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Abstract

Video object/semantic segmentation has tremendous impact on many robotics

applications. Videos of manipulation tasks or driving scenes are more relevant

than static images. However, the focus of current video semantic segmenta-

tion work is on learning from large-scale datasets. Deep learning methods are

highly data dependant, and require large amount of data to perform accu-

rately. Manual annotation of large-scale video object/semantic segmentation

benchmarks is labour intensive, and inefficient in terms of cost. Large compa-

nies and universities in first world countries have financed currently available

benchmarks. The expense and massive computing needs and annotation cost

creates a barrier to use deep learning with large-scale labelled data in e.g.

developing countries. Thus, we focus on few-shot object segmentation which

studies how to learn the segmentation of novel classes from few labelled sam-

pled. Then we study its overlap with the video object segmentation task as a

means to address the above problems. We present a thorough investigation of

the shared challenges, assumption and solutions among both tasks.

Throughout the thesis contributions we mainly focus on metric learning

approaches or what is also termed as learning to compare. We start with

few-shot object segmentation and solve two main issues. The first issue we

address is proposing a single branch method unlike previous methods that

used two branches. We are inspired by cosine classifiers and propose a novel

multi-resolution masked weight imprinting to generate the weights of the final

segmentation layer for novel classes. The second issue we address is the use of
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a single vector representation to guide the segmentation of novel classes which

loses detailed information necessary for the segmentation task. We propose a

co-attention mechanism with semantic conditioning to improve the interaction

among the test (query set) and training (support set) data during few-shot

inference. The semantic conditioning as well alleviates the need for pixel-level

annotations for the few training data and rather depend on image-level labels.

We then transition to focus on video related tasks and formalize the task

of video class agnostic segmentation that benefits from the overlap of few-

shot and video object segmentation. We propose two formulations for the

problem which focus on segmenting objects in a class agnostic manner and

show applications in both autonomous driving and robot manipulation. The

first formulation poses the problem as a motion segmentation problem, where

we propose the first motion segmentation using deep learning in autonomous

driving literature. We further provide KITTI-MoSeg dataset with motion

segmentation annotations. Then we extend the work to incorporate motion

instance labels along with increased number of categories to push the trained

models to generalize to unknown moving objects. The second formulation as

an open-set segmentation problem can handle both static and moving objects.

We propose a novel contrastive learning approach with semantic and temporal

guidance to improve the discrimination among known and unknown objects,

and ensure temporal consistency. We further provide scenarios in the Carla

simulation environment to motivate the reasons behind the need of such a

formulation. Finally, we propose a motion adaptation mechanism for video

class agnostic segmentation based on motion for an efficient inference.
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The duty of the man who investigates the writings of scientists, if learning

the truth is his goal, is to make himself an enemy of all that he reads, and

attack it from every side. He should also suspect himself as he performs his

critical examination of it, so that he may avoid falling into either prejudice

or leniency.

– AlHassan Ibn ElHaytham.
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Chapter 1

Introduction

Semantic segmentation predicts pixel-wise labels for the scene which provides

a means for scene understanding necessary in various robotics applications

such as autonomous driving [25][131] and robot manipulation [32][70]. While

there has been recent success in deep learning approaches for semantic seg-

mentation and video object segmentation (e.g., [18][20][165][66][166]), current

approaches depend mainly on prior large-scale training data [87][40]. However,

relying solely on a closed set of known and limited objects that exist in large-

scale manually labelled datasets limits the applicability of these deep networks

in real world problems [30][143][117]. This thesis focuses on learning class ag-

nostic segmentation i.e. to segment objects relying on appearance, motion

and/or depth cues in a class agnostic manner in order to handle unknown

objects outside the closed set of known classes. The class agnostic segmen-

tation problem was initially defined in the few-shot object segmentation

literature which learns to segment images based on few pixel-level labelled sup-

port set. We rather focus on its extension to video sequences from monocular

cameras through utilizing motion and depth cues. The video class agnostic

segmentation problem has relation to zero/few-shot video object seg-

mentation. Video object segmentation is concerned with either segmenting

the visually salient object in a video sequence (zero-shot) or propagating the

initial segmentation masks from few labelled frames (few-shot).
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1.1 Motivation

Semantic segmentation using deep learning generally requires large-scale an-

notated datasets such as Cityscapes [25], Mapillary [104], Synthia [131]. An-

notations are rather labour intensive and time inefficient, it is even worse for

video object segmentation annotations since it handles video sequences not just

frames. Large-scale semantic segmentation datasets such as MS-COCO [87]

has annotations for only 80 objects, the largest dataset up to date is Open-

Images [6] which has around 600 classes. As indicated in [184] the number

of English nouns range between 500,000 to 700,000 which suggests the enor-

mous variability in objects that can be encountered. Robotics environments

are unstructured and dynamic, and could contain a different variety of object

classes. Adapting to that ever-changing environment is a challenging endeav-

our. Learning from limited labelled data has a great potential to overcome

such difficulty and gets us closer to human like intelligence. Humans, espe-

cially children, have the ability to generalize to new classes with few labelled

samples [97] or none at all based on motion, depth cues or through interacting

with that object. Thus, it is of great interest for both the computer vision and

robotics community to mimic human like intelligence in that aspect.

Learning from limited labelled data has its benefits as well in decolonizing

artificial intelligence and directing it to become more inclusive. In an article

by a research scientist in Deepmind AI [29], it was mentioned that New York

Times article [82] discussing the future with AI for the different countries ex-

plicitly stated: “Unless they wish to plunge their people into poverty, they

will be forced to negotiate with whichever country supplies most of their A.I.

software — China or the United States — to essentially become that country’s

economic dependent.” That quote demonstrates the major problems from an

exclusive AI that is dominated by large-scale corporations. It is currently con-

sidered that “Data is the new oil”, it highly indicates that developing nations

that do not have the same resources to collect and annotate data as developed

ones will suffer greatly. This motivates the focus of the thesis on learning

few-shot object segmentation where usually one to five samples are provided
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as the training data for novel classes. It also relates to few-shot and zero-shot

video object segmentation. In zero-shot video object segmentation the model

is expected to segment the primary object through a video sequence in a class

agnostic manner. While in few-shot video object segmentation the model is

provided with a single labelled frame that acts as a training instance to learn

to segment that object in the video frames. Both video object segmentation

methods can benefit from motion cues, that can act as a strong indicator of

the object location or can be used to relate the object instances in consecutive

frames.

1.2 Research Questions

In our work we mainly focus on four research questions:

• In few-shot object segmentation how to segment a query image with

novel classes using a single branched method (single set of network pa-

rameters)?

• In few-shot object segmentation how to leverage the interaction between

query and support set especially with image-level labels only?

• How to learn video object segmentation from limited or no labelled data?

• How to segment pixels outside of the closed set of known classes? What

cues to utilize for such a task? How autonomous driving can benefit

from such a task?

1.3 Thesis Contributions

The contributions of the thesis are as follows:

• The main contribution is introducing the task of video class agnostic

segmentation where the goal is to segment instances of unknown objects

through utilizing appearance, motion and geometry. It is mainly inspired

by few-shot learning and specifically metric learning.
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• We further propose a setup for temporal few-shot learning and show dif-

ferent ways to investigate the overlap between video object segmentation

and few-shot object segmentation.

• We demonstrate how to leverage few-shot object segmentation methods

using metric learning, and attention mechanisms to achieve the goal of

generalizing from base classes with large-scale data to novel classes with

few labelled samples.

• We innovate methods for zero-shot video object segmentation that utilize

motion representation in terms of optical flow.

1.4 Authored Papers

Some extracts from this thesis appear in the following authored publications

and preprints.

Part I contains work on few-shot object segmentation from:

• Siam, Mennatullah, Boris N. Oreshkin, and Martin Jagersand. “AMP:

Adaptive Masked Proxies for Few-Shot Segmentation.” Proceedings of

the IEEE International Conference on Computer Vision. 2019.

• Siam, Mennatullah et al. “Weakly Supervised Few-shot Object Segmen-

tation using Co-Attention with Visual and Semantic Embeddings.” Pro-

ceedings of the Twenty-Ninth International Joint Conference on Artifi-

cial Intelligence, IJCAI-20. International Joint Conferences on Artificial

Intelligence Organization.

Part II contains work on video object segmentation from:

• Siam, Mennatullah, et al. “Video object segmentation using teacher-

student adaptation in a human robot interaction (HRI) setting.” 2019

International Conference on Robotics and Automation (ICRA). IEEE,

2019.
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• Siam, Mennatullah, et al. “Real-Time Segmentation with Appearance,

Motion and Geometry.” 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2018.

• Siam, Mennatullah, et al. “Modnet: Motion and appearance based mov-

ing object detection network for autonomous driving.” 2018 21st Interna-

tional Conference on Intelligent Transportation Systems (ITSC). IEEE,

2018.

• Siam, Mennatullah, Alex Kendall, and Martin Jagersand. “VCA: Video

Class Agnostic Segmentation with Contrastive Learning in Autonomous

Driving.” Under Review for IEEE International Conference on Com-

puter Vision. 2021.

A conducted survey on deep semantic segmentation and video object seg-

mentation for automated driving was published during the thesis work as well:

• Siam, Mennatullah, et al. “Deep semantic segmentation for automated

driving: Taxonomy, roadmap and challenges.” 2017 IEEE 20th Interna-

tional Conference on Intelligent Transportation Systems (ITSC). IEEE,

2017.

A patent on moving object segmentation in a class agnostic manner was

published during the thesis work as well with Valeo Vision Systems:

• Siam, Mennatullah; Yogamani, Senthil Kumar; El-Sallab, Ahmad; Mah-

goub, Heba “Verfahren zum Bestimmen eines Bewegungszustands eines

Objekts in Abhängigkeit einer erzeugten Bewegungsmaske und eines

erzeugten Begrenzungsrahmens, Fahrerassistenzsystem sowie Kraftfahrzeug”. 1

1https://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=

102018114229&KC=&FT=E&locale=en_EP#
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Chapter 2

Background and Related Work

We mainly focus on the two concurrent and overlapping topics few-shot object

segmentation and video object segmentation. We first introduce classical and

deep semantic segmentation literature in Section 2.1, then we cover the few-

shot and video object segmentation literature in Sections 2.2 and 2.3 respec-

tively. Then section 2.4 discusses the overlapping research problems between

both areas and how to benefit each other. Finally we introduce the necessary

background in Section 2.5.

2.1 Semantic Segmentation

Semantic segmentation has long been studied in classical methods before the

emergence of deep learning, but was always bounded by the performance of

classifiers relying on hand crafted features. After the emergence of deep convo-

lutional neural networks, semantic segmentation has shown greater promise for

deployment in real-world applications, with some methods inspiring from clas-

sical graph based approaches. The literature in deep semantic segmentation

is categorized into three groups: (1) Basic Fully Convolutional Networks. (2)

Context Aware Models. (2) Temporal Models for video segmentation. Fig-

ure 2.1 summarizes the segmentation literature within these three categories.

In the following sections we cover the classical methods, and the three main

categories in deep semantic segmentation.
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Figure 2.1: Taxonomy of semantic segmentation approaches categorized into
(1) Basic fully convolutional networks. (2) Models that incorporate contex-
tual information. (3) Models that incorporate temporal information for video
segmentation.

2.1.1 Classical Methods

Image segmentation was mainly defined as a way to partition the image into

semantically meaningful regions and predicting a class label for each region.

A few years ago, it was seen as a challenging problem to achieve reasonable

accuracy in semantic segmentation. One perspective of classical image seg-

mentation approaches, is focused on optimization based methods that formu-

late the segmentation problem as a minimization of a certain cost functional.

These methods can be categorized into using spatially discrete [9] or spatially

continuous representations [27][26]. In methods that use spatially discrete

representations usually the pixels within an image are represented as graph

nodes, and different optimization techniques can be used to minimize the cost

function and find the minimum cut such as [9]. On the other hand, methods

that use spatially continuous representations [26][26] use variational methods

to minimize the cost function and evolve contour in the negative gradient

7



direction to reach the optimal segmentation such as snakes [68].

Popular among graph based methods are conditional random fields (CRFs)

[158][80][78]. In CRFS the energy function combines unary and pairwise po-

tentials. The unary potentials give a probability of whether the pixel belongs

to a certain class. While pairwise potentials which are also referred to as

smoothness term ensures label consistency among connected pixels. A pixel-

level or region-level or a hybrid approach can be used to model the pairwise

relations. Krahenbuhl et. al. [78] instead proposed a fully connected dense

CRF, with an efficient inference algorithm to model long-range connections.

In their unary potentials, they relied on boosting [139] classifiers with features

combining color, histogram of oriented gradients and pixel location features.

Other approaches for segmentation outside the optimization based methods

are Boosting [139] and Random Forests [138][10]. Boosting can be used to

classify pixels and perform the final semantic segmentation task. It is based

on combining multiple weak classifiers that uses color, shape or texture as

in [158][139]. Other methods that relied on random forests, such as Shotton

et. al. [138], where each tree was trained on random subset of the training

data. These methods implicitly cluster the pixels while explicitly classifying

the patch category. Brostow et. al. [10] proposed a randomized decision forest,

however instead of using appearance based features, motion and structure

features were used. These features include surface orientation, height above

camera, and track density where faster moving objects have sparser tracks

than static objects. They rely on hand crafted features and perform pixel-wise

classification independently without utilizing the structure in the data if used

solely. Generally, the performance of classical methods was always bounded

by the performance of the hand crafted features used. Even with conditional

random fields the unary potentials were constructed based on classifiers that

rely on hand-crafted features such as boosting [158]. But that was overcome

with deep learning as will be discussed in the following sections. Nonetheless,

conditional random fields can still benefit deep learning even if used as a post

processing step to ensure smoothness of the semantic segmentation predictions

as in [18].
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2.1.2 Fully Convolutional Networks (FCN)

The initial direction in semantic segmentation using convolutional neural net-

works was towards patch-wise training to yield the final segmentation. How-

ever, in deep semantic segmentation the dominant direction is to learn pixel-

wise classification in an end-to-end manner [2], [92], [107]. Long et al. [92]

started by proposing fully convolutional networks (FCN). The network learned

heatmaps that were upsampled with-in the network using transposed convo-

lution to get dense predictions. Unlike patch-wise training this method used

the full image to infer dense predictions which is more computationally ef-

ficient as discussed in [92]. The SkipNet architecture was utilized to refine

the segmentation using higher resolution feature maps as shown in Figure

2.2. Badrinarayanan et al. [2] proposed SegNet which is an encoder-decoder

architecture. The decoder network upsampled the feature maps by keeping

the max-pooling indices from the corresponding encoder layer. Kendall et

al. [69] followed that work by proposing Bayesian SegNet, which incorporates

uncertainties in the predictions using Monte-Carlo dropout during inference.

Ronneberger et al. [130] proposed a u-shaped architecture network where fea-

ture maps from different encoding layers are concatenated with the upsampled

feature maps from the corresponding decoding layers. Figure 2.2 shows the

comparison between Skip Architecture and U-Net. Both improve the predicted

segmentation through recovering the loss in resolution from the encoder stage.

Paszke et al. [113] proposed the use of bottleneck modules for a computation-

ally efficient solution that is called ENet.

2.1.3 Context Aware Models

Refinements on fully convolutional networks were introduced to improve seg-

mentation accuracy by incorporating context. In this section we consider only

the spatial context, we do not include any temporal information in this cat-

egory. The methods to enforce models to become context aware are mainly

categorized into multi-scale support, utilizing conditional random fields, or re-

current neural networks. Long et al. [92] proposed the skip architecture to
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(a) SkipNet [92] (b) U-Net [130]

Figure 2.2: Two decoding methods for fully convolutional networks. The
decoding method describes the approach for upsampling and computing the
output pixel-wise labels. Figures adapted from [92], [130].

merge heat-maps from different resolutions. Since these architectures include

pooling layers to increase the receptive field, this leads to loss in resolution from

downsampling the image. Yu et al. [199] introduced dilated, or atrous con-

volutions, which expanded the receptive field without losing resolution based

on the dilation factor. This provided a better solution for handling multiple

scales. Wu et al. [191] proposed a shallower but wider network using resid-

ual connections that included dilated convolution and outperformed deeper

models. Chen et al. [18] proposed DeepLab that used atrous spatial pyra-

mid pooling (ASPP) for multi-scale support. The idea was built on utilizing

the dilated convolutions. Figure 2.3 shows the proposed ASPP and the di-

lated convolution. Chen et al. [20] refined further the DeepLab method by

incorporating global context features.

One of the commonly used models to incorporate context is conditional

random fields (CRF). Chen et al. [18] utilized fully connected conditional

random fields as a post processing step. Gaussian kernels based on the spatial

and color features were used as pairwise potentials, while the unary potentials

were set to the probabilities from convolutional networks. Zheng et al. [204]

formulated the mean field CRF inference algorithm as a recurrent network.

This method enabled the end-to-end training of the model. In contrast to

the previous work that used conditional random fields as a post processing

refinement step, this work went further in integrating CNNs and CRFs.
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(a) Dilated Convolution [199] (b) ASPP [18]

Figure 2.3: Dilated (Atrous) Convolution with a 3x3 kernel with holes and
Atrous Spatial Pyramid Pooling. Figures adapted from [18], [199].

2.1.4 Video Semantic/Panoptic Segmentation

Recently some approaches emerged for video semantic segmentation that uti-

lized temporal information [42] [106]. Tran et al. [167] proposed a 3D con-

volutional network trained end-to-end for video semantic segmentation, where

4D kernels are learned on an input of sequence of images. An issue with 3D

convolution is its small finite duration on the temporal axis that can not cap-

ture long temporal dependencies. Recurrent neural networks can alleviate this.

Fayyaz et al. [42] incorporated spatio temporal features by using a layer grid

of Long Short term memory models (LSTMs). However, conventional LSTMs

that where mentioned earlier do not utilize the spatial coherence and have

many parameters to learn. The convolutional gated recurrent unit enabled

the network to learn both spatial and temporal information with fewer pa-

rameters. Nilsson et al. [106] combined the power of both convolutional gated

architectures and spatial transformers for leveraging video semantic segmenta-

tion. Spatial transformers were used to warp the previous frame segmentation

along the optical flow fields, which is further fused with the current frame es-

timates using gated recurrent units. An action recognition comparative study

[16], showed that two-stream 3D convolution architectures that utilized optical

flow information outperform Conv-LSTM models. That motivated more re-

search in the direction of incorporating optical flow for video object/semantic

segmentation.

Gadde et al. [45] proposed a method for applying feature warping through
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an intermediate module termed as NetWarp in order to incorporate temporal

information from videos. The release of the video segmentation benchmark

DAVIS [115] provided the means to compare and compete with the state of

the art on this challenging problem which is discussed further in Section 2.3.

Previous literature focused solely on either temporal consistency of semantic

segmentation or tracking segmented instances as in DAVIS’17 [119] through

a video sequence. After the introduction of the combined panoptic segmenta-

tion task that performs both semantic and instance segmentation, new work in

video panoptic segmentation emerged. Kim et. al. [73] proposed a method to

perform video panoptic segmentation which uses a spatio-temporal attention

module to ensure temporal consistency of the output semantic segmentation.

A tracking head that ensures the temporal consistency of instances segmented

is also used. The tracking head is composed of multiple fully connected lay-

ers that predicts an association vector between the current detected objects

and the ones tracked in a memory queue. We continue as well to extend

the panoptic segmentation task but rather with class agnostic segmentation

through video sequences, where class agnostic segmentation will be discussed

in Section 2.4.

2.2 Few-Shot Object Segmentation

Few-shot learning (FSL) is the ability to generalize from few examples. It

acts in a way as a test-bed for human-like learning [181]. Children are able to

grasp concepts and generalize to novel ones from fewer examples [97][12] than

what current deep learning methods need. It has the potential to learn from

rare cases and to reduce the cost of data collection. A detailed survey [181]

introduced an exhaustive discussion of the few-shot learning literature. How-

ever, since we focus on few-shot object segmentation we will briefly introduce

the FSL taxonomy and the major works in few-shot learning relevant to ours.

Then a detailed discussion of few-shot object segmentation will be introduced.
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2.2.1 Few-shot Learning Setup and Taxonomy

The few-shot learning setup involves classification, detection, or segmentation

of a query image Q based on few labelled training examples called a support

set S. The basic setup on a classification task evaluates K-shot N -way clas-

sification, where K indicates the number of training examples in the support

set and N is the number of classes to classify among. Various datasets where

proposed to evaluate the few-shot classification task such as Omniglot [81],

miniImagenet [173], tieredImageNet [128] and the most recent meta-dataset

for few-shot learning [168]. A taxonomy of the few-shot classification follow-

ing the discussed methods in [22] is shown in Table 2.1. It mainly uses three

categories for few-shot learning methods which are: (1) Initialization based

methods. (2) Metric learning methods. (3) Hallucination based methods.

Initialization based methods or learning to fine-tune tries to either learn a

good initialization to the network parameters or tries to learn an optimizer.

Metric learning methods learn to compare between the support set and

query images with methods using meta-learning detailed in Section 2.2.2 and

others based on cosine classifiers that measure the cosine similarity between

feature representation and classification weights. It is worth noting that some

of the cosine classifiers methods use meta-learning schemes such as Gidaris et.

al. [49]. Hallucination based methods learn to augment the few labelled

data to improve the method generalization. It is worth noting that most of the

methods in different categories are meta-learning methods as well. Thus, meta-

learning can be looked upon as a topic that overlaps with few-shot learning

methods. It was shown in [22] that using cosine classifiers similar to the work

by [120][49] performs on par to meta-learning methods and even outperforms

them when training from one domain to another.

2.2.2 Problems Related to FSL

There are some terms that relate to few-shot learning that we want to clarify to

demystify any confusions namely: (1) Meta-learning. (2) Zero-shot learning.

(3) Imbalanced training. (4) Generalized few-shot/zero-shot learning. (5)

13



Table 2.1: Few-Shot Learning Taxonomy.

Category Sub-Category Methods

Initialization Based
Good Model Initialization

Finn et. al. [43][44]
Nichol et. al. [105]
Rusu et. al. [132]

Optimizer
Ravi et. al. [123]
Munkhdalai et. al. [102]

Metric Learning
Meta-Learning

Koch et. al. [76]
Vinyals et. al. [173]
Snell et. al. [153]
Bertinetto et. al. [7]
Sung et. al. [160]
Gidaris et. al. [49]

Cosine Classifiers
Qi et. al. [120]
Gidaris et. al. [49]
Chen et. al. [22]

Hallucination Based
Wang et. al. [180]
Antoniou et. al. [1]
Hariharan et. al. [54]

Open-set recognition. Meta-learning which is learning to learn [43][44], learns

from a sampled set of tasks in the training phase to generalize to the novel tasks

in the inference phase. It is more of a scheme to train the model to generalize to

novel tasks which are structurally similar to the tasks sampled during training.

When applied to the few-shot learning problem a set of sampled tasks are used

in the training by sampling both support set and query images labelled with

Ltrain this is called meta-training phase. During the meta-testing phase the

model is tested on a sampled support set and query images with labels from

Ltest. This meta-training phase simulates the few-shot setting and enables the

model to better generalize to novel classes. Meta-learning has also been used

in neural architecture search [89] not necessarily the few-shot learning problem

solely. On the other hand not all few-shot learning methods follow a meta-

learning scheme in their training. Some learn the parameters directly [120] or

perform it on two training stages one is regular network training followed by

a meta-training stage [49][159].

Other related terms to few-shot learning is zero-shot learning which learns

to classify unseen classes using their textual descriptions. Unlike few-shot
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Table 2.2: Summary of Different Related Tasks to Few-shot Learning and their
differences. Replica of Table from [48].

Task Setting Training Testing Goal
Traditional KKC KKC Classifying KKC
Reject Option KKC KKC Classifying KKC and rejecting low conf. samples
Few-shot KKC & few UKC UKC Identifying UKC
Generalized Few-shot KKC & few UKC KKC & UKC Identifying KKC & UKC
Zero-shot KKC & side info. UKC Identifying UKC
Generalized Zero-shot KKC & side info. KKC & UKC Identifying KKC & UKC
Open-Set KKC KKC & UUC Identifying KKC & rejecting UUC

learning in which the support set still has few labelled samples for the novel

classes, zero-shot learning has text description instead. Imbalanced learn-

ing [28] is also a close problem to the few-shot learning problem. It addresses

the problem of learning classes with abundant data along other classes with

fewer labelled data. However, few-shot learning provides an extreme imbalance

scenario where only one, five or maximum twenty samples are provided for the

novel classes. Also in imbalanced training the luxury of training with both

data points exists. In few-shot learning most methods tend to learn on the

base classes with large-scale data, then is expected to generalize from few-shot

support set to novel classes without retraining on both. Generalized few-shot

and zero-shot learning are both extensions of their corresponding tasks where

the main difference is that during inference evaluation on both base classes and

novel classes is performed. Open-set recognition is another relevant task that

is concerned generally with identifying unknown classes without any extra/side

information provided for these unknown classes.

Table 2.2 from [48] summarizes these different related tasks based on their

goal and what is provided during training and testing. Based on the above

problems all classes can be classified into three different categories:

• Known Known Classes (KKC), also called base classes.

• Unknown Known Classes (UKC), no available samples during training

except limited or side information also called novel classes.

• Unknown Unknown Classes (UUC), classes without any information dur-

ing training or testing.
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Figure 2.4: OSLSM method for few-shot object segmentation. Figure
from [136].

2.2.3 Few-shot Object Segmentation Setup and Metrics

Although few-shot learning was initially focused on the object classification

task, few-shot object segmentation emerged recently due to the various robotics

applications that requires scene understanding such as autonomous driving [25][131]

and robot manipulation[70][32]. Deep semantic segmentation has been rigor-

ously studied in the literature [92][199][19]. However, the focus on semantic

segmentation using large-scale datasets hinders its use in robotics applications

where it can encounter novel objects never seen before [117]. The first attempt

to perform few-shot object segmentation by Shaban et. al. [136] introduced

a widely used few-shot object segmentation benchmark called Pascal-5i [136].

The 20 classes from PASCAL-VOC [40] are split into 4 folds with 5 classes

each. A similar setup was performed on MS-COCO [177][201]. The setup on

Pascal-5i is a 1-way k-shot segmentation, where the goal is to segment the

class of interest against the background. There are two evaluation metrics

used which are mean intersection over union [136] and binary intersection over

union [121]. The later averages the mean intersection over union for foreground

and background. While the former computes the mean intersection over union

over all classes. Although it is a 1-way setup as mentioned earlier, we compute

a per-class foreground intersection over union then average over all classes.
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Figure 2.5: CoFCN method for few-shot object segmentation. Figure
from [121].

2.2.4 Few-shot Object Segmentation Literature

Shaban et. al. [136] used a two-branch method as shown in Figure 2.4, where

the first branch is responsible for foreground/background segmentation. The

second branch takes the support set image-label pairs and performs weight

hashing to predict the weights for the novel class segmentation. Three differ-

ent baselines were introduced in it, which are: (1) Base classifiers: which trains

FCN32s [92] model on 16 classes outside the fold and extracts the features to

be used with either k-nearest neighbour or logistic regression. (2) Siamese

networks that measures pixel L1 similarity and uses a binary cross entropy

loss on the output similarity measured during training. In the inference phase

each pixel in the query image is classified based on the nearest neighbour to

the trained distance metric. (3) Fine-tuning the model as a simple baseline.

Another work by Rakelly et. al. proposed another 2-branch method where the

second branch acts as a conditioning branch on the masked representation of

the support set instead of predicting parameters [121] as shown in Figure 2.5.

Their early fusion strategy requires learning two separate sets of parameters;

however, their late fusion strategy can share weights. Their proposed model

allows for training on sparse annotations that enables interactive segmenta-

tion with simple clicks on some pixels. Dong et. al. inspired by prototypical

networks, designed a method to learn prototypes for the few-shot object seg-

mentation problem [33]. The model consists of a 2-branch architecture, where

the second branch is responsible for learning prototypes.

Concurrent to our work, four methods were recently proposed [203][201][177][200].

Zhang et. al proposed a single branch network that uses guidance features
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based on masked average pooling layer [203] which makes it more efficient

than two-branch methods. Zhang et. al. proposed a class agnostic network to

perform few-shot object segmentation using a dense comparison module and

an iterative optimization module [201]. Figure 2.6 shows detailed architecture

for the proposed CANet method, where the dense comparison module uses the

output from masked average pooling which can be looked upon as a prototype

as well. However, the output goes through atrous spatial pyramid pooling and

an iterative optimization module that takes the input predictions from pre-

vious time step and learns the new improved prediction while using residual

connection. As shown in Equation 2.1

Mt = x+ F (xt, yt−1), (2.1)

where Mt is the current prediction step and yt−1 is either set to the initially

predicted logits or the previous step prediction. The output feature map x

is the output from the comparison module, and F is simple concatenation of

x, yt−1 followed by 2 3 × 3 convolutions. The atrous spatial pyramid pooling

that allows to incorporate different contextual information along with the it-

erative optimization module improves the final segmentation accuracy. Wang

et. al. [177] proposed a prototype alignment method that performs support-

to-query and query-to-support segmentation. In a way it ensures the output

prototypes are aligned for both support and query and can be used to improve

any method that builds on prototypes. Finally, Zhang et. al. in another

work [200] proposed to use a pyramid of graph attention units. Each unit

relates different nodes from support to the query to propagate labels from

the support set. A pyramidal approach to work on multi-resolution levels is

proposed to improve the segmentation accuracy.

It can be seen that most few-shot object segmentation work depends on

the idea of using prototypes in one way or another. All of this previous liter-

ature except for [200] assumes a single vector prototype to be representative

enough for the support set through masked average pooling. Although, Zhang

et. al. [200] proposed a graph based approach to propagate the pixel labels

18



Figure 2.6: CANet method for few-shot object segmentation. Figure
from [201].

from support set to query. We were the first to propose without pixel-level

labels but rather depending on image-level labels to leverage the interaction

between support and query images through an attention based mechanism.

We were also one of the first to propose a single branched few-shot object seg-

mentation method and improve the segmentation accuracy through the idea of

multi-resolution imprinting, unlike other methods that relied on two-branched

approaches.

2.3 Video Object Segmentation

Video object segmentation has two main categories which are unsupervised

and semi-supervised methods. Unsupervised methods deal with the problem

of segmenting the primary object in the video sequence in terms of its appear-

ance and motion saliency. While semi-supervised approaches are expected

to track the masks provided in the first frame through the video sequence.

Both problems share some challenges such as object occlusions, cluttered back-
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Table 2.3: Video Object Segmentation(VOS) Taxonomy.

Category Sub-Category Methods

Unsupervised VOS

Flow Based
Tokmakov et. al. [165][166]
Jain et. al. [66]

Attention Based
Lu et. al. [94]
Wang et. al. [178]
Yang et. al. [196]

Others
Koh et. al.[77]
Song et. al. [154]
Seguin et. al. [135]

Semi-supervised VOS

Fine-tuning
Caelles et. al. [13]
voigtlaender et. al.[176]
Hu et. al. [64]
Luiten et. al.[95]

No Fine-tuning
Voigtlaender et. al.[174]
Wang et. al.[182]
Yang et. al. [195]

ground, drastic appearance changes of the object. The unsupervised method

has some relations to motion segmentation since motion plays an important

role in determining the primary object. Table 2.3 shows the general taxonomy

of video object segmentation methods. The most widely used datasets in the

literature for video object segmentation are DAVIS [116][119], SegTrack [84],

FBMS [108], and Youtube-VOS [194]. In the next sections we will cover the

details of these three related tasks. The main metrics [116] used for eval-

uating video object segmentation are mean intersection over union which is

referred to as region similarity. F-measure is also used which is referred to

as contour accuracy. Finally, temporal stability is used to ensure consistency

of segmentation throughout the video sequence. Each mask is transformed

into polygons and for each point on the polygon shape context descriptors are

computed. Then a dynamic time warping technique is used to match points

across frames.

2.3.1 Unsupervised Video Object Segmentation (UVOS)

Unsupervised video object segmentation methods [77][165][66][166] do not rely

on any initialization mask and rather depend on segmenting the primary ob-
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Figure 2.7: FusionSeg method Figure from [66].

ject in the scene. The primary object is determined based on both appear-

ance and motion. Classical approaches rely on building a spatio temporal

graph [135]. Koh et. al.[77] presented a method based on extracting candi-

date proposals for the primary object. Then followed this with augmenting or

reducing the regions proposed for a finer segmentation. Since this method is

based on handcrafted features from color and motion edges to propose the re-

gions, it is prone to error unlike end-to-end trained deep networks. Prominent

deep learning based methods rely either on optical flow [165][166][66] or at-

tention [196][178][94]. Flow based methods, such as the work from Jain et. al.

[66], combined motion from optical flow and appearance in a two-stream fully

convolutional network. Figure 2.7 shows their architecture for video object

segmentation, a method to generate large weakly annotated data for training

the motion stream was proposed as well. Tokmakov et. al. [166] improved

the idea further through learning a visual memory module using bidirectional

convolutional gated recurrent units thus enabling the segmentation of the pri-

mary object throughout a video sequence even if it becomes static in certain

frames through the memory module. These previous works represent good

direction in incorporating motion cues.

On the other hand attention based methods, such as the work from Lu et.

al. [94] proposed a method to use co-attention Siamese network to learn cor-

relation between randomly sampled frames to discover a primary object that

persists throughout all the sequence. Figure 2.8 shows the detailed architec-

ture for their method. In addition to that, the formulation as a comparison

between randomly sampled frames allows for increasing the training data sam-

ples. Wang et. al. [178] proposed using attention as a guide to unsupervised
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video object segmentation. They started with extending DAVIS and other

VOS datasets with eye fixation annotations which was recorded using a SMI

RED250 eye tracker. Then a model built on a dynamic UVOS-aware module

that predicts visual attention using a convolutional LSTM is used to guide

the segmentation method. Yang et. al. [196] combines self attention and at-

tention conditioned on the anchor embeddings, where the anchor is the first

frame of the video sequence, to perform UVOS. In our opinion, a combination

of using motion and depth cues along with attention mechanisms to leverage

the interaction among frames is the best direction as some methods [73] ex-

plored the use of spatio-temporal attention along with warping features using

optical flow. However, the previous method does not aim at segmenting pri-

mary objects in a sequence but rather a slightly different task as explained in

Section 2.1.4.

Other methods not relying on explicit motion representation as optical

flow but rather relying on recurrent models to learn implicit motion repre-

sentation such as [154]. Song et. al. [154] proposed a pyramid dilated con-

volutional LSTM module that extracts spatial features on multiple resolution

levels within a convolutional LSTM module. The main purpose is to capture

global context through the module responsible for implicitly representing mo-

tion, which learns spatio-temporal saliency object segmentation. Most of the

unsupervised VOS methods perform binary segmentation without considering

segmenting different instances, except for Seguin et. al. [135]. In our proposed

methods we rather invest in considering both video semantic/panoptic seg-

mentation along with class agnostic segmentation that perform generic object

segmentation regardless of semantics. It is not only considering visually salient

objects nor does it only consider objects within a closed set of known classes

as detailed in Section 2.4.

2.3.2 Semi-supervised Video Object Segmentation (SVOS)

Semi-supervised video object segmentation relies on an initialization mask

for the first frame. A prominent direction in SVOS relies on fine-tuning or

adapting the model online with each video sequence to predict the segmenta-
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Figure 2.8: Coattention for Video Object Segmentation method Figure
from [94].

tion [13][176][95]. Caelles et. al. [13] presented a one shot video object seg-

mentation work that fine-tunes the network based on the initial mask of the

sequence. Voigtlaender et. al. [176] followed the same idea with on-line adap-

tation. The method adapts the network to aid it in learning the appearance

changes of the object. The purpose of on-line training is to get the network to

capture the appearance of the object being segmented in the current sequence.

Luiten et. al. [95] proposed to generate different object proposals using a class

agnostic mask R-CNN and is further refined to predict masks with a network

fine-tuned separately for each sequence.

Methods generally relying on fine-tuning on the first frame or performing

online adaptation of the model suffer from being computationally inefficient.

Other methods [174][195][64][182] proposed different ways to address semi-

supervised video object segmentation without online adaptation. Voigtlaender

et. al. [174] proposed a method to perform global and local matching using

the learned pixel embeddings. Global matching matches the current frame

embeddings to the first frame while local one matches it to the previous frame,

this matching of the learned pixel embeddings alleviates the need to perform

fine-tuning. Yang et. al. [195] proposed MaskTrack which is based on Mask R-

CNN [56] with an added tracking head that used a multi-class formulation to

the tracking problem. Wang et. al. [182] proposed a ranking attention module

that selects important features, it was used in a method that combines the

power from both matching based and propagation based methods.
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2.3.3 Motion Segmentation

Motion segmentation is a fundamental problem in computer vision and robotics,

with a long history [155][198]. Multiple approaches whether geometry or learn-

ing based were explored in the literature. Scott proposed a geometry based

work that models the background motion in terms of homographies [183]. It is

based on the limiting assumptions that either the background is mostly planar

or the camera motion is mainly rotation. Both assumptions can lead to fail-

ures in the case of general camera motion in autonomous driving scenes. Some

techniques rely on object tracking to generate trajectories that can be used

further for motion segmentation such as [11], but they tend to be computation-

ally inefficient. Reddy et al. proposed the use of fully connected conditional

random fields for the joint prediction of semantics and motion labels [126]. The

approach is computationally inefficient and runs at 240 seconds as reported

in [172] on images at the resolution of 348x768.

The motion segmentation problem relates to the unsupervised video object

segmentation problem since the primary object is the most salient object in

terms of appearance and motion. Tokmakov et al. used a one-stream fully con-

volutional network with optical flow input to estimate the motion type [165].

Neglecting appearance information and relying only on motion solely can lead

to degraded accuracy compared to the combined information in autonomous

driving specifically. Drayer et al. described a video object segmentation work

that used tracked detections from R-CNN denoted as tubes [37]. The main

issue with this approach is its running time of 8 seconds per frame. Concurrent

to our first moving object detection network for autonomous driving, Vertens

et al. proposed a network that yields pixel-wise semantic motion labels [172]

that is based on the Flownet-2 architecture [65]. They performed ego-flow

suppression to compute the flow for moving objects solely and use that as in-

put to their moving object segmentation network. In contrast to the previous

methods we focus on real-time performance, multi-task learning of both class

agnostic and semantic heads, along with learning instance-wise motion masks.

Concurrent to our work a recent work by Lee et. al. [83] explored motion
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segmentation on the level of instances through learning an ego-posenet and

an obj-posenet to separate both motion trained in a self-supervised manner

through instance-wise reconstruction and geometric consistency losses. How-

ever, their method does not explore multi-task learning of semantic and motion

instance segmentation and does not focus on real-time performance.

2.4 Intersection between FSS and VOS

Although the fundamental question in both few-shot object segmentation and

video object segmentation is different, it turned out to be extremely beneficial

to learn from both topics interchangeably. The core of the problem in few-shot

object segmentation that needs to be addressed is the generalization ability to

novel classes from few labels after learning from large-scale data for the base

classes. On the other hand, the core problem in unsupervised video object

segmentation is identifying the object of interest, whether primary (unsuper-

vised) or based on an initialization mask (semi-supervised), throughout the

video sequence and adapting to the appearance, illumination changes in the

following frames. However, if we solely focus on the research questions with-

out considering the context of what raised these question it can lead us to non

optimal local minimas in our thinking of the problem. If the context to study

the few-shot object segmentation problem is to test human-like intelligence,

then it is necessary to consider other aspects such as incorporating motion and

geometry. It also entails studying temporal consistency of the representation

which can aid the few-shot object segmentation problem. This can lead to an

interesting relation between both topics.

The semi/un-supervised video object segmentation are also called few/zero-

shot VOS. In both video and few-shot object segmentation the problem of

learning correspondences between support set (initialization mask or the seg-

mented primary object) and the query image (consecutive frames of the video

sequence) is crucial. Leveraging the interaction between the support and query

brings an interesting challenge in FSS that mainly inspires from VOS counter-

part [94]. These overlapping benefits motivated our direction to study both
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Table 2.4: Summary of FSS and VOS overlap. FSS: Fewshot segmentation.
VOS: Video object segmentation. VCAS: video class agnostic segmentation.

FSS VOS

Shared
Challenges

How to generalize to
novel classes with
few training data?

How to generalize to
different appearance changes
from illumination, occlusion,
deformations from few
labelled initialization whether
manually labelled
(Semi-VOS) or
automatically segmented
(Un-VOS)?

How to leverage
interaction between
query and
support sets?

How to leverage
interaction between
reference frame and
consecutive frames in
the sequence?

Shared
Assumptions
& Solutions

Attention mechanisms
help to learn
better interaction
between support and
query - Chapter 4.

Attention mechanisms help
learn better interaction
between sequence
frames [94][196].

Pixels that move
together belong to
same object can aid the
learning from few
labelled data
- Chapter 4.

Same assumption can
aid with temporal
consistency of objects
segmentation through
the video sequence.

Learning to compare
(metric learning)
improves the
representation learned
for few-shot task
- Chapter 3.

Learning to compare
improves the representation
to discriminate among
known and unknown objects
- Chapter 5.

problems simultaneously.

One of the tasks that was overlapping between both as shown in Table 2.4

benefits from FSS and VOS is video class agnostic segmentation. The goal of

video class agnostic segmentation in autonomous driving is to segment objects

of unknown classes towards a safety critical approach. The table summarizes

the shared challenges and assumption in both areas and how video class ag-
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nostic segmentation is a shared problem and benefits from both. We focus

on combining appearance, motion and geometry with a different learning ob-

jective aimed at segmenting generally moving objects, or objects outside the

closed known classes using our proposed contrastive losses. We call our task

video class agnostic segmentation as it is in-dependant of the semantics of

these unknown objects. The video class agnostic segmentation is crucial for

robotics tasks such as autonomous driving or robot manipulation in which rare

cases / object categories are expected to occur and should be handled in the

system.

2.5 Background

2.5.1 Transposed Convolution Arithmetics

(a)

(b)

Figure 2.9: (a) Convolution , (b) Transposed Convolution Operation as matrix
multiplication, Figure from [103].

End-to-end models for semantic segmentation incorporate in-the-network

upsampling that is performed using transposed convolution. In order to un-

derstand the transposed convolution, it is illustrative to formulate the regular

convolution as matrix multiplication. Note that convolution is implemented as
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matrix multiplication in modern deep learning frameworks for efficiency rea-

sons as well. As an example, convolution with 3× 3 kernel W , is represented

as a sparse matrix c with the non zero elements as the kernel coefficients wi,j.

The sparse matrix is multiplied with the flattened input. Thus a 4× 4 input

matrix is flattened to a 1D vector of 16 elements and multiplied by c. The

convolution output is a 1D vector of 4 elements that is reshaped to the output

feature map of 2× 2 shape as shown in Figure 2.9 (a).

c =

(︄
w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0 0
0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0
0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0
0 0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2

)︄
(2.2)

In-the-network upsampling is performed in the reverse direction where an

input vector of shape 4×1 is upsampled to 16×1. This can be done by multi-

plying with cT , hence the name transposed convolution as shown in Figure 2.9

(b). Since the backward pass through regular convolution requires multiplying

with cT , the transposed convolution has it reversed. Where the forward pass

multiplies by cT and the backward pass multiplies by c. Further details are

described in [38].

2.5.2 Learning Based approach for Optical Flow

Optical Flow classical approaches such as Lucas Kanade and Horn Schunck

has been widely used in different applications, but with the need for accurate

and computationally efficient inference of dense optical flow, learning based

approaches emerged. FlowNet [34] is considered the first approach to tackle

this problem. In Flownet a two-stream model with a correlation layer that

performs patchwise correlations. As shown in Equation 2.3

c(x1,x2) =
∑︂

i∈[−k,k]×[−k,k]

⟨f1(x1 + i), f2(x2 + i)⟩, (2.3)

where k is patch size, f1, f2 are the two feature maps and x1, x2 are two centers

at both feature maps. The operation is similar to a convolution but instead of

using a learnable filter it uses the other feature map patch. Then, the model

predicts the x-y flow outputs and is trained as a regression problem. Learning
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Figure 2.10: Flow HSV Encoding, Figure from [5].

based approaches require large-scale training data, however it is not trivial to

have optical flow ground-truth. For this purpose multiple synthetic datasets

such as FlyingChairs [34] and FlyingThings3D [98] were proposed to train

these models. In Flownet 2.0 [65] a learning schedule with multiple datasets is

proposed to improve the optical flow accuracy. Where they initially train the

model with FlyingChairs dataset, then FlyingThings3D dataset. FlyingChairs

dataset consists of simple 2D motion that enables the model to learn the

concept of matching. While FlyingThings3D dataset has 3D motion to learn

complex motion patterns. Another important modification in Flownet 2.0 is

the introduction of iterative refinement in deep networks through stacking

flownet modules and warping the image with the output flow from each stage.

Throughout our work we mainly use Flownet 2.0 [65] and then transform the

predicted flow to RGB image using middleburry color wheel [5] as shown in

Figure 2.10.

2.5.3 Self Supervised Learning of Depth and Pose

In this section we introduce self supervised learning of depth and pose as it

will be used in our method to perform ego-flow suppression. It was initially

proposed by Zhou et. al. [205] to learn depth and pose in a self supervised

manner from a monocular camera by posing the problem as a novel view syn-

thesis problem. We use the recent work from Godard et. al. [50] that learns

from both monocular and stereo cameras and handles occlusion through back-

propagating the minimum reprojection error. The model consists of separate

depth and pose networks where the pose network estimates 6 DoF transfor-

mation and the depth network estimates per-pixel inverse depth (disparity) as

shown in Figure 2.11.
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Figure 2.11: Self Supervised Depth and Pose, Figure from [50]. (a) Depth
Network. (b) Pose Network. (c) Photo-metric re-projection error, when han-
dling occlusions the average loss will force occluded pixels to match, whereas
the minimum loss only matches it to the visible.(d) Multi-scale.

A view synthesis loss shown in Equation 2.4 is used to minimize the photo-

metric re-projection error. Where It′ is the reference view and It is the target

view, α is the photometric error, ⟨ is the sampling operator, ϕ is the projection

function that outputs 2D coordinates for the projected depth Dt in t′. The

estimated pose between two frames is Tt→t′ and K is the camera intrinsics

matrix.

L = min
t′
α(It, It′→t)

It′→t = It′⟨ϕ(Dt, Tt→t′ , K)⟩
(2.4)

Thus the model is able to jointly learn the pose and depth which we later

use to perform ego-flow suppression to remove the optical flow of the non-

moving pixels. Their main contribution is the use of minimum photometric

error instead of the average over all target views which intuitively leads to

handling occlusion problems that should not contribute to the backpropagated

loss. Since they use consecutive frames and opposite stereo frames in their

mixed training it learns better self supervised models.
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Part I

Few-shot Object Segmentation
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Chapter 3

Imprinting Masked Prototypes

3.1 Introduction

The first research question we answer in part I from the thesis is “how can

deep semantic segmentation rely on limited labelled data for learning novel

classes instead of large-scale labelled data?”. Children are able to adapt their

knowledge and learn about their surrounding environment with limited sam-

ples [97]. One of the main bottlenecks in the current deep learning methods is

their dependency on the large-scale training data such as PASCAL-VOC [40]

with 20 classes and MS-COCO [87] with 80 classes. However, the number

of object categories they cover is still limited despite the significant sizes of

the data used. The limited number of annotated objects with pixel-wise la-

bels included in existing datasets restricts the applicability of deep learning in

inherently open-set domains such as robotics [30], [117]. This motivated the

emergence of few-shot learning methods [76], [124], [133], [153], [173][149]. As

formally defined in FSL literature, such as [149], the problem of few-shot learn-

ing is how to generate the weights for the novel classes based on few training

examples (support set) for these novel classes. These early works were primar-

ily focused on solving few-shot image classification tasks, where a support set

consists of a few images and their class labels.

However, semantic segmentation has more relevance to robotics than image

classification [25], [32], [70], [131]. Therefore, we focus on few-shot object

segmentation. Previous methods in the literature that address the problem

of few-shot object segmentation require the training of an additional branch
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Figure 3.1: Multi-resolution adaptive imprinting in AMP (Adaptive Masked
Proxies). Imprinting occurs through masked average pooling of the final acti-
vations to be used as the novel class weights. The weights of the background
class is further adapted.

to guide the backbone segmentation network, unlike ours that only need a

single branch. On top of that, our proposed method outperforms previous

SOA methods at the time of the work on Pascsal-5i.

3.1.1 Metric Learning

Inspired by methods that relate metric learning to softmax classification [120],

we propose to construct the weights of the final segmentation layer via multi-

resolution imprinting. Our method does not rely on a second parameter esti-

mation branch, as shown in Fig. 3.1. Metric learning methods such as neigh-

bourhood component analysis [51] learn a distance metric using a softmax-like

loss function. As shown in Equation (3.1):

Lproxy(x) = − log
exp (−d(x, p(x)))∑︁

p(z)∈p(Z) exp (−d(x, p(z)))
, (3.1)

where x is a data point, p(x) is the positive proxy corresponding to the class

label of x, and p(Z) is the set of negative proxies. The distance used is based on

the L2 distance d(x1, x2) = ∥x1 − x2∥22. In the case of unit vectors minimizing

the squared L2 distance becomes equivalent to maximizing the dot product,

min∥x− p(x)∥22 ≡ maxxTp(x), (3.2)
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when substituting in Equation (3.1) we get a similar form to softmax clas-

sification except that we normalize with all classes logits not negative class

logits only. As shown in Equation (3.3):

L(x, pk(x)) = − log
xTpk(x)∑︁
c∈C x

Tpc(x)
, (3.3)

where pk(x) is the proxy for class k, while pc(x) is the proxy of class c in

the set of all classes C. Qi et. al. [120] has used this intuition to look upon

the final classification weights as proxies. Wu et. al. [188] has also discussed

relations between metric learning and softmax classification and looked upon

the final classification weights as prototypes. Thus, we use the terms proxies

and prototypes interchangeably to indicate a representative signature of a

given class that can act as its weight in the classification layer.

In the few-shot segmentation setup, the support set contains pixel-wise

class labels for each support image. Therefore, the response of the backbone

fully convolutional network (FCN) to a set of images from a given class in the

support set can be masked by segmentation labels and then average pooled to

create a proxy/prototype for this class. This forms what we call a normalized

masked average pooling layer (NMAP in Fig. 3.1). The computed proxies are

used to set the 1 × 1 convolutional filters for the new classes, forming the

process known as weight imprinting [120]. Multi-resolution weight imprinting

is proposed to improve the segmentation accuracy of our method. Our method

is a single branch method that does not require extra parameters for learning

prototypes or predicting parameters. At the same time our method is the

first that can be extended to the generalized few-shot setting, where we can

segment among both novel and base classes. Concurrent work to ours, Zhang

et. al proposed a single branch network that uses guidance features based on

masked average pooling layer [203]. It has also been shown that cosine (cosine

similarity) classifiers generally outperform meta-learning methods in [22] which

motivated our choice of cosine classifiers in few-shot object segmentation.
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Figure 3.2: Adaptive Masked Proxies using the Normalized Masked Aver-
age Pooling Layer. During few-shot inference two phases are computed: (1)
Imprinting: which uses the support set image label pair. (2) Segmentation:
which predicts the query image segmentation using the assigned weights from
the first phase. For simplicity it shows the imprinting on the final layer solely.
Nonetheless, our scheme is applied on multiple resolution levels.

3.2 Proposed Method

3.2.1 Few-shot Problem Setup

We use a setup similar to Shaban et. al. [136]. The training procedure consists

of two steps. The initial training phase relies on a large scale dataset Dtrain

including semantic label maps for classes in Ltrain. During the test phase,

a support set is sampled that is labelled with novel classes in Ltest, where

Ltrain ∩Ltest = ∅. The support set contains pairs S = (Ii, Yi(l))
k
i=1, where Ii is

the ith image in the set and Yi(l) is the corresponding binary mask. The binary

mask Yi(l) is constructed with novel class l labelled as foreground while the

rest of the pixels are considered background. While k indicates the number

of images provided in the support set. A query image is randomly sampled

from the test set in a similar fashion to the support set. It is worth noting

that during training only images that include at least one pixel belonging to

Ltrain are included in Dtrain for large-scale training. If some images have pixels

labelled as classes belonging to Ltest they are ignored and not used in the back-

propagation following the procedure from [192]. Our model does not need to
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be meta-trained in the few-shot regime by sampling tasks with a support set

and a query image, but is rather trained regularly with Dtrain and classes in

Ltrain.

3.2.2 Base Network

The backbone architecture used in our segmentation network is a VGG-16

[151] that is pre-trained on ImageNet [31]. Similar to the FCN8s architecture,

[92] skip connections are used to benefit from higher resolution feature maps,

and 1×1 convolution layers are used to map from the feature space to the label

space. However, unlike FCN8s we solely utilize bilinear interpolation layers

with fixed weights for the upsampling. The main reason behind that choice,

is that it is hard to imprint the weights for the transposed convolution layers

based on the support set.

An extension to the above base network uses dilated convolution [199] and

called Dilated-FCN8s. The last two pooling layers are replaced by dilated

convolution with dilation factors 2 and 4 respectively. Thus, increasing the

receptive field without affecting the resolution and improving the segmenta-

tion accuracy. Finally, a more compact version of the network with two final

convolutional layers removed is denoted as Reduced-DFCN8s.

3.2.3 Weight Imprinting

The relation between metric learning and softmax classification has been in-

vestigated in [120]. A proxy-NCA loss [101] was reformulated as a softmax

cross-entropy loss based on the equivalence between minimizing the Euclidean

distance and maximizing dot product of normalized vectors. It motivated

the use of the output proxies for each class as the weights of the final fully

connected layer for image classification, which is known as weight imprinting.

Since 1 × 1 convolutional layers are equivalent to fully connected layers, we

propose to utilize proxies to imprint the 1× 1 convolutional filters of the final

segmentation layer. The imprinted convolution weights form a signature for

each class. When convolved with the query image, it activates pixels maxi-

mally similar to that class signature.
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However, it is not trivial to perform weight imprinting in semantic seg-

mentation, unlike in classification. First, in the classification setup the output

embedding vector corresponds to a single class and hence can be used directly

for imprinting. In contrast to that, segmentation network outputs 3D em-

beddings, which incorporate features for a multitude of different classes, both

novel and previously learned. Second, in the classification scenario the resolu-

tion aspect is not present, while in the segmentation scenario multi-resolution

support is necessary to ensure the final segmentation accuracy.

We propose the following novel architectural components to address the

challenges outlined above. First, in Section 3.2.4 and in Section 3.2.5 we

propose the proxy masking and adaptation methods to handle multi-class seg-

mentation. Second, in Section 3.2.6 we propose a multi-resolution weight

imprinting scheme to maintain the segmentation accuracy during imprinting.

The significant contribution of each method to the overall accuracy is shown

experimentally in Section 4.3.3.

3.2.4 Normalized Masked Average Pooling

In order to build the proxies and incorporate the pixels that belong mainly

to the novel class, masked feature maps with the labels provided in the sup-

port set are used. Initially, the feature maps are bilinearly upsampled before

performing masking. This is followed by average pooling per channel, then

normalization as follows:

P r
l =

1

k

k∑︂
i=1

1

N

∑︂
x∈X

F ri(x)Y i
l (x), (3.4a)

P r
l
ˆ =

P r
l

∥P r
l ∥2

, (3.4b)

here Y i
l is a binary mask for ith image with the novel class l, F ri is the

corresponding output feature maps for ith image and rth resolution. X is the

set of all possible spatial locations, k is the number of images in support set,

and N is the number of pixels that are labelled as foreground for class l. The
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normalized output from the masked average pooling layer P̂
r

l can be further

used as proxies representing class l and resolution r. In the case of a novel

class the proxy can be utilized directly as the weight filter. An average of all

the masked pooling features for the k-shot samples provided in the support

set is used.

We denote this layer as a normalized masked average pooling as shown

in Fig. 3.2. A similar layer is developed in a concurrent work [203]. It uses

the output to compute a guidance to the network, while our method uses the

output proxy to imprint the 1 × 1 convolutional layer weights. This is the

reason we use normalization. It is worth noting that the model is trained

using a cosine similarity layer that performs normalization on both features

and weights before predicting the segmentation logits.

3.2.5 Adaptive Proxies

We are inspired by the classical approaches in learning adaptive correlation

filters [8], [58]. Correlation filters date back to 1970s [24], [59], [157]. More

recently, the fast object tracking method MOSSE [8] relied on handcrafted

features to form the correlation filters and adapted them using a running

average. In our method the adaptation of the previously learned weights is

based on a similar approach, yielding the ability to process base classes along

with novel classes. It is valuable to utilize both instead of solely imprinting

the new class weights. At the same time, in the case of the previously learned

classes, e.g. background, it is not wise to simply override what the network

learned from the large-scale training either. A good example illustrating the

need to update the negative classes is the addition of “boat”. It is obvious

that the background class needs to be updated to match the “sea” background,

especially if the image with sea background are not part of the large scale

training dataset.

We propose to update the convolutional layer weights in our model with the

masked proxies for a given class using the following exponentially smoothed

average adaptive scheme. As shown in Equation (3.5):
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Ŵ
r

l = αP r
l
ˆ + (1− α)W r

l , (3.5)

exponential smoothing is used to update the weights for older classes with

the update rate α. P r
l
ˆ is the normalized masked proxy for class l, W r

l is the

previously learned 1 × 1 convolutional filter at resolution r, while Ŵ
r

l is the

adapted one. The update rate can either be treated as a hyper parameter or

it can be learned separately according to the input embeddings. It can also

be a learnable scalar value or it can vary according to which neuron is being

updated. Fig. 3.2 shows our proposed adaptive masked proxies and its use

to imprint the weights with each new support set. The new class weights are

imprinted directly while the previously learned classes weights are updated.

During the few-shot setup the support set contains segmentation masks for the

new class (foreground) and base classes (background). Thus, the adaptation

process is performed on all the base classes and then the output predictions are

modified to be binary for background versus foreground (novel class). During

inference, at the end of each sampled task once we imprint weights and infer

on the query image we roll back the final layer weights to the ones used before

imprinting. It is worth noting that recent work in unsupervised learning has

also investigated the idea of adapting the old weights with new weights in a

momentum encoder using an exponentially smoothed average in [55], which

conforms with our proposed adaptation if the last layer’s weights are looked

upon as prototypes that can be imprinted and adapted.

3.2.6 Multiresolution Imprinting Scheme

The adaptive masked proxies are used as the 1×1 convolutional filters in a skip

architecture [92]. The final classification layer, and the two 1×1 convolutional

layers following dilated convolutions in the case of Dilated-FCN8s are the ones

imprinted. In case of FCN8s that does not utilize dilated convolution, the

imprinted filters are used in the 1× 1 convolutional layers following the third

and fourth pooling layers. For simplicity, an encoder-decoder architecture with

skip connections was employed instead of pyramid processing. Additionaly,
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Figure 3.3: Multi-resolution imprinting using proxies from different resolution
levels.

with atrous spatial pyramid pooling, large dilation rates as used in [19], results

in large receptive fields that can affect the masked average pooling process.

Fig. 3.3 shows the the output heatmaps from 1 × 1 convolution using our

proposed proxies as imprinted weights on three different resolution P 1
l
ˆ , P 2

l
ˆ ,

P 3
l
ˆ . It shows that the coarse resolution captures blobs necessary for global

alignment, while the fine resolution provides the granular details required for

an accurate segmentation.

To motivate why we have picked P r
l
ˆ to act as proxies for the classes with

few labelled samples, we plot the T-SNE [96] embedding for the learned proxies

using normalized masked average pooling in Fig. 3.4. The plot shows the 5

classes belonging to fold 0 in Pascal-5i. Since our model performs imprinting

on multiple resolution levels, the plot visualizes for the 3 different resolution

levels. It also shows that better clustering happens in the intermediate layer,

which confirms previous findings in a different problem setting in unsupervised

learning [15].

3.3 Experimental Results

Our proposed method’s sample efficiency is evaluated on Pascal-5i and La-

belled Faces in the Wild (LfW) [67]. In the few-shot segmentation scenario
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Figure 3.4: Visualization for the T-SNE [96] embeddings for the generated
masked proxies for novel classes unseen during training. Layers L1, L2, L3
denote the smaller to higher resolution feature maps.

our method is evaluated on Pascal-5i [136]. An ablation study is performed to

demonstrate the improvement from multi-resolution imprinting, and adaptive

proxies. The study also compares weight imprinting against back-propagating

on randomly generated weights. We use mean intersection over union (mIoU)

similar to [136], where per-class IoU is computed and the mIoU denotes the

average of the classes IoU per fold. Our code 1 is made publicly available

to further benefit the few-shot learning research community. Our code base

has built upon the semantic segmentation work [137], where we use Pytorch

library [114].

3.3.1 Experimental Setup

The setup for pretraining the models to be tested on Pascal-5i is detailed.

The base network is trained using RMSProp [60] with learning rate 10−6,

and L2 regularization with a factor of 5 × 10−4 on the 15 classes outside of

the current test fold for a fixed number of iterations 300,000. In the few-

shot evaluation 1000 samples with support and query sets are used, similar to

OSLSM setup [136].

A hyper-parameter random search is conducted on the α parameter, num-

ber of iterations, and the learning rate. The search is conducted on 10 classes

from the training set and imprinting on the other 5 classes of the training set.

1https://github.com/MSiam/AdaptiveMaskedProxies
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Table 3.1: Quantitative results for 1-way 1-shot and 5-shot segmentation on
Pascal-5i dataset following evaluation in [33]. FT: Fine-tuning for 10 iterations
in 1-shot and 2 iterations in the 5-shot setting.

Method 1-Shot 5-Shot
FG-BG [33] 55.1 55.6
OSLSM [136] 55.2 -
co-FCN [121] 60.1 60.8
PL+SEG [33] 61.2 62.3
AMP-2 Norm (ours) 62.3 66.6

Thus ensuring all the classes used are outside the fold used in the test phase.

The α parameter selected is 0.26. In the case of performing fine-tuning, the

selected learning rate is 7.6x10−5 with 2 iterations in the 5-shot case, and same

learning rate with 5 iterations for the 1-shot case.

3.3.2 1-Way Few-Shot Semantic Segmentation

Table 3.2 and Table 3.3 show the results for the 1-shot and 5-shot segmenta-

tion respectively on Pascal-5i using mIoU of the foreground class. The 1-shot

results differ than what is reported in the paper [147] as it does not incorporate

the iterative refinement step, additionally feature normalization during train-

ing is added here. Our method is compared to OSLSM [136] and the baseline

methods for few-shot segmentation. It shows that our method outperforms

the baseline fine-tuning [136] method by 10.7% in terms of mIoU, without the

need for extra back-propagation iterations through directly using the adaptive

masked proxies. Our method out-performs OSLSM [136] method in the 1-shot

and the 5-shot cases. However, unlike OSLSM our method does not need to

train an extra branch for predicting the parameters.

Our method outperforms the co-FCN [121] method as shown in Table 3.2

by 2.2%. Fig. 3.5 shows the qualitative results on Pascal-5i which shows both

the support set image-label pair, and our predicted segmentation for the query

image. It shows that it does not depend on the saliency of the object. Since

in some of the query images multiple potential objects can be categorized as

salient, but it rather learns to segment what best matches the proxy.

Table 3.1 shows our method in comparison to the state of the art methods
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Table 3.2: Quantitative results for 1-way 1-shot segmentation on Pascal-5i

dataset. FT: Fine-tuning. AMP-1: using Dilated FCN8s. AMP-2: using Re-
duced version of Dilated FCN8s. AMP-2 Norm: Similar to AMP-2 with using
cosine similarity layer with normalization on features and weights during the
training phase not only inference. Red, Blue: Best and Second Best Perform-
ing Methods. Co-FCN evaluation using Fg only reported from [203]. Bolded
numbers indicate best performance.

Fold 1 Fold 2 Fold 3 Fold 4 Mean-IoU
1-NN [136] 25.3 44.9 41.7 18.4 32.6
Siamese [136] 28.1 39.9 31.8 25.8 31.4
FT [136] 24.9 38.8 36.5 30.1 32.6
OSLSM [136] 33.6 55.3 40.9 33.5 40.8
Co-FCN [121] 36.7 50.6 44.9 32.4 41.1
AMP-1 (ours) 37.4 50.9 46.5 34.8 42.4
AMP-2 (ours) 38.5 52.0 46.6 36.0 43.3
AMP-2 Norm (ours) 39.6 52.1 46.7 34.6 43.3

Table 3.3: Quantitative results for 1-way 5-shot segmentation on Pascal-5i

dataset. AMP-2 + FT(2): fine-tuning with 2 iterations after our proposed
method. Red, Blue: Best and Second Best Performing Methods. Co-FCN
evaluation using Fg only reported from [203]. Bolded numbers indicate best
performance.

Fold 1 Fold 2 Fold 3 Fold 4 Mean-IoU
1-NN [136] 34.5 53.0 46.9 25.6 40.0
LogReg [136] 35.9 51.6 44.5 25.6 39.3
OSLSM [136] 35.9 58.1 42.7 39.1 43.9
co-FCN [121] 37.5 50.0 44.1 33.9 41.4
AMP-2 (ours) 40.3 55.3 49.9 40.1 46.4
AMP-2 + FT(2) (ours) 41.8 55.5 50.3 39.9 46.9
AMP-2 Norm (ours) 44.5 57.3 50.8 41.4 48.5

in terms of the mean on all folds for 1-shot and 5-shot segmentation with a

different evaluation. The same evaluation utilized by [121] and [33] is used,

which computes mIoU as the mean of the foreground and background IoU.

Our proposed method outperforms state of the art methods in both the 1-shot

and 5-shot cases. It shows a larger improvement in case of the 5-shot than

the 1-shot, since the 5-shot averages the prototype from the 5 images, which

results in a better class signature.
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(a) (b) (c) (d)

Figure 3.5: Qualitative evaluation on Pascal-5i 1-way 1-shot. The support set
(a,c) and prediction (b,d) on the query image are shown.

3.3.3 2-Way Few-Shot Semantic Segmentation

Experiments conducted on Pascal-5i similar to Shaban et. al. [136] setup eval-

uate 1-way segmentation with the new class as the foreground to be predicted.

We conduct further experiments on Labelled Faces in the Wild (LFW) dataset

[67] to perform 2-way segmentation. The dataset provides images for labelled

faces annotated with parts which include two semantic part classes. We com-

pare against initializing the weights of the convolutional layer responsible for

classification randomly, and with naive fine-tuning on the random weights.

Evaluation is performed on the 1-shot and 5-shot cases as shown in Table

3.4. Our proposed method outperforms the naive finetuning baseline with a

significant margin of 24.6% and 23.4% in the 1-shot case and 5-shot case re-

spectively. Performing fine-tuning with our masked proxies scheme leads to a

boost in the mIoU with 3.0% in the 1-shot and 4.4% in the 5-shot. The flexibil-

ity of the proposed few-shot method allows its coupling with back-propagation

which proves to be useful in the parts segmentation. Nonetheless, using the

masked proxies solely without fine-tuning outperforms naive fine-tuning with

randomly initialized weights. Figure 3.6 shows qualitative evaluation on LFW

dataset for the 1-shot 2-way segmentation scenario.
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(a) (b) (c) (d) (e)

Figure 3.6: Output predictions on LFW dataset [67] using our proposed
method without fine-tuning. (a,b) support set label-image pair. (c,d) query
label-image pair. (e) our prediction.

Table 3.4: Quantative results on LFW [67] segmentation dataset. Rnd: Indi-
cates the use of random weights in the final layer. MP: indicates imprinting
the final layer weights using the masked proxies. FT: indicates fine-tuning.
Bolded numbers indicate best performance.

Method 1-Shot 5-shot
Rnd 15.0 -
MP (ours) 48.4 53.8
Rnd + FT 20.4 27.5
MP + FT (ours) 50.2 58.7

3.3.4 Ablation Study

We perform an ablation study on fold 0 to ensure the effectiveness of differ-

ent components in our proposed method. Table 3.5 shows the benefit from

our proposed method, it outperforms fine-tuning using randomly generated

weights with a significant margin. It also shows the benefit from proposing an

adaptive method, where no adaptation with α set to 0, degrades accuracy. It

demonstrates that directly imprinting the weights for the new class solely is

45



Table 3.5: Ablation study of the different design choices for the imprinting
scheme on Fold 0. Adaptation: α parameter is non-zero. Multi-res: performing
multi-resolution imprinting. Imp: imprinting weights using our proxies. FT:
fine-tuning. Norm: Normalization.

Methods Adap. Multires. Norm. N-Shot mIoU
Ft Only ✗ ✓ ✗ 5 28.7
Imp. ✓ ✓ ✓ 5 44.5

CosSim + Ft. Only ✗ ✓ ✓ 1 10.6
Imp. ✗ ✓ ✗ 1 13.6
Imp. ✓ ✗ ✗ 1 34.8
Imp. ✓ ✓ ✗ 1 37.4
Imp. ✓ ✓ ✓ 1 39.6

Table 3.6: Evaluating mean IoU over 15 base classes along with the extra
novel class over 4 folds on Pascal-5i. Comparing our two variants based on
the model trained with Cosine Similarity layer when fine-tuning with random
weights or imprinting the weights and performing adaptation.

Method N-shot Fold 0 Fold 1 Fold 2 Fold 3 mIoU
CosSim + Imp. (ours) 1-shot 12.2 11.4 8.3 11.7 10.9
CosSim + Ft. 1-shot 12.6 11.9 12.2 15.2 13.0

not sufficient and has to be coupled with our proposed adaptive scheme. We

also motivate the use of our proposed multi-resolution imprinting. As shown

in Table 3.5 it outperforms the method that does not support multi-resolution.

Results in Table 3.5 for our final method corresponds to the evaluation method

and results provided in Table 3.2 and Table 3.3 on fold 0 following Shaban et.

al. [136]. Finally, it shows that using cosine similarity layer during train-

ing in which both features and weights are normalized before performing the

convolution followed by scaling can improve the results further on.

We further report the mean IoU computed over all 15 base classes and

the novel class after performing the weight imprinting on the 1-shot case in

Table 3.6. We compare our two variants trained with a cosine similarity layer

when both finetuning or imprinting the weights directly and performing adap-

tation. In the case of generalized few-shot setting the fine-tuning performs

better than imprinting then adaptation. Although in Table 3.5 when evalu-

ating 1-way the imprinting mechanism with adaptation is better. It indicates

46



that there is still work that can be done to improve the results on the general-

ized few-shot segmentation setting, and ensuring that the adaptation does not

result in decreased performance on base classes. Future work on learning the

alpha parameter used in adpatation and varying it from one class to another

would be a good possible direction to improve the generalized few-shot set-

ting results. Overall, the results demonstrate that imprinting and adaptation

mechanism provide a way to improve the accuracy in the 1-way segmentation.

3.4 Summary

In this chapter we proposed a sample efficient method to segment unseen

classes via multi-resolution imprinting of adaptive masked proxies (AMP).

AMP constructs the final segmentation layer weights from few labelled support

set samples by imprinting the masked multi-resolution responses of the base

feature extractor and by fusing it with the previously learned class signatures.

AMP is empirically validated to be superior in the few-shot segmentation on

PASCAL-5i benchmark with a significant margin in the 5-shot case. Addi-

tionally, experiments for 2-way on labelled Faces in the Wild dataset shows

the advantage from using such approach over simple fine-tuning of randomly

generated weights. However, the adaptation mechanism shows weaknesses in

the generalized few-shot segmentation setup which we leave for future work.
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Chapter 4

Few-shot Weakly Supervised
Object Segmentation using
Co-Attention

4.1 Introduction

Existing literature in few-shot object segmentation has mainly relied on manu-

ally labelled segmentation masks including our previous method. A few recent

works [121], [177], [201] started to conduct experiments using weak annotations

such as scribbles or bounding boxes. However, these weak forms of supervi-

sion involve more manual work compared to image level labels, which can be

collected from text and images publicly available on the web. Little research

has been conducted on using image-level supervision for few-shot segmenta-

tion [125]. Performance of most of the current weakly supervised few-shot

segmentation methods lag significantly behind their strongly supervised coun-

terparts.

Few-shot object segmentation literature at the time of this work was mainly

focused on using a single vector representation from masked average pooling

to guide the query image segmentation. However, single vector representation

would lose critical information required for detailed object segmentation, on

top of that with image-level labels it is not possible to perform masked average

pooling. If a global average pooling would be used, this would lead to the

confusion of foreground and background features. In this work we propose

to leverage the interaction between the support set and query image using
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Figure 4.1: Overview of stacked co-attention to relate the support set and
query image using image-level labels. Nx: Co-attention stacked N times. “K-
shot” refers to using K support images.

co-attention, which is based on pixel-to-pixel affinity matrices. Furthermore,

to improve the weakly supervised few-shot object segmentation method we

propose to utilize the semantic word embeddings as a conditioning signal to

the co-attention module as shown in Fig. 4.1, which we call a multi-modal

interaction module. Our method outperforms [125] by 4.8% and improves

over methods that use bounding box supervision [177], [201].

Most work in few-shot segmentation considers the static setting where

query and support images do not have temporal relations. However, in real

world applications such as robotics, segmentation methods can benefit from

temporal continuity and multiple viewpoints. For real time segmentation, it

may be of tremendous benefits to utilize temporal knowledge existing in video

sequences. Observations that pixels moving together mostly belong to the

same object seem to be very common in videos, and it can be exploited to

improve segmentation accuracy. This is referred to as the Gestalt’s notion of
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“Common Fate” [170]. We propose a novel setup, temporal object segmen-

tation with few-shot learning (TOSFL), where support and query images are

temporally related. The TOSFL setup for video object segmentation general-

izes to novel object classes as can be seen in our experiments on Youtube-VOS

dataset [194]. TOSFL only requires image-level labels for the first frames (sup-

port images) to segment the objects that appear in the frames that follow. The

TOSFL setup is interesting because it is more similar to the nature of learning

of objects by a human [170] than the strongly supervised static segmentation

setup.

Youtube-VOS [194] provides a way to evaluate on unseen categories. How-

ever, it does not utilize the category labels in the segmentation model. Our

setup relies on the image-level label for the support image to segment differ-

ent parts from the query image conditioned on the word embeddings of this

image-level label. In order to ensure the evaluation for the few-shot method

is not biased to a certain category, it is best to split into multiple folds and

evaluate on different ones similar to [136].

Contributions

• We propose a novel few-shot object segmentation algorithm based on

a multi-stage co-attention mechanism that leverages the interaction be-

tween support and query features, presented in Sections 4.2.1 and 4.2.2.

• We propose semantic conditioning to alleviate ambiguity caused by con-

fusion from base classes or multiple common objects between support

and query images, discussed in Section 4.2.1.

• We further propose a novel weakly supervised few-shot video object seg-

mentation setup, as detailed in Section 4.2.3. It complements the existing

few-shot object segmentation benchmarks by considering a practically

important use case not covered by previous datasets. Video sequences

are provided instead of static images which can simplify the few-shot

learning problem.
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4.1.1 Attention Mechanisms

Since the current work mostly focuses on exploring co-attention between sup-

port and query frames we gather necessary related work on the different atten-

tion mechanisms. Attention was initially proposed for neural machine transla-

tion models [4]. Several approaches were proposed for utilizing attention. [197]

proposed a stacked attention network which learns attention maps sequentially

on different levels. [93] proposed co-attention to solve a visual question and

answering task by alternately shifting attention between visual and question

representations. [94] used co-attention in video object segmentation between

frames sampled from a video sequence. Concurrent to our work, new work on

using co-attention for one-shot object detection was proposed in [63]. How-

ever, they mainly use it to attend to the query image since the given bounding

box provides them with the region of interest in the support set image. To

the best of our knowledge, this work is the first one to explore the bidirec-

tional attention between support and query sets in an iterative manner as a

mechanism for solving the few-shot image segmentation task with image-level

supervision.

A recent work exploring self attention for image recognition has defined a

unifying framework for attention where it is divided into pairwise and patch-

wise attention. Pairwise attention follows the formulation in Equation 4.1:

yi =
∑︂

j∈R(i)

α(xi, xj) ◦ β(xj),

α(xi, xj) = γ(δ(xi, xj)),

(4.1)

where γ and β are nonlinear projection functions, andR(i) is the local footprint

used for aggregation. While the δ relation function can either be hadamarad

product, summation, subtraction, or dot product. On the other hand, patch-

wise attention considers local connections in the relation function. As shown

in Equation 4.2:
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yi =
∑︂

j∈R(i)

α(xR(i))j ◦ β(xj),

α(xR(i)) = γ(δ(xR(i))),

δ(xR(i)) = [ϕ(xi), [ψ(xj)]∀j∈R(i)],

(4.2)

the δ function can either be star-product, clique-product or concatenation.

Concatenation is the one used in Equation 4.2 as an example. Our method for

performing co-attention follows a pairwise formulation where δ is a simple dot

product. We leave for future work exploring local connections with patchwise

attention.

4.2 Proposed Method

The human perception system is inherently multi-modal. Inspired from this

and to leverage the learning of new concepts we propose a multi-modal in-

teraction module that embeds semantic conditioning in the visual processing

scheme as shown in Fig. 4.2. The overall model consists of: (1) Encoder. (2)

Multi-modal Interaction module. (3) Segmentation Decoder. The multi-modal

interaction module is described in detail in this section while the encoder and

decoder modules are explained in Section 4.3.1. We follow a 1-way k-shot

setting similar to [136].

4.2.1 Multi-Modal Interaction Module

One of the main challenges in dealing with the image-level annotation in few-

shot segmentation is that quite often both support and query images may

contain a few salient common objects from different classes. Inferring a good

prototype for the object of interest from multi-object support images without

relying on pixel-level cues or even bounding boxes becomes particularly chal-

lenging. Yet, it is exactly in this situation, that we can expect the semantic

word embeddings to be useful at helping to disambiguate the object relation-

ships across support and query images. Below we discuss the technical details

behind the implementation of this idea depicted in Fig. 4.2. Initially, in a

k-shot setting, a base network is used to extract features from ith support set
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Figure 4.2: Architecture of Few-Shot Object segmentation model with co-
attention. The ⊕ operator denotes concatenation, ◦ denotes element-wise
multiplication. Only the decoder and multi-modal interaction module param-
eters are learned, while the encoder is pretrained on ImageNet. The stacked
co-attention iterations are unrolled for visualisation solely.

image I is and from the query image Iq, which we denote as Vs ∈ RW×H×C′
and

Vq ∈ RW×H×C′
. Here H and W denote the height and width of feature maps,

respectively, while C ′ denotes the number of feature channels. Furthermore, a

projection layer is used on the semantic word embeddings to construct z ∈ Rd

(d = 256). It is then spatially tiled and concatenated with the visual features

resulting in flattened matrix representations Vq̃ ∈ RC×WH and Vs̃ ∈ RC×WH .

An affinity matrix S is computed to capture the similarity between them via

a fully connected layer Wco ∈ RC×C learning the correlation between feature

channels:

S = Vs̃
T
WcoVq̃.

the affinity matrix S ∈ RWH×WH relates each pixel in Vq̃ and Vs̃. A soft-

max operation is performed on S row-wise and column-wise depending on the

desired direction of relation:

Sc = softmax(S), Sr = softmax(ST )

For example, column Sc
∗,j contains the relevance of the jth spatial location in
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Figure 4.3: Visual explanation of pixel-to-pixel affinity matrix used to compute
attention weights.

Vq with respect to all spatial locations of Vs, where j = 1, ...,WH as shown

in Figure 4.3. The normalized affinity matrix is used to compute attention

summaries Uq and Us through reweighting it with the attention weights from

Sc or Sr respectively:

Uq = Vs̃S
c, Us = Vq̃S

r.

The attention summaries are further reshaped such that Uq, Us ∈ RW×H×C

and gated using a gating function fg with learnable weights Wg and bias bg:

fg(Uq) = σ(Wg ∗ Uq + bg),

Uq = fg(Uq) ◦ Uq.

Here the ◦ operator denotes element-wise multiplication. The gating function

restrains the output to the interval [0, 1] using a sigmoid activation function

σ in order to mask the attention summaries. The gated attention summaries

Uq are concatenated with the original visual features Vq to construct the final

output from the attention module to the decoder.

4.2.2 Stacked Gated Co-Attention

We propose to stack the multi-modal interaction module described in Sec-

tion 4.2.1 to learn an improved representation. Stacking allows for multiple
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Table 4.1: Notations Summary Table.

Symbol Definition
Vq, Vs Query, Support visual features.

Vq̃ Query visual and word embeddings concatenated.
z class label word embeddings.
Uq, Us Query, support attention summaries.
Wco Weight matrix in Co-Attention.
Ltrain Set of training classes.
Dtrain Set of training data.
H, W Height and Width of the visual features.
C Channels of the visual and semantic features combined.
S Affinity matrix.
fg Gating function.
Wg, bg Weight and bias used in the gating function.
fq Function to compute query attention summaries.

iterations between the support and the query images. The co-attention mod-

ule has two streams fq, fs that are responsible for processing the query image

and the support set images respectively. The inputs to the co-attention mod-

ule, V i
q and V i

s , represent the visual features at iteration i for query image and

support image respectively. In the first iteration, V 0
q and V 0

s are the output

visual features from the encoder. Each multi-modal interaction then follows

the recursion ∀i = 0, .., N − 1:

V i+1
q = ϕ(V i

q + fq(V
i
q , V

i
s , z))

The nonlinear projection ϕ is performed on the output from each iteration,

which is composed of 1× 1 convolutional layer followed by a ReLU activation

function. We use residual connections in order to improve the gradient flow

and prevent vanishing gradients. The support set features V i
s ,∀i = 0, .., N − 1

are computed similarly. We illustrate the stacked co-attention in Figure 4.2.

Refer to Table 4.1 to summarize notations used in the paper.

4.2.3 Temporal Object Segmentation with a Few-shot
Learning Setup

We propose a novel few-shot video object segmentation (VOS) task. In this

task, the image-level label of the first frame is provided to learn object seg-
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Figure 4.4: Different variants for image-level labelled few-shot object segmen-
tation. V+S: Stacked Co-Attention with Visual and Semantic representations.
V: Co-Attention with Visual features only. S: Conditioning on semantic rep-
resentation only from word embeddings.

mentation in the sampled frames from the ensuing sequence. This is a more

challenging task than the one relying on the pixel-level supervision in semi-

supervised VOS. The task is designed as a binary segmentation problem and

the categories are split in multiple folds, consistent with existing few-shot

segmentation tasks defined on Pascal-5i and MS-COCO. This design ensures

that the proposed task assesses the ability of few-shot video segmentation al-

gorithms to generalize over unseen classes. We utilize Youtube-VOS dataset

training data which has 65 classes, and we split them into 5 folds. Each fold

has 13 classes that are used as novel classes, while the rest are used in the meta-

training phase. A randomly sampled class Ys and sequence V = {I1, I2, ..., IN}

are used to construct the support set Sp = {(I1, Ys)} and query images Ii. For

each query image a binary segmentation mask MY
s is constructed by labelling

all the instances belonging to Ys as foreground. Accordingly, the same image

can have multiple binary segmentation masks depending on the sampled Ys.

4.3 Experimental Results

In this section we demonstrate results of experiments conducted on the Pascal-

5i dataset [136] compared to state of the art methods in Section 4.3.2. Not

only do we set strong baselines for image level labelled few shot segmentation

and outperform previously proposed work [125], but we also perform close
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to the state of the art conventional few shot segmentation methods that use

detailed pixel-wise segmentation masks. We then demonstrate the results for

the different variants of our approach depicted in Fig. 4.4 and experiment with

the proposed TOSFL setup in Section 4.3.3.

4.3.1 Experimental Setup

Network Details: We utilize a ResNet-50 [57] encoder pre-trained on Ima-

geNet [31] to extract visual features. The segmentation decoder is comprised

of an iterative optimization module (IOM) [201] and an atrous spatial pyramid

pooling (ASPP) [19], [20]. The IOM module takes the output feature maps

from the multi-modal interaction module and the previously predicted proba-

bility map in a residual form. The previously predicted probability maps are

initially set to zeros and then are set to the output from the previous iteration.

Following the IOM module, an ASPP module is used to increase the model

receptive field and to capture the global context following the modification

from DeepLab-V3 [20].

Meta-Learning Setup: We sample 12,000 tasks during the meta-training

stage. In order to evaluate test performance, we average accuracy over 5000

tasks with support and query sets sampled from the meta-test dataset Dtest

belonging to classes Ltest. We perform 5 training runs with different random

generator seeds and report the average of the 5 runs and the 95% confidence

interval.

Evaluation Protocol: Pascal-5i splits PASCAL-VOC 20 classes into 4

folds each having 5 classes. The mean IoU and binary IoU are the two metrics

used for the evaluation process. The mIoU computes the intersection over

union for all 5 classes within the fold and averages them neglecting the back-

ground. Whereas the bIoU metric proposed by [121] computes the mean of

foreground and background IoU in a class agnostic manner. We have noticed

some deviation in the validation schemes used in previous works. Zhang et.

al. [201] follow a procedure where the validation is performed on the test classes

to save the best model, whereas Wang et. al. [177] rather trains for a fixed

number of iterations for all models. We choose the more challenging approach
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in [177].

Training Details: During the meta-training, we freeze ResNet-50 encoder

weights while learning both the multi-modal interaction module and the de-

coder. We train all models using momentum SGD with learning rate 0.01 that

is reduced by 0.1 at epoch 35, 40 and 45 and momentum 0.9. L2 regularization

with a factor of 5×10−4 is used to avoid over-fitting. Batch size of 4 and input

resolution of 321×321 are used during training with random horizontal flip-

ping and random centered cropping for the support set. An input resolution

of 500×500 is used for the meta-testing phase similar to [136]. In each fold

the model is meta-trained for a maximum number of 50 epochs on the classes

outside the test fold.

(a) ’bicycle’ (b) ’bottle’ (c) ’bird’

(d) ’bicycle’ (e) ’bird’ (f) ’boat’

Figure 4.5: Qualitative evaluation on Pascal-5i 1-way 1-shot. The support set
and prediction on the query image are shown in pairs.

(a) ’bicycle’ (b) ’bottle’ (c) ’aeroplane’

Figure 4.6: Failure cases on Pascal-5i 1-way 1-shot. The support set and
prediction on the query image are shown in pairs.
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Table 4.2: Quantitative results for 1-way, 1-shot segmentation on the Pascal-
5i dataset showing mean-Iou and binary-IoU. P: stands for using pixel-wise
segmentation masks for supervision. IL: stands for using weak supervision from
Image-Level labels. BB: stands for using bounding boxes for weak supervision.
Red: validation following [201], Blue: validation following [177].

1-shot
Method Type 1 2 3 4 mIoU bIoU
FG-BG P - - - - - 55.1
OSLSM [136] P 33.6 55.3 40.9 33.5 40.8 -
CoFCN [121] P 36.7 50.6 44.9 32.4 41.1 60.1
PLSeg [33] P - - - - - 61.2
AMP [147] P 41.9 50.2 46.7 34.7 43.4 62.2
PANet [177] P 42.3 58.0 51.1 41.2 48.1 66.5
CANet [201] P 52.5 65.9 51.3 51.9 55.4 66.2
PGNet [200] P 56.0 66.9 50.6 50.4 56.0 69.9
CANet [201] BB - - - - 52.0 -
PANet [177] BB - - - - 45.1 -
OSW [125] IL - - - - - 58.7
Ours(V+S)-1 IL 49.5 65.5 50.0 49.2 53.5 65.6
Ours(V+S)-2 IL 42.5 64.8 48.1 46.5 50.5 64.1

±0.7 ±0.4

4.3.2 Comparison to the state-of-the-art

We compare the result of our best variant (see Fig. 4.4), i.e: Stacked Co-

Attention (V+S) against the other state of the art methods for 1-way 1-

shot and 5-shot segmentation on Pascal-5i in Table 4.2 and 4.3. We report

the results for different validation schemes. Ours(V+S)-1 follows [201] and

Ours(V+S)-2 follows [177]. Without the utilization of segmentation mask or

even sparse annotations, our method with the least supervision of image level

labels performs (53.5%) close to the current state of the art strongly supervised

methods (56.0%) in 1-shot case and outperforms the ones that use bounding

box annotations. It improves over the previously proposed image-level super-

vised method with a significant margin (4.8%). For the k-shot extension of

our method we perform average of the attention summaries during the meta-

training on the k-shot samples from the support set. Table 4.4 demonstrates

results on MS-COCO [87] compared to the state of the art method using pixel-

wise segmentation masks for the support set.
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Table 4.3: Quantitative results for 1-way, 5-shot segmentation on the Pascal-
5i dataset showing mean-Iou and binary-IoU. P: stands for using pixel-wise
segmentation masks for supervision. IL: stands for using weak supervision from
Image-Level labels. BB: stands for using bounding boxes for weak supervision.
Blue: validation following [177].

5-shot
Method Type 1 2 3 4 mIoU
OSLSM [136] P 35.9 58.1 42.7 39.1 43.9
CoFCN [121] P 37.5 50.0 44.1 33.9 41.4
AMP [147] P 41.8 55.5 50.3 39.9 46.9
PANet [177] P 51.8 64.6 59.8 46.5 55.7
CANet [201] P 55.5 67.8 51.9 53.2 57.1
PGNet [200] P 57.7 68.7 52.9 54.6 58.5
PANet [177] BB - - - - 52.8
Ours(V+S)-2 IL 45.9 65.7 48.6 46.6 51.7

±0.07

Table 4.4: Quantitative Results on MS-COCO Few-shot 1-way.

Method Type 1-shot 5-shot
PANet [177] P 20.9 29.7
Ours-(V+S) IL 15.0 15.6

4.3.3 Ablation Study

We perform an ablation study to evaluate different variants of our method

depicted in Fig. 4.4. Table 4.6 shows the results on the three variants we

proposed on Pascal-5i. It clearly shows that using the visual features only (V-

method), lags 5% behind utilizing word embeddings in the 1-shot case. This

is mainly due to having multiple common objects between the support set and

the query image, and tendency to segment objects from base classes. Semantic

conditioning obviously helps to resolve the ambiguity and improves the result

significantly as shown in Figure 4.7. Going from 1 to 5 shots, the V-method

improves, because multiple shots are likely to repeatedly contain the object of

interest and the associated ambiguity decreases, but still it lags behind both

variants supported by semantic input. Interestingly, our results show that

the baseline of conditioning on semantic representation is a very competitive

variant: in the 1-shot case it even outperforms the (V+S) variant. However,
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Table 4.5: Ablation Study for different components with 1 run on Pascal-
5i and Youtube-VOS. V: visual, S: semantic. SCoAtt: Stack Co-Attention.
Cond: Concatenation based conditioning.

Dataset Method mIoU
Pascal-5i V-Cond 42.7
Pascal-5i V-CoAtt 44.6
Pascal-5i V+S-Cond 50.1
Pascal-5i V+S-CoAtt 50.2
Pascal-5i V+S-SCoAtt 51.0
Youtube-VOS V+S-Cond 42.3
Youtube-VOS V+S-SCoAtt 43.7

Table 4.6: Ablation Study on 4 folds of Pascal-5i for few-shot segmentation
for different variants showing mean-IoU. V: visual, S: semantic. V+S: both
features.

Method 1-shot 5-shot
V 44.4± 0.3 49.1± 0.3
S 51.2± 0.6 51.4± 0.3
V+S 50.5± 0.7 51.7± 0.07

Table 4.7: Quantitative Results on Youtube-VOS One-shot weakly supervised
setup showing IoU per fold and mean-IoU over all folds similar to Pascal-5i.
V: visual, S: semantic. V+S: both features.

Method 1 2 3 4 5 Mean-IoU
V 40.8 34.0 44.4 35.0 35.5 38.0± 0.7
S 42.7 40.8 48.7 38.8 37.6 41.7± 0.7
V+S 46.1 42.0 50.7 41.2 39.2 43.8± 0.5

on the TOSFL setup the V+S variant shows significant improvement over the

S-variant.

We perform an ablation study to evaluate different components of our

method. Table 4.5 show results for 1 run and compares using a simple condi-

tioning on the support set features through concatenation with the query visual

features against performing co-attention between support and query feature

maps. It shows clearly the benefit from performing co-attention. Nonetheless,

visual features solely is not capable to disambiguate between different common

objects and the visual with semantic embeddings even with simple concatena-

tion shows an improvement. Further stacking the co-attention module proves
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to improve the results as well specifically on Youtube-VOS.

Table 4.7 shows the results on our proposed novel video segmentation task,

comparing variants of the proposed approach. As previously, the baseline

V-method based on co-attention module with no word embeddings, similar

to [94], lags behind both S- and (V+S)-methods. It is worth noting that un-

like the conventional video object segmentation setups, the proposed video

object segmentation task poses the problem as a binary segmentation task

conditioned on the image-level label. We demonstrate in Table 4.7 that the

(V+S)-method’s joint visual and semantic processing in such scenario clearly

provides significant gain. The gain is mostly attributed to reducing the ten-

dency to segment base classes used during the meta-training phase which was

a problem in coattention without semantic conditioning in both Pascal-5i and

Youtube-VOS. However, there is still tendency to segment the salient objects

over small and not visually salient ones in Youtube-VOS that we are still

looking into improving in our future work.

4.4 Summary

In this chapter we proposed a multi-modal interaction module that relates the

support set image and query image using both visual and word embeddings.

We proposed to meta-learn a stacked co-attention module that guides the seg-

mentation of the query based on the support set features and vice versa. The

two main takeaways from the experiments are that: (i) few-shot segmentation

significantly benefits from utilizing word embeddings and (ii) it is viable to

perform high quality few-shot segmentation using stacked joint visual seman-

tic processing with weak image-level labels. Additionally, a temporal object

segmentation for few-shot learning setup is proposed that bridges the gap be-

tween few-shot and video-object segmentation.
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(a) Label ’bicycle’ (b) Prediction (V) (c) Prediction (V+S)

(d) Label ’aeroplane’ (e) Prediction (V) (f) Prediction (V+S)

(g) Label ’bird’ (h) Prediction (V) (i) Prediction (V+S)

Figure 4.7: Qualitative analysis on fold 0 Pascal-5i between our method (V+S)
and object co-segmentation baseline ours (V) that can not disambiguate mul-
tiple common objects and is biased toward base classes used in training.
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Part II

Video Object Segmentation
(VOS)
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Chapter 5

Video Class Agnostic
Segmentation

5.1 Introduction

Semantic scene understanding is crucial in autonomous driving in both end-

to-end and mediated perception approaches. Semantic segmentation [25][104],

which performs pixel-wise classification of the scene, and Panoptic segmen-

tation [193][75][61], which combines semantic and instance segmentation, are

both focused on a closed set of known classes. However, a system trained on

a limited set of classes would face difficulties in unexpected situations that

could occur in different autonomous driving scenarios as shown in Figure 5.1.

The parking and construction scenarios we have built in CARLA are clear

examples that provide multiple objects outside the closed set of known classes

in most publicly available datasets.

In this chapter we formulate the task of video class agnostic segmentation

in order to allow for the segmentation of unknown objects and publicly re-

lease the necessary datasets and baselines for the different task formulation.

Video class agnostic segmentation is defined as the task of segmenting objects

without regards to its semantics combining appearance, motion and geometry

from monocular video sequences. It is crucial first to identify how to formulate

this problem. Since the main goal is to segment obstacles without regards to

its semantics, we choose two main formulations: (1) The motion segmen-

tation formulation that will identify moving objects with no regards to its
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Figure 5.1: Video Class Agnostic Segmentation allows to identify objects out-
side the closed set of known classes.

semantics. Thus it will allow the identification of unknown moving objects

such as animals as shown in Figure 5.1. (2) The open-set segmentation

formulation that will identify pixels belonging to objects outside the closed set

of known classes without identifying its exact semantic class. This is shown in

Figure 5.1 for the parking and construction scenarios in CARLA, which will

identify static unknown objects. The two formulations have their advantages

and disadvantages. Motion segmentation has a better capability to perform

well across different data distributions where we are able to segment the un-

known class (cow) in IDD dataset [171], although our model is trained on

Cityscapes-VPS and KITTI with no animal class. The main disadvantage is

that it can only detect unknown moving objects, thus static ones like cones,

barriers, and construction related equipment can not be segmented. On the

other hand, open-set segmentation formulation such as in [186] and our work
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for open-set segmentation, relies on learning the statistics of the known classes

and a global unknown constant. Both suffer when operating on a different data

distribution than the training one. But it has the advantage of segmenting un-

known objects whether static or moving.

In the motion segmentation formulation, our work [146][148] is considered

the first to motivate the class agnostic segmentation problem and identifying

unknown moving objects in the autonomous driving setting. A patent [148]

that was created with Valeo Vision Systems was targeted towards creating the

first moving object detection network for autonomous driving trained in an

end-to-end manner. Concurrent to our work, another learning based motion

segmentation for autonomous driving was proposed in [172]. The closest sub-

tasks to our work that focus on motion cues are: (1) Unsupervised video

Object Segmentation. (2) Motion Segmentation. Unsupervised video object

segmentation literature aims at segmenting the appearance and motion salient

object in a video sequence. While motion segmentation is mainly focused on

segmenting moving objects regardless of how salient they are. Both literature

have been described thoroughly in Section 2.3. We further propose a method to

improve the open-set segmentation formulation through contrastive learning

with semantic and temporal guidance that can improve the discrimination

among known and unknown objects.

Our main contributions are:

• Formalizing the video class agnostic segmentation task in autonomous

driving, discussing it as two main formulations with insights on them.

• Provide real and synthetic datasets for autonomous driving for that

task [146][144].

• The first work for learning moving object detection trained in an end-to-

end manner directed towards autonomous driving in a released patent [148].

• A Computationally efficient motion segmentation network that is able to

perform close to the state of the art while performing 4× speedup [141].
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• A novel method to learn video class agnostic segmentation using con-

trastive learning with region-level semantic and temporal guidance is

proposed [145].

5.1.1 Unknown Objects segmentation

Since this task has relations to open-set segmentation we review in this section

the related work in open-set classification/detection/segmentation. Open-set

segmentation in autonomous driving has not been thoroughly studied in the

literature with only two work in the literature [186] [109]. Wong et. al. [186]

inspired from prototypical networks for few-shot learning [153] through learn-

ing a prototype per semantic stuff class and thing instance. A multi-frame

bird’s eye view representation from LIDAR pointclouds is used as input to

their model. Osep et. al. [109] proposed a method that utilizes a video se-

quence of stereo images with 4D generic proposals for autonomous driving and

utilizing parallax to identify temporally consistent objects. However, their

method that relies on a category-agnostic object proposal network can ignore

unknown objects that are present but not labelled in training examples, and

has only been evaluated on 150 images for the open-set task in autonomous

driving. It is also a computationally intensive method starting with their re-

liance on a two-stage object detection method [56], while most of the unknown

objects are considered as stuff classes and does not need to identify separate

instances/proposals.

Other related open-set detection/classification methods such as [30][185]

are either constrained to certain downstream robotic tasks such as robot ma-

nipulation or focused on the image classification task, both are much simpler

than the segmentation task in autonomous driving scenes. On the contrary, our

method focuses on monocular video sequences in autonomous driving scenes.

Our open-set segmentation method builds on the model from [186] but focuses

on semantic segmentation and learns prototypes per semantic class using both

appearance and geometry. We additionally propose contrastive learning with

semantic and temporal guidance to improve the unknown objects segmenta-

tion which is orthogonal to others contributions and can work with multiple
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baselines for open-set segmentation.

5.1.2 Contrastive Learning

Since one of our main contributions is on contrastive learning and is mainly

inspired by metric learning to benefit the video class agnostic segmentation

task we review its related work. Hadsell et. al. [53] was the first to propose

a metric learning approach that contrasts positive and negative pairs as the

contrastive loss. Dosovitskiy et. al. [36] afterwards developed the pretext task

of instance discrimination to learn a representation in a self supervised man-

ner as contrastive learning. There are three aspects to consider in contrastive

learning: (1) The type of pretext tasks used in unsupervised methods such

as instance discrimination [36][21] or multi-view contrastive coding [163]. (2)

Supervised [72] versus Unsupervised [21][36], i.e. whether labels are used to

guide the contrastive learning process or not. (3) The contrastive learning

mechanism whether it is end-to-end [21], using a memory bank [189], or a

momentum encoder as proposed by [55]. Most of the previous literature, con-

trastive learning was used as a means to leverage unlabelled data and learn in

an unsupervised manner. Recently Winkens et. al. [185] proposed a method

to improve out-of-distribution(OOD) detection based on a Mahalanobis de-

tector and using embeddings trained in a contrastive learning framework. We

extend the method to the task of video class agnostic segmentation in au-

tonomous driving, and propose a temporal version to ensure consistency of

the embeddings through representation warping.

5.2 Datasets

5.2.1 Valeo KITTIMoSeg Dataset

Training convolutional networks requires large amounts of training data. We

suggest a pipeline to automatically generate static/moving classification for

objects on KITTI dataset [46]. The procedure uses odometry information and

annotated 3D bounding boxes for vehicles. The odometry information that

includes GPS/IMU readings provides a method to compute the velocity of the
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Figure 5.2: Overview of the pipeline used to generate KITTI Moving Object
Detection annotations. Blue boxes for moving vehicles, green boxes for static
ones.

moving camera. The 3D bounding boxes of the annotated vehicles are pro-

jected to 2D images and tagged with their corresponding 3D centroid. The

2D bounding boxes are associated between consecutive frames using intersec-

tion over union. The estimated vehicles velocities are then computed based

on the associated 3D centroids. The computed velocity vector per bounding

box is compared to the odometry ground-truth to determine the static/moving

classification of vehicles. The objects that are then consistently identified on

multiple frames as moving are kept. In this dataset, the focus is on vehicles

with car object category.

An overview of the labeling procedure is shown in Figure 5.2. This is ap-

plied on six sequences from KITTI raw data [46] to generate a total of 1750

frames. In addition to these frames, 200 frames from KITTI scene flow are

used to provide us with 1950 frames in total. This new dataset was further

amended with motion segmentation masks using a trained DeepLab-V3 output

masks that overlap with the output moving bounding boxes which we called

KITTIMOSeg. For some statistics on the dataset, the total number of static

vehicles is 5997, while the number of moving ones is 2383. The dataset is pub-

licly available as part of KITTI Raw Dataset [140] to act as a benchmark on

motion detection on KITTI. Although there exists other motion segmentation
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Table 5.1: Comparison of different datasets for motion or primary object seg-
mentation. Seqs: Sequences, Cats: Categories, Inst: Instances. Pan: Panop-
tic, Tr: Tracks.

Dataset # Frames # Seqs # Cats Inst. Pan. Tr.
DAVIS [14] 6208 90 78 ✓ ✗ ✓

KITTI MOTION [172] 455 - 1 ✗ ✗ ✗

KITTI MoSeg [146][122] 12919 ∼ 38 1 ✗ ✗ ✗

Inst. KITTI MoSeg[100] 12919 ∼ 38 5 ✓ ✗ ✗

City Motion [172] 3475 - 1 ✓ ✓ ✗

VCAS-Motion (ours) 11008 520 8 ✓ ✓ ✓

datasets such as [116][98][108]. However, they are either synthetic[98], rela-

tively small [108] or have limited camera motion [116] unlike what is present

in autonomous driving scenes. Our dataset was further extended to around

13,000 frames from Valeo team by Rashed et. al. work [122] using the same

label generation described above but on the full KITTI raw dataset.

5.2.2 Wayve Datasets

In collaboration with Wayve we built both real-world and simulation datasets

curated for the class agnostic segmentation task. Since we have two main

formulations for the problem, we provide real-world dataset for the motion

segmentation and synthetic dataset for the open-set segmentation formulation.

Motion Segmentation Dataset

In the first formulation for the video class agnostic segmentation as a motion

segmentation problem, we provide motion annotations extended on the original

KITTIMOTS [175] and Cityscapes-VPS [73] datasets. A trajectory annotation

tool was built to annotate the trajectories for either moving or static and is

further used to provide instance-wise motion masks. Table 5.1 shows the

different statistics for our dataset in comparison to other collected datasets in

the literature that are used in both motion segmentation and primary object

segmentation. Our dataset has the main advantage of having larger variety of

object categories and 50× increase in the video sequences which are the most

important aspect for video class agnostic segmentation. In order to push the
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Figure 5.3: CuratedWayve motion dataset, extended annotations to real-world
data from KITTI and Cityscapes. Red: Moving, Blue: Static.

Figure 5.4: Wayve Motion Dataset Statistics.

model to depend more on the motion information and only use the appearance

information to detect objectness rather than detecting cars only. Although

DAVIS provide a larger variety of object categories the kind of camera motion

and scenes in these sequences are much simpler and easier to segment unlike

autonomous driving setting. Since autonomous driving scenes mostly have

constant fast camera motion, multiple degenerate cases for objects moving

parallel to camera motion and cluttered scenes with multiple moving objects.

We provide instance masks unlike most previous literature which is cru-

cial for motion instance segmentation. Concurrent to our work [100] provided

instance-wise motion masks, however we provide manually labelled segmen-
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Scenario Unknown Objects

Parking
Cart with Bags
Shopping Trolley
Garbage Bin

Construction
Traffic Warning
Construction Cone

Barrier Traffic Pole

Training

Barrel
Traffic Cone
Traffic Barrier
Static (others)
Dynamic (others)

Figure 5.5: Different scenarios in CARLA Simulation and objects considered
as unknown in our synthetic data.

tation masks unlike their weakly annotated ones. Another important aspect

for class agnostic segmentation is the panoptic labels that are provided for

3000 frames in our dataset that can aid the identification of unknown objects

and will get the class agnostic head to provide redundant signal for a safety-

critical approach. Finally, the dataset has extra tracking label annotations

which can further aid in tracking moving objects. Figure 5.3 demonstrates

the extended annotations for the real-world datasets on both KITTIMOTS

and Cityscapes-VPS sequences. Figure 5.4 further shows the datasets statis-

tics showing the number of moving and static instances in both KITTI-MOTS

and Cityscapes-VPS.

Open-set Segmentation Dataset

In the open-set segmentation formulation we care about providing video se-

quences along with annotations for unknown objects in different autonomous

driving scenarios. Thus, we build different scenarios within the CARLA sim-

ulation environment [35]. The goal is to incorporate these scenarios as part

of the CARLA challenge for autonomous driving to benefit both perception

and policy learning researchers. Such scenarios are integrated in the CARLA

challenge scenario runner 1, to evaluate the robustness of autonomous driving

1https://github.com/carla-simulator/scenario_runner
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Training Testing

Towns
Town1 Town10
Town2 Town7
Town3

# Images 57972 1886

Figure 5.6: Statistics for CARLA for both known classes and unknown objects,
the different Towns in CARLA where our dataset was collected for training and
testing phase and # Images. Blue: Known Classes, Red: Unknown objects.

systems in terms of safety. Figure 5.5 lists the three main scenarios that are

used to evaluate the open-set segmentation task, with objects that are not

frequently available in current autonomous driving datasets.

We extend the CARLA environment to provide fine-grained labels for the

specific set of unknown objects that are used to analyze the correlation between

unknown objects used during training and testing. We further modify the

basic driving agent for the ego-vehicle to avoid unknown obstacles, in order

to collect large-scale data of up to 50K images with ground-truth depth and

semantic segmentation. During collection of training data we use a separate

set of unknown objects different than the ones used in testing, and we rather

collect in the training scenario with objects randomly placed as obstacles on the

road while randomizing both traffic and weather conditions in three different

towns. During inference we collect data in the main three scenarios listed in

Figure 5.6 in different towns than the ones used in training data collection and

with randomized object placement, weather condition and traffic.
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5.3 Motion Segmentation

5.3.1 End-to-End Video Class Agnostic
Segmentation

We propose in [146] the first attempt to perform moving object segmenta-

tion in automated driving scenes with the focus of using it as a class agnostic

segmentation module. This provides an extra means to scale to unknown

objects based on their motion representation, unlike large-scale trained se-

mantic segmentation models on a closed set of classes. Our model is shown

in Figure 5.7 where we proposed to jointly learn semantic object detection

and class agnostic object segmentation relying on appearance and motion in-

formation. An encoder-decoder architecture is used for motion segmentation.

Similar to the FCN8s [92] architecture, VGG16 network is transformed to a

fully convolutional network removing the last fully connected layers. Inspiring

from [150][66], a two stream VGG16 is utilized to extract appearance and mo-

tion features. The feature maps from both are combined using a summation

junction for a memory efficient network. This is followed by two separate de-

coders one for object detection and another for motion segmentation decoder.

The motion segmentation decoder has a 1× 1 convolutional layer, then three

transposed convolutional layers to perform upsampling and a pixel-wise cross

entropy loss is used to learn the parameters for that decoder. In order to

benefit from high-resolution features, skip connections are used and added to

partially upsampled feature maps.

The object detection decoder follows a similar approach to FastBox [162].

It is based on Yolo [127] used as a single shot detector, it has two 1 × 1

convolutional layers. The last layer outputs 39×12 grid size representing each

cell. The channels in the output layer include the bounding box coordinates,

size, and the confidence in the existence of a vehicle. Finally, the rezoom layer

is used to overcome the loss of resolution caused by pooling. ROI pooling

from the higher resolution layers is followed by 1 × 1 convolutional layers.

Then the residuals on the coordinates are regressed over, for a more accurate

localization. The loss function used for the detection head combines the L1 loss
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VGG16
Appearance Encoder

(15 Conv)

VGG16
Motion Encoder

(15 Conv)

Combined 
Features

39x12x512

FCN8s Skip 
Architecture

Motion Segmentation

Detection

1x1 Conv

1x1 Conv

Fast Box
Architecture

Shared Fusion Encoder

Figure 5.7: MODNet Two Stream Multi-Task Learning Architecture for joint
motion segmentation and object detection. Optical Flow and RGB input, RGB
image with overlay motion segmentation in green and detected bounding boxes
in blue.

for the bounding box regression, with cross entropy for the confidence score.

Our model combining appearance and motion features where the appearance

stream helps in segmenting the object boundary, while the motion stream

identifies moving vehicles. Two different inputs for the motion stream are

considered and compared: (1) Optical flow. (2) Image pair of frame It, It−1.

In the latter case, the network is expected to learn an embedding that matches

the input image pair. In case of optical flow, middlebury colorwhel is used to

convert it to RGB flow[5].

5.3.2 Real-time Video Class Agnostic Segmentation

In order to explore design choices for a computationally efficient motion seg-

mentation, a system that decouples the method for feature extraction and de-

coding method is used for a principled benchmarking [142]. This benchmarking

system includes feature extraction architectures VGG-16 [151], ResNet-18 [17],

MobileNet [62], and ShuffleNet [202]. Our decoding methods which perform

in-the-network upsampling and act as a meta-architecture include SkipNet

[92], UNet [130], and Dilation Frontend [199].

Decoding Meta-Architectures: The methodology used in the upsam-

pling greatly impacts both accuracy and computational performance. SkipNet

architecture denotes a similar architecture to FCN8s [92]. The main idea of

the skip architecture is to benefit from feature maps from higher resolution to
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improve the output segmentation. This reduces the upsampling factor from

32× to 8×. SkipNet applies transposed convolution on heatmaps in the label

space instead of performing it on the feature space. This entails a more compu-

tationally efficient decoding method than others. U-Net architecture denotes

a stage-wise decoding method as it up-samples features using transposed con-

volution corresponding to each downsampling stage. The up-sampled features

are fused with the corresponding features maps from the encoder with the

same resolution. The stage-wise upsampling provides higher accuracy than

one shot 8× upsampling of SkipNet. Dilation Frontend architecture utilizes

dilated convolution instead of downsampling the feature maps. Dilated con-

volution enables the network to maintain an adequate receptive field, but

without degrading the resolution from pooling or strided convolution. The

original dilation frontend [199] removes pooling layers and replaced by dilated

convolution in consecutive layers with a dilation factor of 2. However, compu-

tational cost increases, since all operations are performed on higher resolution

feature maps than the ones from performing pooling.

Feature Extraction Architectures: Computational efficiency is the

main focus of the work thus only computationally efficient backbones are stud-

ied. The first backbone we experiment with is ResNet-18 [17] which incorpo-

rates the usage of residual blocks that directs the network towards learning the

residual representation over an identity mapping. MobileNet [62] architecture

is based on depthwise separable convolution. It is considered an extreme case

of the inception module, where separate spatial convolution for each channel

is applied. Then 1× 1 convolution with all the channels to merge the output

denoted is applied. The separation in depthwise and pointwise convolution

improves the computational efficiency. ShuffleNet encoder [202] is based on

grouped convolution that is a generalization of depthwise separable convolu-

tion. It uses channel shuffling to ensure the connectivity between input and

output channels. This eliminates connectivity restrictions imposed by grouped

convolutions.

Our Proposed Real-time Class Agnostic Model: The previous com-

parison of different encoders and decoders is a principled method to motivate
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our final architectural design as will be described in the experiments section.

Our architecture for motion segmentation is a two-stream ShuffleNet [202]

encoding method with SkipNet [92] decoding method for in the network up-

sampling. Figure 5.8 demonstrates the detailed architectural design. The

modalities fusion denotes the fusion between motion and appearance features.

Feature concatenation is used for the modalities fusion, to learn weighted fu-

sion of them. The features fusion denotes the fusion of up-sampled lower

resolution features and higher resolution feature maps through element-wise

addition. Similar to the previous model we use optical flow from [65] and

converted to RGB as in [5].
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Figure 5.8: Detailed Architecture of Two Stream ShuffleSeg for motion seg-
mentation. SU: ShuffleNet Unit, #: denotes the number of channels. Modali-
ties Fusion: fusion of appearance and motion features through concatenation
of features. Feature Fusion: fusion of upsampled lower resolution feature maps
and higher resolution maps. Blue: encoding layers, orange: decoding layers,
yellow: modalities fusion.

5.3.3 Real-time Panoptic and Class Agnostic Segmen-
tation

The previous models do not perform full scene understanding through semantic

segmentation nor do they have awareness of the object instances. These two
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are crucial in autonomous driving when the model is expected to learn to

encode the scene into a meaningful representation and instance-wise masks can

enable further tracking and prediction of traffic behaviour. Thus we propose

a complete scene understanding method that performs panoptic segmentation

i.e. combines instance and semantic segmentation while learning class agnostic

embeddings to segment instances outside the closed set of known classes.

Backbone with Feature Pyramid Network (FPN)

We build upon the real-time one-shot instance segmentation model SOLO [179]

the model is composed of ResNet-50 [57] backbone, a feature pyramid net-

work [85] and two branches for learning both category and instance masks.

Other efficient backbones can replace ResNet-50, a feature pyramid network

is used to enable segmentation of different sizes objects where it combines the

semantically stronger but low resolution feature maps with the semantically

weaker but high resolution feature maps. It takes as inputs c2, c3, c4, c5 out-

put from the 4 ResNet-50 residual blocks output feature maps. As shown in

Figure 5.9 it projects it to 256-D features and upsamples the lower resolution

then performs element-wise summation with higher resolution feature maps

similar to U-Net but with an added lateral connections to perform prediction

on every single resolution level. The output from FPN is bilinearly up/down

sampled to form 5 resolution levels with strides 8, 8, 16, 32, 32 which is used

as input to the SOLO head.

Decoupled SOLO Instance Segmentation Head

The SOLO head is designed as two branches one for predicting category per

element in a square grid with multiple grid sizes S × S that are set as hyper-

parameters. In our case we use 80, 72, 64, 48, 32 grid sizes. The other branch

predicts an instance mask corresponding to every element in the square grid,

thus resulting in S2 mask predictions. A CoordConv [90] layer is used to con-

dition the mask prediction on the corresponding position of the grid to make it

spatially variant. The CoordConv layer concatenates on the original features

the different positions normalized in the interval [-1, 1]. Figure 5.10 illustrates

79



Appearance 
Stream

Motion 
Stream

Feature Fusion

FPN

x7

x7

x7

x7

Class Agnostic 
Instance 

Segmentation

Known Things 
Instance 

Segmentation

Known Things 
and Stuff 
Semantic 

Segmentation
x5

Figure 5.9: Detailed Architecture for Class Agnostic and Panoptic Segmenta-
tion in Autonomous Driving.

the SOLO head design where the category branch outputs S × S × C proba-

bility maps where C is the number of classes. While the mask branch predicts

S2 × W × H binary masks where W and H the original image size. Thus,

the instance segmentation head is fully convolutional and does not depend on

box anchors unlike previous methods and is computed in a single shot manner

which makes it computationally efficient. Both branches are composed of 7

convolutional modules with RELU and group normalization [187].

For the sake of memory efficiency we use the decoupled SOLO head version

which splits the masks prediction for S2 grid into two branches each with S

masks corresponding to two axes. Since the predicted instance masks are

usually sparsely located it is possible to perform this separation. Then the

output mask for any element in the grid is the element-wise multiplication of

this element in the two xy-branches. Thus, the output from the decoupled

version is 2S × W × H as shown in Figure 5.10, unlike the vanilla version

which outputs S2 ×W × H this makes it memory efficient. We utilize focal

loss [86] for the predicted instance category and dice loss [99] for the predicted

masks. The labels are assigned using center sampling where a grid element (i,

j) is assigned the instance category if it lies within certain range to the center.

The decoupled SOLO head is responsible for predicting the masks of the

things classes (i.e. classes with different instances such as car, pedestrian,

bus, ...etc). As for the stuff classes (i.e. classes that do not differentiate
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Figure 5.10: Adopted from [179] Vanilla SOLO versus decoupled SOLO heads
with detailed explanation for mask prediction branch.

into different instances such as sidewalk, road, ...etc) an extra segmentation

head is used to perform pixel-wise classification on the whole scene to capture

these. The extra segmentation head takes as input the merged FPN features

to the highest resolution level and it has 5 convolutional modules with RELU

and group normalization. This is followed by bilinear upsampling and 1 × 1

convolution to predict the probability maps for the full stuff and things classes.

A heuristic method is used to perform panoptic fusion between stuff and things

masks in order to output the final panoptic masks.

Class Agnostic Head with Ego-Flow Suppression

We continue to use a two-stream backbone and use input from optical flow com-

puted with FlowNet2 [65]. However, optical flow represents motion attributed

to both moving objects and camera motion. Thus we perform ego-flow sup-

pression following [172] through subtracting the computed 2D ego flow from

the flow computed from FlowNet2. The ego flow is computed using both depth

z and pose R, T predicted from a model that is trained in a self supervised

manner [50]. The ego-flow is computed following Equation 5.1:

x′ = K−1x, (5.1a)
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(a) (b)

Figure 5.11: (a) Computed output from ego-flow suppression. (b) Original
flow.

x̃ = K[R|T ]X ′, (5.1b)

Oego = x̃− x, (5.1c)

Osupp = O −Oego, (5.1d)

where x is the 2D homogeneous image coordinates and K is the camera intrin-

sics matrix. It projects the 2D homogeneous image coordinates into camera

coordinates and applies the transformation computed from the relative pose

between two frames then re-projects it back to image coordinates.

The output from ego-flow suppresion in comparison to the original com-

puted flow is shown in Figure 5.11, where the moving car’s flow in second row

hasnt been suppressed unlike the static parked cars. Since we use a dedicated

class agnostic head we are able to train it with separate datasets than the

known semantic heads for performing panoptic segmentation. This separation

as well allows for ensuring the class agnostic head does not overfit to a certain

set of known classes unlike the semantic head. In order to avoid degrada-

tion in panoptic segmentation performance we freeze the semantic heads while

training the class agnostic head.

5.4 Open-Set Segmentation

Our method is shown in Figure 5.12, where the following sections will describe

the details.
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Figure 5.12: Video Class Agnostic Segmentation using Contrastive Learning.

5.4.1 Analysis on Unknown Objects

The first question to assess in the open-set segmentation problem is whether

the unknown objects that are used during the training phase are correlated

with the unknown objects used during testing. Answering this question can

provide a better understanding of the task difficulty and the open-set seg-

mentation model scalability. We propose to use the region-level features from

masked average pooling following Equation 5.2:

Pc =
N∑︂
i=1

∑︂
x,y

1[Mx,y
i = c]F x,y

θ (Xi), (5.2a)

d(i, j) = ∥Pi − Pj∥2 , (5.2b)

where F is the first two residual blocks from ResNet-50 pretrained on im-

agenet, M is the semantic segmentation mask, Xi ith input image with N

total number of images in the dataset and Pc denotes the region-level feature

for class c. A small scale data with fine-grained annotations for all unknown

objects is collected and region-level features per class are computed then a

pair-wise distance measure d(i, j) is computed among classes. It is used in an

agglomerative clustering and a dendrogram among the classes is visualised to
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Figure 5.13: Dendrogram among unknown objects used during training and
testing phases.

understand the correlation among the unknown objects in the training and

testing phases. Figure 5.13 demonstrates the dendrogram among all unknown

objects, and shows the classes that are visually similar especially in texture

are closer, such as street barrier and traffic cone. From the figure we can

see less correlation among some of the different unknown objects used during

testing and training, confirming the generalization ability of our model when

successful in segmenting these unknown objects during the testing phase.

5.4.2 Mahalanobis Based Segmentation

The method we use for the open-set segmentation is similar to [186] but fo-

cused only on semantic segmentation without incorporating instances, we learn

a representative prototype µ, σ per class. Then we use a distance similar to

the Mahalanobis based distance to classify every pixel based on the matching

prototype. We have two baseline models one that relies on appearance only,

and another that relies on appearance and geometry. The baseline that fuses

the two modalities uses a two-stream backbone model fθ with ResNet-50 back-

bone [57] and a feature pyramid network [85], which takes as input appearance

and depth. This is followed by a semantic segmentation head fϕ with 4 convo-

lutional modules with ReLU and group normalization, that learns prototypes

µ, σ per class.

Let the input appearance and depth be denoted as x, the extracted features

h = fθ(x), and the embeddings from the segmentation head m = fϕ(h). The

semantic segmentation head predicts the class probabilities following Equa-
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tion 5.3:

di,k =
−∥mi − µk∥2

2σ2
k

, (5.3a)

di,C+1 = γ, (5.3b)

ŷi,k =
exp(di,k)

C+1∑︁
j=1

exp(di,j)

, (5.3c)

lseg =
−1
N

N∑︂
i=1

C+1∑︂
k=1

yi,k log ŷi,k, (5.3d)

where the distance di,k denotes the distance of pixel i features to the represen-

tative prototype of class k. A global learnable constant γ is used to estimate

the unknown objects regardless of the objects’ semantics, then a softmax over

C + 1 distances is used to estimate the probability of the pixel to belong to a

certain class.

5.4.3 Contrastive Learning with Semantic and Tempo-
ral Guidance

In this section we detail our contrastive learning method that is shown in

Figure 5.12. Our models have an input batch {x, y}Ni=1, on which we apply

random augmentations to get {x′, y′}Ni=1. The random augmentations itself

differs based on semantic or temporal guidance being used as detailed in their

respective sections. Following the literature [72] we call this the multiviewed

batch {x, y}Ni=1∪{x′, y′}Ni=1 and is used as input to our model to end up with 2N

images per batch. An extra contrastive learning head fα is used to improve the

separation of known classes and unknown objects, similar to the segmentation

head we use 4 convolutional modules with ReLU and group normalization.

Both the segmentation and contrastive learning head share the same backbone

encoder and feature pyramid network. The embeddings that are computed

from the contrastive learning head are denoted as z = fα(h).

In order to improve the segmentation of known classes and more impor-

tantly the unknown objects we propose to perform contrastive learning on the
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prototype-level. We use semantic guidance to define a region as the segmen-

tation mask of a certain class within the image, and extract prototypes using

masked average pooling. The contrastive learning with semantic guidance

follows the Equations:

βc =
N∑︂
i=1

∑︂
x,y

1[Mx,y
i = c]zx,y, (5.4a)

Lpcl =
B∑︂
i=1

−1
|P (i)|

∑︂
p∈P (i)

log
exp (βi.βp/τ)∑︁

a∈A(i)

exp(βi.βa/τ)
. (5.4b)

where βc is the output from masked average pooling on feature embeddings

z to represent class c region. This results in a set of pairs {βi, yi}Bi=1 with yi

the corresponding class of the prototype βi. This set is either sampled from a

memory queue with the previous batches features or from the current batch.

In Equation 5.4 P (i) is the indices of the positive regions as P (i) = {p ∈ A(i) :

yp = yi} and A(i) is the set of indices of all prototypes. The final segmentation

loss follows Equation 5.5.

L = Lseg + λLpcl, (5.5)

We propose another variant that employs temporal relations among em-

beddings from a video sequence in an unsupervised manner without the need

of semantic segmentation labels. It is based on the concept of representation

warping with optical flow to ensure temporal consistency of embeddings [45].

Previous work in contrastive learning worked mainly on the video-level and

was not concerned with the pixel-wise embeddings. However, since our main

downstream task is segmentation we rather use representation warping with

the estimated optical flow between two consecutive frames. Then compute the

contrastive loss on the aligned regions from both frames belonging to a video

sequence. It follows the Equations:

F ′
t−1 = W (Ft−1, Ot−1,t) (5.6a)

δt = AP(Ft), δ
′
t−1 = AP(F ′

t−1) (5.6b)
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Ltcl =
∑︂
x,y

− log
exp (δt(x, y).δ

′
t−1(x, y)/τ)∑︁

x′,y′
exp (δt(x, y).δ′t−1(x

′, y′)/τ)
(5.6c)

where AP is an average pooling operation, and Ft, Ft−1 is the features extracted

for the current and previous frame. The final loss is:

L = Lseg + λLtcl, (5.7)

5.5 Experimental Results

5.5.1 Experimental Setup

Throughout experiments on pixel-wise class agnostic segmentation, the Adam

optimizer [74] is used with learning rate 1 × 10−5 for KITTI-MoSeg experi-

ments, 1× 10−4 for real-time benchmarking experiments. L2 regularization is

used in the loss function, with 5× 10−4 factor. The encoder is initialized with

Imagenet pretraining weights for all experiments. Weighted cross entropy loss

from [113] is used in the real-time benchmarking experiments, to overcome

the class imbalance. The class weight is computed as wclass = 1
ln(c+pclass)

. In

the real-time benchmarking experiments a width multiplier of 1 for MobileNet

is used to include all the feature channels. The number of groups used in

ShuffleNet is three, as previous results [202] recommended.

For the later work on panoptic and class agnostic segmentation, and for the

open-set segmentation work we follow this setup. Our models are implemented

using PyTorch library [114]. Throughout all experiments we use SGD with

momentum optimizer with 0.005 learning rate and 0.9 momentum, and weight

decay of 1×10−3 with 15 epochs. A step learning rate scheduling which reduces

the learning rate with 0.1 at epochs 6 and 8. We use random augmentations as

random scales {0.8, 1.3}, random flipping and random cropping with 320×512

as crop sizes. In the open-set segmentation loss we use λ = 0.5 and merge the

feature pyramid network output through upsampling to the largest resolution

and averaging the different scales.
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5.5.2 Datasets

Along with our collected KittiMoSeg and Wayve datasets that are described

earlier in Section 5.2. We use additional three datasets to help benchmark

with other methods or to gain extra variability in object categories.

Cityscapes [25]: We use Cityscapes dataset [25] in order to perform

proper benchmarking for different semantic segmentation models in a unified

benchmark. The dataset contains 5000 images with fine annotation, with 20

classes including the ignored class. Another section of the dataset contains

coarse annotations with 20,000 labeled images. These are used in the case of

Coarse pre-training that improves the results of the segmentation.

City-Kitti-Motion [172]: In our real-time motion segmentation exper-

iments when comparing to SMSNet [172] we train on City-Motion with 3475

frames and test on KITTI-Motion with 200 frames, we augment City-Motion

with extra annotations from KITTI-MoSeg that do not overlap with the se-

quences for 200 frames.

DAVIS’17 [14]: In order to provide higher variability in object categories

that we test against we use the video object segmentation benchmark from

DAVIS2017 which includes object instances annotations. The dataset include

90 sequences for 78 object categories including different animals that can help

ensure the generalization ability of our class agnostic segmentation head.

IDD [171]: is collected on Indian roads and has 10,004 images finely

annotated with 34 classes from 182 drive sequences. We specifically use classes

that are outside the set of classes in CityscapesVPS for qualitative evaluation.

Cityscapes-VPS [73]: this is the video sequences version of cityscapes,

where for every 30 frame sequence that corresponds to one image in cityscapes

validation set, 6 frames are densely labelled for panoptic segmentation. We

use this dataset for both panoptic segmentation evaluation and to conduct

experiments for the open-set segmentation formulation by taking out some

classes during training and using them as testing. The overall dataset has
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2400 training images and 300 validation ones that we use as a hold out test

set.

5.5.3 Evaluation Metrics

The evaluation metrics used in class agnostic and semantic segmentation are

precision, recall, F-score and mean intersection over union (IoU). The evalu-

ation metric used for detection in pixel-wise class agnostic segmentation ex-

periments is mean average precision(mAP) and average precision (AP) for

static/moving classes. In the pixel-wise class agnostic segmentation average

precision of car class is also measured showing different difficulties for easy,

medium, and hard setup as in KITTI benchmark [47]. Note that it is impor-

tant to evaluate the static/moving classification standalone without including

errors from the detection itself. The average precision used is computed on the

detected bounding boxes that match bounding boxes from the ground truth.

As for the panoptic and class agnostic segmentation experiments since they

take into account different instances we rather use segmentation quality, recog-

nition quality and panoptic quality metric as reported in [75] for the panoptic

segmentation. We also evaluate similar to the panoptic the same three metrics

including class agnostic quality metric (CAQ) following the work from [186].

On the other hand, the open-set segmentation we evaluate using mean IoU and

class agnostic IoU. Finally, for evaluating the computational performance we

report inference time in milliseconds and floating point operations (GFLOPS).

5.5.4 Results and Discussion

Class Agnostic Segmentation Results on KITTI-MoSeg

Table 5.2 shows a comparison of the different models that show the benefit from

the use of optical flow as an explicit motion representation instead of learning

it implicitly using a Siamese model with image pair input. In these experi-

ments we used the initial small version of KITTI-MoSeg with 1300 frames only

and the joint model that performs pixel-wise motion segmentation and vehicle

detection. The two-stream (RGB+OF) shows a 10% increase in mean average
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Table 5.2: Quantitative evaluation on KITTI MoSeg data for our proposed
joint detection and motion segmentation network.

AP Static AP Moving mAP
MODNet (image pair) 60.7 44.29 52.5
MODNet (RGB+OF) 58.6 66.54 62.6

Figure 5.14: Qualitative evaluation on KITTIMoSeg data for our proposed
two-stream multi-task learning network MODNet. top row: Input Optical
Flow, middle row output of 2 tasks: overlay motion mask (green), bottom row
output of 3 tasks: overlay motion mask (yellow), road segmentation (green)
and detected bounding boxes (blue).

precision over the one using image pair as input. The model taking image-pair

input struggles more than (RGB + OF), since optical flow readily computes

the motion explicitly and has been trained on large-scale data regardless of

semantics. Figure 5.14 shows the qualitative results for our proposed MODNet

that was jointly trained for vehicle detection, motion segmentation and road

segmentation.

Real-time Class Agnostic Segmentation Benchmarking Results

In this section an ablation study using the decoupled design is applied to ob-

serve the accuracy-speed trade-off for different design choices. This aids the

selection of the two-stream architectural design further used in our method.

Table 5.3 shows the results for the ablation study on Cityscapes validation

set with different encoders-decoders reporting mIoU, GFLOPs to demonstrate

the trade-off between accuracy and computations. The UNet method of in-

90



Table 5.3: Comparison of different encoders and decoders on Cityscapes
validation set. Evaluation is in terms of intersection over union and GFLOPs
on image resolution 1024×512. Coarse indicates whether the network was pre-
trained on the coarse annotation or not.

Encoder Decoder Coarse GFLOPs mIoU
SkipNet MobileNet No 13.8 61.3
SkipNet ShuffleNet No 4.63 55.5
UNet ResNet18 No 43.9 57.9
UNet MobileNet No 55.9 61.0
UNet ShuffleNet No 17.9 57.0
Dilation MobileNet No 150 57.8
Dilation ShuffleNet No 71.6 53.9
SkipNet MobileNet Yes 13.8 62.4
SkipNet ShuffleNet Yes 4.63 59.3

crementally upsampling with-in the network provides the best in terms of

mIoU. However, SkipNet architecture is more computationally efficient with

4× reduction in GFLOPs. This is explained by the fact that transposed con-

volutions in UNet are applied in the feature space rather than the label space

as in SkipNet, which has lower dimension. It also shows the benefit from

pretraining the models with coarse annotations first then finetuning on the

smaller set with fine annotations on cityscapes. Dilation frontend following

the design from [199] is adapted to the different backbones, it shows increase

in computational cost as the operations are performed on larger resolution

feature maps.

Experimental results on the cityscapes test set are shown in Table 5.4.

ENet [113] is compared to SkipNet-ShuffleNet and SkipNet-MobileNet in terms

of accuracy and computational cost. Both SkipNet-ShuffleNet and SkipNet-

MobileNet outperform SegNet [2] in terms of computational cost and accuracy

with reduction up to 143× in GFLOPs. This motivated the final two-stream

architectural design that was based on ShuffleNet encoder and SkipNet meta-

architecture.

Experiments on KITTI-Motion and our KITTI-MoSeg are conducted to

evaluate both accuracy and computational performance. Table 5.5 shows com-

parison to the state of the art on KITTI-Motion, our method outperforms
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Table 5.4: Comparison to the state of the art segmentation networks on
Cityscapes test set in terms of intersection over union, and GFLOPs on
image resolution 640x360.

Model GFLOPs IoU iIoU
SegNet [3] 286.03 56.1 34.2
ENet [113] 3.83 58.3 24.4
SkipNet-VGG16 [92] 445.9 65.3 41.7
SkipNet-ShuffleNet (ours) 2.0 58.3 32.4
SkipNet-MobileNet (ours) 6.2 61.5 35.2

Table 5.5: Quantitative results on KITTI-Motion in terms of mean intersection
over union, mean average precision, running time and frame-rate on image
resolution 384× 768.

Model mIoU mAP Time fps
GEO-M[79] 48.15 - - -
AHCRF+Motion [126] 68.0 - - -
CRF-M [126] 77.9 - 240,000 0.004
SmSNet [172] 84.1 86.4 105 9
ShuffleSeg (RGB+OF) (ours) 68.8 78.0 27 37

SmSNet [172] in terms of running time with 4× speedup to reach 36 ms in-

stead of 153 ms on image resolution 384× 768. This speedup enables it to run

the motion segmentation part real-time on Nvidia Jetson TX2 for embedded

vision with 9 fps. Our network still performs with comparable accuracy in

comparison to SmSNet [172], as shown in Figure 5.15 for precision and recall

curve, yet with a 4× speedup in frame rate. That facilitates its deployment

for autonomous driving and driving assisted systems where real-time can be

crucial for actuation control or alerting the driver to moving objects.

Real-time Class Agnostic and Panoptic Segmentation Results

Our final model is trained with freezing the panoptic segmentation head, the

feature pyramid network and backbone and training the class agnostic head

solely. The reason for this choice is not to lead to the degradation of semantic

tasks. We leave for future work experiments on learning the weighting between

losses for both panoptic and class agnostic heads. Table 5.6 shows the results

of our proposed multi-task panoptic and class agnostic segmentation which
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Figure 5.15: Precision-Recall Curve on KITTI-Motion. Our method provides
on par results in detection (PR) with 4× speedup.

we term as VCAS-V1, the Pan-Base denotes our panoptic baseline without

performing class agnostic segmentation. We initially report the class agnostic

baseline trained on DAVIS [14] and compare it with the VCAS multi-task

model to show that it maintains comparable class agnostic quality V1 stands

for the version trained for motion segmentation. Our VCAS model with ego-

flow suppression improves further the CAQ metric on KITTIMOTS motion

data. Our results act as a baseline for different approaches that tackle class

agnostic instance segmentation, and shows how motion and geometric cues

can leverage the class agnostic segmentation further on.

Figure 5.16 shows qualitative results on KITTIMOTS Motion, Cityscapes

VPS Motion and IDD datasets respectively for our class agnostic segmentation

head. IDD results show that our VCAS-V1 is able to segment objects outside

the closed set of semantic classes, which the panoptic segmentation was trained

on, through relying on motion and geometric cues. While our model is still

able to maintain the capability to perform panoptic segmentation even cross

datasets as trained on CityscapesVPS and evaluated on KITTI and IDD.

Contrastive Learning with Semantic and Temporal Guidance

In Table 5.7 we evaluate our baseline segmentation network trained with all

classes on Cityscapes, to evaluate the baseline performance on the general

segmentation task without unknown objects. Then we start with conducting
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Table 5.6: Results of CA and panoptic segmentation model. Tr-Te: Training
and Test data used for CA segmentation. EFS: Ego Flow Suppression. D:
DAVIS, K: KITTIMOTS Motion, C: Cityscapes-VPS Motion. Time is mea-
sured on image resolution 1024× 2048 in seconds.

Model Tr-Te EFS CA Metrics Panoptic Metrics
SQ RQ CAQ PQAll PQTh PQSt

Pan-Base - - - - - 56.4 49.9 61.1
CA-Base D-D ✗ 76.6 60.6 46.4 - - -
VCAS-V1 D-D ✗ 72.2 53.2 38.6 56.4 49.9 61.1
VCAS-V1 KC-K ✗ 82.4 72.2 59.5 56.4 49.9 61.1
VCAS-V1 KC-K ✓ 82.4 75.4 62.1 56.4 49.9 61.1
VCAS-V1 KC-C ✗ 77.9 57.3 44.7 56.4 49.9 61.1
VCA-V1 KC-C ✓ 78.0 56.2 43.8 56.4 49.9 61.1

(a) (b) (c)

Figure 5.16: Top: predicted panoptic segmentation. Bottom: predicted CA
segmentation on (a) KITTIMOTS Motion. (b) Cityscapes-VPS Motion. (c)
IDD.

experiments on Cityscapes-VPS, and compare four main variants: (1) No con-

trastive learning (CL) baseline. (1) Image level (CL) after performing global

average pooling on the features. (2) Prototype level with semantic guidance.

(3) Aligned regions level with temporal guidance. Table 5.7 shows the results

for two sets of experiments with batch size 4 and 2 on Cityscapes-VPS. Due

to limited GPU memory we were not able to conduct experiments for the

temporal guidance variant using the larger batch size. However, the effective

batch size used in the contrastive loss is different. So a batch size of 2 will

result in an effective batch size of 35 in the prototype-level variant, which is

the prototypes extracted in an image on average along with the ones form the

memory queue. As for the temporal variant it will result in 100, which is the
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Table 5.7: Open-Set Segmentation (VCAS-V2) Results on Cityscapes-VPS
and CARLA. Fully supervised: Training the segmentation head on all
cityscapes classes without a learnable global constant for the unknown ob-
ject. CA-IoU: class agnostic IoU on the unknown objects.

Method Dataset Batch mIoU CA-IoU
Fully Supervised Cityscapes [25] 4 65.5 -
No CL

Cityscapes-VPS [73] 4
63.2 17.9

Prototype CL 63.7 18.7
No CL

Cityscapes-VPS [73] 2

56.4 18.4
No CL + SimCLR[21] Pre 56.1 17.3
Image CL 60.1 19.8
Prototype CL 62.7 21.5
Temporal CL 61.7 21.4
No CL

CARLA 2
45.7 41.9

Prototype CL 44.2 37.2

dimensions of the feature map output from average pooling.

In both sets of experiments the prototype-level CL improves the CA-IoU.

The temporal CL improves over the baseline, but does not outperform the

prototype-level variant. However, the temporal variant has the advantage that

it does not need any semantic guidance unlike the prototype-level variant. Our

experiments show as well that both semantic and temporal guidance improves

over the use of image-level CL. Since our main task is video segmentation it is

not sufficient to contrast embeddings globally. In summary, our initial exper-

iments show that the segmentation task for both known and unknown classes

benefits from the auxiliary contrastive loss especially with semantic guidance.

Since semantic guidance improves the discrimination between known and un-

known classes, while temporal guidance ensures the temporal consistency of

the embeddings.

Finally, we pick the best CL variant which is performed on the prototype-

level and compare to the baseline on our collected CARLA dataset. Initial

results, show unlike Cityscapes-VPS the baseline is not improved with the

contrastive loss. There are multiple differences between both datasets regard-

ing the size where CARLA is 25× larger than Cityscapes-VPS and has more

pixels labelled as unknown. In an upcoming experiments we show that a re-
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Scenario CA-IoU
Barrier 22.1
Construction 41.4
Parking 27.0

(a) (b) (c)

Figure 5.17: CA-IoU reported per scenario. Predicted semantic and class
agnostic segmentation on CARLA Scenarios (a) Construction. (b) Barrier. (c)
Parking. Top: semantic segmentation. Bottom: class agnostic segmentation.

Figure 5.18: Predicted semantic and class agnostic segmentation on
Cityscapes-VPS. Top: semantic segmentation. Bottom: class agnostic seg-
mentation (Note: pedestrian, rider, bicycle and motorcycle are withheld from
training).

duced set of CARLA will lead to the same conclusions as Cityscapes-VPS

experiments. Figure 5.18 shows the results for segmenting both known classes

and unknown objects on Cityscapes-VPS. It demonstrates the model ability

to segment bicycle and motorcycle that was not previously seen during train-

ing. Figure 5.17 shows the results on the CARLA scenarios which confirms

on the model’s ability to segment some of the unknown objects that did not

appear during training such as in the Parking Scenario. Some of these objects

Garbage Bin and Traffic Warning have less relation to unknown objects used

during the training phase as shown in Figure 5.13.

What is the effect of the contrastive training on the shared em-
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(a) (b)
(c)

Figure 5.19: T-SNE visualisation of the masked embeddings for 15 known
classes along with the unknown objects. (a) No Contrastive Learning. (b)
Prototype-level Contrastive Learning. (c) Class statistics in Cityscapes-VPS.

beddings: Figure 5.19 shows the T-SNE [96] visualisations for both the base-

line without contrastive learning versus the contrastive learning with seman-

tic guidance variant. The embeddings from the feature pyramid network are

masked with the groundtruth masks of the different semantic classes to ex-

tract prototypes and gone through dimensionality reduction for visualisation.

It shows how the embeddings from the contrastive learning on the prototype-

level (semantic guidance) are better clustered and separated especially in se-

vere class imbalance cases. The Figure shows the statistics per class to demon-

strate which classes suffer from that. In case of the traffic sign, traffic light,

pole classes the baseline will lead to confusion among these three classes un-

like the contrastive learning variant with better separation. It also leads to

better separation of the unknown objects from the known classes such as class

“Terrian”.

Do we need the auxiliary loss during training? In Table 5.7 we show

the results for the baseline (No CL) but rather using pretrained weights from

SimCLR [21] versus the different contrastive learning variants. It confirms on

the need to have the auxiliary loss during training of the segmentation head to

improve the discrimination between known and unknown objects. Table 5.8

ablates the factor λ by which we balance the main segmentation loss and the

auxiliary contrastive loss. It shows generally smaller factor is better, as a

factor of 1.0 degrades the segmentation of known classes. We rather use 0.2

throughout all the experiments.
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Table 5.8: Auxiliary loss factor for the Prototype and Temporal CL.

λ mIoU CA-IoU

Prototype CL
0.2 62.8 20.9
0.5 62.7 21.5
1.0 57.5 22.5

Temporal CL
0.2 61.6 19.9
0.5 56.9 17.6

Table 5.9: Comparison between different Average Pooling Factors in Temporal
CL.

AP Factor mIoU CA-IoU
0.05 61.6 19.9
0.1 61.7 21.4
0.3 62.2 20.5

The effect of a memory queue in contrastive learning with se-

mantic guidance: Table 5.10 clearly shows the need for including a memory

queue during contrastive training to increase the effective batch size for the

contrastive loss. Since our encoder is a two stream model that combines depth

and appearance it will not be possible to use a momentum encoder due to

practical limitations in the GPU memory and compoutational resources re-

quired. Thus, using a memory queue with limited capacity is best to use in

our case to ensure that only features from the latest iterations are preserved.

The effect of average pooling in the temporal contrastive learning:

Table 5.9 demonstrates the segmentation accuracy for both known classes and

unknown objects with different average pooling factors. The average pooling

factor is the factor multiplied by the original feature map size and used as the

kernel size for the pooling. The smaller the factor the higher the resolution of

the output. The results show that smaller factors are better as it will lead to

contrasting smaller regions temporally, this can correspond to different object

parts. Unlike a larger factor of 0.3 that leads to the loss in resolution and

confusion among features that can correspond to different semantic objects.

Reduced Variability in Objects labelled as Unknown during Train-

ing: In the main experiments we initially use polynomial learning rate schedul-

ing, since it is commonly used in state of the art methods [20]. However, we
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Table 5.10: Effect of Memory Queue in Prototype CL.

mIoU CA-IoU
No Memory 59.3 21.3
Memory Queue 62.8 20.9

Table 5.11: Quantitative Results on Cityscapes-VPS with larger batch size
(4) and Step Learning Rate Scheduling. FD: Full Data. LU: Less number of
objects labelled as unknown during training.

Data Mode Method Batch mIoU CA-IoU

FD
No CL 4 63.1 21.0
PCL 2 62.7 21.5
PCL 4 63.0 21.3

LU
No CL 4 63.1 18.8
PCL 2 63.4 20.0

further validated that using step learning rate scheduling improves the baseline

with a significant margin. We show in Table 5.11 the results for experiments

using step learning rate scheduling and larger batch size (4). It shows that

contrastive learning with semantic guidance improves the CA-IoU but with a

minimal gain of 0.5%. However, more experiments on reducing the number of

objects labelled as unknown demonstrate the benefit from using contrastive

learning with semantic guidance on CA-IoU. In these sets of experiments only

pixels belonging to class “Person” or originally ignored in Cityscapes are la-

belled as unknown during training.

Why Prototype and Temporal Contrastive Learning Improves?

The main reasons behind prototype and temporal contrastive learning im-

provement are two fold. In the prototype contrastive learning as detailed

in [72] the semantic guidance will lead to increased positives and negatives.

This consequently leads to improvement in the discimination between signal

(i.e. the prototype of a certain class) and noise (i.e. negative prototypes of oth-

ers including unknown objects). In [72] it was shown that the contrastive loss,

whether supervised or unsupervised, learns to perform hard negative mining

implicitly. It does so by increasing the gradient contribution of hard examples,

and decreasing it for the easy examples. It was also shown that specifically for

supervised contrastive learning, increasing the positives and negatives leads
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to an increase in the gradients contribution when dealing with hard positives.

These two main reasons explain the improvement from prototype-level con-

trastive learning over the baseline, especially in case of lower variability in the

unknown objects used to train the global constant.

As for the temporal contrastive learning, the improvement stems from con-

straining the features to be temporally consistent. Since the contrastive loss

samples one region as an anchor and its aligned region (i.e. warped represen-

tation using optical flow) as positive, while the remaining regions are sampled

as negatives. The contrastive loss with increased negatives will, as discussed

previously, increase the gradients contribution from hard positives. Thus, it

will perform better in aligning the features than simply merging features from

both frames as input to the segmentation head.

Investigating the Discrepancy between Cityscapes-VPS and Syn-

thetic data Results: In the synthetic dataset (CARLA) we found that the

baseline without contrastive learning outperforms the contrastive learning with

semantic guidance. So we use a reduced version of the synthetic dataset with

2400 images similar to Cityscapes-VPS dataset size. Then we reduce the pixels

labelled as unknown during training to only two objects. Table 5.12 demon-

strates that, less data and less number of objects labelled as unknown during

training, leads to clear gain from the contrastive learning with semantic guid-

ance. This conforms with the above experiments on Cityscapes-VPS as well.

In summary, our proposed auxiliary contrastive loss is more suitable and will

lead to improvements when facing problems with relatively medium-scale data

for the known classes and less variability in the objects labelled as unknown

during training. It leaves an open question on how the auxiliary contrastive

loss can improve even with abundant data. For our future work, we want to

explore how to segment unknown objects without learning the global constant

that was also used in [186].
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Table 5.12: Quantitative Results on CARLA with less data and less num-
ber of objects labelled as unknown. LD: Less Data (2400 frames similar to
Cityscapes-VPS). LU: number of pixels labelled as unknown during training.

Data Mode Method mIoU CA-IoU

LD + LU
NoCL 38.5 6.5
PCL 41.7 16.0

5.6 Summary

In this chapter we formalized the video class agnostic segmentation task and

provided necessary datasets and benchmarks for the two main tracks: (1)

motion segmentation track, and (2) open-set segmentation track. In the mo-

tion segmentation track, the first motion segmentation dataset in autonomous

driving is proposed, and an improved version for instance segmentation is

provided. Multitask models that combine semantic and class agnostic seg-

mentation/detection are benchmarked and publicly released. For the open-set

segmentation track our synthetic dataset provides the means to assess model

scalability to unknown objects not previously seen during training and further

study the relation among unknown objects used between training and testing.

Finally, a novel contrastive learning with semantic and temporal guidance

that suits the dense prediction in video sequences is proposed and has shown

to outperform the baseline model.
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Chapter 6

Motion Adaptation for Video
Object Segmentation

6.1 Introduction

Continuing on the intuition of using motion cues as a way to segment unknown

objects, we further propose to use these predictions as pseudo-labels. We

propose a motion adaptation method that is based on computing a distance

transform on the computed probability maps from class agnostic segmentation.

These are further used to adapt a model responsible for segmenting this novel

class instance through different video sequences. Our method goes through

three phases: (1) Base Training Phase: in which a teacher model is trained

to perform motion segmentation in a class agnostic manner using large-scale

video object segmentation data. (2) Motion adaptation Phase: in which

the teacher model’s output probability maps are used to compute pseudo labels

using a distance transform to the highly confident positive pixels. Then it

is further used to adapt a student model. (3) Inference Phase: in which

the student model is used to segment that specific object instance through

different sequences. Figure 6.1 shows an overview of the proposed method.

The two main reasons behind using the pseudo-labels from the teacher model

is: (1) The student model is more computationally efficient. The inference

and adaptation time for the teacher model is 1.5x of the student model’s.

The adaptation occurs only once on the first frame, then the more efficient

student model can be used for inference. (2) The teacher model can be used to
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Figure 6.1: Overview of the proposed Teacher-Student adaptation method for
video object segmentation. The teacher model based on motion cues is able
to provide pseudo-labels to adapt the student model. Blue: confident positive
pixels. Cyan: ignored region in the adaptation.

generate pseudo-labels for the potential object of interest. It does not require

the human to provide manual segmentation mask during the teaching phase

which provides a natural interface to the human. On the other hand, if motion

is characteristic of the class, then it is useful cue for subsequent identification

from the adapted student model. If the adapted model was still dependant on

optical flow it will only be able to recognize the object in motion.

Video semantic segmentation for robotics is widely used in different appli-

cations such as autonomous driving [25][131], and robot manipulation [32][70].

Object segmentation can aid in grasping, manipulating objects, and learn-

ing object affordances [32]. In robot manipulation, learning to segment new

objects incrementally, has significant importance. Real world environments

have far more objects and more appearance variation than can be feasibly

trained a-priori. Current large-scale datasets such as Image-Net [31] do not

cover this. A recent trend in robotics is toward human-centered artificial in-

telligence. Human-centered AI involves learning by instruction using a human

teacher. Such human-robot interaction (HRI) mimics children being taught

novel concepts from few examples [97]. In the robotic setting, a human teacher
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demonstrates an object by moving it and showing different poses, while ver-

bally or textually teaching its label. The robot is then required to segment

the objects in other settings where it is either static or manipulated by the

human or the robot itself. An interesting extension is for the robot to exper-

iment with the object without human intervention (e.g., roll it, pick-up, etc.)

to observe its characteristic behaviour. We demonstrated the aforementioned

HRI setting in our team submission to the KUKA Innovation Challenge at

the Hannover Fair [129]. This HRI setting has few differences to conventional

video object segmentation: (1) Abundance of the different poses of the object.

(2) The existence of different instances/classes within the same category. (3)

Different challenges introduced by cluttered backgrounds, different rigid and

non-rigid transformations, occlusions and illumination changes. In this chap-

ter, we focus on these robotics challenges and provide a new dataset and a

new method to study such a scenario.

We collected a new dataset to benchmark (I)nteractive (V)ideo (O)bject

(S)egmentation in the HRI scenario, which would act as a good testing plat-

form for the idea of motion adaptation mentioned earlier. The dataset contains

two types of videos: (1) A human teacher showing different household objects

in varying poses for interactive learning. (2) Videos of the same objects used

in a kitchen setting while serving and eating food. The objects occur both

as static objects and active objects being manipulated. Manipulation was

performed by both humans and robots. The aim of this dataset is to facili-

tate incremental learning and immediate use in a collaborative human-robot

environments, such as assistive robot manipulation. Datasets that have a sim-

ilar setting such as ICUBWorld transformations dataset [112], and the Core50

dataset [91] were proposed. These datasets include different instances within

the same category. They benchmark solutions to object recognition in a similar

HRI setting but do not provide segmentation annotations unlike our dataset.

Other datasets were concerned with the activities of daily living such as the

ADL dataset [118]. The dataset was comprised of ego-centric videos for activi-

ties. However, such ADL datasets do not contain the required teaching videos

to match the HRI setting we are focusing on. Table 6.1 summarizes the most
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Table 6.1: Comparison of different datasets. T:Turntable, H:handheld.

Dataset Sess. Cat. Obj. Acq. Tasks Seg.
RGB-D [134] - 51 300 T ✗ ✗

BIG BIRD [152] - - 100 T ✗ ✗

ICUB 28 [111] 4 7 28 H ✗ ✗

ICUB World [112] 6 20 200 H ✗ ✗

Core50 [91] 11 10 50 H ✗ ✗

IVOS 12 12 36 H ✓ ✓

relevant datasets suited to the HRI setting.

The main contribution of our collected IVOS dataset is providing the ma-

nipulation tasks setting with objects being manipulated by humans or a robot.

In addition to providing segmentation annotation for both teaching videos

and manipulation tasks. It enables researchers to analyze the effect of differ-

ent transformations such as translation, scale, and rotation on learning video

object segmentation. It acts as a benchmark for interactive video object seg-

mentation in the HRI setting.

Our proposed method inspires from teacher-student training but rather em-

ploys it for cross-modal fine-tuning on the pseudolabel object masks. A recent

survey of different teacher-student training methods was provided by Gou et.

al. [52] which included our work on the video object segmentation application.

Our method outperforms the state-of-the-art on the popular DAVIS’16 [115]

and FBMS [108] benchmarks with 6.8% and 1.2% in F-measure respectively.

On our new IVOS dataset results show the motion adapted network outper-

forms the baseline with 46.1% and 25.9% in mIoU on Scale/Rotation and

Manipulation Tasks respectively. Our code 1 and IVOS dataset 2 are publicly

available. A video description and demonstration is available 3. Our main

contributions are :

• Providing a Dataset for Interactive Video Object Segmentation (IVOS)

in a Human-Robot Interaction setting, and including manipulation tasks

unlike previous datasets.

1https://github.com/MSiam/motion_adaptation
2https://msiam.github.io/ivos/
3https://youtu.be/36hMbAs8e0c
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• A teacher-student adaptation method is proposed to learn new objects

from a human teacher without providing manual segmentation labels.

We propose a novel pseudo-label adaptation based on a teacher model

that is dependant on motion. Adaptation with discrete and continuous

pseudo-labels are evaluated to demonstrate different adaptation meth-

ods.

6.2 (I)nteractive (V)ideo (O)bject (S)egmentation

(IVOS) Dataset

(a) (b) (c) (d)

Figure 6.2: Samples of collected Dataset IVOS, Teaching Objects Setting. (a)
Translation split. (b) Scale split. (c) Planar Rotation split. (d) Out-of-plane
Rotation.

We collected IVOS for the purpose of benchmarking (I)nteractive (V)ideo

(O)bject (S)egmentation in the HRI setting. We collect the dataset in two

different settings: (1) Human teaching objects. (2) Manipulation tasks setting.

Unlike previous datasets in human robot interaction IVOS dataset provides

video sequences for manipulation tasks. In addition to providing segmentation

annotation for both teaching videos and manipulation tasks.
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(a) (b) (c) (d)

Figure 6.3: Samples of collected IVOS dataset, Robot manipulation Tasks
Setting with segmentation annotation. Manipulation Tasks: (a) Drinking. (b)
Stirring. (c) Pouring Water. (d) Pouring Cereal.

6.2.1 Human Teaching Objects

For teaching, videos are collected while a human moves an object with her

hand. The unstructured human hand motion naturally provides different views

of the object and samples different geometric transformations. We provide

transformations such as translation, scale, planar rotation, out-of-plane rota-

tion, and other transformations such as opening the lid of a bottle. Two illumi-

nation conditions are provided: day-light and indoor lighting, which sums up

to 10 sessions of recording for both illumination and transformations. Figure

6.2 shows a sample for the objects being captured under different transforma-

tions with the segmentation masks. In each session a video for the object held

by a human with relatively cluttered scene background is recorded.

A GRAS-20S4C-C fire-wire camera is used to record the data along with a

Kinect sensor [156]. The collected data is annotated manually with polygonal

masks using the VGG Image Annotator tool [39]. The final teaching videos

contain 12 object categories, with a total of 36 instances under these categories.

The detection crops are provided for all the frames, while the segmentation

masks are provided for 20 instances with ∼ 18,000 annotated masks.

6.2.2 Manipulation Tasks Setting

The manipulation task benchmark includes two video categories: one with

human manipulation, and the other with robot manipulation. Activities of

Daily Living (ADL) such as food preparation are the focus for the recorded
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Figure 6.4: Motion Adaptation of fully convolutional residual networks
pipeline.

tasks. The aim of this benchmark is to further improve perception systems in

robotics for assisted living. Robot trajectories are created through kinesthetic

teaching, and the robot pose way-points are provided in the dataset. In or-

der to create typical robot velocity and acceleration, profiles trajectories were

generated from these way-points using splines as is standard in robotics.

The collected sequences are further annotated with segmentation masks

similar to the teaching objects setting. Figure 6.3 shows some of the recorded

frames with ground-truth annotations. It covers 4 main manipulation tasks:

cutting, pouring, stirring, and drinking for both robot and human manipula-

tion covering a total of 56 tasks. The dataset contains ∼ 8,900 frames with

segmentation masks, along with the recorded robot trajectories to enable fur-

ther research on how to learn these trajectories from visual cues.

6.3 Motion Adaptation

6.3.1 Baseline Network Architecture

The student model in this work is built on the wide ResNet architecture pre-

sented in [191]. The network is comprised of 16 residual blocks. Dilated

convolution [199] is used to increase the receptive field without decreasing the

resolution. The output from the network is bilinearly upsampled to the initial

108



image resolution. The loss function used is bootstrapped cross entropy [190],

which helps with class imbalance. It computes the cross entropy loss from a

fraction of the hardest pixels. Pre-trained weights on PASCAL dataset for ob-

jectness is used from [176], to help the network generalize to different objects

in the scene. Then it is trained on DAVIS training set, the student model

without adaptation is denoted as the baseline model throughout the paper.

The teacher network incorporates motion from optical flow, where a two-

stream wide ResNet for motion and appearance is used. Each stream contains

11 residual blocks for memory efficiency reasons. The output feature maps are

combined by multiplying the output activation maps from both motion and

appearance streams. After combining features another 5 residual blocks are

used with dilated convolution. The input to the motion stream is the optical

flow computed using [88], and converted into RGB representation using HSV

encoding [5].

6.3.2 Motion Adaptation using Pseudo-labels

There is an analogy between this work and the work in [169], where a stu-

dent method is learning to mimic a teacher method. In our work the teacher

method is a motion dependent one, and the student method tries to mimic

the teacher during inference through motion adaptation. The teacher-student

training helps the network understands the primary object in the scene in an

unsupervised manner. Unlike the work in [176] that first fine-tunes the net-

work based on the manual segmentation mask then adapts it on-line with the

most confident pixels. Our method provides a natural human robot interaction

that does not require manual labelling for initialization.

Our approach provides two different adaptation methods, adapting based

on discrete or continuous labels. The teacher network pseudo-labels are ini-

tially filtered to remove parts representing the human moving using the output

human segmentation from Mask R-CNN [56]. When discrete labels are used

it is based on pseudo-labels from the confident pixels in the teacher network

output. Such a method provides superior accuracy, but on the expense of

tuning the parameters that determine these confident pixels. Another method
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that utilizes continuous labels adaptation from the teacher network is also in-

troduced. This method alleviates the need for any hyper-parameter tuning

but on the cost of degraded accuracy. Figure 6.4 summarizes the adaptation

scheme, and shows the output pseudo-labels, the output segmentation before

and after adaptation.

In the case of discrete pseudo-labels, the output probability maps from the

teacher network is further processed in a similar fashion to the semi-supervised

method [176]. Initially the confident positive pixels are labeled, then a geo-

metric distance transform is computed to label the most confident negative

pixels as shown in Algorithm 1.

Algorithm 1 Motion Adaptation Algorithm.
Input: X: images used for teaching. N: number of samples used. Mteacher:
Teacher Model. Mstudent: Student Model.
Output: M̀ student: Adapted Student Model.

1: function Teach(N , X, Mteacher, Mstudent)
2: for i in N do
3: Pi =Mteacher(Xi)
4: M̀ student = Adapt(Pi, Mstudent)

5: end for
6: end function

Discrete Labels Adaptation Method
7: function Adapt(At, Mstudent)
8: Mask ← IGNORED
9: pos indices ← (At > POS TH )
10: dt ← ditance transform(Mask)
11: neg indices ← (dt > NEG DT TH )
12: Mask[pos indices] ← 1
13: Mask[neg indices] ← 0
14: return finetune(Mstudent,Mask)
15: end function

In the case of continuous labels, the output probability maps are used

without further processing. This has the advantage of not using any hyper-

parameters or discrete label segmentation. The cross entropy loss can be

viewed as a mean to decrease the divergence between the true distribution p

and the predicted one q. In our case the true distribution is the probability

maps from the teacher network, while the predicted is the student network
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(a) (b)

(c) (d)

Figure 6.5: (a,b) Discrete adaptation targets (pseudo-labels), cyan is the un-
known region, blue is the confident positive pixels. (c, d) Continuous adapta-
tion targets.

output. Figure 6.5 shows the difference between the pseudo-labels for both

discrete and continuous variants. Conditional random fields is used as a post-

processing step on DAVIS’16 and FBMS.

6.4 Experimental Results

6.4.1 Experimental Setup

For all experiments the DAVIS’16 training data is used to train our Appearance

model and the Appearance+Motion model. The optimization method used is

Adam [74] with learning rate 10−6 during training, and 10−5 during on-line

adaptation. In on-line adaptation 15 iterations are used in the scale/rotation

experiments and 50 in the tasks experiments. Adaptation is only conducted

once at the initialization of the video object segmentation. The positive thresh-

old used to identify highly confident positive samples is 0.8, and the negative

threshold distance to the foreground mask is 220 in case of DAVIS’16 bench-

mark. Since IVOS is recorded in an indoor setup, a negative distance threshold

of 20 is used.
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Table 6.2: Quantitative comparison on DAVIS’16 benchmark. MotAdapt-1:
Continuous Labels, MotAdapt-2: Discrete Labels.

Method J F
Mean Recall Decay Mean Recall Decay

NLC[41] 55.1 55.8 12.6 52.3 51.9 11.4
SFL[23] 67.4 81.4 6.2 66.7 77.1 5.1
LMP [165] 70.0 85.0 1.3 65.9 79.2 2.5
FSeg [66] 70.7 83.5 1.5 65.3 73.8 1.8
LVO [165] 75.9 89.1 0.0 72.1 83.4 1.3
ARP [77] 76.2 91.1 0.0 70.6 83.5 7.9
Baseline (ours) 74.0 85.7 7.0 74.4 81.6 0.0
MOTAdapt-1 (ours) 75.3 87.1 5.0 75.3 83.8 3.3
MOTAdapt-2 (ours) 77.2 87.8 5.0 77.4 84.4 3.3

Table 6.3: Quantitative results on FBMS dataset (test set).

Method P R F
FST [110] 76.3 63.3 69.2
CVOS [161] 83.4 67.9 74.9
CUT [71] 83.1 71.5 76.8
MPNet-V[165] 81.4 73.9 77.5
LVO[165] 92.1 67.4 77.8
Base (ours) 80.8 76.1 78.4
ours (ours) 80.7 77.4 79.0

L
V
O

M
ot
A
d
ap

t

Figure 6.6: Qualitative Evaluation on the FBMS dataset. Top: LVO [165].
Bottom: ours.

6.4.2 Generic Video Object Segmentation

In order to evaluate the performance of our proposed motion adaptation (Mo-

tAdapt) method with respect to the state-of-the-art, we experiment on generic

video object segmentation datasets. Table 6.2 shows quantitative analysis on

DAVIS’16 benchmark compared to the state-of-the-art unsupervised methods.
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Table 6.4: mIoU on IVOS over the different transformations and tasks. IVOS
dataset teaching is conducted on few samples from the translation, then eval-
uating on scale, rotation and manipulation tasks. MotAdapt-1: Continuous
Labels. MotAdapt-2: Discrete Labels.

Model Scale Rotation Manipulation Tasks
Baseline 14.5 13.8 14.7
MotAdapt-1 63.8 49.5 30.2
Mot-Adapt-2 69.0 51.5 40.6

(a) (b) (c) (d)

Figure 6.7: Qualitative evaluation on DAVIS’16. (a) LVO [165]. (b) ARP [77].
(c) Baseline. (d) MotAdapt.

(a) (b) (c) (d)

Figure 6.8: Qualitative evaluation on IVOS Manipulation Tasks Setting. (a)
Teaching Phase, Discrete Labels. (b) Teaching Phase, Continuous Labels. (c)
Inference Phase before manipulation. (d) Inference Phase, during manipula-
tion.

One of the variants of MotAdapt based on discrete labels outperforms the

state of the art with 6.8% in F-measure, and 1% in mIoU. Table 6.3 shows

quantitative results on FBMS dataset, where our MotAdapt outperforms the

state of the art with 1.2% in F-measure and 10% in recall.

Figure 6.6 shows qualitative results on FBMS highlighting the improve-

ment gain from motion adaptation compared to LVO [165]. Figure 6.7 shows

qualitative evaluation on DAVIS’16, where it demonstrates the benefit from
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motion adaptation compared to the baseline (top row), and compared to LVO

[165] and ARP [77] (bottom row).

6.4.3 Video Object Segmentation in HRI Setting

Our method is evaluated in the HRI scenario on our dataset IVOS. The teach-

ing is performed on the translation sequences, with only the first two frames

used to generate pseudo-labels for adaptation. An initial evaluation is con-

ducted on both scale and rotation sequences, in order to assess the adaptation

capability to generalize to different poses and transformations. Table 6.4 shows

the comparison between the baseline method without adaptation, and the two

variants of motion adaptation on the scale, rotation and tasks sequences. The

discrete and continuous variants for our motion adaptation outperform the

baseline with 54.5% and 49.3% respectively on the scale sequences. Similarly

on the rotation sequences it outperforms the baseline with 37.7% and 35.7%

respectively. The main reason for this large gap, is that general segmentation

methods will segment all objects in the scene as foreground, while our teaching

method adaptively learns the object of interest that was demonstrated by the

human teacher.

All manipulation tasks sequences where the category bottle existed is eval-

uated and cropped to include the working area. Our method outperforms the

baseline on the tasks with 25.9%. The first variant of our adaptation method

generally outperforms the second variant with continuous labels adaptation.

However the second variant has the advantage that it can work on any setting

such as DAVIS and IVOS without tuning any hyper-parameters. Figure 6.8

shows the output from our adaptation method when it is recognized by the

robot, and while the robot has successfully manipulated that object.

6.5 Summary

In this chapter we proposed a novel approach for visual learning by instruc-

tion. Our proposed motion adaptation (MotAdapt) method provides a natural

interface to teaching robots to segment novel object instances. This enables
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robots to manipulate and grasp these objects. Two variants of the adaptation

scheme is experimented with. Our results show that Mot-Adapt outperforms

the state of the art on DAVIS’16 and FBMS benchmarks, while outperforms

the baseline on our collected IVOS dataset.
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Chapter 7

Conclusion and Future Work

In this chapter we summarize our conclusions and the future directions that

can be tackled continuing on what we started and employing the intersection

among few-shot and video class agnostic segmentation. Throughout this thesis

we have thoroughly investigated the different challenges and solutions shared

among few-shot and video object segmentation and formalized the video class

agnostic segmentation to benefit from both. We have further driven forward

the few-shot object segmentation methods with metric learning and attention

mechanisms.

7.1 Summary of Contributions

As a summary of the thesis contributions:

• Advancing Few-shot Object Segmentation Methods: We have

tackled two main issues in few-shot object segmentation literature and

provided solutions with experimental results that provide empirical sup-

port. The first issue is requiring two sets of parameters in two-branch

methods [136]. We instead proposed a single branch method with shared

weights used for both support and query sets. Our method that in-

spired from the connection between softmax classification and proxy

NCA proved to be of a significant improvement over the SOA at the time

on Pascal-5i. The second issue we addressed in the literature is that they

mostly relied on a single vector representation for the support set which

116



does not capture details necessary for the segmentation problem. We in-

stead proposed a co-attention with semantic conditioning to leverage the

interaction of the support and query with only image-level labels. Our

method has shown to be competitive with some of the methods that use

pixel-level labelled masks, while outperforming other weakly supervised

methods including the ones that use bounding box annotation. The

semantic conditioning has shown to alleviate ambiguities arising from

tendency to segment base classes or other common objects between the

support and query sets. We further proposed a setup for temporal few-

shot learning and show different ways to investigate the overlap between

video object segmentation and few-shot object segmentation.

• Video Class Agnostic Segmentation: The most important contri-

bution of this thesis is formalizing the task of video class agnostic seg-

mentation in autonomous driving where the goal is to segment instances

of unknown objects through utilizing appearance, motion and geome-

try. we presented two formulations based on motion segmentation and

open-set segmentation, unlike previous work [109][186] that only focused

on the open-set segmentation formulation. In the motion segmentation

formulation, our model MODNet was the first end-to-end deep learning

based method in autonomous driving, and a patent about the work was

presented. Additionally, our method for automatic generation of motion

annotations on KITTI resulted in KITTI-MoSeg that was followed by

multiple works in the field of autonomous driving using it [100] and ex-

tending it [122]. In the open-set segmentation, our contrastive learning

with semantic and temporal guidance has also offered another way of

improving baseline models that can segment unknown objects even if

they are static. Our proposed methods although focused on autonomous

driving as an application, can be extended to other robotics applications

such as robot manipulation.

• Advancing Unsupervised Video Object Segmentation Methods:

Finally we have presented a method that inspires from semi-supervised
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video object segmentation methods through fine-tuning the model on

pseudo-labelled masks for the primary object in a video sequence. Our

method was inspired by [176] where we proposed a motion adaptation

mechanism using a two-stream teacher model to generate the pseudo-

labelled masks with a distance transform to compute the confident neg-

ative pixels that are further apart from confident positive pixels. Our

overall performance was able to set a new record on DAVIS benchmark

for unsupervised video object segmentation at the time.

7.2 Future Work

For our future work we leave multiple research questions that we think are of

significance and hasn’t been thoroughly tackled in the literature yet:

• Temporal Object Segmentation for Few-shot Learning: Although

we have proposed the initial setup there is still plenty of work that can

be done in this area that would benefit from assumptions such as pixels

that move together belong to the same object, or enforcing temporal

consistency of the masked embeddings. Our current setup samples one

query image from the video sequence, but a better setup would sample

multiple consecutive query images to show the effect of employing such

assumptions and constraints to improve few-shot segmentation accuracy.

There has been work on transductive few-shot learning that benefits from

unlabelled data but it never tackled the temporal constraints that can

be used for the unlabelled data in our setting.

• Generalized Few-shot Object Segmentation: There has not been

fruitful effort in this setup at the time of this thesis work. One of

the main directions to solve the issue in which all the base classes are

much reduced is through getting the adaptation parameter to be learned

through an adaptation generator that is meta-trained with the segmen-

tation model. There has been recent work in that direction that hasn’t

been published yet and still under review that inspires from our direc-
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tion as well on imprinting and adaptation [164]. Generally speaking,

few-shot segmentation methods still lack significantly in comparison to

fully supervised methods such as DeepLabV3 [20]. Where DeepLabV3

has 85.7% mean intersection over union (mIoU), while the best few-shot

method we demonstrate in this thesis is still around 52.1% mIoU on Pas-

cal dataset. This clearly indicates that there is still a longer path ahead

for few-shot methods to perform on-par to fully supervised ones, and

investigating more on metric learning (contrastive learning especially)

and attention mechanisms seems to be a good direction to bridge that

gap.

• Contrastive Learning with Temporal Guidance: Through our ini-

tial efforts in contrastive learning with semantic guidance we see im-

proved performance for segmenting unknown objects. However, when

inspecting the temporal guidance it does improve over the baseline with

no contrastive learning but does not improve over the semantic guidance

one. Although temporal guidance will lead to temporally consistent em-

beddings that is necessary in any video segmentation task. Thus, one

of the main future directions for this work is better interaction between

both semantic and temporal guidance to improve the video class agnos-

tic segmentation. Generally, more attention needs to be given to the

problem of video class agnostic segmentation in the autonomous driving

literature. As currently it is very neglected in the community with few

work addressing this issue beside ours [186][109]. That was another moti-

vation for us to build the Carla scenarios to show explicit reasons for why

this problem is important instead of vastly labelling all possible classes

in a closed set fashion. Although there is tendency in the autonomous

driving literature to focus on active learning which will address part of

this problem and is definitely an interesting partial solution. But the

main question of whether in real-time autonomous driving systems will

be able to detect failures in detection/segmentation or unknown objects

on the fly is still a vital question in terms of safety.
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• Interpretability of Few-Shot and Video Object Segmentation:

All the literature in both tasks lack interpretability that can lead the

way to designing better models, and is important for safety critical ap-

plication such as autonomous driving.

7.3 Closing Remarks

There has been limited attention given to the intersection of few-shot and video

object segmentation methods in the literature, where we show that multiple

shared assumption and solutions can further advance both. Specifically in au-

tonomous driving towards a safety critical approach, it is of utmost importance

to have redundancy in the output signal signifying obstacles. This motivated

the video class agnostic segmentation task which employs the relation among

few-shot and video object segmentation, and for which we encourage more

research in that direction.
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