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ABSTRACT

The linear theory of Gurtin and Pipkin, and Chen and Gurtin is adopted
to study one dimensional thermal and thermoelastic waves generated by bound-
ary disturbances applied at the surface of a circular hole in unbounded isotropic
inhomogeneous rigid and homogeneous elastic heat conductors, respectively. A
ray series approach is used to generate asymptotic wavefront expansions for the
tield variables and general properties of the propagation processes are obtained
simply and directly. Afterwards, Padé approximants are employed to extend the
range of validity of these expansions for both problems. The Padé-ray solution
is ther specialized to the case in which the heat conduction of the media is gov-
erned by the Maxwell-Cattaneo relation and, finally, numerical results obtained

for various combinations of material parameters are displayed graphically.
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CHAPTER 1

Introduction

The paradox of instantantaneous propagation of thermal disturbances m
trinsic to the classical theory of heat conduction in rigid materials has motivated
many researchers to seek an alternative to the classical theory. Consequently, o
number of theories free from this paradox have been proposed in recent years |1
6]. Almost al' of these theories have also been extended to include deformable
materials {7 13]. In the present work, we shall be concerned with only one of
these theories. An extensive list of many others can be found in Sawatzky and
Moodie [14}.

Taking a departure from the fundamental concepts developed by Coleman
and Nl [15) and Coleman [16), Gurtin and Pipkin {4] established their general
theory of heat conduction in rigid materials with memory in 1968. This the
ory associates thermal disturbances with finite propagation speeds and, hence,
eliminates the problem of instantaneous propagation of thermal disturbances.
In 1969, Chen and Gurtin [9] extended the theory of Gurtin and Pipkin to
include deformable materials with memory. The theory of Gurtin and Pipkin,
and Chen and Gurtin implies two finite speeds of propagation for thermome-
chanical disturbances in such materials. These speeds are usually referred to as
the first and second sound speeds. The first sound speed is quasi-mechanical

and lies near the acoustical speed for the material whereas the second sound



?
speed iy associated with a quasi-thermal wave. Shear waves, which do not gen
erate volume changes, remain unaffected by thermomechanical coupling. This
result is in agreement with that of the chermomechanical theories based on the
classical theory of heat conduction.

In this thesis we study the propagation of thermal disturbances in rigid
and thermomechanical disturbances i thermoelastic materials by invoking the
linearized theory of Gurtin and Pipkin, and Chen and Gurtin. We generate
asymptotic wavefront expansions using a ray series approach which has been
employed by Moodie and Tait [17] for ngid, Sawatzky and Moodie {14] for elas-
tic and McCarthy, et. al. [18] for viscoelastic heat conductors. The ray series
method originated from the works of Luneburg [19] in an attempt to link ge-
ometrical optics with wave optics. Constructing an asymptotic expansion for
the soiution of Maxwell’s equation for a time harmonic field, Luneburg demon-
strated that the leading term of this expansion is the geometrical optics solution.
Scveral authors (see {20] for an extensive list) have later shown that subsequent
terms account for diffraction effects. In 1946, Friedlander [21] formalized Luneb-
urg’s method to handle general-progressive waves. Using Friedlander’s formu-
lation Karal and Keller [22] extended the method to study generai progressive
waves in inhomogeneous isotropic elastic media. When applied to solid me-
dia, this formal asymptotic technique is often referred to as the Karal-Keller
technique. The technique consists of three basic steps. First, an asymptotic se-

ries expansion involving a phase function and an infinite sequence of amplitude



functions is assumed for the solution of th. problem under consideration. For
complic: ted problems, 1t may be necessary to express the solution as a sum of
such series. This expansion or sum of expansions is ther inserted into the field
equations and the governing ordinary differential equations for the phase and
the amplitude functions along the rays associated with the waves under consid
eration are found Lastly, if possible, the initial conditions for these ordinary
differential equations are obtained from the data of the problem. Otherwise,
these initial conditions can be deiermined from the data of related canonical
problems whose solutions yield the solution to the original problem after appro
priate superpositions.

Since the solutions obtained from the ray series method are asymptotic
wavefront expansions, they provide accurate information only near the wave
front. However, the region of validity of these expansions can be extended to
larger regions of physical interest w.th the aid of Padé approximants. Briefly, a
Padé approximant can be defined as the ratio of two polynomials that matches
with the Taylor series expansion of a function up to the * rm whose exponent is
the sum of the degrees of these polynomials plus one. Although Padé approx
imants have primarily been developed to sum the Taylor series expansion of a
function beyond its radius of convergence, they have been successfully applied
to formal asymptotic series expansions for many years [23]. All of the numerical
results presented graphically in this thesis are the extensions of the ray series

solutions with the use of main diagonal Padé approximants.
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In Chapter II, we study the propagation of thermal transients generated
by nonuniform sources applied to the boundary of a circular hole in an un-
bounded inhomogeneous rigid heat conductor. Nonuniform boundary sources
acting on circular cavities resuit in both angular and radial dependency of the
field variables and, consequently, complicates the application of the ray series
methed. To simplify the analysis, we treat those houndary disturbances which
can be exrressed as a finite Fourier series. Tlis restriction enables us to em-
ploy a particular decomposition which was used by Barclay, et al. [24] in their
study of unloading waves emanating from a suddenly punched hole in an axi-
ally stretched elastic plate. With this decomposition we are able to formulate
several related problems in terms of the radial variable only. Although methods
presented in Chapter II are developed for the boundary disturbances which can
be represented by a finite Fourier series, we note that they are also useful to
obtain approximate solutions for a larger class of boundary disturbances.

The propagation of one dimensional progressive waves emanating from the
boundary of a circular hole in an unbounded homogeneous isctropic elastic heat
conductor is studied in Chapter IIl. After deriving the explicit expressions for
the propagation speeds of the thermoelastic waves we find that for C:/Cq <1
where C; is the speed of purely thermal and C4 is the speed of purely
elastic dilatational waves for the material, the faster and slower, whereas for

C¢/Cq > 1 the slower and faster speeds are the first and second sound speeds,
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respectively. A similar result has been obtained by Achenbach [25], who consid-
ered only materials whose heat conduction is governed by the Maxwell-Cattaneo
relation, for the cases C;/Ca < (1+7)}/? and C¢/Ca > (1 + )% where
~ is the thermoelastic coupling constant. Our result shows that the first and
second sound speeds can be determined independently from ~.

Finally, conclusions based on the results obtained in Chapters II and III

are summarized in Chapter IV.



CHAPTER 11

Boundary-Initiated Thermal Waves in Rigid Materials

We assume that the plane rigid isotropic body is in a thermodynamic
cquilibriurn with a uniform absolute temperature To. It is further assumed
that the dimensions of the body in the plane are very large compared with the
radius of the hole so that the body can be taken unbounded and there are no
reflected waves.

Taking the origin of the plane polar coordinates r,y on the axis of the
hole of radius a, the first law of thermodynamics in the absence of external

heat sources is
Oe
— = -V g, 2.1
Ev q (2.1)

where e(r,¢,t) is the internal energy, g¢(r,¢,t) is the heat flux and V s
the gradient in the plane polar coordinates.
Inhomogeneities in the conducting medium are assumed to depend on the

radial coordinate r only, that is,
a=a(rt), B=p0(rt), c=¢cr), p=p(r), (2.2)

where o is the thermal relaxation function, S is the energy relaxation func-
tion, c¢ is the instantaneous specific heat and p is the mass density. For
convenience, we shall assume that the mass density is absorbed into the instan-

taneous specific heat and omit the mass density in the subsequent equations.
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Hereafter, the mass density absorbed instantaneous specific heat will simply be
referred to as the instantaneous specific heat.

With the restrictions on the heat flux and energy relaxation functions

given in [4], the constitutive equations of the linearized theory of Gurtin and

Pipkin are
e(r,p,t) = eg +cl + /000 B(r,s)0(r,p,t — 3)ds, (2.3)
g(r,p,t) = — /:0 a(r,s)VO(r,p,t — s)ds, (2.4)
wherein
0(r,p,t) =T — T, (2.5)

is the temperature difference, T(r,p,t) the absolute temperature and e
the internal energy of the initial thermodynamic equilibrium.

It should be noted that the constitutive equations of the classical theory of
heat conduction in rigid materials is not a special case of the above constitutive

equations. However, if we choose the thermal and energy relaxation functions

to be

a(r,t) = -:-e"/f, B(r,t)=0, >0, (2.6)

where k(7) is the coefficient of thermal conductivity and 7 the thermal re-

laxation time, then the present theory reduces to the theory of heat conduction



based on the Maxwell-Cattaneo relation

i S
T +q = —«kV0. (2.7)

It is convenient for the subsequent analysis to introduce the following

nondimensional quantities

. r h K 4 . K - K
r = - = - S = —— 38 T=—7—T
a’ aZ2é "’ a?¢ ’ a’¢ '’
2 2 (2.8)
. a‘e B a 5 & c g 6
[0 —_— = — C= - —_ e
k2 7’ k ¢’ To

where overbar indicates the quantity is evaluated at the surface of the hole.
Henceforth, we shall employ these nondimensional quantities but, for conve-
nience, omit the carets. After inserting the equaticns (2.3) and (2.4) into (2.1)

and introducing the nondimensional quantities, we obtan

/ B(r, s)at( ,p,t — 8)ds —-/ V- [a(r,s)VO(r,p,t —s)lds.  (2.9)

Initially the body has been assumed to be in a thermodynamic equilibrium

so that
6
b(rip,t) = 5 (rpt) =0, r>1, 0<0<2m t<0. (2.10)

At t=0 a thermal disturbance

8(1,¢,t) = U(yp,1) (2.11)



is imposed. With the simplifying clLoice of a single waveform we choose

U = U(»)Q(1) (2.12)

where Q(t) is that waveform. In this study, we shall treat those boundary

temperatures which can be expressed as a finite Fourier series, that is,
N
Ulp)=U" + Z[U,(") cos nyp + U™ sin ny). (2.13)
n=1

These temperatures may therefore vanish only at isolated points and Huygens’
principle guarantees that the wavefronts are circles centered on the axis of the

hole.

We shall further assume that the relaxation functions a and g have

well-defined Taylor series expansions about t =0 [17], that is,
a(r,t) = H(t) ;a?(r)ﬁ, (2.14)
B(r,t) =H(t)§ﬁ?(r)5, (2.15)
where
&« o
a? = a’; |l=0» B? = ?a—t_?' t=0, (216)

are the relaxation coefficients and H(t) is the Heaviside step function. It
suffices to specify the relaxation functions only near the time origin as the

changes at the wavefronts are completely determined by the behaviour of these
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functions there [17;. Chen and Nunziato [26] have shown that for the second law

of thermodynamics to be satisfied, a and [ should obey the restrictions

0d>0, a} <0, B> 0’/00 a(r,s)ds > 0. (2.17)
0
We further impose the condition
a) >0 (2.18)
to assure well-defined finite discontinuity wavefronts propagating at finite speeds.

(A) A _Decomposition

Owing to the form of the boundary tempeiature given by (2.11), (2.12)

and (2.13) we can separate variables in 6(r,¢,t) by writing

N
0= 050)(r,t) + 2[05")(r,t) cos ny + 0&")(r, t)sin ng). (2.19)

n=;

It follows immediately that the coefficients in (2.19) satisfy the equations

ao(") oo 8(3\") )
c—=— + / B(r,8)-E—(r,t — s)ds = / L0£")(r,t -s)ds €£=1,2, (2.20)
ot 0 ot 0

where the operator L is dcfined by

o? da(r,s) a(r,s), 8 n?
L=a(r,s)zs+ [ 5t ]57 - —a(rs), (2.21)
together with the initial conditions
ny _ 08"
M ==L =0, r>1, t<O0 (2.22)

ot
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and the boundary conditions

8™ |,y = UM Q1. (2.23)

(B) Ray Series Solution

We seek progressing wave solutions to our initial value problems. These

solutions are represented in terms of their asymptotic waveront expansions as
6" =S T\VFi[t— P(r)l, T’ =0, j<0, n20, (2.24)
=0
where the F;’s are related by
Fi=F;,, j=12,..., (2.25)

with the prime denoting differentiation with respect to the entire argument. The
equation (2.25) enables us to determine all of the F;’s irom the waveform
Fy by successive integrations.

To evaluate the coefficients T,(;') and the phase P we substitute (2.24)
into (2.20), employ the expressions for a and B from (2.14) and (2.15) in

the resulting equation, evaluate the ierms involving integrals by means of the

formula

o k
/ 1—|F,-(t —s)ds = Fy414x(t), 720, (2.26)
0 .
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which is obtained via integration by parts, and equate coefficients of F,. The

result of these manipulations is

J—1 J
Tin (n)" — ( ) (n)
T3 = ZakT';k1+La*+ )TeS ey = 2P Y ok TSy
k=0 k=0
- o, ARy
_ 1,,,2 T(n) _ P:Z (a? + _’.L)Tj—k (2.27)
k=0 k=0

1+1

22-1
(n) n (n) (")
+(P')? Z T -k "r_zle-J-k—l Zﬂ“ ty—k:
k=0

The first of the equations in (2.26) (y = 1) 1s
{[P'(")]? = e(r)/ad(r)} Ty = (2.28)

Since we 1 ay require without loss of generality that T,((;‘) # 0, (2.28) gives

the eikonal equation

[P'(r)]* = e(r)/ao(r). (2.29)

Integration of this ordinary differential equation along a ray associated with the

thermal transients gives

P(r)y=P% /lr[c(A)/ag(/\)]l/zd/\ (2.30)

where P = P(1) and the + signs are associated with outgoing and incom-
ing waves, respectively. Since we are interested in disturbances which leave the

boundary at r =1 and travei into the space 1 <r < oo we drop the use
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of double signs and choose the + sign in (2.30) corresponding to outgoing
waves.

Putting j = 0 in (2.27) gives the next equation in the sequence, the

first of the transport equations, that is,

p" al’ 1 30 P'a
i 04— o _ _ L TiM =~ . 2.
o " [2P' 2(!0 + 2r + 2P'al ] w0 (2.31)

The solution of (2.31) is

0
(n) (n) Cao 1771 /2w,y
To =To [ Ggars)]) ) \ (2.32)

where

[c(A))H/2[ag(A))/2

The higher order transport equations for determining T, (m) 7 21, may
g q g

ty
be obtained from (2.27) and solved to yield
7™ _ F() cag ]1/‘[1]1/2C—W(r)
b & c(r)ao(r r
- A)ag(A)y1/4
—e~W(r) c(M)ad(\ 1/2 1/2 f(_o__
[ e (21 )
xcw(*)ZL,-Tl('j_‘(/\)}d,\, i=12..., (2.34)

1=1
where L, is the second order ordinary differential operator defined by

0 0
1

a-l_ lO_d__ n.o_ pt 0’ 21_
. 2Pa']dr P"a; P(a‘+r)

) a2 ,
L'= ? d_— [a?—l+
c n?
+ o°‘.+1 37 ——a - (2.35)
ag
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The solution of (2.20) subject to (2.22) and (2.23) is given by (2.24) with

P(r) and T,()"), determined from (2.33) and (2.34). The initial conditions

P and T;") and the waveform F, are determined frc houndary
condition
S TVt~ P) = UM Q). (2.36)
1=0

From (2.36) we may choose

T _ U;n)‘ j =0,
b 0, j>0 or j<O0,

In general we shall choose Q(t) = f(t)H(t) so that Duhamel’s principle en-

ables us to write

Fy() = #%/{) (t= r f(r)dr. (2.38)

We now specify the properties of the material by choosing

al = a_?.r“, B = ﬂ_?-r""", c=cr2v (2.39)

with the superimposed bar indicating the quantity evaluated at the boundury
of the hole. For economy in calculations, we have chosen the exponents for
the energy relaxation coefficients and the instantaneous specific heat to be the
same. [t should te emphasized, however, that employing a different exponent

for the instantaneous specific heat introduces no essential complications.



From (2.30), (2.37) and (2.39) we obtain

. 7-03\1/2
P(r) = (—C%ﬁ—)l— rP*t — 1), p £ -1 (2.40)
where
p=w-—4 (2.41)

In (2.40), (¢/a3)'/? is the reciprocal of the speed of propagation of the ther

mal wares in a homogeneous medium whose properties coincide with the local

values of these properties at the boundary of the hole. From (2.34), (2.37) and

(2.40) it may be shown by induction tuat

)
+1_
89 < -tz A 3
m=-—)
where
oy _ 1888 —cat
= —
2 gl/2 g’/
s=6+4+w
and
( 1 J=lmi+1 2 (n) (n) .
mip+li i;l kz_:orl,m+l—k.jAt.k.'n+l—k if
J
(n) ( :
Tomy = | —kz—:l{‘rlv‘k.j +7eny) if
U™ if
L 0 if

Temyr MY (2.42)

(2.43)

(2.44)

j>0vm#0v —]SmS]

1 >0,m=0

j<0orm< —jorm > )
(2.45)
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The auxiliary coefficients in (2.45) are

(n) a,-) _(9+1) _ _("—1) 2
Ae  gramia ke ) = == llkp 1) - p = =] o ),

n k( +l) ~ c 1/2 i

(n) _ p o ¢ 0
Al.l.k - —(_(,08)1/2{0l(68) +al—IM}v (246)

1 . _ C \1/2 c _ >

(n) 0 2 0 € -0 _ 30
Al.'l.k - 2(—(_‘08)1/2 {(\I_lM +20.M('{:{g) + (dga,H ft)}.

Eqs. (2.42) and (2.43) reveal that any discontinuous change in teuperature is
damped at the wavefront at a rate depending upon the factors in (2.43) and
the restnictions (217), (2.18) guarantee that the temperature at the wavefront
decays to zero with r wunless p< -1 and s< -1

As a check on our results, we construct the wavefront expansion of 6(r,,t)
from the transform solution by specializing a to be given by the nondimen-
sional form of (26), 8 =0, § = 0.5, w = 0.5, and the boundary condition
6(1,p,t) = H(t). The Laplace integral representation of 6(r,¢,t) for this

problem 1is

6= —{._

1 1 Y+ eit—(r—l)m .
“1om / — dp}. (2.47)
¥

—100 p
Employing the asymptotic expansion of the integrand in (2.47) as p — oo
and calculating the first four integrals in the resulting sum, we recover the same

wavefront expansion, up to four terms, obtained from the formal ray solution.

(C) Padé Extensions and Numerical Results "n this section we carry out a

detailed numerical examination of the problem treated previously by choosing
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an unbounded rigid conductor whose relaxation coetlicients are given exphicitly
by

r‘lb
a(r,t) = —r—r‘/', B(r.t) = 0. (2.48)

Furthermore, we restrict our attention to the thermal disturbances for which

the function f(t) =1 so that

)

Fy(t) = H(t)". (2.49)

3!
If we let
r=t- P(r) (2.50)

then at a particular station r,O;"' has the formal power series representation

oo pin)
o =% -;’T , z>0. (2.51)
=0 7

The recursive nature of the coefficients of the series (2.51) makes it relatively
easy to handle for numerical computations. Ou the other hand, estimation of
the truncation error is practically impossible owing tc the relatively complicated
nature of these recursion relations.

For each value of r, we sum the series until the magnitude of the differ-
ence of the last two consequtive partial sums is less than a tolerance value. For
practical purposes we choose the tolerance value to be 107!%  This procedure

reveals that, given r, the series is convergent for a certain range of r (time
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elapsed after passage of the wavefront) and the rate of convergence slows down
as r increases. The quantity .= z.(r) is the value of r beyond which
the series is divergent.

To extend the numerical results beyond z., we employ t e main di-
agonal Padé approximants. The L,M Padé approximant to the function

represented by the series (2.51) is by definition [27)

(L/M] = Pu(z)/Qm(z), (2.52)

v;here Pp(z) is a polynomial of degree at most L and Qam(z) is a
polynomial of degree at most M. The coefficients of Pp(z) and Qum(z)

are determined from the series by the equation

oo T(") . .
E 3] ) — PL(") =0(1_L+M+l)’ (2.53)

prr iV Qm(z)

with the normalization condition

Qum(0) =1 (2.54)

For any r, we construct the sequence of [N/N] Padé approximants
up to N =10 by solving the coefficients of the numerator ard denomi: ator
polynomials directly froin the linear system of equations obtained from (2.53)
and (2.54) . Since the series .51) represents an entire function in z of
exponential type, the diagonal sequence is not uniformly convergent and an

oscillatory behaviour at z = oo is expected (see Baker [27], pp. 123-126).
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However, analytic properties of the series manifest a strong improvement of the
numerical convergence [28]. To choose a Padé approximant from the constructed
finite sequence we use the following ad-hoc procedure: obtain numencal results
for 0 < z < 20 from each term in the sequence, eliminate those having
apparently unstable behaviour if there are any, and choose the highest order
Padé approximant from the remaining terms.

In order to examine the effect of material properties on the propagation
of thermal transients, we have evaluated the [‘adé-ray-wavefront solutions and
have displas ' the results graphically in Figs. 2.1-2.4. The results given in
Figs. 2.1 and 2.3 are for the boundar ance 6(1,p,t) = H(t), whereas
in Figs. 2.2 and 24 6(1,p,t)=(14 - ).

Figs. 2.1 and 2.2 reveal that thermal transients propagate with higher
speeds if the degree of inhomogeneity of the heat flux relaxation function ex-
ceeds that of the instantaneous specific heat. In other words, the influence of
a thermal distrubance spreads quicker in materials for which the instantanecous
conductivity increases faster or decreases slower with r than the instantaneous
specific heat. Since the discontinuous jump and the decay of the temperature
at the wavefront depend not only on the relative but also on the absolute mag-
nitudes of the degree of inhomogeneities, a general statement for the effect of
inhomogeneities on these quantities is not possible.

In Figs. 2.3 and 2.4, we examine how the size of the thermal relaxation

time affects the propagation pattern of thermal disturbances. These plots affirm
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that the behaviour of the temperature tends to the one predicted by the classical
theory of heat conduction as 1 decreases. Larger thermal relaxation times
result in slower propagation speeds and larger discontinuous jumps together
with smaller decay rates at the wavefront.

Fig. 2.5 is a snapshot of a particular thermal wave generated by the
boundary disturbance of Figs. 2.2 and 2.4. Discontinuities appearing at the
boundary of the hole are due to the resolution of the graph.

Although we have dealt only with thermal disturbances which can be rep-
resented by a finite Fourier series, the method presented here is applicable to a
broader class of boundary temperatures of physical interest. If a function g¢(y)
is continuous in [—m,n], g(—7) =g(7) and g¢'(y) is sectionally continuous,
then the Fourier series for g¢(y) converges uniformly [29]. In this case, sum-
ming the series using a finite number of terms provides a good approximation of
the function. As an illustrative example, we choose the boundary temperature

to be

8(1,¢,t) = H(t)(7* - ?) (2.55)

and compare the function (2.55) and its 10 term Fourier series approximation
graphically in ™ig. 2.6. The results obtained for ‘he 10 term Fourier series

expansion of the boundary condition (2.55) are given graphically in Fig. 2.7.
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Fig. 2.1. Variation of non-dimensional temperature with non-dimensional
timeat r=20 for 7=10,6=0.5, w=0.5(-), 6§ =03,
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time at r =30, p=0(-). r=4.0, p =7/4(--), r = 5.0,

p=n/2(—-—) for §=05 w=057 =10



CHAPTER III

Boundary-Initiated Progressive Waves in Theromelastic Materials

Consider an unbounded homogeneous isotropic thermoelastic plate which
occupies the region 0 < a < r < +oo in a plane polar coordinate system
r.. Initially the plate is undistorted, at rest and in thermal equilibrium with
a uniform absolute temperature T,. In any departure from this thermody-
namic equilibrium the field variables are assumed to be functions of time ¢
and radial coord.nate r only. It is further assumed that departures from

the equilibrium are sim.a. -hat is, the displacement gradient and the relative

temperature change a.¢ ..} at all times when compared to unity. That is,
a'h_,_; - au¢p 2 e
(-6_7‘) *_(E‘—) <<1 and |T -T,| << 1y, (3.1)

for all ¢, where T(r,t) is the absolute temperature, and u.(r,t) and
uy,(r,t) are the radial and angular displacements, respectively. As a result of
the above assumptions the linearized equations of linear momentum and energy

in the absence of body forces and external heat sources are

0*u, Oo,, 1

Pogr = 5t 7 (0rr = Tep), (3.2)
0%u do, 2
po &; = 3‘2 + 2 Ore (3.3)
Oe Ge
PO = tr{aa} -V.gq, (3.4)

28
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where pg is the uniform mass density of the imtial equilibrium, o, a0,
and o,, are the plane polar components of the symmetric stress tensor
a(r,t), e(r,t) 1is the specific internal energy, ¢(r.t) is the heat flux and

e(r,t) is the strain tensor with the plane polar components

Ou, 1 u
Eryr = or Ero = Epr = —(_—— - _ﬁ)‘ Cpp = —1‘— (3.5)

In equation (3.4), V is the gradient in the appropriate coordinate system
and tr denotes the trace. We also introduce the specific entropy 15(r,t),

the ~pecific free energy

Y(r,t)y=e—-Tn, (3.6)

and the temperature gradient
g(r,t) = VT, (3.7)

for future reference.
For the model to be completed, we assume that the present values of
Y = P(r,t), o =o(r,t), g=¢q(r,t), n =n(r,t) and e = (1) are given by

the response functionals ¥,Y., QN and E as

Y="Y(A), o=)(A), ¢=Q(A"),
(3.8)
n=N(A') and e=E(A"),

where E is connected to ¥ and N through the relation

E=¥_-TN, (3.9)
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an . _..al history array A' for the thermoelastic plate is assumed as
A = (e,T,T".q"). (3.10)

In identity (2.10), T' and ¢' are the summed histories of absolut tem-
perature and temperature gradient at r up to time t which are defined

as

T = [(Trt-Nd and gro) = [Tnt-nar @1
0

0
If the array (€.7.g) and the response functionals (3.8) satisfy the hypothesis
of the theorem of Chen and Gurtin [9]. then the free energy functional ¥

determines Y, N and @ from the relations

oy
do=ro o (3.12)
ov
and
A= T d It g
Q' = —po [EKZ)(C, T,T N + Zh)] t=0" (314)

where A is any constant nonzero vector consistent with the hypothesis of the
theorem. The components of the partial derivative of ¥ with respect to the

strain tensor € are

ov ov o
(E):a:;’ - 3—52,__:’ 5,y =1,2 (3.15)
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where r, =r and z3 =¢. Following Gurtin and Pipkin [4] and Cher. and

Gurtin [9], we then choose the free energy functional ¥ as follows:

V(A = e T) - [ AT )
Fo 0

1 > o
S — ! e 8)ds) - / o' (8)g'(r, $)ds],
2poTa(0)[/o (el )] [o o (Jnc)

where a(s) is the thermai relaxation function, g(s) the energy relaxation
function, a'(s) and f'(s) their respective derivatives, and «a(0) the in
stantancous conductivity. We further specialize the function Y(€,t) to be the
free energy function of the classical theory of thermoelasticity. For isotropic
materials ¥(€,t) takes the form [30],

R - A .
b(e.T) = podotu tries} +5(tr e ~(3X+2pa(T-To)tr e~ g"%(T—To)‘. (3.17)
0

where A and u are the isothermal Lamé constants, «a, the coefficient of
linear thermal expansion, c¢ the specific heat at constant volume and Yo =
(0, TO,T(,',(—)') the specific free energy in the initial equilibrium state. With
the above choice of the free energy functional, the stress tensor, specific internal

energy, and heat flux obtained from equations (3.9) and (3.12)-(3.14) are

Orr = (20 + A)err + Aepp — (3N +2u)a,l, (3.18)
Tre = 2’_‘5'_¢’ (319)

Ope = (2p + A€y + Aerr — (3A + 2u)a,b, (3.20)
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1 oo _
e = €g + p—(3/\ + 2#)O¢To(€"- + EW‘&‘) + '79 - / “)01(7"3)({3, (321)
0 0

q=/ o'()g(- . 5)ds, (3.22)
0
where

8(r.t) =T —To, (3.23)

. . t Al . .
is the temperature difference and eo = E(0,To,T5,0 ) is the specifi energy of
the initial equilibfium state. We omitted the second order terms in g6 and

¢! from the above constitutive equations. If we further impose the conditions

lim s?a(s) < oo, 1ir+n s2B(s) < oo, (3.24)

8—++00

the integrals in (3.21) and (3.22) may be integrated by parts [4] to yield

1 [o o]
e =eg+ —(3A+2u)aTo(crr + €pp) + b +/ B(s)8(r,t — s)ds,
Po 0 (3.25)

q=— /°° a(s)VE(r,t — s)ds. (3.26)
0

We again note that Fourier's law of heat conduction is not a special case

of (3.26). However, if we choose the heat flux relaxation function af(s) as
K _
Mﬂ:;e'h,T>0, (3.27)

where &« is the coefficient of thermal conductivity and 7 is the thermal

relaxation time, then (3.26) reduces to the Maxwell-Cattaneo relation

T% +q=—«V6. (3.27a)
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In this case, if we also assume that the free energy functional is indej endent of

the summed history of the absolute temperature or, equivalently,

B(s) =0, (3.28)

then the present constitutive equations reduce to the constitutive equations of
the linear theory of Lord and Shulman [7].

Upon substitution of the constitutive relations (3.18)-(3.20) and (3.25),(3.26)
into the field equations, together with the use of strai: isplacement relations

(3.5), we arrive at the following thermoelastic equations

u, 18u, wu, 1 0% (3A+2u) 06

Tt o T CIaE T @ern) o 32
06 0 .0u, u, > o6
poc +(3/\+2;4)0¢Tob—t[ 5+ T] +/0 pofi(s)Zr(r.t - s)ds
oo 2
= / a(s)[-a— + -]:—O—]O(TJ — 8)ds,
0 or ror (3.30)
and the shear equation
9%u, + 10u, u, 1 8%, 0 3.31
or? rdr r2 C? otz (3.31)
where
Cy = [2#+/\]l/2 (3.32)

Po
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is the isothermal velocity of dilatational waves and

C, = [:_0]”2 (3.33)

is the velocity of shear waves. In (3.30) the term tr{o %} has been neglected
since it gives rise to second order terms only. The above equations reveal that
shear waves which produce no volume changes are independent from thermal
effects. Thus, the theory of Gurtin and Pipkin, and Chen and Gurtin agrees
with the classical theory of thermoelasticity in this regard.

In the present work we restrict our attention to the waves generated by
suddenly applied uniform temperature change and uniform surface tractions at
the boundary of the circular hole. Consequently, we specify the initial and the

boundary conditions as

Ou,
ot

(rt) = up(r,t = a;:(r, t) =0,

6(r,t) = gg(r,t) = u,(r,t) =
a<r<+oo, —00<t<O0, (3.34)

8(a,t) = 6,(t), orr(a.t) = 01(t), orp(a,t) = 02(t) 0< t < +o00.
(3.35)

We shall again assume that the thermal relaxation function a(t) and

the energy relaxation function ((t) have well-defined Taylor series expansions

at t=0. Therefore,

a(t) = H(t) Y _a? % (3.36)

1=0

B(t) = H(t) i Be -i—, (3.37)

=0



where

d'a d's
('(I) = 71_{;“!:(% /B? = :“;'I(:U\ ) (338)

are the relaxation coefficients and H(t) is the Heaviside step function. The
relaxation coefficients still obey the restrictions (2.17) and (2.18).
Prior to further study of the problem we introduce the following nondi-

mensional quantitities:

= L (£,8,7)= —— (t.5,7)
d a’pyc
. 8 R 2u + A U, u
02 -—_— ".‘ = —_, ¥
0’ (U utp) (3A + 2/‘)atTO a a ) (3 39)
. - ” (arraar O ) 2 A apoc '
o= GTE e B
2 2
d: a p;)Ca, ﬂ.—_‘ a” po B
K %

Henceforward, we use these nondimensional quantities but drop the carets to

avoid notational complications.

(A} Ray Series £.,lation

Assuming the radiai displacement u, is generated by the scalar potential

®(r,t) as

oe

U= B

(3.40)

the nondimensional equations associated with thermoelastic waves obtained from

(3.29), (3.30), (3.39) and (3.40) are

0*® 10 1 0%*¢
a7 tie cion O (3.41)
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08 > 08 0.,0°d 10¢
-o—t-+/(; /5(3)-&‘(T't'~3)ds+’75t—[m+r Or]
% 8? 19
=/0 a(s) (3 + » 5o ]6(r,t = $)ds, (3.42)
where

_(3) +2p)%alT,
poc(2p + A)

(3.43)

is the thermoelastic coupling constant. Upon combining equations (3.41) and
(3.42) we find that thermoelastic waves &,6 satisfy the integro-partial differ-

ential equation

L{®,6} =0, (3.44)
where
1 02 5 1
Lf at[C26t2 (1+7)(—7+;E)]f
/ Al )Bt[C? otz (3r2 ]f(rt s)ds

2
_/0 a(s)(ar2 r@r)[02 577 (57?+?E)]f(r’t_s)ds'(3.45)

As a consequence of the assumption (3.40) the nondimensional constitutive

equations of o,, and o,, become

2® vod
Orr = arz + e 6, (3.46)
0’¢ 109
+ —Q— -8, (3.47)

a‘“’z"ﬁ r Or



where

v=1-2

Q‘_QQ

[~

. (3.48)

and the initial and boundary conditions which generate the thermoelastic waves

considered here can be written as

o(r,t) = g(r,t) =®(r,t) = %%(r,t) =0, l<r<+4oo, —oo<t <0,
(3.49)

9*®d v o®

After nondimensionalization, the shear equation remains identical to its dimen-

sional counterpart and reads

0%*u 1 Ou u 1 J%u .
ot Y @ ciar T (3.51)

whereas the related initial and boundary conditions take the forms

0
u‘p(r,t)z—%(r,t)za o <t<0, 1<r< 450, (3.52)

0ro(1,t) = 02(t), 0 <t < +oo, (3.53)

where the nondimensional constitutive equation for o,, 1s

——= - £). (3.54)
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In this section we apply the ray series method to solve the problems given

by (3.44) and (3.51) subject to conditions (3.49),(3.50) and (3.52),(3.53), respec-
tively. Consequently, we represent the scalar potential &(r,t), the absolute
temperature  8(r,t) and the angular displacement wu,(r,t) in terms of their

asymptotic expansions

B(r,t) =Y bu(r)Fu(t— P(r)), ¢a=0, n<2 (3.55)
B(r.t) = Z T (rVFa(t = P(r)), Ta=0, n<0, (3.56)

up(r,t) = Y Un(r)Fa(t - S(r)), Un=0, n<l, (3.57)
where the F)’s are related by
F.=F,,, n=12,..., (3.58)

with the prime denoting differentiation with respect to the entire argument. The
equation (3.58) enables us to determine all of the F,’s from the waveform
Fo by successive integrations.

We first solve the thermoelastic problem given by equations (3.44), (3.49)
and (3.50). The ray-series solution of the shear problem may be obtained in a
similar fashion. To determine the coefficients T,(r) and the phase P, we
substitute (3.56) into (3.44), employ the expressions for a and g from

(2.37) and (2.38) in the resulting equation and equate the coefficients of Fj,_3.
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The terms involving integrals are evaluated by means of the formmula

/ S Falt = $)ds = Fagrnlt), 120 (3.59)
0 .

which results from integration by parts. The result of the above mampulations

is
1 !
7 n = L+ NPT = P'T, . + ¢ T,. D+ T+ - 1T )
d
P 2 n P! n—1
=[(C3) —(P’)‘]}__“agT,,_,-WL[z(P')3 2]Za"( St T,,-,_,)
=0
n—1 n-12
[ET—G(P' an(T”—j—l - 'Z)_(P )220 'r—' T,_ 1-2
= 6 2 1
+P,Z [ T"’J 3t T""J 3 T,', -;-3 t r—aT"-J—J]
j=0
1v) 2 1 ' 1 [
-Z T( —-j- 4+ "'”—1—4_r_2Tr';—j—4+r_3Tn—,—4]
+ (P - ]Zﬂ° ni- 1-P’Zﬂ°(2 et D)
+Z,30 Tu - o+ T,—J 3)
=0
(3.60)

n=012...

For the sake of brevity, we have omitted the terms involving P, P'" and

PO from (3.60) since it is shown later that P’ is constant.

The first equation in the sequence (3.60), that is, the equation for n =10

is independent of the terms omitted and of the form

0
[@d(P')Y -1+~ + %)(P’)’- + ElﬂTo(r) = (. (3.61)
d d
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This result proves that P’ is independent of r and therefore, all higher or-
der derivatives of P vanishes. Since we may require without loss of generality

that To(r) #0, (3.61) reduces to the eikonal equation

0
ad(P') = (1+7+ ) (P') + =5 =0, (3.62)
Cd Cd

whose solution can be expressed as

(P')? = —1—{(1+7+23):tl“/2} (3.63)
2a C? '
where

a?
F=(m+7-17%+4y. (3.64)

Cd

Integrating the ordinary differential equation (3.63) along the ray associated

with the thermoelastic waves we then obtain

P(ry=P+(r-1)P,

(3.65)
P(r)=P +(r - 1)P,,
where
P = 1 ag ) 1/2111/2
3.66
Pl _ 1 Qg 1/2 1/2 ( )
2—{§;§[(1+7+5?)'F I

P =P(1) and the + signs designate the waves propagating in the positive
and negative directions, respectively. In the subsequent analysis we drop the
use of double signs and choose the + sign that corresponds to waves leaving

the boundary of the circular hole and propagating into the region 1< r < +o0.



41
Equation (3.65) reveals that according to the Gurtin and Pipkin, and Chen and

Gurtin theory, thermoelastic disturbances generate two wavefronts located at

t=P(r)=P+(r-1)P,

(3.67)
t=Pyr)=P+(r-1)P,
propagating at constant speeds
1 1 o -1/2
vlz-}?;:{é—()'[(1+7+c,—(;)+rl/2]} /,
1 @ d

1 1 al /2 (3.68)

R S oy _p1/2 -1 ’

(vi < vz), respectively. In their study of one dimensional progressive waves m
thermoelastic half spaces Sawatzky and Moodie [14] have shown that the faster
wavespeed is greater and the slower wavespeed is less than the speed of purely
mechanical dilatational waves for the material. However, observing that v, 1s
a decreasing and vz is an ina. sing function of the thert .oelastic coupling

constant, the inequalities

1 al a) —1/2
v1<{—2ao[(1+'c%)+|602'_1”} ,
0 d d (3.69)

v > (5l + 35 - 18 - 1)
obtained from (3.64) and (3.68) reveal that for ag/C;" <1, v >Cq and
v; < (a)}/?, where (a8)!/? is the speed of purely thermal waves for the
material 7], while for a3/C% > 1, v; > (af)!'/? and wv; < C4. Therefore,
the speed of the fast wave is not only greater than the speed of purely mechan-

ical dilatational waves but also greater than the speed of purely thermal waves.
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Likewise, the <need of the slow wave is less than the smaller of the purely
mechanical a - purely thermal wavespeeds. Furthermore, setting 5 =0 in
(3.68) we find that for aJ/C% < 1, v, =C4 and v, = (ad)!/?  whereas
for a%/C? > 1, v, = (ad)'/? and v, = Cq. These results lead us to the
conclusion that for af/C% <1 the fast wave is a quasi-elastic wave and the
slow wave is a quasi-thermal wave. For af/C? > 1 the roles of the fast and
slow waves are reversed and the fast wave is a quasi-thermal wave while the
slow wave i1s a quasi-elastic wave.

Returning to our original analysis we observe from the above results

the asymptotic wavefront expansions for & and 6 should consist of the sum

of expansions at each wavefront. Therefore, we replace the expansions (3.16)

and (3.17) by

2 [= -]

O(r,t) =D Y $ea(r)Fu(t = Pe(r)), (3.70)
=1 n=2
2 oo

0(rit) =Y Y Ten(r)Fu(t — Pe(r)), (3.71)
{=1 n=0

where F, satisfies (3.66) as before and the phase functions P,(r) and
Py(r) are given by (3.67). When (3.71) is substituted into (3.72) the result is
again (3.60) except that P’ , T, are replaced by P{, T, and P;,T;,. For
n =0, (3.60) gives the eikonal equation (3.62). Putting n =1 in (3.60)

yields the first of the so-called transport equations which is

ne _ 2 N2 _
T”o + {i + ((P[) l/cd) [ ‘1(1)(}-)[)2 ﬂg ]}Tlo = 0. (3.72)

2r 2Fe (147 + 2%) - 203(P})?
d
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Solving this equation we find

T, (r) = Ty, r="/2eHhetr D) (3.73)
where
P! 2 1 C? 0 AYR }()
2Fe (147 + &) - 2a(Pp)?

and Ty, = Ty,(1). Thus, for a thermoelastic material whose thermomechani-
cal behaviour is characterized by the constitutive equations of the linear theory
of Gurtin and Pipkin, and Chen and Gurtin, a discontinuous change in tem-
perature is attenuated at each wavefront according to (3.73) and (3.74). The
identity

0

(14 7+ Z5) = 2a(P))? = (-1)T'/%, (3.75)
d

obtained from (3.66) and the previous discussion on the wavespeeds indicate
that the sign of W, is completely determined by the sign of (ad(P,)* -
B3). Therefore, in one-dimensional circular geoemetry, a discontinuous change

in temperature decays with r if
af(P)? = B <0, (3.76)

and the restrictions (2.17) on a) and ) guarantee that (3.76) always
nolds. As will be clear later, the condition (3.76) suffices also for discontinuous

changes in strain and stress to decay to zero as r increases.
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The higher order transport equations for Ty, ,Tr,.... determined from

(3.60) are now solved to yield

Ten(r) = r~ /2~ Welr=I{Ty, + (r') /2T =D Q' Ydr' ), (3.77)
1 .

=12, 3=12,...
where

n

-1)¢ -
) (S (LhTen-t+ LaiTomo1-k + LiTen—a-6)}.  (3.78)
k=1

Qen(r) = fiw

and [}, L% and L}  are the ordinary differential operators defined by

Linf = [(1+ 781 + (g =8Pl (0" + 1)

+ PP~ =5)ad ~ BY_1](2f + - f)
Cd r

- (PO = ) (Piades = A1) f = (PiYody o, (3.79)
Lhf=Piagy(af" + 2 f" = 2 e L4 LG+ 1,

iv 2 1, 1
L}f = —ad_ i (f )+;f"'— = f'+r“3f')-

In (3.79), & indicates the Kronecker delta. Since T, =0 for n <0,
some of the summations in (3.78) have been extended to k =n. It can be

proved by induction that the amplitude functions T,, are of the form

n
Tln(r) = r—l/QC— W(r-1) Z tljnrjv { = 1,2’ n = 0, 1, 2,. . e (380)

j==n



Substituting (3.80) into (3.77) and simplifying gives the recursion relation

(3.81)

( (-1t n—|j|+l( }: \3

T > AN fl. +l-mn-k t » B t’. & moun- 1k

ij;rl/2 k=1 m=0 k" mg;” thy G0t

4

+3 Cre,te,+3-n &) JAO <o,
tl]n - < m=0

_ n

Ten — >, (te.—kn + tekn)s 1=0,n>0

k=1
0 )< -—n or jo>mn,
where

1 1 . e
Apy = 0+ MO Db+ (57 - 6P ok} - (PO ek
d
. 1 ,
Ay = —25{We[(1 + )b + (Eg‘ ~ 6(P¢)?)aq_,]
d
] A\ 1
- Pl - ek - A},
d
, . 1 '
Al = W¢ Nk + (5 —6(Py)%)a}_, }
d
] ] 1 ! 1 [AY
- 2W(P[{(2(P()2 - 55)02 - ﬂ(k)—]} - ((Pt)2 - LT'I')("(L)wl(Pl))
d d

Bp; = Prag_ Ma(j +2),

B, = BeaMy(5 + 1) - 2P Wea§_ Ms(j + 1),
B?kj = {GP;W}ag_l - Wlﬁz—x}Ml(j),

Btskj = W}ﬁg_l - 4P1'W1302—1»

C?kj = —a)_,Ms(j +3), C,lkj = Weay_ M5 + 2),

Ch;=-Wfa)_M3(j +1), C}, =2W/a}_Mi(j), Chk,=-Wiag_,.

(3.82)
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In the above equations the auxiliary functions M(j) to Ms(j) are

M,()) =2K,(j) +1,

M,(j) = Ki(5) + K2(3),

Ms(5) = 6K2(j) + 6K1(5) - 1, (3.83)

Myy) =4K3(7) + 6K,(y) - 2K, () + 1.

Ms(j) = Ka(j) + 2K3(5) — K2() + Ki(7).
where

Kij)=j—1, Kx:r=.5 3, a8
3.84)

Ks()=G-HU-PU-3), KD=0G-0 " 3i-3)
Repeating the above procedure for the amplitude coefficients ¢/m\r) in the

expansion (3.31) for  ®(r,t), we then obiain

n-2
Sen(r) =r~deWrm) S g £=12,0=23,... (3.85)
j=—(n-2)
where
( ("‘].)w n—|jl—1 2 ™ Vs‘
——————— . m .
2;PIT7 & (mgoA:k,'W,;H—m,n—k +m¢=_0B,kj<,o,,]+2_m,n_l_k
4
+ Z C;'k‘jvl,j+3—m.n-2-k) J # 0, ~(n - 2) <;j<n- 2,
ylHn = ﬁ m=0
- n:2
Pen - kL ($t,—km + Pthn) =0 n>2,
=1
0, j<—(n-2orj>(n-2).
(3.86)

However, the amplitude coefficients Ty,(r) and ¢e(r) are not free but

connected through the field equations (3.41) and (3.42) for § and &. It is
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easy to verify that inserting the expansions (3.70) and (3.71) into one of the
field equations, say (3.41), after some algebra the relationship between T,

and ®;, can be found as

.3 | ' )
(J+ 5)299(,,“," 20 + DWWepe 41 + Wit m
=20 + VPt 41041 + 2P Wiege ne
2 1
+ ((Pl) - E)‘PI.J.N+2 = tl]nv
d
£=12, 1»=01,...,n, n=0,1,2,...

For j =0, the use of (3.81) and (3.86) in (3.87) gives the relationship

between Ty, and ¢¢, which is

1 - _ - _
((})l')2 - Ei)¢l,n+2 + 2P[’Wl¢l,n+l + W(2 ¢l.n e Tln
d

n-—1

1 n
= ((P)* - z2) S (Stmkntr + Penns2) + 2PWe D (0t —knt1 + Ptk
d k=) k=1
n—2 9
+ W? Z(‘Pl,—k,n +©Qekn)— 3 Ptrn + 2Weoe1n + 2Pipes n41
k=1
n
-5 (te-km+tera),  €=1,2, n=012,... (3.88)
k=1

On the other hand, the recursive use of (3.81) and (3.82), together with (3.88),
reduces (C.87) to an identity for ; > 1.

So far, we have obtained the solution of the thermoelastic problem (3.44)
subject to initial and boundary conditions (3.49) and (3.50). This solution is
given by (3.31) and (3.32) where Py(r),Tyn(r) and @.,(r) are determined

from (3.66), (3.67) and (3.80)-(3.86). The initial values P, Ty, and &y, are
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to be found from the source conditions (3.49) and (3.50) with the use of (3.88).
In order to complete the solution, the waveform Fy, which in turn fixes the
wavefunctions F, from the relations (3.58), should be determined froin the
source conditions as well.

Let us consider the following sovrce conditions

3*d(r,t) LY od(r,t)

8(1,) = H{1), or? r Or

l—y =0, (3.89)

o0®(r, t) + Zaé(r
Or? r Or

6(1,1) = 0, Y = H@), (3.90)

which correspond to purely thermal and purely mechanical unit step distur-
bances, respectively. We shall refer to these canonical problems as Problem 1
ar.d Problem 2 for convenience. The solution to the problem corresponding to
the general source conditions (3.49), (3.50) can then be obtained with the ap-
propriate superposition of the solutions to Problems 1 and 2 and the use of
Duhamel’s theorem.

Let 61 &1 and 62 @@ be the respective solutions to the two
canonical problems. Substituting (3.70) and (3.71) into (3.89) and (3.90) and
n.iang (3.81), (3.82) we get

{ H(t), m=1,

2
\"
o 0, m =2,

=

T FA™(t - Py™) = (3.91)

(~]s

—
3
]
o
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2 oo
(m) {(m) (m)
ZZ {(Pl)zwl) n+2+2PII l‘fol)n-o-l +“ lz*jl;nn

)
-
-

. . Cf m . C m
+ u1-+3/2>2—-2«z+—3/2>5?]¢£J12m-— 20+ 1) -2 3]Wey™)

Cd r+l.n
C? _ 0, m =1
-2 +1)-2 =5]P, na1 JEU (¢~ PI™ ={ ‘
[ (J + ) CZ] (P41, +l} n ( 4 ) H(f), m = 0.
(3.92)
From these two equations we then choose
™ =0 F™@t)=H({t), m=12, (=12 (3.93)
T + T =1, (P)?}) +(Pp)ie =0, (3.94)
TE + T3 =0, (P63 +(Py)éy =1, (3.95)
2
ST =0, m=12,n=12... (3.96)
=1
2 n
m (m
Z Z (Pe)*e t; n+2 + 2PtWW: j.)n+l + le‘-aljn)
. . CE m C (m
+[6+3/2)7 =20 +3/2) G letian = (20 + 1) -2 GWer
: Corpr
- [2(] +1)-2 Eg]PI‘pl'jH'"H} =0, m=1,2,n=12,...
(3.97)

We further note that for more general source conditions where the Heaviside
step function H(t) is replaced by arbitrary functions f((t) and f(¢)

in Problems 1 and 2, respectively, the wavefunctions ™), n > 1 are
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determined from the wav :rm Fém)(t) = f(m)(t) with the use of Duhamel’s

theorem [14] as
Fm(¢) = H““B/u £)" F™(£)de. (3.98)

't is easy to solve from (3.50), (3.88) and (3.89) that the coefficients ‘;’(t':Lz

and T,(':) for n=1,2,... are

n

(m fm) (m) ¢ 2
’)ln)+2 :Z(*t Dtz ¥ Pernsa) ¥ (=1 0agl” Y Z{QP W ooimt1
k=1 g=1

+ W2+ (9/4 = 3CH = = (P-0)))@gam

Ci
~2(1 - C}(1/C3 — (Py_)?) WeelTy s

—2(1 = CH1/CE = (P)_) Pip'™ 1)

. (3.99)
i Cd( - (PI; l) ))Sg:;n) + Cg(P:;—[)2 Z(tq,—k,n + tq,k,n)}v
k=1
T =Y (et then) + (PO = 1/CH o sz
k=1
- m 9 m
+ - Prwl‘Pto n+1 T W2¢(t O)n *t3 9’52)’.
— W\~ 2Pt L, m=1,2,0=12, =12,
where
Sim = Z {(P)* 5';'),.+2 + 2P,'W,¢£3“)n+l
gy
Wiel™ 3/2)? — 2(j + 3/2 (m)
+ Wipgn + (7 +3/2) (J+/) ] Perram (3.100)

-2+ -2 —;]W,‘p,j';“m

[0( +1)—") C‘,]Pl(?’l1+1 n+1l) } m=1,2, Tl=1,2,....



ol

(m)

For n =0, the initial values T(m) also obtained from the same equa-

tions are
por_ CalP)IUR) —1/Cq)  pay  CaltPDP(1/CE — (YY)
10 = P})? — (P;)? + 420 TATRIL
1 2 : ‘ (3.101)
"Ry - VATV
and
10 20 (Pl’) (Pz')z
(3.102)

~2y _ CI(1/CI - (P)?) 32 _ Ci((P})? -1/C%)
27 (P -(PPE TR (PP -(P)E

Thus the solutions of the canonical problems (3.89), (3.90) are given by

[o o]
m - r— 1 (m)
8¢ )(r,t)zz MW DLN T (= (r — 1)) V tim) )
=1 n=0 j=-n
x H(t —(r —1)P;), m =12, (3.103)
2 [o%) n
m —1/2 —Wir— 1 (m)
& )(r,t)zlz;r 1/2 =Wl 1){2:2n_'(t—(r—l)P,) Z gle"rJ}
= n= )J=—n
x H(t —(r —1)P;), m =12, (3.104)

where the wavefunctions F, are obtained from (3.93) and (3.98) with ‘™) =
1, £, o7 from (3.81), (3.86) augmented by (3.99) for T,.", (. The
strains s(r'r"),eg:) can now be determined from the relevant strain-displacement.

relations whereas the stresses o\ r’ ag:) can be found from (3.46), (3.47) to-

gether with (3.103) and (3.104).
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We now consider the following source condition for shear waves;

C? Ou, u, _
Z?( 52 = )l = H(), (3.105)

which we shall label as Problem 3. Proceeding as for the thermoelastic waves

we find that the rays associated with shear waves are

S =5(1), (3.106)

where the =+ signs are associated with outgoing and incoming waves, respec-
tively. We again choose the + sign which corresponds to the waves leaving
the boundary of the circular hoie in the positive radial direction. The amplitude

functions in (3.57) for wu,(r,t) are, on the o'’ °r hand,

n—1
Un(r) =172 "ujer™d, n>1 (3.107)
=0
where
[ K(7)uj~1,n—1, if 1<7<n-1,
cz L
Uy = 4 —C—,' if j=0,n=1,
_E;=I[I+C‘(j—1/2)+K(j)]u1—1.n—17 lf ] =0a Tl22
0, if 7<0orj>n-1
(3.108)
and

W) = (Co/2)M = (j = 1/2)). (3.109)



We have chosen
S=0, Fo(t)= H(t) (3.110)

from the source condition (3.105). We observe that if Fy(t) = f(t), for arbi-

trary f(t), the wavefunctions F,(t) are again

H(tyo
an:-ﬁ@-/ (t - ) f{E)de. 311
0

n!

The complete expansion of the solution to Problem 3 is then given by

oo n-—1
up(r,t) = {r7/2%" %(t ~(r=1)/C)" > upr T} H(t - (r - 1)/C,) (3.112)
n=1 1=0

The strain ¢,, and thestress o,, corresponding to the displacement (3.112)
may be composed as before.

In order to study the propagation of discontinuities in temperature, strains
and stresses generated by the source conditions (3.89), (3.90) and (3.105), we

now intredvce the usual bracket notation

[f]!=.4(r) = f(rst)|t=A+(r) - f(rvt)|t=.4‘(r)» (3113)

which represents the discontinuity of a function f(r,t) across a wavefront ¢t =
A(r). We first recall that the disturbance of Problem 3 generates shear waves

only. The discontinuities in €,, and o,, introduced by (3.105) evolve into
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discontinuities in these variables across the wavefront t = (r — 1)/C,. These

discontinuities are
)2
ereli=¢—nyc, = F2m 7% [orele=(r—nysc, =7 % (3.114)

The disturbances (3.89) and (3.90), on the other hand, generate thermoelas-
tic waves with the two wavefronts ¢t = (r - 1)P{ and t = (r - 1)P;. In
particular, we find that €,, is continuous whercas 6,e,r,0,r and o,
exhibit finite jump discontinuities across each wavefront. For Problem 1 where

the disturbance is purely thermal

]
1 { - )
C2(Pl)2(Pl)2 .
{1 — vd\ 2 —-1/2_ —W,(r—
[Err]t=(r—x)P{ = W r=1/2e—Wel l),

' (3.115)
(1) — (P2)2 ~1/2 ~W,(r—
o=t = T
[a‘(;‘g]t_( I)Pl = 2C’2(P2')2(1/2C3 _ (Pl')z) r"‘l/2e—W'l(r—1)
1 ={r— 1 (Pl,)z_(Pé)2 s
and
CAR PR = Ci(P)*(1/Cq — (P)?) r—1/2 ;= We(r-1)
=(r— 2 (PI)2 (P')2 ,
CHP(P)? 12 -
(1) — d 2 2,-Wi(r—
[ereli=(r—1ypy = AT 1/ (r=1)
:3.116)

(P)? .

[U(rlr)]t=(r—1)p; = (—pﬂ—___)(_};;)?r 1/2g=Welr=1)

[(7(1)](— -P = QC‘Z(P{)2((P2,)2 - 1/203) r‘1/2e—Wt(r—l)
welt=(r—1)P; (Pll)2 __(Pz)z .




(@]
[ |

For Problem 2, that is, for a purely mechanical unit step disturbance

Ci((P)? -1/C))(1/C} - (P)?) P 172, = Wer=1)

(P})? — (P})? ‘
(2) _ Cg(Pl')2(l/Cj —(P2')2)
£ ]t=(r—1)P{ - (P1')2 _ (P2')2

[9(2)]:=(r—1)P; =

—1/2 = Welr=1)

' (3.117)
(0!2] = (1/C3 - (B)°) Pm1/2 = We(r=1)
rr Jt=(r—1)P| (Pl,)2 — (P2,)2 4 '
ey €GP = (P e,
pel TN (P2 = (P '
and
oo CHBR = VCH/CE (PO _ups —swirn
T (P~ (B,)?
[5(2)] _ = CZ(Pé)z ((Pll)2 - 1/03) r1/2p=Welr-1)
rr lt=(r—1)P; Pl,)2 — (P2,)2 .
(3.118)

PHY?—1/CYH ., —wire
0D eqoorypy = L ZYCD) appiirn
A

[0(2)] = 203(1/20'2 — (P2’)2)((P{)2 — I/Cj) r—l/ZC—Wl(r—l)
pelt=tr=0F; (P — (P})? '

Recalling (P})? > 1/C%? and 1/2C? > 1/C% > (P;)? we see from (3.115),
(3.. 3), (3.117) and (3.118) that for both canonical protlems the jumps in
0,e,, and o,, are all of the same sign at the slower wavefront, whereas
at the faster wavefront the jumps for 6 are of opposite sign to those for
Erry Orr and 04, For both canonical problems the sign of [7,p)i=(r-1)p
depends on the relative magnitudes of (P{)? and 1/2C?. Therefore, for
(P})? < 1/2C?, that is, for v} > 2C? the jumpsin 6 and o,, areof
the same sign whereas for (P})? > 1/2C? or, equivalently, v? < 2C? they

are of opposite signs at the slower wavefront. These results provide further
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verification to the related results of Sawatzky and Moodie [14] as well as offering
new information pertinent to one dimensional circular geometry.

The ray series method employed in this thesis is suitable not only for the
study of the propagation characteristics of thermoelastic disturbances but also
for numerical evaluation of the solution behind the wavefronts. In the next
section we present numerical results for the case in which the present theory

reduces to the linear theory of Lord and Shulman (7).

(B) Numerial Results

In this section we specify the relaxation functions of the thermr -lastic
plate as

et/

alt, = — B(t) =0. (3.119)

The relaxation functions given by (3.119) are made nondimensional according
to the scheme (3.39). The propagation characteristics of thermomechanical dis-
turbances in thermoelastic half-spaces for which the relaxation functions are
defined by (3.119) have been studied in [14] in detail. We note only that with
this choice of relaxation functions the relaxation coefficients in the expansions

(3.36), (3.37) become

af =(-1)'r~0*D 0 30 =0, (3.120)

where 71 is the nondimensional thermal relaxation time.



(1]
-1

An analogous of our Problem 1 in thermoela. tic half-spaces whose heat
conduction obey the Maxwell-Cattaneo relation has been studied by several au-
thors {31-33] by using Laplace transforms. Assuming <5 is small, they inverted
the transforms analytically and illustrated the nuraerical results graphically. Re-
lated numerical results obtained from a ray series solution ":» ¢ been dis; layed
graphically in [14], as well. For comparison purposes we choose the order of
magnitude of thermal parameters to be the same as m the abo ationed
references and display the numerical results for Problem I in Figs. 3.1-3.6. The
numerical results are obtained with the techniques introduced in Chapter Il. In
all of the figures, the ratio of C? to C? is chosen as three. This is because
of the fact that the isothermal Lame’ constants A and pu are of the same

magnitude for most of the materials [34].

In Figs. 3.1 and 3.2, we plot the nc-  ..ensional temperature and nondi-
mensional radial stress against nondimensional time for the values « rmoelas-

tic parameters used in [14]. These plots indicate that the discontinu.. s at the
quasi thermal wavefront decay faster with radial distance than the discontinu-
ities at the quasi-elastic wavefront. In Figs. 3.3 and 3.4, we depict the influence
of the thermoelastic coupling constant on the evolution of discontinuities. It is
clear that changes in the thermoelastic coupling constant at small values of ~
have no s:gnificant influence on the response of the medium to the purely ther-
mal disturbances. These results are in agreement with the results of the above

mentioned references. The character change of the fast and slow wavefronts is
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examined in Figs. 3.5 and 3.6. It is seen that whether the quasi-thermal or the
quasi-elastic wavefront is {aster, the maguitude of the temperature immediately
after the arrivid of the quasi-thermal wavefront is almost identical in both cases.
For both situations the temperature response of the material is the same after
the arrival of the second wavefront. We also see ' hat if the quasi-thermal wave-
front is slower then the sign of the jump for the circumferential stress at this
wavefront is negative whereas it is positive in the other case. This result is be-
cause of the fact that one of the thermoelastic wavespeeds is very clos to  Cy
while the other lies near (aJ)!/?. Consequently, if v, is near Cg then the
condition v} >2C? holds and the jump for the circumferential stress at the
slower wavefront is positive. If v, lies near (a9)!/? then both v} > 2C?

and  v? < 2C? may happen although the second condition is expected for

most physical situations.



N

. 1 L . A1 1 - 1 1 1

(@)
(7
W i
o

ﬂ d
o
« |
o ”"—-’

’/

‘4 ,”” o
© "
G I -
e i

g : "
- (
—_ :
e l

- i N
o )
o s~
o JN i~

| | L | | LB | LB L | L ]
0 1 2 3 4 S 6 7 8 9 10

Fig. 3.1. Variation of non-dimensional temperature with non-dimensional

time at r =20(=), r =3.0(-—) for C?=1.0, =230, ~v=005



60

4
-
>
o
[]
- =
«
* o
o
$
0,-,.-* o
- o
[ g
b s
o
]
o -
o
.TT1llllr1
0 1 2 3 4 S 6 7 8 9 10
t

Fig. 3.2. Vanation of non-dimensional radial stress with non-dimensional

time at r=20(-), r =3.0(~—-) for C2?=10, =30, 7=0.05



o
> | ] 1 1 g 3 - 1 i 4
o
- -
©
w4 g
- o
o~
-_ o
L]
o
6 n i
&
.q =
o
- =
-
ﬁ‘ r
L]
o
- -
o
o
o T

Fig. 3.3. Variation of non-dimensional temperature with non-dimensional

timeat r=20 for C?=10,7=230,v=001(-), v=0001( -,



1 . | » y A 1 1 A
o
N
— =
o
]
N -
(]
@
'- p
o
[}
O¢r =1 o
‘1 p=
o
-«
@® _ -
o
]
- e
7
o el
O r~
~N
o
! — T T | I S— | T T T
0 1 2 3 4 S 6 7 8 S 10

€4

Fig. 3.4. Variation of non-imensional radial stress with non-dimensional

time at r =20 for C; =10, 7r=230, ; =0.01(-), v =0.001(—-)



o
[ g J | A 1 i 1 . 1 1 1
o
s
. o
o
- : —
9 |
‘q l e
o
i
6 { u
i i
o {
0.‘" { -
{
|
- ] -
|
- l
- { -
: |
o |
i~
~ -
o’ Tt r
o |
o 14
| | 1 L L | | 1
0.0 1.4 2.8 4.2 S.6 7.0

Fig. 3.5. Variation of non-dimensional temperature with non-dimensional

time at r=20 for C2=10(-), C3 =027 por 20,4 000



64

4 1 1 1 1 1 1 1 1
o
o
|
!
- ! o
|
o |
o~ i
oc-q ' P
|
! i
- ' p—
{
l
i ll p
o
o /
Cq o
o
[}
O _ e
@
o
! LIS T i a § T | T v
0.0 1.4 2.8 4.2 S.6 7.0
t

Fig. 3.6. Vanation of non-dimensional circumferential stress with non-

dimensional tune at  r =20 for C?=1.0(-), C? =0.25(——).



CHAPTER 1V

Conclusions

The theory of Gurtin and Pipkin, and Chen and Gurtin introduces finite
speeds for the propagation of thermal transients in rigid materials and eliminates
the problem of instantaneous propagation of thermal disturbances. This theory
implies two finite speeds of propagation for thermomechanical disturbances in
deformable materials. According to this theory, shear waves which generate no
volume changes are not affected by thermomechanical coupling. This result 1s
in agreement with that of the theories based on the classical theory of heat
conduction. In the case of thermoelastic materials, we have shown that when
al/C? < 1 quasi-elastic waves whereas aj/C7 > 1 quasi-thermal waves
propagate faster through the medium.

In this thesis we have employed the ray series metaods to solve the integro-
partial differential equations of the linearized theory of Gurtin and Pipkin, and
Chen and Gurtin for inhomogeneous rigid and homogeneous elastic materials.
The methods are formal, directly yic.u complete asymptotic wavefront expan-
sions and ideally suited to numerical computation. The methods provide not
only a formal procedure to derive the magnitude, decay and velocity of prop-
agation of discontinuities at the wavefronts but also a description of the be
haviour of the field variables for some distance behind the wavefronts. The
Padé extended ray series solutions, on the other hand, offer a description of the

behaviour of these variables for larger domains of physical interest. All of the

65
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mumerical results presented in this thesis are those obtained from the ray series

methods in conjunction with the Padé approximants.
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