
“What distinguishes a mathematical model from, say,

a poem, a song, a portrait or any other kind of ’model’, is that

the mathematical model is an image or picture of reality painted

with logical symbols instead of with words, sounds or watercolors.”

- J. Casti



University of Alberta

Optimization of Biomass and Lipid Production in

Heterotrophic Microalgal Cultures

by

Hector Jr. De la Hoz Siegler

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Chemical Engineering

Department of Chemical and Materials Engineering

©Hector Jr. De la Hoz Siegler
Spring 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis
and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed

or otherwise reproduced in any material form whatsoever without the author’s prior written permission.



Abstract

Microalgae are a promising source of biofuels and other valuable chemicals.

The low cell density and slow growth rate that have traditionally characterized

microalgal cultures, however, have resulted in a reduced economical feasibility.

To develop a sustainable microalgal process it is required to increase culture

productivity, maximize production yield, and reduce production costs. To

achieve these goals it is necessary to improve the current understanding of the

dynamic behaviour of microalgal cultures.

In this thesis, growth and oil production rates in heterotrophic cultures of

Auxenochlorella protothecoides were evaluated as a function of the carbon and

nitrogen source concentration. It was found that nitrogen plays a major role in

controlling the productivity of microalgae. It was also shown that there exists

a nitrogen source concentration at which biomass and oil production can be

maximized. A mathematical model that describes the effect of nitrogen and

carbon source on growth and oil production was proposed, considering the

uncoupling between nitrogen uptake and growth, the possibility of luxurious

uptake of nitrogen, and the time-delayed inhibitory effects caused by the

transient spike in the intracellular nitrogen concentration.

Using a non-linear model-based optimization approach, biomass and oil



productivities were substantially increased. The use of an adaptive model

predictive control strategy resulted in a 10-fold increase in the average biomass

productivity and a 16-fold increase in the maximum productivity compared to

batch experiments. The final cell density in the optimized culture was 144 g/L

(dry weight), with 49.4 % w/w oil content. The maximum lipid productivity

was 20.2 g/Ld, achieved during the exponential growth phase at an average

cell density of 86 g/L. The lipid productivity in the optimized microalgal

culture was higher than any previously reported productivity value for other

oleaginous microorganisms.

Application of the adaptive optimization strategy to a two-stage glyc-

erol/glucose culture resulted in an increased production yield (glucose to oil),

from 0.267 g/g in the optimized single-stage culture to 0.347 g/g in the two-

stage culture. The increased yield and productivity of the optimized cultures

resulted in a largely improved economic feasibility.

Composition analysis of the algal oil produced in the optimized cultures

shows that the oil has a high quality as biodiesel precursor, in terms of the

expected cetane number, iodine value, and cold filter plug point temperature.

The higher productivity and excellent lipid profile of the optimized microalgal

culture make A. protothecoides an exceptional source for biodiesel production

and a potential source of single cell oil for other applications.
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α Confidence level for statistical tests

ε Threshold parameter for the support vector regression algorithm

γ Radial basis function kernel parameter

µ Biomass growth rate
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π Oil production rate
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ρ Nitrogen uptake rate

ρm Maximum uptake rate

ξ Vector of state variables
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AIC Akaike information criterion

BIC Bayesian information criterion

C Soft margin for the support vector regression cost function

D Dilution rate



E(p) Weighted sum of square errors for a given set of model parameters, p

F Fisher-Snedecor probability distribution

f i1 Nitrogen-rich inlet flowrate

f i2 Carbon-rich inlet flowrate

fo Bioreactor outlet flowrate

H Hessian matrix to approximate the model covariance matrix

k Set of model parameters

km Maintenance constant

Kρ Half saturation constant for glycine uptake

Kq̃ Half saturation constant for growth in terms of the intracellular nitro-

gen concentration

Ki1 Growth inhibition constant in terms of the nitrogen concentration in

the cells

Ki2 Growth inhibition constant in terms of the carbon source concentra-

tion

Kip Lipid production inhibition constant in terms of the intracellular ni-

trogen concentration

Kps2 Half saturation constant for oil production in terms of the carbon

source concentration

Ks1 Half saturation constant for nitrogen uptake

Ks2 Half saturation for biomass growth in terms of the carbon source

concentration

M Number of samples removed from the reactor at some specified time

point t



m Number of measured states used for parameter estimation

N Hill allosteric regulation coefficient

Nd Number of experimental data points

np Number of model parameters being estimated

PB Biomass volumetric productivity

PL Lipid volumetric productivity

p Vector of model’s parameter values
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p̂ Estimated model parameter values

PRESS Predicted residual sum of squares
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R2 Coefficient of determination

s0 Threshold substrate concentration
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si1 Nitrogen concentration in the nitrogen-rich feed

s2 Carbon source concentration in culture media



si2 Carbon concentration in the carbon-rich feed
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u Set of input variables

V Reactor volume

w weight factor for parameter estimation, variance of experimental mea-

surements

WSSE Weighted sum of square errors

x metabolically active biomass concentration

y Estimated state value

ŷ Measured state value

Yp/s Product to carbon substrate yield

Yx/p Biomass to lipid yield

Yx/q Biomass to nitrogen source yield

Yx/s Biomass to carbon substrate yield



1
Introduction

This chapter provides the general overview of the thesis. First, the research

problem and motivation are introduced together with the general and the

specific objectives pursued in this research project. The reader will also find a

description of the thesis structure and an anticipation of the contents of each

of the subsequent chapters that make the body of the thesis.

1.1 Problem statement

The increasing evidence of global climate change, associated with a surge in

the concentration of green-house gases in the atmosphere, and the declining

reserves of fossil fuels have motivated a growing interest in the research of

renewables sources of energy (Sørensen et al., 2011; Bessou et al., 2011).

Biofuels are considered a viable alternative to partially replace our energy

requirements in term of liquid fuels (Sørensen et al., 2011). Ethanol and



biodiesel derived from agricultural food-based crops are considered the first

generation of biofuels (Naik et al., 2010). A second generation of biofuels

are those derived from lignocellosic materials (Antizar-Ladislao and Turrion-

Gomez, 2008), which are more abundant and have a lower commercial value

than agricultural food-based crops. Algal derived biofuels have emerged on

the recent past as the third generation biofuels (Demirbas, 2011).

Several microalgal species are able to accumulate large amounts of oil, which

can be later converted into biodiesel by transesterification (Li et al., 2007a;

Xu et al., 2006). Microalgae also have the ability to produce several valuable

chemicals, which could improve the economic performance of algal biofuels

by integrating the production of chemicals and biofuels in a biorefinary ap-

proach (Singh and Gu, 2010). Microalgae can be grown directly on CO2

and light, or on organic carbon substrates. The first growth mode is called

photoautotrophic, as the algal cells derive their energy and carbon from photo-

synthesis. The second growth mode is called heterotrophic. The combined use

of light as the source of energy and organic substrates as the carbon source is

called photoheterotrophy or mixotrophy. Third generation biofuels are biofuels

derived from photoautotrophically-grown algae. A fourth biofuels generation

has been proposed by combining the use of highly efficient microorganisms and

crop plants (Masarovicova et al., 2009). In this case, optimized heterotrophic

or mixotrophic microalgae can play a fundamental role in the development of

the fourth generation biofuels.

Currently, a limitation to the large-scale implementation of algal biodiesel is

its high production cost compared with fossil fuels (Chisti, 2007). The reduced

economic feasibility is due to the low densities and meagre productivities that

have traditionally characterized algal cultures. Optimization of microalgal

cultures is hindered by the reduced understanding of algal metabolism, the lack
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1.1. Problem statement

of appropriate sensors to measure relevant biological variables in the reactor,

and the non-linear complex nature of biological processes.

It is well known that microalgae are capable of storing high amounts of oil when

subjected to nitrogen deficiency (Chen and Johns, 1991; Sheehan et al., 1998;

Hu et al., 2008). The mechanisms controlling oil production and accumulation,

however, are not clearly understood, and neither is the relationship between

growth and oil production. There is a need for a comprehensive, quantitative or

semiquantitative description of microalgal dynamics. A mathematical model,

suitable for engineering applications, will facilitate the design, control, and

optimization of algal processes.

Additionally, it is necessary to develop fast and reliable methods for lipid

quantification in algal cells. Such measurements are required to gauge the

performance of the bioprocess in terms of productivity and for on-line control.

Ideally, an on-line, in situ, sensor for measuring one or more relevant variables

in the reactor will allow the implementation of feedback control methods.

Process analytical technologies (PAT) have been proposed for monitoring and

optimization of bioprocesses (Clementschitsch and Bayer, 2006; Junker and

Wang, 2006). PAT are, ideally, real time sensors that guarantee quality

in the production of bioproducts. An ideal PAT provides a rapid, precise,

and accurate analysis of the reaction broth biochemical composition, and

allows the characterization of the organisms it contains (McGovern et al.,

2002). Spectroscopy methods satisfy most of the criteria outlined above, and

allow a non-invasive, non-destructive and continuous monitoring of the bio-

process (Clementschitsch and Bayer, 2006). The application of spectroscopic

PAT, however, is so far restricted to processes in which the sample matrix is

simple enough or have an unusual characteristic that facilitates the correlation

of spectral information to chemical composition.
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1.2 Research Objectives

The overall focus of the research project presented in this thesis was the

optimization of the productivity of microalgal cultures, with the final goal

of producing a cost-effective, high-quality, microalgal biodiesel. The specific

objectives of this study were as follows:

1. Study the effect of nutrient availability on growth and oil production in

microalgae.

2. Develop an experimental technique for fast quantification of key process

variables in microalgal cultures.

3. Formulate and evaluate a mathematical model to describe the algal

bioreactor dynamics.

4. Develop a high cell density, heterotrophic culture of microalgae.

5. Determine the optimal feeding profiles in fed-batch bioreactors in order

to maximize culture productivity.

1.3 Thesis overview

In this thesis, an optimized process for the heterotrophic production of mi-

croalgae was developed. The methodology followed for the development and

optimization of the aforementioned process is summarized in Fig. 1.1.

As can be seen in Fig. 1.1, the development of the thesis did not follow a linear

path, but as with any optimization activity the repeated iteration through

several steps was required. The results presented in this document are those

at the final iteration performed, though they are still amenable for further

improvement.
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Figure 1.1: Flow diagram of the methodology followed for bioprocess optimiza-
tion. The number under each process block specifies the chapter that provides
the details and final results of the activities performed. The broken line is
used to indicate an activity that was not integrated in the final optimization
presented in this thesis, but nonetheless was developed and whose integration
is part of the recommended future work.
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Chapter 2 provides the background information for this thesis. First, a general

description of microalgae and microalgal biotechnology is presented. The

methods for culturing microalgae as well as relevant biotechnological applica-

tions are reviewed. Second, a discussion of the necessary steps for bioprocess

optimization is presented. A review of the current trends in process analytical

technologies, as applied to bioprocess monitoring, and a description of the

different approaches for bioprocess modelling is included in this discussion. A

brief review of the current understanding of microalgal growth kinetics finalizes

the chapter.

Succinct descriptions of the experimental apparatuses, microalgal cultures,

standard analytical methods, and numerical methods used in this research are

presented in Chapter 3.

The results and discussion are presented in Chapters 4 to 8. In Chapter 4,

two different approaches to quantify the neutral lipid content in algal cells

are presented. The first approach involves the extraction of the neutral lipids

and further gravimetric quantification. The second approach considers the

quantitation through a fluorescence marker and correlation of the fluores-

cence intensity of the stained cells with their internal lipid content. Also

in Chapter 4, a spectroscopic based multivariate technique is developed to

simultaneously estimate the intracellular oil content, the biomass, and the

glucose concentration in the bioreactor.

Several interesting findings regarding microalgal metabolism, and their be-

haviour in photoheterotrophic and heterotrophic cultures, are presented in

Chapter 5. These findings, together with those previously reported and sum-

marized in Chapter 2, constitute the support for the model developed in

Chapter 6.

In Chapter 6, a mathematical model of the dynamic behaviour of heterotrophic
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1.3. Thesis overview

cultures of microalgae is reported. The model considers the effect of both

carbon and nitrogen sources on the growth rate and oil production rate. The

model was calibrated using experimental observations from batch cultures, and

validated in fed-batch cultures.

In Chapter 7, the proposed dynamic model is used to optimize the biomass

and lipid productivity in fed-batch cultures of Auxenochlorella protothecoides.

It is shown that by using the proposed model, the productivity of glucose-

fed cultures can be increased by a factor of 20. The model is further used

to optimize the productivity in glycerol-fed cultures. The characterization of

the oil extracted from A. protothecoides is also presented, together with a

discussion of the properties of a biodiesel obtained using this oil as feedstock.

The economic aspects of interest to the large scale cultivation of microalgae

are reported in Chapter 8. An estimate of the production cost of microalgae,

based on the results reported in Chapter 7, is also reported.

Chapter 9 provides the conclusions of this thesis, as well as a series of rec-

ommendations for future work. Some of the recommendations are directly

related to the objective of this thesis, and aim to further improve or enhance

the productivity of microalgal cultures. Other recommendations are potential

lines of exploratory research, that are related to algal biotechnology and which

came from observations done during the course of this research project, but

that do not form part of the core of this thesis.
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2
Background

2.1 Microalgal biotechnology

Microalgae comprise a diverse, polyphyletic, group of organisms whose com-

mon characteristic is the ability to carry out photosynthesis (Andersen, 1992).

The diversity of the organisms covered by the term microalgae is illustrated

in Fig. 2.1, where their phylogenic tree is shown. For each taxonomic group

in Fig. 2.1, a representative microalgal genus of biotechnological interest has

been indicated.

As photosynthetic organisms, microalgae are at the base of the food chain in

most of the environments in which they are present. Microalgae are found

in such dissimilar biomes as soil, seawater, freshwater, decaying matter, and

living plants and animals, which highlights the success of microalgae as a

group to adapt to environmental conditions. It is important to mention



Cyanobacteria, (Arthrospira)

Glaucophytes

Rhodophytes, (Porphyridium)

Heterokonts, (Nannochloropsis)

Cryptophytes, (Rhodomonas)

Haptophytes, (Isochrysis)

Euglenophytes, (Euglena)

Prasinophyceae, (Tetraselmis)

Ulvophyceae, (Ulothrix )

Trebouxiophyceae, (Auxenochlorella)

Chlorophyceae, (Chlamydomonas)

Charophytes, (Mesostigma)

Embryophytes (Higher plants)

Chlorarachniophytes, (Bigelowiella)

Chlorophytes

Figure 2.1: Phylogenic tree of microalgae based on the photosynthetic plastid
genealogy, adapted from Bhattacharya et al. (1998) and Lewis and McCourt
(2004). In parenthesis, is is indicated a representative genus of biotechnological
interest. In the past, cyanobacteria were included among the algae, but
currently they are regarded as quite distinct organisms, belonging to a different
kingdom, and are excluded from the strict definition of algae. In the discussion
of microalgae as a source of biofuels and other products, however, several
cyanobacteria species are usually used as examples.
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2.1. Microalgal biotechnology

that even though microalgae are characterized by being photosynthetic, most

microalgal groups contain members that have lost their plastid and therefore

are obligate heterotrophs, while an increasing number of species are being

recently identified as mixotrophs.

2.1.1 Applications of microalgae

Thanks to their genetic diversity, their adaptability to different and some-

times extreme environmental conditions, and their flexibility to use different

sources of energy and carbon to fuel their metabolism, microalgae have a

great potential as a source of biotechnological products (Carlsson et al., 2007).

Microalgae are being used for the production of animal food, human food

supplements (nutraceuticals), pigments, and for wastewater treatment and soil

reclamation (Aaronson and Dubinsky, 1982; Spolaore et al., 2006). Potential

future applications of microalgae include their use as a source of biofuels, the

production of pharmaceutical products, and for capturing carbon dioxide at

the point of emission (Carlsson et al., 2007; Olaizola, 2003).

The methods and results presented in this thesis are directly applicable to

two microalgal applications: biomass and biodiesel production. With further

research and development they can also impact the production of nutraceu-

ticals, pigments, and other fine chemicals and pharmaceutical products from

microalgae.

Microalgae as a biomass source

The dried biomass is by large the main biotechnological product derived from

microalgae. Whole microalgal biomass is sold for human consumption as a

food supplement rich in carotenoids, docosahexaenoic acid (DHA), and eicos-

apentaenoic acid (EPA). It is commercialized as a powder or in compressed
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form in the health market, or as an additive in functional foods (Spolaore

et al., 2006).

Microalgal biomass is also used directly as animal food, as it is rich in pro-

teins, essential fatty acids, and carotenoids. The feeding of Chlorella and

Scenedesmus has been reported to provide a better weight control, improved

fertility, a healthier skin and lustrous coat in test animals (Pulz and Gross,

2004). In aquaculture, microalgae are fed to shrimps and mollusc larvae, and

are used for colouring of salmonoids (Brennan and Owende, 2010).

The direct pyrolysis of algal biomass has been shown to produce diesel quality

hydrocarbons. The pyrolysis also left a solid charcoal-like residue, biochar,

that can potentially be used as fertilizer or as an adsorption material for carbon

sequestration or other applications (Brennan and Owende, 2010).

Biodiesel production

Due to their capacity to accumulate large amounts of intracellular lipids in

the form of triacylglycerols, microalgae were early identified as a source of

biodiesel (Sheehan et al., 1998). Biodiesel is a proven alternative to tradi-

tional fossil fuel diesel (Ma and Hanna, 1999; Kinast, 2003; Gerpen et al.,

2004; Chisti, 2007). Its advantages in terms of environmental and health

effects, fuel quality, and economic diversification, have been previously docu-

mented (USEPA, 2002; McCormick et al., 2006). Commercially, biodiesel is

currently produced from oilseed crops (Ma and Hanna, 1999; Chisti, 2007).

However, replacement of current diesel fuel demand with biodiesel from oil

crops is unfeasible, as it requires unrealistic or unsustainable large cultivation

areas (Chisti, 2007) as shown in Table 2.1.

Microalgae, with their high efficiency and ability to produce and store high

amounts of lipids that can be converted into biodiesel, is to date the only

12



2.1. Microalgal biotechnology

Table 2.1: Comparison of different biodiesel sources in terms of oil yield and
required land to partially replace current transportation fuel demand (Chisti,
2007)

Crop Oil yield Required land areaa

(L/Ha) (MHa) (%)b

Corn 172 1540 846
Soybean 446 594 326
Canola 1190 223 122
Oil Palm 5950 45 24
Microalgaec 136900 2 1.1
Microalgaed 58700 4.5 2.5
a For meeting 50% of all transport fuel needs

of U.S.
b Percentage of existing U.S. cropping area.
c 70% oil(w/w) in biomass.
d 30% oil(w/w) in biomass.

source of biofuels that could potentially meet the required demand for liquid

fuels. In Table 2.1, the corresponding oil yield and land area needed for

two possible scenarios of phototrophic microalgal production is reported. As

can be observed, there is a dramatic difference between microalgae and other

alternatives for biodiesel production.

Even though it is theoretically possible to produce enough biodiesel from pho-

totrophic microalgae without an excessive land requirement, the unfavourable

financial cost and energy ratio of current production technologies have hin-

dered the large-scale implementation of microalgal based biofuels. Heterotrophic

microalgal cultures can be used to increase the culture productivity and to

reduce the high cost associated with the operation and recovery of biomass in

phototrophic systems.
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2.1.2 Microalgal production systems

As previously indicated, in their natural habitat most microalgae use sunlight

and carbon dioxide to fuel their metabolism. Several microalgal species, on the

other hand, have lost the capacity to perform photosynthesis and are therefore

obligate heterotrophs. In addition a growing number of microalgal species are

being identified as mixotrophs, that is they have the capability of thriving

either phototrophically or heterotrophically. This flexibility in terms of the

basic cellular metabolism offers the possibility of using a wide arrangement of

cultivation technologies.

Reactor design

Large-scale culturing of microalgae has been traditionally done in natural

uncontrolled systems, such as lakes, lagoons, and ponds. In these systems,

microalgal cells grow using the light and nutrients freely available in nature,

with the advantage that there is no cost associated with media preparation or

illumination. Clearly, the disadvantages of these natural systems are the large

variability in the culture conditions and the possibility of contamination by

other microalgal species or by predators. Furthermore, biomass recovery cost

is usually high due to the low culture cell density in these systems.

To overcome some of the aforementioned disadvantages, several alternative

culture systems has been proposed and implemented. Microalgal culturing

techniques can be classified as open or closed. The first case includes both un-

stirred and raceways ponds. Unstirred ponds are essentially equal in operation

to natural uncontrolled systems, while raceway ponds provide an improvement

in terms of better mixing and circulation, which stabilize microalgal produc-

tivity. The application of open systems, however, is restricted in practice to

extremophile microalgae due to the potential contamination risk.
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Closed culture reactors allow for single-species cultures, reducing or eliminat-

ing the risk of contamination. They are in general more efficient in terms of

productivity, due to reduced evaporation losses, better temperature control,

and better mixing that translate into improved mass transfer. Closed systems

include tubular, flat-plate, stirred tank, and airlift column bioreactors.

Operation mode

Microalgae can be produced in several distinctive reactor operation modes,

i.e. batch, fed-batch, perfusion, semicontinuous, and continuous. The opera-

tion mode determines the maximum achievable productivity and the control

strategies that are feasible to optimize the bioreactor performance.

In batch cultures, all nutrients are loaded in the reactor at the start of the

culture and cells are harvested after a predefined period of time, or when

the nutrients are exhausted. Growth, therefore, is limited by the maximum

amount of nutrients that can be loaded in the reactor without causing excessive

inhibition.

In fed-batch mode, nutrients are continuously added to the culture and

therefore growth can be extended with respect to the batch case, as nutrient

inhibition is not an issue anymore. Cells are harvested once the culture reaches

stationary conditions or when the maximum operating volume of the reactor

is reached.

In continuous systems, cells are harvested as fresh medium is added to the

reactor, keeping the total operating volume constant. An intermediate oper-

ating mode between batch and continuous are the semicontinuous cultures,

where only a fraction of the reactor volume is harvested at any given time and

then the culture volume is replenished with fresh medium. Continuous and

semicontinuous culture might experience wash-out, if cells are harvested at a

15



higher pace than the growth rate. Additionally, the cell cultures might be too

diluted, increasing the cost of product recovery.

Perfusion cultures have been proposed to overcome the low density of con-

tinuous systems. In this case, the spent medium is removed from the culture

as fresh medium is added, while algal cells are retained in the reactor.

2.2 The improvement of bioprocesses

Bioprocesses are widely used for the production of biofuels, chemicals, phar-

maceuticals, and food products. The advantages of bioprocesses, as opposed

to classical chemical processes, are their greater specificity, desirable reaction

kinetics, and their reduced environmental impact (McGovern et al., 2002). A

large number of commercial bioprocesses, however, still rely on the life-long

experience of operators (Blanco et al., 2006) and are operated at conditions

far from the optimal ones (Clementschitsch and Bayer, 2006).

In order to improve production processes, or to achieve optimal conditions,

appropriate control strategies must be implemented. To implement an optimal

control strategy, it is necessary to have a quantitative description of the system,

that is a mathematical model that relates the controlled variables to the

process outputs. It is also required to have the capability to monitor, at a

relatively high frequency, the system outputs. Both areas, modelling and mon-

itoring of bioprocesses, still poses several challenges due to the complexities

and particularities of biological systems.
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2.2. The improvement of bioprocesses

2.2.1 Bioprocess Modelling

Process modelling is a central element to the task of process control and

optimization. The function of a model is twofold: first, it provides a mea-

sure of order to the experimental observations and the tools to make specific

predictions about the system under study; second, it can be used to determine

the structure of the system and to improve our understanding of it (Becker

et al., 2009).

Depending of the available knowledge of the biosystem of interest and the

intended application of the model, different approaches to modelling can be

followed. In a white-box modelling strategy, the mathematical relations are

strictly derived from mechanistic, first-principles, considerations. White-box

models possess good extrapolation properties, and provide the engineer or

scientist with a reliable tool to inquire about the nature of the system. The

formulation of white box models, however, is restricted due to our limited

knowledge of the structure and properties of biological systems. Furthermore,

due to the complex nature of biological materials, to achieve a tractable

model structure, extensive simplification is required when deriving models

from mechanistic considerations. The resulting mechanistic models tend to

resemble black-box models, more than white-box ones (Becker et al., 2009).

In a black-box modelling approach, on the other hand, the model formula-

tion is purely driven by the available data, without regards to any biological

explanation of the model structure. Black-box models are based on different

probabilistic or artificial intelligence approaches. This category of models does

not have any reliable extrapolation properties and provides little understand-

ing of the underlying nature of the system. They are useful, however, for

control of processes operating inside the operating region in which the model

was built. Models that take into account both statistical approaches and the
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existing knowledge of the system are termed grey-box models.

Models of biological processes can be further categorized with respect to the

assumptions made on the identities of the cell and the cell population. Models

can be either unstructured, in which cells are assumed to be a single chemical

component with a fixed composition, or structured where cells are regarded

as composed of two or more interacting compartments. Models can also be

classified as unsegregated or segregated. In unsegregated models all the cells

in the system are assumed to behave equally and to have the same properties,

while segregated models account for the variability in the cell population.

By definition, a model should be kept as simple as possible. The complex-

ity in a model is determined by the intended application of the model or

the question that the model is expected to help to answer. Unstructured-

unsegregated models are the simplest and represent an ideal case, in which

the population acts as a single solute in the bioreaction. Despite and because

of this simplicity, unstructured-unsegregated models are of widespread use in

bioprocess engineering. This category of models successfully describes many

bioprocesses characterized by pseudo-steady state and balanced growth.

For bioprocess control and optimization, the vast majority of documented

applications use unstructured-unsegregated models (Mandenius, 2004), even

though these models are known to fail in describing dynamic systems.

The most complex, and closest to reality, category of bioprocess models are

structured-segregated models. The use of these models is, however, restricted

due to the intractability of the systems of multiple partial differential and

integro-differential equations that are present in them. The use of a higher

complexity model is determined by the inability of simpler models to provide

a satisfactory result.
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2.2.2 Bioprocess Monitoring

Due to the reduced availability of appropriate sensors to measure key state

variables, e.g. biomass and product concentrations (Macaloney et al., 1996),

bioprocesses are largely performed without any type of control and quality is

only tested on final products (Junker and Wang, 2006). The introduction of

the Process Analytical Technology (PAT) initiative by the FDA (2004) has

increased the interest in the research and development of optimal bioprocesses

in the pharmaceutical and food fields. According to the PAT initiative, quality

cannot be tested in products, but should be built-in or should be achieved by

design (Clementschitsch and Bayer, 2006; Junker and Wang, 2006). The PAT

initiative, in contrast to the previous FDA’s Good Manufacturing Practices

standard, promoted the use of real time sensors to guarantee quality in the

bioprocesses.

Process monitoring approaches can be classified as on-line, at-line, or off-

line (Vaidyanathan et al., 1999). Off-line measures have been the standard

in bioprocess industries. Conventional off-line analysis is performed daily

or at the end of the culture, resulting in a rather unreliable and inefficient

analysis procedure (Arnold et al., 2002). Even in the cases when analyses are

performed more frequently during a fermentation, several labor-intensive an-

alytical techniques are required for the measurement of biomass and products

concentration (Macaloney et al., 1996).

At-line monitoring represents an improvement over the conventional approach.

In this case the analyzer is within the vicinity of the bioreactor and samples

taken from it are analyzed quickly (Vaidyanathan et al., 1999; Arnold et al.,

2002). In an ideal monitoring strategy, measurements are taken in real-time;

therefore, on-line monitoring is the desirable approach. On-line monitoring

can be performed in situ or ex situ. In the first case, the analyzer is in direct
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contact with the process stream or is immersed in the bioreactor. In the second

case, a flow device allows for the passage of the process stream through the

analyzer. According to Arnold et al. (2002) and Macaloney et al. (1996) a

process monitor located ex situ, such as an external loop, is non-ideal since

there is a potential for major operating faults.

The increased robustness and reliability of process spectrometers has made

spectroscopy a realistic alternative to off-line laboratory analysis as a source

of chemical information. The main advantage of spectroscopy over other

monitoring techniques is that multivariate chemical information is obtained,

in contrast to standard univariate process measurements of temperature, pres-

sure, pH, DO, flow rate, and levels (Gurden et al., 2002). An ideal monitoring

method should provide a rapid, precise, and accurate analysis of the reaction

broth biochemical composition; should allow the characterization of the or-

ganisms it contains; should have minimum, or no sample preparation; and

should be automated and inexpensive (McGovern et al., 2002). Spectroscopy

methods satisfy most of the criteria outlined above, and allow a non-invasive,

non-destructive and continuous monitoring of a bioprocess (Clementschitsch

and Bayer, 2006).

Raman spectroscopy is a physicochemical method that measures the funda-

mental vibrational modes of bonds within functional groups (Sivakesava et al.,

2001; McGovern et al., 2002), allowing for the quantification of the biochemical

species present in the culture broth. Moreover, it has been reported that each

microorganism has a distinctive fingerprint spectra (Naumann et al., 1991),

allowing for monitoring of biomass as well. Raman spectroscopy is based

on the inelastic scattering of monochromatic light. In an elastic scattering

process, light photons interact with the electron cloud of a molecule, raising the

electrons to a virtual energy state; electrons quickly drop back to their ground
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2.2. The improvement of bioprocesses

energy state releasing a photon of equal energy to the incident photon. In a

Raman or inelastic scattering, on the other hand, the electrons do not return

to their ground energy state but to a vibrational state, causing the interacting

photons to gain or lose energy during the scattering process, shifting their

wavelength.

Shope et al. (1987) reported the first application of Raman spectroscopy to a

bioprocess, namely the analysis of ethanol fermentation products. They col-

lected the spectra off-line for several samples removed at different fermentation

times, and showed that the Raman spectra can be used for the simultaneous

quantification of biochemical species in aqueous solutions. Gomy et al. (1988)

reported the use of a fibre optic in combination with a Raman spectrometer for

the off-line monitoring of an alcoholic fermentation; they reported an average

error of 10-15% for their fibre optic measures. Xu et al. (1997) simultaneously

measured the concentration of glucose, glutamine, lactate and ammonia in a

fermentation broth. Cells were removed from the samples before measuring the

spectra. Spectra were measured by using two different laser sources (Argon

ion at 514.5 nm and solid state diode laser at 785 nm). The background

fluorescence was substantially eliminated by using the 785 nm laser, and the

limit of detection was improved up to a factor of 5. Using a 785 nm laser, Giles

et al. (1999) showed that high quality quantitative analysis can be performed

using Raman spectroscopy without requiring spectral standardization for a

chemical system. They conclude that the quantitative information available

from the Raman spectra is comparable to that from IR spectra, but avoid

the requirement for complicated sample preparation procedures. Shaw et al.

(1999) followed the fermentation of glucose to ethanol on-line by using a

flow-through cell (ex situ), concluding that Raman spectroscopy is an ideal

method for following the biotransformation in a nondestructive noninvasive

way. They used a 780 nm diode laser, and pointed out that even though
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an Nd:YAG (neodymium-doped yttrium aluminium garnet) at 1064 nm laser

could further reduce the background fluorescence, the quantum efficiency of

the CCD detectors was very low at 1064 nm photons, making the 780 nm laser

an optimum selection.

The first on-line and in situ application of Raman spectroscopy to monitoring

a bioprocess was reported by Cannizzaro et al. (2003). They used a 785 nm

laser, and a 12.5 mm immersion Raman probe inserted in a side port of the

bioreactor. The probe was connected to the control unit with a fibre optic.

They quantified the carotenoids production in Phaffia rhodozyma. Taking

advantage of the unique enhanced Raman signal of carotenoids, caused by a

resonance effect, no chemometric tools were required for signal deconvolution.

Quantification of carotenoids using Raman spectroscopy has also been reported

in the microalgae Dunaliella and Phaedactylum (Abbas et al., 2011).

Lee et al. (2004) monitored Escherichia coli bioreactions using Raman both

in situ and off-line. Limited accuracy of on-line measures was reported,

associated with a change in the Raman spectrum of the sapphire window

probe after steam-sterilization. A chemometric model was built using data

from pure components spectra measured off-line and before probe sterilization.

Lee et al. (2004) suggested that better results could be obtained by modifying

the probe design to allow the measurement of the sapphire spectra after steam

sterilization or by building the chemometric model in such a way that sapphire

spectra do not affect it.

More recently, Huang et al. (2010) and Wu et al. (2010) have shown the

feasibility of using confocal Raman spectroscopy for the characterization and

quantification of lipids at the cellular level in microalgae.
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2.3. Modelling of microalgal systems

2.3 Modelling of microalgal systems

The research effort for modelling microalgal systems has been largely done

from an ecological perspective. Due to the importance of microalgae for

both marine and freshwater biomes, ecologists have been interested in the

productivity of microalgae, the population cycles and succession, and the effect

of eutrophication on microalgal populations.

Phosphorus and nitrogen are usually regarded as the key factors in most

eutrophication processes. Given that they are usually present in limiting quan-

tities in the aquatic environments, whenever there is an oversupply of nitrogen

or phosphorus algal blooms occur. The research on eutrophic environments

have provided a wealth of information regarding the kinetics and mechanisms

of nutrient uptake, nutrient accumulation, and nutrient limitation.

2.3.1 Physiological characteristics relevant for modelling
of microalgal processes

From a biotechnological perspective, several of the findings in ecological re-

search are relevant. In particular, the kinetics of nitrogen uptake and its

regulating effect on algal growth is of prime interest, as nitrogen deficiency

has been previously identified as the key to achieve a high oil content in

algal cultures (Chen and Johns, 1991; Hu et al., 2008). The so called ‘trigger

effect’ that nitrogen deficiency has over oil accumulation has consequently

attracted research interest. Empirical evidence suggests that there are clear

differences between nitrogen-sufficient and nitrogen-deficient cultures. These

differences include changes in the content of chlorophyll, protein, and lipids,

as well as variation in cells pigmentation, (Shihira-Ishikawa and Hase, 1964;

Piorreck et al., 1984). As a major cellular nutrient, nitrogen is required for the
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assembly of nucleic acids and proteins, and its availability plays a major role

in cell growth and division and affects many intracellular processes (Ahmad

and Hellebust, 1990; Huppe and Turpin, 1994). Therefore, a nitrogen deficient

culture is expected to grow at a slower rate than a nitrogen sufficient one.

Consequently, the effect nitrogen has in promoting a higher oil content in

algal cells has been considered the result of a slower growth rate, and not due

to the activation of a high oil producing metabolic pathway (Sheehan et al.,

1998). Research on autotrophic systems has found that the increase in oil

accumulation in algae due to nitrogen limitation is inversely proportional to

oil productivity (Sheehan et al., 1998; Brennan and Owende, 2010), which has

led to the conclusion that lipid content in microalgae is less important than

the maximization of growth rates (Weldy and Huesemann, 2007).

Previous studies have revealed several characteristics of algal nitrogen uptake

and metabolism:

i. Nitrogen uptake is not linear (Ricketts, 1988; Hein et al., 1995; Inokuchia

et al., 2002);

ii. Transport is feedback regulated, although regulation is either not per-

formed at the nuclear level or transport enzymes have long persistence in

the cell (Hein et al., 1995; Inokuchia et al., 2002; Chaudhuri and Spencer,

1968);

iii. Free amino acids are stored in the cytosol;

iv. The glycine uptake system is induced by glucose and by nitrogen star-

vation (Tyler et al., 2005; Cho and Komor, 1985);

v. Respiration and nitrogen assimilation are interacting processes that in-

volve the activation of several metabolic pathways that share common
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2.3. Modelling of microalgal systems

metabolites and enzymes (Inokuchia et al., 2002).

Most of the ecological studies on nitrogen uptake and metabolism have focused

on dissolved inorganic nitrogen (DIN) uptake and limitation, while few studies

have dealt with dissolved organic nitrogen (DON) uptake (Piedras et al., 1998;

Tyler et al., 2005). DON includes compounds such as amino acids, urea,

purines and ureides, among others (Piedras et al., 1998). There are no studies,

however, on DON uptake kinetics under heterotrophic conditions in high cell

density algal cultures. Whether or not the findings on dilute algal communities

are applicable to single-species, high density cultures needs to be investigated.

2.3.2 Kinetic models of microalgal growth

Extensive research has been done in the field of microbial kinetic modelling, as

it is an important tool in physiology, genetics, ecology and biotechnology (Jan-

nasch and Egli, 1993). The aim of kinetic modelling is to relate the growth or

production rate of microalgae to one or more process variables. The specific

growth rate, µ, expresses the change in the cellular biomass per unit of time:

dx

dt
= µx (2.1)

from where, after integrating from time t1 to time t2, it is obtained the

expression for determining the growth rate:

µ =
1

t2 − t1
ln
x2

x1

(2.2)

where x1 and x2 are the biomass concentrations at time t1 and t2, respectively.

Several unstructured and structured models has been proposed to represent

the growth rate of microalgae in terms of the concentration of the limiting
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nutrient. Wu et al. (2007) used a kinetic expression based on the unstructured

Aiba’s model to describe the heterotrophic growth of Chlorella with glucose

as the carbon source and KNO3 as the nitrogen source.

Unstructured models fail to describe the relationship between growth rate and

the concentration of the limiting nutrient whenever the limiting nutrient can

be assimilated in excess by the cells. The luxurious uptake of several nutrients

was early observed in microalgae by Droop (1968) in the study of vitamin

B12 limited cultures of Monochrysis lutheri. Droop introduced the concept of

nutrient quota, q̃, to account for the time scale differences between nutrient

uptake, and growth. In essence, this is equivalent to introducing a second

compartment in the model, making the Droop’s quota model a structured

model. Droop (1973) proposed the following empirical correlation between

the cell quota, q̃, and growth rate:

µ = max

{
0, µm

(
1− q̃m

q̃

)}
(2.3)

where q̃m is the minimum cell quota required for growth. The max function

above implies that the growth rate cannot be negative.

Caperon and Meyer (1972) proposed to use a Michaelis-Menten type expression

as an alternative to Eq. (2.3):

µ =
µm(q̃ − q̃m)

Kq̃ + (q̃ − q̃m)
(2.4)

It must be noted that Eq. (2.3) is a special case of Eq. (2.4) with Kq̃ ≈ q̃m.

In Droop (1973), the substrate uptake was assumed to obey a Michaelis-

Menten type kinetics:

ρ =
ρms1

Kρ + s1

(2.5)
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2.3. Modelling of microalgal systems

with ρ being the substrate uptake rate, ρm the maximum uptake rate, and Kρ

the uptake half-saturation constant.

The applicability of a Michaelis-Menten type kinetic to the uptake of nu-

trients in algae is widely accepted, though several modifications to it have

been suggested to improve the fitting of experimental data. Lehman et al.

(1975) introduced a saturation term in the Michaelis-Menten expression that

considers the effect of an upper limit, or finite cellular storage, of a specific

nutrient:

ρ =
ρms

Kρ + s1

(
q̃M − q̃
q̃M − q̃m

)
(2.6)

in which q̃M is the maximum internal quota.

To account for the presence of a lower threshold concentration, s0, below which

no substrate is assimilated, Caperon and Meyer (1972) replaced s1 in Eq. (2.5)

by (s1 − s0):

ρ =
ρm(s1 − s0)

Kρ + s1 − s0

(2.7)

Several modifications to the quota model have been proposed to account for

a higher degree of realism and to consider the simultaneous multiple nutrient

limitation (Flynn, 2001, 2003).
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3
Methodology

This chapter describes the experimental set-up used to conduct the experi-

ments, the analytical methods used to quantify important process variables, as

well as the numerical methods used for parameter estimation, model selection,

and confidence analysis.

3.1 Microalgal cultures

Among the different groups of microalgae, Chlorophyceae and Trebouxiophyceae

(green algae) have attracted considerable research attention due to the similar-

ity of their members with higher plants. Fatty acid composition in green mi-

croalgae resembles those seen in higher plants and oleaginous yeasts (Behrens

and Kyle, 1996; Sheehan et al., 1998), and for this reason lipids from green

algae are expected to be converted into biodiesel using the same processes

developed for oilseed crops (Chisti, 2007).



In this study, the fresh-water green microalga Auxenochlorella protothecoides,

shown in Fig. 3.1, was used as a model organism. A. protothecoides is a green

microalga that has the ability to grow under phototrophic or heterotrophic

conditions. Biodiesel production from A. protothecoides has been previously

reported (Miao et al., 2004; Miao and Wu, 2006; Xu et al., 2006; Li et al.,

2007a). When grown heterotrophically in fed-batch mode, A. protothecoides

have reached cell densities as high as 15.5 g/L (dry weight), with an oil content

close to 45 % (Xu et al., 2006; Li et al., 2007a).

The microalgal culture was obtained from the UTEX Culture Collection of

Algae at the University of Texas. Hereinafter it is referred as A. protothecoides.

Its basionym is Chlorella protothecoides (Kruger), and it is catalogued as SAG

211-7a, and UTEX B 25 (previously catalogued as UTEX 25). A. protothe-

Figure 3.1: Microphotograph of Auxenochlorella protothecoides observed in a
light microscope, 100x.
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3.1. Microalgal cultures

coides are unicellular microscopic algae with globose or broadly ellipsoid cells.

Cells contain a single eccentric nucleus and a single and parietal chloroplast.

Reproduction is by autospores, with 2, 4, 8, or 16 per sporangium, released

by rupture of the parental cell walls (Guiry and Guiry, 2005).

Cultures of A. protothecoides were kept axenically in agar plates for long

term storage, at 4 ◦C. Agar plates were prepared according to the sporulation

agar formulation, ATCC Medium 5. Sporulation agar contains: yeast extract

(1.0 g), beef extract (1.0 g), tryptose (2.0 g), FeSO4 (0.002 g), dextrose (10.0 g),

technical agar (15.0 g), and deionized water (1000 mL).

For continuous use, liquid cultures were maintained at 25 ◦C, in a shaker incu-

bator at 100 rpm. Liquid cultures were periodically tested for contamination

by visual inspection under the microscope and by streaking an aliquot of the

liquid culture in an agar plate and subsequent incubation of the plate. The

liquid cultures were periodically transferred to fresh media every two or three

weeks.

3.1.1 Batch cultures

Batch experiments were conducted in a shaker incubator at 100 rpm using

wide-mouth culture flasks (1 L) with 250 mL working volume. All materials

were throughly cleaned, with soap and hot water in a labware washing machine,

and sterilized before use. Sterilization was conducted in a steam autoclave,

holding the temperature at 121 ◦C for 20 minutes.

Three different media formulation were used for batch cultures as reported

in Table 3.1. Culture media composition was defined in such away that it

provided a balanced source of all trace elements according to the elemental

composition of algae (Mandalam and Palsson, 1998).
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Working stock solutions were prepared using deionized water and autoclaved

with steam at 121 ◦C for 20 minutes. A single stock solution containing most

trace elements was prepared according to the A5 solution reported by Arnon

(1938). Iron sulfate stock solution was prepared by complexation with EDTA.

The Fe-EDTA complex was prepared by dissolving 1.2 g of FeSO4 · 7 H2O and

1.6 g of disodium-salt of EDTA in 80 mL of deionized boiling water. After the

solution has cooled down to room temperature it was made up to 100 mL.

Stock solutions were let to cool down at room temperature before preparing

the culture media. It must be noted that, a precipitate is formed when stock

solutions are mixed at warm or high temperature. Stock solutions were stable

for an extended period of time (> 1 year), with no precipitate, when kept

unmixed. Unmixed stock solutions could also undergo repetitive autoclaving

without loss of stability.

Photoheterotrophic experiments were conducted at room temperature (ap-

proximately 20 ◦C), with continuous illumination at a photosynthetic photon

Table 3.1: Composition of base culture media

Concentration
Component B1 B4 B4-Fe Units
KH2PO4 0.7 2.8 2.8 g/L
K2HPO4 0.3 1.2 1.2 g/L
MgSO4 · 7 H2O 0.3 1.2 1.2 g/L
FeSO4 · 7 H2O 3.0 12 48 mg/L
CaCl2 · 2 H2O 25 100 10 mg/L
H3BO3 2.9 11.6 11.6 mg/L
MnCl2 · 4 H2O 1.8 7.2 7.2 mg/L
ZnSO4 · 7 H2O 0.22 0.88 0.88 mg/L
CuSO4 · 5 H2O 0.08 0.32 0.32 mg/L
Na2MoO4 · 5 H2O 0.04 0.12 0.12 mg/L
Thiamine hydrochloride 10 40 40 µg/L
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3.1. Microalgal cultures

flux (PPF) of 29.9 ± 1.4µmol m−2s−1, using four Philips F40T12/Plant &

Aquarium fluorescent tubes positioned 60 cm above of the orbital shaker sur-

face. Heterotrophic experiments were conducted at 25 ◦C in a refrigerated

shaker incubator (Innova 4300). All cultures were inoculated with 10 mL of

algal suspension taken from a liquid culture at the end of the log-phase.

3.1.2 Fed-batch cultures

Experiments were conducted in a 2 L stirred-tank bioreactor (Sartorious Bio-

stat A plus). The bioreactor unit consisted of a 2 L glass vessel, with a total

volume of 3 L, with a stainless steel cover.

Instrumentation

The bioreactor temperature was kept constant using an electrical heating

blanket, and an external water-cooling system. Temperature was measured

with a platinum electrode Pt-100 (Sartorius BBI Systems, Type 200-4).

An EasyFerm Plus K8 (Hamilton Bonaduz AG) electrode was used to mea-

sured the pH. Aqueous solutions of KH2PO4 (acid) and K2HPO4 (base) were

used as required to control the pH.

Dissolved oxygen was measured with an Oxyferm FDA (Hamilton Bonaduz

AG) electrochemical sensor. Agitation rate was kept constant at 300 rpm,

while varying aeration rate to control the dissolved oxygen at a predefined

set-point.

Spectroscopic sensors

Raman spectra were measured using a solid-state fibre Bragg grating stabilized

laser, with an excitation wavelength of 785 nm and output power equal to
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300 mW. The spectrometer (RSI QEB0049, Ocean Optics Inc.) consisted of

an f/4 symmetrical crossed Czerny-Turner monochromator, with a 50µm wide

slit, and a 1024× 58 pixels (2D array) Hamamatsu detector.

Spectra were acquired using an immersion probe inserted into one of the upper

ports of the bioreactor. The stainless steel immersion probe was chemically

sterilized by submerging it into an 800 ppm solution of benzalkonium chlorides

(Roccal-D) for at least 15 minutes prior to its installation in the bioreactor.

Sampling system

An automatic sampler system was set-up in order to withdraw a fixed amount

of culture broth every four hours and store it in a fridge at 4 ◦C for further

analysis. The sampling system consisted of a set of solenoid pinch-valves, a

peristaltic pump, and systems for cleaning and drying of the fluid path.

Data acquisition and Supervisory control system

The bioreactor digital control unit (DCU) and the peripheral instrumentation

was interconnected using a local ethernet network. The network setup allowed

for any computer connected in the network to access process data, as well as

to send setpoints to the reactor DCU.

Communication between the network clients (computers), and the DCU was

regulated using an OPC server. OPC, Object linking and embedding for Pro-

cess Control, is an open standard that allows open connectivity among different

process equipment and instrumentation with Windows® based networks.

A client application in Visual Basic 6.0 was developed to act as a manager

among the optimization and control algorithms (implemented in Matlab®),

the spectral and process databases and the OPC server. The source code
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3.2. Analytical methods

Figure 3.2: Diagrammatic representation of the Bioreactor and control system
network. The bioreactor digital control unit (DCU) was connected to a desktop
computer, that acted as the data acuisition and control server (OPC server)
using an Ethernet connection. The spectroscopic instrumentation and the
OPC clients were interfaced to the reactor through the Ethernet network.

of this OPC client is presented in Appendix D. A diagram of the network

architecture is presented in Fig. 3.2.

3.2 Analytical methods

In this section, the methods used to determine the concentration of biomass,

carbon substrate, and nitrogen substrate are presented. Also included in this

section are the methods used for characterization of the lipids extracted from
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algal cells. The methods used for lipid quantification are not included here,

but instead are presented in Chapter 4 as their development is part of the

contributions this research project.

3.2.1 Biomass measurement

The biomass content in the culture is usually quantified in terms of total cell

material weight or as total cell count. In this work, the primary method

for biomass quantification was total cell dry weight. In a few instances, cell

numbers were also counted and the cell size distribution was determined.

Determination of total cell dry weight

Biomass concentration was determined as total suspended solids (TSS) by cen-

trifuging 1.4 mL of cell suspension at 10000 rpm (RCF = 9335 g) for 10 minutes.

Pellets were washed twice with a saline phosphate buffer solution (pH 6.2) and

re-centrifuged. Final precipitate was vacuum dried at 50 ◦C and 0.1 bar until

constant weight. These measurements were checked against vacuum filtration

of 10 mL of the culture broth with a 0.22µm filter paper. The average relative

standard deviation in dry biomass measurements was 3.8 %.

Cell count and cell size distribution

Cell count was performed on a Beckman Coulter Z2 particle counter and size

analyzer. A. protothecoides is a unicellular microscopic algae with globose or

broadly ellipsoid cells ranging in diameter from 1.5−9.0µm, with typical cells

being 3.0 − 6.0µm. The instrument was set up to cover this broad range,

by using two different configurations. In the first configuration the gain was

adjusted at 32 and the current intensity at 500 mA, providing a measurement

range from 3.5µm to 12.73µm. The second configuration used a gain equal to
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256 and current intensity at 2000 mA, given an operating range from 1.2µm

up to 4.0µm.

Samples were prepared in the safety cabinet in order to avoid contamination

with dust particles, which increased the particle count or introduced other

artifacts in the measurements. Samples were diluted with Isoton® solution to

achieve a final particle count around 5− 10 % of the saturation level.

3.2.2 Glucose quantification

Algal culture samples were centrifuged at 10000 rpm (RCF = 9335 g) for

10 minutes, and the clear supernatant was filtered using a 0.22µm syringe

filter in order to remove any residual cells. Glucose concentration in this

filtered supernatant was measured by high performance liquid chromatography

(Agilent 1200 Series HPLC), using a SupelcoGel Pb carbohydrate column

at 70 ◦C (Internal diameter 7.8 mm, length 30 cm) with guard column. The

sample injection volume was 10µL; the eluent was deionized, sterile water

(MilliQ, MilliPore); the elution flow-rate was set at 0.5 mL/min, and a refrac-

tive index detector (RID) at 35 ◦C was used. Glucose solution standards with

concentrations ranging from 0.1 g/L to 100 g/L were prepared and analyzed

by HPLC. A calibration curve was generated based on standard results. The

relative standard deviation in HPLC measurements was 0.32 %.

3.2.3 Nitrogen quantification

Total nitrogen

Total nitrogen, in both filtered supernatant and dry cells, was determined by

pyro-chemiluminescence using an Antek 9000NS nitrogen analyzer. The total

sample injection volume used was 20µL, with the furnace set up to operate at
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Figure 3.3: Standard calibration curve for glucose in aqueous solutions with
respect to high performance liquid chromatography measurements, using a
refractive index detector.
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3.2. Analytical methods

1050 ◦C, helium flowing at 140 mL/min, and oxygen flowing at 450 mL/min.

Glycine was used as standard for calibration. The average relative standard

deviation of the measurements was 2.2 %.

Amino-nitrogen

The concentration of chemical species containing amino groups in the media

was measured using the Ninhydrin method (Meyer, 1957; Friedman, 2004).

For this, 200µL of sample were diluted in 1800µL of deionized water, and

mixed with 500µL of Ninhydrin reagent. The resulting mixture was put in

boiling water for 10 minutes, and later let to cool down to room temperature.

Ninhydrin reacts with amino-containing compounds to give an intense purple

colour. To measure the absorbance at 570 nm, samples were diluted by adding

5.0 mL of ethanol. A calibration curve between the measured absorbance and

glycine concentration is reported in Fig. 3.4.

3.2.4 Lipid characterization

Total lipids analysis

Total lipid classes were analyzed by high performance liquid chromatography.

For this, 5.0µL of a 1:10 dilution of the oil sample was added to 200µL of

phosphatidyl N,N-dimethylaminoethanol (PDME) in chloroform (1.0µg/µL).

1.0µL of the resulting solution was injected into the HPLC, and PDME was

used as internal standard for quantification.

Fatty acid analyis

Fatty acid chain length and saturation analysis was performed by gas chro-

matography after derivatization to fatty acid methyl esters (FAME).
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3.3. Reagents

FAMEs derivatives were prepared by adding 1.5 mL of a 6.0 % sulphuric acid

solution in methanol to a known volume of the extracted oil in a 15 mL glass

screw-cap tube. This mixture was vortexed and incubated at 80 ◦C for 2 hours,

after which it was let to cool down at room temperature. Subsequently, 2.0 mL

of ammonium hydroxide:water (1:3) were added to the glass tube and vortexed.

Finally, 5.0 mL of HPLC-grade hexane were added to the mixture, vortexed,

and centrifuged at 1000 rpm for 1 minute. The upper hexane layer was removed

and passed through a sodium sulphate column into another clean glass tube.

The sodium sulphate column consisted of a Pasteur pipette with a glass wool

plug at the bottom, and approximately 2 cm of granular sodium sulphate on

top of it. The eluent was dried under inert gas, and redissolved in 200µL of

HPLC-grade hexane for injection into the gas chromatograph.

Different FAMEs were separated by gas chromatography, and quantification

was done by using C17:0 as internal standard.

3.3 Reagents

The list of reagents used in this work together with its specified grade or

quality, the manufacturer, and the catalog number is presented below.

1. Reagents used for culture media preparation:

- Calcium Chloride, CaCl2 · 2 H2O, ACS, Fisher, C79

- Sodium Molybdate, MoNa2O4 · 2 H2O, > 99%, Acros, 20637-1000

- Boric acid, H3BO3, > 99%, Acros, 18057-0010

- Copper Sulfate, CuSO4 · 5 H2O, Sigma-Aldrich, 209198

- Ferrous Sulfate, FeSO4 · 7 H2O, ACS, Fisher, I146

- Manganese Chloride, MnCl2 · 4 H2O, ACS, Fisher, M87
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- Magnesium Sulfate, MgSO4 · 7 H2O, Plant Cell Culture, Sigma, M7774

Magnesium Sulfate, MgSO4 · 7 H2O, ACS, Fisher, M63

- Potassium Phosphate monobasic, KH2PO4, ACS, Fisher, P285

- Potassium Phosphate dibasic, K2HPO4, ACS, Fisher, P288

- Zinc Sulfate, ZnSO4 · 7 H2O, USP/FCC grade, Fisher, Z76

- D-(+)-Glucose, 99.5%, Sigma, G8270

- Glycerol, VWR Intl, BDH1172

- EDTA Disodium salt dihydrate, ACS, Fisher, S311

- Glycine, NH2CH2COOH, Reagent grade, Fisher, G46

- Urea, NH2CONH2, ACS, Fisher, U15

- Thiamine Hydrochloride, C12H17ClN4OS ·HCl, Biotech research grade,

Fisher, BP892

- Yeast Extract: Oxoid Ltd., LP0021

- Technical Agar: Becton and Dickinson Company, 281230.

- Tryptose, Sigma, T2813

- Beef extract

2. Reagents used for oil extraction / quantification:

- Hexanes, technical grade, Fisher, N3

- iso-Propanol, histological, Fisher, A426

- Acetone, certified ACS, Fisher, A18

- Nile Red, C20H18N2O2, Sigma, N3013

- Sudan Red 7B, C24H21N5, Sigma, 46290

- Bodipy 505/515, 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-

s-indacene, Invitrogen, D3921
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3.4. Model evaluation

- Dimethyl Sulfoxide (DMSO), for molecular Biology, Sigma, D8418

3. Other reagents:

- Sodium Azide, NaN3, > 99.5%, Sigma-Aldrich, S2002

- Antifoam O30, Sigma, A8082

- Antifoam SE-15, Sigma, A8582

- Isoton II Diluent, Beckman Coulter,

- Ostro San (Roccal), n-alkyl dimethyl benzyl ammonium chloride,

Ostrem Chemical Co.

3.4 Model evaluation

In Chapter 6 a mathematical model is proposed to describe the dynamic

behaviour of heterotrophic algal cultures. This model is later used in Chapter 7

to optimize the productivity of the culture. In this section the methods used

for parameter estimation and for evaluating the performance of the different

models considered are presented.

3.4.1 Parameter estimation

Parameters involved in the models are estimated by minimizing the weighted

sum of squared errors (WSSE). The WSSE for a set p of model parameters,

E(p), is calculated as:

E(p) =
m∑
i=1

Nd∑
j=1

(yij − ŷij)Tw−1
ij (yij − ŷij) (3.1)

where Nd is the number of experimental data points, m is the number of

measurable states (y1j = xj and y2j = sj), ŷij is the measured value of state i at
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time j, and yij is the value of the state i at time j as calculated from the model.

The weight factor wij was set equal to the variance of the experimental data.

The ODE system and the non-linear regression problem stated in Eq. (3.1)

were solved using Matlab R2006a (The Mathworks, Inc.).

3.4.2 Confidence analysis

Confidence regions are valuable as they permit the quantification of the un-

certainty associated with the model parameters estimation, providing a way

to judge the validity of each calculated parameter value. Marsili-Libelli et al.

(2003) proposed a procedure to estimate the covariance matrix of the solution

to Eq. (3.1) and used it to approximate the confidence regions. The covariance

matrix is estimated through the Hessian matrix of the objective function:

H(p̂) =
∂2E(p)

∂p∂pT

∣∣∣∣
p̂

(3.2)

The Hessian was computed numerically, with a global error O(h6), using the

algorithm proposed by Marsili-Libelli et al. (2003). The step size in the

numerical approximation of the Hessian matrix was optimized to reduce the

error associated with numerical round-off and data noise. At each iteration, the

step size was reduced, following a predefined step-sequence, until the infinite

norm of the difference between two consecutive estimations of the Hessian

started to increase, as illustrated in Fig. 3.5.

Confidence ellipsoids are calculated as:

{
p : (p− p̂)T

[
Nd − np
2E(p̂)

H(p̂)

]
(p− p̂) ≤ npF

1−α
np,Nd−np

}
(3.3)
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Figure 3.5: Determination of optimal step size for the numerical estimation of
the Hessian matrix

with np being the number of parameters to be estimated, α the desired con-

fidence level, and F 1−α
np,Nd−np

the Fisher-Snedecor probability distribution. To

quantify the confidence of the parameter estimation, the 2-norms of the semi-

axes (eigenvalues) of the confidence hyper-ellipsoids (SACHE) are calculated.

3.4.3 Model selection

In order to balance model complexity and data fitting, and to prevent over-

fitting, two information criteria are used to select a parsimonious model.

The best model will be the one able to explain the experimental data with

the minimum number of parameters. The first criterion used is the Akaike

information criterion (AIC):

AIC = 2np +Nd

{
ln

(
2πE(p̂)

Nd

)
+ 1

}
(3.4)

A second criterion used is the Bayesian information criterion (BIC), which is
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evaluated as:

BIC = Nd ln

(
E(p̂)

Nd

)
+ np ln(Nd) (3.5)

When comparing two models, the best is the one with the lowest numerical

value of the information criteria calculated for the same data-set. It must also

be noted that in BIC free parameters are more strongly penalized than in

AIC.
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4
Measuring the bioprocess performance

Critical to the task of optimizing the performance of a given process is the

ability to measure such performance. In algal processes in which the main

product is the stored oil, it is necessary to have the ability to perform a fast

and reliable measurement of both oil content and biomass concentration in the

culture broth. There are several well-known and reliable methods to measure

biomass concentration in algal cultures, including total cell dry weight, either

by filtration or by centrifugation, and total cell count as presented in Chapter 3.

For oil content determination, on the other hand, there is not a widely accepted

standard method. Furthermore, all methods for either biomass or lipid con-

tent quantification are highly elaborate and time consuming and, therefore,

unsuitable for control and real-time optimization purposes.

In this chapter, two different approaches for the off-line determination of the

total neutral lipid content are considered. The first involves the extraction



and gravimetric quantification of total lipids, while the second relies on the la-

belling of neutral lipid with a fluorophore. Procedures for both approaches are

developed and optimized in order to reduce measurement variability, sample

size, and analysis time.

Raman spectroscopy is evaluated as a technique for the on-line determination

of both biomass and oil content. The second part of this chapter covers the

fundamentals on Raman spectroscopy as applied to bioprocess analysis, and

the statistical and machine learning techniques used to develop a multivariate

model for the on-line monitoring of algal growth.

4.1 Oil content in cells

Oil production and storage by microalgae is of increasing interest as several

microalgae species are able to accumulate large amounts of oil, and because

growth rate and productivity are higher in algae than in plants. As a result,

microalgae are seen as an alternative source of oils for both biofuel production

(i.e. biodiesel) and for nutritional purposes.

Neutral lipids in Auxenochlorella protothecoides can be accumulated at very

high levels, representing more than 50 % the dry weight of algal cells. Such

accumulation is a response to changes in the cells environment including nitro-

gen limitation, alkaline pH, and changes in light. Oil is stored intracellularly in

lipid bodies, which are involved in several metabolical processes. Variations in

the external environment of the cell result in quick changes of the lipid content

and composition of lipid bodies.

In order to identify those conditions that better induce lipid production and

accumulation, as well as to measure the lipid productivity of algal cultures, it

is necessary to have an accurate and reliable method to measure neutral lipid
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4.1. Oil content in cells

content. Methods to quantify neutral lipids can be broadly divided into direct

and indirect methods. Direct methods are those in which lipids are separated

from the cellular matrix and then are quantified by either direct gravimetry,

a quantitative chemical reaction, or chromatography. Indirect methods rely

on measuring a physical or chemical property of the matrix containing the

lipids, and correlating this property to the lipid content of the sample. For

proper interpretation of the results obtained by indirect methods, they must

be compared to direct measurements of the lipid content on representative

samples in order to build a calibration model.

Direct methods for quantification of neutral lipids include: gravimetry, gas

chromatography, and high performance liquid chromatography. These meth-

ods require as a first step the extraction and purification of the lipid classes

of interest. Extraction can be performed by mechanical press, solvents, or

a combination of these. Mechanical press is not a quantitative method of

lipid extraction as the cell debris will remain saturated with lipids. Therefore,

the use of solvent-only or solvent assisted extraction is required for analytical

techniques. The selection of the extraction solvent is controlled by the polarity

of lipid class of interest. When total lipid quantification is required a mixture

of solvents, ranging from low to high polarity, is frequently used. In this

work, however, we are concerned mainly with non-polar lipids, particularly

triacylglycerol lipids (TAGs). TAGs are non-polar lipids with a glycerol back-

bone and fatty-acid side chains ranging in length from C12 to C24 (though

shorter and longer chains are not forbidden). Therefore extraction solvent

must be non-polar or very-weakly polar.

Indirect methods of lipid content quantification aim to reduce the complexity

of lipid measurement by measuring a property of the sample that correlates

to the oil content, but whose measurement is easier to carry out. Ideally
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the indirect method will require little or no sample preparation, will be fast,

cheap, and will not produce toxic residues. Spectroscopic methods usually

satisfy most of these conditions. The use of fluorescence spectrometry for

neutral lipid quantification is explored in Section 4.1.2, while in Section 4.2

Raman spectroscopy is proposed as a multivariate technique for quantifying

algal cultures, including the quantification of neutral lipids. In a multivariate

technique several characteristics of the culture are measured simultaneously

as opposed to traditional univariate techniques in which only one variable is

being measured.

As previously mentioned, indirect methods have to be calibrated using repre-

sentative samples for which neutral lipid content has been previously deter-

mined. Therefore, it is necessary to develop a direct quantitation tool prior

to the development and calibration of indirect methods. In Section 4.1.1, a

protocol for the gravimetric quantitation of neutral lipids in A. protothecoides

is given.

4.1.1 Gravimetric method

Gravimetric determination of neutral lipids in microalgal cells requires the

extraction of the lipids from the cells, the removal of any possible contaminants

from the extract, and the concentration of the lipids by removing the solvent.

The oil content is then determined by comparing the initial weight of the

sample with the weight of the lipid fraction recovered. The efficiency of each

of these steps will affect the accuracy and precision of the lipid measurement.

In this section the effect of solvent selection, cell disruption method, solvent

extraction method, and sample size is studied. The recommended protocol for

Quantitation of Neutral Lipid in Microalgae is presented in Appendix A.2.
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4.1. Oil content in cells

Table 4.1: Polarity index (PI) and boiling point (BP) for several solvents
commonly used for extraction of lipids.

Solvent PI BP, ◦C
1,1,2 Trichlorotrifluoroethane 0.0 48
Pentane 0.0 36
Hexane 0.1 69
Ethyl Ether 2.8 35
Dichloromethane 3.1 40
Isopropanol 3.9 82
Chloroform 4.1 61
Acetone 5.1 56
Methanol 5.1 65
Dimethyl Sulfoxide (DMSO) 7.2 189
Water 10.2 100

Selection of solvent for extraction

Solvent selection is mandated by the polarity of the target lipid class. Com-

mon solvent systems for lipid extraction include hexane, chloroform/methanol,

ethanol/tri-chloroacetic acid, isopropanol, and hexane/isopropanol. The po-

larity index of a solvent, shown in Table 4.1, is a relative measurement of the

strength of interaction between the solvent and a reference polar solute. The

higher the polarity index is, the less neutral the solvent is.

Hexane and hexane/isopropanol mixtures are considered here as they are

neutral or weakly polar, and therefore only non-polar lipids will be extracted.

Furthermore, both hexane and isopropanol have low toxicity and their use in

the food-oil industry is accepted and generally regarded as safe.

To evaluate the effect of the solvent type on lipid quantitation, a known mass of

freeze-dried algal cells (approximately 1.0 g) was ground for 15 minutes using a

mortar and pestle system, and later extracted using either a technical mixture
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Figure 4.1: The effect of the solvent extraction system on the measured oil
content and the recovery efficiency. 3:2 HIPA contained 3 volumes of hexane
per each 2 volumes of iso-propanol.

of hexanes, or a solution of 3 parts in volume of hexane and 2 parts of iso-

propanol (3:2 HIPA). The solvent was separated by vacuum filtration from the

cell debris and left to evaporate until constant weight was reached. Measured

oil content is shown in Fig. 4.1, as well as the total recovery efficiency. That

is the sum of the oil and the cell debris fraction divided by the initial sample

weight, and expressed as percentage.

The selection of solvent for extraction does not appear to have a significant

effect on the amount of oil recovered nor the recovery efficiency. The higher

total recovery for the 3:2 HIPA system, greater than 100%, mayt be due to the

lower volatility of iso-propanol, which can cause it to remain as a contaminant.
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4.1. Oil content in cells

Cell disruption

To evaluate the effect mechanical techniques of cell disruption have on the

efficiency of the oil extraction, six different methods were used:

i. No cell disruption (control), cells were mixed with a solution of 3:2 HIPA

and mixed on an orbital shaker, at 100 rpm for 24 hours;

ii. Heating, cells were mixed with 5 mL of IPA, boiled at 80 ◦C, and volume

was completed to 10 mL by adding 3:2 HIPA, and vigorously shaken by

hand for 6 minutes, at intervals of 1 minute;

iii. Grinding, cells were ground using a mortar and pestle for 15 minutes;

iv. Homogenizing, Cells were homogenized at 30000 rpm using a Polytron

1300D mixing unit (Kinematica AG);

v. Sonication, an aqueous suspension of algal cells was sonicated on a

Branson B-52 ultrasonic bath with 240 W input power;

vi. Microwaving, cells were suspended on a 1:5 v/v solution of water and

isopropanol and microwaved for 2 minutes with a 20 W input power.

The measured oil content obtained by using different cell disruption methods

is shown in Fig. 4.2. Among the different disruption methods compared,

homogenization of the cells produced the highest average oil recovery. The

variability between repeated measurements in this case, however, was much

higher than for the other methods, and consequently the measured oil content

when the homogenizer was used was not statistically different than for the

mortar and pestle system. The high variability associated with the use of

the homogenizer is likely due to the difficulty in recovering the cell debris

(and associated oil) from the internal mechanism of the homogenizer. Cell
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Figure 4.2: The effect of the cell disruption method on the measured oil content
of a dry sample of A. protothecoides.

disruption by using the mortar and pestle also achieved a high recovery of oil,

with a considerably lower variability in the results. The other methods have

a lower recovery efficiency.

Sonication failed at generating any significant disruption of the cells, as ob-

served in Fig. 4.3. A cell suspension was subjected to sonication for 10 min,

30 min, and 60 min. However, even after 60 min cells appeared intact in the

microscope. Previously, Pernet and Tremblay (2003) found that the effect

of sonication on the oil extraction in the diatom Chaetoceros gracilis was

somehow obscure and contradicting, while Lee et al. (1998) observed an slight

increase in oil recovery when sonication was used for disrupting the cells of
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4.1. Oil content in cells

(a) No sonication (b) Sonication time = 10 min

(c) Sonication time = 30 min (d) Sonication time = 60 min

Figure 4.3: Microphotographies of A. protothecoides cells subjected to
sonication. There were not observable differences between sonicated, and un-
sonicated cells.

Botryococcus braunii. The sonication nominal input power used by Pernet and

Tremblay (2003) was 50 W, while Lee et al. (1998) did not report the conditions

used. Alga cell wall has in general a high elasticity module, while cells are

essentially incompressible (Miyoshi, 1972). This translates in a high energy

requirement to achieve cell disruption, which given the results in Fig. 4.3 were

higher that the input power (20 W) used here.
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The effect of microwaving on cell disruption was not quantified due to the

poor recovery of cells after microwave treatment. When the container was

kept closed intensive evaporation caused the container to break, and when the

container was kept open algal cells were splattered around. To evaluate the

feasibility of using microwaves for disrupting the cell wall it is suggested that

future research should initially focus on the design of a tight and safe container

for holding the cells while they undergo the microwave treatment.

Sample size

The effect of sample size on the quantitation of oil in algal samples was eval-

uated for the single solvent (hexane) extraction method. From Fig. 4.4 it can

be seen that for the larger sample size (1.0 g) there was a significant variability

between replicates, while variability was minimum for the intermediate sample

size (0.5 g). The larger variability in the larger sample size can be due to

improper grinding of the sample, which might be reduced by increasing the

grinding time. In general the estimated oil content is not significantly affected

by the sample size, though it will be necessary to optimize the grinding step

to ensure samples are homogeneously ground.

4.1.2 Fluorometric method

Quantitation of neutral lipids using the previously discussed gravimetric method

is labor and time intensive. Fluorescence spectroscopy offers an alternative way

to quantify the lipid content, provided that an appropriate fluorescence marker

is available. Nile Red (9-diethylamino-5H-benzo[α]-phenoxazine-5-one) has

been proposed as an in-situ lipid marker with the advantage of having a strong

fluorescence in non-polar environments, while its fluorescence is quenched in

water (Greenspan and Fowler, 1985; Fowler et al., 1987). It has been used,
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Figure 4.4: The effect of the sample size on the measured oil content and the
lipid recovery efficiency, using the single solvent (hexane) extraction procedure.
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with relative success, for measuring the lipid content in microalgae (Lee et al.,

1998; Elsey et al., 2007; Huang et al., 2009), while Chen et al. (2009) proposed

a protocol to use it as a high-throughput method for quantitation of neutral

lipids in microalgae.

Staining of algal cells with Nile Red

The excitation and emission spectra of A. protothecoides cells stained with

an ethanolic solution of Nile Red (10µg/mL) are shown in Fig. 4.5. The

maximum fluorescence count happens at an excitation of 530 nm and emission

of 580 nm. The reported spectrum is noisy and there are some extra peaks in

the excitation spectra. The noisy signal can be explained by the particulate

nature of the sample, and the heterogeneity of cell structures, while the extra

peaks can correspond to differences in the absorption properties of different

lipids classes in the cells. The average standard deviation among five spectra

replicates was 0.78%, with a maximum variation of 3.8% with respect to the

mean count.

The different peaks observed in the spectra correspond to differences in the

absorption properties of different lipids classes, or other structures, in the cells.

Elsey et al. (2007) reported that Nile Red fluorescence maximum emission

shifts to higher wavelengths as polarity of the medium increases, being 576

nm for hexane, 600 nm for chloroform, and 632 nm for ethanol. Therefore, it

is expected to observe different absorption bands in a cellular sample as it will

contain different lipid classes of varying polarity.

Fig. 4.6 presents the average fluorescence emission and excitation spectra for

two algal samples with different oil content. It can be seen that for the

oil-lean sample there are two peaks on emission spectra, the one at around

590 nm corresponds to the expected emission band for Nile Red in a non-
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Figure 4.5: Excitation and emission spectra of Auxenochlorella protothecoides
cells stained with an ethanolic solution of Nile-Red.
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Figure 4.6: Effect of the intracellular oil content on the excitation and emission
spectra of A. protothecoides cells stained with an ethanolic solution of Nile Red.

polar environment, while the one at around 645 nm indicates the presence of

a more polar lipid environment. This indicates that Nile Red could be used to

selectively quantify neutral lipids in algal samples. Moreover, it can be seem

that the fluorescence intensity increases with increasing oil content.

Chen et al. (2009) proposed a staining procedure for use in microplates, re-

quiring small sample volumes and with a relatively short total analysis time,

as several samples can be analyzed at the same time in a multiwell microplate.

This staining procedure is modified here, substituting DMSO with ethanol as

the carrier solvent. The reason for this change is that there is not a significant

difference in the fluorescence intensity of stained cells using either ethanol or
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4.1. Oil content in cells

DMSO, as shown by Chen et al. (2009), while ethanol poses a lower health

risk for routine use than DMSO does. The basic procedure is as follows:

1. 10 µL of an algal suspension of known biomass concentration was added

to the measurement well of the microplate. Algal suspensions were pre-

pared at a concentration of 10 g/L (dry weight), unless stated otherwise.

2. A 10 µL aliquot of a 10 µg/mL Nile Red solution in ethanol was added

to each well of a 96-microplate;

3. The volume in each well was completed to 200 µL by adding an aqueous

ethanol solution;

4. Samples were incubated at 40 ◦C for 10 min; and,

5. Fluorescence emissions were recorded at excitation and emission wave-

lengths of 530 nm and 604 nm, respectively.

To determine the dependance of the fluorescence intensity with respect to

the biomass and the carrier-solvent concentrations, aliquots of a suspension

containing algal cells with an oil content of 50.2± 0.9%(w/w), as determined

gravimetrically after hexane extraction, were diluted to a variable biomass

concentration and stained using a carrier solution with a varying concentration

of ethanol. Fluorescence measurements were performed in triplicate, and the

results are reported in Fig. 4.7.

From Fig. 4.7, it is observed that fluorescence intensity increases non-linearly

with increasing biomass concentration. Therefore, it is advisable to perform

the fluorescence measurements at a constant biomass concentration, or to

include the effect of biomass concentration in the calibration model. Further-

more, there is a continuous decrease on the fluorescence intensity as ethanol
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biomass concentration.
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Figure 4.8: Correlation between the fluorescence count of Nile Red stained cells
and the neutral lipid content of the algal cells determined gravimetrically, after
hexane extraction.

concentration increases, which is different from the results for DMSO reported

by Chen et al. (2009).

The effect of solvent addition on the correlation between neutral lipid content

and fluorescence intensity is examined by preparing algal samples of varying

oil content and staining them as per the basic procedure. Fig. 4.8 shows

that the use of ethanol improved the correlation between fluorescence mea-

surements and neutral lipid content. Consequently, hereinafter fluorescence

measurements are performed at a constant biomass concentration of 5 g/L

(dry-weight basis), using a solution of 30% v/v of ethanol in water.
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Reducing the variability in fluorescence measurements

The measurement of fluorescence in algal suspensions is subject to significant

variability, as can be concluded from the large error bars in Fig. 4.7, which

corresponds to two times the sample standard deviation or approximately a

95% confidence limit. It is necessary to reduce this variability before using

Nile Red fluorescence as a quantitative tool to estimate the oil content in algal

cells.

The effect of the staining agent concentration, as well as the effect of the

incubation time given for staining, on the relative standard error was calculated

at two different Nile Red concentrations, and for incubation times of 0, 10, 20,

and 30 minutes. Incubation was done at 40◦C.

As shown in Fig. 4.9, for incubation times shorter than 20 minutes there was

significantly more error on the measurements done with the lower concentra-

tion of Nile Red, which can be due to an excess of biomass with respect to

the staining agent, causing an inhomogeneous staining of the cells. Staining

time did not considerably affected measurement error, except for the longest

incubation time.

The inter-sample variation in fluorescence count was determined by preparing

either a full or a half 96-well microplate with replicates of the same algal

sample and measuring the fluorescence count. In Table 4.2 several statistics

for the inter-sample variability are presented. Statistically, the variation in a

population is quantified by the standard sample deviation, or by its robust

counterpart the median absolute standard deviation (MAD). Another mea-

sured of variability is the range, which is the length of the smallest interval

containing all the measurements. Given that the range is highly influenced by

the presence of an outlier, a robust estimation of the spread is the interquartile
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Figure 4.9: Effect of the Nile Red concentration and the incubation time on
the relative standard error of fluorescence measurements.
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Table 4.2: Effect of mixing on the inter-sample variability of oil concentration
estimates based on the Nile Red fluorescence measurements for an algal sample
containing 50.2 ± 0.9%(w/w) oil content, as determined gravimetrically with
hexane extraction.

Treatment STD RSD MAD Range IQR N
Mix-in-well, 600 rpm, vw = 200µL 4.1 8.2 3.2 24.2 5.2 96
Premixed, vw = 200µL 2.4 4.9 1.9 12.3 3.3 96
Mix-in-well, 1200 rpm, vw = 200µL 3.2 6.4 2.0 21.7 2.7 47
Mix-in-well, 1200 rpm, vw = 120µL 2.2 4.4 1.6 12.2 2.3 47

Reported values are percentage (%) on weight basis.
All measurements were done on a sample containing 10 g/L of biomass.
STD: sample standard deviation; RSD: relative standard deviation (%);
MAD: median absolute deviation is a robust measure of the variability
of quantitative data; IQR: interquartile range or midspread is a robust
measurement of the statistical dispersion; N: number of replicates; vw: total
volume of sample in the well.

range (IQR).

Variations in the fluorescence count were found to be due to both mixing

effects, as well as inherent variability of fluorescence readings. Improvement

in sample mixing, either by premixing or by modifying mixing parameters

reduced measurement variability. Sample standard deviation was reduced by

56% when mixing all the reagents before distributing the sample in the microw-

ells, as shown in Table 4.2. This implies that 56% of the inter-sample variation

is due to volumetric measurement error or mixing effects. By modifying mixing

parameters (doubling the rpm) a reduction in both sample standard deviation

and spread range is observed, as presented in Table 4.2.

When the mixing rate was increased to 1200 rpm, spillover of the content of

the microwells was observed. A reduction in the total well volume, from 200µL

to 120µL, prevented this spillover. The variability for these two datasets was
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4.1. Oil content in cells

comparable in terms of the fluorescence count. However, given that the volume

reduction results in a larger fluorescence count due to a lower dilution, it is

beneficial as it translates into a reduced relative error in the oil measurements,

as shown in Table 4.2.

The reduction in the measurements variability achieved by modifying the

analysis volume and mixing parameters represents a significant improvement

with respect to previous protocols for lipid quantification using Nile Red. For

instance, Chen et al. (2009) reported a relative standard deviation of 8.5%

for the Nile Red quantification among replicate measurements using a triolein

standard. The relative standard deviation of the measurements performed

here on a microalgal suspension sample was reduced from 8.2% to 4.4%, which

represents a 48% reduction in the relative variability between replicates with

respect to the original measurement protocol as presented by Chen et al.

(2009).

Repeated resampling of the replicate fluorescence measurements, followed by

a t-test hypothesis test, showed that when five measurements were selected

at random, the mean and variance of the selected five measurements were

statistically equal to the mean and variance of the full dataset containing

the 47 measurements, more than 96% of the time. Therefore, by performing

only five replicate measurements, it is expected to achieve the error bounds

presented in Table 4.2.

After reducing the sources of variability, a correlation between Nile Red fluores-

cence measurements and oil content determined gravimetrically after hexane

extraction gave a correlation coefficient R2 greater than 0.99. Due to variations

in the excitation light intensity, due to lamp aging, as well as other sources

of day to day variation in the fluorometer, the use of an internal standard for

recalibration is required with each plate that is run.
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Use of Bodipy as an alternative fluorophore

Gocze and Freeman (1994) previously studied the variability of fluorescence

measurements of lipid droplets in tumor cells, using Nile Red as staining agent.

They reported that the variability in measurements was due to the Nile Red

itself. By using a different dye (4,4-Difluoro-1,3,5,7,8-pentamethyl-4-bora-3A-

4A-diaza-S-indacene, aka Bodipy) variability was reduced 44%. More recently,

Cooper et al. (2010) used Bodipy for in-vivo visualization of lipid bodies in

algal cells, and as a dye of choice for fluorescence activated cell sorting aimed at

selecting cells with high neutral-lipid content. Given the superiority of Bodipy

in visualization applications, compared to Nile Red, it is of interest to evaluate

the potential use of Bodipy as a quantitative stain as an alternative to Nile

Red in microplate fluorometry.

Algal suspensions were stained with a solution of the lipid probe Bodipy

505/515 in DMSO, following the procedure outlined by Cooper et al. (2010).

Fluorescence microscopy shows that the Bodipy probe is highly selective for

neutral lipids, with a strong fluorescence of the liposomes and a very low signal

from other cellular structures, as presented in Fig. 4.10.

However, when the excitation and emission spectra were recorded for cells with

different oil content, in a similar way as presented in Fig. 4.6 for Nile Red, no

significant differences were observed, as shown in Fig. 4.11. Furthermore,

when algal suspensions varying in biomass concentration were stained with

equal amounts of Bodipy, no significant differences in fluorescence count were

observed. These results imply that even though Bodipy preferentially binds

to neutral lipids, the binding is not proportional to the amount of lipid in the

cells and therefore Bodipy is unsuitable as a quantitative probe for neutral

lipids.
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4.1. Oil content in cells

Figure 4.10: Microphotographs of A. protothecoides stained with the lipid
probe Bodipy 505/515
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Figure 4.11: Emission spectra of A. protothecoides cells stained with Bodipy
505/515, with excitation at 485 nm. Note that there was no significant
difference between the emission counts for the two algal samples, except for
the autofluorescence peak at 685 nm corresponding to chlorophyll.
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4.2. On-line monitoring using Raman spectroscopy

4.2 On-line monitoring of microalgal cultures

using Raman spectroscopy1

Raman spectroscopy is a technique used to study the vibrational, rotational,

and other low-frequency modes in a molecular system. It is based on the

inelastic scattering of a monochromatic excitation source. Akin to infrared

spectroscopy, it is useful to identify the molecular structure of an unknown

compound or can be used as a chemical fingerprint. Raman spectroscopy

has been proposed as a multivariate process analytical technique for several

chemical and biochemical systems.

In this section, we study the spectral characteristics of microalgae, medium

components, and microalgal cultures in general. A chemometric model is

then developed to correlate the spectra of culture samples to their chemical

composition.

4.2.1 Spectra of algal Biomass

The spectra of biological samples is rather complex due to the presence of

several thousands of chemical components in the sample. Furthermore, some

of these components can have a fluorescent effect.

The spectra of freeze-dried cells of A. protothecoides is shown in Fig. 4.12. In

this case, the spectra were collected ten times, at regular intervals. After each

collected spectra, the total exposure time of the sample to the laser source

was consequently higher. In Fig. 4.12, it can be seen that total Raman count

decreased as exposure time to the laser increased. This result indicates that

1Some parts of this section were developed in collaboration with N.S. Venkat Raghavan,
and have been accepted for publication. N.S.V. Raghavan et al. 2011. Chemometrics and
Intelligent Laboratory Systems, DOI: 10.1016/j.chemolab.2011.09.007.
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Figure 4.12: Unprocessed (raw) Raman spectra of algal biomass powder.
Spectra were collected one after the other, increasing at each collection the
total exposure time to the laser. Background fluorescence decreases with
increasing exposure time.

there was background fluorescence coming from the sample, as photo-bleaching

usually results in a significant reduction in the intensity of the fluorescent

background.

To eliminate the effect of background fluorescence a piecewise linear baseline

removal algorithm was implemented. In Fig. 4.13, the same ten spectra

previously presented in Fig. 4.12 are shown after baseline removal. It can

be seen that the effect of background fluorescence has been almost completely

eliminated.

The same baseline removal algorithm was applied to a set of spectra col-

lected from algal samples cultured under different conditions. These baseline-

corrected spectra are shown in Fig. 4.14. Two of the algal samples were

cultured using glucose as the carbon substrate, while the third sample was

grown on glycerol.
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Figure 4.13: Raman spectra of algal biomass powder after piecewise linear
baseline removal.
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Figure 4.14: Raman spectra of algal biomass powders with varying oil content
after piecewise linear baseline removal.
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From Fig. 4.14, it can be seen that there are three peaks that are clearly

dependent on the algal composition, these are in the regions around 1440,

1655, and 1305 cm−1. The algal sample grown on glycerol has the lower oil

content (approximately 18% w/w) among the samples reported in the figure.

For this sample, the peaks at 1440 cm−1 and 1655 cm−1 are almost inexistent,

indicating that these two peaks are related to the oil content in the cells.

4.2.2 Oil spectra

To further explore the regions in the Raman spectra that are related to the

oil content and composition, oil samples derived from oil palm, flaxseed, and

sunflower were analyzed and their spectra were processed as previously shown.

The baseline-corrected spectra of the three oil samples and that of algal cells

are shown in Fig. 4.15.

The three peaks previously identified as composition dependent in the dry
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Figure 4.15: Raman spectra of different vegetable oils after piecewise linear
baseline removal. Spectra of algal cells is included for reference.
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4.2. On-line monitoring using Raman spectroscopy

algal spectra, were also present and clearly defined in the Raman spectra of

the vegetable oil samples examined. The peak at 1440 cm−1, that extended

from 1410 − 1480 cm−1, is in the region normally associated to saturated

carboxylic acids and carboxylate groups; the peak at 1655 cm−1, with a range

from 1640 − 1670 cm−1, corresponds to a characteristic absorption band of

double bonds (C−−C); and the peak at 1305 cm−1, from 1280− 1330 cm−1, is

a characteristic absorption frequency of unsaturated esters (Ning, 2005).

There are some peaks present in the spectra of the algal and palm oil sample,

but not in the spectra of the sunflower or the flaxseed oil. These are in the

region from 1120 - 1180 cm−1 and the region from 320 - 440 cm−1. Even

though it is difficult to associate these peaks to specific functional groups, it

is expected that these regions will be related to the carotenoid content that

causes the red colour in both palm oil and algal cells. Carotenoids are complex

molecules with multiple functional groups (alcohols, ketones, phenyl groups,

etc), several of which have characteristic absorption bands in the indicated

frequencies.

4.2.3 Spectra of media components

To determine if Raman spectroscopy is sensitive enough to detect the com-

pounds present in the culture media, aqueous solutions containing the analytes

of interest were prepared at concentrations typically found in the cultures. For

each solution, Raman spectra was measured 5 to 10 times, and compared with

the spectra of pure water. In order to determine if there are significant char-

acteristics in the spectra, the average spectra of each solution was subtracted

from the average spectra of water and the difference was plotted together

with the noise of the instrument. Peaks that fall outside the noise region are

significant at the 95% confidence level, as the plotted noise area corresponds

75



to ±2σ, with σ being the noise standard deviation at each wavenumber. These

results are shown in Figs. 4.16 to 4.19

In Fig. 4.16(a) it can be seen that the glucose fingerprint is significant in several

regions of the Raman spectra. In total eight Raman modes are detected with

a significance at 95%: 423, 445, 516, 900, 915, 1063, 1125, and 1360 cm−1.

Another two modes are present below the 95% confidence level: 1462 and

840 cm−1. Among the other main media constituents, only magnesium sul-

phate has a detectable Raman mode (at 980 cm−1). Therefore, it is expected

that in complex media only glucose and magnesium sulphate will have a

detectable fingerprint on the Raman spectra.

4.2.4 Multivariate model building

The wealth of data generated by Raman spectroscopy would be useless without

the proper means to extract the desired information (Shaw et al., 2000). Mul-

tivariate mathematical and statistical modelling techniques, namely chemo-

metrics, are used to extract meaningful information from the spectral data

(McGovern et al., 2002; Jarvis and Goodacre, 2005). The final goal of the

chemometric process is to find a model or mapping that will correctly as-

sociate the inputs, i.e. spectral data, with the outputs, i.e. composition

values (Goodacre, 2003).

Chemometrics methods are powerful, but special care must be given to the

interpretation of the results obtained, as statistical analysis might appear

more impressive than what they really are (Shaw et al., 2000). In order to

develop a robust model, three independent datasets are usually recommended:

one to build the model, one to validate it, and one for testing the model

performance (Shaw et al., 2000). This last dataset should contain observations

that are not used during the modelling process.
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Figure 4.16: Raman spectra of (a) glucose (40 g/L) and (b) glycine (1
g/L) solutions in water. Water spectra was subtracted from raw solution
spectra. Shaded blue area corresponds to±2σ, with σ being the noise standard
deviation at each wavenumber.
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Figure 4.17: Raman spectra of (a) MgSO4 (1.2 g/L) and (b) FeSO4 (0.048
g/L) solutions in water. Water spectra was subtracted from raw solution
spectra. Shaded blue area corresponds to±2σ, with σ being the noise standard
deviation at each wavenumber.
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Figure 4.18: Raman spectra of (a) K2HPO4 (1.2 g/L) and (b) KH2PO4 (2.8
g/L) solutions in water. Water spectra was subtracted from raw solution
spectra. Shaded blue area corresponds to±2σ, with σ being the noise standard
deviation at each wavenumber.
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Figure 4.19: Raman spectra of (a) Thiamine HCl (40 ug/L) and (b) Arnon 5
solutions in water. Water spectra was subtracted from raw solution spectra.
Shaded blue area corresponds to ±2σ, with σ being the noise standard
deviation at each wavenumber.
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4.2. On-line monitoring using Raman spectroscopy

In this section, the development of a multivariate support vector machine

learning based model is presented. The model is developed to correlate the

Raman spectra to the concentration of biomass, glucose, and oil content in the

bioreaction system.

Experimental datasets used for model building

For building the model, as well as for validation and testing, the Raman

spectra was collected in fed-batch cultures. Samples were withdrawn from the

bioreactor at four hour intervals and analyzed to determine the total biomass

concentration, oil content in the cells, and glucose concentration in the broth

media. The spectral data was paired to compositional data based on the time

at which the spectra was recorded and the time at which the sample was

withdrawn.

Three datasets were generated by growing the green microalga A. protothe-

coides in fed-batch mode starting at different initial conditions and by varying

the feed flowrates. The first dataset corresponds to a D-Optimal run, as re-

ported in Surisetty et al. (2010). In this case, algae were cultured over a period

of 360 h, and glucose, glycine, and minerals were supplemented to the reactor

in order to generate significant perturbations in the bioreactor response. For

the second dataset, the feed flow-rate followed a pseudo-random binary profile

(PRBS), as presented in Fig. 6.8. In the third dataset, the culture conditions

were modified in order to maximize biomass production as reported for the

adaptive MPC run in Section 7.2.2. The minimum and maximum biomass

concentration, oil content, and carbon substrate concentration (glucose), are

presented in Table 4.3.
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Table 4.3: Characterization of the datasets used for building and validating a
Raman chemometric model for algal culture composition: Number of samples
(N) and concentration range (min and max) of samples in each dataset for
biomass, glucose, and oil content

Dataset N Biomass Glucose Oil content
(g/L, dry weight) (g/L) (%w/w, dry basis)

D-Optimal 79 0.8− 39.4 0.00− 101.9 14.3− 65.1
PRBS 78 0.5− 38.2 0.01− 52.3 19.4− 79.1
Adaptive MPC 57 2.4− 144.3 0.05− 45.6 32.9− 82.1
Combined 214 0.50− 144.3 0.00− 45.6 14.3− 82.1

Spectra preprocessing

Preprocessing of the spectra is required before model building in order to

reduce the noise associated with the spectral measurements. Preprocessing

is also useful to enhance the information content of the spectra. Several

techniques are available for spectra preprocessing as reviewed by Afseth et al.

(2006). In this work, the Savitzky-Golay filter and the Standard Normal

Variate (SNV) transformation were used to preprocess the Raman spectra.

The Savitzky-Golay filter is a smoothing filter based on local polynomial

regression; for this, a third order polynomial with a section size of 7 points

was used. In the SNV transformation, the Raman spectra is scaled such that

the resulting spectra has mean equal to zero and unitary variance. The aim

of this transformation is to give equal weight to all the spectral features.

Building and validating a support vector regression model

In order to build a chemometric model that relates Raman spectra to biomass

concentration, the three datasets reported in Table 4.3 were combined to

generate a combined dataset containing 214 observations. From this dataset,

60 data points were selected at random for model calibration and the remaining
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4.2. On-line monitoring using Raman spectroscopy

data points were used for model testing.

The non-linear radial basis function support vector regression algorithm used

in this work posses three adjustable parameters: the soft margin (C) for the

regression cost function, the threshold parameter (ε), and the radial basis

function kernel parameter (γ). To determine the optimal value of these pa-

rameters, a systematic grid search was performed in combination with a 10-fold

cross-validation method using the predicted residual sum of squares (PRESS)

statistic.

In the 10-fold cross-validation method, the calibration dataset is divided in

10 subsets. The regression model is calibrated using 9 of these subsets and

the resulting model is evaluated in the remaining subset. The calibration is

repeated 10 times, leaving out at each iteration a different subset. The PRESS

statistic is computed for each one of the 10 regression models constructed,

and the average PRESS value is used as a measure of the goodness of fitting

provided by the combination of C, ε, and γ values. This procedure was

performed for every value in the parameter space, to determine the parameter

combination that reduces the average PRESS.

In Table 4.4, the coefficient of determination of the optimized support vector

regression model is presented for both the dataset used for model calibration

and for the remaining dataset (testing).

Table 4.4: Coefficient of determination of the support vector regression model
for the calibration (R2

C) and testing (R2
T ) datasets.

Predicted variable R2
C R2

T

Biomass concentration 0.9975 0.9822
Glucose concentration 0.9978 0.8947
Oil content 0.8312 0.4389
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From Table 4.4, it can be seen that there is a good correlation between the

values predicted by the support vector regression model and the experimental

observations in the calibration dataset. The coefficient of determination is also

close to the unity for the prediction of the biomass concentration in the testing

dataset, which indicates that the model has indeed the capabilities to predict

the biomass concentration in the culture broth.

The calibrated support vector regression model, however, failed to satisfac-

torily transform the Raman spectral data into glucose concentration and oil

content for the testing dataset. The failure of the model to predict glucose and

oil concentration could be due to the cross-correlation that exists in two of the

three datasets (D-Optimal and PRBS datasets) between glucose and biomass

concentration, as well as between oil content and biomass concentration, and

the strong effect that biomass concentration has on the Raman spectra. For

this reason, a new model was built using only observations from the Adaptive

MPC dataset. In this case, 30 observations were used for calibration and

cross-validation of the model, and the remaining 27 observations were used for

testing the performance of the model. The procedure used for model building

was the same as the one previously described.

4.2.5 On-line estimation of bioreactor composition

In Section 4.2.4, the Raman spectra of microalgal cultures were successfully

correlated with the concentrations of biomass, glucose, and oil content in the

cells. In this section, the use of Raman spectroscopy as an on-line, real-time

multivariate sensor is evaluated.

The Raman spectrum of a heterotrophic culture of A. protothecoides was

collected every ten minutes with an integration time equal to 20 seconds. The

average time required for transforming the spectra to chemical composition,
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Figure 4.20: Biomass concentration profile for an algal culture: (·) support
vector Raman spectroscopy -based measurement; (�) Off-line experimental
measure.

using the SVR sensor developed in Section 4.2.4, was 0.058 seconds. The

average total time, including spectra collection, was around 20 seconds with the

prediction of the composition taking an insignificant amount of time compared

to the spectral integration time. The estimation of the chemical properties of

an algal culture is, therefore, solely determined by the spectral integration

time. Compared to the algal culture dynamics, which can range from several

minutes to days, the prediction time (around 20 seconds) is insignificant.

Therefore, Raman spectra can be used for the real time on-line estimation

of the composition in algal bioreactors.

The predicted profiles for biomass, glucose, and oil content are shown in

Figs. 4.20, 4.21, and 4.22 respectively. For comparison purposes, the off-line

experimental measurements are also included in the plots. A good match

between the Raman spectra based predictions and the experimental measure-

ments for the full range of concentrations is observed.
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Figure 4.21: Glucose concentration profile for an algal culture: (·) support
vector Raman spectroscopy-based measurement; (�) Off-line experimental
measure. The higher measuring frequency possible with Raman spectroscopy
allows to identify variations in the culture that are normally missed by
traditional off-line measurements, as highlighted in Box A.
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Figure 4.22: Profile for the oil content in the algal cells: (·) support vector
Raman spectroscopy-based measurement; (�) Off-line experimental measure.

86



4.2. On-line monitoring using Raman spectroscopy

During the initial 50 hours of culture time, the variance between contiguous

Raman based predictions was higher than in the subsequent culture times.

This indicates that there were significant interferences from the sample matrix

at the start-up of the culture. At the start of the culture (lag phase), several

important changes in both the chemical composition of the culture media

and the biochemical composition of the algal cells occurs. Rapid changes in

cell size and morphology, cell pigmentation, and composition of the culture

medium -due to uptake of nutrient and excretion of trace compounds, pro-

teins, or extracellular polymers- could be responsible for the high variance

observed in the initial spectral measurements. Therefore, the spectral based

estimations should be used with utmost precaution during the lag phase. It is

suggested that a moving average window be used to reduce the fluctuation in

the predictions.

From Figure 4.21, it can be seen that glucose estimates (after lag phase)

based on Raman spectroscopy have a smoother profile than the experimental

measurements. Although, experimental measurements for glucose based on

HPLC have, in general, a high precision, the samples drawn from the reactor

and analyzed in the HPLC might not be representative of the bioreactor

contents. This is because, the conditions in the sampling line may not be

the same as the conditions in the reactor. Furthermore, the sample obtained

from the reactor might undergo changes during the time lapsed for preparing

the sample for HPLC and other analysis. These could lead to reduced accuracy

and reliability of the off-line measurements.

An additional advantage of the on-line Raman based method is that the

composition measurements can be taken at a considerably higher frequency

compared to the off-line experimental measurements, given that the Raman

based method does not require the removal of a sample from the reactor. The
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reduced frequency for the removal of a sample, in turn, reduces the chance of

contamination from faster growing bacteria and fungi. A higher measurement

frequency helps in observing the changes in the composition that will otherwise

be overlooked. For example, the variation in the glucose concentration between

approximately 75 and 90 hours (enclosed in box ‘A’ in Figure 4.21) is not

readily apparent from the off-line experimental measurements. Whereas, the

Raman spectroscopic method is able to clearly identify these changes.

From Figure 4.22, it can be seen that the variance of contiguous oil estimates

using the Raman spectra is lower compared to the one obtained using off-line

measurements. This implies that the estimates provided by the Raman spectra

are more reliable than the off-line experimental measurements.
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5
The physiology of microalgal growth

A clear understanding of the factors that determine algal growth rate and prod-

uct yield is required before proceeding to formulate a mathematical model that

describes algal growth or to optimize algal lipid production. In this chapter,

the growth of the fresh-water microalga A. protothecoides is studied in both

photoheterotrophic and heterotrophic conditions. The effect of the carbon to

nitrogen ratio, as well as the effect of the total nutrient availability on growth

rate and product yield is examined. The influence of other nutrients and

media components on growth is evaluated, as well as the potential inhibitory

effects of secondary algal metabolites and other media additives. Finally, the

compositional changes that algal biomass undergoes as a consequence of the

imbalance between growth rate and nutrient uptake rate are appraised.



5.1 Growth in mixotrophic and heterotrophic

conditions

Microalgae are characterized for being photosynthetic unicellular eukaryotes.

Most microalgae species are photoautrophs, though several species are known

for being photoheterotrophs or mixotrophs. That is, they can either oxidize

organic substrates or fix CO2 to support their energy and carbon requirements.

There are even some microphytes that have completely lost their photosyn-

thetic apparatus and therefore are obligate heterotrophs. In this section, the

growth profiles and biomass yields in mixotrophic and heterotrophic conditions

are studied and compared.

5.1.1 Photoheterotrophic growth

A first series of experiments was conducted by growing A. protothecoides

in B1 Medium, supplemented with glucose (10 g/L) and glycine (at varying

concentrations), with continuous illumination at a photosynthetic photon flux

(PPF) of 29.9± 1.4µmol m−2s−1 as described in Section 3.1.1. Cultures were

severely nitrogen limited with a high carbon to nitrogen molar ratio (500:1,

250:1, and 167:1). For comparison, it should be noted that the typical carbon

to nitrogen ratio, given by the Redfield ratio, is 106:16, or roughly 6:1.

The growth curves for these first experiments are plotted in Fig. 5.1, where

both the exponential and stationary growth phases can be seen. There is a

clear trend of increased biomass production with increasing nitrogen source

availability, which is consistent with the severe nitrogen limitation in the

culture media.

The concentration of glycine in the filtered culture media was measured using

the Ninhydrin method, as described in Section 3.2.3. Fig. 5.2 shows the
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Figure 5.1: Biomass concentration profile for photoheterotrophic microalgal
cultures at varying concentrations of glycine, using B1 medium with an initial
glucose concentration of 10 g/L. Cultures were continuously illuminated at a
PPF = 29.9±1.4µmol m−2s−1. The experiments were performed in duplicate,
as well as the biomass measurements.
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rapid depletion of glycine observed in the culture. After 68 hours, glycine

concentrations were 1−5 % of their initial values. In this same period, biomass

concentrations had only reached 31−37 % of their final values. This highlights

that there is a definite uncoupling between nutrient uptake and growth, at least

in terms of nitrogen uptake.

A second series of experiments were performed increasing the concentration of

all nutrients by a factor of 4 (Medium B4). The resulting carbon to nitrogen

ratio, on a molar basis, were 400:1, 200:1, and 100:1, having again a strong

nitrogen limitation in the formulated media. Fig. 5.3 presents the growth

curves for these series of experiments. There was a proportional rise in the

total biomass production with respect to the higher total nutrient availability,

with a five fold average increase in biomass concentration for all runs between

medium B1 and B4.

The effect of nitrogen availability on biomass production, however, did not

follow the same linear trend as in the previous experiments. At the highest

nitrogen availability (lower C:N ratio = 100:1), biomass production was lower

than at the intermediate value. That is, growth was maximized at a moderate

level of nitrogen availability. The concentration profile of glycine in the filtered

culture media is shown in Fig. 5.4. As previously, there was a rapid uptake of

nutrients that was uncoupled from biomass production.

The results in Figs. 5.3 and 5.1 indicate that the carbon to nitrogen ratio and

the total nutrient availability had a combined effect on growth. This combined

effect can be seen in terms of biomass yield in Fig. 5.5. The yield of biomass to

nitrogen was evaluated by taking the ratio between the total biomass produced

and the total nitrogen consumed by the cells.
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Figure 5.2: Uptake of glycine in A. protothecoides cultures, using B1 medium
with an initial glucose concentration of 10 g/L. Cultures were continuously
illuminated at a PPF = 29.9± 1.4µmol m−2s−1. Experiments were performed
in duplicate and glycine measurements were done in triplicate.
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Figure 5.3: Biomass concentration profile for photoheterotrophic microalgal
cultures at varying concentrations of glycine, using B4 medium with an initial
glucose concentration of 40 g/L. Cultures were continuously illuminated at a
PPF = 29.9± 1.4µmol m−2s−1. Experiments were performed in duplicate, as
well as biomass measurements.
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Figure 5.4: Uptake of glycine in A. protothecoides cultures, using B4 medium
with an initial glucose concentration of 40 g/L. Cultures were continuously
illuminated at a PPF = 29.9± 1.4µmol m−2s−1. Experiments were performed
in duplicate and glycine measurements were done in triplicate.
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Figure 5.5: Biomass to nitrogen yield in mixotrophic cultures of A. pro-
tothecoides. All cultures were continuously illuminated at a PPF = 29.9 ±
1.4µmol m−2s−1. Yield is a function of both C:N ratio and total nutrient
availability.
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5.1. Growth in mixotrophic and heterotrophic conditions

5.1.2 Heterotrophic growth

The effect of total nutrient concentration and C:N ratio in algal growth was

studied in the previous section for photoheterotrophic conditions. To evaluate

the differences between photoheterotrophic and purely heterotrophic growth,

a comparative experiment was performed. Four flasks were prepared with

190 mL of B4 medium and a 10 mL inoculum; two of these flasks were incubated

in the dark, while the remaining two were put under continuous illumina-

tion with an average photosynthetic photon flux (PPF) at the liquid surface

of 29.9± 1.4µmol m−2s−1. The corresponding growth curves are plotted in

Fig. 5.6.

The initial growth rate was greater for the photoheterotrophic culture than

for the purely heterotrophic one. The observed differences in the biomass

concentrations between the two cultures is marginally significant, with a p-

value equal to 0.045. This indicates that even though the growth rate for

the cultures was significantly different at the 95 % confidence level, there is

a 4.5 % probability that the observed differences occurred at random. The

final biomass concentration, on the other hand, was the same for both types

of cultures. These results suggests that the photosynthetic pathway plays a

significant role during the first part of the culture, but the increased initial

growth rate had no measurable effect on the final biomass production and

product yield.

To understand this behaviour, it is necessary to recall that several factors may

limit the growth under phototrophic conditions, including CO2 limitation and

mutual shading. Mutual shading is a relevant limiting factor for high density

cultures in phototrophic systems. Mutual shading impedes the use of light

by the bulk of the cells in the culture, and only the cells at the surface can

effectively behave phototrophically. As culture density increases, mutual shad-
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Figure 5.6: Biomass concentration profile for photoheterotrophic and het-
erotrophic batch cultures. Media used was B4 with and initial glycine
concentration of 0.4 g/L an initial glucose concentration of 40 g/L. Cell dry
weight measurements were corrected for evaporation losses in the cultures.
Photoheterotrophic cultures were continuously illuminated at a PPF = 29.9±
1.4µmol m−2s−1. Experiments were performed in duplicate.
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5.2. The effect of nutrients on growth

ing is exacerbated. Considering that most photoautotrophic bioalgal cultures

operate at cell densities below 2 g/L, it is clear that the culture conditions

in this report are just marginally photoheterotrophic. That is, only at the

initial stage of the culture, can the system be considered photoheterotrophic,

and for most of the culture, the conditions for the average algal cell are just

heterotrophic.

5.2 The effect of nutrients on growth

The carbon to nitrogen ratio (C:N) plays a critical role in the physiology

of algal cultures as shown in the previous section. There are, however, other

nutrients and factors affecting growth and lipid production. This section covers

the effect of different nitrogen substrates on growth and the relative influence

other nutrients have in both growth rate and oil accumulation.

5.2.1 Selection of the nitrogen source

Microalgae are able to assimilate nitrogen from several different substrates,

including NH+
4 , NO –

3 , urea, amino acids, and purine and pyrimidines bases.

The bioavailability of each nitrogen substrate differs markedly and affects in

turn the growth rate of algae. Previously, it has been reported that glycine

and urea are excellent nitrogen sources (Shi et al., 2000) for the heterotrophic

growth of Chlorella species. In this thesis, most experiments were conducted

using glycine as the sole nitrogen source. The reader should be aware, however,

that due to its high cost glycine will not be the preferred nitrogen substrate

for the industrial large-scale production of microalgae.

In this section, an experiment was conducted to compare the effect on growth

when glycine is replaced with urea as the nitrogen substrate. For this experi-
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ment, B1 medium was supplemented with glucose at a concentration of 10 g/L,

and urea was added at a concentration of 0.1 g/L and 1.0 g/L. Six flasks were

prepared, with two of them at the lower level of urea (C:N = 100, molar ratio),

two at the higher level of urea (C:N = 10), and the other two at a concentration

of 0.1 g/L of glycine (C:N = 250). In Fig. 5.7, the average growth curves are

reported for each of the nitrogen substrate/concentration pairs evaluated.

As seen in Fig. 5.7, there is a significant difference between the growth curves

of algae growing on glycine and algae growing on urea. At the same mass

concentration (0.1 g/L) of the nitrogen substrate, which corresponds to a molar

concentration of nitrogen in the urea culture 2.5 times higher than in the

glycine culture, the algae growing on urea exhibit a much lower growth rate

and yield, with a final concentration equal to 1.2 g/L, or 32 % of the final

concentration of the culture growing on glycine. For urea cultures to achieve a

similar growth profile and yield to that of glycine cultures, the concentration

of urea has to be increased by a factor of 10. This is equivalent to a 25 times

increase, in molar basis, in the nitrogen availability.

For the range of concentrations explored for the growth of A. protothecoides

in urea, it seems like the bioavailability of the nitrogen contained in urea is

significantly lower than that of the nitrogen contained in glycine. It will be

necessary, however, to conduct further experimentation expanding the range

of urea concentration to verify if this is a general characteristic valid for a

broader range of the C:N ratios. It must also be noticed that both glycine and

urea can potentially serve as a carbon source. For very high carbon to nitrogen

ratios (C:N> 100), however, the contribution of the nitrogen substrate to the

total available carbon in the culture is negligible.
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Figure 5.7: Effect of the nitrogen source on the growth of microalgae.
Cells were grown photoheterotrophically in medium B1 supplemented with
either urea or glycine as the nitrogen source and glucose (10 g/L) as the
carbon source. Cultures were continuously illuminated at a PPF = 29.9 ±
1.4µmol m−2s−1.
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5.2.2 The response of growth and oil production to vary-
ing nutrient concentrations

A four factor Box-Behnken experimental design, with three concentration

levels, was performed to qualitatively study the influence that different media

components have over the growth rate and oil accumulation in A. protothe-

coides. The four factors selected were the initial concentration of carbon,

nitrogen, phosphorus, and iron substrates in the media.

The summary of the experimental design is presented in Table 5.1. Glucose was

used as the carbon source with the three concentration levels at 15 g/L (−1),

30 g/L (0), and 45 g/L (+1). Glycine was used as the nitrogen source with the

concentration levels at 0.2 g/L (−1), 0.4 g/L (0), and 0.6 g/L (+1). A mixture

of potassium phosphates was used as the phosphorus source, with K2HPO4

representing 30 % (mass basis) of the total and KH2PO4 being the other 70 %;

the concentration levels, as total phosphates, were 2 g/L (−1), 4 g/L (0), and

6 g/L (+1). Heptahydrate ferric sulphate (FeSO4 · 7 H2O) was used as iron

source, with the three concentration levels at 24 mg/L (−1), 36 mg/L (0), and

48 mg/L (+1).

The observed initial growth rate, i.e. average for the first 48 h, for each exper-

iment was calculated based on biomass measurements performed in duplicate.

The results are summarized in Fig. 5.8 as box-plots for each of the factors

considered in the experimental design.

The box-plot presents the median of the growth rate for each factor-level (red

horizontal line), and the interquartile range of all observations (blue rectangle),

as well as the total range of observed growth rates (dashed lines between

whiskers). Observations considered as outliers, that is falling beyond the

99.3 % confidence interval, are represented as crosses in the diagram. From

this representation of the data it is possible to qualitatively compare the effect
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5.2. The effect of nutrients on growth

Table 5.1: Box-Behnken experimental design to evaluate the influence of
carbon, nitrogen, phosphorus, and iron substrate concentrations on the growth
rate and oil productivity of microalgae.

Experiment Glycine Glucose Phosphates Iron sulphate
1 −1 −1 0 0
2 −1 +1 0 0
3 +1 −1 0 0
4 +1 +1 0 0
5 0 0 −1 −1
6 0 0 −1 +1
7 0 0 +1 −1
8 0 0 +1 +1
9 −1 0 0 −1
10 −1 0 0 +1
11 +1 0 0 −1
12 +1 0 0 +1
13 0 −1 −1 0
14 0 −1 +1 0
15 0 +1 −1 0
16 0 +1 +1 0
17 −1 0 −1 0
18 −1 0 +1 0
19 +1 0 −1 0
20 +1 0 +1 0
21 0 −1 0 −1
22 0 −1 0 +1
23 0 +1 0 −1
24 0 +1 0 +1
25 0 0 0 0
26 0 0 0 0
27 0 0 0 0
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Figure 5.8: Effect of the initial nutrient concentrations on the initial growth
rate of A. protothecoides.
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5.2. The effect of nutrients on growth

of each nutrient on the initial growth rate.

From Fig. 5.8, glycine and phosphate concentration have a greater effect on

growth rate than either glucose or iron. The influence of glycine on the median

and the interquartile range of the growth rate shows a monotonous trend, with

increased growth rate as glycine increases. The total range shows, however, a

maximum at the intermediate glycine level. Phosphate concentrations, on the

other hand, had an inverse effect on growth rate, with a minimum observed in

the median growth rate at 4 g/L and with the maximum median growth rate

at the lower phosphate concentration. Iron concentration seems not to have

any significant effect on growth, except that at the lower concentration value

the spread of the observations (full range between whiskers) was substantially

minimized.

After 200 h, each experiment was stopped and cells harvested and freeze-dried.

Oil was extracted from freeze dried cells and quantified following the procedure

described in Appendix A.2. The box-plots in Fig. 5.9 summarize the effect each

nutrient has over the final oil content of the cells.

As with growth rate, only glycine and phosphates seem to have a clear and

marked effect on the final oil content in the cells. Glycine had a negative

effect on oil accumulation, with decreasing oil content as glycine concentration

increases. The initial phosphate concentration had a positive effect on oil accu-

mulation, with a monotonously increasing trend in oil content with increased

phosphate concentration. Surprisingly, a higher carbon source availability, i.e.

higher glucose concentration, did not translate into a higher accumulation of

lipids. Moreover, there was a slight decreasing trend in lipid accumulation

with increased glucose concentration.

Similar results were observed in terms of lipid productivity, i.e. the total

amount of oil accumulated per unit of time and unit of culture volume, as
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Figure 5.9: Effect of the initial concentration of nutrients on the intracellular
neutral lipid content after 200 h of culture.
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5.3. Compositional changes in microalgae

shown in Fig. 5.10. Clearly a lower concentration of glycine resulted in a

higher accumulation of oil in the culture; an opposite effect was observed in

terms of phosphate concentration. For the range of concentrations covered in

this study, glucose and iron did not appear to have a major effect on either

growth rate or lipid accumulation in algae. The reader must recall, however,

that it was previously shown that the carbon to nitrogen molar ratio had an

effect on growth that was as significant as the total nutrient concentration.

5.3 Compositional changes in microalgae

Chemical engineers usually treat biomass as a pseudo-chemical component

with a defined, more or less constant, empirical chemical formula. This as-

sumption is normally valid for many microorganisms, but it cannot be applied

for algal systems. In Section 5.1.1 it has been shown that algae consume

nutrients from the medium at a rate that is faster than the growth rate.

Furthermore, algae tend to accumulate large amounts of lipids intracellularly,

with the chemical composition of these lipids being significantly different to

the rest of the algal biomass.

Changes in the chemical composition of algal biomass were reported in Ta-

ble 5.2. In this case, algae was grown on B1 medium supplemented with

glucose (10 g/L) and glycine (0.15 g/L). Samples were withdrawn at different

times for the first 100 hours of the culture, and composition was determined

using a Carlo Erba EA 1108 elemental analyzer.

A surge in the nitrogen content of the cells was observed at 20 h, while there

was a continuous reduction in the carbon and hydrogen content in the biomass.

The surge in the cellular nitrogen content can be explained by the transient

accumulation and subsequent consumption of nitrogen compounds that results
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Figure 5.10: Effect of the initial nutrient concentrationa on the algal lipid
productivity.
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5.4. Metabolites accumulation in the culture

from the imbalance between nitrogen uptake rate and growth rate. The

decrease in the carbon and hydrogen content could be the result in a reduction

in lipid content, as lipids are highly reduced compounds with a relatively higher

content of carbon and hydrogen than other cell metabolites.

5.4 Metabolites accumulation in the culture

In Figs. 5.2 and 5.4 it can be observed that there was a final positive concen-

tration of nitrogen in the media. Further experimentation revealed, that there

was indeed an accumulation of nitrogen compounds in the media as culture

progressed. This was an indication that algal cells export nitrogen compounds

into the media. Analysis of the culture media by HPLC showed an increase in

amino-acid content as cultures progressed, as illustrated in Table 5.3. Results

in Table 5.3 suggest that extracellular proteins and oligopeptides were being

built up in the media.

Accumulation of metabolites in the culture media might have some effects on

the growth and overall metabolism of algal cells. To test this hypothesis, an

alga was cultured on a medium prepared using filtered spent media and the

growth curves were compared against the alga growing on completely fresh

Table 5.2: Elemental analysis of algal biomass. Cell were withdrawn from the
liquid culture at the indicated sample time, counted after inoculation.

Sample time Molar percentage
h N C H
0 1.3 60.0 9.1
2 1.2 57.4 8.9
20 2.7 56.9 8.8
100 1.5 55.2 8.3
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Table 5.3: Variation in the concentration of nitrogen-containing compounds
in the culture medium during a single batch experiment. A. protothecoides
exports several amino-compounds to the media including low molecular weight
oligopeptides and proteins.

AA residue Concentration (µmol/L)
Culture time 0 h 80 h 270 h

Ala - 67 150
Arg - 70 -
Asx - 53 77
Glx - 116 143
Gly 6660 155 212
Ile - - 87
Leu - - 108
Lys - 28 35
Pro - - 73
Ser - - 70
Thr - - 66
Tyr - - 177
Val - - 80

medium. The spent medium was obtained from an axenic, two week old, high

density culture of algae (∼ 30 g/L, CDW). Culture broth was centrifuged, and

the supernatant was filtered using a 0.22µm PTFE membrane.

Four different flasks were prepared in duplicate (8 in total) from spent medium.

The first flask contained only spent medium, with no added nutrients; the

second flask was prepared by adding glycine to the spent medium to achieve

a concentration of 0.4 g/L; the third flask was prepared by combining equal

volumes of spent medium and concentrated fresh medium in order to achieve a

nutrient concentration equal to that of B4 medium, with supplemented glucose

(40 g/L) and glycine (0.4 g/L); and the fourth flask contained 1 volume of spent

medium for every 3 volumes of fresh medium, nutrient concentration was the

same as for flask 3. Another two flasks were prepared as controls, containing
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5.5. Effect of antifoam agents

only fresh medium with the same nutrients concentration as in flask 3. Growth

curves for all experiments are shown in Fig. 5.11.

As expected, the spent medium alone, or supplemented with only glycine,

was not able to support algal growth. This confirms that the medium was

indeed lacking the necessary nutrients for supporting algal metabolism. There

was a slight reduction, significant at the 95 % confidence level (p-value =

0.006), in the biomass growth between the cultures prepared using spent

media and the control, accounting for a 3.5 % to 4.0 % difference in the final

biomass concentration. This reduction in yield could be due to either the

presence of inhibitory metabolites in the spent media or due to a higher

concentration of trace elements. Accumulation of trace elements in the culture

can result in a higher osmotic pressure, increasing the maintenance energy of

the cells. Because trace elements are fed in excess to the culture and their

final concentration is not measured, it is not possible to exclude them as the

reason for a lower yield in the cultures prepared from spent media.

5.5 Effect of antifoam agents

Algal cultures, particularly at cell densities greater than 20 g/L, can foam

extensively. To avoid this problem, antifoam agents are normally added to the

culture broth to modify its surface tension. Alternatively, mechanical devices

can be used as foam breakers.

Before using an antifoam agent it is necessary to evaluate its effect on the

culture, as some of the components in the antifoam mixture might have an

inhibitory effect or may act as a substrate for growth. An experiment was

conducted to evaluate the effect of two different antifoams on the growth of

A. protothecoides : Antifoam SE-15 is a 10 % emulsion of an active silicon
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Figure 5.11: The inhibitory effect of accumulated metabolites on the het-
erotrophic growth of A. protothecoides. Culture media was prepared using
spent media (two weeks old) from a high density culture. In the first
experiment no nutrients were added to the spend media; for the second
experiment spent media was supplemented with glycine at a concentration
of 0.4 g/L, and for the remaining experiments nutrients were as added as per
B4 Medium formulation, with an initial glycine concentration of 0.4 g/L and
initial glucose concentration of 40 g/L.
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5.5. Effect of antifoam agents

antifoam and non-ionic emulsifiers, while Antifoam O-30 is an organic, fatty

acid ester-type antifoam.

Usually, antifoams are added to the culture medium at a concentration ranging

from 100 to 1000 ppm. In order to facilitate the evaluation of any potential

inhibitory effect, antifoams were applied to the culture at two different concen-

trations, 1000 ppm (0.1 % v/v) and 10000 ppm (1 % v/v); higher values than

would be expected during normal operation. Experiments were conducted

with B4 medium, supplemented with glucose (40 g/L) and glycine (0.4 g/L).

Two additional flasks were prepared as controls without any antifoam added

to them. The growth curves for all the experiments are reported in Fig. 5.12.

At the higher concentration level, the silicon-based antifoam SE-15 caused a

10 % reduction in the final biomass concentration with respect to the control

flask. The corresponding reduction at the lower level, however, was not

significant. The organic antifoam, on the other hand, acted as a growth

enhancer, boosting the initial growth rate by 28 %, with respect to the control.

A second series of experiments was performed using only the organic, fatty

acid ester-type antifoam O-30. The antifoam concentrations were 0, 100,

500, and 1000 ppm. These values cover the concentration ranges that are

expected during normal operation. The medium compositions were the same

as in the previous experiments. Fig. 5.13 presents the growth curves for these

experimental series.

As previously observed, the organic antifoam seemed to act as a growth

enhancer. A t-test, however, shows that the observed variations are not

significant at 95 % confidence levels for the two lower concentrations of the

antifoam, with a p-value equal to 0.1. At the highest concentration examined

in this experiment, 1000 ppm of O-30, the observed enhancement in growth

becomes significant with a p-value equal to 0.017.
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Figure 5.12: The effect of antifoam agents on the growth of A. protothecoides.
B4 Medium was used with and initial glycine concentration of 0.4 g/L and
initial glucose concentration of 40 g/L. The lower level of antifoam (−) was set
at 0.1 %, and the higher level (+) was set at 1 %.
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Figure 5.13: The effect of the organic, fatty acid ester type, O-30 antifoam
concentration on the growth profile of A. protothecoides. B4 Medium was
used with and initial glycine concentration of 0.4 g/L and initial glucose
concentration of 40 g/L.

115



The organic antifoam O-30 is preferred over the silicon based SE-15, as this last

one has some minor inhibitory effect on growth, while O-30 shows a positive

enhancement of growth. The drawback of this result is that the antifoam could

be being consumed by algae and therefore would have to be replenished as the

culture proceeds.
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6
A model for algal metabolism1

The task of modelling a biological process requires one to carefully consider

the purpose that the model will serve, and the potential use others can make of

that model. The objective of this study is to develop a model that successfully

describes the macroscopic behaviour of microalgal cultures in heterotrophic

reactors, but is still simple enough to be used for process optimization and

control. In particular it is desirable to model the effect of nitrogen and carbon

substrate concentration on biomass growth rate and oil production rate.

An additional and far-reaching goal of this modelling exercise is to gain insight

in the behaviour of algae. For this reason, the use of black-box models,

frequently used for control and optimization, was not considered. The un-

derstanding of algal physiology, gained through the formulation and use of

1Some sections of this chapter have been published. De la Hoz Siegler et al. 2011.
Bioresource Technology. 102(10): 5764–5774.



this model, will hopefully provide microbiologists and chemical engineers with

better tools for developing algal biotechnology.

Algal cells are known for their capacity to assimilate nutrients much faster

than what is required to support their metabolism (Droop, 1973; Sommer,

1991). In Chapter 5, it has been shown that there is a significant variation

in the cellular composition along a single batch run, and that nitrogen uptake

and growth are uncoupled processes. The implication of these facts is that

biomass growth rate might not be directly related to the concentration of the

limiting substrate in the medium; therefore, Monod-like models are, in general,

not appropriate for modelling algal dynamics.

To model the uncoupling of nutrient uptake and growth it is possible to use the

quota concept proposed by Droop (1973) or the structured compartmentalized

cell approach. It should be noted that these are not opposite formulations,

but rather equivalent ones (Tett and Droop, 1988). In the quota formulation,

the content or quota of one or more nutrients inside the cells is variable, but

the cell is still regarded as a unique compartment. In the structured model

formulation, cells are considered to be formed by two or more compartments,

with each compartment having a fixed chemical composition. The resulting

mathematics of these two approaches are equivalent, and therefore either of

them can be used to derive the model presented here. In this work, the model

is derived using the compartmentalized cell approach, as it is a more familiar

approach in engineering. It is important to highlight, however, that the quota

approach is the preferred one in the phycological literature (Leadbeater, 2006).

This chapter provides the rationale followed in the development of the model

and presents to the reader the different alternative kinetic expressions consid-

ered. A set of batch experiments, conducted to calibrate the model, as well as

a fed-batch experiment used for model validation are also presented.
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6.1. The compartmentalized cell

6.1 The compartmentalized cell

A compartmentalized model of the algal cells is proposed in order to incorpo-

rate the experimental observations presented in Chapter 5, and to satisfy the

proposed modelling objectives, based on the following premises:

• Cells are composed of three main compartments: metabolically active

biomass (x), lipid body (p), and a nitrogen pool (q).

• Nitrogen source is taken up into the nitrogen pool and later converted,

at a constant yield Yx/q, into active biomass.

• Carbon source is taken up by the cells and directly converted either into

active biomass or oil, at constant yields Yx/s or Yp/s, respectively.

• Oil stored in the lipid bodies is used to support growth at a constant

yield Yx/p.

The transformation from nutrients to the different cell compartments is repre-

sented in the schematic shown in Fig. 6.1. A fundamental assumption in the

model is that the nitrogen source cannot be used directly to support growth

but has to be first integrated into the nitrogen pool. The carbon source, on

the other hand, can be stored into the lipid bodies or can be assimilated to

sustain growth. Stored carbon in the lipid bodies, can be further used to

support biomass growth.

The active biomass, x, acts as the catalyst for all the reactions in the cells,

being responsible for taking nutrients up from the medium and for producing

oil and biomass. The overall biochemical reactions can be written as:
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s1

s2
p

q

x

Figure 6.1: Schematic representation of the algal cell. Cells are considered to
be formed by three main compartments: active biomass (x), lipid body (p),
and nitrogen pool (q). The nitrogen source (s1) is taken up by the cells into
the nitrogen pool, while the carbon source (s2) is used directly to support lipid
production and biomass growth.

Growth: Y −1
x/s · s2 + Y −1

x/q · q + Y −1
x/p · p

x

µ
x+ aCO2

Nitrogen uptake: s1
x

ρ
q

Oil production: s2
x

π
Yp/s· p+ bCO2

The three reaction rates (µ, ρ, and π) are specific reaction rates with respect

to the active biomass concentration. This is a convenient convention given

that all three reactions are catalyzed by the algal biomass.

A bioreaction system where the two main nutrients, carbon and nitrogen, are

fed independently is assumed to write the non-steady state material balance.

The nitrogen source is fed at a volumetric flow rate f i1 and concentration si1,

while the carbon source is feed at f i2 and concentration si2. Consequently, the

dilution rate is given by D = (f i1 + f i1)/V , with V being the reaction volume.

The dynamics of the algal bioreactor can be described using the following set

of differential equations:
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6.1. The compartmentalized cell

ds1

dt
= −ρx+ si1

f i1
V
− s1D (6.1a)

ds2

dt
= − 1

Yx/s
µx+ si2

f i2
V
− kmx−

1

Yp/s
πx− s2D (6.1b)

dx

dt
= µx− xD (6.1c)

dp

dt
= πx− 1

Yx/p
µx− pD (6.1d)

dq

dt
= ρx− 1

Yx/q
µx− qD (6.1e)

dV

dt
= V D − fo (6.1f)

where fo is the flow rate of the outlet stream, if any. In Eq. 6.1b, km is the

maintenance constant. Here, it is assumed that only the carbon substrate

is consumed for supporting the maintenance of the cells, but no nitrogen is

consumed. The rationale for this assumption is that even though cells do

consume nitrogen compounds for supporting and repairing their metabolic

machinery, they tend to optimize the use of naturally limiting nutrients and

therefore recycle most of the nitrogenous compounds. Carbon substrates, on

the other hand, are to be consumed to generate the ATP necessary to fuel the

biochemical reactions in the cell.

In Eq. 6.1, the production of CO2 was not included as the gas exhaust from the

reactor was not analyzed in this project. It should be noted however, that a

additional ordinary differential equations could be written for CO2 production

and O2 consumption, whenever such data is available.

Several expressions have been previously proposed to model the three main

reaction rates that appear in Eqs. 6.1. Experimental data from batch cultures

are used to decide which kinetic expressions provide a better representation of
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microalgal dynamic behaviour. The following subsections present the different

alternative kinetic models considered, while in Section 6.2 the performance of

these expressions is evaluated.

6.1.1 Kinetics of nutrient uptake

The uncoupling between nutrient uptake and growth is one of the most im-

portant characteristics of algal systems. This uncoupling proscribes the use

of those growth models, such as Monod one, that assume a direct dependance

between limiting nutrient concentration in the medium and growth rate.

For modelling the uptake of nitrogen-containing compounds by microalgae

several expressions have been previously proposed, as summarized below:

- Michaelis-Menten:

ρ = ρm
s1

Ks1 + s1

(6.2)

- Hill allosteric regulation model:

ρ = ρm
sN1

KN
s1

+ sN1
(6.3)

- Lehman et al. (1975):

ρ = ρm
s1

Ks1 + s1

(
q̃M − q̃
q̃M − q̃m

)
(6.4)

- Caperon and Meyer (1972):

ρ = ρm
s1 − s0

Ks1 + s1 − s0

(6.5)

Eq. 6.2 corresponds to the conventional Michaelis-Menten kinetics, as proposed

by Droop (1973) in his original quota model. Here, ρm is the maximum specific
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6.1. The compartmentalized cell

nitrogen uptake rate and Ks1 is the half saturation constant for nitrogen

uptake, in terms of the extracellular nitrogen concentration.

The Hill allosteric regulation model considers that the activity of the trans-

porter enzymes is affected, either positively or negatively, by the concentration

of the substrate being taken up. Allosteric regulation of nutrients uptake in

algae has been proposed by Flynn (2003). In Eq. 6.3, N is the Hill allosteric

regulation coefficient; if N is greater than one there is a positive regulation,

and if N is less than one there is a negative regulation.

Eq. 6.4 was proposed by Lehman et al. (1975) to take into account the finite

maximum storage capacity algal cells have, with q̃M being the maximum

fraction of nitrogen that can be stored by the cells, and q̃m the minimum

amount of nitrogen in the cells that will support growth. The current fraction

of nitrogen stored in the cells is given by q̃. The final expression, proposed

by Caperon and Meyer (1972), considers that there is a threshold nutrient

concentration, s0, below which no nutrient can be taken up by the cells.

6.1.2 Growth kinetics

The growth rate, µ, for a system with two interacting substrates, carbon and

nitrogen, can be expressed as:

µ = µmr̃C r̃N (6.6)

where µm is the maximum growth rate and r̃C and r̃N are the normalized

reaction rates based on the concentration of the carbon source and the nitrogen

source, respectively. Each one of the normalized growth rates r̃ is to be defined

in such a way that they are bounded between 0 and 1 (Bellgardt, 2000).
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Effect of nitrogen cell content on growth rate kinetics

To study the relationship between intracellular nitrogen content and growth

rate, biomass concentration profiles were fitted to a smoothing spline and the

instantaneous growth rate was calculated as per Eq. 2.2. The instantaneous

growth rate and the intracellular nitrogen concentration for a batch run are

shown in Fig. 6.2. It can be seen that growth rate closely follows the nitrogen

content profile.

However, in Fig. 5.3, it has been previously shown that the growth rate was
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Figure 6.2: Specific biomass growth rate [−−] and intracellular nitrogen
concentration [− ◦−] for a batch culture with an initial glycine concentration
= 0.19 g/L and initial glucose concentration = 19.8 g/L, other nutrients as in
medium B4-Fe.
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6.1. The compartmentalized cell

maximized at an intermediate level of the initial nitrogen availability. That

is, growth rate increased as the initial nitrogen concentration increased, up to

the point in which nitrogen started being inhibitory to algal growth. To model

these two effects, the following kinetic expressions were evaluated:

- Haldane-like inhibition:

r̃N =
q̃

Kq̃ + q̃ +
q̃2

Ki1

(6.7)

- Cumulative inhibition:

r̃N =
q̃

Kq̃ + q̃
exp

(
−

1
t
[q̃(t0) +

∫ t
0
q̃dt]

Ki1

)
(6.8)

In these two equations, q̃ is the mass fraction of the nitrogen pool in the cells,

q̃ = q/(q+p+x); Kq̃ is the half saturation constant in terms of the intracellular

nitrogen concentration; and Ki1 is the inhibition constant expressed as weight

fraction of nitrogen in the biomass.

Eq. 6.7 corresponds to the classic Haldane uncompetitive inhibition model. In

the kinetic expression presented in Eq. 6.8, it was considered that growth is

inhibited by the historical average of the nitrogen content in the cells, instead

of the instantaneous nitrogen concentration. The average was taken from the

start of each culture. Eq. 6.8 aimed to incorporate the cumulative effect that

previous events in the culture has over the instantaneous observed growth rate.

In particular, it was desirable to capture the effect of changes in metabolic

activity induced by variations in the nitrogen content (Xiong et al., 2010) and

that resulted in an apparent inhibition of growth due to excessive luxurious

nitrogen consumption.
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Effect of glucose concentration on growth rate kinetics

To model the effect of the carbon source concentration on the growth rate of

microalgae two alternative expressions were considered:

- Michaelis-Menten:

r̃C =
s2

Ks2 + s2

(6.9)

- Haldane-like inhibition:

r̃C =
s2

Ks2 + s2 +
s2

2

Ki2

(6.10)

with Ks2 being the half saturation constant in terms of the glucose concentra-

tion in the media, and Ki2 being an inhibition constant.

6.1.3 Product formation kinetics

Algal cells are remarkable for their capacity to produce and store large amounts

of oil. Oil assembly occurs in the endoplasmic reticulum, and it is stored in

lipid bodies (liposomes), which are single membrane organelles in the cyto-

plasm. The size and number of liposomes varies as a function of cell age and

nutritional status. In Fig. 4.10, it can be seen that liposomes can be as large

as 90 % of the cell’s diameter, while in other cases multiple lipid bodies are

present in the cells. Neutral lipids stored in lipid bodies are used as an energy

supply or to build the membranes for the next cell generation; membrane lipids

constitute about 5-20 % of the algal dry cell weight (Hu et al., 2008).

To model the oil production rate in microalgae it was considered that the

production rate is largely dependent on the availability of a carbon source. A

sigmoidal (Michaelis-Menten like) dependance of the specific growth rate with

respect to the glucose concentration was therefore assumed:
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6.2. Model selection

π = πm
s2

Kps2 + s2

(6.11)

where πm is the maximum oil production rate, and Kps2 is the concentration

of glucose at which the oil production rate is equal to half the maximum rate.

This expression was compared with two other alternative models. First, it

was assumed that the oil production rate was a decreasing function of the oil

content; as the lipid bodies occupied a larger fraction of the cell volume, the

oil production rate decreased. With p̃ being the mass fraction of oil in the

cells, p̃ = p/(p+ q + x), the resulting kinetic expression is:

π = πm
s2

Kps2 + s2

(1− p̃) (6.12)

In the second expression evaluated, it was considered that oil production rate

was inhibited by the intracellular nitrogen concentration, with a kinetics of

the following type:

π = πm
s2

Kps2 + s2

(
1− q̃

Kip

)
(6.13)

where Kip corresponds to the inhibition constant in terms of the intracellular

concentration of nitrogen.

6.2 Model selection

To select the kinetic expressions that better represent the growth of algae in

heterotrophic conditions a series of batch experiments were conducted. Model

parameters were estimated by minimizing the weighted sum of squared residu-

als between the predicted concentrations and the experimental measurements,
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using the variance of the experimental measurements as the weighted factor.

Several measurements of the goodness of fit for each model were subsequently

evaluated.

The Michaelis-Menten rate equation was used as the base case in order to

evaluate the effect of each individual kinetic expression on the goodness of

fitting of the overall dynamic model presented in Eq. 6.1. That is, when

evaluating the alternative kinetic expressions for one of the reaction rates in

the model, all the other reaction rates were set to the base Michaelis-Menten

case.

6.2.1 Experimental data

A three-level full-factorial design was used to conduct the experimentation to

generate the data for model calibration. The green microalga Auxenochlorella

protothecoides was cultured heterotrophically, in the dark, as described in

Section 3.1.1. Glycine and glucose were the sole nitrogen and carbon sources,

respectively. The initial and final conditions for each experiment are reported

in Table 6.1.

As shown in Table 6.1, nine out of the eleven batch experiments were conducted

with nitrogen limitation and thus had residual glucose at the end of the culture.

For these nitrogen-limited cultures, the analysis of variance (ANOVA) shows

that there was not a significant effect of the glucose initial concentration on

the final biomass concentration (p-value = 0.542). For these same cultures, the

final oil concentration was found to be not statistically significantly dependent

on the initial glucose or glycine availability. Any observed variations in the

oil content among different runs were within the measurement error. For the

glucose-limited runs, however, the final oil content was the lowest among the

batch experiments. This result was expected, given that glucose was exhausted
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and there was no other carbon source available for further conversion into

lipids.

Samples were taken, twice a day, from each flask and centrifuged to separate

the algal cells from the culture broth. Algal cells were dried, and the su-

pernatant was frozen for later analysis. Biomass cell concentration profiles,

as cell dry weight, are presented in Fig. 6.3. Growth was maximized at

the intermediate level of nitrogen availability: at low nitrogen concentrations

growth was limited by the extreme nitrogen deficiency (final nitrogen content

around 0.5 %); while at high nitrogen content growth was inhibited.

Cells double at their maximum rate during exponential phase. In all the

experiments, exponential growth was observed between 20 h and 80 h. The

calculated growth rates during the exponential phase are plotted in Fig. 6.4 as

a function of the initial nitrogen and carbon sources concentration. The growth

rate exhibits a non-linear dependance on the initial glycine concentration,

while it is almost independent of the glucose concentration. The simpler model

that was able to fit the dependance between growth rate at exponential phase

and initial nutrients concentration was a pure quadratic model. The predicted

surface response is plotted in Fig. 6.4 together with the observed growth rates,

as calculated using Eq. 2.2.

Glucose concentrations in the filtered growth media were determined by high

performance liquid chromatography. Glucose profile for each flask is presented

in Fig. 6.5. Glucose consumption is directly related with algal growth, with

a decreasing profile as more biomass is being produced, as can be seen by

comparing Figs. 6.3 and 6.5.

The uncoupling between nitrogen uptake and growth has been shown in Chap-

ter 5. It was also observed that such uncoupling results in a transient increase

in the nitrogen content in the cells. Total nitrogen content in dry algal cells,
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Figure 6.3: Biomass concentration profiles of all batch runs used for model
calibration. Fitted lines correspond to the predicted profile by using the model
presented in Eq. 6.1 and Section 6.2.6.
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as measured by pyrochemiluminescence, is shown in Fig. 6.6. The maximum

nitrogen content was measured at around 48 h after inoculation, with a rapid

depletion afterwards. A two to five-fold increase in the nitrogen content of

algal biomass was observed.

The total content of oil in algal cells varies as it is the result of the balance

between growth and oil production. The variations in oil content of algal cells,

as a function of culture time, are shown in Fig. 6.7. There was a significant

decrease in the oil content, as percentage of cell dry weight, at the early stage

of growth. Furthermore, total oil content (as grams of oil per litre of culture

broth) decreased 22 % on average for all runs in the first 24 h of culture, which

implies cells were consuming the oil reserves to support their metabolism.

6.2.2 Nitrogen uptake

The ability of the kinetic expressions presented in Section 6.1.1 to explain the

experimental data was evaluated by computing several performance criteria, as

summarized in Table 6.2. The weighted sum of squared errors (WSSE) for the

Hill allosteric regulation model is slightly better than the one for the Michaelis-

Menten base case; however, both the Akaike and the Bayesian information

criteria show that these two models are equivalent, and therefore the simpler

one should be selected. The other models evaluated have higher values for

the WSSE and the information criteria, and therefore are worse than the

Michaelis-Menten model.

6.2.3 Effect of nitrogen concentration on growth

To decide which of the kinetic expressions for modelling the effect of nitrogen

on the growth rate provided a better representation of the experimental obser-

vations, the kinetic parameters were fitted in order to minimize the weighted
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Figure 6.6: Biomass concentration profiles of all batch runs used for model
calibration. Fitted lines correspond to the predicted profile by using the model
presented in Eq. 6.1 and Section 6.2.6.
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6.2. Model selection

Table 6.2: Comparison among kinetic expressions to model the nitrogen uptake
rate.

Kinetic model for ρ WSSE AIC BIC
Michaelis-Menten 74.7 -0.60 -3.41
Hill allosteric regulation, Eq. 6.3 74.2 -0.60 -3.41
Lehman et al, Eq. 6.4 80.7 -0.53 -3.33
Caperon-Meyer, Eq. 6.5 76.5 -0.58 -3.39

sum of squared errors (WSSE), and the Akaike and Bayesian information

criteria were computed, as summarized in Table 6.3.

From Table 6.3, it can be seen that the best fitting of the experimental data is

obtained when Eq. 6.8 is used to model the growth rate kinetics, as it provides

significantly lower values for the two information criteria used (AIC and BIC),

as well as a lower residual error (WSSE). This result supports the idea that

the growth rate follows a hyperbolic profile with respect to the intracellular

nitrogen concentration and is in turn affected by the past concentration of

nitrogen in the cells. It must be noted that, the Michaelis-Menten and the

Haldane inhibition models provided a reasonable fit when only the data from

the low and medium initial nitrogen concentration runs were considered, but

failed to model the full dataset that included all the runs (low, medium, and

high nitrogen).

Table 6.3: Performance of kinetic functions evaluated to model r̃N , the
normalized growth rate based on the intracellular nitrogen content.

Kinetic model for r̃N WSSE AIC BIC
Michaelis-Menten 74.7 -0.60 -3.41
Haldane inhibition, Eq. 6.7 75.7 -0.59 -3.40
Cumulative inhibition, Eq. 6.8 16.3 -2.12 -4.93
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Excessive nitrogen uptake starts a cascade of events that result in growth

inhibition. When nitrogen deficient algal cells undergo a significant increase

in their cellular pool of nitrogen compounds, their metabolism will adapt to the

new condition shifting the concentration of enzymes and other intermediates;

the larger the increase in the nitrogen pool, the larger the change in the

metabolic machinery. Variations in the metabolic flux as a function of nitrogen

nutrition status have been previously reported in A. protothecoides (Xiong

et al., 2010).

For transient events, in which the nitrogen pool increases and then decreases,

there was an observed residual inhibitory effect in the growth rate. Given that

an observed variation in the metabolic flux in the cells was due to several other

processes happening in a tightly regulated environment, it was expected that

there would be a time delay between the event that activated the metabolic

change and the observed change. For modelling, it is relevant to account

for these time delays or processing times. Davidson and Cunningham (1996)

considered that nutrients are subject to an average processing time, τ ′, before

it affects growth; and modified the mass balances and kinetic expressions

accordingly, that is, changes at time t were assumed dependent on the nutrient

concentrations at time t− τ ′. In this work, this idea was extended to consider

the average intracellular nutrient concentration over the culture, instead of

a single time point in the past. This approach considers that a large and

sustained increase in the intracellular nitrogen concentration will have a larger

inhibitory effect than a quick spike, even a large one.

For model fitting, it was found satisfactory to include the full history, from

the start of the culture, of intracellular nitrogen concentration to model the

observed growth rate inhibition. When only the previous 24 hours of nitrogen

concentration were included in the integral term in Eq. 6.8, the fit of the model
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6.2. Model selection

decreased. It must be highlighted that, in general, events that happened

long ago will influence current cell growth. Therefore, for repeated batches

or continuous cultures with a long culture time, a finite time-window for

considering nutrient history is expected to be a more appropriate approach.

Further research is required in order to establish how far back in time it is

necessary to integrate Eq. 6.8.

6.2.4 Effect of carbon concentration on growth

Table 6.4 summarizes the the weighted sum of squares (WSSE) and the two

model information criteria used for model comparison. The values of the

performance evaluation criteria for the Haldane inhibition model are compar-

atively lower that the corresponding values for the Michaelis-Menten model.

Therefore, it is concluded that the Haldane inhibition model provides a supe-

rior representation of the experimental data.

Table 6.4: Performance of kinetic functions evaluated to model r̃C , the
normalized growth rate based on the glucose concentration in the media.

Kinetic model for r̃C WSSE AIC BIC
Michaelis-Menten 74.7 -0.60 -3.41
Haldane inhibition 67.4 -0.71 -3.51

6.2.5 Lipid production

The weighted sum of squared errors (WSSE) and the two information crite-

ria (AIC and BIC) used to compare the model performance are reported in

Table 6.5 for the three alternative expressions used to model oil production

rate.
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Table 6.5: Performance of kinetic functions evaluated to model the oil
production rate (π)

Kinetic model for π WSSE AIC BIC
Michaelis-Menten, Eq. 6.11 74.7 -0.60 -3.41
Saturation by lipid content, Eq. 6.12 69.0 -0.68 -3.49
Inhibition by nitrogen, Eq. 6.13 80.3 -0.53 -3.34

According to the results in Table 6.5, the saturation model presented in

Eq. 6.12 provides the best representation of the experimental data. This

implies that oil production does indeed follow a Michaelis-Menten kinetic,

but as cell volume was getting filled by the oil body, oil production rate was

turning down.

6.2.6 Summary of kinetic expressions

Overall, the best fitting is achieved by considering that the growth rate was

a double sigmoidal function of the external glucose concentration and the

internal nitrogen content:

µ = µm
s2

Ks2 + s2 +
s2

2

Ki2

q̃

Kq̃ + q̃
exp

(
−

1
t
[q̃(t0) +

∫ t
0
q̃dt]

Ki1

)
(6.14)

By assuming this representation, the transient accumulation of nitrogen com-

pounds in the cytoplasm, that occurs whenever nitrogen-deficient algal cells

are exposed to a nitrogen source (Dortch et al., 1984), can be represented by

the model. Furthermore, the inhibition terms from glucose and from the past

history of the nitrogen content have a significant effect on model prediction,

as shown by the lower values for both information criteria (AIC and BIC) and

the lowest residual error.

140



6.3. Model limitations

The nitrogen uptake rate is best modelled by a simple Michaelis-Menten

kinetics,

ρ = ρm
s1

Ks1 + s1

(6.2)

while the oil production rate follows a Michaelis-Menten kinetics with an

additional saturation term due to the finite storage capacity of the cells:

π = πm
s2

Kps2 + s2

(1− p̃) (6.12)

The use of these three kinetic expressions together with the system of ordinary

differential equations presented in Eq. 6.1 provides the best representation

of the batch experimental data. The predicted concentration profiles for

biomass, glucose, intracellular nitrogen, and oil content for all the experimental

dataset are shown in Figs. 6.3, 6.5, 6.6, and 6.7. For all four experimental

measurements, there is a close agreement between the observed concentrations

and the predicted ones. The mean absolute error was 0.72 g/L for biomass,

2.1 g/L for glucose, 0.53 %(w/w) for intracellular nitrogen, and 8.2 %(w/w) for

oil content.

The optimal values of the model parameters are shown in Table 6.6, together

with the 95 % confidence bounds estimated from a t-test. It must be notice,

however, that usually model parameters are highly correlated and that the

simple t-test does not provide reliable estimates of the confidence bounds of

parameter estimates.

6.3 Model limitations

The dynamic model summarized in section 6.2.6 and Eq. 6.1 was calibrated

using batch experimental data. In its formulation, however, the possibility of

its use for fed-batch and continuous systems has been incorporated. When
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Table 6.6: Estimated model parameter values and 95 % confidence bounds.

Parameter Optimum value Lower bound Upper bound Units
Yx/s 0.5504 0.3897 0.9369
Yp/s 0.3401 0.2755 0.4444
Yx/q 56.67 53.83 59.84
km 0.1940 -0.0116 0.3996 1/d
µm 14.18 10.22 18.13 1/d
Ks2 8.453 6.557 10.349 g/L
Kq̂ 0.0041 0.0013 0.0068
ρm 0.9340 0.7883 1.0797 1/d
Ks1 0.1372 0.0485 0.2259 g/L
πm 0.5045 0.4343 0.5747 1/d
Kπ
s2

0.0910 -0.6883 0.8703 g/L
Yx/p 11.84 6.8102 45.3968
Ki2 49.50 42.26 56.75 g/L
Ki1 0.016 0.0144 0.0178

expanding the use of the model to extended batch or fed-batch cultures, or

for continuous cultures, it would be necessary to modify the integral term in

Eq. 6.14, so as to limit how far back in time it is necessary to take the average

for the intracellular nitrogen concentration.

A limitation in the proposed model is that it does not account for the export of

nitrogen compounds to the media. As shown in Table 5.3, microalgae excrete

nitrogen-rich compounds to the media. Whether the exported compounds are

metabolically relevant proteins, or waste by-products, was not investigated.

However, it was observed that the exported nitrogen was not re-assimilated.

For modelling purposes, the exported nitrogen was considered as non-existing,

which is consistent with the fact that it is not re-assimilated by algae. Such an

assumption, however, implies that the model is not able to accurately predict

the external concentration of total nitrogen in the media.
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6.4. Model validation

6.4 Model validation

The proposed model was validated by comparing the model predictions using

the parameter set estimated from batch experiments, with the experimental

observations from a fed-batch culture. The fed-batch culture was started with

1 L of B4-Fe medium containing glycine (0.4 g/L) and glucose (40 g/L). A

concentrated glycine stream (10 g/L) was fed into the reactor following the

profile shown in Figs. 6.8(a); glucose was fed following the profile shown in

Fig. 6.8(b). The concentrated glucose solution (200 g/L) also contained all

the trace elements present in the original culture medium at a concentration

5 times the one in medium B4-Fe.

Model predictions and experimental observations are shown in Figs. 6.9(a)

and 6.9(b). The model predictions were based on the set of parameters

estimated from the batch culture data. The model was able to capture the

underlying dynamics of algal cultures, keeping track, within experimental

error, of the variations in oil content, nitrogen content, and biomass con-

centration in the culture media. The predictive capabilities of the model are

significant considering that glucose and biomass concentrations are beyond the

concentration range used in the model calibration.

The relatively higher deviation of the predicted oil concentration from the

experimental measurements indicates that the model does not provide a com-

pletely accurate representation of the oil accumulation dynamics. The higher

variability of lipid content experimental measurements, in both the calibration

and the validation dataset, may be responsible for this relative lack of fit of

the model. It is expected that a more accurate technique for measuring lipid

content in the cells will allow for a better model discrimination and calibration.
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Figure 6.8: Feeding flow-rate profiles of the fed-batch run used for model
validation. (a) Glycine rich feed; (b) Glucose rich feed.
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Figure 6.9: Measured and predicted concentration profiles for the fed-batch
validation run. (a) Glucose and biomass concentration; (b) Nitrogen and oil
content.
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7
The optimization of microalgal

cultures1

The potential use of microalgae as a source of biofuels and bulk chemicals has

generated an increasing interest in their industrial, large-scale, cultivation.

Microalgae can also be used, and are being cultured, as a source of fine chem-

icals, pharmaceuticals, nutraceuticals, and food products. While the latter

category of products can be produced at a high cost that is transferred to the

consumers without significantly affecting their economic viability, production

of bulk chemicals and biofuels requires greatly reduced production costs of

microalgae.

An optimal process to cultivate microalgae will reduce production costs and

will potentially enable the large-scale adoption of microalgal derived biofuels.

1Some sections of this chapter have been accepted for publication. De la Hoz Siegler et
al. 2011. Bioresource Technology, DOI: 10.1016/j.biortech.2011.10.029



Algal biofuels can be derived by pyrolysis or anaerobic digestion of the algal

biomass, or by conversion of the oil contained in the algal cells into biodiesel.

Therefore, algal culture optimization can be approached with either the goal

of biomass or lipid production.

In this chapter, a model-based optimization approach is used to maximize the

productivity of heterotrophic microalgal cultures. First, a key performance

indicator (KPI) is selected as the optimization target. A theoretical interpreta-

tion of the model proposed in Chapter 6 is presented, evaluating the possibility

of maximizing the selected KPI in both fed-batch and continuous cultures. Sec-

ond, fed-batch cultures of Auxenochorella protothecoides are optimized, using

glucose as the carbon source. Third, the possibility of reducing production

costs by replacing the carbon source with a cheaper substrate (glycerol) is

presented. Finally, the extracted algal oil is evaluated as a potential source of

biodiesel.

7.1 Evaluating the performance of microalgal

cultures

To properly define the optimization problem it is necessary to select the

objective of the optimization. In principle, any measurable characteristic of the

bioprocess can be optimized. Traditional targets in bioprocess optimization

include growth rate, production rate, volumetric productivity, culture density,

product yield, and production costs. The aim is to improve the selected key

performance indicator by manipulating process conditions.

In general, the final goal of any process optimization strategy is to reduce

total production cost. Other key performance indicators (KPI), however, are

usually selected as the target of the optimization due to the complexity and
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7.1. Evaluating the performance of microalgal cultures

variability of costs estimates. The selection of the KPI to be used as the

optimization target depends on the scale of the operation, the type of process,

and the relative easiness to measure or estimate the proposed KPI.

Growth rate and production rate are desirable targets for optimization, as they

are usually explicitly defined in the process model. The practical implemen-

tation of a control strategy based on keeping the reaction rate at a specified

set point, however, is difficult and usually restricted to processes operating

in quasi-steady state (i.e. continuous) conditions. In continuous processes, a

maximum reaction rate translates into maximum productivity. For processes

with time-varying behaviour (i.e. batch or fed-batch), the volumetric produc-

tivity is the default KPI, as it can be easily defined and measured.

Culture density and product yield affect the cost of processing and the cost

of raw materials per unit of final product, and therefore its maximization is

desirable. The effect of culture density and yield on total production cost,

however, cannot be calculated in a straightforward way as increments in any

of these two variables might have unexpected consequences in overall culture

behaviour.

In this work, volumetric productivity was selected as the key performance

indicator for the algal cultures. In Table 7.1, the maximum reported biomass

and lipid productivities are presented for several microalgal species, cultured

under different reactor configurations and media composition. The specific

lipid production rate (P), which corresponds to the oil produced per unit of

algal biomass per unit of time, is also indicated.

From Table 7.1, it can be concluded that the productivity in heterotrophic

systems is considerably higher than in phototrophic systems and that the

use of perfusion or fed-batch reactors can further increase the productivity.

Low productivity is partially the result of low cell density in the culture. In
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7.1. Evaluating the performance of microalgal cultures

phototrophic microalgal cultures, typical cell density is about 1 g/L and, due

to mutual shading effects, it is difficult to significantly increase it without

causing a substantial drop in growth rate. In heterotrophic systems, where

mutual shading does not play a role, growth limitation is caused by nutrient

starvation or accumulation of inhibitory compounds in the growth media. The

much higher productivities reported for fed-batch and perfusion cultures are

due to the improved control in the feeding and bleeding strategies that are

possible in these type of systems.

In the following sections, the model developed in Chapter 6 is used to assess

the potential for optimizing the productivity of heterotrophic cultures of the

green microalga A. protothecoides in continuous and fed-batch cultures.

7.1.1 Continuous cultures

In a continuous bioreactor, cells are harvested as fresh medium is added to

the reactor, keeping the total operating volume constant. The outlet stream

composition is representative of the reactor content at any given time, if ideal

mixing is assumed. That is, the biomass concentration and the oil content in

the harvested cells in the effluent stream are the same as inside the reactor.

The productivity can therefore be written in terms of the reactor composition

as PB = xD, for the biomass productivity, and PL = pD, for the lipid

productivity; the dilution rate, D, is defined as the ratio of outlet flowrate

to reactor volume (D = fo/V ).

A steady state analysis of the dynamic model presented in Eq. 6.1 shows that

the maximum lipid productivity is achieved by maximizing the following term:

P∗L = max
{
πx− µx

Yx/p

}
(7.1)
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Similarly, the maximum biomass productivity is given by:

P∗B = max
{
µx
}

(7.2)

In both cases, the biomass concentration x acts as a scaling factor. That

is, increasing the biomass concentration in the culture should result in a

proportional increase in productivity. In practice, however, others factors will

limit the achievable productivity in the culture. For instance, sustaining a

high density culture requires the continuous feed of large amounts of substrate

which might induce reactor wash-out, if the dilution rate exceeds the maximum

growth rate.

To determine the theoretical maximum productivity in continuous cultures of

A. protothecoides, the model presented in Eq. 6.1, in combination with the

kinetic expressions presented Section 6.2.6, was implemented in Simulink®.

In the model, it was considered that the bioreactor operates at steady state

conditions with D = f1 +f2/V , where f1 is the flowrate of the glycine-rich feed

and f2 is the flowrate of the glucose-rich feed. The predicted biomass produc-

tivity is plotted in Fig. 7.1. The maximum expected biomass productivity is

9.32 g/L·h, for a dilution rate equal to 0.088 1/h, a glycine feeding rate equal

to 0.88 g/L·h, and a glucose feeding rate equal to 22 g/L·h. This maximum

biomass productivity, however, occurs at the limit of wash-out and therefore

it is impractical to operate at such condition, given that any disturbance in

the reactor could cause a dramatic decrease in productivity.

The predicted lipid productivity in continuous cultures of A. protothecoides is

shown in Fig. 7.2. In this case, the maximum (PL = 1.12 g/L·h) occurs at

a dilution rate D = 0.058 1/h, and with a glycine feeding rate equal to 0.54

g/L·h and glucose feeding rate equal to 15.5 g/L·h. As expected, the conditions
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Figure 7.1: Predicted biomass productivity in continuous cultures of A.
protothecoides, in g/L·h. Optimal productivity occurs near a wash-out point,
making unfeasible the operation at this condition. Wash-out occurs whenever
the dilution rate is greater than the growth rate.
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Figure 7.2: Predicted lipid productivity in continuous cultures of A. protothe-
coides, in g/L·h.

at which the maximum lipid productivity is achieved do not coincide with

the conditions for maximizing biomass productivity. Furthermore, the lipid

productivity is maximized at a condition that does not coincide with the wash-

out dilution rate, which means that the bioreactor could be safely operated at

the optimal conditions to maximize oil production.

For comparison purposes, the predicted maximum biomass and lipid pro-

ductivities, as calculated from the proposed model, are shown in Table 7.1

together with reported experimental values. The highest reported specific

lipid production rate is 0.120 d−1 for Chlorella vulgaris, which is about one

half of the estimated maximum oil production rate for A. protothecoides.

154



7.1. Evaluating the performance of microalgal cultures

7.1.2 Fed-batch cultures

In fed-batch cultures, cell concentration increases as nutrients in the medium

are consumed. Fresh medium is continuously added to replenish the nutrients

that are being exhausted. As such, reactor conditions are undergoing constant

change, and there is not a point of steady operation. Under this set of operating

conditions, it is convenient to evaluate the productivity in terms of the total

concentration of the desired product at two different time points. The biomass

productivity can be calculated as:

PB =
x(t2)− x(t1)

t2 − t1
(7.3)

while the lipid productivity is given by:

PL =
p(t2)− p(t1)

t2 − t1
(7.4)

The average productivity for the full fed-batch duration is simply evaluated

with t2 equal to the total culture time, and t1 equal to zero.

Because process conditions are in a permanent drift in a fed-batch culture, it

is not possible to calculate a single point, as in the case of continuous cultures,

at which productity will be maximized. Instead, the optimal input is a set of

flow-rates in a time dependent trajectory or profile.
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7.2 Optimal feeding strategy for glucose-fed

microalgal fed-batch cultures

In the previous section it has been shown, through simulation studies, that

there exist a set of operating conditions at which the productivity of microalgal

cultures is maximized. In this section, the experimental improvement in the

biomass productivity of heterotrophic fed-batch cultures of A. protothecoides

is reported.

First, the general mathematical framework of the optimization problem is

presented. The problem is formulated as a model-based optimization, in

which it is assumed that the model provides a satisfactory representation

of the real biosystem. The optimized feeding strategy is later implemented

experimentally. Two different approaches are followed for the optimization,

i.e. open-loop model predictive control and adaptive model predictive control.

For reference, an additional run was performed without any optimization.

7.2.1 Problem formulation

A dynamic model of microalgal cultures was presented in Chapter 6, Eq. 6.1.

For brevity, it can be summarized as:

dξ

dt
= ψ(ξ, u, k) (7.5)

with ξ being the vector of state variables, u the vector containing the inlet and

outlet flowrates, and k the model parameters.

The objective of the optimization is to find the optimal feeding strategy, u∗,

for a given culture time, tf , and initial conditions, ξ(t0), that maximizes the

selected productivity function. Mathematically, this can be written as:
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7.2. Optimal feeding strategy for glucose-fed microalgal fed-batch cultures

u∗ = arg max
u

P(u, ξ(t0), k, tf ) (7.6)

The feasible solution space is constrained by the finite volume of the bioreactor

(VReactor). At any given time, the reaction volume, V (t), can be calculated as:

V (t) = V (t0) +

∫ t

t0

udt+
M∑
i=1

fo,i (7.7)

where M is the number of samples being removed up to time t, and fo,i is the

volume or flowrate of each sample removed.

Then, the optimization problem in Eq. 7.6 is subject to:

max{V (t)} < VReactor (7.8)

7.2.2 Implementation

The optimization of fed-batch bioprocesses is usually performed run-to-run.

That is, the optimal feeding profile is calculated by solving the optimization

problem and this calculated profile is then implemented for all the batch

duration. After completion of the batch, process data is analyzed and the

optimal feeding profile is adjusted for the next batch. This approach will be

hereinafter referred as Open-loop optimal feeding trajectory, for short Open-

loop OFT.

An alternative approach is to update the optimal feeding profile as soon as

new process data is available. This is achieved by implementing an adaptive

optimization, in which model parameters are re-estimated based on the newly

available data. The optimization problem is subsequently solved for the new

set of model parameters, using as initial conditions the current estimated or
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Figure 7.3: Flow diagram for the Adaptive Model Predictive Control opti-
mization approach used. u is the flow-rate profile to be implemented in the
bioreactor, y is a vector containing the true value of all the process outputs
(biomass, glucose, and oil concentration, and ŷ are the estimated values of the
process output. Biomass productivity, Px, was used as the cost function to be
optimized.

measured state variables. At each iteration in the optimization loop the time

horizon shrinks as the batch approaches the predefined final culture time. A

schematic of the adaptive optimization approach is presented in Fig. 7.3.

To solve this optimization problem, PatternSearch (Matlab®, Mathworks

Inc.) was used. In the PatternSearch algorithm, a mesh is defined over the

feasible solution space and the cost function is evaluated at the nodes of the

mesh. The evaluation poll moves through the mesh in the direction that

decreases the objective function, while the mesh is continuously refined in

order to identify the optimum solution (Audet and Dennis, 2006).
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7.2. Optimal feeding strategy for glucose-fed microalgal fed-batch cultures

Non-optimal fed-batch culture (Pseudo-random binary sequence feed-
ing - PRBS)

A non-optimal fed-batch run was performed as a base-line culture starting

with a medium composition equal to that of Medium B4-Fe (see Table 3.1).

Nutrients were supplemented along the run in two independent streams. The

first contained only glycine, while the second stream contained glucose and all

the other trace minerals present in Medium B4-Fe. The two streams were fed

to the reactor following a pseudo-random profile as shown in Fig. 7.4.

Open-loop optimal feeding trajectory (OFT) culture

In a first attempt to optimize the biomass productivity of heterotrophic fed-

batch microalgal cultures, the trajectories of the flow rate of the two substrate

feeds were parameterized in order to reduce the computational complexity of

the optimization problem. The glycine feed was allowed to follow a log-normal

function:

u1 = f i1 =
a1

t
exp

[
(ln(t)− a2)2

a3

]
(7.9)

For the glucose-rich feed an exponential profile was selected:

u2 = f i2 = a4 exp(a5t) (7.10)

The optimal values of the parametric coefficients (ai) were estimated using

PatternSearch. The continuous feeding profiles calculated with the optimal

parametric coefficients were further discretized to allow their implementation

as set-points in the bioreactor control system. The discretized optimal feeding

trajectories are shown in Fig. 7.5, together with the final feeding flowrates as

implemented.
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Figure 7.4: Feeding flowrates for the pseudo-random binary sequence (PRBS)
fed-batch culture of A. protothecoides.
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Figure 7.5: Feeding flowrates for the open-loop optimal feeding trajectory
(OFT) fed-batch culture of A. protothecoides.
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From Fig. 7.5, it can be seen that there was a mismatch between the calculated

and the implemented feeding trajectories. In general the implemented flowrate

was higher that the calculated one, as there was a delay between the time the

stop signal was sent to the pump and the time at which the pump was fully

stopped. Moreover, the glycine feed pump failed to stop at around 186 h and

approximately 100 mL of glycine-rich feed were pumped into the reactor. For

this reason, glycine feeding was completely stopped after 196 h, as there was

already an excess of nitrogen in the culture. Between 221 h and 244 h, glucose

feeding was suspended due to intensive foaming and the inability to sustain a

non-zero oxygen level in the culture. Glucose feeding was later restarted, but

at a lower rate than predicted from the optimization. A detailed description

of this experimental run is presented in Appendix B.1

Adaptive model predictive control culture

Given that the estimated parameter values might not be valid whenever there

are significant changes in the conditions under which the bioreactor is operated,

it might be necessary to update the parameter estimates during a given run.

This is particularly true in lumped phenomenological models, as the one used

in this work, in which model parameters do not represent a unique physical

phenomenon but the aggregate result of several interacting phenomena. In

adaptive model predictive control (MPC) the optimal feeding trajectories are

computed at the start of the culture and recalculated as soon as new process

information is available. In this way, the possibility of plant-model mismatch

is reduced.

In the implementation of the adaptive MPC, the feeding trajectories, u, were

parameterized as constant piece-wise functions, with a fixed flow-rate for every

12 h interval. The optimal feeding trajectories, u∗, were calculated from the
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7.2. Optimal feeding strategy for glucose-fed microalgal fed-batch cultures

start of the culture, t0, until a predetermined fixed time horizon, tH :

u∗ = {ut0 , ut1 , ut2 , ..., utH} = f(k̂, ξ(t0)) (7.11)

Samples were collected every 4 h and analyzed for biomass and glucose con-

centration. These experimental measurements were then used to re-estimate

the model parameters, k̂, and to estimate the states trajectories from the start

of the culture, t0, up to the current culture time, tS. In the experimental run

presented here, model parameters were updated approximately every 24−48 h.

The optimal feeding flowrate trajectories were subsequently calculated from

the current culture time until the fixed end of the culture:

u∗ = {utS , utS+1
, utS+2

, ..., utH} = f(k̂, ξ(t0 → tS)) (7.12)

The flowrate profiles of the two feeding streams, as implemented in the adap-

tive optimal culture, are shown in Fig. 7.6.

7.2.3 Comparison

The growth curves for the three fed-batch runs described in the previous

section are shown in Fig. 7.7. For comparison purposes the growth curve of a

batch run is also included. The implementation of the proposed optimization

strategies produced a significant increase in biomass production, from 20 g/L

in 350 h for the PRBS fed-batch run, to 98 g/L in the Open-loop OFT, and

to 144 g/L after only 210 h in the Adaptive MPC run.

The observed increase in cell density, and the reduction in culture time, trans-

lates into a substantial enhancement in biomass productivity. Fig. 7.8 shows

the average and maximum biomass productivity observed in the three fed-

batch runs of A. protothecoides, and in the reference batch culture. Average
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Figure 7.6: Feeding flowrates for the adaptive MPC fed-batch culture of A.
protothecoides.
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Figure 7.8: Biomass productivity and growth rate for different culture
strategies. The optimized fed-batch cultures (open-loop OFT and adaptive
MPC) provided a substantial increase in productivity with respect to the batch
and the unoptimized fed-batch cultures.

productivity was calculated for the full duration of the batch, while the max-

imum productivity corresponds to the observed one during the exponential

growth phase. In summary, there was a 10-fold increase in the average pro-

ductivity and a 16-fold increase in the maximum biomass productivity as a

result of the proposed optimization strategy.
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Biomass productivity can be increased either by augmenting the growth rate

or by extending the time in which cells are growing at their maximum rate.

To explore which one of these possibilities was responsible for the observed

increased productivity, the average and maximum growth rates were calculated

and reported in Fig. 7.8. While there was a significant increase in the average

growth rate going from the batch culture to the optimized Adaptive MPC fed-

batch, the maximum observed growth rate remained around the same value

(0.05 − 0.09 h−1). This implies that the observed growth rate during the

exponential growth phase was nearly independent of the cultivation strategy

selected. This observation is relevant for experimental design as it shows that

batch cultures are a valid tool for the screening of algal strains and process

conditions.

The reported enhancement in the biomass productivity highlights the success

of the proposed optimization strategy. However, given that biodiesel is one

of the most promising products to be derived from microalgae, it is desirable

to also increase the lipid productivity in algal cultures. A greater biomass

productivity is not necessarily expected to translate into an increment in lipid

productivity. In fact, it is widely known that lipids are accumulated in algal

cells as a result of a growth limiting stressor. Therefore, it is expected that

conditions that favour growth will be deleterious to lipid accumulation. Fig. 7.9

shows the oil content and the apparent lipid production rate for the Adaptive

MPC run. Lipid content decreased in the first 88 hours of the culture as a

result of the unbalance between growth rate and oil production rate. After

88 h, however, lipid content steadily increased and stabilized, after 150 h,

between 50 and 60%.

The increment in lipid content in the algal cells during exponential growth

phase is in apparent contradiction with the fact that lipid accumulation is
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Figure 7.9: Lipid content and apparent lipid production rate in an Adaptive
MPC fed-batch culture of A. protothecoides
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7.2. Optimal feeding strategy for glucose-fed microalgal fed-batch cultures

triggered by a condition that limits growth in the cells. This contradiction is

only apparent as nitrogen deficiency is indeed limiting growth rate, given that

the increased biomass productivity was achieved while maintaining nitrogen

deficient conditions. To verify that nitrogen limiting conditions were indeed

maintained along the entire culture, the total molar ratio of carbon to nitrogen

in the culture media was calculated and plotted in Fig. 7.10 against the

Redfield ratio (C:N = 106:16).

The high biomass productivity achieved while sustaining nitrogen-limiting

conditions in the culture resulted in a substantial surge in lipid productivity, as

shown in Fig. 7.11. The maximum lipid productivity of the optimized adaptive

MPC fed-batch culture was significantly higher than for the other cultures,

and even higher than the reported productivity for other algal species. The

maximum productivity (20.16 g/L·d) is six times higher than the highest value

previously achieved in A. protothecoides (3.32 g/L·d, Table 7.1). The average
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Figure 7.10: Carbon to nitrogen (C:N) molar ratio during the Adaptive MPC
fed-batch culture. The Redfield ratio (C:N = 106:16) is indicated as reference
of a nitrogen-sufficient culture.
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lipid productivity, for all the batch duration, in the optimized culture was

10.32 g/L·d, which is still 3.1 times the previous maximum value. Furthermore,

the maximum recorded lipid productivity was 75% of the maximum predicted

productivity in continuous cultures. Clearly, the proposed optimization strat-

egy greatly enhanced the lipid production capabilities of A. protothecoides.

The resultant high lipid productivity of the optimized A. protothecoides cul-

ture is significant, even compared with classic oleaginous microorganisms. In

Table 7.2, the oil content at the end of the culture and the lipid productivity is

Batch

PRBS Fed-batch

Open Loop OFT

Adaptive MPC

0 4 8 12 16 20

0 0.06 0.12 0.18 0.24 0.3

0.77

0.94

4.5

20.16

Specific production rate [1/d]

Lipid Productivity [g/L d]

Figure 7.11: Maximum lipid productivity and specific lipid production rate
for different A. protothecoides cultures.
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reported for several microalga, yeast, and mold species growing heterotrophi-

cally on glucose. The productivity of the model-based optimized culture of A.

protothecoides was 3 − 6 times higher than the productivity of the improved

fed-batch reported by Xiong et al. (2008). Moreover, the maximum measured

oil productivity was larger than that of R. toruloides and C. curvatus, which

are two of the most productive oleaginous yeasts used for the production of

single cell oils. The optimized culture of the green microalgae A. protothecoides

also outcompeted the heterotrophic cultures of filamentous fungi and bacteria

in terms of productivity.
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Table 7.2: Lipid content and lipid productivity, P, of A. protothecoides and
other selected oleaginous microorganisms growing on glucose.

Species Lipid content, % P [g/L·h] Referencesd

Microalgae
Auxenochlorella protothecoides 49.4 0.43 - 0.84a This work
Auxenochlorella protothecoides 50.3 0.14 1
Chlorella vulgaris 9.7 0.12 2
Schizochytrium sp. G13/2S 30 0.096 3

Yeast
Rhodosporidium toruloides 67.5 0.54 4
Lipomyces starkeyi 56.0 0.04 5

– 0.60b 5
Cryptococcus curvatus 82.7 0.47 6

Filamentous fungi
Mortierella ramanniana 67.7 0.17 7
Cunninghamella echinulata 26.9 0.07 5

Bacteria
Rhodococcus opacus PD630 38.4 0.171 8
E. coli, genetically engineered 25.4c 0.246c 9
a The lower value reported corresponds to the average lipid productivity, and the higher

value is the average productivity during the exponential growth phase (88 - 132 h)
b Ethanol was used as the organic substrate.
c Lipid content expressed as ethyl ester content in the cells.
d Reference key: 1. Xiong et al. (2008); 2. Doucha and Ĺıvanský (2011); 3. Ganuza and

Izquierdo (2007); 4. Li et al. (2007b); 5. Kosa and Ragauskas (2011); 6. Zhang et al.

(2011); 7. Hiruta et al. (1997); 8. Kurosawa et al. (2010); 9. Elbahloul and Steinbuchel

(2010).
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7.3. Optimization of glycerol-fed cultures

7.3 Optimization of glycerol-fed cultures

The production cost of glucose-fed algal cultures is greatly affected by the

high price of sugar. Process optimization, in terms of production cost, can be

achieved by replacing glucose with a low-priced carbon source. One possible

alternative is glycerol, which is a by-product of biodiesel and oleochemicals

production. The increasing expansion in the production capacity of biodiesel

has driven down the market value of glycerol, making it an attractive and

economical alternative carbon source. In this section, the fed-batch cultivation

of the green microalgae A. protothecoides, using glycerol as the carbon source,

is presented.

7.3.1 Culture conditions

The fresh water microalga A. protothecoides was cultured as previously de-

scribed for glucose-fed cultures. The start-up medium was B4-Fe (Table 3.1)

supplemented with glycerol at a concentration of 10 g/L, and glycine at 0.1 g/L.

Glycine was used as the sole nitrogen source and was intermittently fed into

the reactor as a 150 g/L aqueous solution. A glycerol-rich feed was formulated

to contain not just glycerol but also all the other trace elements required for

algal growth. The composition of the glycerol-rich feed is shown in Table 7.3.

The feeding strategy was calculated in order to maximize the biomass pro-

ductivity in the culture, using the adaptive scheme reported in Fig. 7.3. The

initial parameter values were set equal to the values estimated for glucose-fed

cultures, and were adjusted after 48 h, 120 h, and 144 h. The adjustment in

the parameter values resulted in a corresponding modification of the feeding

strategy. The feeding profiles followed in the glycerol-fed culture are shown in

Fig. 7.12.
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Figure 7.12: Feeding flowrates for the glycerol-fed culture of A. protothecoides.
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Table 7.3: Composition of glycerol-rich feed.

Component Concentration Units
Glycerol (C3H8O3) 1123 g/L
Potassium phosphate monobasic (KH2PO4) 50 g/L
Magnesium sulfate (MgSO4 · 7 H2O) 32 g/L
Iron sulfate (FeSO4 · 7 H2O) 1.272 g/L
di-sodium EDTA 1.696 g/L
Thiamine hydrochloride 1.06 g/L
Calcium chloride (CaCl2 · 2 H2O) 0.260 g/L
Boric Acid (H3BO3) 0.3074 g/L
Manganese chloride (MnCl2 · 4 H2O) 0.1908 g/L
Zinc sulfate (ZnSO4 · 7 H2O) 23.32 mg/L
Cooper sulfate (CuSO45 H2O) 8.48 mg/L
Sodium Molybdate (MoNa2O4 · 2 H2O) 3.207 mg/L

7.3.2 Effect of glycerol on growth and oil production

A. protothecoides was able to use glycerol to fuel their metabolism and growth.

The growth curve for the glycerol fed-batch experiment is shown in Fig. 7.13.

Cell density increased from 0.5357 g/L to 47.2 g/L in 200 h, corresponding

to an average productivity of 5.6 g/L·d, and an average doubling time of

31 h. The maximum productivity was 16.7 g/L·d, achieved at approximately

100 − 108 h, while the minimum doubling time was 10.5 h. The biomass

productivity in the glycerol-fed Adaptive MPC run was lower than in the

Adaptive MPC glucose-fed run, but it was comparable to the average and

maximum productivities for the Open-loop MPC run.

The average observed specific growth rate in the glycerol-fed culture was

0.022 h−1 and the maximum growth rate was 0.084 h−1. Interestingly, the

observed maximum growth rate was in the same range of observed growth

rate for glucose cultures. This indicates that there is a potential to bring the
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(b) Intracellular oil content

Figure 7.13: Biomass and oil content profiles of a glycerol-fed culture of A.
protothecoides.
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7.3. Optimization of glycerol-fed cultures

biomass productivity of glycerol-fed microalgal cultures to a similar level of

that achieved in glucose-fed cultures.

Oil production, on the other hand, was significantly reduced when glycerol

was used as carbon source. Initial oil content was approximately 10.3%(w/w)

and increased to 18.4%(w/w) after 200 h. The average lipid productivity was

1.0 g/L·d and the maximum was 2.3 g/L·d, these values are one order of

magnitude lower that those achieved during the glucose-fed culture. Whether

the reduction in lipid production was due to particular metabolic response to

glycerol or due to a non-optimal medium composition was not investigated in

this work.

7.3.3 A second stage to boost oil production

Physical or temporal separation of growth and oil production in microalgal

cultures has been suggested as a possibility to optimize overall process perfor-

mance. This idea arises naturally as the two processes are not fully correlated

as previously shown. Chi et al. (2009) reported the use of this approach

to increase the production of docosahexaenoic acid (DHA) in S. limacinum;

in a first stage, process conditions were optimized in order to increase cell

numbers, while in a second stage culture conditions were modified to induce

lipid accumulation.

To explore the potential of this idea in A. protothecoides cultures, glucose

was fed to the bioreactor after completion of the Adaptive MPC glycerol-

grown culture. In this way, the glycerol-fed phase can be considered as a

biomass production stage, while the glucose-fed phase will correspond to a

lipid accumulation phase.

Glucose was pumped into the bioreactor as a concentrated aqueous solution

(800 g/L) following the flowrate profile indicated in Fig. 7.14. No other
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Figure 7.14: Glucose feeding flowrate for the two-stages culture of A.
protothecoides.

nutrients were supplemented during this second culture stage.

The measured increase in total biomass concentration and oil content in the

cells is shown in Fig. 7.15, where the concentration profiles for the precedent

200 h of cultures is shown as a reference. Due to a generalized and recurrent

power failure in the building at the end of the glycerol feeding phase, the

autosampler system was rendered inoperative. Consequently, it was not pos-

sible to automatically collect samples during the initial part of the glucose-fed

stage. The failure in autosampler was corrected at 248 h, after which sampling

frequency was resumed to 8 h.

As shown in Fig. 7.15(a), there was a significant increase in the total biomass

concentration after the glucose feeding started. In the first 16 h of glucose

feeding, the biomass concentration increased 75%, from 47 g/L to 83 g/L.

This corresponds to a doubling time of 20.2 h and a productivity of 52 g/L·d.

After this initial surge in productivity, however, there was a reduction in the

glucose consumption and growth rate. As a result, glucose accumulated in the
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Figure 7.15: Biomass and oil content profiles of the two-stages culture of A.
protothecoides.
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culture media reaching a concentration of 35 g/L at 242.5 h, and 56 g/L at

272 h. This in turn, resulted in a reduction in the biomass concentration due

to the dilution of the reaction broth.

Oil content in the cells, on the other hand, steadily increase from 18.3%w/w

at the start of the glucose feeding (200 h) to 56.7%w/w at 310 h. This

resulted in an initial (and maximum) lipid productivity of 19.3 g/L·d, and

an average lipid productivity equal to 9.0 g/L·d. That is, the maximum

lipid productivity in the second stage of the culture was equal to 96% of

the maximum lipid productivity observed in the Adaptive MPC glucose-fed

culture, while the average lipid productivity was 87% of the observed average

value in the Adaptive MPC culture. The results obtained in this two-stages

experiment are remarkable, specially considering that culture conditions were

not optimal.

Under optimal conditions, it is expected that biomass productivity will be

maximized in the first stage by operating the culture at an average growth

rate close to 0.084 h−1, the maximum value observed in the first stage of this

experiment. In the second stage, it has been shown that an oil productivity

greater than 0.8 g/L·h is feasible.

7.3.4 The yield of glucose and glycerol cultures

In the previous sections it has been shown that the cell density and productiv-

ity of microalgal cultures can be increased by manipulating the feeding profiles

into the bioreactor. In this section, the substrate to product yield is compared

for the previously presented runs.

To properly estimate the yields from substrate to biomass and from substrate

to lipids, the reactor operating volume was corrected at each time to account

for the evaporation losses (Floss) and for the dilution due to the pumping of
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7.3. Optimization of glycerol-fed cultures

the feeds (Ffeeds) and base (Fbase) and acid (Facid) solutions .

A dilution factor D(t) was calculated at each time t as follows:

D(t) =
D(t− 1) · V (t)

V (t)− Floss(∆t) + Fbase(∆t) + Facid(∆t) + Ffeeds(∆t)
(7.13)

where F (∆t) indicates the cumulative flow between time t and t − 1. The

dilution factor was applied to the measured biomass concentration in order to

estimate the total amount of biomass produced between times t and t− 1.

The carbon substrate to biomass yield (Yx/s) was:

- Glucose (Adaptive MPC): Yx/s = 0.542 g/g

- Glycerol (Two-stages): Yx/s = 0.332 g/g

- Glucose (Two-stages): Yx/s = 0.470 g/g

The lower yield of glycerol cultures, compared to that of glucose cultures,

signifies that glycerol is less bioavailable to algae. The carbon content of each

substrate is similar (approximately 40%w/w), which implies that more carbon

in the glycerol-fed culture was loss as CO2 than in the glucose-fed cultures.

Further research is required to establish if this is a general characteristic of

glycerol-fed microalgal cultures, or if the observed result was due to the specific

(suboptimal) conditions of the glycerol experiment reported here.

The observed carbon substrate to oil yield (Yp/s) was:

- Glucose (Adaptive MPC): Yp/s = 0.267 g/g

- Glycerol (Two-stages): Yp/s = 0.0612 g/g

- Glucose (Two-stages): Yp/s = 0.347 g/g
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In order to compare the overall efficiency of converting glucose or glycerol into

lipids, carbon base yields were calculated assuming that all the oil was in the

form of oleic acid triglyceride (C57H104O6). In this case the corresponding

carbon base yields (Y C
p/s) were:

- Glucose (Adaptive MPC): Y C
p/s = 0.516 g/g

- Glycerol (Two-stages): Y C
p/s = 0.121 g/g

- Glucose (Two-stages): Y C
p/s = 0.670 g/g

This implies that, in the single stage Adaptive MPC run, 51.6% of the carbon

was accumulated as TAGs, whereas in the two-stage culture 67% of the glucose

fed was converted into TAGs. In other words, there was a 30% improvement

in the yield of glucose into lipids. Given the high commercial value of glucose,

the reported finding is significant as it provides the possibility of using the

higher cost substrate more efficiently.

7.4 Characterization of algal oil as a source

for biodiesel production

The extracted oil was characterized in order to determine its lipid profile, and

suitability as a biodiesel feedstock. HPLC analysis of the algal lipids revealed

that the hexane-extracted oil was in the form of nearly 100% triglycerides.

There were traces (below the limit of quantitation) of sterol esters and/or

phosphatidylcholine. Free fatty acids and other lipid classes were not detected.

The fatty acid profile of the algal oil was determined by gas chromatography

and is reported in Table 7.4. Interestingly, there was not a significant variation

in oil composition between the two glucose-fed optimal fed-batch runs, even
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7.4. Characterization of algal oil as a source for biodiesel production

though there was a 4-fold increase in lipid productivity between the Open-loop

OFT run and the Adaptive MPC run. On the other hand, the relative content

of long chain saturated fatty acids decreased from 49.1% in the batch run to

around 14% for the two optimal runs, and to 5% for the two-stages culture.

Highly unsaturated and very long chain fatty acids were only produced in

significant amounts in the two runs with the lowest productivity (Batch and

reference fed-batch). From Fig. 7.7, it can be noticed that both the batch and

the reference fed-batch runs underwent a relatively long stationary phase, while

the two optimal runs were finished during or just after the exponential phase.

This suggests that the oil profile of A. protothecoides is basically constant

during exponential growth, while elongation and excessive accumulation of

saturated fatty acids occur during the stationary phase.

Interestingly, there was a significant amount of DHA measured in the two-

stages culture. Given that DHA was not detected in the two optimal glucose

fed runs, it could be suggested that the production of DHA in the two stages

culture was induced by glycerol. It could be possible that a higher amount (as

percentage content) of DHA was present by the end of the first stage of the

culture. However, this was not investigated in this report.

In Table 7.4, it is also reported the degree of unsaturation (DU) of the oil, as

defined by Ramos et al. (2009):

DU = (monounsaturated, w%) + 2 · (polyunsaturated, w%) (7.14)

The DU of an oil used as feedstock for biodiesel production determines the

cetane number (CN) and the iodine value (IV) of the final biodiesel prod-

uct (Ramos et al., 2009). For DU values lesser than 137, the biodiesel produced

is expected to meet the European Standard (UNE-EN 14214).

183



T
ab

le
7.4:

F
atty

acid
p
rofi

le,
%

w
,

of
A

.
protothecoides

for
d
iff

eren
t

fed
-b

atch
cu

ltu
res

of
A

.
protothecoides

F
atty

A
cid

B
atch

P
R

B
S

F
ed

-b
atch

O
p

en
-lo

op
O

F
T

A
d
ap

tive
M

P
C

T
w

o-stages
M

y
ristic

C
14:0

2.31
1.39

0.84
0.86

—
P

alm
itic

C
16:0

26.20
14.30

12.68
12.89

—
P

alm
itoleic

C
16:1

0.80
0.20

0.59
0.58

0.73
S
tearic

C
18:0

17.58
6.87

—
—

4.43
O

leic
C

18:1
47.61

70.17
58.82

57.64
70.42

L
in

oleic
C

18:2
0.83

4.30
24.95

25.56
22.24

L
in

olen
ic

C
18:3

0.05
0.31

2.11
2.18

1.51
S
tearid

on
ic

C
18:4

1.35
0.29

—
—

—
A

rach
id

ic
C

20:0
1.35

0.46
—

0.24
0.33

B
eh

en
ic

C
22:0

0.14
0.10

—
0.05

0.10
E

ru
cic

C
22:1

0.13
0.10

—
—

—
D

H
A

C
22:6

0.13
0.04

—
—

0.24
L

ign
o
ceric

C
24:0

0.20
—

—
—

—
H

ex
acosan

oic
C

26:0
1.29

1.46
—

—
—

D
U

a
53.3

80.4
113.5

113.7
119.13

S
atu

rated
49.1

24.6
13.5

14.1
4.9

M
on

ou
n
satu

rated
48.5

70.5
59.4

58.2
71.1

P
oly

u
n
satu

rated
2.4

4.9
27.1

27.7
24.0

a
D

egree
of

u
n
satu

ration

184



7.4. Characterization of algal oil as a source for biodiesel production

The DU for the algal oil extracted from the two optimal runs was 113.5−113.7,

similar to that of corn and high oleic sunflower oil. The content of saturated,

monounsaturated, and polyunsaturated fatty acids was also similar to that of

corn, high oleic sunflower, and rapeseed oils. For this range of composition,

the expected cold filter plugging point (CFPP) is below −12 ◦C.

The high content of saturated fatty acids in the batch and reference fed-batch

cultures, however, causes the CFPP of the biodiesel produced from these two

oils to be higher than 0 ◦C. That is, when grown at lower rate and reduced

productivity, the oil accumulated by A. protothecoides might not be suitable

for biodiesel production. Fast algal growth promotes the production and

accumulation of oil with a better quality as a biodiesel precursor. That is,

the enhanced lipid productivity comes associated with an increased product

quality.
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8
Feasibility evaluation of microalgal oil

production

The economic feasibility of algal bioprocesses is affected by the substrate to

product yield, the volumetric productivity, and the cost of the feedstock, as

well as by the cost of processing and product recovery. Photoautotrophic algal

growth processes have negligible feedstock costs, but they are still economically

unfeasible due to the very low productivities and the high product recovery

costs. Heterotrophic bioreactor-based microalgal cultures, on the other hand,

offer the possibility of increased lipid production and ease of process scale-up,

intensification, and control as shown in the preceding chapters.

A heterotrophic microalgal process for the production of biodiesel can be

evaluated both in terms of the land required for feedstock production, as

well as the final production costs. A sustainable biodiesel production process

based on heterotrophic microalgae requires that the land required for feedstock



production be minimized, such that there is not an excessive competition for

cropland for food. For a long term viability, it is also necessary that production

costs be reduced while keeping a positive cash flow.

In this chapter, the land requirements and oil production costs are estimated

based on the productivities and cell density reported in Chapter 7 for the

optimized heterotrophic algal cultures. All cost values presented are in 2010

U.S. dollars, unless otherwise indicated.

8.1 Land requirement for biodiesel production

from microalgae

Microalgae can be cultured heterotrophically using a wide variety of organic

carbon substrates, ranging from simple carbohydrates to organic acids, to

complex substrates. Even though it is possible to grow microalgae on agri-

cultural wastes and cellulosic materials, in this evaluation it is assumed that

microalgae grow on hexoses or glycerol. In this sense, the present evaluation is

fully based on the experimental results presented in Chapter 7. Nonetheless,

the utilization of a different, more favourable, substrate may reduce the land

requirements.

8.1.1 Substrates for heterotrophic microalgal growth

Four different sugar crops were considered as potential feedstock for the mi-

croalgal heterotrophic cultivation based on their current availability in North

America: sugar beets, sugarcane, corn, and red winter wheat. Sugar beet is

a plant whose root contains a high concentration of sucrose. It is cultivated

in temperate weathers, mainly in Europe, eastern U.S.A and Canada, Chile

and Japan. The sugar content in sugar beets is usually between 15− 20 % in
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8.1. Land requirement for biodiesel production from microalgae

weight. The yield and production cost of sugar from sugar beets is reported

in Fig. 8.1.

Sugarcane is a perennial grass that grows in warm temperate to tropical

weathers. In North America, it is grown in southern United States, Hawaii,

and Mexico. Sugar content in sugarcane is approximately 10 % in weight. The

yield and production cost of sugar from sugarcane is reported in Fig. 8.2.

Maize, or corn, is an annual grass that is extensively cultivated in the Americas.

Maize seeds are rich in starch from where sugar is obtained by hydrolysis.

Maize is used for the production of sweeteners, ethanol for biofuel, and animal

meals. The yield and production cost of sugar from corn is reported in Fig. 8.3.

Soft red winter wheat is a variety of wheat characterized for its lower pro-

tein content. It is planted in late autumn and sprouts before freezing oc-

curs, remaining dormant until the spring. It is harvested in early july. This

characteristic make it an ideal crop for high latitude areas. Soft red winter

wheat contains on average 64% of starch in the whole grain. The average

historical yields and farm prices for soft red winter wheat in the United States

is presented in Fig. 8.4.

As can be seen from Figs. 8.1 – 8.4, sugar beet crops have the highest yield of

sugar per hectare, while the sugar from maize has the lowest production cost.

The significantly lower cost of sugar from maize is due to the credits that are

built into the corn price. Each bushel of maize (25.4 kg) produces on average

15 kg of sweeteners (glucose and fructose), 0.7 L of corn oil, 5.2 kg of gluten

feed, and 1.4 kg of gluten meal. The application of similar credits for the other

two crops under consideration may reduce their relative cost.
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Figure 8.1: Historical yield and production cost of sugar beet crops in U.S.
Sugar yield was calculated considering a 17 % recoverable sugar content in the
beets.
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Figure 8.2: Historical yield and production cost of sugarcane crops in U.S.
Reported prices are the national average for the continental United States and
Hawaii. The reported yield excludes the cane harvested for seeding.
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8.1.2 Substrate to product yield scenarios

Two different scenarios were considered based on whether algae are cultured in

a single stage process or in a two-stage culture. In the first scenario, microalgae

are assumed to grow on a single sugar with the same yield as in the optimized

glucose culture (Yoil/sugar = 0.267 g/g), as reported in Section 7.3.4.

For the second scenario, it is assumed that in the first stage microalgae are

grown on glycerol and in a second stage they are grown on a simple sugar.

The glycerol is assumed to be derived from the trans-esterification of oils for

biodiesel production and therefore no land is needed for glycerol production.

The yield of oil from sugar for this second scenario is assumed to be equal

to that reported in Section 7.3.4 for the second stage of the two-stage glyc-

erol/glucose culture (Yoil/sugar = 0.347 g/g).

8.1.3 Algal oil yield per hectare of sugar crop

The average sugar yield per hectare of sugar crop and the corresponding algal

oil yield, after conversion of the sugar feedstock, is reported in Table 8.1.

The sugar yield for each crop was linearly extrapolated for 2011 from the

historical data reported in Figs. 8.1 – 8.4. Sugar beets offer the highest sugar

yield per hectare and therefore the land requirement will be minimized if sugar

beets are used as the feedstock for heterotrophic microalgal biofuel production.

Therefore, for temperate regions such as Canada, it is recommended to use

sugar beet as the crop of choice for the heterotrophic cultivation of microalgae.

8.1.4 Land requirements for biodiesel production

For 2012, the biodiesel target in Canada has been mandated at 2% (B2). In

United States, the target for the year 2020 is 20% of biofuel content, equivalent
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8.1. Land requirement for biodiesel production from microalgae

Table 8.1: Annual yield of sugar crops in North-America, and expected oil
yield for the heterotrophic cultivation of microalgae.

Crop Sugar yield (t/ha)a Oil yield (kg/ha)
One-stageb Two-stagec

Sugarcane 9.0 2400 3119
Sugar beets 10.0 2667 3465
Corn 1.0 267 347
Red winter wheat 2.34 624 811
a Assumed yields correspond to the linear fit projection at 2011

of the historical yield values from 1990− 2010.
b In the one-stage scenario, microalgae are grown using the

sugars derived from the indicated crops as the only carbon
source.

c In the two-stage scenario glycerol is used in the first stage to
support algal biomass production, and in the second stage a
hexose is used for production of oil.

to B20. To satisfy the biodiesel demand generated to comply a B2 target in

Canada, it would be necessary to produce 638 million litres of biodiesel in 2011

(equivalent to 587000 tonnes).

In Table 8.2, the average and maximum oil yield per hectare per year is

reported for different oleaginous crops and for two of the combined sugar

crop/microalgal conversion alternatives presented in Table 8.1. The land

required to satisfy the expected biodiesel demand is also reported in Table 8.2.

The reported area requirement was calculated using the average crop yield.

The indicated cost for the different vegetable oils correspond to the forecasted

price of the unrefined oils for the period 2010–2011. The cost for the algal oil

are estimated values at 2010 and correspond to the price of the oil that makes

the return on equity equal 0% (see details in Section 8.4).

The maximum oil yield for the heterotrophic conversion of sugar beets into
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8.2. Estimation of production and capital costs

oil by A. protothecoides was calculated assuming a maximum sugar yield of

15.2 t/ha. This value is the average of the highest crop yields obtained in the

United States from 2002− 2010, based on state crop yield averages.

As per Table 8.2, it can be seen that none of the temperate weather crops

considered will require an excessive amount of crop land in order to satisfy

the expected biodiesel demand once the government target for B2 enters in

effect. However, in the long-term, with a projected target of B20 expected

for 2020, the pressure for crop-land will increase. For a B20 scenario the land

requirement for producing sugar beets for biofuel conversion using microalgae

will represent 4.1% of the existing arable land in Canada. For the other

crops, the land requirement in a B20 scenario will be between 17 – 27%

of the arable land. Therefore, using sugar beets as the carbon source for

heterotrophic algal cultivation is the best alternative in order to guarantee

long-term sustainability.

8.2 Estimation of production and capital costs

For the estimation of the production cost it is considered that the heterotrophic

production of microalgal oil operates as an independent facility, acquiring the

sugar feedstock from the market and selling the algal oil to biodiesel producers.

As such, the resulting costs or credits that can arise from a combined facility

are not considered in the analysis.

8.2.1 Organic carbon substrate cost

In 2010, the average production cost of sugar beets was $51.5/t, and that

of sugar beet sugar was $302.8/t. As a reference, it can be noted that the

average bulk price for refined sugar was $584.2/t and that of raw sugar was
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$463.3/t. With a yield ranging from 0.2667 g/g to 0.3465 g/g, and assuming

an oil density equal to 0.92 kg/L, the cost of the carbon source per unit of

of product will range from $1.04/L to $0.80/L if sugar beets are used as

the carbon feedstock. For other carbon feedstocks, the historical prices are

reported in Figs. 8.1(b), 8.2(b), 8.3(b), and 8.4(b).

8.2.2 Other nutrients cost

Besides the carbon source, algae requires trace minerals and a nitrogen source

to support their growth. Li et al. (2007a) estimated that the cost of inorganic

chemicals for the formulation of the algal growth media represented a cost of

7 cents per litre of oil. This value is used here for estimation purposes.

8.2.3 Oil extraction

Electromechanical extraction has been proposed to cost-effectively recover oil

from microalgal cells. Hebner (2010) has estimated the cost of electromechan-

ical extraction at $0.04−0.26 per gallon of oil (Schlesinger et al., 2011), based

on an initial algal concentration of 10 % in the algal slurry, with a 20 % oil

content in the cells.

Previously, Benemann and Oswald (1993) estimated the extraction cost to be

as high as $0.22/L. In this case, traditional mechanical and solvent extraction

technologies were considered. The value reported by Benemann and Oswald

(1993) is used here as the maximum expected extraction cost. This value

corrected at 2010 dollars is $0.33/L.

8.2.4 Capital cost

Alabi et al. (2009) estimated that the capital cost for a microalgal heterotrophic
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8.2. Estimation of production and capital costs

production system with a nominal reactor capacity of 1200 m3 was $2,800,000.

Two different scenarios are considered for the productivity of the system. In

the first, scenario the productivity is considered to be equal to the average

productivity of the optimized culture reported in Chapter 7, 10.32 g/L · d.

The second, optimistic scenario consider that the plant will operate at the

maximum productivity achieved in the optimized culture, 20.16 g/L · d. As-

suming that the plant will be in operation for 300 days in a year, then the

output of a 1200 m3 plant will be 4, 040, 000 L/year for the low productivity

scenario and 7, 890, 000 L/year for the high productivity scenario.

In this study, a nominal plant capacity of 25 million litres of algal oil is used

for the economic evaluation. The capital cost estimated by Alabi et al. (2009)

is taken as a reference value with a scale factor of 0.6. The cost of the 25

million litres plant is estimated using the following relation:

Capital cost = Capital costref

(
Capacity

Capacityref

)0.6

(8.1)

For the economic evaluation it is further assumed a 50% leverage, 15 years of

capital life, and a 6.5 % interest rate with a straight line amortization. Income

tax rate is fixed at 34%.

8.2.5 Labour cost

Alabi et al. (2009) assumed that a staff of 10 employes, with two administrative

and four shifts of two operators, is required for operating the heterotrophic

microalgal plant considered in their report. The total labour cost in this case

was considered to an average of $40,000 per employee, or $400,000 in total.
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8.3 Valuation of algal byproducts

Oil content in the algal biomass is near 50 % in weight, implying that 50 % of

the algal biomass will be a residue or a by-product. The residual algal biomass

could be commercialized as a substitute or a supplement for animal nutrition.

Nitrogen starved algal cells usually have a final nitrogen content ranging from

1 - 2 %. To convert from nitrogen content to protein content in the algal meal

a factor between 5.26 to 7.69 is normally used (FAO, 2002). Therefore the

expected protein content of the residual algal meal, after oil extraction, is 10.5

- 30.8 %.

The expected protein content in the algal biomass is lower than that of soybean

meal (48 %) or fish meal (60 %) and consequently the algal meal could not be

used as a direct substitute for them. Nonetheless, algal biomass have been

shown to have important benefits in animal nutrition and aquaculture (Pulz

and Gross, 2004), and therefore it is feasible to commercialize it as a supple-

ment with an equal or higher value than either soybean meal or fish meal.

In Fig. 8.5, the price of fishmeal and soybean meal is reported from 1990 to

2010. It can be observed that while the price of soybean meal has remained

stable between $200 and $300 dollars per ton, fish meal price has spiked in

recent years.

Even though production of fish-meal has remained stable in the last years, the

continuos increase in fish meal demand has resulted in sharp increases in the

fish meal price. The current price of fish meal can be considered unsustainable

in the long-term and a more realistic price of $600/t, 2002−2005 price, should

be expected if the supply of fish meal increases as a result of a surge in algal

biomass availability.
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8.4. Economic evaluation
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Figure 8.5: Historical FOB price of fish meal and soybean meal.

8.4 Economic evaluation

In Table 8.3, the income statement for a plant with nominal production ca-

pacity equal to 25 million litres per year is presented. Four different scenarios

are summarized, depending on the yield and productivity achieved in the

large scale operation. In Table 8.3, algal oil was priced at $1.1 per litre

which correspond to the forecasted price of soybean oil for 2011. Algal meal

was priced at $0.3/kg, and the sugar feedstock was priced at $302/t. For

maintenance a 4% of the capital cost was allocated annually, and 1% of the

capital cost was assumed as overhead.

The earnings before interests, depreciation, taxes, and amortization (EBITDA)

is presented together with the expected net income and the return on assets

(ROA) and return on equity (ROE). EBITDA is used as a measure of prof-

itability and general financial performance. The ROE is a measure of how

profitably the shareholders money is employed, while the ROA measures how

efficiently the assets are used.
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Table 8.3: Estimated production cost of microalgal oil, in million of 2010 U.S.
dollars, for a plant with nominal capacity of 25 million litres per year. The
reported nominal oil cost corresponds to the sale price to achieve net income
equal zero.

Scenario
Productivity Low Low High High
Yield Low High Low High
Capital 7.53 7.53 5.04 5.04
Revenues

Algal oil 23.10 23.10 23.10 23.10
Algal meal 5.80 5.80 5.80 5.80

Operating expenses
Materials 30.34 22.75 30.34 22.75
Labor 0.40 0.40 0.40 0.40
Maintenance 0.30 0.30 0.20 0.20
Overhead 0.08 0.08 0.05 0.05

EBIDTA −2.22 5.37 −2.09 5.50
Net income −1.96 3.05 −1.71 3.30
Return on assets (ROA) −26% 41% −34% 65%
Return on equity (ROE) −52% 81% −68% 131%
Nominal oil cost (US$/L) 1.24 0.88 1.22 0.86
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8.4. Economic evaluation

From Table 8.3, it can be concluded that in order to generate a positive cash

flow it is essential to achieve a high yield in the conversion from sugar to oil.

Alternatively, a lower cost carbon source could be used to reduce the total

production cost. In Fig. 8.6, the sensitivity of the ROA and ROE to the cost

of the sugar feedstock is presented. There is a substantial improvement in

profitability as the cost of the feedstock is reduced. Sugar beets cost can be

reduced if credits were applied for the production of sugar beet byproducts,

such as molasses and biomass.

Profitability is also dependent on the cost of the oil extraction. The sensitivity

of the ROA and ROE to the extraction cost is reported in Fig. 8.7. There is

an opportunity to improve the process’ economic performance by using low

cost oil extraction technologies or algal strains with weaker cell walls.

The sensitivity of the ROA and ROE to the price of algal meal and algal oil

is presented in Figs. 8.8 and 8.9, respectively. A higher valuation for the algal

meal has a very significant impact on profitability. Given the current price

and trend of fish meal, there is a clear incentive to try to commercialize the

algal meal as a partial replacement of fish meal.

In Fig. 8.9, it can be seen that the profitability of algal oil production increases

if the oil is sold at a higher price than soy bean oil. Considering the fatty acid

profile of the algal oil there is a potential to commercialize it for higher value

applications. In that case, however, the production volumes will be reduced,

affecting the capital cost estimates.

Considering the production cost, and the potential credit for by-products

sales, the optimized heterotrophic algal oil production process provides a

reasonably priced alternative to fossil fuels, while minimizing the requirement

for agricultural land.
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8.4. Economic evaluation
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9
Conclusions and Recommendations

9.1 Conclusions

The biomass and lipid productivities of heterotrophic microalgal cultures can

be increased by regulating the nitrogen availability to the cells as well as

the carbon to nitrogen ratio. Biomass productivity in the optimized culture

reached a maximum of 60 g/L·d and an average value of 15.6 g/L·d. For

this optimized culture, maximum lipid productivity was 20.2 g/L·d, with an

average value of 10.3 g/L·d. The lipid productivity in optimized heterotrophic

microalgal cultures was shown to exceed the values previously reported for

other heterotrophic oleaginous microbes.

The importance of nitrogen in the production and accumulation of neutral

lipids in microalgae is widely recognized, but not so well understood. In this

research, it was found that the relationship of cell growth and lipid production



with respect to the concentration of nitrogen is not linear in nature. At extreme

nitrogen deficient conditions, cells grow slowly but continue synthesizing lipids,

resulting in an enhanced lipid content. At nitrogen sufficient conditions cellular

growth outpaces lipid production resulting in a reduced lipid content. At

intermediate nitrogen deficient conditions, however, cell growth rate reaches a

maximum without compromising the lipid content in the cells, resulting in an

increased lipid productivity.

A characteristic behaviour of microalgal cells is their great capacity to uptake

nitrogen, as well as other limiting nutrients, from the media and to store it

intracellularly. Whenever there is a supply of nitrogen in the culture media,

the nitrogen pool in the cells will surge. Changes in the cell physiology

occur when the intracellular nitrogen concentration increases. Readily ap-

parent physiological changes include change in pigmentation, excretion of red

pigments, and increased foaming in the culture. It is expected that these

physiological changes are accompanied with variations in the cell metabolism.

If the nitrogen supply is limited and temporary then the changes the cells

incurred will have to be reversed, generating a cost to the cells in terms of

substrate utilization, affecting the yield and growth rate. A mathematical

expression was proposed to account for the inhibitory effects that large surges

in the intracellular nitrogen pool have on growth rate. This expression was

incorporated in a first principles model to describe the nutrient uptake, growth,

and oil production in microalgae. The proposed model was able to capture the

macroscopic behaviour of algal cultures and was shown to have good prediction

capabilities.

The maximum growth rate in microalgal cultures, measured during the expo-

nential growth phase, remained relatively constant independently of whether

the culture was performed in batch or fed-batch mode. There was however,
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9.1. Conclusions

a significant difference between the average and the maximum growth rate.

The final aim of the different optimization strategies is to lead the average

growth rate to converge with the maximum growth rate. Batch cultures,

therefore, provide a simple and reliable way of estimating the upper limit

for the optimization target.

Fed-batch microalgal cultures were conducted in a single-stage mode and a

two-stage mode. In the single stage case, glucose was used as the single

carbon source supporting both growth and oil production. For the single

stage culture, different optimization strategies were evaluated. The adaptive

model based optimization shown a significantly better performance that the

open loop strategy. It is expected that a full feedback model predictive control

strategy will have the potential to further increase the productivity of the algal

cultures.

To enable the use feedback control, it is desirable to have a sensor for moni-

toring the nutrient concentration as well as the product concentration. It has

been shown that Raman spectroscopy can provide a good estimate of glucose

and biomass concentration as well as the neutral lipid content in the cells.

In the two-stage culture, algal cells were fed initially with glycerol and in the

second phase glucose was added to the culture. The experiment conducted in a

two-stage mode exhibited an increased yield in the conversion from sugar to oil

compared to the single-stage culture. This was due to the use of glycerol in the

first stage, which promoted cell growth but not lipid production. Furthermore,

a faster production and accumulation of lipids was observed at the start of the

second stage, indicating that glycerol conditioned the cells to a status in which

glucose can quickly and efficiently be converted into lipids.

The fatty acid profile of the algal oil extracted from the cells cultured un-

der the optimized conditions indicated that the algal is a suitable feedstock
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for biodiesel production. Fast growth and increased lipid productivity were

associated with an increased lipid quality.

The economic evaluation showed that the production cost for heterotrophic

microalgal oil will range from $ 0.86 to $ 1.24 US$/L, with the potential to

lowering this cost by using cheaper carbon substrates or by applying credits

to the oil whenever other by-products are commercialized.

9.2 Future research directions

Even though the idea of using microalgae for the production of biofuels dates

back to the early 1950’s, several political, scientific, and economic factors have

hindered the realization of this idea. As such, the field of microalgal biotech-

nology is still in its infancy, and therefore there are plenty of opportunities

for improvement. In the following paragraphs, a quick overview of several

potential avenues of research, identified during the course of this thesis, are

presented.

9.2.1 Adaptive optimization with Raman-enabled feed-
back control

The Raman-based sensor developed to monitor the biomass, glucose and oil

concentration can be integrated into the optimization strategy, acting as an

on-line measuring device. This arrangement will allow the implementation of

different feedback control schemes.

To better study the effect carbon substrate concentration has on the overall

lipid production and cell growth rates, a series of fed-batch experiments should

be conducted at constant carbon substrate concentration. Feedback control

using the Raman sensor will allow to run the reactor at a fixed substrate
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9.2. Future research directions

concentration. The use of the Raman sensor, perhaps in combination with a

windows moving average algorithm to reduce the noise in the estimated values,

will potentially facilitate the discrimination among the different kinetic models

for the production of oil.

9.2.2 Optimization of process conditions

In this thesis, the focus was restricted to identifying the effect that the con-

centration of the main nutrients has on the growth and production rate of

microalgae. Several other process variables, however, were kept at fixed values

taken from other references. Further research should explore the effect of

temperature, pH, pO2, and osmotic pressure, and determine either the optimal

fixed values or functional relationships of the growth and lipid production rate

with respect to the aforementioned variables.

9.2.3 Controlling the fatty acid profile

Given the importance of the fatty acid profile in the quality of the biodiesel

product, or any other application for the algal oil, the next logical step in the

modelling of algal oil production is to incorporate in the model the effect the

different process conditions have over the production and consumption of each

individual fatty acid.

Lipid production can be modelled as the coupling of few series of reactions that

generate all the fatty acids found in the cells: de-novo synthesis, elongation,

and denaturation. A mechanistic model can be proposed starting with the

current understanding of these reactions, and moving to close any gap that

results between model prediction and experimental observations.

Experiments can be conducted in order to determine the fatty acid profile at
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different culture times, or at varying concentrations of nutrients. These exper-

imental measurements can be later used for model selection and calibration.

9.2.4 Population based modelling

Even though the model proposed in this thesis was successful at describing the

important characteristics of the bulk dynamics of microalgal cultures, allowing

a substantial increase in biomass and oil productivity, there are still several

observations that remain unexplained. Batch to batch variability is a the defin-

ing characteristic of biological cultures. Cultures performed under seemingly

identical conditions may produce totally different results. It is possible that

this variability is due to differences in the cell distribution. In particular, cell

populations with a multimodal distribution can be identical when compared

using a bulk measurement, such as dry weight, total cell volume, or cell

number, but have completely different behaviours due to differences in the

cell distribution.

In the fed-batch cultures presented in this thesis, bimodal distributions were

observed in the algal population, as shown in Fig. 9.1. In this case, a bimodal

distribution emerged from a cell population with a single mode in their size

distribution after the addition of glucose to the culture. This indicates that a

fraction of the cells were in a more favourable status to initiate growth and oil

accumulation.

As mentioned before, multimodality may help to explain some of the variability

observed in cell cultures, and therefore a population based model has the

potential to allow the construction of control tools to better reduce or eliminate

such variations.

Future research should focus on determining the factors that induce the onset

of bimodal/multimodal cell distribution from unimodal distributions in algal
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populations. It is also necessary to evaluate how the transitions between dif-

ferent cell cycle stages are regulated and what is the effect of growth promoters

and inhibitors on microalgae at the different stages of the cell cycle. The final

objective must be to propose a mathematical description capable of explaining

the onset of multimodality observed in microalgal cultures.

9.2.5 Optimization of culture conditions for harvesting

As presented in Chapter 8, oil extraction from the microalgal biomass repre-

sents the second highest production cost after the feedstock cost. To increase

the efficiency of the extraction process it is desirable to guarantee that all the

cells that are subject to lipid extraction contains the maximum amount of

lipids. In practice, however, there is a distribution in the cell population, as

shown in Fig. 9.1. As such, some cells are very rich in oil, indeed lighter than

water, while other cells are leaner in oil, and heavier than water.

It is be desirable to have a better understanding of the factors controlling when

and how the cells become fat, and to design the process in such a way than

only the fat-rich cells get skimmed while allowing the leaner cells to continue

growing and accumulating oil.

For the purpose of skimming the fat-rich cells, air assisted flotation (i.e. Froth

flotation) may prove to be useful. Due to the differences in cell size and cell

density between fat and lean cells, it is expected that large lipid-rich cells will

float faster than young lean cells.

216



References

Aaronson, S., Dubinsky, Z., 1982. Mass production of microalgae. Cell. Mol.

Life Sci. 38 (1), 36–40.

http://dx.doi.org/10.1007/BF01944523

Abbas, A., Josefson, M., Abrahamsson, K., 2011. Characterization and

mapping of carotenoids in the algae Dunaliella and Phaeodactylum using

Raman and target orthogonal partial least squares. Chemometrics Intellig.

Lab. Syst. 107 (1), 174–177.

http://dx.doi.org/10.1016/j.chemolab.2011.03.004

Afseth, N. K., Segtnan, V. H., Wold, J. P., 2006. Raman spectra of biological

samples: A study of preprocessing methods. Appl. Spectrosc. 60 (12), 1358–

1367.

http://www.opticsinfobase.org/abstract.cfm?URI=as-60-12-1358

Ahmad, I., Hellebust, J. A., 1990. Regulation of chloroplast development by

nitrogen source and growth conditions in a Chlorella protothecoides strain.

Plant Physiol. 94 (3), 944–949.

http://www.jstor.org/stable/4273185

Alabi, A. O., Tampier, M., Bibeau, E., 2009. Microalgae technologies and

processes for biofuels/bioenergy production in British Columbia. Tech. rep.,

The British Columbia Innovation Council.

http://www.bcic.ca/images/stories/publications/lifesciences/

microalgae_report.pdf

http://dx.doi.org/10.1007/BF01944523
http://dx.doi.org/10.1016/j.chemolab.2011.03.004
http://www.opticsinfobase.org/abstract.cfm?URI=as-60-12-1358
http://www.jstor.org/stable/4273185
http://www.bcic.ca/images/stories/publications/lifesciences/microalgae_report.pdf
http://www.bcic.ca/images/stories/publications/lifesciences/microalgae_report.pdf


Andersen, R. A., 1992. Diversity of eukaryotic algae. Biodivers. Conserv. 1 (4),

267–292.

http://dx.doi.org/10.1007/BF00693765

Antizar-Ladislao, B., Turrion-Gomez, J. L., 2008. Second-generation biofuels

and local bioenergy systems. Biofuels, Bioproducts and Biorefining 2 (5),

455–469.

http://dx.doi.org/10.1002/bbb.97

Arnold, S., Gaensakoo, R., Harvey, L., McNeil, B., 2002. Use of at-line and

in-situ near-infrared spectroscopy to monitor biomass in an industrial fed-

batch Escherichia coli process. Biotechnol. Bioeng. 80 (4), 405–413.

http://dx.doi.org/10.1002/bit.10383

Arnon, D. I., 1938. Microelements in culture-solution experiments with higher

plants. Botanical Society of America 25 (5), 322–325.

http://www.jstor.org/stable/2436754

Audet, C., Dennis, J. E., 2006. Mesh adaptive direct search algorithms for

constrained optimization. SIAM J. Optim. 17, 188–217.

http://dx.doi.org/10.1137/040603371

Becker, T., Breithaupt, D., Doelle, H. W., Fiechter, A., Schlegel, G., Shimizu,

S., Yamada, H., 2009. Biotechnology, 5. Monitoring and modeling of

bioprocesses. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-

VCH Verlag GmbH & Co. KGaA.

http://dx.doi.org/10.1002/14356007.n04_n05

Behrens, P. W., Kyle, D. J., 1996. Microalgae as a source of fatty acids. Journal

of Food Lipids 3 (4), 259–272.

http://dx.doi.org/10.1111/j.1745-4522.1996.tb00073.x

Bellgardt, K.-H., 2000. Bioprocess models. In: Schugerl, K., Bellgardt, K.-H.

(Eds.), Bioreaction Engineering: Modelling and Control. Springer, Ch. 2,

pp. 44–105.

218

http://dx.doi.org/10.1007/BF00693765
http://dx.doi.org/10.1002/bbb.97
http://dx.doi.org/10.1002/bit.10383
http://www.jstor.org/stable/2436754
http://dx.doi.org/10.1137/040603371
http://dx.doi.org/10.1002/14356007.n04_n05
http://dx.doi.org/10.1111/j.1745-4522.1996.tb00073.x


References

Benemann, J. R., Oswald, W., 1993. Systems and economic analysis of

microalgae ponds for conversion of CO2 to biomass. Tech. Rep. CONF-

9409207-2, Department of Energy.

http://dx.doi.org/10.2172/29423

Bessou, C., Ferchaud, F., Gabrielle, B., Mary, B., 2011. Biofuels, greenhouse

gases and climate change. In: Lichtfouse, E., Hamelin, M., Navarrete, M.,

Debaeke, P. (Eds.), Sustainable Agriculture. Vol. 2. Springer Netherlands,

pp. 365–468.

http://dx.doi.org/10.1007/978-94-007-0394-0_20

Bhattacharya, D., Medlin, Linda, 1998. Algal phylogeny and the origin of land

plants. Plant Physiol. 116 (1), 9–15.

http://dx.doi.org/10.1104/pp.116.1.9

Blanco, M., Peinado, A., Mas, J., 2006. Monitoring alcoholic fermentation by

joint use of soft and hard modelling methods. Anal. Chim. Acta 556 (2),

364–373.

http://dx.doi.org/10.1016/j.aca.2005.09.066

Brennan, L., Owende, P., 2010. Biofuels from microalgae–a review of technolo-

gies for production, processing, and extractions of biofuels and co-products.

Renew. Sustainable Energy Rev. 14 (2), 557–577.

http://dx.doi.org/10.1016/j.rser.2009.10.009

Cannizzaro, C., Rhiel, M., Marison, I., von Stockar, U., 2003. On-line

monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive

Raman spectroscopy. Biotechnol. Bioeng. 83 (6), 668–680.

http://dx.doi.org/10.1002/bit.10698

Caperon, J., Meyer, J., 1972. Nitrogen-limited growth of marine

phytoplankton–II. Uptake kinetics and their role in nutrient limited growth

of phytoplankton. Deep. Sea Res. Oceanogr. Abstr. 19 (9), 619–632.

http://dx.doi.org/10.1016/0011-7471(72)90090-3

219

http://dx.doi.org/10.2172/29423
http://dx.doi.org/10.1007/978-94-007-0394-0_20
http://dx.doi.org/10.1104/pp.116.1.9
http://dx.doi.org/10.1016/j.aca.2005.09.066
http://dx.doi.org/10.1016/j.rser.2009.10.009
http://dx.doi.org/10.1002/bit.10698
http://dx.doi.org/10.1016/0011-7471(72)90090-3


Carlsson, A. S., van Beilen, J. B., Moller, R., Clayton, D., 2007. Micro- and

Macro-Algae: Utility for Industrial Applications. CPL Press, Berks, UK.

http://epobio.net/pdfs/0709AquaticReport.pdf

C.C.C., 2009. Annual report. Tech. rep., Canola Council of Canada, 400-167

Lombard Ave., Winnipeg, MB.

Chaudhuri, T. K., Spencer, R. P., 1968. Amino acid uptake in Acetabularia.

Protoplasma 66 (1), 255–259.

http://dx.doi.org/10.1007/BF01252536

Chen, F., Johns, M., 1991. Effect of C/N ratio and aeration on the fatty acid

composition of heterotrophic Chlorella sorokiniana. J. Appl. Phycol. 3 (3),

203–209.

http://dx.doi.org/10.1007/BF00003578

Chen, W., Zhang, C., Song, L., Sommerfeld, M., Hu, Q., 2009. A high

throughput Nile Red method for quantitative measurement of neutral lipids

in microalgae. J. Microbiol. Methods 77 (1), 41–47.

http://dx.doi.org/10.1016/j.mimet.2009.01.001

Cheng, Y., Lu, Y., Gao, C., Wu, Q., 2009. Alga-based biodiesel production

and optimization using sugar cane as the feedstock. Energy Fuels 23 (8),

4166–4173.

http://dx.doi.org/10.1021/ef9003818

Chi, Z., Liu, Y., Frear, C., Chen, S., 2009. Study of a two-stage growth of

DHA-producing marine algae Schizochytrium limacinum SR21 with shifting

dissolved oxygen level. Appl. Microbiol. Biotechnol. 81 (6), 1141–1148.

http://dx.doi.org/10.1007/s00253-008-1740-7

Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306.

http://dx.doi.org/10.1016/j.biotechadv.2007.02.001

Cho, B.-H., Komor, E., 1985. The amino acid transport systems of

the autotrophically grown green alga Chlorella. Biochim. Biophys. Acta,

220

http://epobio.net/pdfs/0709AquaticReport.pdf
http://dx.doi.org/10.1007/BF01252536
http://dx.doi.org/10.1007/BF00003578
http://dx.doi.org/10.1016/j.mimet.2009.01.001
http://dx.doi.org/10.1021/ef9003818
http://dx.doi.org/10.1007/s00253-008-1740-7
http://dx.doi.org/10.1016/j.biotechadv.2007.02.001


References

Biomembr. 821 (3), 384–392.

http://dx.doi.org/10.1016/0005-2736(85)90042-2

Clementschitsch, F., Bayer, K., 2006. Improvement of bioprocess monitoring:

development of novel concepts. Microbial Cell Factories 5 (19).

http://dx.doi.org/10.1186/1475-2859-5-19

Cooper, M. S., Hardin, W. R., Petersen, T. W., Cattolico, R. A., 2010.

Visualizing “green oil” in live algal cells. J. Biosci. Bioeng. 109 (2), 198–

201.

http://dx.doi.org/10.1016/j.jbiosc.2009.08.004

Davidson, K., Cunningham, A., 1996. Accounting for nutrient processing time

in mathematical models of phytoplankton growth. Limnol. Oceanogr. 41 (4),

779–783.

http://www.jstor.org/stable/2838735

Demirbas, M. F., 2011. Biofuels from algae for sustainable development.

Applied Energy 88 (10), 3473–3480.

http://dx.doi.org/10.1016/j.apenergy.2011.01.059

Dortch, Q., Clayton, J. R., Thoresen, S. S., Ahmed, S. I., 1984. Species

differences in accumulation of nitrogen pools in phytoplankton. Mar. Biol.

81 (3), 237–250.

http://dx.doi.org/10.1007/BF00393218
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A
Experimental Protocols

A.1 Fluorometric Quantification of Neutral Lipids

Materials

1. Fluoroscence multi-well plate reader (Fluoroskan)

2. Multi-well plate with round bottom (COSTAR 96, black)

3. Nile red staining solution, 10 µg/mL in ethanol (Alcohol Reagent grade)

4. 30% v/v ethanol aqueous solution (Alcohol Reagent grade)

5. Micro-pipettes: 2− 20 µL and 20− 200 µL

6. Volumetric flasks (10 mL)

7. Analytical balance with a precision at ±0.1 mg



Preparation of the Nile red solution

1. Weight 10 mg of Nile red in a weighting tray.

2. Transfer the Nile red to a 10 mL volumetric flask. If necessary, wash the

weighing tray with ethanol and transfer the ethanol to the volumetric

flask.

3. Complete the volume of the volumetric flask up to the indicate level line

(10 mL) using ethanol (Alcohol Reagent grade).

4. Label this solution as Solution A (1000 µg/mL).

5. With a micro-pipette take a 100 µL aliquote of Solution A and transfer

it to a 10 mL volumetric flask.

6. Using ethanol (Alcohol Reagent grade) complete the volume to 10 mL.

7. Label this solution as Nile Red - Working Solution (10 µg/mL)).

8. Store both solutions (Solution A and the Working Solution) at 4 ◦C,

protected from the light in an amber container or covered with foil paper.

Preparation of the ethanol aqueous solution

1. In a clean glass container, add 30 mL of ethanol (Alcohol Reagent grade).

2. Add 70 mL of reversed osmosis water (MilliQ).

3. Label container as 30% v/v Ethanol - Working Solution.

4. Store solution at 4 ◦C.
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A.1. Fluorometric Quantification of Neutral Lipids

Sample preparation

For each sample, it is necessary to perform enough replicates in order to get

a statistically significant estimation of the sample mean, and variance. A

minimum of three replicates must be run, though five (5) is the recommended

number of replicates.

1. Prepare the algae sample at a concentration of 5 g/L.

2. Add 10 µL of algal sample to a well.

3. Add 10 µL of the Nile Red - Working Solution.

4. Add 80 µL of the 30% v/v Ethanol - Working Solution.

Standard preparation

For proper interpretation of the fluorometric results it is recommended that for

each plate that is run, a two-point calibration be performed. The standards

should corresponds to algal samples of known lipid content, and should un-

dergo the same processing as the samples to measure. It is desirable that the

selected standards have a concentration range that cover the expected lipid

content of the samples under analysis.

1. Prepare the algae standards at a concentration of 5 g/L

2. Add 10 µL of algal sample to a well

3. Add 10 µL of Nile red solution

4. Add 80 µL of the 30% v/v ethanol solution
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Fluorescence measurement

1. Start-up the fluorescence (Fluoroskan) reader

2. Introduce plate

3. Select Algae cycle:

a. Shake at 1200 rpm, orbit 3 mm, for 30 s

b. Incubate at 40 ◦C for 10 min

c. Shake at 1200 rpm, orbit 3 mm, for 30 s

d. Record fluorescence, Excitation at 530 nm, Emission at 604 nm

4. Convert fluorescent measurement to oil percentage using the results from

the internal standards.
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A.2. Gravimetric Quantification of Neutral Lipids

A.2 Gravimetric Quantification of Neutral Lipids

Materials

1. Ceramic mortar and pestle.

2. Small centrifugation glass tubes (10 − 15 mL) with screw Teflon-lined

caps.

3. Small (4mL) tubes, pre-weighed with cap-on.

4. Pasteur glass pipettes

5. Hexanes mixtures (Technical grade)

6. Analytical balance with a precision at ±0.1 mg

Precautions before start

1. Hexane solvent must be distilled before use to ensure no residues are

dissolved in it.

2. Keep a working amount, approximately 50 − 100 mL, of hexane in a

clean container.

3. Do not pipette hexane directly from the storage jar as this might con-

taminate all the hexane in it.

4. Always handle the hexane jar (4 L) in the fume hood.

5. All materials must be throughly cleaned and washed with hexane before

use.
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Procedure

1. Weigh 50 mg (approx) of dried algae directly in a weighting paper.

Record the actual weight. To ensure accurate weight, check scale to

see that it is centered.

2. Transfer algae sample to the mortar.

3. Grind cells for 5 minutes to ensure cell walls are throughly broken. It is a

better to start with a gentle grinding, sliding the pestle against the wall

of the mortar, and gradually increase the strength and pace of grinding.

If tired, take a rest, but consider the resting time so the total grinding

time is kept constant.

4. Add 1 mL of hexane to the mortar, and with the pestle dissolve (homog-

enize) the algae debris.

5. Using a Pasteur pipette, transfer the hexane and cell debris to the

centrifugation tube.

6. Wash the mortar with hexane and transfer the solvent to the centrifuge

tube, repeat until the mortar and pestle are free of cell debris.

7. Centrifuge at 3000 rpm, 4 ◦C, for 10 minutes.

8. With a clean Pasteur pipette, recover the oil-hexane mixture from the

clear upper layer, and transfer to the pre-weighted tube.

9. Add 3 mL of fresh hexane to the centrifuge tube and shake vigorously

for 5 minutes.

10. Repeat steps 7-8.
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A.2. Gravimetric Quantification of Neutral Lipids

11. Let solvent to evaporate and weight the tube containing the oil to calcu-

late oil content. To speed up the evaporation you can flush your tubes

with nitrogen or air.

Note: when the above procedure is followed, the expected error is ±0.4% w/w.
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B
Fed-batch cultures of A.

protothecoides

B.1 Open-loop optimal run

The open-loop optimal run was performed with the aim of reaching a very

high cell density. The start-up medium contained glucose (C6H12O6, 20 g/L),

glycine (NH2CH2COOH, 0.2 g/L), thiamine hydrochloride (20µg/L), K2HPO4

(0.6 g/L), KH2PO4 (1.4 g/L), FeSO4 · 7 H2O (0.024 g/L), CaCl2 · 2 H2O (0.01 g/L),

MgSO4 · 7 H2O (0.6 g/L), MnCl2 · 4 H2O (3.6 mg/L), ZnSO4 · 7 H2O (0.44 mg/L),

CuSO4 · 5 H2O (3.9 mg/L), H3BO3 (5.8 mg/L), and Na2MoO4 · 5 H2O (0.08 mg/L),

Feed 1 (Nitrogen source) consisted of an aqueous solution of glycine, at 100 g/L,

and Feed 2 contained the carbon source and the trace nutrients. Feed 2 con-

tained glucose (C6H12O6, 900 g/L), FeSO4 · 7 H2O (0.72 g/L), MgSO4 · 7 H2O

(18 g/L), MnCl2 · 4 H2O (108 mg/L), ZnSO4 · 7 H2O (13.2 mg/L), CuSO4 · 5 H2O



(4.8 mg/L), H3BO3 (174 mg/L), Na2MoO4 · 5 H2O (1.8 mg/L), and thiamine

hydrochloride (600µg/L).

The temperature in the reactor was controlled using an electrical heating jacket

without proving any cooling. Temperature set-point was established at 25 ◦C.

The dissolved oxygen concentration was fixed at 30% of the saturation value

at 25 ◦C. pH was controlled around 6.2 using K2HPO4 (1 M) as base and

KH2PO4 (1 M) as acid. The ester-base antifoam O-30 was used to avoid

excessive foaming in the system.

B.1.1 Results

The flowrates of the two feeds and the acid and base solutions are shown

in Table B.1 together with the hourly average values for temperature, pH,

and dissolved oxygen concentration. The measured biomass concentration is

presented in Table B.2.

Table B.1: Flow rate and process conditions for the Open-Loop MPC culture

Time Acid Base Feed 2 Feed 1 Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (C) (-) (%)

0 0 0 0 0 25.0 6.23 100.1
1 0 0 0 0 25.0 6.21 99.5
2 0.59 0 0 0 25.0 6.21 98.8
3 0.25 0 0 0 25.0 6.21 99.1
4 0.04 0 0 0 25.0 6.21 98.7
5 0 0 0 0 25.0 6.20 98.6
6 0 0 0 0 25.0 6.20 99.0
7 0 0.01 0 0 25.0 6.19 98.9
8 0 0.25 0 0 25.0 6.19 99.0
9 0 1.17 0 0 25.0 6.19 98.8
10 0 0.57 0 0 25.0 6.19 98.9
11 0 1.15 0 0 25.0 6.19 99.0
12 0 0.58 0 0 25.0 6.19 98.9
13 0 0.64 0 0 25.0 6.19 98.9
14 0 0.49 0 0 25.0 6.19 99.0
15 0 0.63 0 0 25.0 6.19 99.1
16 0 0.16 0 0 25.0 6.19 99.3
17 0 1.04 0 0 25.0 6.19 99.2
18 0 0.59 0 0 25.0 6.19 99.2
19 0 1.02 0 0 25.0 6.19 99.1
20 0 0.77 0 0 25.0 6.19 99.3
Continued on Next Page. . .
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B.1. Open-loop optimal run

Table B.1 – Continued

Time Acid Base Feed 2 Feed 1 Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (C) (-) (%)

21 0 1.00 0 0 25.0 6.19 99.2
22 0 0.43 0 0 25.0 6.19 99.2
23 0 0.81 0 0 25.0 6.19 99.3
24 0 0.17 0 0 25.0 6.19 100.0
25 0 0.05 0 0 25.0 6.19 100.1
26 0 0.13 0 0 25.0 6.19 100.2
27 0 0.67 0 0 25.0 6.19 100.4
28 0 0.13 0 0 25.0 6.19 100.4
29 0 0.26 0 0 25.0 6.19 99.2
30 0 0.50 0 0 25.0 6.19 100.5
31 0 0.48 0 0 25.0 6.19 100.5
32 0 0.48 0 0 25.0 6.19 100.5
33 0 0.44 0 0 25.0 6.19 100.6
34 0 0.76 0 0 25.0 6.19 100.5
35 0 0.89 0 0 25.0 6.19 100.6
36 0 0.43 0 0 25.0 6.19 100.5
37 0 0.52 0 0 25.0 6.19 100.4
38 0 0.45 0 0 25.0 6.19 100.4
39 0 0.32 0 0 25.0 6.19 100.4
40 0 0.54 0 0 25.0 6.19 100.3
41 0 0.34 0 0 25.0 6.19 100.3
42 0 0.34 0 0 25.0 6.19 100.2
43 0 0.35 0 0 25.0 6.19 100.0
44 0 0.69 0 0 25.0 6.19 99.9
45 0 0.63 0 0 25.0 6.19 99.7
46 0 0.28 0 0 25.0 6.19 99.3
47 11.36 0.01 0 0 25.0 6.21 99.1
48 0 0 0 0 25.0 6.20 99.3
49 0 0 0 0 25.0 6.20 99.0
50 0 0 0 0 25.0 6.20 98.7
51 0 0.01 0 0 25.0 6.20 98.3
52 0 0.14 0 0 25.0 6.19 98.1
53 0 0.68 0 0 25.0 6.19 97.8
54 0 0.51 0 0 25.0 6.19 97.4
55 0 0.78 0 0 25.0 6.19 97.1
56 0 0.79 0 0 25.0 6.19 96.5
57 0 0.66 0 0 25.0 6.19 96.0
58 0 0.63 0 0 25.0 6.19 95.4
59 0 0.47 0 0 25.0 6.19 94.8
60 0 0.38 0 0 25.0 6.19 94.2
61 0 0.47 0 0 25.0 6.19 92.9
62 0 0.40 0 0 25.0 6.19 89.4
63 0 0.48 0 0 25.0 6.19 87.4
64 0 0.53 0 0 25.0 6.19 85.5
65 0 0.52 0 0 25.0 6.19 83.1
66 0 0.59 0 0 25.0 6.19 81.0
67 0 0.54 0 0 25.0 6.19 79.4
68 0 0.68 0 0 25.0 6.19 78.2
69 0 0.34 0 0 25.0 6.19 77.8
70 0 0.75 0 0 25.0 6.19 76.5
71 0 0.63 0 0 25.0 6.19 76.0
72 0 0.86 0 0 25.0 6.19 75.1
73 0 0.51 0 0 25.0 6.19 74.6
74 0 0.13 0 0 25.0 6.19 75.6
75 0 0.37 0 0 25.0 6.19 76.0
76 0 0.88 0.1 0.3 25.0 6.19 71.7
Continued on Next Page. . .
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Table B.1 – Continued

Time Acid Base Feed 2 Feed 1 Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (C) (-) (%)

77 0 0.33 0 0.3 25.0 6.19 66.3
78 0 0.01 0.1 0.3 25.0 6.20 67.1
79 0 0.01 0.1 0.4 25.0 6.20 65.2
80 0 0.01 0.1 0.3 25.0 6.20 63.7
81 0 0.01 0.2 0.3 25.0 6.20 61.8
82 0 0 0.2 0.3 25.0 6.20 60.4
83 0 0.01 0.2 0.3 25.0 6.20 59.9
84 0 0.02 0.2 0.4 25.0 6.19 57.7
85 0 0.25 0.2 0.3 25.0 6.19 56.8
86 0 0.22 0.2 0.3 25.0 6.19 55.4
87 0 0.62 0.2 0.3 25.0 6.19 54.3
88 0 0.39 0.2 0.3 25.0 6.19 52.6
89 0 0.06 0.2 0.3 25.0 6.19 52.3
90 0 0.34 0.2 0.4 25.0 6.19 52.2
91 0 0.38 0.2 0.3 25.0 6.19 51.4
92 0 0.19 0.2 0.3 25.0 6.19 51.4
93 0 0.24 0.2 0.3 25.0 6.19 51.5
94 0 0.06 0.3 0.3 25.0 6.19 50.2
95 0 0.13 0.2 0.3 25.0 6.19 48.8
96 0 0.23 0.3 0.4 25.0 6.19 47.2
97 0 0.03 0.3 0.3 25.0 6.20 46.1
98 0 0.04 0.3 0.3 25.0 6.19 43.4
99 0 0.22 0.3 0.3 25.0 6.19 39.7
100 0 0.39 0.3 0.3 25.0 6.19 36.1
101 0 0.14 0.3 0.3 25.0 6.19 32.5
102 0 0.42 0.4 0.4 25.0 6.19 30.1
103 0 0.25 0.3 0.3 25.0 6.19 29.7
104 0 0.29 0.4 0.3 25.0 6.19 29.7
105 0 0.63 0.4 0.3 25.0 6.19 29.7
106 0 0.38 0.4 0.3 25.0 6.19 29.6
107 0 0.04 0.4 0.3 25.0 6.19 30.9
108 0 0.31 0.4 0.3 25.0 6.19 31.2
109 0 0.74 0.5 0.4 25.0 6.19 32.9
110 0 0.43 0.5 0.3 25.0 6.19 33.4
111 0 0.38 0.5 0.3 25.0 6.19 32.9
112 0 0.31 0.5 0.3 25.0 6.19 32.7
113 0 0.48 0.6 0.3 25.0 6.20 32.2
114 0 0.33 0.6 0.3 25.0 6.19 31.5
115 0 0.52 0.6 0.4 25.0 6.19 31.1
116 0 1.03 0.6 0.3 25.0 6.19 30.8
117 0 4.40 0.6 0.3 25.0 6.19 30.4
118 0 0.24 0.7 0.3 25.0 6.19 30.2
119 0 0.30 0.7 0.3 25.0 6.19 30.1
120 0 0.36 0.8 0.3 25.0 6.19 30.1
121 1.09 0.14 0.8 0.4 25.0 6.20 31.3
122 1.26 0.84 0.8 0.3 25.0 6.20 30.7
123 1.28 1.03 0.9 0.6 25.0 6.20 30.6
124 0.91 3.17 2.9 0.6 25.0 6.19 29.0
125 1.49 0.71 1.4 0.7 25.0 6.20 31.2
126 1.67 1.06 1.4 0.6 25.0 6.20 30.5
127 1.55 1.42 1.4 0.6 25.0 6.20 30.7
128 2.37 1.78 1.5 0.7 25.0 6.20 31.2
129 2.35 2.24 1.6 0.6 25.0 6.20 31.4
130 2.43 2.20 1.6 0.6 25.0 6.20 31.4
131 2.53 2.51 1.7 0.7 25.0 6.20 31.4
132 3.08 2.48 1.8 0.6 25.0 6.20 31.5
Continued on Next Page. . .
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B.1. Open-loop optimal run

Table B.1 – Continued

Time Acid Base Feed 2 Feed 1 Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (C) (-) (%)

133 2.38 2.63 1.9 0.6 25.0 6.20 31.0
134 2.56 2.84 2.0 0.7 25.1 6.20 30.8
135 2.09 2.78 2.0 0.6 25.0 6.20 31.0
136 1.66 2.92 2.1 0.6 25.1 6.20 30.5
137 3.13 3.27 2.2 0.7 25.0 6.20 30.5
138 1.59 2.50 2.3 0.6 25.0 6.20 30.5
139 1.17 2.94 2.4 0.6 25.0 6.20 29.7
140 1.16 2.82 2.5 0.7 25.0 6.20 29.7
141 0.74 2.44 2.6 0.6 25.0 6.20 30.1
142 0.86 2.94 2.6 0.6 25.1 6.20 29.6
143 0.60 2.90 2.6 1.0 25.0 6.20 30.0
144 0.29 2.86 2.7 0.9 25.0 6.20 30.5
145 0.16 2.89 2.7 1.0 25.1 6.20 29.9
146 0.37 3.45 2.7 0.9 25.0 6.20 29.5
147 0.08 2.77 4.2 1.0 25.0 6.20 28.4
148 0 3.11 11.3 0.9 25.3 6.19 31.7
149 0 1.67 4.2 0.7 25.5 6.19 30.0
150 0 2.17 2.9 0.9 25.5 6.19 30.0
151 0 1.59 3.0 1.0 25.5 6.19 30.0
152 0 2.33 3.0 0.9 25.4 6.19 30.0
153 0 1.31 3.0 1.0 25.4 6.19 30.3
154 0.01 1.87 3.1 0.9 25.4 6.20 30.7
155 0.06 1.00 3.2 1.0 25.3 6.20 30.8
156 0.04 1.34 3.2 0.9 25.2 6.20 30.9
157 0.63 1.94 3.3 1.0 25.2 6.20 30.9
158 1.05 2.75 3.3 0.9 25.2 6.20 31.1
159 1.11 1.67 3.4 1.0 25.1 6.20 31.2
160 2.10 1.78 3.5 0.9 25.1 6.20 31.0
161 0.71 1.38 3.5 1.0 25.0 6.20 31.2
162 3.15 3.05 3.5 0.9 25.0 6.20 31.1
163 0.48 3.41 3.7 1.0 25.0 6.20 28.8
164 0 2.46 9.8 0.9 25.6 6.19 31.4
165 0 2.10 3.7 1.0 25.9 6.19 29.8
166 0 1.78 3.8 1.3 26.2 6.19 29.8
167 0 2.22 3.9 1.2 26.5 6.19 29.6
168 0 0.28 3.9 1.0 26.8 6.19 30.9
169 0.73 4.07 3.9 1.2 27.0 6.20 25.5
170 0.01 0.00 4.0 1.0 27.3 6.20 32.3
171 0 4.43 4.1 1.3 27.5 6.19 30.0
172 0 0.27 4.1 1.2 27.7 6.19 29.9
173 0 0.42 4.2 1.3 27.8 6.19 29.9
174 0 3.79 4.3 1.3 27.9 6.19 30.0
175 0 0 4.3 1.2 27.9 6.20 30.0
176 0 0 4.4 1.3 28.1 6.20 29.9
177 0 0 4.5 1.3 28.2 6.20 29.9
178 0.02 0.01 4.5 1.2 28.2 6.20 30.7
179 3.60 0 4.6 1.3 28.0 6.21 30.0
180 2.75 0 4.7 1.3 27.8 6.20 30.1
181 4.68 0.42 4.7 1.2 27.6 6.20 30.0
182 2.93 0.28 4.9 1.3 27.3 6.20 30.0
183 3.68 0.03 4.9 1.3 27.1 6.20 29.9
184 4.92 0.01 5.0 1.2 27.0 6.20 29.9
185 8.23 3.83 5.1 1.6 27.0 6.20 30.1
186 0.99 0 5.2 1.3 27.0 6.21 29.9
187 14.44 24.73 14.1 60.9 27.3 6.20 18.3
188 86.43 11.28 5.4 26.8 27.7 6.23 29.5
Continued on Next Page. . .
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Table B.1 – Continued

Time Acid Base Feed 2 Feed 1 Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (C) (-) (%)

189 0 31.97 5.4 1.6 27.2 6.17 0.1
190 0 22.85 5.5 1.6 26.9 6.18 0.6
191 0 15.71 5.6 1.5 26.8 6.18 1.3
192 0 97.33 5.6 1.6 26.9 6.17 2.0
193 0 123.78 5.7 1.6 27.2 6.14 2.6
194 0 0 5.9 1.6 27.6 6.13 3.4
195 0.02 0 6.0 1.6 28.2 6.17 4.1
196 1.26 0 12.4 0 28.0 6.21 4.0
197 0 0 6.1 0 27.0 6.19 4.0
198 0 0 6.2 0 26.1 6.19 4.3
199 0 0 6.3 0 25.6 6.19 4.5
200 0 0 6.4 0 25.2 6.20 4.7
201 0 0 6.5 0 25.0 6.22 4.9
202 0 0 6.3 0 24.9 6.24 5.1
203 0 0 6.3 0 25.0 6.27 5.5
204 0 0 6.4 0 25.2 6.29 5.8
205 0 0 6.6 0 25.4 6.28 6.1
206 0 0 6.7 0 25.6 6.26 6.3
207 0 0 6.8 0 26.0 6.24 6.6
208 0 0 7.0 0 26.4 6.21 7.0
209 0 0 7.2 0 26.9 6.19 7.7
210 0 0 7.3 0 27.5 6.18 14.7
211 0 0 7.4 0 28.0 6.18 28.4
212 0 0 7.5 0 27.9 6.18 6.4
213 0 0 11.0 0 27.3 6.18 3.4
214 0 0 7.8 0 27.2 6.18 3.8
215 0 0 7.9 0 27.3 6.19 4.7
216 0 0 8.0 0 27.7 6.21 5.4
217 0 0 8.2 0 27.3 6.18 4.9
218 0 0 8.3 0 27.1 6.18 5.1
219 0 0 8.4 0 27.0 6.19 5.5
220 0 0 5.3 0 27.3 6.21 6.0
221 0 0 0 0 27.0 6.20 5.6
222 0 0 0 0 26.4 6.18 5.4
223 0 0 0 0 26.1 6.19 5.5
224 0 0 0 0 25.9 6.19 5.7
225 0 0 0 0 26.0 6.21 6.0
226 0 0 0 0 26.3 6.22 7.1
227 0 0 0 0 26.7 6.21 17.1
228 0 0 0 0 27.0 6.19 20.5
229 0 0 0 0 27.2 6.16 23.6
230 0 0 0 0 27.4 6.14 27.9
231 0 0 0 0 27.5 6.12 34.4
232 0 0 0 0 27.6 6.09 30.4
233 0 0 0 0 27.7 6.07 30.5
234 0 0 0 0 27.8 6.05 34.0
235 0 0 0 0 27.8 6.04 47.4
236 0 0 0 0 27.9 6.02 62.2
237 0 0 0 0 27.6 6.00 49.3
238 0 0 0 0 27.1 5.93 0.0
239 0 0 0 0 27.0 5.86 0.0
240 0 0 0 0 27.4 5.83 0.0
241 0 0 0 0 28.2 5.86 1.7
242 0 0 0 0 28.9 5.95 26.4
243 0 0 0 0 29.4 6.02 33.1
244 0 0 0 0 29.6 6.06 29.2
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B.1. Open-loop optimal run

Table B.1 – Continued

Time Acid Base Feed 2 Feed 1 Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (C) (-) (%)

245 0 0 9.1 0 29.7 6.07 30.7
246 0 0 3.1 0 29.8 6.06 30.2
247 0 0 3.2 0 29.8 6.06 30.0
248 0 0 3.2 0 29.8 6.07 30.1
249 0 0 3.3 0 29.8 6.06 30.2
250 0 0 3.3 0 29.8 6.06 30.1
251 0 0 3.4 0 29.8 6.06 30.1
252 0 0 3.5 0 29.7 6.07 30.4
253 0 0 3.5 0 29.3 6.08 30.1
254 0 0 3.6 0 28.7 6.10 30.5
255 0 0 3.7 0 28.1 6.12 30.2
256 0 0 3.7 0 27.5 6.14 30.8
257 0 0 3.7 0 27.1 6.16 30.7
258 0 0 3.8 0 26.7 6.17 30.5
259 0 0 3.9 0 26.4 6.19 30.9
260 0 0 3.9 0 26.2 6.20 30.5
261 0 0 4.0 0 26.0 6.21 30.8
262 0 0 5.0 0 25.9 6.22 30.3
263 0 0 6.6 0 26.1 6.23 29.5
264 0 0 7.2 0 26.4 6.23 31.6
265 0 0 4.9 0 26.5 6.22 30.9
266 0 0 10.4 0 26.7 6.23 29.5
267 0 0 6.1 0 26.9 6.22 30.5
268 0 0 6.0 0 27.3 6.21 31.0
269 0 0 5.0 0 27.6 6.18 30.0
270 0 0 4.5 0 27.8 6.17 30.0
271 0 0 4.5 0 27.9 6.16 30.0
272 0 0 4.6 0 28.0 6.15 30.0
273 0 0 4.7 0 28.0 6.14 30.0
274 0 0 4.8 0 28.0 6.14 30.0
275 0 0 4.9 0 28.1 6.13 30.0
276 0 0 5.0 0 28.1 6.12 30.0
277 0 0 5.0 0 28.1 6.12 30.0
278 0 0 5.1 0 28.1 6.11 30.0
279 0 0 5.2 0 28.0 6.11 30.0
280 0 0 5.2 0 27.9 6.11 30.0
281 0 0 5.3 0 27.8 6.11 30.2
282 0 0 5.4 0 27.5 6.12 30.1
283 0 0 5.5 0 27.3 6.13 30.2
284 0 0 5.6 0 27.4 6.13 30.4
285 0 0 7.7 0 27.3 6.14 30.2
286 0 0 10.1 0 27.3 6.13 30.1
287 0 0 6.0 0 27.5 6.13 30.2
288 0 0 6.0 0 27.5 6.13 30.3
289 0 0 6.1 0 27.5 6.12 30.8
290 0 0 6.3 0 27.5 6.12 31.1
291 0 0 6.2 0 27.4 6.11 31.0
292 0 0 0 0 27.2 6.11 31.8
293 0 0 0 0 27.1 6.11 30.7
294 0 0 6.3 0 26.9 6.11 30.3
295 0 0 6.4 0 26.7 6.11 30.0
296 0 0 6.5 0 26.4 6.11 30.1
297 0 0 6.6 0 26.2 6.11 30.0
298 0 0 6.7 0 26.1 6.10 30.0
299 0 0 6.8 0 25.9 6.10 30.1
300 0 0 6.9 0 25.8 6.10 30.1
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Table B.1 – Continued

Time Acid Base Feed 2 Feed 1 Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (C) (-) (%)

301 0 0 7.0 0 25.6 6.10 30.0
302 0 0 7.1 0 25.5 6.09 30.1
303 0 0 7.2 0 25.4 6.09 30.1
304 0 0 7.3 0 25.2 6.08 30.0
305 0 0 7.5 0 25.1 6.08 29.9
306 0 0 7.6 0 25.0 6.08 30.1
307 0 0 7.7 0 25.0 6.07 30.0
308 0 0 0 0 25.0 6.06 30.1
309 0 0 0 0 25.0 6.06 31.5
310 0 0 0 0 25.0 6.06 43.1
311 0 0 0 0 25.1 6.05 31.1
312 0 0 0 0 25.2 6.04 31.2
313 0 0 0 0 25.3 6.04 31.4
314 0 0 1.4 0 25.4 6.03 31.4
315 0 0 4.6 0 25.5 6.03 31.3
316 0.07 0 7.6 0.9 25.6 6.02 31.7
317 0 0 7.1 0 25.7 6.02 31.7
318 0 0 3.4 0 25.7 6.01 31.2
319 0 0 3.5 0 25.6 6.01 31.3
320 0 0 3.5 0 25.5 6.01 31.1
321 0 0 3.6 0 25.3 6.00 30.2
322 0 0 3.6 0 25.2 6.00 30.1
323 0 0 3.6 0 25.1 6.00 30.0
324 0 0 3.6 0 25.0 6.00 30.0
325 0 0 3.7 0 24.9 6.00 30.0
326 0 0 3.8 0 25.0 6.00 29.9
327 0 0 3.9 0 25.0 5.99 30.0
328 0 0 3.9 0 25.0 5.99 30.1
329 0 0 4.0 0 25.0 5.99 30.0
330 0 0 4.0 0 25.0 5.98 30.1
331 0 0 4.1 0 25.0 5.98 30.1
332 0 0 4.2 0 25.0 5.98 29.9
333 0 0 9.2 0 25.0 5.97 30.0
334 0 0 0 0 25.0 5.96 30.2
335 0 0 0 0 25.0 5.96 30.0
336 0 0 0 0 25.0 5.95 30.1
337 0 0 0 0 25.0 5.96 30.1
338 0 0 0 0 25.0 5.96 29.9
339 0 0 0 0 25.0 5.96 29.9
340 0 0 0 0 25.0 5.96 29.9
341 0 0 0 0 25.0 5.95 30.1
342 0 0 0 0 25.0 5.95 29.9
343 0 0 0 0 25.0 5.95 30.0
344 0 0 0 0 25.0 5.95 30.0
345 0 0 0 0 25.0 5.95 30.1
346 0 0 0 0 25.0 5.94 30.0
347 0 0 0 0 25.0 5.94 30.1
348 0 0 0 0 25.0 5.94 30.1
349 0 0 0 0 25.0 5.94 30.2
350 0 0 0 0 25.0 5.93 30.0
351 0 0 0 0 25.0 5.93 30.2
352 0 0 0 0 25.0 5.92 30.2
353 0 0 0 0 25.0 5.92 36.8
354 0 0 0 0 25.0 5.92 37.0
355 0 0 0 0 25.0 5.91 40.3
356 0 0 0 0 25.0 5.91 46.4
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B.1. Open-loop optimal run

Table B.1 – Continued

Time Acid Base Feed 2 Feed 1 Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (C) (-) (%)

357 0 0 0 0 25.0 5.90 62.9
358 0 0 0 0 25.0 5.91 86.1
359 0 0 0 0 25.0 5.94 18.5
360 0 0 0 0 25.0 5.96 32.1

Table B.2: Biomass concentration for the Open-Loop MPC culture

Time Biomass (g/L)
(h) Average Std. dev.

0 1.0 -
24.1 1.0 0.15
48.2 1.4 0.05
72.0 4.1 0.10
96.0 10.1 0.10
120.2 21.1 0.15
144.1 27.1 0.10
168.1 45.5 0.71
186.4 58.0 0.35
194.4 57.8 4.29
216.3 56.2 3.99
236.4 69.6 0.61
241.8 71.5 0.10
262.0 82.9 0.56
286.0 92.3 0.25
312.1 98.4 0.56
360.2 90.2 0.20

B.1.2 Important observations

1. Between 120 h and 150 h, the temperature and the dissolved oxygen
concentration oscillated around their corresponding set points. Dissolved
oxygen concentration frequently reached zero. This may help to explain
the slower growth rate during this period.

2. At 160 h, the reaction temperature rose up to 28 ◦C (after pure oxygen
addition started), and then decreased until 27 ◦C. Temperature remained
out of control until 330 h.

3. At 186.2 h, there was a failure in the loop controlling Feed-Pump 1. As a
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result, approximately 100 mL of feed 1 were pump into the reactor with
a subsequent loss of control in the process variables (pH, DO).

4. The addition of enriched air (or pure oxygen) improved the growth
rate. The resulting higher metabolic activity, however, increased cul-
ture temperature. During this run, the bioreactor did not have cooling
capabilities, and therefore temperature went out of control.

5. The addition of antifoam O-30 completely eliminated the foam. The
antifoam effect last for about one day and after that more antifoam had
to be added to the reaction media. The dissolved oxygen concentration,
however, appeared to be affected by the antifoam addition.

B.2 Adaptive model predictive control run for

maximum biomass

The adaptive model predictive control culture was carried out in a stirred tank
bioreactor as described in Chapter 3. The start-up medium was formulated
according to Medium B4-Fe, as shown in Table 3.1, supplemented with glycine
(0.4 g/L) and glucose (30 g/L).

Nutrients were added to the culture in a fed-batch mode with two indepen-
dent feeds. The nitrogen rich feed (Feed 1) consisted of an aqueous solu-
tion of glycine (150 g/L). The carbon rich feed (Feed 2) contained KH2PO4

(50 g/L), MgSO4 · 7 H2O (32 g/L), FeSO4 · 7 H2O (1.27 g/L), disodium salt of
EDTA (1.7 g/L), H3BO3 (0.31 g/L), CaCl2 · 2 H2O (0.26 g/L), MnCl2 · 4 H2O
(0.2 g/L), ZnSO4 · 7 H2O (23.3 mg/L), CuSO4 · 5 H2O (8.5 mg/L), Na2MoO4 · 5 H2O
(3.2 mg/L), thiamine hydrochloride (1.06 mg/L), and glucose (900 g/L).

The pH was controlled around 6.2 using a 500 g/L solution of K2HPO4 as base
and a 200 g/L aqueous solution of KH2PO4 as acid. The dissolved oxygen
concentration (DO) was controlled around 50% of the saturation value by
bubbling air enriched with oxygen at the bottom of the reactor vessel.

B.2.1 Results

The flow-rates of all the gas and liquid streams as well as the hourly average
process measurements are presented in Table B.3. The reported volume was
calculated from the initial medium and inoculum volumes, accounting the
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B.2. Adaptive model predictive control run for maximum biomass

amount of liquid added to the reactor and discounting the volume removed for
each sample and the losses for evaporation (assumed proportional to the gas
flowrate). The experimental measurements for biomass concentration, glucose
concentration, and intracellular lipid content is presented in Table B.4.

Table B.3: Flow rate and process conditions for the Adaptive MPC culture

Time Air O2 Acid Base Feed 2 Feed 1 Volume Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL) (C) (-) (%)

0 0 0 0 0 0 0 768.0 25.1 6.15 91.8
1 300 0 0 0.1 0 4.9 760.4 25.1 6.20 59.7
2 0 0 0 0.4 0 0.3 761.1 25.1 6.19 50.6
3 100 0 0 0 0 0 761.1 25.0 6.20 50.6
4 0 0 0 0.3 0.9 0 762.3 25.4 6.19 50.3
5 0 0 0 0.1 0.8 0 750.6 25.1 6.19 50.2
6 0 0 0 0.1 0.9 0 751.6 25.1 6.19 50.2
7 100 0 0 0.3 0.8 0 752.7 25.1 6.19 50.1
8 0 0 0 0.2 0.9 0 753.8 25.1 6.19 50.1
9 0 0 0 0.3 0.8 0 742.3 25.1 6.19 50.3
10 0 0 0 0.4 0.9 0 743.6 25.1 6.19 50.2
11 0 0 0 0.2 0.8 0 744.6 25.1 6.19 50.3
12 100 0 0 0.3 0.9 0 745.8 25.0 6.19 50.3
13 0 0 0 0.3 1.7 0.2 735.4 25.1 6.19 50.5
14 0 0 0 0.2 1.7 0.3 737.6 25.0 6.19 50.4
15 0 0 0 0.4 1.7 0.3 740.0 25.0 6.19 50.3
16 100 0 0 0.3 1.7 0.3 742.3 25.1 6.19 50.4
17 0 0 0 0.2 1.8 0.3 732.0 25.1 6.19 50.3
18 0 0 0 0.3 1.7 0.3 734.3 25.1 6.19 50.3
19 0 0 0 0.1 0.5 0.2 735.1 25.1 6.19 50.3
20 100 0 0 0.4 0.6 0.3 736.4 25.1 6.19 50.1
21 0 0 0 0.2 0.6 0.3 724.9 25.1 6.19 50.0
22 0 0 0 0.3 0 0.3 725.5 25.1 6.19 50.0
23 100 0 0 0 0 0.3 725.8 25.0 6.19 50.0
24 100 0 0 0.2 0 0.3 726.3 25.0 6.19 50.0
25 0 0 0.1 0 0 0.2 714.0 25.1 6.20 49.9
26 100 0 6.1 0 0 0.3 720.4 25.1 6.24 49.9
27 100 0 0.1 0 0 0.3 720.8 25.2 6.23 49.9
28 200 0 0.3 0 0 0.3 721.4 25.2 6.23 49.8
29 500 0 0.9 0 0 0.3 710.0 25.2 6.23 49.1
30 1300 0 0.1 0 0 0.3 710.4 25.2 6.23 48.3
31 1800 200 0 0 0 0.2 710.5 25.2 6.22 46.5
32 1800 600 0 0 0 0.3 710.8 25.2 6.22 44.5
33 1800 1300 0 0 0 0.3 698.5 25.2 6.22 42.5
34 1900 2000 0 0 0 0.3 698.7 25.1 6.21 40.6
35 1800 3000 0 0 0 0.3 698.9 25.1 6.21 38.8
36 1800 3000 0 0 0 0.3 699.1 25.1 6.20 38.1
37 1800 3000 0 0 1.5 0.2 688.2 25.1 6.20 38.1
38 1800 3000 0 0 1.6 0.3 690.0 25.1 6.19 37.7
39 1800 2900 0 0 1.6 0.3 691.8 25.2 6.17 37.0
40 1800 3000 0 0.5 1.5 0.3 694.0 25.2 6.17 33.2
41 1800 2500 0 0.4 1.6 0.3 683.7 25.2 6.17 31.9
42 500 4000 0 0.5 1.6 0.3 686.0 25.2 6.17 70.6
43 500 4800 0 0.3 1.5 0.2 687.9 25.3 6.17 74.5
44 400 4200 0 0.4 1.6 0.3 690.1 25.2 6.17 42.4
45 600 5800 0 0.1 1.6 0.3 679.4 25.0 6.17 40.2
Continued on Next Page. . .
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Table B.3 – Continued

Time Air O2 Acid Base Feed 2 Feed 1 Volume Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL) (C) (-) (%)

46 600 6300 1.6 0.1 1.5 0.3 682.8 25.1 6.19 50.9
47 700 2800 9.7 0 1.6 0.3 694.4 25.1 6.23 91.3
48 1100 3500 0 0 0 0.3 694.6 25.1 6.22 32.6
49 700 3300 0.2 0 2.4 0.5 685.0 25.2 6.23 53.8
50 600 2200 0.5 0 2.2 0.6 688.3 25.3 6.23 93.3
51 600 1200 0.1 0 2.2 0.6 691.2 25.4 6.23 59.5
52 600 1000 0.1 0 0.8 0.5 692.5 25.3 6.22 50.0
53 600 1100 0 0 0.7 0.6 681.2 25.4 6.21 49.8
54 600 1000 0 0 0.7 0.6 682.5 25.4 6.20 49.9
55 600 1100 0 0 0.7 0.5 683.7 25.5 6.19 50.3
56 600 1100 0 0 0.7 0.6 684.9 25.6 6.18 50.0
57 600 1200 0 0.6 0.7 0.6 674.2 25.6 6.17 49.9
58 600 1100 0 0.1 0.8 0.5 675.6 25.6 6.17 49.9
59 600 1200 0 0.2 0.7 0.6 677.1 25.6 6.17 50.1
60 600 1100 0 0.2 0.7 0.6 678.5 25.5 6.17 50.4
61 600 1400 0 0.3 2.1 0.8 669.1 25.5 6.17 50.0
62 600 1300 0 0.3 2.2 0.9 672.5 25.6 6.17 49.9
63 600 1500 0 0.2 2.1 0.8 675.5 25.7 6.18 49.6
64 700 1700 0 0.2 2.1 0.9 678.7 25.8 6.18 49.4
65 600 2500 0 0.2 2.2 0.8 669.2 25.9 6.18 48.6
66 600 2800 0 0.1 2.1 0.9 672.3 25.7 6.19 50.1
67 600 2600 1.1 0 2.1 0.8 676.2 25.4 6.22 49.9
68 600 2800 5.5 0 2.2 0.9 684.8 25.6 6.22 50.0
69 600 2600 0.2 0.2 2.1 0.8 675.4 25.9 6.19 51.2
70 600 2900 0 0.6 2.1 0.9 679.0 26.2 6.19 48.9
71 600 3300 0 0.5 2.2 0.8 682.4 26.5 6.18 49.7
72 600 3300 0 0.5 2.1 0.9 685.9 26.9 6.19 49.9
73 600 3300 0 0.4 3.6 0.8 678.0 27.3 6.18 51.0
74 600 3400 0 0.6 3.6 0.9 683.0 27.7 6.18 49.8
75 600 3200 0 0.4 3 0.8 687.2 28.0 6.19 49.6
76 600 3100 0 0.2 3 0.9 691.2 28.0 6.19 50.1
77 500 3600 0 0.3 3.1 0.8 695.4 27.4 6.19 49.8
78 600 3400 0 0.2 3 0.9 699.4 27.2 6.19 49.9
79 500 3500 0 0.2 3 0.8 703.3 27.2 6.19 49.4
80 600 3600 0 0.4 3.1 0.9 707.7 27.5 6.19 49.7
81 500 3700 0 0.5 3 0.8 711.9 27.7 6.19 50.7
82 600 3700 0 0.4 3 0.9 716.1 28.0 6.19 50.0
83 500 3800 0 0.3 3.1 0.8 720.3 28.2 6.19 49.6
84 600 4000 0.1 0.3 3 0.9 724.5 28.3 6.20 49.6
85 500 4700 0.1 0.9 4.9 1.1 731.4 28.5 6.18 49.5
86 600 4800 0 0.6 4.8 1.1 737.8 29.1 6.18 49.7
87 500 5300 0 0.5 4.9 1.2 744.3 29.5 6.18 49.8
88 600 5800 0 0.5 4.8 1.1 750.6 29.7 6.17 49.0
89 500 6400 0 0.7 4.9 1.1 744.6 29.6 6.17 51.2
90 600 6300 0 0.3 4.8 1.2 750.8 29.2 6.17 49.5
91 500 8300 0 0 4.9 1.1 756.7 27.8 6.18 34.4
92 600 4100 0 0 4.8 1.1 762.5 26.9 6.19 48.8
93 500 3700 0 0 4.8 1.2 755.8 26.6 6.20 50.1
94 600 3700 0 0 4.9 1.1 761.8 26.4 6.19 51.7
95 500 4100 0 0 4.8 1.1 767.6 26.3 6.18 48.0
96 600 4200 0 0.2 4.9 1.2 773.8 26.1 6.17 50.2
97 500 3900 0 0.3 7.1 1.1 769.6 26.0 6.17 48.8
98 600 3800 0 0.7 7.1 1.1 778.5 26.0 6.17 49.4
99 500 4000 0 0.5 5 1.2 785.1 26.1 6.17 49.2
100 600 4000 0 0.4 5 1.1 791.5 26.1 6.17 49.7
101 500 4400 0 0.4 5 1.1 785.4 26.1 6.17 55.2
Continued on Next Page. . .
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B.2. Adaptive model predictive control run for maximum biomass

Table B.3 – Continued

Time Air O2 Acid Base Feed 2 Feed 1 Volume Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL) (C) (-) (%)

102 600 4100 0 0.6 5 1.2 792.1 26.2 6.17 50.3
103 500 4100 0 0.4 5 1.1 798.5 26.2 6.17 49.9
104 600 4400 0 0.5 5 1.1 805.0 26.3 6.17 49.8
105 500 4500 0 0.3 5 1.2 798.9 26.1 6.17 55.7
106 600 4500 0 0.6 5 1.1 805.5 26.2 6.17 49.3
107 500 4400 0 0.5 5 1.1 812.0 26.2 6.17 49.4
108 500 4500 0 0.4 5 1.2 818.5 26.1 6.17 49.9
109 600 5000 0 0.3 5.5 1.1 812.7 25.9 6.17 57.5
110 500 4800 0 0.6 5.5 1.1 819.8 25.8 6.17 49.4
111 600 5100 0 0.4 5.4 1.2 826.8 25.7 6.17 49.6
112 500 5300 0 0.3 5.5 1.1 833.6 25.6 6.17 49.3
113 600 5800 0 0.4 5.6 1.1 828.0 25.5 6.17 56.3
114 500 5900 0 0.5 5.5 1.2 835.1 25.7 6.17 48.3
115 600 5900 0 0.6 5.4 1.1 842.1 25.8 6.17 50.1
116 500 6000 0 0.5 4.4 1.1 848.0 25.9 6.17 51.5
117 600 6700 0 0.2 4.4 1.2 841.0 25.7 6.17 52.4
118 500 6300 0 0.5 4.4 1.1 846.9 25.4 6.17 56.3
119 600 5800 0 0.7 4.4 1.1 853.0 25.7 6.17 49.0
120 500 5800 0 0.6 4.3 1.2 859.0 25.9 6.17 50.4
121 600 6200 0 0.4 7.5 0.8 855.0 25.8 6.17 59.2
122 500 5600 0 0.7 4.3 0.9 860.8 25.8 6.17 50.6
123 600 5700 0 0.5 3.3 0.8 865.3 25.8 6.17 47.3
124 500 6000 0 0.6 3.3 0.9 870.0 25.8 6.17 54.1
125 600 6600 0 0 3.3 0.8 861.4 25.7 6.18 57.1
126 500 5800 0 0.2 3.3 0.9 865.7 25.5 6.17 49.7
127 600 6100 0 0.7 3.3 0.8 870.4 25.4 6.17 51.4
128 500 6500 0 0.3 3.3 0.9 874.8 25.2 6.17 51.9
129 600 7400 0 0 3.3 0.8 866.2 25.0 6.18 60.5
130 500 6200 0 0.6 3.3 0.9 870.9 25.1 6.17 49.9
131 600 6600 0 0.7 3.3 0.8 875.6 25.1 6.17 53.4
132 500 6800 0 0.4 3.3 0.9 880.0 25.0 6.17 53.2
133 600 7600 0 0.2 3.2 0.5 871.2 25.2 6.17 63.1
134 500 6100 0 0.3 3.3 0.6 875.3 25.0 6.17 48.0
135 600 6200 0 0.8 3.3 0.6 879.9 25.0 6.16 48.2
136 500 6600 0 0.6 3.3 0.5 884.2 25.0 6.17 49.8
137 600 8400 0 0.1 3.3 0.6 875.4 25.2 6.17 48.5
138 500 8900 0 0.6 3.3 0.6 879.8 25.0 6.17 33.4
139 600 8900 0 0.2 0 0.5 880.3 25.0 6.17 43.2
140 500 8800 0.3 0 0 0.6 881.1 25.0 6.18 45.6
141 600 4400 1.3 0 0 0 869.7 25.0 6.21 81.3
142 500 5100 0 0 0 0 869.6 25.2 6.20 49.3
143 600 4600 1 0 0 0 870.5 25.1 6.20 59.1
144 500 3900 0 0 0 0 870.5 25.0 6.20 58.2
145 600 3100 0 0 0 0 857.8 25.0 6.21 55.8
146 500 2900 0 0 3.3 0 861.1 25.0 6.20 52.1
147 600 2900 0 0 3.3 0 864.3 25.0 6.18 49.6
148 500 3200 0 0.3 3.3 0 867.9 25.0 6.17 47.0
149 600 3200 0 0 3.2 0 858.4 25.0 6.17 55.6
150 500 2700 0 0.4 3.3 0 862.0 25.0 6.17 49.0
151 600 2700 0 0.6 3.3 0 865.9 25.0 6.17 50.7
152 500 2900 0 0.5 3.3 0 869.6 25.0 6.17 49.9
153 600 3700 0 0.4 3.3 0 860.7 25.0 6.17 59.3
154 500 3000 0 0.8 3.3 0 864.7 25.1 6.17 48.6
155 600 3100 0 0.5 3.3 0 868.5 25.1 6.17 48.1
156 500 3200 0 0.4 3.3 0 872.1 25.1 6.17 49.5
157 600 4100 0 0.3 4 0 863.7 25.1 6.17 60.4
Continued on Next Page. . .
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Table B.3 – Continued

Time Air O2 Acid Base Feed 2 Feed 1 Volume Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL) (C) (-) (%)

158 500 2800 0 0.7 4 0 868.4 25.1 6.17 51.7
159 600 2800 0 0.6 4 0 872.9 25.1 6.17 50.1
160 500 3400 0 0.4 4.1 0 877.4 25.1 6.17 47.4
161 4800 6000 0 0.3 4 0 868.9 25.1 6.17 39.6
162 2200 6000 0 0.5 4 0 873.3 25.1 6.17 50.6
163 1300 6000 0 0.3 4 0 877.4 25.1 6.17 52.7
164 1200 6000 0 1.2 4.1 0 882.6 25.1 6.18 50.4
165 1700 5900 0 0 4 0 873.9 25.1 6.20 57.2
166 14100 6000 0 0 4 0 877.6 25.1 6.20 80.9
167 9200 6000 0.5 0.3 0 0 878.2 25.1 6.21 81.2
168 8400 6000 0 0 0 0 877.9 25.1 6.21 80.6
169 8400 6000 0 0 0 0 865.1 25.1 6.21 79.6
170 8400 6000 0 0 0 0 864.9 25.1 6.21 77.0
171 8400 6000 0 0 0 0 864.6 25.1 6.21 75.1
172 8400 6000 0 0 0 0 864.4 25.1 6.21 76.3
173 8400 6000 0 0 0 0 851.6 25.1 6.21 78.2
174 8400 5900 0 0 0 0 851.4 25.1 6.22 78.1
175 8400 6000 0 0 0 0 851.1 25.1 6.21 73.9
176 8400 6000 0 0 0 0 850.9 25.1 6.21 75.3
177 8400 6000 0 0 0 0 838.1 25.1 6.20 83.2
178 8400 6000 0 0 0 0 837.9 25.1 6.20 83.5
179 8400 6000 0 0 0 0 837.6 25.1 6.19 83.6
180 8300 6000 0 0 0 0 837.4 25.1 6.19 85.0
181 8400 5900 0 0 0 0 824.6 25.1 6.19 87.9
182 8300 6100 0 0 0 0 824.4 25.1 6.18 88.1
183 8400 6000 0 0 0 0 824.1 25.1 6.18 91.1
184 8300 6000 0 0 0 0 823.9 25.1 6.18 92.3
185 8400 6100 0 0 0 0 811.1 25.1 6.19 89.7
186 8300 6000 0 0 0 0 810.8 25.1 6.19 93.4
187 8400 6100 0 0 0 0 810.6 25.1 6.20 94.5
188 8300 6000 0 0 0 0 810.4 25.1 6.20 95.9
189 8400 6100 0 0 0 0 797.6 25.1 6.21 97.1
190 6700 6000 0 0 4.5 0 801.9 25.1 6.20 100.8
191 6100 6000 0 0.1 0 0 801.8 25.1 6.18 90.2
192 6000 6100 0 0.5 0 0 802.1 25.1 6.17 87.7
193 6000 6000 0 0.5 26.1 0 815.9 25.1 6.17 90.7
194 6100 6100 0 0 0 0 803.1 25.1 6.18 94.2
195 6000 6000 0 0 0 0 802.9 25.1 6.17 92.5
196 6000 6000 0 0.1 0 0 802.8 25.1 6.17 88.7
197 5900 6100 0 0 0 0 790.0 25.1 6.17 99.7
198 5900 6000 0 0.3 0 0 790.1 25.1 6.17 100.6
199 6000 6100 0 0.2 0 0 790.2 25.1 6.17 100.1
200 5900 6000 0 0.2 0 0 790.2 25.1 6.17 100.3
201 5900 6100 0 0.1 0 0 777.5 25.1 6.17 108.0
202 6000 6000 0 0.3 0 0 777.6 25.1 6.17 108.4
203 5900 6000 0 0.1 0 0 777.5 25.1 6.17 109.6
204 5900 5900 0 0 0 0 777.3 25.0 6.18 117.1
205 6000 6000 0 0 0 0 764.5 25.1 6.19 217.0
206 5900 5900 0 0 0 0 764.3 25.1 6.19 253.9
207 5900 5900 0 0 0 0 764.2 25.0 6.19 260.7
208 5900 6000 0 0 0 0 764.0 25.0 6.20 267.4
209 6000 5900 0 0 33.4 0 784.6 25.1 6.21 272.2
210 5900 5900 0 0 0.6 0 785.0 25.1 6.21 245.0
211 5900 6000 0 0 0 0 772.2 24.9 6.21 240.2
212 6000 5900 0 0 0 0 772.0 24.9 6.20 256.1
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Table B.4: Experimental measurements for the Adaptive MPC culture

Time Biomass (g/L) Glucose (g/L) Oil content (%w/w)
(h) Average Std. dev. Average Std. dev. Average Std. dev.

0 3.1 0.10 18.6 0.35 68.4 1.0
4 3.1 0.05 18.6 0.11 70.6 1.8
8 3.7 0.05 21.8 0.04 67.1 4.1
12 4.0 0.10 24.9 0.02 66.0 1.2
16 4.1 0.10 31.3 0.09 61.7 2.8
20 4.2 0.30 36.3 0.06 60.7 1.4
24 4.5 0.10 36.2 0.05 58.8 1.4
28 5.0 0.10 35.0 0.04 51.9 1.5
32 6.0 0.05 33.1 0.09 41.9 0.5
36 6.4 0.00 31.4 0.02 41.1 2.9
40 8.1 0.15 29.2 0.04 42.5 1.8
44 8.8 0.20 25.5 0.06 35.9 0.8
48 12.3 0.05 20.0 0.14 33.6 1.6
52 16.3 0.25 12.3 0.07 37.7 2.1
56 16.8 0.45 6.2 0.13 37.1 1.8
60 23.9 0.10 0.1 0.00 38.3 1.3
64 27.6 0.05 0.1 0.00 38.3 2.9
68 30.6 0.00 0.1 0.01 34.5 4.3
72 33.3 0.20 2.1 0.01 35.3 1.2
88 60.0 0.25 0.2 0.00 32.9 0.6
92 66.5 0.51 1.3 0.01 37.5 1.1
96 71.5 0.45 5.3 0.15 39.6 2.1
100 76.3 0.05 13.0 0.03 46.3 2.7
104 78.9 0.10 16.2 0.20 46.4 1.4
108 80.7 0.05 19.5 0.36 49.0 1.5
112 90.7 0.45 26.6 0.24 44.5 3.7
116 92.0 0.61 30.4 0.00 47.0 1.3
120 98.3 0.15 35.0 0.15 48.3 3.4
124 103.8 1.67 37.1 0.11 48.2 0.5
128 103.5 1.82 37.9 0.03 53.1 5.0
132 109.3 2.17 39.1 0.13 51.9 3.5
136 108.8 0.10 40.0 0.11 53.0 3.7
140 111.7 0.66 34.4 0.02 49.0 1.6
144 109.2 0.56 20.2 0.02 55.3 2.7
148 108.1 0.51 19.5 0.26 59.2 6.4
152 116.6 1.52 24.4 0.53 56.1 3.0
156 110.5 1.67 27.2 0.13 51.0 4.3
160 112.1 0.30 34.1 0.98 55.0 1.7
164 121.8 1.57 45.6 0.17 54.5 3.3
168 123.8 0.66 44.5 0.19 52.0 6.7
172 126.9 1.77 34.7 0.19 50.9 1.1
176 125.8 0.56 26.0 0.63 59.0 1.7
180 125.0 0.96 17.6 0.06 57.8 2.3
184 128.5 1.26 10.2 0.37 56.4 2.8
188 129.3 0.40 1.7 0.04 59.7 4.2
192 128.0 0.25 2.3 0.39 59.1 13.5
192.5 131.5 2.78 15.4 0.25 54.1 7.7
196 139.3 1.26 8.4 0.51 61.7 11.3
200 139.6 1.01 3.6 0.05 50.1 0.0
204 137.5 0.96 0.2 0.07 52.4 1.3
208 138.5 0.00 0.2 0.21 51.3 1.0
210 144.3 0.20 0.4 0.14 49.4 3.1
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B.3 Two-stage culture with glycerol/glucose

feeding

The start-up medium was formulated according to Medium B4-Fe, as shown
in Table 3.1, supplemented with glycine (0.4 g/L) and glycerol (10 g/L).

Nutrients were added to the culture in a fed-batch mode with two indepen-
dent feeds. The nitrogen rich feed (Feed 1) consisted of an aqueous solu-
tion of glycine (150 g/L). The carbon rich feed (Feed 2a) contained KH2PO4

(50 g/L), MgSO4 · 7 H2O (32 g/L), FeSO4 · 7 H2O (1.27 g/L), disodium salt of
EDTA (1.7 g/L), H3BO3 (0.31 g/L), CaCl2 · 2 H2O (0.26 g/L), MnCl2 · 4 H2O
(0.2 g/L), ZnSO4 · 7 H2O (23.3 mg/L), CuSO4 · 5 H2O (8.5 mg/L), thiamine hy-
drochloride (1.06 mg/L), Na2MoO4 · 5 H2O (3.2 mg/L), and glycerols (1123 g/L).
Another carbon rich feed (Feed 2b), used during the fattening stage (second
stage), was formulated to contain only glucose at a concentration of 800 g/L.

The pH was controlled around 6.2 using a 500 g/L solution of K2HPO4 as base
and a 200 g/L aqueous solution of KH2PO4 as acid. The dissolved oxygen
concentration (DO) was controlled around 50% of the saturation value by
bubbling air enriched with oxygen at the bottom of the reactor vessel.

B.3.1 Results

The flow-rates of all the gas and liquid streams as well as the hourly average
process measurements are presented in Table B.5. The reported volume was
calculated from the initial medium and inoculum volumes, accounting the
amount of liquid added to the reactor and discounting the volume removed for
each sample and the losses for evaporation (assumed proportional to the gas
flowrate). The experimental measurements for biomass, glucose, and glycerol
concentration are presented in Table B.6, as well as the intracellular neutral
lipid content.
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B.3. Two-stage culture with glycerol/glucose feeding

Table B.5: Flow rate and process conditions for the two-stage culture

Time Air O2 Acid Base Feed 2a Feed 2b Feed 1 Volume Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL) (C) (-) (%)

0 0 0 0 0 0 0 0 1104 24.99 6.17 52.62
1 200 0 0 0 0 0 0 1104 24.99 6.17 50.00
2 200 0 0 0 0 0 0 1104 24.99 6.17 49.56
3 200 0 0 0 0 0 0 1104 24.99 6.17 50.16
4 300 0 0 0.1 0 0.2 0 1092 24.99 6.17 49.98
5 400 0 0 0 0 0.1 0.3 1092 24.99 6.18 50.03
6 400 0 0 0 0 0.2 0.3 1093 24.99 6.18 50.06
7 300 0 0 0 0 0.1 0.2 1093 24.99 6.18 49.71
8 500 0 0 0 0 0.2 0.3 1081 24.99 6.18 50.25
9 400 0 0 0 0 0.1 0 1081 24.99 6.19 49.76
10 500 0 0 0 0 0.2 0 1081 24.99 6.20 50.08
11 700 0 0 0 0 0.1 0.3 1082 24.99 6.20 49.92
12 800 0 0 0 0 0.2 0.3 1070 24.99 6.21 50.08
13 800 0 0 0 0 0.3 0 1070 24.99 6.21 49.49
14 800 0 0 0 0 0.3 0 1070 24.99 6.22 49.89
15 1100 0 0 0 0 0.3 0 1070 24.99 6.21 49.18
16 1800 0 0 0 0 0.3 0 1058 24.99 6.21 48.82
17 3300 0 0 0 0 0.3 0.3 1059 24.99 6.21 48.31
18 3400 0 0 0 0 0.3 0 1059 24.99 6.21 49.51
19 4100 0 0 0 0 0.3 0 1059 24.99 6.21 48.65
20 5700 0 0 0 0 0.3 0.3 1047 24.99 6.21 47.90
21 6500 0 0 0 0 0.3 0.2 1047 24.99 6.21 49.58
22 6400 0 0 0 0 0.3 0 1048 24.99 6.21 49.58
23 7400 0 0 0 0 0.3 0.3 1048 24.99 6.20 49.85
24 7000 0 0 0 0 0.3 0.3 1036 24.99 6.20 49.98
25 7300 0 0 0 0 0.5 0.3 1037 24.99 6.20 49.57
26 7900 0 0 0 0 0.6 0.3 1037 24.99 6.20 48.88
27 8700 0 0 0 0 0.5 0.3 1038 24.99 6.20 49.04
28 9700 0 0 0 0 0.6 0.2 1026 24.99 6.20 48.44
29 10500 0 0 0 0 0.6 0.3 1027 24.99 6.19 49.13
30 11300 0 0 0 0 0.5 0.3 1028 24.99 6.19 48.55
31 12300 0 0 0 0 0.6 0.3 1028 24.99 6.18 48.83
32 14300 0 0 0 0 0.5 0.3 1016 24.99 6.18 49.32
33 14800 0 0 0 0 0.6 0.3 1017 24.99 6.17 50.01
34 17700 0 0 0 0 0.5 0.3 1017 24.99 6.17 51.97
35 18000 0 0 0.2 0 0.6 0.2 1018 24.99 6.17 52.45
36 18000 100 0 0.2 0 0.5 0.3 1006 24.99 6.17 51.12
37 18000 0 0 0.3 0 1 0.3 1008 24.99 6.17 50.57
38 18100 100 0 0.3 0 0.9 0.3 1009 24.99 6.17 49.64
39 18000 100 0 0.1 0 0.9 0.3 1010 25.00 6.17 49.99
40 18000 200 0 0.1 0 1 0.3 998 24.99 6.17 49.84
41 18000 200 0 0.1 0 0.9 0.2 999 25.00 6.17 49.76
42 18000 300 0 0.1 0 0.9 0.3 1000 25.00 6.17 49.45
43 18000 400 0 0.1 0 1 0.3 1001 25.00 6.17 49.57
44 18000 600 0 0.1 0 0.9 0.3 990 25.00 6.17 48.94
45 18100 700 0 0 0 0.9 0.3 991 25.00 6.18 49.66
46 18000 600 0 0 0 1 0.3 992 25.00 6.17 50.05
47 18000 800 0 0.1 0 0.9 0.2 993 25.00 6.17 49.43
48 18000 900 0 0.1 0 0.9 0.3 981 25.00 6.18 49.43
49 18000 700 0 0 0 0 0.6 981 25.00 6.18 52.60
50 18000 600 0 0 0 0 0.6 982 25.00 6.20 48.92
51 18100 500 0 0 0 0 0 981 25.00 6.22 50.91
52 18000 400 0.1 0 0 0 0 968 25.00 6.23 50.45
53 18000 400 0 0 0 0 0 968 25.00 6.23 50.64
Continued on Next Page. . .
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Table B.5 – Continued

Time Air O2 Acid Base Feed 2a Feed 2b Feed 1 Volume Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL) (C) (-) (%)

54 18000 200 0 0 0 0 0 968 25.00 6.23 50.71
55 18000 200 0 0 0 0.3 0 968 25.00 6.22 50.16
56 18000 400 0 0 0 0.2 0.2 955 25.00 6.20 49.27
57 18100 600 0 0 0 0.3 0.3 956 25.00 6.20 48.80
58 18000 800 0 0 0 0.3 0.3 956 25.00 6.20 49.62
59 18000 700 0 0 0 0.3 0.3 956 25.00 6.21 49.48
60 18000 600 0 0 0 0.3 0 944 25.00 6.22 50.97
61 18000 600 0 0 0 0.4 0 944 25.00 6.22 50.62
62 18000 700 0 0 0 0.4 0.3 944 25.00 6.20 49.15
63 18100 900 0 0 0 0.5 0.3 945 25.00 6.20 48.95
64 18000 700 0 0 0 0.4 0 932 25.00 6.22 50.86
65 18000 700 0 0 0 0.4 0 932 25.00 6.22 50.47
66 18000 400 0 0 0 0.5 0 933 25.00 6.22 51.68
67 18000 700 0 0 0 0.4 0.2 933 25.00 6.20 48.22
68 18000 600 0 0 0 0.4 0 920 25.00 6.21 50.94
69 18000 600 0 0 0 0.5 0 921 25.00 6.22 50.35
70 18100 300 0 0 0 0.4 0 921 25.00 6.22 51.53
71 18000 500 0 0 0 0.5 0.3 921 25.00 6.20 49.09
72 18000 900 0 0 0 0.4 0.3 909 25.00 6.19 50.82
73 18000 1300 0 0 0 0.7 0.3 910 25.00 6.19 47.60
74 18000 1400 0 0 0 0.6 0.3 910 25.08 6.20 50.37
75 18000 1500 0 0 0 0.7 0.3 911 25.00 6.19 49.55
76 18100 1700 0 0 0 0.7 0.2 899 25.00 6.19 49.27
77 18000 1500 0 0 0 0.6 0 899 25.00 6.20 50.52
78 18000 1700 0 0 0 0.7 0.3 900 25.00 6.19 49.84
79 18000 1700 0 0 0 0.7 0.3 901 25.00 6.19 49.93
80 18000 1800 0 0 0 0.6 0.3 889 25.00 6.18 49.44
81 18000 2300 0 0 0 0.7 0.3 889 25.01 6.18 48.60
82 17800 2200 0 0.1 0 0.7 0.3 890 25.00 6.18 50.76
83 17500 2200 0 0.3 0 0.6 0.2 891 25.01 6.18 49.54
84 17600 2400 0 0 0 0.7 0.3 879 25.01 6.18 49.59
85 17600 2700 0 0 0 0.9 0.3 880 25.00 6.18 48.71
86 17600 2600 0 0.1 0 0.9 0.3 881 25.00 6.18 51.26
87 17500 2500 0 0.1 0 0.9 0.3 882 25.00 6.18 49.75
88 17600 2600 0 0 0 0.9 0.3 870 25.00 6.19 49.81
89 17600 3000 0 0 0 0.9 0.2 871 25.00 6.18 48.67
90 17600 2800 0 0 0 0.9 0.3 872 25.00 6.18 51.03
91 17600 2900 0 0.1 0 0.9 0.3 873 25.00 6.18 49.32
92 17500 3100 0 0 0 0.9 0.3 861 25.00 6.18 49.23
93 17600 3500 0 0.2 0 0.9 0.3 862 25.00 6.20 49.02
94 17600 3500 0 0 0 0.9 0.2 863 25.00 6.21 50.30
95 17600 3400 0 0 0 0.9 0.3 864 25.00 6.20 49.69
96 17500 4000 0 0 0 0.9 0.3 852 25.00 6.19 47.97
97 17600 4400 0 0.2 0 1.2 0.3 853 25.00 6.19 50.69
98 17600 3600 0 0 0 1.2 0.3 854 25.00 6.19 51.54
99 17600 4400 0.4 0.1 0 1.2 0.5 856 25.00 6.18 46.89
100 17500 5500 0 0 0 1.2 0.6 845 25.00 6.19 42.82
101 17600 6000 0 0 0 1.2 0.3 846 25.01 6.19 38.96
102 17600 6000 0 0 0 1.2 0.3 847 25.01 6.20 40.03
103 17600 6000 0 0 0 1.3 0.3 849 25.01 6.19 39.02
104 17500 6000 0 0 0 1.2 0.2 837 25.01 6.18 36.41
105 17600 6000 0 0.2 0 1.2 0.6 839 25.01 6.19 24.33
106 17600 6000 0 0 0 1.2 0.6 840 25.01 6.20 20.22
107 17600 6000 0 0 0 1.2 0.3 841 25.01 6.21 22.93
108 17500 6100 0 0 0 1.3 0.5 830 25.01 6.19 16.78
109 17600 6000 0 0 0 1.5 0.6 832 25.01 6.18 18.45
Continued on Next Page. . .
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B.3. Two-stage culture with glycerol/glucose feeding

Table B.5 – Continued

Time Air O2 Acid Base Feed 2a Feed 2b Feed 1 Volume Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL) (C) (-) (%)

110 17600 6000 0 0.1 0 1.5 0.6 834 25.01 6.18 16.81
111 17600 6100 0.2 0.3 0 1.6 0.5 836 25.01 6.19 17.17
112 17600 6000 0.8 0 0 1.5 0.6 826 25.01 6.23 17.09
113 17500 6100 0 0 0 1.5 0.6 828 25.01 6.22 15.14
114 17600 6000 0 0 0 1.6 0.5 829 25.01 6.21 16.08
115 17600 6100 0 0 0 1.5 0.6 831 25.01 6.21 13.54
116 17600 6000 0 0 0 1.6 0.6 820 25.01 6.21 11.80
117 17500 6000 0 0 0 1.5 0.5 822 25.01 6.20 13.92
118 17600 6100 0 0 0 1.6 0.6 824 25.01 6.19 15.31
119 17600 6000 0 0 0 1.5 0.6 825 25.01 6.18 13.29
120 17600 7500 0 0.1 0 1.6 0.5 815 25.01 6.17 35.01
121 17500 8900 6.1 0.5 0 2 0.6 823 25.01 6.21 39.75
122 13000 6100 12.4 1.1 0 0 0 837 25.01 6.19 58.49
123 12300 5200 0 0.5 0 0 0 837 25.01 6.21 50.21
124 12300 5100 0 0 0 0 0 837 25.01 6.23 49.45
125 12400 5300 0 0 0 0 0 836 25.01 6.22 49.12
126 12300 5800 0 0 0 0 0 836 25.01 6.22 49.68
127 12300 5400 0 0 0 0 0 836 25.01 6.22 51.59
128 12300 4700 0 0 0 0 0 835 25.01 6.21 52.03
129 12300 4200 0 0 0 0 0 835 25.01 6.21 50.16
130 12300 3700 0 0 0 0 0 822 25.01 6.22 52.68
131 12300 3100 0 0 0 0 0 822 25.01 6.22 50.04
132 12300 3000 0 0 0 0 0 822 25.00 6.21 50.61
133 12300 4800 0 0 0 1.5 0.8 824 25.01 6.18 47.10
134 12300 5600 0 0 0 1.6 0.6 826 25.01 6.18 49.20
135 12300 6300 0 0 0 1.6 0.9 828 25.01 6.18 47.70
136 12300 7400 0 0 0 1.5 0.8 830 25.01 6.18 47.94
137 12300 7900 0 0 0 1.6 0.6 832 25.01 6.17 46.88
138 12300 8500 0 0.7 0 1.5 0.8 835 25.01 6.18 36.29
139 12300 8700 0 0 0 1.6 0.9 837 25.01 6.20 38.36
140 12300 8900 0 0 0 1.6 0.8 839 25.01 6.20 32.43
141 12300 9000 0 0 0 1.6 0.9 841 25.01 6.19 26.90
142 12300 9000 0 0 0 1.6 0.8 843 25.01 6.19 24.08
143 12300 9000 0 0 0 1.5 0.9 845 25.02 6.19 26.69
144 9700 8800 0 0 0 1.6 0.8 835 25.02 6.18 37.42
145 8800 8400 0 0 0 2.4 0.9 838 25.02 6.18 39.43
146 8800 8900 0 0 0 2.4 0.8 841 25.03 6.18 35.01
147 8700 8500 0 0 0 0 0 840 25.03 6.18 52.42
148 8800 8300 0 0 0 0 0 827 25.04 6.20 49.25
149 8800 6800 0 0 0 0 0 827 25.04 6.19 53.96
150 8800 7200 0 0 0 0 0 827 25.03 6.18 47.62
151 8800 7600 0 0 0 0 0 827 25.03 6.18 50.35
152 8800 6900 0 0 0 0 0 814 25.04 6.18 52.71
153 8800 5000 0 0 0 0 0 814 25.04 6.19 53.00
154 8800 5100 0 0 0 0 0 813 25.04 6.19 49.63
155 8700 5000 0 0 0 0 0 813 25.03 6.19 50.13
156 8800 4800 0 0 0 0 0 800 25.03 6.19 51.77
157 8800 4800 0.6 1 0 2.2 0.6 805 25.04 6.19 50.56
158 8800 5400 5.6 0 0 2.2 0.6 813 25.04 6.24 48.51
159 8800 6500 3.5 0 0 2.3 0.5 819 25.04 6.23 48.25
160 8800 7200 0.1 0 0 2.2 0.6 809 25.04 6.23 48.35
161 8800 7000 0 0 0 2.3 0.6 811 25.05 6.22 50.81
162 8800 8100 0 0 0 2.2 0.5 814 25.05 6.21 44.37
163 8800 8300 0 0 0 2.3 0.6 817 25.06 6.20 43.05
164 8700 8800 0 0 0 2.2 0.6 806 25.06 6.20 39.21
165 8800 8400 0 0 0 2.3 0.8 809 25.08 6.18 39.85
Continued on Next Page. . .
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Table B.5 – Continued

Time Air O2 Acid Base Feed 2a Feed 2b Feed 1 Volume Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL) (C) (-) (%)

166 8800 8600 0 0.1 0 2.3 0.9 812 25.06 6.18 35.51
167 8800 8800 0 0 0 2.2 0.5 815 25.07 6.18 33.19
168 8800 8800 0 0 0 2.3 0.6 805 25.08 6.18 33.52
169 8800 8500 0 0 0 1.9 0.3 807 25.08 6.18 49.18
170 8800 8600 0.7 0 0 1.9 0.3 809 25.09 6.18 46.30
171 8800 8700 0 0.6 0 2 0.3 812 25.08 6.18 45.62
172 8700 8700 0 0 0 1.9 0.2 801 25.08 6.22 43.86
173 8800 8600 0 0 0 2 0.3 803 25.08 6.21 45.31
174 8800 8700 0 0 0 1.9 0.3 805 25.07 6.20 42.66
175 8800 8800 0 0 0 2 0.3 807 25.07 6.19 44.31
176 8800 8400 0 0 0 1.9 0.3 796 25.08 6.18 49.43
177 8800 7600 0 0.1 0 1.9 0.3 798 25.10 6.17 52.43
178 8800 7200 0 0 0 2 0.2 800 25.10 6.17 49.98
179 8800 6800 0 0.7 0 1.9 0.3 803 25.12 6.18 51.14
180 8800 7200 0 0 0 2 0.3 793 25.11 6.21 48.21
181 8700 5800 0 0 0 1.1 0 793 25.10 6.22 53.00
182 8800 5500 0 0 0 1.1 0 794 25.11 6.22 51.13
183 8800 5000 0 0 0 1.1 0 795 25.11 6.21 51.44
184 8800 4400 0 0 0 1.2 0 784 25.11 6.21 51.54
185 8800 3600 0 0 0 1.1 0 784 25.13 6.21 51.45
186 8800 3500 0 0 0 1.1 0 785 25.13 6.20 50.56
187 8800 3000 0 0 0 1.2 0 786 25.13 6.20 51.37
188 8800 2600 0 0 0 1.1 0 775 25.13 6.20 50.23
189 8700 2600 0 0 0 1.1 0 776 25.15 6.19 50.72
190 8800 2200 0 0 0 1.2 0 777 25.12 6.19 50.54
191 8800 2200 0 0 0 1.1 0 778 25.10 6.18 50.75
192 8800 1800 0 0 0 1.2 0 766 25.07 6.18 50.65
193 6400 1000 0 0.5 0 0 0 766 25.10 6.16 40.49
194 7800 1800 0 0 0 0 0 766 25.09 6.14 45.03
195 8800 1400 0 0 0 0 0 766 25.04 6.16 50.69
196 8800 1300 0 0 0 0 0 766 25.05 6.17 50.48
197 8800 1100 0 0 0 0 0 766 25.05 6.18 50.09
198 8700 1300 0 0 0 0 0 766 25.05 6.18 49.87
199 8800 1300 0 0 0 0 0 765 25.04 6.18 49.96
200 8800 3400 0 0 0 0 0 693 25.04 6.18 47.24
201 8800 4100 5.5 2.3 4.2 0 0 704 25.18 6.20 43.51
202 8800 7400 0 0 4.3 0 0 708 25.29 6.36 37.18
203 8800 8500 0 0 4.3 0 0 713 25.41 6.37 30.91
204 8800 8800 0 0 4.3 0 0 717 25.56 6.30 10.01
205 8800 8800 0 0 3.7 0 0 720 25.60 6.26 25.09
206 8800 8800 0 0 3.7 0 0 723 25.50 6.25 38.88
207 8700 8800 13.3 0 3.8 0 0 740 25.46 6.23 29.08
208 8800 8800 0 0 3.7 0 0 744 25.43 6.20 12.78
209 8800 8800 0 0.9 3.7 0 0 748 25.38 6.17 14.47
210 8800 8700 0.3 0 3.8 0 0 752 25.37 6.19 11.99
211 8800 8800 3.8 2.4 3.7 0 0 761 25.38 6.19 15.88
212 8800 8800 0 0 3.7 0 0 765 25.41 6.34 21.61
213 8800 8800 0 0 3.7 0 0 768 25.44 6.30 22.26
214 8800 8800 0 0 3.7 0 0 772 25.44 6.27 22.73
215 8700 8700 42.8 0 3.8 0 0 818 25.40 6.24 25.59
216 8800 8800 0.2 0 3.7 0 0 809 25.43 6.21 25.19
217 8800 8800 0 0.1 3.6 0 0 812 25.42 6.19 22.08
218 8800 8800 0 0 3.6 0 0 816 25.35 6.19 19.86
219 6400 8800 11.1 0 3.6 0 0 830 25.34 6.18 38.74
220 5300 8000 8.2 0 5.7 0 0 844 25.34 6.22 32.24
221 5300 7900 0 0 5.8 0 0 849 25.32 6.19 53.33
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B.3. Two-stage culture with glycerol/glucose feeding

Table B.5 – Continued

Time Air O2 Acid Base Feed 2a Feed 2b Feed 1 Volume Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL) (C) (-) (%)

222 5200 7200 0 3.7 5.8 0 0 859 25.27 6.17 31.09
223 5300 8800 31.9 1.5 5.8 0 0 898 25.29 6.25 15.21
224 5300 8800 0 6.8 5.7 0 0 910 25.24 6.16 4.60
225 5300 8800 26.9 0 5.8 0 0 943 25.18 6.24 0.67
226 5200 8800 0 10.1 5.7 0 0 958 25.15 6.17 0.00
227 5300 8700 21.4 0 5.7 0 0 985 25.19 6.24 0.00
228 5300 8800 0 9.6 5.7 0 0 1000 25.19 6.16 0.00
229 5300 8800 38.9 0 4.6 0 0 1043 25.25 6.25 0.00
230 5200 8800 0 0 4.6 0 0 1048 25.37 6.21 0.01
231 5300 6600 16 0 4.7 0 0 1068 25.32 6.24 55.21
232 5300 3700 0 0 4.6 0 0 1073 25.17 6.22 47.80
233 5200 6800 0 0 4.6 0 0 1077 25.15 6.21 42.93
234 5300 7900 0 0 4.6 0 0 1082 25.14 6.21 49.58
235 5300 7500 0 0 4.6 0 0 1086 25.13 6.20 51.40
236 5300 7600 0 0 4.6 0 0 1090 25.12 6.19 48.52
237 5200 8600 0 0 4.7 0 0 1095 25.12 6.18 38.07
238 5300 8800 0 0 4.6 0 0 1099 25.12 6.17 25.56
239 5300 8800 0 4.2 4.6 0 0 1108 25.12 6.16 18.47
240 5300 8800 0 0 4.7 0 0 1112 25.12 6.19 19.42
241 5200 8800 0 0 4.4 0 0 1116 25.12 6.19 21.33
242 5300 8800 0 0 4.3 0 0 1120 25.11 6.18 21.29
243 5300 5000 0 0 4.4 0 0 1112 25.11 6.18 51.31
244 5300 7400 0 0.7 4.4 0 0 1117 25.12 6.17 19.36
245 5200 8800 0 2 0 0 0 1119 25.12 6.18 12.19
246 5300 8800 0 0 0 0 0 1119 25.10 6.18 2.74
247 5300 8700 0 14.2 0 0 0 1133 25.09 6.16 40.07
248 5200 3800 4.9 0 0 0 0 1125 25.19 6.31 65.82
249 5300 2600 0 0 0 0 0 1125 25.11 6.34 48.04
250 5300 6500 0 0 0 0 0 1124 25.10 6.33 30.98
251 5300 8800 0 0 0 0 0 1124 25.08 6.28 0.00
252 5200 8800 0 0 0 0 0 1124 25.07 6.23 0.00
253 5300 8800 0 0 4.1 0 0 1128 25.04 6.19 0.00
254 5300 8800 0 3.1 4.2 0 0 1135 25.04 6.17 0.00
255 5300 8800 0 6.1 4.1 0 0 1145 25.05 6.20 0.00
256 5200 8700 0 0 4.2 0 0 1136 25.05 6.23 0.00
257 5300 8800 0 0 4.1 0 0 1140 25.05 6.23 0.00
258 5300 8800 0 0 4.2 0 0 1144 25.04 6.23 0.00
259 5200 8800 0 0 4.2 0 0 1148 25.03 6.22 0.00
260 5300 8800 0 0 4.1 0 0 1152 25.03 6.21 0.00
261 5300 8800 0 0 4.2 0 0 1156 25.03 6.21 0.00
262 5300 8800 0 0 4.2 0 0 1160 25.03 6.20 0.00
263 5200 8800 0 0 4.1 0 0 1164 25.03 6.19 0.00
264 5300 8800 0 0 4.1 0 0 1155 25.03 6.19 0.00
265 5300 8300 0 0 3.9 0 0 1159 25.04 6.19 71.32
266 5300 4400 0 0 3.9 0 0 1163 25.05 6.21 54.83
267 5200 5600 0 0 0 0 0 1162 25.04 6.21 45.41
268 5300 5600 0 0 0 0 0 1162 25.04 6.22 51.99
269 5300 5400 0 0 0 0 0 1162 25.04 6.22 48.26
270 5200 6600 0 0 0 0 0 1162 25.03 6.22 47.01
271 5300 7600 0 0 0 0 0 1162 25.04 6.23 47.75
272 5300 8500 0 0 0 0 0 1149 25.04 6.24 46.67
273 5300 4500 0 0 0 0 0 1149 25.04 6.26 62.61
274 5200 4100 0 0 0 0 0 1149 25.04 6.28 46.24
275 5300 2100 3 0 0 0 0 1151 25.04 6.30 59.91
276 5300 900 0 0 0 0 0 1151 25.04 6.32 49.90
277 5300 2800 0 0 0 0 0 1151 25.04 6.34 40.77
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Time Air O2 Acid Base Feed 2a Feed 2b Feed 1 Volume Temp. pH DO
(h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL/h) (mL) (C) (-) (%)

278 5200 5800 0 0 0 0 0 1151 25.03 6.36 48.86
279 5300 1900 0 0 0 0 0 1151 25.01 6.37 61.63
280 5300 1700 0 0 0 0 0 1138 25.01 6.37 40.82
281 5300 7600 0 0 0 0 0 1138 25.01 6.36 31.03
282 5200 8800 0 0 0 0 0 1138 25.01 6.36 27.98
283 5300 8700 0 0 0 0 0 1138 25.01 6.36 23.73
284 5300 8800 0 0 0 0 0 1137 25.01 6.36 19.51
285 5200 8800 0 0 0 0 0 1137 25.02 6.36 15.87
286 5300 8800 0 0 0 0 0 1137 25.02 6.36 10.48
287 5300 8800 0 0 0 0 0 1137 25.02 6.36 7.85
288 5300 8800 0 0 0 0 0 1124 25.02 6.36 5.03
289 5200 4400 0 0 0 0 0 1124 25.02 6.36 57.66
290 5300 2600 2.5 0 0 0 0 1126 25.02 6.36 50.30
291 5300 2700 0 0 0 0 0 1126 25.02 6.36 49.81
292 5300 2600 0 0 0 0 0 1126 25.03 6.36 49.44
293 5200 2600 0 0 0 0 0 1126 25.03 6.36 49.14
294 5300 3200 0 0 0 0 0 1126 25.02 6.35 48.45
295 5300 3500 0 0 0 0 0 1125 25.02 6.35 50.07
296 5200 3500 0 0 0 0 0 1113 25.02 6.35 50.19
297 5300 3300 0 0 0 0 0 1113 25.02 6.34 50.76
298 5300 2600 0 0 0 0 0 1112 25.02 6.34 50.55
299 5300 2700 0 0 0 0 0 1112 25.02 6.33 49.52
300 5200 3300 0 0 0 0 0 1112 25.02 6.33 49.49
301 5300 3600 0 0 0 0 0 1112 25.02 6.32 48.30
302 5300 4000 0 0 0 0 0 1099 25.01 6.31 48.49
303 5200 5000 0 0 0 0 0 1099 25.02 6.31 47.70
304 5300 5600 0 0 0 0 0 1099 25.02 6.30 48.52
305 5300 6200 0 0 0 0 0 1099 25.02 6.30 50.12
306 5300 5800 0 0 0 0 0 1099 25.02 6.29 50.74
307 5200 5200 0 0 0 0 0 1098 25.02 6.29 51.59
308 5300 5200 0 0 0 0 0 1098 25.03 6.28 50.17
309 5300 4900 0 0 0 0 0 1098 25.03 6.27 50.49
310 5300 4800 0 0 0 0 0 1085 25.04 6.27 49.33

Table B.6: Experimental measurements for the two-stage culture

Time Biomass (g/L) Glycerol (g/L) Glucose (g/L) Oil content (%w/w)
(h) Average Std. dev. Average Std. dev. Average Std. dev. Average Std. dev.

0 0.5 0.05 11.5 0.02 0.0 0 10.3 0.8
4 0.7 0.05 11.2 0.02 0.0 0 8.6 0.3
8 0.7 0.05 11.0 0.03 0.0 0 7.2 0.6
12 0.7 0.05 11.3 0.03 0.0 0 9.7 0.5
16 1.2 0.05 11.8 0.01 0.0 0 5.4 0.2
20 0.6 0.00 11.6 0.30 0.0 0 9.7 1.0
24 1.8 0.00 12.1 0.03 0.0 0 6.0 0.3
28 1.4 0.05 13.1 0.00 0.0 0 4.9 0.1
32 2.6 0.05 13.8 0.00 0.0 0 8.3 0.9
36 3.1 0.10 14.0 0.02 0.0 0 9.5 0.3
40 4.4 0.10 15.3 0.04 0.0 0 10.6 0.2
44 5.5 0.05 16.4 0.03 0.0 0 11.4 1.0
Continued on Next Page. . .
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B.3. Two-stage culture with glycerol/glucose feeding

Table B.6 – Continued

Time Biomass (g/L) Glycerol (g/L) Glucose (g/L) Oil content (%w/w)
(h) Average Std. dev. Average Std. dev. Average Std. dev. Average Std. dev.

48 6.6 0.10 17.0 0.01 0.0 0 11.5 1.0
52 4.6 0.00 14.4 0.01 0.0 0 13.1 0.4
56 5.1 0.05 13.2 0.03 0.0 0 13.1 0.4
60 7.6 0.00 12.2 0.02 0.0 0 13.2 0.6
64 9.5 0.00 11.8 0.00 0.0 0 13.2 0.9
68 9.9 0.00 11.4 0.01 0.0 0 13.1 0.7
72 10.5 0.40 11.0 0.01 0.0 0 14.3 0.6
76 11.1 0.10 10.9 0.00 0.0 0 13.7 0.8
80 11.1 0.15 11.5 0.02 0.0 0 13.4 0.7
84 11.3 0.15 11.4 0.02 0.0 0 12.5 0.8
88 12.9 0.51 12.2 0.10 0.0 0 12.4 0.5
92 14.3 0.05 12.7 0.01 0.0 0 12.2 0.7
96 15.0 0.05 13.1 0.01 0.0 0 12.3 0.3
100 12.9 0.20 14.1 0.01 0.0 0 13.3 0.3
104 15.6 0.10 15.8 0.01 0.0 0 11.5 0.8
108 17.3 0.05 17.2 0.00 0.0 0 11.0 0.4
112 19.5 0.45 19.9 0.01 0.0 0 10.7 0.3
116 20.8 0.20 22.2 0.07 0.0 0 10.4 0.4
120 22.5 0.25 24.7 0.01 0.0 0 10.1 0.4
129.5 26.3 0.45 16.4 0.05 0.0 0 11.1 0.5
144 33.4 0.96 17.4 0.05 0.0 0 11.1 0.3
148 33.6 0.10 16.5 0.06 0.0 0 12.4 0.3
152 35.6 0.20 11.3 0.03 0.0 0 12.2 0.7
156 35.6 0.10 5.9 0.00 0.0 0 13.6 0.3
160 38.8 0.56 9.1 0.06 0.0 0 13.4 0.3
164 39.3 0.05 12.4 0.04 0.0 0 14.8 1.0
168 41.4 0.10 15.4 0.03 0.0 0 14.6 0.7
172 42.6 0.25 17.5 0.01 0.0 0 14.4 0.4
176 45.0 0.15 20.0 0.05 0.0 0 16.0 0.6
180 45.5 0.05 22.0 0.15 0.0 0 15.2 0.7
184 47.2 0.30 21.1 0.02 0.0 0 16.0 0.5
188 48.1 0.05 21.5 0.02 0.0 0 17.6 0.7
192 48.5 0.25 22.6 0.01 0.0 0 17.3 0.3
200 47.2 1.72 15.3 0.06 0.2 0.02 18.4 1.3
216.4 83.0 0.56 0.5 0.14 0.2 0.05 26.4 1.4
242.5 78.4 0.91 0.0 0.00 35.6 0.08 40.1 2.6
248 76.1 1.21 0.6 0.25 29.9 0.17 43.3 1.4
256 73.4 0.30 0.4 0.42 33.2 0.14 42.4 1.4
264 71.0 0.20 0.0 0.00 54.5 0.02 47.6 1.6
272 69.8 0.61 0.3 0.49 57.0 0.07 50.2 3.5
280 67.7 0.71 0.0 0.00 51.3 0.01 50.8 0.9
288 73.8 0.66 0.0 0.00 39.7 0.06 44.3 1.3
296 79.5 0.25 0.0 0.00 13.3 NaN 50.5 1.9
302 83.5 0.30 0.0 0.00 6.3 NaN 56.8 5.1
310 87.7 0.56 0.0 0.00 0.0 NaN 56.7 2.6
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B.3.2 Important observations

1. A glycerol-rich feed was pumped into the reactor during the first 200
hours.

2. At 201 h, the glycerol-rich feed was replaced by a glucose feed.

3. 60 mL of culture were withdrawn at time = 200 h.

4. The power supply to the building failed repeatedly around 194− 196 h.
As a result of this power failure the autosampler got stuck and no sample
was collected (automatically) afterwards.

5. The autosampler was fixed and re-started after 248 h.
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C
Matlab scripts

This appendix contains the Matlab implementation of the numerical methods
used in this work for parameter estimation, model prediction, and optimiza-
tion, as well as several routines for data processing.

C.1 Simulation of batch and fed-batch cultures

Code listing C.1: Dynamic model of microalgal batch cultures

1 function df = Batch(t, x, k)
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
3 % Dynamic model for algal growth in Batch Cultures %
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
5 % States %
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
7 % x(1) = s1 = Glycine concentration (g/L) %
8 % x(2) = s2 = Glucose concentration (g/L) %
9 % x(3) = x = Active biomass concentration (g/L) %

10 % x(4) = p = Oil body concentration (g/L) %
11 % x(5) = q = Intracellular Nitrogen concentration (g/L) %
12 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
13 % Parameters %
14 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
15 % k(1) = Ysx = yield substrate to biomass = 1 / Yxs



16 % k(2) = Ysp = yield substrate to product (oil)
17 % k(3) = Yqx = yield nitrogen (in quota) to biomass
18 % k(4) = km = maintenance constant
19 % k(5) = mu max
20 % k(6) = k c
21 % k(7) = k q
22 % k(8) = rho max
23 % k(9) = k rho
24 % k(10) = pi max
25 % k(11) = k pi
26 % k(12) = Ypx
27 % k(13) = Kinh (glucose)
28 % k(14) = 1 / Kinh (nitrogen)
29 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
30 % Kinetic expressions %
31 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
32

33 q = x(5) / (x(3) + x(4) +x(5));
34 p = x(4) / (x(3) + x(4) +x(5));
35

36 rC = x(2) / (k(6) + x(2) + (((x(2))ˆ2)/k(13)));
37

38 if t > 0
39 rN = q * exp((−(k(14)*x(6)/t))) / (k(7) + q);
40 else
41 rN = 0;
42 end
43

44 r mu = k(5) * rC * rN;
45

46 if x(1) >0
47 r rho = k(8) * x(1) / (k(9) + x(1));
48 else
49 r rho = 0;
50 end
51

52 r pi = (1 − p) * (k(10) * x(2) / (k(11) + x(2)));
53

54 df = [ −r rho*x(3,1);
55 −(k(1,1)*r mu*x(3,1)) − (k(4,1)*x(3,1)) − (k(2,1)*r pi*x(3,1));
56 r mu * x(3,1);
57 r pi * x(3,1) − (k(12)*r mu*x(3,1));
58 (0.18658 * r rho * x(3,1)) − (k(3,1)*r mu*x(3,1));
59 q];
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C.1. Simulation of batch and fed-batch cultures

Code listing C.2: Dynamic model of microalgal fedbatch cultures

1 function df = FedBatch(t, x, k, f)
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
3 % States
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
5 % x(1) = s1 = Glycine concentration (g/L) %
6 % x(2) = s2 = Glucose concentration (g/L) %
7 % x(3) = x = Active biomass concentration (g/L) %
8 % x(4) = p = Oil body concentration (g/L) %
9 % x(5) = q = Intracellular Nitrogen concentration (g/L) %

10 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
11 % Parameters
12 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
13 % k(1) = Ysx = yield substrate to biomass = 1 / Yxs
14 % k(2) = Ysp = yield substrate to product (oil)
15 % k(3) = Yqx = yield nitrogen (in quota) to biomass
16 % k(4) = km = maintenance constant
17 % k(5) = mu max
18 % k(6) = k c
19 % k(7) = k q
20 % k(8) = rho max
21 % k(9) = k rho
22 % k(10) = pi max
23 % k(11) = k pi
24 % k(12) = Yxp
25 % k(13) = Kinh (glucose)
26 % k(14) = 1 / Kinh (nitrogen)
27 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
28 % Feed rate
29 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
30 u(1) = f(floor(t)+1, 1)/1000; % Glycine feed
31 u(2) = f(floor(t)+1, 2)/1000; % Glucose feed
32 u(3) = f(floor(t)+1, 3)/1000; % Output flowrate
33 u(4) = 150; % Glycine concentration in F1
34 u(5) = 900; % Glucose concentration in F2
35 D = (u(1) + u(2))/x(7);
36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
37 % Kinetic expressions
38 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
39

40 q = x(5) / (x(3) + x(4) +x(5));
41 p = x(4) / (x(3) + x(4) +x(5));
42

43 rC = x(2) / (k(6) + x(2) + (((x(2))ˆ2)/k(13)));
44

45 if t > 0
46 rN = q * exp((−(k(14)*x(6)/t))) / (k(7) + q);
47 else
48 rN = 0;
49 end
50

51 r mu = max(0, k(5) * rC * rN); % Assume interacting kinetic model
52

53 r rho = k(8) * x(1) / (k(9) + x(1));
54

55 r pi = (k(10) * x(2) / (k(11) + x(2)));
56
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57 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
58 % differential equations %
59 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
60

61 df = [(−r rho*x(3,1) +(u(4)*u(1)/x(7,1)) −(x(1,1)*D));
62 (−(k(1,1)*r mu*x(3,1)) − (k(4,1)*x(3,1)) − (k(2,1)*r pi*x(3,1))...
63 +(u(5)*u(2)/x(7,1)) −(x(2,1)*D));
64 (r mu * x(3,1) −(x(3,1)*D));
65 (r pi * x(3,1) − (k(12)*r mu*x(3,1)) −(x(4,1)*D));
66 ((0.18658 * r rho * x(3,1)) − (k(3,1)*r mu*x(3,1)) −(x(5,1)*D));
67 q;
68 ((x(7,1)*D) − u(3))];
69

70 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
71 % By: Hector De la Hoz Siegler (c) 2008−2011 %
72 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

C.2 Estimation of model parameter values and

confidence analysis

Code listing C.3: Residual error for a given set of model parameters

1 function Error = ErrP(k)
2

3 options = odeset('RelTol', 2.3e−14);
4

5 % Ensure that only positive values are passed to the function
6 k = (k + abs(k))/2; % Negative values are converted to zero
7

8 % Model parameters are scalated to the proper values required
9 k(3,1) = k(3,1)/100;

10 k(7,1) = k(7,1)/100;
11 k(12,1) = k(12,1)/100;
12 k(4,1) = k(4,1)/24;
13 k(5,1) = k(5,1)/24;
14 k(8,1) = k(8,1)/24;
15 k(10,1) = k(10,1)/24;
16

17 ErrDat = zeros(11,1);
18

19 % Parallel for loop can be replaced for a classic for loop if
20 % parallel functionality is missed.
21 parfor j2=1:11
22 ErrDat(j2) = myErrJ(j2,k, options);
23 end
24

25 % Total residual error (for all datasets)
26 Error = sum(ErrDat);
27

28 % Compare if the current parameter set provides a better WSSE than the
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C.2. Estimation of model parameter values and confidence analysis

29 % previous best paramter set.
30 load Temporal
31 if BestFcn > Error
32 BestFcn = Error;
33 kn = k;
34 save('Temporal.mat', 'kn', 'BestFcn');
35 end
36

37 function ErrJ = myErrJ(j, kf, options)
38

39 ErrJ = 0;
40

41 % Loading dataset
42 DataFile = ['Set ', int2str(j)]; % Non smoothed
43 % DataFile = ['smSet ', int2str(j)]; % SMOOTHED
44 load(DataFile);
45

46 % Specifying additional initial conditions
47 IniCond(5,1) = IniCond(5,1) − (IniCond(3,1) * kf(3,1));
48 IniCond(6,1)=0.015;
49

50 % Solving ODE system with RK 4th order
51 [T, x] = ode45(@(t,x) Batch(t,x,kf), Tsol, IniCond, options);
52

53 % Calcualting the output variables
54 y(:,1) = x(:,3) + x(:,4) + x(:,5);
55 y(:,2) = x(:,2);
56 y(:,3) = 100 * (x(:,5) + (kf(3,1) * x(:,3))) ./ y(:,1);
57 y(:,4) = 100 * x(:,4) ./ y(:,1);
58

59 % Handling missing data and specifying the weight matrix
60 % yhat = yhat sm; %SMOOTHED
61 % w inv = ones(15,4)*diag(1 ./w sm); %SMOOTHED
62 w inv = 1 ./w; %Non smoothed
63

64 w inv(isnan(yhat))=0;
65 w inv(isnan(w inv))=0;
66 yhat(isnan(yhat))=0;
67

68

69 % Computing the residual error (WSSE)
70 for i = 1:4
71 ErrJ = ErrJ + ((yhat(:,i) − y(:,i))' * diag(w inv(:,i)) * ...
72 (yhat(:,i) − y(:,i)))/1000;
73 end
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C.2.1 Optimization of model parameter values

Code listing C.4: BFGS method for optimization

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
2 % Broyden−Fletcher−Goldfarb−Shano Optimization Method %
3 % %
4 % This function optimize a multivariable function using the Golden %
5 % Section line search, and the BFGS method. %
6 % %
7 % Inputs: number of parameters (p) %
8 % Outputs: optimum input (f), cost function (J), states profile (x). %
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

10

11 function [f, J] = minBFGS(MyFun,ko)
12

13 % Function to be minimized −−− %
14 % MyFun = 'OptFun'; %
15 % −−−−−−−−−−−−−−−−−−−−−−−−−−−− %
16

17 %−−− Variable inizialization −−−%
18 p = length(ko);
19 phi = (1 + sqrt(5))/2; % Golden Ratio
20 B = eye(p,p);
21 sk = zeros(p,1);
22 yk = zeros(p,1);
23 f = ko;
24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
25 % *** Main Routine *** %
26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
27

28 tic
29 alpha = 0.001;
30 gradxo = gradF(MyFun, f);
31 Iter = 0;
32 Tol = 100;
33

34 while (Tol>1e−5) && (Iter<500)
35 pk = −B\gradxo;
36

37 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
38 % Line Search %
39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
40 fGRs(1) = feval(MyFun,f);
41 GRs(1) = 0;
42 GRs(3) = alpha;
43 fGRs(3) = feval(MyFun,f + (GRs(3)*pk));
44

45 if fGRs(3) > fGRs(1)
46 while fGRs(3) > fGRs(1)
47 GRs(4) = GRs(3);
48 fGRs(4) = fGRs(3);
49 GRs(3) = (1/phi) * GRs(4);
50 fGRs(3) = feval(MyFun,f + (GRs(3)*pk));
51 end
52 else
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C.2. Estimation of model parameter values and confidence analysis

53 GRs(4) = alpha*phi;
54 fGRs(4) = feval(MyFun,f + (GRs(4)*pk));
55 while fGRs(4) < fGRs(3)
56 GRs(3) = GRs(4);
57 fGRs(3) = fGRs(4);
58 GRs(4) = phi * GRs(4);
59 fGRs(4) = feval(MyFun,f + (GRs(4)*pk));
60 end
61 end
62

63 GRs(2) = GRs(4)*(1−(1/phi));
64 fGRs(2) = feval(MyFun,f + (GRs(2)*pk));
65

66 while abs(((fGRs(4) − fGRs(1))/min(fGRs)))> 0.05
67 if fGRs(2) > fGRs(3)
68 GRs(1) = GRs(2);
69 GRs(2) = GRs(3);
70 GRs(3) = GRs(4)/phi;
71 fGRs(1) = fGRs(2);
72 fGRs(2) = fGRs(3);
73 fGRs(3) = feval(MyFun,f + (GRs(3)*pk));
74 else
75 GRs(4) = GRs(3);
76 GRs(3) = GRs(2);
77 GRs(2) = GRs(4)*(1−(1/phi));
78 fGRs(4) = fGRs(3);
79 fGRs(3) = fGRs(2);
80 fGRs(2) = feval(MyFun,f + (GRs(2)*pk));
81 end
82 end
83 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
84 % New Optimum Estimate %
85 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
86

87 fi = f + (0.5 * (GRs(3) + GRs(2)) * pk);
88

89 gradxp = gradF(MyFun, fi);
90

91 sk = fi − f;
92 yk = gradxp − gradxo;
93

94 B = B − (((B*sk)*(B*sk)')/(sk'*B*sk)) + ((yk*yk')/(yk'*sk));
95

96 Tol = norm(sk,'inf');
97

98 f = fi;
99 gradxo = gradxp;

100 Iter = Iter +1;
101

102 end
103 toc
104

105 J = feval(MyFun, f);
106

107 disp('Number of iterations:');
108 disp(Iter);
109 disp('Final tolerance:');
110 disp(Tol);
111 disp('Optimum control input');
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112 disp(f);
113 disp('Optimum cost function');
114 disp(J);
115

116 save('Optimum.mat','f','J')
117

118 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
119 % By: Hector De la Hoz Siegler (c) 2007−2011 %
120 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

Code listing C.5: Numerical estimation of the gradient

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
2 % Gradient of a multivariable function %
3 % %
4 % Gradient is calculated using centered finite differences %
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
6

7 function GradX = gradF(MyFun, X)
8

9 n=length(X);
10

11 GradX = zeros(n,1);
12

13 for i = 1:n
14 if X(i) == 0
15 h = 1/10000;
16 else
17 h = X(i)/10000;
18 end
19 Hx = X;
20 Hx(i)=X(i)+h;
21 yp = feval(MyFun, Hx);
22 Hx(i)=X(i)−h;
23 ym = feval(MyFun, Hx);
24 GradX(i) = (yp − ym)/(2 * h);
25 end
26

27 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
28 % By: Hector De la Hoz Siegler (c) 2007−2011 %
29 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

Code listing C.6: Pattern search function call for parameter estimation

1 function [x,fval,exitflag,output] = PatSearch(x0,lb,ub)
2

3 % Estimate the value of model parameters x, through Pattern Search
4

5 options = psoptimset; % Start with the default options
6

7 % Modify options setting
8 options = psoptimset(options,'PollingOrder', 'Random');

276



C.2. Estimation of model parameter values and confidence analysis

9 options = psoptimset(options,'SearchMethod', @MADSPositiveBasisNp1);
10 options = psoptimset(options,'CompleteSearch', 'on');
11 options = psoptimset(options,'Display', 'off');
12 options = psoptimset(options,'OutputFcns', { [] });
13 options = psoptimset(options,'PlotFcns', { @psplotbestf });
14

15 [x,fval,exitflag,output] = ...
16 patternsearch(@ErrP,x0,[],[],[],[],lb,ub,[],options);

C.2.2 Numerical estimation of the covariance matrix of
parameter estimates

Code listing C.7: Numerical approximation of the Hessian matrix

1 function H = coHessian(INI, khat)
2

3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
4 % Covarience Hessian Matrix Computation %
5 % Method from: Marsili et al, 2003. %
6 % INI : Initial step size %
7 % khat : Estimated parameter vector %
8 % (c)Hector De la Hoz Siegler %
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

10

11

12 % Step for calculation of finite differences is
13 % recalculated at each iteration.
14 % Global error of the method is O(h)6
15

16 nk = length(khat);
17

18 iter = 1;
19 eta(iter) = 1;
20 g(iter)=INI;
21 Hb = eye(nk);
22 tol = 1e−6;
23 IterMax = 200;
24 step = 1;
25 H = zeros(nk,nk);
26

27 d= zeros(nk,1);
28 while (eta(iter) > tol) && (iter < IterMax)
29

30 for h=1:nk
31 if khat(h) 6= 0
32 d(h) = khat(h)/g(iter);
33 else
34 d(h) = tol;
35 end
36 end
37

38 for i = 1:nk
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39 for j = 1:nk
40 if i == j
41 H(i,i) = Emm(khat, i, d(i));
42 elseif j > i
43 E = Emi nj(khat, i, j, d(i), d(j));
44 H(i,j) = (1/8100)*(1/(d(i)*d(j)))* (((256*E(1,5)) − ...
45 (256*E(1,6)) − (40*E(1,3)) + (40*E(1,4)) + E(1,1) − E(1,2)) ...
46 − ((256*E(2,5)) − (256*E(2,6)) − (40*E(2,3)) + (40*E(2,4)) ...
47 + E(2,1) − E(2,2)) − ((10240*E(3,5)) − (10240*E(3,6)) − ...
48 (1600*E(3,3)) + (1600*E(3,4)) + (40*E(3,1)) − (40*E(3,2))) ...
49 + ((10240*E(4,5)) − (10240*E(4,6)) − (1600*E(4,3)) + ...
50 (1600*E(4,4)) + (40*E(4,1)) − (40*E(4,2))) + ((65536*E(5,5))...
51 − (65536*E(5,6)) − (10240*E(5,3)) + (10240*E(5,4)) + ...
52 (256*E(5,1)) − (256*E(5,2))) − ((65536*E(6,5)) − ...
53 (65536*E(6,6)) − (10240*E(6,3)) + (10240*E(6,4)) + ...
54 (256*E(6,1)) − (256*E(6,2))));
55 else
56 H(i,j) = H(j,i); % Hessian is symmetric
57 end
58 end
59 end
60

61 g(iter + 1)= g(iter) + step;
62 eta(iter + 1) = norm(Hb−H, inf);
63 Hb = H;
64 iter =iter + 1;
65

66 end
67

68 save('HessHat','H');

Code listing C.8: Second derivative for symmetric elements

1 function H = Emm(khat, i, di)
2

3 k = khat;
4

5 k(i) = khat(i) + di;
6 Ep = ErrP(k);
7

8 k(i) = khat(i) − di;
9 Em = ErrP(k);

10

11 En = ErrP(khat);
12

13 w1 = (Ep − (2 * En) + Em)/(di ˆ 2);
14

15 k(i) = khat(i) + (di / 2);
16 Ep = ErrP(k);
17

18 k(i) = khat(i) − (di / 2);
19 Em = ErrP(k);
20

21 w2 = (Ep − (2 * En) + Em)/((di / 2) ˆ 2);
22 H = ((4 * w2) − w1) / 3;
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Code listing C.9: Second derivative for asymmetric elements

1 function E = Emi nj(khat, i, j, di, dj)
2

3 k = khat;
4

5 k(j) = khat(j) + dj;
6

7 k(i) = khat(i) + di;
8 E(1,1) = ErrP(k);
9

10 k(i) = khat(i) − di;
11 E(2,1) = ErrP(k);
12

13 k(i) = khat(i) + (di / 2);
14 E(3,1) = ErrP(k);
15

16 k(i) = khat(i) − (di / 2);
17 E(4,1) = ErrP(k);
18

19 k(i) = khat(i) + (di / 4);
20 E(5,1) = ErrP(k);
21

22 k(i) = khat(i) − (di / 4);
23 E(6,1) = ErrP(k);
24

25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26

27 k(j) = khat(j) − dj;
28

29 k(i) = khat(i) + di;
30 E(1,2) = ErrP(k);
31

32 k(i) = khat(i) − di;
33 E(2,2) = ErrP(k);
34

35 k(i) = khat(i) + (di / 2);
36 E(3,2) = ErrP(k);
37

38 k(i) = khat(i) − (di / 2);
39 E(4,2) = ErrP(k);
40

41 k(i) = khat(i) + (di / 4);
42 E(5,2) = ErrP(k);
43

44 k(i) = khat(i) − (di / 4);
45 E(6,2) = ErrP(k);
46

47 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48

49 k(j) = khat(j) + (dj / 2);
50

51 k(i) = khat(i) + di;
52 E(1,3) = ErrP(k);
53

54 k(i) = khat(i) − di;
55 E(2,3) = ErrP(k);
56
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57 k(i) = khat(i) + (di / 2);
58 E(3,3) = ErrP(k);
59

60 k(i) = khat(i) − (di / 2);
61 E(4,3) = ErrP(k);
62

63 k(i) = khat(i) + (di / 4);
64 E(5,3) = ErrP(k);
65

66 k(i) = khat(i) − (di / 4);
67 E(6,3) = ErrP(k);
68

69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70

71 k(j) = khat(j) − (dj / 2);
72

73 k(i) = khat(i) + di;
74 E(1,4) = ErrP(k);
75

76 k(i) = khat(i) − di;
77 E(2,4) = ErrP(k);
78

79 k(i) = khat(i) + (di / 2);
80 E(3,4) = ErrP(k);
81

82 k(i) = khat(i) − (di / 2);
83 E(4,4) = ErrP(k);
84

85 k(i) = khat(i) + (di / 4);
86 E(5,4) = ErrP(k);
87

88 k(i) = khat(i) − (di / 4);
89 E(6,4) = ErrP(k);
90

91 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
92

93 k(j) = khat(j) + (dj / 4);
94

95 k(i) = khat(i) + di;
96 E(1,5) = ErrP(k);
97

98 k(i) = khat(i) − di;
99 E(2,5) = ErrP(k);

100

101 k(i) = khat(i) + (di / 2);
102 E(3,5) = ErrP(k);
103

104 k(i) = khat(i) − (di / 2);
105 E(4,5) = ErrP(k);
106

107 k(i) = khat(i) + (di / 4);
108 E(5,5) = ErrP(k);
109

110 k(i) = khat(i) − (di / 4);
111 E(6,5) = ErrP(k);
112

113 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
114

115 k(j) = khat(j) − (dj / 4);
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116

117 k(i) = khat(i) + di;
118 E(1,6) = ErrP(k);
119

120 k(i) = khat(i) − di;
121 E(2,6) = ErrP(k);
122

123 k(i) = khat(i) + (di / 2);
124 E(3,6) = ErrP(k);
125

126 k(i) = khat(i) − (di / 2);
127 E(4,6) = ErrP(k);
128

129 k(i) = khat(i) + (di / 4);
130 E(5,6) = ErrP(k);
131

132 k(i) = khat(i) − (di / 4);
133 E(6,6) = ErrP(k);

C.2.3 Confidence intervals and confidence regions

Code listing C.10: Preparation of matrices for generating confidence regions

1 function PlotConfidence(H, N, np, Ph, Eph, Conf, model)
2

3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
4 % Plot confidence regions for paramter estimation %
5 % H : Hessian Matrix for Covariance estimation %
6 % N : Number of experimental data points %
7 % np : Number of parameters %
8 % ph : Estimated parameters %
9 % Eph : Error residual for the estimated set of parameters %

10 % Conf : Confidence level %
11 % model: String with model name (used for placing labels) %
12 % (c)Hector De la Hoz Siegler %
13 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
14

15 Area = 0;
16 AvArea = [];
17

18 Wf = Ph;
19 Wr = [];
20 Wl = [];
21

22 for i=1:np
23 Wl = [Wl Wf];
24 Wr = [Wr; Wf'];
25 end
26

27 for k = 1:max(size(Conf))
28 A = ((N − np)/np) * (1/(2 * Eph * finv(1−Conf(k), np, N−np))) * H;
29 Ascale = Wl .* A .* Wr;
30 for i = 1:np
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31 for j = 1:np
32 if j > i
33 A22 = [Ascale(i,i) Ascale(i,j); Ascale(j,i) Ascale(j,j)];
34 [Areai] = Ellip2Plot (A22, [1 1], i, j, model);
35 if k == 1
36 Area = Area + Areai;
37 AvArea = [AvArea Areai];
38 end
39 end
40 end
41 end
42 end
43

44 [¬, Da] = eig(Ascale);
45 ev = diag(Da);
46 la = 1./ sqrt(ev);
47 MagConf = norm(la);
48

49 % Individual parameters confidence interval (Student's T distribution)
50 Ch = 2 * Eph * inv(H)/(N − np);
51 factor = tinv(1−(Conf(1)/2),N−np);
52 for k=1:np
53 ∆ = factor * (Ch(k,k))ˆ(0.5);
54 Pbound(k,1) = Ph(k) − ∆; % Lower bound
55 Pbound(k,2) = Ph(k) + ∆; % Upper bound
56 end
57

58 disp('Individual confidence limits for alpha =')
59 disp(Conf(1))
60 disp(' ')
61 disp(Pbound)
62

63 disp('Total area enclosed for confidence regions')
64 disp(' ')
65 disp(Area)
66

67 disp('Average area enclosed for confidence regions')
68 disp(' ')
69 disp(mean(AvArea))
70

71 Lema = ['Norm of semiaxes of the confidence hyperellipsoid, d = ', ...
72 num2str(np)];
73 disp(Lema)
74 disp(MagConf)

Code listing C.11: Generation of an ellipse from a symmetric 2x2 matrix

1 function [Area] = Ellip2Plot (K, Xo, i, j, model)
2

3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
4 % This function generates a plot of a 2 x 2 matrix %
5 % %
6 % The plot is centered around Xo %
7 % K is a 2x2 matrix %
8 % i,j, and model are used to label the axis of %
9 % the plot. (c) Hector De la Hoz Siegler %
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10 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
11

12 [V,D] = eig(K);
13 ev = diag(D);
14

15 figure(i*100 + j)
16 set(gcf, 'Position', [759 257 441 427])
17 hold on
18

19 if min(ev)> 0 % Matrix represents an ellipse
20

21 l = 1./sqrt(ev);
22 Area = l(1)*l(2)*pi();
23 W = V * 1/sqrt(D);
24

25 t = linspace(0,2*pi,1000);
26 % Zm = linspace(1000,1000,1000);
27

28 plot((Xo(1) + W(1,1) .* cos(t) + W(1,2) .* sin(t)), (Xo(2) ...
29 + W(2,1) .* cos(t) + W(2,2) .* sin(t)), '−k', 'LineWidth',2);
30

31 else % Confidence region is not an ellipse
32

33 af = num2str(K(1,1));
34 bf = num2str(K(2,1));
35 cf = num2str(K(2,2));
36 Xof1 = num2str(Xo(1));
37 Xof2 = num2str(Xo(2));
38

39 f = inline( [af '*(x −' Xof1 ')ˆ2 + 2*' bf '*(x −' ...
40 Xof1 ')*(y −' Xof2 ') + ' cf '*(y −' Xof2 ')ˆ2 − 1'],'x','y');
41

42 implot(f,[−1 3 −1 3],100)
43 Area = −1;
44 end
45

46 set(gca,'FontSize',18, 'FontName', 'Times')
47 LabelX = myLabel(model, i);
48 LabelY = myLabel(model, j);
49 xlabel(LabelX, 'FontName', 'Times', 'FontSize', 20)
50 ylabel(LabelY, 'FontName', 'Times', 'FontSize', 20)
51 axis equal
52 ylim([0.5 1.5])
53 hold off
54 axis equal
55 ylim([0 2])
56 xlim([0 2])
57 set(gca, 'OuterPosition', [0.065 0.12 0.97 0.9])
58 set(gca, 'Position', [0.2 0.2 0.75 0.75])
59

60

61 function axLabel = myLabel(MyModel, ix)
62

63 switch MyModel
64 case 'Final'
65 switch ix
66 case 1
67 axLabel = 'Y {x/s} / Yˆ* {x/s}';
68 case 2
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69 axLabel = 'Y {p/s} / Yˆ* {p/s}';
70 case 3
71 axLabel = 'Y {x/q} / Yˆ* {x/q}';
72 case 4
73 axLabel = 'k m / kˆ* m';
74 case 5
75 axLabel = '\mu m / \muˆ* m';
76 case 6
77 axLabel = 'K {s 2} / Kˆ* {s 2}';
78 case 7
79 axLabel = 'K {q} / Kˆ* {q}';
80 case 8
81 axLabel = '\rho m / \rhoˆ* m';
82 case 9
83 axLabel = 'K {s 1} / Kˆ* {s 1}';
84 case 10
85 axLabel = '\pi m / \piˆ* m';
86 case 11
87 axLabel = 'K {s 2}ˆ{\pi} / K {s 2}ˆ{\pi*}';
88 case 12
89 axLabel = 'Y {x/p} / Yˆ* {x/p}';
90 case 13
91 axLabel = 'K {i2} / Kˆ* {i2}';
92 case 14
93 axLabel = 'K {i1} / Kˆ* {i1}';
94 otherwise
95 axLabel = 'Check Model';
96 end
97 otherwise
98 axLabel = num2str(ix);
99 end

Code listing C.12: Generation of a plot from any implicit function

1 function implot(fun,rangexy,ngrid)
2

3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
4 % Implicit plot function − A.Jutan UWO 2−2−98 ajutan@julian.uwo.ca %
5 % %
6 % fun is 'inline' function f(x,y)=0 %
7 % rangexy =[xmin,xmax,ymin,ymax] %
8 % range over which x and y is ploted default(−2*pi,2*pi) %
9 % ngrid is the number of grid points used to calculate the plot, %

10 % Start with course grid (ngrid =20) and then use finer grid %
11 % default ngrid=50 %
12 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
13

14 if nargin == 1 ;% grid value and ranges not specified
15 rangexy=[−2*pi,2*pi,−2*pi,2*pi];
16 ngrid=50;
17 end
18

19 if nargin == 2; % grid value not specified
20 ngrid=50;
21 end
22

284



C.3. Determination of optimal feeding profiles to fed-batch cultures

23 % get 2−D grid for x and y
24 xm=linspace(rangexy(1),rangexy(2),ngrid);
25 ym=linspace(rangexy(3),rangexy(4),ngrid);
26 [x,y]=meshgrid(xm,ym);
27

28 % vectorize the inline function to handle vectors of x y
29 fvector=vectorize(fun);
30

31 %calculate with feval−this works if fvector is an m file too
32 fvalues=feval(fvector,x,y);
33

34 % plot single contour at f(x,y)=0, blue lines
35 contour(x,y,fvalues,[0,0],'b−');
36 xlabel('x');ylabel('y');
37 grid

C.3 Determination of optimal feeding profiles

to fed-batch cultures

Code listing C.13: Pattern search calling function

1 function [x,fval,exitflag,output] = OptFlow(x0, fm1, tm1, k)
2

3 % tm1: current culture time
4 % fm1: flowrate (per hour) as implemented up to time tm1
5 % k: current estimated value of model parameters
6

7 lb = zeros(length(x0),1);
8 ub = ones(length(x0),1);
9

10 % Optimizer options
11 options = psoptimset;
12 options = psoptimset(options,'InitialMeshSize', 0.1);
13 options = psoptimset(options,'PollMethod', 'MADSPositiveBasis2N');
14 options = psoptimset(options,'PollingOrder', 'Success');
15 options = psoptimset(options,'SearchMethod', @GPSPositiveBasisNp1);
16 options = psoptimset(options,'CompleteSearch', 'on');
17 options = psoptimset(options,'Display', 'iter');
18 options = psoptimset(options,'OutputFcns', { [] });
19 options = psoptimset(options,'PlotFcns', { @psplotbestf @psplotbestx });
20 options = psoptimset(options,'Vectorized', 'off');
21 options = psoptimset(options,'UseParallel', 'always');
22

23 [x,fval,exitflag,output] = ...
24 patternsearch(@(p)SolBatch(p,fm1,tm1,k),x0,[],[],[],[],lb,ub,[],options);
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Code listing C.14: Determination of culture productivity

1 function MyObj = SolBatch(p, fm1, tm1, k, varargin)
2

3 % p: normalized flow rate vector
4 % tm1: current culture time
5 % fm1: flowrate (per hour) as implemented up to time tm1
6 % k: current estimated value of model parameters
7

8 optargin = size(varargin,2);
9 if optargin == 1

10 PlotMe = varargin{1}; % Do plot Solution
11 LINEPLOT = '−k';
12 elseif optargin == 2
13 PlotMe = varargin{1};
14 LINEPLOT = varargin{2};
15 else
16 PlotMe = 0; % Do not plot Solution
17 end
18

19 Tcult = 192; % Scheduled culture time
20 Tmax = Tcult − tm1; % Remaining Culture time in hours
21 TimeStep = 2*Tmax/length(p);
22

23 fmin=zeros(length(p),1);
24 fmax=[0.5*ones(length(p)/2,1); 10*ones(length(p)/2,1)] ;
25 p = fmin + p.*(fmax − fmin);
26

27 % Initial Conditions for current batch
28 iniBiomass = 2;
29 IniCond = [0.1; % Glycine
30 20; % Glucose
31 (1 − 0.35 − 0.01)*iniBiomass; % Biomass
32 0.35*iniBiomass; % Oil
33 0.01*iniBiomass; % Cellular quota
34 0.01; % Past quota
35 0.72]; % Volume (L)
36 IniCond(5,1) = max(0,IniCond(5,1) − (IniCond(3,1) * k(3,1)));
37

38 SampleVol = 12.6; %Sample volume (estimated)
39

40 t = linspace(0,tm1+Tmax,tm1+Tmax+1)';
41 for i = 1:length(p)/2
42 f(TimeStep*(i−1)+1:(TimeStep)*i, 1) = p(i) * ones(TimeStep,1);
43 f(TimeStep*(i−1)+1:(TimeStep)*i, 2) = p((length(p)/2)+i) *...
44 ones(TimeStep,1);
45 f(TimeStep*(i−1)+1:(TimeStep)*i, 3) = p(i) * zeros(TimeStep,1);
46 f(TimeStep*(i−1)+1, 3) = SampleVol;
47 f(TimeStep*(i−1)+1+4, 3) = SampleVol;
48 f(TimeStep*(i−1)+1+8, 3) = SampleVol;
49 end
50 f(Tmax+1,:) = f(Tmax,:);
51

52 f = [fm1 ; f]; % Ensemble together previous and future flowrates
53

54 % Solve ODE system
55 options = odeset('RelTol', 2.3e−14);
56 [T, x] = ode45(@(t,x) FedBatch(t,x,k,f), t, IniCond, options);
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57

58

59 %% − Output Calculation
60 y(:,1) = x(:,3) + x(:,4) + x(:,5); % Biomass
61 y(:,2) = x(:,2); % Glucose
62 y(:,3) = (x(:,5) + (k(3,1) * x(:,3))) ./ y(:,1); % Nitrogen Quota
63 y(:,4) = x(:,4) ./ y(:,1); % Oil
64 y(:,5) = x(:,1); % Glycine
65

66

67 Poil = x(Tcult + 1, 4) / Tcult; % Oil productivity
68 Pbio = y(Tcult + 1, 1) / Tcult; % Biomass productivity
69

70 % Select which variable to optimize
71 MyObj = − Pbio;
72

73

74 %% − Plot subroutines
75

76 if PlotMe == 1
77

78 q = x(:,5) ./ (x(:,3) + x(:,4) +x(:,5));
79 r mu = k(5) * (q.*exp((−(k(14)*x(:,6)./T))) ./ (k(7) + q)) .* ...
80 (x(:,2) ./ (k(6) + x(:,2) + (((x(:,2)).ˆ2)/k(13)))) ;
81

82 figure(984);
83

84 subplot(2,3,1); hold on
85 title('Biomass Profile'); plot(T, y(:,1), LINEPLOT);
86 ylabel('TSS(g/L)'); hold off
87

88 subplot(2,3,2); hold on
89 title('Glycine Profile'); plot(T, y(:,5), LINEPLOT);
90 ylabel('Glycine(g/L)'); hold off
91

92 subplot(2,3,3); hold on
93 title('Glucose Profile'); plot(T, y(:,2), LINEPLOT);
94 ylabel('Glucose(g/L)'); hold off
95

96 subplot(2,3,4); hold on
97 title('Cell quota Profile'); plot(T, y(:,3), LINEPLOT);
98 ylabel('g of Nitrogen / g of biomass'); hold off
99

100 subplot(2,3,5); hold on
101 title('Oil Profile'); plot(T, y(:,4), LINEPLOT);
102 ylabel('g of oil / g of biomass'); hold off
103

104 subplot(2,3,6); hold on
105 title('Volume'); plot(T, 1000*x(:,7), LINEPLOT);
106 ylabel('mL'); hold off
107

108 figure(985); hold on
109 plot(T, r mu,LINEPLOT);
110 hold off
111 end
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Code listing C.15: Feeding rate and set points to implement in the culture

1 function [F1 F2] = Flow R10(p)
2

3 % Scheduled culture time in hours
4 Tmax = 192;
5

6 TimeStep = 2*Tmax/length(p);
7 fmin=zeros(length(p),1);
8 fmax=[0.5*ones(length(p)/2,1); 10*ones(length(p)/2,1)] ;
9

10 % Scale normalized flow to mL/h
11 p = fmin + p.*(fmax − fmin);
12

13 % Distribute flow on a per hour basis
14 for i = 1:length(p)/2
15 f(TimeStep*(i−1)+1:(TimeStep)*i, 1) = p(i) * ones(TimeStep,1);
16 f(TimeStep*(i−1)+1:(TimeStep)*i, 2) = p((length(p)/2)+i) * ...
17 ones(TimeStep,1);
18 f(TimeStep*(i−1)+1:(TimeStep)*i, 3) = p(i) * zeros(TimeStep,1);
19 end
20

21 % Nitrogen substrate flow rate
22 F1(:,2) = f(:,1); % Flow rate in mL/h
23 F1(:,1) = round(F1(:,2) / (1.700878103/60)); % Seconds pump is ON
24

25 % Carbon substrate flow rate
26 F2(:,4) = f(:,2); % flow rate in mL/h
27 F2(:,2) = 20; % Pump set point (%)
28 F2(1:100,2) = 10; % Pump set point (%)
29 F2(:,3) = 2.096666666666666e−03; % Pump flow rate at 10%
30 % Seconds pump must be ON
31 F2(:,1) = (round(F2(:,4) ./ F2(:,3))) ./ (F2(:,2)/10);
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C.4. Cell count

C.4 Cell count

Code listing C.16: Data reading from .Z2 file

1 function [dilF,sVol,binDiam,binHeight,TL,TU,TotalCount,aboveCount]...
2 = CellCounter(filename)
3

4 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
5 % filename = Name of '=#Z2' file %
6 % dilF = Dilution factor %
7 % sVol = Sample volume (most of the time 500 uL) %
8 % binDiam = Diameter bins %
9 % binHeight = Height bins %

10 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
11

12 %% open the file for reading
13 fid = fopen(filename);
14

15 %% Get first strings
16 aWord = fscanf(fid,'%s \n', 1) ;
17

18 %% Read number of bins
19 while ¬(strcmp( aWord,'nBins=' ) );
20 aWord = fscanf( fid,'%s', 1 ) ;
21 end
22 nBins = fscanf(fid,'%d',1 );
23 binHeight = zeros(nBins,1);
24 binDiam = zeros(nBins,1);
25

26 %% Read dilution factor
27 while ¬( strcmp( aWord,'DilF=' ) );
28 aWord = fscanf( fid,'%s', 1 ) ;
29 end
30 dilF = fscanf(fid,'%d',1 );
31

32 %% Read Sample Volume
33 while ¬(strcmp( aWord,'AnalyticVol='));
34 aWord = fscanf( fid,'%s', 1 ) ;
35 end
36 sVol = fscanf(fid,'%d',1 );
37

38 %% Read Total Count and limits
39 while ( length(aWord) < 15 );
40 aWord = fscanf( fid,'%s', 1 ) ;
41 end
42

43 while ((strcmp(aWord(1:6),'ThCnts')) | |(strcmp(aWord(2:7),'ThCnts')));
44 v = strread(aWord,'%s','delimiter', ',');
45 w = strread(char(v(1,1)), '%s', 'delimiter', '=');
46 TL = w(2,1);
47 TotalCount = v(2,1);
48 TU = v(3,1);
49 aboveCount = v(4,1);
50 aWord = fscanf( fid,'%s', 1 );
51 end
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52

53 %% Read bin diameters
54 while ¬( strcmp( aWord,'[#Bindiam]' ) );
55 aWord = fscanf( fid,'%s', 1 ) ;
56 end
57 for i = 1 : nBins+1
58 binDiam(i,1) = fscanf(fid,'%g', 1);
59 end
60

61 %% Read bin heights
62 aWord = fscanf( fid,'%s \n', 1) ;
63 while ¬( strcmp( aWord,'[#Binheight]' ) );
64 aWord = fscanf( fid,'%s', 1 ) ;
65 end
66 for i = 1 : nBins+1
67 binHeight(i,1) = fscanf(fid,'%g', 1);
68 end
69

70 %% Close the file
71 fclose(fid);
72

73 %% Apply dilution factor to bin heights
74 binHeight = binHeight * dilF *(1000 / sVol);
75 TotalCount = str2double(cell2mat(TotalCount)) * dilF *(1000 / sVol);
76 aboveCount = str2double(cell2mat(aboveCount)) * dilF *(1000 / sVol);
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D
Routines and functions for OPC in

Visual Basic

Code listing D.1: Main routine for the OPC client

1 Attribute VB Name = "General"
2 Option Explicit
3

4 Public mNode As Node
5 Public mItem As ListItem
6 Public fMainForm As WSform
7 Public m myForms() As frmSubstrate1
8

9 Global ServerAddress As String, ServerName As String
10 Global ItemsGroup1() As String
11 Global gr1Values() As Variant
12 Global gr1Times() As Date
13 Global gr1Qualities() As Long
14 Global gr1ServerID() As Long
15 Global UpdateRate As Long
16 Global ItemsGroup3() As String, ItemsGroup2() As String
17

18 Global db As Database
19 Global FlagWrite As Integer
20 Global boolSaveOK As Boolean
21

22 Dim Tags() As String
23 Dim CountTags() As Integer



24 Dim OPCDA As New OPCDataAccess
25

26 Sub Main()
27

28 frmSplash.Show
29 Set fMainForm = New WSform
30 Load fMainForm
31 Unload frmSplash
32 fMainForm.Show
33

34 End Sub
35

36 Function ShowServers(IPServer As String)
37

38 Dim dummyServer As OPCServer
39 Dim Servers As Variant
40 Dim cntServers As Integer
41

42 'create a dummy server object
43 Set dummyServer = New OPCServer
44

45 'returns all available servers
46 Servers = dummyServer.GetOPCServers(IPServer)
47

48 OpcExp.ServerList.Clear
49

50 'display server names
51 For cntServers = LBound(Servers) To UBound(Servers)
52 OpcExp.ServerList.AddItem Servers(cntServers)
53 Next cntServers
54

55 End Function
56

57

58 Function ConnectServer(ServerName As String, ServerIP As String)
59

60 Set OPCDA = New OPCDataAccess
61 If OPCDA.Connect(ServerName, ServerIP, Tags, CountTags) = False Then
62 MsgBox "Connect Error"
63 Exit Function
64 End If
65

66 End Function
67

68 Function DisConnectServer()
69

70 Set OPCDA = Nothing
71

72 End Function
73

74 Sub ShowTags(NodeID As Integer)
75

76 Dim ItmX As ListItem
77 Dim LimSup As Integer, LimInf As Integer, i As Integer
78

79 LimInf = CountTags(NodeID)
80

81 If CountTags(NodeID + 1) <> 0 Then
82 LimSup = CountTags(NodeID + 1)
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83 Else
84 LimSup = CountTags(NodeID + 2)
85 End If
86

87 OpcExp.LvwTags.ColumnHeaders.Item(1).Text = "Tags in "
88 & CStr(OpcExp.TreeView1.Nodes.Item(NodeID).FullPath)
89

90 For i = LimInf To LimSup − 1
91 Set ItmX = OpcExp.LvwTags.ListItems.Add(, , Tags(1, i))
92 ItmX.Tag = Tags(2, i)
93 Next i
94

95 End Sub
96

97 Sub InfoTag(TagID As Integer)
98

99 OpcExp.ReadOption(CInt(Tags(3, TagID)) − 1).Value = True
100 OpcExp.chkWrite.Value = CInt(Tags(4, TagID))
101

102 End Sub
103

104 Sub ModifyTagsMatrix(TagID As Integer, Index As Integer, Opt As Integer)
105

106 Select Case Opt
107 Case 1 'Modify read properties
108 Tags(3, TagID) = Index + 1
109 Case 2 'Modify write properties
110 Tags(4, TagID) = Index
111 End Select
112

113

114 End Sub
115

116 Sub OrderGroups()
117

118 Dim i As Integer, j As Integer
119 Dim i1 As Integer, i2 As Integer, i3 As Integer
120

121 i1 = 1
122 i2 = 1
123 i3 = 1
124

125 ReDim ItemsGroup1(1 To 4, 1 To 1) As String
126 ReDim ItemsGroup2(1 To 4, 1 To 1) As String
127 ReDim ItemsGroup3(1 To 4, 1 To 1) As String
128

129 For i = 1 To UBound(Tags, 2)
130 If Tags(3, i) = CStr(1) Then 'Group 1
131 For j = 1 To 4
132 ItemsGroup1(j, i1) = Tags(j, i)
133 Next j
134 i1 = i1 + 1
135 ReDim Preserve ItemsGroup1(1 To 4, 1 To i1) As String
136

137 ElseIf Tags(3, i) = CStr(2) Then 'Group 2
138 For j = 1 To 4
139 ItemsGroup2(j, i2) = Tags(j, i)
140 Next j
141 i2 = i2 + 1
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142 ReDim Preserve ItemsGroup2(1 To 4, 1 To i2) As String
143 End If
144

145 If Tags(4, i) = CStr(1) Then 'Group 3
146 For j = 1 To 4
147 ItemsGroup3(j, i3) = Tags(j, i)
148 Next j
149 i3 = i3 + 1
150 ReDim Preserve ItemsGroup3(1 To 4, 1 To i3) As String
151 End If
152

153 Next i
154

155 If i1 > 1 Then ReDim Preserve ItemsGroup1(1 To 4, 1 To i1 − 1) As String
156 If i2 > 1 Then ReDim Preserve ItemsGroup2(1 To 4, 1 To i2 − 1) As String
157 If i3 > 1 Then ReDim Preserve ItemsGroup3(1 To 4, 1 To i3 − 1) As String
158

159 End Sub
160

161 Sub CreateReadGroup()
162

163 UpdateRate = Val(frmOPCws.txtUpRate.Text)
164 OPCDA.AddGroup UpdateRate
165

166 End Sub
167

168 Sub DeactivateGroup()
169

170 OPCDA.StopGroupRead 'UpdateRate
171

172 End Sub
173

174 Sub ActivateGroup()
175

176 OPCDA.ReStartGroupRead 'UpdateRate
177

178 End Sub
179

180 Sub AsynWrite(xNumber As Integer, xHandles() As Long, xValues() As Variant)
181

182 OPCDA.ASynchronWrite xNumber, xHandles, xValues
183

184 End Sub

Code listing D.2: Class definition for OPC data access

1 VERSION 1.0 CLASS
2 BEGIN
3 MultiUse = −1 'True
4 Persistable = 0 'NotPersistable
5 DataBindingBehavior = 0 'vbNone
6 DataSourceBehavior = 0 'vbNone
7 MTSTransactionMode = 0 'NotAnMTSObject
8 END
9 Attribute VB Name = "OPCDataAccess"

10 Attribute VB GlobalNameSpace = False
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11 Attribute VB Creatable = True
12 Attribute VB PredeclaredId = False
13 Attribute VB Exposed = False
14 Option Explicit
15

16 'OPC arrays indices must start with 1
17 Option Base 1
18

19 'OPC Server Object (Events optional)
20 Dim WithEvents MyServer As OPCServer
21 Attribute MyServer.VB VarHelpID = −1
22

23 'OPC Group Collection (Events optional)
24 Dim WithEvents MyGroups As OPCGroups
25 Attribute MyGroups.VB VarHelpID = −1
26

27 'OPC Group Object
28 Dim WithEvents MyGroup As OPCGroup
29 Attribute MyGroup.VB VarHelpID = −1
30

31 Dim WithEvents GrpSyncr As OPCGroup 'Read sync
32 Attribute GrpSyncr.VB VarHelpID = −1
33 Dim WithEvents GrpAsync As OPCGroup 'Read async
34 Attribute GrpAsync.VB VarHelpID = −1
35 Dim WithEvents GrpWrite As OPCGroup 'Write setpoints
36 Attribute GrpWrite.VB VarHelpID = −1
37

38 Dim MyBrowser As OPCBrowser
39

40 Dim nrItems As Integer
41 Dim MyItems As OPCItems 'OPC Item Collection Object
42 Dim MyItem As OPCItem 'OPC Item Object
43 Dim ItemsID() As String 'fully qualified items
44

45 Dim ClientHandles() As Long
46

47 Dim ServerHandles() As Long 'must be a dynamic array
48 Dim ServerErrors() As Long 'must be a dynamic array
49

50 Dim TransactionID As Long
51 Dim CancelID As Long
52

53 Function Connect(ServerName As String, ServerNode As String,
54 TagsMatrix() As String, NodeCount() As Integer)
55

56 Dim vName As Variant, vName1 As Variant
57 Dim FQID As Variant, vName2 As Variant
58 Dim i As Integer, j As Integer, k As Integer
59

60 On Error GoTo ConnectError
61

62 Set MyServer = New OPCServer
63 MyServer.Connect ServerName, ServerNode 'connection is risky
64 Connect = True
65

66 Set MyBrowser = MyServer.CreateBrowser
67 MyBrowser.ShowBranches 'show the branches
68

69 i = 0
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70 j = 0
71 k = 0
72

73 ReDim NodeCount(1 To 1) As Integer
74

75 'TagMatrix stores information of all the tags in the current server
76 ReDim TagsMatrix(1 To 4, 1 To 1) As String
77

78 For Each vName In MyBrowser
79

80 Set mNode = OpcExp.TreeView1.Nodes.Add(, , , vName)
81 i = i + 1
82 j = j + 1
83 mNode.Tag = j
84 mNode.Expanded = True
85 MyBrowser.MoveDown vName
86 MyBrowser.ShowBranches
87

88 For Each vName1 In MyBrowser
89

90 Set mNode = OpcExp.TreeView1.Nodes.Add(i, tvwChild, , vName1)
91 j = j + 1
92 mNode.Tag = j
93

94 ReDim Preserve NodeCount(1 To j) As Integer
95 NodeCount(j) = k + 1
96

97 MyBrowser.MoveDown vName1
98 MyBrowser.ShowLeafs
99

100 For Each vName2 In MyBrowser
101 FQID = MyBrowser.GetItemID(vName2)
102 k = k + 1
103 TagsMatrix(1, k) = vName2
104 TagsMatrix(2, k) = FQID
105 TagsMatrix(3, k) = "3"
106 TagsMatrix(4, k) = "0"
107 ReDim Preserve TagsMatrix(4, UBound(TagsMatrix, 2) + 1)
108 As String
109 Next vName2
110

111 MyBrowser.MoveUp
112

113 Next vName1
114

115 MyBrowser.MoveUp
116

117 Next vName
118

119 ReDim Preserve NodeCount(1 To j + 1) As Integer
120 NodeCount(j) = k
121

122 Exit Function
123

124 ConnectError:
125 MsgBox Err.Number & ": " & Err.Description
126

127 Err.Clear
128 Connect = False
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129

130 End Function
131

132 Function AvlbTags(TagsMatrix() As String)
133

134 Dim FQID As Variant, vName As Variant
135 Dim vName1 As Variant, vName2 As Variant
136 Dim k As Integer
137

138 MyBrowser.ShowBranches 'show the branches
139 k = 0
140

141 For Each vName In MyBrowser
142

143 MyBrowser.MoveDown vName
144 MyBrowser.ShowBranches
145

146 For Each vName1 In MyBrowser
147

148 MyBrowser.MoveDown vName1
149 MyBrowser.ShowLeafs
150

151 For Each vName2 In MyBrowser
152

153 FQID = MyBrowser.GetItemID(vName2)
154 k = k + 1
155 TagsMatrix(k, 1) = vName2
156 TagsMatrix(k, 2) = FQID
157 TagsMatrix(k, 3) = "3"
158 TagsMatrix(k, 4) = "0"
159

160 Next vName2
161

162 MyBrowser.MoveUp
163

164 Next vName1
165

166 MyBrowser.MoveUp
167

168 Next vName
169

170 End Function
171

172 Function AddGroup(UpdateRate As Long)
173

174 Set MyGroups = MyServer.OPCGroups 'create groups collection
175

176 MyGroups.DefaultGroupUpdateRate = UpdateRate
177

178 'add group, name private
179 Set GrpAsync = MyGroups.Add("GrpAsyncRead")
180

181 'define the OPCItems of Group
182 Set MyItems = GrpAsync.OPCItems
183

184 Dim i As Integer
185 Dim x As Integer
186 Dim FQItemIDs() As String
187
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188 nrItems = UBound(ItemsGroup1, 1)
189

190 If nrItems = 0 Then
191 MsgBox "No Items for the Reading Group"
192 Exit Function
193 End If
194

195 ReDim FQItemIDs(1 To nrItems) As String
196 ReDim ClientHandles(1 To nrItems) As Long
197

198 ReDim gr1ServerID(1 To nrItems) As Long
199 ReDim gr1Values(1 To nrItems) As Variant
200 ReDim gr1Times(1 To nrItems) As Date
201 ReDim gr1Qualities(1 To nrItems) As Long
202

203

204 For i = 1 To nrItems
205 FQItemIDs(i) = ItemsGroup1(i, 2)
206 ClientHandles(i) = 100 + i
207 Next i
208

209 MyItems.AddItems nrItems, FQItemIDs, ClientHandles,
210 ServerHandles, ServerErrors
211

212 For i = 1 To nrItems
213

214 frmOPCws.LvwRead.ListItems.Item(i).SubItems(5) = ServerHandles(i)
215 frmOPCws.LvwRead.ListItems.Item(i).SubItems(6) = ClientHandles(i)
216 gr1ServerID(i) = ServerHandles(i)
217

218 Next i
219

220 GrpAsync.ClientHandle = 1
221 GrpAsync.IsActive = True
222 GrpAsync.IsSubscribed = True
223

224 End Function
225

226 Private Sub GrpAsync DataChange(ByVal TransID As Long,
227 ByVal nrItems As Long, ClntHndls() As Long, ItemValues() As Variant,
228 Qualities() As Long, TimeStamps() As Date)
229

230 Dim cntItems As Integer
231

232 On Error GoTo ErrorHndl
233

234 For cntItems = LBound(ClntHndls) To UBound(ClntHndls) ' index 1..n
235

236 frmOPCws.LvwRead.ListItems.Item(ClntHndls(cntItems) − 100)
237 .SubItems(2) = ItemValues(cntItems)
238 frmOPCws.LvwRead.ListItems.Item(ClntHndls(cntItems) − 100)
239 .SubItems(4) = DateAdd("h", 0, TimeStamps(cntItems))
240 frmOPCws.LvwRead.ListItems.Item(ClntHndls(cntItems) − 100)
241 .SubItems(3) = Qualities(cntItems)
242 gr1Values(ClntHndls(cntItems) − 100) = ItemValues(cntItems)
243 gr1Times(ClntHndls(cntItems) − 100) =
244 DateAdd("h", 0, TimeStamps(cntItems))
245 gr1Qualities(ClntHndls(cntItems) − 100) = Qualities(cntItems)
246
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247 Next cntItems
248

249 Exit Sub
250

251 ErrorHndl:
252 Select Case Err.Number
253 Case 13 ' Error from the OPC Server
254 If Left(CStr(ItemValues(cntItems)), 5) = "Error" Then
255 Dim ErrCode As String
256

257 ErrCode = Hex(CLng(Right(CStr(ItemValues(cntItems)), 11)))
258

259 MsgBox "The OPC server has reported an error" & vbCr & vbCr
260 & "ClientID of error variable: " & ClntHndls(cntItems)
261 & vbCr & "Error Code:" & ErrCode & vbCr & vbCr &
262 "Check OPC DA Handbook for reference", vbExclamation
263 End If
264 Resume Next
265 Case Else
266 MsgBox Err.Number & ": " & Err.Description, vbExclamation
267 End Select
268

269 End Sub
270

271 Private Sub MyServer ServerShutDown(ByVal reason As String)
272

273 MsgBox "my OPC Server " & MyServer.ServerName & " quit"
274

275 End Sub
276

277 Sub ServerShutDown()
278

279 Dim dummyServer As OPCServer
280 Dim Servers As Variant 'this is an array of strings
281 Dim cntServers As Integer
282

283 Set MyGroup = Nothing 'creates a dummy server object
284 Set MyGroups = Nothing 'returns all available servers
285 Set MyServer = Nothing
286

287 End Sub
288

289 Sub StopGroupRead()
290

291 GrpAsync.IsSubscribed = False
292 GrpAsync.IsActive = False
293

294 End Sub
295

296 Sub ReStartGroupRead()
297

298 GrpAsync.IsActive = True
299 GrpAsync.IsSubscribed = True
300

301 End Sub
302

303 Function ASynchronWrite(x As Integer, ServerHandle() As Long,
304 Value() As Variant)
305 'x = How many tags to write in current transaction
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306 'ServerHandle() = vector with the serverhandles of items to write
307 'Value() = vector with the values to be written
308

309 'passing the value to be written
310 GrpAsync.AsyncWrite x, ServerHandle, Value, ServerErrors,
311 TransactionID, CancelID
312

313 End Function
314

315 Private Sub GrpAsync AsyncWriteComplete(ByVal TransactionID As Long,
316 ByVal NumItems As Long, ClientHandles() As Long, Errors() As Long)
317

318 ' When FlagWrite is 0 a message of completion is shown
319 If FlagWrite = 0 Then
320 MsgBox ("Async Write Complete")
321 End If
322

323 End Sub

Code listing D.3: Functions for saving OPC readings in historian database

1 Attribute VB Name = "DataBaseOPC"
2 Option Explicit
3

4 Private Declare Function Beep Lib "kernel32"
5 (ByVal dwFreq As Long, ByVal dwDuration As Long) As Long
6

7 Dim HistorianTitle As String
8 Dim T As String, TabName As String
9 Dim Response As String

10

11 Sub doBeepNow()
12 Beep 500, 100
13 End Sub
14

15 Sub OPCCreateDB()
16

17 Dim i As Integer
18

19 On Error GoTo DialogCancel
20

21 With fMainForm.dlgCommonDialog
22 .CancelError = True
23 .FileName = "*.mdb"
24 .DialogTitle = "Create a New Database"
25 .Filter = "Access Database File(*.mdb)|*.mdb"
26 .InitDir = "c:\DataOPC\ "
27 .ShowOpen
28 T = Dir("C:\DataOPC\ " & .FileTitle)
29 If Len(T) <> 0 Then
30 Response = MsgBox("File already exists, erase?",
31 vbQuestion + vbYesNo, "File Already Exists")
32 If Response = vbYes Then
33 Kill .FileName
34 End If
35
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36 If Response = vbNo Then
37 MsgBox "Operation cancelled"
38 Exit Sub
39 End If
40 End If
41 HistorianTitle = .FileName
42 End With
43

44 'Create the database
45 Set db = DBEngine(0).CreateDatabase(HistorianTitle,
46 dbLangGeneral, dbVersion30)
47

48 'Define a variable as a tabledef object
49 Dim TblDef As TableDef
50

51 Set TblDef = db.CreateTableDef("MasterTable")
52 'Create fields within the table
53 With TblDef
54 .Fields.Append .CreateField("Variable", dbText, 50)
55 .Fields.Append .CreateField("FQID", dbText, 50)
56 .Fields.Append .CreateField("ServerID", dbLong)
57 .Fields.Append .CreateField("ClientID", dbLong)
58 .Fields.Append .CreateField("TableName", dbText, 10)
59 db.TableDefs.Append TblDef 'Append the table to the database
60 End With
61

62 For i = 1 To UBound(ItemsGroup1, 1)
63 'Create table in the database
64 TabName = "Table10" + CStr(i)
65 Set TblDef = db.CreateTableDef(TabName)
66 'Create fields within the table
67 With TblDef
68 .Fields.Append .CreateField("TimeStamp", dbDate)
69 .Fields.Append .CreateField("Value", dbSingle)
70 .Fields.Append .CreateField("Quality", dbSingle)
71 db.TableDefs.Append TblDef 'Append the table to the database
72 End With
73 Next i
74

75 Dim rsRecord As Variant
76 Set rsRecord = db.OpenRecordset("MasterTable", dbOpenDynaset)
77

78 For i = 1 To UBound(ItemsGroup1, 1)
79 With rsRecord
80 .AddNew
81 !Variable = ItemsGroup1(i, 1)
82 !FQID = ItemsGroup1(i, 2)
83 !ServerID = gr1ServerID(i)
84 !ClientID = 100 + i
85 !TableName = "Table10" + CStr(i)
86 .Update
87 .Bookmark = .LastModified
88 End With
89 Next i
90

91 rsRecord.Close
92 Set rsRecord = Nothing
93 Exit Sub
94
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95 DialogCancel:
96 MsgBox Err.Number & ": " & Err.Description
97 MsgBox "Operation cancelled"
98

99 End Sub
100

101 Sub SaveOPCDataDB()
102 Dim rsRecord As Variant
103 Dim i As Integer
104

105 For i = 1 To UBound(ItemsGroup1, 1)
106 TabName = "Table10" + CStr(i)
107 Set rsRecord = db.OpenRecordset(TabName, dbOpenDynaset)
108 With rsRecord
109 .AddNew
110 !TimeStamp = gr1Times(i)
111 !Value = gr1Values(i)
112 !Quality = gr1Qualities(i)
113 .Update
114 .Bookmark = .LastModified
115 End With
116 rsRecord.Close
117 Next i
118

119 Set rsRecord = Nothing
120 Beep 500, 100
121

122 End Sub

Code listing D.4: General functions for handling client files

1 Attribute VB Name = "FileSave"
2 Option Explicit
3

4 Dim objXML As MSXML2.DOMDocument
5 Dim strXML As String
6

7 Type rcdSetup
8 rcItemsGroup1(1 To 20, 1 To 4) As String * 50
9 rcServerAddress As String

10 rcServerName As String
11 rcUpdateRate As String
12 rcItems As Integer
13 End Type
14

15 Sub LoadXML(xmlFileName As String)
16

17 Dim objElem As MSXML2.IXMLDOMElement
18 Dim xmlItems As MSXML2.IXMLDOMNodeList
19 Dim ItemCount As Integer, i As Integer
20

21 Set objXML = New MSXML2.DOMDocument
22

23 'Open XML file − to replace by filename from common dialog
24 objXML.Load (xmlFileName)
25
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26 'Get HOST IP
27 Set objElem = objXML.selectSingleNode("Session/Hostname")
28 If Not objElem Is Nothing Then
29 ServerAddress = objElem.getAttribute("RemoteHost")
30 End If
31

32 'Get server name
33 Set objElem = objXML.selectSingleNode("Session/Hostname/Server")
34 If Not objElem Is Nothing Then
35 ServerName = objElem.getAttribute("Name")
36 End If
37

38

39 'Get Update rate
40 Set objElem = objXML.selectSingleNode("Session/Hostname/Server/Group")
41 If Not objElem Is Nothing Then
42 UpdateRate = Val(objElem.getAttribute("ReqUpdateRate"))
43 ItemCount = Val(objElem.getAttribute("ItemCount"))
44 End If
45

46 ReDim ItemsGroup1(1 To ItemCount, 1 To 4) As String
47

48 'Get item list
49 Set xmlItems = objXML.selectNodes("Session/Hostname/Server/Group/Item")
50 i = 1
51 For Each objElem In xmlItems
52 ItemsGroup1(i, 2) = objElem.Text
53 ItemsGroup1(i, 1) = objElem.Text
54 i = i + 1
55 Next
56

57 End Sub
58

59 Sub Save File(FileName As String)
60

61 Dim FileNum As Integer
62 Dim RecLength As Long
63 Dim CurrentFile As rcdSetup
64 Dim i As Integer, j As Integer
65

66 RecLength = LenB(CurrentFile)
67 FileNum = FreeFile
68 Open FileName For Random As FileNum Len = RecLength
69

70 For i = 1 To UBound(ItemsGroup1, 1)
71 For j = 1 To 4
72 CurrentFile.rcItemsGroup1(i, j) = ItemsGroup1(i, j)
73 Next j
74 Next i
75

76 CurrentFile.rcServerAddress = ServerAddress
77 CurrentFile.rcServerName = ServerName
78 CurrentFile.rcUpdateRate = UpdateRate
79 CurrentFile.rcItems = UBound(ItemsGroup1, 1)
80

81 Put #FileNum, , CurrentFile
82

83 End Sub
84
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85 Sub Open File(FileName As String)
86

87 Dim FileNum As Integer, RecLength As Long
88 Dim CurrentFile As rcdSetup
89

90 Dim j As Integer, i As Integer
91

92 On Error GoTo Error Handler
93

94 RecLength = LenB(CurrentFile) ' 16636 V10
95 FileNum = FreeFile
96 Open FileName For Random As FileNum Len = RecLength
97 Get #FileNum, , CurrentFile
98 ReDim ItemsGroup1(1 To CurrentFile.rcItems, 1 To 4) As String
99

100 For i = 1 To CurrentFile.rcItems
101 For j = 1 To 4
102 ItemsGroup1(i, j) = CurrentFile.rcItemsGroup1(i, j)
103 Next j
104 Next i
105

106 ServerAddress = CurrentFile.rcServerAddress
107 ServerName = CurrentFile.rcServerName
108 UpdateRate = CurrentFile.rcUpdateRate
109

110 Exit Sub
111 Error Handler:
112

113 End Sub
114

115 Sub SaveCurrentData(SubsA As String, pH As String, pO2 As String,
116 Temp As String, Stirr As String, O2 As String, Glycine As String,
117 Acid As String, Base As String, UpdateTime As String,
118 sFileName As String)
119

120 Dim hFile As Long
121 hFile = FreeFile
122 Open sFileName For Output As #hFile
123 Print #hFile, "SubsA=" & SubsA
124 Print #hFile, "pH=" & pH
125 Print #hFile, "pO2=" & pO2
126 Print #hFile, "Temp=" & Temp
127 Print #hFile, "Stirr=" & Stirr
128 Print #hFile, "O2=" & O2
129 Print #hFile, "Glycine=" & Glycine
130 Print #hFile, "Acid=" & Acid
131 Print #hFile, "Base=" & Base
132 Print #hFile, "Update=" & UpdateTime
133 Close #hFile
134

135 End Sub
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Code listing D.5: Interface between Matlab and the OPC client

1 Attribute VB Name = "MatlabConnect"
2 Option Explicit
3 Option Base 1
4

5 Dim MatLab As Object
6 Dim AppMatlab As MLApp.MLApp
7

8 Public Sub Call MFile(MatLabDir As String,
9 MatlabFunc As String, TerminalSource As Integer)

10

11 Dim i As Integer
12 Dim Result As String
13 Dim aReal(1, 1) As Double
14 Dim tempImag(1, 1) As Double
15 Dim MatLabString As String
16 Dim xHandles() As Long
17 Dim xValues() As Variant, Counter As Integer
18

19 Set MatLab = CreateObject("Matlab.Application")
20

21 MatLabString = MatLabDir
22 MatLabString = "cd '" + MatLabString + "'"
23 Result = MatLab.Execute(MatLabString)
24

25 i = m myForms(TerminalSource).Tag
26

27 For i = 1 To m myForms(TerminalSource).LvwMatlab.ListItems.Count
28 aReal(1, 1) = gr1Values(m myForms(TerminalSource).
29 LvwMatlab.ListItems.Item(i).Tag)
30 Call MatLab.PutFullMatrix(m myForms(TerminalSource).
31 LvwMatlab.ListItems.Item(i).Text, "base", aReal, tempImag)
32 Next i
33

34 'Current counter value
35 aReal(1, 1) = CDbl(m myForms(TerminalSource).Label11.Caption)
36 Call MatLab.PutFullMatrix(m myForms(TerminalSource).Text2.Text,
37 "base", aReal, tempImag)
38

39 MatLabString = MatlabFunc
40 Result = MatLab.Execute(MatLabString)
41

42 ReDim xValues(1 To m myForms(TerminalSource).LvwSP.ListItems.Count)
43 As Variant
44 ReDim xHandles(1 To m myForms(TerminalSource).LvwSP.ListItems.Count)
45 As Long
46

47 For i = 1 To m myForms(TerminalSource).LvwSP.ListItems.Count
48 Call MatLab.GetFullMatrix(m myForms(TerminalSource).
49 LvwSP.ListItems.Item(i).Text, "base", aReal, tempImag)
50

51 'assign aReal to some variable
52 xValues(i) = aReal(1, 1)
53 '−−> Get serverhandle
54 xHandles(i) = gr1ServerID(m myForms(TerminalSource).
55 LvwSP.ListItems.Item(i).Tag)
56 Counter = Counter + 1
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57 Next i
58

59 Call MatLab.GetFullMatrix(m myForms(TerminalSource).Text3.Text,
60 "base", aReal, tempImag)
61 m myForms(TerminalSource).Label20.Caption = CStr(aReal(1, 1))
62

63 Call MatLab.GetFullMatrix(m myForms(TerminalSource).Text4.Text,
64 "base", aReal, tempImag)
65 m myForms(TerminalSource).Label22.Caption = CStr(aReal(1, 1))
66 m myForms(TerminalSource).timePump.Enabled = True
67 FlagWrite = 1
68 Call AsynWrite(Counter, xHandles, xValues)
69

70 End Sub
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