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Abstract 

Geostatistical modeling in presence of extreme values needs special attention. 

Certain extreme high values known as outliers require proper treatment or mineral 

resources may be overstated. A number of methodologies are proposed in this 

thesis to identify and manage outliers. The main goal of the outlier management 

strategies is to keep the outliers but control their influence on local block 

estimates, if required, by reducing their values. 

The variogram is an essential geostatistical tool that is highly sensitive to outlier 

high values. There are alternatives to the experimental traditional variogram. The 

pairwise relative variogram is known to be a very robust alternative to the 

experimental traditional variogram in presence of outlier high values. There are 

two issues with the pairwise relative variogram; (1) an unknown sill, and (2) its 

convergence to the wrong variogram. Solutions to both of these problems are 

developed and documented in this thesis.  

Another contribution of this thesis is a simulation-based approach for cutting 

outlier values. The volume of influence of an outlier is identified. The uncertainty 

in the mean of the volume of influence is established by simulation. Then, the 

outlier value is reduced until the estimated quantity of metal within the identified 

volume is reasonable relative to the distribution coming from simulation. The 

outlier management strategies presented in this thesis will provide practical 

assistance for geological modeling for engineering evaluations.   
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Chapter 1 – Introduction 
 

 

1.1 General Problem Area 

The mining industry is of great societal importance due to the quantity of 

resources needed to sustain and develop our quality of life. The mining industry 

extracts many different commodities including metals, coal and gold. A mineral 

resource is a portion of a deposit that may become of economic value. Mineral 

reserves are resources that are technically and economically feasible to extract. 

Determining the location, extent and grade in an ore body is an important part of 

resource estimation.  

Resource estimation often proceeds by constructing block models that divide the 

deposit into a three dimensional array of blocks. The grade in each block is 

estimated using the nearby data. Block models help to understand the value of the 

mineral deposit and the best sequence of extraction. Global resource estimation is 

needed for financial planning in early years. In later years, during production, 

local estimation is required for specific goals such as mine planning, scheduling 

and grade control.  

Geostatistics has evolved and proved its value since the late 1950’s for estimation 

of grades. The integration of geology and geostatistics is routinely considered in 

resource estimation. A hierarchical framework is often applied for resource 

estimation. Some steps include the examination of the geology of the mineral 

deposit, careful data analysis, quantification of the spatial character of the grades 

in the deposit, then estimation and perhaps simulation of a block model. 

Simulation is used especially for uncertainty quantification.   

The block model supports decision making; the drillhole data are used in the 

block model construction. There are concerns if the block model does not 
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accurately represent the deposit. The block model should be globally unbiased.  

Care must be taken not to overstate or understate the resource. Block models 

should minimize conditional bias to avoid overstating or understating the grade 

conditional to an estimate. Oversmoothing or undersmoothing will exacerbate 

conditional bias (Glacken & Snowden, 2001).  

A recurrent problem in the estimation and simulation of a block model is extreme 

values or outliers. These values make the variogram noisy and difficult to 

interpret. They also introduce errors in the block model estimates or simulated 

values.    

 

1.2 Problem Definition 

Most of the grades in mining deposits are characterized by highly skewed 

distributions which contain some extreme values. Extreme values are high grade 

measurements that will be used for resource estimation without change. The word 

outlier is used for high grade measurements that are treated somehow, for 

example, limited to a maximum grade value. An outlier can be defined as an 

observation that seems erratic when compared with the vast majority of the data 

values (Sinclair & Blackwell, 2002). If the outlier is a result of an error, it should 

be investigated and removed from the dataset. This study considers that the 

outliers are valid analysed samples; errors have been corrected in the dataset, but 

the unwarranted use of extreme values may introduce errors in the resource 

estimation.  

Many of the variables in mining are grades that are mass fractions of some 

mineral species. Some of the data distributions have low grades outliers, but it is 

not very common (Rossi & Deutsch, 2013). The data distributions are mostly 

positively skewed since there cannot be negative grades. Extreme high grades are 

more common in precious metal deposits. These high grades have great economic 

value and must be treated carefully. Arbitrarily eliminating them to reduce their 
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influence could cause an underestimation of the value of the deposit. On the other 

hand, leaving outliers untreated may lead to overestimation particularly close to 

the high grade outlier samples.  

Outliers influence the global distribution and preliminary resource estimates. 

Resource estimation requires statistical parameters for modeling. Outliers strongly 

affect the statistical parameters such as the mean, variance, correlation coefficient 

to secondary data and the variogram. The major issue is the estimation of high 

grade areas that may not exist.  

Outliers have a strong impact on the variogram measure of spatial continuity. In a 

geostatistical study, the spatial continuity is an important aspect of local 

estimation (Isaaks & Srivastava, 1988). By improving the quality of the 

variogram, the estimation of local grades would be improved.  

There is a need to manage the outliers through the resource estimation process. 

From the beginning of the procedure of resource estimation including collecting 

and interpreting the data to the end where reasonable decisions should be taken.  

 

1.3  Literature Review 

1.3.1 Outlier Detection 

Outliers may be recognized by some statistical parameters such as the mean plus 

or minus two or three standard deviations (Sinclair & Blackwell, 2002). If data is 

outside of this interval, it might be considered an outlier. Outliers may be detected 

by graphical tools such as histograms, probability plots and scatter plots. 

Detecting extreme values with graphical and statistical methods does not 

necessarily indicate that the data is an outlier; these techniques illustrate the 

difference of these data with the vast majority of the dataset.  
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Histograms are an effective tool to show the grade characterizations. The shape of 

the distribution is observed. The lognormal cumulative frequency or probability 

plot is an appropriate tool to observe outliers. Probability plots are more useful 

than the histogram because each data point is shown. An example of a lognormal 

probability plot of gold grade is shown in Figure 1. The points at the high end of 

the distribution can be considered as extreme values. There is less than 1% of data 

above 28 g/t. Yet these values do not fit nicely with the rest of the high grades. 

These values may need to be controlled to reduce their influence on resource 

estimation.  

 

Figure 1: Probability plot of Au grade (Deutsch, 2011) 

 

Scatter plots can also be used in the data evaluation process to demonstrate the 

relationships between the grades and each of the geologic variables. Scatter plots 
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can be used for quick checking of outliers in both duplicate analytical data and 

correlated variables (Sinclair & Blackwell, 2002). In some cases, the data are 

expected to follow a well-defined relationship. If a data value is far from the 45

line, it can be considered as an outlier (Figure 2).  

 

Figure 2:  Scatter plot of paired data with an outlier (Sinclair & Blackwell, 

2002). No units are given, but variables x and y are grades measured on 

duplicate samples 

 

1.3.2 Outlier Management for the Histogram 

Outliers can be left alone, cut or capped to a certain limit or treated specially in 

subsequent geostatistical modeling. There are often local customs within certain 

companies or mining regions; these local customs should be considered. 

Companies or geological provinces may have specific standards of capping such 

as 1.0 oz/ton or a fixed quantile of the distribution. 

In much of resource estimation, the histogram is used in various methods to 

characterize the mineral deposit. The grades may be preferentially clustered, so 
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the influence of location bias in a histogram should be detected and removed. One 

method for correcting the location bias is the polygonal declustering method 

which weights the data values proportional to polygonal areas or volume 

influence (Isaaks & Srivastava, 1989; Sinclair & Blackwell, 2002). Another 

approach is cell declustering where each cell of a grid contains one or more data 

are equally weighted (Figure 3). This helps estimate an unbiased histogram.  

 

Figure 3: Clustering of a data variable to produce an unbiased histogram 

(Sinclair & Blackwell, 2002). This figure is not scaled because it is a fraction 

of a larger domain as an example to illustrate the clustering method 

 

Some geostatistical methods have been developed to deal with outliers in highly 

skewed distributions. One such parametric method is disjunctive kriging 

(Matheron, 1976), which depends on the stationarity assumption and indicator. A 

nonparametric method is probability kriging, a technique that needs a separate 

variogram and kriging for each cutoff (Parker, 1991). The simplified indicator 

method to dealing with outliers is proposed (Journel & Arik, 1988), but an 
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arithmetic average is used to model the mean of the last class, which may lead to 

an inaccurate estimate of the mean if the data considered in average calculation 

are outliers.  

Parker proposed a method to merge the simplified indicator kriging and modeling 

of the class mean (Parker, 1991). This method uses the probability plot to create 

multiple subpopulations for recognizing the outliers by breaking the original 

distribution into two less skewed lower tail and strongly skewed upper tail. Then, 

a specific distribution is assigned to the upper tail of the grade distribution. The 

lognormal distribution could be one of the assigned distributions. The breakpoint 

for dividing the distribution into two is based on the cumulative CV (Figure 4). 

The point that the cumulative CV accelerates fast, the influence of outliers on 

upper tail increase and that point should be considered the breakpoint. These 

methods are all empirical and based on visual inspections.  

 

Figure 4: Cumulative CV for specifying the breakpoint (Parker, 1991) 
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The metal at risk is another tool which is proposed to measure the potential effect 

of outliers (Deutsch, 2010). The metal as risk is defined as the difference between 

the data value and the mean. The metal at risk would be high for outlier high 

values in a lognormally distributed data. An illustration of metal at risk for the 

goldcopper.dat dataset is shown in Figure 5. The data points at the upper right of 

the figure indicate the high values which their effect decreased by reducing them 

to the solid line fitted model.   

 

Figure 5: Metal at risk plot for goldcopper.dat (Deutsch, 2010) 

 

1.3.3 Outlier Management for the Variogram 

Variograms are an essential input in geostatistical calculations. The variogram is a 

measure of the spatial variability of the phenomena under study. The variogram is 
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a spatial correlation function that is used in kriging to estimate grades at the 

unsampled locations. The variogram model derived from a good experimental 

variogram has useful information of data. The variogram is also used to determine 

the effect of change of support in volume variance relations. A robust variogram 

is important in resource estimation. 

The correlogram is defined as the correlation at points separated by distance h . 

The correlogram may be more stable than the variogram and more resistant to 

erratic data as it accounts for the local head and tails means and variances at 

different lag distances (Isaaks & Srivastava, 1989). The correlogram is commonly 

used when facing the high skewed data distribution in geostatistics. 

Practice has shown that the noise is often best dealt with by the pairwise relative 

variogram. This relative variogram seems to be one of the most robust alternatives 

to the traditional variogram (David, 1988). The pairwise relative variogram is 

calculated using a method similar to the traditional variogram. The difference 

between them is a weight in the denominator, which serves to reduce the 

influence of outliers and clustered data. 

 

1.3.4 Outlier Management for Block Modeling 

Block models should minimize overstating or understating the grade. 

Oversmoothing where high grades blocks are underestimated and low grades 

blocks are overestimated is a result of conditional bias which can be solved by 

choosing the proper block size in kriging. Undersmoothing as another result of 

conditional bias happens where high grade blocks are overestimated and low 

grade blocks are underestimated which the solution could be change in grade 

relationship in either the block estimate or data assays (Glacken & Snowden, 

2001).   

One of the best unbiased block estimations is the kriging estimation, which is a 

distribution free estimator. In a skewed data set, the kriging estimation would not 
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be ideal. Robust kriging is presented to deal with the highly skewed data set 

(Cressie & Hawkins, 1980). The use of robust kriging in ore body modeling and 

resource estimation is discussed later by Costa (Costa, 2003). In robust kriging 

(RoK) the high values are picked by some choice of the threshold and edit the 

high values in RoK based on the kriging variance. This kriging variance illustrates 

the difference between the high value and the weighted median of local data. 

The geostatistical model (e.g., block model) should be able to deal with outlier 

high values in the resource estimation process. A top-cut model is a model which 

is developed to deal with outliers and is supposed to reduce the conditional bias 

(Rivoirard, Demange, Freulon, & Lécureuil, 2012). This method is based on 

dividing the variables into truncated grades, weighted indicator above top-cut and 

residuals. The estimation in this procedure is based on the truncated grade and the 

indicator cokriging and a separate kriging for residuals, because the residuals are 

spatially independent. 

 

1.4  Thesis Outline 

In this thesis the goal is to find the best way to deal with outliers. The outlier 

values could cause problems in resource estimation. 

This thesis consists of six chapters and an appendix. Chapter 2 is based on 

univariate statistical approaches to detect and manage the outliers. Spatial outliers 

are explained and detected. The probability plot which is one of the best tools to 

observe high values is used to reduce the value of outliers and manage them. 

Chapter 3 describes the importance of a good variogram for interpretation and 

modeling. The experimental variogram is sensitive to high values. The pairwise 

relative variogram is used as an alternative to the traditional variogram in dealing 

with outlier high values. The two issues in the pairwise relative variogram, (1) an 

unknown sill, and (2) its convergence to the wrong variograms are discussed and 

resolved in this chapter.    
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Chapter 4 is proposed methodologies to reduce the effect of outliers in block 

estimation. The volume of influence of an outlier is defined.  The value of an 

outlier is decreased to reduce its influence on the nearby grid blocks. 

Chapter 5 presents a conclusion of this study and a discussion about conceivable 

adjustments to the proposed methods and future works.  

The references are presented in Chapter 6. The FORTRAN programs and 

parameter files written and used for this study are shown in the appendix.     
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Chapter 2 - Univariate Management 
 

 

2.1  Univariate Statistical Approach 

Data analysis using statistical tools is an essential step in every mineral resource 

estimate. Statistics provide mathematical tools that help in collecting, organizing 

and interpreting data. The probability distribution of one variable at a time is 

called a univariate distribution. Univariate statistical analyses such as the 

histogram, mean, standard deviation and probability plot are useful in 

summarizing the data and helping to understand the data quality. The univariate 

approach should be able to recognize the outlier high values in the process of data 

checking. The graphical tools such as the histogram and probability plot can be 

used in both identifying and managing the outlier high values.  

Extreme values are valuable data as they define the richest areas, but they should 

be controlled to reduce their inordinate influence on modeling and estimation. The 

mean is a statistical measure that is very sensitive to extreme values and has a 

large effect on resource and reserve estimations. The proposed outlier 

management strategies such as cutting to a fixed threshold and using the 

probability plot to reduce the high values to a fitted population are possible ways 

to correct the sample mean and reach the population mean.  

 

2.1.1 Cutting to Various Thresholds 

Cutting or capping the outliers to a fixed threshold value is a common strategy 

when facing outliers. There is a possibility of some high estimation after capping 

depending on the choice of a capping threshold (Rossi & Deutsch, 2013). The 

proposed outlier management is based on the mean of the population and the 

mean of the samples drawn from the population. The hope is to identify samples 
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where the mean is higher than the population mean, and to figure out the 

characteristics of the high values that cause the higher mean. In real datasets, the 

distribution of data and the population mean are unknown. For that reason, a 

simulated lognormal dataset with a known mean is chosen to examine this 

method. Then, by using the spatial bootstrap sampling program (Deutsch, 2004), a 

fixed number of samples are taken from the dataset. The distribution of 

uncertainty to the mean is going to be Gaussian based on the central limit 

theorem. The goal is to manage the mean values above the population mean, but 

to leave the samples with mean values below the population mean. 

The Gaussian and lognormal distribution are the two most important univariate 

distributions in a geostatistical study. The Gaussian distribution is important 

because it is used extensively in uncertainty characterization and simulation. It is 

fully characterized by its mean and standard deviation. The lognormal distribution 

is widely used in geostatistics because most of the mining and earth science 

variables are non-negative and highly skewed. The lognormal distribution is also 

characterized by its mean and standard deviation in either arithmetic or 

logarithmic units (Rossi & Deutsch, 2013). The univariate distribution that is used 

in here is lognormal distribution because the outlier high values exist more in 

lognormal distribution.  

Consider a 2-D spatial domain with values from a lognormal distribution with a 

long tail and some very high values. The population mean is 1 and the standard 

deviation is 2.5. The histogram of this lognormal distribution is shown in Figure 

6.  
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Figure 6: Histogram of lognormal data 

 

Quantiles could be used to determine a cutting value based on the data 

distribution. For example sometimes the data are capped to the 0.9, 0.95 or 0.99 

quantiles. In this lognormal distribution the three values of 2.10, 3.56 and 12.14 

are the values for the P90, P95 and P99. Samples of 100 data are taken from this 

dataset for 2500 times. The distribution of uncertainty in the mean will be 

approximately Gaussian based on the central limit theorem. The mean of this 

distribution is close to the population mean. Figure 7, Figure 8, and Figure 9 

shows the result of capping the data to the 90, 95 and 99 percentiles. In plot a’s 

the naive true mean is plotted against the outlier management strategy mean. The 

proposed method attempts to reduce the risk of observing mean values that exceed 

the population mean values and to optimize (maximize) the difference between 

spaces 
1A  and 

2A : 

          
1 2           Max objective function A A                                          (1) 
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Section 
1A  represents the space between the naive mean and the outlier 

management strategy corrected mean on the upper right quartile. The 
2A

illustrated this different space on the lower left quartile (e.g., Figure 7-a). The 
1A  

section should reduce as much as possible because the means in this section 

correspond to those that are higher than the population mean. But the averages in 

section 
2A  should not reduce much because the averages in section 

2A  are 

already below population mean.  

In plot b’s the histogram of the distribution of the corrected mean is compared 

with the original data mean distribution. 

 

 

Figure 7: Cutting the values above 90% of the data to the value of 2.10. In 

plot (a) the means in section 
1A  are reduced but the averages of 

2A  decrease 

significantly. In plot (b) the histogram of the corrected mean is much thinner   
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Figure 8: Cutting the values above 95% of the data to the value of 3.56. In 

plot (a) the averages in both sections reduce properly and are more 

acceptable. In plot (b) the histogram of the corrected mean reduces well in 

the upper side of the population mean, but the deduction in the lower part is 

still high  

 

Figure 9: Cutting the values above 99% of the data to the value of 12.14. In 

plot (a) the averages in both sections change slightly. In plot (b) the 

histogram of the distribution of the corrected mean is almost the same as the 

naive mean   
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2.1.2 Manual Method  

Cutting extreme value could be done manually by observing the probability plot 

of each sample and reducing the high values based on visual inspection. One 

hundred of the previous samples are taken randomly and the high values are 

reduced. The result is illustrated in Figure 10.  

 

Figure 10: Manually reduce the outliers of the 100 samples. In plot (a) the 

means in 
1A  reduce more than the averages of 

2A . In plot (b) the histogram 

of the corrected mean is reduced properly   

 

 

2.1.3 Probability Plot Fitting 

Extreme values could also be observed through probability plots. A lognormal 

probability plot with fitted lognormal distribution could be used to divide the data 

distribution into two lognormal distributions with an arbitrary threshold (Parker, 

1991). A lognormal fitted model permits the extreme values to be fitted back to a 

straight line on the lognormal probability plot. The fitted nonparametric model 

used in this study assumes that the population is separated based on one 
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probability threshold. The assumed probability distribution functions in a fitted 

nonparametric model that separates two distributions (see Figure 11). 

 

 

Figure 11: Probability distribution assumptions associated with the fitted 

non-parametric model (Deutsch, 2010) 

 

One of the samples from the previous example of lognormal distribution with the 

highest mean is picked to show the procedure of identifying the outliers on the 

upper lognormal fit to the data values below an arbitrary threshold. After reducing 

the outlier values, the mean of the samples is computed and shown (see Figure 12) 
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Figure 12: Probability plot of one sample of lognormal distribution with 

corrected outlier values for the arbitrary threshold (e.g., 90) 

 

 

If the outlier high values are less than the red fitted lognormal they will be left 

alone because increasing the values might introduce a bias not based on data (see 

Figure 13). In some cases these high values do not cause a significant increase in 

the average of the samples, but sometimes they cause high averages that are 

actually less than the fitted model. Therefore, leaving them untreated would cause 

some under correction in the final results.  
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Figure 13: Probability plot of another sample with outlier high values that 

are less than lognormal fitted model 

 

 

The result of correcting the means of all samples using the fitted lognormal 

probability is shown in Figure 14. 
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Figure 14: Reduce the outliers of the 2500 samples with lognormal fitted 

model. In plot (a) the means in 
1A  reduce but the deduction of averages in 

section 
2A are minimized compared with other methods. In plot (b) the 

histogram of the corrected mean is reduced properly 

 

 

2.2  Spatial Outliers 

The distributions of data are often highly skewed. In Geostatistics a major concern 

is related to spatial outliers. These spatial outliers are data values that are 

unusually high with respect to their nearby data. An extreme high observation 

among other high values and few low values often has less of an impact on block 

model estimations. High values among very low values are considered as spatial 

outliers and may need to be controlled. The proposed detection technique based 

on the uniform rank transform of data and its estimation identify the spatial 

outliers. 
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2.2.1 Ranked Transformed of Data and Estimation 

Most of the data in geostatistical study and mineral assays are positively skewed, 

that is, approximately lognormally distributed. Many data are so skewed that they 

contain anomalously high values. A normal score or uniform score transform of 

the original data could be used for detecting outliers. Consider a silver variable in 

a dataset, “Red.dat”, from a mineral deposit. This variable is skewed and contains 

some high values (up to 50) amongst very low values and zeroes (see Figure 15).  

 

Figure 15: Basic information of Ag value: (a) Histogram and, (b) Location 

map 

 

The differences between values that are close together may be used to identify the 

outliers. The estimation of the silver grade is computed by kriging. The scatter 

plot of the true and estimated value and the location map of estimation are shown 

in Figure 16.  
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Figure 16: (a) Location map of estimation Ag and, (b) the scatter plot of the 

true and estimated values 

 

On the scatter plot of the true versus estimation of the silver variable (Figure 16-

b), the biggest value is 51.77 g Ag/t (data number 32), which is considered the 

worst underestimation at its location. This data is surrounded by both high and 

low values. The other data (data number 22) with the value of 27.77 g Ag/t is 

surrounded by two zero values and the other nearby data are low as well. The 

underestimation at the location of data 22 is higher than the underestimation at 

location of data 32. 

In the proposed method for detecting the outliers, the data values and their 

estimations are rank transformed to become uniform between zero and one. These 

ranked true values and estimates are plotted and the projection of the data points 

on the 135 degree line is calculated (see Figure 17). The outliers detected by this 

method are different than simply considering the univariate distribution.  
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Figure 17: (a) Scatter plot of uniform rank transformed of true and cross 

estimation of Ag values and, (b) projection of data points on 135degree line 

 

As shown in Table 1, data number 22 with the lower value compared to data 16 or 

data 32 causes a higher underestimation on its location and overestimation on 

nearby data (data number 39 and 40). 

Table 1: Different outlier detections of the silver variable 

 Previous works   

Worst underestimation  Worst overestimation  

Data number Data value Data number Data value 

Data32 51.77 g/t Data39 0 g/t 

Data16 40.46 g/t Data10 0 g/t 

Data22 27.77 g/t Data51 0 g/t 

Data35 28.64 g/t Data48 0 g/t 
 

 Current works   

Worst underestimation  Worst overestimation  

Data number Data value Data number Data value 

Data22 27.77 g/t Data39 0 g/t 

Data16 40.46 g/t Data48 0 g/t 

Data26 7.54 g/t Data40 0 g/t 

Data32 51.77 g/t Data51 0 g/t 
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The 135 degree line in this paper is defined as the central variation error (CVE). 

The range of this line is between -1 for underestimation (high value outliers) and 

1 for overestimation (low value outliers). The first two plots on Figure 18 show 

the CVE line and its behavior against the silver value. In other words, the negative 

part is defined by the estimations that are lower than their actual value and the 

positive section is related to the estimated values that are higher than their original 

data value. The values of CVE based on their location are shown in Figure 18-c. 

The range of the location map is changed from blue for the highest 

underestimation to red for highest overestimation. 
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Figure 18: (a) Defining the range of CVE, (b) Scatter plot of silver values and 

CVE, (c) The location map of the value of CVE from the highest 

underestimation (blue) to the highest overestimation (red) 
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2.2.2 Sensitivity of Resource to Spatial Outliers 

In a geostatistical study, the high value outliers are of greatest concern. In 

studying the outliers, it is preferable to define a threshold value. The values 

investigated are the resources such as global average, average above cutoff, 

fraction above cutoff and quantity above cutoff. Thresholds can be considered as a 

test of sensitivity of extreme values to these local and global resource estimates.  

Values above a certain cutoff grade are of the greatest interest. To study this issue, 

consider the silver variable introduced above. The upper half of the data is 

selected. Then, by reducing the value of each data one at a time, the estimation 

resources will decrease (see Figure 19-a). Another approach is to eliminate each 

data value. To study the global average in this way, each time the estimation 

process is done without one of the data and the average of estimation values is 

computed (see Figure 19-b). As shown in Figure 19, data number 32 has the 

biggest value and the greatest effect on reducing the global average in both 

methods. Its influence is even more that that of data number 22, which might be 

considered as the more important spatial outlier. One explanation for this effect 

could be the higher underestimation of the value of data 22, which reduces its 

effect on the global mean with no cutoff threshold. 
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Figure 19: Difference from the estimation average: (a) by reducing the data 

value of Ag and, (b) by removing each data value 

 

2.2.3 Effect of Outliers on Grades above Cutoff 

By defining the cutoff grade, the fraction of data above the cutoff, the average of 

ore grade and the quantity of resource above the cutoff are the factors that should 

be considered when faced with outliers. To see the impact of outlier high value on 

the average and quantity above cutoff, the silver variable is once again examined.  

The silver values above this cutoff value are selected. The average of removing 

each data in turn is calculated and compared with the estimated average above the 

cutoff. The histogram of these changes in average is shown in Figure 20. The two 

outliers (data numbers 16 &22) identified above have the largest impact on the 

average above cutoff.  
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Figure 20: The histogram of changing the average of estimation in absence of 

each data for the cutoff grade for silver 

 

 

With a cutoff value of zero, all of the data values are treated as ore. The tonnage is 

equal to the entire area tonnage and the average ore grade will be the global mean 

(Isaaks & Srivastava, 1989) . As the cutoff increases, more values will be rejected 

as waste and the quantity of ore drops. Figure 21-a illustrates the decrease in 

quantity of silver value by increasing the cutoff grade. With a low cutoff, the 

highest outlier has a greater effect on the quantity of metal above the cutoff. 

Figure 21-b shows almost the same behavior by outliers. The two most important 

outliers (data numbers 16 and 22) have the greatest impact on the average above 

cutoff. 
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Figure 21: For the different cutoff value, the change in quantity (plot-a) and 

average of ore (plot-b) for the estimation value and four of the more 

important outliers 

 

2.3  Recommendation 

2.3.1 Apply Univariate Analysis 

In univariate analysis, the statistics of the data is treated statistically. The high 

values above some thresholds are chosen to be cut. In this method the cutting 

threshold can be chosen arbitrarily. Cutting all the high values above some fixed 

value to that value is generally accepted among geostatisticians. Most of the real 

world mining data are highly skewed. Choosing the 95
th

 or 90
th

 percentiles can 

cause a huge deduction in the estimated resource. In this situation the outlier high 

values are over corrected. On the other hand, the 99
th

 percentile may be too small 

and may not change the outlier high values enough. There should be some 

measure to decide the threshold that has the best results.  

The other univariate analysis based on the lognormal fitted model has a different 

work flow other than just cutting to a fixed threshold; the amount of cutting 
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depends on the lognormal probability plot. This method seems to produce the best 

result with respect to not over correcting. Applying the fitted lognormal 

probability is simple and just needs a proper cut off threshold to reduce the 

outliers above that.  

 

2.3.2 Spatial Analysis 

In spatial analysis extreme values could be examined spatially. Not all the high 

values are considered as outliers unless they have a significant influence on their 

nearby data. Spatial analysis concentrates more on outlier detection. If the interest 

is to find the spatial outlier then manage them, this method could be useful 

enough.    

 

2.3.3 Devise a Combined Approach 

Univariate analysis suggests different threshold values to cut the outliers such as 

different quantiles, manual cutting and deduction based on the lognormal 

probability fitted model. In all of these cutting methods, there might be some 

under or over correction which means managing outliers inappropriately. Over 

correction is a problem that needs attention because it is the most common error 

introduced by over-zealous outlier management.  

Small samples from a large simulated 2D data set are chosen to examine the 

results of cutting to each quantiles, the manual method and the probability plot 

that are shown in Table 2. After cutting the outliers, the mean of each sample is 

computed and the mean square error (MSE) of these averages from the mean of 

the samples before correction is computed. 

             * 2( )MSE m m                                                           (2) 
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Where 
*m is the corrected mean after cutting and m is the original mean of the 

sample.  

As mentioned above, avoiding under correction is more important. To avoid over 

stating the resource, weight can be introduced for computing a combined measure 

of both under correction and over correction.  

Under correction weight: 
2

3ucW                                                (3) 

Over correction weight: 
1

3ocW                                                (4) 

The proportion of each error is computed and defined as a proportion, as shown in 

Table 2. Another factor to consider in using the combined measure is the 

difference of the true mean of the samples and the mean of under correction or 

over correction. 

ucM = mean of under correction – true mean                                  (5) 

ocM = true mean – mean of under correction                                  (6) 

The combined measure (CM) in Equation 7 is computed using the parameters 

introduced through Equations 3 to 6.  

CM = * * * *uc uc uc oc oc ocW P M W P M   
   

                       (7) 

A higher MSE indicates a greater difference between the true mean and the outlier 

management strategy’s mean. The highest MSE belongs to cutting to the 90
th

 

percentile method. This result is likely due to more aggressive cutting of high 

values. The manual method has the lowest MSE. The manual method is more 

subjective and would require more effort and time with real datasets. The other 

low MSE belongs to the fitted lognormal probability plot because the deduction in 

high values in this method is more reasonable.   
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Table 2: Results of different methods of cuttings 

   Under Correction   Over Correction   

  

MSE 

 

Proportion 

(%) 

 

Mean of 

UC 

 

ucM  

 

Proportion 

(%) 

 

Mean of 

OC 

 

ocM  

Combined 

Measure 

(%) 

Cut to 

0.99 

0.055 38.9 1.203 0.189 61.1 0.825 0.189 8.7 

Cut to 

0.95 

0.083 8.2 1.130 0.116 91.8 0.741 0.272 8.9 

Cut to 

0.90 

0.141 0.7 1.066 0.053 99.3 0.651 0.363 12.0 

Manual 0.042 30.0 1.121 0.107 70.0 0.825 0.188 6.5 

Fit to 

population 

0.048 22.1 1.138 0.124 77.9 0.812 0.202 7.1 

 

The under and over correction are the two main reasons that make it important to 

compare the true mean and the corrected mean and compute their differences. In 

all of these outlier management strategies the proportion of over stating is higher 

than that of under stating. That is why the combined measure is used to state 

which is the better strategy. The lower measure indicates that the outlier 

management strategy is more acceptable with respect to the amount of over and 

under correction. The manual method like the MSE parameter, has the lowest 

measure, which is 6.5%. In the other methods, the lognormal probability fitted 

model has the second lowest measure, a combined measure of 7.1%.  
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As a result, the outlier management strategy based on the lognormal fitted model 

has the best outcomes of MSE and combined measure compared to other cutting 

methods. Therefore, it is a better outlier management strategy.  
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Chapter 3 - Variogram Management 

The variogram is an important input parameter in conventional geostatistics. The 

variogram model specifies the spatial variability of the regionalized variable. 

Almost all variables in every stationarity subset that will be used in modeling 

require a variogram (Deutsch, 2011). The variogram is a spatial function that is 

used in kriging. The model derived from a good experimental variogram contains 

useful information regarding the spatial distribution of data. The variogram is also 

used to determine the effect of change of support in volume variance relations. 

 

3.1 Traditional Variogram 

Consider a stationarity random function  ( );Z Au u  with stationarity mean m  

and variance 
2 . The variogram is the conventional measure of spatial variability. 

The variogram is defined as the expected squared difference between two data 

separated by a distance vector h:  

    2
2 ( ) ( ) ( ) ( ) ( )Var Z Z E Z Z    h u u +h u u +h                   (8) 

The variogram is sensitive to sparse data and extreme values. The traditional 

experimental variogram is estimated by calculating the squared differences of all 

pairs of data separated approximately by a lag vector h : 

 
( )

2

1

1
ˆ( ) ( ) ( )

2 ( )

N

i i

i

z z
N




 
h

h u u + h
h

                         (9) 

where ( )N h is the number of data pairs separated approximately by a vector h . 

For a given h , the ( )z u and ( )z u h data pairs can be plotted on a cross plot. The 

moment of inertia of an h-scatterplot is interpreted as the variogram (Journel, 

1983). 
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The experimental variogram is the average of the square of the distances between 

the point on the plot and the 45  line. See Figure 22.  

 

              

[ ( ) ( )]cos45d z z  u u h

 

2 21
[ ( ) ( )]

2
d z z  u u h              

 2 21
( ) [ ( ) ( )]

2
E d E z z  u u h

            

            2( ) ( )ZE d  h  

 

Figure 22: The variogram is calculated as the average of the distance squared 

of the points from the 45  line. These data are for illustration only and the 

units are arbitrary 

 

The variogram gives equal weight to all the data pairs. This causes problems 

when high values get paired with low values because the squared difference is 

very high. Figure 23 shows the quadratic weighting as the pairs depart from the 

45 line.  
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Figure 23: Contour plot of a conventional traditional variogram which gives 

equal weight to the pairs with equal differences. The colored lines represent 

the contribution of traditional variogram for each pair of data 

 

This weighting scheme of the traditional variogram makes it sensitive to extreme 

values. This sensitivity is increased with sparse data and the proportional effect, 

that is, the data available at short lag distances may be more variable than at large 

lag distances.  A shortage of data makes variogram interpretation and modeling 

more difficult (Cressie & Hawkins, 1980; Genton, 1998a). In presence of extreme 

high values an alternative may need to be considered. Some alternatives to the 

traditional variogram include the correlogram, normal score variogram, indicator 

variogram, pairwise relative variogram, madogram and rodogram.  
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3.2  Robust Alternatives to the Variogram 

3.2.1 Correlogram 

The correlogram is related to the correlation of the points separated by distance h

. It is calculated by subtracting the value of the correlation from 1.0. The 

definition of the correlogram is as follows (Isaaks & Srivastava, 1988; Srivastava 

& Parker, 1989) 

ˆ ( )
ˆ ( ) 1

ˆ ˆ( ) ( )
corr

C


 
 

h
h

u u + h
                                    (10) 

Where 

1 1 1

1 1 1ˆ ( ) ( ) ( ) ( ) ( )
n n n

i i i i

i i i

C z z z z
n n n  

     h u u h u u h                    (11) 

2

1 1

1 1
ˆ ( ) ( ) ( ) ( )

n n

i i i

i i

z z z
n n


 

 
   

 
 u u u u                              (12) 

2

1 1

1 1
ˆ ( ) ( ) ( ) ( )

n n

i i i

i i

z z z
n n


 

 
      

 
 u h u h u h u h                       (13) 

 

The correlogram may be more stable than the variogram and more resistant to 

extreme values as it accounts for the local means and variances at different lag 

distances (Isaaks & Srivastava, 1989; Machuca-Mory & Deutsch, 2007). The 

correlogram is commonly used with skewed data. The convergence of the 

correlogram is close to the traditional variogram but not exactly the same because 

the stationary variance is used in the variogram instead of the local variances 

assumed in the correlogram (Wilde & Deutsch, 2006). 
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3.2.2 Normal Score Variogram 

The normal score variogram is calculated in the same way as the experimental 

variogram but the original variable (Z) is transformed to a standard normal 

distribution (Y): 

 1 ( )y G F z                                             (14) 

Where G is a Gaussian or normal CDF and F is the CDF of the original data. This 

transformation makes the variogram more stable with respect to outliers and 

clustered data because the Gaussian transformation brings all data within a narrow 

range and removes the proportional effect to make the variogram better behaved.  

The major issue with the normal score variogram is its bias with respect to the 

original variable variogram. This variogram converges to something different 

from the reference variogram. However; some methods have been proposed to 

back transform the normal score variogram to the true underlying variogram 

(Chiles & Delfiner, 1999; Wilde & Deutsch, 2006). The normal score variogram 

can still be noisy and sensitive to sparse data. 

 

3.2.3 Indicator Variogram 

The indicator variogram is another alternative to the traditional variogram in 

presence of extreme values. Data transformation to indicators removes the 

sensitivity of data to outliers because there are only 0’s and 1’s after the indicator 

transformation and these indicator values are used instead of the data values 

themselves (Gringarten & Deutsch, 2001). An indicator variogram is calculated in 

the same way as the traditional variogram calculation, by using the i  rather than 

the Z values (Carr, Bailey, & Deng, 1985): 

1, ( )
( ; )

0,

c
c

if z z
i z

otherwise





  




u
u                                        (15) 
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Where cz  is a chosen threshold value that could be, for example, the median. For 

extreme cutoffs, the indicator variograms may become unstable (Journel, 1983).   

 

3.2.4 Madogram and Rodogram 

The madogram is calculated using the absolute difference between the paired 

( )z u  and ( )z u h data instead of the squared difference that is used to calculate 

the traditional variogram (Cressie N. , 1993; Deutsch & Journel, 1998). This 

feature makes the madogram more stable in presence of high values, because it is 

not magnifying the differences by squaring them. The madogram is defined as: 

( )

1

ˆ( )
1

( ) ( )
2 ( )

N

i i

i

v z z
N 

 
h

h u u + h
h

                                      (16) 

One can go further and calculate the square root of the absolute difference used in 

the madogram (Deutsch & Journel, 1998; Lloyd, Berbeloglu, Curran, & Atkinson, 

2004). This defines the rodogram: 

( ) 1

2

1

ˆ( )
1

( ) ( )
2 ( )

N

i i

i

v z z
N 

 
h

h u u + h
h

                                  (17) 

The madogram and rodogram may be useful tools in identifying large scale 

structures. The madogram takes just a partial spatial dependence structure for 

bivariate vectors such as ( )z u  and ( )z u h . The madogram cannot capture and 

characterize the full bivariate structure (Cooley, Naveau, & Poncet, 2006). These 

alternatives do not converge to the correct variogram. 

 

3.2.5 Pairwise Relative Variogram 

Practice has shown that the pairwise relative variogram is very stable. The 

pairwise relative variogram is calculated using a method similar to the traditional 
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variogram. There is a weight in the denominator that serves to reduce the 

influence of outliers and clustered data. The definition of the pairwise relative 

variogram estimator for strictly positive variables is: 

 
2

( )

2
1

( ) ( )1
ˆ ( )

2 ( ) ( ) ( )

2

N
i i

PR

i i i

z z

N z z







 
 
 


h u u + h

h
h u u + h

                               (18) 

The different weighting scheme in the pairwise relative variogram reduces the 

effect of outliers by giving them less weight, as shown in Figure 24. 

 

Figure 24: The weight scheme in the pairwise relative variogram (Wilde & 

Deutsch, 2006) 

There are two main issues with the pairwise relative variogram: 1) the sill of this 

variogram is unknown, which makes it difficult to have a precise interpretation, 2) 

the standard pairwise relative variogram does not converge to the traditional 

variogram of the original data.  
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3.3  Standard pairwise relative variogram 

3.3.1 Sill of the Pairwise Relative Variogram 

The mean, variance and the shape of the distribution are the three important 

factors on which the sill of the pairwise relative variogram depends. To see this 

dependence more, in a lognormal distribution, with different values for the mean 

and variance, the sill of the pairwise relative variogram is computed. An 

interesting result is the dependence of the sill of the pairwise variogram on the 

ratio of the square root of the variance to mean not the mean or variance 

individually. This ratio is defined as the coefficient of variation (CV). The 

pairwise relative variogram of an exhaustive standard lognormal distribution with 

the CV of one is shown in two horizontal direction in Figure 25. The approximate 

value for the sill of the pairwise relative variogram is 0.44.  

 

Figure 25: Two directional pairwise relative variograms for a standard 

lognormal distribution. The violet line is in the x direction. The black line is 

in the y direction 
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The sill of the traditional variogram is equal to the variance. The sill of the 

pairwise relative variogram in lognormal data has a connection with the 

coefficient of variation (CV). By increasing the CV, the value of the sill also 

increases (Figure 26).  

 

Figure 26: The relation between the CV and the sill of the pairwise relative 

variogram for lognormal distribution 

 

Outlier high values have little effect on the sill of the pairwise relative variogram. 

The corrupted lognormal distribution is used to show the low influence of outliers 

on the value of the sill (see Figure 27). Once the top 1% of the data is replaced by 

a high value (e.g., 1000) and the CV and pairwise relative variogram are 

calculated and the sill is observed (Figure 27-b). The same procedure is done for 

2% of the data (Figure 27-c). The CV is changed by considering a different ratio 

of original data replaced by outliers. In corrupted data with high values by 

changing in CV the sill of the pairwise relative variogram remains the same 

because of the low influence of outliers on the behavior of the pairwise relative 

variogram. 
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Figure 27: Pairwise relative variogram for exhaustive lognormal data in 

figure (a) and two corrupted lognormal data with outlier high values in 

figures (b) and (c) in two directions. x is in violet and y is in black 

 

The other dependence of the sill of the pairwise relative variogram is the shape of 

the distribution. The lognormal distribution is used to determine the sill of the 

pairwise relative variogram. The difference of the value of the sill is examined for 
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positively and negatively skewed lognormal distribution. By increasing the value 

of CV, the sill value for the pairwise relative variogram is shown for negatively 

and positively skewed distribution in Figure 28. Outlier high values have more 

effect than outlier low values because the sill in the negatively skewed 

distribution increases more.   

 

Figure 28: The different value of the sill of the pairwise relative variogram 

for negatively skewed and positively skewed lognormal distribution 

 

Changing the type of the distribution is useful to demonstrate the dependence of 

the sill of the pairwise relative variogram on the shape of the distribution. The 

uniform distribution with a shape that is completely different from that of the 

lognormal distribution is used to show the relation between the CV and the sill of 

the pairwise relative variogram (see Figure 29). For a small value of the CV, the 

sill of the pairwise relative variogram for uniform distribution shows behavior 

similar to that of the lognormal distribution. But as the CV increases, there is 

more difference between the sills of the two distributions. 
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Figure 29: The light grey dots are the sill of the pairwise variogram for the 

lognormal distribution and the dark ones are for the uniform distribution 

 

3.3.2 Standardization procedure 

An important goal in a geostatistical study is to figure out a stable and standard 

variogram for an appropriate interpretation. The pairwise relative variogram is a 

very stable variogram estimator. The important thing is to find a way to 

standardize the sill of the pairwise relative variogram. Determining a general 

relationship for the sill given data of arbitrary shape, mean, variance and outliers 

would be intractable. There is another option that is simpler and more reliable. 

The data are transformed into a standard lognormal distribution with mean and 

variance of one. The sill of the pairwise variogram for this standard lognormal 

distribution is 0.44, so the pairwise relative variogram is standardized by dividing 

it by the constant 0.44: 

,

ˆ ( )
ˆ ( )

0.44

PR
PR S


 

h
h                                            (19) 

The progress of calculating the standard pairwise relative variogram is simple. 

The lognormal algorithm is implemented in the FORTRAN program 
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lognorm_new, which was developed from the lognorm program (Deutsch & 

Journel, 1998). The parameter file of this program is shown in the Appendix.  

The standardization part of the pairwise relative variogram is implemented in the 

FORTRAN program gam_pair, which was developed from the gam program 

(Deutsch & Journel, 1998). In the original program, the number 6 is defined for 

calculating the pairwise relative variograms. In the new program (-6) is the 

number for calculating the standardized pairwise relative variogram. Therefore, to 

write the progress in a script, first the executable nscore.exe transforms the data 

into a normal score. Then the executable lognorm_new.exe transforms those data 

into the lognormal distribution with an arbitrary mean and standard deviation that 

are chosen to be one. Finally, the executable gam_pair.exe calculates the standard 

pairwise relative variogram. 

As an example, the previous exhaustive lognormal data is standardized in the 

standardization procedure and shown in Figure 30.  

 

Figure 30: Figure (a) shows the pairwise relative variogram. The standard 

pairwise relative variogram is illustrated in figure (b) 
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Another method for estimating the sill of the pairwise relative variogram consists 

of drawing independent paired values drawn from the data distribution. This 

approach does not require the data to be lognormal or to have a CV of 1; it simply 

draws the original data values untransformed. The FORTRAN program PRSill 

(Deutsch, 2014) is used to draw paired values and compute the average pairwise 

relative variogram based on the independent samples. For testing, a set of 

lognormal data with a CV of 0.5 is chosen. The pairwise relative variogram of 

data is shown in Figure 31-a. The estimated sill based on the new approach is 

approximately 0.19. The standard pairwise relative variogram along with the 

traditional variogram of the data are shown in Figure 31-b. This approach is 

simple, but does not perform the correction to the specified coefficient of 

variation, nor does this approach handle zero grades.   

 

Figure 31: In figure (a) the pairwise relative variogram is illustrated in the 

black curve. In figure (b) the standard pairwise relative variogram is shown 

in a black curve with the traditional variogram shown in red  
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3.4 Correct Unbiased Estimation of Traditional Variogram 

3.4.1 Relationship between the Correlation Coefficient of Normal 

and Lognormal Distribution 

In the procedure of standardizing the pairwise relative variogram, the normal and 

lognormal transformation is applied on the data under study. There is an analytical 

relationship between the normal and lognormal distribution that permits 

transformation between these two distributions. Consider the ( ), ( )Y Yu u +h as 

bivariate normal data with the mean of   , standard deviation of 2   and 

correlation coefficient of ( )Y h  . The lognormal transformation shown in 

Equation 20 is used to transform the bivariate normal data ( ), ( )Y Yu u +h  to the 

bivariate lognormal data ( ), ( )Z Zu u +h with a mean of 
zm  , and variance of 2

z .   

.YZ e                                                     (20) 

The mean and the standard deviation of the lognormal distribution are as follows: 

 

2

2
zm e




   ,  
22 2 1z zm e  

 
                                  (21) 

The correlation coefficient of lognormal data Z can be clarified as a function of 

the mean and variance of the Z values and the correlation coefficient of normal 

data Y (Chiles & Delfiner, 1999): 

2
2

( )

2
( ) 1Yz

z
z

e
m

 
  

  
 h

h                                   (22) 

An unconditional Gaussian dataset of 500 data points is transformed to a 

lognormal distribution with a mean of 4 and standard deviation of 8 (CV=2). The 

histogram of two variables that follow a standard normal distribution and 

lognormal distribution, respectively, and the scatter plot of a standard bivariate 

normal distribution and bivariate lognormal distribution are shown in Figure 32. 
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The theoretical correlation coefficient is the same as that calculated from Equation 

22. 

 

Figure 32: The scatter plots and histograms of normal and lognormal 

bivariate data 

 

3.4.2 Unbiased Estimate of True Variogram 

The relationship between the correlation coefficient of normal and lognormal data 

(Equation 22) is the key point in the process of calculating the correct variogram 
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of original data with the arbitrary CV based on the standard pairwise relative 

variogram. 

If the correlation coefficient of normal data is known, the correlation coefficient 

of lognormal data can be derived from Equation 22. This correlation coefficient is 

comparable with the ones computed from the standard variogram. Figure 33 

illustrates the traditional variogram of normal data and corresponding lognormal 

data with the CV=2. The correlation coefficients of these two distributions can be 

derived from their variogram values because in the standard form of the 

variograms:   

   ( ) 1 ( )  h h                                             (23) 

The correlation coefficient of lognormal data derived from the standard variogram 

and Equation 22 are is equal to the correlation coefficient coming from the data 

itself.  

 

Figure 33: The relationship between two correlation coefficients based on 

their variograms 
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In the standardization procedure of the pairwise relative variogram, the data are 

transformed to a standard lognormal distribution. The correlation coefficient of 

normal data corresponding to this standard lognormal data is derived from the 

following equation, which is another form of Equation 22: 

2

2

2

ln ( ) 1

( )

z
Z

z

Y

m







 
 

 

h

h                                         (24) 

Where the ratio of 
2

2

z

zm


is equal to one because the CV of standard lognormal 

distribution is one. The parameter 2  and ( )z h are as follows: 

 

2 2ln(1 ) ln(2)CV       ,    
,( ) 1 ( )Z PR S  h h                      (25) 

 

By replacing the correlation coefficient of normal data, the standard pairwise 

relative variogram and the CV of the original data in Equation 22, the correct 

pairwise relative variogram as the unbiased estimate of the variogram of original 

data is derived: 
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ln( 1) ln(2 ( ))1
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CV
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h
h h         (26)   

 

A program is implemented in FORTRAN code correct_pair which takes the 

standard pairwise relative variogram and the CV of the original data as an input 

and gives the correct unbiased estimation of the traditional variogram of true data. 
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An exhaustive data set of closely spaced values is used to show the convergence 

of the correct pairwise variogram to the true variogram. Consider a large grid 

1024*1024 (1,048,576 data points), 2-D normal score data that transfer to the 

lognormal distribution with the CV=4. The traditional variogram of this 

lognormal data is not noisy and it is shown as red curve in Figure 34. A random 

subset of 1% of the data is picked and sampled with replacement. This is a very 

small sample of the whole dataset with a highly skewed distribution which 

contains outlier high values. The traditional variogram of this small sample is very 

erratic and has no structure. The correlogram and the normal score variogram deal 

much better with the outlier (Figure 34-a). However, the pairwise relative 

variogram is the most robust variogram amongst them (Figure 34-b). The problem 

with the standard pairwise relative variogram in figure (b) is the incorrect 

convergence. Figure 34-c shows the correct estimation of the true underlying 

variogram.  
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Figure 34: Portion sample of 1% of the data set. The traditional variogram of 

the lognormal data is shown as a red curve in all three figures. Figure (a) 

shows the traditional variogram (green curve), correlogram (violet curve) 

and normal score variogram (blue curve). Figure (b) shows the standard 

pairwise relative variogram (black curve) and figure (c) shows the correct 

estimation of the traditional variogram (black curve) 
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The second method of standardizing the pairwise relative variogram based on the 

averaging the independent paired data values does not have the convergence 

issue. This standard pairwise relative variogram has the shape of the data because 

there is no data transformation or change in the CV of the original data. This 

method might not be as accurate as the previous method but it is simpler to apply. 

Another large exhaustive lognormal dataset with a CV of four is chosen. The 

traditional variogram along with the pairwise relative variogram and standard 

pairwise relative variogram of the whole data set is shown in Figure 35-a. A 

sample of 1% of the data set is selected that is a fairly small sample from a large 

dataset. The pairwise relative variogram and the standard pairwise relative 

variogram of this sample with the traditional variogram of the original data are 

shown in Figure 35-b.  

 

Figure 35: The traditional variogram of the lognormal data is shown as a red 

curve in the two figures. Figure (a) shows the pairwise relative variogram in 

blue dash line and the standard pairwise relative variogram in black dash 

line for the exhaustive dataset. Figure (b) shows the pairwise relative 

variogram in blue dash line and the standard pairwise relative variogram in 

black dash line for the small sample of 1% of data 
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3.5  Recommendation 

The standardized pairwise relative variogram is a robust alternative to the 

traditional variogram or the correlogram in presence of outliers. In the pairwise 

relative variogram, the unknown sill and the convergence of the pairwise relative 

variogram are the two major issues. The solution for these two problems is 

discussed in this thesis.  

The proposed technique for calculating the standard pairwise relative variogram is 

simple, as it does not require the data to follow any particular distribution. The 

contribution of this thesis is the reliance on the transformation of the data into a 

standard lognormal distribution and the calculation of the standard pairwise 

relative variogram. This technique might have some shortcomings: 1) Mixing the 

population is one of the pitfalls in this approach. It means that in a population 

with two domains and two different distributions, this technique considers only 

one population and transforms all the data into a lognormal distribution. 2) 

Another pitfall is the tolerance in the calculation of the pairwise relative 

variogram. However, in case of not really good traditional variogram of original 

data because of outliers, the standard pairwise relative variogram could be the best 

option to study the spatial variability and other interpretations coming from the 

variogram calculation.  

The transformations in the standardization procedure are useful for computing an 

unbiased estimate of the true underlying variogram of original data based on the 

analytical relationship between the correlation coefficient of normal and 

lognormal data. As some of the basic geostatistical calculations such as kriging 

and modeling need the variogram in its original units, it is highly recommended to 

use this unbiased estimate if the standard pairwise relative variogram is used for 

variogram modeling.  

 

  



57 
 

Chapter 4 - Estimation and Simulation 
 

Improving block grade estimates in presence of outliers is an important subject. 

Outliers can cause overestimation on nearby blocks. An important related problem 

is to know the locations that are being influenced by the outliers. The volume of 

influence changes based on the local data configuration and data values. The 

outliers for this chapter have been identified by a variety of graphical tools such 

as a histogram, probability plot and scatter plot. Chapter 2 presented more details 

on outlier identification.  

Two outlier management strategies will be discussed. The first method is based on 

moving the outlier further away to a higher dimension (Deutsch, Boisvert, & 

Deutsch, 2011) in order to manage the contribution of the outlier on the nearby 

blocks. The second method (also called the cutting or capping method) reduces 

the value of the outliers to manage the contribution of the outliers. The 

management is based on understanding what the local averages should be 

considering from the simulated local average. By managing the outlier values 

based on the uncertainty on the simulated local averages, the conditional bias will 

be decreased accordingly. Before explaining the outlier management strategies, 

the understanding of the volume of influence will be presented.  

 

4.1 Volume of Influence 

The volume of influence of each outlier can be determined based on the data 

spacing, range of the variogram, search radius and number of data considered in 

the kriging estimation. The values above a fixed arbitrary threshold could be 

considered as outliers. As described in Chapter 2, more detailed local criteria 

could be considered, but this is a simple approach. In the kriging estimation 

program documented in the Appendix, all the grid blocks that receive a weight 

more than an arbitrary minimum value will contribute to the volume of influence 
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of an outlier. It is possible that the volume of influence of two outliers overlap, 

but that would mean the outliers are less consequential, that is, there are multiple 

high values supporting local estimation. The overlap happens where the location 

of the two outliers is close enough that some grid blocks are being influenced by 

both of the outliers. The simplest way to fix the overlapping is to allocate each 

block to the outlier that has the most influence on the block, that is, the outlier that 

receives the most weight.  

For illustration, consider a 2D mining dataset red.dat with a silver grade, Ag, that 

has some high value outliers. The location map illustrated in Figure 36 shows the 

locations of six outliers and the volume of influence of each outlier.  

 

Figure 36: The location map of the Ag variable is shown in figure (a). The 

locations of the volume of influence of each outlier of the Ag variable are 

shown by different colors in figure (b) 
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4.2 Move to Higher Dimension 

The main concern about outliers in resource estimation is that the outliers may be 

assigned too much weight within a region where the continuity of the outlier does 

not support the high estimated grades. The idea is to use an additional dimension 

  to reduce the influence of outliers on the grid blocks within the volume of 

influence in resource estimation. The workflow of the extra dimension d, which is 

in distance units, is to move the outlier value further away from the location being 

estimated (Deutsch, Boisvert, & Deutsch, 2011). This method is illustrated by a 

simple schematic 2D example in Figure 37. The goal is to estimate at the 

unsampled location, denoted as □, with 3 data samples such that data   is 

considered to be an outlier. Inside the blue curve illustrates the volume of 

influence of the outlier.  

 

Figure 37: Reducing the effect of outlier value "a" by moving it further away 

by addition of d-value at " a " going to " a΄ " (redrawn from (Deutsch, 

Boisvert, & Deutsch, 2011)) 
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The average grade of the grid blocks inside the volume of influence is the main 

concern. Simulation could be used to determine the uncertainty in the average 

grade within the volume of influence. These values are more trustworthy than 

kriging because simulation is quite robust with respect to outlier high values and 

does not assign them high local continuity. The value for   for each outlier could 

be determined by calibrating the results of kriging to the local average of multiple 

realizations from simulation. Alternatively, a specific quantile (e.g., median) 

could be chosen to calibrate the distance value.  

The silver variable Ag in the red.dat dataset is used to show the effect of moving 

outliers to the higher level of   on the local averages. For picking the cutting 

level, 100 realizations are simulated and the averages inside the volume of 

influence of each outlier are computed. The uncertainty in the mean tends to be 

normal because of the central limit theorem. In Figure 38, two of the outliers are 

analysed by increasing the d value; the local average inside the volume of 

influence decreases. The cutting level is defined based on the median of the 

uncertainty in the simulated averages, and the corresponding d value is considered 

for each outlier.  
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Figure 38: Decreasing the local average by increasing the d value in two of 

the outliers of the Ag variable compare with uncertainty in the simulated 

local average. The more important spatial outlier (27.77 g/t) with d value of 

60 m is shown in figure (a) and highest outlier (51.77 g/t) with d value of 63.5 

m is shown in figure (b) 

 

 



62 
 

 

The outlier value 27.77 g/t in Chapter 2 is known as the most effective spatial 

outlier regardless of its lower value compared to other outliers. The highest 

simulated average inside the volume of influence of this outlier is 8 g/t; however, 

the local average of estimated blocks being influenced by this outlier is about 10 

g/t. With a good degree of confidence this outlier should move away with the d 

value of 60 m.  

 

4.3  Cutting Outlier  

Moving the data away from the grid block locations by a higher dimension is an 

interesting approach, but it is not fully implemented in commercial software and 

is non-intuitive to many practitioners. Another interesting reduction strategy 

relates to simply cutting to a reduced level. The same methodology could be used 

to calibrate the cutting level. This outlier management strategy is similar to the d 

value method, but instead of moving the outlier further away to reduce its effect 

on the nearby data, the value of each outlier is decreased to some cutoff level 

based on the simulated local average in the vicinity of each outlier.  

This process of cutting can be done by two modified GSLIB programs 

kt3d_new and sgsim_new that are explained in detail in the Appendix. The 

first step is to run the kriging that identifies the volume of influence of each 

outlier. The goal is to observe the deduction in the local average for each outlier 

by decreasing the value of that outlier until the proper value is reached. Based on 

the kriging system of the equation shown in Equation 27, there is no need to do 

the kriging for each deduction in outlier value.  

* (1 )out out outV oth
Z Z Z                              (27) 

Where out is the average weight of the outlier in the volume of influence, outZ is 

the outlier value before any treatment, and *
VZ is the average estimated value 
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coming from the kriging program. The only unknown variable is oth
Z , which 

indicates all the other data values inside the volume of influence except the outlier 

value. After computing the oth
Z  based on the other known parameter, the 

deduction in the average of estimated value can be computed simply by changing 

the value of the outlier in Equation 27 without running the kriging program again. 

The kriging output file related to these values for Ag outlier values is shown in 

Figure 39.  

 

 

Figure 39: The outlier values of the Ag variable with local averages and the 

other values inside the volume of influence  

 

The second step is to run the simulation program to compute the uncertainty in 

local averages for each outlier based on the volume of influence resulted in last 

step. For this data set, 100 realizations are simulated providing 100 local averages 

for each outlier. An optional cutoff level can be chosen in this step to cut the 

outlier value to a level which the user can decide about that.  The uncertainty in 

local average for each outlier tends to be normal so the value of the average and 

the median are close together. The sgsim output file in Figure 40 shows the 

cutoff level (median = 0.5) values for each outlier.  
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Figure 40: The output file of the sgsim program contains the cutoff value 

for the median of uncertainty of the local average 

 

The last step involves cutting the outlier value enough to reach the simulated 

cutting level value. The outlier management value can simply compute in 

Equation 27. The reduction in the local average by decreasing the outlier value for 

two outliers of the Ag variable is shown in Figure 41. The outlier value 27.77 g/t, 

which showed to be an important spatial outlier, should cut to 4.21 g/t to reach its 

cutoff level illustrated in Figure 41-a. The other outlier with the value of 51.77 g/t 

should cut to 27.98 g/t to reach to its level point (Figure 41-b). 
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Figure 41: Decreasing the local average by cutting more in outlier values 

compare with uncertainty in the simulated local average. The more 

important spatial outlier (27.77 g/t) should cut to 4.21 g/t is shown in figure 

(a) and the highest outlier (51.77 g/t) with should cut to 27.98 g/t to reach the 

cutting level of the median in average uncertainty is shown in figure (b) 
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For checking the result of the outlier management strategy, the kriging could be 

run again with the managed outlier values. Then, the average inside of the volume 

of influence of each outlier would be computed again. The output file of checking 

the outlier management cutting strategy is shown for each of the outlier managed 

values and their corresponding local averages (see Figure 42). The difference 

between the OMS local averages and the simulated one are close enough to accept 

the managed outlier values. The slight difference is due to the slight overlapping 

of the volume of influences. 

 

Figure 42: The check file to compare the OMS results with the simulated 

ones 

 

 

The variable Ag and the outlier management result of the Ag variable are 

compared in Figure 43. The six high values are reduced based on this 

methodology and the average of the Ag values is decreased respectfully.  
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Figure 43: The comparison of Ag values and the Ag values with reduced 

outlier values  

 

4.4  Recommendation 

There are some considerations when applying this methodology. One of the 

important subjects that should be considered carefully is the way that the volume 

of influence is defined. The needed parameters should be chosen with caution in 

the kriging program. If the volume of influence defined is too small, the program 

tends to cut the outlier more. On the other hand, if the volume of influence is too 

large the outliers may not be treated properly. 

The second focus is the cutting level based on the simulated local average. 

Choosing the median is fairly safe but a more conservative way may be to choose 

the lower quantile (25%). 
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Chapter 5 – Conclusion 

Outliers are one of the most important concerns in resource estimation. The 

identification outliers is sensitive to many factors such as the magnitude of the 

grade, the location of the outlier, the other data values in the area under study and 

how the outliers affect the estimation of nearby blocks.  

The identified outliers must be managed carefully; simply removing them from 

the database will likely cause an underestimation. Leaving the outliers untreated 

will likely cause local overestimation. The outlier management strategy should 

reduce the value of the outliers without inducing an unwanted bias. In order to 

decrease an outlier, the volume of influence of each outlier must be defined.  

 

5.1 Contributions 

This thesis presents a method to identify spatial outliers that affect their nearby 

data by causing overestimation. An extreme high observation surrounded by other 

high values has a less significant impact on the estimation than an isolated high 

value among low values. A detection technique was developed based on the 

uniform rank transform of the data and its cross validation estimation. 

This thesis also provides methodologies to manage outliers. One of the outlier 

management methods is based on one of the relative types of variogram 

estimation which reduces the effect of outliers to obtain a more robust estimator 

of spatial structure. Two of these methods are based on cutting the outlier values 

to get more robust spatial statistics. Another method decreases the effect of 

outliers by moving them further away from the unsampled location in a higher 

dimension.  

The first contribution of this thesis is that it identified outliers by dividing the 

dataset and fitting two lognormal probability models. The modified FORTRAN 

code probplt_fit is programed to fit lognormal probability models to the 
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lower and upper portions of the dataset. If the second distribution contains any 

outlier values, it reduces them to the first fitted model. A small study showed that 

the uncertainty in the average becomes more accurate if there is a better 

estimation of the actual average of real data.  

The second contribution is an understanding of how to deal with outliers in 

variogram calculations to get a more robust spatial model. The pairwise relative 

variogram appears as a robust variogram estimator. There were two issues with 

the pairwise relative variogram that were addressed. The unknown sill of a 

pairwise relative variogram was established, which is important for variogram 

interpretation and modeling. The second issue of convergence to the correct 

theoretical variogram was also fixed. The unbiased estimate of the traditional 

variogram driven from the pairwise relative variogram is more robust and can be 

used in modeling, kriging and other geostatistical calculations that require the 

variogram of original data. 

The third contribution of this thesis is related to a second cutting method for the 

block estimation. Identifying the high values that cause overestimation on nearby 

data is the beginning of the procedure. Then, the grid blocks being influenced by 

these values are identified and referred to as the volume of influence for the 

outlier. The methodology amounts to reducing the outlier values based on the 

uncertainty in the local average within the volume of influence.  This 

methodology helps to identify the high values that have more effect on the 

surrounded blocks.  

The last contribution is to use the volume of influence of each outlier for an 

alternative management approach. The idea is to move the outliers further away in 

a higher dimension instead of cutting them to reduce their effect on nearby grid 

blocks. The goal of this methodology is the same as the cutting the outliers 

method.  
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5.2 Future Work 

In the outlier detection research, the distribution of data is assumed to be 

lognormal. One aspect of future work would be to examine other distribution 

shapes.  

There were some methods for detecting spatial outliers that were not used in the 

outlier management strategies developed in later chapters. An area of future work 

could focus on the estimation methodology to cycle through all the data to help in 

identifying the outliers.  

Another area of future work is to come up with a theory for the standard pairwise 

relative variogram. This measure has not been theoretically justified despite the 

fact that examples show the result to be acceptable.  

Dealing with zero grades in the pairwise relative variogram has been dealt with by 

the transforming to a lognormal distribution; however despiking the constant 

value is important. Random despiking may make the variogram look worse. This 

could be investigated more thoroughly. 

The volume of influence identified in the outlier management strategies for 

estimation could be investigated more carefully. The interaction between outliers 

has not been dealt with completely. If a number of high values are close together 

that have overlapping in their volume of influence, it is possible that they are not 

outliers. Therefore, no treatment is required.  

In defining the volume of influence the weight that the area of influence received 

is decided by the user. An area of future work would be to help establish the best 

value that should be chosen for this weight.  

Finally, more case studies should be investigated to refine the proposed 

methodologies.  
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Appendix 

A.1 Probability plot  

A.1.1  Probability plot fitted model 

The non-parametric lognormal fitted model is implemented in the GSLIB 

compatible probplt_fit which is developed from a GSLIB probplt and 

probplt_pop programs (Deutsch & Journel, 1998; Deutsch J. L., 2010). This 

program fits the non-parametric lognormal model to the data below the arbitrary 

threshold using the regression and simulated annealing methods. There is an 

option to identify the threshold, mean and standard deviation of two populations. 

If the user is not sure about the mean and standard deviations, these parameters 

can be optimized by choosing the optimize option in the parameter file.   

The parameter file for probplt_fit is shown in Figure 44. The input data file 

(Line 4) and variable column and weight (Line 5) should be in the standard 

format of GSLIB. The output probability plot is in line 7. The scaling of the 

probability plot axis is defined in Line 10 which also clarifies the lognormal or 

normal fit using in program. To fit a non-parametric model the number 1 should 

be placed in Line 12. In Line 13 an output summary file including the parameters 

fit is given. The slopes of two populations and the difference between them are 

shown in a file in Line 14. If the difference between the first population and the 

second one is bigger than zero, it means the slope in second population is less 

than the slope in first population. In this situation the data points in the second 

population are considered as outliers and they should be fixed and reduced to the 

first population fitted model. After fitting the two populations, the identity of each 

sample and the fitted and adjusted value of the corresponding population fit is 

written in the output file in Line 15. By reducing the data values in the second 

population to the first population model, the final output file with the corrected 

outlier values is specified in Line 16. The number of populations should be two 

for this purpose of reducing the outliers (Line17). The temperature and iteration 
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for optimization are also listed in Line 17. The arbitrary cut off threshold to 

separate the populations, mean, standard deviation, option for optimization and 

the color of the fitted model line is specified in Line 18. Instead of drawing the 

second population fitted model, the deduction in outlier values to the first 

population fitted model is shown in the output probability plot. The deduction in 

the mean of the sample is also written in the output figure.  

 

Figure 44: Parameter file of probplt_fit 
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A.2 Pairwise Relative variogram 

A.2.1  Standard Pairwise relative variogram 

To do the standardization for the pairwise relative variogram first the data should 

transform to the normal score with the nscore executable file form GSLIB 

library. In the second step, the data are transformed to the standard lognormal 

distribution. The lognormal algorithm is implemented in the FORTRAN program 

lognorm_new, which is developed from the lognorm program (Deutsch & 

Journel, 1998). The parameter file for lognorm_new is shown in Figure 45. The 

input data and the column to transform are entered in Line 4 and Line 5. The 

mean and standard deviation of the output lognormal data are specified in Line 6. 

The output file includes all of the data from the original data file plus an 

additional column of the lognormal transformed data is shown in Line 7. 

 

Figure 45: Parameter file of lognormal_new 

 

The final step, which is computing the standard pairwise relative variogram is 

implemented in the gam, gamv and gamv2004 programs from the GSLIB. The 

newly developed programs gam_pair, gamv_pair and gamv2004_pair 

have the same parameter files as the original programs. The only difference is on 

the value of the variogram type. In previous versions, the number (6) is used for 
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calculating the pairwise relative variogram. In developed versions, the number    

(-6) is used to calculate the standard pairwise relative variogram. As an example, 

the parameter file of gam is shown in Figure 46. The number (-6) for the standard 

pairwise relative variogram should be entered in line 17.   

 

Figure 46: Parameter file of gam_pair 
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A.2.2  Correct unbiased estimate of traditional variogram  

The standard pairwise relative variogram has a convergence issue which is fixed 

in the GSLIB compatible correct_pair. The basic idea is that this program is 

based on using the relationship between the normal and lognormal correlation 

coefficients. The parameter file of the correct_pair program is shown in 

Figure 48. The input file is the output of the gam_pair or gamv_pair 

programs that contains the standard pairwise relative variogram (Line4). The 

actual CV (correlation of variation) of data is entered in Line5. The output file 

specified in Line 6 is the correct unbiased estimate of the true variogram in 

standard GSLIB format. 

 

Figure 47: Parameter file of correct_pair 

 

A.3 Cutting outliers  

In the process of cutting and managing the outliers the kt3d_new program 

should be run twice and the sgsim_new program once. The sequence and how 

the parameter files should be set are explained hereby.  
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A.3.1.  Identify the outliers and volume of influence 

To identify the outliers and specify the blocks being influenced by each outliers 

are implemented in the FORTRAN program kt3d_new, which is a developed 

version of the GSLIB program kt3d (Deutsch & Journel, 1998).  The parameter 

file of the kt3d_new program is shown in Figure 48.  This parameter file is 

almost the same as the kt3d parameter file except for the changes that have been 

made to lines 13 to 22. The parameter file used with kt3d_new can be used with 

kt3d by choosing zero for all the adjustment options. As the complete discussion 

about the kt3d program is available in (Deutsch & Journel, 1998), only the 

modified lines will be discussed here. For identifying the outliers, the option in 

Line 13 should be greater than zero. In Line 14, based on the data values being 

studied, the user will be able to choose that above what threshold value the data 

should be considered as outlier. The user also can decide on the minimum weight 

assigned to an outlier in the estimation procedure in Line15. For example, by 

choosing the minimum weight of 0.05, all the grid blocks receiving weight more 

than this value from an outlier will be considered as the volume of influence for 

that specific outlier. The output file in Line16 gives the volume of influence of 

each outlier that contains the outliers ID, outlier value, the outlier’s weight 

assigned to the block, the coordinates of the blocks and the estimate value of the 

blocks. The other output file showing the local average of each outlier is specified 

in Line 17. In this first step, the option for managing and checking should be zero.    
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Figure 48: Parameter file of kt3d_new 
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A.3.2.  Simulated uncertainty in local averages 

The sgsim_new is the modified version of the sgsim program from GSLIB 

library. This program is modified to read the coordinates of the volume of 

influences related to each of the outliers and to compute the local averages for 

multiple realizations. The parameter file of the sgsim_new program is shown in 

Figure 49. The only difference between this parameter file and the one from the 

original program sgsim is the last four lines. The complete discussion about the 

sgsim program is available in (Deutsch & Journel, 1998) . The modified lines 

will be discussed here. The volume of influence file coming from the last step of 

kt3d_new is entered as an input file in line 37. The output file specified in line 

38 gives the uncertainty in local averages for each outlier for multiple realizations. 

Based on the uncertainty in local averages, the user can choose the arbitrary 

cutting level (e.g., median) in line 39. The final output in line 40 contains the 

outlier ID, the outlier value, the mean of the local averages and the cutting values 

for each outlier based on an arbitrary cutting level.    
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Figure 49: Parameter file of sgsim_new 
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A.3.3.  Managing outliers based on cutting level 

The third step is focuses on running the KT3D_new program again. This time 

both the identify outlier (Line13) and the manage outlier (Line18) options should 

be more than zero (see Figure 50). The cutting level and values coming from the 

sgsim_new program are entered in line19. The output file specified in line 20 

gives the managed outlier value that corresponds to the cutting level chosen for 

uncertainty in the local averages.  
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Figure 50: Parameter file of kt3d_new 
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A.3.4.  Check the results  

By reducing the values of outliers, the KT3D_new program can be run for the 

estimation with managed outlier values. The local averages can then be compared 

with the simulated local averages. For this purpose, just the option for checking in 

line 21 should be greater than zero (see Figure 51), so the new outlier values 

would be used to do the kriging estimation. The output file in line 22 contains the 

original, simulated and OMS local averages for each outlier value.   
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Figure 51: Parameter file of kt3d_new  


