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ABSTRACT
Real-time device-level multi-domain emulation can provide an accurate insight into behavioral transients
of the hydrogen fuel-cell hybrid electric bus (HEB). However, the conventional electromagnetic transient
(EMT) simulation suffers from the computation burden caused by the complex multi-domain subsystems.
This paper develops a hybrid recurrent neural network (RNN) and EMT method for device-level multi-
domain emulation for fuel-cell and battery HEB. Two recurrent neural networks (RNN) are designed and
trained to create device-level models of permanent magnet synchronous motor (PMSM) and the modular
multilevel converter (MMC), respectively. The IGBTs’ behavioral transients and thermal performance are
integrated into the RNN-based MMC model. Moreover, the EMT models represent the energy behaviour
of onboard fuel-cell stacks and battery stacks. The proposed multi-domain hybrid models are implemented
on the Xilinx Versal™ adaptive compute acceleration platform (ACAP), where multiple AI engines and the
programmable logic deal with the RNN and EMT models, respectively. The real-time hardware emulation is
carried out at the time-step of 0.1µs for device-level transients. The results show that the hybrid model has
96.3% accuracy; furthermore, it significantly reduces the HEB emulation time compared to conventional
EMT methods.

INDEX TERMS Adaptive compute acceleration platform, device-level real-time emulation, electromag-
netic transients, fuel-cell, hybrid electric bus, insulated-gate bipolar transistor, multi-domain modeling, real-
time systems, recurrent neural networks.

NOMENCLATURE

ACAP Adaptive compute acceleration platform
Facc HEB acceleration force (N)
Fgx HEB gravitational resistance by the slope in

the road (N)
Fres HEB equivalent resistance (N)
id PMSM current in d axis (A)
iq PMSM current in q axis (A)
Ibt Battery current (A)
IHFC Fuel-cell current (A)
Ld Stator d-axis inductance (H)
Lq Stator q-axis inductance (H)
vd PMSM voltage in d axis (V)

vq PMSM voltage in q axis (V)
vHEB HEB speed (km/h)
PH2 Pressure of hydrogen gas (Pa)
PO2 Pressure of oxygen (Pa)
PH2O Pressure of water (Pa)
Rbt Battery equivalent resistance (Ω)
Rs Resistance of the stator windings (Ω)
Te PMSM electrical torque (Nm)
Ubt Battery voltage (V)
SOC Battery state of charge
ωe Electrical velocity of the motor (rad/s)
ωr Mechanical velocity of the motor (rad/s)
λm Permanent flux linkage constant (Wb)
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I. INTRODUCTION
Modern public transportation sectors rely highly on hydro-
carbon fuels, giving rise to enormous energy costs and a fair
amount of carbon dioxide emissions [1], [2]. Hence recent
years have seen the increasing trend for automobile manufac-
turers to develop the advanced energy storage techniques into
the hybrid electric bus (HEB) [3]–[6], which is regarded as an
appropriate substitute for conventional vehicles. Li-ion bat-
teries are widely used in commercial electric vehicles due to
their high efficiency and safety; however, they suffer from the
strict charging time [3]. As a consequence, the hydrogen fuel-
cell becomes another potential candidate for HEB, since the
large space and fixed route of HEB can meet the requirements
for fuel-cell and hydrogen tank deployment [7]. As shown in
Fig. 1, the global hydrogen powered transport is expected to
grow from 3.27 billion in 2021 to 5.15 billion in 2022 at a
compound annual growth rate (CAGR) of 57.5% [8].

Due to the complex interconnection between multi-domain
subsystem and their control system, it is more difficult to
simulate, emulate, and analyze the device-level electromag-
netic transient behaviour in HEB. In this case, it is essential
to enhance the real-time hardware emulation technique for
HEB at multi-domain level, i.e., electrical system [9], energy
storage system [10], control system [11], [12] and mechani-
cal system.

Electromagnetic transient (EMT) emulation is a practical
approach to reveal the behavioral transients of power systems
and the power converters [13], [14]. Unfortunately, the EMT
models naturally cause a tremendous computational burden
for real-time emulation of the multi-domain system at the
microsecond-level emulation time interval [15]. Moreover,
complex subsystems in HEB, including the hydrogen fuel-
cell packs, batteries, permanent magnet synchronous motor
(PMSM), and modular multilevel converter (MMC), require
more hardware resources, which has been one of the biggest
challenges of the current HEB emulation technique [16],
[17].

The artificial intelligence (AI) method has already become
a new path to reduce the computation complexity and main-
tain the model accuracy as well in recent years [18]–[22].
As the typical AI algorithm, the recurrent neural network
(RNN) was implemented for the diagnosis of electric vehicle
batteries in [18]. The RNN was designed as the controller
to regulate the three-phase photovoltaic system in [19]. The
convolutional neural networks are utilized to detect and i-
dentify the MMC operation fault in real-time [20], while the
deep neural network is used for voltage estimation of MMC
in [21]. In addition, the deep learning method is used for
energy management in [22].

Not only for the system-level emulation but neural network
algorithms can also be implemented in device-level emula-
tion. An adaptive dynamic surface control method based on
neural network is proposed for PMSM drive systems in [23].
In [18], the insulated-gate bipolar transistors (IGBTs) tem-
perature measurement is modeled by the neural network and
k-means clustering. However, the existing methods did not
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FIGURE 1. The global hydrogen powered transport market and compound
annual growth rate from 2020 to 2025.

focus simultaneously on both system-level and device-level,
revealing the device behaviour and simulating the overall
multi-domain system operation.

This paper proposes a hybrid EMT and supervisory RNN
real-time emulation scheme for the HEB’s multi-domain
subsystems, i.e., electrical, control, thermal, and mechanical
domains. Initially, the RNN algorithm is applied for the
device-level modeling of MMC and PMSM. In particular,
only one RNN model is used in this paper for both MMC
and its submodules, along with the IGBT and power diodes’
transient and thermal behaviour. In this case, the solution
time consumption can be significantly reduced compared to
the traditional EMT simulation method, where the MMC is
mathematically divided into several submodules and solved
step-by-step. Another independent RNN model is trained to
represent the relationship between three-phase MMC output
and torque and speed of PMSM. The training data is obtained
from the commercial simulation software Ansys Electronics.
Second, the conventional EMT model represents fuel-cell
stack and battery stack energy and power behaviour. Third,
the transfer function model is implemented to represent
the mechanical system. The hardware emulation is carried
out on the Xilinx Versal™ adaptive compute acceleration
platform (ACAP), which contains hardware AI engines and
programmable logic blocks [24]. The RNN model was solved
in parallel on the AI engines, while the other subsystems
ran in the FPGA units at the same time. The HEB from
New Flyer Xcelsior Charge™ is introduced, and a complete
driving cycle of New York City Cycle (NYCC) [25] is chosen
for the study case. The hardware emulation time-step is set to
0.1µs at the device-level and 1ms at the system-level.

This paper is organized as follows. Section II introduces
device-level modeling of the HEB electrical domain using the
RNN algorithm. The multiple domains, including electrical,
control, and mechanical, are modeled in Section III. The
ACAP hardware design and implementation are provided in
Section IV. Real-time emulation and validation results are
shown in Section V, and Section VI provides conclusions.
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FIGURE 2. Conventional EMT system for HEB: (a) overall HEB system topology; (b) MMC-based PMSM driving system; (c) multi-domain system; (d) MMC control
system.

II. SUPERVISORY DEVICE-LEVEL MODELING OF HEB
POWER SYSTEM
The RNN algorithms, which are a generalization of feed-
forward neural network that has an internal memory, are
designed to learn from sequential data and succeed in many
time series tasks. In this section, the device-level power com-
ponents of MMC and PMSM are introduced and modeled by
two RNN models.

A. BACKGROUND ON RECURRENT NEURAL NETWORK
The RNN algorithm can be designed to predict MMC and
PMSM output since it can work with sequential history data.
Nodes along a directed or undirected time-series graph allow
dynamic temporal behavior in the basic RNN framework.
It repeats the same process on each element of the input
sequence in one step, maintaining a state in its hidden layer
that implicitly contains historical information about all past
elements of the sequence, which provides good performance
for short sequences. Some crucial issues arise due to the
real-time emulation for HEB is a long-term dependence
problem. Thus, improved RNN methods, such as long short-
term memory (LSTM) and gated recurrent unit (GRU), have
been widely applied in many applications with time series or
sequential data [26].

As shown in Fig. 3, the LSTM has the three elements,
i.e., forget gate, input gate, and cell state. The forget gate
determines whether information should be thrown away or
kept, which can carry relevant information throughout the
processing of the sequence. Since the HEB multi-domain
emulation is time-varying, RNN combined with LSTM struc-
ture is utilized for electrical domain modeling, which results

LSTM

Forget

Gate

Output Gate

tanh

tanh

Input

Input
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tanh

Update

Gate

C
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FIGURE 3. Long short-term memory (LSTM) and gated recurrent unit (GRU)
framework.

in a better overall performance. The GRU only uses a reset
and update gate to control the past information using the
previous information. Both two gates decide how much past
information should be considered in the next step. In this
paper, the LSTM architecture is designed to achieve device-
level multi-domain emulation of HEB.

The recurrent depth, feed-forward depth, and recurrent
skip coefficients are three critical parameters of the com-
plexity measurement. The accuracy and execution time for
the LSTM RNN model mainly depends on the feed-forward
depth [27], [28], which can be derived as:

zt = σ(Wz[ht−1, xt]), (1)
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rt = σ(Wr[ht−1, xt]), (2)

h̃t = tanh(W ([r ∗ ht−1, xt]), (3)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t, (4)

where xt and ht are the system input sequence and the neural
network output at time step t, respectively. The index t ranges
from 1 to τ . Wz is the parameters of the hidden layer, h̃t is
the candidate values.

B. PMSM RNN MODELING
The PMSM has become commonplace in electric vehicle
driving systems, especially for public transportation, since it
has the advantages of high efficiency and high power density.
In this work, the PMSM is the HEB’s only traction source.

The traditional EMT model can be derived from the fol-
lowing d-q model:

vd = Rs · id − ωe · λq +
dλd
dt

, (5)

vq = Rs · iq + ωe · λd +
dλq
dt

, (6)

where
λd = Ld · id, λq = Lq · iq + λm, (7)

vd, iq , vq , and id are the voltage and current in d axis and q
axis of PMSM; Ld, Lq , and λm are the stator’s flux linkage;
ωe is the power supply frequency in rad./s. Then, the electric
torque Te is given as:

Te =
3p

4
[λm · iq − (Lq − Ld) · id · iq], (8)

while the mechanical rotor speed of PMSM ωm can be
calculated based on

JM · dωr

dt
= Te − Tm, (9)

where JM is the moment of inertia and ωr is the rotor’s
angular velocity.

In order to achieve the microsecond-level emulation, the
supervisory neural network algorithm is implemented for
PMSM modeling to avoid solving the complex matrix in a
sequential manner. The inputs of the RNN-based model are
three-phase input voltages and currents of PMSM, while the
PMSM model’s outputs are the required mechanical torque
Tmref , rotor speed ωr. The parameters of PMSM from EMT
model are listed in Table 2 in the Appendix.

C. MMC RNN MODELING
IGBTs and power diodes are the fundamental components in
the MMC submodules. According to [29], [30], the nonlinear
behavioral model of IGBT and power diodes pair can be rep-
resented by a 5×5 time-varying conductance matrix, leading
to an 8 × 8 matrix for one MMC submodule. However, the
increasing number of the MMC submodules and the com-
plexity of the EMT model will cause a heavy computation
burden. Furthermore, the MMC phase shift control strategy
and the IGBT model need to be computed in a sequential

manner, which also significantly increases the emulation time
consumption. To solve this problem, the RNN algorithm is
also utilized for the MMC modeling. As shown in Fig. 2
(b), the half-bridge submodule has two IGBT and power
diodes. There is only one neural network implemented for all
submodules along with the IGBT thermal information Tjunc
and transient behaviour, i.e., the collector to emitter voltage
Vce.

However, the mathematical relationship between submod-
ules’ input and output has high reproducibility, implying
a low correlation between them. The voltage, current, and
junction temperature error at the history time, (t − 2) and
(t − 1) are required to increase the RNN model accuracy.
Thus, the input sequence is extended into eight lines, as
shown in Fig. 2. In addition, the min-max normalization
technique is adopted to preprocess the input data.

Assuming all the submodules have the same electrical
behaviour, only one RNN model can represent the device-
level modeling of the IGBT and power diodes. The MMC
submodule can be assembled according to the physical con-
nections using the EMT nodal analysis method, while the
control system generates the gating signals. In particular, the
control strategy is independently analyzed and trained in the
control system, which is further developed in Section III due
to flexibility and extensibility.

III. MULTI-DOMAIN SUBSYSTEMS MODELING OF
HYBRID ELECTRIC BUS
The multi-domain models are further established using the
above-mentioned device-level models. First, the fuel-cell and
battery hybrid energy storage system is designed. Then, the
mechanical system is modeled using transfer functions.

A. ELECTRICAL DOMAIN
Hydrogen fuel-cell stacks and battery stacks are the main
energy storage devices of HEB. Unlike all battery-based
buses, the fuel-cell transfers hydrogen into chemical energy
and charges the batteries to drive the HEB. In addition, the
batteries can absorb electrical braking energy, which is also
known as regenerative braking.

1) Fuel-cell modeling
Fig. 4(a) shows the equivalent circuit model of hydrogen fuel
cells, which includes the three nonlinear current controlled
voltage sources f1(IHFC), f2(IHFC), and f3(IHFC), in
series with resistance and capacitance module.

The nonlinear term can be obtained from the following
equations:

f1(IHFC) =
Ψ

2F
· ln

PH2
·
√
PO2

PH2O
, (10)

f2(IHFC) = − Ψ

2F
· lnIHFC

Io
, (11)

f3(IHFC) =
Ψ

2F
· ln(1 − IHFC

Imax
), (12)
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where IHFC is fuel-cell current, the PH2
, PO2

, and PH2O

are the pressure of hydrogen gas, oxygen and water. Ψ
gas constant multiplied by temperature, and F stands for
Faraday constant. In particular, this work assumes that HEB’s
weight is fixed during the operation even the hydrogen gas
consumption.

2) Battery modeling
As shown in Fig. 2, the fuel-cell stacks are serially connected
with battery stacks. The fuel-cell is the main energy source,
while the batteries act as an energy buffering in this work.
For the purpose of device-level emulation, Fig. 4(a) shows
the second-order resistance-capacitance model, which is in-
troduced for device-level behavioral transients emulation of
the battery stacks. The equivalent resistance of the battery
stack at a steady state is represented by R0

bat. R
(1)
bt and C(1)

bt

branch represents the dynamic behaviour of batteries in short
term, while R(1)

bt and C(1)
bt branch represents the long term

behavioral transients. Then, the inner voltage Ubt can be
derived as:

Ubt = OCV (SOC) + Ibt ·R(0)
bt +

3∑
i=1

U
(i)
Cbt
, (13)

where U (i)
Cbt

is the voltage across C(i)
bt . Since the battery and

fuel-cell are connected in series, the regenerative brake only
works on the batteries.

B. CONTROL DOMAIN
The energy storage strategy, PMSM control and MMC
main circuit control system are key parts in the control
domain. The energy storage system adopts the double-loop

proportional-integral (PI) controller to maintain the required
DC voltage. The PMSM and MMC controller takes the
demanded mechanical angular velocity ωmref as input, while
the output is the control signal for MMC submodules. The
feedback measurements include ωmref , Iabc, and rotor posi-
tion angle θm. Then the RNN model is analyzed and trained
along with the PMSM and MMC main circuit.

C. MECHANICAL DOMAIN
The mechanical domain deals with the energy and forces
and their effect on HEB under the conditions of different
speed profiles. In general, HEB can be regarded as a particle
affected by a set of resistance forces [25]. There are three
typical forces of an HEB, i.e., acceleration force Facc, the
equivalent resistance Fres, gravitational resistance by the
slope in the road Fgx, which can be derived as:

Facc = M · acc(t), (14)

Fgx = M · g · sin(β), (15)

Fres = CR ·M ·g ·cos(β)+
ρ · CAE ·AF · v2HEB(t)

2
, (16)

where acc is the HEB’s accelerated speed, β is the slope of
the roadway, CR and CAE are the coefficients of the rolling
resistance and penetration air respectively, ρ is the air density,
and AF is the front area of HEB.

The electrical domain is supposed to provide traction
power to overcome the resistances, which can be presented
as:

Fload = Facc + Fres + Fgx. (17)
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Then, the requested energy from the electrical domain can be
derived by

Eload =

∫ t

0

Pload dτ =

∫ t

0

Fload · vHEB(τ) dτ. (18)

Furthermore, the PMSM’s mechanical velocity and HEB
speed follow the relationship as:

ωr = ηgr · vHEB . (19)

where ηgr is the gearbox coefficient. The required PMSM’s
mechanical velocity for system-level emulation can be calcu-
lated using equation 19, since the HEB’s speed is available
from the driving cycle.

D. THERMAL DOMAIN
The thermal system mainly considers the electro-thermal
performance of IGBTs and power diodes. In the traditional
EMT computational model, the power consumption on IGBT
will produce heat diffused through its case, which can be
modeled as the transient electro-thermal impedance [29]. In
this work, the thermal system is also embedded in the RNN
model, which is studied and trained independently other than
being embedded in the MMC submodule. In this case, the
thermal system can provide more accurate thermal behaviour
of IGBTs. Therefore, there is no extra time for temperature
calculation of IGBTs and diodes, shortening the computation
time.

IV. ADAPTIVE COMPUTE ACCELERATION PLATFORMS
Since the proposed HEB real-time emulation scheme consists
of both RNN models and EMT models, the Xilinx Versal™
ACAP can be one of the best options for hybrid model
implementations [31]. As shown in Fig. 5, the top-level
architecture is partitioned into three areas: 1) Programmable
logic blocks, 2) AI Engine Array, 3) Processor system.

In general, the programmable logic blocks, i.e., field-
programmable gate array (FPGA), take the responsibilities
to deal with the EMT model, while the AI engine array can
solve the RNN model in parallel so that they are efficient at
AI algorithms with diverse decision trees and a broad set of
libraries, however, it is limited in performance scaling. As
shown in Fig. 5, the programmable logic mainly includes
three parts: a digital signal processing unit, a configurable
logic block, and random access memory.

A. AI ENGINE ARRAY
As shown in Fig. 5 (a), the AI engine array consists of
multiple AI engine tiles, and each tile has direct memory, data
memory, and steaming interconnection with other tiles. Each
AI engine contains a scalar, fixed-point, and floating-point
vector unit. Each AI Engine incorporates a high-performance
and single-instruction vector processor [24]. An adaptive data
flow is the communication network with multiple AI Engine
kernels connected by data streams, while direct memory
access is only available for neighbouring tiles.

Moreover, a heterogeneous computation architecture is
also utilized in the ACAP platform, which delivers all three
processing elements. In addition, a high-bandwidth network-
on-chip (NoC) is also utilized to provide memory-mapped
access, which allows devices to memory and allows memory
to map access to the AI engine array.

B. MULTI-DOMAIN DEVICE-LEVEL SYSTEM
DECOMPOSITION
In order to implement both EMT and RNN models for HEB,
the hardware resources are optimized for different types of
models, as shown in Fig. 5 (a):

1) The conventional EMT models from HEB’s mechani-
cal domain are implemented in programmable logic, which
has the advantage for real-time emulation of fixed models.
The programmable logic provides comprehensive embedded
compute resources for emulating EMT models.

2) The AI engines executed two RNN models for HEB’s
fuel-cell stacks, battery stacks, electrical, control and thermal
domain, where multiple kernels can handle a large-scale
matrix computation. The AI engine can accelerate RNN-
based models by parallel matrix computation.

In addition, the high-bandwidth inner NoC between the
programmable logic and AI engines can provide microsecond
data communication, which also guarantees real-time emula-
tion.

C. VITIS™ AI QUANTIZATION AND COMPILATION
In this paper, the RNN program is established using Python
language, then the Docker and Vitis™ AI Image are used to
quantize and cross-compile the RNN model. There are three
main steps for RNN model compilation [32]:

1) As shown in Fig. 5 (b), initially, the training and test
dataset is prepared for the compiler. Then, the RNN model
is trained on the graphics processing unit or CPU of the
computer, which generates standard RNN model parameters
in the format of the float model.

2) Since the AI engine can not deal with the float model, it
is necessary to parse the neural network computation graph
from the Python framework to intermediate representation.
The quantization and graph optimization is handled in this
stage. In this term, a standard long short-term memory quan-
tizer is used for two RNN models. Then, a xmodel file is
generated by Vitis™ AI [32].

3) The modified intermediate representation is deployed on
Versal™ VCK190 ACAP board. There are 60 AI engines for
each RNN model, when the hidden layer is 1 and the hidden
nodes are 100.

V. REAL-TIME MULTI-DOMAIN HARDWARE EMULATION
OF HYBRID ELECTRIC BUS
To test and verify the advantages of the proposed real-time
multi-domain emulation framework, in this work, the New
Flyer Xcelsior H2 city bus is chosen as the case study,
whose parameters are listed in Table 4 in the Appendix.
The hardware setup includes oscilloscope, analog-to-digital
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FIGURE 5. ACAP implementation: (a) Block diagram of Xilinx Versal™ ACAP top-level and AI engine array; (b) Vitis™ AI quantization and compilation.

DAC Board

Oscilloscope

Versal™  VCK190 

ACAP Board

FIGURE 6. Hardware setup for HEB multi-domain emulation.

converters (DAC), Versal™ VCK190 ACAP board, and their
power supplies as shown in Fig. 6.

A. DEVICE-LEVEL EMULATION VERIFICATION

The device-level emulation reveals the IGBT turn-on and
turn-off transient processes and thermal performance. In the
case study, the gate voltage is ± 15 V and the switching
frequency of 10 kHz. The IGBTs’ parameters are listed in
Table 3 in the Appendix.

Fig. 8 demonstrates the IGBT switching transient includ-

(a) (b)

FIGURE 7. Driving pattern of New York City Cycle: (a) HEB required speed;
(b) HEB required load power.

ing voltage and current between collector to emitter as long as
the junction temperature of IGBT and diode at 0.2ms time
window. During this period, the IGBT turned off and then
turned on twice. The voltage between collector to emitter Vce
is around 150 V, while the operating current is around 4 A.

The junction temperature of the IGBT suddenly increased
during the period when the MMC started to operate, as shown
in Fig.8(b). The RNN model has some noise compared to the
EMT model; however, the accuracy is still acceptable. The
junction temperature goes down when the operating current
is reduced. The RNN model has a significant ripple, and the
model error is still around 3 % compared to the EMT model.
Figs. 8(a) and 8(c) zoomed in the detailed transient switching
during the turn-off and turn-on period of the upper IGBT in
the first submodule of the upper MMC arm. Fig. 8(a) shows
the IGBT current when the IGBT turns off. The current
through IGBT suddenly increases in the reverse direction due
to the diode reverse recovery and then decreases to around
0 A. VCE increased from 0 V to 150 V within around 1µs,

VOLUME 4, 2022 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3189471

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) (b)

(c) (d)

FIGURE 8. real-time device-level modeling of IGBT and power diode pair: (a) voltage and current between collector and emitter; (b) IGBT junction temperature; (c)
Vce and Ic zoomed-in during IGBT turn-off; (d) Vce and Ic zoom in during IGBT turn-on.

and the voltage waveform has a tiny overshoot of 0.1 V. In
addition, there is also a slight overshoot of current which is
caused by instinct diodes.

Similarly, during the IGBT turn-on period, the collector
current increased rapidly to around 3.5 A with a more appar-
ent overshoot for RNN and EMT models. In addition, there
is also a voltage overshoot of Vce. Then the current maintains
about 3 A.

Both the RNN and EMT models have a similar trend and
almost the same static values, which verifies that the RNN
model was more accurate than the traditional EMT model.

B. SYSTEM-LEVEL EMULATION VERIFICATION
The multi-domain system emulation results of HEB are
shown in Fig. 9, where the HEB electric torque, mechanical
speed, the three-phase MMC output voltage, and current are
provided. The three-level MMC output source frequency is
60 Hz. The RNN model is trained with 50 epochs with 100
hidden layers and initial learning rate (ILR) is 0.0005. In
addition, the hidden layers and ILR impact on RNN model
accuracy are also investigated.

The complete NYCC driving cycle is chosen for the test-
ing, where the required HEB speed and power are shown in
Fig. 7. The average speed of the NYCC cycle is 11.4 km/h,
and the most significant speed is around 45 km/h, which
is close to the city bus daily routine. Moreover, there are
numerous stops and restarts in the course of its city routine.

Figs. 9(a) and 9(b) demonstrate the HEB torque and angu-
lar velocity under the driving condition of the NYCC cycle.

At the very beginning, the torque decreased from 38 Nm to
16 Nm as shown in Fig. 9(a). The HEB angular velocity keeps
increasing from 0 to 250 rad./s and then does not change until
0.3 s. During this period, the HEB is in start-up mode. Then
the HEB enters the cruise mode where the speed is around
250 rad./sec. and the Te is fixed at 10 Nm between 0.1 s to
2.9 s.

In this paper, the MMC submodule has a 5.4 mΩ capacitor
and 1 mH inductance is on each arm. Fig. 9(c) and 9(d)
demonstrate the capacitor voltage and current in the first
submodule of the upper arm during the first 0.2 seconds.
The submodule voltage reference in the three-level MMC is
supposed to be 150 V, because the battery stacks’ voltage is
300 V. During 0.1 s and 2.9 s, the HEB maintains the same
cruise speed; the MMC output current reduces to 10 A at
around 0.1 s as shown in Fig. 9(d).

During the MMC start-up period, the voltage across the
MMC module capacitor significantly rippled twice between
130 V and 180 V as shown in Fig. 9(e). Then the capacitor
voltage keeps at around 150 V after the MMC finished start-
up at around 0.2 s. A more detailed waveform is zoomed
in, which shows the emulation results of the RNN model
is almost the same as that of the EMT model, where the
RNN model error is around 0.13 %, and the maximum error
is 3.7%. In addition, the capacitor current waveform also has
a similar shape during and after MMC start-up, as shown in
Fig. 9(f). The detailed current curve is zoomed-in from 0.5 s
to 0.55 s.

Fig. 9(g) shows the IGBT junction temperature during the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 9. Real-time System-level results: (a) PMSM torque; (b) PMSM angular velocity; (c) three-phase MMC output voltage; (d) three-phase MMC output
current; (e) capacitor voltage of the MMC submodule; (f) capacitor current of the MMC submodule; (g) IGBT junction temperature Tjunc; (h) RNN model losses.

first 1 s. There is also a vibration of junction temperature
since the MMC voltage ripples during the start-up. However,
the largest overshoot appears at around 0.8 s since the tem-
perature is time delayed compared to voltage and current.
Moreover, the temperature is also accumulative, which is

why the temperature keeps increasing during the operations.
The comparison of the RNN model parameters in terms

of nodes and ILR are shown in Fig. 9(h). Considering the
impact on hidden layers, it can be concluded that the more
nodes, the less model loss is. At the condition of 30 nodes, the
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TABLE 1. Comparison of emulation execution time of RNN models and EMT
models

Modeling Method 1µs time-step 0.1µs time-step
Ansys EMT Model 3 ×104 s 2.1 ×105 s
Behavioral Model 0.84 ×102 s 1.7 ×102 s

Proposed Hybrid Model 85.53 s 89.17 s

RNN model loss is reduced when the ILR is set to 0.0001 and
0.0005. The higher the ILR, the less RNN model loss is. The
increasing ILR and nodes require more hardware resources
and time for training. However, this work deployed the off-
line RNN model; thus, training efficiency is not considered.

Table 1 summarized the time consumption for the tra-
ditional EMT model, behavioral model and the proposed
RNN and EMT hybrid model. The length of the HEB multi-
domain dataset is 100 s, while the device-level emulation
time steps are 1µs and 0.1µs. The proposed hybrid RNN
and EMT hardware emulation scheme spent much less time
than the EMT and behavioral model. In particular, the time
consumption of the RNN model is sensitive to the emulation
time-step if the nodes and hidden layer are fixed. As long as
the hardware platform can compute the RNN model within
0.1µs, the proposed method can achieve real-time emulation
for HEB’s multi-domain systems.

VI. CONCLUSION

Due to the increased focus on sustainable transport alterna-
tive buses, this paper developed a real-time emulation for
hybrid HEB multi-domain systems at both system-level and
device-level using hybrid EMT and RNN models. The HEB
is mathematically divided into several domains, including
electrical, control, mechanical, and thermal. The MMC and
its control domain strategy are modeled using the RNN algo-
rithm, while another RNN model is used for PMSM emula-
tion. The traditional EMT models are used for fuel-cell stacks
and battery stacks. The RNN-based MMC model can reveal
the IGBT transient and thermal behaviour at 0.1µs time-step,
providing essential information for the thermal management
system. The AI engines of Xilinx Versal™ ACAP compute
the RNN models while the programmable logic unit deals
with the EMT models. The hardware emulation time-step
is 0.1µs for device-level and 1ms for system-level. The
emulation results show that the average and maximum errors
of the RNN model are around 0.13 % and 3.7%, respectively.
Future work will extend to developing the detailed compu-
tational model of the fuel-cell stack for the hydrogen-based
transportation sector.

APPENDIX

Table 2 summarized the HEB’s PMSM parameters,
the Siemens BSM300GA160D IGBT model parameters
from [29] is listed in Table 3, and the New Flyer city bus
parameters from [33] are listed in Table 4.

TABLE 2. PMSM Parameters

Parameters Value
Nominal apparent power 160 kW

Nominal voltage 300 V
Stator leakage resistance 0.021 p.u.

Stator resistance 0.064 p.u.
d-axis and q-axis inductance 0.045 p.u. and 0.153 p.u.
d-axis and q-axis resistance 0.58 p.u. and 1.157 p.u.

TABLE 3. IGBT Behavioral Model Parameters

Parameters Value Parameters Value
Ron 1.2 mΩ Roff 1 mΩ
Eoff 0.02 Eoff 0.085
CGE 0.1µF CCE 0.1µF
ERR 0.047 TEON 1.2363
TTHR1 0.44058 mΩ TTHR2 0.36345 mΩ
TTHR3 3.9251 mΩ TTHR4 31.9695 mΩ
TTHC1 0.104594µF TTHC2 0.726768µF
TTHC3 4.285971µF TTHC4 1.737191µF
VcEON1 0.82162V VcEON2 1.12162V
IcEON1 0.955A IcEON2 1.05A

TABLE 4. New Flyer City Bus Parameters [33]

Parameters Value Parameters Value
Engine power 160 kW Net Power 85 kW
Engine torque 2000 Nm Curb Weight 14628 kg

Equivalent energy 700 kWh Hydrogen Storage 37.5 kg
Range NYCC 120 km Front Height 2.54 m

Length 18.29 m Width 2.6 m
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