
MULTIRESOLUTION GRAPH ATTENTION NETWORKS FOR

RELEVANCE MATCHING

by

Ting Zhang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Department of Electrical and Computer Engineering
University of Alberta

© Ting Zhang, 2018

Abstract

Various of deep learning models have been proposed for the text matching problem,

which is at the core of various typical natural language processing (NLP) tasks.

However, existing deep models are mainly designed for the semantic matching be-

tween a pair of short texts, such as paraphrase identification and question answering,

and do not perform well on the task of relevance matching between short-long text

pairs. This is partially due to the fact that the essential characteristics of short-long

text matching have not been well considered in these deep models. More specifi-

cally, these methods fail to handle extreme length discrepancy between text pieces

and neither can they fully characterize the underlying structural information in long

text documents.

In this thesis, we are especially interested in relevance matching between a piece

of short text and a long document, which is critical to problems like query-document

matching in information retrieval and web searching. To extract the structural in-

formation of documents, an undirected graph is constructed, with each vertex rep-

resenting a keyword and the weight of an edge indicating the degree of interaction

between keywords. Based on the keyword graph, we further propose a Multires-

olution Graph Attention Network to learn multi-layered representations of vertices

ii

through a Graph Convolutional Network (GCN), and then match the short text snip-

pet with the graphical representation of the document with an attention mechanism

applied over each layer of the GCN. Moreover, we develop deeper insights into the

GCN model in [1] and address its limits to weighted graphs. Experimental results

on two benchmark datasets demonstrate that our graph approach outperforms other

state-of-the-art deep matching models.

iii

Acknowledgments

I would like to thank all the people who contributed in some way to the work de-

scribed in this thesis. Firstly, I would like to express my sincere gratitude to my

advisor, Dr. Di Niu. His guidance and supervision help me to learn how to be a

good researcher and pursue an academic career. Their willingness to discussion

helped me through two important years of my life. Additionally, I would like to

thank my committee members Dr. Marek Reformat and Dr. Linglong Kong for

their interest in my work.

Finally, I would like to acknowledge friends and family who supported me dur-

ing my time here. Thanks for their friendship and unyielding support!

iv

Table of Contents

1 Introduction 1

2 Preliminaries and Background 5

2.1 Relevance Matching Problem . 5

2.2 Related Work . 8

2.2.1 Unsupervised Algorithms . 8

2.2.2 Deep Matching Models . 10

3 Document as Graph 13

3.1 Document Graph Representation . 13

3.2 Keyword Graph Construction . 14

3.2.1 Document Preprocessing . 15

3.2.2 Keyword Extraction . 16

3.2.3 Edge Construction . 17

4 Multiresolution Graph Attention Network 19

4.1 Query Embedding and Encoding . 20

4.2 Vertex Encoding based on Graph Convolutional Network 21

4.2.1 Graph Convolutional Network for Weighted Graphs 21

4.2.2 Vertex Embedding . 24

4.3 Rank-and-Pooling Layer . 26

4.4 Attention-based Query-Graph Matching 27

4.5 Aggregation Layer . 28

v

5 Experiments 29

5.1 Description of Tasks and Datasets 29

5.2 Competitor Methods . 31

5.3 Performance Analysis . 32

5.4 Impact of Different Modules and Parameters 35

6 Conclusion 40

vi

List of Tables

2.1 Examples to show the differences between relevance matching and

semantic matching. 7

5.1 Description of evaluation datasets. 29

5.2 Average length of text in evaluation datasets. 30

5.3 Accuracy and F1-score results of different algorithms on the Ohsumed

dataset. 32

5.4 Accuracy and F1-score results of different algorithms on the NF-

Corpus dataset. 33

5.5 Accuracy and F1-score results of MGAN and its variants on the

Ohsumed dataset. 35

5.6 Accuracy and F1-score results of MGAN and its variants on the

NFCorpus dataset. 36

vii

List of Figures

2.1 Architecture of representation-focused deep models. 11

2.2 Architecture of interaction-focused deep models. 12

3.1 An example to show a piece of document and its corresponding

Keyword Graph representation. 16

4.1 An overview of the proposed Multiresolution Graph Attention Net-

work (MGAN) for matching a short query and a long text document. 20

4.2 The impact of convolution on each vertex. 26

5.1 Compare the accuracies given by different λ on the Ohsumed dataset. 38

5.2 Compare the F1 scores given by different λ on the Ohsumed dataset. 39

viii

List of Abbreviations

Acronyms Definition

GCN Graph Convolutional Network

DGCNN Deep Graph Convolutional Neural Network

BOW Bag-of-Words (

LSI Latent Semantic Indexing

LSA Latent Semantic Analysis

SVD Singular Value Decomposition

WL Weisfeiler-Lehman

OOV Out-of-Vocabulary

BM25 Okapi BM25

TF-IDF Term Frequency-Inverse Document Frequency

FT Fourier Transform

ARC-I Convolutional Matching Architecture-I

ARC-II Convolutional Matching Architecture-II

DSSM Deep Structured Semantic Models

C-DSSM Convolutional Deep Structured Semantic Models

MV-LSTM Multiple Positional Semantic Matching

ix

Chapter 1

Introduction

Matching two pieces of text has long been a core research problem underlying nu-

merous natural language processing tasks. The past few years have seen the great

success of deep models [2]–[5] for semantic matching tasks such as question an-

swering (QA) [6], paraphrase identification [7] and automatic conversation [8] etc.

However, it is still challenging to estimate the relevance between a pair of short

and long text pieces. For example, in query-document matching, user queries usu-

ally contain a few words, while the lengths of documents could vary from hundreds

to thousands of words. Given rich semantic and syntactic structures that exist in

long documents and the extreme discrepancy between the lengths of queries and

documents, accurately estimating the relevance between them is hard.

Existing methods for text matching are typically categorized into three types

including unsupervised metrics [9], feature-based models and deep matching mod-

els [2]–[5]. For unsupervised metrics, text documents are transferred to vectors

with representation methods such as bag-of-words (BOW). Then the distance be-

tween vectors are calculated according to metrics like euclidean distance, cosine

similarity and so on. However, such approaches are principally based on the term

frequency and ignore the semantic structures of natural language. Thus leading

to poor performance for complicated tasks. Feature-based models, or feature en-

gineering [10] rely on hundreds or thousands of handcrafted features. In reality,

search engines also depend on other auxiliary information like click history, nu-

1

merous ad-hoc rules and metadata, etc., to boost query-document matching perfor-

mance. Obviously, handcrafting features is time-consuming, possibly incomplete

and application-specific.

Recently, a variety of deep models have also been applied to text matching,

e.g., [2]–[5], which can be divided into two categories depending on the model

structures: representation-focused and interaction-focused. Representation-focused

deep models [3], [4] take the word embedding sequences of a pair of text objects

as the input, and learn its intermediate contextual representation through a Siamese

convolutional or recurrent neural network, on which final scoring is performed.

But for interaction-focused deep models [2], [5], which focus on local interactions

between two pieces of text and learn the complex interaction patterns for relevance

with deep neural networks. Comparing to unsupervised metrics and feature-based

models, deep matching models are generalized while maintaining high accuracy in

various NLP tasks.

However, we show that most existing deep models do not yield a satisfactory

performance for relevance matching between a pair of short and long text objects. It

is due to the essential differences between semantic matching and relevance match-

ing. Semantic matching tasks, such as paraphrase identification and semantic tex-

tual similarity, concentrate on identifying the semantic meaning and inferring the

semantic relations between two pieces of text. While relevance matching tasks, such

as query document matching in information retrieval, care more about whether the

query and document are related or not instead of whether they express the same

semantic meaning or not. We figured out that most existing deep matching mod-

els [2]–[5], whether they are representation-focused or interaction-focused, mainly

concern semantic matching rather than relevance matching. Also, we point out that

current deep models [2]–[5] are effectively dealing with text snippets, e.g., a pair of

sentences, but have difficulty handling extreme short text and long documents. On

one hand, encoding the query consisting of only few words with complicated deep

models usually results in excessive deformation. On the other hand, it is more likely

to introduce “noise” and redundant information when dealing with long documents

2

using deep models.

To address the above problems, we propose a deep relevance matching model

based on graph and attention mechanisms to improve the matching between a pair

of short and long text objects. We show that an appropriate semantic representation,

beyond a linear sequence of word vectors [11], of a document plays a central role in

relevance matching. Documents are represented as undirected, weighted Keyword

Graph, in which each vertex is a keyword in the document, and edges indicate

the degree of relevance between two corresponding keywords. Such a graphical

representation helps to reveal the inner structure of document focuses. Based on

such representation, the problem of relevance matching is transformed into a query-

graph matching problem.

To match the query and keyword graph of a document, we designed a novel deep

matching model called the Multiresolution Graph Attention Network (MGAN). It

learns a multiresolution representation for each keyword vertex through a multi-

layered graph convolutional network (GCN) [1], [12], an emerging variant of con-

volutional neural networks that specifically encodes graphs. Moreover, we develop

deeper insights into the GCN model and improve it to better cope with weighted

graphs. By applying attention mechanisms to word vectors of the query with the

keyword representations learned by each layer of the GCN, MGAN is able to char-

acterize the relevance between the query and keywords of the document, utilizing

multiresolution representations of keywords generated in different layers.To handle

the varying number of keywords in different documents, a rank-and-pooling strat-

egy is proposed to sort and select keyword vertices. In each layer, we choose a

fixed number of query-keyword matching results, and concatenate them together

for aggregation. The final relevance score is generated by feeding the concatenated

matching vector into a multilayer perceptron network.

We evaluated our model on two datasets for different tasks, including the Ohsumed

dataset for topic-document matching and the NFCorpus dataset for query-document

matching. Experimental results demonstrate that our model boasts significantly im-

proved performance compared with existing state-of-the-art deep matching models,

3

including ARC-I [2], ARC-II [2], DSSM [13], C-DSSM [14], MV-LSTM [4], and

MatchPyramid [5].

The remainder of this thesis is organized as follows. Chapter 2 formally intro-

duces the problem of relevance matching and analyzes the characteristics as well as

challenges of this problem. Besides, we also review the related literature of deep

matching models in this chapter. Chapter 3 presents the methods of document rep-

resentations, especially discuss the graph representations of documents. Then, we

describe the process of our own keyword graph construction of long documents. In

Chapter 4, we propose a novel Multiresolution Graph Attention Network (MGAN)

for relevance matching of short-long text pairs based on the graph. Moreover, we

develop deeper insights into the GCN model in [1] and address its limits to weighted

graphs. Experimental results are demonstrated in Chapter 5 and finally conclude the

thesis in Chapter 6.

4

Chapter 2

Preliminaries and Background

The goal of relevance matching is to determine whether two pieces of text are re-

lated or not, or inferring the relevance degree between them. It is a core problem

in many real-word applications such as information retrieval and web searching. In

this chapter, we formally define the problem of relevance matching, and compare

it with the problem of semantic matching, which is another typical and significant

task in natural language processing. Besides, we analyze the underlying character-

istics of relevance matching between short text and long document, and point out

the challenges when dealing with this kind of problem. Prior work is also included

in this chapter, more specifically, we introduce various methodologies which are

widely used in text matching and information retrieval. Particularly, we review the

related literature of deep matching models, which are designed for the text matching

problem and have achieved great success in recent years.

2.1 Relevance Matching Problem

Here, we formally introduce the problem of relevance matching, and show the dif-

ferences between relevance matching and semantic matching. Most importantly we

point out the difficulties of matching the relevance between query and document, in

other words, the challenges of matching extreme short text and long document.

Denote a query as q and a text document as d. Given a query-document pair

5

(q, d), the relevance matching problem can be formalized as:

r = F(φq(q), φd(d)) (2.1)

where φq and φd are representation functions that map query and document to their

feature space. F is the scoring function based on the interactions between query

and document. The relevance score r can be binary or numerical: binary r indi-

cates whether the text pair is related or not, while numerical r reflects the relevance

degree between a query and a document. This brand of text matching problems

are generally related to a variety of NLP tasks, such as information retrieval that

matches user queries with document collections.

A lot of deep matching models have been proposed [2]–[5], and most of them

have only been demonstrated to be effective on a set of NLP tasks such as seman-

tic textual similarity, paraphrase identification, question answering [15] and so on.

However, when apply these deep models on relevance matching problem such as

the task of query document matching in information retrieval, their performance is

usually disappointing.

This is due to some fundamental differences between the tasks of semantic

matching and relevance matching, as pointed out by [15]. The goal of semantic

matching is to understand the semantic meaning of the text or infer the relationship

between two pieces of text, which are usually homogeneous sentences. However,

relevance matching focuses on deciding whether two pieces of text are describing

the same event or relevant events. Two examples in Table 2.1 show the differences

between relevance matching and semantic matching. For instance, “A man is play-

ing basketball.” is semantically similar with “A man is playing football.”, but these

two sentences are not relevant. Another example is that “The stock price of Apple is

increasing.” is relevant to “Apple is an excellent company.”, but they are not seman-

tically similar. Compared with semantic matching, relevance matching emphasizes

more on the exact matching signals between query keywords and a document. Ac-

tually, most existing models are concerned about semantic matching problem, such

6

TABLE 2.1

EXAMPLES TO SHOW THE DIFFERENCES BETWEEN RELEVANCE MATCHING AND SEMANTIC

MATCHING.

Text1 Text1 Relationship

“A man is playing bas-

ketball.”

“A man is playing foot-

ball.”

Semantic Similar

“The stock price of Ap-

ple is increasing.”

“Apple is an excellent

company.”

Relevant

as paraphrase identification, question answering [15] and so on, but few of them

consider the characteristics of the relevance matching.

Besides, in the task of query document matching, query and document vary

considerably in text length and provide unbalanced information for directly match-

ing. The query is usually extremely short and consists of only few words, while

the document varies considerably in length, from tens of words to tens of thousands

of words. Current deep models [2]–[5] are effectively dealing with text snippets,

e.g., a pair of sentences, but have difficulty handling extreme short text and long

documents in query document matching tasks. On one hand, encoding the query

consisting of only few words with complicated deep models usually results in ex-

cessive deformation. On the other hand, it is more likely to introduce “noise” and

redundant information when dealing with long documents using deep models.

What is more, most existing approaches consider text pieces as sequences of

words or word vectors. However, the semantic structure information of text pieces

is not fully utilized, which can be helpful for the task of relevance matching between

queries and documents, especially when the document length is long. In the next

chapter, we will introduce our proposed procedures to transform a document into

a keyword graph. Such a graph representation proves to be effective at uncovering

the underlying attention structure of a long text document such as a news article.

7

2.2 Related Work

Most existing works on text matching problem can be generalized into two cate-

gories: unsupervised algorithms and deep matching models. For deep matching

models, we can further divide them into representation-focused deep neural mod-

els and interaction-focused deep neural models [16]. In this section, we will have a

brief introduction about some common algorithms of text matching and information

retrieval.

2.2.1 Unsupervised Algorithms

The most straight forward method for text matching, especially for the task of query

document matching in information retrieval, is lexical matching [17]. For example,

simply match the keywords in document with terms in query. However, in most

cases, lexical matching can be unreliable. On one hand, there are usually many

ways to express a given concept (synonymy), the literal terms in a user’s query

may not match those of a relevant document. On the other hand, one word usually

have multiple explanations and can represent totally different concepts (polysemy)

according to the context. For example, “Apple” is usually referred to a kind of

fruit, but sometimes it is used to demonstrate a company in a piece of technology

news. Thus synonymy and polysemy are two main challenges for lexical matching

methods in the text matching problem.

Instead of exactly lexical matching, bag-of-words (BOW) [18] model converts

NLP text into numbers and matching text based on statistics. This process is called

vectorization and these transformed text vectors can further be implemented on ma-

chine learning models or unsupervised metrics. BOW is widely utilized in natural

language processing tasks, which represents the text as an unordered collection of

words. Each word is scored by designed metrics or functions to evaluate the occur-

rence of words. Some additional simple scoring methods include count, frequency

and so forth. Among these metrics, term frequency-inverse document frequency

8

(TF-IDF) is mostly used as a strong baseline, which is a statistical measure used

to evaluate how important a word is to a document in a collection or corpus. After

representing the text as a word vector, we then calculate the distance or similarity

between vectors with euclidean distance, cosine correlation, Jackard coefficient and

so on. Another metric Okapi BM25 (BM25) [19] based on the probabilistic model

is also widely implemented in information retrieval task. However, these models

are based on the assumption that words in the text (such as sentence or document)

are independent, disregarding the word order as well as the semantic meaning of

each word.

Despite above algorithms, topic models [20] are also attractive in text matching

problem. Latent semantic indexing (LSI) [21], or latent semantic analysis (LSA)

is one of empirically topic models for text matching problem. LSI assumes that

there is some underlying or latent structure in word usage that is partially obscured

by variability in word choice. A truncated singular value decomposition (SVD) is

used to estimate the structure in word usage across documents. More specifically,

given m documents, and we select n words with ID from 1 to n. Matrix A ∈ R
m×n

is formalized with Aij represents the feature value (such as TF-IDF) of jth word in

ith document. With SVD, Am×n can be decomposed into

Am×n = Um×mΣm×nV
T
n×n (2.2)

To reduce the dimensions from n to k, the decomposition Eq. 2.2 can be ap-

proximated to

Am×n ≈ Um×kΣk×kV
T
k×n (2.3)

where k represents the number of topics, and k is usually smaller than n. Uil

denotes the relevance degree between ith document and lth topic. To calculate the

text similarity, cosine coefficient can be implemented.

LSI shows the ability to avoid the independent assumption mentioned above and

try to explore the second-order co-occurrence in the text. However, the weakness

of LSI is obvious for huge computation in SVD process. Additionally, although

9

LSI takes the latent semantic of words into consideration, it is still far away from

understanding the semantic meaning and contextual information of the whole text.

Feature-based models, such as IRGAN [10], are generally applied in industry.

These models rely on hundreds or thousands of handcrafted features, such as TF-

IDF, BM25 [19], string similarity and so on. In reality, search engines also depend

on other auxiliary information like click history, numerous ad-hoc rules and meta-

data, etc., to boost query-document matching performance. However, handcrafting

features are time-consuming, incomplete and over-specified. We need to design

features carefully for each different task and dataset.

2.2.2 Deep Matching Models

Deep learning models have seen great success in various natural language process-

ing tasks such as paraphrase identification, question answering and so on. These

deep models can be divided into two categories depending on their structures:

representation-focused models and interaction-focused models. In this subsection,

we will introduce different kinds of state-of-art deep matching models.

Representation-focused deep neural matching models usually transform the word

embedding sequences of text pairs into context representation vectors through a

neural network encoder, followed by a fully connected network or score function

which gives the matching result based on the representation vectors. Such models

include Siamese RNN [22], HCTI [23], DSSM [13], C-DSSM [14] and ARC-I [2].

Typically, they have the Siamese structure and intend to map the text into the seman-

tic feature space by neural networks such as CNN and LSTM. Fig. 2.1 shows the

Siamese structure of representation-focused deep neural matching models, where

the parameters of neural networks are usually shared. The representation-focused

model are flexible, since both the representing neural networks and aggregation

layer can be customized according to the characteristics of the text. However, the

Siamese architecture defers the interaction between two sentences, which will lead

to the loss of details.

Interaction-focused models build local interactions between words and aggre-

10

Raw Text1

Neural
Networks

Neural
Networks

Represented Vector1

Aggregation

Raw Text2

Represented Vector2

Preprocessing Preprocessing

Prediction

Fig. 2.1. Architecture of representation-focused deep models.

gate the interaction features to give a matching result. Examples include ARC-II

[2], DeepMatch [24] and MatchPyramid [5]. Fig. 2.2 shows the model structure

of MatchPyramid, which is a classic interaction-focused deep model and demon-

strates positive performance on a number of datasets. Different from representation-

focused models, interaction-focused models compare two sentences and extract the

matching features before their own high-level representations, to retain more infor-

mation about the text from word level and phrase level.

Deep matching models are generalized while maintaining high accuracy in var-

ious NLP tasks, such as semantic textual similarity and question answering. The

reason is that deep models fully exploit both semantic meaning of words and the

sequence of words, to solve the synonymy and polysemy in text matching problem.

A large amount of references have shown the priority of deep matching models

comparing to unsupervised metrics and feature-based models. It is easy to find that

these deep models are mainly used to sentences, however, when apply them to a

11

w1
w2
w3
w4
w5
w6

v1
v2
v3
v4
v5
v6
v7

w1
w2
w3
w4
w5
w6

v1 v2 v3 v4 v5 v6 v7

Matching Matrix

Text1

Text2

More 2D
Convolution
and Pooling

Matching
Score

2D Convolution

Fig. 2.2. Architecture of interaction-focused deep models.

pair of short and long text objects, such as query document matching in informa-

tion retrieval, the results are usually disappointing. To address the issues mentioned

in Sec. 2.1, we propose a novel model in the following Chapters.

12

Chapter 3

Document as Graph

Representing text document as graphs can model relationship and structural infor-

mation effectively. In this Chapter, various methods on modeling of text document

using Graph are introduced. Moreover, we demonstrate the construction process of

our designed keyword graph.

3.1 Document Graph Representation

Various of graph representations have been proposed for document modeling. Ac-

cording to the different types of graph nodes, a majority of existing works can be

generalized into four categories: word graph, text graph, concept graph, and hybrid

graph.

For word graphs, the graph nodes represent different non-stop words in a doc-

ument. [25] extracts subject-predicate-object triples from text based on syntactic

analysis, and merge them to form a directed graph. The graph is further normal-

ized by utilizing WordNet [26] to merge triples belonging to the same semantic

pattern. [27], [28] represent a document as graph-of-word, where nodes represent

unique terms and directed edges represent co-occurrences between the terms within

a fixed-size sliding window. [29] connect terms with syntactic dependencies. [30]

connects two words by directed edge if one word is immediately precedes another

word in document title, body or link. The edges are categorized by the three differ-

13

ent types of linking.

Text graphs use sentences, paragraphs or documents as vertices, and establish

edges by word co-occurrence, location or text similarities. [31]–[33] connect sen-

tences if they near to each other, share at least one common keyword, or sentence

similarity is above a threshold. [34] connects web documents by hyperlinks. [35]

constructs directed weighted graphs of sentences for evaluating text coherence.

For concept graphs, they link terms in a document to real world entities or con-

cepts based on resources such as DBpedia [36], WordNet [26], VerbNet [37] and

so forth. [38] identifies the semantic roles in a sentence using WordNet and Verb-

Net, and combines these semantic roles with a set of syntactic/semantic rules to

construct a concept graph.

Hybrid graphs contains multiple types of vertices and edges. [39] uses sen-

tences as vertices and encodes lexical, syntactic, and semantic relations in edges.

[40] extract tokens, syntactic structure nodes, semantic nodes and so on from each

sentence, and link them by different types of edges. [41] builds a sentence graph

based on Frame Semantics and Construction Grammar.

3.2 Keyword Graph Construction

In our case, as the relevance between a short query and a long document mostly

relies on the relations between query words and document keywords, therefore, we

construct a graph of keywords to represent a document. To address the challenges

of the relevance matching problem mentioned above, we model the document as

a weighted, undirected keyword graph. The aim of this graph representation is to

model the interaction structure of document keywords, as well as uncovering the

term importance of keywords induced by the topological structure of keyword in-

teractions. Compared with linear representation of text pieces, a graphical represen-

tation can better capture the rich intrinsic semantic structures in long text objects.

Furthermore, it is helpful in overcoming the long-distance dependency problem in

NLP, as it breaks the linear organization of words.

14

We first describe the structure of a document keyword graph before presenting

the detailed steps to derive it. Given an input document D, our objective is to obtain

a graph representation GD of D. Each vertex in GD is a keyword in document

D. We link two vertices by an edge if the word distance of the two keywords in the

document is smaller than a threshold (we set the threshold as 20 in our experiments).

The edge weight is proportional to the inverse of the word distance between two

keywords.

As a toy example, Fig. 3.1 illustrates how we convert a document into a key-

word graph. We can extract keywords or key phrases such as ZTE, Qualcomm, US

Department of Commerce, export and so on from the document using common key-

word extraction algorithms [42]. These keywords represent the topics or concerns

in this document. We then connect the keyword vertices by weighted edges, where

the edge weight between a pair of keywords denotes how close they are related,

and the whole topological structure of the keyword graph shows the semantic struc-

ture of the document. For example, in Fig. 3.1, export is highly correlated with

ZTE, Chinese, American and so on. In this way, we have transformed the original

document into a graph of different focal points, as well as the interaction topology

among them.

We now introduce our detailed procedure to restructure a document D into a

desired keyword graph GD as described above. The whole process consists of three

steps: 1) document preprocessing, 2) keyword extraction, and 3) edge construction.

3.2.1 Document Preprocessing

Off-the-shelf NLP tools such as Stanford CoreNLP [43] can be utilized to prepro-

cessing the input documents. The first step is tokenization, which splits long strings

of text into smaller pieces, or tokens. Text can be tokenized into sentences, and

sentences can be tokenized into words. Secondly, we need to clean the data, that

is removing stop words and meaningless characters to make text neat. Then, we

extract named entities from the document. Named entity is defined as a real-world

object, such as persons, locations, organizations, products and so on. For docu-

15

The US Department of Commerce just announced a ban on

American exports to the Chinese smartphone maker ZTE. That

means American companies like Dolby and Qualcomm won’t be

able to export any parts to ZTE for up to seven years. The loss of

Qualcomm is particularly damaging, as it severely restricts

ZTE’s options for devices in the US market.

US Department of Commerce ban

American

export

Chinese

ZTE

Dolby

Qualcomm

smartphone

Document:

Keyword Graph:

Fig. 3.1. An example to show a piece of document and its corresponding Keyword Graph repre-

sentation.

ments, especially news articles, the named entities are usually critical keywords.

3.2.2 Keyword Extraction

The next step is to extract the keywords of documents. As the named entities alone

are not enough to cover the main focuses of the document, we therefore apply a

keyword extraction algorithm to expand the keyword set. There are different al-

gorithms for keyword extraction [42], such as TF-IDF, TextRank, RAKE and so

on. Since TF-IDF takes the advantages of wide generality and high efficiency, we

implemented it in our experiments. More specifically, we first calculate the term

frequency–inverse document frequency (TF-IDF) value for each token, and choose

the top 20 percentage tokens to expand the set of document keywords. Even though

more sophisticated algorithms may achieve better performance for the keyword ex-

traction, in this thesis, we concentrate on the graph modeling of documents and

the algorithm of relevance matching. After we extract the set of keywords from a

document, each keyword will be a vertex in the document’s graph.

16

3.2.3 Edge Construction

Our last step is linking correlated keywords in the document by weighted edges.

For each pair of keyword vertices vi and vj , we calculate the word distance dij in

the document. Suppose keyword vi shows m times in the document and keyword

vj shows n times in the document, with m ≤ n. For each vi, we select the vj that is

most close to it, and calculate the word distance dtij for tth keyword vi. The distance

dij is the mean distance between each vi and its most nearby vj . Based on the word

distance dij , the weight wij of the edge eij between vi and vj is calculated as

wij = g(dij) =
1

dij
=

m∑m

t=1 d
t
ij

. (3.1)

Now, we have transformed an input document into a weighted undirected graph

of keywords. Compared with the original document’s sequential structure, a graph

structure organized keywords in terms grants a correlation structure. Therefore,

the problem of long distance dependency can be alleviated as related keywords are

linked by weighted edges. Furthermore, the weighted edges represent the strengths

of interactions among these concepts. Together with the topology structure of the

whole graph, we can also model the importance of different keyword in the docu-

ment. A keyword with a lot of edges linking it to other keywords is usually more

important than other keywords that only have a few edges. A keyword that has

strong connections with other keywords (i.e., the edge weights are large) are typi-

cally more important than keywords that only have edges with small weights.

There are also existing works that model a document as a graph of sentences

[31]–[33], or construct vertices and edges via more complicated methods, such as

linking terms in a document to real world entities or concepts based on resources.

On such example is DBpedia [36], which extracts subject-predicate-object triples

from text based on syntactic analysis to construct directed edges [25], and so forth.

However, as the problem of relevance matching is more focused on the exact match-

ing signals between query keywords and a document, we therefore choose to model

the correlation between keywords of a document, rather than using sentences as

17

graph nodes. Compared with constructing a keyword graph with complicated mech-

anisms rooted in a knowledge base or performing syntactic analysis, which are usu-

ally time-consuming, we choose to model the structure of keyword correlations by

a more efficient procedure described above to make it available for real world in-

dustry applications. We will see that our keyword graph is both efficient and able

to improve the performance of relevance matching tasks when combined with the

Multiresolution Graph Attention Network model, which we will describe in detail

in the next chapter.

18

Chapter 4

Multiresolution Graph Attention

Network

In this Chapter, we further exploit the keyword graph representation of documents,

and propose a deep relevance model based on multi-layer graph convolutional net-

works and attention-based matching, namely Multiresolution Graph Attention Net-

work (MGAN), for query document matching. Fig. 4.1 illustrates the overall ar-

chitecture of our proposed model, which mainly has five sequential stages. First,

query and vertices in the document graph are embedded with word vectors such

as GloVe [11]. Second, the embedded query and document graph are respectively

encoded with convolutional layers. Specifically, for the document graph, graph

convolutional layers are implemented to extract the local features of vertices and

iteratively revise the encoding vectors. Third, a Rank-and-Pooling layer is utilized

to sort the vertices in a specific order and unify the graph size. Next, we compute

the matching scores between query and selected vertices in each graph convolu-

tional layer based on the attention mechanism. Finally, these matching scores are

concatenated as a match vector and fed into the aggregation layer to get the final

relevance matching result. We will describe each layer in detail in the following.

19

describe later.

It is worth mentioning that we can potentially further improve the performance

of our neural network model by concatenating the character-level embedding and

feature embedding of words to form the final word representation. A character-level

embedding of a word (or token) can be obtained by encoding the character sequence

with a bi-directional long short-term memory network (BiLSTM) and concatenate

the two last hidden states to form the embedding of the token [44]. This can help to

learn meaningful embedding vectors for out-of-vocabulary (OOV) words.

4.2 Vertex Encoding based on Graph Convolutional

Network

Unlike the linearly structured query, the document is restructured into a keyword

graph. After we embedded the vertices by word vectors, we utilize the ability of

Graph Convolutional Network (GCN) [1] to capture the interactions between ver-

tices and get the contextual representation for each vertex. Now let us briefly de-

scribe the GCN propagation layers in our model, which are used to encode graph

vertices with contextual information and revise the vertex vector representation it-

eratively.

4.2.1 Graph Convolutional Network for Weighted Graphs

Graph Convolutional Networks (GCN) generalize traditional CNN from low-dimensional

regular grids to high-dimensional irregular graph domains. In our work, we improve

the graph convolutional network (GCN) proposed in [1] to better deal with weighted

graphs, and learn multiresolution vertex representations through multi-layer graph

convolutions. In this way, we can match query and document keywords in different

semantic levels and enhance the performance of relevance matching.

Let G = (V , E) be an undirected weighted graph consisting of a set of vertices

V with |V| = N and a set of edges E . To clearly depict the vertex-connection of a

21

graph, the weighted adjacency matrix A ∈ R
N×N is introduced, where Aij indicates

the weight between vertex Vi and Vj . The diagonal degree matrix of A is denoted

by D ∈ R
N×N with Dii =

∑
j Aij .

Graph Laplacian is the fundamental operator in the spectral graph analysis,

which is formally defined as

L = D − A ∈ R
N×N (4.1)

In addition, there are two normalized versions of the Graph Laplacian, known as

Symmetric Laplacian Lsys and Random Walk Laplacian Lrw, which are respectively

denoted as

Lsys = In −D− 1

2AD− 1

2 (4.2)

Lrw = In −D−1A (4.3)

Since the graph G is undirected and weighted, L is a symmetric positive semidef-

inite matrix, which can be decomposed to

L = UΛUT (4.4)

with a diagonal matrix of eigenvalues λ = diag([λ0, λ1, · · · , λN−1]) and a ma-

trix of eigenvectors U = [u0, u1, · · · , uN−1].

Let us consider the graph convolution in the Fourier domain. As mentioned in

[1], the spectral convolution can be generalized as the Hadamard production of the

graph signal and spectral filter in the Fourier domain. Thus, we have the convolution

result y defined as:

y = Ugθ(Λ)U
Tx (4.5)

where x ∈ R
N is the graph signal with scalar feature for each vertex. Spectral

filter gθ(Λ) is a function of eigenvalues of L parameterized by θ ∈ R
N . Note that

22

x̃ = UTx represents the Fourier transform (FT) of the signal x, while Ux̃ is the

inverse FT. However, the convolution in Eq. 4.5 requires explicitly computation of

Laplacian eigenvectors, which is not feasible especially for large graphs. To solve

this problem, Chebyshev polynomials are implemented to approximate the filter

gθ(Λ) as the K-localized filter gKθ (Λ):

gθ(Λ) ≈ gKθ (Λ) =
K∑

k=0

θkTk(Λ̃) (4.6)

where Λ̃ = 2
λmax

Λ − IN is a diagonal matrix with scaled eigenvalues in the range

[−1, 1]. θ = [θ0, θ1, · · · , θK] is a vector of Chebyshev coefficients, and Tk(Λ̃) is

the k-th order Chebyshev polynomial evaluated at Λ̃. By the approximation of the

filter, Eq. 4.5 can be estimated as the K-th localized convolution:

y ≈
K∑

k=0

θkTk(L̃)x (4.7)

where L̃ = 2
λmax

L− IN . Recall that Chebyshev polynomials Tk(L̃) can be derived

from a recurrence relation Tk(L̃) = 2xTk−1(L̃) − Tk−2(L̃) with T0(L̃) = 1 and

T1(L̃) = L̃. In this way, the computation complexity is reduced to O(K |E|).

Rather than working on all vertices, the K-th localized convolution only focus

on the K-hop neighborhoods from the central vertex. Let K = 1 and λmax = 2, the

above model is simplified as:

y = θ0x+ θ1(L− IN)x (4.8)

Properly reduce the number of parameters not only to accelerate computations,

but also avoid overfitting in the training process. Unlike parameter settings in [1]

with θ0 = −θ1, we constrain the parameters to θ0 = −λθ1. Denote θ1 by θ, we

have:

y = θ((λ+ 1)IN − L)x (4.9)

Let X = [x1, x2, · · · , xN] ∈ R
N×de denotes the vertex feature matrix with

23

each xi ∈ R
de representing a de-dimensional feature vector of vertex Vi. When

L = Lrw = IN −D−1A, the graph convolutional layer can be expressed as:

Xn+1 = σ(D̃−1(A+ λIN)X
nW n) (4.10)

where D̃ii = λ+
∑

j Aij , and σ is the active function in each layer such as ReLU.

The parameter λ controls the balance between the central vertex and its neighbor

vertices. With larger λ, the central vertex will involve more in the convolutional

operation. If λ equals to zero, the central vertex will have no contribution to its

vertex convolution result.

The convolutional layer of Eq. 4.10 is essentially a generalization of the graph

convolutional layer in [1][45] with λ = 1. When Graph Laplacian Lsys = In −

D− 1

2AD− 1

2 , the convolution layer becomes the GCN in [1]. However, when Lrw =

In −D−1A, it is exactly the same with graph convolutional layer in DGCNN [45].

Obviously, with the introduced parameter λ, the graph convolutional layer of Eq.

4.10 can better deal with weighted graph for different scaler of weights. For exam-

ple, if the edge weights are all larger than a hundred, let λ = 1 just like it is in GCN

and DGCNN, the central vertex will almost have no influence on its convolution

results.

4.2.2 Vertex Embedding

Graph Convolutional Networks learn representations of vertices considering both

the graph structure and feature description of vertices.

Here, we will compare the operation of graph convolutional with the 1-dimensional

Weisfeiler-Lehman (WL) [46], which is a classic algorithm providing unique as-

signment of vertex labels in a graph. As demonstrated in Algorithm 4.1, xt
i denotes

the coloring (label assignment) of vertex vi at iteration t and Ni is its set of neigh-

boring vertices. At each iteration t, the color of each vertex is updated to reflect its

previous color together with the multiset of colors of its neighbors. This proceeds

iteratively until a stable coloring. Replace the hash function in Algorithm 4.1 with

24

Algorithm 4.1 1-dim Weisfeiler-Lehman Algorithm

1: Initial t := 0, vertex coloring [x0
1, x

0
2, · · · , x

0
N]

2:

3: for t = 0 to T do

4: for vi ∈ V do

5: xt+1
i = hash(xt

i +
∑

j∈Ni
xt
j);

6: if stable vertex coloring is reached then

7: break;
8: Output [xt

1, x
t
2, · · · , x

t
N]

the following equation

xt+1
i = σ((λxt

j +
∑

j∈Ni

1

aij
xt
j)W

t) (4.11)

where aij is normalization constant for the edge between vi and vj . We recover the

graph convolution rules in Eq. 4.10.

Since a graph convolutional layer can be viewed as differentiable and parameter-

ized generalization of the 1-dimensional Weisfeiler-Lehman (WL) [46] algorithm

on graphs [1], for our keyword graph, the convolution process can be interpreted

as iteratively revising the representations of vertices based on their neighboring

vertices. In this way, the contextual information of each vertex in the document

is incorporated. With the increasing layers of graph convolution, each vertex will

incorporate the information of a broader context (neighbors with a larger distance

to it will be considered in the vertex encoding). Therefore, the multi-layer graph

convolution gives multiresolution representations of the vertices.

Fig 4.2 shows how the vertex is embedded through layers of graph convolution.

At the beginning, each vertex is embedded with its own feature values Xi. After

going through the first graph convolution layer, each vertex Yi is embedded with

the combination of its own feature Xi and the features of its 1-hop neighboring

vertices Xj . When we apply the second graph convolution on Y , the vertex feature

Zi including the features of its 2-hop neighboring vertices.

25

The Rank-and-Pooling operation is designed for two purposes. First, as there

is no order for the vertices in a graph, we use the ranking mechanism to sort the

vertices and find out the vertices with significant feature values in the last graph

convolution layer. As the feature values of different dimensions may have different

scale, we apply softmax to normalize the feature values of each dimension. Second,

the number of keywords dg (or vertices) varies for different documents. We apply

the “max-pooling” operation to select the top K vertices from each layer. In this

way, we can focus on significant keywords for relevance matching, and also control

the dimension of the final matching vector.

4.4 Attention-based Query-Graph Matching

Based on the above sorted K vertices, we apply an attention matching scheme be-

tween the query and selected vertices in each layer. Given the encoded query matrix

Q ∈ R
de×dq , where de is the encoding dimension and dq is the number of tokens

in the query. Suppose vj is the j-th keyword vertex vector in the graph. For each

vertex j, we calculate a vertex-aware query representation qj as:

qj = Attention(Q,vj) = Q · softmax(QTvj), 1 ≤ j ≤ K. (4.14)

After we get qj for each vertex j, we then calculate the match score between query

and vertex as

slj = CosineSim(vj,qj), (4.15)

where slj denotes the match score between query and vertex j in layer l.

This layer helps each vertex to focus on the matching signals with a part of the

query tokens that are most related to that vertex. If only a small portion of the

tokens in the query are correlated to a specific keyword vertex, our attention based

query-vertex matching will help to decrease the influence of uncorrelated tokens.

27

4.5 Aggregation Layer

In this layer, we concatenate the matching scores of each vertex in each graph con-

volution layer, as well as the OOV feature xoov described above, to form a final

matching vector m as following:

m = [s11, s12, · · · , s1K , · · · , slk, · · · , sL1, sL2, · · · , sLK , xoov], (4.16)

where slk is the attention matching score between query and kth vertex in lth

layer. Apparently, m ∈ R
(KL+1)×1 with L denotes the number of graph convolution

layers.

We then feed the concatenated matching vector m into an aggregation layer to

get the final relevance matching result. In our experiment, a one-layer feed forward

neural network was implemented with the hidden size set to 100.

28

Chapter 5

Experiments

In this chapter, our proposed Multiresolution Graph Attention Network is evaluated

on two datasets and compared with other existing deep matching models, including

both representation-focused deep neural matching models and interaction-focused

models. Then, we further execute an ablation study by removing different parts

of our model and evaluating the performance of the model variants. The ablation

study proves that each module in our model plays a significant role in the task of

relevance matching.

5.1 Description of Tasks and Datasets

Two datasets are evaluated in our experiments, they are described as following

• Ohsumed dataset for topic document matching [47]. The Ohsumed dataset

consists of 34394 documents from medical abstracts and are classified into

TABLE 5.1

DESCRIPTION OF EVALUATION DATASETS.

Dataset Pos Neg Train Dev Test

Ohsumed 56976 56976 68370 22789 22793

NFCorpus 64467 35465 59959 19986 19987

29

TABLE 5.2

AVERAGE LENGTH OF TEXT IN EVALUATION DATASETS.

Dataset Query Document

Ohsumed 2.6 109.4

NFCorpus 3.5 146.7

23 categories of cardiovascular disease groups. The dataset is originally for

the document topic classification. In our experiment, we generate topic-

document pair samples from the original dataset, where a positive sample

means the topic is the true category of the document. A negative topic-

document sample is generated by randomly assigning an incorrect topic to

a document. The average length of topic text and documents are 2.6 and

109.4, respectively.

• NFCorpus dataset for medical information retrieval. The NFCorpus dataset

is a full-text English retrieval dataset for the task of Medical Information

Retrieval. It contains a total of 3, 244 non-technical English queries that

harvested from the NutritionFacts.org site, with 169, 756 automatically ex-

tracted relevance judgments for 9, 964 medical documents (written in a com-

plex terminology-heavy language), mostly from PubMed [48]. We selected a

subset of the original dataset which contains 64, 467 samples, as the original

dataset is extremely unbalanced. The average length of queries and docu-

ments are 3.5 and 146.7, respectively.

Table 5.1 shows a detailed breakdown of the datasets used in the evaluation.

Table 5.2 demonstrates the average length of query and documents in two datasets.

For both of the two datasets, we use 60% of samples as a training set, 20% of sam-

ples as a development set, and the remaining 20% as a test set. We use training sets

to train the models, development sets to tune the hyper-parameters and each test set

is only used once in the final evaluation. We train our model by the Adam optimizer

with learning rate set to 0.001. The metrics we used to evaluate the performance of

30

our proposed models on the text matching tasks are the accuracy and the F1 score

of classification results. For each model, we carry out training for 5 epochs. We

then choose the model with the best validation performance to be evaluated on the

test set.

5.2 Competitor Methods

In the following, We briefly describe the baseline methods:

• Convolutional Matching Architecture-I (ARC-I) [2]: ARC-I is a typical

representation-focused deep matching model, which encodes each piece of

text to a vector by CNN and compares the representing vectors with a multi-

layer perceptron (MLP).

• Convolutional Matching Architecture-II (ARC-II) [2]: ARC-II is built di-

rectly on the interaction space between two texts, and intends to capture the

rich matching patterns at different levels with the 2-D convolution.

• Deep Structured Semantic Models (DSSM) [13]: DSSM utilizes deep neu-

ral networks to map high-dimension sparse features into low-dimensional

dense features, and then computes the semantic similarity of the text pair.

• Convolutional Deep Structured Semantic Models (C-DSSM) [14]: C-DSSM

learns low-dimensional semantic vectors for input text by CNN. Particularly,

DSSM and C-DSSM are designed for Web search. However, they were only

evaluated on (query, doc title) pairs.

• Multiple Positional Semantic Matching (MV-LSTM) [4]: MV-LSTM matches

two pieces of text with multiple positional text representations, and aggre-

gates interactions between different positional representations to give a match-

ing score.

31

TABLE 5.3

ACCURACY AND F1-SCORE RESULTS OF DIFFERENT ALGORITHMS ON THE OHSUMED

DATASET.

Algorithm
Dev Test

Accuracy F1-score Accuracy F1-score

ARC-I 0.5067 0.6676 0.5068 0.6681

ARC-II 0.5490 0.6759 0.5511 0.6775

DSSM 0.5243 0.4811 0.5138 0.4721

C-DSSM 0.5155 0.5650 0.5112 0.5613

MatchPyramid 0.5597 0.6597 0.5648 0.6625

MV-LSTM 0.5610 0.4559 0.5555 0.4481

MGAN 0.8040 0.8090 0.8075 0.8118

• MatchPyramid [5]: MatchPyramid calculates pairwise word matching ma-

trix, and models text matching as image recognition, by taking the matching

matrix as an image.

For the above baseline deep matching models, we utilized MatchZoo [16] for

evaluation. For our MGAN model, since the edge weights of the graph is in the

range of 0 to 1, we set λ = 1. Besides, considering the average length of documents,

K is set to 20 in the Rank-and-Pooling. The number of graph convolution layers L

is 2.

5.3 Performance Analysis

Table 5.3 and Table 5.4 compares our model with existing deep matching models on

the Ohsumed dataset and the NFCorpus dataset, in terms of classification accuracy

and F1 score. Results demonstrate that our Multiresolution Graph Attention Net-

32

TABLE 5.4

ACCURACY AND F1-SCORE RESULTS OF DIFFERENT ALGORITHMS ON THE NFCORPUS

DATASET.

Algorithm
Dev Test

Accuracy F1-score Accuracy F1-score

ARC-I 0.5067 0.6676 0.7969 0.8548

ARC-II 0.5490 0.6759 0.7576 0.8361

DSSM 0.5243 0.4811 0.6336 0.7646

C-DSSM 0.5155 0.5650 0.6259 0.7590

MatchPyramid 0.5597 0.6597 0.6408 0.7811

MV-LSTM 0.5610 0.4559 0.6683 0.7564

MGAN 0.9425 0.9553 0.9407 0.9535

work achieves the best classification accuracy and F1 score on both two datasets.

This can be attributed to multiple characteristics of our model. First, the input to

our neural network model is the keyword graph representation of documents, rather

than the original sequential word representation. Based on it, we characterize the

interaction patterns between different keywords of the document. This helps to in-

corporate the semantic structure information of a long document into our model,

and alleviates the problem of long-distance dependency (as correlated words are

connected by edges directly). Our model solves the problem of matching query and

document in a “divide-and-conquer” manner to cope with the long length of doc-

uments: it matches the query with each keyword of the document to get matching

signals, and aggregate all the matching signals by utilizing the correlations between

keywords to give an overall relevance matching result. Second, our model learns a

multiresolution encoding representation for each keyword vertex via a multi-layer

Graph Convolutional Network. In each graph convolution layer, the representations

33

of vertices are revised by taking their neighboring vertices into account. In this

way, the context information of the keywords in the document is encoded into the

high-level vertex representations. Third, for each vertex in each graph convolution

layer, we learn a vertex-specific query representation through attention mechanism

to match the query with each vertex. This operation helps the vertices to focus

on the query information that is related to it. Finally, our rank-and-pooling oper-

ation unifies the number of vertices for different documents, and selects the most

important matching signals in each layer to get the final matching result.

On the contrary, Table 5.3 and Table 5.4 also indicate that the baseline deep text

matching models lead to bad performance in query document relevance matching

tasks. The main reasons are the following. First, existing deep text matching mod-

els are more suitable for the task of semantic matching, where the main concerns

in such tasks are the compositional meanings of text pieces and the global match-

ing between them. In our case, matching query and document is the problem of

relevance matching. This problem emphasizes more on the exact matching signals

between query keywords and documents. Both the importance of different query

keywords and the topic structure of documents are critical to relevance matching,

and we need to take them into account. Second, existing deep text matching mod-

els can hardly capture meaningful semantic relations between a short query and a

long document. When the document is long, it may covers multiple topics, and

the query may match only a part of the document. In this case, it is hard to get

an appropriate context vector representation for relevance matching, and the part

of document that is not related with the query will overwhelm the match signals of

the related part. For interaction-focused models, most of the interactions between

words in the query and the document will be meaningless, therefore it is not easy to

extract useful interaction features for further matching steps. Our model effectively

solves the above challenges by representing documents as keyword graphs, and uti-

lize the semantic structure of long documents through Graph Convolution Network

for relevance matching.

Moreover, we also tried to represent a document by TF-IDF vector based on

34

TABLE 5.5

ACCURACY AND F1-SCORE RESULTS OF MGAN AND ITS VARIANTS ON THE OHSUMED

DATASET.

Algorithm
Dev Test

Accuracy F1-score Accuracy F1-score

No GCN 0.6837 0.6819 0.6850 0.6810

No Attention 0.7908 0.7882 0.7893 0.7865

No Query Encoding 0.7859 0.7900 0.7927 0.79576

Pooling Size K = 5 0.7602 0.7453 0.7642 0.7484

MGAN 0.8040 0.8090 0.8075 0.8118

its words or its keywords. Then we calculate the cosine similarity to estimate the

relevance level between a query and a document. We found that the performance

given by such shallow models are quite bad: the accuracy is around 0.38 and F1 is

smaller than 0.1. This proves the necessity of representing words by word vectors,

and incorporating document structural information by graph convolution.

In overall, the experimental results demonstrate the superior applicability and

generalizability of our proposed model.

5.4 Impact of Different Modules and Parameters

We also tested several model variants for ablation study. For each model variant, we

remove one module from the complete Multiresolution Graph Attention Network

model, and compare its performance with our complete model on the two datasets

to evaluate the impact of the removed component.

Table 5.5 and Table 5.6 show the performance of all the evaluated models for

ablation study on two datasets. Specifically, we evaluated the following models:

• Multiresolution Graph Attention Network (MGAN). This is our original

35

TABLE 5.6

ACCURACY AND F1-SCORE RESULTS OF MGAN AND ITS VARIANTS ON THE NFCORPUS

DATASET.

Algorithm
Dev Test

Accuracy F1-score Accuracy F1-score

No GCN 0.8767 0.9053 0.8757 0.9039

No Attention 0.9432 0.9558 0.9433 0.9556

No Query Encoding 0.8616 0.8929 0.8629 0.8930

Pooling Size K = 5 0.9381 0.9520 0.9381 0.9517

MGAN 0.9425 0.9553 0.9407 0.9535

proposed model.

• MGAN (no GCN). It is a variant model that removes the graph convolutional

layers in our neural network. In other words, we just represent each vertex by

the word vector of the keyword it contains, and match each keyword with all

the query words.

• MGAN (no attention). This variant model removes the attention mechanism

in our neural network. In this model, we add a max-pooling layer over the

encoded query words to get the hidden vector representation of the query, and

use it to match with each vertex.

• MGAN (less keywords). In this model, we reduce the number of selected

keywords by setting K = 5 instead of 20.

• MGAN (no query encoding). In this model, we remove the 1D CNN en-

coder for query, and directly use the word vectors to represent each query

token.

Impact of graph convolution layers. Compare our model with the version that

36

do not contain any graph convolution layers. We can see that the performance is

worse on both datasets when we remove graph convolution from our model. The

reason is that the representation of each vertex will be local and does not contain any

context information of its neighboring vertices. Therefore, the topological structure

of keyword interactions in the document are totally ignored. In our model with

graph convolution layers, in each layer, we lean an adaptive context vector for each

vertex. It incorporates the semantic meaning of its neighboring keywords based on

their vector representations and edge weights. The multi-layer graph convolution

leads to a multiresolution semantic representation of keywords in the document, as

in a higher layer, the representation of a vertex covers the information of vertices in

a broader range.

Impact of query encoding. Compare our model with the version that do not

perform query encoding. When the query tokens are only represented by the orig-

inal word vectors and not refined by any encoders to incorporate the contextual

information, the performance becomes worse. For example, if the main focus of

the query is a key phrase that contains multiple tokens, the CNN encoder can help

to combine the semantic information in tokens to represent the key phrase, while the

original sequence of word vectors can hardly capture the compositional meaning.

Impact of query-vertex attention. Compare our model with the version that

do not implement query-vertex attention. In this case, our model gets better per-

formance on the Ohsumed dataset and comparable performance on the NFCorpus

dataset. Our model use the attention mechanism to learn a vertex-aware query en-

coding for each vertex. Thus, each vertex will focus on the matching signals with

a subset of the query tokens. In comparison, when we remove the attention mecha-

nism from our model, each vertex will match with the same encoding vector of the

query. Given a specific vertex, the unrelated tokens in the query make the matching

signal between a query and a keyword less important. However, when tokens in the

query have similar meaning, the attention mechanism won’t have significant impact

on the performance of our model.

Impact of the number of selected keywords in the Rank-and-Pooling. In the

37

2−1 20 21 22
λ

0.7900
0.7925
0.7950
0.7975
0.8000
0.8025
0.8050
0.8075

Ac
cu
ra
cy

Dev
Test

Fig. 5.1. Compare the accuracies given by different λ on the Ohsumed dataset.

Rank-and-Pooling operation, we need to set a parameter K and choose the matching

results between the query and the top K vertices for each graph convolution layer.

We tested K = 5 and K = 20 respectively, and the performance is better when

K = 20. That is reasonable, as K = 20, our keyword graphs of documents retain

more information of the original documents. If the value of K is small, keywords

related to the query are more likely to be removed. However, if the value of K is too

large, the unimportant words in the document will become noise to the matching

model thus leading to bad performance. Furthermore, we should also take the time

complexity of the model into account. More vertices selected in each layer, the

more time we need for computation.

Impact of parameter λ. We tested the performance of our MGAN model on

the Ohsumed dataset with different values of λ. Fig. 5.1 and Fig. 5.2 show the

comparison result in terms of accuracy and F1 score. It shows that the performance

of our model achieve the best when λ is set to be around 1. If λ is too small or

38

2−1 20 21 22

λ

0.795

0.800

0.805

0.810
F1

 S
co

re

Dev
Test

Fig. 5.2. Compare the F1 scores given by different λ on the Ohsumed dataset.

too large, the accuracy and F1 score will decrease. The reason is that the value of

λ shall be around the same scale with the edge weights in the keyword graph. In

our experiments, the edges weights are within the range of 0 to 1. Large λ means

that we focus more on each vertex’s own information and incorporate little con-

textual information into it by graph convolution. In contrast, a small value of λ

makes the graph convolution emphasize on incorporating the contextual informa-

tion of vertex’s neighboring vertices, but the vertex’s own information plays a less

important role. Therefore, λ is significant to the weighted graphs and should set to

an appropriate scale.

39

Chapter 6

Conclusion

In this thesis, we point out the key role of semantic structures of documents in the

task of relevance matching between short-long text pairs, and show that most exist-

ing approaches cannot achieve satisfactory performance for this task. We propose

to model a long document as a weighted undirected graph of keywords, with each

vertex representing a keyword in the document, and edges indicating their interac-

tion levels. Based on the graph representation of documents, we further propose

the Multiresolution Graph Attention Network (MGAN), a novel deep neural net-

work architecture, which learns multi-layer representations for keyword vertices

through a Graph Convolutional Network. It models the local interactions between

query words and each document keyword based on attention mechanism, and com-

bines the multiresolution matching between query and keywords on different graph

convolution layers with a rank-and-pooling procedure to give the final relevance

estimation result.

We apply our techniques to the task of relevance matching based on the Ohsumed

dataset and the NFCorpus dataset. The simulation results show that the proposed

approach can achieve significant improvement for relevance matching in terms of

accuracy and F1 score, compared with multiple existing approaches.

40

References

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-

lutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[2] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional neural network architectures

for matching natural language sentences,” in Advances in neural information

processing systems, 2014, pp. 2042–2050.

[3] X. Qiu and X. Huang, “Convolutional neural tensor network architecture for

community-based question answering.” in IJCAI, 2015, pp. 1305–1311.

[4] S. Wan, Y. Lan, J. Guo, J. Xu, L. Pang, and X. Cheng, “A deep architecture

for semantic matching with multiple positional sentence representations.” in

AAAI, vol. 16, 2016, pp. 2835–2841.

[5] L. Pang, Y. Lan, J. Guo, J. Xu, S. Wan, and X. Cheng, “Text matching as

image recognition.” in AAAI, 2016, pp. 2793–2799.

[6] Z. Wang, W. Hamza, and R. Florian, “Bilateral multi-perspective matching for

natural language sentences,” arXiv preprint arXiv:1702.03814, 2017.

[7] W. Yin and H. Schütze, “Convolutional neural network for paraphrase identi-

fication,” in Proceedings of the 2015 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language Tech-

nologies, 2015, pp. 901–911.

[8] Z. Ji, Z. Lu, and H. Li, “An information retrieval approach to short text con-

versation,” arXiv preprint arXiv:1408.6988, 2014.

41

[9] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word embeddings

to document distances,” in International Conference on Machine Learning,

2015, pp. 957–966.

[10] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and D. Zhang,

“Irgan: A minimax game for unifying generative and discriminative informa-

tion retrieval models,” in Proceedings of the 40th International ACM SIGIR

conference on Research and Development in Information Retrieval. ACM,

2017, pp. 515–524.

[11] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word

representation,” in Proceedings of the 2014 conference on empirical methods

in natural language processing (EMNLP), 2014, pp. 1532–1543.

[12] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural net-

works on graphs with fast localized spectral filtering,” in Advances in Neural

Information Processing Systems, 2016, pp. 3844–3852.

[13] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning deep

structured semantic models for web search using clickthrough data,” in Pro-

ceedings of the 22nd ACM international conference on Conference on infor-

mation & knowledge management. ACM, 2013, pp. 2333–2338.

[14] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “Learning semantic represen-

tations using convolutional neural networks for web search,” in Proceedings

of the 23rd International Conference on World Wide Web. ACM, 2014, pp.

373–374.

[15] J. Guo, Y. Fan, Q. Ai, and W. B. Croft, “A deep relevance matching model for

ad-hoc retrieval,” in Proceedings of the 25th ACM International on Confer-

ence on Information and Knowledge Management. ACM, 2016, pp. 55–64.

[16] Y. Fan, L. Pang, J. Hou, J. Guo, Y. Lan, and X. Cheng, “Matchzoo: A toolkit

for deep text matching,” arXiv preprint arXiv:1707.07270, 2017.

42

[17] R. Krovetz and W. B. Croft, “Lexical ambiguity and information retrieval,”

ACM Transactions on Information Systems (TOIS), vol. 10, no. 2, pp. 115–

141, 1992.

[18] D. D. Lewis, “Naive (bayes) at forty: The independence assumption in infor-

mation retrieval,” in European conference on machine learning. Springer,

1998, pp. 4–15.

[19] S. Robertson, H. Zaragoza et al., “The probabilistic relevance framework:

Bm25 and beyond,” Foundations and Trends® in Information Retrieval,

vol. 3, no. 4, pp. 333–389, 2009.

[20] H. Li and J. Xu, “Beyond bag-of-words: machine learning for query-

document matching in web search,” in Proceedings of the 35th international

ACM SIGIR conference on Research and development in information re-

trieval. ACM, 2012, pp. 1177–1177.

[21] B. Rosario, “Latent semantic indexing: An overview,” Techn. rep. INFOSYS,

vol. 240, pp. 1–16, 2000.

[22] P. Neculoiu, M. Versteegh, M. Rotaru, and T. B. Amsterdam, “Learning text

similarity with siamese recurrent networks,” ACL 2016, p. 148, 2016.

[23] Y. Shao, “Hcti at semeval-2017 task 1: Use convolutional neural network to

evaluate semantic textual similarity,” in Proceedings of the 11th International

Workshop on Semantic Evaluation (SemEval-2017), 2017, pp. 130–133.

[24] Z. Lu and H. Li, “A deep architecture for matching short texts,” in Advances

in Neural Information Processing Systems, 2013, pp. 1367–1375.

[25] J. Leskovec, M. Grobelnik, and N. Milic-Frayling, “Learning sub-structures

of document semantic graphs for document summarization,” 2004.

[26] G. A. Miller, “Wordnet: a lexical database for english,” Communications of

the ACM, vol. 38, no. 11, pp. 39–41, 1995.

43

[27] F. Rousseau and M. Vazirgiannis, “Graph-of-word and tw-idf: new approach

to ad hoc ir,” in Proceedings of the 22nd ACM international conference on

Information & Knowledge Management. ACM, 2013, pp. 59–68.

[28] F. Rousseau, E. Kiagias, and M. Vazirgiannis, “Text categorization as a graph

classification problem.” in ACL (1), 2015, pp. 1702–1712.

[29] Y. Wang, X. Ni, J.-T. Sun, Y. Tong, and Z. Chen, “Representing document as

dependency graph for document clustering,” in Proceedings of the 20th ACM

international conference on Information and knowledge management. ACM,

2011, pp. 2177–2180.

[30] A. Schenker, M. Last, H. Bunke, and A. Kandel, “Clustering of web doc-

uments using a graph model,” SERIES IN MACHINE PERCEPTION AND

ARTIFICIAL INTELLIGENCE, vol. 55, pp. 3–18, 2003.

[31] H. Balinsky, A. Balinsky, and S. Simske, “Document sentences as a small

world,” in Systems, Man, and Cybernetics (SMC), 2011 IEEE International

Conference on. IEEE, 2011, pp. 2583–2588.

[32] R. Mihalcea and P. Tarau, “Textrank: Bringing order into text,” in Proceedings

of the 2004 conference on empirical methods in natural language processing,

2004.

[33] G. Erkan and D. R. Radev, “Lexrank: Graph-based lexical centrality as

salience in text summarization,” Journal of Artificial Intelligence Research,

vol. 22, pp. 457–479, 2004.

[34] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation rank-

ing: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[35] J. W. G. Putra and T. Tokunaga, “Evaluating text coherence based on semantic

similarity graph,” in Proceedings of TextGraphs-11: the Workshop on Graph-

based Methods for Natural Language Processing, 2017, pp. 76–85.

44

[36] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Db-

pedia: A nucleus for a web of open data,” The semantic web, pp. 722–735,

2007.

[37] K. K. Schuler, “Verbnet: A broad-coverage, comprehensive verb lexicon,”

2005.

[38] S. Hensman, “Construction of conceptual graph representation of texts,” in

Proceedings of the Student Research Workshop at HLT-NAACL 2004. Asso-

ciation for Computational Linguistics, 2004, pp. 49–54.

[39] B. Rink, C. A. Bejan, and S. M. Harabagiu, “Learning textual graph patterns

to detect causal event relations.” in FLAIRS Conference, 2010.

[40] C. Jiang, F. Coenen, R. Sanderson, and M. Zito, “Text classification using

graph mining-based feature extraction,” Knowledge-Based Systems, vol. 23,

no. 4, pp. 302–308, 2010.

[41] C. Baker and M. Ellsworth, “Graph methods for multilingual framenets,” in

Proceedings of TextGraphs-11: the Workshop on Graph-based Methods for

Natural Language Processing, 2017, pp. 45–50.

[42] S. Siddiqi and A. Sharan, “Keyword and keyphrase extraction techniques: a

literature review,” International Journal of Computer Applications, vol. 109,

no. 2, 2015.

[43] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky,

“The stanford corenlp natural language processing toolkit,” in Proceedings of

52nd annual meeting of the association for computational linguistics: system

demonstrations, 2014, pp. 55–60.

[44] M. Hu, Y. Peng, and X. Qiu, “Mnemonic reader for machine comprehension,”

arXiv preprint arXiv:1705.02798, 2017.

45

[45] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning

architecture for graph classification,” 2018.

[46] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M.

Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of Machine Learning

Research, vol. 12, no. Sep, pp. 2539–2561, 2011.

[47] W. Hersh, C. Buckley, T. Leone, and D. Hickam, “Ohsumed: an interactive

retrieval evaluation and new large test collection for research,” in SIGIR’94.

Springer, 1994, pp. 192–201.

[48] V. Boteva, D. Gholipour, A. Sokolov, and S. Riezler, “A full-text learning to

rank dataset for medical information retrieval,” in European Conference on

Information Retrieval. Springer, 2016, pp. 716–722.

46

