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Impact of Manual Versus Automatic Transfer
Switching on the Reliability Levels

of an Industrial Plant
Imran K. Khan, Jiechun Zheng, Don O. Koval, Fellow, IEEE, and Venkata Dinavahi, Member, IEEE

Abstract—Detailed reliability modeling and analysis of indus-
trial plants provides an estimate of the frequency and duration of
load point interruptions. The duration of repair and switching ac-
tivities necessary to restore a unique power system configuration
to a normal operating state from an outage state has a significant
impact on the power system reliability levels of industrial power
systems. This paper presents and discusses the significant varia-
tions in the frequency and duration of load point interruptions at
an industrial plant due to manual and automatic switching activ-
ities. Three case studies with different percentages of open- and
short-circuit failure modes of circuit breakers and fuses will also be
presented and discussed for both manual and automatic switching
restoration activities.

Index Terms—Automatic, industrial plant, manual, reliability,
switching, transfer.

I. INTRODUCTION

I N any industrial plant a very high degree of reliability is re-
quired. The complexity of the modern power systems, the

dependence of society upon them, and the large investment costs
required has lead to quantitative reliability analysis of power
systems. Quantitative evaluation and design of reliable electrical
industrial power systems is important due to the high costs as-
sociated with power equipment outages and curtailed industrial
processes. In this paper the Zone Branch methodology [1] is
used for reliability evaluation. The methodology can readily be
used to evaluate the impact of restoration and switching activi-
ties and the impact of the failure of protection schemes at indi-
vidual load points.

A Zone Branch single-line diagram is drawn from a single-
line schematic of an industrial plant. The reliability evaluation
is carried out for each load point using the direct path Zone
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Branch method [1]. For this paper the equipment reliability data
were obtained from IEEE Standards 493–1997 (i.e., IEEE Gold
Book) [2].

II. SUMMARY OF ZONE BRANCH CONCEPTS

The basic element in graphical or digital representation of an
industrial power system feeder circuit is a link, i.e., a homoge-
neous connection between any two nodes or buses in a power
system configuration. A link may be a piece of electrical equip-
ment connecting two points in the circuit such as transformer or
regulator, or a length of overhead line or cable composed of the
same material over its entire length.

Protective equipment is normally installed at the beginning of
a link or branch or feeder section in order to protect proceeding
equipment from faults within that link or branch or feeder sec-
tion. Some of the basic protective equipment used in industrial
power distribution systems are fuses, reclosers, sectionalizers,
breakers and relays, and automatic and manual isolating or dis-
connecting switches [2], [7], [9].

In order to evaluate the protection coordination and reliability
characteristics of a given circuit, it is necessary to divide a cir-
cuit into protective zones. Essentially, a protective zone is a part
of an industrial distribution feeder circuit that can isolate or de-
tach itself automatically or manually from the remaining cir-
cuit if a permanent fault occurs in any of its links. Evaluation
of protection equipment characteristics establishes whether the
protective equipment can isolate faults in the branches of the af-
fected circuit from the remaining circuit. The speed of isolation
will dictate whether any “sensitive” equipment on the remaining
circuit will be interrupted, a critical consideration for 24-hour
7-day-a-week power system operation.

The concept of protective zone branches will initially be
based upon the following assumptions.

1 ) All faults are permanent faults.
2 ) The protective equipment perfectly isolates all permanent

faults instantaneously.
3 ) The protective equipment is perfectly coordinated, i.e., the

device closest to the fault operates first.
4 ) The protective equipment does not fail.

Generally, each industrial feeder circuit is connected to a source
of normal supply, which has protective equipment to isolate
feeder faults from the remainder of the system.

The first step in defining the first zone is to identify all
branches, transformers and related equipment in which a per-
manent fault of this equipment would resulting only the normal
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Fig. 1. Single-line diagram of industrial plant.

supply protective equipment recognizing and isolating the
permanent fault. These branches, transformer, etc., are labeled
as zone-1 equipment. They are generally unprotected branch
lines or feeder sections and transformers connected radially to
the power source or main of the feeder circuit.

The second step in identifying protective zones is to identify
permanent faults in links, which would result in some protective
device, other than the normal supply, isolating the fault of the
link with its connection with the zone-1 link. These links are
labeled as zone-2 branch , where “ ” is the branch number. The
zone number represents the number of protective components
between the source and the individual links that sense the fault.
The procedure of classifying links into their respective zones is
continued until all the links have been labeled.

The symbol is the failure rate of zone , branch . As-
sociated with each zone branch is an isolating device labeled

, where “ ” is the zone number and “ ” is the branch

number. These isolating devices can be manual or automatic
switches, fuses, reclosers, sectionalizers, relay breaker combi-
nations, etc.

The failure rate of any zone , branch is the sum of
all the equipment failure rates whose failure will result in only
the operation of the isolating device of zone , branch .

It can be shown that the total failure rate, i.e., and the
annual downtime, i.e., for any zone , branch is [1]

failures
year

(1)

hours
year

(2)
where

failure rate of utility supply or plant supply;
restoration duration of utility supply;
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Fig. 2. Zone branch diagram of industrial plant.

zone-branch number;
total number of zone branches in system;
repair or switching time of zone branch;
failed zone branch array that contains the failure
rate of each zone branch ;
recognition and isolation array coefficients [1].

In general, the total failure rate of any zone branch
is equal to the sum of:

1 ) failure rate of the power supply or source ;
2 ) failure rate of zone , branch ;
3 ) sum of the failure rates of any zone branches with lower

zone numbers in the direct path from the power source to
zone branch .

The total failure rate of any zone branch is dependent upon the
failure rates of all zone branches in the industrial power system
and the probability of isolation devices detecting the permanent
fault within their respective zone branch.

III. DIRECT PATH ZONE-BRANCH METHOD [1]

Direct Path Zone-Branch method is a very effective method
for determining the reliability levels of different load points in
the large industrial distribution system. A direct path of a zone
branch consists of all zone branches (lower zone number) con-
nected in series linking the power source to that particular zone
branch. Any zone branch in the direct path to a particular zone
branch requires repair activities while those zone branches off
the “herringbone” configuration require only switching and iso-
lation duration activities. In this paper the “Direct Path Zone-

TABLE I
RELIABILITY DATA FOR POWER SUPPLIES AND GENERATORS

Branch” method will be used to evaluate reliability indexes at
various load points in an industrial plant.

IV. INDUSTRIAL PLANT RELIABILITY DATA

The industrial plant single line diagram is shown in Fig. 1.
The zone branch single-line diagram was drawn from the single-
line diagram of the plant and is shown in Fig. 2. The following
reliability indexes are calculated for each load point of the in-
dustrial plant:

1 ) frequency of interruptions per year at each load point;
2 ) Annual interruption duration ( ) expressed in hours per

year at each load point.
Given the frequency and annual duration of load point interrup-
tions the average duration per interruption ( ) and the reliability
( ) can be calculated for each load point. The reliability data
for the industrial power system electrical equipment is shown
in Tables I–VIII.
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TABLE II
RELIABILITY DATA FOR CIRCUIT BREAKERS

TABLE III
RELIABILITY DATA FOR FUSES

TABLE IV
RELIABILITY DATA FOR SWITCHGEAR BUSES

TABLE V
RELIABILITY DATA FOR CABLES AND CABLE TERMINATIONS

TABLE VI
RELIABILITY DATA FOR TRANSFORMERS

TABLE VII
SWITCHING TIME DATA

The “dead” time before the auto switch time was considered
is shown in Table VII and it was not considered an outage.
(i.e., manual transfer time) was fixed at 15 min.

Most cable lengths were assumed to be 100 ft in Table VIII
for the simplicity of longhand calculations and verification. In
reality, each cable length would have a unique length.

V. LOAD POINT RELIABILITY INDEXES

Representative samples of load point reliability indexes are
shown in Tables IX–XI for manual and automatic switching
restoration procedures during industrial plant outages for dif-
ferent breaker failure modes [i.e., open circuit (O/C) and short
circuit (S/C].

TABLE VIII
RELIABILITY DATA FOR CABLES

With reference to these tables the frequency of interruptions
at the industrial plant’s load points are significantly lower when
automatic switching restoration procedures are used during
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TABLE IX
LOAD POINT RELIABILITY INDEXES ( BREAKER FAILURE MODE:

100% O/C, 0% SC)

TABLE X
LOAD POINT RELIABILITY INDEXES ( BREAKER FAILURE MODE:

50% O/C, 50% SC)

plant outages compared with manual switching. With manual
switching the frequency of load point interruptions was from
60.7 to 174.7 times higher than the frequency of load point
interruptions with automatic switching activities.

The annual load point interruption duration with manual
switching procedures ranged from 1.2 to 3.1 times higher than
when automatic switching restoration procedures were used.

The frequency of load point interruptions during manual
switching restoration procedures varied insignificantly with
changes in the percentage of SC and OC breaker failures. How-
ever, the frequency of load point interruptions during automatic
restoration procedures increased significantly as the percentage
of SC breaker failures increased.

The annual duration of load point interruptions during both
manual and automatic switching restoration procedures varied
significantly with changes in the percentage of SC and OC

TABLE XI
LOAD POINT RELIABILITY INDEXES ( BREAKER FAILURE MODE:

0% O/C, 100% SC)

breaker failures. Setting the 100% OC breaker failure mode
as a reference, the annual duration of load point interruptions
was on average from 1.12 to 1.61 times higher than the 100%
OC breaker case study. The dominant failure and outage char-
acteristics for this industrial supply is the high utility feeder
frequency and duration of outages which dominates the dura-
tion of load point interruptions.

VI. CONCLUSION

This paper has presented and discussed the significant varia-
tions in the frequency and duration of load point interruptions
at an industrial plant due to manual and automatic switching
activities. Three case studies with different percentages of OC
and SC failure modes of circuit breakers and fuses were also
presented and discussed.

One of the difficulties in assessing reliability analysis of
industrial power systems is clearly defining the equipment reli-
ability data, load constraints and assumptions of the reliability
models. If the automatic switching procedures are “bumpless”
then “sensitive” loads will not be interrupted during the transfer
activities. On the other hand, if the automatic switching pro-
cedures are too slow and disrupt loads within the industrial
power system then the economic advantage of automation is
lost.

Many reliability models assume independent component out-
ages which is essentially assuming that all circuit breaker failure
modes are 100% OC breaker failures. When SC breaker fail-
ures are introduced into the model, then the assumption of
independent component outages is violated. The Zone Branch
reliability methodology [2], [7], [9], the examples in IEEE Std.
493–1997 (IEEE Gold Book), and [4] readily accommodate
dependent component outages in their methodologies.
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