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Abstract

Distributed storage systems (DSSs) traditionally replicate data blocks to

achieve storage reliability. Considering the rapid growth of data volume as well

as costly maintenance of storage components in DSSs, the replication method

is becoming unattractive because of its very large storage overhead. Recently,

locally repairable codes (LRCs) have been proposed and used in practice e.g.,

in Facebook HDFS-RAID and Windows Azure storage. LRCs are attractive

because they i) significantly decrease the storage overhead of the replication

method and ii) considerably decrease communications traffic for data recovery

compared to traditional coding methods—such as Reed-Solomon codes. An

LRC can reconstruct any coded block by accessing a small number of other

coded blocks. The minimum number of blocks required to reconstruct a missing

block is defined as the block’s locality. The maximum locality of all blocks is

defined as code locality. Similarly, the average locality of a code is defined

as the average locality of its blocks. The main focus of this dissertation is on

studying and designing LRCs with low computational complexity and on LRCs

with small average locality.

Because of immense size of modern energy-hungry DSSs, reducing the com-

putational complexity of coding methods is of great importance. In that regard,

binary LRCs are attractive because they eliminate the need for multiplication

in operations such as encoding, decoding, and reconstruction. In the first part

of this dissertation, we propose a class of binary LRCs. Using storage overhead

and reliability of the code as design metrics, we show that some instances of our

proposed binary codes are optimal, while others sacrifice the storage overhead

marginally to gain a low coding complexity. Also, by analyzing mean-time to

data-loss as a reliability metric, we verify that the reliability of our proposed

binary LRC is more than sufficient from a practical point of view.
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In the second part of the dissertation, we study average locality of LRCs. We

derive lower bounds on average locality and design three classes of LRCs with

minimum average locality. We also establish an achievable lower bound on the

average locality of information blocks of LRCs, and design LRCs that achieve

the obtained bound. Minimizing the average locality of information blocks

is important as only information blocks are needed to be recovered during a

temporal node unavailability, which accounts for 90% of all block recoveries

triggered in DSSs.
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Chapter 1

Introduction

1.1 Motivation

Cloud storage provides a reliable, flexible, and cost-effective way to store digi-

tal data. Using the cloud, one may avoid data loss (caused by device failures,

fire, theft, etc.), access data anywhere/anytime, and easily share data. Google

Drive, Dropbox, Apple iCloud, and OneDrive are among the widely used cloud

storage systems, and Amazon, Google, and Microsoft are among hosting com-

panies providing a variety of cloud storage services.

A cloud storage system is implemented in the form of a distributed storage

system (DSS). A DSS is a computer network, typically built using inexpensive

commodity hardware, where information is stored on several storage devices

called data nodes (DNs). A DN may become temporarily unavailable or per-

manently fail rendering data unavailable or lost[6]. When a DN is temporally

unavailable, for example because of electricity/network resource outage, the

DSS is not able to respond to a client data request immediately due to data

unavailability. In the case of failure, for example due to a physical damage to

the hard disk drive, the DSS may lose a client’s data.

A typical approach to achieving availability and reliability in a DSS is to

store a number of (typically, three) replicas of data in distinct DNs. The 3-
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replication method, in which every original data block along with two replicas

of it are stored in distinct storage nodes, has been traditionally used in DSSs,

for example, in Facebook HDFS-RAID[6]. Replication is the most efficient so-

lution in terms of bandwidth and the number of I/O operations required in

the reconstruction process. However, replication results in a high storage over-

head (e.g., %200 storage overhead in the case of the widely used 3-replication

scheme). Considering the tremendous cost of construction and maintenance of

DSSs as well as the fast growth of the world’s data, employing new storage

methods with less storage overhead is of interest.

Erasure coding is considered as an attractive solution for decreasing the

storage overhead in DSS, e.g., see [8, 6, 9]. An (n, k) erasure code with minimum

distance d maps k information symbols to n encoded symbols such that any

n− d+ 1 out of the n encoded symbols suffice to recover all the k information

symbols, where d ≤ n − k + 1. In other words, an (n, k, d) erasure code can

tolerate any d− 1 encoded symbol failures. Hence, it is possible to obtain the

desirable level of reliability by tuning d. If d = n − k + 1, the erasure code is

called maximum-distance separable (MDS) code as it achieves the maximum

possible minimum distance for a given n and k. The code rate, and the storage

overhead are defined as k
n
, and n

k
− 1, respectively.

Erasure codes are being used in large-scale storage systems because they

significantly reduce the storage overhead of the 3-replication method without

sacrificing its reliability. For example, in Facebook HDFS-RIAD [6], Google

File System [10], and Window Azure Storage [7], erasure codes with corre-

spondingly storage overhead of %60, %50, and %33 are used. These codes pro-

vide at least the same level of reliability as that achieved in the 3-replication

method with the storage overhead of 200%.

This significant storage overhead reduction can come at the price of high

bandwidth, I/O, and computation for reconstructing unavailable/lost data

blocks, if conventional erasure codes are used. For example, when an (n, k)
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Reed-Solomon code is used, reconstruction of a missing block will require read-

ing and downloading k blocks from k active nodes. This amount of read and

download can lead to the underlying network saturation in the DSS [6]. Because

of such high reconstruction overheads of conventional erasure codes, researchers

have been recently working on designing new erasure codes carefully crafted for

DSSs. Three main metrics considered in designing codes for DSSs are:

i) Reconstruction bandwidth: Reconstruction bandwidth is one of the targets to

be minimized in a reconstruction process. The theoretical bound between the

required reconstruction bandwidth and storage overhead is established in [11].

Codes that achieve this bound are called regenerating codes (RGCs). In RGCs,

each block of data is partitioned into a few number of sub-blocks. In the case

that a data node containing a packet fails, some sub-blocks of active nodes are

downloaded such that the reconstruction bandwidth is minimized for a given

storage overhead [11]. To see examples of RGCs, please refer to [12, 13, 14, 15]

and references therein.

The main advantage of RGCs is that they have the minimum reconstruc-

tion bandwidth for a given storage overhead. This advantage is achieved by

connecting to more than k DNs for a reconstruction process, which is not desir-

able from a practical point of view [16]. Therefore, a drawback of regenerating

codes is their overhead associated with accessing a large number of DNs during

a reconstruction process.

ii) Disk I/O: The disk I/O overhead (the required number of reads during a

block recovery) can be a bottleneck during recovering a missing block of data.

Another design goal therefore is disk I/O reduction (e.g. see [17, 18, 19] and

references therein). In [17], a framework is introduced which is added to MDS

codes to decrease their corresponding disk I/O. In [18], rotated RS codes are

introduced to decrease disk I/O. In [19], a class of RGCs with small disk I/O

has been introduced.

iii) Code locality: The locality of an (n, k) locally reparable code (LRC), de-
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noted r, is defined as the maximum number of coded symbols required to

reconstruct any missing coded symbol. Since reducing r decreases the number

of storage nodes to be accessed during recovering a missing data block, it re-

sults in an agile recovery method [20, 16]. In the case of repairing permanent

failures or retiring defective nodes, LRCs with small r are desired as they re-

quire less costly network bandwidth and disk I/Os. In the case of temporal

unavailability, reducing r can significantly improve data availability, and expe-

dite the process of distributing data among various data centers [6]. Hence,

reducing the locality r of erasure codes is important.

Although RGCs have a smaller storage overhead in comparison with LRCs

for a given d, in practice, LRCs are preferred to RGCs because of high recon-

struction locality of RGCs [16]. In real-world DSSs, LRCs have been used [6, 7].

The focus of this dissertation is twofold: (i) binary LRCs (BLRCs) which are

an important class of LRCs because of their low computational complexity;

and (ii) LRCs with small average locality.

1.2 Organization and Overview of the disser-

tation

In the following chapter, we review the needed preliminary about erasure codes

and LRCs.

Our results are categorized in two general groups. In the first group, we

design LRCs in binary finite field (or finite fields with small order) to reduce

the computational complexity of encoding, decoding and reconstruction. In

the second group, we study average locality, prove bounds, and design codes

that achieve our bounds. In the following, we discuss the contributions of this

dissertation in more details.

In Chapter 3, we first introduce an (n, k, d, r) = (15, 10, 4, 6) binary LRC.

The proposed BLRC has a minimum distance of four, and provide a better
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reliability than the widely used 3-replication method. Since our code is bi-

nary, encoding, decoding and repairing do not require finite field multiplica-

tion, resulting in significant computational saving. We prove that, among all

(n, k) = (15, 10) binary codes with minimum distance of four, our code has the

minimum locality, thus imposes minimum repair traffic.

In Chapter 3, we also present a class of efficient binary LRCs with minimum

distance of four, a distance shown by our analysis to provide sufficient reliability

for a wide range of practical code and system parameters. We show that our

proposed binary LRCs are optimal for locality r ∈ {1, 3}. For larger r, we show
that the rate of our proposed binary codes is near optimal (with a rate gap of

O(log r)).

In Chapter 4, we present our results on LRCs with small average locality.

The average locality of LRCs is directly translated to the costly repair band-

width of DSSs. Analyzing code’s average locality (r̄) is more involving than

analyzing locality, which has been the focus of research in the literature. In

Section 4.2, we use a novel approach to derive the first lower bound on average

locality, r̄, of erasure codes with arbitrary parameters. We also present the

construction of r̄-optimal LRCs for a broad range of codes’ parameters offering

improvement on r̄ over the existing LRCs. Comparing with the LRC used in

Facebook HDFS-RAID, a sample of our proposed r̄-optimal LRCs improves

the average locality by 22.5% without sacrificing the rate or minimum distance

of the code.

In Chapter 5, we obtain an achievable lower bound on the average local-

ity of the information blocks (r̄inf ) and design a class of LRCs which always

achieve the obtained bound. The average locality of the information blocks

in DSSs is translated to the average data required to reconstruct an unavail-

able information block. The importance of the reconstruction cost as well as

the frequent unavailability of information blocks in the real-world DSSs make

designing codes with the minimum r̄inf of interest.
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The conclusion of this dissertation along with the future research works are

presented in the last Chapter. Proofs of the theorems are presented in the

appendix to improve the readability.

Notations: We denote matrices and vectors by capital boldface letters and

boldface letters, respectively. Notations (·)−1 and (·)T represent matrix inverse

and matrix transpose operations, respectively. Ia represents an identity matrix

of size a and the matrix transpose operation, respectively. A(I) is a sub-matrix

of A obtained by maintaining columns of A indexed by set I. v(i) represents
the i-th element of vector v. 0a represents a row vector of all zeros of size

a. Similarly, 1a represents a row vector of all ones of size a. wt(v) stands for

Hamming weight of the vector v.

For integers a and b, if b ≥ a, [a, b] = {a, a+ 1, ..., b} otherwise, [a, b] = {};
also, [a] = {1, · · · , a}. A and |A| stand for the complement and cardinality

of set A, respectively. For two sets A and B, A\B stands for the relative

complement of B in A, i.e., A\B = {a ∈ A|a /∈ B}. P(A) represent the

power set of set A. For set B and integer b, comb(B, b) represents the set of all
combination of B taken b at a time. Therefore, |comb(B, b)| =

(|B|
b

)
.

For integers a and b, a mod b represents the remainder of devision a by b.

⊗ stands for Kronecker product. Fq stands for a finite field with cardinality q.

Finally, ⌊·⌋ and ⌈·⌉ represent the floor and ceiling operators, respectively.
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Chapter 2

Background

This section contains the required definitions and assumptions. Also, this sec-

tion reviews needed background on data storage, DSSs, linear block codes and

their applications in DSSs.

2.1 Data Storage

Here, we briefly review popular types of data storage, describe hard disk drive

(HDD), solid state drive (SSD), and redundant array of independent disks

(RAID). Furthermore, briefly describe the concept of DSSs, which are used to

store massive amount of data

2.1.1 HDD, SSD, and RAID

In this section, we first give a high-level description of HDDs and SSD as two

commonly used storage devices. Then, we explain the popular data storage

techniques, namely data striping and data mirroring. Finally, we briefly review

different types of RAIDs as important parts of data storage world.

HDD, head, and track: An HDD is a storage component constructed out

of a set of stacked disks. In a HDD, data is stored in concentric circles, called
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tracks, on each disk. Mechanical arms with two heads, each on one side of a

disk, perform the read/write operations.

SSD: An SSD is a storage component constructed out of microchips. Unlike

HDD, an SSD has no moving parts. In a SSD, an embedded controller processor

does the read/write operations.

In comparison with HDDs, SSDs have less power consumption and failure

rate; have a higher read/write speed; and are safe from magnetism effects.

Data striping: The process of partitioning a stripe of data into blocks and

storing data blocks on various HDDs is called data striping. Data striping can

speed up throughput (I/O operations per second) by a factor of the number of

HDDs. The downside of using data striping is the low resiliency. If even one

disk fails, all of data becomes unavailable.

Example 2.1. Assume that disk striping is performed on two HDDs and that

each HDD runs at 180 IOPS (Input/Output Operations Per Second). Then,

up to 360 IOPS can be achieved using data striping.

Data mirroring (replication): The process of replicating data to at least two

disks is called data mirroring. Data mirroring improves data availability and

fault tolerance.

RAID: RAID uses an array of HDDs to improve I/O operations and/or data

fault tolerance. Following is a list of different types of RAID currently in use

with a brief explanation.

• RAID 0 stores block-level data stripes uniformly on two or more disks

with no redundancy. An n-drive RAID 0 can improve I/O performance

by a factor of n. RAID 0 is used when high I/O performance is required.

• RAID 1 uses disk mirroring to improve the read performance. A read

operation can be performed by any disk. RAID 1 is used when high

reliability and read performance is required.
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DN (N-1)β+2
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DN 2β  DN Nβ  
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Figure 2.1: A simplified structure of HDFS with N racks and Nβ DNs.

• RAID 5 uses block-level striping of data and stores the parity checksum

across various disks. RAID 5 improves read data transaction and it can

tolerate a single disk failure in the array.

• RAID 6 uses block-level striping of data and stores two parity blocks

across various disks. RAID 6 can tolerate up to two disk failures in the

array.

• RAID 10 is a hybrid configuration of RAID 1 and RAID 0. In other

words, it uses both data mirroring and striping which improve read data

transaction and I/O performance, respectively.

2.1.2 Hadoop Distributed File System (HDFS)

HDFS has a master/slave configuration used to store large-scale data. Fig. 2.1

depicts a simplified configuration of HDFS with one master node and Nβ data

nodes (DNs), where N is the total number of racks, and β is the number of

DNs in each rack. Each rack has its own network and power cable.
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Figure 2.2: DN failure and redundancy through the three-replication method.

Example 2.2. In a typical Facebook HDFS-RAID, N = 100, β = 30, and each

DN has 20 TB storage capacity [6]. Thus, the whole HDFS has the storage

capacity equal to 100× 30× 20 TB = 60 PB.

The name node is an administer computer that contain metadata, e.g., file

directory of the stored data. To provide reliability, some backups of the name

node are provided. Data resides in DNs. Each DN sends heartbeat reports to

the name node frequently. DNs can communicate together, for example, in the

case of replicating data.

Due to hardware failures, the data stored in a DN may be lost. In order

to make HDFS reliable, redundant data is stored. A very common method to

provide redundancy is through data replication. For example, in Fig. 2.2, data

block A is replicated in three DNs β, β + 2, and (N − 1)β + 1.

Now, assume that (β+2)-th DN fails as shown in Fig. 2.2. Then, block A can

be reconstructed by downloading data from either β-th DN or (N − 1)β+1-th

DN.

The three-replication method described above results in a very high storage
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overhead of 200%. Very recently, erasure coding is proposed to store data to

decrease the storage overhead. In Section 2.3, we describe the recent erasure

coding methods proposed to alleviate the problem of large storage overhead of

the replication.

2.2 Finite Field Fq

Definition 2.1. Abelian group: Let a, b and c be three arbitrary elements in

a set A. The set A and a binary operation (·) constitute an abelian group,

denoted (A, ·), if the following five axioms are satisfied.

(i) Closure: a · b ∈ A,

(ii) Associativity: (a · b) · c = a · (b · c),

(iii) Identity element: There exists an element e ∈ A, such that e·a = a·e = a,

(iv) Inverse element: For each a ∈ A, there exists an element a−1 ∈ A such

that a · a−1 = a−1 · a = e (e is the identity element), and

(v) Commutativity: a · b = b · a.

Example 2.3. The set of integers Z with the addition operation “+” constitute

the abelian group (Z,+) with the identity element e = 0.

Definition 2.2. Field: A set F with an addition operation “+” and a multi-

plication operation “∗” represents a finite field, denoted (F,+, ∗), if

(i) (F,+) is an abelian group with additive identity “0”,

(ii) (F \ {0}, ∗) is an abelian group with multiplicative identity “1”,

(iii) For all a, b, c ∈ F, (a+ b) ∗ c = a ∗ c+ b ∗ c.

If the set F has a finite q number of elements, then the field is called a finite

field, denoted (Fq,+, ∗) or simply Fq, where q is called the order of field.
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Symbol, block: We call each element of the finite field a symbol. Also, we

call a vector of symbols a block.

Example 2.4. Finite field (F22 ,+, ∗) has four elements F22 = {0, 1, 2, 3}, where
addition and multiplication are defined based on the following tables:

+ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

* 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

Remark 2.1. Each element of a finite field F2m can be represented in the

form of m bits. Hence, addition and multiplication can be performed at the bit

level. The addition is equivalent to XOR and multiplication can be done using

a lookup table.

Example 2.5. For F22 associated with Example 2.4, each element can be rep-

resented in the form of m = 2 bits as: 0 = [0, 0], 1 = [0, 1], 2 = [1, 0], and

3 = [1, 1]. Addition and multiplication can be done based on tables presented

in Example 2.4. Observe that the addition is equivalent to XOR. For example,

2 + 3 = [1, 0]⊕ [1, 1] = [1⊕ 1, 0⊕ 1] = [0, 1] = 1.

2.3 Linear Block Codes

Erasure codes provide protection against data block erasures by introducing

redundant data blocks. In an erasure code, redundant data blocks are con-

structed from the information blocks using a coding algorithm. In the case

of block erasures (i.e., when some blocks are missing/unavailable), available

data blocks can be used to construct and retrieve the erased ones. More par-

ticularly, an (n, k) erasure code transforms k information data blocks into n
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encoded data blocks such that up to d− 1 erasures can be recovered, where d

is the minimum distance of the code.

The replication method, which is an (n, 1) erasure code, is the most straight-

forward erasure coding method. In an n-replication method, a data block is

replicated n − 1 times. Therefore, there are n replicas of data blocks in the

storage system. Hence, in the case of up to n − 1 block erasures, the original

data block can be retrieved.

If the transformation from k information blocks to n encoded blocks involves

only linear operations over the information blocks, the erasure code is called a

linear block code. Also, if the n code blocks include the k information blocks,

the code is called systematic.

Systematic linear block codes are a class of erasure codes used in storage

systems. In the following, we explain this class of codes in more details.

2.3.1 Systematic linear block codes

An (n, k) systematic linear block code C in Fq takes k information symbols in

Fq and converts them to n > k coded symbols in Fq using the linear operations

y = xG, where x = [x1, x2, · · · , xk] ∈ F1×k
q and y = [y1, y2, · · · , yn] ∈ F1×n

q

represent the information and coded vectors with symbols xi’s and yi’s, respec-

tively; and G is the generator matrix with the following form: G = [Ik,P] ∈
Fk×n
q , where P ∈ Fk×m

q and m = n− k. The parity check matrix H of the sys-

tematic code C can be formed as H = [−PT , Im] ∈ Fm×n
q . The coded symbol

vector y of a linear block code satisfies yHT = 0m.

2.3.2 Hamming weight and Hamming distance

The number of non-zero elements of vector a is called the Hamming weight of

a, denoted wt(a). For two vectors a and b, wt(a − b) is called the Hamming

distance between a and b, denoted d(a,b).
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2.3.3 Minimum distance of code (d)

The minimum distance of a code is defined as the minimum number of dif-

ferences between any two codewords. In other words, d = min{d(u,v)}, for
any arbitrary codewords u and v of code C. For an (n, k) code with minimum

distance d, any d− 1 missing symbols can be recovered.

2.3.4 Maximum distance separable (MDS) codes

By the Singleton bound associated with an (n, k, d) linear block code, we have

d ≤ n− k + 1 [21]. Linear block codes that achieve this bound on d are called

MDS. For MDS codes, any n−d+1 = k encoded symbols suffice to reconstruct

the k information symbols. Reed-Solomon (RS) codes are a well-known class

of MDS codes [22].

2.3.5 n-replication method

In n-replication coding method, n replicas of data are stored in n distinct

storage nodes. Hence, the storage overhead of n-replication method is n − 1.

The three-replication method with the storage overhead 200% has been widely

used in practice due to its simple, reliable implementation [6, 7].

2.3.6 Tanner graph

An H-based Tanner graph of an (n, k) linear block code, denoted T , is a

bipartite graph with two sets of vertices: a set of n variable nodes (VNs) y1

to yn, denoted Y , and a set of n− k check nodes (CNs), denoted P . The i-th

variable node for i ∈ [1, n] is adjacent with the j-th CN for j ∈ [1, n − k] iff

hj(i) 6= 0, where hj represents the j-th row of the parity check H ∈ F
(n−k)×n
q .

Therefore, variable nodes linked to a CN are linearly dependent. In the case of

binary codes, XOR of variable nodes linked to a CN is zero.
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Remark 2.2. A code does not have a unique Tanner graph representation.

Example 2.6. A systematic (n, k, d) = (4, 2, 3) linear block code: Consider

information symbol vector x = [x1, x2] ∈ F1×2
22 with k = 2 information symbols

x1 and x2 over field F22. Then, by using a (4, 2) linear block code with the

generator matrix G =




1 0 1 1

0 1 1 2



 ∈ F2×4
22 , x is encoded as follows.

y = x×G = [x1, x2, x1 + x2, x1 + 2x2],

where y = [y1, y2, y3, y4] = [x1, x2, x1+x2, x1+2x2] ∈ F1×4
22 is the encoded symbol

vector. Observe that every n− (d−1) = 2 encoded symbol yi’s suffice to recover

the information symbols x1 and x2. Now, assume that information bit 0111 has

to be encoded using the above (4, 2) linear block code. First, 0111 is partitioned

into two fractions 01 and 11. Then, as seen in Examples 2.4 and 2.5, x1 = 1

and x2 = 3 and

[y1, y2, y3, y4] = [1, 3, 1 + 3, 1 + (2 ∗ 3)] = [1, 3, 2, 0] = [01, 11, 10, 00]

The codeword associated with x1 = 1 and x2 = 3 is [1, 3, 2, 0]. The above (4, 2)

linear block code is systematic because the original information symbols x1 and

x2 are embedded in the encoded symbols.

2.4 Erasure Coding in Distributed Storage Sys-

tems

Traditionally, erasure codes have been proposed for the binary erasure channel

in which a bit is either received perfectly or erased. A similar situation exists

in distributed storage systems (DSSs), where a previously recorded data is

either available perfectly, or erased (due to, for example, a disk failure). This

motivates the application of erasure codes in DSSs [23].
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In DSSs, systematic erasure codes—in which information symbols are em-

bedded in the encoded symbols—are preferred to non-systematic ones. This is

because one can access the original data (information symbols) directly without

performing a decoding process. We first explain how erasure codes are used in

real-world DSSs.

Assume that a stripe of data of size LB bits is to be stored in a DSS. The

stripe is first broken into k data blocks each with size lB = LB

k
bits. Hence, each

block has lB
m

symbols in F2m (for simplicity, let k | LB andm | lB). We denote by

xi,j the i-th symbol of the j-th block. In linear block erasure codes, the encoded

vector yi is then obtained from xi = (xi,1, xi,2, · · · , xi,k) ∈ F1×k
2m by multiplying

xi by a generator matrix G ∈ Fk×n
2m , i.e. yi = (yi,1, yi,2, · · · , yi,n) = xiG. The

coded vectors yi, i ∈ [1, lB
m
], are then stacked to constitute Y whose columns

are n coded blocks stored in n distinct storage nodes. From now on, we assume

that lB
m

= 1, and use symbol and block interchangeably.

Advantages of using erasure codes in a DSS are:

(i) Low storage overhead: The storage overheads of the n-replication and

an (n, k, d) erasure code are n − 1 and n−k
k
, respectively. Hence, by

adjusting k and n, it is possible to obtain a desirable level of storage

overhead. Google File System (GFS), Windows Azure Storage (WAS),

and Facebook HDFS-RAID use erasure codes with the storage overheads

of 50%, 33%, and 60%, respectively.

(ii) Desirable level of reliability by adjusting d: In an (n, k, d) erasure code,

each coded symbol can be computed from any n − (d + 1) other coded

symbols. In other words, an (n, k, d) erasure code can tolerate any d− 1

symbol erasures. Hence, by changing the value of d, it is possible to adjust

the storage system reliability. GFS, WAS, and Facebook HDFS-RAID use

erasure codes with the minimum distance 4, 4, and 5, respectively.

When reconstruction of a single block of data (the dominant reconstruction
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scenario in practice) is considered, erasure codes can pose several challenges.

For example, when an MDS code is used, reconstructing a block requires read-

ing and downloading k blocks from k active nodes. Considering the limited

reconstruction bandwidth resource as well as the frequent DNs unavailability

and failure, this amount of read and download may lead to network saturation

in DSSs[6]. Comparing with the conventional replication methods, disadvan-

tages of using erasure codes in a DSS are: (i) high reconstruction bandwidth,

(i.e., the amount of data downloaded from active DNs to reconstruct a single

block) (ii) high disk I/O (i.e., the amount of data read from active DNs to re-

construct a single block), and (iii) high reconstruction locality (i.e., the number

of active nodes from which data is downloaded to reconstruct a single block).

To address these disadvantages, new classes of erasure codes have been pro-

posed in the literature. These classes are: (i) Regenerating codes (RGCs), (ii)

Codes with the improved disk I/O, and (iii) Locally repairable codes (LRCs).

RGCs have been proposed to alleviate the problem of the high reconstruc-

tion bandwidth of traditional erasure codes. The reconstruction bandwidth-

storage trade-off associated with erasure codes was studied and a bound was

established in [11]. Erasure codes that satisfy reconstruction bandwidth-storage

trade-off bound derived in [11] are called RGCs. In other words, RGCs result

in the minimum reconstruction bandwidth for a given storage overhead.

Codes whose aim is to alleviate the problem of the high disk I/O of erasure

codes have been recently proposed [19, 17, 24]. However, bounds on the I/O-

storage trade-off are yet to be found [11].

LRCs have been proposed to alleviate the problem of the high reconstruction

locality. The trade-off between the code locality and its minimum distance was

studied, and a bound was established in [16, 25]. Erasure codes that satisfy

this bound are called optimal LRCs.

In the following, we first review RS codes due to their important role in

theory and practice. Then, we briefly review RGCs, LRCs and the codes with
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improved disk I/O.

2.5 Reed-Solomon (RS) Codes

RS codes are a class of MDS linear block codes proposed in [22]. The parity

check matrix of an (n, k) RS code is HRS = [α(i−1)(j−1)] ∈ F
(n−k)×n
q , where

i ∈ [1, n − k], j ∈ [1, n], and α ∈ Fq is a primitive element of Fq. Since any

(n−k)× (n−k) sub-matrix of HRS is full-rank, every d−1 = n−k columns of

HRS are independent. Hence, an RS code is MDS with the minimum distance

d = n−k+1. The systematic form of HRS can be obtained by multiplying the

inverse of an (n− k)× (n− k) sub-matrix of HRS by HRS from the left side.

Example 2.7. In Google File System, an (n, k, d) = (9, 6, 4) RS code with the

storage overhead (9-6)/6=50% has been used since 2011 [10]. The (9, 6)-RS

code is MDS with d = n − k + 1 = 4. Therefore, the code can handle any

d−1 = 3 block failures. Also, any information block can be reconstructed using

any six other blocks.

Example 2.8. In Facebook HDFS-RAID, an (n, k, d) = (14, 10, 5) RS code

with the storage overhead (14-10)/10=40% was used in 2012 [6]. The (14, 10)-

RS code is MDS with d = n− k+ 1 = 5. When one block is missing, ten other

blocks are downloaded from ten active DNs and the reconstruction process is

performed.

The main disadvantages of RS codes are their high reconstruction cost (also

known as reconstruction bandwidth) and high locality. In order to reconstruct

a block of a (n, k) RS code, k data blocks have to be downloaded from k active

DNs. In other words, the reconstruction cost is k. This results in a high

data communication between DNs when a reconstruction process is performed,

which can be very costly [6]. Furthermore, an RS code requires accessing k

DNs in order to reconstruct a data block. This is not desirable in real-world
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Figure 2.3: Storage overhead-locality trade-off for different coding methods
with d = 4.

DSSs [16]. That is why new coding methods have been considered in DSSs

such as Google File System, Windows Azure Storage, and Facebook HDFS.

2.6 Locally repairable codes (LRCs)

LRCs have smaller code locality than RS codes. The smaller code locality

reduces the bandwidth and I/O required to reconstruct a missing block. LRCs

can be considered as coding methods with moderate reconstruction bandwidth

and moderate storage overhead (Fig. 2.3). LRCs have been recently used in

practice. In Facebook HDFS-RAID, a (n, k, r) = (16, 10, 5) LRC with d = 5

is used [6]. Also, in Windows Azure Storage a (n, k, r) = (16, 12, 6) LRC with

d = 4 is used [7]. In the following, we present definitions required in discussing

our results on LRCs.

Definition 2.3. (Symbol locality, code locality, average locality). Locality of
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i-th coded symbol of a code C is denoted by Loc(yi), and is defined as the mini-

mum number of other coded symbols required to reconstruct yi. In other words,

Loc(yi) is the size of the smallest set Ii ⊂ [1, n]\{i} that satisfies

∑

l∈Ai

αlyl = 0 (2.1)

for a fixed set of coefficients αl ∈ Fq \ {0} and every codeword (y1, . . . , yn) ∈ C,
where Ai = {i}∪Ii. The average and maximum locality of the code are defined

as r =
∑n

i=1 Loc(yi)

n
and r= max

i∈[1,n]
{Loc(yi)}, respectively. Also, the average locality

of the information symbols in a systematic code is defined as rinf =
∑k

i=1 Loc(yi)

k
,

where yi = xi is the ith information symbol for i ∈ [1, k].

Definition 2.4. (Optimal LRCs). The minimum distance d of an (n, k, r)

LRC is bounded as [25, 16]

d ≤ n− k + 1−
(⌈k

r

⌉

− 1
)

= n− k −
⌈k

r

⌉

+ 2. (2.2)

We say an LRC is d-optimal if it satisfies (2.2) with equality for given

(n, k, r). Similarly, we say an LRC is r-optimal if r is the smallest integer

satisfying (2.2) for given (n, k, d). An LRC is optimal1 if it is both d-optimal

and r-optimal. The code rate of LRC with locality r is bounded as k
n
≤ r

r+1

[26].

Some existing results on LRCs: Several d-optimal LRCs have been proposed

when r+1 divides n, i.e., (r+1) | n (e.g. see [27, 28, 29, 30, 31, 26, 32, 33, 34]).

The alphabet size q for the proposed codes in [28] and [30] is an exponential

function of k and nr
r+1

respectively, which is improved to q being equal to or

slightly larger than n in [26]. The choice of q can affect the coding complexity.

1Existing literature usually refers to d-optimal codes as optimal codes. In this dissertation,
we distinguish between d-optimal and r-optimal codes and reserve the term “optimal” for
codes that are both d-optimal and r-optimal.

20



In [35, 36] binary LRCs are proposed. In [37], a bound on k is obtained in

terms of n, k, and r as well as finite field order q. In [38], LRCs for small values

of r have been proposed some of which achieve the bound in [37].

In [39, 40], considering a linear block code with length n, dimension k, and

locality profile n = {n1, · · · , nr}, where ni is the number of encoded symbols

with locality i, an upper bound on the code’s minimum distance (d) has been

found. In [41], the locality constant is relaxed by allowing some symbols to have

a locality of r + 1 instead of r in order to gain flexibility in code construction.

In [42], the problem of secure vector-LRCs is considered taking the maximum

locality of the code into account. In [43], an upper bound on d of regenerating

LRCs is established taking the maximum locality of the code into account and

codes that achieve the obtained bound are designed.

In some other schemes of LRCs, a missing symbol can be reconstructed by

accessing any group from a set of multiple disjoint groups of other symbols,

e.g. see [31, 44, 45, 46, 47, 48, 49] and references therein.

2.6.1 Tanner Graph Representation of LRCs

As mentioned earlier, a code does not have a unique Tanner graph representa-

tion. Here, we define a representation of a Tanner graph, called locality Tanner

graph, which reflects the locality of all the encoded symbols. First, we need to

define locality-defining set.

Definition 2.5. (Locality-defining set). Let Ye ⊆ Y be a set of variable nodes.

A set of CNs Ps is called a locality-defining set for Ye if every variable node

yi ∈ Ye with locality Loc(yi) is adjacent to at least one CN in Ps with degree

Loc(yi) + 1. Let Φ(Ye) be a function from a set of variable nodes Ye to a set

of CNs that returns a minimal locality-defining set for Ye. That is, Φ(Ye) is a

locality-defining set for Ye, and there is no proper subset of Φ(Ye) which is a

locality-defining set for Ye.
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Definition 2.6. (Locality Tanner graph). An LRC can be determined by dif-

ferent parity check matrices, which can yield different Tanner graphs. Among

such Tanner graphs, we call a Tanner graph locality Tanner graph if the set of

CNs of the graph includes Φ(Y), which is a locality-defining set for the set of

all variable nodes.

Lemma 2.1. (Lemma 4.1). Every LRC has a locality Tanner graph.

By fixing the locality Tanner graph of an LRC, the zeros of its corresponding

parity check matrix H ∈ F
(n−k)×n
q are determined. For the non-zero element

of H, we assume that they are randomly picked from a sufficiently large finite

field Fq. This ensures that the code achieves its maximum theoretical minimum

distance. From now on, we ignore coefficients in the locality Tanner graph, and

with a bit abuse of terminology, we use the terms LRC and locality Tanner

graph interchangeably.

Working with locality Tanner graph of a code makes the locality analysis

easier. In this dissertation, we restrict ourselves to locality Tanner graphs.

Definition 2.7. (Local CN, global CN, and local group). In a locality Tanner

graph, we call CNs of Φ(Y) local CNs. We denote by m the total number of

local CNs of the locality Tanner graph, i.e., m := |Φ(Y)|. Non-local CNs are

called global CNs. The set of variable nodes adjacent to a local CN is called a

local group. We call the local group corresponding with local CN i by Yi. We

denote locality of local group Yi by ri, where i ∈ [1,m].

Definition 2.8. (Non-overlapping local groups). We say that some local groups

are non-overlapping if they have no variable nodes in common.

Definition 2.9. (Information node and parity node). We call variable nodes

corresponding with the information blocks and parity blocks information nodes

and parity nodes, respectively.
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Figure 2.4: Locality Tanner graph of an (n, k, d) = (12, 5, 6) LRC. Variable
nodes indexed by 1 to 5 represent the information blocks, and the rest of
variable nodes represent the parity blocks.

Example 2.9. Fig. 2.4 shows the locality Tanner graph of an (n, k, d) =

(12, 5, 6) LRC. In this figure, variable nodes (circles) indexed by 1 to 5 are

information nodes, and variable nodes indexed by 6 to 12 are parity nodes. Local

CNs 1 to 5 (gray squares) define the locality of all the variable nodes. Local

groups 1 to 4 are non-overlapping while they are overlapping with the local group

corresponding with local CN 5. There are also two global CNs (white squares

indexed by 6 and 7) linked to all the variable nodes. The parity check matrix

corresponding with the Tanner graph depicted in Fig. 2.4, denoted H0 ∈ Fq
7×12,

is

H0 =




















h1,1 0 0 0 0 h1,6 0 0 0 0 0 0

0 h2,2 h2,3 0 0 0 h2,7 0 0 0 0 0

0 0 0 h3,4 h3,5 0 0 h3,8 0 0 0 0

0 0 0 0 0 0 0 0 h4,9 h4,10 h4,11 0

0 0 0 0 0 h5,6 h5,7 h5,8 0 0 h5,11 h5,12

h6,1 h6,2 h6,3 h6,4 h6,5 h6,6 h6,7 h6,8 h6,9 h6,10 h6,11 h6,12

h7,1 h7,2 h7,3 h7,4 h7,5 h7,6 h7,7 h7,8 h7,9 h7,10 h7,11 h7,12




















,

where hi,j, for i ∈ [1, 7] and j ∈ [1, 12], are picked from a sufficiently large finite

field.
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x1 x2 x3 x4 x5 p1 x7 x9x8 x10 p2 p3x6 p4 p5 p6

Figure 2.5: The Tanner graph of the (n, k, d, r) = (16, 10, 5, 5) LRC with three
global and three local parity blocks implemented in Facebook HDFS-RAID [6].

2.6.2 LRCs in Use

LRCs have been recently used in practice, e.g., in Windows Azure Storage [7]

and Facebook HDFS-RAID [6].

Example 2.10. In 2011, as mentioned in example 2.8, an (n, k, d, r) = (14, 10, 5, 10)

RS was used in Facebook HDFS. In 2013, this code was improved by adding two

other parity blocks resulting in an (n, k, d, r) = (16, 10, 5, 5) LRC. In compari-

son with the (14, 10) RS code, the modified (16, 10) LRC increases the storage

overhead from 40% to 60%, but decreases the locality from 10 to 5. Fig. 2.5

shows the Tanner graph associated with this coding method. In this figure, x1

to x10 represent information symbols; p1 to p3 represent local parity symbols;

and p4 to p6 represent global parity symbols. Since d = 5, any d−1 = 4 failures

(symbol erasures) can be tolerated by this coding method. As Fig. 2.5 depicts,

locality of all 16 symbols is r = 5.

Example 2.11. An (n, k, d, r) = (16, 12, 4, 6.75) LRC with the storage over-

head 33% has been used in Windows Azure Storage since 2012. That is, for

every 12 information symbols (systematic blocks), four parity symbols (parity

blocks) are formed. These 16 symbols are stored in 16 distinct DNs. Fig. 2.6

shows the Tanner graph associated with this coding method. In this figure, x1
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x1 x2 x3 x4 x5 x6 x7 x9x8 x10 x11 x12p1 p2 p3 p4

Figure 2.6: The Tanner graph of the (n, k, d, r) = (16, 12, 4, 6.75) LRC with 2
global and 2 local parity blocks implemented in Windows Azure Storage [7].

to x12 represent information symbols; p1 and p2 represent local parity symbols;

and p3 and p4 represent global parity symbols. p1 is a linear combination of

information symbols x1 to x6; and p2 is a linear combination of information

symbols x7 to x12. Also, p3 and p4 are linear combinations of information sym-

bols x1 to x12. Since d = 4, any d− 1 = 3 failures associated with the encoded

symbols can be tolerated by this coding method. The locality of the following 14

encoded symbols {x1, x2, · · · , x10, p1, p2} is six; also, the locality of p3 and p4 is

12. Hence, the average locality is r = 14×6+2×12
16

= 6.75.
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Chapter 3

On Binary Locally Repairable

Codes

Considering the immense size of DSSs, reducing the computational complex-

ity of their coding scheme is desirable. Coding complexity reduction can be

beneficial for other operations such as data encryption, data compression, and

redundant data removal performed in DSS [50]. LRCs that are currently in use

(e.g. in Facebook HDFS-RAID [6], Windows Azure storage [7], and Google file

system [10]) work based on additions and multiplications in binary extension

fields F2m . Multiplication is more expensive than addition because its imple-

mentation requires algorithms that work based on more hardware and compu-

tation [51]. Considering the immense size of data centers, such computations

are non-negligible. For example, the LRC introduced in [6] is constructed based

on a (n, k) = (14, 10) RS code. Assuming that 30 PB of data is needed to be

stored, 1.2×1017 multiplications have to be performed to store the total data

in the warehouse cluster1.

Binary LRCs (BLRCs) are of interest in practice, as they eliminate the need

for multiplication in operations such as encoding, decoding, and repair. In [35],

1Four multiplications per byte are required for encoding of the code in [6].
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BLRCs with r = 2, and d ∈ {2, 6, 10} are proposed. In [37], a bound on k is

obtained which depends on q, r, n, and d. In [38], by using the concept of

anticode, BLRCs with r ∈ {2, 3} have been proposed some of which reach the

bound in [37]. In [36], using cyclic codes, optimal BLRCs with small locality

are proposed. Following is the organization and overview of our main results

that will be presented in this chapter.

i) In Section 3.1, we present a mean-time to data-loss (MTTDL) analysis, as

it will be needed for reliability evaluation of our codes.

ii) In Section 3.2, we propose a class of BLRCs—called spanning BLRCs—

whose code rate is only (⌈log2(r + 1)⌉ − 2 + ⌊ 2
r+1
⌋)/n less than that of the

r-optimal non-binary LRCs satisfying (2.2). Hence, for practical values of r,

spanning BLRCs have either identical or slightly lower code rate compared to

that of r-optimal non-binary LRCs. More specifically, for r ∈ {1, 2, 3}, there is
no gap between the rates of our spanning BLRC and the r-optimal non-binary

LRC, and for r ∈ {4, 5, 6, 7} the gap is less than 1
n
. Hence, spanning BLRCs

are r-optimal for r ∈ {1, 2, 3}.

iii) We also verify that spanning BLRCs are d-optimal for r ∈ {1, 3}. In

particular, we propose optimal binary LRCs for the following set of parameters:

(n, k, r) = (2ι, ι− 1, 1) and (n, k, r) = (4ι, 3ι− 2, 3) for integer ι.

iv) Using the idea behind our design, we propose optimal LRCs over finite fields

of size q ≥ r + 2 for d = 4. Comparing with the most recent results in [26], we

decrease the required field size from n to r + 2.

v) Using the construction of spanning BLRC with d = 4 as a backbone, we

design LRCs with minimum distance d ≥ 6. We do this by adding only one

non-binary parity block to the ones associated with spanning BLRC.
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3.1 MTTDL Analysis

The main objective of this section is to argue that for a wide range of practical

codes and system parameters, a code minimum distance of four is sufficient and

it offers a higher reliability than that of the 3-replication which is widely used

in practice [7, 6]. For our argument, we offer an MTTDL analysis. MTTDL

of a coding method is an estimate measure of its reliability in DSSs. MTTDL

is defined as the average time taken for DSS to miss information of a stripe of

data. MTTDL of a storage system can be calculated via dividing MTTDL of a

stripe by the total number of stripes in DSS [6]. In the following, we consider

calculation of MTTDL of a stripe of data.

Although MTTDL is not perfect in assessing reliability of an LRC in prac-

tice, it can be used to estimate reliability (e.g. see [6, 7, 52]). Also, as indicated

in [9], MTTDL is more advanced than other existing reliability criteria in the

literature as it takes into account not only parameters of the erasure codes

(such as n, k, r, d) but also parameters of DSS (such as failure rate, capacity,

and repair bandwidth associated with storage nodes as well as total number of

storage nodes).

Here, we obtain MTTDL of an (n, k, r) coding method with minimum dis-

tance d for a homogeneous DSS, i.e. for a DSS whose storage nodes all have

the same characteristics. More specifically, we assume the repair bandwidth,

storage capacity, and average failure rate are the same for all storage nodes.

We also assume all blocks associated with one stripe of data are distributed

among distinct storage nodes. In other words, a storage node failure does not

influence more than one block associated with a stripe.

The Markov chain model is considered as a proper tool to evaluate the

reliability of DSSs (e.g. see [6, 9, 52]). By the aforementioned assumptions,

the Markov chain model of an (n, k) erasure code with minimum distance d

can be expressed as Fig. 3.1. An exponential distribution with parameter λ
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Figure 3.1: Morkov chain model associated with an (n, k) erasure code with
minimum distance d.

is considered for storage node failure [52]. In Fig. 3.1, the state label shows

the number of surviving nodes. Thus, for n − i surviving nodes each with

failure rate of λ, the transition rate from state n − i to state n − (i − 1) is

(n − i)λ. In the case of failure of one block of a stripe, we assume that all

surviving nodes participate in the repair process uniformly. Thus, the average

repair rate associated with a single block ρn−1 ≃ BrepM

rC
, where Brep is the repair

bandwidth of each node, M is the total number of storage nodes, and C is the

capacity of each storage node [7]. Furthermore, we assume that Td—the time

elapsed to recognize failures associated with more than one block of a stripe—is

significantly larger than the repair time, hence the parameter ρ in Fig. 3.1 is

ρ = 1
Td

[7]. State On−j for j ∈ [d, n− k + 1] is the state where j block failures

associated with one stripe of data cannot be recovered, i.e. the state where

discarding j columns of G results in k× (n− j) sub-matrices of rank less than

k. Therefore, γn−j is defined as the number of k × (n − j) sub-matrices of G

with rank less than k divided by number of all k × (n− j) sub-matrices of G,

i.e.
(
n−j
k

)
. In brief, a code with d can recover any d − 1 block failures of a

stripe, and γn−j × 100 percent of j block failures of a stripe. In the following,

in order to obtain a lower bound for MTTDL, we consider the worst case where

γn−j = 0 for j ∈ [d, n− k + 1]. We have the following proposition.
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Proposition 3.1. MTTDL of an (n, k) LRC with the average locality r =
(∑n

i=1 Loc(yi)
)
/n is at least

γn−1γ
(d−2)

n(n− 1)...(n− d+ 1)λ
,

where γn−1 =
ρn−1

λ
= BrepM

rCλ
and γ = ρ

λ
.

Proof. Please see Appendix A.1.

The above proposition shows that MTTDL is proportional to the repair

bandwidth, and the total number of storage nodes. Furthermore, MTTDL

is inversely proportional to the average locality of LRC and the capacity of

each storage node. Proposition 3.1 also shows that MTTDL is exponentially

proportional to d. Also, increasing the code length decreases the value of

MTTDL.

The 3-replication can be considered as an LRC with n = 3, d = 3, and r = 1.

Thus, its MTTDL is obtained as BrepMγ

6Cλ2 using Proposition 3.1. Comparing this

with the general case of Proposition 3.1, we have the following conclusion: an

(n, k) LRC with minimum distance d and average locality r has a MTTDL not

worse than that of the 3-replication scheme if it satisfies the following equation.

ζ =
6γd−1

rn(n− 1)...(n− d+ 1)
≥ 1. (3.1)

Therefore, assuming that for given λ and Td, MTTDL of the 3-replication

method is acceptable for a DSS, any LRC satisfying (3.1) can be considered

reliable.

Fig. 3.2 shows ζ versus n for d = 4 and various values of r. This figure

is plotted for λ = 0.25 storage node failures per year and Td = 30 minutes

[7, 6]. As this figure shows, high values of r force the code length n to become

smaller. Fig. 3.3 shows ζ versus n for d = 4, r = 3 and different values of Td.

As expected, increasing Td forces the code length n to become smaller. Both
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Figure 3.2: ζ versus n for Td = 30 minutes, d = 4, and various values of r.

figures show that with code length as large as 20, d = 4 provides reliability

more than that of the widely used 3-replication method.

3.2 Spanning BLRCs: A Class of Binary LRCs

Here, we propose a family of BLRCs, called spanning BLRCs, with the min-

imum distance d = 4 (the choice d = 4 is justified in Section 3.1). In our

coding scheme, similar to [28] and [26], we assume that (r + 1) | n. Our pro-

posed binary codes are r-optimal or asymptotically r-optimal. In particular,

for r = {1, 2, 3}, our proposed codes are indeed r-optimal. In addition, for

r = {1, 3}, the proposed binary codes are both r-optimal and d-optimal, im-

plying that neither their locality nor their minimum distance can be improved

by non-binary codes of the same length and rate. For r ≥ 4, the rate of our

codes asymptotically approaches that of the non-binary r-optimal codes of the
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Figure 3.3: ζ versus n for r = 3, d = 4, and various values of Td.

same code length as n→∞.

Later, in Section 3.3, by allowing two non-binary rows of field size q ≥
r + 2 in the parity check matrix H, we construct r-optimal codes for all r

and n, (r+1)|n. These codes also enjoy low computational complexity as most

operations on them can be performed in binary. For example, any single failure

(the dominant failure scenario) can be fully repaired only using the binary part

of the code.

3.2.1 BLRC Construction

We describe our code construction using its Tanner graph. In our code design,

first, n variable nodes are divided into ι = n
r+1

groups. Then, as shown in

Fig. 3.4, all variable nodes associated with each group are linked to a unique

check node. Let us call such check nodes local check nodes, and the remaining

ones global check nodes. This construction results in the maximum locality r
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ι=n/(r+1) local check nodes

n-k-n/(r+1) global check nodes

Connection is done based on HBG matrix

Group 1 Group ι 

Figure 3.4: Tanner graph of spanning BLRCs.

for all symbols. Equivalently, we can specify the parity check matrix of our

proposed BLRC as follows:

HBLRC =




HBL

HBG



 ∈ F
(n−k)×n
2 , (3.2)

where HBL ∈ F
n

r+1
×n

2 and HBG ∈ F
(n−k− n

r+1
)×n

2 represent the connection asso-

ciated with local and global check nodes, respectively. According to the above

explanation,

HBL = I n
r+1
⊗ 1r+1 ∈ F

n
r+1

×n

2 . (3.3)

HBL ∈ F
n

r+1
×n

2 constitute n
r+1

rows of HBLRC in (3.2). We now specify HBG ∈
F
(n−k− n

r+1
)×n

2 as follows.

HBG = 1 n
r+1
⊗H

(r)
0 ∈ F

⌈log2(r+1)⌉×n
2 . (3.4)
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In (3.4), H
(r)
0 is the parity check matrix of an (r + 1, r + 1 − ⌈log2(r + 1)⌉)

Hamming code. In other words,

H
(r)
0 =

(

0, 1, · · · , r
)

∈ F
⌈log2(r+1)⌉×(r+1)
2 , (3.5)

where each vector m ∈ {0, · · · , r} is the transpose of the binary representation

of m ∈ [0, r] with ⌈log2(r + 1)⌉ bits. For example, if r = 5 and m = 3, then

m = (0, 1, 1)T . Hence,

k =
nr

r + 1
− ⌈log2(r + 1)⌉. (3.6)

Considering (3.2), (3.3), and (3.4), HBLRC has the following form


















H
(1)
Group

︷ ︸︸ ︷
H

(2)
Group

︷ ︸︸ ︷
H

(ι)
Group

︷ ︸︸ ︷

1 · · · 1

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0

1 · · · 1
...

. . .
...

0 · · · 0

· · ·

0 · · · 0
...

. . .
...

0 · · · 0

1 · · · 1

H
(r)
0 H

(r)
0 · · · H

(r)
0


















. (3.7)

Example 3.1. Assume that r = 2 and n = 9. Hence, the number of local check

nodes is ι = n
r+1

= 3, and the number of global check nodes is n − k − ι = 2.

From (3.5), we have

H
(2)
0 =




0 0 1

0 1 0



 ∈ F2×3
2 . (3.8)
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3 local check nodes

2 global check nodes

Figure 3.5: Tanner graph related to the (9, 4, 2) spanning BLRC.

From (3.7), HBLRC is constructed as

HBLRC =














1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0 0 1 0 0 1 0 0 1

0 1 0 0 1 0 0 1 0














∈ F5×9
2 .

Fig. 3.5 shows the Tanner graph associated with the (9, 4, 2) spanning BLRC.

Proposition 3.2. The minimum distance d associated with the parity check

matrix HBLRC defined in (3.2) is four.

Proof. For a linear block code with d = 4, every d − 1 = 3 columns of parity

check matrix must be independent. No column of HBLRC is a vector of all

zeros. Now consider, sub-matrices of HBLRC associated with l-th group as

H
(l)
Group = HBLRC([(l − 1)(r + 1) + 1, l(r + 1)]), for l ∈ [

n

r + 1
]. (3.9)

Observe that no two columns of H
(r)
0 are identical. Therefore, sum of any
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two columns picked from H
(l)
Group cannot result in a vector of all zeros. Also,

sum of any three columns of H
(l)
Group has at least one non-zero element because

H
(l)
Group has a row of all ones. This shows that H

(l)
Group’s for l ∈ [ n

r+1
] have

d = 4. Furthermore, considering the structure of HBL, observe that sum of

one column picked from H
(j)
Group and arbitrary number of columns picked from

H
(l)
Group, l 6= j results in a vector with at least one non-zero element. Hence, no

linear combinations of less than four columns of HBLRC can result in a vector

of all zeros. Also, observe that XOR of columns 1, 2, r+2, and r+3 of HBLRC

results in a vector of all zeros. This implies that d = 4 for HBLRC .

To sum up, HBLRC is the parity check matrix of an (n, k, r) binary LRC

with minimum distance d = 4 whose number of information symbols (kB) is

kB =
nr

r + 1
− ⌈log2(r + 1)⌉. (3.10)

Remark 3.1. Assuming that (r + 1)|n and d = 4, the code rate of spanning

BLRCs is (⌈log2(r + 1)⌉ − 2 + ⌊ 2
r+1
⌋)/n less than that of r-optimal non-binary

LRCs. To show this, observe that for d = 4 by (2.2), we have

k +
k

r
≤ n− 2. (3.11)

Multiplying both sides of (3.11) by r
r+1

, and keeping in mind that (r + 1) | n,
we get

k ≤ nr

r + 1
−
⌈ 2r

r + 1

⌉

. (3.12)

Noting that r/(r + 1) = 1 − 1/(r + 1) and ⌈−x⌉ = −⌊x⌋, the number of

information symbols of r-optimal non-binary LRCs (kr−opt) is

kr−opt =
nr

r + 1
− 2 +

⌊ 2

r + 1

⌋

. (3.13)

Let us denote the code rate of spanning BLRCs and r-optimal non-binary LRCs

36



by RB and Rr−opt, respectively. Considering (3.10) and (3.13), we have

RB −Rr−opt =
kB − kr−opt

n
= −
⌈log2(r + 1)⌉ − 2 + ⌊ 2

r+1
⌋

n
.

This implies that the binary construction of our proposed LRCs does not

sacrifice the code rate significantly for practical values of r. This can be of

interest because the computation cost decreases significantly when all multipli-

cation operations are removed by using binary coding.

Remark 3.2. Observe that

⌈log2(r + 1)⌉ − 2 +
⌊

2
r+1

⌋

n
=







0, r ∈ {1, 2, 3}
O( log r

n
) r ≥ 4

This means that spanning BLRC are r-optimal for r ∈ {1, 2, 3}.

An interesting question is what is the best minimum distance d for given n,

r, and kr−opt in (3.13)? In other words, are r-optimal LRCs satisfying (3.13)

d-optimal LRCs?

Remark 3.3. For an LRC with given (n, kr−opt, r), the maximum value of

minimum distance d, denoted dopt, is

dopt =







5, r = 2,

4, r 6= 2,
(3.14)

To show this, observe that by replacing (3.13) in (2.2), we have

d ≤ ι+ 2−
⌊ 2

r + 1

⌋

−
⌈

rι− 2 + ⌊ 2
r+1
⌋

r

⌉

+ 2

= 4−
⌊ 2

r + 1

⌋

+

⌊

2− ⌊ 2
r+1
⌋

r

⌋

=







5, r = 2

4, r 6= 2
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Remark 3.4. Considering Remarks 3.2 and 3.3, spanning BLRCs are optimal

LRCs for r ∈ {1, 3}. More specifically, spanning BLRC with (n, kr−opt, r) =

(2ι, ι−1, 1) and (n, kr−opt, r) = (4ι, 3ι−2, 3) have the optimal minimum distance

dopt = 4. Hence, considering the three key parameters of an LRC—namely

the code rate k
n
, the code locality r, and the code minimum distance d when

r ∈ {1, 3}—non-binary LRCs have no advantage over the spanning BLRCs.

It is notable that spanning BLRC with (n, kr−opt, r) = (3ι, 2ι− 2, 2) satisfy

the bound in (2.2) with equality (i.e. they are r-optimal), but their minimum

distance can be increased by non-binary codes to d = 5 according to Remark

3.3.

In the following, we present an example of optimal spanning BLRC for the

following parameters: (r, ι, dopt) = (3, 4, 4). Hence, (n, kr−opt) = ((3 + 1)ι, 3 ×
ι− 2) = (16, 10). Therefore, we have ι = n

r+1
= 4 and n− kr−opt − ι = 2 local

and global check nodes, respectively. From (3.5), we have

H
(3)
0 =




0 0 1 1

0 1 0 1



 ∈ F2×4
2 . (3.15)

Then, from (3.7), HBLRC ∈ F6×16
2 is constructed as

















1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

















.

Fig. 3.6 shows the Tanner graph associated with the (16, 10) spanning

BLRC. The (16, 10) LRC used in Facebook HDFS-RAID does not achieve the
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4 local check nodes

2 global check nodes

Figure 3.6: Tanner graph related to the (16, 10) spanning BLRC.

bound in 2.2. However, it is shown in [6] that given (n, k, r) = (16, 10, 5), the

best possible minimum distance is 5 (observe that in this case (r + 1) = 6 ∤

16 = n). Comparing with the (n, k, r, d) = (16, 10, 5, 5) LRC currently in use

in Facebook HDFS-RAID, our proposed (n, k, r, d) = (16, 10, 3, 4) spanning

BLRC results in the same storage overhead, decreases r from 5 to 3, elimi-

nates the need of multiplication due to its binary essence, and it decreases d

by one. While the minimum distance of our spanning BLRC is one less than

that of the LRC used in Facebook HDFS-RAID, as will be discussed in Sec-

tion 3.1, we still provide a reliability much better than that of the benchmark

3-replication scheme. Also note that in this case, increasing the field size does

not improve the code locality, storage overhead, and reliability (which are the

key parameters of an LRC used in a DSS).

In order to compare the coding speed associated with binary and non-binary

LRCs, we simulated our (16, 10) spanning BLRC and the (16, 10) LRC used

in Facebok HDFS-RAID using advanced vector extensions (AVX) instructions

[34] and Intelr intelligent storage acceleration library (Intelr ISA-L). Using

AVX makes it possible to process multiple pieces of data in a single step. ISA-
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L uses a number of low-level functions to optimize the coding speed in storage

applications. In ISA-L, all operations are performed over F28 (byte level) with

primitive polynomial x8+x4+x3+x2+1 (please find more details in [34, 53, 54]).

Since the only comparison parameter was the coding pace, our simulations are

performed on a single machine. We used data blocks of size 1 kB, 2 kB, 4 kB,

and 8 kB. Our simulation verifies that the encoding and decoding processes of

spanning BLRC are on average ten times faster than those of the code used

in Facebook HDFS-RAID. For the repair process associated with one missing

block, both methods offer the same pace. This is because in both cases, the

code structures allow performing the repair process of a single failure by XOR

operations.

It is also notable that since the minimum distance of our code is four, the

code can recover any pattern of less than four block failures associated with

one stripe. By numerically inspecting all 6× 4, 6× 5, and 6× 6 sub-matrices

of HBLRC ∈ F6×16
2 , the following results are also verified: 4% of all 6× 4, 21%

of all 6 × 5, and 58% of all 6 × 6 sub-matrices of HBLRC ∈ F6×16
2 have rank

less than 4, 5, and 6, respectively. In other words, respectively 96%, 79%, and

42% of four, five, and six block failures associated with one stripe of data can

be recovered by using our proposed (16, 10, 3) binary LRC 2.

3.2.2 Optimal Binary Codes

We discussed earlier that for d = 4 our BLRCs are optimal in some cases. Also,

when they are not optimal, we showed that they offer near optimal code rate

with a rate gap of O
(
log r
n

)
. An interesting question is whether binary codes

with higher code rate than our proposed binary codes exist. In the following,

we show that our binary codes offer the maximum code rate among codes

preserving the general structure of local check nodes (shown in Fig. 3.4).

2Recently, erasure codes whose goal is to optimize recovering failures beyond code mini-
mum distance have been proposed (e.g. see [55, 56] and references therein).
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Consider an (n, k, r) BLRC with ι = n
r+1

local check nodes as shown in

Fig. 3.4. Therefore, the matrix HBLRC has the following form:


















H
(1)
Group

︷ ︸︸ ︷
H

(2)
Group

︷ ︸︸ ︷
H

(ι)
Group

︷ ︸︸ ︷

1 · · · 1

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0

1 · · · 1
...

. . .
...

0 · · · 0

· · ·

0 · · · 0
...

. . .
...

0 · · · 0

1 · · · 1

H1 H2 · · · Hι


















.

Consider the submatrix H1. The number of columns of H1 is r+1. Therefore,

the binary H1 will have two identical columns c1 and c2 if the number of rows

of H1 is less than ⌈log2(r + 1)⌉. In this case, columns c1 and c2 of the matrix

HBLRC will be identical, implying that three failures in Group 1, two of which

corresponding to columns c1 and c2 are not repairable. This contradicts d = 4.

In our construction, the columns of submatrix H1 (similarly H2, . . . ) span

binary representations of numbers 0 to r, hence the name spanning BLRC.

3.2.3 Systematic Construction of Spanning BLRC

From a practical point of view, it is more desirable to access the stored data

blocks without decoding. Thus, systematic codes are preferred in DSSs. In or-

der to obtain the systematic form of generator matrix associated with spanning

BLRC, we first form a square full-rank matrix HFR as

HFR = H(IFR) ∈ F
( n
r+1

+⌈log2(r+1)⌉)×( n
r+1

+⌈log2(r+1)⌉)
2 ,

where IFR is a subset of set [n] with cardinality
(

n
r+1

+⌈log2(r+1)⌉
)
resulting in

a full-rank matrix H(IFR). Then, from H′ = H−1
FRH, the systematic generator

matrix of spanning BLRC is obtained.
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3.3 Optimal LRCs Over Finite Field of Size

r + 2

In [26], optimal LRCs have been proposed over Fq for q slightly larger than n,

and (r + 1) | n. In Section 3.2.1, we proposed optimal BLRCs for r ∈ {1, 3}
(please see Remark 3.2). In this section, we construct LRCs over Fq—which is

a binary extension with a size greater than or equal to (r+2)—when d = 4 and

(r+1) | n. We show that the constructed codes are d-optimal. In addition, we

prove that those codes are also r-optimal (hence are optimal) when n ≥ 2r+3.

We construct the parity check matrix as

HLRC =




HL

HG



 ∈ F
( n
r+1

+2)×n
q , (3.16)

where

HL = I n
r+1
⊗ 1r+1 ∈ F

n
r+1

×n
q (3.17)

and

HG = 1 n
r+1
⊗H

(r)
1 ∈ F2×n

q . (3.18)

In (3.18),

H
(r)
1 =




1 α · · · αr

1 α2 · · · α2r



 ∈ F2×(r+1)
q , (3.19)

where α is a primitive element of field Fq. Using the fact that every 3× (r+1)

sub-matrix of

H
′(r)
1 =




1r+1

H
(r)
1



 =








1 1 · · · 1

1 α · · · αr

1 α2 · · · α2r







∈ F3×(r+1)

q

has full-rank, it is not difficult to show that the minimum distance of the code

is four.
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Proposition 3.3. The proposed LRCs are d-optimal.

Proof. For the proposed code with code length n, and locality r, we have

k = n−
(

n

r + 1
+ 2

)

︸ ︷︷ ︸

No. of parities

=
nr

r + 1
− 2.

Therefore, by (2.2), we have

d ≤ n− k −
⌈
k

r

⌉

+ 2

=
n

r + 1
+ 2−

⌈ nr
r+1
− 2

r

⌉

+ 2

= 4−
⌈

−2

r

⌉

= 4 +

⌊
2

r

⌋

,

which implies that d ≤ 4 when r ≥ 3.

Proposition 3.4. The proposed LRCs are optimal if n ≥ 2r + 3.

Proof. Suppose n ≥ 2r + 3. Since it was previously shown that the proposed

codes are d-optimal, it suffices to show that they are r-optimal. By contradic-

tion, assume that there is a code with code length n, k = nr
r+1
− 2, d = 4, and

locality r′ < r. Therefore, by (2.2), we have

d ≤ n− k −
⌈
k

r′

⌉

+ 2 =

n

r + 1
+ 2−

⌈ nr
r+1
− 2

r′

⌉

+ 2 = 4−
⌈

n(r−r′)
r+1

− 2

r′

⌉

Therefore, since d = 4, we must have

⌈
n(r−r′)

r+1
−2

r′

⌉

≤ 0, hence n(r−r′)
r+1

≤ 2, or

equivalently

n ≤ 2(r + 1)

r − r′
≤ 2(r + 1),

which contradicts the assumption that n ≥ 2r + 3.
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Note that for typical choices of n and r, n ≥ 2r + 3, for which our design

codes are optimal. In comparison to the existing optimal codes, our codes use

smaller field sizes (r + 2 vs. n). Furthermore, their local parity check nodes

are binary, therefore one failure (the dominant case) can be repaired without

using costly multiplications.

3.4 Increasing the Minimum Distance

Motivated by the practical application of erasure codes with d = 4, we focused

on designing BLRCs with minimum distance four in the previous sections. We

showed that our proposed spanning BLRCs have minimum distance of 4, hence

they can recover any patterns of one to three missing blocks of a stripe with

binary operations. As numerically inspected in Fig. 3.7, a high percentage of

up to four block failures associated with a stripe can also be recovered by the

spanning BLRCs.

Note that 98.8% of stripes with missing blocks have precisely one miss-

ing block, 1.87% of them have two missing blocks, and 0.05% of them have

three or more missing blocks [24]. Therefore, in real-world data centers, it is

very unlikely that four block failures in one stripe occur. In case of such a rare

occurrence, it is very unlikely that spanning BLRCs cannot fix it because span-

ning BLRCs can recover a high percentage of four block failures. For example,

our proposed (16, 10) BLRC can recover 96% of four failures associated with a

stripe of data.

Nevertheless, in some rare cases, catastrophic failures may occur rendering

data missing/unavailable. In such cases, erasure codes with minimum distance

more than four are required. In this section, we use our solution for d = 4 as

a base and construct LRCs with d ≥ 6 by adding a single non-binary check

node. Interestingly and somewhat surprisingly, adding this single parity block

increases the code minimum distance by two. Note that for up to 3 block
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Figure 3.7: The percentage of up to four missing blocks recoverable by our
proposed spanning BLRCs for different values of code locality (r) and code
rate (R = k

n
). Here, n = ι(r + 1) and k = ιr − ⌈log2(r + 1)⌉, where ι ∈ [3, 10].

failures, all recovery operations are performed in binary field as before and

this single non-binary parity block is only used in rare cases that more than 3

failures occur.

For the encoding process, non-binary operations are required to generate a

single non-binary parity block. Also, for the decoding process, operation over

non-binary field is required only if the single non-binary check node has to be

used. In the following, the construction of our proposed LRC is presented.

Consider the expanded form of HBLRC presented in (3.7). Each column

of HBLRC stands for the transpose of the binary representation of a distinct

number in binary extension field F2Γr,n , where Γr,n = n
r+1

+ ⌈log2(r + 1)⌉. In
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other words, HBLRC can be presented as follows

HBLRC = (h1,h2, · · · ,hn) ∈ F
Γr,n×n
2 , (3.20)

where each column vector hi ∈ F
Γr,n×1
2 for i ∈ [n] is the transpose of binary

representation of hi ∈ F2Γr,n with Γr,n bits. The parity check matrix associated

with our proposed LRC with d ≥ 6 can be represented as

HLRC =




h1 h2 · · · hn

h3
1 h3

2 · · · h3
n



 ∈ F
(1+Γr,n)×n

2Γr,n
. (3.21)

Example 3.2. In Example 3.1, Γ2,9 = 5. Hence, HBLRC can be represented

as:

HBLRC = (h1,h2,h3,h4,h5,h6,h7,h8,h9)

= (16,17,18,8,9,10,4,5,6) ∈ F5×9
2

Considering hi ∈ F25, we have:

(
h3
1, h3

2, h3
3, h3

4, h3
5, h3

6, h3
7, h3

8, h3
9

)

=
(
163, 173, 183, 83, 93, 103, 43, 53, 63

)

= (14, 18, 22, 26, 25, 3, 10, 31, 23) ∈ F1×9
25

Finally, we have

HLRC =

















1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0 0 1 0 0 1 0 0 1

0 1 0 0 1 0 0 1 0

14 18 22 26 25 3 10 31 23

















∈ F6×9
25
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Newly added non-binary global check node

18 22 26 25 3 10 31 2314

Figure 3.8: Tanner graph related to our proposed (9, 3, 2) LRC with d = 6.
Five lower check nodes represent five binary equations. The single upper check
node represents the non-binary equation.

Fig. 3.8 shows the Tanner graph associated with the (9, 3, 2) spanning BLRC

with d = 6.

Proposition 3.5. The minimum distance d associated with the parity check

matrix H
(6)
LRC defined in (3.21) is bounded as follows:

6 ≤ d ≤
⌈

log2(r + 1)
⌉

+
⌊1

r

(⌈

log2(r + 1)
⌉

+ 1
)⌋

+ 3.

Proof. Please see Appendix A.2.

Remark 3.5. By adding only one non-binary parity block to the BLRC, our

proposed LRC with d ≥ 6 is obtained. In the case that LRCs with d > 6 are re-

quired, it might be possible to follow a similar solution. In other words, it might

be possible to increase d by carefully adding more rows to HBLRC presented in

(3.2). Determining the coefficients of the newly added rows explicitly requires

further research.

3.5 Conclusion

In distributed storage systems, BLRCs are of interest because they eliminate

the need for costly multiplications in encoding, decoding, and repair processes.
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In this chapter, we proposed binary LRCs with minimum distance of four, a

distance shown by our MTTDL analysis to provide sufficient reliability for a

wide range of practical codes and system parameters. We showed that our

proposed binary LRCs are optimal when r ∈ {1, 3}. For larger r, we discussed

that the rate of our proposed binary codes are near optimal (with a rate gap

of O
(
log r
n

)
). We further showed that with a field size of as small as r + 2,

and only two non-binary parity blocks, optimal codes with optimal rates can

be constructed when the code length n ≥ 2r + 3. Also, by adding a single

non-binary parity block, we designed LRCs with minimum distance at least

six.
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Chapter 4

On the Average Locality of

Locally Repairable Codes

In the previous chapter, we studied the problem of LRCs with low coding

computational complexity. Here we focus on average locality of LRCs. The

average locality of an LRC determines the average bandwidth usage and the

average number of disk I/O operations needed in reconstructing a block. For

example, assume that SDN and SBlk represent size of a DN and size of a data

block in bytes, respectively. Then, each DN can store SDN

SBlk
blocks of data.

When a DN fails, on average, rSDN

SBlk
blocks each of size SBlk bytes have to be

downloaded from active DNs in order to perform the repair process. Therefore,

the repair bandwidth is equal to rSDN

SBlk
× SBlk = rSDN bytes. Because SDN

(i.e. the capacity of a DN) is typically several TB, and since DN failure and

unavailability are norm in large DSSs, even a small reduction in r can result in

a significant reduction in the networking load [6].

Furthermore, mean-time to data-loss (MTTDL) associated with an LRC is

inversely proportional to the average locality of the code as shown in Propo-

sition 3.1. In other words, for two LRCs with the same values of (n, k, d) but

different values of r, the one with a smaller value of r has a higher MTTDL,

hence more reliable.
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In this chapter, we present our results on the average locality of all symbols.

As we will show in (4.3), the bound d ≤ n− k−⌈k
r
⌉+2 is simply translated to

r ≥ ⌈ k
n−k−d+2

⌉, which is a lower bound on the maximum locality. The aim of

this chapter is to i) obtain lower bounds on r in terms of n, k, and d; and ii)

design LRCs that achieve these bounds. In the following section, we present

preliminaries required to establish our main results on the average locality.

4.1 Preliminary Results

In this section, we present definitions and lemmas required in discussing and

proving our main results. First, we show that there exists a Tanner graph,

called locality Tanner graph, with at most n − k CNs which determines the

locality of all the encoded symbols. Then, after defining and constructing local

groups, we establish lower bounds on the average locality r in Section 4.2.1.

In Definition 2.6, we called code’s Tanner graph a locality Tanner graph, if

it reflects the locality of all the encoded symbols, and has at most n− k CNs.

Lemma 4.1. Every LRC has a locality Tanner graph.

Proof. Our proof is by construction. Let Y be the set of n variable nodes of an

LRC code, i.e., Y = {y1, · · · , yn} and PL be the set of local check nodes of the

code’s locality Tanner graph. In the first step, we set U1 = {}, and select a local

group Ψ1 with minimum locality. In step j, j ≥ 2, we set Uj = Uj−1 ∪ Ψj−1,

and set Ψj to a local group with minimum locality, which is not a subset of Uj.
We stop this recursive construction process when Uj includes all the variable

nodes. Note that each local group represents a CN. Since there are at most

n − k linearly independent equations of form (2.1), the algorithm terminates

at most after n− k local groups are selected, i.e., |PL| ≤ n− k.

A code can have many different Tanner graph representations. However,

since all these Tanner graphs represent the same code, the code properties are
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not affected when using different Tanner graph representations.

Local group construction: By using a greedy algorithm, we partition the set

of the encoded symbols Y = {y1, ..., yn} into local groups Yj’s for j ∈ [1,m],

such that all elements of Yj have the same locality rj, where r1 ≤ r2 ≤ · · · ≤
rm, and Yp ∩ Yq = {} for any distinct p and q in [1,m]. To this end, at

the first step, assume U1 = {}, yp is a VN with the minimum locality in set

U1 := Y\U1 = Y , and Ψ1 is the locality-defining set for yp. We set r1 = Loc(yp),

Y1 = Ψ1\U1 = Ψ1. At the second step, assume U2 = U1 ∪Y1 = Y1, an updated

yp is a VN with the minimum locality in set U2 := Y\U2 = Y\Y1, and Ψ2 is

the locality-defining set for yp. We set r2 = Loc(yp), Y2 = Ψ2\U2 = Ψ2\Y1. We

continue this procedure m times until all VNs are placed in their corresponding

set Yi, where i ∈ [1,m] and m ≤ n− k. The detailed procedure is described in

the following algorithm.
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41 2 3

1 2 3 4 5 6 7 8 9 10 11 12 161513 14

Figure 4.1: For the above locality Tanner graph, there are four local groups
Y1 = {y1, y2, y3, y4}, Y2 = {y5, y6, y7, y8, y9}, Y3 = {y10, y11, y12, y13, y14}, Y4 =
{y15, y16}. Also, r = 6 and r = (4 × 3 + 10 × 4 + 2 × 6)/16 = 4. Two global
CNs are not shown in this figure.

Algorithm 1 Local groups construction

Input: Y = {y1, ..., yn}
Output: m,Yj, rj, for j ∈ [1,m]

Initialization: j = 1, U1 = {}
while |Uj| < n do

• Let Ψj be the locality-defining set for

an element in

arg min
yp∈ Uj

{Loc(yp)}, where U j := Y \Uj

• Set rj = Loc(yp)

• Yj ← Ψj \ Uj

• Uj+1 ← Uj
⋃
Yj

• j ← j + 1

end

m← j − 1

Example 4.1. Here, we show how Algorithm 1 works for the locality Tanner

graph shown in Fig. 4.1 which corresponds with an (n, k, d) = (16, 10, 5) LRC.
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Observe that the locality Tanner graph of this Figure has 4 VNs 1 to 4 with

locality 3, 10 VNs 5 to 14 with locality 4, and 2 VNs 15 to 16 with locality 6.

Observe that y1 is a VN with the minimum locality in set U1 := Y\U1 = Y1. At

the first step, Ψ1 = {y1, y2, y3, y4}, locality-defining set for y1, is selected. We

set r1 = Loc(y1) = 3, Y1 = Ψ1\U1 = {y1, y2, y3, y4}.
At the second step, we set U2 = U1 ∪ Y1 = {y1, y2, y3, y4}, choose y5 as a

VN with the minimum locality in set U2 := Y\U2 = Y\Y1 = {y5, · · · , y16},
and define Ψ2 = {y5, y6, y7, y8, y9} as the locality-defining set for y5. We set

r2 = Loc(y5) = 4, Y2 = Ψ2\U2 = {y5, y6, y7, y8, y9}.
At the third step, we set U3 = U2 ∪Y2 = {y1, · · · , y9}, choose y10 as a VN with

the minimum locality in set U3 := Y\U3 = Y\{y1, · · · , y9} = {y10, · · · , y16},
and define Ψ3 = {y10, y11, y12, y13, y14} as the local group corresponding with

y10. We set r3 = Loc(y10) = 4, Y3 = Ψ3\U3 = {y10, y11, y12, y13, y14}.
At the forth step, we set U4 = U3∪Y3 = {y1, · · · , y14}, choose y15 as a VN with

the minimum locality in set U4 := Y\U4 = Y\{y1, · · · , y14} = {y15, y16}, and
define Ψ4 = {y4, y8, y9, y13, y14, y15, y16} as the local group corresponding with

y15. We set r4 = Loc(y15) = 6, Y4 = Ψ4\U4 = {y15, y16}.
Here, the algorithm terminates after m = 4 steps, and all the 16 VNs are placed

in their corresponding local groups Yi, where i ∈ [1, 4].

Definition 4.1. (Non-overlapping local CNs). We say that local CNs one to ζ

are non-overlapping if the set of VNs connected to check nodes do not overlap.

Example 4.2. In the locality Tanner graph of Fig. 4.1, local CNs 1 to 3 are

non-overlapping; while local CNs 1 to 4 are overlapping.

The following Lemma shows how Tanner graph of an (n, k) linear block

code is related to the minimum distance of the code (d).

1Noting that y2, y3, and y4 have the minimum locality as well, choosing either of y1 to y4
does not affect the performance of the Algorithm.
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Lemma 4.2. For an (n, k) linear block code C with Tanner graph T , let the
non-zero elements of parity-check matrix H corresponding with T be randomly

selected from a sufficiently large finite field. Then, C has minimum distance d

iff every γ CNs of T cover at least γ + k VNs for every γ ∈ [J, n− k], where

J := n− k − d+ 2.

Proof. By fixing the Tanner graph of an (n, k, d) code, the zero elements of

its parity check matrix H
(n−k)×n
Fq

are fixed. Here, we assume that the non-zero

elements of H are randomly selected from a sufficiently large finite field. This

will assure that the code will have the maximum possible minimum distance

among all the codes whose zero elements of their parity check matrix are fixed

by the given Tanner graph.

Necessary condition (assumption: the minimum distance is d): By contra-

diction, assume that there is a subset of CNs of T with cardinality γ cov-

ering at most γ + k − 1 VNs, where γ ≥ n − k − d + 2. Suppose that the

n− (γ+k−1) ∈ [1, d−1] VNs not covered by the mentioned γ CNs are erased.

Observe that among all γ + k− 1 VNs covered by the mentioned γ CNs, there

are at most (γ + k − 1) − γ = k − 1 independent VNs. This implies that C
cannot recover k information symbols for the assumed n−(γ+k−1) ∈ [1, d−1]
erasures. This contradicts the fact that an erasure code with minimum distance

d can recover k information symbols for any up to d− 1 symbol erasures.

Sufficient condition (assumption: every γ CNs of T cover at least (γ+ k) VNs

for every γ ∈ [J, n − k]): An erasure code with minimum distance d can re-

cover any up to d− 1 erasures. Let us define β as β := (n− k)− γ + 1. Since

γ ∈ [n−k−d+2, n−k], we have β ∈ [1, d−1]. Now, we show that any β VNs

are covered by at least β CNs. This implies that any β ∈ [1, d−1] erasures can

be recovered using β independent equations associated with their corresponding

CNs. By contradiction, assume that there is a subset of VNs with cardinality

β covered by at most β − 1 CNs. Then, the remaining (n − k) − (β − 1) = γ

CNs cover at most n − β = k + γ − 1 VNs. This contradicts the assumption
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that any γ CNs cover at least k + γ VNs.

Remark 4.1. As we will see, all LRCs discussed in this chapter have the

following two properties: i) each local CN is connected to at least one VN which

is not connected to other local CNs, and ii) each global CN is linked to all n

VNs. When these conditions are satisfied, Lemma 4.2 results in the following

corollary which allows us to verify that the minimum distance of a code is d by

showing that every J local CNs cover at least J + k VNs.

Corollary 4.1. For an LRC with Tanner graph T , assume that i) each local

CN is connected to at least one VN which is not connected to other local CNs,

and ii) each global CN is linked to all n VNs. Then, the sufficient condition of

Lemma 4.2 is equivalent to the following one: If every J local CNs cover J + k

VNs, then the minimum distance of the code is d.

Proof. Without loss of generality, consider the first J local CNs that cover at

least J + k VNs. By adding γ − J arbitrary local CNs to these J local CNs,

at least γ − J new VNs are covered, where γ ∈ [J, n− k]. This is true because

each local CN is connected to at least one VN which is not connected to other

local CNs. Also, each global CN is connected to all VNs. Hence, every γ CNs

cover at least γ + k VNs.

As we will see later, Lemma 4.2 is a strong tool which will help us obtain a

bound on r. In fact, the famous bound of (2.2) on the maximum locality also

can easily be obtained by Lemma 4.2.

Remark 4.2. (A simple proof for the well-known bound (2.2) using Lemma

4.2) For an (n, k, d, r) LRC, assume that the number of local CNs is m, where

m ∈ {2, · · · , J, J + 1, · · · , n− k}. Now, we consider two cases as follows.

Case (i) m ∈ [J, n]: In this case, by Lemma 4.2, every γ local CNs cover at

least γ + k VNs. We have

r + 1 ≥ γ + k

γ
≥ J + k

J
, m ∈ [J, n− k]. (4.1)
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Case (ii) m ∈ [2, J − 1]: In this case, all the m local CNs cover all the n VNs.

We have

r + 1 ≥ n

m
≥ n

J − 1
>

J + k

J
, m ∈ [2, J − 1], (4.2)

where the last equality holds because n ≥ J + k = n− (d− 2). From (4.1), we

have

r ≥ k

J
⇒ n− k − d+ 2 ≥ k

r
⇒ d ≤ n− k − k

r
+ 2.

Since d is an integer, d ≤ n− k −
⌈
k
r

⌉

+ 2.

The following Lemma is used to partition a subset of the encoded symbols,

say A, with cardinality A into ζ non-overlapping local groups such that the

average locality of the encoded symbols in A is minimized.

Lemma 4.3. Let zj, j ∈ [1, ζ] be integers, and
∑ζ

j=1 zj = A. Then,

ζ
∑

j=1

z2j ≥ (ζ − a)
⌊A

ζ

⌋2

+ a
⌈A

ζ

⌉2

,

where a = A+ ζ − ζ⌈A
ζ
⌉.

Proof. Subject to
∑ζ

j=1 zj = A and zj’s are integer, the sum
∑ζ

j=1 z
2
j is mini-

mized if |zl−zm| ≤ 1 for every pair zl and zm. Because otherwise if zl > zm+1,

then
∑ζ

j=1 z
2
j can be reduced by setting zl to zl − 1 and zm to zm + 1. This is

true since

zl > zm + 1⇔ z2l + z2m ≥ (zl − 1)2 + (zm + 1)2.

Consequently,
∑ζ

j=1 z
2
j is minimized if for every j, zj = z or zj = z − 1 for

some integer z. The number z is unique and it is a function of A and ζ. Now,

assume that among ζ integers zj, a integers are z and the rest ζ − a integers

are z − 1. Therefore, az + (ζ − a)(z − 1) = A; equivalently, a = A+ ζ(1− z).

Hence, ⌈a
ζ
⌉ = ⌈A

ζ
⌉+ 1− z. Therefore, z = ⌈A

ζ
⌉ because a ≤ ζ.

Lemma 4.3 implies that the minimum of sum squares of some integers

(min
∑ζ

j=1 z
2
j ) with a constant summation (

∑ζ
j=1 zj = A) is obtained when
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the integers (zj’s) are distributed as uniformly as possible. We will use this

Lemma later to distribute VNs in distinct local groups in order to minimize

the average locality of all VNs.

4.2 Results on the Average Locality of All Sym-

bols

In [57], as the first step towards establishing a bound on r and motivated by

the (n, k, d) = (16, 10, 5) LRC used in Facebook HDFS-RAID [6], we proved

that the average locality r of any (n, k) = (16, 10) LRC with minimum dis-

tance d = 5 is at least 3.875. We also gave the construction of an LRC that

achieves the bound r = 3.875. In this section, we generalize our work in [57].

More specifically, we establish a lower bound on r of arbitrary (n, k, d) LRCs

(Theorem 4.1). Furthermore, we obtain a tight lower bound on r for a practical

case where R = k
n
> (1− 1√

n
)2 (Theorem 4.2). Finally, we design three classes

of LRCs that achieve the obtained bounds on r (Section 4.2.2). Note that the

improvement achieved by our proposed LRCs comes without sacrificing impor-

tant code parameters such as rate ( k
n
) and minimum distance d. The following

simple example shows the effectiveness of our solution.

Example 4.3. The existing solution: For an (n, k, r) = (8, 4, 3) LRC, bound

in (2.2) results in d ≤ 8 − 4 − ⌈4
3
⌉ + 2 = 4. In this case, since (r + 1) | n, an

optimal LRC with d = 4 can be constructed whose Tanner graph is depicted in

Fig. 4.2a. Here, Loc(yi) = r = r = 3 for i ∈ [1, 8].

Our proposed solution: Fig. 4.2b shows Tanner graph associated with our

proposed LRC in this section. For this LRC, Loc(yi) = 2 for i ∈ [1, 6], and

Loc(yi) = 3 otherwise. Hence, r = 3 and r = (6× 2+2× 6)/8 = 2.25. In other

words, the average locality is improved by 25% without changing d and the code

rate k/n.
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1 2 3 4 5 6 7 8

(a) Tanner graph of an optimal
S(n, k, d, r, r) = (8, 4, 4, 3, 3) LRC.

1 2 3 4 5 6 7 8

(b) Tanner graph of our proposed
Se(n, k, d, r, r) = (8, 4, 4, 3, 2.25)
LRC.

Figure 4.2: Tanner graph associated with two (n, k, d) = (8, 4, 4) LRCs. Here,
local check nodes, which depicts the locality of all the encoded symbols, are
shown by gray squares; and the non-local check nodes are shown by white
squares. The average locality of the optimal LRC is improved by 25% using
our proposed LRC.

In this section, by using a novel approach, we design LRCs with improved

average locality. In other words, the amount of costly repair bandwidth, disk

I/O, number of participating nodes during repair process of a lost/erased block

of data, and MTTDL are all improved by using our proposed coding schemes.

Considering the recent interest in using efficient erasure codes in real-world

data centers (e.g. in Google File System [10], Windows Azure Storage [7],

and Facebook HDFS-RAID [6]), our results can be of great importance from a

practical point of view.

4.2.1 Lower Bounds on r

First, in Section 4.2.1, we derive a lower bound on r that holds for any (n, k, d)

LRCs. We compare this bound to the one on maximum locality r. In Section

4.2.1, we obtain a tight lower bound on r for (n, k, d) LRCs which satisfy the

following constraint on the code rate R = k
n
>
(

1 − 1√
n

)2

. In Section 4.2.2,

we present three classes of LRCs that achieve the obtained bounds presented

in this section.
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A Lower Bound on r for Arbitrary (n, k, d) LRC

First, let us reform the bound in (2.2) to obtain a lower bound on r. From

(2.2), we have

d ≤ n − k −
⌈k

r

⌉

+ 2 ≤ n − k − k

r
+ 2 ⇒ r ≥ k

n− k − d+ 2
=

k

J
.

Since r is an integer, the lower bound of the maximum locality (r) can be

presented as

r ≥
⌈k

J

⌉

. (4.3)

Theorem 4.1. For any (n, k, d) LRC with J = n − k − d + 2, the average

locality of all symbols (r) is bounded as follows

r ≥
⌈k

J

⌉(

1−
J
⌈
k
J

⌉

− k

n

)

. (4.4)

Proof. Please see Appendix B.1.

Remark 4.3. Considering (4.4), the bound on r can be represented as follows

r̄ ≥ α
⌊k

J

⌋

+ (1− α)
⌈k

J

⌉

, (4.5)

where α := m1

n
= 1

n
(J⌈ k

J
⌉ − k)(⌊ k

J
⌋+ 1).

Remark 4.4. By subtracting the right hand side of (4.4) from that of (4.3),

the gap between the bounds on r and r is obtained as α = m1

n
which is less than

one because m1 < n. Therefore, compared to codes with optimum maximum

locality, the saving in the average locality is at most one symbol. This gap is

maximized when J | (k − 1). To see this, observe that

α =
1

n

⌈k

J

⌉(

J
⌈k

J

⌉

− k
)

=







1
n
(J − β)⌈ k

J
⌉, J ∤ k

0, J | k
(4.6)
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where β = k mod J , and β 6= 0. Hence, (4.6) achieves its maximum when

β = 1, equivalently, when J | (k − 1). In Section 4.2.2, we show that for

sufficiently large values of d, the bound in Theorem 4.1 is achievable when

J | (k − 1).

An Achievable Lower Bound on r of LRCs with R >
(

1− 1√
n

)2

In the previous section, in order to obtain a lower bound on r, we assumed that

the first J local groups of (n, k, d) LRCs cover J + k VNs. Also, we assumed

that locality of the remaining n− (J +k) = d− 2 is equal to maximum locality

of the first J+k VNs. The obtained bound in Theorem 4.1 is not always tight.

In this section, we obtain a tight lower bound on r assuming that

R =
k

n
>
(

1− 1√
n

)2

. (4.7)

It is notable that linear block codes currently in use—e.g. the (16, 10, 5)

code used in Facebook HDFS-RAID, the (16, 12, 4) code used in Windows

Azure Storage, and the (9, 6, 4) code in Google File System—satisfy the condi-

tion presented in (4.7) as depicted in Fig. 4.3. We also note that for a typical

code length n < 25 the condition (4.7) on rate is R > 0.64 which is very

practical.

Theorem 4.2. For any (n, k, d) LRC with R = k
n
>
(
1 − 1√

n

)2
, the average

locality of all symbols (r) is bounded as follows

r ≥
min

θ∈[0,d−2]

{

(J − aθ)
⌊
n−θ
J

⌋2

+ aθ

⌈
n−θ
J

⌉2

+ (n− dJ + 2J)θ

}

n
− 1, (4.8)

where J = n− k − d+ 2 and aθ = n− θ + J − J
⌈
n−θ
J

⌉

.

Proof. Here, we present the sketch of the proof. Please find the detailed proof

in Appendix B.2.
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Figure 4.3: Graph of the function R = (1 − 1√
n
)2 over the interval n ∈ [3, 30].

The bound in Theorem 4.2 and codes designed in Section 4.2.2 are valid in the
white area over the curve. As this figure shows all the practical cases currently
in use are properly placed in this white area.

To begin with, we construct m local groups using Algorithm 1. Note that

the maximum locality of an (n, k) linear block code is k, hence, m > 1. Fur-

thermore, by Lemma 4.1, m ≤ n− k. Therefore,

n r =
n∑

i=1

Loc(yi) =
m∑

j=1

|Yj|rj, m ∈ [2, n− k]. (4.9)

Then, we verify that the minimum average locality is achieved when m is either

J or J +1. By Lemma 4.2, in order to achieve minimum distance d, the first J

local groups must cover at least J+k = n− (d−2) VNs and at most n−1 VNs

2. Among all possible J+1 local groups, we assume that the first J local groups

2Note that the case that the first J local groups cover n VNs is equivalent to the first

61









1
J

k
1J

)(

1

2 






























J

k

J

k

d 1

Figure 4.4: Locality Tanner graph of an (n, k, d) LRC with J | (k − 1) and
⌊

d−2
⌈ k
J
⌉+1

⌋

≥
⌈
k
J

⌉

− θ. There are (J − 1) non-overlapping local groups with

cardinality (⌊ k
J
⌋ + 1);

⌊
d−2

⌈ k
J
⌉+1

⌋

− (
⌈
k
J

⌉

− θ) non-overlapping local groups with

cardinality (
⌈
k
J

⌉

+ 1); (
⌈
k
J

⌉

+ 1− θ) overlapping local groups with cardinality

(
⌈
k
J

⌉

+ 1); and one overlapping local group which has (
⌈
k
J

⌉

+ 1 − θ) VNs in

common with (
⌈
k
J

⌉

+ 1 − θ) distinct local groups. Global CNs are not shown

in this figure.

and the last local group cover n−θ and θ VNs, respectively, where θ ∈ [1, d−2].
Then, we obtain a lower bound on r according to this assumption. Finally, the

lower bound on r is obtained by taking the minimum of two bounds associated

with the considered cases.

The bound in Theorem 4.1 is not always achievable; while the bound in

Theorem 4.2 is always achievable. Sometimes the two bound can be equal.

For example, when J | (k − 1) and θ = d − 2 = ⌈ k
J
⌉, the bounds obtained in

Theorems 4.1 and 4.2 become the same.

In Section 4.2.2, we design a class of LRCs that achieve the bound on r

obtained in Theorem 4.2.

case with m = J . This case is considered in Theorem 4.2 by setting θ = 0.
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4.2.2 Achieving the Bounds: r-Optimal LRCs

In this section, we design LRCs that achieve the lower bounds on r obtained in

Theorems 4.1 and 4.2. We call such codes r-optimal LRCs. In Sections 4.2.2

and 4.2.2, by following the equality conditions in the bound of Theorem 4.1,

we construct two classes of r-optimal LRCs that achieve the general bound in

Theorem 4.1. Furthermore, in Section 4.2.2, we construct a class of LRCs that

achieve the bound in Theorem 4.2.

The First Class of r-Optimal LRCs

Suppose the parameters n, k and d are such that (⌈ k
J
⌉+ 1) | (d− 2). The first

k + J VNs are partitioned into J⌈ k
J
⌉ − k and J + k − J⌈ k

J
⌉ local groups with

cardinality ⌊ k
J
⌋+ 1 and ⌈ k

J
⌉+ 1, respectively. Then, n− (J + k) = d− 2 VNs

not covered by the first J local CNs are partitioned into d−2
⌈ k
J
⌉+1

local groups

with cardinality ⌈ k
J
⌉+1. Hence, there are exactly m1

⌊ k
J
⌋+1

= J⌈ k
J
⌉− k and n−m1

⌈ k
J
⌉+1

local groups with cardinality ⌊ k
J
⌋ + 1 and ⌈ k

J
⌉ + 1, respectively. Note that for

this class of r-optimal LRCs, the constraint on d expressed in Corollary 4.1 is

satisfied and the bound in Theorem 4.1 is achieved.

Example 4.4. Considering Fig. 4.5, we present a numerical example of this

class of LRCs. Let (n, k, d) = (14, 5, 8), hence J = n− k − d+ 2 = 3. Observe

that 3 = (⌈ k
J
⌉ + 1) | (d − 2) = 6 is satisfied. The first k + J = 8 VNs are

partitioned into J⌈ k
J
⌉−k = 1 and J+k−J⌈ k

J
⌉ = 2 local groups with cardinality

⌊ k
J
⌋+1 = 2 and ⌈ k

J
⌉+1 = 3, respectively. Then, n−(J+k) = d−2 = 6 VNs not

covered by the first J = 3 local CNs are partitioned into d−2
⌈ k
J
⌉+1

= 2 local groups

with cardinality ⌈ k
J
⌉+1 = 3. Hence, there are exactly m1

⌊ k
J
⌋+1

= J⌈ k
J
⌉−k = 1 and

n−m1

⌈ k
J
⌉+1

= 4 local groups with cardinality ⌊ k
J
⌋+1 = 2 and ⌈ k

J
⌉+1 = 3, respectively.

Observe that for this r-optimal LRC, the constraint on d expressed in Corollary

4.1 is satisfied and the bound in Theorem 4.1 is achieved as r = 2×1+12×2
14

and

⌈ k
J
⌉(1− J⌈ k

J
⌉−k

n
) = 26

14
.
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Figure 4.5: The proposed (n, k, d) = (14, 5, 8) r-optimal LRC. Here, the four
global CNs are not depicted.

The Second Class of r-Optimal LRCs

Suppose the parameters n, k and d are such that J | (k − 1) and

⌊
d− 2

⌈ k
J
⌉+ 1

⌋

≥
⌈k

J

⌉

− θ, (4.10)

where

θ = (d− 2) mod (
⌈k

J

⌉

+ 1). (4.11)

Fig. 4.4 shows the Tanner graph corresponding to our second class of r-optimal

LRCs (CrLRC2). In this graph, all the local groups, except ⌈ k
J
⌉ + 2 − θ, are

non-overlapping. Among the non-overlapping local groups, J − 1 groups have

cardinality ⌊ k
J
⌋+ 1, while the remaining have cardinality ⌈ k

J
⌉+ 1. Among the

overlapping local groups,
⌈
k
J

⌉

+ 1 − θ groups have cardinality ⌈ k
J
⌉ + 1, while

the remaining one has cardinality θ. This last overlapping local group shares

exactly one VN with (
⌈
k
J

⌉

+ 1− θ) overlapping local groups, which is possible

by (4.10).

Note that each VN has locality of ⌊ k
J
⌋ or ⌈ k

J
⌉, and the average locality is

optimum by Theorem 4.1. Also, it can be verified that every J local CNs cover

at least J + k VNs, thus, by Corollary 4.1, the minimum distance of CrLRC2 is

at least d.

Example 4.5. Here, we present a numerical example of this class of LRCs. Let

(n, k, d) = (11, 4, 6) and J = n−k−d+2 = 3. Observe that 3 = J | (k−1) = 6
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Figure 4.6: The proposed (n, k, d) = (11, 4, 6) r-optimal LRC. Here, the two
global CNs are not depicted.

and with θ = (d− 2) mod (⌈ k
J
⌉+1) = 1, condition 1 = ⌊ d−2

⌈ k
J
⌉+1
⌋ ≥ ⌈ k

J
⌉− θ = 1

is satisfied. Fig. 4.6 represent the locality Tanner graph of this r-optimal

code. In this graph, there are (J − 1) = 2 non-overlapping local groups with

cardinality (⌊ k
J
⌋ + 1) = 2; ⌊ d−2

⌈ k
J
⌉+1
⌋ − (⌈ k

J
⌉ − θ) = 1 − 1 = 0 non-overlapping

local groups with cardinality (⌈ k
J
⌉+ 1) = 3; (⌈ k

J
⌉+ 1− θ) = 2 overlapping local

groups with cardinality (⌈ k
J
⌉ + 1) = 3; and one overlapping local group which

has (⌈ k
J
⌉ + 1 − θ) = 2 VNs in common with (⌈ k

J
⌉ + 1 − θ) = 2 distinct local

groups. Note that each VN has locality of ⌊ k
J
⌋ = 2 or ⌈ k

J
⌉ = 3, and the average

locality is optimum by Theorem 4.1: 4×1+7×2
11

= r ≥ ⌈ k
J
⌉(1 − J⌈ k

J
⌉−k

n
) = 18

11
.

Also, observe that every J = 3 local CNs cover at least J + k = 7 VNs, thus,

by Corollary 4.1, the minimum distance of CrLRC2 is at least d = 6.

The Third Class of r-Optimal LRCs

The first two classes of LRCs presented in Sections 4.2.2 and 4.2.2 achieve

the bound in Theorem 4.1, which is not always achievable. In Theorem 4.2,

we establish another bound on r corresponding with practical cases—where the

code rate satisfies R > (1− 1√
n
)2—which is always achievable. Here, we present

a class of codes that achieve this bound.

Suppose the parameters n and k are such that R > (1 − 1√
n
)2. Then, the

third class of our proposed r-optimal LRCs (CrLRC3) achieving the bound in

Theorem 4.2 is constructed through the following steps (Fig. 4.7).
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Figure 4.7: Locality Tanner graph of CrLRC3 with J +1 local CNs. Global CNs
are not shown in this figure.

Step 1. Obtain θ ∈ [0, d− 2], denoted θ∗, that minimizes (4.8) in Theorem 4.2.

Step 2. Partition the set of n VNs Y = {y1, · · · , yn} into two subsets YA and

YB with cardinality n− θ∗ and θ∗, respectively.

Step 3. Partition n− θ∗ VNs associated with YA into J = n− k − d + 2 local

groups as follows: J − aθ∗ local groups with cardinality ⌊n−θ∗

J
⌋; and aθ∗ local

groups with cardinality ⌈n−θ∗

J
⌉, where aθ∗ = n− θ∗ + J − J

⌈
n−θ∗

J

⌉

. Therefore,

there are (J−aθ∗)⌊n−θ∗

J
⌋ VNs with locality

⌊
n−θ∗

J

⌋

−1 and aθ∗⌈n−θ∗

J
⌉ VNs with

locality
⌈
n−θ∗

J

⌉

− 1.

Step 4. If θ∗ 6= 0, construct (J + 1)-th local group with the following VNs: i)

⌊n−θ∗

J
⌋−d+2 VNs from each of local groups 1 to J−aθ∗ ; ii) ⌈n−θ∗

J
⌉−d+2 VNs

from each of local groups J − aθ∗ + 1 to J ; and iii) all the θ∗ VNs associated

with YB. Hence, locality of the last local group is

rJ+1 = (J − aθ∗)
(⌊n− θ∗

J

⌋

− d+ 2
)

+ aθ∗
(⌈n− θ∗

J

⌉

− d+ 2
)

+ θ∗ − 1.

By manipulation, we have

rJ+1 = n− J(d− 2)− 1. (4.12)
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Step 5. Observe that there are J + bθ∗ local CNs and n− k − (J + bθ∗) global

CNs, where bθ∗ = 0 if θ∗ = 0 and bθ∗ = 1 otherwise. Connect each of the

n− k − J − bθ∗ = d− 2− bθ∗ to all n VNs.

Remark 4.5. It can be verified that every J local CNs cover at least J + k

VNs, thus, by Corollary 4.1, the minimum distance of CrLRC3 is at least d.

Example 4.6. In this example, we construct an (n, k, d) = (8, 4, 4) LRC by

following the aforementioned steps. Here, J = n − k − d + 2 = 2 and θ

minimizing (4.8) is θ∗ = 2. All the eight VNs are partitioned into two sets

YA = {y1, · · · , y6} and YB = {y7, y8}. Since J | (n− θ∗), there are J = 2 local

groups with cardinality n−θ∗

J
= 3. Since θ∗ 6= 0, the third local group has to be

constructed by ⌈n−θ∗

J
⌉−d+2 = ⌈8−2

2
⌉−4+2 = 1 VN from each of the first two

local groups and θ∗ = 2 VNs associated with YB. Let us form the third local

group by VNs y3, y6, y7, and y8. There is n− k − J − bθ∗ = 8− 4− 2− 1 = 1

global check node which is connected to all 8 VNs. Fig. 4.2b depicts Tanner

graph associated with LRC of this example.

Proposition 4.1. CrLRC3 satisfies the bound on r in Theorem 4.2 with equality.

Proof. The first n − θ∗ VNs of the code are partitioned into (J − aθ∗)⌊n−θ∗

J
⌋

and aθ∗⌈n−θ∗

J
⌉ VNs with locality

⌊
n−θ∗

J

⌋

−1 and
⌈
n−θ∗

J

⌉

−1 , respectively. Also,

locality of the last θ∗ VNs is n− J(d− 2)− 1. Hence, for the average locality

of CrLRC3 , denoted rC3 , we have

nrC3 = (J − aθ∗)
⌊n− θ∗

J

⌋(⌊n− θ∗

J

⌋

− 1
)

+ aθ∗
⌈n− θ∗

J

⌉(⌈n− θ∗

J

⌉

− 1
)

+ θ∗(n− J(d− 2)− 1)

= (J − a∗θ)
⌊n− θ∗

J

⌋2

+ a∗θ

⌈n− θ∗

J

⌉2

−
(

aθ∗
⌈n− θ∗

J

⌉

+ (J − aθ∗)
⌊n− θ∗

J

⌋)

+ θ∗(n− J(d− 2)− 1).
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By manipulation, we have

aθ∗
⌈n− θ∗

J

⌉

+ (J − aθ∗)
⌊n− θ∗

J

⌋

= n− θ∗.

Thus,

nrC3 = (J − aθ∗)
⌊n− θ∗

J

⌋2

+ aθ∗
⌈n− θ∗

J

⌉2

+ θ∗(n− J(d− 2))− n, (4.13)

which is equivalent to the minimum of r in Theorem 4.2.

4.2.3 Improvement of the LRC Used in Facebook HDFS-

RAID

In this section, we show how our proposed approach can improve the locality of

the (n, k, d, r) = (16, 10, 5, 5) LRC used in Facebook HDFS-RAID [6], denoted

CF , without sacrificing its crucial parameters, namely the code rate (R) and

the code minimum distance (d). We show that by using our proposed LRC,

the average locality of CF is improved by 22.5%.

For CF , we have R = 0.625 > (1− 1√
n
)2 = 0.56. Hence, the code construction

described in Section 4.2.2 can be used. For an (n, k, d) = (16, 10, 5) LRC, it is

verified by Theorem 4.2 that r ≥ 3.875, which is obtained for θ = d − 2 = 3.

The Tanner graph of our proposed LRC, denoted C0, is presented in Fig 4.8.

By using the Tanner graph, the parity check matrix of C0, denoted H0, is

constructed. The non-zero elements of H0 ∈ F6×16
28 are numerically selected

from the finite field F28 formed by the primitive polynomial x8+x4+x3+x2+1

such that every d − 1 = 4 columns of H0 are linearly independent. Then,

by multiplying the inverse of a full-rank 6 × 6 sub-matrix of H0 from the

left by H0, the systematic form of H0 is obtained. By using the obtained

systematic form, the systematic form of the generator matrix of our proposed

(n, k, d, r) = (16, 10, 5, 3.875) LRC, denoted G0 ∈ F10×16
28 , can be explicitly
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Figure 4.8: Tanner graph of our proposed (n, k, d, r) = (16, 10, 5, 3.875) LRC
with four local CNs (gray squares) and two global CNs (white squares).

represented as follows.

GT
0 =















































1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 1 1 1 1 0 0 0

35 134 39 29 15 191 187 3 102 38

34 135 39 29 15 191 187 3 102 38

234 137 29 254 245 110 153 9 223 2

243 249 60 11 59 234 48 37 217 104

25 112 32 245 206 132 169 44 6 106















































,

where each element of G0, denoted gi,j for i ∈ [1, 16] and j ∈ [1, 10], is the
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decimal representation of a byte of the form [a7, · · · , a0] ∈ F1×8
2 , i.e. gi,j =

∑7
l=0 al2

l where al ∈ F2, l ∈ [0, 7]. For example, 35 ≡ [0, 0, 1, 0, 0, 0, 1, 1].

4.3 Conclusion

The average locality of locally repairable codes (LRCs) determines how much

bandwidth and how many I/O operations on average are required to recover a

failed data block. The focus of the literature has been mainly on the maximum

locality (simply called locality) which determines the maximum (as opposed to

average) bandwidth and I/O required for a data block recovery. In the first part

of this chapter, we used a novel approach to find the first general lower bound on

r of erasure codes with arbitrary parameters. We also presented the graphical

construction of r̄-optimal LRCs for a broad range of codes’ parameters offering

improvement on r over the existing LRCs. Designing fully-explicit r̄-optimal

LRCs can be done by selecting the non-zero elements of the parity check matrix

randomly from a sufficiently large finite field.
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Chapter 5

On the Average Information

Locality of Locally Repairable

Codes

In the previous chapter, we addressed the problem of average locality of all

symbols. In this chapter, we focus on the average locality of information sym-

bols of LRCs.

Data node failures may be temporal or permanent where 90% of failures

correspond to temporal cases. The work presented in this chapter is motivated

by the fact that in temporal unavailabilities there is no need for reconstructing

parity blocks, thus recovering information blocks is more frequently needed than

recovering parity blocks. Considering the significant amount of block recovery

performed daily in a DSS [6], even a small improvement of the average locality

of information blocks (r̄inf ) can result in significant savings.

In this chapter, we obtain an achievable lower bound on r̄inf of any (n, k, d)

LRC. We also design a class of LRCs that achieve the established bound.
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n-(J+k)=d-2  Variable Nodes

il

Figure 5.1: Locality Tanner graph of our proposed (n, k, d) r̄inf -optimal LRCs.
Global check nodes are not shown in this figure.

5.1 A Lower Bound on r̄inf

Theorem 5.1. For any (n, k, d) LRC, the average information locality (r̄inf)

is bounded as follows

r̄inf ≥ max{1,
⌈k

J

⌉(

2− ⌈k/J⌉ − 1

k/J

)

− 1},

where J = n− k − d+ 2.

Proof. Please see Appendix C.1.

Definition 5.1. (r̄inf -optimal LRCs). We call LRCs that achieve the bound

obtained in Theorem 5.1 r̄inf -optimal LRCs.

5.2 A Class of r̄inf-optimal LRCs

Here, we construct LRCs, denoted Cp, with the minimum r̄inf for any given

(n, k, d). We use locality Tanner graph in order to represent our proposed r̄inf -

optimal LRCs. Considering Fig. 5.1, Cp is constructed through the following

steps.

Step 1. We divide the k variable nodes into J sets whose sizes are as uniform

as possible. In order to do this, we divide the k variable nodes into J⌈ k
J
⌉−k and

k+ J − J⌈ k
J
⌉ sets with cardinality ⌊ k

J
⌋ and ⌈ k

J
⌉, respectively. Then, we form J

local groups by connecting all the information nodes of each set plus its parity
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node to a local check node. By doing this for all the J sets, k+J variable nodes

in the locality Tanner graph are linked to J local check nodes, where k and J

variable nodes correspond with the information and parity blocks, respectively.

Step 2. We divide the remaining n− (k+J) = d− 2 parity nodes into
⌊

d−2
⌈ k
J
⌉+1

⌋

sets (local groups) whose size is ⌈ k
J
⌉ + 1; plus one set, denoted R, whose size

is θ := |R| = d − 2 mod ⌈ k
J
⌉ + 1. Hence, the total number of local groups

associated with Cp, denoted mp, is

mp = J +

⌈

d− 2

⌈ k
J
⌉+ 1

⌉

. (5.1)

Step 3. If θ 6= 0, in order to satisfy the constraint on the minimum distance

mentioned in Remark 4.1, we have to connect li links from the i-th local group,

for i ∈ [1,mp−1] to the last local check node, where li ≥ 0. In order to minimize

the locality of the variable nodes of R, which is θ +
∑

i∈[1,mp−1] li, we solve the

following linear integer programming in order to obtain li for i ∈ [1,mp − 1].

minimize
li

∑

i∈[1,mp−1]

li

subject to

∑

i∈[1,mp−1]\A
li ≥ J + k − θ − (J − 1)

⌈k

J

⌉

− aA,

(5.2)

whereA ∈ comb([1,mp−1], J−1) with size
(
mp−1
J−1

)
and aA is the number of local

groups in set [1,mp − 1] \ A with cardinality ⌈ k
J
⌉+ 1. Therefore,

∑

i∈[1,mp−1] li

is minimized given the
(
mp−1
J−1

)
constraints shown in (5.2). This implies that the

locality of the last local group (θ +
∑

i∈[1,mp−1] li) is minimized for the given

construction.

Step 4. As the last step, connect all the n − k −mp global check nodes to all
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Figure 5.2: Locality Tanner graph of an rinf -optimal (n, k, d) = (12, 5, 6) LRC.
Variable nodes indexed by 1 to 5 represent the information blocks, and the rest
variable nodes represent the parity blocks.

the n variable nodes.

Remark 5.1. We note that by doing the first step, the minimum average lo-

cality of the information blocks is obtained and the bound in Theorem 5.1 is

achieved. One can connect all the remaining n − k − J = d − 2 parity nodes

to all the variable nodes in order to satisfy the constraint on d. However, in

our construction, we connect the remaining d− 2 check nodes to variable nodes

such that a small r̄ is attained.

Remark 5.2. Solving (5.2) is always feasible. One straightforward solution

for (5.2) is to connect the last local check node, which correspond with set R,
to all the variable nodes. By doing this, locality of the parity nodes in R would

be k which is the maximum possible locality for an (n, k, d) code.

Example 5.1. Fig. 5.2 represents an (n, k, d, J) = (12, 5, 6, 3) LRC con-

structed using the four steps described above. As the first step, we divide k = 5

information symbols {y1, · · · , y5} into J⌈ k
J
⌉ − k = 3⌈5

3
⌉ − 5 = 1 set {y1} with

cardinality ⌊ k
J
⌋ = ⌊5

3
⌋ = 1; and k + J − J⌈ k

J
⌉ = 5 + 3− 3⌈5

3
⌉ = 2 sets {y2, y3}

and {y4, y5} with cardinality ⌈ k
J
⌉ = ⌈5

3
⌉ = 2. Then, we form linear combi-

nations of each set. In the Tanner graph, it is equivalent to constructing the

first J local groups. As the second step, we divide the rest d − 2 = 4 par-

ity blocks into
⌊

4
⌈ 5
3
⌉+1

⌋

= 1 set with size ⌈5
3
⌉ + 1 = 3; plus one group with
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size θ = 4 mod 3 = 1. Therefore, the total number of local check nodes is

mp = J + ⌈ d−2
⌈k/J⌉+1

⌉ = 3 + ⌈ 6−2
⌈5/3⌉+1

⌉ = 5. As the third step, we solve the

following optimization problem in order to obtain li for i ∈ [1, 4]

minimize
li

∑

i∈[1,4]
li

subject to
∑

i∈[1,4]\A
li ≥ 7− 2

⌈5

3

⌉

− aA = 3− aA,
(5.3)

where A ∈ comb([1, 4], 2) and aA is the number of local groups in set [1, 4] \ A
with cardinality 3. By using PuLP, a linear programming modeler written in

Python, we solve (5.3) which results in l1 = l2 = l3 = l4 = 1. This implies that

each of the local groups one to four have one variable node linked to local check

node five. As the last step, we connect the two global check nodes six and seven

to all 12 variable nodes. Fig. 5.2 shows the Tanner graph representation of our

proposed (n, k, d, r̄inf ) = (12, 5, 6, 1.8) r̄inf -optimal LRC.

Proposition 5.1. The minimum distance of the (n, k) LRC constructed in

Section 5.2 is d.

Proof. Please see Appendix C.2.

5.3 Conclusion

The average locality of the information blocks (r̄inf ) in the distributed storage

systems (DSSs) is translated to the average data required to reconstruct an

unavailable information block. The importance of the reconstruction cost as

well as the frequent unavailability of information blocks in the real-world DSSs

make designing codes with the minimum r̄inf of interest. In this chapter, we

obtained an achievable lower bound on r̄inf and designed a class of locally

repairable block codes which always achieves the obtained bound.

75



Chapter 6

Conclusion and Future Work

In this chapter, first the contributions of this dissertation is summarized. Then,

new problems are described for future research directions.

6.1 Summary of the Contributions

LRCs decrease the required reconstruction bandwidth, disk I/O, and the num-

ber of active nodes that needs to be connected during the reconstruction of a

missing block. The main focus of this dissertation was on LRCs which have

been recently proposed and used in cloud storage systems. Motivated by the

following two points about LRCs: i) binary LRCs are desirable in practice, as

they eliminate the need for costly multiplication in operations such as encod-

ing, decoding, and repair in the immense-size DSSs; and ii) the average locality

of locally repairable codes is an important parameter that directly affects the

amount of data required to be communicated between nodes in the case of

reconstruction a failed data node, we considered the following two problems in

this dissertation: i) designing binary locally repairable codes; and ii) obtaining

lower bounds on the average locality of all blocks and that of the information

blocks of LRCs and designing codes that achieve the obtained bounds. By

using a novel approach to LRC design based on Tanner graphs, we solved these
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problems and produced several design-oriented theorems for LRCs. Following

is the summary of our results.

6.1.1 Binary LRCs

In Chapter 3, we proposed binary LRCs with minimum distance of four, which

provide sufficient reliability for a wide range of practical code and system pa-

rameters. We verified that for practical values of code locality, our proposed

binary LRCs have either identical or slightly lower code rate compared to that

of non-binary LRCs. Next, using the idea behind our design, we proposed op-

timal LRCs over small finite fields. Comparing with the most recent proposed

LRCs, we decreased the required field size from n (code length) to r (code

locality). Then, by using the construction of spanning BLRC with minimum

distance four as a backbone, we designed LRCs with minimum distance six.

We did this by adding only one non-binary parity block to our proposed bi-

nary LRCs. Finally, we obtained a closed-form equation for MTTDL—which is

used to evaluate the code reliability—in terms of parameters of DSS and erasure

code. The closed-form equation of MTTDL shows how the system and code

parameters affect MTTDL. Hence, by adjusting the code/DSS parameters, it

is possible to simply track the value of MTTDL.

6.1.2 Average Locality of LRCs

In Chapters 4 and 5, rather than the maximum locality of the locally repairable

codes considered in the literature, we focused on studying the average locality

of locally repairable codes. First, in Chapter 4, we derived bounds for the

average locality of all blocks in terms of codes parameters. We also designed

three classes of codes that achieve the obtained bounds. Next, in Chapter 5, we

focused on the average locality of information blocks which is crucial because in

temporal unavailabilities, there is no need for reconstructing parity blocks but
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information blocks must be reconstructed. We obtained an achievable lower

bound on the average locality of information blocks. We also designed a class

of LRCs that achieve the established bound. The designed LRCs in Chapters 4

and 5, which have the minimum average (information) locality, do not sacrifice

two crucial parameters of the code namely the minimum distance and rate.

6.2 Future Research Directions

6.2.1 Binary LRCs with Arbitrary Minimum Distance

Although in some distributed storage systems such as HDFS, codes with a

minimum distance four provide desirable reliability, in some other types such

as peer-to-peer storage systems, codes with larger minimum distance are of

interest. In Chapter 3, we proposed binary LRCs with minimum distance four.

Then, in order to increase minimum distance of the code, we added one non-

binary parity block to the existing parity blocks. One research direction can

be on generalization of binary LRCs with arbitrary minimum distance.

6.2.2 Average Locality for Erasure Codes with Multiple

Repair Groups

In our average locality analysis presented in Chapter 4, we focused on an im-

portant class of LRCs that can handle any single failures with a small number

of other blocks. In some other types of LRCs, in order to improve the avail-

ability of data blocks, a missing block can be reconstructed by accessing any

group out of more than one disjoint groups of active nodes. Generalizing our

proposed lower bound on r and rinf for LRCs with multiple groups of locality

as well as constructing LRCs that achieve the obtained bounds remain open

problems.
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6.2.3 Explicit construction of r-optimal and rinf-optimal

LRCs

In Chapter 4, we presented the graphical construction of r̄-optimal and r̄inf -

optimal LRCs. Our graphical construction determines the zero elements of

the parity-check matrix of the code. The non-zero elements can be randomly

selected from a sufficiently large finite field. Another research direction can

be constructing r̄-optimal and r̄inf -optimal LRCs by determining all non-zero

coefficients of the parity-check matrix fully explicitly from small finite fields.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Proposition 3.1

We use the concept of epoch, described in [52], to prove Proposition 3.1. Start-

ing in state l, let us define Ql as the probability that the system reaches the

absorbing state On−d before it reaches state n. Similarly, starting in state l, let

us define Tl as the elapsed time before the system reaches either the absorbing

state On−d or state n. Then, MTTDL can be obtained as [52]

MTTDL =
te
Q∗ , (A.1)

where te = 1
nλ

+ T ∗ with Q∗ := Qn−1 and T ∗ := Tn−1. Hence, in order to

calculate MTTDL, we first determine Q∗ and T ∗ in terms of other parameters

of the system as follows.

We have

Ql =







1, l = n− d

plQl−1 + qlQl+1, l ∈ [n− d+ 1, n− 1]

0, l = n

(A.2)
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In (A.2),

pl =
lλ

lλ+ ρl
=

l

l + ρl
λ

=
l

l + γl
, and ql =

ρl
ρl + lλ

=
γl

l + γl
,

where γl :=
ρl
λ
and

ρl =







ρ, l ∈ [n− d+ 1, n− 2]

ρ1, l = n− 1

Noting that pl + ql = 1, from (A.2), we have

Ql−1 −Ql =
ql
pl
(Ql −Ql+1) =

γl
l
(Ql −Ql+1), l ∈ [n− d+ 1, n− 1]. (A.3)

By using the definition Q∗ := Qn−1, we have

Qn−2 −Qn−1 =
γn−1

n−1
(Qn−1 −Qn) =

γn−1

n−1
Q∗

Qn−3 −Qn−2 =
γn−2

n−2
(Qn−2 −Qn−1) =

n−1∏

j=n−2

γj
j
Q∗

...

Qn−d −Qn−d+1 =
γn−d+1

n−d+1
(Qn−d+1 −Qn−d+2) =

n−1∏

j=n−d+1

γj
j
Q∗

(A.4)

Equivalently,

Ql−1 −Ql =
n−1∏

j=l

γj
j
Q∗, l ∈ [n− d+ 1, n− 1]. (A.5)

Let us define, γl := γ = ρ1
λ
for l ∈ [n− d+ 1, n− 2]. Then,

Ql−1 −Ql =
γn−1γ

n−1−l

n−1∏

j=l

j

Q∗, l ∈ [n− d+ 1, n− 1]. (A.6)
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Hence, we have the following chain of equalities.

Qn−d −Qn = 1− 0 =
n∑

l=n−d+1

(Ql−1 −Ql) =

Qn−1 −Qn +
n−1∑

l=n−d+1

(Ql−1 −Ql) =

(

1 +
n−1∑

l=n−d+1

γn−1γ
n−1−l

n−1∏

j=l

j

)

Q∗.

Hence,

Q∗ =
(

1 +
n−1∑

l=n−d+1

γn−1γ
n−1−l

n−1∏

j=l

j

)−1

. (A.7)

Similarly, for Tl, we have:

Tl =







0, l ∈ {n− d, n}
plTl−1 + qlTl+1 + tl, l ∈ [n− d+ 1, n− 1]

(A.8)

where

tl =
1

lλ+ ρl
.

Noting that pl + ql = 1, from (A.8), we have

Tl−1 − Tl =
ql
pl
(Tl − Tl+1)−

tl
pl

=
γl
l
(Tl − Tl+1)−

1

lλ
(A.9)
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for l ∈ [n− d+ 1, n− 1]. By using the definition T ∗ := Tn−1, we have

Tn−2 − Tn−1 =
γn−1

n−1
(Tn−1 − Tn)− 1

(n−1)λ
=

γn−1

n−1
T ∗ − 1

(n−1)λ

Tn−3 − Tn−2 =
γn−2

n−2
(Tn−2 − Tn−1)− 1

(n−2)λ
=

n−1∏

j=n−2

γj
j
T ∗ − γn−2

(n−1)(n−2)λ
− 1

(n−2)λ

...

Tn−d − Tn−d+1 =
n−1∏

j=n−d+1

γj
j
T ∗ − 1

λ

d−1∑

m=1

∏

p∈[m+1,d−1]

γn−p

∏

q∈[m,d−1]

(n−q)

(A.10)

Equivalently,

Tl−1 − Tl =
n−1∏

j=l

γj
j
T ∗ − 1

λ

n−l∑

m=1

∏

p∈[m+1,n−l]

γn−p

∏

q∈[m,n−l]

(n− q)
, l ∈ [n− d+ 1, n− 1].

By using the definition γl := γ = ρ1
λ
for l ∈ [n− d+ 1, n− 2], we have

Tl−1 − Tl =
γn−1γ

n−1−l

n−1∏

j=l

j

T ∗ − 1

λ

n−l∑

m=1

γn−l−m

∏

q∈[m,n−l]

(n− q)

for l ∈ [n− d+ 1, n− 1]. Thus,

Tn−d − Tn = 0− 0 =
n∑

l=n−d+1

(Tl−1 − Tl) =

Tn−1 − Tn +
n−1∑

l=n−d+1

(Tl−1 − Tl) =

T ∗ +
n−1∑

l=n−d+1

(
γn−1γ

n−1−l

n−1∏

j=l

j

T ∗ − 1

λ

n−l∑

m=1

γn−l−m

∏

q∈[m,n−l]

(n− q)
).
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Hence,

T ∗(1 +
n−1∑

l=n−d+1

γn−1γ
n−1−l

n−1∏

j=l

j

) =
T ∗

Q∗

=
1

λ

n−1∑

l=n−d+1

n−l∑

m=1

γn−l−m

∏

q∈[m,n−l]

(n− q)
(A.11)

From (A.1),

MTTDL =
te
Q∗ =

1

nλQ∗ +
T ∗

Q∗ . (A.12)

By substituting (A.7) and (A.11) in (A.12), MTTDL is calculated as

1

nλ

(

1 +
n−1∑

l=n−d+1

γn−1γ
n−1−l

n−1∏

j=l

j

)

+
1

λ

n−1∑

l=n−d+1

n−l∑

m=1

γn−l−m

∏

q∈[m,n−l]

(n− q)
=

1

nλ

(

1 +
n−1∑

l=n−d+1

γn−1γ
n−1−l

n−1∏

j=l

j

+ n

n−1∑

l=n−d+1

n−l∑

m=1

γn−l−m

∏

q∈[m,n−l]

(n− q)

)

=

1

nλ

(

1 +
n−1∑

l=n−d+1

(γn−1γ
n−1−l

n−1∏

j=l

j

+ n
n−l∑

m=1

γn−l−m

∏

q∈[m,n−l]

(n− q)

)
)

=

γd−2

nλ

( γn−1

n−1∏

j=n−d+1

j

+
n

∏

q∈[m,n−l]

(n− q)

)

+ f(γ),

where f(γ) is a polynomial of degree γ(d−3) with positive values. Typically,

γ >> 1 and γn−1 >> 1 [7, 6]. Therefore, MTTDL can be estimated as follows.

MTTDL ≈ γn−1γ
d−2

nλ
n−1∏

j=n−d+1

j

=
γn−1γ

d−2

n(n− 1)...(n− d+ 1)λ
. (A.13)
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A.2 Proof of Proposition 3.5

Lemma A.1. Let V be a (0− 1)-matrix. Assume V is full column rank over

F2. Then, for every integer m > 1, V is full column rank over F2m.

Proof. Let us represent V as (v1, · · · ,vb) ∈ Fa×b
2 with columns vi for i ∈ [b].

By contradiction, assume that one column of V, say v1, is a linear combination

of other columns of V, that is v =
b∑

j=2

αjvj. Each αj can be considered as a

vector of length m over F2, i.e. αj = (α
(m)
j , · · · , α(2)

j , α
(1)
j ) ∈ F1×m

2 , with the

identity element being (0, · · · , 0, 1). By this view and using v =
b∑

j=2

αjvj, we

get v1 =
b∑

j=2

α
(1)
j vj, which contradicts the assumption that V is full column

rank over F2.

Lower Bound on d: In the following, we show that any sub-matrix HL

constructed from arbitrary five columns hL1 , hL2 , hL3 , hL4 , and hL5 of HLRC

in (3.21) is full-rank. Consider HL as follows.

HL = (hL1 hL2 hL3 hL4 hL5) =

(

hB1 hB2 hB3 hB4 hB5

h3
B1

h3
B2

h3
B3

h3
B4

h3
B5

)

∈ F
(1+Γr,n)×5

2Γr,n
,

(A.14)

where hB1 ,hB2 ,hB3 ,hB4 , and hB5 are the corresponding binary columns from

HBLRC in (3.20). As shown in the proof of proposition 3.2, XOR of up to

three columns of HBLRC always yields a non-zero vector. Also, considering

the construction of HBLRC , it is not difficult to verify that XORing any five

columns ofHBLRC results in a vector with at least one non-zero element. Hence,

according to Lemma A.1, linear combination of any two, three, and five columns

of HL is a non-zero vector over F2Γr,n .

In the following, we show that no four columns of HL are linearly dependent

which concludes the proof. Without loss of generality, assume that four columns
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hL1 ,hL2 ,hL3 , and hL4 are linearly dependent. Hence,

hL4 =
3∑

i=1

λihLi
, for some non-zero λi ∈ F2Γr,n . (A.15)

Now, we show that (A.15) is true only if λi = 1 ∀i. Equation (A.15) implies

that

hB4 =
3∑

i=1

λihBi
. (A.16)

Therefore, we must have

hB4 =
3∑

i=1

hBi
(A.17)

as otherwise hB1 to hB4 will be independent over F2 which by Lemma A.1

implies hB1 to hB4 are independent over F2Γr,n . By adding (A.16) and (A.17),

we have hB4 +hB4 = 0 =
∑3

i=1(λi +1)hBi
. This can only happen when λi = 1

for i ∈ [3]. Hence, from (A.15), we have hL4 =
∑3

i=1 hLi
. This results in







hB1 + hB2 = hB3 + hB4

h3
B1

+ h3
B2

= h3
B3

+ h3
B4

(A.18)

Note that the set of equations x1 + x2 = A and x3
1 + x3

2 = B has a unique set

of solutions over F2Γr,n . Hence, (A.18) is true only if hB1 = hB3 or hB1 = hB4

which contradicts the fact that hBi
are distinct for i ∈ [4].

Upper Bound on d: From (3.21), observe that for our proposed LRC over

F2Γn,r , we have

n− k = Γr,n + 1 =
n

r + 1
+
⌈

log2(r + 1)
⌉

+ 1. (A.19)

Hence,
⌈k

r

⌉

=
n

r + 1
−
⌊

1

r

(⌈

log2(r + 1)
⌉

+ 1
)
⌋

. (A.20)
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By replacing (A.19) and (A.20) in (2.2), we have

d ≤
⌈

log2(r + 1)
⌉

+
⌊1

r

(⌈

log2(r + 1)
⌉

+ 1
)⌋

+ 3.
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Appendix B

Proofs for Chapter 4

B.1 Proof of Theorem 4.1

Lemma B.1. Consider function f(z1, · · · , zm,m) =
∑m

i=1 zi
2, where zi’s are

positive non-zero integers for i ∈ [1,m], which satisfy
∑m

i=1 zi = A, and A is a

constant integer. Assume that minimum of f(z1, · · · , zm,m) is attained when

zi = z∗i ∀i, i.e.

fmin(m) := f(z∗1 , · · · , z∗m,m) = min
zi

f(z1, · · · , zm,m).

Then, fmin(m) is a non-increasing function.

Proof. We need to show that fmin(m) ≥ fmin(m + 1). Assume that fmin(m) =

f(w1, · · · , wm,m) and fmin(m + 1) = f(v1, · · · , vm+1,m + 1) with
∑m

i=1 wi =
∑m+1

i=1 vi = A. We have,

fmin(m) =
m∑

i=1

w2
i =

m−1∑

i=1

w2
i + (

wm

2
+

wm

2
)2

≥
m−1∑

i=1

w2
i + (

wm

2
)2 + (

wm

2
)2

≥
m+1∑

i=1

v2i = fmin(m+ 1),
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where the first inequality is by (a+ b)2 ≥ a2 + b2.

Proof of Theorem 4.1: First, by using Algorithm 1, the set of n VNs

{y1, · · · , yn} of C is partitioned into m local groups Y1 to Ym, where m ∈
{1, · · · , J, J + 1, · · · , n − k}. Now, we consider the following two cases: (a)

m ∈ [1, J ], and (b) m ∈ [J, n− k].

Case (a) m ∈ [1, J ]: In this case,

nr =
m∑

i=1

|Yi|ri ≥
m∑

i=1

|Yi|(|Yi| − 1) =
m∑

i=1

|Yi|2 −
m∑

i=1

|Yi| (B.1)

Observe that
∑m

i=1 |Yi| = n, ∀m ∈ [1, J ] because all the m local groups have

to cover all n VNs. By Lemma B.1,
∑m

i=1 |Yi|2 is a non-increasing function;

hence, (B.1) takes its minimum at m = J .

Case (b) m ∈ [J, n−k]: In this case, for the code to have the minimum distance

of d, by Lemma 4.2, the first J local groups must cover n − θ VNs for some

integer θ ∈ [0, d− 2].

n−θ∑

i=1

Loc(yi) =
J∑

j=1

|Yj|rj ≥
J∑

j=1

|Yj|(|Yj| − 1),

where
∑J

j=1 |Yj| = n− θ. Observe that the minimum of
∑J

j=1 |Yj|(|Yj| − 1) is

obtained when
∑J

j=1 |Yj| is minimized, i.e., when
∑J

j=1 |Yj| = n − (d − 2) =

J + k. In this case, by Lemma 4.3, there are (J − ad−2) local groups with

cardinality (⌊ k
J
⌋ + 1) and locality ⌊ k

J
⌋; and ad−2 local groups with cardinality

(⌈ k
J
⌉+ 1) and locality ⌈ k

J
⌉, where ad−2 = k + J − J⌈ k

J
⌉.

Note that according to Algorithm 1, all VNs not in the first J local groups

have locality greater than or equal to the maximum locality of the first J local

groups. In order to obtain a lower bound on r, we assume that all the remaining

d − 2 VNs not in the first J local groups have locality equal to ⌈ k
J
⌉, because

for any θ, we havemax
j∈[1,J ]

rj ≥ ⌈ kJ ⌉. Hence, the minimum of r is achieved if there

are m1 := (J − ad−2)(⌊ kJ ⌋ + 1) VNs with locality ⌊ k
J
⌋ and n − m1 VNs with
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1 m
Em

yf

Im

J+1 m-1
Em-1

Im-1

ye

(a) Before the reformat process.

1 J+1 m
Em+1

yf

Im-1

m-1
Em-1-1

Im-1+1

ye

(b) After the reformat process.

Figure B.1: Locality Tanner graph of an (n, k, d) erasure code with m local
CNs before and after the reformat process. Ei and Ii determine the number of
external and internal edges of i-th local CN, respectively, where i ∈ [m− 1,m].
Global CNs are not shown in this figure.

locality ⌈ k
J
⌉. In other words,

nr ≥ m1

⌊k

J

⌋

+ (n−m1)
⌈k

J

⌉

. (B.2)

If J | k, then by replacing a = J and m1 = 0 in (B.2), we have r ≥ k
J
. If J ∤ k,

then by replacing ⌊ k
J
⌋ = ⌈ k

J
⌉ − 1 in (B.2), we have nr̄ ≥ n⌈ k

J
⌉ − m1. Also,

recall that m1 = (J − ad−2)(⌊ kJ ⌋+1) = (J⌈ k
J
⌉− k)⌈ k

J
⌉. Hence, r̄ ≥ ⌈ k

J
⌉− m1

n
=

⌈ k
J
⌉(1− ⌈ k

J
⌉−k

n
).

B.2 Proof of Theorem 4.2

Definition B.1. (External/internal edge). Considering Algorithm 1, the i-th

local CN for i ∈ [2,m], may have some edges linked to VNs of some other local

groups Yj for j ∈ [1, i − 1]. We call the edges of a local CN linked to its own
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local group and other local groups internal and external links, respectively.

We represent the cardinality of the internal and external links of the i local

CN by Ii and Ei, respectively. Note that the total number of the edges linked to

a local CN determines the locality of the local groups corresponding with that

CN. Also, the number of internal edges of the k-th local CN for k ∈ [1,m] is

|Yk|. Therefore,
rk + 1 = Ik + Ek = |Yk|+ Ek. (B.3)

Definition B.2. (Joint/disjoint VNs). We call a VN of a local group adjacent

to more than one local CN a joint VN. If a VN is adjacent to only one local

CN, we call it a disjoint VN.

Lemma B.2. For an (n, k, d) code with R > (1 − 1√
n
)2, we have d − 3 <

⌈
k

n−k−d+2

⌉

=
⌈
k
J

⌉

.

Proof. We have

d− 3 <
⌈ k

n− k − d+ 2

⌉

⇔ (n− k − d+ 2)(d− 3) < k

⇔ (d− 2)2 − (n− k + 1)(d− 2) + n > 0

⇔ (
n− k + 1

2
)2 − (n− k + 1)(

n− k + 1

2
) + n > 0

⇔ 4n− (n− k + 1)2 > 0

⇔ k

n
> (1− 1√

n
)2,

where the forth inequality is true because the second degree equation x2− (n−
k + 1)x+ n takes its minimum at x = n−k+1

2
.

Lemma B.3. For any (n, k, d) locally repairable code C with R > (1− 1√
n
)2 and

locality Tanner graph Tl, let local groups Y1 to Ym of Tl be formed by Algorithm

1. Also, let the total number of local CNs be at least J + 2 (i.e., m ≥ J + 2).

Then, the total number of external edges of (m− 1)-th local CN is greater than

cardinality of the last local group, i.e., Em−1 > |Ym|.
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Proof. First, we show that |Ym−1|+ |Ym| ≤ ⌈ kJ ⌉. Observe that the first J local

CNs cover at least J + k = n − (d − 2) VNs by Lemma 4.2. Hence, local

groups YJ+1 to Ym cover at most d − 2 VNs. According to the assumption

R > (1− 1√
n
)2. Hence, by Lemma B.2, d− 2 ≤ ⌈ k

J
⌉. Therefore,

|Ym−1|+ |Ym| ≤
m∑

i=J+1

|Yi| ≤ d− 2 ≤
⌈k

J

⌉

(B.4)

Next, we show that the number of external edges of the (m − 1)-th local

CN (Em−1) is at least ⌈ kJ ⌉+ 1− |Ym−1|. From (B.3),

rm−1 + 1 = Em−1 + |Ym−1| ⇒ Em−1 ≥ rm−1 + 1− |Ym−1|. (B.5)

Also by Algorithm 1, locality of the local group Ym−1 is at least equal to the

maximum locality of local groups one to J , i.e., rm−1 ≥ max
j∈[1,J ]

rj. The maximum

locality of the first J local groups is at least ⌈J+k
J
⌉ = ⌈ k

J
⌉+ 1 because the first

J local CNs cover at least J + k = n − (d − 2) VNs by Lemma 4.2, i.e.,

max
j∈[1,J ]

rj ≥ ⌈ kJ ⌉+ 1. Therefore, considering (C.2) and (B.5),

Em−1 ≥ rm−1 + 1− |Ym−1| ≥ max
j∈[1,J ]

rj + 1− |Ym−1|

≥
⌈k

J

⌉

+ 1− |Ym−1| ≥
⌈k

J

⌉

+ 1− (
⌈k

J

⌉

− |Ym|)

= |Ym|+ 1.

(B.6)

Lemma B.4. The minimum average locality (r) of an (n, k, d) code C with

R > (1 − 1√
n
)2 is achieved if the number of local CNs corresponding with the

locality Tanner graph of C is either J or J + 1.

Proof. First, by using Algorithm 1, the set of n VNs {y1, · · · , yn} of C is parti-

tioned into m local groups Y1 to Ym, where m ∈ {1, · · · , J, J + 1, · · · , n− k}.
Now, we consider the following two cases: (a) m ∈ [1, J ], and (b) m ∈
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[J + 1, n− k]. In the following, we show that the minimum of r is achieved for

m = J and m = J + 1 for the first case and the second case, respectively.

Case (a) m ∈ [1, J ]: In this case,

nr =
m∑

i=1

|Yi|ri ≥
m∑

i=1

|Yi|(|Yi| − 1) =
m∑

i=1

|Yi|2 −
m∑

i=1

|Yi| (B.7)

Observe that
∑m

i=1 |Yi| = n, ∀m ∈ [1, J ] because all the m local groups have

to cover all n VNs. By Lemma B.1,
∑m

i=1 |Yi|2 is a non-increasing function;

hence, (B.7) takes its minimum at m = J .

Case (b) m ∈ [J + 1, n− k]: In this case, we show that combining local groups

J + 1 to m (i.e., Yi for i ∈ [J + 1,m]) and making them into a single local

group (YJ+1) does not increase the average locality of the code. In order to

show this, we first define a “reformat” process as follows.

Assume that m ≥ J+2, |Ym| ≥ 1, and a variable node ye ∈ Y1

⋃
· · ·
⋃
Ym−2

is linked to m-th local CN via edge le (Fig. B.1a)
1. Then, considering Fig. B.1,

we define the following two-phase procedure the “reformat” process.

Phase 1: remove one VN of the last local group, say yf , and add it to (m−1)-th
local group.

Phase 2: connect variable node ye to (m − 1)-th local check node and remove

edge le.

In the following, we show that the reformat process (i) satisfies the VNs

coverage presented in Lemma 4.2; (ii) does not increase the average locality;

and (iii) can be done until all the VNs of the local groups J +1 to m are made

into a whole (YJ+1).

Firstly, we show that after performing the reformat process, the VNs cov-

erage presented in Lemma 4.2 is still satisfied. Note that the coverage of local

CNs 1 and m − 2 remains intact during the reformat process. Now, we show

1Note that there is always such a link because otherwise, rm < rJ . To see this, note that
∑m

i=J+1
|Yi| ≤ d − 2 ≤ ⌈ k

J
⌉. This implies that if m-th local check node is linked only to all

variables of YJ+1 to Ym−1, then, rm is at most ⌈ k
J
⌉ − 1, which is less than rJ = ⌈ k

J
⌉.
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that the coverage of local CNs m−1 and m does not change after the reformat

process. The coverages of local CNs m − 1 and m are rm−1 + 1 and rm + 1,

respectively, where ri is the locality of the i-th local group for i ∈ {m− 1,m}.
From (B.3), rm−1+1 = Em−1+ |Ym−1| and rm+1 = Em+ |Ym|. After perform-

ing the reformat process, |Ym−1| and Em increase by one; and |Ym| and Em−1

decrease by one. Therefore, the coverages of local CNs m − 1 and m—which

are rm−1 + 1 and rm + 1, respectively—are preserved. This implies that the

coverage conditions presented in Lemma 4.2 are satisfied.

Secondly, we show that performing the reformat process does not increase

the average locality. As mentioned, the localities of the local groups m− 1 and

m, which are rm−1 and rm, respectively, do not change after the format process.

By adding a VN from Ym to Ym−1, we have

|Ym−1|rm−1 + |Ym|rm ≥ (|Ym−1|+ 1)rm−1 + (|Ym| − 1)rm,

which is true because rm−1 ≤ rm according to Algorithm 1. Therefore, the

reformat process does not increase the sum locality of the VNs in local groups

Ym−1 and Ym. Also, note that the reformat process does not affect locality of

all the local groups one to m− 2. Hence, the average locality of the code does

not increase after performing the reformat process.

Finally, we show that the reformat process can be done until all the VNs of

the local groups J +1 to m are made into a whole (YJ+1), which concludes the

proof. By Lemma (B.3), Em−1 ≥ |Ym|, which means that for every VN removed

from Ym, there exists an external edge corresponding with the (m− 1)-th local

CN to be added to the m-th local CN.

Lemma B.5. Assume that the total number of local CNs of the locality Tanner

graph of an (n, k) LRC with the minimum distance d is strictly greater than J

(i.e., m > J). Then, each local group Yi has at least |Yi| − (d − 2) joint VNs

if |Yi| > d− 2 for i ∈ [1,m].
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Proof. By contradiction, assume that the i-th local CN with |Yi| > d − 2 has

less than |Yi| − (d− 2) joint VNs. Then, the local group Yi has at least d− 1

disjoint VNs. Hence, by removing i-th local CN, the rest m− 1 ≥ J local CNs

cover at most n− (d− 1) VNs. This contradicts Lemma 4.2 which states that

in the Tanner graph of a code with the minimum distance d, every J local CNs

must cover at least J + k = n− (d− 2) VNs.

Proof of Theorem 4.2: By using Algorithm 1, first, the set of n VNs

{y1, · · · , yn} is partitioned into m local groups Y1 to Ym. By Lemma B.4,

the minimum average locality (r) is achieved if m is either J or J + 1.

By Lemma 4.2, the first J local CNs must cover at least J + k VNs, i.e.,
∑J

i=1 |Yi| ∈ [J + k, n]. Observe that
∑J

i=1 |Yi| = n is equivalent to m = J . For

the sake of notational simplicity, let us define θ := |YJ+1| ∈ [0, d− 2] which is

the number of VNs covered by (J + 1)-th local CN. We have

nr =
J+1∑

i=1

|Yi|ri =
J∑

i=1

|Yi|ri + θrJ+1

≥
J∑

i=1

|Yi|(|Yi| − 1) + θrJ+1

≥
J∑

i=1

|Yi|2 −
J∑

i=1

|Yi|+ θrJ+1,

(B.8)

where
∑J

i=1 |Yi| = n− θ and θ ∈ [0, d− 2].

By Lemma B.5, the i-th local group with |Yi| > d−2 has at least |Yi|−(d−2)
joint VNs. Assume that among the first J local groups, there are a ∈ [1, J ]

local groups, indexed by A ⊆ [1, J ], with |Yi| > d− 2, and J − a local groups
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with |Yi| ≤ d− 2. Then, the total number of joint VNs, say Q, is at least

Q =
∑

i∈A
|Yi| − a(d− 2)

= n− θ −
∑

i∈[1,J ]\A
|Yi| − a(d− 2)

≥ n− θ − (J − a)(d− 2)− a(d− 2)

= n− θ − J(d− 2).

(B.9)

In order to minimize the average locality, observe that all the joint VNs of

the locality Tanner graph have to be connected to the local CN corresponding

with the local group with the smallest cardinality. For now, let us assume that

(J+1)-th local group with cardinality θ = |YJ+1| has the minimum cardinality

among all the local groups one to J + 1, where θ ∈ [0, ⌈ k
J
⌉]. By linking all the

joint VNs obtained in (B.9) to local group J + 1, we have

rJ+1 ≥ n− θ − J(d− 2) + θ − 1 = n− J(d− 2)− 1. (B.10)

By replacing (B.10) in (B.8), we have:

n r ≥
J∑

i=1

|Yi|2 −
J∑

i=1

|Yi|+ θ(n− J(d− 2)− 1), θ ∈ [0, J ] (B.11)

where
∑J

i=1 |Yi| = n− θ. Hence, for θ ∈ [0, d− 2]

nr ≥
J∑

i=1

|Yi|2 − (n− θ) + θ(n− J(d− 2)− 1)

=
J∑

i=1

|Yi|2 − Jθ(d− 2) + nθ − n.

(B.12)
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By Lemma 4.3, we have

r ≥
min

θ∈[1,d−2]

{

(J − aθ)
⌊
n−θ
J

⌋2

+ aθ

⌈
n−θ
J

⌉2

+ (n− dJ + 2J)θ

}

n
− 1. (B.13)

Now, we verify the following two points in order to conclude the proof.

Firstly, we show that by connecting all the joint VNs to (J + 1)-th local

CN, every J local CNs cover at least k + J VNs. Note that the first J local

CNs cover at least J + k VNs. Also, each of the local CNs one to J has at

least |Yi| − (d− 2) VNs connected to the (J +1)-th local CN. Therefore, every

J − 1 local CNs picked from the first J local CNs plus the last local CN cover

at least (n− θ)− |Yi|+ (|Yi| − (d− 2) + θ) = n− (d− 2) = k+ J VNs. Hence,

Lemma 4.2 is satisfied.

Secondly, we show that if a local group other than YJ+1 has the minimum

cardinality, then the average locality of the code does not decrease. Assume

that local group Ys has the minimum cardinality, where s ∈ [1, J ]. Therefore,

|Ys| < θ. In this case, we have the following set of local groups: {Yi | i ∈
[1, J ] \ {s}}, Ys, and YJ+1, where |Ys| ≤ θ and |YJ+1| = θ. Recall that the

minimum average locality corresponding with this scenario has been already

obtained because in (B.13), we have assumed that θ ∈ [0, d− 2].
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Appendix C

Proofs for Chapter 5

C.1 Proof of Theorem 5.1

Definition C.1. (Independent check nodes). A set of check nodes are called

independent if their corresponding rows in the parity check matrix are indepen-

dent.

Lemma C.1. Let Ye be a set of variable nodes. Then, check nodes in Φ(Ye)

are independent.

Proof. Suppose ξ is a check node that has the maximum degree among all the

check nodes in Φ(Ye). There must be a variable node adjacent to ξ which is

not adjacent to any other check nodes in Φ(Ye), as otherwise Φ(Ye)\{ξ} will

also be a locality-defining set of Ye which contradicts the minimality of Φ(Ye).

Consequently, the row of parity check matrix corresponding to the check node

ξ cannot be a linear combination of rows corresponding to check nodes in

Φ(Ye)\{ξ}.

Let C be any (n, k, d) LRC code. Consider a locality Tanner graph of C, and
let Yinf denote the set of information nodes. Let Yi, i ∈ [1, s] denote the local

groups corresponding to the check nodes in Φ(Yinf ), where s = |Φ(Yinf )|. Note
that for every set of variable nodes Ye, we have |Φ(Ye)| ≤ |Ye|. Therefore,
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s ≤ k. Furthermore, the check nodes in Φ(Yinf ) must cover at least s + k

variable nodes. It is because, by Lemma C.1, the set of check nodes in Φ(Yinf )

are independent. Therefore, if the check nodes in Φ(Yinf ) cover less than s+ k

variable nodes, then the dimension of the code C restricted to the coverage of

Φ(Yinf ) will be strictly less than k, which is a contradiction.

We continue the proof, by considering two cases: 1) s ≤ J , and 2) s ≥
J .First, suppose s ≤ J . By the above argument, we have

∑

i∈[1,s] |Yi| ≥ k + s.

Let us denote by xi the number of information nodes whose locality is defined

by local check node indexed by i, where i ∈ [1, s]. We have

kr̄inf =
∑

i∈[1,s]
xiri =

∑

i∈[1,s]
xi(|Yi| − 1) ≥

∑

i∈[1,s]
x2
i

≥ min
xi

∑

i∈[1,s]
x2
i , where

∑

i∈[1,s]
xi = k,

(C.1)

where the first inequality is because each local group Yi has at least one parity

node, i.e., xi ≤ |Yi| − 1. Note that
∑

i∈[1,s] xi = k for s ∈ [1, J ]. Therefore,

by Lemma B.3, the minimum of
∑

i∈[1,s] x
2
i is obtained when s = J . Also, by

Lemma 4.3,
∑

i∈[1,J ] x
2
i is minimized when xi’s are almost equal (i.e., they differ

by at most one unit). Consequently,

kr̄inf ≥ min
xi

∑

i∈[1,J ]
x2
i ≥ (J − a)

⌊
k

J

⌋2

+ a

⌈
k

J

⌉2

, (C.2)

where

a = k + J − J
⌈k

J

⌉

. (C.3)

Therefore,

r̄inf ≥
⌈k

J

⌉(

2− ⌈k/J⌉ − 1

k/J

)

− 1. (C.4)

Now, suppose s ≥ J . Without loss of generality, we assume that locality of

local groups Y1 to Ys are r1 to rs, respectively, where r1 ≤ r2 ≤ · · · ≤ rs. In
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what follows, we show that the minimum of r̄inf is achieved if s = |Φ(Yinf )| = J .

To begin with, for a fixed construction of the locality Tanner graph, we

define the procedure of exchanging one parity node of a local group Yi with

an information node of a local group Yj a parity replacement procedure, where

i ∈ [1, J ] and j ∈ [J + 1, s]. Note that the parity replacement procedure does

not increase the average locality of the information blocks because r1 ≤ r2 ≤
· · · ≤ rs, which implies that local groups YJ+1 to Ys have locality more than

or equal to local groups Y1 to YJ . By Remark 4.1, in the Tanner graph of any

(n, k, d) linear block code, every J check nodes must cover at least J+k variable

nodes. Therefore, it is possible to repeat the parity replacement procedure

until all the k information nodes are moved to the first J local groups. Now,

assuming that all the information nodes are placed in the first J local groups,

i.e.,
∑

i∈[1,J ] xi = k, we obtain the minimum average locality of the information

symbols. By considering non-overlapping local groups as well as the minimum

coverage of J local check nodes (k + J), we have

kr̄inf =
∑

i∈[1,J ]
xiri =

∑

i∈[1,J ]
xi(|Yi| − 1) ≥

∑

i∈[1,J ]
x2
i

≥ min
xi

∑

i∈[1,J ]
x2
i , where

∑

i∈[1,J ]
xi = k,

(C.5)

which is the same as the second term obtained in (C.2). Therefore, we again get

(C.4). Considering (C.4) and noting that the minimum locality of a variable

node is one, Theorem 5.1 is proved.

C.2 Proof of Proposition 5.1

By Remark 4.1, Cp has minimum distance d if every J local check nodes cover

at least J + k variable nodes. If θ = 0, it can be easily verified by Fig. 5.1

that any J local check nodes are linked to at least J + k variable nodes. Also,

if θ 6= 0, observe that any combination of the first mp − 1 local check nodes of
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size J cover at least J + k variable nodes. In the following, we show that any

J − 1 local check nodes selected from the first mp − 1 plus the last local check

node (indexed by mp) also cover at least J + k variable nodes. In other words,

we show that the last local group (Ymp
) plus J−1 local groups indexed by A ∈

comb([1,mp − 1], J − 1) are linked to at least J + k variable nodes.

As shown in Fig 5.1, local check node mp is linked to θ = |R| variable nodes
plus

∑

i∈[1,mp−1] li, where li represents the total number of variable nodes from

i-th local group linked to Ymp
. Let us assume that among the J − 1 considered

local check nodes indexed by A, J − 1− aA have cardinality ⌈ k
J
⌉ and the rest

aA have cardinality ⌈ k
J
⌉+1. For any A in set comb([1,mp−1], J −1), we must

have

(J − 1− aA)
⌈k

J

⌉

+ aA

(⌈k

J

⌉

+ 1
)

+ θ +
∑

i∈[1,mp−1]\A
li ≥ J + k,

(C.6)

which is equivalent to the constraints presented in (5.2). Therefore, in the

Tanner graph of Cp, every J local check nodes cover k + J variable nodes and

the code has minimum distance d.
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