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Abstract. Field experiments have been designed to account for spatial structures since
the inception of randomized complete block designs by R. A. Fisher. In recent years, our
understanding of spatial structures led to refinements in the design and analysis of field
experiments in the face of spatial patterning. In the presence of spatial autocorrelation in
the response variable, is it possible to optimize the experimental design to maximize the
response to the experimental factors? The questions addressed in this paper are: (1) What
is the effect of spatial autocorrelation on type I error of the tests of significance commonly
used to analyze the results of field experiments? (2) How effectively can we control for
the effect of spatial autocorrelation by the design of the experiment? (3) Which experimental
designs lead to tests of significance that have greater power? (4) What is the influence of
spatial autocorrelation on power of ANOVA tests of significance? This paper attempts to
answer these questions through numerical simulations with known spatial autocorrelation.
Response variable were simulated to represent the sum of separate effects: (1) an explanatory
environmental variable (which could be used as a covariable in the analysis) with a de-
terministic structure plus spatial autocorrelation, (2) an effect of the experimental treat-
ments, (3) spatial autocorrelation in the response (e.g., biological) variable, and (4) a random
error. The program repeatedly generated and analyzed surfaces with given parameters (1000
replicates). The rejection rate of the null hypothesis of no effect of the treatment onto the
response variable provided estimates of type I error and power.

The simulations showed the following: (1) In the presence of spatial autocorrelation,
or if repetitive deterministic structures are present in the variables influencing the response,
experimental units should not be positioned at random. (2) ANOVA that takes blocking
into account is an efficient way of correcting for deterministic structures or spatial auto-
correlation. (3) For constant effort, experimental designs that have more, smaller blocks,
broadly spread across the experimental area, lead to tests that have more power in the
presence of spatial autocorrelation. (4) Short-ranged spatial autocorrelation affects the pow-
er of ANOVA tests more than large-ranged spatial autocorrelation.

Key words: analysis of variance; autocorrelation; field experiments; numerical simulation study;
spatial structure.

INTRODUCTION

In recent years, our understanding of, and ability to
model, spatial structures has opened new possibilities
for the design and the analysis of field experiments in
the face of spatial patterning caused by autocorrelation
in the response variable or by environmental variables
that may influence the experiment’s response variable.
Field experiments add controlled variation to natural
variation and spatial structures. Is it possible to opti-
mize the experimental design in order to maximize our
ability to detect a response to the experimental factors
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in the presence of spatial autocorrelation (SA) in the
response variable?

Four spatial components are at play in field exper-
iments: (1) the spatial structure of the environmental
variables, which may act upon the response variable
(e.g., an environmental gradient in soil moisture may
cause a differential response); (2) the spatial autocor-
relation of the response variable (e.g., the similarity in
responses of near neighbors due to genetic resemblance
and limited dispersal); (3) the degree of dependence of
the response variable on the spatially structured en-
vironmental variables (environmental forcing); and (4)
the dependence of the response variable on the treat-
ment levels of the spatially structured experimental de-
sign, which may be efficiently randomized or not (Du-
tilleul 1993: Fig. 1).
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Field experiments have been designed to account for
spatial structure since the inception of randomized
complete block designs by Ronald A. Fisher (1926).
Fisher was seeking ways of improving field experi-
ments in agriculture. His designs have become standard
conceptual instruments for research in many fields, in-
cluding ecology. A huge number of papers have ap-
peared on the subject (Hahn 1982). Blocking has been
introduced to consider the mixed effects of inherent
spatial dependence of the environmental variables and
the spatial dependence of the response variable to it
(Underwood 1997). Other approaches have been pro-
posed to deal with the effects of the spatial autocor-
relation of the response variable. Bartlett (1978) per-
fected a previously proposed method of correction for
the effect of spatial autocorrelation due to an autore-
gressive process in randomized field experiments, ad-
justing plot values by covariance on neighboring plots
before the analysis of variance. Geostatistical ap-
proaches have also been proposed to account for spatial
autocorrelation (Ver Hoef and Cressie 2001).

There is a great deal of information and discussion
in the statistical and ecological literature on the effects
of spatial autocorrelation on statistical tests and pos-
sible solutions to the problem it presents at the stage
of testing (among others, Sokal et al. 1993, van Es and
van Es 1993, Hoosbeek et al. 1998, Bonham and Reich
1999, Casler 1999, Dale and Fortin 2002, Keitt et al.
2002). In this paper, we investigate how the impact of
the effect of spatial autocorrelation can be reduced at
the stage of designing experiments. In a companion
paper (Legendre et al. 2002), we investigated the con-
sequences of deterministic spatial structures and spatial
autocorrelation for the design and analysis of ecolog-
ical field surveys. To avoid incorrect conclusions, the
study design needs to be adjusted to suit the scale of
the heterogeneity of the system being studied (Dutilleul
1998).

The questions addressed in this paper are: (1) What
is the effect of spatial autocorrelation on the type I
error of the tests of significance commonly used to
analyze the results of field experiments? (2) Can we
control for the effect of spatial autocorrelation by the
design of the experiment? (3) Which designs lead to
tests of significance that have the most power? We
compared the completely randomized design to several
types of blocked experimental designs. (4) What is the
influence of spatial autocorrelation on power of the
ANOVA tests of significance? To answer these ques-
tions, we used numerical simulations to estimate the
rate of type I error and power of the tests of significance
in analyses of variance associated with different ex-
perimental designs and types of spatial structures.

METHODS

Data generation model

A response variable (R) measured during a field ex-
periment is considered in our simulations to represent

the sum of separate effects: the fixed effect of the treat-
ment (T), the influence of an explanatory environmen-
tal variable (E), spatial autocorrelation in the response
variable (SAR), and a spatially unstructured random
error component («) taking independent values for each
observation i:

R 5 T 1 f(E ) 1 SA 1 « .i i i Ri i (1)

The environmental variable, in turn, may possess a de-
terministic structure (D) plus a spatially autocorrelated
error component (SAE) and independent error at each
point:

E 5 D 1 SA 1 « .i i Ei i (2)

For example, soil texture may vary from the top to the
bottom of a hill due to sorting of soil particles during
erosion (deterministic structure). In addition, due to
their history, local patches of soil may tend to resemble
one another more closely than they do patches further
away (spatial autocorrelation). As a result, the model
for the response variable R comprises some or all of
the following elements:

R 5 T 1 bE 1 SA 1 « .i i i Ri i (3)

The assumptions of this model are the following: (1)
All environmental effects can be summarized by a sin-
gle variable whose effect on R is linear; the effect is
thus modeled by multiplying E by a transfer (regres-
sion-type) parameter b. (2) The error component «,
which takes independent values (i.e., not spatially au-
tocorrelated) for each observation i, is modeled as a
normal error term whose variance (Var«) is fixed by a
parameter provided for each simulation. A normal error
can legitimately be assumed for a natural phenomenon
that results from a large number of factors acting in-
dependently, whose random effects are cumulative, if
the variance of the phenomenon produced by each fac-
tor is small (Galton 1898).

Simulation method

For this paper, a simulation run was controlled by a
series of parameters as follows: (1) specify the number
of simulations to be made and the size of the experi-
mental field, which is given in number of pixels from
west to east and from north to south; (2) specify an
experimental design (number of treatments, number of
blocks, number of replicates per treatment in each
block, geographic positions of the experimental units);
(3) specify a treatment level for each experimental
treatment; (4) specify the characteristics of the envi-
ronmental component E (the type of deterministic
structure D, the parameters of the spherical variogram
specifying the autocorrelation function SAE for the en-
vironmental variable, and the slope parameter b
through which the environmental component will carry
on to the response variable); (5) specify the parameters
of the variogram (nugget effect, sill, and range) spec-
ifying the autocorrelation function SAR for the response
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variable; and (6) specify the variance of the normal
error component «.

A simulation designates the generation and analysis
of a single data set. A simulation run comprises several
simulations (typically 1000 in this study, although a
few runs involved 10 000 simulations) in which inde-
pendent data sets were generated using the same pop-
ulation parameters, and analyzed. At the end of a run,
the rate of rejection of the ANOVA null hypothesis at
the a 5 0.05 level was calculated, together with a 95%
confidence interval. These statistics were used to assess
type I error, evaluate the importance of blocking in the
analysis of field experimental results, compare various
ways of computing the ANOVA F statistic, and esti-
mate the power of the six experimental designs that we
studied in the presence of different amounts of spatial
autocorrelation.

Type I error is the rate of rejection of the null hy-
pothesis when the data conform to it. In the analysis
of variance context, H0 is true when the statistical pop-
ulations from which the data have been drawn at ran-
dom have equal treatment values, hence there is no
treatment effect. A test is said to have a correct rate of
type I error if, across repeated simulations, the rate of
rejection of H0 is approximately equal to the signifi-
cance level a used to make the statistical decision. Two
problems may occur if the rejection rate is not ap-
proximately equal to the significance level. On the one
hand, a test whose rate of rejection of H0 is larger than
the significance level of the test, when H0 is true, is
invalid. An invalid test leads to the wrong statistical
decision more often than specified by the significance
level of the test. On the other hand, a test whose re-
jection rate is smaller than the significance level re-
mains valid, but its power is reduced (the test is too
conservative).

Simulation setup

For each simulation, our program generated a re-
sponse variable that represented the sum of separate
effects, as explained in the Data generation model sub-
section: (1) an explanatory environmental variable with
a deterministic structure plus spatial autocorrelation,
(2) an effect of the experimental treatments, (3) spatial
autocorrelation in the response (biological) variable,
and (4) a random error component. Then it conducted
an analysis of variance for the specified experimental
design and produced a probability associated with the
F statistic. The program generated and analyzed as
many replicated data sets as required. Results were
accumulated over all simulations of a run. A companion
program allowed us to create lists of locations for all
kinds of experimental designs; a list of locations was
fed into the main simulation program together with the
parameters specifying each simulation run.

The final statistic for a simulation run was the num-
ber of times the null hypothesis (H0: no effect of the
treatments onto the response variable) was rejected

throughout the simulations, using the a 5 0.05 signif-
icance level. A 95% confidence interval over the re-
jection rate was computed. The program also allowed
us to obtain output files containing all values of indi-
vidual simulated surfaces, which we used to draw maps
for illustration of the results.

Spatially autocorrelated surfaces were generated us-
ing the conditional simulation method, as implemented
in subroutine SGSIM of the geostatistical software li-
brary GSLIB (Deutsch and Journel 1992). When re-
quested, SA of equal or unequal intensity was added
to the environmental and response surfaces. The au-
tocorrelation structure was determined by spherical
variograms with nugget values of 0, sill values of 1,
and ranges of {0, 4, 16, 40} pixels in the x and y
directions, without anisotropy. SA with range of 0
means that no SA was added to the specified surface.

The following parameters were used in the simula-
tions reported in this paper:

1) Overall field size: The simulations were carried
out in a 100 3 100 pixel field.

2) Types of spatial effects in the underlying envi-
ronment: Four types of environmental variables were
generated in different simulation runs:

Type 0.—Flat surface, plus spatial autocorrelation if
requested, no random normal error;

Type 1.—Flat surface, random normal error, plus
spatial autocorrelation if requested;

Type 2.—Gradients in the x and y directions (values
in the range [0, 1]), random normal error, plus
spatial autocorrelation if requested;

Type 3.—Four waves across the field (values in the
range [0, 1]), random normal error, plus spatial
autocorrelation if requested.

3) Types of spatial effects in the responses: The ef-
fect of the environmental variable was carried over to
the response variable using a transfer parameter, b 5
1, corresponding to the parameter b of the model (Eq.
3), which determines the transfer of the effect from the
environmental to the response variable (i.e., the degree
to which the response variable reflects the environ-
mental variable). Spatial autocorrelation was added to
the response surface, as well as standard normal error
N (0, 1) drawn independently at each point of the sur-
face. Treatment values, described in paragraph 5 below,
were added to the response surfaces at the locations of
the experimental units.

4) Experimental designs and sample sizes: Six ex-
perimental designs were used over the 10 000-pixel
field; they involved sample sizes of n 5 36, 81, or 144
experimental units (or plots) inclusive of all three treat-
ments (Fig. 1; Figs. A1 and A2, Appendix A). These
values were squared integers; this was a necessary con-
dition for several of the experimental designs used in
this study. Values of n reported in the literature are
more commonly at the lower end of the range repre-
sented by our values n 5 36 and n 5 81; n 5 144 is
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FIG. 1. The six types of experimental designs used in this study are illustrated on maps of the field for n 5 81 experimental
units. The axis units are pixels.

an unusually large experimental effort except for very
complicated and extensive studies. The designs in-
volved either random assignment of the treatments to
the units (design 1), or randomized complete blocks
with (designs 2, 3, 4, 5) or without replication (design
6). The experimental units were located at least 14
pixels away from the borders of the 100 3 100 pixel
field to avoid any possible edge effect. The designs
were:

Design 1.—Random positions: n 5 {36, 81, 144}
randomly located units, with random assignment
of treatments to the units;

Design 2.—Completely randomized lattice: a single
large lattice of units with random assignment of
treatments to the units. The three treatments were
each represented by n 5 {12, 27, 48} units. In this
design, ANOVA without and with blocking are the
same since there is in effect a single large block.
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Design 3.—Twenty-seven- or 36-unit blocks sepa-
rated in the field: {1, 3, 4} big complete blocks,
separated in the field, containing ntr 5 36, 27, or
36 units respectively, for a total n 5 36, 81, or
144. The treatments were equally represented and
randomized within each block. Note that for n 5
36, design 3 is the same as design 2 (Fig. A2);
there are no separate big blocks across the field
for this value of n.

Design 4.—Nine-unit blocks adjacent in the field:
{4, 9, 16} 3 3 3 complete blocks contiguous in
one large square in the field. Each 3 3 3 block
contained each treatment three times in a com-
pletely randomized design.

Design 5.—Nine-unit blocks in a grid: {4, 9, 16} 3
3 3 complete blocks. The nine sampling units
formed a regular grid in each block. The blocks
were arranged as a 4 3 4 grid in the field; the grid
was complete only for n 5 144 units. Each block
contained each treatment three times in a com-
pletely randomized design.

Design 6.—Three-unit blocks randomly positioned
in the field: {12, 27, 48} 1 3 3 blocks, randomly
positioned in the field. Each block is a randomized
complete block without replication, i.e., contain-
ing each treatment once.

The order of the designs reflects an ordering from larger
and more compact to smaller and more spread out
blocks. The order (1 to 6) was established before the
results of the simulations were analyzed.

5) Treatment effects: In the study of type I error, the
three treatments had equal values of {1.0, 1.0, 1.0}
(effect size 5 0). In the study of power, the three treat-
ments had the following values: medium 5 {1.0, 1.3,
1.6} (effect size 5 0.18) and high 5 {1.0, 1.5, 2.0}
(effect size 5 0.50). The effect size is the sum of the
squared differences of the treatment values from their
mean. Treatment values were selected by trial and error
to obtain moderate, although measurably different re-
sponses in terms of rejection rate of the ANOVA null
hypothesis, for the different combinations of types of
environmental variables (simulation parameter 2
above), experimental designs (parameter 4 above), and
amounts of spatial autocorrelation.

Fig. 2 (top) shows the construction of an environ-
mental surface of type 2. Because of its small variance
(s2 5 0.046), the gradient only accounts for a small
fraction of the variance of the environmental surface,
in this example, yet its contribution to the response
variable is highly significant (P , 0.0001); this was
also the case over the 100 3 100 pixel surfaces of our
simulation study that contained gradients or waves. The
gradient is present and highly significant, whether or
not that is apparent to the observer. That may corre-
spond more closely to what happens in real field data
than if we had generated deterministic surfaces with a
pronounced effect. In any case, the emphasis of the

present paper is on the effect of spatial autocorrelation
on the results of field experiments, not that of the de-
terministic surfaces.

The construction of a response surface is shown in Fig.
2 (center and bottom). The surface is obtained by adding
up, point by point, the values of the environmental sur-
face, the spatially autocorrelated values, the random error,
and the treatment values. The treatments had values {1.0,
1.5, 2.0} in that example. The experimental design was
four 9-unit blocks in a grid (design 5).

To evaluate the importance of blocking in the analysis
of the results, designs 3–6 were repeated without and
with taking the blocking into account. Actually, this was
achieved by not specifying that the data were blocked.

The simulation effort reported in this paper was the
following:

1) For the estimation of type I error: (16 combina-
tions of SA ranges) 3 (four types of environmental
variables) 3 (five series of simulations for statistic F
and three series for statistics F1 and F2) for n 5 36;
(16 combinations of SA ranges) 3 (four types of en-
vironmental variables) 3 (six series of simulations for
statistic F and four series for statistics F1 and F2) for
n 5 81; (four combinations of SA ranges) 3 (four types
of environmental variables) 3 (six series of simulations
for statistic F and four series for statistics F1 and F2)
for n 5 144. Treatment intensities were kept at {1.0,
1.0, 1.0} during type I error simulations. There was a
total of 1312 simulation runs. One thousand simula-
tions were carried out in each run, except for two runs
that comprised 10 000 simulations.

2) For the power study, the same simulation effort
was implemented for two different triplets of treatment
effect sizes: {1.0, 1.3, 1.6} and {1.0, 1.5, 2.0}. There
was a total of 2624 simulation runs. One thousand sim-
ulations were carried out in each run.

The simulation program, written in Fortran, consti-
tutes one of the end products of this work. The source
code is available to users who want to develop sub-
routines to compare different methods of analysis of
the data in terms of type I error and power.

Analysis of the simulation results

The ANOVA model for analyzing the results is the
following:

y 5 m 1 T 1 B 1 [(TB) ] 1 «ijk i j ij ijk (4)

where yijk is the value of experimental unit k in the jth
block for the experimental unit to which treatment i
was applied. The overall mean is m, Ti is the effect of
treatment i and Bj is the effect associated with block j.
(TB)ij represents the interaction between blocks and
treatments. The brackets indicate that we were not al-
ways able to estimate the interaction, either because
there was a single block of data (designs 1 and 2) or
because there were no replicates of treatments within
blocks (design 6). The final term, «ijk, is the error term
of the kth experimental unit in subgroup ij.
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FIG. 2. Construction of the environmental and response surfaces during the simulations. The surface is only 20 3 20 in
these illustrations. Bigger open circles represent larger negative values; bigger black circles represent larger positive values.
The range of values in each graph is shown in brackets underneath; the variance (s2) of the values in each surface is also
given. Four blocks containing the 36 experimental units are shown in gray in the last panel.

Following Sokal and Rohlf (1995), we considered
the blocks to be a random factor. This is the case in
most studies, and certainly was in our simulations. If
the blocks corresponded to a factor of interest for the
study, we would use a crossed two-way model I AN-
OVA for analysis. Instead, we had a mixed model with
a fixed treatment and a random block factor.

When there was more than one block and there was
replication of treatments within blocks (experimental
designs 3–5), the block 3 treatment interaction (TB)i

was normally used in the denominator of the F statistic
when testing the effect of treatment; we called this
statistic F2. Alternatively, if the block 3 treatment in-
teraction is not significant (we can assume that this is
the case in our simulations because no interaction was
generated in the simulation procedure), one can pool
the interaction and residual sums of squares and use

the pooled variance estimate as the denominator of the
treatment F statistic (called F1). Power is increased by
having more degrees of freedom attached to the de-
nominator mean square. We verified that a test based
on F1 has a correct rate of type I error. We also checked
if F1 always leads to more powerful tests than F2, or
if the presence of deterministic structures or spatial
autocorrelation might alter that. For designs 3–5, our
simulation program routinely computed the test statis-
tics in both ways.

There is no replication of treatments within blocks
in design 6. In that case, the denominator of statistic
F1 is simply the residual mean square, and F2 cannot
be calculated.

A graphical comparison of the results of the ‘‘cor-
rect’’ analysis that takes blocking into account, and the
‘‘incorrect’’ analysis that does not, was first done to
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FIG. 3. Calculation of power for experimental design 1
(random positions), no spatial autocorrelation in either var-
iable, environmental variable type 0 (first power value in
Table 1, 144 experimental units). The abscissa is the square
root of the effect size for the three types of experiments (treat-
ments {1.0, 1.0, 1.0}, {1.0, 1.3, 1.6}, and {1.0, 1.5, 2.0}).
The ordinate, z(rejection rate), is the probit-transformed re-
jection rate during the simulations. The slope of the ordinary
least-squares (OLS) regression line estimates power.

determine if the blocking structure should be taken into
account during the analysis of experimental results
when the variables are spatially autocorrelated, as rec-
ommended by Dutilleul (1993).

To estimate power, the simulation results were syn-
thesized as follows. For a given set of simulation pa-
rameters, and for each triplet of results representing
three effect sizes, the rates of rejection of the null hy-
pothesis were subjected to a probit-transformation and
regressed on the square roots of the effect sizes. The
probit transformation is the back-transformation of the
probability under the standard normal error curve into
standard normal deviate (z) values. The purpose of
these transformations is to linearize the relationships.
The slope of the ordinary least squares (OLS) regres-
sion line was estimated (Fig. 3); larger values of the
slope correspond to greater power. The constant 5 may
be added to probit-transformed data; this avoids neg-
ative values in most cases (Sokal and Rohlf 1995). The
slope of the regression line is unaffected by addition
of this constant; we did not use it in the construction
of Fig. 3.

We expected the experimental designs with smaller
and more spread-out blocks to have more power in the
presence of spatial autocorrelation. Compared to larger
blocks, small blocks will contain less within-block var-
iability due to these factors.

RESULTS

Influence of SA on type I error in simple ANOVA

When the sampling units are distributed at random
across the field (experimental design 1), spatial auto-
correlation (SA), especially with ranges 16 or 40, in-
fluences the results of the tests of significance of simple
ANOVA and may render the tests invalid. This is also
the case in the presence of a deterministic structure like
four waves across the field, even without SA. This ef-
fect is stronger in the simulations for n 5 144 objects
(Fig. B1, Appendix B) because the average distance
between neighbors is smaller than for n 5 36 (Fig. B2)
or n 5 81 (Fig. 4).

Experimental design 2 is a lattice of equispaced ex-
perimental units in which the treatments are inter-
spersed at random. Spacing of the experimental units
is the same for the three values of n; it is the size of
the experimental square that changes. Simple ANOVA
is the only form of analysis that can be used with this
design because there is a single block. With n 5 36
and n 5 81, the rate of type I error is too conservative
in some of the results involving SA or deterministic
surfaces; the tests of significance should have reduced
power in these situations. For n 5 144, the rate of type
I error is always correct. This design should then be
used only for large numbers of experimental units.
Such large numbers are rarely used in field experiments
for many reasons, including cost and limitations on
areas available for experimentation. In any case, this
design has low power even for n 5 144; see the sub-
section Which designs lead to tests that have the more
power? below.

With the other designs, in which the experimental
units are in blocks distributed across the field, the tests
of significance of simple ANOVA remain valid, yet
they are highly affected by the presence of spatial au-
tocorrelation. This translates into lower power for these
tests (graphs not shown). The tests have correct rates
of type I error only when there is no autocorrelation,
in neither the environmental nor the response variable.

Lesson learned.—Experimental units should not be
positioned at random in the presence of spatial auto-
correlation, or if repetitive deterministic structures such
as waves are present in the explanatory variables in-
fluencing the response. For randomly positioned units,
simple ANOVA is the only possible alternative and it
may result in incorrect rates of type I error. When the
experimental units are distributed into several blocks,
the rate of type I error of simple ANOVA is too low
in the presence of spatial autocorrelation. This trans-
lates into lower power for these tests.

What is the best ANOVA F statistic
for blocked designs?

In the presence of spatial autocorrelation, when the
experimental units are distributed into several blocks
(designs 3–6), simple ANOVA (F statistic) has incor-
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FIG. 4. Rate of type I error in simulations using n 5 81 experimental units after 1000 simulations. The rows of diagrams
contain the results for the six experimental designs, numbered 1–6. The left-hand column shows results for simple ANOVA;
the middle and right-hand columns show results for ANOVA taking blocking into account, statistics F1 and F2. The four
types of environmental surfaces are represented by symbols. The abscissa show ranges of values of spatial autocorrelation
(SA) in the environmental (Envir.) and response variables (Resp.). Asterisks in panel 2 indicate rejection rates whose confidence
intervals do not include the significance level (a 5 0.05).

rect rates of type I error, as was shown in the previous
subsection, whereas ANOVA with blocking always has
correct rates of type I error, using either statistic F1 or
F2 (Fig. 4; Figs. B1 and B2, Appendix B; the three

forms of F statistics are described in Methods: Analysis
of the simulation results section). The rate of type I
error for design 6, in which there is no replication
within the blocks, is as good as that of the other blocked
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TABLE 1. Selected estimates of power for designs with 144 experimental units.

Spatial
autocorrelation†

Environmental
variable‡

Experimental designs

(1)
Random
positions

F

(2)
Completely
randomized

lattice

F

(3)
36-U blocks separated

in the field
(with replication)

F1 F2

0
0
0
0
4

0
1
2
3
0

5.98
3.95
3.69
3.77
3.19

5.46
4.01
4.04
4.51
2.95

6.39
4.17
4.17
3.66
3.42

4.52
3.08
3.06
2.75
2.63

4
4
4

16
16

1
2
3
0
1

2.35
2.51
2.49
2.54
2.07

2.73
2.47
2.82
4.07
3.11

2.97
3.04
2.62
4.60
3.60

2.10
2.19
1.97
3.36
2.55

16
16
40
40
40
40

2
3
0
1
2
3

2.06
2.36
2.82
2.28
2.30
2.32

3.13
3.51
4.50
3.46
3.47
4.00

3.66
3.17
5.55
3.97
3.92
3.39

2.62
2.36
3.87
2.90
2.91
2.61

Mean power 2.918 3.640 3.894

Notes: Power values are the slopes of the probit-transformed rejection rates as a function of the square root of the effect
sizes (Fig. 3); larger slopes mean greater power. Mean powers are only based upon the values of F and F1. U 5 experimental
unit.

† Spatial autocorrelation is the range of the spherical variogram models for generation of spatial autocorrelation in the
environmental and response variables.

‡ Environmental variable types, coded 0–3; see Methods: Simulation setup.

designs (designs 3–5) in which there are replicates
within blocks. This is the case for all sample sizes
investigated in this study.

Even though the tests conducted with statistics F1
and F2 both have correct type 1 error, they clearly differ
in power for designs 3–5. For n 5 144, the mean ratio
of the empirical power estimates (Table 1), power(F1)/
power(F2), is 1.37 for design 3, 1.04 for design 4, and
1.04 for design 5. The ratios increase in size as n de-
creases: when n 5 81, the ratios for designs 3, 4, and
5 were 1.55, 1.09, 1.09, respectively (Fig. 5); when n
5 36, the ratios for designs 4 and 5 were 1.38, 1.35,
respectively. The same observations are made in Tables
C1 and C2 (Appendix C) for n 5 81 and n 5 36. We
conclude that statistic F1, which uses the pooled (in-
teraction 1 residual) mean square in the denominator
of the treatment F statistic, produces tests with higher
power than statistic F2, which uses the interaction
mean square in the denominator.

In real-case studies, one should first test the block
3 treatment interaction if replicate observations are
available per block. This is the case in our designs 3–
5. A significant interaction would mean that the effect
of treatments differs depending on the blocks; one
should not interpret the main effect over all blocks in
that case. We did not carry out this preliminary test in
the simulation study because no interaction had been
generated in the simulation procedure.

Lesson learned.—ANOVA that takes blocking into
account is an efficient way of correcting for determin-

istic structures or spatial autocorrelation in the data.
Statistic F1, which uses the pooled (interaction 1 re-
sidual) mean square in the denominator of the treatment
F statistic, produces tests that have a correct rate of
type I error, and more power than tests based upon
statistic F2. It should thus be used to analyze the results
of blocked ANOVA if the block 3 treatment interaction
is not significant.

Which designs lead to tests that have
the more power?

We will now compare the power estimates obtained
using statistic F for designs 1 and 2, and statistic F1
for designs 3–6, in the presence of different amounts
of spatial autocorrelation and different types of envi-
ronmental variables. Because of its lower power (pre-
vious subsection), statistic F2 was excluded from the
comparisons.

Mean power estimates are given at the bottom-right
of Tables 1, C1, and C2 (Appendix C) for n 5 144,
81, and 36, respectively. The means of the power es-
timates across all three tables give the following values
for designs 1–6: {2.121, 2.604, 2.677, 2.758, 2.761,
2.764}. These values provide an ordering of the ex-
perimental designs: power of the ANOVA tests of sig-
nificance increases from design 1 to design 6. Designs
1 and 2, which do not involve multiple blocks, are
clearly the least powerful. Power increases as the num-
ber of blocks and their spatial spread increases. Designs
4–6 have nearly equal powers, considering the range
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TABLE 1. Extended.

Experimental designs

(4)
9-U blocks adjacent

in the field
(with replication)

F1 F2

(5)
9-U blocks arranged

in a grid
(with replication)

F1 F2

(6)
3-U blocks

randomly positioned
(unreplicated)

F1 Mean power

5.55
3.88
3.88
3.96
3.79

5.35
3.70
3.71
3.82
3.69

5.90
4.01
4.03
3.86
3.78

5.51
3.91
3.93
3.70
3.63

6.13
3.91
3.95
3.93
3.82

5.902
3.988
3.960
3.948
3.492

3.00
3.14
2.80
4.89
3.60

2.90
3.04
2.75
4.78
3.38

3.04
2.97
2.93
4.98
3.59

2.85
2.77
2.87
4.82
3.44

3.14
3.03
3.11
5.49
3.62

2.872
2.860
2.795
4.428
3.265

3.56
3.69
5.16
3.69
3.71
3.83

3.36
3.42
5.27
3.46
3.62
3.66

3.82
3.53
5.39
3.97
3.97
3.69

3.73
3.39
5.10
3.78
3.74
3.64

3.70
3.45
6.11
3.80
3.74
3.73

3.322
3.285
4.922
3.528
3.518
3.493

3.833 3.966 4.041 3.724

FIG. 5. Power simulation results for n 5 81 experimental units, high effect (effect size 5 0.50): rates of rejection of H0

over 1000 simulations. The rows of diagrams correspond to designs 3, 4, and 5, where statistics F1 and F2 were computed.
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TABLE 2. Mean power estimates for groups of simulations with different amounts of spatial
autocorrelation (stated by the range of the spherical variogram models) and types of envi-
ronmental variables, as a function of the number of experimental units (n) used in the
simulations.

Simulation

Number of experimental units (n)

144 81 36

Range of spherical variogram models
for generation of spatial autocorrelation

0
4

16
40

4.450
3.005
3.575
3.865

3.120
2.111
2.586
2.760

1.728
1.197
1.441
1.532

Environmental variable type
0 5 flat surface 1 SA
1 5 flat surface 1 N (0, 1) 1 SA
2 5 gradient 1 N (0, 1) 1 SA
3 5 waves 1 N (0, 1) 1 SA

4.686
3.413
3.415
3.380

3.401
2.395
2.436
2.346

1.922
1.316
1.354
1.307

Notes: N (0, 1) indicates random standard normal error; SA indicates spatial autocorrelation.

of situations (deterministic structures and spatial au-
tocorrelation) included in our simulations.

This conclusion only applies to simulations con-
ducted in the presence of spatial autocorrelation. One
can compare the individual power estimates to the row
means shown in the right-hand column of each table.
In the four rows with SA 5 0, at the tops of the tables,
the power estimates that are larger than the row mean
are found in any positions in a row. The coefficient of
variation of these rows is also much smaller than in
the following rows, which present a gradient of power
from left to right. For all practical purposes, the six
experimental designs have equal power in the absence
of spatial autocorrelation.

Lesson learned.—For constant effort (n), experi-
mental designs that have more, smaller blocks, which
are more broadly spread across the experimental area,
lead to tests of significance that have more power in
the presence of spatial autocorrelation. In the absence
of spatial autocorrelation, however, the six experimen-
tal designs investigated in this study lead to tests of
significance that have equivalent powers.

Influence of spatial autocorrelation on power

Table 2 shows the estimates of mean power for
groups of simulations with different amounts of spatial
autocorrelation and types of environmental variables.
The simulations without SA all have higher power than
their counterparts with SA. Short-range SA affects
power the most; power increases with the range of SA.
This is due to the fact that fine-scale (small range) SA
is more likely to create heterogeneity within the blocks
than broad-scale (large range) SA. The simulations
without normal error in the environmental variable
(type 0) have higher power than those with normal error
(types 1–3), as can be expected; this type of environ-
mental variable was included in the study to provide a
bottom line against which the effect of SA could be
assessed. There is no noticeable difference in power

among the three types of environmental variables that
included normal error (types 1–3).

Overall mean power for a given experimental effort
is shown at the bottom-right of Tables 1, C1, and C2.
Power increases with the number of experimental units.
This result was expected. It provides reassurance,
though, about the calculation method that we used to
estimate power (Fig. 3).

Lesson learned.—Short-ranged spatial autocorrela-
tion affects the power of the ANOVA tests of signifi-
cance more than large-ranged spatial autocorrelation.

DISCUSSION

The simulation results presented in this paper lead
to the following recommendations:

1) Randomly positioned experimental units (i.e.,
completely randomized design) should only be used
when the experimental area is homogeneous at broad
scale. It should not be used when spatial autocorrela-
tion, or repetitive deterministic structures such as
waves, are present.

2) Blocking is an efficient way of correcting for the
effect of spatial autocorrelation in the data. ANOVA
that takes blocking into account should be used to an-
alyze the results of such experiments, as suggested by
Dutilleul (1993).

3) Statistic F1, which uses the pooled (interaction 1
residual) mean square in the denominator of the treat-
ment F statistic, should be used to analyze the results
of blocked ANOVA if the block 3 treatment interaction
is not significant.

4) For constant effort, experimental designs that
have a larger number of smaller-sized blocks, more
widely spread across the experimental area, lead to tests
of significance that have more power in the presence
of spatial autocorrelation. This is because small blocks
are more homogeneous than large ones.

5) In the absence of spatial autocorrelation, the six
experimental designs investigated in this study lead to
tests of significance with equivalent powers.
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6) Fine-scale (short-ranged) spatial autocorrelation
affects the power of the ANOVA tests of significance
more than broad-scale (large-ranged) spatial autocor-
relation.

Dutilleul (1993) wrote that a completely randomized
design (our design 1) should only be used in experi-
ments in which the field is homogeneous at broad scale.
Broad-ranged spatial autocorrelation rendered the tests
of significance of simple ANOVA invalid in many of
our simulations, especially those involving 144 exper-
imental units. The experiments conducted in a single
completely randomized block (design 2) with n 5 81
or 36 experimental units were also badly affected by
the presence of spatial autocorrelation, which reduced
the rate of type I error and the power of the tests (graphs
not shown).

Except for design 1 (random positions), all our de-
signs involved randomized complete blocks. If, for
practical reasons such as field space availability, or
because there are too many treatments, this cannot be
done, more complex designs and analyses, called in-
complete blocks, must be used. The results of our sim-
ulations, summarized in the Lesson learned paragraphs
of the Results, can help ecologists design such exper-
iments in the presence of spatial autocorrelation.

The value that we chose for the transfer parameter,
b 5 1 (see Methods: Simulation setup), is responsible
for the fact that the presence and deterministic shape
of the environmental variables did not play a large role
in the results of the simulations. Small effects of the
environmental variables may correspond to the con-
ditions encountered in many field experiments in which
researchers generally tend to minimize the differences
in environmental conditions when setting up an ex-
periment; this is one of the meanings of ‘‘control’’ in
experimental design (Hurlbert 1984). We expect en-
vironmental variables with high transfer parameters to
have an effect on power similar to that of spatial au-
tocorrelation with similar range values; a linear gra-
dient would have an effect similar to that of spatial
autocorrelation with infinite range (linear variogram
model), whereas four waves across the field would have
an effect similar to spatial autocorrelation produced by
using a spherical variogram with range 1/8 the width
of the field, or 12.5 pixels in the 100 3 100 pixel field
that we used in our simulations.

Before a field experiment, a pilot study can be ex-
tremely beneficial in helping to determine the environ-
mental factors creating variation across the experi-
mental area that are likely to affect the response var-
iable. If such variables are found, they should be mea-
sured at each experimental unit and incorporated in the
analysis as covariables. In the simulations reported in
this paper, however, we simulated the behavior of the
ecologist who does not take the environmental vari-
ables into account during analysis of experimental re-
sults.
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APPENDIX A

Figures showing the six types of experimental designs used in this study, for n 5 144 (Fig. A1) and n 5 36 experimental
units (Fig. A2), are available in ESA’s Electronic Data Archive: Ecological Archives E085-108-A1.

APPENDIX B

Figures showing type I error in simulations involving n 5 144 (Fig. B1) and n 5 36 experimental units (Fig. B2) are
available in ESA’s Electronic Data Archive: Ecological Archives E085-108-A2.

APPENDIX C

Tables showing power estimates for n 5 81 (Table C1) and n 5 36 experimental units (Table C2) are available in ESA’s
Electronic Data Archive: Ecological Archives E085-108-A3.


