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Abstract

This thesis presents the research and development of a novel procedure for
creating a 3D image of the back using stereo digital 2D images. The
procedure requires minimal user input and is intuitive. The procedure is
comprised of 3 stages - image data acquisition, image registration and image
reconstruction. Back Image data was acquired using automated template
matching of a pegboard in a unique stereo camera configuration that
improves speed over existing processes. To improve the registration process,
a new approach combining image segmentation and differential geometry
with belief propagation was developed. Stray data points were removed in
the 3D Back image reconstruction process and missing data points were
interpolated using a unique method of Moving Least Squares - Bezier Curve.
The procedure was tested on human subjects. The results demonstrate that
the procedure can be used clinically to obtain 3D back images for the

evaluation of scoliosis.
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1. Introduction

1.1 Purpose

This thesis describes the research and development of a procedure for
reconstruction of 3D images of the torso from 2D stereo back images. The
aim of this procedure is to obtain 3D images of the torso that can be used in
the assessment of scoliosis. The procedure expands on the existing
techniques of computer vision. It improves the image registration stage of
the procedure by applying a novel approach of Mean Shift Segmentation, Max
Product Belief Propagation and differential geometry. 3D back image
reconstruction stage is improved by using Moving Least Squares - Bezier

Curve interpolation to fill in missing data points.

Using a stereo camera setup consisting of digital cameras to acquire images
makes the procedure more cost effective than using commonly used
techniques like laser scanning. We increase speed and accuracy of stereo
image data acquisition by replacing the commonly used manual calibration
process by an automated Template Matching Image Rectification. The
proposed procedure provides clinicians with a cost effective and mobile

method of acquiring 3D torso images to study Scoliosis.



1.2 Motivation

The assessment of severity of scoliosis is traditionally done using
radiographs of the spine. However, radiographs do not describe the visible
torso deformity associated with scoliosis [1]. Many three dimensional data
acquisition techniques such as rasterstereography [14], laser scanning
systems [15] etc. have been investigated for developing a system to assist
clinicians in the evaluation of external scoliotic deformities. This is because
most scoliosis patients and their families are more concerned with the shape

of the torso than the internal alignment of the spine [2, 28].

Traditional procedures for assessment of torso shape are based on
landmarks. Since the back surface is smooth and featureless, it becomes very
difficult to locate these landmarks in real time. Techniques such as difference
mapping, Moire topography [11] and laser scanning have been developed
over the years for assessment of torso shape. Disadvantages in these
methods range from poor resolution images, long acquisition times to

expensive systems.

In light of these problems and due to advancements in stereo computer
vision, there is a need to develop a cost effective, accurate technique that can

be clinically used for assessing scoliosis.



1.3 Objectives

The objective of this thesis is to create a procedure to reconstruct a 3D torso
image from 2D stereo images of the back using a stereo camera setup. The 3D
torso image can be used for the assessment of scoliosis clinically. To be
successful in a clinical environment, the procedure needs to be fast, error
free and relatively inexpensive [35]. This means that we need a procedure
with minimal user input to prevent errors; to remove artifacts and to fill in
missing data points during reconstruction; to account for curvature and
smoothness of the human torso; to be cost effective and more accurate than

existing methods. The aim of this thesis is three-fold.

1. To automate and simplify stereo camera calibration with respect to
processing time and ease of use.

2. To create a novel procedure of stereo image correspondence
matching in a pair of digital stereo images by investigating and
improving on existing methods in stereo image registration.

3. To preprocess the registered image leading to a reconstructed 3D

image of the torso.



1.4 Thesis Outline

An outline of each chapter of the thesis is provided below. Chapter 1 provides
an introduction to the thesis. It presents the purpose and motivation behind
the research work undertaken. An introduction to each chapter is also

provided below.

Chapter 2 presents a review of the literature. It describes scoliosis and the
torso deformity resulting due to it. Spinal deformity in scoliosis is assessed
using radiographs, however external deformities in torso shape are
evaluated using range images of the torso. Operation and application of range
imaging systems to the study of scoliosis is also presented. The need for a
better method for imaging torso is also discussed due to disadvantages of
range imaging systems. Finally, a literature survey of the latest techniques in
stereo computer vision is presented. We look at state of the art procedures

for registration of stereo digital images to reconstruct 3D objects.

Chapter 3 presents a novel procedure of fundamental matrix estimation for
smooth and curved surfaces like the torso. The stereo images are rectified
with respect to each other by using the fundamental matrix. Image
rectification establishes an epipolar constraint between the images and
makes the search for corresponding points easier. Epipolar constraint makes
the search for corresponding points in stereo images easier. It is explained in
detail in section 2.3.1.1. We also present the stereo camera positioning and

placement used to acquire the images. Experimentation performed to find



the most suitable stereo camera placement for image acquisition is also
described. Benefits of image rectification over manual camera calibration are

also discussed.

Chapter 4 describes the essential steps required in the image registration
process in detail. The reasons for selection of these methods over other
existing ones are discussed. Finally, improvements made to point-to-point
correspondence matching (image registration) so that it can be used on

smooth and curved objects like the torso are described.

The last stage in the procedure (Chapter 5) is to obtain the 3D object from
the stereo digital images. Since, the registration process leaves stray points
due to errors, these are removed. Triangulation to connect the 3D points
(obtained through registration) into polygons is described. Occlusions are
found in the triangulated 3D image especially in regions of high curvature
due to stray data removal. So, lastly, we describe a method for filling

occlusions.

Chapter 6 deals with tests conducted on known models and shape to evaluate
the system performance against existing stereo vision procedures and range
scanning systems. The methodology behind testing, accuracy of the system,
computational time, sources of error in reconstruction is also described in

this chapter.

Chapter 7 presents conclusion and suggestion for future work.



2. Literature Review

2.1 Scoliosis

2.1.1 What is scoliosis?

Scoliosis is a condition characterized by lateral deviation of the spine coupled
with rotation of individual vertebra resulting in visible torso asymmetries
[1]. Rotation of the vertebrae causes the ribcage to distort and a hump to be
produced in the back of the torso [2]. Radiological assessment of the lateral
curvature of scoliosis includes measurement of the Cobb angle [3] (figure

2.1).

To determine the Cobb’s angle, the vertebrae that is most displaced and
rotated (apical vertebrae), with the least tilted end plates is identified. Next,
end vertebrae that have minimum displacement and rotation, but are most
tilted from its original position are identified. A line is drawn parallel to the
plates of the end vertebrae that are furthest away from the apical vertebrae.
Next, two lines perpendicular to the first pair of lines are drawn towards
each other until they intersect. This resulting angle is known as Cobb’s angle
[3]- Two to four percent of the population has scoliosis of at least 10 degree
Cobb angle and ten to thirty percent of them have curvature greater than 20

degrees. Most people with scoliosis are girls and most people develop



scoliosis during adolescent years [4]. In adolescents, scoliosis can progress at

an alarming rate and have severe effect on cosmesis of an individual [2, 15].

Cobb Angle

5g°
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Figure 2.1 Cobb Angle Measurement

Some of the visible characteristics of scoliosis are 1) one shoulder is higher
than the other; 2) one scapula (shoulder blade) may be higher or more
prominent than the other; 3) the trunk is shifted over the pelvis; 4) one hip
may appear to be higher or more prominent than the other is; 5) the head is
not centered over the pelvis; and 6) when the patient is examined from
behind and asked to bend forward until the spine is horizontal, one side of

the back appears higher than the other side (figure 2.2) [1, 2, 22].



Most cases of scoliosis are of unknown etiology and termed idiopathic [1, 2].
Consequently, there are no acceptable preventive measures for scoliosis. In
rare cases of severe scoliosis, organ development and pulmonary function
can be affected [5]. However, most cases of late onset scoliosis will have no

health risks associated with them [6].

Uneven Shoulders

Curve in Spine

Uneven Pelvis

Figure 2.2 Visible characteristics of scoliosis

(source: http://chiropracticalliance.com.au/images/scoliosis.jpg)



2.1.2 Relevance of torso surface images in scoliosis

Scoliosis treatment is influenced by the extent of the spinal curvature. The
aim of the treatment is three fold 1) improve internal alignment of trunk; 2)
improve the external appearance of the torso; and 3) halt progression of the
deformity. Quantification of the spinal curvature is done by the measurement
of Cobb angle on radiographic images [7]. There are generally two sets of
radiographs 1) posterior-anterior and 2) lateral; both taken in an upright
position to assess scoliotic patients. However, there are several
disadvantages associated to the use of radiography. Firstly, due to effect of
ionization, some authors have linked radiography to increased risk of cancer
[8]. Secondly, radiographs do not describe visible torso deformity associated
with scoliosis [9]. This has led to increased efforts to find alternative
methods for assessing the internal and external effects of scoliosis.
Moreover, many scoliosis patients and their families are more concerned
with the shape of the torso than the internal alignment of the spine [2, 28]. A
reliable 3D model of the entire trunk surface will allow the development of
predictive tools to help clinicians and their patients with decisions, not only
based on spinal correction, but also on aesthetic improvement [10]. Over the
years, imaging systems that produce torso surface images and assist

clinicians in assessment of external torso deformities have been proposed.

Examples of back imaging techniques include Moiré Topography [11],

Integrated Shape Imaging System (ISIS) scanning [12], Quantec System



scanning [13], rasterstereography [14] and range scanning [15] (figure 2.3).
Most of these systems are slow, have poor resolution, are not very portable
or are expensive [16]. For instance, the ISIS scanner captures just the back
surface in 2 seconds, with a resolution of 1.5 mm and an accuracy of 3 mm in
3D over a volume of 400x500x300 mm [10]. The effects of posture
variations; sway and breathing due to the slow acquisition process and the

poor resolution are major disadvantages of ISIS scanning.

Figure 2.3(a) Rasterstereographic surface reconstruction result

(source: Hackenberg et. al. 2003 [14])
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Figure 2.3(b) Moire Topography resultant output (source: Daruwalla et. al. 1985 [11])

10



Structured light approaches such as Quantec scanning and
rasterstereography rely on projecting one or more special light patterns onto
a scene, usually in order to directly acquire a range map of the scene [17].
These systems typically use at least one camera and a projector under known
geometry and controlled lighting. The measurement principle of such a
system is based on triangulation where the projector generates light patterns
and the cameras detect the illuminated scene. Before a structured light
system is used for 3D torso surface imaging, it is essential that the system be
carefully calibrated to obtain its intrinsic parameters (such as focal lengths,
scale factors and distortion coefficients) and extrinsic parameters (positions
and orientation between the two components) [17, 18]. Though the specific
geometry and controlled lighting reduces computational complexity, it adds
in calibration time and restricts to system to use in a hospital or clinic. The
difficulties associated with the above systems call for the development of a
cost effective and accurate imaging technique for the assessment of scoliosis.
Next, we discuss one the prominent imaging techniques called Range
Scanning. Range scanning is used in many torso imaging clinics including the
Glenrose Rehabilitation Hospital. We describe some of the problems

particular to using range scanning in torso imaging.
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2.2 3D Range Scanning Systems

The range scanning we describe is based on the Minolta Vivid 700 laser

digitizer.

2.2.1 Operation

Range scanning digitizers use optical triangulation. A laser light beam shines
on a spot on the surface of an object. This beam is scattered in many
directions, and a camera records an image of the lighted spot. The center
pixel of this spot is found and a line of sight traced through the pixel until it
intersects the illumination beam at the point on the surface. This yields a
single range point. To obtain the coordinates of an entire surface, the laser
beam is systematically swept all over the surface of the object using mirrors.
In the Minolta VIVID 700 digitizer ® (figure 2.4), the beam is fanned into a
sheet of laser light. This casts a stripe onto the surface of the object which is
then captured using a charge-coupled device (CCD) camera. CCD camera is
described in detail in section 3.1. For each camera scan line of each stripe, the
centre pixel is computed and a line of sight traced to intersect the
corresponding portion of the laser scan. This yields a range profile of the
object. The shape of the object can be obtained by sweeping the laser beam

over its surface (figure 2.5).

12



The Minolta Vivid 700 digitizer uses an eye-safe laser beam and a
galvanometer-mirror to sweep the beam over the object at a resolution of
200 by 200 and 256 levels per point. Its digital camera has a resolution of
400 by 400 pixels. It takes about 1 second to sweep laser beam over the
object and about 2 seconds for data transfer to the computer using a SCSI
interface. The cloud of range points obtained is triangulated and converted
into a 3D surface. The digital camera captures the texture map independent

of the range point cloud.

Figure 2.4 Minolta Vivid 700 digitizer
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Figure 2.5 Triangulation on Range Scanning System

2.2.2 Disadvantages particular to torso imaging

Range scanning of human torsos has many disadvantages. First, they are
expensive. Second, stray data points from surrounding artifacts have to be
manually removed. Third, holes due to grazing angles of incidence of the
laser beam are often located in obscure regions. Fourth, they are time
consuming thereby increasing the risk of additional artifacts - It takes about
1 second to sweep laser beam over the object and about 2 seconds for data
transfer to the computer using a SCSI interface [28]. Fifth, triangulation and
smoothing algorithms applied by the digitizer during initial processing can
cause additional errors. In the light of these problems, there is a need to
develop a cost effective, accurate technique that can be clinically used for

assessing scoliosis.
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2.3 Stereo Computer Vision

Reconstructing accurate shape from images is a long-standing and
challenging problem in stereo computer vision. In the past few years, there
has been a fast proliferation of methods for the 3D reconstruction of objects
from the analysis of camera images [19]. Stereo Computer Vision infers 3D
scene geometry. It consists of a pair of digital cameras under a known
geometry to acquire two images of an object and a computer to process these
images (figure 2.6). There are various applications of stereo computer vision
ranging from computer graphics, facial expression recognition, surgical
planning, architectural structure design etc [20]. Progress in digital camera
technology and availability of faster computer processors has lead to
development of stereo vision algorithms for simultaneous stereo camera
capture, calibration and reconstruction [16]. Stereo imaging systems are
used to reconstruct 3D surface image of the torso from a pair of 2D digital

stereo images under epipolar constraint.

15



Figure 2.6 Stereo Imaging System Setup

2.3.1 Stereo Camera Setup

There have been many stereo acquisition techniques developed over the
years due to progress in stereo computer vision. The most common stereo
cameras used for high resolution 3D reconstruction aimed at special effects
in movies and TV; restoration of 3D works of art; architectural structure

design etc are digital cameras [3].

The setup of stereo digital cameras following a known geometry under the

16



epipolar constraint is crucial for obtaining accurate 3D reconstruction. When
two cameras view a 3D scene from two distinct positions, there are a number
of geometric relations between the 3D points and their projections onto the
2D images that lead to constraints between the image’s points [29]. The
epipolar geometry between two views is the geometry of the intersection of
the image planes between the two views having the baseline as axis. Baseline
represents the distance from the optical centre of one camera to the optical

centre of the other camera in the stereo setup.

2.3.1.1 Epipolar Geometry and Fundamental Matrix

Epipolar geometry makes the search for corresponding points in stereo
images easier, and we will start from that objective here. Suppose a point X in
3-space is imaged in two views, at x in the first, and x’ in the second. What is
the relation between the corresponding image points x and x'? As shown in
figure 2.7 the image points x and x/, space point X, and camera centres are
coplanar. Denote this plane as m. Clearly, the light rays back-projected from x
and x’ intersect at space point X, and the rays are coplanar, lying in . It is this
latter property that is of most significance in searching for a correspondence.
Supposing now that we know only x, we may ask how the corresponding
point x’ is constrained. The plane m is determined by the baseline and the
light ray defined by x. From above we know that the light ray corresponding

to the (unknown) point x’ lies in m, hence the point x’ lies on the line of

17



intersection 1" of ™ with the second image plane. This line I’ is a line in the
second image plane formed by the light ray back-projected from x. In terms
of a stereo correspondence algorithm the benefit is that the search for the
point corresponding to x need not cover the entire image plane but can be
restricted to the line 1" (figure 2.6). This restriction is called epipolar

constraint. The process of establishing epipolar constraint is known as image

rectification.
X
[ ]
epipolar plane T \
X X
| )
C C
~* epipolar line
for x

Figure 2.7 Principle of Epipolar Geometry (source: Hartley et. al., 2004)

Traditionally, digital camera calibration is used to establish the epipolar
constraint. One of the most commonly used camera calibration methods is

Direct Linear Transform (DLT) [30]. DLT is used to determine the internal

18



parameters of each of the pair of digital cameras. The internal parameters of
each of the cameras relate the image coordinates of the camera’s image to the
world coordinates of the object. Determination of internal parameters of
each camera is done by manually selecting at least 6 points on the camera
image. The world coordinate values of the aforementioned selected points
are already known. A matrix called the essential matrix is calculated to relate
the internal parameters of the two cameras. The essential matrix is
expressed in terms of the intrinsic parametric matrix, rotation and
translation matrices of each camera. This matrix can be used for determining
both the relative position and orientation between the two cameras. Image
rectification is performed using this essential matrix in order to establish the
epipolar constraint. The manual selection of at least 12 points, combined
with the necessity of knowing the world coordinates of these points makes
this method time consuming and tedious. Therefore a method of image
rectification that is automated and doesn’t require knowledge of position of

the imaged object is needed.

This is done by creating an accurate point to point correspondence searching
method between the two images to find the required number of matches. The
point to point correspondences are used to create a 3x3 fundamental matrix
(similar to the essential matrix). The fundamental matrix is a matrix
consisting of rotation and translation components such that when a point in
one of the images is multiplied by the fundamental matrix it produces a point

on the epipolar line of the other image. Image rectification is the process of
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finding the fundamental matrix and applying the transformation to one
image in the stereo image pair to satisfy the epipolar constraint with respect
to the other image. Image rectification is expressed in such a way that there
is amap x — 1’ from a point in one image to its corresponding epipolar line in
the other image. Expressing the epipolar constraint algebraically (to infer a
map between x and I), the following equation needs to be satisfied in order
for x and x’ to be matched

xTFx =0 [2-1]
where F is a 3x3 fundamental matrix. The role of the images can be reversed
and then

xTFTx’ = 0 [2-2]
shows the fundamental matrix as its transpose. In section 3.2, the image
rectification process is explained. First, a novel template matching method of
finding a collection of matching x, X’ points is shown. Then the matched set of

points is used to determine the fundamental matrix.

2.3.1.2 Stereo Camera Placement

Positioning and placement of digital cameras is important part of stereo
image data acquisition. The digital camera configuration must be taken into
account in terms of focal length, field of view and image resolution to come
up with the stereo camera setup. The placement of stereo digital cameras

must be done in such a way that it facilitates point to point correspondence
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matching between the stereo back images. Durdle et. al. [31] investigated a
structured light approach for 3D reconstruction using a stereo camera
system. Even though our approach doesn’t involve a projector like this
structured light approach, the camera placement was constructed for torso
imaging. We will use this setup as a starting point in order to arrive at our
final stereo camera positioning and placement. The cameras in this setup
were mounted symmetrically on a vertical bar. The base line distance
between the two cameras was 1048 millimeters and the horizontal distance
between the cameras and subject was about 1400 millimeters - 1500
millimeters. Convergence angles of approximately 20 degrees were set for
both cameras (figure 2.8). It was determined that with these convergence
angles and distances, both cameras have the same field of view in the object

space and are able to capture a full image of the back [31].

Y Camera
Zz zﬁ ?
19° o A
X —_/,.V
/"/.
.
4"..'...!....
1048mm
. -
-..\..\ Projector
.,
A,
e,
Subject 19¢ S g : v
Camera
4 1500mm

Figure 2.8 Stereo Imaging System setup (source: Durdle et. al., 1998)
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2.3.2 Image Registration / Correspondence Matching

Stereo registration or correspondence matching is the process by which the
closest (least error) or best point-to-point correspondence between two
images is determined [16]. The result of stereo registration is pairing of
points in the stereo images such that each point in the pair of points is the
image of the same point in space [4]. Stereo registration / stereo
correspondence is one of the most active research areas in stereo computer
vision and it serves as an important step in many applications (example:-
view synthesis, image based rendering etc.) [5]. Moreover, the last few years
has seen a resurgence of interest in the development of highly accurate
stereo registration algorithms [6]. The goal of these stereo registration
algorithms is to determine disparity map from the pair of images taken with
known stereo camera geometry [4, 5, 14, 16 and 20]. In the next section,

disparity is defined.

There have also been great advances made in stereo registration algorithms’
classification and testing as a result of publicly available Middlebury dataset
[16]. A few years ago, Scharstein and Szeliski (makers of the Middlebury
dataset) have provided a taxonomy and evolution of dense two-frame stereo
correspondence algorithms [3]. A breakdown the basic steps common to all

stereo registration algorithms is given below. .
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2.3.2.1 Disparity Space Image

Disparity is often treated as synonymous to inverse depth. When first
introduced to human literature, disparity was used to describe the difference
in position of corresponding features as seen by left and right eye [3]. More
recently, several researchers have defined disparity as a 3D projective
transformation (collineation or homography) of a 3D space (X, Y, Z). If you
take one of the images in the pair of images as reference image and the other
image as matching image, the correspondence between pixel (X, y) in

reference image r and a pixel (x, y') is given by

X =x+sd(x,y);y =y [2-3]

where s = +/- 1 is a sign chosen so that disparities are always positive.

In stereo computer vision, one of the methods used to analyze and assess
stereo registration is by using Disparity Space Image (DSI). A pair of stereo
images can be related to each other using a uni-valued disparity function d(x,
y) of one image with respect to the other image as seen in equation above.
The x, y spatial coordinates of the disparity space are taken to be coincident
with pixel coordinates of the reference image. The disparity function
obtained over the 2D image is known as DSI. DSI usually represents the

confidence of a particular match implies by d(x, y).
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2.3.2.2 Classification

There are three broad classes of stereo registration / stereo correspondence
algorithms - local (window-based) algorithms, global algorithms, and
segment based algorithms. For first class local (window-based) algorithms,
the disparity at a given point depends only on intensity values within a finite
neighboring window [4]. Local methods can easily capture accurate disparity
in highly textured regions, however they often tend to produce noisy
disparities in textureless regions and lead to occluded areas. The second
class, global algorithms, which make explicit smoothness assumptions of the
disparity map and solve it through various minimization techniques such as
graph cuts and belief propagation. The third class of algorithms is the newest
addition called segment-based algorithms. Based on the performance testing
on the Middlebury dataset [3], this class of algorithms gives the most
accurate results. Stereo based algorithms are based on the assumption that
the scene structure can be approximated by a set of non-overlapping planes
in the disparity space and that each plane is coincident with at least one
homogenous color segment in reference image [7]. This class of algorithms
distinguishes itself from global algorithms by performing color segmentation
as the first step. After the color segmentation, segment based algorithms use
various global energy minimizing techniques, similar to global algorithms.
Though segment based algorithms have shown strong performance in
conventionally difficult areas such as textureless regions, disparity

discontinuous boundaries and occluded portions, they rely heavily on color
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changes in the image and are generally not able to handle the situation if

there are disparity boundary appearing inside the color segments [10].

The four steps generally performed by the three classes of stereo registration
to arrive at a disparity space image (DSI) are 1) Image segmentation, 2)
Matching cost computation; 3) Cost (support) aggregation and 4) Disparity
computation / optimization. The four steps and the different approaches

used by each class of stereo registration algorithms are described below.

2.3.2.3 Image segmentation

Image segmentation is a broad area of research and comprises of a wide
range of applications. It is used in the fields of medical imaging to locate
tumors, computer aided surgery, study of anatomical structure etc., to locate
objects in satellite images, for facial recognition, at traffic control systems, in
stereo vision systems etc. Segmentation breaks image into groups over space
and/or time. The goal of image segmentation is to cluster pixels into salient
image regions, i.e., regions corresponding to individual surfaces, objects, or
natural parts of objects. Segment based stereo registration class of
algorithms use image segmentation as the first step. Local (window-based)

and global algorithms do not perform this step.

Image segmentation can be broadly divided into two categories: 1) top-down

segmentation and 2) bottom-up segmentation. In top-down image
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segmentation, pixels are grouped together because they lie on the same
object. In bottom-up segmentation, pixels are grouped together because of a
local affinity measure based on color, intensity etc. The human back
comprises of just one object and this is why top-down segmentation is
ineffective. However, Bottom-up segmentation can be used to segment
regions of the back based on changes in pixel intensity. The mean shift

segmentation algorithm is described in detail later in section 4.1.

2.3.2.4 Matching cost computation

The most common pixel-based matching costs include squared intensity
differences (SD) and absolute intensity differences (AD). Other traditional
matching costs include normalized cross-correlation, which behaves similar
to sum-of-squared-differences (SSD), and binary matching costs (match / no
match), based on binary features such as edges. Some costs are insensitive to
differences in camera gain, for example gradient based measures and non-
parametric measures such as rank and census transforms. Birchfield and
Tomasi [3] have proposed a matching cost that is insensitive to image
sampling. Rather than just comparing pixel values shifted by integral
amounts (which may miss a valid match), they compare each pixel in the
reference image against a linearly interpolated function of the other image.
The matching cost values over all the pixels and all the disparities form the

initial disparity space image Co(x,y,d) [3]. Local, global and segment based
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algorithms all perform matching cost computation using one of the above
approaches. However segment based algorithms perform matching cost
computation as the second step, color segmentation being their first step. In
local and global based algorithms, this step calculates the initial disparity

values.

2.3.2.5 Cost (support) aggregation

Local, window-based and segment-based methods aggregate the matching
cost by summing or averaging over a support region in the DSI C(x,y,d). A
support region is a two dimensional (2D) window at a fixed disparity or 3D
window in x-y-d space. Global algorithms do not perform an aggregation
step, but rather seek a disparity assignment that minimizes a global cost
function that combines data and smoothness terms. A 2D support region
favors frontal parallel assumption while 3D support region supports slanted

surface.

Frontal parallel plane assumption means that position disparity is constant
over the support region. However, real world objects possess surfaces rich in
shape, for example the torso, which violates this assumption. 2D cost
aggregation has been implemented using square windows or Gaussian
convolution, windows with adaptive sizes and windows based on connected

components of constant disparity. 3D support functions that have been
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proposed include limited disparity difference, limited disparity gradient and
Prazdny’s coherence principle [3]. These functions address frontal parallel
plane assumption problem by using a parameterized planar or quadratic
patch fit to the images as a local model for the disparity surface. Disparity
derivatives are used to deform the matching window in a refined correlation
algorithm [25]. A different method of aggregation is iterative diffusion. It
works well for curved surfaces. In this method, the aggregation operation is
implemented by repeatedly adding to each pixel’s cost the weighted values of

its neighboring pixels’ costs.

The formula for aggregation performed using 2D or 3D convolution is given

by
Clx,y,d)=w(x,y,d) *Co(x,y,d) [ 2-4]

where w(x, y, d) represents the window function and Co(x, y, d) represents

the initial DSI.

2.3.2.6 Disparity computation / optimization

In local (window-based) algorithms, the emphasis is on matching cost
computation and on cost aggregation steps. Computing the final disparities is
trivial: simply choose at each pixel the disparity associated with the
minimum cost value. Thus, these methods perform a local “winner-take-all”

(WTA) optimization at the each pixel. A limitation of this approach (and
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many other correspondence algorithms) is that uniqueness of matches is
only enforced for one image (the reference image), while points in the other

image might get matched to multiple points.

In global and segment-based algorithms, most of the work is performed in
the disparity computation phase. Many global methods are formulated in an
energy-minimization framework. The objective is to find a disparity function

d(x, y) that minimizes a global energy,

E(d) = Edata(d) + AEsmootn(d). [2-5]

It involves minimizing two separate energy functions that are summed
together to calculate the final energy minimization term as given by the
equation (2-5) where d represents disparity. The symbol Edata(d) in
equation (2-5) measures how well the disparity function agrees with the
input image pair and is given by the summation of matching score over the
spatial coordinates. The formulation of Edata(d) follows in equation (2-6)

where C is the matching score.

Edata(d) = 2 C(x, y, d(x, y)) - [2-6]

The symbol Esmootn(d) in equation (2-5) encodes smoothness in the image by
measuring the differences between the neighboring pixels’ disparities [3].
Esmooth(d) can be described by equation (2-7) where p is some monotonically

increasing function of disparity difference.

Esmootn(d) =Z p(d(x% y) -d(x+1,y)) + p(d(x, y) -d(x, y+1)) . [2-7]
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Geman and Geman'’s seminal paper [26] gave a Bayesian interpretation of a
discontinuity-preserving robust p function based on Markov Random Fields
(MRFs) and additional line processes. Based on the Middlebury dataset,
Belief Propagation energy minimization framework is considered to be the
best performing and is based on MRFs. MRFs are described in the following
section. Esmooth(d) can also be made to depend on intensity differences based

on the equation below

pa(d(x,y) - d(x+1,y)) * pu(|[ I(xy) - I(x+1y) []) [2-8]

where p; is some monotonically decreasing function of intensity differences
that lowers smoothness costs at high intensity gradients. This idea
encourages disparity discontinuities to coincide with intensity/color edges

and appears to account for some good performance.

2.3.2.6.1 Markov Random Fields

As defined by Freeman et. al,, for a given image data, y, the underlying scene,
x is estimated. First, the posterior probability, P(x | y) = ¢ * P(x, y) is
calculated. The Markov network topology implies that knowing the scene at
position j :- 1) provides all the information about the rendered image there,
because x;j has the only link to yj and 2) gives information about nearby scene
values, by links from x; to nearby scene neighbors. Under two common loss

functions, the best scene estimate is the mean (minimum mean squared
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error, MMSE) or the mode (maximum a posteriori, MAP) of the posterior
probability. For a Markov random field (MRF), the joint probability over the

scenes x and the image y can be written as

P(xpxz; XN, Y1, Y2, -"-ryN) = H(i,j) (I/J(xi'xj)) * l_[k((p(xk)yk)) [2-9]

where Y and @ are pairwise compatibility functions which are learned from
training data. (i, j) indicates neighboring nodes i, j and N is the number of
images and scene nodes. Xy is the variable at location n, and y, is the variable
representing differences. MMSE estimate of each x; is the mean of the
marginal distribution of xi. The MAP estimate is the labeling of xi.... xy that

maximizes equation (2-9). [17] This can be indicated as
3'2]7 MAP = argx; Max Max|qy x,,, ] * P(xl,xz, s Xy V1, V2 e .,yN)
[2-10]

Equation (2-10) above is infeasible to evaluate directly because of high
dimensionality of scene variables over which P(xl, Xgy s XN V1, V25 we s yN)

must be maximized. Described in section 4.4 is an approximate MAP-MRF

inference algorithm called Belief Propagation to solve equation (2-10).

Now, if the log of equation (2-10) is taken, finding the MAP estimate is

equivalent to minimizing a function of the form

E(xl,xz, e XN V1, Va2 ....,yN) = Z(i’j)—loglp(xi,xj) + Z(k)—logfb(xk,yk)

[2-11]
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The above equation is the same as equation (2-5). Therefore, it is concluded
that maximizing the probability of pixel correspondence in the image pair is
equivalent to minimizing the global energy in an energy minimization

framework. So, Belief propagation can be used to minimize global energy.

However, the data term Egaw(d) / @(x,yx) and the smoothness term
Esmootn(d) / lp(xi, xj) have to be altered for curved, slanted or smooth surfaces
since it implicitly makes frontal parallel assumption. Once the global energy
has been defined, a variety of algorithms can be used to find a local minimum.
A novel approach using differential geometry, Belief propagation and local
minimum finding algorithm is described in Chapter 4. Once a local minimum
is computed for the entire image based on a reference image, the minimized
global energy E(d) equation (2-5) is obtained. The resulting disparity

function d(x,y) is used in 3D image reconstruction.

2.3.3 3D Image reconstruction

This is the last step of the image reconstruction process. z spatial coordinate
values using the above-calculated DSI at a known x, y spatial coordinates is
calculated. Baseline and focal length of the cameras are also used in this
equation to obtain z coordinates as described in Chapter 5. The x, y, z
coordinates are triangulated to obtain a wireframe of the 3D image. There

are stray data points as well as holes and occlusions in the image. Also, there
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are several portions of the 3D image that do not represent the torso that
need to be removed. Pre-processing the 3D image is done to remove stray
data points and fill in occlusions. Sutherland Hodgman Clipping algorithm is
used to manually remove regions that do not represent the torso. Now, to fill
in the occlusions a novel approach combining Bezier Curve and Moving Least

Squares is developed. This described in detail in Chapter 5.

2.3.3.1 Bezier Curve theory

The Bezier Curve (BC) theory is extensively used in model building and
computer graphics [28]. The classical BC is a recursive linear weighted
subdivision of the edges of the generated polygon starting with a set of points
that form the control (initial) polygon (CP) and ending when the final point is
generated for a particular weight 7. The set of N +1 starting points is referred
to as the control points which determine the shape of the BC of degree N .
Therefore, for an ordered set of points P = {po, Disees P N}, the matrix form of the

classical BC is defined as
p(t) = Pow" (t)* Bez" * PT [2-12]

where p(¢) is the BC point for a particular ¢, Pow" (¢) represents the power

basis (l,t,tz,...,tN) and the ji” term of matrix Bez" is found from

m; = (— 1)/_’( )( l_]. t is the parametric operator which defines the location
' J
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of the curve point, with the number of curve points depending upon the

number of ¢ values [29]. Simply put from the ordered set of points P, let the

rectangular coordinates of p, be (p,,p,,p.) where i=0,1,...,N. Then the

parametric equation of such a BC is given as

p(t) = 2(]:[)(1 - t)N_itipl. O=t=1 [2-13]

where p(t) = (x(¢), y(¢),z(¢)) [28]. This parametric equation is used to

construct intermediate Bezier curve points represented by x in figure 2.9

using four control points represented by o.
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Figure 2.9: lllustration of the Bezier Curve Theory
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[t can be noted from the above equation that a point is generated by blending
all the control points thereby implying that the BC considers the global
information of a shape and yields a gap between the curve and its CP [29].
The number and location of the generated points completely depend on the
values of?. ¢ ranges from O to 1, therefore the procedure might either lead to
redundant, overlapping points or insufficient points necessary for describing
the shape, unless the values of ¢ are very carefully chosen. These problems
lead to a significant shape distortion [29] when only BC is used to interpolate
a shape. In order to reduce this error, a procedure for using an appropriate
number of points to represent shape as well as local approximation is

implemented in the form of MLS projection procedure [30].

2.3.3.2 Moving Least Squares Approximation

According to the Moving Least Squares (MLS) projection procedure, given a

data set of points P = {pi}, a smooth MLS surface S, based on the input points

is defined. Usually, the points P defining §, are replaced by a reduced set
R = {”,} defining an MLS surface S, that approximates S, . The typically lighter

point set R are called representation points [31]. This technique provides an
important property of a smooth manifold surface (surface defined by the point set
is guaranteed to be 2-manifold and C* smooth, given that points are sufficiently

close to the surface representation) as shown in figure 2.10 [30].
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Let points p, ER3,i€{1,...,N }, be sampled from a surface S . The goal is to
project a point r&R’nearSonto a two-dimensional surface S , that

approximates the p..

The first step involves computing a local reference plane H for » where

H =(n,x) =D =0,xER* ,nER’ || =1 [2-14]

This is computed to minimize a local weighted sum of square Euclidean distances

of points p, to H . Assume ¢ is the projection of » onto H and let ¢ = 7 +tn for

some ¢t ER ,then H is found by minimizing

N 2

2<n,pi -7 —tn> H(“pl. -7 - tn”) [2-15]

i=

where @ is a smooth, radial, monotonic decreasing function, which is positive on
the whole space. This equation to find local reference plane H is an
implementation of the MLS approximation theory described above. The
approximation of single points is dictated by the radial weight function & which

dZ
as suggested by Levin is a Gaussian function such that #(d) = e”#* [32] where h

is a fixed parameter reflecting the anticipated spacing between neighbouring

points [30].
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Figure 2.10: [llustration of the MLS projection procedure. (Source: ALEXA, et al,,

2003)

The minimization function to compute // usually has more than one local
minimum. Since H should be close to », the local minimum with the smallest ¢
is chosen- Past work [30] have employed a standard iterative solver to
ensure that the minimization function converges to a local minimum with a
small ¢. The initial value for » is computed by setting ¢ in the minimization
function to zero, and equating the gradient of this new quadratic function in
n to zero. Thus, when ¢ = 0; the minimization function becomes

N 2

21<n,p,- -7) 3(“171' -r

1

N
); and 22<n,pi —r> ﬁ(ﬂpi —r”Xpi —r) =0 [2-16]
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The computed initial value for n can be optionally refined using Powell’s
iteration [33]. Now, n is substituted in the minimization function and using
an iterative procedure of increasing ¢ from 0, is used to establish a local
minimum after which the subsequent 7 is selected. The global minimum of the
minimization function is reached for ¢ — o0, to avoid this, the function is

normalized using the sum of weights 4.

The second step is used to compute a local bivariate polynomial

approximation g to the surface S in a neighborhood of rfrom the computed
local reference plane A and the radial weights 19(“])[ —q”). Let ¢, be the
projection of p onto H, and f, be the height of p, over H, ie.

fi= n.(pi —q). Another minimization function is constructed based on MLS
approximation theory to compute the coefficients of g thereby minimizing the

weighted least squares error

E(g(xiﬂyi)_fi) 9(“191' _qn) [2-17]

1

where (x;,y,) is a representation of ¢, in the local coordinate system in H .

The gradient of the above equation is calculated in a way similar to the first step

leading to a system of £ equations, where £ is the number of coefficients.

Finally, the projection of » onto S which is the result of the MLS projection

procedure is given by the polynomial value at the origin, that is ¢+ g(0,0)n

[30].
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2.3.4 Summary of Literature Review

The process of creating 3D image from a pair of digital stereo images using
computer vision has been broken down into 3 stages: 1) Stereo Image
Acquisition, 2) Image registration and 3) 3D Image reconstruction. A number
of existing methods in each of the stages has been reviewed. The purpose of
this thesis is to construct a unified and improved approach for 3D torso

surface reconstruction from a pair of digital stereo back images.

Existing methods of stereo camera setup and stereo image data acquisition
were investigated. Manual calibration of cameras using Direct Linear
Transform was found to be popular. Calibration is time consuming and prone
to errors. Therefore, an automated method for image rectification needs to

be developed.

Segment-based registration algorithms yield the best results for image
registration based on the review. However a problem associated with the
existing segment-based stereo registration algorithms such as that developed
by Klauss, Sormann and Karner is that it assumes frontal parallel plane
geometry. This means that it assumes depth is constant (with respect to
rectified stereo pair) over a region under consideration [3]. Reconstruction
of smooth and curved surfaces where depth is constantly changing violates
this assumption. Li and Zucker [8] have tried to solve this problem using
differential geometry but they have not adapted their algorithm to be used

with that of Klauss, Sormann and Karner. We therefore, need to investigate a
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method of applying diffential geometry to each stage of segment based

algorithms and test it against smooth surfaces like the back.

Finally, stereo reconstruction methods are explored. Since, the registration
process leaves stray points due to registration errors, these need to be
removed. Methods for filling occluded regions using various interpolation
methods were also explored. The existing hole filling methods need
improvement because their interpolated points did not match the shape of
the torso. Therefore, we need to experiment with methods that can solve this
problem. Triangulation to connect the 3D points into polygons and texture

application is the last step to obtain a reconstructed 3D torso.
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3. Stereo Image Data Acquisition

An accurate, quantitative, reproducible and repeatable 3D torso
reconstruction is required, so that it can be used clinically. A robust
technique for acquiring a pair of digital camera images is therefore required.
In the digital camera configuration section, the general scene structure is
discussed; then the focal length of the cameras are calculated and the choice
of image resolution discussed; finally, the distance between points in the
resultant image is calculated. Next, image rectification is described in detail.
Image rectification is the process of establishing epipolar constraint between
two images. The creation of an automated process of image rectification is
introduced. This process is superior to the slow and tedious process of
manual camera calibration (which is generally used to rectify images). The
process of image rectification significantly reduces the complexity and the
time required for stereo registration. Next, various stereo digital camera
positioning and placements for acquiring stereo images are described.
Finally, the choice of a particular digital camera setup is discussed. The 3

stages of stereo image data acquisition are shown in figure 3.1.
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Stereo Camera — Automated Template — Fundamental Matrix

Image Capture Matching Estimation

Figure 3.1 Stages of Stereo Image Data Acquisition

3.1 Digital Camera Configuration

Figure 3.2 shows a typical scene describing image capture by a single camera.

There is a light source, an object and the camera.

Pinhole

— -
—
Light
v
AN
Object

Figure 3.2 Digital Camera Image Capture

The sensor element of the digital camera (shown in the figure 3.3) is a 2D

electromagnetic sensor array responsible for capturing the image and
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transmitting it as electrical signals to the frame grabber. In modern digital
cameras, the sensor element is either a charge-coupled device (CCD) or
Complementary metal-oxide-semiconductor (CMOS). The frame grabber
digitizes the signals and sends it to the digital processor where it is converted
to a 2D image of the object in the scene. This 2D image is formed of a 2D
array of pixels. The pixels contain color and intensity which describes the
image. The number of pixels on the width of the image multiplied by the

number of pixels on the length of the image is called image resolution.

Sensor size

Working
distance

Resolution

Field of view

Figure 3.3 Sensor Array (magnified) of Digital Camera
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The simplest camera model used to describe the process by which the lens of
the camera focuses the rays of light from an object onto the sensor element of
the camera is the pinhole model (figure 3.4). No digital cameras conforms
perfectly to the pinhole model as the lenses distort the rays of light passing
through them. But, for the purposes of focal length calculations, the
distortions were ignored and the rays were assumed to converge perfectly
on the sensor element of the camera. Using a geometric theorem called

similar triangles; the equation for focal length of the camera is given below.

Object distance from cameraxSensor element /eig/it

Focal length of height =

Object reigit+Sensor element seigit

and

Object distance from cameraxSensor element widt/

Focal length of width =

Object widt/+Sensor element widt/

[3-1]

Focal length is the distance from lens centre to image plane. A Canon ® SLR

digital camera with aspect ratio 3:2 was used.
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Focal length

Lens Sensor

Figure 3.4 Representation of Pinhole Camera Model

(FOV: Field of View, WD: Working Distance, S: Subject Image)

The object height for torso reconstruction is the region above the waistline in
a human subject. The object height was determined to be 750 mm on an
average. The object width for torso reconstruction in our case is generally the
highest when measured between two shoulders in the human subject. The
object width is approximately 500 mm on an average. The sensor element
width and height can be found from the documentation of the digital camera.
A Canon ® SLR with a sensor element height of 15.1 mm and width of 22.7
mm was used. The distance of object from the lens of the camera used for
experimentation were 500 mm, 1000 mm and 1250 mm. 500 mm was
chosen as the shortest distance because if the cameras were placed any
closer to the torso, the images do not contain the complete torso. If the object

was placed further than 1250 mm away from the cameras, the cameras have
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to be inclined such that the angles of incidence of rays from the camera
hitting are very high. This causes major errors in image transformation when
image rectification is performed. The choice of using 1000 mm as the
distance of object from camera is described in detail in section 3.4. The focal
length of the height and the width was calculated by using object distance
from camera, sensor element height and width on equation (3-1). Using
Pythagoras theorem, the focal length of the stereo cameras was determined.
The focal length when rounded off to the focal length settings available on
the Canon ® SLR is 18 mm. This constant focal length was used during all
torso stereo image data acquisition. A camera with 1.4 million pixels
(1440x960) resolution for acquiring torso images was used. Through
experimentation, it was determined that using any camera setup about 40%
of the pixels are lost due to errors during image acquisition, registration and
reconstruction or because they are not part of the torso. This leaves us with
around 825000 which can be converted into 3D points. The maximum
resolution on our cameras is 6.1 million pixels (3040x2016). 1.4 million
pixels resolution was found to be the best tradeoff between producing high
quality 3D torso images and image processing time. This is because most
range scanning systems don’t contain more than 500,000 pixels and produce
industry standard 3D reconstruction. So, a 1440x960 resolution contains

enough 3D points to reconstruct 3D back images.
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By convention, the index values of the pixels start from (0,0) in the top left
corner of the image, and increase in left to right and top to bottom direction
respectively. i represents the indexes in the left to right direction and j in the
top to bottom direction in this thesis. As mentioned previously, the maximum
value for i is 1440 and j is 960. The pixel distance in metric measurements
also start from (0,0) at the top left of the image and increase in the same
direction as the index values. They are represented by x, y in this thesis. This
distance between any two pixels was calculated in an image by using sensor

dimension of 22.7 mm X 15.1 mm, image resolution of 1440 X 960 and

Pythagoras theorem. The diagonal sensor dimension is i/(22.7)2 + (15.1)%2 =
27.26 and similarly the number of pixels on the diagonal of the image is
1730.7. So, the distance between each pixel of the image is 0.01575 mm.
Therefore x, y increment by 0.01575 when moving from left to right and top
to bottom respectively. When the pixel is converted to 3D point after image
registration, the x.y increments between corresponding points are still

0.01575 mm

The geometry between the object and the camera lens, the image resolution
of the camera, distance between points in the image and geometry between
the cameras are key aspects of the stereo camera setup. We have determined
the distance between points in the image and the image resolution of the
camera. The geometry between the two cameras was determined by

calculating a 3x3 fundamental matrix. The fundamental matrix and epipolar
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geometry have been discussed in the literature review. The best placement of

stereo cameras was determined with respect to the object (torso).

3.2 Image Rectification

Image rectification is the process of applying the fundamental matrix to the
top image (reference image) in order to establish the epipolar constraint
with respect to the bottom image. Image rectification can be divided into two
stages: (1) calculate the 3x3 fundamental matrix (F in equation) and (2)
multiply all the points in the top image with the fundamental matrix to
establish the epipolar constraint between top and bottom images. The

second stage is trivial. The first stage is described in detail below.

The aim of first stage is to solve the equation (x'TFx = 0). x" is a 2D point in the
top image (reference image) and can be written as (x’, y’, 1). x is a 2D point in
the bottom image and can be written as (x, y, 1). F is a 3x3 fundamental

matrix. Specifically, the equation corresponding to a pair of points is
Xxfi1 +XY'for + Xfs1 +YX fra + Yy far + V2 ¥ X'fis + Yoz + f33 =0
[3-2]

where f is an element in the fundamental matrix and the subscript on f
represents the corresponding row and column index of each element in the

fundamental matrix. To calculate the fundamental matrix, the above equation
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for f was solved. An important fact about the fundamental matrix is that it is
singular, in fact of rank 2. In order to find a linear solution for f; at least 8
equations need to be solved. This implies that at least 8 pairs of matching
points have to be found in the top and bottom images. The Hartley’s 8-Point

algorithm [32] to used calculate the fundamental matrix [36].

The equation is written of the form

Alx9 Fox1 = () [3-2]

whereA=(xx xy x yxX yy y x y 1)and

F=(fi1 f21 f31 fiz f22 fz2 fiz f23 f33)T. Alinear set of equations of the
form A8 F9%%1 = ( to represent the 8 linear equations was built. Finding 8

corresponding matching 2D points determined all the values in matrix A
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Figure 3.5(a) Image from the top camera in the stereo imaging system

Figure 3.5(b) Image from the bottom camera of stereo imaging system
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3.3 Automated Template Matching

A peg board (figure 3.5) in front of the pair of stereo cameras along with the
subject to be imaged was placed. This technique of stereo camera setup is
used because it increases efficiency by eliminating the need to acquire two or
more images (one or more for calibration and one for subject image capture)
and reduces error that may be caused due to apparatus movement between
image rectification and image capture. A novel system of template matching
is developed as follows. Each peg consists of a pattern of concentric circles

(figure 3.6).

Figure 3.6 Image of a single peg from pegboard

The image of any such peg is called a template. Our aim is to find the position
of 8 pegs in the top and bottom image of the peg board in either the

horizontal or the vertical fashion. The position of the best match between our
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template and a peg on the peg board image is a 2D point in the A matrix. To
find the best match, the differential localized pixel matching cost of the
template (reference image) with respect to the peg board image was
calculated. When the matching cost dropped to a minimum and started
increasing again, the best match was found (figure 3.7) [36]. This process for
the peg board image from the bottom camera in the stereo imaging system
was repeated. The process of differential localized pixel matching has been
described in detail later in section 4.2. After all values of A are populated, we
look for a least-squares solution to equation 3-2 inorder to calculate

fundamental matrix F.

Figure 3.7 Magnified pegboard image showing peg template matching against

the pegs
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3.4 Stereo Digital Camera Setup

The stereo digital camera system comprises of a pair of digital cameras
placed at a known distance from the object under a known geometry. The
distance between the digital cameras, the angle of convergence of each digital
camera and the distance between the digital cameras and the object (figure

3.8) form the geometry of the stereo digital camera setup.

Y Camera

o~ dl
ﬂ '#,‘
ol cD

Subject BCA < g::

Camera

Figure 3.8. Stereo Digital Camera Geometry

(TCA: Top Convergence Angle, BCA: Bottom Convergence Angle, CD: Distance

between digital cameras, OD: Distance between digital cameras and object)
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The most optimal stereo digital geometry for image acquisition was
determined by calculating the accuracy of 8 template matched peg points
established by image rectification against known values of the respective peg
points. Using the top left corner of the pegboard as origin (0,0), the x, y values
of the each point formed by the concentric circles on the peg were measured.
The geometry defined by Durdle et. al. [31] (section 2.3.1.2) was used as a
reference and we tried 10 varying geometric setups to find the most accurate
template matched 8 peg points with respect to the 8 measured values of the

same peg points.

3.4.1 Demonstration of camera setups

The experiment used 10 geometric setups that are established by using
different values of top convergence angle (TCA), bottom convergence angle
(BCA), distance between digital cameras (CD) and distance between object
and camera (OD). Figure 3.9 shows the top and bottom camera image from

one of the geometric setups.
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Figure 3.9 (a) Pegboard image from top camera using TCA 35° CD 100cm and

OD 235cm

Figure 3.9 (b) Pegboard image from bottom camera using BCA 35° CD 100cm

and OD 235cm
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The x’, y’ values of the template matched peg points were compared against
the known x, y values of the pegs on the pegboard, with modulus of x-x’ and
modulus of y-y’ divided by 2 being the accuracy measurement of each point.
0 is the most accurate and sum of x and y divided by 2 being the least
accurate. The least accurate template matched peg point amongst the 8
points for each geometric setup is used as the overall accuracy (in
percentage) for the setup. Table 3.1 shows the various setups and their

respective accuracy measurements.

TCA (°) BCA (°) CD (cm) OD(cm) Accuracy (%)
1 0 20 19 188 65
2 0 5 19 235 74
3 5 0 19 235 74
4 5 0 44 280 72
5 19 19 100 140 95
6 35 35 100 235 81
7 16 16 100 235 98.7
8 16 16 100 280 87
9 16 16 65 280 83
10 18 18 65 150 79

Table 3.1 Peg point coordinates calculation accuracy for stereo geometries.
Accuracy (%) denotes how close the calculated X', y’ peg values are to the

known x, y peg values.
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3.4.2 Justification for using particular setup

The experimentally developed optimal stereo camera setup is shown in
figure 3.10. The Field of View is higher vertically than horizontally in this
setup which follows the shape of the torso. The angle of convergence in this

setup is kept as minimal as possible to reduce the errors during registration.

o
o
.
K

100 cm

"
"

Camera

Figure 3.10 Optimal Stereo Digital Camera Setup

3.5 Achievements

In this section, an automated system for stereo image rectification was
developed. We also experimented with various stereo camera setups to

arrive at the most optimal setup for stereo image data acquisition.
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4. Stereo Image Registration

Registration of the two digital images acquired using the top-down camera
configuration following the epipolar constraint [30] is described in this
chapter. The top camera image was taken as the reference image and the
Disparity Space Image (DSI) on the bottom camera image was calculated.
There is a major problem with existing stereo image registration algorithms
which prevents us from using it in 3D Torso surface reconstruction. Many
stereo algorithms either implicitly or explicitly exploit the frontal parallel
assumption. This assumes disparity is constant with respect to rectified
stereo pair over a region under consideration [3]. Since the back surface is
smooth and curved, this assumption leads to errors. The existing "state of
the art " segment based class of algorithms (as mentioned in the literature
review) was used and modifications were made so that they can be used on
stereo back images. As described in the following sections, a novel approach
was developed combining Mean Shift segmentation with differential
geometry constraints into existing segment based algorithms. The process of
stereo image registration is divided into four stages: (1) Mean Shift Color
Segmentation, (2) Differential Localized Pixel Matching, (3) Disparity plane

definition and (4) Differential Max Product Belief Propagation (figure 4.1).
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Differential Differential
Localized Max Product
Pixel Matching Belief Propagation

Mean Shift

Segmentation

Figure 4.1 Stages of Stereo Image Registration

Figure 4.2(a): Top Figure 4.2(b): Bottom

Camera Image Camera Image
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4.1 Mean Shift Segmentation

Segment-based registration methods have attracted attention due to their
good performance [7]. The main objective is to reduce the high-resolution
space and enforce disparity smoothness in homogenous intensity and color
regions. Regions of homogenous intensity and color are located by applying a
segmentation method. The process of mean shift segmentation is to
decompose the image into regions of color or grayscale. The mean shift
segmentation was applied to the top and bottom camera images. Comaniciu
and Meer’s mean shift segmentation procedure is insensitive to differences in
camera gain and is therefore used [9]. Mean shift segmentation is divided
into two steps: (1) Mean shift filtering of the original image data (in feature
space) and (2) Mean shift clustering of the filtered data points

Mean shift filtering is defined as a gradient ascent search for maxima in a
probability density function (pdf) defined over a high dimensional feature
space. This step consists of analyzing a pdf underlying the image data in
feature space to find the local maxima (modes of the pdf). Consider the
feature space consisting of the original image data represented as the (x, y)
location of each pixel, plus its colour in L*u*v* space (L*, u*, v*). The modes
of the pdf underlying the data in this space will correspond to the locations
with highest data density. In terms of segmentation, it is intuitive that the
data points close to these high probability density points (modes) should be

clustered together.
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The pdf for mean shift filtering can be parametric or non-parametric. A
parametric pdf can express data distribution in few parameters like mean
and variance. But, this makes the pdf limited in flexibility and does not
express a complex data set accurately. A Parzen window method (named
after Emanuel Parzen), a non-parametric way of estimating the pdf [4] was
therefore used. For data points x1, Xz,...., Xn the kernel density approximation

of pdfis given by

1 —Xi
fO) =2 K (22) [4-1]
where K is a kernel function, N represents the number of pixels/points in the

image and h is the window size or bandwidth. A Gaussian kernel is used, so K

is given by
K(x) = =e™ dK(ﬂ)—L‘@_ﬁ*)z 4-2
x)=_=e" an )= =¢ [4-2]
also K(x) profile is given by k(x) = e™ [4-3]

The bandwidth (kernel window size), represented by h in equation [4-2], is
split into two components one representing the spatial (x,y) domain (hs) and
the other representing range(L* u*, v*) domain (h;). Using equation [4-2]
and [4-3],

K(x) = cik(llx|*) [4-4]

: - 1 .
where ck is a normalization constant equal to N In order to split the kernel

into spatial-range domain K(x) is defined in terms of its profile as

)

Xg Xr

fry

K(x) = =< k( 2) [4-5]

hsh,

/s
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The process of mean shift filtering can be divided into the following steps.
First, choose a search window size (bandwidth) in the spatial-range domain.
Second, choose the initial location of the search window. Third, compute the
mean location (centroid of the data) in the search window i.e. find the local
maxima of the search window. Fourth, center the search window at the mean
location computed in step three. Finally, repeat steps 3 and 4 until

convergence (figure 4.3).
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Mean shift L

Figure 4.3 Illustration of 4 steps of mean shift filtering

Over segmentation was preferred because several clustered segments can be
later combined to deduce a set of disparity planes to obtain DSI. (hs hr) = (75,
0.3) was found to be a suitable comprise between over segmentation and
processing time through several trials. To determine the local maxima for the
window, the gradient of the kernel density approximation (equation [4-1])
should be zero. The gradient is estimated as being proportional to the mean

shift vector:

Zivzlxl:gi _ _
f(x) a oo X [4-6]
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where x; are the data points, x is a point in the feature space,

sl

the kernel profile k(x) given in equation 4-3. For every data point/pixel x in

Xs—Xis

s

Xr—Xir

2
) and g(x) = K'(x). k’(x) is the derivative of

9i =49 < i
the image, the mean shift vector was calculated (equation 4-6) in the spatial-
range domain and move X in the direction until convergence is reached.

Using this method of finding the mode (local maxima) associated with each
data point helps to smooth the image while preserving discontinuities.
Intuitively, if two points x; and x; are far from each other, in feature space,
then x; will not be in same domain as x;, x;doesn’t contribute to the mean shift
vector gradient estimate and the trajectory of x; will move it away from x;.
Therefore, pixels on either side of a strong discontinuity will not attract each

other. The final result is a mean shift segmented image (figure 4.4).
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Figure 4.4(a): Figure 4.4(b):
Segmented Top Image Segmented Bottom
Image

4.2 Differential Localized Pixel Matching

The objective of differential localized pixel matching is to compute matching
costs of pixel in the bottom camera image to pixel in the top camera image
(reference image).

As explained in section (2.3.2.4), local pixel matching calculates a matching
score defined over an aggregation window. The latest matching scores
described in the literature review such as gradient-based and non-
parametric measures are more robust to changes in camera gain and bias but
they violate the frontal parallel assumption. A differential localized

dissimilarity measure was developed that combines sum of absolute
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intensity differences (SAD) and deformed differential SSD (sum of squared
intensity differences) based measure defined as follows:
Csap(% Y, d) = i penea (@) — L3 +d.))

and

Cpssp(x, y, d) = arg min{dﬂﬂ}Z(i+ai,j+aj)eN(x,y) (h(i + i, j+ ) —

i
. . od . od . . . 2
12(l+&l—d—;al—a—j&],]+ﬁ])> [4-7]

where N(x, y) is a 3x3 surrounding at position (x, y) and i and j are array
indexes of the two dimensional array representing the camera images. (i,j)
are (0,0) on the top left corner of the image as mentioned in section 3 [3].
Cpssp calculates matching cost for every (ij) in the bottom image in a
deformed window SSD using a direction set method as defined in [8]. The
direction set method is a multidimensional minimization method, initialized
with disparity d (obtained using traditional SSD) and zeroes for first order
disparities. If correspondence of (i, j) in top (reference) image is (i-d, j) in the
bottom image, then to a first order approximation the correspondence of
(i+ai,j+0) is (i +oi—d— %ai - %aj,j + aj). 2—? and % are the partial
derivatives of disparity d with respect to i and j respectively. 4i and gj are
small step size in each direction. I, is intensity of the top camera image and

I, is the linearly interpolated intensity of the two nearest integer index

positions in the bottom camera image.
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An optimal weighting w between Csap and Cpssp is determined by maximizing
the number of reliable correspondences that are filtered out by cross-
checking top to down and down to top disparities and applying winner take
all optimization (choosing the disparity with the lowest matching cost) [3].
The cross checking test is done by calculating Csap first using the top image as
reference image and then using bottom image as reference image. If the Csap
is not the same in both cases, then those pixels are discarded as occluded
pixels and not used in any further calculations. The remaining pixels are
called non-occluded pixels. After determining w, the resultant deformable
disparity matching cost is given by
Co(xy,d) = (1 - w)Csap(x,y,d) + wCpssp(x,y,d) [4-8]

Among all the possible disparities for pixel at position (x,y) the one with the

minimum matching cost C, (X,y, d) is selected as the initial disparity.

4.3 Disparity Plane Definition

A disparity plane is specified by three parameters ci, c2, c3 that determine a
disparity d for each reference image pixel (x, y)

d=cix + c2y + C3 [4-9]
Due to huge number of disparity planes, the number is reduced by extracting
a set of disparity planes that is sufficient to represent scene structure. This is

achieved by calculating a disparity plane for each segment and refining plane
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fitting similar to [7]. The segmented image and the associated matching cost
of pixels within each segment was used to define disparity planes. Our goal is
not to find the best plane for each segment but rather extract all possible
planes for the image. The reason behind this approach is that small
fragmented segments should be grouped to provide more reliable pixels to
form the linear equation (4-9).

The steps for disparity plane definition are: (1) calculate a disparity plane to
represent each segment, (2) calculate matching cost for each segment-to-
plane assignment, (3) assign each segment the plane that gives minimum
matching cost, (4) group neighboring segments which have the same
disparity plane and (5) Repeat steps (1) to (3) for all the grouped segments.
Steps 1 and 2 are described in detail below. Steps 3 to 5 are trivial.

In step one; each of the parameters was solved (ci, c2, c3) separately by
applying a decomposition method. Horizontal slant is determined using the

initial disparities that are lying on the same horizontal line within a segment.
) d . ) ) .
The derivates :—x are inserted to a list and an estimate of the horizontal slant

is determined by sorting the list and applying convolution with a Gaussian
kernel K(x) from equation (4-2). Vertical slant was determined in the same
way the horizontal slant was determined. The determined slant is used to
obtain an estimate in the center of the segment. The corresponding center
disparities for each point, that are calculated by considering the estimated
slant, are inserted into a list and an estimate is obtained by applying

convolution with a Gaussian kernel (like before). This gives us the three
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parameters (c1, ¢z, c3) and this created disparity planes for all the segments in
the bottom image using equation (4-9).

In the second step, the matching cost was calculated for each segment to
plane assignment. Using the method defined in [3], the sum of the matching

cost for each pixel inside the segment S is given by:

C(S,P) = Tepres-oCo (x,y,d) e’ n [4-10]
where S is a segment, P is a disparity plane, d = cfx + £y + £ (cf,c} and
cf are parameters of the plane P), n is the number of non-occluded pixels in
segment S, s is the number of pixels that are part of both the segment S and
the plane P and O is the occluded portion in S represented by the occluded
pixels obtained in the last section.

After steps 3 to 5 are completed, a set of disparity planes were used to
represent the bottom image. In the final stage of stereo image registration,
the disparity planes were optimized using a novel method of max product

belief propagation with differential geometry message passing.

4.4 Belief Propagation

Belief Propagation is a disparity optimization method used by segment and
global stereo class of registration algorithms. This class of algorithms
performs better than local stereo registration algorithms as noted by

Scharstein and Szeliski [3]. The aim of disparity optimization in segment
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based and global stereo registration is to minimize the global energy. As
explained in section 2.3.2.6, minimizing the global energy in an image is
equivalent to solving maximum a posteriori - Markov Random Field (MAP-
MRF) problem. Belief propagation is a method used to solve the MAP-MRF
problem. It does so by iteratively passing messages relating to differences in
disparities amongst neighboring pixels in a image and updating disparities
until the global energy E(d) achieves convergence.

As defined by Sun et. al. in [5], Belief Propagation is an iterative inference
algorithm that passes messages in a network of nodes represented by image
pixels/points. Let mj(x;,x;) be the message that node x; sends to x;, mi(x;,yi) be
the message that observed node y;, sends to node x;, and bj(xi) be the belief at
node x;. Belief Propagation is formulated as the estimation of a random
variable xx for every node k in a MRF. Let tp(xl-,xj) denote the compatibility
function, which encodes the compatibility between two immediate
neighboring nodes i and j and @ (x,, y,) denote local evidence that variable xx
is consistent with observation yx. mj(x;X;) is represented as m;j(x;), mi(X;,yi)
as mj(xi) and @ (xy, y;) as @(x). Local evidence @ (x;,) is

_le(xpeyrdi)l

O(xx) = (1 = €qqea)e “data + €qqeq [4-11]
where C(xx, yx, dx) is the matching cost calculated at position xk, yx with di =
CiXk + C2yk + c3 where c1, c2 and c3 are parameters of the plane, P such thatk €
P [18]. By varying €data and odata the shape of @(x; ) was optimized. There are
two kinds of Belief Propagation (BP) algorithms with different message

update rules: max-product and sum-product. Max Product BP is based on the
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MAP-MRP and Sum Product BP is based on MMSE-MRP as explained in
section 2.3.2.6.1. Max Product BP maximizes the joint posterior P(X|Y) of the
network. The Max Product BP is modified by applying differential geometry
to message calculation that are not constrained by the frontal parallel

assumption.

4.4.1 Differential Max Product Belief Propagation

The steps for Max Product Belief Propagation with differential message passing are
as follows:

(1) Initialize all messages mj(x;) as ¥(x;, xj) and messages mi(xi) = @ (x;).
mi(x;) messages contain the differential local matching cost
component, as shown in section 4.2. The original lp(xl-,xj) as seen in
[16], is given by

_lai-aj]
l/)(xiij) = (1 - gsmootﬁ)e Ismoots + Egmoots [4'12]

where d is disparity at position x.

The above lp(xi,xj) equation follows the frontal parallel assumption.
This means that if disparities x; and x; lie on the same plane, P, then
based on equation (4-9) parameters ci, ¢z and c3 are same for
calculation of di and di;.

So, when message mjj(x;) is used, x;, X;and all other points that lie on P

will have constant disparities. However, disparity/depth values in
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many smooth and curved surfaces like the torso changes more rapidly
than in objects like a cardboard box. Therefore, incorporating

differential geometric constraints in lp(xi, xj) gives
Y(x, %) =

2
J e, ma, |

(1 - gsmootﬁ)e Ismoots + Egmioty ((1 - EN)B oN + ‘SN)

~ |d;-a

[4-13]
where N is the surface normal in the disparity map and can be computed as

—Zy,—Zy,1 xb sd «b od o . . .
N = Zeyt) -— —-—and z,- — —- with b as the stereo baseline, a is

. sz 2 '_2
,1+ z,%+zjz, da? x f das ay f

the focal length in pixels and f is focal length in physical unit like mm [7, 19].
The formula for z is based on the epipolar geometric constraint described in
section 3.

(2) Update the messages mijj(x;) iteratively fori= 1:T
mffl(xj) = amaxy, l/)(xi' xj) D (x;) erzv(i)\j mlta' (x:) [4-14]

where mitfl is the message that node at index i sends to node at index

j at iteration t+1, N(i)\j is the set of nodes neighboring node i except
node j itself and T is the number of iterations.

(3) Compute beliefs
bi(x;) = a ®(x;) [lkenq) mMri (xi) [4-15]

(4) Calculate the MAP solution at node i

X1 = argmar, cla, _ay) biCo) L4-16]

.....

After each iteration, the energy for each segment is calculated as below
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Es = Yiesbi (x)) [4-17]
If the energy for iteration t and t+1 are the same, then it is assumed to have
reached minimum energy and Differential Max Product Belief Propagation
convergence has been achieved. Repeating this process over all the segments
in the image, gives us the minimum energy for each segment and solves the
energy minimization problem. The disparity levels achieved after differential
max product belief propagation convergence over all the segments in the
image are the final disparity levels. These disparity values were used in the
next section to determine the depth (z) values for all (x, y) points/pixels in

the image in order to reconstruct the 3D Torso image.
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4.5 Results

The resultant Disparity Space Image (DSI) of the bottom image with top

image as reference image is shown in figure 4.5.

Figure 4.5: DSI of Bottom Image

The registration is compared to 2 existing registration procedures, segment-
based adaptive belief propagation (adaptive BP) and color-weighted
hierarchical belief propagation (hierarchical BP). These registration
procedures were ranked as best performing by Scharstein et. al. in their
taxonomy of stereo registration algorithms [3]. The resultant DSI obtained
from the 3 registration processes was converted into X, y, zZ coordinate values
and we obtained 360 cross sectional 3D point values of the torso. Each cross

section was compared to the 3D Torso Image obtained from the Konica
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Minolta 700 Scanner (ground truth of evaluation). The evaluation

methodology and results are described in detail in section 6.

4.6 Achievements

Differential geometry was applied to “state of the art” stereo registration
algorithms to reduce registration errors for smooth and curved surfaces like
the torso. We created a novel Differential Segment based Belief Propagation

for registering stereo images of smooth and curved surfaces.
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5. 3D Image Reconstruction

3D image reconstruction comprises of 5 stages - converting the disparity
values (generated through stereo image reconstruction) to 3D data points,
triangulating the 3D point cloud to attain a torso surface, cross sectioning the
torso surface, removing stray data points and finally filling in
occlusions/holes to get the reconstructed 3D torso image. Known principles
in 3D geometry are applied to complete the first stage of obtaining 3D data
points from disparity values. In the second stage, a nearest neighbor
triangulation algorithm for smooth surfaces was applied to get the 3D surface
image [34]. To extract the region that represents the torso from this 3D
surface image, cross sectioning was performed and stray data points were
determined and then deleted. Finally, a novel occlusion filling algorithm
called BC-MLS (Bezier Curve - Moving Least Squares) was developed to fill in

missing data points and obtain the reconstructed 3D torso image.

5.1 Conversion of Disparity Space Image to 3D Points

The x,y values data points were obtained from pixel values in the image as
shown in Chapter 3. Using equation (5-1) from 3D camera geometry, the z

spatial coordinate is determined.

bx f [5-1]
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In equation (5-1), b (baseline) represents the distance from the optical centre
of the top camera to that of the bottom camera, f is the focal length of the
cameras and d(x)y) is the disparity at that x, y location on the image. The
focal length setting on the digital camera is 18 mm (manually set on both the
top and bottom digital cameras) as explained in section 3.1 and the baseline
is set to 100 cm as detailed in section 3.4. The x, y, z values are plotted using

Kitware’s Visualization Toolkit ® (VTK) software [14].

5.2 Triangulation

The vertex array of 3D points (p,) was constructed. This in rectangular co-
ordinate format is given by (p,,p,,p.) where p, is the width, p, is the
height and p_ is the depth of the 3D image. This array of 3D points is

constructed from the x, y, z values obtained previously. The 3D surface image
was generated by connecting 3D points with line segments using the nearest
neighbor interpolation of distance functions for smooth surface
reconstruction [34]. Now, this surface wireframe in VTK was drawn using the

built-in visualization tools - vtkPoints, vtkLine and vtkPolygon.

The resultant image is shown in figure 5.1.
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Figure 5.1: Triangulated 3D Point Map from DSI

There are two major issues as seen in the figure above - the presence of stray
data line segments and points that are not part of the torso and the existence
of occlusions due to missing data points. First, cross sectioning is performed
to reduce a 3D problem to a 2D one. Then, the stray data points are removed
in each cross section and BC-MLS interpolation is performed to generate data

points in occluded regions of each cross section.
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5.3 Cross sectioning

The stray data points and the occlusions in the 3D surface image are due to
errors in DSI calculation in the stereo image registration stage. We divide the
surface image into cross sections to remove the unconnected (points not

joined by line segments) stray data points in each cross section.

The process of obtaining cross sections is carried out using horizontal planes

whose origins are set at a particular height p, where p, represents the
height coordinate of the origin p, =(p,,.p,,p,.).- The origin of the first
plane is located at p,,,,, (minimum height of the 3D torso image). The

number of cross sections is user defined. We used a value of 360 cross
sections. The successive increments of plane origin are computed by dividing

Piuny s Piouax) (the maximum and minimum height) of the torso image by

the number of cross sections.

Implicit functions vtkPlane and vtkCutter in VTK are used to perform the
cross sectioning. The vtkPlane function is used to define the plane. vtkCutter

uses the plane to create cross sections of points at pre-defined heights (p, ).
It does so by using vtkPlane to intersect the torso image at p, and creating
array 3D points from the points of intersection to represent the cross section

(figure 5.2).

A vertex array and a connectivity map were obtained for each cross-section.

The vertex array is a N x 3-dimensional array that stores the physical
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locations of each point in the cross-section. The vertices that were connected
by line segments in the triangulation procedure form the connectivity array.

They were numbered counter-clockwise starting from the left-most point on

the image to form the connectivity map.

Missing Data Points ’

Figure 5.2: Single Cross section of 3D Torso point cloud.

The red lines show occlusions in the cross section

5.4 Stray Data Point Removal

Stray data point removal comprises of 2 passes. In the first pass, we identify
stray data points as 3D points that connected to no other point and exist in
the vertex array but not in the connectivity map. These are removed from the

vertex array and appropriate modifications are made to the vertex array

structure to maintain consistency.

In the second pass, the remaining stray data points are identified as 3D
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points (p,) whose p,_ is more than twice the Euclidean distance from its

nearest neighbor in each cross section. This is because the torso is a
gradually curving surface. These stray data points are removed from the
vertex array and connectivity array. The resulting surface image is generated

in VTK using the vertex and connectivity array as shown in figure 5.3.

P 45

v

Occlusions

Figure 5.3: Removal of Stray Data Points from Triangulated 3D Point Map
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5.5 Torso Extraction

A two step procedure for clipping the extremities of the 3D image was
implemented based on existing Sutherland and Hodgman clipping algorithm

[27].

Step 1 is a Plane clipping for upper and lower extremities. The upper
extremities (corresponding to the regions of the images above the base of the
neck) and the lower extremities (corresponding to regions of the images
below the waist) were cropped using a horizontal cutting plane using the
Sutherland and Hodgman plane-clipping algorithm [27]. The vertical
coefficients of the cutting planes in the neck and waist were manually
defined and delineated the extent of the crop. The plane was constructed in

VTK using the vtkPlane function.

As the human torso is usually asymmetric, the left and right extremities
rarely attach to the torso in planes parallel to the torso medial plane [2]. This
made it difficult to automatically crop the left and right extremities of most
torsos using plane-clipping algorithms. In step 2, the left and right
extremities were clipped using an implementation of the Sutherland-
Hodgman box-clipping algorithm. For every instance of the box clipper,
variables that delineate the extent of the bounding box were user defined.

The box clipper was constructed in VTK in the vtkBox function (figure 5.4).
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Figure 5.4 Result of Torso extraction from Triangulated 3D Point map

5.6 Occlusion Filling

The points generated from Bezier Curve (BC) and Moving Least Squares
(MLS) interpolation do not match the shape of the torso and will cause
significant shape distortions to the torso sections if used to fill holes. The BC
and MLS projection procedure (described in section 2.3.3) were modified
and used together, to develop an algorithm called BC-MLS for hole filling. The
BC-MLS hole filling algorithm is a 2D algorithm since it is applied on each 2D

cross section. It is performed in two steps. The first step is the basic setup
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and BC implementation. The second step is the modified MLS projection

interpolation.

In the first step, assume p, and p, are two 3D points lying on a 2D cross
sectional plane such that p,,p, ER’ and p,, p, have a hole in between them.
Let p,, p, be two 3D points such that p,, p, ER’. The 3D points are joined by
line segments to p,, p, respectively on either side of the hole. Using the basic
principles of geometry, the two lines joining p,, p, and p,, p, can be defined

as

Py and e, B ) (52
P3P Pac=Pon

y_ply =

The point of intersection of the two lines is given by p. such that p, ER’

where

(s, -, Mos -2 0w - 22 )= 210y, - 2 s = 2 )- 204 - 2, s - 1)

pr
and 5}}(@)@5}1—73}%”)@%{{?“ sz) (P4y szxpzx Pu) (5-2]

3x _plx

Two new 3D points p,,p, ER’ are constructed by averaging the initial 3D

points p, and p,(which have a hole in between them) with p., such that

+ +
p6=(p12p5)and p7=(p22p5)- [5-3]
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Now, the four 3D points lying on the 2D cross-sectional plane p,, p,, p,, p, are

the control (initial) points and together form a control polygon (CP) for a
resultant Bezier curve. From classical BC theory, the four 3D control points

are used to establish the following cubic BC parametric equation
p(t)= (=0 *p +3*(1=1) *1* p +3*(1-)** p, +17 *p, 0 <t <]

where p(¢) = (x(¢), y(2),z(¢)) . An initial value of ¢ is chosen to determine the
location of the first intermediate point starting from p,. ¢ is varied according
to {t,2t,3t,....It} i.e. at equal intervals where [ represents the total number of
intermediate points between p, and p, such that /E€Z. Let CP distance

(CPd) be the sum of the Euclidean distances between p, p, and p,, p, and

p;» P, such that CPd €R

2

CPd = \/(p()x - p1x)2 + (p6y - pl)-)z + \/(p7x - p()x)2 +(p7y - p()y) u \/(p2x - p7x)2 + (pZy - p7)-)2 [5-4]

Let the average Euclidean distance between connected 3D points lying on the

2D cross sectional plane be avgCd , such that avgCd € R

S \/(p(i+l)x —Dix ’ + P i)y _piy )2
avgCd = 2 N-1 ' [5-3]
=t -

where C'is the total number of points in the 3D torso image and i is the index

or location of one such 3D point p. In the second step CPd and avgCd was

used on MLS projection procedure . The MLS projection is performed under
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each iteration of BC procedure on every cross section. The setting of

i=i-1,N=i+2,h=avgCd is applied to the MLS procedure in section 2.3.3.2

(figure 5.5).

Bezier Curve
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Figure 5.5: Illustration of the MLS-BC hole filling

The new set of data points in P provides a better local approximation. The

BC-MLS procedure is repeated for each cross section in the 3D torso image.

o

Figure 5.6 Demonstration of BC-MLS hole filling on Torso cross section

(points in red are generated by BC-MLS)
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5.7 Results

The points on all the cross sections as defined in section 5.2 were re-
triangulated. This results in an occlusion free 3D back surface image that can

be used for assessment of scoliosis (figure 5.7).

Figure 5.7: Reconstructed 3D Torso Image

5.8 Achievements

A novel process of Bezier Curve - Moving Least Squares (BC-MLS) occlusion
filling was created. Finally, using known geometric principles, 3D points were

converted to a 3D back surface image.

86



6. System Validation and Testing

The relative clinical utility of the 3D Back Reconstruction (Stereo Image
Acquisition + Stereo Image Registration + 3D Image Pre-processing and
Reconstruction) using Stereo Digital Cameras described in this thesis vis-a-
vis existing Image Registration and 3D Image pre-processing systems was
assessed by determining the variability in the computation of the Cosmetic
Score index from 3D back images reconstructed using each method. Figure
6.1 illustrates the six landmarks used in the computation of the Cosmetic
Score [28]. Each set of six landmarks was used to obtain a Cosmetic Score.
The reconstruction accuracy of our Differential Belief Propagation (differential
BP) was evaluated against registration methods of segment-based adaptive
belief propagation (adaptive BP) and color-weighted hierarchical belief
propagation (hierarchical BP) on 10 reconstructed 3D back images of 2
human subjects. Similarly, our (Bezier Curve - Moving Least Squares) BC-
MLS image pre-processing and reconstruction was compared against Bezier
Curve (BC), Moving Least Squares (MLS) and FastRBF approximation on the
10 3D back images. FastRBF is a commercially available surface reconstruction
package based on radial basis functions created by FarField Technology, New
Zealand [33]. The 4 validation indices used to evaluate reconstruction

accuracy are detailed in Table 6.1.
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Figure 6.1: Torso landmarks used to compute the Cosmetic Score. The first step

to calculating the Cosmetic Score is to obtain the positive or negative offsets of
lines a—b, c—d and e—f from the centerline. The Cosmetic Score itself is the

normalized ratio between the offset of c—d and the average offset of a—b and e—f

[28]

6.1 Validation methods

Five back digital stereo images and five range image scans each of two
human subjects were obtained using stereo image acquisition from stereo
digital cameras and the Konica Minolta® Vivid 700 laser scanner
respectively and simultaneously. The range images scans were processed

into 3D back images using the Polygon Editing Tool Version 2.0 supplied with
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the Vivid 700 laser scanner. 360 horizontal cross-sections of the range
reconstructed 3D back images were obtained from each of the 10 3D back
images. These 360 cross sections served as a gold standard for comparison.
Ten back images obtained through stereo image acquisition were registered
and reconstructed into 3D back images using our Differential BP + BC-MLS
hole filling (DP + BC-MLS), Adaptive BP + Bezier Curves (ABP + BC), Adaptive
BP + FastRBF (ABP + FRBF), Hierarchal BP + Bezier Curves (HBP + BC) and
Hierarchial BP + FastRBF (HBP + FRBF) methods. Illustration of each step of
3D Back Reconstruction from Differential BP + BC-MLS method is shown in
figure 6.2. Each of the stereo reconstructed back images were divided into
360 cross sections at the same horizontal heights as the range reconstructed
back images (gold standard) and evaluated using four validation indices
(Table 6.1). The stereo reconstructed cross-sections were optimally aligned
to the range reconstructed cross-sections using their centroids and maximal
diameters. A minimum-bounding semi-circle containing the range and stereo
reconstructed cross-sections was defined as the universal set for the purpose
of computing indices C and D. An average value of each index was obtained
over the 360 cross-sections. (A minimum-bounding ellipse did not produce a

significant change in the results.)
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Formula* Psuedo-

Description

name
CrNCs
A Cr Sensitivity
CrNCs Positive
B Cs predictive
value
I-CrUCs

C S-Cr Specificity

S-CrUCs  Negative
D J-Cs predictive
value

This is a ratio of the size of the overlap
between the range and stereo reconstructed
cross-section to the size of the range
reconstructed cross-section.

This is a ratio of the size of the overlap
between the range and stereo reconstructed
cross-section to the size of the stereo
reconstructed cross-section.

This is a ratio of the size of the difference
between the union of the two cross-sections
from the universal set to the difference
between the range reconstructed cross-section
from the universal set.

This is a ratio of the size of the difference
between the union of the two cross-sections
from the universal set to the difference
between the stereo reconstructed cross-section
from the universal set.

Table 6.1 Validation Indices

*Cr is the range reconstructed cross-section; Cs is the stereo reconstructed

cross-section (or volume) and I is the universal set consisting of the
minimum bounding circle (or cylinder) containing the original cross-section
(or volume) and the reconstructed cross-section (or volume).
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Figure 6.2(b) Segmented Top and Bottom Camera Images

Figure 6.2(c) Reconstructed 3D Torso Image
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Clinical assessments of torso deformity utilize indices that are derived from
ratios of the distances and angles between anthropometric landmarks on the
torso. Several indices are currently in use (these include the Cosmetic Score),
the posterior trunk symmetry index score, the ISIS score and the Quantec
score [2]. These landmarks are currently used in scoliosis clinics and have
been shown to significantly correlate with the underlying spinal deformity

that causes scoliosis [28]. A source of error in the computation of torso
deformity indices is uncertainty in determining the location of the relevant
landmarks. As the accuracy of torso reconstruction increases, the relevant
landmarks become easier to locate and the error associated with locating
them may reduce. This in turn reduces the variability in the clinical indices of
torso asymmetry for the torso reconstruction. Thus, a measure of the clinical
utility of a torso image reconstruction process is the variability in cosmetic
score index obtained from landmarks obtained from torsos reconstructed
using the process. Cosmetic Score (the ratio of the waist to hip diameters
measured in 3D) [28] is used to evaluate the clinical effect of the various
reconstruction methods. The choice of a surface deformity index such as the
Cosmetic Score rather than a spinal deformity index, is due to a weak
correlation between the internal and external manifestations of scoliosis on

the torso [1].
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6.2 Results and Analysis

Table 6.2 shows the results obtained. The Differential Belief Propagation
registration with Bezier Curve - Moving Least Squares occlusion filling

outperformed the other stereo reconstruction methods for all the indices

measured.
Indices

Methods A B C D
Adaptive BP+ Bezier Curves (ABP + BC) 0.89 091 093 0.73
Adaptive BP + FastRBF (ABP + FRBF) 090 095 091 0.75
Hierarchical BP + Bezier Curves (HBP + BC) 0.88 092 0.94 0.70
Hierarchical BP + FastRBF (HBP + FRBF) 093 096 093 0.76
Differential BP + BC-MLS (DBP + BC-MLS) 0.97 099 099 0.76

Table 6.2 Average validation indices obtained for 360 cross-sections and 10
reconstructed human back cross sections. The indices A-D correspond to the

validation indices explained in Table 6.1

Adaptive BP was outperformed due to the frontal parallel assumption (which
isn’t valid on curved surfaces like the torso). The localized pixel matching
applied in adaptive BP, however did produce good results. Hierarchical BP
achieves great accuracy on the color segmentation stage but again assumes
frontal parallel geometry on belief propagation. Differential Max Belief

Propagation uses differential geometry on pixel matching and belief
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propagation and therefore outperforms other registration methods for

curved surfaces.

Bezier curve approximation produced symmetrical C1 smooth interpolation
arcs while BC-MLS produced somewhat-skewed smooth interpolation arcs.
The degree of skew of the arcs was chiefly determined by the MLS
parameters used. Cross-sections of the human torso do not exhibit local
perfect symmetry, thus the BC-MLS interpolation yielded a closer fit to the

original curve as compared to FastRBF.

The clinical utility of reconstructions using the registration methods was
assessed from the variability in the computation of Cosmetic Score [28]. Ten
scores were obtained for each of the 10 torso images for each of the five

methods as shown in Table 6.3
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Cosmetic Scores
ABP + ABP + HBP + HBP + DBP + BC-

Images BC FRBF BC FRBF MLS
One 1.2 1.2 1.3 1.0 11
Two 1.0 1.1 1.4 1.3 1.2
Three 1.0 0.8 1.0 0.8 0.9
Four 1.0 1.2 0.9 1.2 1.0
Five 1.5 1.2 1.1 1.3 1.2
Six 1.0 1.0 0.8 0.8 0.9
Seven 0.9 0.7 0.9 0.9 0.8
Eight 0.9 1.1 1.2 0.9 1.0
Nine 0.8 0.8 0.6 0.8 0.7
Ten 1.2 1.0 1.3 1.0 1.1

Table 6.3 Cosmetic Score indices obtained for 360 cross-sections and 10
reconstructed human back cross sections. Images 1-5 are of Subject 1 and images 6-

10 of Subject 2.

The variability of each of the five methods was calculated from the standard
deviations of the scores obtained for each torso image. The following average
variability values were obtained Adaptive BP + Bezier Curves - 13%,
Adaptive BP + FastRBF - 7.5%, Hierarchal BP + Bezier Curves - 15% and
Hierarchial BP + FastRBF - 8% and Differential BP + BC-MLS hole filling -

6%.

Results demonstrate that the process of reconstructing 3D torso images from

stereo 2D torso images described in this thesis out performs existing stereo

reconstruction methods.
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7. Conclusion and Suggestions for Future

Work

7.1 Conclusion

The reconstruction of 3D torso images using stereo digital cameras is
described in this thesis. The existing stereo reconstruction methods do not
perform well for curved surfaces like the torso and leave behind stray data
points and occlusions. The main contributions lies in solving these problems
by using (1) differential localized pixel matching, (2) differential max product
belief propagation registration and (3) Bezier curve moving least squares
occlusion filling on rectified pair of top bottom stereo images. The most
optimal stereo digital camera setup is also described in the thesis. Finally,
our reconstruction method was demonstrated to be more accurate than

existing stereo reconstruction methods and how it can be used clinically.
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7.2 Suggestions for Future Work

There are three areas where future can be done to improve the 3D torso

reconstruction system from stereo cameras.

Firstly, the system can be extended to reconstruct complete 3D torso
surfaces rather than just 3D back surface image. This would require the
following changes in the reconstruction method. The image acquisition
process will need 3 pairs of digital cameras; their optimal setup will require
calculation and each pair of image would need image rectification. The image
registration step would need to be performed on each pair of images and the
image reconstruction process will require stitching of three 3D torso images

to obtain 1 complete 3D torso image.

Secondly, more clinical indices need to be determined and their relevance
assessed so that scores other than the Cosmetic Score Index can be

developed to measure external torso deformity.

Finally, the stereo reconstruction method can be further automated so that
no human intervention is required. The top and bottom images of the subject
were captured along with the pegboard (for image rectification) and
subsequently registration was performed on these images. But, in the image
reconstruction stage, the region that represents the torso for pre-processing
and surface reconstruction was manually extracted. A smart edge detection

algorithm that can automatically detect and extract the region that
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represents torso can automate this stage. This should prevent human errors

and increase the clinical relevance of the system.
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