
JRefleX: Towards Supporting Undergraduate Software-Development Team
Projects

Eleni Stroulia Warren Blanchet Ying Liu Curtis Schofield Kenny Wong
Zhenchang Xing

Department of Computing Science
University of Alberta�

stroulia,blanchet,yingl,schofiel,kenw,xing�@cs.ualberta.ca

Abstract
In most engineering disciplines, it is assumed that the

education of their professionals involves an apprenticeship
component, in addition to their formal training. This is why
most undegraduate software-engineering programs involvea
capstone project course, where students, in preparation for
becoming software professionals, work in teams to design,
develop and document a substantial software system. Our
experience with such a course has been that the success of a
such a team project depends, on one hand, on the technical
competency of the students, the quality of the tools they use,
and the project-management decisions they make during the
project lifecycle, and, on the other, the specific and timely
feedback of the instructor is invaluable. However, instruc-
tors of such courses are, more often than not, overwhelmed
with the task of closely monitoring the progress of multiple
teams, and problems in a team’s process and product may
go unnoticed until it is too late to be addressed. This pa-
per introduces theJREFLEX environment, which we devel-
oped upon the Eclipse framework, to support the reflection
on small software teams.

1. Introduction
The software-engineering research literature abounds

with information on how to develop high-quality software,
on time and on budget. This knowledge has also made
its way to the textbooks used in undergraduate software-
engineering courses. However, textbook learning alone is
not enough to train competent software professionals; stu-
dents need to practice and apply their textbook knowledge
and to acquire “hands-on” experience with realistic software-
development projects.

Recognizing this need, most undergraduate software-
engineering programs have included a capstone project
course in their curriculum. The intent behind such courses
is to provide the students the opportunity to work in a realis-
tic software-development context. Most often, they are orga-
nized in small teams, they are given a, possibly incomplete,
set of requirements. Then, in the course of an academic term,

they have to face the challenges of elucidating the require-
ments, designing an application to meet them, assigning the
various development tasks among them, developing, testing
and integrating the various pieces of software and document-
ing their work, while all along they have to make sure that
they stay on schedule.

In this context, instructors have the dual role of the man-
ager and the mentor for all the teams; on one hand, they
have to evaluate the team’s process and products and, on the
other, they have to provide specific and timely feedback on
what the team is doing well and what needs to be corrected
or improved. Unfortunately, high student-to-instructor ratios
make fulfilling these roles a challenge. In our experience,
involving roughly 30 small teams in a course of over 120
students, there are often major variations among the team
projects and the skills of team members, making the detec-
tion of individual problems too subtle. Students may get
mired in the complexity of the product or their individual
components, and not recognize signs of problems in their
overall design or development process early enough to ef-
fectively involve the instructor.

This experience was the main motivation behind theJRE-
FLEX project, whose goal is to develop a tool to monitor the
collaboration process of software teams and to aid the under-
standing of how software designs and codes evolve through
the project life-cycle. The primary objective of theJRE-
FLEX tool is to infer high-level information about how a team
project progresses, including the team’s organization style,
the impact of each member’s contribution or lack thereof,
and the evolution of the product’s design and code, in order
to enable instructors to quickly perceive when and how they
need to intervene to support this team. The data to support
these needs is gathered unobtrusively as developers work on
their code. Visualizations are created and delivered to the
instructor so that he can always have an up-to-date view of
their progress and make comparisons across teams.

As a secondary objective, we are considering producing
team-specific views and making them available to the stu-



dents to monitor themselves and to see how their teams might
rank against others in the course. We hypothesize that teams
who are aware of their own collaborative process, reflect
upon their progress, and make adjustments as needed are
more likely to make the right project-management decisions
when new challenges arrive.

In the longer term, theJREFLEX environment is to provide
an experience repository for the collaborative development
processes of a series of projects. Such a repository could be
data mined to discover interesting correlations between ob-
jectively collected process and product data, subjective de-
veloper perceptions of their own work, and their performance
as assessed in their project marks.

The JREFLEX environment currently uses CVS (Concur-
rent Versioning System) to support collaborative softwarede-
velopment. The environment accesses the CVS history of a
team’s software development work on a project. The anal-
ysis modules are implemented as Eclipse plugins. As well,
JREFLEX provides a Wiki-based user interface to deliver the
results of analyses in a web-based format.

The rest of this paper is organized as follows. Section 2
introduces the architecture ofJREFLEX. Section 3 discusses
our experience withJREFLEX to date and the results of our
initial evaluation of the tool. Section 4 places our work in the
context of the related literature and Section 5 briefly sum-
marizes the lessons we have learned to date and our plans for
future work.
2. The JREFLEX Architecture

The JREFLEX environment consists of five components:
� the development environment (based on Eclipse),
� a repository, in which a set of facts regarding software

products is stored,
� the analysis components that process the repository con-

tents to infer high-level information about the progress
of the development,

� a browser-accessible wiki server, WikiDev, that delivers
and visualizes the analysis results, and

� a project-assessment component, through which devel-
opers and instructors can explicitly provide their own
information regarding the project.

2.1. The development environment

With respect to development tools,JREFLEX assumes, at
the very least, the existence of CVS, as the repository where
all software assets are stored. Information about the contents
and the operations’ history of CVS populates its database of
“facts” related to theProjects. In addition to CVS,JREFLEX
is tightly integrated with Eclipse as the development environ-
ment: the analysis components are implemented as Eclipse
plugins and the visualizations of the data-analysis results are
available as Eclipse views, in addition to being accessible
through WikiDev.

The architecture ofJREFLEX relies on Eclipse as the main
development tool, to provide a seamless integration of soft-
ware construction and analysis activities. From a practical

point of view, however, Eclipse is computationally intensive,
and in cases where the hardware infrastructure is not suffi-
ciently current - such as the case for most of the students’
home computers - its adoption may not be immediate. The
JREFLEX architecture enables, even teams that do not adopt
Eclipse as their development IDE to gain much of its bene-
fits as long as they use a web browser and CVS: although the
analysis components are developed as Eclipse plugins, their
results are stored in the database and their visualizationsare
also served by WikiDev.
2.2. The repository

The repository consists of a CVS, where all develop-
ment work products are stored, and a database, where work-
product meta-data and analysis information about the soft-
ware process and its products are maintained. The database
provides the core underlying structure for storing theJRE-
FLEX products and results, around the following basic con-
cepts:CourseTerm, Project, Team, Developer, WorkProduct,
History, Version, ActivityandQuality.

More specifically, aCourseTermrepresents a particular
group ofProjectsthat are being developed for a class project
during an academic term. AProject represents a particular
module or portion of a module within a CVS area, and is
associated with theTeamdeveloping it. In turn, aTeamis
a group ofDeveloperswho are working together on one or
moreProjects. A WorkProductis part of aProject, i.e., a file
within the Project’s CVS area, that requires constructive ef-
fort by aDeveloper. The actual information regarding what a
Developerhas produced is stored as aVersionof aWorkProd-
uct; essentially, aVersionparallels the notion of a CVS file
revision. TheHistorycontains records of all performed CVS
operations of all types, during the project life cycle. These
operations may have been performed to a specificWorkProd-
uct or to aProject. An Activity describes a particular type
of work thatDevelopersmay do while working onProjects,
such as for example, planning, design, coding, testing, docu-
mentation, etc. AQualitydescribes a particular kind of non-
functional requirement that is of interest for aProject, which
instructors use for product evaluation, such as learnability,
usability, and extensibility, for example.

2.3. Collaboration- and evolution- analysis

JREFLEX has two analysis components. The
collaboration-analysis component [16] aims at inferring
information regarding how the team members collaborate
in the context of their project development by analyzing
the CVS repository history of member actions and software
changes. The evolution-analysis component, on the other
hand, aims at discovering interesting patterns in the evolution
of the project design and code, by analyzing the differences
between subsequent versions of the project class hierarchies.
Both these analysis components are implemented as Eclipse
plugins. Visualizations of their results are accessible through
specialized Eclipse perspectives and through the WikiDev.



Collaboration Analysis The primary data source for the
collaboration-analysis component is theHistory table of the
repository database, i.e., information regarding the devel-
opers’ operations on the project files and modules. The
collaboration-analysis daemon examines CVS on a daily ba-
sis and populates the databaseHistory. Based on this data, it
then proceeds to calculate a rich set of derived metrics, which
are also stored in the repository database. These metrics refer
(a) to the team, as a whole, or (b) to a specific team-member,
or (c) to a particular work product or (d) to a particular type
of CVS operation.

Examination of these metrics can provide interesting in-
sights to the dynamics of a team’s collaboration style. For
example, it can reveal team members who do not contribute
to the evolution of any work product throughout the project
life-cycle, or sudden changes to the profile of a member’s de-
velopment behavior. Furthermore, comparative examination
of corresponding metrics of different teams may reveal in-
teresting trends and exceptions in the way most of the teams
collaborate.

For the first two terms of developing and usingJREFLEX,
visualizations of these metrics were available only to instruc-
tors and teaching assistants, through an instructor-team wiki
on WikiDev. We have in the mean time developed a set of
team-accessible Wiki pages, where team-specific metrics can
be accessed by the students. Furthermore, we have also de-
veloped an Eclipse plugin that can be invoked directly from
the development environment to display the same visualiza-
tions, shown in Figure 1.

Figure 1. Collaboration-analysis perspective

Evolution Analysis The evolution-analysis component of
JREFLEX comprises a suite of methods for analyzing the
modifications on the software design from one version to
the other, through comparison of class hierarchies. Further
analysis of the recovered design-level modifications results
in interesting insights regarding the evolution history ofthe
software system under analysis. Comparison of original de-
signs against designs reverse-engineered from code could re-
veal discrepancies between the designer’s intent and the ac-

tual implementation. On the other hand, comparison of a
sequence of reverse-engineered designs, corresponding toa
sequence of software-system versions, could recover the evo-
lution profile of individual application classes, identifytrans-
formations brought about by refactoring, and characterizethe
nature of evolution of the application design.

The main input for the evolution-analysis plugin is a se-
quence of design models, represented in UML (XMI 1.3),
corresponding to a sequence of snapshots of an object-
oriented application, generated by regular checkouts from
the CVS repository for a project. These UML models are
currently reverse engineered from the application code, using
a round-trip engineering tool. The core of the plugin relies
on recovering the structural design changes from one version
to the next. That is, the plugin implements a UML differenc-
ing algorithm that can surface structural modifications to the
application classes and interfaces, their attributes, their meth-
ods, and their specialization-generalization relations in terms
of the additions, deletions, moves, and renamings of object-
oriented entities. The algorithm produceschange treesthat
report the deltas of the compared versions.

Aggregate information is then extracted from a sequence
of such change trees. By examining and analyzing the
change trees and the aggregate data, we can obtain a quick
overview of the whole application evolution history. In par-
ticular, we can recover the overall software evolution history
at three different levels:

� At the system level, we can identify different evolution
phases, such as functionality extensions vs. refactor-
ings, and through the application evolution history.

� At the class level, we can recognize different types of
classes according to their evolution profiles, such as
continuously modified classes vs. legacy classes.

� At the change-tree level we can identify various change
patterns, such as co-evolution and refactorings.

Finally, the collected design-evolution information can be
visualized to present different views of the application evo-
lution to the interested developers. The students or instruc-
tors using the evolution-analysis plugin start with a set of
XMI models of a software system. They can analyze any
two versions, or run the plugin incrementally. The plugin
reads in the XMI models, parses their class-hierarchy trees,
applies the UMLDiff algorithm against these trees and saves
the deltas into change trees, and finally extracts and analyzes
the aggregate information. The results of the analysis are
then visualized in the various views of the plugin organized
in an Eclipse perspective, shown in Figure 2.

The change trees are shown in a tree view in the top-left
corner, theChange Treeview. This view works similarly
to the navigator pane of many IDEs. The different icons
represent the different object-oriented entities, the topright
adornments show the modifiers of the object, for example,
“abstract”, “static” etc. The bottom-right adornments repre-
sent the different types of changes of particular object, such



Figure 2. Evolution-analysis perspective

as plus sign for “insert”, minus sign for “delete”, filled tri-
angle for “rename”, empty triangle for “change signature”,
arrow with minus sign for “move source”, arrow with plus
sign for “move target”. The tree view presents the develop-
ers the detailed structural modifications to the class modelof
software system. The user can expand or collapse tree to see
more information. To look into the source codes of a spe-
cific element, one can double click on the element to bring
out the java-source editor, shown in the top-left corner. To
inspect previous or next change trees, one has to click the
arrow button to move backward or forward.

The bottom-left corner, thechange summaryview, shows
a pie chart that summarizes the amount of different types
of changes and their ratios from one version to the next. It
complements the matrix and the histogram views with actual
number and ratio of changes.

The bottom-right corner stacks three views, thesystem
evolutionview, theclass evolutionview, and therefactoring
view. The system-evolution and the class-evolution views
can be toggled to show the evolution matrix or the histogram
of the software system or individual application classes.
Each column in the evolution matrix, shown to the bottom
right of the Figure 2, represents a version of the software,
while each row represents the different types of changes. The
area of the bubble represents the amount of such types of
changes. Thus, a bubble of size s at the (x,y) point in the
matrix indicates that s number of changes of type y hap-
pened between version x-1 and x. The histogram - one is
reported in Figure 10 - depicts the change profile of a sys-
tem or individual classes. It is a color stacking bar chart.
The horizontal axis of the histogram represents the versions
of the software system, while the vertical axis represents the
amount of change. The different colors represent the differ-
ent types of changes. “Delete”-type changes have negative
values and all others positive values. Both the matrix and the
histogram provide a good way to visualize the high-level evo-
lution information of a software system, while the detailed
information about what happened in a particular version can

be obtained from the change-tree and the change-summary
views. An editable comment view can be toggled to let the
users input any information they may want to note about the
evolution of system or individual classes.

Furthermore, the plugin core analyzes the change profiles
of individual classes, classifies them into one or more of the
evolution types that are shown in the class evolution view’s
title, and add the default comments on evolution types as
shown in the right-hand side editable comment window. The
query mechanism is implemented to allow the users to select
and show the classes of evolution types they are interested
in. The plugin also identify co-evolving classes of individ-
ual classes. The users can select one of them from the drop
down menu of the class evolution view to show the evolution
information of that class, if any.

The refactoring view shown in Figure 11 side a list of all
the identified refactorings that have been made in a particu-
lar version. The right-hand side is a tree view that displays
the snippet of the change trees corresponding to the selected
refactoring.
2.4. The Wiki server

WikiDev, the JREFLEX Wiki server, leverages open-
source software, phpwiki, as a framework for maintaining
and exchanging information about the projects in a free-
form, flexible manner. WikiDev is a collection of plugins and
modifications to the phpwiki, which extend the original func-
tionality of the WikiWikiWeb concept as pioneered by Ward
Cunningham (seehttp://www.c2.com/cgi/wiki for
more information).

The WikiDev extensions are primarily concerned with
group based security and cvs integration. Each team is asso-
ciated with a specific Wiki. There is also a special Wiki for
the instructor team, i.e., the course instructor and the TAs.
Each Wiki is accessible only by members of the team associ-
ated with this Wiki. Once logged in, team members canview
project information, change passwords, or simply collabo-
rate in a WikiWikiWeb fashion by constructing new pages of
their own, to maintain and exchange information about their
work with their team members. Through theProjectView
plugin, team members have access to all their projects. Spe-
cific work products and their versions can be inspected for
each of these projects through special wiki pages, automat-
ically constructed by the WikiDev based on the contents of
the CVS repository. This gives users the ability to edit and
attach concepts or documentation to their work products, ina
manner that enables change and refinement through the ver-
sioning capabilities of the Wiki.
2.5. The project-assessment component

The primary objective of theJREFLEX tool is to unobtru-
sively collect and analyze data from the tools that students
use in their software development, in order to infer infor-
mation that can help the instructor and the developers them-
selves to effectively monitor the development process. Cur-



rently, the main source of such input data is CVS with its
operation history and its contents. In the longer run, we in-
tend to exploit the upcoming Eclipse instrumentation API to
unobtrusively record the fine-grained tool actions of devel-
opers working upon their code and documentation.

However informative such information, implicitly in-
ferred from tool-usage data, may be, it is also interesting
to compare it with “objective” data, explicitly provided by
the developers and the instructor team. TheJREFLEX as-
sessment component addresses exactly the need to enable the
collection of such “objective” data.

In the past, students of our project-based software-
engineering courses, were required to answer a set of ques-
tions at specific points during their project development. The
questionnaire was implemented as a stand-alone web-based
application with a specific list of questions. The answers
were collected as HTML documents, which made automatic
analysis of this data difficult, and limited the kinds of infor-
mation that could be obtained. For this reason, theJREFLEX
assessment component has been designed to be configurable
with respect to the types and amounts of data requested as
part of these questionnaires.

Currently, questionnaires are created in an administration
tool implemented as a set of Eclipse views. Data, i.e., an-
swers, are collected through a WikiDev plugin. Team mem-
bers who can log in their team wiki see the questionnaires
that require completion, and fill them out. When a filled
questionnaire is submitted, the component validates the pro-
vided data against the expected question-answer types and
stores the data in the repository database. Since the WikiDev
is where teams will do most of their collaboration, this is
currently the best environment in which to inquire about col-
laboration. Finally, in addition to enabling self assessment
of team members, questionnaires can also be used by the in-
structor team to evaluate the project deliverables.

In this manner, data regarding the developers’ own view
of the project progress, such as PSP/TSP-related information
for example [14], and instructor-provided “objective project
evaluation” data can become part of the database, and can
provide an external validation instrument for the inferences
of the analysis components.
3. Evaluation

JREFLEX was partially1 deployed during a single-term,
third-year undergraduate course in software engineering.At
that time, students were required to use CVS and they were
also given the first version of WikiDev; at the same time, the
analysis components were under development. At the end
of the term, the collected data was analyzed by researchers,
largely independent with the course delivery. The objective
of this case study was to examine, to what extent the analysis
components ofJREFLEX can provide insightful information

1The repository and the WikiDev components were available tostudents,
they did not use Eclipse though.

to the instructors, so that they can provide timely and rele-
vant feedback to the students. The content of the study and
the results of the analysis components are described in the
subsequent section.
3.1. Team and Project-deliverable structure

Our case study involved 85 students organized in 23
teams. 51 students (including the team members of 5 teams)
gave us permission to use their data; henceforth we will re-
fer to these teams as teamA, B, C, D andE. Students in this
course have a substantial background of program develop-
ment in-the-small, and are knowledgeable in programming
with Java in the object-oriented design style. However, for
most of them, the course project is their first experience in
collaborative software development.

The total duration of the project was 55 days, organized in
three cycles, each culminating in a deliverable. At the end of
the first cycle, a low-fidelity paper prototype and the object-
oriented design of the project, represented in a UML class
diagram, were due. At the end of the second cycle, a work-
ing horizontal prototype was due, exhibiting the interactive
functionalities of the project but not necessarily the under-
lying support functions. Finally, the whole working project
was delivered at the end of the third cycle.

On each due date, each team member had to submit an
electronic evaluation form to assess the contribution of all
team members, including themselves. Note that, at the time
of our study, the data of these self-assessment forms were not
integrated in theJREFLEX repository; in the mean time, we
have reverse engineered the content of the collected forms
and we have populated the assessment aspect of the reposi-
tory, in order to correlate this data with the information in-
ferred by the analysis components.
3.2. Collaboration Analysis

We used the collaboration-analysis component to extract
information regarding the following CVS operations in the
databaseHistory:

� Out: a record type from operation “checkout”; A CVS
file is checked out from the CVS repository to a working
directory.

� DRel: A directory in CVS is released. It has the same
effect as direct working-directory deletion, but DRel
avoids the risk of losing changes, which users may have
forgotten. Three types of records resulting from the op-
eration “commit”:

� Add: A file is added to CVS, and the first revision for
this file is created.

� Mod: A file is modified and a new revision appears.
� Rem: A file is removed from the CVS repository. Three

types of records resulting from the operation “update”:
� Col: More than one user checked out and modified the

same file version, so a collision occurred when a second
update was attempted and a manual merge is required.

� Mrg: Two versions need to be merged and the merge is
successful automatically.



� Wdel: A working copy of a file was deleted during
update, because it had already been removed from the
repository.

Based on this data, the subsequent metrics about the team,
the developers, the project files and their versions was in-
ferred.

The Team aspect A simple, yet potentially telling, metric
of the nature of the collaboration among the members of a
team is the number of their CVS operations according to their
type. TeamE performed on the average the smallest number
of operations in CVS – half the number of operations of team
B – but it has many addition,Add, and checkout,Out, opera-
tions and the number of files they developed was bigger than
average. Furthermore, they used CVS much more like a stor-
age area for finished products than as a working repository:
both in absolute numbers and on the average they modified
their CVS files much less frequently than other teams: on
the average, every file was modified only 5.2 times by the all
four team members. Let us now look at some inferences the
instructor might draw by examining the operations that the
teams performed in their CVS repositories. If a team exhibits
“abnormal” numbers of operations of all types – i.e., their
CVS usage or file numbers are distinctly different than most
other teams – then the instructor may examine their collabo-
ration in more detail to evaluate whether they are facing any
problems or not. For example, sparse usage of CVS might be
due to the fact that the team is simply storing and exchanging
files outside the CVS. Alternatively, it may be due to the fact
that the team is not working enough on the project.

As another example, we noticed that teamsA andB had
a slightly high number of collisions,Col. A collision oc-
curs when more than one team members attempt modify a
same file at the same time. A substantially high number of
Col operations could indicate that the design of the software
product and the distribution of tasks among the team mem-
bers are poor, and the project modularization should be re-
considered. We also noticed that these two teams have high
number of collisions over a relatively small number of files.
In principle, enabling team members to always have the latest
version of each file is a good collaboration habit. The instruc-
tor, in fact, recommended that students should commit new
versions back to CVS repository promptly after their modifi-
cation and should not modify a file heavily without saving it
in CVS so that the other team members can have up-to-date
local copies; if these instructions were followed, the average
number of modifications,Mod, should not be very small. If
the design of the application is not sufficiently detailed and
only high-level classes with substantially complex function-
alities have been designed, then it becomes more likely that
more than one member will have to touch the same file at the
same time thus resulting in a higher number of collisions,
Col.

Integrating the above heuristics, we can say that the higher

the ratio of successful merges over collisions (Mrg/Col) the
more effective the team collaboration is, since either their de-
sign or their inter-personal communication enables them not
to step on each other’s work products. The ratioMrg/Col
of teamC was the highest, where the same metric for team
A was the lowest. The problem of teamA seemed to be
the small number of files in which they divided their work–
i.e., the small number of classes they have identified in their
project design; if they had further decomposed their classes
into several, simpler and more independent parts, they might
have obtained a much better task assignment, module design
and file-sharing habits. Figure 3 diagrammatically presents
the average workloads for the students of the five teams
through the whole project cycle day by day. It is easy to see
that all teams show peaks of activity around the same dates in
the second and third periods. However, there are some inter-
esting differences too. Team C began earlier than the other
teams, teamB usually worked in a single day then stopped
for the next several days, and teamD followed a much more
consistent work profile than the rest. With this figure, the in-
structor might have noticed that a team has not started devel-
opment, when most other teams have, and might have given
the “delayed” team a prompt reminder.

Figure 3. Number of operations by date

The Individual-Developer aspect This type of analysis is
intended to support the instructor in assessing the relative
contribution of each team member to the project and to notice
quickly imbalances in the workload distribution.

Figure 4. Number of each operation type of
Team A members

Figure 4 shows the operation distribution over all types of
each member in teamA. It seems to indicate that Student137
did much more work than the other members of teamA, be-
cause he performed many operations in CVS. However, the



number of his modification operations was not correspond-
ingly high. A large part of the operations he performed were
the addition and removal of files, and he was also responsible
for many collisions. A plausible inference based on this dia-
gram might have been that Student137 is the team leader who
designs the project classes and initially authors the files for
other members. Compared to the other members of teamA,
Student139 exhibited a better operation pattern: high number
of modifications, few collisions and high ratio of successful
merges over collisions –Mrg/Col.

Figure 5. Number of team A’s daily operations
To better analyze the frequency and distribution of opera-

tions of interest, we have defined the concept of the interop-
eration gap (GAP); it refers to the interval between the times
of two operations of interest. We choose “day” to be the unit
of this measure: it is fairly easy and inexpensive to compute
GAP in term of days, although not quite as precise as hour.
Figure 5 clearly shows the busy (not busy) periods of the
team and enables us to have a quick idea about the typical
GAPs of each member along the time-line. In this manner,
we can identify when is the most important period of activity
for the entire project, or for a particular person, or for a file,
or for a particular operation type.

From Figure 5 we notice large any-type-operation gaps
between the beginning of the project to February 17 and from
March 18 to March 24. We also notice that the average team
activity is fairly consistent for all the teams: most operations
occur in phase2 and at the end of phase3: around the two ma-
jor deliverables of the project. All four members of teamA
appear to have similar operation frequency and distribution
except for student137, who was much more active around
Mar10 and Mar30. This diagram provides counter-evidence
for our earlier hypothesis regarding the leadership role ofstu-
dent137, which indicates that more accurate analysis results
come from multilevel data. Student137 did not start earlier
than the other team members, so he is not likely to be the
designer/leader. At this point, we can simply assess his oper-
ation profile as “problematic”: in spite of his big number of
operations, it is not clear how he contributed to the team.

Figure 6 shows the work pattern of teamsC andD. It
seems that all members of teamC only worked just before
the deadlines. On the other hand, teamD is much better; all
its members started earlier than average and worked consis-
tently almost every day.

Figure 6. Number of daily operations of teams
C and D

The File aspect Let us now examine how the project work-
load was distributed across the files. TheJREFLEX analysis
component produces two diagrams for each team to show the
file-related information: Figure 7 shows the number of the
different types of operations performed on each file of the
teamA project. From the height of columns, we can have a
quick idea about which files suffered many operations; the
height of each colored section corresponds to the number of
operations of a particular type.

Figure 7. Numbers of team A’s operations on
each file

Besides providing an overview of the number of modi-
fications, Mod, Figure 8 enables a deeper view into this
information, presenting the numbers of LOC added to and
deleted from each file by each team member. The more sub-
bars appear in a single column, the more attention should be
put on the corresponding file, since it might be the locus of
increased activity, possibly because it is ill-designed and ill-
understood.

Focusing on teamA, from Figure 7 the instructor might
infer that students spent more operations on files 2, 4, 1, 11,
9, 18, and 15 (in that order). Their numbers of modifications,
Mod, differ but their sizes are comparable (see FinalLOC).
However, it is not always the case that a file that is modified
many times is also modified substantially. Consider for ex-



Figure 8. Mod LOC and Mod numbers of each
file in Team A

ample files 2 and 11: file 2 has had many more modifications
than file 11, however, the eventual sizes are almost the same,
and Figure 8 tells us that the total number of modified lines
of file 2 is much less than that of file 11.

Combining the information from the above figures one
can see that the files with the highest density of modifi-
cations, i.e., high ratio of modified lines per total lines of
code, such as files 11, 2 and 4, were touched by multiple
team members. Furthermore, and not surprisingly, most files
that have been modified by a single team member have less
number of collisions, larger ratio of total LOC per modifica-
tion number and smaller ratio of modifications per number of
modified LOC. These three pieces of evidence seem to im-
ply that when a team member is the “owner” of a file, i.e.,
he is its only modifier, then he tends to concentrate on their
work mostly outside CVS; updates of the file in CVS are less
frequent and represent more substantial changes.

Both high frequency and large numbers of modified lines
may be evidence of an unstable file, i.e., a file that is either
poorly developed or a highly coupled file that is affected by
changes in many other files. Analysis of the modification op-
erations correlations might indicate the latter, or records in a
bug database might support the former hypothesis. In any
case, this phenomenon may trigger the instructor to exam-
ine the file in question further and advise the students ac-
cordingly. So if a team has a large number of collisions,
the instructor might suggest to students to inspect the mul-
tiply modified files and see whether they can be re-designed
or whether their maintenance should be assigned to a single
person.

3.3. Design-Evolution analysis

Evolution analysis was performed on weekly snapshots
of the teams’ projects from their CVS repositories, from Jan-
uary 20th, 2003 through April 14th, 2003, resulting in 13
versions for each project.

The evolution matrices - those of teamsB andC are shown
in Figure 9 - revealed some interesting insights regarding the
evolution style of their development. Based on evolution-
phase analysis, we discovered that teamsA andE defined a
few classes in the first place, and proceeded to develop them
one step at a time. Their change activities involved continu-
ous small modifications. Another characteristic of these two
teams was that major changes were made in the middle of

B

C

Figure 9. Evolution matrices for teams B, C

their project development, mainly between weeks 7 and 10.
They did not try to implement their project at the last minute,
like teamsB andC.

The evolution processes of teamsB andC contained two
versions with aggressive growth spurts. Their projects started
with a few classes, and did not change a lot until week
7. However, there was a sharp increase in the size of their
projects at week 8, which is followed by small changes until
week 10, in which another growth spurt is observed. These
occasional large modifications coincide with the deadlines
for project part 2 and part 3. This means that most features
and/or functionalities of their projects were implementedjust
before the deadline - a bad but not untypical practice.

TeamsB and C exhibited similar evolutionary develop-
ment styles. But, since teamC adopted the MVC model
as the application architecture, their work is more organized
than that of teamB, and their project quality as evaluated
by the course TA was better. This result validates the intu-
ition that good architecture enables software quality. Team B
combined the application and user-interface objects together.
As a result, as the various views evolved to meet usability
requirements, the model design was also affected. Further-
more, teamB created a giant class “Entry”, shown in Figure
10, to contain all possible back-end objects of the applica-
tion and the application logic associated with them, like how
to recognize conflicts for example. Note that this observa-
tion is consistent with the of its high number of collisions,
observed during collaboration analysis.

TeamD exhibited a very interesting evolution style. The
most changes were made within the first two consecutive
versions when they started the development of their project,
in weeks 4 and 5. They may have developed a very good
requirement analysis and high-level system design in the
first place. Therefore, they seem to know what architec-
ture should be adopted, what functionalities should be sup-



ported, and further how to implement them. In that way, they
were able to put almost everything in place when they started
implementation. Actually, they obtained the best mark for
the first deliverable which is essentially a requirements-and-
design document, Their change activities at the class level
are well-planed and that is just the opposite to those of most
other teams. Most other teams added many new classes when
the project deadline was approaching in week 10. TeamD
just added a few things, but the most remarkable thing for
teamD at week 10 is that they moved some methods among
classes, which means that, at the end, they were trying to im-
prove the quality of the system structure, when most other
teams were still struggling to meet their requirements.

Figure 10. Histogram of a “giant” class
In these five projects, we were able to find instances of

all the class-evolution types but die-hard and legacy, such
as the one reported in Figure 10. We believe that the rea-
son is the nature of the undergraduate term projects. They
are relatively small and must be completed within about 3
months. The structure of system is simple, and thus it does
not need such maintenance activities that bring about die-
hard and legacy classes. On the other hand, due to time
constraints students aim at completing a working system and
are usually unwilling to perform such maintenance activities.
However, we found evidence of refactoring. For example, as
shown in Figure 11 taken on week 11, teamE created a util-
ity class named “DateWorker” and date-related functionality
was moved from the pre-existing “Appointment” class to the
new “DateWorker” class. This is an example of the “class
extraction” refactoring.

Figure 11. A snippet of the change tree for a
“move field” refactoring

3.4. WikiDev Usage

During this case study 2 of the 5 teams utilized WikiDev
in an interesting manner. TeamB used the WikiDev plugins
most extensively and teamE used the Wiki features primarily
with only a small focus on the WikiDev plugins. The “ideal”
usage scenario that we had hoped for would be the union of
these two usage patterns. TeamB constructed a TaskLog in
their wiki and used the ability to assign a task on a file to
a particular member, in order to better coordinate their de-
velopment of their project. They also used the main page
as a reference to the most interesting pieces of code in their
project. TeamE created their own wiki pages to keep track of
various portions of the design, coding, and documentation of
their system. They also assigned tasks to the team members,
maintained group notes regarding their project, and they also
created a page to describe their understanding of an applica-
tion framework that they utilized during the development of
their project. Finally, they also constructed a page to main-
tain contact information for the team members.

To encourage significant use of WikiDev, similar to the
behavior of teamE, the current WikiDev version has added
the ability to annotate WorkProduct pages (these pages were
originally locked). As well, in the future, Bugzilla integra-
tion is intended to replace the TaskLog functionality of the
first WikiDev version to extend the small feature set provide
by the TaskLog.
4. Related Research

Ever since Osterweil pointed out the importance of soft-
ware process [18], a substantial body of work was devoted to
developing Process-Centered Software Engineering Environ-
ments (PSEEs) to support developers in their tasks. However,
most of them focus on mature developers who are already ex-
perienced with process models, and focus on enabling them
to visualize their work products and to communicate with
one another [13, 3]. At the same time, there has also been
a lot of work on process measurement [17, 2], without how-
ever, going as far as to provide feedback about how to better
manage and control the process in response to these measure-
ments.

Our research withJREFLEX aims at integrating results in
software process research within a pedagogical framework:
our objective is to support instructors in their effort to men-
tor novices in their apprenticeship for becoming the future
expert developers. To that end,JREFLEX enables implicit
and unobtrusive, as well as explicit, data collection in order
to compile a precise snapshot of the project progress status.
The novelty of its collaboration-analysis capability however
lies in the fact that, in addition to data collection, it alsoem-
ploys KDD methods [12] in an effort top discover interesting
correlations, patterns and trends that may enable the instruc-
tor to gain further intuitions into the students process.

On the other hand,JREFLEX ’s evolution-analysis compo-
nent is designed to produce semantically rich reports on the



project’s evolution. There already exists a substantial body of
literature on the subject of “software-evolution understand-
ing”. A vast majority focuses on analyzing, not the system
design, but its code metrics. Eick et al. [7] analyze the
change history of the code to derive “Code-Decay Indices”;
fault potential and change effort is predicted as a function
of these indices through regression analysis. The same team
also developed metrics visualization tools [8]. Gall et al.
[11] use information in the release history of a system to un-
cover logical coupling among modules. Their method aims
mainly at understanding module co-evolution. However, un-
fortunately, such documentation is not always readily avail-
able; even worse, even when such documentation exists, it is
seldom kept in sync with the code modifications, and there-
fore it is an unreliable source of system changes. Demeyer et
al. [5] define four heuristics based on code-size and inher-
itance metrics to hypothesize generic classes of refactoring
activity; unfortunately, no concrete refactorings, i.e.,the ones
described in [10], are identified. Lanza [15] describes how
to use a simple two-dimensional graph to convey the implicit
information of software metrics of object-oriented entities.

There has also been some work on “software design un-
derstanding”. Emden et al. [9] present a tool for detect-
ing and visualizing code smells based on the analysis of ex-
tracted facts of program structure. Egyed [6] has investi-
gated rule, constraint based transformation and comparison
approach for consistency checking between UML diagrams
when developers add new information to system model or
modify existing ones.

UMLDiff is a special case of a tree-matching algorithm.
The general tree-to-tree correction problem has been studied
extensively [4], and has been applied to show differences
between XML data [1]. The major difference between these
general algorithms and UMLDiff is, UMLDiff takes into ac-
count the structural syntactic information contained in the
class model of application, and it can identify the “move” of
object-oriented entities, which enable us to identify perfec-
tive changes that cannot be identified from documentation
like revision archives.
5. Conclusion

In this paper, we describedJREFLEX, a tool for monitor-
ing and analyzing the collaboration process of novice soft-
ware teams and the design of the produced software sys-
tem. JREFLEX ’s analysis is intended to support instructors of
capstone-project software-engineering courses to betterun-
derstand the progress of their students, in order to enable
them to provide timely and relevant feedback.

Our work on JREFLEX is still in progress, and much re-
search remains to properly test its effectiveness. Neverthe-
less, in our first case study, we have collected some promis-
ing experiences on how such an environment could be de-
ployed. JREFLEX extract a rich amount of data and its vi-
sualizations enabled even people not directly involved in the
course to quickly obtain a high-level picture of how the stu-

dents worked. In the future, we plan to work towards better
heuristics for analyzing the data and more intuitive visualiza-
tions of the inferences.

This work was supported by CSER, the Consortium for
Software Engineering Research, and an IBM Eclipse Inno-
vation Grant.
References

[1] Mosell EDM Ltd.: http://www.deltaxml.com.
[2] StatCvs:http://statcvs.sourceforge.net/.
[3] V. Ambriola, R. Conradi, A. Fuggetta, Assessing Process-

centered Software Engineering Environments, ACM Trans-
actions on Software Engineering and Methodology, 6(3):283
328, 1997.

[4] D. Barnard, G. Clarke and N. Duncan, Tree-to-tree Correc-
tion for Document Trees, Technical Report 95- 375, Queen’s
University, January 1995.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz, Finding refac-
torings via change metrics, ACM SIGPLAN notices, 2000,
35(10):166-177

[6] A. Egyed, Scalable Consistency Checking between Diagrams
- The VIEWINTEGRA Approach, Proceedings of the 16th
IEEE International Diego, USA, 2001, pp. 387.

[7] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A.
Mockus, Does Code Decay? Assessing the Evidence from
Change Management Data, IEEE Transactions on Software
Engineering, 2001, 27(1):1-12.

[8] S. G. Eick, T.L. Graves, A.F. Karr, A. Mockus, and P. Schus-
ter, Visualizing Software Changes, Software Engineering,
2002, 28(4):396-412.

[9] E. V. Emden and L. Moonen, Java Quality Assurance by De-
tecting Code Smells, Proceedings of 9th Working Conference
on Reverse Engineering, Oct, 2002.

[10] M. Fowler, Refactoring: Improving the Design of Existing
Code, Addison-Wesley, 1999.

[11] H. Gall, K. Hajek and M. Jazayeri, Detection of Logical
Coupling Based on Product Release History, Proceedings
of the International Conference on Software Maintenance,
Bethesda, Washington DC, November 1998.

[12] J. Han, M. Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufmann, 2000.

[13] J. D. Herbdlrb, A. Herbdlrb, T. A. Finholt, R. E. Grinter, An
Empirical study of Global software development: distance
and speed, 23rd Int. Conference on Software Engineering
(ICSE 2001), Toronto, Canada, May12-19, 2001.

[14] W. Humphrey, PSP/TSP,http://www.sei.cmu.edu/
tsp/watts-bio.html.

[15] M. Lanza, The Evolution Matrix: Recovering Software Evo-
lution using Software Visualization Techniques, Proceedings
of International Workshop on Principles of Software Evolu-
tion, 2001.

[16] Y. Liu, E. Stroulia. A Lightweight Project-ManagementEnvi-
ronment for Small Novice Teams. ACSE 2003: 3rd Int. Work-
shop on Adoption-Centric Software Engineering in the 25th
Int. Conference on Software Engineering, Portland, Oregon,
USA, May 9, 2003.

[17] C. Lott, Technology trends survey: Measurement Support in
Software Engineering Environments. Int. Journal of Software
Engineering and Knowledge Engineering, 4(3), Sep. 1994.

[18] L. Osterweil, Software Processes are Software too. Proceed-
ings of the 9th Int. Conference on Software Engineering, pp.
2-13, Monterey, CA, Mar. 1987.


