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Abstract 

Molecular Recognition Feature (MoRF) regions are disordered binding sites that 

become structured upon binding. MoRFs are implicated in important biological 

processes, including signaling and regulation. However, only a limited number of 

experimentally validated MoRFs is known, which motivates development of 

computational methods that predict MoRFs from protein chains.  

We introduce a new MoRF predictor, MoRFpred, which identifies all MoRF 

types (α, β, coil, and complex). We develop a comprehensive dataset of annotated 

MoRFs and use it to build and empirically compare our method. Empirical 

evaluation shows that MoRFpred statistically significantly outperforms existing 

predictors by 0.07 in AUC and 10% in success rate.  We show that our predicted 

MoRF regions have non-random sequence similarity with native MoRFs. We use 

this observation along with the fact that predictions with higher probability are 

more accurate to identify putative MoRF regions. We present case studies to 

analyze these putative MoRFs.  
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1 Introduction 

Protein is a polymer consisting of several dozens to thousands of amino acids. 

Proteins, which are among the most important biological molecules, implement a 

diverse range of functions. They serve as structural elements that form muscles, 

bones and nails, as enzymes that catalyze chemical reactions, and as hormones 

that trigger biological events, to name just a few of their functions. Originally it 

was thought that function of a protein arises from its three-dimensional (3D) 

shape which has a well-defined structure that is encoded in its amino acid 

sequence (Anfinsen, 1973). This paradigm was challenged by the discovery of 

unstructured proteins which lack a rigid 3D structure and are functional in their 

extended form (Wright & Dyson, 1999). Since the discovery of intrinsically 

unstructured/disordered proteins (IDP) a couple of decades ago, evidence of their 

participation in a variety of biological processes have been found. Many studies 

agree on the role of disordered proteins in processes such as transcription, 

transcription regulation, and signal transduction (Dunker & Kriwacki, 2011). 

Disordered proteins are also implicated in several diseases such as cancer, 

neurodegeneration and cardiovascular diseases (Midic et al., 2009; Uversky et al., 

2009). The above motivates further studies on IDPs.  

To have a better understanding of how IDPs function, we need to understand the 

nature of their interactions with other molecules. Generally speaking, proteins 

implement their functions through interaction/binding with other biological 

molecules such as other proteins, nucleic acids, and smaller ligands such as 

nucleotides, metals, etc. These interactions happen in specific regions of protein 
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structure called binding sites. The prevalent paradigm says that all binding sites 

have a well-defined structure and would only bind to a ligand that complements 

their structure; by analogy, by fitting of a key (ligand) into a lock (protein) to 

unlock its function. However, observation of IDPs shows that some of the 

disordered regions also act as binding sites by going through a disorder to order 

transition upon binding (coupled folding and binding) to adapt their shape to the 

ligand’s binding site (Cheng et al., 2007); by analogy, by adjusting the lock 

mechanism/shape to fit certain keys. Flexibility of IDPs, which is the hallmark of 

the disorder, gains them an advantage over their globular counterparts by allowing 

them to have highly specific but reversible binding and by allowing diversity in 

binding. This unique characteristic of disordered binding sites is especially useful 

in signaling and regulation processes (Oldfield et al., 2005).  

To study disorder and disordered binding sites, we need a dataset of known 

disordered proteins with the annotated native (experimentally validated) disorder. 

However, due to a relatively slow progress in experimental determination of 

disorder, only a small number of proteins with annotated disorder is known. The 

DispProt database (Sickmeier et al, 2007), which is by far the largest database 

concerning protein disorder, contains about 600 annotated proteins. This is a 

small number compared to the much larger number of known protein sequences 

(in millions) that remain unannotated, which results in a wide annotation gap. 

Abundance of known protein sequences motivated the development of 

computational methods that predict disorder from sequences. These methods are a 

viable alternative to reduce the annotation gap and to investigate the disorder (He 
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et al., 2009). So far several dozens methods have been developed to predict 

protein disorder from sequence. The best of these methods are able to predict 

disorder relatively accurately and their predictive performance is rising (Uverski 

& Dunker, 2010; Monastyrskyy et al., 2011).  

In spite of the progress in prediction of disorder, computational determination of 

disordered binding sites did not attract as much attention. The first step towards 

developing such prediction method was to identify sequence and structural 

characteristics of these binding sites. Oldfield et al. characterized a specific 

structural element which mediates many of disordered binding events (Oldfield et 

al., 2005). This short region in the protein sequence (formed by 5 to 25 

consecutive amino acids), which undergoes coupled binding and folding, is 

referred to as Molecular Recognition Feature (MoRF) and is flanked by 

(regular/non-binding) disordered segments. MoRF regions are classified based on 

the secondary structure they take upon binding to their ligand. Secondary 

structure refers to local three-dimensional conformations of amino acid segments 

in the protein chain which are established between adjacent amino acids and are 

categorized into three major states: helices, sheets, and regions with irregular 

secondary structure. Based on this categorization, MoRFs can be divided to three 

subtypes: α-MoRFs which take the shape of a helix, β-MoRFs which take the 

form of sheets, and MoRFs that do not have a regular secondary structure.  

To date, three methods have been developed to predict MoRF regions from 

protein sequence. The first two prediction methods, α-Morf-PredІ (Oldfield et al., 

2005) and α-Morf-PredІІ (Cheng et al., 2007), were designed to predict only α-
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MoRFs. The third approach, ANCHOR (Dosztányi et al., 2009), predicts MoRF 

regions regardless of their subtype. These methods were trained on a relatively 

small datasets of annotated MoRF regions (14 regions from 12 proteins) (Cheng 

et al., 2007). While these approaches succeed in identifying some MoRF regions, 

there is a pressing need for new solutions. First of all, predictions of the two alpha 

MoRF methods are limited to only one MoRF subtype, while this subtype covers 

minority of the MoRFs. Secondly, ANCHOR, which is designed to predict all 

MoRF subtypes, was trained on a small dataset and its predictive quality is 

relatively poor.  

Our hypothesis is that it is possible to build a new MoRF predictor that uses 

protein sequence as input and which outperforms the current methods in 

prediction of disordered binding sites. We devise and evaluate a new solution to 

address this hypothesis. Our approach consists of two steps. First, the protein 

sequence is converted into a numerical feature vector that represents different 

attributes/characteristics of the input protein. Next, this vector is inputted into a 

machine learning classifier that generates predictions. Three novel design and 

development aspects contributed to the improvements that were achieved by our 

solution. First, we use a larger and more comprehensive dataset of annotated 

MoRF regions to design our method and to empirically compare it with the 

existing solutions. Second, we use a more comprehensive set of features which 

encode previously unexplored characteristics of the protein chain and we utilize a 

modern and well-performing machine learning model called Support Vector 

Machine. Third, we extend our design by combining the machine learning-based 
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predictions with predictions generated using sequence alignment, which exploits 

similarity of the predicted sequence to a dataset of annotated protein sequences. 

The thesis is organized as follows. In Chapter 2 we introduce background 

information concerning protein structure and disorder, prediction of disorder, 

datasets, and evaluation protocols that are used to assess predictors. Chapter 3 

explains the design of our predictor, which is evaluated and compared with the 

existing solutions in Chapter 4. The latter chapter also analyzes our predictions 

and predictive model to provide interesting insights that characterize MoRF 

regions and that help to interpret the predictions. Chapter 5 concludes the thesis 

and lists significant contributions. 
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2 Background and Materials 

This chapter provides preliminary information required to understand the nature 

of protein function and interactions. We discuss certain characteristics of 

disordered regions and how they allow for development of computational 

methods that predict disordered regions. We introduce some of the top disorder 

prediction methods and their application in identification of disordered binding 

sites. Finally, we overview the available predictors of disordered binding sites and 

we explain protocols that are used to assess and compare predictive quality of 

these methods.  

2.1 Definitions  

2.1.1 Amino acids 

Proteins are biological polymers that consist of several dozen to several thousands 

of amino acids (AAs). It is believed that the structure of the protein is determined 

by its sequence of AAs (Anfinsen 1973). There are 20 standard AA types as 

shown in Table 1. An amino acid is defined as H2N-CαH(R)-COOH where the 

amino group (H2N) in one AA connects to the carboxyl group (COOH) of its 

adjacent AA to form a sequence. Together, the amino group, carboxyl group and 

the Cα atom that connects to the side chain (R) create the backbone of the protein 

structure, i.e., a chain that folds in space to form the 3D shape of this molecule. R 

is the side chain of a given AA that protrudes from the backbone and determines 

the type of the AA. Physiochemical differences in the side chains are responsible 
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for different properties of individual AAs and provide a comprehensive set of 

building blocks to assemble unique protein structures.  

AAs are attached to each other through a peptide bond. A sequence of connected 

AAs is called a polypeptide. Attachment of an AA to the polypeptide always 

happens in 1 direction where the amino group of the unattached amino acid 

attaches to the carboxyl group of the polypeptide. The amino group of the first 

amino acid is called the N terminus, and the carboxyl group of the last amino acid 

is called the C terminus. 

Distribution of charge in an AA side chain is a contributing factor in AA 

interactions. Some of the AAs have positively or negatively charged side chains. 

We refer to this group as charged AAs. In contrast, neutral AAs lack electric 

charge. The latter group can be divided to polar and non-polar categories based on 

the distribution of positive and negative charges inside the molecule. While polar 

AAs have an imbalanced distribution of charge, in non-polar amino acids charges 

are distributed evenly. Since charged AAs have imbalanced distribution of 

charges, they also belong to the polar group. Another contributing factor in AAs 

interactions is the hydrogen bond. As we will explain in the next section, 

hydrogen bonds play an important role in shaping the protein structure. 

A hydrogen bond occurs between an electronegative atom and a hydrogen atom 

that is bonded to another electronegative atom. In the case of AAs this bond 

occurs between the hydrogen of the H-N group and the oxygen in the C=O. 
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AAs can be categorized to 2 groups based on their tendency to interact with each 

other and with water molecules.  

• Hydrophilic AAs are capable of attracting water molecules. Side chains of 

these AAs are polar. Due to the polarity of their side chains these AAs are 

capable of making hydrogen bonds with each other and with water 

molecules. Usually hydrogen bonds dominate the interactions of this type 

of AAs. 

• Hydrophobic AAs are nonpolar and water “fearing”. These molecules 

repulse/escape from water molecules and tend to pack against each other 

in presence of water. In protein folding (i.e., in the process that converts a 

polypeptide chain into a 3D protein molecule) this tendency, which is 

referred to as hydrophobic effect, is partly responsible for the globular 

shape of structured proteins (for more details refer to section  2.1.2.3).  

The categorization of AAs in hydrophobic and hydrophilic is shown in Table 1. 

We note that various hydrophobicity scales are devised to quantify 

hydrophobic/hydrophilic tendencies of AAs (Carolina, 1971), so this 

categorization is somehow “flexible” for certain, borderline AAs.  

AAs can also be characterized based on other physical and chemical attributes. A 

comprehensive list of amino acid indexes which quantifies biophysical and 

biochemical attributes of AAs such as their size, volume, acidity, charge, polarity, 

etc., is available in the AAindex database at http://www.genome.jp/aaindex/ 
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(Kawashima & Kanehisa, 2000). In section  3.2 we explain how this information 

can be used to build a feature set for the prediction of disordered binding sites. 

2.1.2 Protein structure 

Protein structure is the three dimensional conformation of AAs in a protein and 

can be best described in the atomic level by a set of coordinates specifying 

position of each atom in each AA in the structure. Though highly informative, the 

atomic representation of a protein does not allow for characterization and 

classification of protein molecules. Thus, protein structure is categorized in three 

hierarchical levels: primary, secondary, and tertiary structures. 

 Amino Acid Short Abbrev. Side chain Hydrophobic Polar Charge 

Alanine A Ala -CH3 Hydrophobic Nonpolar Neutral 
Cysteine C Cys -CH2SH Hydrophobic Polar Neutral 
Aspartic acid D Asp -CH2COOH Hydrophilic Polar Negative 
Glutamic acid E Glu -CH2CH2COOH Hydrophilic Polar Negative 
Phenylalanine F Phe -CH2C6H5 Hydrophobic Nonpolar Neutral 
Glycine G Gly -H Hydrophobic Nonpolar Neutral 
Histidine H His -CH2-C3H3N2 Hydrophilic Polar Negative 
Isoleucine I Ile -CH(CH3)CH2CH3 Hydrophobic Nonpolar Neutral 
Lysine K Lys -(CH2)4NH2 Hydrophilic Polar Positive 
Leucine L Leu -CH2CH(CH3)2 Hydrophobic Nonpolar Neutral 
Methionine M Met -CH2CH2SCH3 Hydrophobic Nonpolar Neutral 
Asparagine N Asn -CH2CONH2 Hydrophilic Polar Neutral 
Proline P Pro -CH2CH2CH2- Hydrophobic Nonpolar Neutral 
Glutamine Q Gln -CH2CH2CONH2 Hydrophilic Polar Neutral 
Arginine R Arg -(CH2)3NH-C(NH)NH2 Hydrophilic Polar Positive 
Serine S Ser -CH2OH Hydrophilic Polar Neutral 
Threonine T Thr -CH(OH)CH3 Hydrophilic Polar Neutral 
Valine V Val -CH(CH3)2 Hydrophobic Nonpolar Neutral 
Tryptophan W Trp -CH2C8H6N Hydrophobic Nonpolar Neutral 
Tyrosine Y Tyr -CH2-C6H4OH Hydrophilic Polar Neutral 

Table 1.  The names, abbreviations, and side chain formulas for the 20 AAs. The last two columns 
indicate hydrophobic and hydrophilic classes of AAs. This table was borrowed from 
http://en.wikipedia.org/wiki/Proteinogenic_amino_acid#Side_chain_properties. 

2.1.2.1 Primary structure 

The sequence of AAs in a polypeptide chain is referred to as the primary 

structure. Primary structure shows the order of AAs in the chain and is written 

and read in the direction that a given protein is created: from N-terminus to C-
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terminus.  The primary structure of a protein determines how this protein folds 

into the secondary and tertiary structures. 

2.1.2.2 Secondary structure 

Recurring patterns of local three dimensional conformations in a protein chain are 

referred to as secondary structure. They are established through hydrogen bonds 

between N-H and C=O groups of adjacent (in space) AAs. Two common forms of 

secondary structures are α-helices and β-sheets.  

An α-helix is a cylindrical structure made by a peptide chain where the carbonyl 

oxygen atom of each AA forms a hydrogen bond with the amide nitrogen four 

residues (we use AA and residue as synonyms) further along in the sequence. The 

backbones of the AAs form the wall of the cylinder where the side chains are 

protruded from the structure. Side chains are determining factors of the 

interactions that occur between the helix and the other parts of the protein. Figure 

1a depicts the structure of a helix. 

A β-sheet is a structure consisting of two or more strands of AAs that are taking 

extended conformations and are bonded to each other through backbone hydrogen 

bonds. If the two bonded strands are oriented in the same direction they are called 

parallel sheets. In contrast, strands that are in opposite directions form antiparallel 

sheets. Figure 1b depicts the conformation of parallel and antiparallel β-sheets. 

While these two types of secondary structure are the most common, other forms 

of secondary structure such as other forms of helixes and strands (called bridges) 

has also been observed. These structures will be discussed in section  2.1.3. 
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Segments of the protein which lack a regular secondary structure are referred to as 

coils, and they include turns, bends, and other less regular shapes. These coils 

serve as “connectors” between helices and strands. 

2.1.2.3 Tertiary structure 

Tertiary structure refers to the three-dimensional (3D) conformation of a protein, 

where secondary structure elements fold into a compact globular molecule, see 

Figure 2. This fold is the most energetically stable state of the molecule and 

(often) the only functional conformation. This structure is stabilized by weak 

intermolecular interactions between polar and nonpolar groups. The structured 

state of the protein is referred to as the native state and the process of reaching 

this state is called protein folding. Generally, when the term “protein structure” is 

used, it refers to the tertiary structure. 

Figure 1. α-helix (panel a) and β-sheet (panel b) structures. The carbon atoms are depicted by gray circles, 
oxygen atoms by red circles and nitrogen atoms by blue circles. Hydrogen atoms are depicted by small white 
circles and hydrogen bonds are shown by red dashed lines. (This figure was taken from the book “Protein 
structure and function”,  Petsko, G.A. & Ringe, D., 2004,  Sinauer Associates). 

A protein is a combination of different AAs with polar and non-polar side chains. 

The order and composition of AAs differ from one protein to another. Here we 



 

 

12 

discuss the effects of presence of different AA types in protein folding. As we 

mentioned earlier, polar and charged AAs tend to make hydrogen bonds with 

water molecules in their surrounding area. This is what happens to polar residues 

of a protein in an extended unstructured form. However, the presence of nonpolar 

residues that cannot form hydrogen bonds would disrupt the network of hydrogen 

bonded water molecules in the solution. This disruption is energetically 

unfavorable for the protein and would cause nonpolar residues to escape from 

water molecules and aggregate together (the hydrophobic effect). Finally the 

tendency of polar residues to make bonds with water molecules and non-polar 

residues to cluster together would drive the protein to fold into a compact globular 

structure. 

Protein structure is described in terms of atomic coordinates and can be 

determined using different methods. Among these methods, the X-ray 

crystallography is the most common way to determine the structure; this method 

can provide high resolution information. It uses protein crystals to capture the 

well-structured portions of proteins and provides information about flexibility of 

individual AAs. The Nuclear magnetic resonance spectroscopy (NMR) is the 

other common way to find protein structure. This approach can capture changes 

of protein structure on a time scale. This method works in (more) native 

environment in solution (in contrast to a non-native crystallized state), but it can 

only be used for relatively small proteins and provides a lower resolution. 
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Figure 2. Tertiary structure of DHFR which is an important enzyme in nucleotide metabolism. The 
structure is shown in cartoon format where helices are in black, strands in green (dark gray), and coils in light 
gray. 

2.1.2.4 Sequence alignment 

Sequence alignment arranges two or more sequences against each other to find 

similar regions/stretches of AAs. Sequence similarity can be used to identify 

structural and functional similarity across a diverse set of protein sequences. The 

alignment is a valuable tool to find structural and functional annotations of a 

protein sequence that lack annotations by inferring them from the annotated 

regions on the similar sequences. This method works best for unannotated 

sequences for which we can find similar sequences (usually with at least 30% 

similarity) with known structure and function. In some cases only parts of the 

sequence are aligned (matched) and this could be sufficient to transfer the 

annotations. 

Alignment algorithms can be categorized into two groups: local and global, see 

Figure 3. Global alignment tries to align every residue in both sequences and is 

useful when the sequences are highly similar and of nearly the same size/length. 
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Local sequence alignment approaches are more suitable for sequences which have 

similar regions but are not entirely similar and may have different size. 

Multiple sequence alignment is an approach to align more than two sequences at 

the same time. Multiple sequence alignment is computationally expensive. These 

methods usually use a heuristics approach rather than the global optimization to 

find approximately best alignment in order to reduce the computational cost. 

Global Input sequence FTFTALILLAVAV 

Aligned sequence F−−TAL−LLA−AV 

Local Input sequence FTFTALILLA−VAV 

Aligned sequence −−FTAL−LLAAV−− 

 

Figure 3. Results of global and local alignment when aligning FTFTALILLAVAV sequence to 

FTALLLAAV sequence. In both cases inserting gap in the alignment is allowed. Gaps are empty spaces 
inserted between sequences to allow for a better alignment and are represented by −. 

2.1.3 1D descriptors 

The last few decades observed development of a number of lower-level 

descriptors of protein structure that provide an alternative and somehow 

complementary way to describe, analyze, and predict protein structure and 

function when compared with the structure defined using atomic coordinates. 

These descriptors quantify certain structural properties of AAs, such as secondary 

structure, their position with respect to the protein surface, and their flexibility. 

We refer to these descriptors as 1-dimensional (1D) descriptors since they project 

3D structural features onto 1D strings of residue-wise structural assignments. 

Among available descriptors, in this section we discuss secondary structure, 

solvent accessibility and flexibility descriptors, which are utilized to design our 

predictor of disordered binding sites.  
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2.1.3.1 Secondary structure 

Secondary structures are determined based on the patterns of hydrogen bonds in 

protein structure and they are categorized into three major states: helices, sheets, 

and regions with irregular secondary structure. The DSSP method (Kabsch and 

Sander, 1983) assigns one of the following eight secondary structure types for 

each of the structured residues (residues that have three-dimensional coordinates) 

in the protein sequence: 

• G: 3-turn helix (also referred to as 310 helix). In this secondary structure 

the carboxyl group of a given AA forms a hydrogen bond with amid group 

of the AA three positions down in the sequence forming a tight, right-

handed helical structure with three residues per turn.  

• H: 4-turn helix (also referred to as α-helix). This structure is similar to the 

3-turn helix, however, the hydrogen bonds are formed between 

consecutive AAs that are four positions away in the protein chain. This is 

the most prevalent helix type. 

• I: 5-turn helix (also referred to as π-helix). In this type of the helix the 

hydrogen bonding occurs between residues spaced five positions away 

from each other and which also results in a right-handed helical structure; 

left-handed π-helices are relatively rare. 

• E:  extended strand in parallel or anti-parallel sheet conformation. Two or 

more strands are connected laterally by at least two hydrogen bonds 

forming a pleated sheet. 
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• B:  residue in an isolated beta-bridge, which is a single residue pair sheet 

formed based on the hydrogen bond. 

• T: hydrogen bonded turn. A turn in the protein chain in which a single 

hydrogen bond is formed between residues spaced 3, 4, or 5 positions 

away in the protein chain.  

• S: bend, which denotes a fragment of protein chain with high curvature 

where the angle between the vector from Cαi to Cαi+2 (Cα atoms at ith and 

i+2th positions) and the vector from Cαi-2 to Cαi is < 70°; this is the only 

non-hydrogen bond-based regular secondary structure type. 

• – : irregular secondary structure (also referred to as loops and random 

coils), which corresponds to the remaining conformations. 

The above eight types are often mapped into three states as follows 

• H: α-helix. This secondary structure state encompasses right or left handed 

cylindrical/helical conformations that include G, H, and I types. 

• E: β-strand. This state corresponds to pleated sheet structures and it 

includes E and B secondary structure types. 

• C: coil. This state represent the remaining types of the local confirmations 

and it includes S, T, and – types. 

2.1.3.2 Solvent accessibility 

Solvent-accessible area of a protein molecule was first defined by Lee and 

Richards in early 1970s (Lee and Richards, 1971) as the area traced out by the 

center of a virtual probe sphere representing a solvent molecule as it is rolled over 

the protein surface. In the follow up definition (Richards, 1977), the solvent-
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accessible area consists of the part of the Van der Waals surface of the atoms that 

are accessible to the probe sphere. The accessible surfaces of atoms are connected 

to each other by a network of concave and saddle-shaped surfaces that smoothes 

over the crevices and pits between the atoms. The 1D descriptor of the solvent 

accessibility (also referred to as the relative solvent accessibility) is defined as the 

ratio between the solvent exposed surface area of a given residue observed in a 

given protein structure (i.e., the corresponding part of the solvent-accessible area 

of this protein) and the maximum obtainable value of the solvent-exposed surface 

area for this AA (Adamczak et al., 2004). The ratio is used to normalize between 

different AA types. The values for the accessible surface area are often calculated 

using the DSSP program. The maximum obtainable values of the solvent exposed 

surface area correspond to the surface exposed area of a given residue type 

observed in an extended tripeptide conformation flanked with either glycine or 

alanine residues. The relative solvent accessibility ranges between 0%, for fully 

buried residues, and 100%, for fully solvent accessible residues.  

2.1.3.3 Flexibility 

The B-factor (also called temperature-factor or Debye-Waller factor) describes the 

degree to which the electron density of a given atom (or a group of atoms) in the 

X-ray scattering of the crystal structure of a protein is spread out. The B-factor 

values quantify mobility of an atom and they are computed as 

Bfactor = 8π2Ui
2 

where Ui
2 is the mean square displacement of the ith atom which is averaged over 

the lattice. Since B-factors depend on several characteristics of the structure 
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determination protocol, such as experimental resolution, crystal contacts, and 

refinement procedures, they should be normalized to allow comparisons between 

different structures. Following (Parthasarathy and Murthy, 1997), the B-factors of 

a given AA are expressed using the B-factors of Cα atoms that are normalized 

using average and standard deviation of the B-factors in a given chain as follows 

normalized_Bfactor= (Bfactor– mean_Bfactor) / standard_deviation_of_Bfactor 

The values of the abovementioned 1D structural descriptors can be either 

computed from the known protein structures or predicted from the knowledge of 

the input protein sequence. An overview of the existing sequence-based predictors 

of the 1D structural descriptors that compares selected secondary structure, 

disorder, and solvent accessibility predictors can be found in (Kurgan & Disfani, 

2011). 

2.2 Protein disorder and its prediction 

Disorder in a protein is characterized by lack of a well-defined 3D structure in 

parts or all of the protein. Disordered regions are flexible polypeptides which do 

not establish a stable conformation and can fluctuate between different 

conformations. Proteins which include disordered segments are called 

intrinsically disordered proteins (IDP). From an experimental point of view, a 

disordered region is defined as residues that lack coordinates in structures solved 

by X-ray crystallography and as residues that exhibit high variability within 

structure ensemble or are annotated as disordered in REMARK 465 by 

experimentalists for the structures solved by NMR (Kurgan & Disfani, 2011). 
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Studies reveal that about 40% of all human proteins contain at least one 

intrinsically disordered segment of 30 AAs or more, and that some 25% are likely 

to be disordered from beginning to end (Uverski & Dunker, 2010). Disorder has 

been observed to be involved in a variety of biological processes, such as protein-

RNA and protein-DNA binding, transcription, translation, regulation, and 

signaling. Disorder also plays a part in processes associated with certain diseases 

such as cancer, neurodegenerative diseases, and cardiac disorders (Midic et al., 

2009; Uversky et al., 2009).  

As we mentioned earlier, the structure of a protein is determined by its AA 

sequence. This is also true for the disordered proteins. Studying sequences of the 

disordered proteins reveals specific features/characteristics of these sequences. 

Disordered sequences have low complexity (they are built from a less diverse set 

of AA types when compared with ordered chains) and are characterized by high 

net charge due to inclusion of polar AAs and low content of hydrophobic AAs. 

Both of these characteristics are contributing factors in disorder. Firstly, high net 

charge in a sequence leads to same charge-charge repulsion. Secondly, due to 

scarcity of hydrophobic residues one of the driving forces of protein folding, the 

hydrophobic effect, is weakened. As we discuss section  2.2.2, these 

characteristics can be used in prediction of the disordered segments. 

2.2.1 Disordered binding sites and MoRF regions 

Observation of disordered proteins defies the classical structure-to-function 

paradigm. This paradigm states that a unique 3D conformation of a given protein 

determines its interactions with other molecules. While this paradigm is true for 
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many (majority) proteins, disordered proteins can also interact without having a 

defined structure in isolation (before the interaction occurs). 

There are several examples of protein–protein and protein–nucleic acid 

interactions that involve coupled folding and binding (Uverski & Dunker, 2010). 

The significance of these interactions is due to two factors: (1) these interactions 

can be very specific due to the flexibility of the disordered binding sites; and (2) 

the transition from disorder to order results in a substantial loss in the system 

entropy, which in turn affects the binding strength. These two factors are 

especially beneficial in signaling and regulation where highly specific yet 

dispensable/weak interactions are needed. 

Efforts to characterize the disordered binding sites resulted in identification of a 

specific structural element which mediates many of disordered binding events 

(Oldfield et al., 2005). This short region (which includes between 5 and 25 AAs) 

is referred to as Molecular Recognition Feature (MoRF) and is placed between 

two segments of disorder. MoRF regions can be categorized into three types 

based on the secondary structure they take upon binding to their ligand: α-MoRFs 

which take the shape of a helix, β-MoRFs which take the form of sheets, and 

MoRFs that do not have a regular secondary structure. 

Since disordered regions have an extended structure as opposed to globular shape 

of structured proteins, disordered binding sites are relatively easy to locate in the 

primary structure, i.e., they usually form long stretches of consecutive AAs. These 

regions are observed to be enriched in hydrophobic residues compared to general 
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disordered regions (Meszaros et al. 2009). Identifying these characteristics helped 

researchers build computational methods to find MoRF residues in sequences. 

More details on these prediction methods are provided in the next section. 

2.2.2 Prediction of disordered and MoRF regions 

Identification of disorder as one of the defining attributes of MoRF regions is 

essential to prediction of MoRFs. Therefore, in this section we briefly discuss 

disorder prediction methods and then we provide details about MoRF prediction 

methods. 

Several studies have shown that disordered regions are characterized by relatively 

unique sequence signatures. As mentioned in the previous section, they often have 

a low content of bulky hydrophobic AAs and a high proportion of polar and 

charged AAs, a low content of (predicted) secondary structure, low complexity, 

and unique evolutionary and solvent accessibility profiles (Mizianty et al., 2010). 

This implies that disorder is predictable from the protein sequence. The 

development of computational predictors was further motivated by the fact that 

the disorder prediction was introduced into the Critical Assessment of protein 

Structure Prediction CASP experiments since 2002 (Monastyrskyy et al., 2011). 

Predictors of disorder can be categorized into 4 groups based on their design 

(Mizianty et al., 2010). For each group we introduce a (representative) method 

that we used in prediction of MoRF regions: 

1. propensity-based methods based on relative propensity of AAs to form 

disorder/ordered regions: IUPred (Dosztanyi et al. 2005). 
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2. machine learning-based predictors that use machine learning classifiers to 

perform predictions: DISOPRED2(Ward et al., 2004). 

3. consensus-based methods that combine predictions from multiple disorder 

predictors. MFDp (Mizianty et al. 2010). 

4. structural models-based approaches that make use of predicted tertiary 

structure models. DISOCLUST (McGuffin, 2008). 

More detailed discussion of the disorder predictors can be found in (He et al., 

2009) 

The prediction of MoRF regions enjoys less interest, likely because it was 

initiated recently and is more challenging. Currently, only two predictors are 

available: α-MoRF-PredII (Cheng et al., 2007), which supersedes α-MoRF-PredI, 

and ANCHOR (Dosztányi et al., 2009).  

α-MoRF-PredII is a neural network based predictor that uses disorder predictions, 

secondary structure predictions, and amino acid indices as its input attributes. 

Output of this method is a binary number specifying whether a residue is a MoRF 

residue (1) or a non Morf residue (0). This method concentrates on predicting α-

MoRFs that forms helical structures upon binding, which limits its applications. 

ANCHOR is developed to predict all classes of MoRFs. This method uses three 

quantities to identify a MoRF region: 1) tendency of a residue to be disordered; 2) 

tendency of a residue to interact with its neighbors and form structure; and 3) 

tendency of a residue to form favorable interactions with other globular proteins. 
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Using these three parameters this predictor calculates a score indicating the 

probability of a residue to be in a disordered binding site. This score is a real 

value in [0, 1] interval.  To binarize the scores, residues with scores above 0.5 are 

considered to be in a disordered binding site. ANCHOR’s predictions are 

characterized by a relatively weak predictive performance, which is supported by 

the empirical tests presented in this thesis.  

2.3 Materials and Methods 

2.3.1 Databases 

Several online resources are available to researchers to gather information on 

structural and functional aspects of a protein. One of the comprehensive protein 

related databases is UniProt (Jain, 2009) which contains sequence information, 

functional annotations, and cross references to other protein related tools and 

databases. We use this database to extract protein sequences that are used to build 

a dataset to develop and evaluate our predictor. 

Another valuable resource is Protein Data Bank (PDB http://www.wwpdb.org/ ) 

(Berman et al., 2007) which provides structural information for ordered/structured 

proteins. Each structure in PDB is represented by an ID number and contains the 

atomic coordinates of a protein. PDB files are used to assign secondary structures 

and solvent accessibility of a protein using programs such as DSSP. Segments 

with missing coordinates in a PDB structure is identified as disordered segments. 

This database served as a source to find MoRF segments. 



 

 

24 

The Database of Protein Disorder (DisProt) (Sickmeier et al, 2007) is a manually 

curated database of intrinsically disordered proteins containing disorder 

annotation of more than 600 proteins with about 1300 disordered segments. The 

experimental data is acquired mostly from the missing coordinates in X-ray 

crystallography derived structures or chemical shifts generated with the NMR. 

Some of the sequences in this database include functional and structural 

annotations for the disordered segments. 

2.3.2 Datasets 

To prepare the dataset that is used to design and validate our method, we first 

collected 4289 protein complexes (structures that include protein interacting with 

a ligand) from PDB on Mar 28, 2008. These complexes concern interaction 

between a protein and a small peptide (i.e., a short AA chain). This peptide is a 

putative MoRF (putative disordered binding site) whose sequence is between 5 

and 25 residues. This size is consistent with the related works that developed 

MoRF predictors (Oldfield et al., 2005; Cheng et al., 2007; Dosztányi et al., 

2009). Next, we remove complexes for which the interaction between the two AA 

chains is not significant enough to be considered as biologically relevant. We 

measure whether a biologically relevant interaction occurs by calculating the 

change of accessible surface area (∆ASA) between unbound (two separate chains) 

and bound (a complex with two chains) states. We utilize the BALL library 

(http://www.bioinf.uni-sb.de/OK/BALL/) to calculate ∆ASA, and we considered 

an interaction as spurious if its ∆ASA < 400 Å2 (Jones & Thornton, 1996; Vacic 

et al., 2007). The cutoff is intended to be small enough to catch small interfaces 
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between the two chains and, at the same time, large enough to remove spurious 

contacts. As a result, 452 complexes were removed. Of the remaining complexes, 

3148 that include globular partners with > 70 AAs (Jones, 1998) were kept. The 

cutoff at 70 AAs was chosen to avoid discarding shorter folded domains. The 

remaining MoRFs were mapped to the UniProtKB/Swiss-Prot v56.8 and 

UniProtKB/TrEMBL v39.8 databases using FASTA algorithm 

(http://fasta.bioch.virginia.edu/fasta_www2/fasta_down.shtml) with e-value set as 

1000 (Pearson, 1988). 1805 MoRF segments were successfully mapped to their 

parent sequences; in the remaining cases the MoRFs were too short to uniquely 

map to the UniProt or could not be found. 842 MoRFs were left after removing 

duplicates and MoRFs that include ambiguous AAs, such as X. We evaluated 

whether the 842 MoRFs are disordered when unbound. The analysis based on the 

protocol described in (Gunasekaran et al., 2004) shows that all MoRFs are 

disordered in isolation, see Figure 4. The AAs that form these MoRFs were 

annotated in the parent sequences, and these sequences were used to develop and 

assess our predictor. As a result, each of the 842 sequence in our dataset is 

annotated with one MoRF segment, which length varies between 5 and 25 AAs.  

Each MoRF was classified into one of the four types: α (helix), β (strand), γ (coil), 

or complex based on the largest percentage value of their secondary structure 

types assigned by DSSP (Kabsch & Sander, 1983). If for a given MoRF there was 

no clear preponderance of any secondary structure type (at least 1% greater than 

the other two types), we categorized it as a complex MoRF. Only the residues in 

the interface were counted in the secondary structure classification. Among the 
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842 MoRFs, there are 181 helical, 34 strand, 595 coil and 28 complex MoRF 

regions and two annotations with unspecified secondary structure. 

 

Figure 4. Gunasekaran-Tsai-Nussinov (Gunasekaran et al., 2004) graph for the 842 MoRFs. The plot 
provides a scale that measures confidence with which one can say whether a protein is ordered or disordered. 
The farther the point, which corresponds to a given chain, is from the dividing black line (boundary), the 
greater the confidence with which a protein can be classified into either of the classes. Points above the line 
correspond to disordered chains. 

We also annotated the MoRF segments as those related to immune response and 

others. We used text mining of HEADER, TITLE and KEYWDS records in each 

PDB entry (each complex that was used to identify our MoRFs) to look for 

keywords such as histocompatibility, MHC, IgG, antigen, antibody, HLA, T cell, 

B cell, heavy chain, light chain, FAB fragment, and cycophilin.  As a result, we 

identified 120 immune-related MoRFs. 

The annotated MoRF regions were used to select full chains in the UniProt and 

the remaining AAs in these chains (all AAs except the residues that compose the 

MoRF) were by default assumed to be non MoRFs. We anticipate that some of 

the (default) non MoRF residues could in fact correspond to MoRFs, i.e., our 
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MoRF annotations are incomplete. We address this issue when we design and 

evaluate our method. 

We divided the dataset into two parts: training and test sets. This division was 

performed to assure that chains in the training and test set share low sequence 

similarity. This means that a simple sequence similarity (sequence alignment) 

cannot accurately identify MoRF regions in the test set based on the MoRF 

annotations in the training set. We used CD-Hit (Huang et al. 2010) to cluster 

sequences in the entire dataset with identity > 30%. This resulted in 427 clusters 

with 274 of them that included only 1 sequence. We then assigned each cluster to 

either training or test set at random. This assures that training and test sets have 

similar number of chains and that similarity between sequences in these two 

datasets is below 30%. The training dataset was used to develop the method (to 

perform feature selection and parameterize the prediction algorithm) and test 

dataset was used to evaluate and compare it with other existing methods. 

2.3.3 Test and evaluation protocols 

2.3.3.1 Evaluation measures 

We compare a prediction for a given sequence with its native/true annotation 

using two types of assessment: (1) per residue assessment which evaluates 

predictions for individual AAs; and (2) per sequence assessment which looks at 

the sequence as a whole. The prediction of MoRFs is performed for each AA in 

the input protein sequence. Each prediction consists of a numerical score p that 

quantifies propensity (probability) of this residue to form a MoRF segment and a 

binary score that categorizes the AA as MoRF or non MoRF residue. 
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The first per sequence measure is success rate. Use of this measure is motivated 

by the fact that there might be some un-annotated MoRF regions in our dataset 

which, if predicted, would count as false predictions. This success rate was 

originally used to evaluate predictions of B-cell epitopes and was designed to deal 

with the incompleteness of their annotations (Rubinstein, 2009). To calculate this 

measure, we compare the average predicted probability/propensity of residues in 

the native MoRF region to the average probability of the whole sequence, and we 

assign a score to each sequence. For ith sequence in a dataset, the success rate Si is 

calculated as follows: 
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Total success rate S is calculated by averaging the per sequence scores over all 

sequences in a given dataset: 
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Since probabilities of the predicted MoRFs should be higher than the non MoRFs, 

a correctly predicted sequence should have Si = 1. After averaging over all chains, 

the success rate is a real value in the [0,1] range where 0 and 1 mean that all 

proteins were predicted incorrectly and correctly, respectively. Higher value of S 

indicates a better prediction quality. 
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For the per residue evaluations, we use three criteria that assess binary 

predictions: 

Accuracy = (TP+TN)/(TP+FP+TN+FN)
 

True positive rate = TPR = TP / (TP + FN) = TP / NMoRF 

False Negative rate = FPR = TN / (TN + FP) = TN / NnonMoRF 

where TP is the number of true positives (correctly predicted MoRF residues), FP 

denotes false positives (non MoRF residues that were predicted as MoRF), TN 

denotes true negatives (correctly predicted non MoRF residues), FN stands for 

false negatives (MoRF residues that were predicted non MoRF), respectively. The 

accuracy values range between 0 and 1 and it is equal one when all residues are 

predicted correctly. 

Another per residue prediction assessment method is based on calculating the area 

under the receiver operating characteristic (ROC) curve. The ROC curve is used 

to examine the predicted probabilities/propensities. The values of probabilities p 

(between 0 and 1) generated by a given prediction method are binarized such that 

all residues with probability equal or greater than a given threshold are set as 

MoRFs and all other residues are set as non MoRFs. The thresholds are varied 

between 0 and 1 (they are set to each of the values of p) and for each threshold the 

TPR and the FPR are calculated. We use the area under the corresponding curve 

(AUC), i.e., curve created by adjacent TPR vs. FPR points, to quantify the 

predictive quality.  
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We calculate the abovementioned criteria (success rate, accuracy, TPR, FPR, and 

AUC) using full protein chain. However, we also perform the same evaluation on 

a specific fragment of the sequence, which is motivated by the incompleteness of 

the MoRF annotations. We evaluate using the regions which are less likely to 

contain unannotated MoRF residues. Since MoRF regions are defined as small 

segments in a larger segment of disorder, we anticipate that the sequence 

surrounding a given MoRF region is less likely to contain unannotated MoRFs 

when compared to the remaining part of the chain. This means that annotations of 

non MoRFs are possibly more accurate in this area. Consequently, we perform 

“second” evaluation using a fragment of protein sequence that consists of the 

MoRF region with n AAs and n flanking AAs on each side of this region.  

2.3.3.2 Biserial and φ correlations 

Biserial correlation is used to measure correlation of two quantities where one is 

binary and the other is continuous. Given binary variable X, we divide values of 

the continuous variable Y to two groups: 0 and 1, based on their corresponding 

values of X. The biserial correlation is calculated as: 
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where Si is the standard deviation of X and M0 and M1 are mean values for group 0 

and group 1 with sizes n0 and n1 respectively.  

We use biserial correlation when designing our method to perform feature 

selection i.e. to quantify the correlation of a given input feature with the native 
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(binary) annotation of MoRFs. We perform this by calculating an average biserial 

correlation over 5 training folds using the training dataset. We use this average to 

sort the features in the descending order.  

For binary input features we use φ coefficient (Ernest, 1991), which quantifies 

correlation when both variables are binary. Using notation from  

Figure 5 we define φ  coefficient as follows: 
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We scale φ to [-1,1] range as φ/φmax where φmax is defined as 
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Figure 5. Matrix that defines combinations of values of two binary variables. In case of the MoRF 
prediction, variable 1 corresponds to the native MoRF annotations and variable 2 could be an input feature or 
a binary MoRF prediction. 
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2.3.3.3 Test protocols 

To guarantee an unbiased evaluation of our method (by the fact that we use a 

training dataset), we divide the original dataset of 842 chains into a training set, 

which is used to develop the method, and an independent set (that includes 

sequences that are dissimilar to sequences in the training dataset), which is used to 

evaluate the final design of our method and compare it with existing methods. The 

design, which includes feature selection, parameterization of the Support Vector 

Machine (SVM) and selection of the final method, uses the training set with the 5-

fold cross validation protocol. This is performed to assure that our method does 

not overfit the training dataset, and thus it can provide equally good predictions 

on the test set. To perform 5-fold cross validation we divide the training set into 5 

equal-sized subsets of protein chains. We use four of these subsets to form a 

training dataset that is utilized to compute the model and the fifth subset 

constitutes a test set that is used to perform the evaluation. This procedure is 

repeated five times, each time choosing a different fold as the test set. Finally, to 

estimate the performance, the results from the 5 test folds are averaged. We note 

that sequence in that training set are clustered based on their similarity, as 

explained in section  2.3.2. When selecting the five fold, the sequences in the same 

cluster are kept together. This assures that sequences between the folds share low 

similarity below 30%, which is also true when comparing training and test 

datasets. 

2.3.3.4 Significance Test 

A test of statistical significance is performed to verify whether or not a given 

result occurred by chance. The significance level or p-value that is given by a 
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significance test represents the probability of observing the result by chance. 

Therefore, lower values of p-value correspond to the results that have higher 

significance.  

To evaluate the statistical significance of the improvements offered by our 

methods (when compared with other methods), we compare 10 paired results 

quantified using success rate and AUC that are obtained using the bootstrapping 

with 50% of randomly selected test chains. We determine normality of a given 

measurement with Anderson-Darling test at the 0.05 significance. For normal 

measurements, we use paired t-test, and otherwise we use Wilcoxon rank-sum 

test. We use thresholds of 0.5 and 0.01 for the resulting p-value, i.e., results with 

the p-value lower than these thresholds are assumed to be significant. 
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3 Sequence-based MoRF prediction 

3.1 Overall architecture  

Figure 6 shows the overall architecture of our method, which is called MoRFpred. 

The first step is to calculate a feature set that represents each residue in the input 

sequence using a sliding window, i.e., the calculation of the features is based on a 

segment of residues centered over the predicted residue. The use of the window is 

a popular approach in the design of similar sequence-based predictors (Kurgan 

and Disfani, 2011). In the second step, the feature vector is fed into a linear SVM 

to calculate propensity of a given input residue to form a MoRF region. We do not 

describe SVM in this thesis as this is out of scope of this work; the reader is 

referred to (Fan et al. 2008) for the details. Finally, in the third step, these 

propensities are merged with the results of alignment of the input protein against a 

set of MoRF annotated proteins in a training dataset to produce the final 

propensities. Following we describe the details. 

In the first step, we use the protein sequence to predict the following 1D 

descriptors from the sequence: (1) disorder; (2) solvent accessibility; and (3) b-

factor. These descriptors are used to calculate the feature set. To predict disorder, 

we utilize IUPredL and IUPredS (Dosztányi et al., 2005), DISOPRED2 (Ward et 

al., 2004), DISOclust (McGuffin, 2008) and MFDp (Mizianty et al. 2010). These 

predictors represent the four major classes of disorder predictors, see section 

 2.2.2. The Real-SPINE3 (Farragi et al., 2009) is used for the prediction of the 

relative solvent accessibility and PROFbval (Schlessinger et al., 2006) is used for 
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the B-factor prediction. The choice of the disorder predictors is based on the 

evaluation in CASP8 where we picked top available methods (Kurgan & Disfani, 

2011). For all of the methods we acquired the standalone version. We also 

calculate Position Specific Scoring Matrix (PSSM) profiles generated with PSI-

BLAST (Altschul et al., 1997) which summarizes information from multiple 

sequence alignment. Finally, we represent various biophysical properties AAs 

with the amino acid indices from AAindex database.  All predictors were run 

using default parameters. The PSSM profiles were generated using the non-

redundant (nr) database from NCBI, which was filtered using PFILT (Jones & 

Swindells, 2002) to remove low-complexity regions, transmembrane regions, and 

coiled-coil segments. 

The acquired information is used to build a feature set. A sliding window of size 

25 is used on each residue to generate features pertaining to that residue. The size 

of the window is determined based on the average size of the MoRF regions 

which is 12. We initially calculate a large number of features using a relatively 

wide window to later filter them out. We keep the features which improve the 

quality of MoRF predictions. These features are used as the input to the SVM.  

Choice of SVM is motivated by its successful application in prediction of 

disordered regions (Ishida & Kinoshita, 2008; Mizianty et al. 2010) and B-factors 

(Chen et al., 2007). 

Due to a large number of samples (amino acids that need to be predicted), we 

decided to use a fast SVM implementation.  Therefore we chose liblinear (Fan et 

al. 2008) that was previously utilized in MFDp (Mizianty et al. 2010), which is 
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one of the top methods to predict disorder.  The output of our method is a real 

value that quantifies the probability of a given residue to form a MoRF region. 

These values are binarized using a threshold of 0.5, i.e., amino acids predicted 

with probability > 0.5 are assumed to form MoRFs.  Finally, we use PSI-BLAST 

to align the input protein against proteins in the training set. We transfer the 

annotations of MoRF regions from the aligned proteins into the input protein and 

merge them with the predictions from SVM to get the final results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Architecture of the MoRFpred method. 

3.2 Feature based sequence representation 
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solvent accessibility, and flexibility. For each type of features we calculate several 

per residue and aggregated features as explained below. The total number of 

features is 1764. 

Each residue in a given input protein chain is a sample which is described by a set 

of features. For each residue, we include information about the residue itself and 

its neighbors. To do so, we create a sliding window of size 25 that is centered on 

the predicted residue and we extract information from this window to calculate 

the feature set. For the residues on both termini (ends) of the sequence where 

there are no neighboring residues on the right or left side, we fill these positions in 

the window with default values. Calculations of the features for each position in 

the window was motivated by the previous methods in this field, including α-

MoRF-PredI and α-MoRF-PredII, which used attributes such as predicted 

disorder and secondary structure. When calculating the features, we used the 

predictions in two forms: the probabilities (propensities) and the corresponding 

binary values. 

We also generate another, novel group of features which provide information 

about a segment in the sequence rather than an individual residue (a position in 

the window). These features are created by aggregating raw values over a window 

of a certain size. Simple aggregations include averaging a quantity over the 

window for real valued data or calculating the content for binary valued 

predictions. We also aggregate by calculating a difference between an average 

value in a smaller (inner) window and a larger (outside) window; see Figure 7. 

We utilize this aggregation to contrast the values calculated using amino acids 
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that are close to the being predicted residue against the values associated with 

residues in a wider neighborhood in a sequence. This is motivated by the fact that 

MoRF segments are usually surrounded by larger disordered segments. While size 

of the entire/sliding window is fixed at 25, the size of the inner window is 

adjusted. 

 

Figure 7. Sliding window used to create feature set. A sliding window of size 25 centered on the target 
residue (dark red) is used to create per residue features. The inner window of size w is shown in red. The 
flanking area, which corresponds to the outside window, is shown in green.  

Table 2 describes details about per residue (calculated for each position in the 

sliding window) and aggregated features for each feature type. Note that we 

calculate the disorder-based features for each of the 5 disorder predictors.  

Our dataset is heavily unbalanced, i.e., the numbers of MoRF and nonMoRF 

residues are very different. To be more exact, there is only 1 MoRF residue for 

every 46 non MoRF residues. This imbalance is likely to bias a prediction method 

to under-predict or completely ignore the MoRF regions. To avoid this, we 

undersample the non MoRF residues. We test three ways to undersample. As 

motivated in the last paragraph in section  2.3.3.1, in the first sampling strategy we 

use the non MoRF residues that are the flanking residues of the MoRF residues 

(local sampling); this results in 2:1 ratio between non MoRF and MoRF residues. 

We also use random sampling with the same 2:1 ratio (two nonMoRFs for each 

MoRF) and higher 3:1 ratio. 

Outer window of size 25 

Inner window of size w 
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Feature type Input type Description Window size 

Number 

of 

features 

Per residue 

Disorder, RSA, B-factor 

For each prediction method, we include 
binary values and probabilities in a 
window. 7 (methods: 5 disorder + RSA 
+ B-factor) * 25 (window size) * 2 
(binary and probability) = 350 features. 

w = 25 350 

PSSM generated with PSI-BLAST 

For each residue a matrix of size 7*20 = 
140 is included in the features where 
each row is a window of size 7 centered 
on the main residue and each column 
contains values corresponding to 
different amino acids. 

w = 7 140 

Aggregated 

Disorder  

Average probability 
Average of probability over the window 
of size w. 

w ={2*n+1|n=2,..,12} 

170 

Content 
Content of binary prediction over the 
window of size w. 

w ={2*n+1|n=2,..,12} 

Average difference 
Difference of probability averages in an 
inside window of size w and an outside 
window of size 25. 

w ={2*n+1|n=2,..,7} 

MinMax average 
Difference of minimum average in an 
inside window of size w from maximum 
average in an outside window of size 25.  

w ={2*n+1|n=2,..,7} 

Relative 
solvent 
accessibility 
(RSA)  

Average RSA 
Average of RSA values over the window 
of size w. 

w ={2*n+1|n=2,..,7} 

24 

Standard deviation 
(stdv) 

Standard deviation of RSA values over 
the window of size w. 

w ={2*n+1|n=2,..,7} 

Content 
Content of binary prediction over the 
window of size w. 

w ={2*n+1|n=2,..,7} 

Stdv difference 
Difference of standard deviation in an 
inside window of size w and an outside 
window of size 25. 

w ={2*n+1|n=2,..,7} 

B-values 

Minimal B-factor 
Minimum of normalized B-factor over 
the window of size w. 

w ={2*n+1|n=2,..,7} 

18 
Content 

Content of binary prediction over the 
window of size w. 

w ={2*n+1|n=2,..,7} 

Content difference 
Difference of content in an inside 
window of size w and an outside 
window of size 25. 

w ={2*n+1|n=2,..,7} 

AA Indices 

Average 
Average of amino acid index over a 
window of size w. 

w = 15 

1062 
Average difference 

Difference of averages in an inside 
window of size w and outside window of 
size 25. 

w = 15 

Table 2. Description of features considered in building the proposed MoRFpred. We describe per 
residue and aggregated features and categorize them based on the type of information they utilize. We briefly 
describe each feature type and specify window sizes that used to calculate them. For features which calculate 
the difference between the outside and inner windows, the size of the inner window is specified by parameter 
w and size of the outside window = 25–w. The difference is calculated by subtracting the value for the inner 
window from the value for the outside window. 

3.3 Feature selection and parameterization of SVM 

Feature selection methods are used to select a subset of relevant features to 

improve the performance of machine learning-based classification methods. We 

perform feature selection in 3 steps. First, a scoring function is used to rank the 
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features based on their relevance/relation to MoRF annotations in training dataset. 

Second, features with lower ranks (below a certain threshold) are removed. Third, 

a best first search is implemented to pick features that improve predictive results 

based on cross validation on the training dataset.  

We repeat feature selection 9 times, considering three ranking functions executed 

for the three sampling strategies. We rank the features based on: 

• Their average (over 5 training folds) biserial correlations with annotation 

of MoRFs using the complete training set, i.e., using all residues in the 

training set (referred to as complete correlation ranking) 

• Their average (over 5 training folds) biserial correlations with annotation 

of MoRFs for the MoRF residues and the flanking residues, i.e., using the 

same residues as in the local sampling (local correlation ranking) 

• Their average success rate calculated when using a single feature on 

training set to predict the annotation of MoRFs in 5 fold cross validation 

(success rate ranking). The predictions are performed using a linear kernel 

SVM classifier with the default complexity parameter C = 5 (Fan et al. 

2008). 

We sort the features in the descending order for each of the three rankings and we 

remove features with correlation < 0.05 for the complete and local correlation 

rankings and with success rate < 0.5 in case of the success rate ranking. We 

selected the thresholds to remove only the irrelevant/poorly performing features. 
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 Whole Sequence Flanking Region 
Average (whole 

and flanking) 

Sampling Feature selection ACC TPR FPR 
Success 

rate 
AUC ACC TPR FPR 

Success 

rate 
AUC AUC 

 Success 

rate 

local 

 
Complete ranking 0.948 0.183 0.034 0.665 0.642 0.682 0.183 0.063 0.637 0.616 0.629 0.651 

Local ranking 0.788 0.391 0.203 0.748 0.632 0.650 0.391 0.218 0.696 0.632 0.632 0.722 

Success rate ranking 0.503 0.596 0.499 0.720 0.564 0.566 0.596 0.450 0.705 0.598 0.581 0.713 

Combined 0.920 0.245 0.064 0.703 0.654 0.686 0.245 0.088 0.703 0.665 0.660 0.703 

random 

3:1 

Complete ranking 0.929 0.205 0.055 0.696 0.664 0.660 0.205 0.106 0.632 0.584 0.624 0.664 

Local ranking 0.503 0.637 0.500 0.722 0.599 0.559 0.637 0.481 0.694 0.620 0.609 0.708 

Success rate ranking 0.740 0.428 0.253 0.751 0.630 0.614 0.428 0.291 0.663 0.579 0.604 0.707 

Combined  0.931 0.225 0.053 0.696 0.674 0.679 0.225 0.088 0.691 0.611 0.643 0.694 

random 

2:1 

Complete ranking 0.456 0.767 0.551 0.774 0.672 0.447 0.767 0.716 0.679 0.570 0.621 0.727 

Local ranking 0.504 0.599 0.498 0.698 0.572 0.577 0.599 0.434 0.698 0.614 0.593 0.698 

Success rate ranking 0.178 0.947 0.839 0.765 0.636 0.378 0.947 0.914 0.615 0.548 0.592 0.690 

Combined  0.454 0.768 0.553 0.762 0.653 0.442 0.768 0.725 0.601 0.539 0.596 0.682 

Table 3. Comparison of results of MoRF prediction using different feature selection methods and 

different sampling strategies. The results are based on the cross validation on the training dataset. Rows list 
individual setups, which consider three sampling strategies and 3 feature selection approaches. We also use a 
combined feature set which implements a union of the features selected by the three selection approaches. 
The columns list results when evaluation is performed using the whole chain, using only the flanking region 
(see Section 2.2 in the main text), and the average of the two. 

The 0.05 threshold removes features that have virtually no correlation with the 

outcomes. Similarly, the 0.5 value for the success rate ranking removes features 

that provide predictions equivalent to a random predictor. We then execute the 

best first search algorithm on the sorted list of the remaining features. In this 

algorithm we start with the top ranked feature and we continue by adding one 

(next-ranked) feature at a time. A given feature is added into the current feature 

set if it results in improved prediction quality when compared with the methods 

that uses the current feature set. The predictions are based on a linear kernel SVM 

classifier with the default parameter C = 5 and a modified version of the 5 fold 

cross validation. The modification of the cross validation is meant to prevent 

overfitting (due to the large number of feature sets that are considered) and 

simulate predictions on the independent dataset. We use 4 of the 5 folds to 

implement the 4 fold cross validation and we keep the 5th fold as an independent 
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test set; we refer to this as 4+1 cross validation.  We calculate the success rates for 

both the cross validation and the independent test set and compare these with the 

currently best success rates. If the newly added feature improves the success rate 

by at least 0.01 on both tests then we add the feature. If the success rate improves 

in only one or none of the tests we discard the feature and move on to the next 

ranked feature. 

Table 3 shows the results of the cross validation on the training set for the 9 

feature selection setups; 3 (sampling strategies) * 3 (ranking methods) = 9 setups.  

For each sampling, the last row of the table presents results of a model that uses a 

feature set that combines the features selected by all three feature selection 

methods. For each setup, we present evaluations on the whole sequence and on 

the flanking regions. We select the best performing setup by considering 

predictive performance on both the flanking region and the whole sequence. 

Considering the average (over the flanking region and the whole sequence) AUCs 

and success rates (the last two columns in Table 3) we observe that the model 

based on the local sampling and combined features have the highest average AUC 

and a reasonably high success rate. We select this setup to implement our 

prediction method. 

Next, the selected feature set is used to parameterize the SVM model, i.e., to 

optimize value of parameter C, utilizing the 4+1 cross validation on the training 

dataset. We consider C = 2x, where x = -13, -12, …, 8, 9, and select C = 2-6 which 

has the highest success rate on the independent test fold, see Figure 8. We also 
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observe that the SVM generates similarly good results for a relatively wide range 

of values of C, between 2-8 and 28. 

 

Figure 8. Results of parameterization of parameter C for the SVM classifier that uses the combined 

feature set selected based on the local sampling. The vertical axis represent success rate and horizontal axis 
shows log2

C .  

3.4 Alignment-based MoRF prediction 

We align proteins in the test set against chains from training set which are 

annotated with MoRF regions using PSI-BLAST with default parameters. For 

each sequence in the test set then we get a number of matching/similar sequences 

in the training set; this number depends on the e-value that quantifies similarity. 

These matches indicate sequences in the training set that are (partly) aligned with 

our target sequence, i.e., the sequence from the test set. If the amino acids that are 

aligned between the target and the training sequence contain a MoRF region, then 

we annotate these amino acids in the target sequence as MoRFs. We tested 

different thresholds for the e-value using the training dataset, by merging the 

results of the SVM with the annotations transferred through the alignment. We 

picked e-value = 0.5 which provides the best AUC and success rate. We use the 

sequences with e-value ≤ 0.5 and discard the remaining matches. 
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We add the annotations acquired from the alignment to the SVM predictions by 

updating the probabilities generated by the SVM. For the residues that are 

predicted as MoRFs by alignment and as non MoRFs by SVM (SVM generates 

probability < 0.5), we add 1 to the probabilities generated by SVM and divide the 

result by 2; as a result these residues will be predicted as MoRF residues. We use 

the probability generated by the SVM for the remaining residues. 

3.5 Prediction of MoRF regions by merging SVM and alignment 

We compute the SVM model on the locally sampled training set using the 

combined feature set with C=2-6 and test it on the independent test set. Table 4 

presents results of prediction before and after merging alignment-based 

predictions. The results are slightly improved after merging the alignment–based 

annotations; the AUC is improved by 1% and TPR by 3%. We also evaluate the 

alignment only-based results in the last row. We observe that although alignment 

helps to improve the predictive performance of the SVM, it cannot be used alone 

as an accurate predictor of the MoRF regions. 

 Whole Sequence Flanking Regions 

Predictor ACC TPR FPR Success rate AUC ACC TPR FPR Success rate AUC 

SVM 0.937 0.226 0.048 0.714 0.663 0.706 0.226 0.059 0.752 0.678 

SVM + Alignment 0.937 0.254 0.049 0.718 0.673 0.711 0.254 0.065 0.754 0.684 

Alignment 0.980 0.039 0.001 0.043 NA 0.679 0.039 0.008 0.038 NA 

Table 4. Comparison of performance of MoRFpred before and after the addition of the alignment-
based predictions. We use the best selected (using training dataset) SVM model and we train it on the 
training dataset. The alignment is performed against the training dataset. The results are based on the 
independent test dataset. Alignment generates only binary predictions and thus its AUC cannot be calculated. 
The two main columns list results when evaluation is performed using the whole chain and using only the 
flanking region (see Section 2.2 in the main text). 
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4 Results 

4.1 Comparison with existing methods 

We empirically compare our MoRFpred method with the three available MoRF 

predictors, namely α-MoRF-PredΙ, α-MoRF-PredΙΙ, and ANCHOR. We evaluate 

results on the independent test set on both whole sequences and the area 

containing MoRF and its flanking region, see Table 5. The α-MoRF-PredΙ and α-

MoRF-PredΙΙ predictors provide only the binary values, which mean that AUC 

cannot be calculated for these methods. 

We observe a relatively large gap between the success rates of α-MoRF-PredI and 

α-MoRF-PredII predictors and the results generated by ANCHOR and 

MoRFpred. This is due to the fact that the former two predictors were developed 

to identify MoRF regions that form only the alpha helixes upon binding. In 

contrast, ANCHOR and MoRFpred are designed to identify all types of MoRF 

regions. Thus, we focus on comparing results of MoRFpred and ANCHOR.  

Table 5 shows that MoRFpred outperforms ANCHOR in terms of both AUC and 

success rate by 7 and 10%, respectively. We note that the improvements are 

consistent for the evaluations with the whole sequences and the flanking regions. 

The differences in accuracies between the whole sequences and flaking region are 

due to different ratios of non-MoRF to MoRF residues. The binary predictions 

generated by our method are characterized by low FPR and relatively high TPR. 

To compare the binary predictions side by side with the other methods, we added 

two last rows in Table 5 where we match MoRFpred’s TPR and FPR to the 
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highest TPR and lowest FPR of the other methods, respectively We match these 

by adjusting the thresholds on the predicted probabilities and we perform that 

separately for the evaluations on the whole sequence and the flanking regions. 

These results demonstrate that MoRFpred outperforms the competing solutions by 

providing substantially higher TPRs given similar FPRs and lower FPRs for 

comparable TPRs. 

 Whole Sequence Flanking Region 

Predictor ACC TPR FPR 
Success 

rate 
AUC ACC TPR FPR 

Success 

rate 
AUC 

α-MoRF-PredІ 0.946 0.123 0.037 0.158 ++ NA  0.668 0.123 0.065 0.129 ++ NA  

α-MoRF-PredІІ 0.889 0.258 0.098 0.303 ++ NA  0.673 0.258 0.124 0.263 ++ NA  

ANCHOR 0.740 0.389 0.253 0.611 ++ 0.600 ++ 0.640 0.389 0.237 0.659 ++ 0.590 ++ 

MoRFpred (SVM +  

alignment) 
0.937 0.254 0.049 0.718  0.673  0.711 0.254 0.065 0.754  0.684  

MoRFpred (to match 

the highest TPR) 
0.854 0.389 0.137 0.718  0.673  0.696 0.389 0.153 0.754  0.684  

MoRFpred (to match 

the lowest FPR) 
0.948 0.222 0.037 0.718  0.673  0.711 0.254 0.065 0.754  0.684  

Table 5. Comparison of prediction results on the test dataset. The last two rows show results for 
MoRFpred where the binary predictions were calculated (by adjusting the threshold on the probabilities) to 
match the highest TRP and FPR generated by the existing methods. The two main columns list results when 
evaluation is performed using the whole chain and using only the flanking region (see Section 2.2 for details). 
α-MorfPredІ and α-MorfPredІI generate only binary predictions and thus their AUC cannot be calculated. 
Statistical significance of the differences in the success rates and AUC between the MoRFpred and the other 
three methods is shown next to the success rate and AUC values, where ++ and + denote that the 
improvement is significant at the p-value < 0.01 and < 0.05, respectively. 

Figure 9 presents the ROC curves for MoRFpred and ANCHOR. The ROC curves 

zoom on the low FPR values below 0.1, which is motivated by the imbalanced 

nature of our dataset. Higher FPRs would lead to a significant over-prediction of 

the MoRF residues. We observe a large separation between MoRFpred and 

ANCHOR across the entire range of the FPR values. We also note that addition of 

the alignment into MoRFpred also results in improvements for all values of FPRs. 
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Figure 9. Comparison of ROCs for MoRFpred and ANCHOR on the test dataset. Panel A compares 
ROCs for when evaluations is performed using the whole sequences and panel B when using the flanking 
region. The ROC curves are provided for the FPR < 0.1. 

4.1.1 Evaluation for different MoRF types 

In section  2.2.1, we discuss the fact that MoRFs often fold into a specific 

secondary structure upon binding and therefore they are grouped as helix, sheet, 

and coil types. MoRF regions that include two types of the secondary structures 

are referred to as complex regions. We evaluate the considered methods 

separately for each MoRF type, see Table 6. 
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Table 6 shows that MoRFpred outperforms the other three methods with respect 

to the success rates for each MoRF type. Using the AUC measure, MoRFpred 

again improves over ANCHOR in all cases. The evaluation on the α-MoRF type 

shows a visible improvement of the α-MoRF-PredI and α-MoRF-PredII when 

compared to their predictions on the other MoRF types. This improvement is 

expected since these methods were designed for the prediction of the helix-type 

MoRFs. However, ANCHOR and MoRFpred are still better than α-MoRF-Pred 

methods for all MoRF type. The success rates of MoRFpred are higher by 4%, 

12%, and over 5% than ANCHOR for the prediction of α-MoRFs, coil-MoRFs, 

and complex-MoRFs, respectively. Results also show that all methods perform 

relatively poorly for the predictions of the β-MoRFs, although MoRFpred still 

outperforms the other solutions. However, we note relatively low numbers of the 

β- and complex-MoRFs which could affect validity of our conclusions. 

The alignment only-based predictions have low TPRs coupled with very low 

(close to zero) FPRs for all MoRF types. This shows that alignment predicts only 

a few MoRFs but with high quality. The alignment contributes 3 to 6% to the TPR 

of the MoRFpred for the helix, sheet, and coil MoRF types. 
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MoRF type 

# (%) of 
MoRF 
segments 

Predictor 

Whole Sequence Flanking Region 

ACC TPR FPR Success rate AUC ACC TPR FPR Success Rate AUC 

Helix 

97 (23%) 

α-MorfPredІ 0.930 0.176 0.056 0.320 ++ NA  0.648 0.176 0.115 0.258 ++ NA  

α-MorfPredІІ 0.847 0.403 0.144 0.598 ++ NA  0.677 0.403 0.186 0.546 ++ NA  

ANCHOR 0.623 0.545 0.376 0.866 + 0.635 ++ 0.657 0.545 0.286 0.876 = 0.662 ++ 

MoRFpred 0.937 0.357 0.052 0.907  0.747  0.741 0.357 0.066 0.907  0.763  

Alignment only 0.982 0.063 0 0.093  NA  0.68 0.063 0.010 0.093  NA  

Sheet 

15 (4%) 

α-MorfPredІ 0.961 0.099 0.018 0.067 ++ NA  0.697 0.099 0.009 0.067 ++ NA  

α-MorfPredІІ 0.936 0.224 0.046 0.200 ++ NA  0.706 0.224 0.058 0.200 ++ NA  

ANCHOR 0.866 0.168 0.117 0.333 ++ 0.506 + 0.681 0.168 0.067 0.600 ++ 0.554 ++ 

MoRFpred 0.934 0.149 0.047 0.600  0.654  0.685 0.149 0.052 0.733  0.698  

Alignment only 0.974 0.043 0.004 0.067  NA  0.681 0.043 0.006 0.067  NA  

Coil 

288 (69%) 

α-MorfPredІ 0.954 0.084 0.027 0.094 ++ NA  0.677 0.084 0.039 0.08 ++ NA  

α-MorfPredІІ 0.912 0.175 0.073 0.198 ++ NA  0.667 0.175 0.096 0.156 ++ NA  

ANCHOR 0.811 0.308 0.178 0.528 ++ 0.595 ++ 0.630 0.308 0.216 0.583 ++ 0.555 ++ 

MoRFpred 0.937 0.206 0.048 0.653  0.634  0.697 0.206 0.067 0.701  0.638  

Alignment only 0.978 0.029 0.002 0.028  NA  0.68 0.029 0.008 0.021  NA  

Complex 

19 (4%) 

α-MorfPredІ 0.946 0.332 0.043 0.389 ++ NA  0.663 0.332 0.157 0.278  ++ NA  

α-MorfPredІІ 0.860 0.467 0.133 0.500 ++ NA  0.708 0.467 0.162 0.500  ++ NA  

ANCHOR 0.590 0.640 0.411 0.833 ++ 0.658 + 0.645 0.640 0.352 0.722  ++ 0.692 ++ 

MoRFpred 0.940 0.369 0.050 0.889  0.760  0.736 0.369 0.066 0.833  0.767  

Alignment only 0.982 0 0.001 0  NA  0.649 0 0 0  NA  

Table 6. Comparison of prediction results for different MoRF types on the test dataset. Comparison of 
prediction results for different MoRF types on the test dataset. The two main columns list results when 
evaluation is performed using the whole chain and using only the flanking region (see Section 2.2 in the main 
text). α-MorfPredІ and α-MorfPredІI generate only binary predictions and thus their AUC cannot be 
calculated. Statistical significance of the differences in the success rates and AUC between the MoRFpred 
and the other three methods is shown next to the success rate and AUC values, where ++, +, and = denote 
that the improvement is significant at the p-value < 0.01, at p-value < 0.05, and that the difference is not 
significant, respectively. 

MoRFpred produces the most accurate results for the α-MoRFs, as evidenced by 

high AUC and success rate values. This could originate from the fact that helixes 

are local (in the sequence) structures and thus hey are easier to capture using a 

window-based approach that is implemented by our method. In contrast, β-sheets 

can span over large stretches of the sequence, and thus the window may not be 

sufficient to find them. 
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MoRF type 

# (%) of 
MoRF 
segments 

Predictor 

Whole Sequence Flanking Region 

ACC TPR FPR Success rate AUC ACC TPR FPR Success rate AUC 

Immune 

response-

related 

74 (18%) 

α-MoRF-PredІ 0.958 0 0.019 0 ++ NA  0.691 0 0 0 ++ NA  

α-MoRF-PredІІ 0.921 0.016 0.057 0.027 ++ NA  0.681 0.016 0.021 0.014 ++ NA  
ANCHOR 0.824 0.214 0.161 0.5 = 0.573 ++ 0.654 0.214 0.149 0.635 = 0.569 + 
MoRFpred 0.932 0.156 0.049 0.581  0.568  0.716 0.156 0.033 0.662  0.583  
Alignment Only 0.976 0 0 0  NA  0.691 0 0 0  NA  

Other 

345 (82%) 

α-MoRF-PredІ 0.945 0.143 0.039 0.191 ++ NA  0.664 0.143 0.077 0.157 ++ NA  

α-MoRF-PredІІ 0.885 0.298 0.104 0.362 ++ NA  0.672 0.298 0.143 0.316 ++ NA  
ANCHOR 0.729 0.419 0.265 0.635 ++ 0.608 ++ 0.638 0.419 0.253 0.664 ++ 0.595 ++ 
MoRFpred 0.937 0.273 0.049 0.748  0.692  0.711 0.273 0.072 0.774  0.701  
Alignment Only 0.98 0.045 0.001 0.052  NA  0.677 0.045 0.009 0.046  NA  

Table 7. Comparison of prediction results for immune function-related and other proteins on the test 
dataset.The two main columns list results when evaluation is performed using the whole chain and using 
only the flanking region (see Section 2.2 in the main text). α-MorfPredІ and α-MorfPredІI generate only 
binary predictions and thus their AUC cannot be calculated. Statistical significance of the differences in the 
success rates and AUC between the MoRFpred and the other three methods is shown next to the success rate 
and AUC values, where ++, +, and = denote that the improvement is significant at the p-value < 0.01, at p-
value < 0.05, and that the difference is not significant, respectively. 

Table 7 shows evaluations for the immune function-related MoRFs vs. the 

remaining MoRFs. Our method outperforms the other approaches for the non-

immune MoRFs. However, for the immune function-related MoRFs, the 

improvements offered by our MoRFpred are smaller, i.e., about 3-8% in success 

rate and about 1% in AUC when compared with the runner-up ANCHOR. We 

note that all considered method perform relatively poorly for these MoRFs, which 

motivates further research in this area. We hypothesize that the immune function-

related MoRFs are distinct from other MoRF types and thus their prediction may 

need a dedicated method. 

4.2  Similarity analysis 

In this section we investigate the hypothesis that MoRF regions have non-random 

similarity to each other. If true, this could be used to validate our claim that some 
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of our false positive MoRF predictions might correspond to true MoRF regions. 

To this end, we create 4 different sets of protein segments which are used to 

investigate the similarity:  

• Set of the native MoRFs in the test set. 

• Set of random segments generated from test set that have the same length 

distribution and number when compared to the set of native MoRFs.  

• Set of predicted MoRF segments that have at least 50% overlap with the 

native MoRFs in the test set. 

• The predicted MoRF segments that have no overlap with the native 

MoRFs (predicted “false positive” MoRFs). 

We use the native MoRFs in the training set as our reference population against 

which we align the four abovementioned sets. We measure the similarity using 

EMBOSS needle (Rice et al. 2000) 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/) with default parameters.  

Each random segment, native/true, and predicted MoRF is aligned against the 421 

native MoRFs in the reference population and we use the maximum score from 

the 421 similarities. We obtain four sets of scores for the native test set, random 

set, predicted overlapping MoRFs, and predicted non-overlapping MoRFs. Using 

these scores, we generate distributions which are fitted into the data using the 

EasyFit software (http://www.mathwave.com/products/easyfit.html). 
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Figure 10. Similarity comparison of native MoRF and predicted MoRF. Similarity between the native 
MoRFs in the test set (test group), the random segments in the test set (random group), the MoRFs predicted 
in the test set by MoRFpred which overlap with the native MoRFs (overlapping predictions), and the MoRFs 
predicted in the test set by MoRFpred which do not overlap with the native MoRFs (non-overlapping 
predictions that correspond to false positive predictions) and the native MoRFs in the training dataset. The 
distributions, which are based on the Pearson 5 function, were fitted using EasyFit. The x-axis shows the 
similarity between the segments measured with EMBOSS needle and y-axis shows the relative number of 
segments. 

We tried 6 commonly used types of distributions including normal, log-normal, 

gamma, beta, Pearson 5, and Pearson 6 distributions. Their fit into the data was 

evaluated using the Kolmogorov-Smirnov goodness of fit test. We use the 

Pearson 5 distribution which provided the best rank when considering the four 

sets of similarities. 

Figure 10 depicts the distributions of the four sets of similarities. We observe that 

the distribution of the similarities for the native test group (using native MoRFs) 

has a higher and longer right tail when compared with the distribution of the 

random group (for random segments). This means that the native MoRF have 

higher similarity to each other when compared to their similarity with randomly 

0

1

2

3

4

5

6

7

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Identity Score

Test group distribution

Random group 
distribution
Overlapping predictions 
distribution
Non-overlapping 
predictions distribution
Test group

Random group

Overlapping predictions

Non-overlapping 
predictions



 

 

53 

selected segments. This motivated the use of the alignment in our predictor. 

Moreover, both distributions for the predicted MoRFs are also characterized by 

higher than random similarity. The shift to the right of the distribution for the 

overlapping (with native MoRFs) predicted MoRFs when compared with the 

distribution for the native test group means that our overlapping predictions tend 

to focus on the MoRF segments that are similar to the MoRFs in the training set. 

However, this bias is relatively minor, considering that the two distributions are 

shifted by only 0.05. Most importantly, the distribution for the predicted non-

overlapping MoRFs (predicted false positives) is shifted toward higher similarity 

when compared with the random group, which suggests that some of our false 

positives (putative MoRFs) may correspond to native MoRFs.  

4.3 Probability scores identify high quality predictions 

We demonstrate that probabilities that are generated by MoRFpred can be used to 

select predictions that have higher quality. Figure 11  plots positive predictive 

value (PPV) for MoRF predictions (probability > 0.5) and negative predictive 

value (NPV) for non MoRF predictions (probability < 0.5) against the binned 

prediction probabilities generated by MoRFpred on the test dataset. The PPV and 

NPV values quantify the predictive performance of MoRFpred when it predicts 

MoRF and non MoRF residues, respectively. The non MoRF (negative) 

predictions for the low probabilities between 0 and 0.25, which account for 20% 

of all predictions, have substantially higher NPV when compared with the 

predictions with higher probabilities, e.g. in 0.4 to 0.5 range. The same is true for 

the MoRF (positive) predictions. We observe that for high probabilities between 
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0.7 and 1, our method provides a much higher PPV when compared with the 

predictions for probabilities closer to 0.5 (between 0.5 and 0.6). To sum up, 

Figure 11 demonstrates that predictions with probabilities farther away from the 

0.5, which is the threshold to differentiate between MoRF and non MoRF 

residues, are characterized by higher predictive quality. This means that a user 

should be more confident with the predictions associated with either low or high 

probabilities. 

 

Figure 11 . Relation between predictive quality and the magnitute of the probabilities generated by 

MoRFpred on the test dataset.  Values of probabilities are binned and shown on the x-axis. The left y-axis 
shows the percentage of correctly predicted non MoRF residues (NPV), which quantifies predictive quality 
when probabilities are below 0.5. The right y-axis corresponds to the percentage of correctly predicted MoRF 
residues (PPV), which evaluates predictive quality when probabilities are above 0.5. The bars indicate the 
fraction of residues for a given range of the probability.  

4.4 Analysis of selected features 

We describe a few potential sequence-derived markers of MoRF residues based 

on the features that were selected to implement the MoRFpred. The MoRFpred 

uses 24 features which were selected using three different feature selection 

methods. To analyze the selected features, we sort them in the ascending order 
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based on their average ranking for the rankings generated by the three selection 

protocols; see section  3.3 for details. We calculate the average values of the top 

ranked features for the native MoRF and non MoRF residues (in flanking region), 

respectively. These averages for the five top-ranked features are compared in 

Figure 12. The values of these features have opposite signs for the native MoRF 

and non MoRF residues. However, the large and overlapping standard deviations 

(denoted by the error bars) show that they could not be used individually to 

accurately identifies MoRFs. This is why we employ multiple features in our 

prediction model.  

The three left-most sets of bars in Figure 12 represent the same type of features, 

which is based on the average difference of disorder probabilities (refer to Table 2 

for definition) calculated  using predictions from IUPred with w = 15 and 

DISOPRED2 with w = 5 and w=15, respectively. These features were designed to 

contrast the value of the predicted disorder propensities in a MoRF region (inner 

window) and the sequence segments that flank this region (outside window). 

According to the study by Oldfield et al. (2005), MoRF regions are short ordered 

segments inside a larger disordered segment. Therefore, we expect a higher 

average of predicted disorder propensities in the outside window when compared 

to inner window, which should result in a positive value for our features for the 

native MoRF residues. This is confirmed in Figure 12  where the three features 

have, on average, positive values for the MoRF residues and negative (near zero) 

values for the non MoRF residues. 
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The right-most two sets of bars in Figure 12 show average difference-based 

features (features based on the differences in values between the inner and outside 

windows) calculated using two AAindexes, which quantify stability (Zhou & 

Zhou 2004) and hydrophobicity (Nozaki & Tanford, 1971), respectively. The 

stability scale is a quantity used to characterize the contributions of individual 

residues to stability of a protein fold where higher values mean higher stability. 

We observe that the average difference for residues in the native MoRF region for 

the stability-based feature is negative. That means that residues in the MoRF 

region have higher stability when compared to the surrounding residues. This 

agrees with the underlying biology, since MoRF residue should be more stable to 

transition into the structured state when compared to the flanking residues that are 

likely to be (more) disordered. The last feature is based on hydrophobicity. The 

negative value of this feature for the native MoRF residues indicates that these 

residues are, on average, more hydrophobic than the surrounding residues. 
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Figure 12. Analysis of the top-ranked features that can be used to characterize MoRFs. The average 
values of the top 5 ranked features used by MoRFpred, which are shown on the x-axis, for the native MoRF 
residues (light gray bars) and native non MoRF residues (dark gray bars) are compared. The corresponding 
standard deviations are shown using the error bars. The selected five features represent an average difference 
of a given quantity, which is described in Table 2. Negative values mean that average in the inner window of 
size w was higher than the average of the flanking areas.  

Our features reveal a few interesting sequence-derived markers of MoRF 

residues. These residues are less disordered, more stable and more hydrophobic 

when compared to the disordered residues that surround them in a protein chain. 

This is in line with the observations in (Meszaros et al., 2007) that the local 

increase in the hydrophobicity in a disordered segment is a characteristic of 

binding sites in IDPs. Bastolla et al. (2005) show a strong positive correlation 

between a hydrophobicity profile and a contact matrix (i.e., the residue-residue 

contacts that quantify stability), which describes stability of the protein structure. 

This supports our result that also shows that increase in both stability and 

hydrophobicity are indicative of MoRF residues. Importantly, our model shows 

that these markers can be derived directly from the sequence, based on the 
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predicted (with IUPred and DISOPRED2) disorder and the two AA scales (Zhou 

& Zhou 2004; Nozaki & Tanford, 1971) 

4.5 Case studies 

4.5.1 Case studies for true positive predictions 

Two case studies are used to demonstrate the MoRFpred predictions. They were 

selected to represent two situations, when the MoRF region are overpredicted and 

where they are underpredicted. Moreover, the first case concerns a long MoRF 

segment, while the second concerns a short segment. 

The first case study is the transcriptional intermediary factor-2 isoform 2 protein 

which was collected from UniProt, and for which the MoRF was extracted using 

the PDB complex 1m2z_B. This protein has 1394 residues and contains a coil 

MoRF region which is 21 residues long.  

Figure 13 visualizes predictions for this protein from all considered predictors: α-

MoRF-PredI, α-MoRF-PredII, ANCHOR, and MoRFpred. We observe that all 

methods were able to (partially) identify the native MoRF region. However this is 

not the only predicted MoRF and the ammount of MoRFs is overpredicted by all 

methods. MoRFpred has the least predicted MoRFs by predicting 89 residues as 

MoRFs when compared to α-MoRF-PredI with 171 MoRF predictions, α-MoRF-

PredII with 306 MoRF predictions, and ANCHOR with 876 MoRF predictions. 

The second case study is a 89 residues long H2A class histone protein for which 

MoRF region was extracted from the 1ydp_P complex from PDB. The native 

MoRF region in this protein folds into a coil, which is located near the C-termini 
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and is 9 residues long. Figure 14, shows that α-Morf-PredІ and α-Morf-PredІІ did 

not predict any MoRF residues in this sequence, which is correct since these 

methods are designed to predict α-MoRFs.  
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Figure 13. Prediction of MoRF residues for the transcriptional intermediary factor-2 isoform 2 protein. ANCHOR (blue lines), MoRFpred (orange lines), α-MoRF-PredI 
(thick red line), and α-MoRF-PredII (thick green line) predictors. Probability values are only available for ANCHOR and MoRFpred and are shown by thin blue and orange lines, 
respectively, at the top of the figure. The original cut-off of 0.5 for both ANCHOR and MoRFpred are shown using a brown line. The native MoRF regions are annotated using 
black horizontal line. The binary predictions from ANCHOR, α-MoRF-PredI, α-MoRF-PredII and MoRFpred are denoted using horizontal lines at the bottom of the figure in blue 
(at the -0.1 point on the y-axis), red (at the -0.2), green (at the -0.3), and orange (at the -0.4), respectively.  
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Figure 14. Prediction of MoRF residues in the Histone H2A protein. ANCHOR (blue lines), MoRFpred (orange lines), α-MoRF-PredI (thick red line), and α-MoRF-PredII 
(thick green line) predictors. Probability values are only available for ANCHOR and MoRFpred and are shown by thin blue and orange lines respectively. The original cut-off of 
0.5 for both ANCHOR and MoRFpred are shown using a brown line. The native MoRF regions are annotated using black horizontal line. The binary predictions from ANCHOR, 
α-MoRF-PredI, α-MoRF-PredII and MoRFpred are denoted using blue (at the -0.1 point on the y-axis), red (at the -0.2), green (at the -0.3), and orange (at the -0.4) horizontal lines. 
No red and green lines means that , α-MoRF-PredI and α-MoRF-PredII predictors did not predict any of the residues as MoRF. 
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MoRFpred predicted the native MoRF region and another false positive MoRF 

region, which was also predicted by ANCHOR. We note that the probability 

profiles of ANCHOR and MoRFpred are very similar except for the C-terminus 

where the native MoRF is located. The ANCHOR outputs probabilities that are 

higher than the 0.5 threshold in a vicinity of 50th position, but these predictions 

were removed through post-processing applied by this method. MoRFpred 

generated probabilities < 0.5 in that region. 

We note that the MoRFpred predictions in these two case studies were generated 

by SVM (i.e., alignment did not find any MoRF regions), which confirms that the 

machine learning classifier can contribute beyond what can be found based on 

sequence similarity. 

4.5.2 Case studies for false positive predictions 

In section  2.3.2 we argue that our dataset may contain unannotated MoRFs and 

thus some of the false positive MoRF predictions generated by MoRFpred might 

correspond to true/native MoRF regions. In section  4.2 we demonstrate that the 

predicted MoRF regions that have no overlap with the native MoRFs (false 

positive predictions) have above-random similarity to the native MoRFs. This 

lead us to investigate the strongest false positive MoRF predictions, i.e., 

predictions with the highest probability (see section  4.3). We use average (over all 

residues in the predicted segment) probability generated by MoRFpred to rank the 

false positive MoRFs. We used UniProt to find annotations of binding sites in 

these predicted regions. The following two case studies (among others) have 

binding regions in the predicted MoRF segments. 
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The first case is P-selectin glycoprotein ligand 1 (PSGL-1) protein (UniProt ID 

Q14242) for which the predicted false positive MoRF has average probability of 

0.85. The AA sequence of this region (residues 393 to 402) is DDLTLHSFLP. 

This region is predicted by the SVM, and was not found by alignment. It 

implements a few interaction sites: 

• A part of the MAPK docking motif (REDREGDDLTL, residues 387-397) 

that helps to regulate a specific interaction in the MAPK cascade overlaps 

with the predicted MoRF region. 

• The predicted MoRF region includes a site phosphorylated by Polo-like 

kinase (DDLTLHS, residues 393-399).  

• Our prediction is also close to the TRAF6 binding site (PEPREDREG, 

residues 384-392), that acts as intracellular adaptor recruited to different 

receptors through its C-terminal TRAF domain. 

We note that ANCHOR overpredicts half of this protein as MoRF, which includes 

this region as well. The α-MoRF-PredII predicts this region as MoRF without 

overpredicting the remainder of the chain. This region was also predicted to be 

disordered by MFDp and IUPredS, and parts of this region were predicted by the 

other disorder predictors.  

The second case is putative uncharacterized protein DKFZp459P0162 (UniProt 

ID Q5RDR1) for which the false positive MoRF was predicted with average 

probability of 0.65. The AA sequence for this region (residues 212 to 222) is 

SPAVPNKEVTP, and it is associated with the  following binding sites: 
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• This region covers the subtilisin/kexin isozyme-1 (SKI1) cleavage site 

(KEVTP, residues 218-222) 

 

• The PAVPNK sub-segment (residues 213-218) is potentially recognized 

by class II SH3 domains and is involved in protein-protein interaction 

mediated by SH3 domains.  

In contrast to the first case, this region is predicted by alignment and none of the 

existing predictors were able to (fully) predict this region. ANCHOR, which 

predicts about 1/3 of this protein as MoRF, predicts only parts of this region. The 

considered disorder predictors predict this region as being disordered, which 

provides further support for our claim that this is a strong putative MoRF. 

These two case studies demonstrate that some of the false positives generated by 

MoRFpred may implement important binding events that require a structured 

conformation.  
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5 Summary, discussion and contributions 

We introduce a new sequence-based method to predict MoRF segments, including 

all of their types. Our solution is based on several novel aspects. First, we utilize 

an updated, larger and more comprehensive dataset to build and validate 

MoRFpred. Second, we combine SVM-based predictions with alignment, which 

leads to improved predictive quality. Third, MoRFpred predictions are 

accompanied by probability scores which can be used to indicate more accurate 

predictions. Last, we use a more comprehensive set of predictive inputs when 

compared to existing methods: Specifically, we utilize multiple disorder 

predictions, predicted B-factors and RSA, evolutionary profiles based on the 

PSSM, and amino acid indexes to encode our inputs. We also designed a new and 

successful class of features to contrast the properties in the immediate 

neighborhood of the predicted residues with its flanking regions. Analysis of our 

input features shows that MoRFs are characterized by dips in disorder predictions 

and certain hydrophobicity- and stability-based profiles, i.e., MoRF residues have 

higher hydrophobicity and stability when compared to the adjacent residues. 

We also hypothesize that our method can be used to identify putative MoRFs. We 

investigate our false positives and we show that some of them could potentially be 

native MoRFs. Similarity analysis shows that false positive MoRF regions 

predicted by MoRFpred are characterized by above-random similarity with the 

native MoRF regions. We used this observation, along with the fact that higher 

probability generated by MoRFpred corresponds to more accurate predictions, to 
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identify and discuss a couple of interesting case studies. Finally, the similarity 

analysis also led us to incorporate alignment into the proposed predictor, which 

improved the AUC by 1%.  

The following is a list of significant contributions in this work: 

• We designed and developed a new sequence-based predictor that 

outperforms existing MoRF prediction methods. 

• We adopted a new measure, success rate, which has not previously been 

previously used in this field, to evaluate the MoRF predictions.  

• We devised a new evaluation and test method to avoid overfitting during 

feature selection and parameterization. This method is referred to as 4+1 

cross validation. 

• We provided an empirical comparison with the existing MoRF predictors. 

• We identified and explained several sequence-derived markers of MoRF 

regions. These markers are based on hydrophobicity, stability and disorder 

profiles.  

• We show that MoRF segments have an above-random similarity to each 

other, and thus it is possible to use alignment to identify some (a limited 

number) of the MoRF regions. 
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