASP, as an alternative logic programming paradigm, has become an inter-

esting topic in AI research. It has high expressiveness, solid theoretical foundations, and

plenty of applications and implemented systems.

1.2 Answer set programming with constraints

Initially, ASP supported onlynormal logic programs, i.e., each literal in the rule (1.1) is

either an atom or the negation of an atom. When working towards applications, it has been

observed that normal logic programs are inadequate for manyinteresting domains. They

cannot compactly express many commonly used constraints such as choices over subsets,

cardinality and weight constraints.

In order to represent this type of knowledge, logic programsare extended to include

3



weight constraints[62, 75]. A weight constraint is of the form

l[a1 = w1, . . . , am = wm, not am+1 = wm+1 . . . , not an = wn]u (1.2)

wherea1, ...an are atoms. Atomsa1, ..., am and atoms that are preceded bynot ,not am+1,

..., not an, are calledliterals. They are also calledpositive literalsandnegative literals,

respectively. Thewi, l, andu are real numbers.wi is theweightof the literalai (or not

ai). If a weight is 1, it is usually omitted.l andu are lower and upper bounds respectively.

Either of the bounds can be omitted in which case the missing lower bound is taken to be

−∞ (no constraint on the lower bound) and the missing upper bound∞ (no constraint on

the upper bound).

Intuitively, a weight constraint is satisfied by a set of atoms S, if the summation of the

weights of the literals among{a1, . . . , am} that are inS plus the summation of the weights

of literals among{am+1, . . . , an} that are not inS is in betweenl andu, inclusive. Logic

programs with weight constraints are calledweight constraint programs.

Below are two examples of the use of weight constraint programs.

Example 1.2. [75] Consider the product configuration problem, which can be roughly de-

fined as the problem of producing a configuration of a product as a collection of predefined

components. The input of the problem is aconfiguration model, which describes the com-

ponents that can be included in the configuration, the rules on how they can be combined to

form a working product, and the requirements that specify some properties that the product

should have. The output is aconfigurationwhich is an accurate description of a product

consisting of components that satisfies all of the rules and requirements in the configura-

tion model. The following example demonstrates some typical forms of knowledge in a

configuration model.

A configuration model of a PC could consist of a number of components which could be

different types of key boards, display units, hard disks, CDdrives, floppy drives, extension

cards and so on. It may contain rules such as a PC should have a mass storage which

must be chosen from IDE hard disks, SCSI hard disks and floppy drives, and a PC needs a

keyboard which could be either a Finish or UK layout. The configuration model may also

contain a requirement, which is that no computer may have more than 4 IDE hard disks.

4



The product configuration problem can be encoded as follows.

computer ←

1[idedisk, scsidisk, f loppydisk]1 ← computer

1[finnishKB, ukKB] ← computer

1[idedisk1, . . . , idediskn]1 ← idedisk

0[idedisk1, . . . , idediskn]4 ← computer

whereidedisk1, . . . , idediskn are IDE hard disks to be chosen from.

Example 1.3. The graph coloring program in Example 1.1 can be concisely written as

follows.

1[color(X, red), color(X, blue), color(X, yellow)]1 ← node(X)
← edge(X,Y ), color(C), col(X,C), col(Y,C)

Besides weight constraints, logic programs is also extended to includeaggregates[76].

Aggregates specify, in a nature way, more constraints than weight constraints, such as the

number, the summation, average, maximum, and minimum of theatoms (numbers) in the

set. An aggregate is a constraint on a set of atoms. A set of atoms satisfies an aggregate if

the constraints specified by the aggregate is satisfied by theset. For example, letA be the

aggregateCOUNT ({X | p(X)}) = 2, whereD(X) = {a, b}. A specifies a constraint on

D(A) = {p(a), p(b)}, which can (and can only) be satisfied by the sets whose numberof

atoms inD(A) equals to 2, i.e.,A is satisfied by sets whose intersection withD(A) is the

set{p(a), p(b)}.

The standard aggregates areCOUNT , SUM , AVG, MIN andMAX . The name of an

aggregate naturally denotes the constraint it specifies. The sets that satisfy an aggregate are

called themodelsof the aggregate. Logic programs with aggregates are calledaggregate

programs.

There are a number of proposed semantics for logic programs with aggregates. The

semantics proposed by Faber et al [25] define the answer sets of a logic program with

aggregates as the least models of thereductof the program; Ferraris [27] define the answer

sets of a logic program as the answer sets of a propositional theory translated from the

program. Son et al [76] define answer set as the fixpoint of a monotone operator applied to

the program; The semantics proposed by Denecker [18] and Pelov [63] deal with aggregates
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by using an approximation theory and three-valued logic, building the semantics on a three-

valued immediate consequence operator. It has been shown that the semantics of [76] and

[18, 63] coincide. The set of answer sets admitted by them is asubset of that admitted by

the semantics of [25].

Several answer set programming systems that support aggregates have been developed,

including DLV by Lenoe et al [38],SMODELSA by Elkabani et.al. [21], andCLASP by

Gebser et al [31]. They implemented the semantics proposed by Faber et.al. [25], Son et al

[76], and Ferraris [27], respectively.

The concept ofabstract constraint atoms(or c-atoms) was proposed by Marek, Remmel

and Truszczyński in [53, 54]. Logic programs with c-atoms are calledabstract constraint

programs. Abstract constraint programs provide an elegant theoretical framework for inves-

tigating, in a uniform fashion, various extensions of logicprogramming, including weight

constraint and aggregate programs.

A c-atom is a pair of sets(D,C), whereD is a finite set of atoms andC is a collection

of subsets ofD. It expresses a constraint on the atoms inD such thatC is the collection

of admissible solutions to the constraint. Many kinds of constraints can be represented as

c-atoms. For instance, the aggregateCOUNT ({X|p(X)}) = 1, whereD(X) = {a, b},

can be represented by the c-atom({p(a), p(b)}, {{p(a)}, {p(b)}}).

Intuitively, a c-atomA represents a constraint on models of the program containingA

and the description ofA includes an explicit description of what conditions an interpretation

has to meet in order to satisfyA. Abstract constraint programs subsume weight constraint

and aggregate programs.

The semantics of abstract constraint programs, i.e., the definition of answer sets of

abstract constraint programs, has been a topic of intensiveinterest. Marek and Remmel

[54] proposed the first explicit definition of answer sets forpositive programs (programs

without the operatornot ). An arguable shortcoming in this proposal is that unintuitive

answer sets (e.g. non-minimal answer sets) can be derived insome cases and it does not

coincide with some well-agreed semantics for aggregates [18, 25, 27, 67, 76].

Marek and Truszczyński [53] revisited the semantics of abstract constraint programs by

focusing on programs withmonotoneconstraints. A c-atomA is monotoneif, for any two

sets of atomsI andI ′ such thatI ⊆ I ′, we have that wheneverI satisfiesA, I ′ satisfies

A. The semantics is extended to deal withconvex constraints[49]. A c-atom isconvexif,

for any three sets of atomsI, W , andJ such thatI ⊆ W ⊆ J , we have that whenever

bothI andJ satisfyA, W satisfiesA. Programs with convex constraints can be encoded as
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programs with monotone programs, as pointed out in [49].

The main advantage of focusing on monotone and convex c-atoms lies in that mono-

tonicity provides a relative simple way to define answer setsand some results on monotone

c-atoms can be easily extended to convex c-atoms. But many important constraints cannot

be expressed directly by monotone c-atoms. Consider the aggregateA = MIN({X|p(X)}) >

2, whereD(X) = {1, 2, 3}. The aggregate says thatA is satisfied by sets of atomsM of

the formp(X), where the minimal number of the intersection ofD(X) and the set of ar-

guments ofp is greater than 2. Obviously,A is not monotone, because for interpretations

I = {p(3)} andI ′ = {p(3), p(1)}, we haveI ⊆ I ′ andI satisfiesA, butI ′ does not satisfy

A.

Son et al [77] investigate the semantics of logic programs with arbitrary c-atoms, i.e.,

the c-atoms in a program could be nonmonotone as well as monotone. They introduce the

concept ofconditional satisfaction. Based on this concept, a fixpoint semantics for abstract

constraint programs is developed. The semantics seems moreintuitive than that proposed

in [54].

Liu et al [48] introduce several notions ofcomputations. They propose to use there-

sultsof the computations as the different definitions of answer sets for abstract constraint

programs. They give the relationships among these different computations and among the

corresponding definitions of answer sets. The semantics based on computations are gener-

alizations of semantics previously proposed in [49, 53, 77].

You et al [87] propose an unfolding approach to study the semantics of abstract con-

straint programs. In the approach, an abstract constraint program is transformed to a nor-

mal logic program and the answer sets of the abstract constraint program are defined as the

answer sets of the translated normal program. The semanticsdefined by this approach coin-

cides with the semantics based on conditional satisfactionin [77]. The unfolding approach

can also be used to study properties of abstract constraint programs. It makes it possible to

characterize the properties of abstract constraint programs, using the known properties of

the unfolded normal logic programs. This approach also leads to a definition of answer sets

of abstract constraint programs with disjunctive head.

Shen and You introduce a compact representation of c-atoms [71]. Unlike the com-

monly used power set form representation of c-atoms, the newapproach represents a c-atom

by a pair of sets, one being the prefix of the other. In many cases, the new representation

results in a substantial reduction of the size from its powerset representation. Based on

this representation, the Gelfond-Lifschitz transformation [33] is generalized to define an-
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swer sets for abstract constraint programs. This definitionis proved to coincide with the

semantics proposed in [77].

Several properties of logic programs with constraints havebeen studied. The definition

of loop formulas for a program is one of the most important properties. There are two

reasons for the adoption of loop formulas. One is that loop formulas can be regarded as a

characterization of semantics. It is known that every stable model of a program is a sup-

ported model of the program [13], but the converse is not truein general. This is because an

atom in a supported model may be circularly justified, i.e., justified by itself. Loop formu-

las can capture the circular justification of atoms. Different semantics have different loop

formulas. Another is that loop formulas are the key part of the loop formula approachto

answer set computation [43, 49]. In the approach answer setsof a program are computed in

the following way: firstly, computing thesupported models(models of thecompletion[13])

of the given program; then filtering out the supported modelsthat do not satisfy the loop for-

mulas. Finding efficient methods for constructing loop formulas has been of much research

interest. We study loop formulas for aggregate and abstractconstraint programs.

Strong equivalence is another property of interest. Two programs are said to beequiv-

alent if they have the same set of answer sets. The notion ofstrong equivalenceis pro-

posed since the notion of equivalence is inadequate for someapplications such as program

optimization, where changes made on a program are often restricted within a part of the

program.

Two programs are said to bestrongly equivalentif after adding any other program to

each of them the resulting programs are still equivalent. Lifschitz et al [40] propose to use

the logicHere-and-Thereto characterize strong equivalence between programs. Lin [41]

shows that the notion of strong equivalence of logic programs can be reduced to the en-

tailment of classic propositional logic theories. Turner [79] uses model-theoretic means to

characterize strong equivalence: two programs are strongly equivalent if they have the same

set ofstrong equivalent models. Liu and Truszczyński [49] extend the characterizations of

strong equivalence to logic programs with monotone c-atoms. We give characterizations of

strong equivalence for logic programs with arbitrary c-atoms.

A number of systems have been implemented to support abstract constraint programs.

ASP-CLP [20], developed by Elkabani and his colleagues, integratesthe answer set solver

SMODELS with the constraint solverECLiPSe . But it does not guarantee the minimal-

ity of answer sets and the cost of communication betweenSMODELS andECLiPSe is

significant. SystemSMODELSA [21], developed by the same group addresses the above
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problems. InSMODELSA , an aggregate program is transformed to a normal logic program,

thenSMODELS is applied to compute the answer sets for the normal logic program. The

systemDLV [38] supports aggregate programs but does not allow aggregates to appear in the

heads of the rules. We propose an approach to compute aggregate programs and implement

it in the systemALPARSE .

Liu and Truszczyński [49] extend the loop formula approachproposed in [43] to logic

programs with monotone and convex c-atoms. They show that a logic program with con-

vex c-atoms can be transformed to a pseudo-Boolean theory sothat the answer sets of the

program can be computed as the models of the pseudo-Boolean theory, using off-the-shelf

pseudo-Boolean constraint solvers. This approach is implemented inPbmodels .

1.3 Contributions

We study three main classes of logic programs with constraints: weight constraint, aggre-

gate, and abstract constraint programs. Our work focuses ontwo aspects of these programs:

the properties and computations. On properties, we study the loop formulas and strong

equivalence. On computations, we improve the existing methods for weight constraint pro-

grams and propose a new method for aggregate programs.

In more detail, the main contributions of this thesis are as follows.

• For weight constraint programs, we

– present the level mapping characterization of stable models and propose loop

formulas for weight constraint programs based on the characterization (the main

result is reported in [44]);

– revise the constraint propagation mechanismlookaheadto adaptive lookahead

thus make the computation of weight constraint programs more efficient for

SMODELS (the work and subsets of experiments were presented in [45] and

[47]). The approach is also applicable to SAT solvers that employ lookahead.

• For aggregate programs, we

– present the level mapping characterization of answer sets and propose the loop

formulas (this work is published in [44]);

– propose an approach to computing the aggregate programs as weight constraint

programs (the work is reported in [46]);
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• For abstract constraint programs, we

– propose loop formulas (the work is published in [84]);

– give two characterizations of strong equivalence.

For future work, we propose the integration ofglobal constraintsto ASP, as a promising

direction. We provide the experiments that show the efficiency of using global constraints

for problem solving. We then present a property of global constrains which is useful for the

study of the properties and computations of programs with global constraints.

1.4 Outline of the thesis

The first chapter is an introduction. Chapter 2 to Chapter 10 report main work of the thesis,

which consists of three parts, dealing with weight constraint programs, aggregate programs

and abstract constraint programs, respectively. Each partstarts with a chapter of background

knowledge, followed by the chapters where our work is presented.

Part one begins with Chapter 2 that introduces the semanticsof weight constraint pro-

grams. Then Chapter 3 is the study of level mapping and loop formulas for weight con-

straint programs. In Chapter 4, we improve the computation of weight constraint programs

by proposing the adaptive lookahead mechanism.

In Part two, we introduce the semantics of aggregate programs based on conditional sat-

isfaction and then briefly survey other semantics in Chapter5. We take the semantics based

on conditional satisfaction as the semantics of aggregate programs. The loop formulas for

aggregate programs are put forward in Chapter 6, and an approach to the computation of

aggregate programs are proposed in Chapter 7.

In Part three, we present various semantics of abstract constraint programs in Chap-

ter 8. Similar to Part two, we choose the semantics based on conditional satisfaction as

the semantics of abstract constraint programs. We propose loop formulas for abstract con-

straint programs in Chapter 9. The characterizations of thestrong equivalence of abstract

constraint programs are presented in Chapter 10.

Chapter 11 discusses the future work and we conclude the thesis in Chapter 12.
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Chapter 2

Stable model semantics

We first introduce the stable model semantics for normal logic programs, followed by the

stable model semantics for weight constraint programs.

2.1 Normal logic programs

A (normal) logic programis a set of rules of the form

h← a1, . . . , am,not b1, . . . , not bn (2.1)

whereh, a1, . . . , am, b1, . . . , bn areatoms. The atomh is called theheadof the rule. The

set{a1, ...am, ...,not b1, ...,not bn} is called thebodyof the rule. The head of a rule may

be empty, in which case the rule serves as a constraint specifying that the body must be

false in any intended model. The body of a rule may be empty in which case we may drop

the symbol ’←’. Such a rule serves as a fact. We call the expressionnot b a not-atom.

Atoms and not-atoms are both referred to asliterals. When necessary, we refer to atoms and

not-atoms aspositive literalsandnegative literals, respectively. We useAt(P ) to denote

the set of the atoms that appear in the programP . A program is called apositive program

if every literal in it is positive.

In answer set programming, variables are allowed to appear in programs. In this docu-

ment, we assume that each rule of the form (2.1) in a program has been replaced by all its

ground instances, so that all the atoms in the resulting program are ground. Such a program

is usually called aground program. To ensure that ground programs are finite, function

symbols are not allowed in answer set programming.1

A set of atoms (or an interpretation)M satisfiesan atoma, denotedM |= a, if a ∈M ;

M satisfiesnot a, denotedM 6|= a, if a /∈ M . M satisfies a ruler if it satisfies the head

1Recently, some languages re-introduce functions [9, 42].
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of r whenever it satisfies the body.M is called amodelof a programP if it satisfies every

rule in P .

Let P be a program andM a set of atoms. Thereductof P with respect toM , denoted

PM , is a program obtained by

1. deleting each rule inP that has a negative literalnot x in its body such thatx ∈M ,

and

2. deleting all negative literals in the remaining rules.

The reduct of a program is a positive program. It is known thatfor a positive programP ,

there is an unique minimal model. This model, denoted byCl(P ), is called thedeductive

closureof P .

Definition 2.1. Let P be a logic program. A set of atomsM is astable modelof P if and

only if M = Cl(PM ).

Example 2.1. Let P1 be a program.

p ← not q, r

q ← not p

r ← not s

s ← not p

The setM1 = {r, p} is a stable model ofP because the reductPM1

1 of P1 with respect

to M1 is

p ← r

r ←

andM1 = Cl(PM
1 ). Similarly, M2 = {q, s} is also a stable model ofP1.

But M3 = {p, s} is not a stable model ofP1 because the reductPM3

1 is {p ← r} and

its deductive closure is∅.

A program may have no stable model. The following is an example.

Example 2.2. Consider the programP2.

f ′ ← not f ′, f

f
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Assume thatP2 has a stable modelS. Thenf ∈ S. If f ′ ∈ S, then the reduct is{f ←}

and its deductive closure does not includef ′. If f ′ 6∈ S, then the reduct is

f ′ ← f

f

whose deductive closure containsf ′. Thus,P2 does not have a stable model.

For a programP , if there is no negative literal in it, then for any set of atoms M , PM

is identical toP andCl(P ) is the unique stable model ofP .

The definition of stable model captures the key properties ofstable models:

• Stable models arefounded: each atom in a stable model has a justification in terms

of the program, i.e., it is derivable from the reduct of the program with respect to the

model.

• Stable models are minimal: no proper subset of a stable modelis a stable model.

The requirement of foundedness guarantees that a stable model of a program is a subset

of atoms appearing in the head of the rules in the program. Consider a programP = {a←

a}, the possible stable models are∅ and{a}. But {a} is not minimal, i.e.,{a} is not the

deductive closure ofP {a}. (The deductive closure ofP {a} is ∅.) Therefore, the only stable

model ofP is ∅.

2.2 Weight constraint programs

A weight constraintis of the form

l [a1 = wa1
, ..., am = wam ,not b1 = wb1 , ...,not bn = wbn

]u (2.2)

where eachai, bj is an atom, and each atom and not-atom is associated with aweight.

Atoms and not-atoms are also calledliterals (the latter may be emphasized asnegative

literals). The numbersl andu are thelower andupper bounds, respectively. The weights

and bounds are real numbers.2 A weight may be omitted when it is 1. Either of the bounds

may be omitted in which case the missing lower bound is taken to be−∞ and the missing

upper bound by∞.

Given a weight constraintW of the form (2.2), we define:

2In the current implementations only integer weights are supported.
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• The literal set ofW , denotedlit(W ), is the set of literals occurring inW , i.e.,

lit(W ) = {a1, ..., am,not b1, ...,not bn}

• The atom set ofW , denotedAt(W ), is the set of atoms occurring inW , i.e.,At(W ) =

{a : a ∈ lit(W ) or not a ∈ lit(W )}.

A set of atomsM satisfies a weight constraintW of the form (2.2), denotedM |= W ,

if (and only if) l ≤ w(W,M) ≤ u, where

w(W,M) =
∑

ai∈M

wai
+

∑

bi 6∈M

wbi
(2.3)

M satisfies a set of weight constraintsΠ if M |= W for everyW ∈ Π.

Example 2.3. Let W = 2[a = 8, b = 2,not c = 4]11 be a weight constraint andM1 =

{a, b, c} andM2 = {a} be two sets. We havew(W,M1) = 10 andw(W,M2) = 12,

thereforeM1 |= W andM2 6|= W .

A weight constraintW is monotoneif for any two setsR and S, if R |= W and

R ⊆ S, thenS |= W ; otherwise,W is nonmonotone. There are some special classes of

nonmonotone weight constraints.W is antimonotoneif for any R andS, S |= W and

R ⊆ S imply R |= W ; W is convexif for any R andS such thatR ⊆ S, if S |= W and

R |= W , then for anyI such thatR ⊆ I ⊆ S, we haveI |= W .

A weight constraint that contains neither negative literals nor negative weights is of

interest. We call thempositiveweight constraints. Positive weight constraints are con-

vex; Positive weight constraints without the upper bound are monotone; Positive weight

constraints without the lower bound are antimonotone.

When a weight constraint contains negative literals or negative weights, it may be non-

monotone and doesn’t fall into any of the special classes. For example, letW = 1 [a =

1,not b = 1] 2 be a weight constraint.W is nonmonotone, but neither antimonotone nor

convex, as shown below: considerM1 = ∅, M2 = {b}, andM3 = {a, b}, and it’s clear

M1 |= W , M2 6|= W , andM3 |= W .

As pointed out by [74], negative weights and negative literals are closely related in that

they can replace each other and that one is inessential when the other is available.

Negative weights can be eliminated by applying the following transformation: Given a

weight constraintW of the form (2.2), ifwai
< 0, then replaceai = wai

with not ai =

|wai
| and increase the lower bound tol+ |wai

| and the upper bound tou+ |wai
|; if wbi

< 0,

then replacenot bi = wbi
with bi = |wbi

| and increase the lower bound tol + |wbi
| and

the upper bound tou + |wbi
|.
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For instance, the weight constraint

−1 [a1 = −1, a2 = 2,not b1 = 1,not b2 = −2] 1 (2.4)

can be transformed to

2 [not a1 = 1, a2 = 2,not b1 = 1, b2 = 2] 4 (2.5)

The transformation above is equivalence-preserving, in the sense that for any weight

constraintW and set of atomsM , M |= W iff M |= W ′, whereW ′ is obtained fromW

by applying the transformation.

We assume that weights are non-negative if not said otherwise.

Thereductof a weight constraintW of the form (2.2) w.r.t. a set of atomsM , denoted

by W M , is the constraint

lM [a1 = wa1
, ..., an = wan ] (2.6)

wherelM = l −
∑

bi 6∈M wbi
.

Example 2.4. Let W = 3[a1 = 1,not b1 = 2,not b2 = 3]5 be a weight constraint and

S1 = {b1} andS2 = {b2} be two sets. ThenW S1 = 0[a1 = 1] andW S2 = 1[a1 = 1].

The reduct of a weight constraint is monotone, since it is positive and has no upper

bound.

A weight constraint programis a finite set of rules of the form

W0 ←W1, ...,Wn (2.7)

where eachWi is a weight constraint. In a ruler of the form (2.7),W0 is the head of

r, denotedhd(r); the sets of atoms inW0 is the headset ofr, denotedhset(r); the set

{W1, ...,Wn} is the body ofr, denotedbd(r).

Given a programP , we define

• The atom set ofP , denotedAt(P ), as the set of atoms appearing inP .

• The head set ofP , denotedhset(P ), as the union of the headsets of all rules inP ,

i.e.,hset(P ) = ∪r∈P hset(r) .
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A weight constraint of the form1 [l = 1] 1 will be simply written asl. A weight

constraint program, where each weight constraint is of the form 1 [l = 1] 1 is essentially a

normal program.

Let P be a weight constraint program andM a set of atoms. The reductPM of P , w.r.t.

M , is defined by

PM = {p← W M
1 , . . . ,W M

n |W0 ←W1, . . . Wn ∈ P,

p ∈ lit(W0) ∩M and w(Wi,M) ≤ u for all i ≥ 1} (2.8)

For a ruler ∈ P , we call its counterpart inPM the reduct ofr, denotedrM .

Definition 2.2. [74] Let P be a weight constraint program andM ⊆ At(P ). M is astable

modelof P iff the following two conditions hold:

1. M |= P ,

2. M is the deductive closure ofPM .

Example 2.5. Let P be a program consisting of the following rules.

1[a = 1, b = 1]2 ← 0[a = 1, b = 1,not c = 1]2 (2.9)

1[a = 1, b = 1]2 ← 0[a = 1,not b = 1]1 (2.10)

Let M = {a, b}. PM is the program

a← 0[a = 1] (2.11)

b← 0[a = 1] (2.12)

We haveM |= P andM is the deductive closure ofPM . So,M is a stable model of

P .

Note thatPM is a weight constraint program where all constraints are monotone and

the head of each rule is an atom. Thus its deductive closure can be computed by a fixpoint

construction, using the operatorTP defined in [49] as follows.

Let P be a weight constraint program, where the head of each rule isan atom and the

body contains no negative literals. The operatorTP is defined as:

TP (S) = {h | ∃r ∈ P of the form h← bd(r) and S |= bd(r)}. (2.13)
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The least fixpoint ofTP can be constructed by

T 0
P (∅) = ∅ (2.14)

T i+1
P (∅) = TP (T i

P (∅)) (2.15)

T∞
P (∅) = ∪∞i=0T

i
P (∅) (2.16)

Then, we have the following proposition.

Proposition 2.1. Given a weight constraint programP , a set of atomsM is a stable model

of P iff M |= P andM = T∞
P M (∅).

Given a programP , the least fixpoint ofTP M is the deductive closure ofPM , according

to the definition ofTP . The proof of Proposition 2.1 is straightforward.

We will use the concept ofsupported modellater.

Definition 2.3. Let P be a weight constraint program andM a subset ofAt(P ). M is a

supported model ofP if

• M |= P and

• For any atoma ∈M , there exists a ruler ∈ P such thata ∈ hset(r) andM |= bd(r).

Example 2.6. Let P be the program{a ← 1[b = 1]} andM = {a}. M is a model ofP ,

but not a supported model ofP .

It is easy to show the following proposition.

Proposition 2.2. Let P be a weight constraint program. If a setM ⊆ At(P ) is a stable

model ofP , thenM is a supported model ofP .

The converse of Proposition 2.2 may not be true, i.e., a supported model of a program

may not be a stable model. The following is an example.

Example 2.7. Let P be the program{a ← 1[a = 1]} andM = {a}. M is a supported

model ofP but not a stable model.
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Chapter 3

Level mapping induced loop
formulas for weight constraint
programs

3.1 Motivation

It is known that every stable model of a program is a supportedmodel of the program, but

the converse is not true in general. The reason is that an atomin a supported model may be

circularly justified, i.e., justified by itself. For example, for the programP = {a← a}, the

setM = {a} is a supported model ofP . But M is not a stable model, sincea is justified

by itself.

Loop formulas constitute a propositional theory that specifies the requirement that an

atom must not be circularly justified. For the above example programP = {a ← a}, a

loop formula isa→ ⊥, which preventsa to be in any stable model.

Lin and Zhao [43] propose an approach to the computation of stable models of a normal

program, where stable models are computed by firstly computing supported models of the

program and then usingloop formulasnot only to filter out the models that are not stable

models but also to generate new constraints on the rest of thecomputation to make it more

efficient.

Liu and Truszczyński [49] extend the approach to logic programs with positive weight

constraints. They define loop formulas for such programs. However, to transform an arbi-

trary weight constraint to a positive weight constraint, new propositional atoms are needed

[49, 51]. The extra atoms may exert a heavy toll on SAT solverswhen the number of them

gets too big (for instance, the default setting in the SAT solver SATO allows only a maxi-

mum of 30,000 atoms). In the worst case, each extra atom may double the search space.

In this chapter, we address the question of whether the loop formulas for arbitrary

18



weight constraint programs can be formulated without extraatoms.

The method of level mapping has been used to characterize stable models of normal

logic programs in [23, 26]. We observe that such a characterization is closely related to the

formulation of loop formulas. From the level mapping point of view, a loop formula can be

satisfied by a supported model of a program if an atom in the loop can be derived by the

atoms that are not in the loop and have a strictly lower level.

We present a level mapping characterization of the stable models of weight constraint

programs. The characterization leads to a formulation of loop formulas for arbitrary weight

constraint programs, where no extra atoms are introduced.

The level mapping characterization of stable models is given in Section 3.2. Section 3.3

presents the loop formulas for weight constraint programs.We relate our work to previous

work in Section 3.4 . Section 3.5 contains additional remarks on our approach.

3.2 Level mapping characterization of stable models

Notation: Given a weight constraintW of the form (2.2) and a set of atomsM , we define

• Ma(W ) = {ai ∈M | ai ∈ lit(W )}

• Mb(W ) = {bi ∈M | not bi ∈ lit(W )}.

SinceW is always clear by context, we will simply writeMa andMb.

In general, an atom may appear both positively and negatively. We call such an atom a

dual atom, e.g. atoma is a dual atom in1[a = 1,not a = 2]1. Given a set of atomsM , if

there are no dual atoms in a weight constraintW , thenMa(W ) ∩Mb(W ) = ∅, otherwise,

Ma(W ) ∩Mb(W ) 6= ∅.

Following the notation in [77], for a set of atomsX and a mappingλ from X to positive

integers, we define

H(X) = max({λ(a) | a ∈ X}). (3.1)

For the empty set∅, we definemax(∅) = 0 andmin(∅) =∞.

Given a set of atomsX, a level mappingof X is a functionλ from X to positive

integers.

Definition 3.1. Let W be a weight constraint of the form (2.2),M a set of atoms andλ a

level mapping ofM . Thelevelof W w.r.t. M , denotedL(W,M), is defined as:
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L(W,M) = min({H(Xa) | X ⊆M, and w(W,Xa) ≥ l +
∑

bi∈M\Xa

wbi
}). (3.2)

If there are no dual atoms inW , Mb ∩Xa = ∅. Thus
∑

bi∈M\Xa
wbi

in formula (3.2)

becomes
∑

bi∈M wbi
.

Example 3.1. Let W = 1[a = 1,not a = 1,not b = 1] be a weight constraint,M =

{a} a set, andλ a level mapping ofM . Considering the subset ofM , X = ∅, we have

w(W,Xa) = 2 andl +
∑

bi∈M\Xb
wbi

= 1 + wa = 2. w(W,Xa) ≥ l +
∑

bi∈M\Xb
wbi

.

Similarly, we can check that the other subset ofM , X ′ = M , also satisfies the inequality in

formula (3.2). Thus,L(W,M) = min({H(∅),H({a})}). Note that the level of any atom

is a positive number. Then we haveL(W,M) = 0.

Proposition 3.1. Let W be a weight constraint of the form (2.2),M andX be two sets of

atoms.w(W M ,Xa) ≥ lM iff w(W,Xa) ≥ l +
∑

bi∈M\Xa
wbi

.

Proof. The reasoning is as follows.

(1) w(W,Xa) = w(W M ,Xa) +
∑

bi 6∈Xa
wbi

.

(2) w(W M ,Xa) ≥ l −
∑

bi 6∈M wbi
if and only if w(W,Xa) ≥ l −

∑

bi 6∈M wbi
+

∑

bi 6∈Xa
wbi

, due to (1).

(3) w(W,Xa) ≥ lM if and only if w(W,Xa) ≥ l +
∑

bi∈M\Xa
wbi

, due to (2).

Definition 3.2. Let P be a weight constraint program andM a set of atoms.M is said to be

level mapping justifiedby P if there is a level mappingλ of M , such that for eachb ∈ M ,

there is a ruler ∈ P , such thatb ∈ lit(hd(r)), M |= bd(r), and for eachW ∈ bd(r),

λ(b) > L(W,M).

In this case, we say that the level mappingλ justifiesM byP .

Using Proposition 3.1, we can prove the following theorem.

Theorem 3.1. Let P be a weight constraint program andM a set of atoms.M is a stable

model ofP iff M is a model ofP and level mapping justified byP .

Proof. (⇒)

(1) M is a stable model ofP .
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(2) M = TP M (∅), due to (1).

(3) There is a level mappingλ : M → Z
+: λ(b) = k if b ∈ T k

P M (∅) andb 6∈ T k−1
P M (∅),

due to (2).

(4) λ justifiesM by P , due to (2) and (3).

(5) M is level mapping justified, due to (4).

(⇐)

(1) M |= P andM is level mapping justified.

(2) Suppose thatλ justifiesM by P .

(3) ∀b ∈M , there is a ruler ∈ P s.t. b ∈ lit(hd(r)) andM |= r, due to (1).

(4) There is a rulerM ∈ PM , s.t.b ∈ lit(hd(rM )) andM |= bd(rM ), due to (3).

(5) b ∈ Cl(PM ), due to (4).

(6) M ⊆ Cl(PM).

(7) M |= PM , due to (1).

(8) Cl(PM ) ⊆M , due to (7).

(9) M = Cl(PM), due to (6) and (8).

(10) M is a stable model ofP , due to (1) and (9).

Example 3.2. Let P1 be the program{a ← 1[a = 1,not a = 1,not b = 1]}. Let

W = 1[a = 1,not a = 1,not b = 1], M = {a} andλ be a level mapping ofM . We have

L(W,M) = 0 (cf. Example 3.1). Thereforeλ(a) > L(W,M) andM is level mapping

justified byP1. Thus,M is a stable model ofP1.

3.3 Completion and loop formulas

3.3.1 Completion

To characterize stable models by loop formulas, we need the concept ofcompletionof a

program. The models of the completion of a program are the supported models of the
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program. Following [49], the completion of a weight constraint programP is defined as

a set of formulas built from weight constraints by means of Boolean connectives∧, ∨ and

→1.

Let S = {f1, ..., fn} be a set of weight constraints or formulas built from weight con-

straints. We denote the conjunctionf1 ∧ ... ∧ fn by ∧S and the disjunctionf1 ∨ ... ∨ fn by

∨S.

Let P be a weight constraint program. The completion ofP , denotedComp(P ), con-

sists of the following formulas.

(1). ∧bd(r)→ hd(r), for every ruler ∈ P .

(2). x→ ∨{∧bd(r) | r ∈ P, x ∈ lit(hd(r))}, for every atomx ∈ At(P ).

3.3.2 Loop formulas

The formulation of loop formulas consists of two steps: construction of a dependency graph

and then establishing of a formula for each loop in the graph.

We now define the dependency graph for a weight constraint program.

Let P be a weight constraint program. Thedependency graphof P , denotedGP =

(V,E), is a directed graph, where

• V = At(P ),

• (u, v) is a directed edge fromu to v in E, if there is a rule of the form (2.7) inP ,

such thatu ∈ lit(W0) andv ∈ lit(Wi), for somei (1 ≤ i ≤ n).

Let G = (V,E) be a directed graph. A setL ⊆ V is a loop in G if the subgraph

of G induced byL is strongly connected. Recall that a directed graph is called strongly

connected if there is a path from each vertex in the graph to every other vertex.

For a loop in the dependency graph, the level mapping inducedloop formula is estab-

lished to enforce that the atoms in the loop must be justified by the atoms that are not in

the loop and have a strictly lower level. Considering the definition of L(W,M) (see the

formula (3.2)), the condition requires that an atom in a loopbe derivable by a subsetX of

M which contains no atoms in the loop and satisfies the inequality in formula (3.2).

To enforce the above requirements, we define therestrictionof a weight constraint w.r.t.

a loop.

1The connective¬ is not needed, since no negative weight constraints (not W) are allowed in weight
constraint programs.
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Let W be a weight constraint andL be a set of atoms. Therestriction of W w.r.t. L,

denotedW|L, is a conjunction of weight constraintsWl|L ∧Wu|L, where

• Wl|L is obtained by removing the upper bound, all positive literals that are inL and

their weights fromW ;

• Wu|L is obtained by removing the lower bound fromW .

Definition 3.3. LetP be a weight constraint program andL a loop inGP . Theloop formula

for L, denotedLF (P,L), is defined as

LF (P,L) =
∨

L→
∨

{
∧

W∈bd(r)

W|L | r ∈ P,L ∩ lit(hd(r)) 6= ∅} (3.3)

Let P be a weight constraint program. Theloop completionof P is defined as

LComp(P ) = Comp(P ) ∪ {LF (P,L) | L is a loop in GP } (3.4)

With the definition of loop completion, we can prove

Theorem 3.2. Let P be a weight constraint program andM a set of atoms.M is a stable

model ofP iff M is a model ofLComp(P ).

Proof. We consider rules of the formb ← W , whereb is an atom andW is a weight

constraint of the form (2.2). The proof can be extended straightforwardly to rules with

conjunctive body. In the proof below, we only show the satisfaction of the lower bound

Wl|L; the satisfaction of the upper bound ofWu|L is trivial.

(⇒)

(1) M |= LF (P,L).

(2) ∀b ∈M ∩ L,∃r ∈ P , such thathd(r) ∩ L 6= ∅ andM |= Wl|L, due to (1).

(3) w(Wl|L,M) ≥ l, due to (2).

(4) LetX = Ma \ La.

(5) w(Wl|L,M) =
∑

ai∈Xa
wai

+
∑

bi 6∈M wbi
.

(6)
∑

ai∈Xa
wai

+
∑

bi 6∈M wbi
≥ l, due to (3) and (5).

(7) w(Wl|L,Xa) =
∑

ai∈Xa
wai

+
∑

bi 6∈Xa
wbi

(8) w(Wl|L,Xa) ≥ l −
∑

bi 6∈M wbi
+

∑

bi 6∈Xa
wbi

, due to (6) and (7).
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(9) w(Wl|L,Xa) ≥ l +
∑

M\Xa
wbi

, due to (8).

(10) w(Wl|L,Xa) = w(W,Xa), due to (4).

(10) w(W,Xa) ≥ l +
∑

bi∈M\Xa
wbi

, due to (8) and (9).

(11) The level mappingλ whereλ(b) > max({λ(ai) | ai ∈ X}) justifiesM by P .

(12) M |= Comp(P ).

(13) M |= P , due to (12).

(14) M is a stable model ofP , due to (11) and (13).

(⇐)

(1) M is a stable model ofP .

(2) There is a level mappingλ from Atom(P ) to positive integers satisfying∀b ∈

M,∃r ∈ P , such thatλ(b) > L(W,M), due to (1).

(3) LetL be a loop andb ∈ L. Let X be a set of atoms, such thatX ⊆M \ L, such that

b ∈ lit(hd(r)) andw(W,Xa) ≥ l +
∑

bi∈M\Xa
wbi

.

(4) w(Wl|L,Xa) = w(W,Xa).

(5) w(Wl|L,M) =
∑

ai ∈M \ Lwai
+

∑

bi 6∈M wbi
.

(6) w(Wl|L,Xa) =
∑

ai ∈M \ Lwai
+

∑

bi 6∈Xa
wbi

, due to (3).

(7) w(Wl|L,M) ≥ w(Wl|L,Xa)−
∑

bi∈M\Xa
wbi

, due to (5) and (6).

(8) w(W1|L,M) ≥ w(W,Xa)−
∑

bi∈M\Xa
wbi

, due to (4) and (7).

(9) w(W1|L,M) ≥ l, due to (3) and (8).

(10) M |= LF (P,L), due to (9).

(11) M |= Comp(P ), due to (1).

(12) M |= LComp(P ), due to (10) and (11).
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Example 3.3.Consider the programP1 in Example 3.2. There is a loop inL = {a} in GP1
.

The loop formula isF : a → 1[not a = 1,not b = 1] ∧ [a = 1,not a = 1,not b = 1]

(the second weight constraint is irrelevant, since it has nobounds and can be satisfied by

any set). LetM = {a}. M satisfiesF and is therefore a stable model ofP1.

3.4 Relation to weakly tight programs

A weight constraint program can be translated to a program with nested expressions[28],

such that its stable models are precisely the stable models of the original program.

In [86], the stable models of programs with nested expressions are characterized by the

concept ofweak tightness, that is, given a program with nested expressions, a set of atoms

is a stable model of the program if and only if it is a supportedmodel2 and the program is

weakly tight on it.

It is easy to show that, if a weight constraint program is transformed to a program with

nested expressions using the transformation proposed in [28], the level mapping character-

ization for stable models coincides with that based on weak tightness in [86], as stated in

the following theorem.

Theorem 3.3. Let P be a weight constraint program andM a supported model ofP . M

is level mapping justified byP iff [P ] is weakly tight onM , where[P ] is the program with

nested expressions obtained by the transformation in [28].

3.5 Conclusion

We present a level mapping characterization of stable models. Based on the characteriza-

tion, we define loop formulas for arbitrary weight constraint programs. To construct the

loop formulas, it is not needed to transform arbitrary weight constraints to positive weight

constraints. Therefore, the extra atoms introduced by the transformation are avoided.

2A modelM of a programP is a supported model ofP if for any a ∈ M , there is a rule inP , such that
a ∈ lit(hd(r)) andM |= bd(r).
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Chapter 4

An improvement in computation of
weight constraint programs

4.1 Motivation

Complete SAT/ASP solvers are typically variants of the DPLLsearch algorithm [16], in

which unit propagation, sometimes also calledBoolean constraint propagation(BCP), is

considered a critical component. In the popular answer set solverSMODELS [74], the algo-

rithm that corresponds to BCP is called theexpandfunction.

On top of BCP/expand, other deductive mechanisms have been proposed. One of them

is calledlookahead[29] - before a decision on a choice point is made, for each unassigned

atom, if fixing the atom’s truth value leads to a contradiction, the atom gets the opposite

truth value. In this way, an atom may get a truth value from thetruth value propagation

of already assigned atoms without going through a search process. The above process is

carried out repeatedly until no unassigned atoms can be fixeda truth value in this way.

Lookahead, however, incurs high overhead. In the case of SAT, the full employment of

lookahead has the worst case complexityO(mn2), wherem is the size of the SAT instance

andn the number of distinct atoms in it. For the ASP solverSMODELS , the complexity

becomesO(mn3) [83], due to the computation ofunfounded atomsin theexpandfunction.

The (in)effectiveness of lookahead in SAT solvers was studied in [34]. The main con-

clusion is that lookahead does not pay off when integrated with look-back methods. How-

ever, that is not necessarily the case. As an polynomial timeconstraint propagation scheme,

lookahead has the potential to allow the search to avoid searching subtrees that might take

it exponential time to explore. Thus it is always possible tocontrive examples where the

(time) cost of lookahead pays off because it allows the search to avoid the exponential costs

of searching a particularly expensive subtree. The issue inpractice is how often this hap-
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pens and how much work is saved. In fact, lookahead could be very efficient for some SAT

benchmarks as shown in [3].

The high pruning power, along with non-ignorable overhead,has made lookahead a

somewhat controversial technique. There are two camps of SAT/ASP solvers. In one of

them lookahead is employed during the search [3, 35, 39, 74],and in the other it is not (e.g.

[38, 59, 72, 88]).

In this chapter, on one hand we show that for some extremely hard problem instances,

lookahead can indeed significantly improve the search. On the other hand, we provide

some characterizations and identify the representative benchmarks for which lookahead

downgrades the search efficiency.

Based on these observations, we propose anadaptive lookaheadmechanism and imple-

ment it in the ASP solverSMODELS . The resulting system is calledASMODELS , in which

lookahead is carried out only when it tends to be beneficial todo so. Our experiments show

that, adaptive lookahead adapts well to different search environments it is going through - it

performs like (better than, for most cases)SMODELS with lookahead for the problems that

benefit from the use of lookahead, and without lookahead for those problems for which the

use of lookahead tends to slow down the search.

In the direction of efficiently using lookahead in ASP solvers, it is proposed in [38] and

[60] to use lookahead in a limited manner, performing lookahead on a subset instead of all

of the unassigned atoms. While [60] deals with normal logic programs, [38] focuses on

disjunctive logic programs.

Adaptive lookahead deals with weight constraint programs (normal programs can be

considered as special cases of weight constraint programs). The main difference between

adaptive lookahead and the approach calledlimited lookaheadin [60] is that adaptive looka-

head turns on/off lookahead according to the observed information - the frequencies of

conflicts and dead-ends discovered during the search. Limited lookahead on the other hand

depends on the status of literals i.e. it chooses a literal for lookahead if assuming its value

leads to at least one inference. A more detailed comparison will be given later in this chap-

ter.

The general idea of adaptive constraint propagation is alsoof interest in the constraint

satisfaction problem (CSP) [8, 37, 70]. The approach in [37]incrementally applies arc-

consistency to obtain higher consistency and [8, 70] switchbetween different consistency

algorithms. But none of them deals with the lookahead technique. The relationship be-

tween lookahead and some consistency techniques in CSP has been studied in [85]. Adap-
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tive lookahead is similar to [8] in the sense that they both use some thrashing prediction

mechanism instead of the domain information as in [70].

The section 4.2 presents the answer set computation in system SMODELS . Section 4.3

provides the characterizations by which we identify problems that run much slower with

lookahead. The adaptive lookahead algorithm is given in Section 4.4. Section 4.5 provides

experimental results. The summary and future directions are given in Section 4.6.

4.2 Answer set computation inSMODELS

4.2.1 Weight constraint rules

Following [74], the systemSMODELS deals withbasic constraint ruleswhich include two

type of rules

• A weightrule of the form

h← l[a1 = wa1
, ..., am = wam ,not b1 = wb1 , ...,not bn = wbn

] (4.1)

where the lower boundl and all weights are non-negative.

• A choicerule of the form

{h1, ..., hk} ← a1, ...., am,not b1, ...,not bn. (4.2)

Recall that a weight may be omitted when it is 1. The rule (4.2)is actually the short

hand for

0[h1, ..., hk]← m + n[a1, ..., am,not b1, ...,not bn]. (4.3)

A weight rule captures the lower bound condition for a singleweight constraint. A

choice rule encodes a conditional choice stating that if thebody of the rule is satisfied, then

any subset (including the empty one) can be selected from theset in the head but if the body

is not satisfied, only the empty subset can be chosen.

Any weight constraint program can be translated to a set of basic constraint rules as

pointed out by [74].

The following are short hand notations for frequently used special forms of basic con-

straint rules.

• A cardinality rule h← k[a1, ..., am,not b1, ...,not bn] corresponds to

h← k[a1 = 1, ..., am = 1,not b1 = 1, ...,not bn = 1]. (4.4)
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• A normalrule h← a1, ..., am, ...,not b1, ...,not bn corresponds to

h← m + n[a1, ..., am,not b1, ...,not bn]. (4.5)

• An integrity constraint← a1, ..., am,not b1, ...,not bn corresponds to

f ← n + m + 1[a1, ..., am,not b1, ...,not bn,not f ]. (4.6)

wheref is a new atom used only in integrity constraints. Notice thatif a program

contains such an integrity constraint, then it cannot have astable modelS such that

{a1, ..., an} ⊆ S and{b1, ..., bm} ∩ S = ∅.

4.2.2 Lookahead inSMODELS

Notations: Given a programP , Literal(P ) denotes the set of literals appearing inP . A

conflict in a set of literals is a pair of complement literals, e.g.a andnot a. A set of literals

is consistentif there is no conflict in the set. Apartial assignmentis a consistent subset of

Literal(P ). At(P ) denotes the set of atoms appearing inP (excluding the special atom

⊥). The expressionnot(not a) is identified witha, andnot(a) is not a. Given a set of

literals A, A+ = {a | a ∈ A} andA− = {a | not a ∈ A}. Given a set of atomsS,

we definenot(S) = {not a | a ∈ S}. A choice pointis a point during search where the

branching heuristic picks a literal to assign a truth value to it. In the literature, this is also

referred to asmaking a decision.

Given a programP ,SMODELS begins with an empty partial assignment, and attempts to

extend the current partial assignment possibly to an answerset. Before making a decision,

SMODELS performs constraint propagation. When lookahead is not involved, constraint

propagation is carried out by a function calledexpand(P,A), whereP is a program and

A a partial assignment. When lookahead is employed, constraint propagation is carried out

as follows: for each unassigned atomx, assume a truth value for it, if it leads to a conflict,

thenx gets the opposite truth value. This process continues, repeatedly, until no atom can

be fixed a truth value by lookahead (See Algorithms 1 and 2 for the details).

Algorithm 1 lookahead(P , A)
1: repeat
2: A′ = A
3: A := lookahead once(P,A)
4: until A = A′

5: return A
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Algorithm 2 lookaheadonce(P ,A)
1: B := At(P )−Atoms(A)
2: B := B ∪ not (B)
3: while B 6= ∅ do
4: Take any literalx ∈ B
5: A′ := expand(P,A ∪ {x})
6: B := B −A′

7: if conflict(P ,A′) then
8: return expand(P,A ∪ {not (x)})
9: return A

In lookaheadonce, the functionconflict(P,A) returns true ifA+ ∩A− 6= ∅ and false

otherwise. We say a conflict is detected ifconflict(P,A) returns true.

Truth values are propagated in lookahead by functionexpand(P,A). The function

expand(P,A) consists of two functions:Atleast(P,A) andAtmost(P,A).

Algorithm 3 expand(P , A)
1: repeat
2: A′:= A
3: A := Atleast(P,A)
4: A := A ∪ {not x | x ∈ At(P ) and x 6∈ Atmost(P,A)}
5: until A = A′

6: return A

Below, we follow the description given in [74].

Let P be a set of rules and letA be a set of literals. For a weight ruler ∈ P of the form

(4.1) and a set of literalsB, let

minr(B) =

{

{h} if
∑

ai∈B wai
+

∑

not bi∈B wbi
≥ l;

∅ otherwise

be theinevitable consequenceof B. Similarly, for a choice ruler ∈ P of the form (4.2), let

minr(B) =

{

{h1, ..., hk} ∩B if a1, .., am,not b1, ...,not bn ∈ B;
∅ otherwise.

In addition, for a weight ruler ∈ P let

maxr(B) =

{

{h} if
∑

ai 6∈B− wai
+

∑

not bi 6∈B+ wbi
≥ l;

∅ otherwise

be thepossible consequenceof B. For a choice ruler ∈ P let

maxr(B) =

{

{h1, ..., hk} −B− if a1, ..., am 6∈ B− andb1, ..., bn 6∈ B+;
∅ otherwise.
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Set

f1
P (B) = {a ∈ minr(B) | a ∈ At(P ) and r ∈ P}, (4.7)

f2
P (B) = {not a | a ∈ At(P ) and ∀r ∈ P, a 6∈ maxr(B)}, (4.8)

f3
P (B) = {not x | ∃a ∈ B such that a ∈ maxr(B) (4.9)

for only one rule r ∈ P and a 6∈ maxr(B ∪ {x})}

f4
P (B) = {not x | ∃not a ∈ B and r ∈ P (4.10)

such that a ∈ minr(B ∪ {x})}

and

f5
P (B) =

{

At(P ) if B+ ∩B− 6= ∅;
∅ otherwise.

DefineAtleast(P,A) as the least fixpoint of

f(B) = A ∪B ∪ f1
P (B) ∪ f2

P (B) ∪ f3
P (B) ∪ f4

P (B) ∪ f5
P (B). (4.11)

Example 4.1. Let P be the program

a ← b,not c (4.12)

d ← not a (4.13)

e ← not b (4.14)

We will computeA = Atleast(P, {d}). Sincec does not appear in the head of any rule in

P , not c ∈ A by f2
P . As d ∈ A, not a ∈ A by f3

P . It follows thatnot b ∈ A by f4
P .

Finally, e ∈ A by f1
P . Hence,Atleast(P, {d}) = {not a,not b,not c, d, e}.

Let P be a set of rules andA a set of literals. For a weight ruler ∈ P of the form (4.1)

and a set of atomsB, let

fr(B) =

{

{h} if
∑

ai∈B−A− wai
+

∑

bi 6∈A+ wbi
≥ l;

∅ otherwise.

For a choice ruler ∈ P of the form (4.2), let

fr(B) =

{

{h1, ..., hk} if a1, ..., am ∈ B −A− andb1, ..., bn 6∈ A+;
∅ otherwise.

DefineAtmost(P,A) as the least fix point off(B) = ∪r∈P fr(B)−A−.

Example 4.2. Let P be the program

a← not b (4.15)

c← not a (4.16)

Then,Atmost(P, ∅) = {a, c} butAtmost(P, {not a}) = ∅.
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4.3 Ineffectiveness of lookahead

We give two characterizations under which the use of lookahead is totally or nearly totally

wasted. The first characterization describes the situations where no pruning is ever gener-

ated by lookahead in the course of solving some parts of a problem, which are calledeasy

sub-programs. The second is calledspurious pruning, which describes the situations where

a literal added by lookahead to a partial assignment is immaterial to the rest of the search.

4.3.1 Easy sub-programs

Let P ′ andP be two ground programs,P ′ is called asub-programof P if P ′ ⊆ P . A

programP is said to beeasyif any partial assignment can be extended to an answer set.

Proposition 4.1. Given a programP , if it is an easy program then lookahead is totally

wasted in that, ifexpand(P,A) = A then lookahead(P,A) = A, for any partial assign-

mentA generated during the search.

Proposition 4.1 can be shown as follows. LetP be an easy program, andA a partial

assignment. We have thatexpand(P,A) generates no conflict, since any partial assignment

can be extended to an answer set. The eighth line of Algorithm2 is never executed, thus

lookahead once(P,A) = A. Then we havelookahead(P,A) = A. This is the case where

lookahead does not do anything more than whatexpand(P,A) does.

Examples of easy programs include the pigeon-hole problem where the number of holes

is greater than or equal to the number of pigeons; the graph coloring problem where there

are as many colors as nodes, and in scheduling problems wherethe available resources are

always more than what are required. These problems are easy,in the sense that a solution

can be computed without backtracking, with or without lookahead.

A program for solving a hard problem may contain many nontrivial easy sub-programs

for which lookahead in the search for answer sets is totally wasted. Consider the pigeon-

hole problem, which is to putN pigeons intoM holes so that there is at most one pigeon

in a hole and every pigeon must take some hole. A typical weight constraint encoding is as

below.

1{pos(P,H) : hole(H}1← pigeon(P ). (4.17)

{pos(P,H) : pigeon(P )}1← hole(H). (4.18)

Figure 4.1: A program for the pigeon-hole problem
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The literalspos(P,H) : hole(H) andpos(P,H) : pigeon(P ) in above program are

conditional literals. A conditional literal is of the form

p(X) : q(X) (4.19)

wherep(X) is a literal andq(X) is a domain predicate. If the extension ofq is{q(a1), ..., q(an)},

the conditional literalp(X) : q(X) is semantically equivalent to writingp(a1), ..., p(an).

The first rule specifies that each pigeon has to be placed in exactly one hole. The second

rule states that each hole can only be occupied by at most one pigeon.

The problem can be very hard for DPLL-based solvers whenM = N − δ, for some

small positive integerδ.

To see that lookahead is totally wasted in solving some easy sub-programs, consider any

partial assignmentA in the course of computing an answer set bySMODELS . Here, letA

be such that some pigeons already take holes, e.g., supposepos(pi, hj) ∈ A, for somei and

j. Note that whenlookahead(P,A) is invoked, propagation by theexpand(P,A) function

is completed, i.e.,expand(P,A) = A. Thus, we havenot pos(pi, hk) ∈ A, for any

holehk different fromhj , due to the rule (4.18); andnot pos(pm, hj) ∈ A, for any other

pigeonpm, due to the rule (4.17). Now, supposelookahead(P,A) is called, which calls

expand(P,A∪{pos(p′, h′)}) insidelookahead once(P,A). This is to assumepos(p′, h′)

and attempt to derive a conflict. It can be verified that whenever there are at least three holes

left unoccupied, no conflict can be found by lookahead.

In fact, lookahead begins to detect conflicts only when thereare two holes left. When

one of them is assumed to be taken by one pigeon, all the other pigeons that do not have a

hole will be competing for the only remaining hole (by the definition of expand(P,A), the

first rule makes the unassignedpos(p, h) true for the only remainingh). In other words,

lookahead begins to find conflicts only when most of the holes have been assigned.

In this example, the sub-programs obtained by removing somefacts about pigeons so

that the resulting number of pigeons equals to the number of the holes are typical easy

sub-programs that the search is going through.

Besides the pigeon-hole problem, the clique coloring problem is another typical prob-

lem that has nontrivial easy sub-programs [19]. The pigeon-hole and clique coloring prob-

lems, among others, are known to be exponentially difficult for any conventional resolution-

based provers (including any DPLL implementation).
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4.3.2 Spurious pruning

When lookahead finds a conflict, some search space is pruned. But this pruning may be

immaterial to the rest of the search. Suppose, by an invocation of lookahead, a literal, sayl,

is added to the current partial assignmentA. The addition ofl may not contribute to further

constraint propagation. This can be described by an equation

expand(P,A ∪ {l}) = expand(P,A) ∪ {l}

for any partial assignmentA generated during search, such that the superset returned by

expand(P,A ∪ {l}) is not an answer set. This is what we mean byspurious pruning. In

this case, lookahead is unnecessary since the decision onl can be delayed to any later choice

point.

We can use the number of calls to theexpand(P,A) function during search to mea-

sure the effectiveness of lookahead. SupposeNlh andNnlh denote the numbers of calls to

expand(P,A) in SMODELS with and without lookahead respectively. By the definition of

spurious pruning, we can easily derive its effect as stated in the following proposition.

Proposition 4.2. Given a programP , if all the pruning by lookahead are spurious, then

Nnlh ≤ Nlh.

An example where the search only generates spurious pruningis the Hamiltonian cycle

problem for complete graphs. Given a graph, a Hamiltonian cycle of the graph is a path that

visits each vertex of the graph exactly once and returns to the starting vertex. A complete

graph is a graph in which every pair of distinct vertices is connected by an edge. It is known

that solving the Hamiltonian cycle problem for complete graphs can be very hard for ASP

solvers [43]. A typical program is given in Figure 4.2, whichis taken from [14].

← 2{hc(X,Y ) : edge(X,Y )}, node(Y ). (4.20)

← 2{hc(X,Y ) : uedge(X,Y )}, node(X). (4.21)

reach(U) ← edge(V,U), hc(V,U), reach(V ), not initial(V ). (4.22)

reach(U) ← edge(V,U), hc(V,U), initial(V ). (4.23)

← vertex(V ), not reach(V ). (4.24)

Figure 4.2: A program for the Hamiltonian cycle problem

The rules (4.20), (4.21) ensure that for each node exactly one outgoing and incoming

arc belong to the path. The rules (4.22), (4.23) and (4.24) state that the path forms a cycle
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which visits all nodes and returns to the initial node. The literal hc(u, v) being true in an

answer set meansedge(u, v) (from u to v) belongs to a Hamiltonian cycle.

Consider a complete graph on nodesv1, v2, ..., vn, for some sufficiently largen. Sup-

posev1 is the initial node andA is the current partial assignment, where a pathv1 ← v2 ←

v3 is established. Note thatnot hc(v2, v3) ∈ expand(P,A), due to the rule (4.21). At

this point, in the calllookahead(P,A), expand(P,A∪{hc(v1, v3)}) will derive a conflict,

since there must be avi, i ≥ 4, such that bothhc(v1, vi) andnot hc(v1, vi) are derived due

to rule (4.23) and rule (4.20), respectively. Then,not hc(v1, v3) is added toA. However,

it is clear that the addition ofnot hc(v1, v3) to A is immaterial to the rest of the search,

and choosing any otherhc(vi, vj) is guaranteed to lead to an answer set.

4.4 Adaptive lookahead

4.4.1 Algorithm

Adaptive lookahead is designed to avoid lookahead when its use tends to be ineffective.

Two pieces of information are useful for this purpose. One isthe number of conflicts and

the other is the number ofdead-endsdetected during the search. In theSMODELS system,

conflicts are generated byfailed literals whose addition to the current partial assignment

causes both a literal and its negation to be included in the partial assignment by constraint

propagation. Note that conflicts do not necessarily mean that backtracking is needed since

the negation of the failed literal may be consistent with thecurrent partial assignment. A

dead-end is a point during the search where both a literal andits negation are failed literals.

In this case backtracking is needed.

The idea in adaptive lookahead is that if after some runs, theconflicts have been rare,

it is likely the search is in a space where pruning is insignificant, and likely to remain

so for some time to come, so lookahead is turned off; if dead-ends have been frequently

encountered after some runs, it is likely that the search hasentered into a space where

pruning can be significant, so lookahead is turned on.

SMODELS with adaptive lookahead is calledASMODELS (Algorithm 4). The control

of lookahead is realized by manipulating two scores,look score anddead end counter.

The look score is initialized to be some positive number, then deducted each time looka-

head does not detect any conflict. When it becomes zero, lookahead will be turned off.

The dead end counter is initialized to be zero and increased each time a dead-end is

encountered. Lookahead will be turned on ifdead end counter reaches some thresh-
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old. The counterlook score will be reset after lookahead is turned on and the counter

dead end counter will be reset after lookahead is turned off.

In addition to the on/off control, lookahead will never be employed in the later search

processes if it cannot detect any conflicts after a number of atoms have been assigned. This

is because the search efficiency cannot be improved much by lookahead if the conflicts it

detects only happen in late stages of the search. The lateness is measured by a ratio of

number of assigned literals to all literals in the program. When the ratio gets to a threshold

before any conflict was found by lookahead, lookahead will beshut down permanently

The initial value oflook score, the amounts of increase and decrease, and the thresh-

olds are determined empirically. We set the amount of increase/decrease to 1,look score

to 10, the thresholds ofdead end counter andratio to 1 and 0.8 respectively. Note that

there may not be a setting of these parameters that works universally well for all kinds of

problems. The current setting is effective for the problemsthat we have experimented on

and likely to work well for similar problems.

The correctness of the search algorithm ofSMODELShas been proved in [73].ASMODELS

does not change the search process of the algorithm, hence its correctness is guaranteed.

ASMODELSmakes use of the existing data structures in the implementation of SMODELS .

It has the same computational complexity as theSMODELS algorithm.

4.4.2 Comparison withlimited lookahead

The idea of limited lookahead [60] is that if assuming a literal to be true does not lead to

any inference, lookahead is guaranteed to be wasted. As such, lookahead is performed only

on what are calledpropagating literals, the literals whose assignment leads to at least one

inference.

The existence of some inferences is a condition that appearsto be too weak. It is easier

to incur inferences than a conflict or dead-end, so performing lookahead on propagating

literals may not generate any space pruning. The pigeon-hole problem is an illustrative

example. It is known to be hard when the number of pigeons is greater than the number of

holes by one. Suppose we have 10 pigeons and 9 holes, and the current partial assignment

is A = {pos(1, 1)}. Consider the following rule

⊥← pos(2, 2), pos(2, 3).

Both pos(2, 2) andpos(2, 3) will be identified as a propagating literal. Because they are

unassigned, the head of the rule isfalse; assuming eitherpos(2, 2) or pos(2, 3) to be
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Algorithm 4 ASMODELS (P , A, look, shut down)
1: resetdead end counter
2: A← expand(P,A)
3: if (look) then
4: A← lookahead(P,A)
5: if (no conflict detected by lookahead) then
6: decreaselook score
7: if (look score = 0) then
8: look← false {lookahead is turned off}
9: if (conflict()) then

10: conflict found← true {a conflict is found}
11: if (a dead-end is found) then
12: increasedead end counter
13: if (!look and dead end counter > threshold1 and !shut down) then
14: look← true {lookahead is turned on}
15: resetlook score
16: return false
17: else if(A coversAt(P )) then
18: return true {A+ is a stable model}
19: else
20: ratio← ‖A‖

‖Literal(P )‖
21: if (ratio > threshold2 and !conflict found) then
22: shut down← true {shut down lookahead in later search}
23: choose a new atomx to assign
24: if (ASMODELS (P , A ∪ {x}, look, shut down)) then
25: return true
26: else
27: return ASMODELS (P , A ∪ {not x}, look, shut down)
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true allows us to infer the other is false. But as we have commented in Subsection 4.3.1,

lookahead on pos(2,2) or pos(2,3) does not lead to any conflict because there are more

than two holes left unoccupied. Actually, the same situation arises for anypos(i, j), where

2 ≤ i ≤ 10, 2 ≤ j ≤ 9. It is easy to see that limited lookahead reduces very littleoverhead

in this case.

The above observation is also applicable to the computationof Hamiltonian cycles on

complete graphs (this is due to the rules (4.21) and (4.22) ofthe program given in Subsec-

tion 4.3.2).

Instead of identifying propagating literals, adaptive lookahead uses the information de-

veloped during the search about conflicts and dead-ends. In solving the pigeon-hole in-

stances like the one above, adaptive lookahead will turn offlookahead after some invoca-

tions since it cannot detect any conflicts (w.r.t. the current partial assignmentA). For the

problem of computing Hamiltonian cycles on a complete graph, lookahead is also turned

off since the dead-end is rarely encountered because every choice point during the search

may lead to a solution.

4.5 Experiments

To test how well adaptive lookahead works, we have conducteda series of experiments.

In Subsection 4.5.1, the general performance ofASMODELS is compared withSMODELS

using random logic programs, which are provided as benchmarks for the first ASP solver

contest [14]. The experiments reported in Subsection 4.5.2serve three purposes. First, they

confirm our findings of the problems where the performance is significantly deteriorated

by the use of lookahead; second, they show that lookahead tends to be very effective for

a number of hard problems, especially for the problems that lie in the known regions of

phase transition; third, they suggest that adaptive lookahead behaves as if it “knows” when

to employ lookahead and when not to. Finally in Subsection 4.5.3, we report experimental

results on a deployed application, the USA-Advisor project.

We runSMODELS 2.32 with and without lookahead1, andASMODELS , respectively.

By default,SMODELS runs with lookahead. All of the experiments are run on Red Hat

Linux AS release 4 with 2GHz CPU and 2GB RAM. The cutoff time isset to two hours. In

the tables that report the experimental results, we will usethe symbol “-” to indicate that no

result has been produced within two hours of running time.

1TheSMODELS system can be downloaded fromhttp://www.tcs.hut.fi/Software/smodels/.
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We shall mention that the branching heuristic inSMODELS is related to lookahead. The

heuristic value of each atom is initialized according to howmany rules they are involved in.

During the computation, the heuristic value of an atom is updated according to how many

other atom’s values can be determined by the addition of the atom to the current partial as-

signment. With lookahead,SMODELS computes the heuristic value of every atom each time

lookahead is invoked. Without lookahead, the heuristic value will not be computed until the

atom is chosen to be assigned. So the effectiveness of lookahead should be considered on

both the search procedure and the branching heuristics.

4.5.1 Random logic programs

There are two sets of random logic programs provided in [14].The first is just called

random logic programs(RLPs) and the secondrandom non-tight logic programs(RNLPs).

We runASMODELS andSMODELS on both of them. The results are plotted in Figures 4.4

and 4.5. The graphs show the ratio of the running time ofASMODELS to SMODELS . The

instances are arranged in descending order of this ratio.

For RLPs,ASMODELS outperformsSMODELS on all of them except for three. The

average improvement is35% and maximum is62%.

For RNLPs,ASMODELS is faster thanSMODELS except for five. The average improve-

ment is34% and maximum is66%. This result is better than [60], where the benefit of

limited lookahead is not so obvious.

For these benchmarks,ASMODELS turned on and off lookahead once, respectively,

during the search. The above instances include both solvable and unsolvable ones. No

discernible difference between the performances ofASMODELS on them is observed.

4.5.2 Adaptiveness of adaptive lookahead

The logic programs used in this section (except the one for the 3-SAT problem) are taken

from [61].

Cases that benefit from lookahead

Graph coloring The problem is to find an assignment of one of 3 colors to each vertex of

a graph such that vertices connected with an edge do not have the same color. We use the

weight constraint program in Example 1.3.

We use Culberson’s flat graph generator [15] to generate graph instances. By this gen-

erator, each pair of vertices is assigned an edge with independent identical probabilityp.
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We use the suggested value ofp to sample across the “phase transition” region [12]. The

number of nodes of the graph is 400. For each data point, the average running time of 100

instances is reported.

The extremely hard instances happen whenp is in [0.018, 0.020]. In this region, looka-

head speeds up the search drastically (Table 4.1). Note thatSMODELS without lookahead

cannot finish the search in the cutoff time (forP = 0.018, it runs for two days without

completion).

It is known that every DPLL-based solver spends the majorityof its time on BCP; in the

case ofSMODELS , on theexpandfunction. The savings by lookahead can also be measured

by the number of calls to theexpandfunction2. We collect the number ofexpandcalls. The

result is consistent with the running time. The reduction inthe number of calls toexpandis

orders of magnitudes, by using lookahead (adaptively) in the phase transition region. This

is shown in Fig. 4.6. The savings of calls to theexpandfunction can also be observed for

other benchmarks where lookahead speeds up the search.

3-SAT The problem is to determine the satisfiability of a Boolean formula in conjunctive

normal form (CNF), where each clause in the conjunction consists of at most three literals,

i.e., a CNF ofn clauses is of the form

x11 ∨ x12 ∨ x13

∧

...
∧

xn1 ∨ xn2 ∨ xn3 (4.25)

A CNF of form (4.25) can be translated to a logic program in thefollowing way. For

each literalxij , two rules as below are introduced.

xij ← not neg xij . (4.26)

neg xij ← not xij . (4.27)

For each clauseci, a literalsat ci and the following rules are included in the program.

sat ci ← xik. k = 1, 2, 3. (4.28)

Note that for a negative literal¬xik in a CNF, we havenot xik instead ofxik in the formula

(4.28).

In addition to the rules from (4.26) to (4.28), a new literalsat and the following rules

are included in the program.

sat ← sat c1, ... , sat c1. (4.29)

⊥ ← not sat. (4.30)
2In comparison, the number of choice points is usually not a good indicator, as a reduction may be achieved

in the expense of a huge overhead.
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It can be verified that the CNF of form (4.25) is satisfiable if and only if the logic

program consists of rules from (4.26) to (4.30) has an answerset.

Random 3-SAT is another well-known problem with phase transition. The instances are

extremely hard when the ratioc
a

is around 4.3 [58], wherec is the number of clauses, anda

the number of variables in the formula.

We fixed the number of variables to 300 and randomly generatedconjunctive normal

formulas by the ratio from 1 to 10. For each ratio, we generate10 instances and transform

them to logic programs. We compute answer sets for the programs and report the average

running time in Table 4.2. Similar to the graph coloring problem, lookahead substantially

speeds up the search in the hard region.

QueensThe queens problem is to placen queens to ann×n board so that no queen checks

against any other queen. It is a standard example in the CSP literature, where the constraints

have a natural representation as logic program rules [61].

The experimental results are given in Table 4.3. It is clear thatSMODELS with looka-

head is significantly faster thanSMODELS without lookahead; further, adaptive lookahead

is tens of times faster than the original lookahead.

Blocks-world The problem is to re-arrange a number of blocks on a table froman initial

configuration to a goal configuration. The blocks world problem is a standard planning

benchmark.

The problem instances are generated as follows. Forn blocks,b1,...,bn, the initial con-

figuration isb1 on the table andbi+1 on bi for i = 1...n − 1. The goal isbn on the table,

b1 on bn andbi+1 on bi for i = 1...n − 2. We use this setting because, under it, each block

in the initial state has to be moved to get to the goal state, sothe problem turns out to be

nontrivial. The minimum number of steps needed is2n− 2.

The results are reported in Table 4.4. The upper sub-row of each row is the solvable

case and the lower one is the unsolvable case (similarly in Table 4.5).

Gripper The goal of the gripper problem is to transport balls from room R1 to roomR2.

To accomplish this, a robot with two grippers is allowed to move from one room to the

other, pick up, and put down a ball. Each gripper of the robot can hold one ball at a time.

In our experiments two kinds of settings are used. In the first, all of the balls are inR1

initially and should beR2 in the goal state. In the second, there is an equal number of balls

in R1 andR2 initially and in the goal state, balls initially inR1 are inR2 and vice versa.

The results are reported in Table 4.5, where the first two columns are the number of balls in

each room initially, and the third is the number of steps allowed.
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The results suggest that lookahead generates more performance gains when the in-

stances become harder especially for the unsolvable instances.

For all of the problems in this section,ASMODELS performs as well as or better than

SMODELS with lookahead (Tables 4.1, 4.2, 4.3, 4.4, and 4.5). For mostinstances of

the graph coloring, queens, 3-SAT, and gripper problems, lookahead is turned on and

off once, respectively. The blocks world problem is interesting. For the solvable in-

stances,ASMODELS turns off lookahead automatically and performs several times faster

thanSMODELS . Especially for the instance where the blocks number is 16, lookahead is

turned off twice and on once. A drastic improvement in the performance by this action can

be observed. This suggests that turning off lookahead when it is unnecessary can effectively

speed up the search even if it is useful most of the time.

SeatingThe seating problem is to generate a sitting arrangement fora number of guests,

with m tables andn chairs per table. Guests who like each other should sit at thesame table;

guests who dislike each other should not sit at the same table.

In [1] the seating problem was chosen to evaluate the performance ofDLV , a well-

known ASP solver. The problem can be naturally encoded as an weight constraint program

as given in Figure 4.3.

1[at(P, T ) : table(T )]1← person(P ).
⊥ ← table(T ), likes(P1, P2), at(P1, T ),not at(P2, T ).
⊥ ← table(T ), dislikes(P1, P2), at(P1, T ), at(P2, T ).
⊥ ← n + 1[at(P,X) : person(P )], table(X).

Figure 4.3: A program for the seating problem

The first rule says each guest sits at a table. The next two rules guarantee that guests

who like each other sit at the same table and guests who dislike each other does not sit at

the same table. The last rule ensures the number of people sitat the table cannot be more

than the number of chairs around the table.

We consider 5 and 10 seats per table, with increasing numbersof tables and persons

(with the number of persons equals to the number of tables times the number of seats per ta-

ble), respectively. For each problem size, i.e., seats/tables configuration, we test the classes

with different numbers of like and dislike constraints thatare used by DLVA. They are :

1) no like/dislike constraints at all; 2) 25% like constraints; 3) 25% like and 25% dislike

constraints; 4) 50% like constraints; 5) 50% like and 50% dislike constraints, where the

percentages are relative to the maximum number of dislike (like, respectively) constraints.

For the seating problem, lookahead significantly improves the search efficiency.SMODELS
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without lookahead couldn’t solve any instance in two hours;all of them can be solved in

tens of seconds with lookahead.ASMODELS is about 2-3 times faster thanSMODELS with

lookahead (Table 4.6).

Cases that suffer from lookahead

For the problems with easy sub-programs, like pigeon-hole,lookahead can detect conflicts

only near the end of the search. Employing lookahead for these problems makes the search

several times slower (Table 4.7).ASMODELS is 2 times faster thanSMODELS without

lookahead and about 10 times faster thanSMODELS with lookahead.

As for computing Hamiltonian cycles on complete graphs, lookahead cannot reduce the

depth of the search tree while bringing on extra constraint propagation. The experimental

results (Table 4.8) showSMODELS can be hundreds of times slower thanSMODELSwithout

lookahead.

For the above two problems,ASMODELS works largely asSMODELS without looka-

head. Its performance is slightly better thanSMODELS without lookahead for the pigeon-

hole problem (Table 4.7).ASMODELS turned off lookahead permanently after some literals

are assigned during the process of solving this problem.

For the Hamiltonian cycle problem, the performance ofASMODELS is in between

SMODELSandSMODELSwithout lookahead - it is about 20 to 30 times faster thanSMODELS

and 2 to 10 times slower thanSMODELS without lookahead (Table 4.8). We notice that if

the parameterlook score is set to be 2 andratio 0.1,ASMODELS will perform two times

faster than what we reported here but it is still several times slower thanSMODELSwithout

lookahead. The reason for that could be the effect of lookahead on branching heuristic as

we mentioned before. More investigation on this is needed.

The Hamiltonian cycle problem on complete graphs has been extensively tested by

a number of answer set systems in [43]. It turns out that for large instances, thousands

of seconds are needed to solve them. As shown in Table 4.8, with adaptive lookahead,

SMODELS can solve large instances in hundreds of seconds, and if lookahead is completely

shut down, only tens of seconds are needed to solve them.

4.5.3 Experiments on a real application

Thereaction control system(RCS) is the system used to maneuver the Space Shuttle while

it is in orbit. It consists of jets, fuel tanks, pipes, and valves used to deliver fuel to the jets,

and associated circuitry required to control the system. Inorder for the Space Shuttle to
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perform a given maneuver, a set of jets must be prepared to fire. To prepare a jet to fire, an

open, non-leaking path must be provided for the fuel to flow from pressurized fuel tanks to

the jet. The flow of fuel is controlled by opening and closing valves. Valves are opened and

closed by either having an astronaut flip a switch or by instructing the computer to issue

special commands.

When everything is operating correctly, there are pre-scripted plans for each maneuver.

When some components of the system such as switches, valves,or circuits fail, a planner is

needed to generate plans to finish the required maneuver. Thesystem USA-Advisor is such

a planner with a user-friendly interface, developed by Balduccini et al. [4]. The reasoning

module that is responsible for the plan generation in USA-Advisor isSMODELS .

Following [4], by test instanceswe mean a maneuver to be performed by the shuttle

together with a collection of system faults. We randomly generated 10 groups of instances

by setting the target maneuver. Each group contains 20 instances, generated by randomly set

5 system faults, of which 2 are mechanical and 3 are electrical (this situation is referred to

as the most interesting one from the standpoint of the USA-Advisor experts). The reported

running time of each group is the average running time of the instances in the group.

From the experiment results (Table 4.9), one can see that there is no major difference

between the performance ofSMODELS with and without lookahead. ButASMODELS is

better than both of them.
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p No Lookahead Lookahead A-Lookahead
.014 0.33 0.33 0.09
.015 1.44 0.33 0.15
.016 53.55 0.37 0.32
.017 97.12 0.24 0.12
.018 – 209.68 183.41
.019 – 43.30 40.15
.020 – 55.38 23.34
.021 2649.80 9.47 10.14
.022 299.61 0.96 1.06
.023 18.89 0.92 1.05
.024 4.19 0.25 0.67
.025 3.52 0.23 0.22
.026 3.26 0.26 0.22
.027 1.97 0.21 0.29
.028 2.13 0.21 0.26
.029 2.06 0.17 0.29
.030 1.25 0.19 0.22

Table 4.1: Graph coloring (“-” indicates no result is generated within two hours of running
time)

c/a No Lookahead Lookahead A-Lookahead
1 0.01 0.04 0.01
2 0.02 0.05 0.02
3 0.08 0.06 0.05

4.3 6475.43 137.64 139.88
5 650.85 20.20 19.72
6 45.09 1.64 1.55
7 7.12 0.55 0.54
8 3.15 0.38 3.25
9 1.68 0.27 1.61
10 0.94 0.21 1.04

Table 4.2: Random 3-SAT
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n No Lookahead Lookahead A-Lookahead
14 32.975 0.43 0.18
15 205.898 0.86 0.27
16 1471.878 2.35 0.37
17 – 5.36 0.74
18 – 9.08 2.11
19 – 3.92 2.4
20 – 54.33 2.10
21 – 98.49 5.73
22 – 852.09 47.60
23 – 2465.09 418.22
24 – 1009.556 76.31
25 – – 370.56
26 – – 3349.53
27 – – –
28 – – 4051.11

Table 4.3: Queens

n s No Lookahead Lookahead A-Lookahead

11
20 13.58 4.62 2.02
19 16.52 1.56 1.56

12
22 37.49 9.38 3.36
21 30.70 2.42 2.41

13
24 106.31 17.26 4.85
23 62.31 3.81 3.76

14
26 165.88 30.49 7.34
25 359.65 5.45 5.46

15
28 335.11 53.07 10.54
27 4673.35 7.35 7.35

16
30 375.20 6276.28 14.66
29 – 10.15 10.50

17
32 1197.65 145.59 21.24
31 701.86 16.48 16.40

18
34 – 145.48 29.28
33 – 21.42 21.39

Table 4.4: Blocks-world problem
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R1 R2 s No Lookahead Lookahead A-Lookahead

4 0
7 0.10 0.43 0.41
6 0.09 0.17 0.17

5 0
11 8.31 77.35 64.94
10 1824.55 189.40 97.12

6 0
11 263.75 1117.02 1084.31
10 2345.49 490.94 487.65

3 3
11 0.70 15.80 15.98
10 77.93 15.64 15.52

4 4
12 1749.35 419.42 412.64
11 5463.57 175.61 175.73

Table 4.5: Gripper problem

p h No Lookahead Lookahead A-Lookahead
5 30 – 2.67 1.40
5 35 – 4.89 2.47
5 40 – 8.50 4.04
5 45 – 13.99 6.54
5 50 – 20.96 9.24
10 30 – 8.94 3.33
10 35 – 16.88 5.72
10 40 – 28.43 8.89
10 45 – 47.12 13.71
10 50 – 71.94 20.74

Table 4.6: Seating

p h No Lookahead Lookahead A-Lookahead
5 4 0.01 0.01 0.00
6 5 0.00 0.03 0.00
7 6 0.05 0.15 0.00
8 7 0.03 0.11 0.02
9 8 0.27 0.92 0.13
10 9 2.56 8.58 1.27
11 10 28.27 91.19 13.86
12 11 337.32 1006.83 167.99

Table 4.7: Pigeon hole by weight constraint program
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n No Lookahead Lookahead A-Lookahead
30 0.46 3.62 1.07
40 1.11 16.90 3.19
50 2.25 64.92 8.57
60 3.91 183.59 19.74
70 6.31 467.28 40.18
80 9.58 986.85 74.02
90 13.77 1862.86 123.66
100 19.12 3522.24 194.24
110 25.56 6129.59 288.53
120 33.36 – 412.58

Table 4.8: Hamiltonian cycle

I No Lookahead Lookahead A-Lookahead
1 1.24 1.31 0.84
2 0.75 0.95 0.75
3 1.39 1.23 0.82
4 0.63 0.63 0.58
5 2.50 1.46 0.93
6 0.81 1.70 0.72
7 1.07 1.30 0.89
8 1.21 1.30 0.89
9 1.27 1.26 0.90
10 1.94 1.59 1.04

Table 4.9: USA-Advisor
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4.6 Conclusion

In this chapter, we have shown that lookahead could be a burden in, as well as an accelerator

to, the DPLL search. This may offer some clues for the appropriate use of lookahead in

constraint solving systems. By experiments, we show that lookahead may significantly

speed up the answer set computation for hard problems, especially those in phase transition

regions. We also analyze why lookahead sometimes slows downthe search and characterize

some reasons as embedded easy sub-programs and spurious pruning. We shall mention that

this analysis is applicable to DPLL-based SAT solvers; thatis, similar SAT encodings do

not benefit from the use of lookahead under these situations.

Based on these observations, we propose an adaptive lookahead mechanism, by which

the decision on whether lookahead is invoked or not is made dynamically upon the ob-

served information developed during the search. It takes advantage of lookahead while

avoiding the unnecessary overhead caused by it. We have conducted a series of experi-

ments on benchmarks written as normal logic programs as wellas logic programs with

weight constraints. We have also applied adaptive lookahead to the planning component

of the USA-Advisor project. Our experiments show that adaptive lookahead adapts well to

different search environments.

An interesting direction isselective lookahead: instead of the entire set of unassigned

atoms, some subset of it is selected by lookahead for testing. Limited lookahead is a kind

of selective lookahead. But as we have shown, the selection of propagating literals may not

be very effective for the purpose of space pruning. The heuristic for the selection of literals

for testing in selective lookahead is worth of investigation in future work.

After this work had been done, the ASP systemCLASP was developed. It is currently

admitted as the fastest solver, where some state-of-the-art techniques from SAT solvers

are used, such asconflict-directed learning, restart, and deletion of recorded conflicts.

ASMODELS is usually not as fast asCLASP . But we find that, for the pigeon-hole problem,

ASMODELS is several times faster thanCLASP . The reason for that, and the combination

of lookahead with the established techniques in SAT solversis of interest for further study.

50



Chapter 5

Answer set semantics for aggregate
programs

There are different semantics proposed for aggregate programs [25, 27, 66, 76]. Among

them, the semantics based on conditional satisfaction is considered the mostconservative,

in the sense that any answer set under this semantics is an answer set under others, but

the converse may not hold [77]. We take this semantics as the semantics for aggregate

programs.

In the next section, we present the semantics based on conditional satisfaction, called

answer set semanticsfor aggregate programs. Then, we briefly introduce other semantics

and provide a comparison to them.

5.1 Answer set semantics

Following [76], we define the syntax and semantics of aggregate programs.

An aggregate is a constraint on sets of atoms taking the form

aggr({X | p(X)}) op Result (5.1)

whereaggr is anaggregate function. The standard aggregate functions areSUM , COUNT ,

AVG, MAX , andMIN . The set{X | p(X)} is called anintentional set, wherep is a pred-

icate, andX is a variable, which takes its value from a setD(X) = {a1, ..., an}, called

variable domain. The comparison operatorop is from {=, 6=, <,>,≤,≥} andResult is

either a variable or a numeric constant.

The domainof an aggregateA, denotedDom(A), is the set of atoms{p(a) | a ∈

D(X)}. The size of an aggregate is|Dom(A)|.

Let M be a set of atoms.M is a modelof an aggregateA, denotedM |= A, if

aggr({a | p(a) ∈ M ∩ Dom(A)}) op Result holds, otherwiseM does not satisfyA,
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denotedM 6|= A.

Example 5.1.LetA = SUM({X|p(X)}) ≥ 1 be an aggregate, whereD(X) = {−1, 0, 1}.

Let M1 = {p(0), p(1)} andM2 = {p(−1), p(0)} be two sets. We haveM1 |= A and

M2 6|= A.

An aggregate program is a set of rules of the form

h← A1, ..., An (5.2)

whereh is an atom andA1, ..., An are aggregates1. For a ruler of the form (5.2),hd(r)

andbd(r) denoteh and{A1, ..., An}, respectively.

The definition ofanswer setof aggregate programs is based on the notion ofconditional

satisfaction.

Definition 5.1. Let A be an aggregate,R andS two sets of atoms.R conditionally satisfies

A, w.r.t. S, denotedR |=S A, iff R |= A and for every setI s.t. R ∩ Dom(A) ⊆ I ⊆

S ∩Dom(A), I |= A.

Example 5.2. Let A = COUNT ({X|p(X)} ≤ 2 be an aggregate, whereD(X) =

{1, 2, 3, 4}. Let R = {p(1)}, S1 = {p(1), p(2)}, andS2 = {p(1), p(2), p(3), p(4)}. Then

R |=S1
A, sinceR |= A andS1 |= A; R 6|=S2

A, since for the setI = {p(1), p(2), p(3)},

we haveR ⊆ I ⊆ S2 andI 6|= A.

LetA be the set of aggregates{A1, ..., An} or the conjunction (A1 ∧ ... ∧ An) andR

andS two sets of atoms. We defineR |=S A iff R |=S Ai, 1 ≤ i ≤ n.

Given two setsR andS, and an aggregate programP , the operatorKP (R,S) is defined

as:

KP (R,S) = {hd(r) | ∃r ∈ P, R |=S bd(r)}.

The sequence ofKi
P (R,S) is defined as

K0
P (∅,M) = ∅ andKi

P (∅,M) = KP (Ki−1
P (∅,M),M), for all i ≥ 0.

It is easy to see thatKP is monotone w.r.t. its first argument, given that the second

argument is fixed. We have the following corollary.

1In general,Ai could also be atoms or negative atoms. We focus on positive aggregates in this chapter. The
results can be extended to the general case, where the (negative) atoms are treated in exactly the same way as
in normal logic programs [76].
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Proposition 5.1([76]). Let P be an aggregate program andM a set of atoms. Then

K0
P (∅,M) ⊆ K1

P (∅,M) ⊆ ... ⊆M (5.3)

Definition 5.2 ([76]). Let P be an aggregate program andM a set of atoms.M is an

answer setof P iff M is the least fixpoint ofKP (∅,M), i.e.,M = K∞
P (∅,M)

Example 5.3. Let P be the program

p(1) (5.4)

p(2) (5.5)

p(3) (5.6)

p(5) ← q (5.7)

q ← SUM({X | p(X)} > 10 (5.8)

Any answer set ofP must containp(1), p(2), andp(3). Actually, M = {p(1), p(2), p(3)}

is an answer set ofP , since

K0
P (∅,M) = ∅ (5.9)

K1
P (∅,M) = {p(1), p(2), p(3)} (5.10)

K2
P (∅,M) = {p(1), p(2), p(3)}. (5.11)

5.2 Other Semantics

5.2.1 FLP-answer set semantics

The notion of answer set proposed by Faber et al. [25] is basedon a new notion of reduct.

Given a programP and a set of atomsM , thereductof P with respect toM , denoted by

Γ(M,P ), is obtained by removing the rules whose body is false w.r.t.M , i.e.

Γ(M,P ) = {r | r ∈ P,M |= bd(r)}. (5.12)

Then, an answer set of programP is defined as the minimal model ofΓ(M,P ). Fol-

lowing [76], we call such an answer set FLP-answer set to distinguish it from the answer set

based on conditional satisfaction given in Definition 5.2. It has been shown that any answer

set is an FLP-answer set. But an FLP-answer set may not be an answer set.
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Example 5.4. Let P be the program that consists of the rules:

p(1) ← SUM({X | p(X)}) ≥ 0 (5.13)

p(−1) ← p(1) (5.14)

p(1) ← p(−1) (5.15)

It can be checked thatM = {p(1), p(−1)} is an FLP-answer set, but we have thatK∞
P (∅,M) =

∅. SoM is not an answer set ofP .

The FLP-answer set semantics has been implemented in the answer set programming

systemDLV .

5.2.2 Ferraris’ semantics

Ferraris [27] generalizes the answer set semantics to equilibrium logic and uses a general-

ized concept of answer set to define the semantics of aggregate programs. In the definition,

the concept of reduct in the definition of answer sets of logicprograms is extended to

propositional theories. The answer sets of a propositionaltheory are defined as the mini-

mal models of the reduct of the theory. An aggregate program is first translated to a set of

propositional theories and then the answer sets of the aggregate program are defined as the

answer sets of the translated propositional theories.

It has been shown in [27] that the semantic proposed by Ferraris is an extension of FLP-

answer set semantics. For the aggregate programs that consist of rules of the form (5.2),

Ferraris’ semantics is identical to FLP-answer set semantics.

5.2.3 PDB-answer set semantics

Pelov et al. [65] use an approximation theory to define answersets for aggregate programs.

In particular, they describe a fixpoint operator, calledΦaggr
P , operating on 3-valued inter-

pretations and parameterized by the choice of approximating aggregates. The PDB-answer

set is defined as the first component of the least fixpoint (lfp) of Φaggr
P , where the ultimate

approximating aggregates are employed, i.e., for a programs P and a set of atomsM , M

is a PDB-answer set ofP if and only if M = lfp(Φaggr,1
P (∅,M)), that isM is the first

component ofΦaggr
P (∅,M).

As pointed out in [76], PDB-answer sets coincide with the answer sets based on condi-

tional satisfaction given in Definition 5.2.
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Chapter 6

Level mapping induced loop
formulas for aggregate programs

6.1 Motivation

Aggregate programs are closely related to weight constraint programs, since many aggre-

gates can be encoded by weight constraints (this will be shown later). The study on the loop

formulas for weight constraint programs and the effectiveness of the loop formula approach

proposed in [49] motivates us to study the loop formulas for aggregate programs.

Loop formulas for answer set semantics are presented in [84]. In the approach, given a

program, the construction of the dependency graph requirescomputing what is called ”local

power set” for the constraints in the program in order to capture conditional satisfaction.

The process takes exponential time in the size of the program. The question that we address

in this chapter is whether the construction of dependency graph can be done in polynomial

time for aggregate programs. Again, we tackle the problem bymeans of level mapping.

Son et. al. [77] give a level mapping characterization of theanswer set semantics.

In their approach, to compute the level of an aggregate, a checking process is needed to

capture the conditional satisfaction of aggregates. The time complexity of this process is

exponential in the size of the domain of the aggregate.

We investigate level mapping for aggregate programs and findthat, for aggregates, the

conditional satisfaction checking can be reduced to the polynomial time standard satisfac-

tion checking. Based on this finding, we define the levels of aggregates. The definition

induces a formulation of loop formulas, where local power sets are not needed and the

exponential process to compute them is avoided.

In the next section, we show the encoding of the aggregateSUM by weight constraints.

In Sections 6.3 and 6.4, respectively, we present the level mapping characterization of an-
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swer sets and the loop formulas for aggregate programs. Section 6.5 manifests the dif-

ference between the stable model and answer set semantics that is revealed by the level

mapping characterizations. Section 6.6 is a conclusion.

6.2 Encoding of aggregates

Let A = SUM({X|p(X)}) ≤ k be an aggregate, whereD(X) = {a1, ...am, b1, ..., bn},

anda′is andb′is are positive and negative numbers, respectively.A can be encoded by the

following weight constraint.

W = [p(a1) = a1, ..., p(am) = am, p(b1) = b1, ..., p(bn) = bn]k, (6.1)

Using the transformation in [74],W can be translated to

W (A) = [p(a1) = a1, ..., p(am) = am,not p(b1) = |b1|, ...,not p(bn) = |bn|]k
′ (6.2)

wherek′ = k +
∑n

i=1 bi.

It is easy to show that for any set of atomsM , M |= A iff M |= W (A). We callW (A)

theweight constraint encodingof A.

The notations in this chapter are the same as that used for thelevel mapping charac-

terization of stable models for weight constraint programs, presented at the beginning of

Section 3.2.

A good property of aggregates is that their weight constraint encoding contains no dual

atoms. The property will be used in the proof later.

In Chapter 7, we will show that most standard aggregates can be encoded by weight

constraints. In this chapter, we focus on aggregatesSUM only. The reasons are:

• It is a representative aggregate in that the aggregatesCOUNT andAVG are special

cases ofSUM ;

• It is the most commonly used aggregate in the current practice of answer set program-

ming, e.g., this is the case for the benchmarks in the first answer set programming

system competition [14];

• There is no technical difficulty in extending the results to aggregate programs with

aggregatesMAX andMIN , since they can be encoded by aggregateSUM .

Note that although the aggregateSUM is essentially the same as weight constraints,

the semantics that we consider in this chapter are differentfrom that in Chapter 3, i.e., we
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consider answer set semantics for aggregate programs in this chapter but the stable model

semantics for weight constraint programs in Chapter 3.

6.3 Level mapping characterization of answer sets

Recall that given a set of atomsX, a level mapping ofX is a functionλ from X to positive

integers.

Definition 6.1. Let A be an aggregate,M a set of atoms andλ a level mapping ofM . The

answer set levelof A w.r.t. M , denotedL∗(A,M), is defined as:

L∗(A,M) = min({H(X) | X ⊆M,w(W (A),Xa) ≥ l +
∑

bi∈M

wbi
, (6.3)

and w(W (A),Xb) ≤ u−
∑

ai∈M

wai
}).

Example 6.1.LetA = SUM({X | p(X)}) ≤ 0 be an aggregate, whereD(X) = {−1, 1}.

ThenW (A) = [p(1) = 1,not p(−1) = 1]1. Let M = {p(−1), p(1)} andλ be a level

mapping ofM , whereλ(p(−1)) = 1 andλ(p(1)) = 2. It can be seen that the subsets

of M that satisfy the inequalities in formula (6.3) areX1 = {p(−1)} andX2 = M . So,

L∗(A,M) = min({H({p(−1)}),H({p(−1), p(1)})}) = λ(p(−1)) = 1.

Definition 6.2. Let P be an aggregate program andM a set of atoms.M is said to be

strongly level mapping justifiedby P if there is a level mappingλ of M satisfying that

for eachb ∈ M , there is a ruler ∈ P , such thatb = hd(r), M |= bd(r), and for each

A ∈ bd(r), λ(b) > L∗(A,M).

In this case, we say that the level mappingλ strongly justifiesM byP .

The main theorem of this section states that a strongly levelmapping justified model is

exactly also an answer set. It is based on the following two lemmas by which the conditional

satisfaction of an aggregate is reduced to the standard satisfaction of its weight constraint

encoding.

Lemma 6.1. Let A be an aggregate andX a set of atoms.X |= A iff w(W (A),Xa) ≥

l+
∑

bi∈X wbi
andw(W (A),Xb) ≤ u−

∑

ai∈X wai
, wherel andu are the lower and upper

bounds ofW (A), respectively.

Proof. Sincew(W (A),X) = w(W (A),Xa) −
∑

bi∈X wbi
and w(W (A),Xa) ≥ l +

∑

bi∈X wbi
, we havew(W (A),X) ≥ l. Sincew(W (A),X) = w(W (A),Xb)+

∑

ai∈X wai

and w(W (A),Xb) ≤ u −
∑

ai∈X wai
, we havew(W (A),X) ≤ u. Therefore,X |=

W (A).
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Lemma 6.2. Let A be an aggregate andX andM two sets of atoms such thatX ⊆ M .

X |=M A iff w(W (A),Xa) ≥ l +
∑

bi∈M wbi
andw(W (A),Xb) ≤ u −

∑

ai∈M wai
,

wherel andu are the lower and upper bounds ofW (A), respectively.

Proof. (⇐). By Lemma 6.1 we haveX |= A. We now show that for anyS such that

X ⊆ S ⊆M , we haveS |= A.

(1) LetS be any set such thatX ⊆ S ⊆M . We haveXa ⊆ Sa andSb ⊆Mb.

(2) w(W (A), S) ≥ w(W (A),Xa)−
∑

bi∈M wbi
, due to (1).

(3) w(W (A), S) ≥ l, due to (2).

(4) ∀S such thatX ⊆ S ⊆M , we haveSa ⊆Ma andXb ⊆ Sb.

(5) w(W (A), S) ≤ w(W (A),Xb) +
∑

ai∈M wai
, due to (4).

(6) w(W (A), S) ≤ u, due to (5).

(7) S |= W (A), due to (3) and (6).

(8) S |= A, due to (7).

(⇒).

(1) LetS = Mb ∪Xa. We haveX ⊆ S ⊆M andS |= W (A).

(2) w(W (A), S) = w(W (A),Xa)−
∑

bi∈M wbi
, due to (1).

(3) w(W (A), S) ≥ l Due to (1).

(4) w(W (A),Xa) ≥ l +
∑

bi∈M wbi
, due to (3).

(5) LetS′ = Ma ∪Xb. We haveX ⊆ S′ ⊆M andS′ |= W (A).

(6) w(W (A), S′) =
∑

ai∈M wai
+

∑

bi 6∈Xb
wbi

, due to (5).

(7)
∑

bi 6∈Xb
wbi

= w(W (A),Xb).

(8) w(W (A), S′) =
∑

ai∈M wai
+ w(W (A),Xb), due to (6) and (7).

(9) w(W (A), S′) ≤ u, due to (5).

(10) w(W (A),Xb) ≤ u−
∑

ai∈M wai
, due to (8) and (9).
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Now, we are ready to present the main theorem.

Theorem 6.1. Let P be an aggregate program andM a set of atoms.M is an answer set

of P iff M is a model ofP and strongly level mapping justified byP .

Proof. (⇒)

(1) M is an answer set ofP .

(2) M is a model ofP , due to (1).

(3) M = K∞
P (∅,M), due to (1).

(4) There is a level mappingλ : M → Z
+: λ(b) = k if b ∈ Kk

P (∅,M) and b 6∈

Kk−1
P (∅,M), due to (3) and Lemma 6.2.

(5) λ strongly level mapping justifiesM by P , due to (3) and (4).

(6) M is strongly level mapping justified, due to (5).

(⇐)

(1) M |= P andM is strongly level mapping justified.

(2) Suppose thatλ strongly justifiesM by P .

(3) ∀b ∈ M , there is a ruler ∈ P and a setR ⊆ M s.t. b = hd(r) andb 6∈ R, and

R |=M bd(r), due to Lemma 6.2 and (2).

(4) b ∈ K∞
P (∅,M), due to (3).

(5) M ⊆ K∞
P (∅,M), due to (4).

(6) K∞
P (∅,M) ⊆M , due to Proposition 5.1 in Chapter 5.

(7) M = K∞
P (∅,M), due to (5) and (6).

(8) M is an answer set ofP .

Example 6.2. Let P2 be the program

p(−1) ← (6.4)

p(1) ← SUM({X | p(X)}) ≤ 0. (6.5)
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Let M = {p(−1), p(1)} and λ be a level mapping ofM , whereλ(p(−1)) = 1 and

λ(p(1)) = 2. We haveL∗(A,M) = 1 (c.f. Example 6.1). Thereforeλ(p(1)) > L∗(A,M)

andM is strongly level mapping justified byP2. It can also be verified thatM is an answer

set ofP2 by Definition 5.2.

6.4 Loop formulas

6.4.1 Completion

The completion of aggregate programs consists of the same set of formulas as that of weight

constraint programs (Chapter 3), except that the weight constraints in the formulas are

weight constraint encodings of aggregates.

Let P be an aggregate. The completion ofP , denotedComp(P ), consists of the fol-

lowing formulas.

(1). ∧Ai∈bd(r)w(Ai)→ hd(r), for every ruler ∈ P .

(2). x→ ∨{∧Ai∈bd(r)W (Ai) | r ∈ P, x = hd(r)}, for every atomx ∈ Atom(P ).

Theorem 6.2. Let P be a weight constraint program andM a set of atoms.M is a sup-

ported model ofP iff M is a model ofComp(P ).

Proof. Recall that for an aggregateA and a set of atomsM , M |= A iff M |= W (A),

whereW (A) is the weight constraint encoding ofA.

Let P be a program andM a set of atoms,M satisfies the formulas of the form (1)

in Comp(P ) if and only if M |= P and further, according to the definition of supported

model, for any atoma ∈M , there exists a ruler ∈ P such thata = hd(r) andM |= bd(r)

if and only if M satisfies the formulas of the form (2) inComp(P ).

6.4.2 Loop formulas

Let P be an aggregate program. Thedependency graphof P , denotedG∗
P = (V,E), is a

directed graph, where

• V = At(P ),

• (u, v) is a directed edge fromu to v in E, if there is a rule of the form (5.2) inP ,

such thatu = hd(r), and eitherv or not v ∈ lit(W (Ai)), for somei (1 ≤ i ≤ n).

Now we give thestrong restrictionof an aggregate w.r.t. a loop by defining the strong

restriction of a weight constraint. LetW be a weight constraint andL a set of atoms.
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The strong restriction ofW , w.r.t. L, denotedW ∗
|L, is a conjunction of weight constraints

W ∗
l|L ∧W ∗

u|L, where

• W ∗
l|L is obtained by removing fromW the upper bound, all positive literals that are

in L and their weights;

• W ∗
u|L is obtained by removing fromW the lower bound,not bi = wbi

for each

bi ∈ L, and changing the upper bound to beu−
∑

bi∈L wbi
.

The strong restriction of an aggregateA w.r.t. a loopL is defined as the strong restriction

of its weight constraint encoding w.r.t. the loopW ∗
|L(A).

Definition 6.3. Let P be an aggregate program andL a loop inG∗
P . The loop formula for

L, denotedLF ∗(P,L), is defined as

LF ∗(P,L) =
∨

L→
∨

{
∧

A∈bd(r)

W ∗
|L(A) | r ∈ P, hd(r) ∈ L} (6.6)

Let P be an aggregate program. The loop completion ofP , denotedLComp∗(P ), is

defined as

LComp∗(P ) = Comp(P ) ∪ {LF ∗(P,L) | L is a loop in G∗
P } (6.7)

We can prove the following theorem.

Theorem 6.3. Let P be an aggregate program andM a set of atoms.M is an answer set

of P iff it is a model ofLComp∗(P ).

Proof. For simplification, we use respectivelyW , W ∗
l|L, andW ∗

u|L to representW (A),

W ∗
l|L(A), andW ∗

u|L(A), since the aggregateA in consideration is always clear in context.

We consider a rule of formh← A. The proof is applicable to rules with conjunctive body.

The proof aboutW ∗
l|L is similar to that for Theorem 3.2. We show the part forW ∗

u|L in

the following.

(⇐)

(1) M |= LF ∗(P,L).

(2) ∀b ∈M ∩ L, ∃r ∈ P , such thathd(r) ∈ L, andM |= W ∗
u|L, due to (1).

(3) w(W ∗
u|L,M) ≤ u−

∑

bi∈Lb
wbi

, due to (2).

(4) w(W ∗
u|L,M) = w(W,M) −

∑

bi∈Lb
wbi

+
∑

bi∈Lb∩Mb
wbi

.
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(5) w(W,M) ≤ u−
∑

bi∈Lb∩Mb
wbi

, due to (3) and (4).

(6) LetXb = Mb \ (Mb ∩ Lb).

(7) w(W,Xb) = w(W,M) −
∑

ai∈M wai
+

∑

bi∈Lb∩Mb
wbi

, due to (6).

(8) w(W,Xb) ≤ u−
∑

ai∈M wai
, due to (7).

(9) The level mappingλ whereλ(b) ≥ max({λ(bi) | bi ∈ Xb}) strongly justifiesM by

P .

(10) M is strongly level mapping justified.

(11) M |= Comp(P ).

(12) M |= P , due to (11).

(13) M is an answer set ofP , due to and (10) and (12).

(⇐)

(1) M is an answer set ofP .

(2) There is a level mappingλ from At(P ) to positive integers satisfying∀b ∈M,∃r ∈

P , such thatλ(b) > L∗(A,M).

(3) Let L be a loop andb ∈ L. ∃X ⊆ M \ L and a ruler ∈ P such thatw(W,Xb) ≤

u−
∑

ai∈M wai
, due to (2).

(4) w(W,Mb \ (Mb ∩ Lb)) ≤ w(W,Xb) Due to (3).

(5) w(W,Mb \ (Mb ∩ Lb)) = w(W,M) −
∑

ai∈M wai
+

∑

bi∈Lb∩Mb
wbi

.

(6) w(W,M) +
∑

bi∈L∩M wbi
≤ u, due to (3), (4) and (5).

(7) w(W ∗
u|L,M) = w(W,M) −

∑

bi∈L wbi
+

∑

bi∈L∩M wbi
.

(8) w(W ∗
u|L,M) ≤ u−

∑

bi∈L wbi
, due to (6) and (7).

(9) M |= W ∗
u|L.

(10) M |= LF ∗(P,L).

(11) M |= Comp(P ), due to (1).

(12) M |= LComp∗(P ), due to (10) and (11).
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Example 6.3. Consider the programP2 in Example 6.2. There is a loop{p(1)} in G∗
P2

.

The loop formula isp(1) → [p(1) = 1,not p(−1) = 1]1 and satisfied by the setM =

{p(−1), p(1)}. So,M is an answer set ofP2.

6.5 Comparison

Weight constraint programs and aggregate programs are bothlogic programs with con-

straints, but they have different semantics. Our level mapping characterizations and loop

formulas reveal the difference between the stable model semantics for weight constraint

programs and answer set semantics for aggregate programs.

Comparing the definition of the level of weight constraints in Chapter 3 formula (3.2)

to that of the answer set level of aggregates in formula (6.3), we may see that the atoms in

Xb that are negative inW and the upper bound ofW are not considered in formula (3.2),

while they are constrained by the second inequality in formula (6.3).

Naturally, the difference is also manifested by the constructions of dependency graphs

and formulations of loop formulas (the definitions of restriction and strong restriction) for

weight constraint and aggregate programs, respectively. For stable model semantics, neg-

ative dependencies between atoms do not contribute to the loops and loop formulas, while

they do for the answer set semantics. The following example demonstrates how level map-

ping and loop formulas capture this difference.

Example 6.4. Let P3 be the aggregate program{p(−1) ← SUM({X|p(X)}) ≤ −1},

whereD(X) = {−1}. We denote the aggregate inP3 byA. We haveW (A) = [not p(−1) =

1]0. The weight constraint program counterpart ofP3 is P ′
3: {p(−1) ← [not p(−1) =

1]0}.

Consider the setM = {p(−1)}. For programP3 and any level mappingλ, we have

L∗(A,M) = λ(p(−1)), since the only subset ofM that satisfies the inequalities in formula

(6.3) isM itself. Namely,p(−1) depends on itself, even though it appears negatively in the

body of the rule. There is a loop{p(−1)} in G∗
P3

. The loop formula is:p(−1)→ [ ]− 11.

The loop formula is not satisfied byM . ThusM is not an answer set ofP3.

For programP ′
3 and any level mappingα, we haveL(W (A),M) = 0, since∅ satisfies

the inequality in formula (3.2). There is no loop inGP ′
3
. It can be verified thatM is a stable

1[ ]− 1 is a weight constraint where the literal set is empty and upper bound is -1. It can not be satisfied by
any set.
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model ofP ′
3.

6.6 Conclusion

In this chapter, we give a level mapping characterization ofanswer sets. Based on the

characterization, we develop an approach to build the loop formulas for aggregate programs.

In the approach, for a programP , the dependency graphG∗
P can be constructed by going

through each rule and building an edge inG∗
P from the head of the rule to each literal in the

domain of aggregates in the body of the rule. The process takes time linear in the size ofP

(number of rules plus the number of atoms inP ). The exponential time process required in

the approach [84] is therefore avoided. The establishment of the formula for a loop is also

linear in the size ofP , since the restriction of an aggregate can be obtained in linear time

according to the definition.

It can be shown that any loop defined in [84] is a loop defined here, but the reverse does

not hold. This is because we count negative dependencies as edges. As a result, there are

more loops under this definition. However, for many of these loops, their loop formulas can

be satisfied by any supported model (need not to be constructed in practice). For example,

given the following program:

a← 1[not b = 1] b← 1[not a = 1]

L = {a, b} is a loop by our definition. The loop formula ofL is satisfied by any supported

model of the program.

Future works are needed for the aggregate programs. Firstly, the level mapping and

loop formulas are defined on aggregateSUM . For the aggregatesMAX andMIN , direct

definition may be desired for intuitiveness. Secondly, as wehave mentioned, there may be

many redundant loops. Thus, our result may be more appropriately regarded as evidence of

the existence of a polynomial time construction of dependency graph in order to formulate

loop formulas, rather than a practical proposal, ready for implementation. The impact of

the redundant loops on efficiency and methods to remove them are worth further study.
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Chapter 7

Computing aggregate programs as
weight constraint programs

7.1 Motivation

We propose a computation approach to aggregate programs by investigating the relationship

between stable model and the answer set semantics1.

Weight constraint programs and aggregates are both logic programs with constraints.

They are closely related but have different semantics. A question arises as how the sta-

ble model semantics of weight constraint programs is related to the answer semantics of

aggregate programs. If differences exist, what is the nature of the differences and their po-

tential implications in applications. These questions areimportant since weight constraint

programs and aggregate programs have been used for benchmarks and serious applications

(e.g. [32, 82]), and will likely be adopted in further endeavors in applying the ASP technol-

ogy to real world applications.

Our study in this chapter show that for a subclass of weight constraint programs, called

strongly satisfiable programs, the stable model semantics (w.r.t. Definition 2.2) agrees with

the answer set semantics (w.r.t. Definition 5.2). For example, weight constraint programs

where weight constraints are upper bound free are all strongly satisfiable. This result is

useful in that we are now sure that the known properties of thelatter semantics also hold for

these programs. One important property is that any answer set is awell-supported model

[77], ensuring that any conclusion must be supported by a non-circular justification in the

sense of Fages [26].

We further reveals that for weight constraint programs where the two semantics dis-

agree, stable models may be circularly justified, based on a formal notation of circular jus-

1In the literature, stable model and answer set are interchangeable. We refer to them for different semantics.
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tification. We then show that there exists a transformation from weight constraint programs

to strongly satisfiable programs, which provides a way to runweight constraint programs

under the current implementation of systems that implemented stable model semantics (e.g.

SMODELS andCLASP ) without generating circular models.

We also find that most aggregates proposed for ASP can be encoded by weight con-

straints and the size of the encoding is linear in the size of the domain of the aggregates.

Accordingly, an aggregate program can be effectively translated to a weight constraint pro-

gram. This leads to an approach to computing aggregate programs as weight constraint

programs using any system that implements stable model semantics. We implement the ap-

proach in the system calledALPARSE (Aggregates to Lparse programs, which are weight

constraint programs.). The systemALPARSE consists of a translator and an ASP solver

for weight constraint programs. The translator transformsa given aggregate program to a

strongly satisfiable program. The ASP solver then computes the answer sets of the resulting

program.

To evaluate this approach, we have conducted a series of experiments. In the first part

of the experiments, we use the well-known systemSMODELS as the solver ofALPARSE

and compare it with the solversSMODELSA andDLV on aggregate programs, respectively.

Our experiments show thatALPARSE often runs faster, sometimes substantially faster, than

the two aggregate systems for the benchmarks tested.

The ASP systemCLASP is an efficient solver for weight constraint programs. In the

second part of the experiments, we useCLASP as the ASP solver forALPARSE and com-

pare withDLV on the benchmarks from the first ASP system competition. The results show

thatALPARSE constantly outperformsDLV . This suggests that representing aggregates by

weight constraints is a promising alternative to the explicit handling of aggregates in logic

programs.

Besides efficiency, another advantage is at the system level: an aggregate language can

be built on top of an ASP solver supporting weight constraints with a simple front end that

essentially transforms standard aggregates to weight constraints in linear time. This is in

contrast with the state-of-the-art in handling aggregatesin ASP, which typically requires an

explicit implementation of each aggregate.

In Section 7.2, we relate stable model semantics to answer set semantics. We show

that they coincide for strongly satisfiable programs, and that an arbitrary weight constraint

program can be transformed to a strongly satisfiable program. Section 7.3 provides the

transformation from standard aggregates to weight constraints and from aggregate programs
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to weight constraint programs. The effectiveness of the transformation is demonstrated by

experiments in Section 7.4 and final remarks are given in Section 7.5.

7.2 A study on semantics

Notation: Given a weight constraintW of the form (2.2) and a set of atomsM , we define

Ma(W ) = {ai ∈ M | ai ∈ lit(W )} andMb(W ) = {bi ∈ M | not bi ∈ lit(W )}. Since

W is always clear by context, we will simply writeMa andMb.

7.2.1 Coincidence between semantics

Definition 7.1. Let M be a set of atoms andW a weight constraint of the form (2.2).

W is said to bestrongly satisfiable byM if M |= W implies that for anyV ⊆ Mb,

w(W,M \ V ) ≤ u.

Intuitively, strong satisfaction byM requires that even if somebi’s are removed fromM

(thus the value of the summation forW increases), the upper bound ofW is still satisfied.

W is strongly satisfiableif for any set of atomsM , W is strongly satisfiable byM . A

weight constraint program isstrongly satisfiableif every weight constraint that appears in

the body of a rule in it is strongly satisfiable.

Example 7.1. The following constraints are all strongly satisfiable:1 [a = 1, b = 2] 2,

1 [a = 1,not b = 2] 3, and1 [a = 1,not b = 2]. But 1 [a = 1,not b = 2] 2 is not, since

it is satisfied by{a, b} but not by{a}.

Strongly satisfiable programs constitute a nontrivial class of programs. In particular,

weight constraintsW that possess one of the following syntactically checkable conditions

are strongly satisfiable.

• lit(W ) contains only atoms;

•
∑n

1 wai
+

∑m
1 wbi

≤ u.

Strongly satisfiable constraints are not necessarily convex or monotone.

Example 7.2. Let A = 2[a = 1, b = 1,not c = 1] be a weight constraint. SinceA is

upper bound free, it is strongly satisfiable. ButA is neither monotone nor convex, since

{a} |= A, {a, c} 6|= A, and{a, b, c} |= A.
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To present our results, it is notationally important to liftthe concept of conditional

satisfaction to weight constraints. LetW be a weight constraint andR andS be two sets of

atoms.R conditionally satisfiesW , w.r.t. S, denotedR |=S W if ∀I such thatR ⊆ I ⊂ S,

we haveI |= W . Answer sets of a weight constraint program are defined as least fixpoints

of the operatorKP in Chapter 5.

Theorem 7.1. Let P be a weight constraint program andM ⊆ At(P ). Suppose for any

weight constraintW appearing in the body of a rule inP , W is strongly satisfiable byM .

Then,M is a stable model ofP iff M is an answer set forP .

Proof. Let M andS be two sets of atoms such thatS ⊆M , andP be a program in which

the weight constraints that appear in the bodies of rules inP are strongly satisfiable byM .

We will prove a key lemma below which relatesS |=M W with S |= W M . The goal is to

ensure a one-to-one correspondence between the derivations based on conditional satisfac-

tion (Definition 5.2) and the derivations in the construction of the least model (Definition

2.1). Then it can be shown, by induction on the length of derivations, that a stable model of

P is an answer set for an instance ofP , and vice versa.

Lemma 7.1. Let W be a weight constraint of the form (2.2), andS andM be sets of atoms

such thatS ⊆M . Then,

(i) If S |=M W thenS |= W M andw(W,M) ≤ u.

(ii) If S |= W M andW is strongly satisfiable byM , thenS |=M W .

Proof. We prove (i) and (ii), respectively as follows.

(i) We prove it by contraposition. That is, we show that ifw(W,M) > u or S 6|= W M ,

thenS 6|=M W . The case ofw(W,M) > u is simple. It leads toM 6|= W hence

S 6|=M W .

AssumeS 6|= W M . By definition, the lower bound is violated, i.e.,w(W M , S) < l′,

wherel′ = l −
∑

bi 6∈M wbi
. Let I = Ia ∪ Ib, whereIa = Sa andIb = Mb. Since

w(W M , S) = w(W I , S) andw(W M , S) < l′, we havew(W I , S) < l′. Then, from

Ib = Mb and the assumptionS 6|= W M , we getS 6|= W I . It then follows from

Ia = Sa that I 6|= W . By construction, we haveS ∩ dom(W ) ⊆ I ⊆ M , and

therefore we concludeS 6|=M W .

(ii) AssumeS 6|=M W andW is strongly satisfiable byM . We showS 6|= W M .
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We have eitherS |= W or S 6|= W . If S 6|= W then clearlyS 6|= W M . Assume

S |= W . Then fromS 6|=M W , we have∃I, S ∩ dom(W ) ⊂ I ⊆ M , such that

I 6|= W . SinceW is strongly satisfiable byM , if M |= W then for anyR = M \ V ,

whereV ⊆ Mb, w(W,R) ≤ u. AssumeM |= W . Let R be such thatRb = Ib and

Ia ⊆ Ra. It’s clear thatw(W,R) ≤ u leads tow(W, I) ≤ u. Thus, sinceM |= W ,

I 6|= W follows due to the violation of the lower bound, i.e.,w(W, I) < l.

Now considerI ′ = Sa ∪Mb; i.e., we restrictIa to Sa and expandIb to Mb. Note that

by construction, it still holds thatS ∩ dom(W ) ⊂ I ′ ⊆ M . Clearly,I 6|= W leads

to I ′ 6|= W , which is also due to the violation of the lower bound, asw(W, I ′) ≤

w(W, I), i.e., we havew(W, I ′) < l. By definition, we havew(W I′ , I ′) < l′, where

l′ = l −
∑

bi 6∈I′ wbi
. Note that sinceI ′b = Mb, we havel′ = l −

∑

bi 6∈M wbi
. Since

I ′a = Sa, it follows that w(W I′ , S) < l′. Now sinceW I′ is precisely the same

constraint asW M , we havew(W I′ , S) = w(W M , S), and thereforew(W M , S) <

l′. This showsS 6|= W M .

By Theorem 7.1 and the definition of strongly satisfiable programs, we can show that

for strongly satisfiable programs, the stable model semantics coincides with the answer set

semantics.

Theorem 7.2. Let P be a strongly satisfiable weight constraint program, andM ⊆ At(P )

be a set of atoms.M is a stable model ofP iff M is an answer set forP .

7.2.2 When the semantics disagree

The following theorem can be proved using Lemma 7.1 and Example 7.3 below.

Theorem 7.3. Every answer set of a weight constraint programP is a stable model ofP ,

but the converse does not hold.

In this section, we show what happens to the weight constraint programs that are not

strongly satisfiable.

Example 7.3. Let P be a program consisting of a single rule:

a← [not a = 1] 0. (7.1)

Let M1 = ∅ andM2 = {a} be two sets. The weight constraint[not a = 1]0 in P is not

strongly satisfiable, since althoughM2 satisfies the upper bound, its subsetM1 does not.
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By Definition 2.2,P has two stable models:M1 andM2. But, by Definition 5.2,M1 is an

answer set forP andM2 is not. Note thatM2 is not a minimal model.

The reason thatM2 is not an answer set forP is due to the fact thata is derived by its

being inM2. This kind of circular justification can be seen more clearlybelow.

• The weight constraint is substituted with an equivalent aggregate:

a← COUNT ({X | X ∈ D}) = 1, whereD = {a}.

• The weight constraint is transformed to an equivalent one without negative literal, but

with a negative weight, according to [74]:2 a← [a = −1]−1.

For the claim of equivalence, note that for any set of atomsM , we have:M |= [not a =

1]0 iff [a = −1]−1 iff M |= COUNT ({X | X ∈ D}) = 1

The type of circular justification observed here is similar to “answer sets by reduct”

in dealing with nonmonotone c-atoms [77]. But the constraint [not a = 1] 0 is actually

monotone! One may think that the culprit forM2 above is because it is not a minimal

model. However, the following example shows that stable models that are minimal models

may still be circularly justified.

Example 7.4. Consider the following weight constraint programP (obtained from the one

in Example 7.3 by adding the second rule):

a ← [not a = 1]0 (7.2)

f ← not f, not a (7.3)

Now, M = {a} is a minimal model ofP , and also a stable model ofP , but clearlya is

justified by its being inM .

We now give a more formal account ofcircular justificationfor stable models, borrow-

ing the idea ofunfounded setspreviously used for normal programs [80] and logic programs

with monotone and antimonotone aggregates [10].

Definition 7.2. Let P be a weight constraint program andM a stable model ofP . M is

said to becircularly justified, or simply circular, if there exists a non-empty setU ⊆ M

such that∀φ ∈ U , M \U does not satisfy the body of any rule inP whereφ is in the literal

set of the head of the rule.
2Caution: Due to an internal bug,SMODELS produces∅ as the only stable model, which is inconsistent with

the stable model semantics defined in [74].
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Theorem 7.4. Let P be a weight constraint program andM a stable model ofP . If M is

an answer set forP , thenM is not circular.

Proof. Let P be a weight constraint program andM be an answer set ofP . Consider any

atoma ∈ M . According to the definition of answer set, there is an non-negative numberk

such thata ∈ Kk
P (∅,M) anda 6∈ Kk−1

P (∅,M). Then there must be a ruler ∈ P such that

Kk−1
P (∅,M) |= bd(r) anda ∈ hset(r). ThereforeM is not circular.

Example 7.3 shows that extra stable models (stable models that are not answer sets) of

a program may be circular. However, not all extra stable models are necessarily circular.

Example 7.5. Consider a weight constraint programP that consists of three rules.

a ← (7.4)

b ← 2[a = 1,not b = 1] (7.5)

b ← [a = 1,not b = 1]1 (7.6)

M = {a, b} is a stable model but not an answer set forP . However, it can be verified

that M is not circular under our definition:b is derived by the last rule, givena, andM

stabilizes by the first two rules.3

7.2.3 Transformation to strongly satisfiable programs

In this section we show that all weight constraint programs can be transformed to strongly

satisfiable programs. This is achieved by replacing each weight constraint of form (2.2) in

a given program by two upper bound-free weight constraints.

Let W be a weight constraint of form (2.2). Thestrongly satisfiable encodingof W ,

denoted by(W1,W2) consists of the following constraints:

W1 : l[a1 = wa1
, ..., an = wan ,not b1 = wb1 ,not b1 = wbm

]

W2 : −u +

n
∑

i=1

wai
+

m
∑

i=1

wbi
[not a1 = wa1

, ...,not an = wan , b1 = wb1 , ..., bm = wbm
]

Intuitively, W1 andW2 are to code the lower and upper bound constraints ofW , respec-

tively. The encoding is satisfaction preserving, as shown in the following lemma.

Lemma 7.2. Let W be a weight constraint,(W1,W2) be its strongly satisfiable encoding,

andM be a set of atoms.M |= W iff M |= W1 andM |= W2.

3M is an answer set under the notion of⊲s
C computation [48]. However, it appears that the notion of circular

justification is still an open issue; there could be different intuitions and definitions.
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Proof. The satisfaction ofW1 is trivial, sinceW1 is simply the lower bound part of theW .

Next, we show thatW2 is the upper bound part ofW .

The upper bound part ofW is

∑

1≤i≤m ai · wai
+

∑

1≤i≤n bi · (−wbi
) ≤ u (7.7)

which is equivalent to

−u ≤
∑

1≤i≤m ai · (−wai
) +

∑

1≤i≤n bi · wbi
. (7.8)

By the transformation that eliminates the negative weights(introduced in Section 2.2),

the constraint (7.8) is equivalent to the weight constraintW2.

Using Lemmas 7.1 and 7.2, we establish the following theorem.

Theorem 7.5. Let W be a weight constraint,(W1,W2) be the strongly satisfiable encoding

of W , andS andM be two sets of atoms, such thatS ⊆ M . S |=M W iff S |= W M
1 and

S |= W M
2 .

Proof. For the⇒ part,W M
1 is the same asW M . By (i) of Lemma 7.1, we haveS |= W M

1 .

In the following, we showS |= W M
2 .

The⇒ part:

(1) S |=M W andS ⊆M .

(2) S |= W and∀I, s.t.S ∩ lit(W ) ⊆ I andI ⊆M ∩ lit(W ), I |= W , due to (1).

(3) Let I = Ia ∪ Ib such thatIb = Sb, Ia = Ma.

(4) S ∩ lit(W ) ⊆ I andI ⊆M ∩ lit(W ), due to (1) and (3).

(5) w(W, I) ≤ u, that is,
∑

ai∈Ia
wai

+
∑

bi 6∈Ib
wbi
≤ u, due to (2), (4).

(6)
∑

ai∈Ma
wai

+
∑

bi 6∈Sb
≤ u, due to (3) and (5).

(7)
∑n

i=1 wai
−

∑

ai 6∈Ma
wai

+
∑m

i=1 wbi
−

∑

bi∈Sb
wbi
≤ u, due to (6).

(8)
∑

bi∈Sb
wbi
≥ −u +

∑n
i=1 wai

+
∑m

i=1 wbi
−

∑

ai 6∈Ma
wai

, due to (7).

(9)
∑

bi∈S wbi
≥ −u +

∑n
i=1 wai

+
∑m

i=1 wbi
−

∑

ai 6∈M wai
, due to (8).

(10) S |= W M
2 , due to (9).

The⇐ part:
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(1) S |= W M
1 , S |= W M

2 and bothW1 andW2 are strongly satisfiable.

(2) S |=M W1 andS |=M W2, due to (1) and(ii) of Lemma 7.1.

(3) ∀I s.t.S ∩ lit(W ) ⊆ I andI ⊆M ∩ lit(W ), I |= W1 andI |= W2, due to (2).

(4) ∀I s.t.S ∩ lit(W ) ⊆ I andI ⊆M ∩ lit(W ), I |= W , due to (3) and Theorem 7.2.

(5) S |=M W .

Theorem 7.5 guarantees the one-to-one correspondence between the derivations based

on conditional satisfaction (Definition 5.2) and the derivations in the construction of the

least model (Definition 2.2).

Theorem 7.6. Let P be a weight constraint program,Tr(P ) be the program obtained by

replacing eachW in the body of rules inP by the strongly satisfiable encoding ofW , and

M be a set of atoms.M is an answer set forP iff M is a stable model ofTr(P ).

Example 7.6. Consider a programP with a single rule:a← 0[not a = 3]2. Then,Tr(P )

consists of

a← 0[not a = 3], 1[a = 3].

The weight constraints inTr(P ) are all upper bound-free, henceTr(P ) is strongly satis-

fiable. Both∅ and{a} are stable models ofP , but ∅ is the only stable model ofTr(P ),

which is also the only answer set forP .

7.3 An approach to computing aggregate programs

7.3.1 Encode aggregates as weight constraints

This section shows that aggregates can be encoded as weight constraints.

Definition 7.3. Let A be an aggregate in the form (5.1). A set of weight constraints

{W1, ...,Wn} is anweight constraint encoding(or encoding) of A, denotede(A), if for

any modelM of A, there is a modelM ′ of e(A) such thatM ′
|Dom(A) = M and for any

modelM ′ of e(A), M ′
|Dom(A) is a model ofA, whereM ′

|S denotesM ′ ∩ S.

We show the encodings of aggregates of the form (5.1), where the operatorop is ≥.

The encodings can be easily extended to other relational operators except for the aggre-

gateSUM with operator 6= (more on 6= later in this section). For example, aggregate

SUM ({X | p(X)}) > k can be encoded asSUM ({Y | p(Y )}) ≥ k + 1.
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The encodings work for the aggregates whose variable domaincontains only integers.

For the aggregates whose variable domain contains real numbers, each real number can be

converted to an integer by multiplying a factor (e.g. convert 1.5 to 15 by multiplying 10).

In this case, theResult also needs to be processed correspondingly.

For convenience, below we may write negative weights in weight constraints. Recall

that negative weights can be eliminated by a simple transformation.

SUM, COUNT, and AVG

These aggregates can be encoded by weight constraints rather directly.

For instance,SUM ({X | p(X)}) ≥ k can be represented by

k [p(a1) = a1, ..., p(an) = an]. (7.9)

The aggregatesCOUNT ({X | p(X)}) ≥ k and AVG({X | p(X)}) ≥ k can be

encoded simply by substituting the weights in (7.9) with1 andai − k (for AVG the lower

boundk is also replaced by zero), respectively.

MAX

Let A = MAX({X | p(X)}) ≥ k be an aggregate. The idea in the encoding ofA is that

for a set of numbersS = {a1, ..., an}, the maximum number inS is greater than or equal

to k if and only if

n
∑

i=1

(ai − k + 1) > −
n

∑

i=1

|ai − k + 1|. (7.10)

For each atomp(ai), two new literalsp+(ai) andp−(ai) are introduced. The encoding

e(A) consists of the following constraints.

0 [p(ai) = −1, p+(ai) = 1, p−(ai) = 1] 0, 1 ≤ i ≤ n (7.11)

0 [p(ai) = −di, p
+(ai) = di], 1 ≤ i ≤ n (7.12)

0 [p(ai) = di, p
−(ai) = −di], 1 ≤ i ≤ n (7.13)

1 [p(a1) = d1, p
+(a1) = d1, p

−(a1) = −d1,

..., p(an) = dn, p+(an) = dn, p−(an) = −dn] (7.14)

1 [p(a1) = 1, ..., p(an) = 1] (7.15)

wheredi = ai − k + 1.
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In the following presentation, for any modelM of the encoding,a = 1 meansa ∈ M

anda = 0 meansa 6∈M .

The constraints (7.11), (7.12) and (7.13) are used to encode|ai − k + 1|. Clearly, if

ai > k−1, we havep+(ai) = p(ai) andp−(ai) = 0; if ai < k−1, we havep−(ai) = p(ai)

andp+(ai) = 0; and ifai = k − 1, we havep+(ai) = p(ai) or p−(ai) = p(ai).

The constraint (7.14) encodes the relation (7.10) and the constraint (7.15) guarantees

that a model ofe(A) is not an empty set.

In the following we prove that the weight constraints from (7.11) to (7.15) is the weight

constraint encoding ofA. We denote themW1, W2, W3, W4 andW5, respectively. We

have

Theorem 7.7.LetA = MAX({X | p(X)}) ≥ k be an aggregate ande(A) = {W1,W2,W3,W4,W5}.

Then for any model ofA, there is a modelM ′ of e(A) such thatM ′
|Dom(A) = M and for

any modelM ′ of e(A), M ′
|Dom(A) is a model ofA, whereM ′

|S denotesM ′ ∩ S.

Proof. Let M be a set of atoms andM |= A. Supposep(a1) ∈ M anda1 ≥ k. Then, we

can constructM ′ as:

• p(ai) ∈M ′ andp+(ai) ∈M ′, if p(ai) ∈M andai ≥ k;

• p(ai) ∈M ′ andp−(ai) ∈M ′, if p(ai) ∈M andai < k;

It is easy to check that the weight constraintsW1, W2 andW3 are satisfied byM ′. Since

a1 ≥ k, we havep(a1) ∈ M ′ andp+(a1) ∈ M ′. ThereforeW4 andW5 are also satisfied

by M ′. SoM ′ |= e(A).

Let M ′ be a set andM ′ |= e(A). SinceM ′ modelsW1, W2 andW3, we havep+(ai) =

p(ai) andp−(ai) = 0, for ai ≥ k; p−(ai) = p(ai) andp+(ai) = 0, for ai < k − 1; and

p+(ai) = p(ai) or p−(ai) = p(ai), if ai = k − 1. SinceM ′ |= W4, there must bei, such

thatai ≤ k andp(ai) = 1. That isp(ai) ∈M ′
|Dom(A). Then, we haveM |= A.

MIN

Let A = MIN({X | p(X)}) ≥ k be an aggregate. The idea in the encoding ofA is that

for a set of numbersS = {a1, ..., an}, the minimal number inS is greater than or equal to

k if and only if

n
∑

i=1

(ai − k) =
n

∑

i=1

|ai − k|. (7.16)
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Similar toMAX , the constraint in (7.16) can be encoded by weight constraints.

0 [p+(ai) = 1, p−(ai) = 1, p(ai) = −1] 0 (7.17)

0 [p+(ai) = di, p(ai) = −di] (7.18)

0 [p−(ai) = −di, p(ai) = di] (7.19)

0 [p(a1) = d1, p
+(a1) = −d1, p

−(a1) = d1,

..., p(an) = dn, p+(an) = −dn, p−(an) = dn] (7.20)

0 [p(a1) = −d1, p
+(a1) = d1, p

−(a1) = −d1,

..., p(an) = −dn, p+(an) = dn, p−(an) = −dn] (7.21)

1 [p(a1) = 1, ..., p(an) = 1] (7.22)

wheredi = ai − k.

Similar to Theorem 7.7, we can show that the weight constraints from (7.17) to (7.22)

are an encoding of the aggregateA = MIN({X | p(X)}) ≥ k.

We note that all the encodings above result in weight constraints whose collective size

is linear in the size of the domain of the aggregate being encoded.

In the encoding ofMAX (similarly for MIN ), the first three constraints are the ones

between the newly introduced literalsp+(ai), p−(ai) and the literalp(ai). We call them

auxiliary constraints. The last two constraints code the relation betweenp(ai) andp(aj),

wherei 6= j. We call themrelation constraints. Let A be an aggregate, we denote the

set of auxiliary constraints ine(A) by a(A) and the relation constraints byr(A). If A is

aggregateSUM , COUNT , or AVG, we have thatr(A) = e(A), because no new literals

are introduced in the encodings.

For a given aggregateA, the constraints ine(A) can be transformed to strongly satis-

fiable weight constraints. In the sequel, we assumee(A) contains only strongly satisfiable

weight constraints.

7.3.2 Aggregate programs to weight constraint programs

We translate a logic program with aggregatesP to a weight constraint program, denoted

τ(P ), as follows:

1. For each rule of form (5.2) inP , we have a weight constraint rule of the form

h← r(A1), ..., r(An) (7.23)
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in τ(P ). In the formula (7.23), we user(Ai) to denote the conjunction of all the

weight constraints inr(Ai), and

2. If there are newly introduced literals in the encoding of aggregates, theauxiliary rule

of the form

W ← p(ai) (7.24)

is included inτ(P ), for each auxiliary constraintW of each atomp(ai) in the aggre-

gates.

By Theorem 7.5, it is easy to show the following theorem.

Theorem 7.8. Let P be an aggregate program where the relational operator is not6=. For

any stable modelM of Tr(τ(P )), M|At(P ) is an answer set forP . For any answer setM

for P , there is a stable modelM ′ of Tr(τ(P )) such thatM ′
|At(P ) = M .

Remark. For an aggregate where the relation operator is not ’6=’, the aggregate can be

encoded by a conjunction of weight constraints as we have presented in this section. In this

case, logic equivalence leads to equivalence under conditional satisfaction. That is why we

only need to ensure that an encoding is satisfaction-preserving.

For an aggregate where the relation operator is ’6=’, two classes are distinguished. One

class consists of aggregates of the formsCOUNT (.) 6= k, MAX (.) 6= k andMIN (.) 6= k.

For these aggregates, the operator ’6=’ can be treated as the disjunction of the operators ’>’

and ’<’. Consider the aggregateA = MAX(.) 6= k. A is logically equivalent toA1 ∨A2,

whereA1 = MAX(.) > k andA2 = MAX(.) < k. Let R andS be two sets of atoms, it

is easy to show thatR |=S A iff R |=S A1 or R |=S A2. The other class is the aggregate

SUM (.) 6= k and the related aggregateAVG(.) 6= k. For these aggregates, the operator

’ 6=’ cannot be treated as the disjunction of ’>’ and ’<’, since the conditional satisfaction

may not be preserved. Below is an example.

Example 7.7. Let A = SUM({X |p(X)}) 6= −1, A1 = SUM({X |p(X)}) > −1 and

A2 = SUM({X |p(X)}) < −1. Note thatA is logically equivalent toA1 ∨A2. Consider

S = {p(1)} andM = {p(1), p(2), p(−3)}. WhileS conditionally satisfiesA w.r.t. M (i.e.,

S |=M A), it is not the case thatS conditionally satisfiesA1 w.r.t. M or S conditionally

satisfiesA2 w.r.t. M .

To compute the answer sets of the logic programs with aggregates in the second class,

the transformation approach proposed in [87] may be used, which in the worst case will
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transform an aggregate program to a normal program whose size is exponential in the size

of the aggregate program. This is closely related to a resultof [76], which shows that the

answer set existence problem of logic programs with aggregatesSUM (.) 6= k orAVG(.) 6=

k, is of a complexity higher thanNP .

7.4 Experiments

Our theoretical studies show that an aggregate program can be translated to weight con-

straint programs for which the answer sets are exactly the stable models. This leads to an

approach for answer set computation for aggregate programs, where the answer sets of an

aggregate program are computed as the stable models of its corresponding strongly satisfi-

able weight constraint program. We develop the systemALPARSE to evaluate the efficiency

of the approach.ALPARSE consists of two parts: a front-end translator which translates an

aggregate program to a strongly satisfiable program using the translation in Section 7.3.2

and an ASP solver which supports weight constraints. In the next two sections, respectively,

we useSMODELS andCLASP as the ASP solvers forALPARSE and compareALPARSE

with other implementations for aggregate programs.

The experiments are run on Scientific Linux release 5.1 with 3GHz CPU and 1GB

RAM. The reported execution time ofALPARSE consists of the transformation time (from

aggregates to weight constraints), the grounding time (calling LPARSE for SMODELS and

GRINGO for CLASP ), and the search (bySMODELS or CLASP ) time. The execution time

of SMODELSA consists of grounding time, search time and unfolding time (computing the

solutions to aggregates). The execution time ofDLV includes grounding time and search

time (the grounding phase is not separated from the search inDLV ).

7.4.1 ALPARSEbased onSMODELS

We code logic programs with aggregates as weight constraintprograms and useSMODELS

2.32 for the stable model computation. If a benchmark program is not already strongly

satisfiable, it will be transformed into one, thus we can use the current implementation of

SMODELS for our experiments.

We compare our approach with two systems,SMODELSA andDLV .
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A Comparison with SMODELSA

We compare our approach to the unfolding approach implemented in the systemSMODELSA

[21].4

The experimental results are reported in Table 7.1, where the sample size is measured

by the argument used to generate the test cases. The execution times are the average of

one hundred randomly generated instances for each sample size. The results show that

SMODELS is often faster thanSMODELSA , even though both use the same search engine.

The first set of problems in Table 7.1 is the company control problem. In the problem,

a collection of companies and the percentage of one company which is owned by another

company are given. A companyA controls another companyB if the sum of shares of

B owned either directly byA or by companies controlled byA, is more than 50%. The

problem is to determine the control relationship between the companies involved. The

aggregate used in the program isSUM .

The second set of problems is the employee raise problem. In this problem, the working

hours for each quarter of a year of a set of employees are given. The problem is to choose a

number of employees to be promoted. The requirement for the promotion of an employee

is that the number of working hours of the employee in a year isbeyond a given threshold.

The aggregate used in the program isSUM .

The third set of problems is the party invitations problems.In this problem, a number

of persons are given. A person may be a friend of some other person. We are planning a

party and want people that come to the party as more as possible. A person will come to

the party only if the number of his or her friends that come to the party is greater than some

number. The aggregate used in the program isCOUNT .

The fourth (NM1) and fifth (NM2) problems are benchmarks created by the authors of

smodelsA. The aggregates used in the programs areMAX andMIN , respectively.

Scale-up could be a problem forSMODELSA , due to the exponential blowup of the size

of the unfolded program for a given aggregate program. For instance, given an aggregate

COUNT ({a | a ∈ S}) ≥ k, SMODELSA would list allaggregate solutionsin the unfolded

program, whose number isCk
|S|. For a large domainS andk being around|S|/2, this is a

huge number. If one or a few solutions are needed,ALPARSE takes little time to compute

the corresponding weight constraints.

4The benchmarks and programs can be found atwww.cs.nmsu.edu/∼ielkaban/asp-aggr.html.
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A Comparison with DLV

In [1] the seating problem was chosen to evaluate the performance ofDLV 5. The problem

is to generate a sitting arrangement for a number of guests, with m tables andn chairs per

table. Guests who like each other should sit at the same table; guests who dislike each other

should not sit at the same table. The aggregate used in the problem isCOUNT . We use

the same setting to the problem instances as in [1]. The results are shown in Table 7.2. The

instance size is the number of atom occurrences in the groundprograms. We report the

result of the average over one hundred randomly generated instances for each problem size.

The experiments show that, by encoding logic programs with aggregates as weight con-

straint programs,ALPARSE solves the problem efficiently. For large instances, the execu-

tion time ofALPARSE is about one order of magnitude lower than that ofDLV and the sizes

of the instances are also smaller than those in the language of DLV .

Weight constraint programs vs. normal programs for global constraints

Some global constraints can be encoded by weight constraints compactly. We have exper-

imented with the pigeon-hole problem modeled by thealldifferent constraint. The

weight constraint program that encodesalldifferent is about one order of magnitude

smaller than the normal program encoding [61]. The execution of the weight constraint pro-

gram is 6-7 times faster than its normal program counterpartfor hard unsatisfiable instances

where the number of holes is one less than the number of pigeons, on the same machine

under default settings. See Table 7.3 for the results.

7.4.2 ALPARSEbased onCLASP

We use the published programs for the benchmarks6. We set the cutoff time to 600 seconds.

The instances that are solved in the cutoff time are called “solvable”, otherwise “unsolv-

able”. In the figures of the experiment results, the running time of unsolvable instances are

just plotted as 600 seconds. In the summary of the experiments Table 7.4, the “Execution

Time “ is the average running time in seconds for the solvableinstances.

The experimental results are shown in Figures 7.1 to 7.12. They are summarized in

Table 7.4. It can be seen thatALPARSE is constantly faster thanDLV by several orders of

magnitude, except for the Towers of Hanoi benchmark.

5The program contains a disjunctive head, but can be easily transformed to a non-disjunctive program.
6The benchmarks and programs can be found athttp://asparagus.cs.uni-potsdam.de/contest/
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During the writing of the thesis,CLASP is progressed to support aggregatesSUM ,

MIN andMAX . The weight constraints are implemented as the aggregateSUM . The ag-

gregates used in the benchmarks areSUM except for Towers of Hanoi, where the aggregate

MAX is used. We also tried theCLASP program, where aggregateMAX is not replaced

by its weight constraint encoding (Note that, the answer sets of this aggregate program co-

incide with the corresponding weight constraint program.). The performances ofCLASP

on these two programs are similar.

As we have mentioned, the transformation approach indicates that it is important to

focus on an efficient implementation of aggregateSUM rather than on implementing other

aggregates such asAVG andTIMES in CLASP , since they can be encoded bySUM .7

The following is a description of the benchmarks.

15-Puzzle

In 15-puzzle, we have a4×4 grid where there are 15 numbers (1 to 15) and one blank. The

goal is to arrange the numbers from their initial configuration to the goal configuration by

sliding one number at a time to its adjacent blank position. Let (x, y) be the coordinates of

a number on the grid and(i, j) be those of the blank. Then(x, y) and(i, j) are adjacent if

|x− i|+ |y − j| = 1.

Schur Numbers

The input of the Schur number problem consists of two integers m and n. We need to

distribute integers from 1 ton to m disjoint sets so that all of the sets are sum-free. By

sum-free, we mean ifx andy both belong to the set, thenx + y is not in the set.

Blocked N-queens

The blockedN -queens problem is a variant of theN -queens problem. In the blockedN -

queens problem we have anN × N board andN queens. Each square on the board can

hold at most one queen. Some squares on the board are blocked and cannot hold any queen.

A conflict arises when any two queens are assigned to the same row, column or diagonal.

A blockedN -queens is an assignment of theN queens to the non-blocked squares of

the board in a conflict-free manner.
7The aggregateTIMES can be translated toSUM , using the logarithm transformation.
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Weighted Spanning Tree

Let G be a directed graph. Let every edge in the graph be assigned a weight. A spanning

tree isw-bounded if for every vertex the sum of the weights of the outgoing edges at this

vertex is at mostw.

In the weighted spanning tree problem we are given a directedgraphG = (V,E,W ),

whereV is the set of vertices,E is the set of edges andW is a function that maps each edge

in the graph to an integer weight. We are also given an integerboundw. The goal is to find

aw-bounded spanning tree inG.

Bounded Spanning Tree

Let G be a directed graph. A spanning tree isd-bounded if for every vertex the number of

outgoing edges at this vertex is at mostd.

In the bounded spanning tree problem we are given a directed graphG = (V,E), where

V is the set of vertices andE is the set of edges. We are also given a boundd. The goal is

to find a d-bounded spanning tree inG.

Hamiltonian Cycle

A Hamiltonian cycle (or HC for short) in an undirected graphG = (V,E), whereV is the

set of vertices andE is the set of edges. A set of edgesC is a HC inG if every vertexv in

V occurs exactly once inC. The input of the HC problem is an undirected graph. The goal

is to find a HC in the graph.

Towers of Hanoi

The classic Tower of Hanoi (ToH) problem has three pegs andn disks of different size.

Initially, all n disks are on the left-most peg in sorted order. The goal is to move alln disks

to the right-most peg with the help of the middle peg. The rules are:

1. move one disk at a time

2. only the top disk on a peg can be moved

3. larger disk cannot be placed on top of a smaller one

It is known that for a classic ToH problem withn disks, the shortest plan for moving alln

disks from the left-most peg to the right-most peg consists of 2n − 1 moves.
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Social Golfer

In the problem, we haven golf players, each of whom play golf once a week, and always in

groups ofm. The goal is to find ap-week schedule with ’maximum socialization’; that is,

as few repeated pairs as possible, and finding a schedule of minimum length such that each

golfer plays with every other golfer at least once (’full socialization’).

Weighted Latin Square

The weighted Latin-square problem is a variant of the Latin-square problem. Given ann×n

weightswt(i, j) and a boundw, a weighted Latin-square is ann× n arraya such that

1. each entry contains an integer from{1, 2, ..., n}

2. no row contains the same integer twice

3. no column contains the same integer twice

4. ∀i, 1 ≤ i ≤ n, a(i, 1) × wt(i, 1) + a(i, 2) × wt(i, 2) + a(i, n)× wt(i, n) ≤ w

The goal in the problem is to find a weighted Latin square.

Weight-bounded Dominating Set

Let G = (V,E) be a directed graph. Each edge(u, v) in G is associated with a positive

weight wu,v. A subsetD of V is aw-dominating set ofG if, for every vertexv in V , at

least one of the following conditions holds:

1. v is in D;

2.
∑

{y | (v,y)∈E and y∈D} wv,y ≥ w;

3.
∑

{z | (z,v)∈E and z∈D} wz,v ≥ w.

The goal is to find aw-dominating set ofG of size at mostk, wherek is an integer param-

eter.

Traveling Salesperson

Given an integerw and an undirected graphG = (V,E), where every edge(u, v) is asso-

ciated with a positive weightwu,v, the goal is to find a Hamiltonian cycle inG (a simple

cycle that visits all vertices inG exactly once) such that the sum of the edges in the cycle is

at mostw.
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Car Sequencing

The goal in the problem is to produce a number of cars. The carsare not identical, be-

cause different options are available as variants on the basic model. The assembly line has

different stations which install the various options (air-conditioning, sun-roof, etc.). These

stations have been designed to handle at most a certain percentage of the cars passing along

the assembly line. Furthermore, the cars requiring a certain option must not be bunched

together, otherwise the station will not be able to cope. Consequently, the cars must be

arranged in a sequence so that the capacity of each station isnever exceeded. For instance,

if a particular station can only cope with at most half of the cars passing along the line, the

sequence must be built so that at most 1 car in any 2 requires that option. The problem has

been shown to be NP-complete (Gent 1999).

The following two constraints must be satisfied.

1. The given number of cars for each class must be produced (a class is a subset of

options) .

2. The cars must be arranged in a sequence so that the capacityof each station is never

exceeded.

Program Sample Size ALPARSE SMODELSA

Company Control 20 0.03 0.09
Company Control 40 0.18 0.36
Company Control 80 0.87 2.88
Company Control 120 2.40 12.14
Employee Raise 15/5 0.01 0.69
Employee Raise 21/15 0.05 4.65
Employee Raise 24/20 0.05 5.55
Party Invitation 80 0.02 0.05
Party Invitation 160 0.07 0.1
NM1 125 0.61 0.21
NM1 150 0.75 0.29
NM2 125 0.65 2.24
NM2 150 1.08 3.36

Table 7.1: Benchmarks used bySMODELSA
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Figure 7.1: 15-Puzzle

 0.01

 0.1

 1

 10

 100

 1  2  3  4  5

T
im

e(
se

co
nd

s)

Instance Id

Schur Number

dlv
clasp

Figure 7.2: Schur Number
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Figure 7.3: Blocked N-queens
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Figure 7.4: Weighted Spanning Tree
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Figure 7.5: Bounded Spanning Tree
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Figure 7.6: Hamiltonian Cycle
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Figure 7.7: Towers of Hanoi
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Figure 7.8: Social Golfer
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Figure 7.9: Weighted Latin Square
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Figure 7.10: Weight Bounded Dominating Set
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Figure 7.11: Traveling Sales Person Problem
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Figure 7.12: Car Sequencing
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C T
Execution Time Instance Size

ALPARSE DLV ALPARSE DLV
4 3 0.1 0.01 293 248
4 4 0.2 0.01 544 490
5 5 0.58 0.02 1213 1346
5 10 0.35 0.31 6500 7559
5 15 1.24 1.88 18549 22049
5 20 3.35 7.08 40080 47946
5 25 8.19 64.29 73765 88781
5 30 16.42 152.45 12230 147567

Table 7.2: Seating

p h
Execution Time Instance Size

ALPARSE Normal ALPARSE Normal
5 4 0.00 0.01 98 345
6 5 0.01 0.01 142 636
7 6 0.01 0.06 194 1057
8 7 0.09 0.49 254 1632
9 8 0.74 4.38 322 2385
10 9 6.89 43.66 398 3340
11 10 71.92 480.19 482 4521
12 11 827.85 5439.09 574 5952

Table 7.3: Pigeon hole

7.5 Conclusion

We show that for a large class of programs the stable models semantics coincides with the

answer set semantics. In general, answer sets are all stablemodels. When a stable model is

not an answer set, it may be circularly justified. We propose atransformation, by which a

weight constraint program can be translated to strongly satisfiable programs, for which all

stable models are answer sets and thus well-supported models.

As an issue of methodology, we have shown that most standard aggregates can be en-

coded by weight constraints. Therefore the ASP systems thatsupport weight constraints

can be applied to efficiently compute the answer sets of logicprograms with almost all

standard aggregates. The systemALPARSE demonstrates the efficiency of this approach.

As we have shown that stable models that are not sanctioned byanswer set semantics

may or may not be circular under our definition of circular justification. This left open

the question of what would be the desired semantics for weight constraint programs. It

seems that the notion of unfounded sets can serve as a definition for a new semantics for
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Benchmarks Number of Instances
Solved Instances Execution Time
ALPARSE DLV ALPARSE DLV

15 Puzzle 11 11 11 0.31 1.16
Schur Number 5 5 4 0.10 0.62
Blocked N-queens 37 37 12 8.94 328.92
Wt. Spanning Tree 30 30 30 0.12 0.17
Bd. Spanning Tree 30 30 5 1.91 414.42
Hamiltonian Cycle 29 29 29 0.84 29.22
Towers of Hanoi 29 29 21 21.61 18.35
Social Golfer 168 129 107 1.52 14.69
Wt. Latin Square 35 35 18 0.03 105.01
Wt. Dominating Set 30 23 3 0.26 192.53
Traveling Sales 24 24 23 0.11 12.74
Car Sequencing 54 23 0 0.08 –

Table 7.4: SummaryALPARSE andDLV

weight constraint programs, since it appears to separate the desired stable models from the

undesired ones. Then, a question is whether a transformation exists that eliminates only

circular models.

Another question of interest is on the expressiveness of weight constraints. We know

there are difficulties representing aggregates with the operator 6=. Then it is interesting to

investigate characterizations of the constraints that canbe encoded by weight constraints.
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Chapter 8

Semantics for abstract constraint
programs

Logic programs withabstract constraint atoms(or c-atoms) is proposed as a general frame-

work for investigating, in a uniform fashion, various extensions of logic programming, in-

cluding weight constraint and aggregate programs. A c-atomexpresses a constraint over

a set of atoms. It takes the form(D,C), whereD is a set of atoms, the domain of the

constraint, andC a collection of the subsets from the power set ofD serving as the set of

solutions to the constraint.

Different semantics have been proposed for logic programs with c-atoms. Similarly

to the case in aggregate programs, we take the semantics based on conditional satisfaction

(also called answer set semantics) as the semantics of logicprograms with c-atoms. We

present the answer set semantics in Section 8.1. In Section 8.2, we introduce other seman-

tics and the relationships between these semantics and the answer set semantics.

8.1 Answer set semantics

We assume a propositional language with a countable set of propositionalatoms. Once a

programP is defined, we will denote byAt(P ) the set of atoms appearing inP .

A abstract constraint atom(c-atom) is of the form (D,C), whereD is a finite set

of atoms (thedomainof the c-atoms) andC ⊆ 2D (the admissible solutions, or simply

solutions, of the c-atom). Intuitively, a c-atom(D,C) is a constraint on the set of atomsD,

andC represents its solutions. Given a c-atomA = (D,C), we useAd andAc to refer to

D andC, respectively.

Example 8.1. Consider the aggregateA = SUM({X | p(X)}) ≥ −1, whereD(X) =

{1,−2}. A can be written as a c-atomB = (D,C) whose domain isD = {p(1), p(−2)}
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and

C = {S | S ⊆ D,SUM(S) ≥ −1} = {∅, {p(1)}, {p(−2), p(1)}}.

Let A be a c-atom.A is said to beelementaryif it is of the form ({a}, {{a}}), which is

just written asa; A is monotoneif for every X ⊆ Y ⊆ Ad, X ∈ Ac implies thatY ∈ Ac;

A is nonmonotoneif it is not monotone;A is antimonotoneif Ac is closed under subset,

i.e., for everyX,Y ⊆ Ad, if Y ∈ Ac andX ⊆ Y thenX ∈ Ac; A is convexif for every

X,Y,Z ⊆ Ad such thatX ⊆ Y ⊆ Z andX,Z ∈ Ac, thenY ∈ Ac.

A set of atomsM satisfies a c-atomA, writtenM |= A, if M ∩Ad ∈ Ac. OtherwiseM

does not satisfyA, writtenM 6|= A. M |= not A (or M |= ¬A) if M 6|= A. A c-atoms of

the form(D, ∅) is not satisfiable. It is often denoted by⊥. On the other hand, some c-atoms

are tautologies. For example, all monotone c-atoms of the form (D, 2D) are tautologies.

Satisfiability naturally extends to conjunctions of c-atoms (sometimes written as a set)

and disjunctions of c-atoms.

A logic program with c-atoms, also called a(abstract) constraint program(or justpro-

gram in this chapter), is a finite set of rules of the form

A← A1, . . . , Ak,not Ak+1, . . . ,not An. (8.1)

whereA andAi’s are arbitrary c-atoms. The literalsnot Aj are callednegative c-atoms.

For a ruler of the form (8.1), we define

hd(r) = A andbd(r) = {A1, ..., Ak,not Ak+1, . . . ,not An},

which are called theheadand thebodyof r, respectively.

A rule r is said to bebasic if every c-atom in it occurs positively, and eitherhd(r) is

elementary orr is a constraint. A programP is basic if every rule in it is basic;P is a

normal programif every c-atom in it is elementary;P is amonotone-constraint programif

every c-atom in it is monotone.

Following [77], a negative c-atomnotA in a program is interpreted by its complement,

and substituted by c-atomA, whereAd = Ad andAc = 2Ad\Ac. For example, the negative

elementary c-atomnot ({a}, {{a}}) will be replaced by c-atom({a}, {∅}).

Due to this assumption, in the sequel, if not said otherwise,constraint programs contain

only positive c-atoms.
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A set of atomsM ⊆ At(P ) is amodelof a programP if for each ruler ∈ P , M |=

hd(r) wheneverM |= bd(r). M is a supportedmodel ofP if for any a ∈ M , there is

r ∈ P such thata ∈ hd(r)d andM |= bd(r).

Answer sets for constraint programs are defined in two steps.In the first step, answer

sets for basic programs are defined, based on theconditional satisfactionof a c-atom.

Definition 8.1. [77] Let M and S be sets of atoms. The setS conditionally satisfiesa

c-atomA, w.r.t. M , denoted byS |=M A, if S |= A and for everyI ⊆ Ad such that

S ∩Ad ⊆ I andI ⊆M ∩Ad, we have thatI ∈ Ac.

An operatorTP is then defined.

Definition 8.2. Let P be a basic program andR andS two sets of atoms.TP (R,S) is

defined as:

TP (R,S) = {a : ∃r ∈ P, hd(r) = a 6= ⊥, R |=S bd(r)}.

The operatorTP is monotonic at its first argument, with respect to its secondargument.

Proposition 8.1. Let M be a model ofP , and letS ⊆ U ⊆ M . ThenTP (S,M) ⊆

TP (U,M) ⊆M .

Definition 8.3. Let M be a model of a basic programP . M is ananswer setfor P iff

M = T∞
P (∅,M), whereT 0

P (∅,M) = ∅ andT i+1
P (∅,M) = TP (T i

P (∅,M),M), for all

i ≥ 0.

Next, a constraint program is represented by its instances in the form of basic programs,

and the answer sets of the former are defined in terms of the answer sets of the latter.

Definition 8.4. Let P be a constraint program andr ∈ P . For eachπ ∈ hd(r)c, the

instanceof r w.r.t. π is the set of rules consisting of

1. b← bd(r), for eachb ∈ π, and

2. ⊥ ← d, bd(r), for eachd ∈ hd(r)d\π.

An instance ofP is a basic program obtained by replacing each rule ofP with one of its

instances.

Definition 8.5. [77] Let P be a constraint program andM a set of atoms.M is an answer

set forP iff M is an answer set for one of its instances.
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Example 8.2. Let P be the program consists of the following rules.

c ← a (8.2)

({a, b}, {{a}, {b}}) ← ({a, b}, {∅, {a}, {b}}) (8.3)

The instances ofP , denoted byP1 andP2, respectively areP1:

c ← a (8.4)

a ← ({a, b}, {∅, {a}, {b}}) (8.5)

⊥ ← b, ({a, b}, {∅, {a}, {b}}) (8.6)

andP2:

c ← a (8.7)

b ← ({a, b}, {∅, {a}, {b}}) (8.8)

⊥ ← a, ({a, b}, {∅, {a}, {b}}) (8.9)

It can be checked that{a, c} and{b} are answer sets ofP1 andP2 respectively. Thus, both

of them are answer sets ofP .

8.2 Other semantics

8.2.1 MR-answer set semantics

The concept of logic programs with c-atoms was originally introduced by Marek and Rem-

mel [54] where the programs with c-atoms were namedset constraint programs(SC-programs).

The proposed semantics (let us call it MR-answer set semantics) is based on the upper-

closure of a c-atom, with respect to the domain of the c-atom.For a c-atomA = (D,C),

the upper closure ofA, denotedÂ is a c-atom, wherêAd = D and

Âc = {S | S ⊆ D and ∃Z ∈ C such that Z ⊆ S}.

Given an SC-programP and a set of atomsM . The NSS transform, NSS(P,M ), is

obtained by firstly removing fromP all rules whose body are not satisfied byM and then,

for each ruler of form A← A1, ..., An and an atoma ∈ C ∩M , generating a rule

a← Ĉ1, ..., Ĉn

to replacer.
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Let P be a SC-program andM a set of atoms.M is an MR-answer set ofP if M |= P

andM is the least model of NSS(P,M ).

It was shown in [77] that any answer set of a program is an MR-answer set of the

program.

The MR-answer set semantics does not guarantee the minimality of answer sets.

Example 8.3. Consider the programP :

a ←

c ←

d ← ({a, c, d}, {{a}, {a, c, d}})

According to the conditional satisfaction semantic, this program has only one answer

setM1 = {a, c}. But according to the MR-answer set semantics,M2 = {a, c, d} is another

answer set, since the reduct ofP w.r.t. M2 is

a ←

c ←

d ← ({a, c, d}, {{a}, {a, c}, {a, d}, {a, c, d}})

and{a,c,d} is a minimal model of the reduct.

The reason that causes the non-minimal answer set is that thec-atom{a, c, d}, {{a}, {a, c, d}})

in the last rule ofP is replaced by its upper-closure{{a}, {a, c}, {a, d}, {a, c, d}}).

8.2.2 MT-answer set semantics

Marek and Truszczyński in [54] propose semantics for logicprograms with monotone c-

atoms (monotone constraint programs). In the proposal (letus call it MT-answer set seman-

tics), the MT-answer sets are defined as the fixpoint of anondeterministic one-stepoperator

T nd
P (P,M), whereP is a monotone constraint program andM a set of atoms, that is,

T nd
P (P,M) = {S | S ⊆ hset(P (M)) and S |= hd(r), for each rule r ∈ P (M)}(8.10)

whereP (M) is the set of rules inP whose body is satisfied byM . Recall that, for a set of

rulesP , hset(P ) is the union of the atoms appearing in the heads of rules inP .

LetP be a monotone constraint program where all c-atoms are positive. A P -computation

is a sequence〈Xk〉 (indexed with non-negative integers) such that (1).X0 = ∅, (2).

Xk+1 ∈ T nd
P (Xk), and (3).Xk =

⋃

i<k

Xi.
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Let P be a monotone constraint program with only positive c-atomsandM a set of

atoms. M is an MT-answer set ofP if M |= P and M is the least fixpoint ofP -

computation. IfP contains negative c-atoms, a modelM of P is an MT-answer sets if

M is the least fixpoint ofP -computation on the program reductPM , which is obtained by

firstly removing the rules fromP that are not satisfied byM and then removing all negative

c-atoms from the bodies of the remaining rules.

It has been shown that, for monotone constraint programs, the answer set semantics,

MR-answer set semantics and MT-answer set semantics coincide.
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Chapter 9

Loop formulas for abstract
constraint programs

9.1 Motivation

In this chapter, we present a method for answer set computation for logic programs with

arbitrary c-atoms c-atoms, by formulating loop formulas for these programs, for the answer

set semantics. This semantics is known to coincide with the ultimate stable semantics for

logic programs with aggregates [18]. Our work follows the previous work on loop formulas

for normal logic programs [43], and loop formulas for logic programs with monotone and

convex constraints [49]. We show that answer sets of a logic program with arbitrary c-

atoms are precisely the models of completion that satisfy our loop formulas. Since the

semantics based on conditional satisfaction agrees with the semantics for logic programs

with monotone and convex c-atoms, our loop formulas are applicable to the latter. Actually,

for this class of programs, our loop formulas are simpler (sometimesexponentiallysimpler)

than those proposed in [49]. Our results can be applied to anyconstraint solver, where

models of completion can be computed. The next question is which constraint solvers are

suitable for this task.

In [49], it is shown how logic programs with cardinality and weight constraints, called

lparse programs, can be encoded by pseudo-Boolean (PB) theories. Here, we advocate

in addition that PB constraint solvers (e.g. [11]) are attractive candidates for computing

models of completion for programs with arbitrary c-atoms, especially for programs with

aggregates and global constraints. This is due to the observation that typical aggregates in

logic programs, as well as some global constraints, can be encoded as PB theories com-

pactly. That is, the size of the PB encoding of such a constraint is linear in the size of the

constraint’s domain. This is in contrast with the unfoldingapproach [21, 64] - translating
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a logic program with aggregates to a normal program, where the resulting normal program

could be of exponential size for the same constraint. We showsome encodings to illustrate

this connection.

In the next section, we introduce the concept of completion of abstract constraint pro-

grams. The loop formulas are presented in Section 9.3. The relation to previous work is

given in Section 9.4. In Section 9.5, we show that most aggregates and global constraints

can be encoded by PB theories. Section 9.6 contains the conclusions.

9.2 Completion

In the sequel, for a set of atomsS = {a1, . . . , an}, we useS∧ to denote the conjunction

a1 ∧ . . . ∧ an, and¬S to denote the conjunction¬a1 ∧ . . . ∧ ¬an.

For a c-atomA, we may be interested only in the domain atoms that actually appear in

some admissible solution ofA. We thus defineASet(A) = {a : a ∈ π, for someπ ∈ Ac}.

Following [49], thecompletionof a constraint programP , denoted byComp(P ), con-

sists of the following formulas

• [bd(r)]∧ → hd(r), for eachr ∈ P ;

• x→
∨

{[bd(r)]∧ : r ∈ P, x ∈ ASet(hd(r))}, for each atomx ∈ At(P ).

The first formula above captures the if definition in a rule, whereas the second completes

the definition by adding the only if part (Please refer Example 9.3).

The completion of a constraint program is a set of formulas with c-atoms. The notion of

satisfaction and models for constraint programs extends ina natural way to formulas with

c-atoms.

Note that in the definition of [49], a negative literalnot A in completion is interpreted

as¬A, while in this paper it is interpreted by its complementA. The two are consistent

since for any set of atomsI ⊆ At(P ), I |= ¬A if and only if I |= A.

Theorem 9.1. [49] Let P be a constraint program. A set of atomsM is a supported model

of P if and only if M is a model ofComp(P ).

9.3 Loop formulas

To define the loop formulas for a constraint program, we introduce the notion oflocal power

set.
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Definition 9.1. Let A be a c-atom. A pair of sets〈B,T 〉, whereB ⊆ T ⊆ Ad, is called a

local power set (LPS)of A, if B ∈ Ac, T ∈ Ac and for any setI such thatB ⊆ I ⊆ T , we

haveI ∈ Ac.

Intuitively, 〈B,T 〉 represents an “extension” of the power set2T\B , whereB is the

“bottom” element andT is the “top” element.

A local power set〈B,T 〉 of a c-atomA is said to bemaximalif there is no other local

power set〈B′, T ′〉 of A such thatB′ ⊆ B andT ⊆ T ′.

Example 9.1. Let A = ({a, b, c}, {∅, {a}, {a, b, c}}) be a c-atom. The maximal local

power set ofA are〈∅, {a}〉 and〈{a, b, c}, {a, b, c}〉}). Note that the local power sets〈∅, ∅〉

and〈{a}, {a}〉 are not maximal.

The LPS representation of a c-atom is defined as follows.

Definition 9.2. Let A be a c-atom. The LPS representation ofA, denoted byA∗, is

(Ad, A
∗
c), whereA∗

c = {〈B,T 〉 : 〈B,T 〉 is a maximal LPS ofA}.

Example 9.2. Let A = ({a, b, c}, {∅, {a}, {a, b, c}}). Then,

A∗ = ({a, b, c}, {〈∅, {a}〉, 〈{a, b, c}, {a, b, c}〉}).

Let M be a set of atoms andA be a c-atom. We sayM satisfiesA∗, denotedM |= A∗,

if M |=
∨

{B∧ ∧ ¬(Ad \ T ) : 〈B,T 〉 ∈ A∗
c}.

The satisfaction of a c-atom can be characterized by the satisfaction of its LPS repre-

sentation.

Proposition 9.1. LetA be a c-atom andM be a set of atoms. We haveM |= A iff M |= A∗.

The proof of the proposition is straightforward by the definition of the LPS representa-

tion of c-atoms.

A∗ can be seen as a compact representation ofA. For example, given a monotone

c-atomA = (D, 2D − {∅}), A∗ = (Ad, {〈B,Ad〉 : B ⊆ Ad, B is singleton}).

To capture the loops in constraint programs, we define the dependency graph for a

constraint program.

Definition 9.3. Let P be a constraint program. Thedependency graphof P , denoted by

Ga
P = (V,E) (a stands for arbitrary c-atoms), is a directed graph, where
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• V = At(P )

• (u, v) is a directed edge fromu to v in E if there is a ruler ∈ P such thatu ∈

ASet(hd(r)) andv ∈ B, for some〈B,T 〉 ∈ A∗
c andA ∈ bd(r).

Let G = (V,E) be a directed graph. A setL ⊆ V is a loop in G if the subgraph ofG

induced byL is strongly connected. A loop ismaximalif it is not a proper subset of any

other loop inG. A maximal loop isterminatingif there is no edge inG from L to any other

maximal loop.

For any nonempty setX ⊆ At(P ), we denote byGa
P [X] the subgraph ofGa

P induced

by X.

The idea of loop formula is that for any atom in a loop to be in ananswer set of a

program, it must be supported by atoms that are not in the loop. To capture this idea, the

restrictionof the LPS representation of a c-atom is defined.

Definition 9.4. Let P be a constraint program,A be a c-atom, andL ⊆ At(P ). The

restrictionof A∗ to L, denoted byA∗
|L, is (Ad, A

∗
c|L), where

A∗
c|L = {〈B,T 〉 ∈ A∗

c : L ∩B = ∅}.

Definition 9.5. Let L be a set of atoms andr be a ruleA ← A1, . . . , An. We define the

body formulaof r w.r.t. L as

αL(r) = π1 ∧ . . . ∧ πn,

whereπi =
∨

{B∧ ∧ ¬(Aid \ T ) : 〈B,T 〉 ∈ A∗
ic|L
}, for eachi, 1 ≤ i ≤ n. If there is a

c-atomAi such thatA∗
ic|L

= ∅, thenαL(r) = false.

We are ready to give our definition of loop formulas.

Definition 9.6. Let P be a constraint program andL be a loop inGa
P . The loop formula

for L, denoted byLP a(L), is defined as

∨

L→
∨

{αL(r) : r ∈ P, L ∩ASet(hd(r)) 6= ∅}. (9.1)

The loop completionof a constraint programP , denotedLComp(P ), combines the

completion ofP with the loop formulas for loops inGa
P , and is defined as

LComp(P ) = Comp(P ) ∪ {LP a(L) : L is a loop inGa
P }. (9.2)
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Example 9.3. Consider the following programP .

r1 : p← ({a, b, c}, {∅, {a, b}, {a, b, c}}).
r2 : a← p.
r3 : b← p.

Let A = ({a, b, c}, {∅, {a, b}, {a, b, c}}). The completion ofP is

Comp(P ) = {A→ p, p→ A, p→ a, a→ p, p→ b, b→ p}.

The only model ofComp(P ) is M = {a, b, p}. We will see thatM is not an answer set for

P .

A∗ = ({a, b, c}, {〈∅, ∅〉, 〈{a, b}, {a, b, c}〉}).

L = {a, b, p} is a loop inGa
P , and its loop formula is:

LP a(L) = a ∨ b ∨ p→ αL(r1) ∨ αL(r2) ∨ αL(r3).

SinceαL(r1) = ¬a ∧ ¬b ∧ ¬c andαL(r2) = αL(r3) = false, we get

LP a(L) = a ∨ b ∨ p→ (¬a ∧ ¬b ∧ ¬c).

As M 6|= LP a(L), we conclude thatM is not an answer set forP .

Example 9.4. Consider the programP :

d←({a,b,c,d},{{a},{a, b},{a, c},{a, b, c},{d},{a,d}}).
a← .

Let A be the c-atom in the body of the first rule. We have

A∗ = ({a, b, c, d}, {〈{a}, {a, b, c}〉, 〈{a}, {a, d}〉, 〈{d}, {a, d}〉}).

The loop formula for the loopL = {d} is:

LP a(L) = d→ (a ∧ ¬d) ∨ (a ∧ ¬b ∧ ¬c)

As M = {a, d} is a model ofComp(P ) andM |= PLa(L), for the only loopL in Ga
P , it

is an answer set forP .

To establish the main theorem, we need the following lemma.

Lemma 9.1. Let P be a basic program. A setM ⊆ At(P ) is an answer set forP iff M is

a model ofLComp(P ).

103



Proof. (⇒) Let M be an answer set forP . Then,M is a supported model ofP , soM |=

Comp(P ). LetL be a loop inGa
P . If L∩M = ∅, thenM |= LP a(L). If L∩M 6= ∅ there is

a smallestk such thatL∩T k
P (∅,M) 6= ∅ andL∩T k−1

P (∅,M) = ∅. Letx ∈ L∩T k
P (∅,M).

We havex 6∈ T k−1
P (∅,M) andx ∈ T k

P (∅,M). By the definition ofTP , there is a rule

r ∈ P with an elementary head such thathd(r) = x, andT k−1
P (∅,M) |=M bd(r). From

Proposition 9.1, we have for any c-atomA ∈ bd(r), T k−1
P (∅,M) |=M A∗

|L. Then, by the

monotonicity of the operatorTP (Proposition 8.1 in Chapter 8), we haveT k−1
P (∅,M) ⊆

T i
P (∅,M) ⊆ T i+1

P (∅,M), for i ≥ k, andT∞
P (∅,M) = M . It follows from the definition

of conditional satisfactionT i
P (∅,M) |= A∗

|L, for i ≥ k. So, M |= αL(r). Therefore

M |= LP a(L).

(⇐) AssumeM is a model ofLComp(P ) and we showM = T∞
P (∅,M). The proof

of T∞
P (∅,M) ⊆ M is routine by an induction on the construction ofT∞

P (∅,M). We show

the other direction,M ⊆ T∞
P (∅,M).

Suppose the statement doesn’t hold, i.e., for somex ∈ M , x 6∈ T∞
P (∅,M). Then,

sinceT∞
P (∅,M) ⊆ M , it follows T∞

P (∅,M) ⊂ M . Let M− = M \ T∞
P (∅,M). In

Ga
P [M−], there are either loops or no loops. IfGa

P [M−] doesn’t have a loop, it’s easy to

show thatx ∈ T∞
P (∅,M), causing a contradiction. SupposeGa

P [M−] has a loop, then it

has a terminating loopL ⊆M−. SinceM |= LComp(P ), there existx ∈M− andr ∈ P ,

wherehd(r) = x, such thatM |= bd(r), and for anyA ∈ bd(r),

(1) M ∩Ad = t, for somet ∈ Ac (due toM |= bd(r)).

(2) ∃〈B,T 〉 ∈ A∗
c such thatB ⊆ t ⊆ T , B ∈ Ac (due to (1)), and

(2.1) B |=M A (due to (1), (2))

(2.2) M |= B∧ ∧ ¬(Ad \ T ) andB ∩ L = ∅ (due toM |= LP a(L))

If we can showB ⊆ T j
P (∅,M), for somej > 0, then from (2.1) above, and since it is

the case for anyA ∈ bd(r), we will havex ∈ T j+1
P (∅,M), resulting in a contradiction.

Consider anyy ∈ B. From (2.2), we knowy 6∈ L. From (1) and (2) above, it is clear

y ∈ M . It follows that eithery ∈ M− \ L, or y ∈ T j
P (∅,M), for somej > 0. In the

former case, sinceL is a terminating loop inGa
P [M−], y is not in any loop inGa

P [M−]

andy doesn’t depend on any loop inGa
P [M−] (i.e., there is no path fromy to any loop in

Ga
P [M−]). It is then easy to show thaty ∈ T j

P (∅,M), for somej > 0. Sincey is arbitrary,

we conclude thatB ⊆ T j
P (∅,M), for somej > 0.
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Theorem 9.2. Let P be a constraint program. A setM ⊆ At(P ) is an answer set forP iff

M is a model ofLComp(P ).

Proof. (⇒) Let M be an answer set of programP . It is an answer set of an instance ofP ,

sayP1. The proof of the satisfaction ofComp(P ) is trivial. We show thatM satisfies loop

formulas ofP . By lemma 9.1, we haveM |= Lcomp(P1). ThenM = T∞
P1

(∅,M), that

is any atom inM can be derived without itself. Therefore, we haveM models any loop

formula ofP .

(⇐) Let P be a program andM be a set of atoms thatM |= LComp(P ). Let P1

be a instance ofP . The proof of satisfaction ofComp(P1) is easy. Since any loop in

the dependency graph of a instance ofP is a loop in the dependency graph ofP andM

satisfies the loop formula ofP , we haveM satisfies the loop formula ofP1. ThereforeM

is an answer set ofP1. By Lemma 9.1,M is an answer set ofP1. We therefore have that

M is an answer set ofP .

9.4 Relation to previous works

9.4.1 Local power set representation

Similar constructions or definitions have been presented inthe literature for different pur-

poses. In [64],indexed pairsare used to translate aggregate programs to normal logic

programs; theaggregate solutionsfor aggregates is given in [76] to capture conditional

satisfaction of aggregates; and In [77], the existence of alevel mapping, w.r.t. a model, is

formulated as a sufficient condition for the model to be an answer set. Local power sets

are variants ofprefixed power sets[71], which are used to define a generalized form of

Gelfond-Liftchitz reduction.

Let A be a c-atom. It takes polynomial time, in the size ofA, to constructA∗. A naive

algorithm would examine each pairX,Y ∈ Ac such thatX ⊆ Y , in the partial order of

inclusiveness– a pair(X,Y ) includesanother(X ′, Y ′) if X ⊆ X ′ andY ′ ⊆ Y , whereas

at least one of the⊆ is proper, to see if for anyI such thatX ⊆ I ⊆ Y , I ∈ Ac. Whenever

such a pair(X,Y ) is identified, it is maximal, and thus all the included pairs are dropped

from consideration.

For some special classes of c-atoms, the construction ofA∗ is much simpler. Below, we

show this for the classes of monotone, antimonotone, and convex c-atoms.

Given a setS of sets,π ∈ S is said to beminimal in S if there is noπ′ ∈ S such that

π′ ⊂ π; similarly for maximal sets inS.
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• A is monotone:A∗
c = {〈B,Ad〉 : B is minimal inAc}

• A is antimonotone:A∗
c = {〈∅, T 〉 : T is maximal inAc}

• A is convex:A∗
c = {〈B,T 〉 : B ⊆ T,B is minimal, T is maximal inAc}

9.4.2 Dependency graph

In [49], positive dependency graphis defined for programs with monotone c-atoms. LetP

be a program with monotone c-atoms which consists of rules ofthe form (8.1). Thepositive

dependency graphof P is the directed graphGm
P = (V,E), whereV = At(P ) and〈u, v〉

is an edge inE if there exists a ruler ∈ P such thatu ∈ hd(r)d andv ∈ Ad, for some

positive c-atomA ∈ bd(r).

We make two remarks. First, the construction ofGm
P is not directly applicable to pro-

grams with nonmonotone c-atoms. For these programs, a head atom in a rule may also

positivelydepend on the atoms appearing in anegativebody c-atom of the same rule. Sec-

ond, there are in general more loops inGm
P than inGa

P .

Example 9.5. Consider a program with nonmonotone c-atoms, denotedP :

a ← not ({a, b}, {∅, {b}}) (9.3)

b ← not ({a, b}, {∅, {a}}) (9.4)

Gm
P contains no edges. So, it cannot be used to deny a model of completion to be an

answer set. Indeed,M = {a} is a model ofComp(P ), but not an answer set forP .

Our dependency graph is based on the program where negative c-atoms are replaced by

their complements. In this case, we have the following program, denotedP ′

a ← ({a, b}, {{a}, {a, b}}) (9.5)

b ← ({a, b}, {{b}, {a, b}}) (9.6)

whereL1 = {a} andL2 = {b} are loops inGa
P ′ , but L3 = {a, b} is not. Note thatL3 is

also a loop inGm
P ′ , in addition toL1 andL2.

The loop formula forL1 in our case, for example, isLP a(L1) = a → false. M 6|=

LP a(L1), which shows thatM is not an answer set forP .

Proposition 9.2. Let P be a constraint program. Any loop inGa
P is a loop inGm

P , but the

converse does not hold.
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Proof. Given a c-atomA, we have thatASet(A) ⊆ Dom(A). Let P be a constraint

program, by the definition ofGa
P andGm

P , we have that any edge inGa
P is an edge inGm

P .

Therefore any loop inGa
P is a loop inGm

P . The loopL3 in Example 9.5 shows that a loop

in Gm
P may not be a loop inGm

P .

For monotone-constraint programsP , the definition ofGa
P is consistent with that of

Gm
P . By definition, the complement of a monotone c-atom is antimonotone. As shown

earlier, ifA is antimonotone, thenA∗ is such that for every〈B,T 〉 ∈ A∗
c , we haveB = ∅.

It follows from the definition ofGa
P that a head atom does not depend on any body atoms

in an antimonotone c-atom.

However, since the extra loops inGm
P are non-essential (e.g. the loopL3 in Exam-

ple 9.5), our loop formulas also work with the definition of loops inGm
P .

Theorem 9.3.LetP be a constraint program, andLC(P ) = Comp(P )∪{LP a(L) |L is a loop inGm
P }.

A setM ⊆ At(P ) is an answer set forP iff M is a model ofLC(P ).

9.4.3 Loop formulas

The loop formulas in [49] are defined as follows. For a rule of the form

A← A1, . . . , Ak,not Ak+1, . . . ,not Am,

define

βL(r) = A1|L ∧ . . . ∧Ak|L ∧ ¬Ak+1 ∧ . . . ∧ ¬Am

whereA|L = (Ad \ L, {Y : Y ∈ Ac, Y ∩ L = ∅}).1

The loop formula forL, denotedLPm(L), is defined as

∨

L→
∨

{βL(r) : r ∈ P , L ∩ hd(r)d 6= ∅ }

For monotone-constraint programs (note that they do not contain negative c-atoms), our

loop formula is equivalent to the one above. To show this result, we need the following

lemma.

Lemma 9.2. Let A be a monotone c-atom andM a set of atoms. For any set of atomsL,

M |= A∗
|L iff M |= A|L.

1The definition given in [49] is actuallyA|L = (Ad, {Y | Y ∈ Ac, Y ∩ L = ∅}), which didn’t work com-
pletely. As an example, assume a monotone-constraint programP = {a ← ({a, b}, {∅, {a}, {b}, {a, b}})}.
M = {a} is an answer set forP , butL = {a} is a loop inGm

P and its loop formula isa→ ({a, b}, {∅, {b}}),
which is not satisfied byM .
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Proof. (⇒)

(1) M |= A∗
|L,

(2) There exists〈B,Ad〉 ∈ A∗
c s.t.L ∩B = ∅ andM ∩Ad |= B∧, due to (1).

(3) A|L is monotone, due to thatA is monotone.

(4) B ⊆M , due to (2).

(5) B ⊆ (A|L)d, due to (2).

(6) B ⊆M ∩ (A|L)d, due to (4) and (5).

(7) B ∈ (A|L)c, due to (2).

(8) M ∩ (A|L)d ∈ (A|L)c, due to (3) and (7).

(9) M |= A|L, due to (8).

(⇐)

(1) M ∩ (Ad \ L) ∈ (A|L)c.

(2) ∃S s.t. S ⊆M , S ⊆ Ad, S ∩ L = ∅, S ∈ Ac, due to (1).

(3) LetB be the minimal set s.t.B ⊆ S.

(4) M |= B∧, due to (3) and the monotonicity ofA.

(5) M |= A∗
|L, duet to (4).

Theorem 9.4. Let P be a monotone-constraint program andM ⊆ At(P ). For any loop

L ∈ Gm
P , M |= LP a(L) iff M |= LPm(L).

Proof. We consider the rule of formA ← A1. The result can be extended to the rule with

conjunctive body.

Let P be a program andL a loop inGm
P . The case whereL is not a loop inGa

P is trivial.

We consider thatL is a loop inGa
P . SupposeM |=

∨

L. By Proposition 9.2, we have a

one-to-one correspondence between the satisfaction ofαL(r) andβL(r) for the ruler ∈ P

andL ∩ hd(r)d 6= ∅. Thus, Theorem 9.4 holds.
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Corollary 9.1. Let P be a monotone-constraint program. For any loopL ∈ Gm
P , no atom

in LP a(L) occurs negatively.

Thus, for any monotone-constraint programP (without negative c-atoms), for any loop

L in Gm
P or in Ga

P , the size ofLP a(L) is no larger than that ofLPm(L). In many cases,

the former is substantially smaller; in some cases, the former is exponentially smaller.

Example 9.6. Consider the following monotone programP :

c← ({a, b, c}, {{a}, {a, b}, {a, c}, {a, b, c}}). (9.7)

There is no loop inGa
P , but one loopL = {c} in Gm

P . Our loop formula for this loop is

LP a(L) = c→ a (9.8)

while the loop formula ofLPm(L) is

LPm(L) = c→ ({a, b}, {{a}, {a, b}}). (9.9)

To scale up, replace the rule above withan ← A, whereA = ({a1, ..., an}, {π : π ⊆

Ad, a1 ∈ π}).

9.5 Application

In this section, we show that some c-atoms (aggregates and global constraints) can be en-

coded by pseudo-Boolean (PB) theories. The encodings presented in this section are differ-

ent from that in Chapter 7. Firstly, the goal of the encodingsin this section is to illustrate

the possibility of computing answer sets by PB constraint solvers while the encodings in

Chapter 7 is for the computation of answer sets by weight constraint program solvers. Sec-

ondly, the encodings in this section is more complex than that in Chapter 7, since we have

to usePB variablesto encode the truth and falsity of c-atoms, and enforce the equivalence

between c-atoms and their PB encoding.

We contrast the encoding approach with the unfolding approaches in [21, 64]. The

advantage is shown in Example 9.7.

9.5.1 Pseudo-Boolean constraints

PB constraints are integer programming constraints in which variables have 0-1 domains.

They are generally written in the form of inequalities

w1 × x1 + . . . + wn × xn R w (9.10)
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whereR ∈ {≤,≥, <,>,=}, wi andw are integer coefficients, andxi are PB variables

taking values from the domain{0, 1}.

A PB theoryis a set of PB constraints. Let’s denote the set of variables in a PB theory

by X. An assignmentλ : X → {0, 1} is a solution to a PB theory if it satisfies every

constraint in the theory.

Given a programP , the scheme for the encoding ofComp(P ) by PB constraints is

given in [49], where all c-atoms need to be encoded.

There is a straightforward encoding of any c-atomA in terms of a PB theory by enu-

merating all admissible solutions inAc. We are interested in the cases where the resulting

PB theories are linear in the size of a c-atom’s domain.

Let λ be a solution to a PB theory andA a c-atom whose domain isS = {a1, . . . , an}.

In to encodeA, we will introduce a PB variablexi for eachai, and define themembership

setof λ to beMλ = {ai ∈ S : λ(xi) = 1}.

To represent the satisfaction of a c-atomA, we introduce a PB variabley. The intention

is that an assignmentλ is a solution withy = 1 (resp.y = 0) to the encoded PB theory if

and only if the corresponding membership set satisfies (resp. does not satisfy)A.

Definition 9.7. Let A be a c-atom. A PB theory is thePB encoding(or encoding) of A,

denoted byτpb(y ≡ A), iff for any solutionλ to τpb(y ≡ A), we haveλ(y) = 1 iff Mλ |= A.

9.5.2 Encoding of aggregates

The syntax of aggregates is presented in Chapter 5. For the simplicity in the presentation,

we consider the aggregate of form

aggr({a | a ∈ S}) op Result (9.11)

whereS is the domain of the aggregate, in this section. The form 9.11is equivalent to form

5.1 in Chapter 5, consideringa andS asX andp(X), respectively.

For the aggregatesSUM , COUNT , AVG, MIN , mathitMAX and their correspond-

ing PB encodings that we will introduce, the following theorem holds (A detailed proof will

be given for the aggregateMIN ) .

Theorem 9.5. Let A be an aggregate whose domain isS = {a1, ..., an} andτ(y ≡ A) be

the PB encoding ofA. We have:

(I) There is a solution toτ(y ≡ A);

(II) Let λ be a solution toτ(y ≡ A). λ(y) = 1 if and only if Mλ |= A;
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(III) The size ofτ(y ≡ A) is linear in|S|.

SUM, COUNT, AVG

Let A be the aggregateSUM ({a|a ∈ S}) ≥ k andM be a subset ofS. M |= A if and

only if the summation of the elements inM is not less thank. Let y be a PB variable. The

PB encodingτpb(y ≡ A) consists of the following constraints.

x+
i + x−

i = xi, for each i, 1 ≤ i ≤ n (9.12)

x+
i · ai ≥ xi · ai, for each i, 1 ≤ i ≤ n (9.13)

x−
i · (−ai) ≥ xi · (−ai), for each i, 1 ≤ i ≤ n (9.14)

n
∑

i=1

(xi · ai) ≥ y · k (9.15)

n
∑

i=1

(xi · ai) ≤ (1− y) · (k − 1) + y ·
n

∑

i=1

(x+
i · ai + x−

i · (−ai)) (9.16)

The PB variablesx+
i andx−

i are introduced for eachxi to encode|ai|. The constraints

(9.12) to (9.14) guarantees thatx+
i = xi andx−

i = 0, if ai > 0; x−
i = xi andx+

i = 0, if

ai < 0; andx+
i = xi or x−

i = xi, if ai = 0. Thereforex+
i · ai + x−

i · (−ai) = |ai|.

It can be verified thatτpb(y ≡ A) always have a model. Letλ be a model ofτpb(y ≡ A).

The membership setMλ |= A if and only if λ(y) = 1.

The aggregateCOUNT ({a|a ∈ S}) ≥ k is the special case ofSUM ({a|a ∈ S}) ≥ k,

where eachai in S equals to 1. The encoding forCOUNT ({a|a ∈ S}) ≥ k can be

constructed simply by substituting 1 for eachai in constraints (9.12) and (9.13).

The aggregateAVG({a|a ∈ S}) ≥ k is essentially the aggregateSUM ({b|b ∈ S′} ≥

0, whereS′ is {a1 − k, ...., an − k}.

The proofs of the Theorem 9.5 for above aggregates are straightforward.

To contrast with the unfolding approach, consider the following example.

Example 9.7. Let P be a program with a single rule:

h← A (9.17)

whereA = COUNT ({a : a ∈ {a1, a2, a3, a4}) ≥ 3.

We introduce PB variablesy andz for the aggregateA and atomh, respectively. The

number of constraints inτ(y ≡ A) is linear in the size of|S|, according to the formulas

from 9.12 to 9.16 (Note that eachai is replaced by 1 here). The rule can be encoded by PB
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constraintz + (1 − y) = 1. Thus,P can be encoded by a PB theory of size linear in the

size of|S|.

The unfolded normal program ofP would be:

h ← a1, a2, a3 (9.18)

h ← a1, a2, a4 (9.19)

h ← a1, a3, a4 (9.20)

h ← a2, a3, a4. (9.21)

For an aggregateCOUNT ({a : a ∈ S}) ≥ k, the number of rules in the unfolded normal

program isCk
|S|, which is in general exponential in|S|.

MIN

Let A be the aggregateMIN ({a|a ∈ S}) ≥ k andM be a subset ofS. M |= A if and only

if the minimal element inM is greater than or equal tok.

Let y be a PB variable. In addition toxi, we introduce PB variablesx+
i andx−

i for each

atomai. The PB encodingτpb(y ≡ A) consists of the following constraints.

x+
i + x−

i = xi, for each i, 1 ≤ i ≤ n (9.22)

x+
i · (ai − k) ≥ (xi − 1) · (ai − k), for each i, 1 ≤ i ≤ n (9.23)

x−
i · (k − ai) ≥ (xi − 1) · (k − ai), for each i, 1 ≤ i ≤ n (9.24)

T2 − T1 ≤ 2 · (1− y) ·
n

∑

i=1

(ai − k) (9.25)

s1 + s2 + y = 1 (9.26)

T2 − T1 ≥ s1 (9.27)
n

∑

i=1

xi ≤ (1− s2) · n (9.28)

n
∑

i=1

xi ≥ 1− s2 (9.29)

whereT1 denotes
∑n

i=1 xi · (ai−k) andT2 denotes
∑n

i=1(x
+
i · (ai−k)+x−

i (k−ai)).

The idea in the encoding ofA is that for a set of numbersS = {a1, ..., an}, the minimal

number inS is greater than or equal tok if and only if

n
∑

i=1

(ai − k) =

n
∑

i=1

|ai − k|. (9.30)
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Similar to the encoding ofSUM , the first three constraints encode|ai − k|. T1 andT2

are, respectively, the summation ofai − k and |ai − k| for ai’s whose corresponding PB

variablexi is assigned to be1. The constrain (9.25) ensure that formula (9.30) holds, if

y = 1. Formula (9.30) is not satisfied by a set, ify = 0. The constraints (9.26) and (9.27)

encodes the case where the set is empty; the constraints (9.28) and (9.29) encodes the case

where the set is not empty.

We give the proof of Theorem 9.5 for aggregateMIN ({a|a ∈ S}) ≥ k. For conve-

nience, we re-state the theorem for the aggregateMIN ({a|a ∈ S}) ≥ k.

Theorem 9.6. Let A be the aggregateMIN ({a|a ∈ S}) ≥ k whose domain isS =

{a1, ..., an} andτ(y ≡ A) be the PB encoding ofA which consists of the PB constraints

from (9.22) to (9.29). Then, we have:

(I) There is a solution toτ(y ≡ A).

(II) Let λ be a solution toτ(y ≡ A). λ(y) = 1 if and only if Mλ |= A.

(III) The size ofτ(y ≡ A) is linear in|S|.

Proof.

• The proof of (I).

If ∃i, ai ≥ k, saya1 ≥ k. The assignmentλ, whereλ(x1) = λ(x+
1 ) = 1, λ(x−

1 ) = 0,

λ(xi) = λ(x+
i ) = λ(x−

i ) = 0 for all i 6= 1, λ(y) = 1, andλ(s1) = λ(s3) = 0 is a solution.

If ∀i, ai < k. The assignmentλ, whereλ(xi) = λ(x+
i ) = λ(x−

i ) = 0 for all 1 ≤ i ≤ n,

λ(y) = λ(s1) = 0 andλ(s2) = 1 is a solution.

• The proof of (II).

We show that, for any solutionλ to τ(y ≡ A), if λ(y) = 1 thenMλ |= A.

(1) Letλ be a solution toτ(y ≡ A) whereλ(y) = 1.

(2) λ(s1) = λ(s2) = 0, due to (9.26).

(3) T2 − T1 ≥ 0, due to (2) and (9.27).

(4) T2 − T1 ≤ 0, due to (1) and (9.25).

(5) T2 = T1, due to (3) and (4).

(6)
∑n

i=1 xi ≥ 1, due to (2) and (9.29).
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(7) Mλ |= A, due to (5) and (6).

We show that, for any solutionλ to τ(y ≡ A), if λ(y) = 0 thenmin(Mλ) < k.

(1) Letλ be a solution toτ(y ≡ A) whereλ(y) = 0.

(2) There are two cases: (i).λ(s1) = 0 andλ(s2) = 1 and (ii). λ(s1) = 1 andλ(s2) = 0,

due to (9.26).

(3) λ(s1) = 0 andλ(s2) = 1, which is the Case (i).

(4)
∑n

i=1 xi = 0, due to (9.28) and (9.29).

(5) M = ∅ andM 6|= A, due to (4).

(6) λ(s1) = 1 andλ(s2) = 0, which is the case (ii).

(7) T2 > T1, due to (9.27).

(8)
∑n

i=1 xi ≥ 1, due to (9.29).

(9) Mλ 6|= A, due to (7) and (8).

• (III) holds obviously by the encoding.

Example 9.8. Let A be the aggregateMIN ({a|a ∈ {2, 4}) ≥ 3 andy be a PB variable.

τpb(y ≡ A) contains the following constraints.

x+
1 + x−

1 = x1, x+
1 ≤ x1, x−

1 ≥ x1,
x+

2 + x−
2 = x2, x+

2 ≥ x2, x−
2 ≤ x2,

T2 − T1 ≤ 12 · (1− y), s1 + s2 + y = 1, T2 − T1 ≥ s1,
x1 + x2 ≤ 2 · (1− s2), x1 + x2 ≥ 1− s2.

whereT1 = −x1+x2 andT2 = −x+
1 +x−

1 +x+
2 −x−

2 . We use a 9-ary 0-1 tuple to represent

the value assignment to the tuple(x1, x
+
1 , x−

1 , x2, x
+
2 , x−

2 , y, s1, s2). It can be verified that

τpb(y ≡ A) has four solutions.λ1 : (0, 0, 0, 0, 0, 0, 0, 0, 1), λ2 : (0, 0, 0, 1, 1, 0, 1, 0, 0),

λ3 : (1, 0, 1, 0, 0, 0, 0, 1, 0), andλ4 : (1, 0, 1, 1, 1, 0, 0, 1, 0). Among the four solutions,

only λ2(y) = 1. Therefore, the only set that satisfiesA is Mλ2
= {4}.
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MAX

Let A be the aggregatemathitMAX({a|a ∈ S}) ≥ k andM be a subset ofS. M |= A if

and only if the maximal element inM is greater than or equal tok.

Let y be a PB variable.τpb(y ≡ A) consists of the following constraints.

x+
i + x−

i = xi, for each i, 1 ≤ i ≤ n (9.31)

x+
i · (ai − k) ≥ (xi − 1) · (ai − k), for each i, 1 ≤ i ≤ n (9.32)

x−
i · (k − ai) ≥ (xi − 1) · (k − ai), for each i, 1 ≤ i ≤ n (9.33)

T1 + T2 ≥ y (9.34)

s1 + s2 + y = 1 (9.35)

T1 + T2 ≤ 2 · (1− s1) ·
n

∑

i=1

(9.36)

n
∑

i=1

xi ≤ (1− s2) · n (9.37)

n
∑

i=1

xi ≥ 1− s2 (9.38)

whereT1 denotes
∑n

i=1 xi · (ai − k + 1) andT2 denotes
∑n

i=1(x
+
i · (ai − k + 1) +

x−
i (k − 1− ai)).

The idea in the encoding ofA is that for a set of numbersS = {a1, ..., an}, the maximal

number inS is greater than or equal tok if and only if

n
∑

i=1

(ai − k + 1) > −
n

∑

i=1

|ai − k + 1|. (9.39)

The proof of Theorem 9.5 formathitMAX is similar to that forMIN .

9.5.3 Encoding of global constraints

A global constraint is a constraint that specifies a relationbetween a set of variables. One

of the most extensively studied global constraints isalldifferent [81], which specifies

that each variable in the variable setX must take a value from the domainD and different

variables must take distinct values.

LetX = {x1, . . . , xm} be a set of variables andD = {d1, . . . , dn} be the domain of the

variables. We use atoma(xi, dj) to represent that variablexi is assigned the valuedj . The

global constraintalldifferent (X) can be represented by a c-atomAllDiff = (S,C),

115



where the domain of the constraint isS = {a(x, d) : x ∈ X, d ∈ D}, andC is the

collection of sets satisfying, for each setπ in C, (1) for eachi, exactly onea(xi, dj) is in

π, for somedj , and (2) ifa(x, d) anda(x′, d′) are inπ andx 6= x′, thend 6= d′.

Let G =alldifferent (S,C) andy be a PB variable. We introduce the following

additional PB variables.

• xij for each atoma(xi, dj).

• si0, si1, andsi2 for each variablexi. Intuitively, si0 = 1 indicates thatxi is not

assigned to any value;si1 = 1 indicates thatxi is assigned to exactly one value; and

si2 = 1 indicates thatxi is assigned to at least two values.

• tj for each valuedj . Intuitively, if tj = 1 thendj is not assigned to any variable

(not used) or assigned to one variable; iftj = 0 thendj is assigned to at least two

variables.

The PB theoryτpb(y ≡ G) consists of the following PB constraints.

si0 + si1 + si2 = 1, for each i, 1 ≤ i ≤ m (9.40)
n

∑

j=1

xij ≤ (1− si0) · n, for each i, 1 ≤ i ≤ m (9.41)

n
∑

j=1

xij ≥ 2 · si2, for each i, 1 ≤ i ≤ m (9.42)

n
∑

j=1

xij≤n · (1− si1)+si1, for each i, 1 ≤ i ≤ m (9.43)

n
∑

j=1

xij ≥ si1, for each i, 1 ≤ i ≤ m (9.44)

m
∑

i=1

xij ≤ m · (1− tj) + tj, for each j, 1 ≤ j ≤ n (9.45)

m
∑

i=1

xij ≥ 2 · (1− tj), for each j, 1 ≤ j ≤ n (9.46)

m
∑

i=1

si1 +

n
∑

j=1

tj ≥ (m + n) · y (9.47)

m
∑

i=1

si1+
n

∑

j=1

tj≤(m+ n−1) · (1− y) + (m + n) · y (9.48)

Theorem 9.7. Let G = AllDiff (S,C) andy be a PB variable. The following statements

hold for the encodingτpb(y ≡ G).
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(I) The PB theoryτpb(y ≡ G) has at least one model.

(II) Let λ be a model ofτpb(y ≡ G). The membership setMλ |= A iff λ(y) = 1.

(III) The size ofτpb(y ≡ G) is linear in|S|.

Proof.

• The proof of (I).

If m > n, we construct an assignmentλ, whereλ(xij) = 0 for all 1 ≤ i ≤ m and

1 ≤ j ≤ n; λ(si0) = 1, λ(si1) = λ(si2) = 0 for all 1 ≤ i ≤ m; λ(y) = 0; andλ(tj) = 1

for all 1 ≤ j ≤ n. It can be verified thatλ is a solution toτ(y ≡ G).

If m > n, we construct an assignmentλ, whereλ(xij) = 1 for all i = j; λ(xij) = 0

for all i 6= j; λ(si0) = 1, λ(si1 = 1) = 1, andλ(si2) = 0 for all 1 ≤ i ≤ m; λ(y) = 1;

λ(tj) = 1 for all 1 ≤ j ≤ n. It can be verified thatλ is a solution toτ(y ≡ G).

• The proof of (II).

Let λ be a solution toτpb(y ≡ G). If λ(y) = 1, then∀i. λ(si1) = 1 and∀j. λ(tj) = 1,

due to (9.47). Then each variable is assigned to exactly one value, due to (9.43) and (9.44),

and each value is assigned to no more than one variable due to (9.45).

If λ(y) = 0, then∃i. λ(si1) = 0 or ∃j. λ(tj) = 0, due to (9.48). Ifλ(si1) = 0, we have

λ(si0) = 1 or λ(si2) = 1 due to (9.40). Ifλ(si0) = 1, thenxi is not assigned due to (9.41).

If λ(si2) = 1, thenxi is assigned to more than one value due to (9.42). Ifλ(tj) = 0, we

havedj is assigned to more than one variable, due to (9.46).

• Obviously, (III) holds by the encoding.

Note that the membership set ofλ in this case is:Mλ = {a(xi, dj) ∈ S : λ(xij) = 1}.

Clearly, the unfolding approach would be undesirable, as inthe unfolded normal pro-

gram it would have to list all solutions inC for the constraintAllDiff (S,C), which is

exponential in|S|.

The all-different constraint has many applications, for instance, to represent the pigeon-

hole problem. A typical encoding of this problem by a normal program [61] takes expo-

nential time to decide unsatisfiability by an ASP solver. When the problem is encoded as

a PB theory, unsatisfiability can be decided in polynomial time by a PB constraint solver

[11]. Efficiency can be further improved by embedding special constraint propagators [50].
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9.6 Conclusion

This chapter extends the work in [49] in two aspects. Firstly, we extend the loop formula

characterization of answer sets for monotone constraint programs to arbitrary constraint

programs. We show that the loop formulas in our approach are simpler than that in [49].

Secondly, we propose the PB encodings for some of the frequently used constraints: aggre-

gates and global constraints. Our results provide the meansto compute arbitrary constraint

programs by PB constraint solvers, comparing to the approach in [49], which focus on

monotone constraint programs.
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Chapter 10

Strong equivalence of abstract
constraint programs

10.1 Motivation

A logic programP1 is said to beequivalentto a logic programP2 under answer set se-

mantics, ifP1 andP2 have the same answer sets.P1 andP2 arestrongly equivalentif for

any programP , P1 ∪ P andP2 ∪ P are equivalent. Questions regarding whether two logic

programs are strongly equivalent are interesting for a variety of reasons. For instance, in

order to see whether a set of rules in a program can always be replaced by another one

regardless of the other rules of the program, one should check whether the two sets of rules

are strongly equivalent. For example, the set of a single rule{p← p} is strongly equivalent

to the empty set (of rules), therefore it can always be removed from any logic program.

However, the setP : {p← q, q ← p} is equivalent but not strongly equivalent to empty set,

so the pair of rules cannot be eliminated regardless of the context: in the presence ofq, the

first rule of programP can be used to derivep.

Lifschitz et. al. [40] propose to use the logic of here-and-there (HT-logic) to charac-

terize the strong equivalence for normal logic programs. The problem of determining the

strong equivalence of two logic programs can be done by checking if the two programs have

the same set of models in HT-logic.

Turner [78] proposes a model-theoretical method to characterize the strong equivalence

between programs. Two programs are strongly equivalent if and only if they have the same

set of HT-models. For a program, HT-models are exactly models of the program in HT-

logic. So, Turner’s approach is essentially the same as the approach of [40].

Lin [41] presents a transformation from logic programs to propositional theories. By

the transformation, the strong equivalence of logic programs is converted to the entailment
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of theories in classic logic.

For logic programs with constraints, Turner [79] shows thatSE-models (which is essen-

tially the same as the HT-models proposed in [78]) can be usedto characterize the strong

equivalence between weight constraint programs. Liu and Truszczyński extend the ap-

proach in [49] to monotone constraint programs. They show that two monotone constraint

programs are strongly equivalent if and only if they have thesame set of SE-models.

In this chapter, we further extend Turner’s approach to arbitrary constraint programs.

We present two characterizations of strong equivalence of arbitrary constraint programs

under answer set semantics.

In Section 10.2, we define SE-models for abstract constraintprograms and then use

them to characterize strong equivalence. We give another characterization of strong equiva-

lence in Section 10.3, which is simpler than the previous one. The characterization is based

on the generalization of the concept of program reduct to abstract constraint programs.

Section 10.4 concludes the work.

10.2 Characterizations of SE under answer set semantics

In this chapter, we consider the logic programs with c-atomswhere each rule is of the form

a← A1, ..., An (10.1)

wherea is an atom andA1,...An are c-atoms. For the programs whose head is an c-atom,

the strong equivalence of two programs can be reduced to the strong equivalence of the

instances of the two programs.

Definition 10.1. Let P and Q be two programs.P strongly equivalentto Q, denoted

P ≡s Q, if for any programR, AS(P ∪ R) = AS(Q ∪ R), whereAS(P ) denote the set

of answer sets of the programP .

We define the SE-models of a program.

Definition 10.2. Let P be a program. A pair of sets(X,Y ) is a SE-modelof P if the

following conditions hold: (1)X ⊆ Y ; (2) Y |= P ; (3) T∞
P (∅, Y ) ⊆ X, whereTP is the

operator based on conditional satisfaction given in Definition 8.2.

Lemma 10.1. Let P be a program andY be an answer set ofP . (Y, Y ) is the unique

SE-model ofP whose second component isY .

Proof. Note that ifY is a answer set ofP , then(Y, Y ) is an SE-model ofP .
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(1) LetY be an answer set ofP .

(2) T∞
P (∅, Y ) = Y , due to (1).

(3) Let (X,Y ) be an SE-model ofP .

(4) Y ⊆ X, due to (2) and (3).

(5) X ⊆ Y , due to (3).

(6) X = Y , due to (4) and (5).

Notation: LetP be a program.SE(P ) denotes the set of SE-models ofP .

Lemma 10.2.LetP andQ be two programs. IfSE(P ) = SE(Q), thenAS(P ) = AS(Q).

Proof. We proveAS(P ) ⊆ AS(Q). AS(Q) ⊆ AS(P ) can be proved similarly.

(1) SE(P ) = SE(Q).

(2) ∀Y ∈ AS(P ), (Y, Y ) is the unique SE-model ofP whose second component isY ,

due to Lemma 10.1.

(3) (Y, Y ) is the unique SE-model ofQ, whose second component isY , due to (1) and

(2).

(4) (T∞
Q (∅, Y ), Y ) ∈ SE(Q), due to (3), Definition 10.2, and Proposition 8.1.

(5) T∞
Q (∅, Y ) = Y , due to (3) and (4).

(6) Y ∈ AS(Q), due to (5).

Lemma 10.3. Let P andQ be two programs.SE(P ∪Q) = SE(P ) ∩ SE(Q).

Proof. We proof⇒ part. The other part is similar.

(1) ∀(X,Y ) ∈ SE(P ∪Q), we haveX ⊆ Y , Y |= P ∪Q andT∞
P∪Q(∅, Y ) ⊆ X.

(2) Y |= P , Y |= Q, T∞
P (∅, Y ) ⊆ X, andT∞

Q (∅, Y ) ⊆ X, due to (1).

(3) (X,Y ) ∈ SE(P ) and(X,Y ) ∈ SE(Q).
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Theorem 10.1.Let P andQ be two programs.P ≡s Q iff SE(P ) = SE(Q).

Proof. (⇐)

(1) SE(P ) = SE(Q).

(2) ∀R, SE(P ∪R) = SE(Q ∪R), due to (1) and Lemma 10.3.

(3) AS(P ∪R) = AS(Q ∪R), due to (2) and Lemma 10.2.

(4) P ≡s Q.

(⇒) We proveSE(P ) ⊆ SE(Q). SE(Q) ⊆ SE(P ) can be proved similarly. Let(X,Y )

be an SE-model ofP but not an SE-model ofQ. We consider two cases.

Case 1.Y 6|= Q.

(1) (X,Y ) ∈ SE(P ).

(2) LetR be the program:{a | a ∈ Y }.

(3) Y = T∞
P∪R(∅, Y ), i.e.,Y ∈ ST (P ∪R), due to (1) and (2).

(4) Y 6|= Q.

(5) Y 6∈ ST (Q ∪R), due to (4).

(6) A contradiction toP ≡s Q, due to (3) and (5).

(7) Y |= Q, due to (6).

Case 2.T∞
Q (∅, Y ) 6⊆ X.

(1) LetX ′ = T∞
Q (∅, Y ) \X.

(2) Let R be the program:{b ← a | a ∈ X ′ and b ∈ Y }, where〈X ′, Y 〉 = {S | X ′ ⊆

S ⊆ Y }.

(3) (X,Y ) ∈ SE(P ).

(4) X = T∞
P∪R(∅, Y ), due to (2) and (3).

(5) T∞
Q (∅, Y ) 6⊆ X

(6) X 6= Y , due to (5).
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(7) Y 6∈ ST (P ∪R), due to (4) and (6).

(8) Y ∈ ST (Q ∪R), due to (1) and (2).

(9) A contradiction toP ≡s Q, due to (7) and (8).

(10) T∞
Q (∅, Y ) ⊆ X

By case 1 and 2, we have(X,Y ) ∈ SE(Q).

10.3 Yet another characterization

The SE-model defined in last section is based on the operatorTP . To check if a pair of

sets(X,Y ) is an SE-model of a program, a derivation process usingTP is needed. In

this section, we will give a definition of SE-model that is based on thereductof abstract

constraint programs. By the new definition, the derivable process is not necessary for the

verification of SE-models.

10.3.1 Reduct of abstract constraint programs and operator̂TP

Definition 10.3. Let A be a c-atom andM be an set of atoms. Thereductof A, w.r.t. M

denotedAM , is the c-atom(AM
d , AM

c ), whereAM
d = Ad andAM

c = {s | s ∈ Ac, s |=M

A}. Note that ifAM
c = ∅, AM is simply written as⊥.

Definition 10.4. Let r be a rule of the form (10.1) andM be a set of atoms. Thereductof r

w.r.t. M , denotedrM , is a rule of forma← AM
1 , ..., AM

n , whereAM
i is the reduct ofAM

i .

Definition 10.5. Let P be a program consists of rules of the form 10.1 andM be a set of

atoms. Thereductof P , w.r.t. M denoted byPM is a program consists of the reducts of

the rules inP , whose body does not contain⊥.

Definition 10.6. Let P be a program with c-atoms andS a set of atoms. We define the

operatorT̂P .

T̂P (S) = {a | ∃r ∈ P, s. t. a = hd(r) and S |= bd(r)}. (10.2)

By Definition 10.6, it is easy to show the following propositions.

Proposition 10.1. Let P be a program with c-atoms andM a model ofP . Let R andS be

sets such thatR ⊆ S ⊆M . ThenT̂P M (R) ⊆ T̂P M (S) ⊆M .
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Proof. We consider the rule of the forma ← A, whereA is a c-atom. The proof can be

extended to rules with conjunctive body.

∀a ∈ T̂P M (R), there exists a rulerM of the forma← AM in M , s.t.R |= AM . Then

there is a ruler of the forma ← A in P , s.t. R |=M A. SinceR ⊆ S, we haveS |=M A.

ThusS |= AM . Soa ∈ T̂P M (S).

The proof ofT̂P M (S) ⊆M is trivial.

Similarly to the operatorTP , we define the sequence

T̂ 0
P (∅) = ∅, T̂ k

P (∅) = T̂P (T̂ k−1
P (∅)).

Theorem 10.2. Let P be a logic program with c-atoms andM a model ofP . The oper-

ator TP and T̂P are defined in Definition 8.2 and Definition 10.6, respectively. We have

T∞
P (∅,M) = T̂∞

P M (∅).

Proof. We consider the rule of the forma ← A, whereA is a c-atom. The proof can be

extended to rules with conjunctive body.

We show that for anyk, T k
P (∅,M) ⊆ T̂ k

P M (∅) by induction. Base case holds since

T 0
P (∅,M) = T̂ 0

P M (∅) = ∅. The inductive hypothesis is for anyi ≤ k − 1 T i
P (∅,M) ⊆

T̂ i
P M (∅). ∀a ∈ T k

P (∅M), there is a ruler : a ← A in P such thatT k−1
P (∅,M) |=M A.

Thusa ∈ T̂P M (T k−1
P (∅,M)). By the inductive hypothesis and Proposition 10.1, we have

T k
P (∅,M) ⊆ T̂ k

P M (∅).

The statement that for anyk, T̂ k
P M (∅) ⊆ T k

P (∅,M) can be proved in the same way.

10.3.2 SE-models and strong equivalence

We re-define the SE-models of a program as follows.

Definition 10.7. Let P be a program. A pair of sets(X,Y ) is a SE-modelof P if the

following conditions hold: (1)X ⊆ Y ; (2) Y |= P ; (3) X |= P Y .

The only difference between Definition 10.2 and Definition 10.7 is that the third con-

dition is re-defined using the reduct of programP . By Definitions 10.2, 10.7, and the

Theorem 10.2 the following theorem holds.

Theorem 10.3.Let P andQ be two programs.P ≡s Q iff SE(P ) = SE(Q).
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10.4 Conclusion

The work in this chapter is an extension of the previous work on strong equivalence of

normal programs [78] and monotone constraint programs [49]. We present two character-

izations of strong equivalence of abstract constraint programs, using SE-models. In one

characterization, SE-models are defined based on the operator TP and in the other, the

generalized reduct of logic programs. Given a pair of sets(X,Y ), the first characteriza-

tion needs a derivation process to check if(X,Y ) is a SE-model and the second does not.

Therefore, the second characterization is simpler than thefirst.
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Chapter 11

Future work: Integrating global
constraints to ASP

11.1 Introduction

Global constraints [57] have been developed by researchersin the field of constraint sat-

isfaction problems (CSP). A global constraint is a constraint on a non-fixed number of

variables which specifies the values that these variables can be assigned simultaneously.

For example, the global constraintalldifferent (x1, ..., xn) specifies that the values

assigned to the variablesx1, ..., xn must be pairwise distinct.

Compared to the simple constraints like=, 6=, <, global constraints are more expres-

sive since it is more convenient to define one constraint corresponding to a set of con-

straints than to define independently each constraint of this set. Consider the constraint

alldifferent (x1, ..., xn). It is obviously simpler and clearer than a set of constraints

{x1 6= x2, ...,xn−1 6= xn}.

In addition to expressiveness, global constraints are alsoadvantageous in computation.

Since a global constraint corresponds to a set of constraints, it is possible to deduce some

information from the simultaneous presence of constraints. Thus powerful filtering algo-

rithms can be designed by taking into account the set of constraints as a whole. By fil-

tering algorithm, we mean an algorithm that removes from thedomain of the variables

the values that cannot take part in any solutions of a constraint. Suppose we have a CSP

with 3 variablesx1, x2, andx3 and the sets of values that they can take are{a, b}, {a, b}

and {a, b, c}, respectively. Consider the constraintalldifferent (x1, x2, x3). The

filtering algorithm ofalldifferent removes the valuesa and b from the domain of

x3, while the filtering algorithm (for establishing arc-consistency [17]) for the simple con-

straints{x1 6= x2, x1 6= x3, x2 6= x3} cannot delete any values.
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In the practice of ASP, global constraints are employed for problem solving in a very

limited way. ASP systems are usually less efficient to solve the problems that can be nat-

urally modeled by global constraints. Let us use the well-known pigeon-hole benchmark

problem as an example.

Example 11.1. The ASP encoding is as below.

1{pos(P,H) : hole(H)}1 ← pigeon(P ). (11.1)

{pos(P,H) : pigeon(P )}1 ← hole(H). (11.2)

The first rule specifies that each pigeon has to be placed in exactly one hole. The second

rule states that each hole can only be occupied by at most one pigeon.

Consider the case where the number of pigeons isn and the number of holes isn − 1.

After the first pigeon chooses a hole, the second one may take ahole from the remaining

n − 1 holes, then the third from then − 2 holes, ... The DPLL search must go through all

of then × n − 1 × ... × 2 assignments of holes to pigeons before it finds out there is no

solution.

Using the global constraintalldifferent , the problem can be encoded by only

one constraint specifying that each pigeon takes one and only one hole. The filtering algo-

rithm specifically designed foralldifferent [68] can find out there is no solution in

polynomial time.

The effectiveness of global constraints for problem solving motivates us to incorporate

them in ASP. Thanks to the formalism of logic programs with abstract constraints [53, 77],

the theoretical foundation to integrate ASP with global constraints is ready. Essentially,

constraints of all sorts, whenever they can be specified by a domain and a set of admissible

solutions, can be embedded into a logic program.

This chapter is a preliminary study on the integration of global constraints to ASP. In

the next section, we provide motivating experiments that compare the efficiency of global

constraints to that of ASP programs in problem solving. In Section 11.3, we give a property

of global constraints which may be useful in the further study on the computations and

properties of logic programs with global constraints.
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11.2 Motivating experiments

11.2.1 The goal

In the study of constraint programming, many filtering algorithms for global constraints

have been implemented. A well-known constraint programming system with these imple-

mentations is theSICSTUS PROLOG (or simply,SICSTUS ) system. It is a PROLOG

programming system featured with a libraryconstraint logic programming on finite do-

mains (CLP(fd)), where a number of global constraints and their corresponding filtering

algorithms are ready to use.

The goal of this section is to show the efficiency of the CLP(fd) in SICSTUS as a

promising candidate for the computation of global constraints. We experiment on three

widely used global constraintsalldifferent , cumulative , andsort . For each

global constraint, we compare the performance of theSICSTUS encoding and the ASP

encoding on randomly generated instances. The CLP(fd) encodings are run by the system

SICSTUS and the ASP encodings are run by the state-of-the-art ASP solverCLASP .

All of the experiments are run on Scientific Linux release 5.1with 3GHz CPU and 1GB

RAM. The cutoff time is set to 600 seconds. The instances thatare solved in the cutoff

time are called “solvable”, otherwise “unsolvable”. The results are shown in Figures 11.1,

11.2, and 11.3. In the figures, the running time of the unsolvable instances are plotted as

600 seconds. A summary of the experimental results is reported in Table 11.1, where the

“Execution Time “ is the average running time in seconds for the solvable instances.

11.2.2 Thealldifferent constraint

Thealldifferent (orall disticnt ) constraint is probably the most studied global

constraint in constraint programming. It constrains the values taken by a set of variables to

be pairwise different. This constraint is used in a lot of real world problems like rostering

or resource allocation. It is quite useful to express that two things cannot be at the same

place at the same moment. An efficient filtering algorithm is proposed in [68].

Definition 11.1. [69] Let X = {x1, x2, ..., xn} be a set of variables andD be the domain

of the variables, respectively. Thealldifferent constraint is(X,D,C), where

C = {(d1, ..., dn) | ∀ i di ∈ D, ∀ i 6= j di 6= dj}. (11.3)
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The problem

The typical benchmark for the application of thealldifferent constraint is the pigeon-

hole problem. It is to placem pigeons inton holes satisfying that each pigeon has a hole

and one hole is occupied by more than one pigeon.

SICSTUSencoding

In SICSTUS , theall disticnt constraint is described as of the formall disticnt

(+V ariables), whereV ariables is a list of domain variables. Each variable is constrained

to take a value that is unique among the variables.

Let the set of pigeons are{1, ...,m} and the set of holes{1, ..., n}. We model the

pigeon-hole problem by the followingSICSTUS program.

place([P1, ..., Pm], n) : − (11.4)

domain([P1, ..., Pm], 1, n), (11.5)

all disticnt ([P1, ..., Pm]), (11.6)

labeling([], [P1, ..., Pm]). (11.7)

The formula (11.5) specifies the possible assignment of holeto pigeons. The formula (11.6)

constrains that each pigeon gets a hole and no more two pigeons get the same hole. The

last formula starts the search for an assignment of holes to the pigeons that satisfies the

constraint.

CLASPencoding

We use the program in Example 11.1.

Experimental results

The solvable instances where the number of pigeons is smaller than the number of holes

can be done in a fraction of a second by bothCLASP andSICSTUS . Our tests focus on

the hard instances, where the number of pigeons is greater than the number of holes by one.

We generate instances that the number of pigeons is from 5 to 14. The results show that

SICSTUS solve all of them in almost no time, whileCLASP solves them rather slowly. For

the instances where the number of pigeons is greater than 12,CLASP even cannot solve

them butSICSTUS can solve them instantly (Figure 11.1).

129



11.2.3 Thecumulative constraint

An important application area of ASP is in solving NP-hard scheduling problems. The

cumulative constraint developed in constraint programming is for suchproblems [6].

The cumulative constraint matches directly the single resource scheduling problem,

where we are given a collection of tasks, such that each task is associated with astart

time; a durationwhich is the amount of time that it takes to complete; and aheightwhich

is the amount of resources that it takes up while it executes.In addition, we are given a

natural numberl which is the total amount of available resources that can be shared by the

different tasks. Thecumulative constraint states that, at any instanti of the schedule,

the summation of the amount of resources of the tasks that overlap does not exceed the limit

l. A filtering algorithm is detailed in [5]

Definition 11.2. [57] Let T = {t1, ..., tn} be a set of tasks. Eachti is associated with 3

variables: si representing the start time ofti which is in a rangeD, di representing the

duration ofti, andhi representing the amount of resources needed during the execution of

ti. Let l be a natural number.

Thecumulative constraint is the constrain(X,D,C), where

• X = {s1, ..., sn}.

• D is the range of possible start time.

• C={(a1, ..., an) | ∀i 1 ≤ i ≤ n,
∑

{j | ai≤aj≤ai+di−1} hj ≤ l}.

The Problem

We study the scheduling problem as follows. LetT = {t1, ..., tn} be a set of tasks where

eachti is associated with a ternary tuple(si, di, hi). Let l andu be natural numbers repre-

senting the limit of the resources and time, respectively. The goal is to find a schedule of

the tasks that guarantees every task be finished before timeu.

SICSTUSencoding

In SICSTUS the description of thecumulativeconstraint is the following:cumulative

(+Tasks), whereTasks is a list of tasks. Each task is represented by a termtask(Si,Di, Ei,Hi, Ti)

with Si being the start time,Di the non-negative duration,Ei the end time,Hi the non-

negative resource consumption, andTi the task identifier. All fields are domain variables

with bounded domains, or integers.
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Let n be the number of tasks andl the resources limit and:

Hij =

{

Hi if Si ≤ j < Si + Di;
0 otherwise.

The constraint holds if:

1. For every taski, Si + Di = Ei, and

2. For all instantsj, H1j + ... + Hnj ≤ l.

We model the problem by theSICSTUS program.

schedule(Ss,Es) : − (11.8)

Ss = [S1, ..., Sn], (11.9)

Es = [E1, ..., En], (11.10)

Tasks = [T1(S1, d1, E1, h1, 1), ..., (11.11)

Tn(Sn, dn, En, hn, n)],

domain(Ss, 1, u), (11.12)

domain(Es, 1, u), (11.13)

cumulative (Tasks, [limit(l)]), (11.14)

labeling([ ], V ars). (11.15)

The formulas (11.9) and (11.10) specify the sets of start times and end times, respec-

tively. The formula (11.11) gives the set of tasks. The formulas (11.13) and (11.14) specify

the domains of the start times and end times, respectively. The formula (11.14) enforces the

cumulative constraint. The formula (11.15) starts theSICSTUS system to search for

an assignment ofSs that satisfies the constraint.
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CLASPencoding

We model the problem by the followingCLASP program.

1{start(I, T ) : time(T )}1 : − task(I,D,H) (11.16)

use(I, T,H) : − start(I, T ), task(I,D,H) (11.17)

use(I, T,H) : − start(I, T1), task(I,D,H), T1 < T,

T ≤ T1 + D (11.18)

use(T,R) : − R = sum[use(I, T,H) :

task(I,D,H) = H] (11.19)

end(I, T ) : − task(I,D,H), start(I, T1),

T = T1 + D (11.20)

: − use(T,R), R > L (11.21)

: − task(I,D,H), end(I, T ), T > u (11.22)

The formula (11.16) enumerates all possible assignments ofthe start time of taskI to

timeT . The formulas (11.17) and (11.18) define the use of resourcesby a task at an instant.

The formula (11.19) defines the end time of a task. The formulas (11.21) and (11.22)

guarantee that the resources used at any instant cannot be beyond the limit and each task is

finished in the given time.

Experimental results

We randomly generate 100 instances half of them are satisfiable (there exists a schedule)

and the other half are unsatisfiable (i.e. no schedule satisfying the constraint exists). For

the satisfiable instances, we set the limits of the resourcesto be 15; the numbers of tasks

are 8, 10 ,11, 12, and 13 and time limits are 80, 100, 110, 120 and 130, respectively. For

each setting, we randomly generate 10 instances where the tasks have distinct durations and

heights. For the unsatisfiable instances, we set the limit ofresources to be 15 and the height

of each task to be 14. By this setting, no tasks can overlap. Wethen set total durations of

the tasks greater than the time limit.

The experimental results show that for most of the solvable instances,SICSTUS is

faster thanCLASP by several orders of magnitude except for two instances. Thenumber

of unsolvable instances bySICSTUS is much less than that byCLASP (Figure 11.2). Ac-

tually, we found that when the number of tasks is greater than14,CLASP cannot solve the

instances any more butSICSTUS can still solve them in fraction of a second.
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11.2.4 Thesort constraint

Thesort constraint is proposed in [7]: “A sortedness constraint express that ann-tuple

(y1, ..., yn) is equal to then-tuple obtained by sorting in increasing order the terms of

anothern-tuple (x1, ..., xn).” The best filtering algorithm has been the one proposed in

[55].

Definition 11.3. Let {a1, ..., an} be a set of numbers,X = {xa1
, ..., xan} be a set of vari-

ables andD = {1, ..., n} be the domain of the variables. Thesort constraint(X,D,C)

is the constraint where

C = {(d1, ..., dn) | ∀i 6= j 1 ≤ i, j ≤ n, di ≤ dj whenever i < j}.

The problem

We model the problem of sorting a given set of numbersX = {a1, ..., an} in increasing

order bySICSTUS andCLASP . Note that we suppose the numbers inX are distinct.

SICSTUSencoding

The sort constraint inSICSTUS is specified as follows:sorting (+X,+P,+Y ),

whereX = [X1, ...,Xn], P = [P1, ..., Pn], andY = [Y1, ..., Yn] are lists of domain vari-

ables. The constraint holds if the following are true:

1. Y is in ascending order,

2. P is a permutation of[1..n], and

3. for anyi in 1, ..., n, Xi = YPi
.

The problem can be modeled by the program below.

sort(P ) : − (11.23)

X = [a1, ..., an], (11.24)

Y = [Y0, ..., Yn], (11.25)

P = [P1, ..., Pn], (11.26)

domain(P, 1, n), (11.27)

domain(Y, 1, u), (11.28)

sorting (X,P, Y ), (11.29)

labeling([ ], P ). (11.30)
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The formula (11.24) givesX, the set of numbers to sort. The formulas (11.25) and

(11.26) specify thatY is the sorted sequence of the numbers andP is the positions of each

number inX, respectively. Then the constraintsort is enforced in formula (11.29) and

the formula (11.30) starts the search for the assignments tothe variables inP .

CLASPencoding

We model the sorting problem as follows.

1{place(X,Y ) : position(Y )}1 : − number(X). (11.31)

1{place(X,Y ) : number(X)}1 : − position(Y ). (11.32)

: − place(X1, Y1), place(X2, Y2), (11.33)

X1 > X2, Y1 < Y2,

The predicateplace(X,Y ) represents that the numberX is the Y th number in the

ordered sequence. The first two formulas state that, in the ordered sequence, each number

has a place and there is a number at each place. The last formula guarantees the ordered

sequence be increasing.

Experimental results

In our experiments, we generate a series of sets of numbers with 10 different sizes: 20, 30,

40, 50, 60, 70, and from 72 to 75. We randomly generated 10 setsfor each size. We run all

of the 100 instances usingSICSTUS andCLASP programs, respectively.SICSTUS solve

all of the instances using almost no time butCLASP need considerable time when the size

of the set is greater than 70. Actually,CLASP cannot sort the set if its size is beyond 80,

while SICSTUS still can sort it in a fraction of a second (Figure 11.3).

11.3 A property of global constraints

We present a property of global constraints, called thecompactnessof local power sets. As

an application of this property, we show that the property makes it easier to construct the

dependency graph of a logic program with global constraintsthan that of logic programs

with c-atoms in general case. Recall that the dependency graph is indispensable to the

formulation of loop formulas.
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11.3.1 Global constraints as c-atoms

In this section, we give the representation of global constraints as c-atoms. The concept

of conditional satisfaction and answer sets of logic programs with c-atoms are naturally

extended to logic programs with global constraints.

The domainof a variablex, denotedD(x), is a finite set of elements that can be as-

signed tox. For a set of variablesX, we denote the union of their domains byD(X) =

∪x∈XD(x).

A (global) constraint is a triple(X,D,C), whereX = {x1, ..., xm} is a set of variables;

D = D(X) is the union of the domains of variables inX; C is a subset of the Cartesian

product of the domains of the variables inX, i.e., C ⊆ D(x1) × D(x2) × ... × D(xm).

A tuple (d1, ..., dm) ∈ C is called asolution to C. Equivalently, we say that a solution

(d1, ..., dm) ∈ C is an assignment of the valuedi to the variablexi, for all 1 ≤ i ≤ m, and

that this assignment satisfiesC. If C = ∅, we say that it is inconsistent.

Let G = (X,D,C) be a global constraint. Thec-atom representationof G, denoted

A(G) = (A(G)d, A(G)c) is a c-atom as follows.

• A(G)d = {xi(dj) | xi ∈ X, dj ∈ D(xi)}. Intuitively, Ad consists of all possible

assignments of the variables.

• A(G)c = {{x1(di1), ..., xm(dim)} | (di1, ..., dim) ∈ C}, that is,Ac consists of all

solutions ofC.

Since the global constraintG is usually clear in a context, we may writeA(G), A(G)d, and

A(G)c asA, Ad, andAc, respectively.

Example 11.2. Let G = (X,D,C) be a global constraint, whereX = {x1, x2}, D =

{1, 2}, andC = {(1, 2), (2, 1)}. Note thatG is actuallyalldifferent (x1, x2). Then

the c-atom representation ofG is the c-atom

A = ({x1(1), x1(2), x2(1), x2(2)}, {{x1(1), x2(2)}, {x1(2), x2(1)}}).

In the sequel, when we talk about a global constraint, we refer to the c-atom represen-

tation of the constraint if not stated otherwise.

11.3.2 Compactness of local power sets

We present a property of global constraints, called thecompactnessof local power sets.
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Given a global constraintG = (X,D,C) and its c-atoms representationA, the sets of

solutions inAc are all of the same size, i.e. for allSi andSj such thatSi ∈ Ac andSj ∈ Ac,

we have|Si| = |Sj| = |X|. This fact leads to the following proposition.

Proposition 11.1. Let A be a global constraint andR ⊆ Ad andS ⊆ Ad. If R ∈ Ac,

S ∈ Ac andR 6= S, thenR 6⊂ S andS 6⊂ R.

Theorem 11.1. Let A be a global constraint. The local power set (LPS) representation of

A, A∗ is a c-atom such that

• A∗
d = Ad, and

• A∗
c = {〈S, S〉 | S ∈ Ac}.

Proof. The theorem can be proved by contraposition. Suppose〈B,T 〉 is a local power set

of A, whereB 6= T . By Proposition 11.1, we haveB 6⊂ T . This contradicts that〈B,T 〉 is

a local power set ofA.

Theorem 11.1 shows that, for a global constraintA, each LPS ofA∗ contains only one

solution inAc. Thus, we call this property as thecompactnessof LPS (orcompactness) of

global constraints. We may write〈S, S〉 simply asS. ThenA∗ is exactly the same asA,

i.e.,A∗ = (Ad, Ac).

Example 11.3. Consider thealldifferent constraintA in Example 11.2, which is

A = ({x1(1), x1(2), x2(1), x2(2)}, {{x1(1), x2(2)}, {x1(2), x2(1)}}). (11.34)

The LPS representation ofA is

A∗ = ({x1(1), x1(2), x2(1), x2(2)}, {〈{x1(1), x2(2)}, {x1(1), x2(2)}〉,

〈{x1(2), x2(1)}, {x1(2), x2(1)}〉}). (11.35)

For simplicity’s sake,A∗ can be written asA, i.e.

A∗ = ({x1(1), x1(2), x2(1), x2(2)}, {{x1(1), x2(2)}, {x1(2), x2(1)}}) (11.36)

11.3.3 Discussion

We take the answer set semantics based on conditional satisfaction (c.f. Section 8.1) as the

semantics for logic programs with global constraints.
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Dependency graph

The concept of dependency graph is indispensable to the definition of loop formulas, which

have been used to characterize the semantics and compute theanswer sets for logic pro-

grams.

In Chapter 9, we define the dependency graph for logic programs with c-atoms for the

formulation of loop formulas. In the definition, atoms in thedomain of the head of a rule

depend on atoms that are in the first component of the local power set (LPS) representation

of each c-atom in the body of the rule. Therefore, to construct the dependency graph, one

has to compute the LPS representation of each c-atom in the body of the rules. For a c-atom

A, the time complexity of the algorithm to compute the LPS representation ofA is O(|Ac|
3)

[84].

If a c-atom is a global constraint, the computation of LPS representation is not needed,

due to the compactness of global constraints (since the LPS representation of the c-atom is

essentially the same as itself).

Example 11.4. Consider the programP which consists of the rule

a← A,B (11.37)

whereA is the constraint in Example 11.2 andB is the c-atom({a, b}, {{a}, {a, b}}). To

construct the dependency graph, we do not need to compute theLPS representation ofA.

The LPS representation ofB is ({a, b}, {〈{a}, {a, b}〉}. Therefore the dependency graph

GP = (V,E) where

• V = {a, b, x1(1), x2(2), x2(1), x2(2)}, and

• E = {(a, a), (a, x1(1)), (a, x1(2)), (a, x2(1)), (a, x2(2))}.

Transformation to normal programs

The unfolding approach has been used for the study of computations and properties of logic

programs with c-atoms in the literature [20, 21]. In [87], wegive an approach to unfold

a logic program with c-atoms to a normal logic program. In theapproach, three steps are

needed to unfold c-atoms in rule bodies, where the last two steps are essentially to compute

the first components of the local power sets of the c-atoms. For global constraints, the last

two steps are not needed anymore, due to the compactness of global constraints. This makes

the unfolding simpler.
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Example 11.5. Let P be the program{a ← A}, whereA is thealldifferent con-

straint in Example 11.2. It can be verified that the unfoldingof P , denotedU(P ), is

a ← x1(1), x2(2),not x1(2),not x2(1) (11.38)

a ← x1(2), x2(1),not x1(1),not x2(2) (11.39)
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Benchmarks Number of Instances
Solved Instances Execution Time

SICSTUS CLASP SICSTUS CLASP
Pigeon-hole 10 10 8 0.01 135.64
Scheduling 100 93 73 1.35 40.75
Sorting 100 100 89 0.01 22.29

Table 11.1: SummarySICSTUS andCLASP

11.4 Summary and future work

This chapter is a preliminary study on the integration of global constraints to ASP. We

present the experiments that demonstrate the efficiency of global constraints and their des-

ignated filtering algorithms. Then, we show that global constraints possess a property which

makes it more convenient to study the computation and properties of logic programs with

global constraints than c-atoms in the general case.

Further investigations on language design and computationare needed for the imple-

mentation of logic programs with global constraints.

Regarding the language, a problem of interest is the syntax of the built-in predicates in

ASP language to represent the global constraints and model the real world problems.

For the computation, it is desirable to build a system that unifies the filtering algo-

rithms for global constraints and the search procedure for answer sets. To implement such

a system, the following issues have to be explored: interactions between the filtering algo-

rithms and the main search procedure; constraint propagations involving global constraint
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and other constraints; and related data structures and algorithms.
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Chapter 12

Conclusion

Weight constraint, aggregate and abstract constraint programs are recent extensions to logic

programs. We study the properties and computations of theseprograms. For properties

we focus on loop formulas, since loop formulas are both a characterization of a semantics

and key part of an approach to computing answer set of programs. For computation, we

improve the existing methods for weight constraint programs and propose an approach to

computing the aggregate programs under answer set semantics.

Specifically, the main contributions of the thesis are the following. For weight con-

straint programs, we present a formulation of loop formulasbased on the level mapping

characterization of stable model semantics. In the formulation, no new atoms are needed

thus avoid the extra search space brought by them. We study the effectiveness of a con-

straint propagation scheme, lookahead and observe that, for some programs, lookahead is

totally a waste and reduces the performance of ASP solvers. Based on this finding, we in-

troduce an adaptive lookahead mechanism which invokes lookahead dynamically upon the

information collected during the search. Adaptive lookahead exploits the pruning power of

lookahead while avoiding the unnecessary overhead caused by it.

For aggregate programs, we introduce loop formulas based onthe level mapping char-

acterization of answer set semantics. The formulation averts the procedure to compute the

local power sets of the aggregates, which takes exponentialtime in the size of the aggregate.

We show that aggregate programs can be translated to weight constraint programs, so that

the answer sets of the aggregate programs are exactly the stable models of the translated

weight constraint programs. Thus, the answer sets of aggregate programs can be com-

puted using the state-of-the-art solver implemented for the computation of stable models

for weight constraint programs.

For abstract constraint programs, we define loop formulas for programs with arbitrary
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constraints. We also characterize the strong equivalence of abstract constraint programs.

For the future work, we believe that the integration of global constraints to ASP is an

encouraging topic. This integration will make ASP more effective for problem modeling

and substantially more efficient for computation of answer sets. As a preliminary study in

this direction, we provide motivating experiments. Many issues in the integration present

interesting questions for future research.
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[60] G. Namasivayam and M. Truszczyński. Ansmodels system with limited lookahead
computation. InProc. LPNMR’07, pages 278–284, 2007.
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