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ABSTRACT 

In the context of open-pit mining, the haulage system plays a pivotal role in the overall 

environmental impact of the operation, particularly concerning greenhouse gas (GHG) emissions 

and energy consumption. This impact stems from the heavy reliance on trucks for the 

transportation of materials within the mining site. However, recognizing the need for energy-

efficient practices in today's world, there is a growing emphasis on optimizing truck dispatching 

strategies to enhance productivity while aligning mining operations with environmental and energy 

efficiency principles. 

Traditionally, truck dispatching in open-pit mines has been centered on achieving production 

targets and maximizing operational efficiency, often overlooking the environmental implications 

of such practices. Nevertheless, the rising awareness of climate change and the call for responsible 

resource extraction have prompted a shift in focus towards adopting energy-efficient practices 

throughout the mining industry, including open-pit mining. 

To address these environmental and economic concerns and optimize operations, this research 

introduces an innovative approach: an integrated simulation and optimization model. The primary 

objective of this study is to present a new truck dispatching framework that seeks to achieve a dual 

purpose: maximizing the economic benefits derived from open-pit mining while minimizing its 

environmental footprint. To accomplish this goal (or objective), the framework focuses on four 

interdependent goals: first, minimizing the deviations from target production rates established by 

strategic plans to ensure consistent and efficient mining operations; second, reducing shovel idle 

time to optimize the use of resources; third, minimizing the wait time for trucks, ensuring smooth 

material flow throughout the mining process; and finally, decreasing truck fuel consumption, 

directly contributing to the reduction of GHG emissions. Additionally, this research analyzes the 

impact of the number of available trucks and their types, degree of heterogeneity of the truck fleet, 

as well as truck failures. 

To evaluate the performance and robustness of this novel framework, a case study was conducted 

at Gol-E-Gohar mine in Iran. The results were promising, showing a noteworthy accomplishment 

of achieving a reduction of up to 6% in fuel consumption per tonne of production. Over a ten-day 
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operation period with 12 hours of daily operation, this led to an impressive total reduction of up to 

20,000 liters in fuel consumption. 

In conclusion, the integration of an innovative simulation and optimization framework into the 

truck dispatching practices of open-pit mining offers a promising solution for the industry's 

environmental concerns. By simultaneously achieving economic advantages and minimizing the 

ecological impact, this approach sets a positive precedent for energy-efficient mining operations 

and responsible resource extraction in the future. 

 

  



         iv 

 

 

PREFACE  

This thesis represents an original work by Mohammadreza Kazemi Ashtiani. Certain portions of 

this research have previously undergone submission for publication under the title: "A Stochastic 

Energy-Efficient Robust Truck Dispatching Framework for Simultaneous GHG Mitigation and 

Operational Excellence in Open-Pit Mines" by Kazemi Ashtiani, M., Moradi Afrapoli, A., 

Doucette, J., and Askari-Nasab, H. in the Journal of Cleaner Production. However, as of now, these 

parts remain unpublished. In this study, I took charge of designing the conceptual model, 

developing algorithms, conducting case studies, documenting and analyzing the outcomes, and 

preparing the manuscripts. The supervisory authors, Askari-Nasab, H., Doucette, J., and Moradi 

Afrapoli, A., played a role in conceiving the ideas and contributing to the manuscript's 

composition.  



         v 

 

 

ACKNOWLEDGMENT 

I am profoundly thankful to my advisor, Prof. Hooman Askari-Nasab, for his indispensable 

mentorship, encouragement, and backing, which have been crucial in the successful completion of 

this work. Under his guidance, I have not only acquired invaluable knowledge and skills in 

scientific research but have also witnessed the qualities of an exceptional mentor. I am truly 

grateful for his patience, accessibility, and insightful feedback, all of which have contributed 

significantly to my personal and academic growth. I am deeply thankful to Prof. John Doucette for 

serving as my co-supervisor and providing invaluable guidance and support throughout this 

journey. 

I would like to express my deep appreciation to Dr. Ali Moradi Afrapoli for his invaluable support 

and guidance throughout my research journey. His assistance and expertise have been instrumental 

in shaping the outcome of this work. 

To my friends, particularly Soroush, I extend my heartfelt gratitude for their unwavering support 

during this research endeavor. 

I will be forever grateful to my parents and sister, Mahnaz, Ali, and Farnaz, for their constant 

support and unwavering encouragement that has been a guiding light in every aspect of my life. 

Their presence has been a source of strength and inspiration, and I am deeply indebted to them for 

their unwavering love and support. 

 

With utmost sincerity, 

Mohammadreza Kazemi Ashtiani  



         vi 

 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................................ ii 

PREFACE ................................................................................................................................................... iv 

ACKNOWLEDGMENT ........................................................................................................................... v 

TABLE OF CONTENTS ......................................................................................................................... vi 

LIST OF TABLES ................................................................................................................................... viii 

LIST OF FIGURES .................................................................................................................................. xi 

LIST OF ABBREVIATONS ...................................................................................................................xiii 

1 INTRODUCTION .............................................................................................................................. 1 

1.1 Background ........................................................................................................................... 1 

1.2 Statement of the problem ...................................................................................................... 3 

1.3 Significance of the study ....................................................................................................... 4 

1.4 Summary of literature review ................................................................................................ 6 

1.5 Objective of the thesis ........................................................................................................... 8 

1.6 Context and scope of work .................................................................................................... 8 

1.7 Importance and application of simulation in the research ..................................................... 9 

1.8 Research methodology ........................................................................................................ 10 

1.9 Scientific contribution and industrial significance of the research ..................................... 12 

1.10 Organization of the thesis .................................................................................................. 13 

2 LITERATURE REVIEW ................................................................................................................ 14 

2.1 Introduction ......................................................................................................................... 14 

2.2 Economical perspective....................................................................................................... 15 

2.3 Environmental perspective .................................................................................................. 18 

3 THEORETICAL FRAMEWORK ................................................................................................. 22 

3.1 Introduction ......................................................................................................................... 22 

3.2 Benchmark models .............................................................................................................. 22 

3.3 Quad-objective optimization model (covering the fuel consumption)................................ 23 

3.4 Integrated simulation and optimization Model ................................................................... 31 

3.5 Integrated simulation and optimization Model’s assumptions ............................................ 32 

3.6 Key performance indicators (KPI)s..................................................................................... 32 

3.7 Limitations of the model ..................................................................................................... 33 



         vii 

 

 

4 DESIGN OF EXPERIMENTS, VERIFICATIONS, AND RESULTS...................................... 35 

4.1 Input data and case study .................................................................................................... 35 

4.2 Objectives’ weights ............................................................................................................. 40 

4.2.1 Comparison with the benchmark models ..................................................................... 42 

4.2.1.1 Production Tonnages Statistics ............................................................................ 43 

4.2.1.2 Fuel Consumption Statistics ................................................................................ 51 

4.2.1.3 Shovels utilization statistics ................................................................................ 53 

4.2.1.4 Queue Time Statistics .......................................................................................... 56 

4.2.1.5 Hauled Tonnages Statistics .................................................................................. 62 

4.2.1.6 Comprehensive Fuel Consumption Comparison................................................. 65 

4.3 Number of trucks and their type .......................................................................................... 67 

4.4 Trucks’ uptime and downtime ............................................................................................. 73 

5 CONCLUSION AND RECOMMENDATION ............................................................................ 81 

REFRENCES ............................................................................................................................................ 85 

APPENDIX A ........................................................................................................................................... 91 

APPENDIX B ......................................................................................................................................... 100 

APPENDIX C ......................................................................................................................................... 101 

 

  



         viii 

 

 

LIST OF TABLES 

Table 1.1. Summary of literature review part 1 .............................................................................. 6 

Table 1.2. Summary of literature review part 2 .............................................................................. 7 

Table 4.1. Available destinations and fleet specification .............................................................. 36 

Table 4.2. Distances in meters ...................................................................................................... 37 

Table 4.3. Shovels characteristics ................................................................................................. 37 

Table 4.4. Trucks characteristics ................................................................................................... 37 

Table 4.5. Spot time distributions ................................................................................................. 38 

Table 4.6. Number of loading passes distributions ....................................................................... 38 

Table 4.7. Target feed rates of the active processing plants .......................................................... 38 

Table 4.8. Simulation runtime and operation time period ............................................................ 39 

Table 4.9. 10 days production requirements ................................................................................. 39 

Table 4.10. Weights of the objective functions ............................................................................. 40 

Table 4.11. Weighted scenarios' KPIs ........................................................................................... 41 

Table 4.12. Plant 1 Tonnages Statistics (kt) .................................................................................. 43 

Table 4.13. Plant 2 Tonnages Statistics (kt) .................................................................................. 44 

Table 4.14. Waste Dump Tonnages Statistics (kt) ......................................................................... 44 

Table 4.15. Stripping Ratio Statistics ............................................................................................ 46 

Table 4.16. TPGOH Statistics ....................................................................................................... 47 

Table 4.17. TPGOH Statistics for 10 operating days .................................................................... 48 

Table 4.18. Waste tonnage Statistics for 10 operating days (kt) ................................................... 50 

Table 4.19. Fuel Consumption Statistics (kl) ................................................................................ 51 

Table 4.20. Shovels Utilization (%) .............................................................................................. 54 

Table 4.21. Trucks Total Queue Time at Each Shovel (Hours) ..................................................... 57 

Table 4.22. Trucks Average Queue Time at Each Shovel (Minutes) ............................................ 59 

Table 4.23. Destinations Total Queue Time (Hours) .................................................................... 61 

Table 4.24. Destinations Average Queue Time (Minutes) ............................................................ 62 

Table 4.25. Shovels Total Hauled Tonnages (kt) .......................................................................... 63 

Table 4.26. Destinations Hauled Tonnages (kt) ............................................................................ 64 

Table 4.27. Fuel Consumption on each of the Destinations ......................................................... 66 



         ix 

 

 

Table 4.28. Fuel consumption comparison for the lowest fuel consuming scenario .................... 67 

Table 4.29. Heterogenous fleet cycles of scenario 24 ................................................................... 71 

Table 4.30. Truck Type’s cycles Comparison of scenario 24 ........................................................ 71 

Table 4.31 Heterogenous fleet cycles of scenario 20 .................................................................... 72 

Table 4.32. Truck Type’s cycles Comparison of scenario 20 ........................................................ 72 

Table 4.33. Trucks’ Uptime and Downtime Distributions ............................................................ 74 

Table 4.34. KPIs of the Best Scenarios with the Trucks failure ................................................... 77 

Table 4.35. Differences’ percentages in KPIs considering failure ................................................ 77 

 

Table A. 1. Shovel 1 Utilization Statistics .................................................................................... 91 

Table A. 2. Shovel 1 Total Queue Statistics (Hours) .................................................................... 91 

Table A. 3. Shovel 1 Average Queue Statistics (mins) .................................................................. 91 

Table A. 4. Shovel 1 Hauled Tonnages Statistics (kt) ................................................................... 92 

Table A. 5. Shovel 2 Utilization Statistics .................................................................................... 92 

Table A. 6. Shovel 2 Total Queue Statistics (Hours) .................................................................... 92 

Table A. 7. Shovel 2 Average Queue Statistics (mins) .................................................................. 93 

Table A. 8. Shovel 2 Hauled Tonnages Statistics (kt) ................................................................... 93 

Table A. 9. Shovel 3 Utilization Statistics .................................................................................... 93 

Table A. 10. Shovel 3 Total Queue Statistics (Hours)................................................................... 94 

Table A. 11. Shovel 3 Average Queue Statistics (mins) ................................................................ 94 

Table A. 12. Shovel 3 Hauled Tonnages Statistics (kt) ................................................................. 94 

Table A. 13. Shovel 4 Utilization Statistics .................................................................................. 95 

Table A. 14. Shovel 4 Total Queue Statistics (Hours)................................................................... 95 

Table A. 15. Shovel 4 Average Queue Statistics (mins) ................................................................ 95 

Table A. 16. Shovel 4 Hauled Tonnages Statistics (kt) ................................................................. 96 

Table A. 17. Shovel 5 Utilization Statistics .................................................................................. 96 

Table A. 18. Shovel 5 Total Queue Statistics (Hours)................................................................... 96 

Table A. 19. Shovel 5 Average Queue Statistics (mins) ................................................................ 97 

Table A. 20. Shovel 5 Hauled Tonnages Statistics (kt) ................................................................. 97 

Table A. 21. Plant 1 Total Queue Statistics (Hours) ..................................................................... 97 

Table A. 22. Plant 1 Average Queue Statistics (mins) .................................................................. 98 



         x 

 

 

Table A. 23. Plant 1 Hauled Tonnages Statistics (kt) .................................................................... 98 

Table A. 24. Plant 2 Total Queue Statistics (Hours) ..................................................................... 98 

Table A. 25. Plant 2 Average Queue Statistics (mins) .................................................................. 99 

Table A. 26. Plant 2 Hauled Tonnages Statistics (kt) .................................................................... 99 

Table A. 27. WasteDump Hauled Tonnages Statistics (kt) ........................................................... 99 

 

Table B. 1. KPIs for Various Types of Trucks and Number of Trucks ....................................... 100 

 

Table C. 1. KPIs considering trucks' failure for selected scenarios ............................................ 101 

Table C. 2. Production tonnage, Fuel consumption, and Failure time KPIs for selected scenarios

..................................................................................................................................................... 102 

Table C. 3. Homogeneous CAT 785C Failure Time of each truck (Hours) part 1 ...................... 102 

Table C. 4. Homogeneous CAT 785C Failure Time of each truck (Hours) part 2 ...................... 102 

Table C. 5. Homogeneous CAT 785C Total and Average Failure Times (Hours) ...................... 103 

Table C. 6. Homogeneous CAT 785C TPGOH Based on Available Number of Trucks in the 

System ......................................................................................................................................... 103 

Table C. 7. Homogeneous CAT 793C Failure Time of each truck (Hours) ................................ 103 

Table C. 8. Homogeneous CAT 793C Total and Average Failure Times (Hours) ...................... 104 

Table C. 9. Homogeneous CAT 793C TPGOH Based on Available Number of Trucks in the 

System ......................................................................................................................................... 104 

Table C. 10. Heterogenous Fleet’s Failure Time of each truck (Hours) ..................................... 104 

Table C. 11. Heterogenous Fleet's Total and Average Failure Times (Hours) ............................ 105 

Table C. 12. Heterogenous Fleet's TPGOH Based on Available Number of Trucks in the System

..................................................................................................................................................... 105 

 

  



         xi 

 

 

LIST OF FIGURES 

Figure 1.1.  Truck assignment and operations ................................................................................ 4 

Figure 1.2. The required input parameters needed estimation .......................................................11 

Figure 1.3. The different aspects of the study and how they interact with each other ...................11 

Figure 2.1. Production levels in open-pit mining ......................................................................... 14 

Figure 2.2. Open-pit mining production planning ........................................................................ 15 

Figure 3.1. Flowchart of the simulation and optimization framework ......................................... 31 

Figure 4.1. Gol-E-Gohar iron ore mine road network with loading and dumping locations ........ 35 

Figure 4.2. Gol-E-Gohar iron ore pit and road network (Moradi Afrapoli, 2018) ....................... 36 

Figure 4.3. Total production for different scenarios ..................................................................... 42 

Figure 4.4. Fuel consumption and queue time in each scenario ................................................... 42 

Figure 4.5. Tonnage Statistics for Plant1, Plant2, and Waste Dump for all modelss .................... 45 

Figure 4.6. Production statistics for plant1, and plant2 ................................................................ 45 

Figure 4.7. Stripping Ratio of all models ...................................................................................... 46 

Figure 4.8. TPGOH Comparison .................................................................................................. 48 

Figure 4.9. TPGOH for 10 operating days .................................................................................... 49 

Figure 4.10. Waste tonnage for 10 operating days ........................................................................ 50 

Figure 4.11. Fuel Consumption ..................................................................................................... 52 

Figure 4.12. Fuel Consumption Per Tonne Ore Production .......................................................... 52 

Figure 4.13. Fuel consumption per a kilo tonne ore production ................................................... 53 

Figure 4.14. Shovels Utilization ................................................................................................... 55 

Figure 4.15. Trucks Total Queue Time at Each Shovel (Hours) ................................................... 58 

Figure 4.16. Trucks Average Queue Time at Each Shovel (Minutes) ........................................... 60 

Figure 4.17. Destinations Total Queue Time ................................................................................ 61 

Figure 4.18. Destinations Average Queue Time (Minutes) ........................................................... 62 

Figure 4.19. Shovels Total Hauled Tonnages (kt) ......................................................................... 64 

Figure 4.20. Destinations Hauled Tonnages (kt) ........................................................................... 65 

Figure 4.21. Production and fuel consumption in fleet scenarios ................................................. 70 

Figure 4.22. CAT 785C Up Time (Hours) Distribution ................................................................ 75 

Figure 4.23. CAT 785C Down Time (Hours) Distribution ........................................................... 75 



         xii 

 

 

Figure 4.24. CAT 793C Up Time (Hours) Distribution ................................................................ 76 

Figure 4.25. CAT 793C Down Time (Hours) Distribution ........................................................... 76 

Figure 4.26. Truck failure effect on average TPGOH Whitin Scenario 6: (Homogenous fleet - 30 

small trucks) .................................................................................................................................. 80 

Figure 4.27. Truck failure effect on average TPGOH Whitin Scenario 24: (Heterogenous fleet - 

25 Small and 5 large trucks) ......................................................................................................... 80 

 

  



         xiii 

 

 

LIST OF ABBREVIATONS 

DES Discrete Event Simulation 

MOO Multi-Objective Optimization 

SD System Dynamics 

TS Truck and Shovel 

IPCC In Pit Crushing and Conveying 

SMIPCC Semi Mobile In Pit Crushing and Conveying 

OPMOP Open-Pit Mining Operational Planning 

MILP Mixed Integer Linear Programming 

MOMIGP Multi-Objective Mixed Integer Goal Programming 

VRP Vehicle Routing Problem 

HVRP Heterogeneous Vehicle Routing Problem 

HazMat Hazardous Materials 

CAT Caterpillar 

KPI Key Performance Indicator 

MF Match Factor 

TPGOH Tonne Per Gross Operating Hours 

OTPGOH Ore Tonne Per Gross Operating Hours 

FC Fuel Consumption 

SIT Shovel Idle Time 

TWT Truck Wait Time 

PD Production Deviation 

GHG Greenhouse Gas 

CO2 Carbon Dioxide 

USD United States dollar 

Eq Equation 

Q Queue 

W Weight 

S Scenario 

Tri-Obj. Tri Objective 



         xiv 

 

 

Quad-Obj. Quad Objective 

Diff. Difference of 

Stdev Standard Deviation 

StdErr Standard Error 

P1 Plant 1 

P2 Plant 2 

WD Waste Dump 

SR Stripping Ratio 

Avg Average 

ConLev Confidence Level 

TP Total Production 

OP Ore Production 

SH Shovel 

Rep Replication 

Util. Utilization 

Dest. Destination 

 

Sec/s Seconds 

Mins/mins Minutes 

Hrs/hrs Hours 

T/t Tons 

KT/kt Kilo Tons 

L/l Liters 

KL/kl Kilo Liters 

# Number 

 

 



Kazemi Ashtiani, Mohammadreza         1 

 

 

1 INTRODUCTION 

1.1 Background 

Several key challenges must be solved in open-pit mining. These challenges encompass various 

aspects, including mine design and sequencing, road network design and analysis, infrastructure 

location optimization, net present value (NPV) and production rate determination, fleet 

management, determination of the number of trucks, shovels, and crushers, optimization of truck 

terminals, maintenance centers, crusher locations, and allocation of trucks and shovels as well as 

the trucks dispatching. Additionally, uncertainties associated with these factors need to be 

evaluated. 

Open-pit mining operations, as one of the main mining methods, require a substantial amount of 

equipment to extract minerals and waste materials from the Earth's crust and transport them. Trucks 

play a key role in this process, as they are responsible for transporting extracted material to 

processing sites and waste dumps. Effective dispatching of trucks is crucial for maximizing 

productivity and, consequently, the profitability of the operation.  It also contributes to the 

reduction of negative environmental impacts. This research explores the problem of truck 

dispatching in open-pit mining and proposes a unique approach to optimize this process, 

considering various factors such as truck capacity, the distance between mining sites, the rate of 

material extraction, and the demand for processed material. The approach aims to find a solution 

that not only meets the operation's needs, enhances productivity, and reduces costs but also 

contributes to optimizing open-pit mining operations, promoting profitability, and reducing GHG 

emissions from truck fuel consumption. 

Mining operations often entail equipment capital and operating costs that can reach hundreds of 

millions or even billions of dollars for large companies managing multiple mines. To optimize the 

return on these substantial investments, it is essential to ensure efficient utilization of the 

equipment through optimal scheduling to minimize operating costs and maximize utilization. The 

high operating costs associated with mining projects mean that even a slight increase in the 

productivity of mining equipment can result in significant savings, often in the millions of dollars 

(Topal and Ramazan, 2010). Achieving an optimized fleet size is essential for efficient dispatching 

in mining operations to meet production requirements while minimizing costs. The decision 

regarding the number and types of trucks to include in the fleet represents a significant financial 
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investment, as it is not easily reversible (Salhi and Rand, 1993). In the mining system, an excess 

of trucks can lead to over-trucking, where trucks must wait for the shovel to become available. On 

the other hand, having too few trucks results in under-trucking, causing the shovel to wait for 

trucks to become available (Ataeepour and Baafi, 1999). An ideal fleet size is vital for effective 

dispatching in other industries as well. An inadequate or excessive fleet size may lead to delays 

and under-utilizations, resulting in lower productivity. Simulation and optimization models can 

provide guidance to avoid over- or under-trucking (Chaowasakoo et al., 2017). 

This study delves into the truck dispatching problem in the open-pit mines, which involves a 

unique aspect where trucks are not locked or restricted to a specific pit or shovel. In traditional 

open-pit mining operations, trucks are typically allocated to specific dumping points or shovels 

based on predetermined assignments. However, in the dispatching problem addressed in this 

research, the assignment of trucks is highly dynamic and adaptable. Trucks can be assigned to 

different dumping points or shovels based on real-time conditions, such as shovel availability, 

target production rates, and transportation requirements. Additionally, various constraints and 

factors such as truck capacity, truck availability, shovel digging rate, and plant capacity can affect 

the truck dispatching decision-making. The dynamic truck dispatching approach ensures efficient 

utilization of trucks and maximizes overall productivity within the open-pit mining environment 

and simultaneously leads to lowered transportation cost and pollution. This may involve 

dynamically adjusting truck assignments as conditions change, and re-evaluating assignments as 

new information becomes available. The dispatching of trucks in open-pit mining operations is a 

complex optimization problem. The challenges of this problem include considering multiple 

objectives such as minimizing costs, maximizing productivity, and reducing environmental impact, 

while accounting for the inherent uncertainty in the mining process. To address these challenges, 

a multi-objective stochastic simulation and optimization framework can be applied. This approach 

utilizes mathematical modeling and computer simulations to optimize the dispatching of trucks in 

open-pit mines. 

The importance of reducing fuel consumption and carbon emissions in open-pit mining operations 

has become increasingly relevant in recent years, as concerns about the environment and the need 

to reduce carbon footprints grow. The dispatching of trucks in open-pit mining operations have a 

noticeable impact on the fuel consumption and carbon emissions. Effective management of trucks 
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can significantly reduce the consumption of fuel and the emissions of carbon, thereby reducing 

costs and environmental impact. 

In conclusion, truck dispatching plays a critical role in the success of open-pit mining operations. 

By effectively dispatching trucks, mining companies can increase productivity, reduce costs, 

reduce the environmental footprints, and improve the overall efficiency of their operations. In this 

research, the focus is not only on achieving optimal truck dispatching but also on developing a 

comprehensive framework that emulates the dynamic nature of the mining operations. By 

leveraging advanced optimization techniques and real-time data integration, the study aims to 

provide practical solutions that optimize truck dispatching decisions while accounting for changing 

operational conditions and constraints. 

1.2 Statement of the problem 

A comprehensive haulage system that manages and optimizes the mining fleet operations plays a 

crucial role in real-time production activities. This system operates at different levels throughout 

the lifespan of a mine, making optimal decisions to meet short-/long-term production targets. 

However, there are several challenges and limitations that need to be addressed to enhance the 

efficiency and effectiveness of fleet operation in mining. One significant challenge revolves 

around the assignment of available shovels to mining faces. Currently, this responsibility lies with 

mine planners, who determine the best shovel allocation based on their expertise and experience 

following the long-term plans trying to minimize the shovels’ move. However, this manual 

approach can lead to variations in shovel allocation outcomes and may not fully optimize the 

utilization of available shovels. Another challenge is the identification of optimal routes for trucks 

within the mine site. Algorithms like Dijkstra's (Dijkstra, 1959) are commonly used to find the 

shortest path from a shovel to a destination, taking into account factors such as the shovel's current 

working face position. However, in large open-pit mines with complex road networks, varying 

numbers and types of trucks, and potential truck failures, the task of finding the most efficient 

routes becomes more intricate. 

The truck dispatching problem that represents a significant and crucial challenge in mining fleet 

operations, is the main focus of this study, and refers to the task of dynamically assigning trucks 

to shovels as starting points and to dumping points as destinations in an efficient manner. Existing 

optimization algorithms typically focus on maximizing the utilization of either the truck fleet or 
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the shovel fleet individually, rather than considering the utilization of both fleets. These approaches 

fail to account for the interdependence and synergies between both fleets, leading to suboptimal 

resource allocation. Current truck dispatching models often overlook the integration between 

mining and processing operations and do not consider the operational constraints effect on the 

truck dispatching. This limits their ability to accurately reflect real-world mining operations and 

hinders efficient dispatching. By overcoming the mentioned challenges and advancing the field of 

truck dispatching in mining, the efficiency of mining operations can be significantly improved, 

leading to productive mining. 

 

Figure 1.1.  Truck assignment and operations 

Figure 1.1 illustrates the hauling process conducted by trucks in open-pit mining. The process 

begins at the terminal, where trucks are assigned to either ore or waste shovels based on factors 

such as production targets, travel times, queue conditions, and processing times. Subsequently, the 

trucks travel to the waste dump or one of the crushers/plants, depending on the materials they carry 

and the capacities of the hoppers in each plant. Finally, the trucks are assigned to a new shovel 

according to the schedule and objective functions, and this cycle continues. 

The following research question drives this dissertation. 

Can truck dispatching be optimized by considering processing limitations, resource utilization, 

and environmental impacts to achieve higher production levels with reduced costs? 

1.3 Significance of the study 

The mining industry is crucial for the world economy and population growth as it provides raw 

materials, but this has led to increased energy consumption and emissions (Feng et al., 2022). The 

improvement of energy efficiency has become one of the most important concerns for mining 
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companies in order to minimize their negative environmental impacts. However, there is a lack of 

research that has been conducted in this area, particularly in relation to the haulage activity at open-

pit mines which consumes a significant amount of energy. Both industry and academia 

acknowledge the problem of poor energy efficiency in mines, emphasizing on the improvement of 

the energy efficiency as a necessary step for mines to take (Patterson et al., 2017). In addition, 

recently, the energy crisis and global warming have become major concerns worldwide. In 

response, many countries have introduced carbon policies, which include carbon cap and trade, 

carbon tax, and carbon quota, the European Union (EU) has had a cap and trade in place since 

2005 and started to implement a carbon tax in 2012 (Li et al., 2018). Optimizing vehicle routing 

decisions is a way companies are working towards minimizing carbon emissions and fuel 

consumption (Li et al., 2018). The emissions from a heavy-duty mining truck, which has a capacity 

ranging from 15 to 360 tons, is hundreds of times higher than the emissions from a passenger 

vehicle (Feng et al., 2022). The mining industry is driven to seek cleaner solutions for trucks due 

to this substantial emissions burden, coupled with the ongoing challenge of global warming (Feng 

et al., 2022). In certain mining ventures, like iron, bauxite, and coal projects, loading and hauling 

operations contribute to 41% to 66% of the overall energy consumption and 37% to 54% of GHG 

emissions (Feng et al., 2022). Mining trucks, which are the main hauling equipment in open-pit 

mines, transport over 80% of metallic minerals and 40% of coal and are highly productive, reliable, 

low cost, and integrated (Feng et al., 2022). Nevertheless, Purhamadani et al. (2021) believe that 

in open-pit mining, the truck-based haulage system has been a significant contributor to energy 

consumption in the haulage sector. Apart from the considerable environmental impact caused by 

the mining haulage system, it also entails noticeable operational cost. The mining operational cost 

heavily relies on haulage expenses, estimated to make up about 50-60% of the total. Moreover, 

any disruptions in the materials handling system can lead to supplementary costs for the processing 

plant (Alarie and Gamache, 2002; Moradi Afrapoli et al., 2019; Moradi Afrapoli and Askari-Nasab, 

2017; Upadhyay and Askari-Nasab, 2019). 

Efficient truck dispatching in open-pit mining operations plays a critical role in reducing GHG 

emissions and minimizing operational costs. Through optimized truck dispatching, mining 

companies can attain cost savings, enhance profitability, and contribute to an eco-friendlier future. 

Lowering GHG emissions by reducing fuel consumption aligns with environmental concerns and 

boosts competitiveness. By prioritizing efficient truck dispatching practices, mining companies 
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not only improve operational efficiency but also establish themselves as responsible industry 

leaders. 

1.4 Summary of literature review 

Chapter 2 of the thesis provides a comprehensive review of the existing literature. The literature 

review encompasses studies on dispatching, routing and allocation problems across various 

industries, including mining. The literature review is categorized into two main categories: 

publications with economical goals such as minimizing the total cost, and publications with 

environmental goals such as minimizing GHG emissions. The majority of the studies utilize 

various operations research and simulation techniques to offer decision makers the most optimal 

choices. Table 1.1, and Table 1.2 provide an overview and classification of numerous relevant 

mining studies. 

Table 1.1. Summary of literature review part 1 

Authors Year Surface Mining Environmental objective Simulation 

Ataeepour and Baafi 1999 ✓  ✓ 

Gamache et al. 2005    

Salama and Greberg 2012   ✓ 

Topal and Ramazan  2010 ✓   

Souza et al. 2010 ✓   

Ta et al.  2013 ✓   

Zhang and Xia 2015 ✓   

Matamoros and 

Dimitrakopoulos  
2016 ✓   

Chaowasakoo et al. 2017 ✓  ✓ 

Fadin and Moeis 2017 ✓  ✓ 

Shishvan and Benndorf 2019 ✓   

Moradi Afrapoli et al. 2019 ✓  ✓ 

Yu et al. 2016 ✓ ✓  

Gonzalez et al.  2017  ✓ ✓ 

Patterson et al. 2017 ✓ ✓  

Mohtasham et al.  2021 ✓ ✓  

Mohtasham et al. 2022 ✓ ✓ ✓ 

Vergara-Zambrano et al.  2022 ✓ ✓  

Huo et al.  2023 ✓ ✓  
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Table 1.2. Summary of literature review part 2 

Authors Year Features 

Ataeepour and Baafi 1999 Homogenous fleet 

Gamache et al. 2005 
1. Undergraund mining 

2. Took traffic into account  

Salama and Greberg 2012 Undergraund mining 

Topal and Ramazan  2010 

1. Mixed integer programming 

2. Considered truck age, maintenance costs, and operating hours to meet 

production targets  

Souza et al. 2010 

1. Developed a hybrid algorithm that combines elements of two 

metaheuristics, greedy randomized adaptive search procedure (GRASP) and 

general variable neighborhood search (GVNS) 

2. Validated results by a mixed integer programming model based on goal 

programming 

Ta et al.  2013 Employed CPLEX 

Zhang and Xia 2015 

1. Integer programming  

2. Heterogeneous fleet 

3. Considered production targets 

Matamoros and 

Dimitrakopoulos  
2016 

1. Stochastic mixed integer programming 

2. Handled uncertainties associated with input parameters 

Chaowasakoo et al. 2017 
1. Heterogenous fleet 

2. Used match factor 

Fadin and Moeis 2017 Utilized a "look-ahead algorithm" approach (Jang et al., 2001) 

Shishvan and Benndorf 2019 Considered different types of overburdens 

Moradi Afrapoli et al. 2019 

1. Employed the weighted-sum method to convert the multi-objective 

problem into a single-objective problem 

2. Mixed integer linear programming 

3. Considered production targets 

Yu et al. 2016 

1. Mixed integer programming 

2. Considered uncertainties related to equipment failure using a multi-

scenario decision-aided system 

Gonzalez et al.  2017 Underground mining  

Patterson et al. 2017 

1. Mixed integer linear programming 

2. Employed a tabu search solution method 

3. Heterogenous fleet 

Mohtasham et al.  2021 

1. Developed a goal programming model based on mixed integer linear 

programming 

2. Solved with the CPLEX solver in the GAMS environment 

3. Heterogenous fleet 

Mohtasham et al. 2022 
1. M-trucks-to-1-shovel strategy 

2. Heterogeous fleet 

Vergara-Zambrano et al.  2022 Applied a carbon tax  

Huo et al.  2023 Implemented a reinforcement learning-based approach 
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In these studies, a method that accounts for environmental objective functions using simulation 

techniques to address uncertainty in an open-pit mine, while also considering factors such as truck 

failures and operating hours to achieve production targets, is lacking. 

1.5 Objective of the thesis 

This study aims to achieve three main goals:  

• developing a framework for truck dispatching: Formulating truck dispatching optimization 

model, integrating it with a simulation model to capture uncertainty parameters and to 

display the robustness of the model.  

• conducting a case study to show the performance of the developed truck dispatching model. 

It addresses questions regarding the feasibility of simulation and optimization for truck 

dispatching. Evaluating the performance of the proposed model by comparing it with 

benchmark dispatching methods. 

• Engaging in sensitivity analysis involves introducing various scenarios to assess the 

model's response. 

1.6 Context and scope of work 

In this research, dispatching decisions are made based on the following objectives. 

1. Minimizing the cumulative trucks’ fuel consumption 

2. Minimizing the cumulative trucks' queue time 

3. Minimizing the cumulative shovels’ idle time 

4. Minimizing the deviation from the target flow rates 

The decisions will be made whenever the status of a truck changes, including when a truck starts 

working, when it dumps its load, or when a failed truck is repaired. The mentioned objectives aim 

to achieve a balance between maximizing equipment utilization, maximizing production, and 

minimizing negative environmental impacts. A multi-objective optimization model is integrated 

with a simulation model, creating an integrated stochastic multi-objective simulation and 

optimization framework that accounts for: 
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1. Uncertainties in input random parameters such as truck’s load tonnage, service times, and 

truck’s speed 

2. The processing/crusher capacity limitation 

3. Failure (uptime and downtime) of trucks  

However, the developed framework does not account for: 

1. Variation in the equipment costs or product price 

2. Weather conditions 

3. Road closure 

4. Changes in plant status or dump locations 

5. Shovels failure 

6. Presence of a stockpile 

For the sensitivity analysis, several scenarios are conducted, including varying the weights of 

various objectives in the multi-objective optimization model (16 scenarios) and considering 

different numbers and types of trucks (40 scenarios). 

1.7 Importance and application of simulation in the research 

Simulation modeling is a powerful tool that can be used to experiment and test alternative courses 

of action, providing insight and the most favorable outcomes. In the mining industry, simulation 

models can be used to predict the impact of new ideas, procedures, and policy changes. The use of 

Monte Carlo Simulation techniques and special-purpose computer languages have greatly 

simplified the construction of discrete event models. These models can analyze production 

capacities, determine bottlenecks, and estimate resource utilization levels in mines (Knights and 

Bonates, 1999). Manríquez et al. (2019) emphasized the significance of utilizing discrete event 

simulation in designing mining systems, which includes determining transportation routes, loading 

points, and types of load equipment. Simulation methods have been a topic of interest for truck 

allocation and dispatching problems for many years. Maran and Topuz (1988) claimed that the 

discrete event simulation can be a valuable technique to evaluate and experiment truck allocation 

and dispatching problems, especially when traditional analytical methods are not appropriate. The 
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use of discrete event simulation is widespread in optimizing truck and shovel systems in mining 

due to its ability to capture random behavior and model complex systems easily (Que et al., 2016). 

1.8 Research methodology 

This research has 5 main steps: 

1. Preprocessing the historical input data and capturing the uncertainties by fitting appropriate 

random distributions 

2. Developing a comprehensive multi-objective optimization model 

3. Developing a proper simulation model and evaluating a real case problem 

4. Integrating the simulation and optimization models and optimizing key performance 

indicator (KPI)s of the system 

5. Adjusting parameters and developing diverse scenarios to improve fleet performance 

within the mining system 

The probability distribution functions are fitted for each shovel type, including bucket tonnage and 

loading cycle time. Similarly, for each type of truck, distribution functions are fitted for empty 

velocity, loaded velocity, backing time, and dumping time. Additionally, for each combination of 

truck and shovel types, the probability distribution functions are fitted for the spot time and loading 

passes. All of these estimations are based on historical data and are applied to the simulation model 

(Figure 1.2). 

Within the framework of this study, a simulation model is implemented to encompass the entire 

mining operation, including material flow through downstream processes. To facilitate effective 

communication and dynamic interaction, the optimization components are integrated with the 

simulation model using VBA® (Microsoft Corporation, 2013) and OPLrun (IBM, 2022) 

(Optimization Programming Language Integration). Figure 1.3 illustrates the dynamic interaction 

between the simulation model and the optimization models within the developed framework. For 

constructing the simulation model, Rockwell Arena simulation software (Rockwell Automation, 

2019) is utilized, while the optimization models are created and solved using IBM CPLEX® (IBM, 

2022). 
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Figure 1.2. The required input parameters needed estimation 

 

Figure 1.3. The different aspects of the study and how they interact with each other 
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1.9 Scientific contribution and industrial significance of the research 

Compared to other industries, the mining and petroleum sector is the second largest consumer of 

energy after bulk chemicals sector (Worrell and Price, 2001). Trucks play a crucial role in the 

transportation of materials in open-pit mines and account for the highest energy consumption 

among all equipment and resources used in mining operations (Sahoo et al., 2014). The main 

novelty of this research lies in offering a practical approach to decrease fuel consumption and 

subsequently reduce the carbon footprint in open-pit mining operations by optimizing truck 

dispatching. The novel approach aims to enhance efficiency and productivity while prioritizing 

fuel efficiency. Additionally, the model developed in this research takes into account the dynamic 

stochastic uptimes and downtimes for each truck within the simulation model, making the model 

more realistic and reliable. The distinction between the method employed in this study and the 

previous benchmark method developed by Moradi Afrapoli et al. (2019) includes the following: 

• Incorporating a fuel consumption minimization objective function in addition to meeting 

the production requirement objective. 

• Taking into consideration the possibility of truck failures. 

As per the National Energy Foundation's report (National Energy Foundation, 2015), the CO2 

emission rate stands at 3.05 ton CO2 equivalent per liter of diesel fuel. Therefore, decreasing fuel 

consumption directly contributes to the reduction of GHG emissions. Fuel consumption of vehicles 

is commonly used as a substitute for the measurement of GHG emissions, which is influenced by 

factors such as vehicle speed, load, engine type, and the characteristics of the route traveled (Bula 

et al., 2019). 

The approach applied in this research to the problem of truck dispatching in open-pit mining 

operations is deemed a significant contribution to the field of energy-efficient mining, offering 

valuable insights and advancements in promoting environmentally-friendly mining practices. 

This study sets itself apart from prior research by introducing an integrated simulation and 

optimization framework that combines economic and environmental goals while addressing 

uncertainty parameters. Additionally, the approach incorporates production targets and accounts 

for potential truck failures. 
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1.10 Organization of the thesis 

Chapter 1 serves as an introductory overview of the research, covering the background of the 

research topic, identifying the problem of concern, and presenting a concise summary of the 

literature review. It also outlines the objectives of the thesis, introduces the research methodology, 

and highlights the contributions made. 

In Chapter 2, the literature review delves into mining transportation and hauling systems. It 

explores the application of simulation and optimization methods in allocation and dispatching 

Problems across mining and other industries. The chapter categorizes haulage systems from 

economic and environmental perspectives. 

Chapter 3 first introduces a market-dominated benchmark truck dispatching approach and then 

outlines the proposed framework. The chapter provides a detailed explanation of how the 

simulation and optimization components of the framework function and communicate. It also 

elaborates on the key performance indicators (KPIs) and discusses the model's limitations. 

Chapter 4 focuses on the implementation of the developed truck dispatching models and the 

simulation and optimization framework. It introduces the input data used in the simulation and 

optimization framework for the case study. Various scenarios are presented, including those related 

to objectives' weights determination where the model proposed in this research is compared with 

benchmark models. The chapter further explores scenarios involving the number and types of 

trucks, as well as scenarios considering truck failures and the impact of truck uptimes and 

downtimes on the major KPIs. 

Finally, Chapter 5 serves as the concluding chapter, summarizing the thesis and presenting 

concluding statements. It restates the contributions and limitations of this research and offers 

recommendations for future studies in the field of truck dispatching in open-pit mining operations. 
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2 LITERATURE REVIEW 

2.1 Introduction 

Open-pit mining, as a well-known surface mining method, is preferable to the underground 

methods from technical and economic viewpoints, except for environmental desirability 

(Bakhtavar et al., 2012). The main production cycle in open-pit mining includes drilling, blasting, 

loading, and hauling (Figure 2.1). 

 

Figure 2.1. Production levels in open-pit mining 

Figure 2.2 displays all levels of production planning in an open-pit mine. Production planning in 

open-pit mining incorporates a strategic level and a tactical level. The strategic level covers the 

long-term and medium-term production planning, while the short-term and operational planning 

are addressed in the tactical level. The operational plan consists of upper and lower stages. In the 

upper stage, there are tasks related to production optimization and allocations of trucks and 

shovels. Meanwhile, the lower stage is focused on truck dispatching (Mohtasham et al., 2021). An 

efficient operational plan takes into account the long-term objectives and optimizes the operations 

in such a way to meet those objectives. In operational planning, dynamic decision-making for truck 

dispatching is one of the most significant challenges. Minimizing human interferences in decision-

making is one of the operational planning goals. However, it is rarely possible to automatically 

perform the entire process and eliminate human interference because of several constraints, 

including the complexity of operations, unforeseen events, safety concerns, and environmental 

regulations. 
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Figure 2.2. Open-pit mining production planning 

This research centers on the optimization problem of truck dispatching. The model's crucial 

variables include shovel and truck capacities, available number of shovels and trucks, number of 

destinations (processing plants and waste dumps), and physical distances. Choosing the 

dispatching method depends on the mining operation’s scope, particular objectives, road network, 

equipment condition, geological condition, and financial resources (Ahangaran et al., 2012). 

Industrial companies aim for cost-efficient dispatching methods, while governments and 

communities prefer eco-friendly dispatching methods. Past researchers have employed three 

approaches, namely operations research, queuing theory, and simulation techniques, to facilitate 

optimal decision-making in this context (Upadhyay, 2013). In what follows, several studies on 

dispatching, routing and allocation problems, based on the methods employed and their respective 

objectives, are reviewed and categorized under two perspectives: the economical perspective and 

the environmental perspective.  

2.2 Economical perspective 

Ataeepour and Baafi (1999) examined how a dispatching rule affects mine productivity using an 

ARENA simulation system. They considered all trucks in the mine to be identical and proposed a 

dispatching rule that aimed to maximize overall productivity by ensuring optimal utilization of 

available trucks and shovels. Topal and Ramazan (2010) introduced a novel method for scheduling 

mining trucks on a yearly basis, spanning multiple years, by employing mixed integer 

programming. Their method considered truck age, maintenance costs, and operating hours to meet 
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production targets and optimize the truck schedule. Souza et al. (2010) addressed the problem of 

optimizing mineral extraction in open-pit mines through dynamic truck allocation. The goal was 

to minimize the number of mining trucks used in order to meet production goals and quality 

requirements. The authors presented a hybrid algorithm that combines elements of two 

metaheuristics, greedy randomized adaptive search procedure (GRASP) and general variable 

neighborhood search (GVNS) and validated their results using the CPLEX optimizer. The 

algorithm used a mixed integer programming model based on goal programming. However, Ta et 

al. (2013) introduced models for optimizing truck and shovel usage in oil sand surface mines. The 

objective was to minimize the number of trucks needed while meeting throughput and ore grade 

constraints. The models used a straightforward approximation to quantify the relationship between 

a shovel's idle probability and the number of assigned trucks and were capable of handling multiple 

truck sizes. The authors employed CPLEX (IBM, 2022) to solve the truck allocation problem. 

Zhang and Xia (2015) utilized integer programming to optimize truck dispatching in open-pit 

mines, reducing costs and achieving production targets. They also introduced an analytical method 

to determine the optimal fleet size based on the dispatching results. Furthermore, the experiments 

with a heterogeneous fleet demonstrated that well-mixed fleets lead to additional reductions in 

operating costs. Matamoros and Dimitrakopoulos (2016) presented an innovative technique for 

scheduling short-term mine production, which accounted for factors related to mining, production 

limitations, uncertain ore quantities, as well as the availability and parameters of the fleet. The 

approach optimized the allocation of the fleet and handled uncertainties associated with input 

parameters, leading to lower cost and more efficient fleet allocation compared to traditional 

methods, as demonstrated in a multi-element iron mine case study. Chaowasakoo et al. (2017) 

proposed a new approach for mixed-fleet optimization, using match factor to determine the optimal 

fleet size for different types of trucks. They conducted a simulation in an open-pit mine, focusing 

on minimizing shovel waiting time and saturation, as well as truck cycle time and wait time. 

However, the study had some limitations, such as not considering haul road profiles and varying 

velocities. Fadin and Moeis (2017) utilized a "look-ahead algorithm" approach (Jang et al., 2001) 

as a new method to solve the truck dispatch problem in open-pit mines. The proposed approach 

was developed through simulation and optimization models, using real data to address the truck 

dispatch problem effectively. The dispatching results aimed to determine the optimal truck routes 

and schedules to maximize production and provide significant operating cost savings to the mining 
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industry. The study employed discrete event simulation to test several scenarios for truck dispatch. 

Shishvan and Benndorf (2019) explored a solution to optimize the dispatch of materials in coal 

mines where different types of overburden must be placed in specific patterns for safety. The 

authors proposed an approach that optimized dispatch decisions based on equipment capacity, 

performance, and availability. The method was evaluated and tested at the Hambach mine located 

in Germany. Gamache et al. (2005) studied the fleet management problem in an underground mine, 

including dispatching, routing, and scheduling the equipment. They considered criteria such as 

minimizing cycle time or waiting time, and taking traffic into account to improve the overall 

productivity. Salama and Greberg (2012) improved the efficiency of the haulage system in an 

underground mine by simulating the loading and hauling operations.  

Newman et al. (2010) conducted a review of operations research in mine planning, which includes 

a discussion of survey articles on open-pit truck dispatching. They classify truck dispatching 

strategies, examine their underlying mathematical formulations, and identify the strengths and 

weaknesses of alternate approaches. To gain a thorough understanding of the economic 

enhancements in haulage systems within the mining industry, Moradi Afrapoli and Askari-Nasab 

(2017) reviewed and conducted an extensive assessment and documentation of models and 

algorithms employed in mine fleet management systems. Their focus encompassed three 

interconnected challenges: determining the shortest path, optimizing production processes, and 

facilitating real-time dispatching. The review delved into a variety of allocation issues, including 

queuing theory, the Li transportation approach, linear programming, goal programming, and 

stochastic programming. Additionally, the study reviewed the algorithm underpinning the Modular 

Mining Dispatch (MODULAR MINING), which was developed by White and Olson (1993; 1986) 

for the purpose of real-time truck dispatching. 

The dispatching or allocation of trucks can be classified as a type of vehicle routing problem. 

Several relevant research works have addressed this issue in various industries, such as hazardous 

material handling. Androutsopoulos and Zografos (2012) discussed the solution to a vehicle 

routing and scheduling problem for hazardous materials distribution that has multiple objectives. 

They employed the weighted-sum method to convert the multi-objective problem into a single-

objective problem. Bula et al. (2016) presented a mathematical model that utilizes mixed integer 

linear programming (MILP) to solve the Heterogeneous Vehicle Routing Problem (HVRP) in the 
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context of hazardous materials transportation. Bula et al. (2019) proposed a bi-objective 

heterogeneous fleet vehicle routing problem for the transportation of hazardous. Two solution 

methods were presented: a multi-objective neighborhood dominance-based algorithm and an 

epsilon-constraint meta-heuristic algorithm. Ghaderi and Burdett (2019) examined the best 

approach for routing hazardous materials through a two-stage stochastic programming model. 

Tasouji Hassanpour et al. (2021) solved a hazardous material routing problem by an augmented 

epsilon-constraint method. Wang et al. (2023) introduced a multi-objective optimization model 

that used epsilon constraint method and a mixed integer linear programming to determine robust 

and stable transportation solutions for hazardous materials. Villegas et al. (2013) proposed a 

straightforward yet effective two-phase metaheuristic for the truck and trailer routing problem. 

Bélanger et al. (2020) introduced a solution for the Ambulance Location and Dispatching Problem 

(ALDP) by employing a recursive simulation-optimization framework that balances location and 

dispatch decisions using mathematical formulation and simulation modeling. Hua et al. (2022) 

introduced an approach to ascertain the minimal fleet size and ideal vehicle allocation in bike 

sharing, taking into account uncertainties in future demand. To sum up, there are numerous vehicle 

dispatching studies in other industries. Besides the mentioned research, other studies also focus on 

topics such as dispatching design for customized hybrid bus vehicles, energy or electric vehicle 

dispatch problems, emergency vehicle dispatching and routing, automated guided vehicles 

dispatching, dispatching in transit systems, autonomous trucks and lorries dispatching for parcel 

deliveries, and commercial vehicles dispatching (Cheng et al., 2005; Chowdhury and Chien, 2001; 

Duan et al., 2015; Goel and Gruhn, 2006; Jiang et al., 2019; Kassai et al., 2020; Liang et al., 2020; 

Xi et al., 2021; Zhou et al., 2016). These investigations underscore the significance of efficient 

dispatching practices across different sectors.  

2.3 Environmental perspective 

Green vehicle routing is a subdomain of Vehicle Routing Problems (VRPs) with the primary goal 

of minimizing fuel consumption, carbon emissions, total distance, or costs when making routing 

decisions (Turkensteen, 2017). Due to the growing concern about global warming, most of the 

large organizations are investing more resources and effort into reducing energy consumption and 

emission of pollutants (Ganji et al., 2020). Due to the challenges posed by global climate change 

and the increasing levels of GHG emissions, numerous countries, including Canada and the United 

States in North America, have taken action by adopting diverse carbon pricing policies or 
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regulatory measures (Abdi and Taghipour, 2018). In an effort to make industries responsible for 

their carbon emissions, governments have introduced carbon tax policies, leading to a growing 

focus on enhancing energy efficiency within the mining sector. The most promising areas for 

improvement in this regard are loading and hauling operations. Nevertheless, despite endeavors to 

curtail energy consumption, numerous mines encounter obstacles in achieving optimal energy 

efficiency (Awuah-Offei, 2016). As mentioned in (Awuah-Offei, 2016) energy efficiency is a 

measure of the ratio between the amount of useful work performed and the energy input. In the 

context of mining, the volume of product produced (such as tonnes of rock or grams of metal) is 

often used as a proxy for useful work. This can be represented by factors such as payload or the 

product of payload and distance traveled (Motlogelwa and Minnitt, 2013; Odhams et al., 2010; 

Oskouei and Awuah-Offei, 2014). Government of Canada (2016) emphasized the urgent 

requirement to decrease GHG emissions in line with the obligations of the Paris Agreement in 

2016 (Paris Agreement, 2016). Nonetheless, the transportation sector, particularly heavy-duty 

freight trucks, has witnessed a notable rise in GHG emissions, accounting for 70% of the overall 

emissions growth between 1990 and 2019 (Government of Canada, 2021a). 

Several research works in green vehicle routing problems have been conducted in diverse 

industries, including bus routing, healthcare supply chain, winter service vehicle management, 

garbage truck scheduling, carsharing systems, and more. Some of the notable studies include those 

by Li et al. (2021), Ganji et al. (2020), Erdinç et al. (2019), Abdi and Taghipour (2018), Li et al. 

(2018), Lukman et al. (2018), Kumar and Rahman (2014), and Upreti et al. (2014). These studies 

reflect a growing interest in developing eco-friendly transportation solutions across various 

sectors. The literature on green vehicle routing problems in various industries shows significant 

depth and breadth, highlighting a strong emphasis on environmental considerations. Also, 

extensive research has been conducted to introduce various methods and approaches in different 

industries for green vehicle routing and transportation. For example, Cao et al. (2022) investigated 

the green routing problem using smart internet of things (IoT) (Ashton, 2009). In contrast, the 

mining sector's research on eco-friendly vehicle routing is relatively limited. As the mining 

industry faces increasing pressure to adopt greener practices, further exploration and investigation 

of green vehicle routing strategies could pave the way for more energy-efficient transportation 

solutions and reduced environmental impact. 
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Awuah-Offei (2016) conducted an extensive review of the ongoing research related to energy 

efficiency in the mining industry, placing special emphasis on the importance of operators in 

optimizing energy efficiency during loading and hauling operations. This research claimed that 

increasing payloads leads to more fuel consumption, but it improves fuel efficiency, as it increases 

the productivity. However, beyond a certain point, higher payloads results in lower fuel efficiency 

due to slower travel velocity and potential mechanical damage from exceeding the maximum load 

limits. Yu et al. (2016) introduced a decision-support model to maximize surface coal mining 

productivity through efficient operational planning. Their model, based on mixed integer 

programming, optimized shovel production plans and truck allocations to minimize operational 

costs, fuel consumption, and GHG emissions. Additionally, it considered uncertainties related to 

equipment failure using a multi-scenario decision-aided system. Gonzalez et al. (2017) presented 

a simulation-based methodology for evaluating the sustainability in underground mining projects. 

The simulation took into account various factors, including the trucks' speed, loading and 

unloading time, time between failures, and time to repair, which were modeled using statistical 

distributions. Their goal was to determine the optimal balance between carbon emissions and 

operational costs. Patterson et al. (2017) introduced a novel MILP optimization model to schedule 

mining haulage activity, aiming to minimize energy consumption. They applied this model in a 

case study conducted in an open-pit coal mine located in Queensland, Australia. A constructive 

algorithm and tabu search solution were used to solve the model. The model considered 

heterogeneous equipment and four equipment activities: trucks traveling, trucks idle, shovels 

loading, and shovels idle. Mohtasham et al. (2021) developed a goal programming model based 

on mixed integer linear programming for optimizing truck and shovel scheduling in open-pit 

mines. The primary objectives of this model were to maximize production while minimizing 

deviations in head grade, tonnage, and fuel consumption. The model was implemented with a case 

study of the Sungun copper mine in Iran, using a fleet of trucks and shovels, and was solved with 

the CPLEX solver in the GAMS environment (GAMS Development Corporation, 2019). In a 

subsequent study to address uncertainty in fleet cycle times, Mohtasham et al. (2022) proposed a 

multi-stage approach for optimal materials handling in open-pit mines, including simulation-based 

optimization and a novel heuristic algorithm for operational real-time decision-making. The 

approach aimed to minimize the production loss, deviations in head grade and tonnage, and fuel 

consumption of mining trucks. Vergara-Zambrano et al. (2022) developed a model that minimizes 
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annual costs and GHG emissions in a copper mining industry. In an effort to minimize emissions 

in their model, a carbon tax was applied with a price range of 100 to 1,000 USD per ton of CO2-

equivalent. They established an optimization model considering dispatch carbon cost, 

transportation cost, and various dispatch constraints. Amiri et al. (2023) proposed a new bi-

objective programming model for transportation problem using trucks. They considered two 

objectives: minimizing total transportation costs and minimizing total GHG emissions. They 

integrate three multi-objective solution methods: weighted-sum, epsilon constraint, and hybrid 

methods with the Adaptive Large Neighborhood Search algorithm and test the model using real-

world locations in Canada. The bi-objective model provides a promising solution to the challenge 

of balancing cost efficiency and GHG mitigation in the trucking industry. They proved that, even 

a slight rise in transportation expenses can yield substantial reductions in GHG emissions, through 

their case study. Huo et al. (2023) focused on enhancing truck fleet dispatching in open-pit mining 

operations through the implementation of a reinforcement learning-based approach. The main goal 

of their study was to achieve smarter fleet management and reduce GHG emissions. 
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3 THEORETICAL FRAMEWORK 

3.1 Introduction 

This chapter delves into the theoretical foundations of integrated simulation and optimization 

framework for truck dispatching in open-pit mines. Within the framework, the mining operation, 

processing plants, and operational decision-making tools establish communication channels. The 

framework is utilized to address not only the truck dispatching problem but also truck fleet 

selection and sizing problem in open-pit mines. 

Whitin the development of the integrated simulation and optimization framework for open-pit 

mining operation, this chapter places emphasis on constructing a multi-objective mixed integer 

goal programming (MOMIGP) model to solve the truck dispatching problem in the optimization 

part of the framework. The MOMIGP truck dispatching model aims to optimize production by 

minimizing equipment idle time, deviations from planned production requirements, and total GHG 

emissions resulting from trucks fuel consumption. This model effectively tackles the truck 

dispatching decision-making problem, considering uncertain input parameters. 

3.2 Benchmark models 

One of the most widely used truck dispatching systems in the entire mining industry, catering 

specifically to open-pit mines, is the Modular Mining Dispatch (MODULAR MINING) developed 

by White and Olson (1993; 1986). This system provides real-time truck dispatching, which is a 

critical aspect of efficient mining operations. In the Modular Dispatch system, the truck 

dispatching decision-making process relies on two main lists: "needy shovels" and "available 

trucks." The "needy shovels" list consists of shovels that are in need of a truck, and these shovels 

are prioritized based on the urgency of truck assignments. On the other hand, the "available trucks" 

list is prioritized according to the trucks' next availability. The dispatching process involves 

assigning the first available truck to the shovel at the top of the "needy shovels" list, and this 

process is repeated until all trucks have been dispatched. Due to its effective and widespread 

implementation, Modular Dispatch has become the dominant mining fleet dispatching system in 

the market. It boasts a substantial number of installations, with over 400 successful deployments 

in large-scale open-pit mines worldwide. To assess the effectiveness of the proposed robust 

framework presented in this thesis, the Modular Dispatch system is used as a benchmark for 
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comparison. This decision is based on its reputation and proven track record as a reliable and 

efficient mining fleet dispatching solution. 

For the purpose of real-time truck dispatching in open-pit mines, Moradi Afrapoli et al. (2019) 

developed a tri-objective transportation model to minimize shovel idle times, truck wait times, and 

deviations from path production requirements, simultaneously. The model can handle 

heterogeneous fleets of different sizes and types and requires no human intervention to meet the 

target production rate. The model is to be solved every time a truck requires a new assignment and 

considers operational parameters such as stripping ratio requirements, available transporter 

capacity, required plant throughput, and shovel digging rate. Achieving full processing plant 

capacity with 14% fewer trucks compared to the desired fleet obtained via the Modular Mining 

Dispatch method, their tri-objective model fulfills production requirements using only 86% of the 

designated fleet size. Since this model has satisfied the predetermined production rate requirement, 

it is considered as another benchmark model. 

3.3 Quad-objective optimization model (covering the fuel consumption) 

This section introduces a new mathematical model for real-time truck dispatching, which serves 

as an optimization model for this research. It is an extended version of the mathematical model 

presented in (Moradi Afrapoli, 2018; Moradi Afrapoli et al., 2019) that is the benchmark model of 

this research. The primary contribution of the model in this research lies in its consideration of the 

environmental impacts of the dispatching process by adding another objective function to 

minimize the total trucks’ fuel consumption and consequently minimize the GHG emissions. There 

are various formula to calculate the fuel consumption and the equivalent carbon emission (Li et 

al., 2018). In this research, the formulation of the fuel consumption objective function is derived 

from the equation introduced in the study conducted by Dindarloo and Siami-Irdemoosa (2016). 

They applied regression analysis in their case and formulated the fuel consumption for the truck 

type CAT 785C. Equation (1) provides the formula: 

 
𝐹(

𝑙

𝑐𝑦𝑐𝑙𝑒
) = 1.37071 + 0.00483 × 𝑃𝐿 + 0.00398 × 𝐿𝑇 + 0.00499 × 𝐸𝑆

+ 0.01471 × 𝐸𝑇𝑅 + 0.00278 × 𝐿𝑆 + 0.0519 × 𝐿𝑇𝑅 

(1) 

 

Following is a list of variables that are represented in Equation (1): 
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F: fuel consumption per cycle (liters) 

PL: payload (tonnes) 

LT: loading time (seconds) 

ES: empty idle time (seconds) 

ETR: empty travel time (seconds) 

LS: loaded idle time (seconds) 

LTR: loaded travel time (seconds) 

In the case study presented in Chapter 4, as there are two types of trucks available including CAT 

785C, and CAT 793C, let's introduce the fuel consumption formula used for CAT 793C trucks as 

well. The fuel consumption for the CAT 793C truck type in the scenarios is calculated using 

Equation (1), where a specific coefficient, derived from the Caterpillar handbook (Caterpillar 

Performance Handbook Edition 29, 1999), is multiplied with it. This coefficient takes into account 

various factors like normal load and haul time, varying load and haul road conditions, some 

adverse grades, and some high rolling resistance. The resulting fuel consumption for CAT 793C is 

approximately 1.59 times higher than that of CAT 785C. Thus, Equation (2) presents the formula 

used to calculate the fuel consumption for the CAT 793C truck type in each cycle. 

 
𝐹(

𝑙

𝑐𝑦𝑐𝑙𝑒
) = 2.17943 + 0.00768 × 𝑃𝐿 + 0.00633 × 𝐿𝑇 + 0.00793 × 𝐸𝑆

+ 0.02339 × 𝐸𝑇𝑅 + 0.00442 × 𝐿𝑆 + 0.0825 × 𝐿𝑇𝑅 

(2) 

 

Within the optimization model, numerous indices, parameters, and decision variables are available. 

Following is a list of the indices: 

𝑡 Index for set of trucks: 𝑡 = {1, … , 𝑇} 

 

𝑠 Index for set of shovels: 𝑠 = {1, … , 𝑆} 

 

𝑑 Index for set of dumping points: 𝑑 = {1, … , 𝐷} 

 

𝑑′ Index for set of locations where trucks are required to dump their load 

before traveling to the new shovel: 𝑑′ = {1, … , 𝐷} 
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𝑤 Index for set of weights assigned to individual goals: 𝑤 = {1, 2, 3, 4} 

 

𝑔 index for the group of trucks that are currently waiting in a queue of the 

shovel: 𝑔 = {1, … , 𝑁𝑇𝑊𝑆} 
 

Following is a list of the decision variables: 

𝑥𝑡𝑠𝑑 Binary variable equals to 1 if truck t assigns to the path of shovel 𝑠 to 

dumping point 𝑑 , and 0 otherwise 

 

𝑦𝑠𝑑
−  Negative deviation of the met path flow rate and the desired path flow rate 

for the path between shovel 𝑠 and dumping point 𝑑 

 

𝑦𝑠𝑑
+  Positive deviation of the met path flow rate and the desired path flow rate 

for the path between shovel 𝑠 and dumping point 𝑑 
 

Following is a list of the parameters: 

𝐼𝑇𝑡𝑠𝑑 Idle time for shovel 𝑠 if truck 𝑡 is assigned to transport material from shovel 

𝑠 to the dumping point 𝑑 

 

𝑊𝑇𝑡𝑠𝑑 Wait time for truck 𝑡 if it is assigned to transport material from shovel 𝑠 to 

the dumping point 𝑑 

 

𝑁𝑤 Normalized weights of individual goals based on priority 

 

𝐴𝐹 A factor balancing available trucks with the required capacity of plants 

 

𝑃𝐶𝑑 Capacity of the plant 𝑑: 𝑑 = {1, … , 𝑃} ⊂ {1, … , D} 

 

𝑆𝐶𝑠 Production capacity of shovel 𝑠 

 

𝑀𝑃𝑠𝑑 Path flow rate for the path from shovel 𝑠 to the dumping point 𝑑 that the 

production operation has met so far 

 

𝑇𝐶𝑡 Actual capacity of truck 𝑡 (tonne) 

 

𝑁𝑇𝐶𝑡 Nominal capacity of truck 𝑡 (tonne) 

 

𝑃𝑠𝑑 Path flow rate for the path from shovel 𝑠 to the dumping point 𝑑 

 

𝑇𝑅𝑡𝑠𝑑 Next time truck 𝑡 reaches shovel 𝑠, if truck 𝑡 is assigned to transport 

material from shovel 𝑠 to the dumping point 𝑑 
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𝑆𝐴𝑡𝑠𝑑 Next time shovel 𝑠 is available to serve truck 𝑡, if truck 𝑡 is assigned to 

transport material from shovel 𝑠 to the dumping point 𝑑 

 

TNOW Current time of the operation/simulation 

 

𝐿𝐷𝑡𝑑′ The distance truck 𝑡 must travel to reach the dumping point 𝑑′ to dump its 

load 

 

𝐸𝐷𝑡𝑑′𝑠 The distance truck 𝑡 must travel from the dumping point 𝑑′ to the next 

expected shovel 𝑠 

 

𝐴𝐿𝑇𝑡 Average loading time of truck 𝑡 

 

𝐴𝑃𝐿𝑡 Average payload of truck 𝑡 

 

𝐿𝑉𝑡𝑑′𝑠 Average loaded velocity of truck 𝑡 traveling to dumping point 𝑑′ and will 

travel to shovel 𝑠 after dumping its load 

 

𝐸𝑉𝑡𝑑′𝑠 Average empty velocity of truck 𝑡 traveling from dumping point 𝑑′ to the 

next expected shovel 𝑠 

 

𝐷𝑄𝑡𝑑′ Queue time for truck 𝑡 in the queue of the dumping point 𝑑′ 

 

𝐷𝑇𝑡𝑑′ Dump time for truck 𝑡 to dump its material in dumping point 𝑑′ 

 

𝑁𝑇𝑊𝑆𝑠 Number of trucks waiting in queue at shovel 𝑠 

 

𝑆𝑇𝑔 Spotting time for the truck 𝑔 in the queue 

 

𝐿𝑇𝑔 Loading time for the truck 𝑔 in the queue 

 

𝛼𝑡 Intercept of truck 𝑡 for the fuel consumption  

 

𝛽𝑡 Payload coefficient of truck 𝑡 for the fuel consumption 

 

𝛾𝑡 Loading time coefficient of truck 𝑡 for the fuel consumption 

 

𝜏𝑡 Idle time coefficient of truck 𝑡 for the fuel consumption 

 

𝜔𝑡 Empty traveling time coefficient of truck 𝑡 for the fuel consumption 

 

𝜑𝑡 Loaded traveling time coefficient of truck 𝑡 for the fuel consumption 

 

𝑆𝐼𝑇𝑡𝑠𝑑 Shovel idle time coefficient, by assigning truck 𝑡 to the path of shovel 𝑠 to 

dumping point 𝑑  
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𝑇𝑊𝑇𝑡𝑠𝑑 Truck wait time coefficient, by assigning truck 𝑡 to the path of shovel 𝑠 to 

dumping point 𝑑 

 

𝐹𝑡𝑠𝑑 Truck fuel consumption coefficient, by assigning truck 𝑡 to the path of 

shovel 𝑠 to dumping point 𝑑  

 

 

Equation (3) is utilized for determining the arrival time of each truck 𝑡 to be loaded by shovel 𝑠. 

Meanwhile, Equation (4) is employed to calculate the shovel availability, representing the next 

time shovel 𝑠 is available to load truck 𝑡. 

 
𝑇𝑅𝑡𝑠𝑑 = 𝑇𝑁𝑂𝑊 +

𝐿𝐷𝑡𝑑′

𝐿𝑉𝑡𝑑′𝑠
+ 𝐷𝑄𝑡𝑑′ + 𝐷𝑇𝑡𝑑′ +

𝐸𝐷𝑡𝑑′𝑠

𝐸𝑉𝑡𝑑′𝑠
 

                 ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} & ∀𝑑′ ∈ {1, … , 𝐷} 

(3) 

 

 

𝑆𝐴𝑡𝑠𝑑 = 𝑇𝑁𝑂𝑊 + ∑ (𝑆𝑇𝑔 + 𝐿𝑇𝑔) 

𝑁𝑇𝑊𝑆𝑠

𝑔=1

 

                  ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 

(4) 

   

Equations (5), (6) and (7) are utilized to compute the coefficients for three objectives within the 

optimization problem. These coefficients correspond to the shovel idle time, truck wait time, and 

fuel consumption objective functions, respectively. 

 𝑆𝐼𝑇𝑡𝑠𝑑 = max (0, 𝑇𝑅𝑡𝑠𝑑 − 𝑆𝐴𝑡𝑠𝑑)          

                  ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 

(5) 

 

 𝑇𝑊𝑇𝑡𝑠𝑑 = max (0, 𝑆𝐴𝑡𝑠𝑑 − 𝑇𝑅𝑡𝑠𝑑)        

                    ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 

(6) 

 

 𝐹𝑡𝑠𝑑 = 𝛼𝑡 + 𝛽𝑡 × 𝐴𝑃𝐿𝑡 + 𝛾𝑡 × 𝐴𝐿𝑇𝑡 + 𝜏𝑡 × 𝑇𝑊𝑇𝑡𝑠𝑑 + 𝜔𝑡  
𝐸𝐷

𝑡𝑑′𝑠

𝐸𝑉𝑡𝑑′𝑠

+ 𝜑𝑡  
𝐿𝐷

𝑡𝑑′

𝐿𝑉𝑡𝑑′𝑠

       

∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} & ∀𝑑′ ∈ {1, … , 𝐷} 

(7) 

 

The model uses the following objective functions: 
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• Shovel idle time minimization (Eq. 8) 

• Truck wait time minimization (Eq. 9) 

• Target path flow rates’ deviations minimization (Eq. 10) 

• Fuel consumption minimization (Eq. 11) 

 

𝑓1 = ∑ ∑ ∑ 𝑆𝐼𝑇𝑡𝑠𝑑𝑥𝑡𝑠𝑑

𝐷

𝑑=1

𝑆

𝑠=1

𝑇

𝑡=1

 

(8) 

 

𝑓2 = ∑ ∑ ∑ 𝑇𝑊𝑇𝑡𝑠𝑑𝑥𝑡𝑠𝑑

𝐷

𝑑=1

𝑆

𝑠=1

𝑇

𝑡=1

 

 

(9) 

 

𝑓3 = ∑ ∑(𝑦𝑠𝑑
− + 𝑦𝑠𝑑

+ )

𝐷

𝑑=1

𝑆

𝑠=1

 

 

(10) 

 

𝑓4 = ∑ ∑ ∑ 𝐹𝑡𝑠𝑑𝑥𝑡𝑠𝑑

𝐷

𝑑=1

𝑆

𝑠=1

𝑇

𝑡=1

 

 

(11) 

By employing the normalization process outlined in the work of Grodzevich and Romanko (2006), 

the values of 𝑓�̅� , 𝑖 = {1, 2, 3, 4} are calculated for the objectives. This research aims to optimize the 

weighted sum of the objectives that have been normalized (Equation (12)). 

• Weighted sum objective function (Eq. 12) 

 𝑓 = 𝑁1𝑓1̅ + 𝑁2𝑓2̅ + 𝑁3𝑓3̅ + 𝑁4𝑓4̅ 

 

(12) 

The constraints used in the model are as follows: 

• Truck capacity constraint (Eq. 13) 

• Plant production requirement constraint (Eq. 14) 

• Shovel digging rate constraint (Eq. 15) 

• Deviation of the path flow rate constraint (Eq. 16) 

• Truck’s assignment binary decision variable (Eq. 17) 
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• Non-negativity for deviations below the target path flow rate (Eq. 18) 

• Non-negativity for deviations above the target path flow rate (Eq. 19) 

• Production adjustment factor constraint (Eq. 20) 

   

 

∑ ∑ 𝑇𝐶𝑡𝑥𝑡𝑠𝑑

𝐷

𝑑=1

𝑆

𝑠=1

≤ 𝑁𝑇𝐶𝑡                                 ∀𝑡 ∈ {1, … , 𝑇} 

(13) 

   

 

∑ ∑ 𝑇𝐶𝑡𝑥𝑡𝑠𝑑

𝑆

𝑠=1

𝑇

𝑡=1

≥ 𝐴𝐹 × 𝑃𝐶𝑑                          ∀𝑑 ∈ {1, … , 𝑃} 

(14) 

   

 

∑ ∑ 𝑇𝐶𝑡𝑥𝑡𝑠𝑑

𝐷

𝑑=1

𝑇

𝑡=1

≤ 𝑆𝐶𝑠                                     ∀𝑠 ∈ {1, … , 𝑆} 

(15) 

   

 

∑ 𝑇𝐶𝑡𝑥𝑡𝑠𝑑 +

𝑇

𝑡=1

𝑀𝑃𝑠𝑑 + 𝑦𝑠𝑑
− − 𝑦𝑠𝑑

+ = 𝑃𝑠𝑑       ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 

(16) 

 

   

 𝑥𝑡𝑠𝑑 ∈ {0,1}                           ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} (17) 

   

 𝑦𝑠𝑑
− ≥ 0                                            ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} (18) 

   

 𝑦𝑠𝑑
+ ≥ 0                                            ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} (19) 

 

 
𝐴𝐹 =  

∑ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑟𝑢𝑐𝑘𝑠

∑ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑝𝑎𝑡ℎ𝑠
     

(20) 

 

The optimization model comprises four distinct objectives, each serving a specific purpose. The 

first objective aims to minimize the idle time of active shovels by utilizing Equation (8) to calculate 

the summation of this value. The second objective seeks to minimize the wait time of trucks during 

operation by computing the summation of this value through Equation (9). As for the third 
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objective, it follows a goal programming approach with the objective of minimizing the deviation 

from the flow rates of the paths, as calculated in Equation (10). Finally, the fourth objective 

function targets the minimization of total fuel consumption by active trucks in the system, 

employing Equation (11) for this purpose. These objectives have different scales and exert varying 

levels of influence on the system. The model is also characterized as a MILP (Mixed Integer Linear 

Programming) model and requires a non-preemptive mixed integer linear weighted sum goal 

programming approach for solving. 

To solve the model, the four objectives are transformed into dimensionless objectives by utilizing 

Nadir (𝑁𝑖) and Utopia (𝑈𝑖) points, as proposed in (Grodzevich and Romanko, 2006). In this 

approach, the Utopia point sets a lower bound for individual objectives, while the Nadir point sets 

an upper bound. By determining these points, the lower and upper bounds of the interval within 

which the objective functions will vary in the Pareto optimal set can be established. In case of 

considering only one objective, the optimization will lead to the Utopia point, which provides the 

minimum values for individual objectives. The upper bounds, on the other hand, are determined 

using the components of a Nadir point. The normalization of objectives is achieved by employing 

Nadir and Utopia points, which scales them within the range of 0 to 1 (Equation (21)). To determine 

the priority weights necessary for the weighted sum method, each component of the objective 

function described in Equation (12) is a weighted and normalized version of an individual 

objective from Equations (8) to (11). 

𝑓�̅� =
𝑓𝑖 − 𝑈𝑖

𝑁𝑖 − 𝑈𝑖
                                     ∀𝑖 ∈ {1,2,3,4} (21) 

A number of constraints are imposed upon the system in order to ensure its efficient operation. A 

truck is limited to its maximum nominal capacity in terms of the amount of tonnage it can transport 

in one payload under constraint (13). In regard to constraint (14) it is taken into consideration that 

the material hauled to the processing plants using all the trucks must meet a portion equal to AF 

times the processing target required by each plant. The adjustment factor, AF, is calculated using 

Equation (20), and it is used to adjust the amount of material required at each processing facility. 

In other words, it is only possible to meet the AF portion of the plant's requirements. Constraint 

(15) imposes a restriction on the total haulage capacity directed to a shovel, limiting it to the 

nominal digging rate at that specific shovel. For each path connecting a source to a destination 

point, constraint (16) calculates the deviation of the path flow rate from the desired path flow rate. 
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Lastly, constraint (17) assures that the first set of decision variables is binary, and constraints (18) 

and (19) ensure that the goal programming variables are not negative. To ensure that the system 

operates efficiently, trucks will be dispatched to shovels after the model has been solved. 

3.4 Integrated simulation and optimization Model 

The simulation section of the framework incorporates a step-by-step process, as depicted in Figure 

3.1. Initially, the model checks for active trucks in need of assignment to active shovels and 

destinations. Subsequently, the multi-objective optimization model comes into play, efficiently 

assigning all unassigned trucks. This step ensures that every available truck is efficiently assigned 

to its appropriate tasks. During the simulation, the optimization model is re-run whenever certain 

events occur, such as a truck starts working, a truck completes its dumping, or a truck reactivates 

after a failure. These events trigger the need to reassess the best assignment decision for the truck. 

The optimization process for assigning available trucks continues throughout the simulation 

runtime until it reaches the specified time period designated for the simulation. 

 

Figure 3.1. Flowchart of the simulation and optimization framework 
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3.5 Integrated simulation and optimization Model’s assumptions 

Although the developed dispatching model for trucks in open-pit mines was designed to be 

comprehensive, there are certain aspects that were not considered in this study. These assumptions 

include: 

• The road network remains unchanged throughout the simulation period, without any 

reconstruction or maintenance. 

• The exclusion of equipment maintenance from the simulation time and optimization model. 

• The exclusion of equipment failures for the shovel fleet. 

• The mine operates continuously for 12 hours a day. 

These assumptions should be taken into consideration when interpreting the results of this study. 

3.6 Key performance indicators (KPI)s 

One necessary task is to distinguish the independent and dependent variables in the system. The 

dependent variables measure the performance criteria, while the independent variables represent 

the system parameters. Modifying the independent variables significantly impacts the dependent 

variables. Independent and dependent variables also aid in recognizing critical events and 

controlling them over time (Upreti et al., 2014). The variables listed below are all important key 

performance indicators (KPIs) in truck dispatching: 

1. Total ore tonnage production: This indicates the overall quantity of ore delivered to the 

plants, which directly impacts the profitability and productivity of the mining operation. 

2. Total ore and waste tonnages mined and delivered: Monitoring the total tonnages of both 

ore and waste materials provides insights into the efficiency of the mining process and 

helps optimize resource utilization. 

3. Utilization of ore and waste shovels: Assessing the utilization of shovels dedicated to 

handling ore and waste materials helps to ensure their optimal usage and identify potential 

bottlenecks or underutilized equipment. 

4. Total and average queue times for trucks: Tracking the queue times for trucks waiting to 

be loaded or unloaded provides information on operational efficiency and helps identify 

areas where delays may occur. 
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5. Fuel consumption of trucks: Managing fuel consumption is crucial for cost control and 

energy efficiency. Monitoring and optimizing fuel usage helps minimize operational 

expenses and reduce carbon emissions. 

6. Fuel consumption of a truck per tonne of production: This metric provides insights into the 

fuel efficiency of trucks in relation to the quantity of material they transport. It helps 

identify opportunities for improving fuel efficiency and reducing operational costs. 

7. Ore TPGOH (tonne per gross operating hour): This indicator measures the productivity of 

the mining operation by calculating the amount of ore extracted per hour of equipment 

operation. Higher TPGOH values indicate better efficiency and productivity. 

8. Stripping ratio: The stripping ratio compares the volume of waste material removed to the 

volume of ore extracted. It provides insights into the balance between ore production and 

waste removal. 

9. Trucks' availabilities and their down times: Monitoring the availability of trucks and 

tracking their down times helps identify potential equipment failure, planned maintenance 

activities, and minimize disruptions to the mining operation. Also, it can affect the TPGOH 

significantly. 

Overall, these variables play a significant role in evaluating and optimizing truck dispatching in 

mining operations, enabling better decision-making, improved operational efficiency, and 

enhanced profitability. 

3.7 Limitations of the model 

While the developed models in this study encompass several important objectives and constraints, 

it is essential to acknowledge that actual open-pit mining operations involve numerous additional 

factors that must be taken into account. Some of these factors include: 

• Shovels’ failures 

• Presence of stockpile 

• Dynamic changes in dump locations 

• Road development 

Especially, shovel’s failure and the presence of stockpile have noticeable impact on the haul fleet 

selection, sizing, and dispatching. Shovel’s failure can noticeably decrease the production rate and 
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directly impact the number of trucks required and their dispatching decisions. The presence of 

stockpiles can improve hauling efficiency by providing a buffer between the excavation and 

processing stages. Stockpiles allow for continuous material flow, especially during equipment 

shutdowns. Consequently, decision-making processes in real-world mining scenarios must 

consider these complex variables to ensure more accurate and effective decision-making in the 

truck dispatching problem. 

Another limitation of this study is the assignment of a 5% optimality gap in the optimization 

process. While this parameter was necessary to ensure computational feasibility, it's important to 

note that a lower optimality gap is generally considered better for achieving more accurate results. 

A smaller optimality gap indicates that the solution obtained by the optimization model is closer 

to the theoretical optimal solution. This limitation might affect the precision of the results and their 

comparison with other methods in this thesis. Ideally, a smaller optimality gap would allow for a 

more accurate evaluation and comparison of the method with others in the field. However, due to 

computational constraints or other practical considerations, the 5% optimality gap was chosen. It's 

essential to keep this limitation in mind when interpreting and generalizing the findings presented 

in this thesis. 
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4 DESIGN OF EXPERIMENTS, VERIFICATIONS, AND 

RESULTS 

4.1 Input data and case study 

The Gol-E-Gohar iron ore mine, located in Iran's Kerman Province, employs a truck and shovel 

material handling system to carry out its mining operations in one of its 12 ore deposits. In Figure 

4.1, the layout of loading and dumping points, as well as the road network for the 11th year of 

operation at the Gol-E-Gohar iron ore mine, is illustrated. The operation involves five shovels, 

with two allocated for extracting ore materials and three for removing waste. Trucks hauling waste 

materials have only one destination option to transport their loads. On the other hand, trucks 

carrying ore materials from each ore shovel have two destination options available to them for 

unloading their loads in either of the plants 1 or 2. Figure 4.2 provides a clearer depiction of the 

variations in elevation between the ore and waste materials. 

 
Figure 4.1. Gol-E-Gohar iron ore mine road network with loading and dumping locations 

 



Kazemi Ashtiani, Mohammadreza         36 

 

 

 

Figure 4.2. Gol-E-Gohar iron ore pit and road network (Moradi Afrapoli, 2018) 

In the evaluation, Hitachi EX2500 and Hitachi EX5500 excavators were encountered, as well as 

Cat 785C and 793C trucks for the hauling process. The mining operation has three destination 

locations: two processing plants, each having two hoppers, and one waste dump with multiple 

dumping points. Table 4.1 presents the allocation of shovels and trucks to the digging and dumping 

points. 

Table 4.1. Available destinations and fleet specification 

Origin Destinations Shovel Type Possible Truck Types 

Shovel 1 
Plant 1 

Plant 2 
Hitachi EX2500 

Cat 785C 

Cat 793C 

Shovel 2 
Plant 1 

Plant 2 
Hitachi EX2500 

Cat 785C 

Cat 793C 

Shovel 3 Waste Dump Hitachi EX5500 
Cat 785C 

Cat 793C 

Shovel 4 Waste Dump Hitachi EX5500 
Cat 785C 

Cat 793C 

Shovel 5 Waste Dump Hitachi EX2500 
Cat 785C 

Cat 793C 
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Table 4.2 illustrates the distances, measured in meters, between each shovel and corresponding 

dumping point. It is important to note that each value represents the average distance from the 

origin points to the specific destination point. 

Table 4.2. Distances in meters 

 Plant 1 Plant 2 Waste Dump 

Shovel 1 4311  3808 4397 

Shovel 2 3972 3469 4058 

Shovel 3 2308 1805 2394 

Shovel 4 2892 2389 2978 

Shovel 5 4243 3740 4329 

 

The input data for the case study comprises both deterministic and stochastic data. Stochastic input 

distributions (retrieved from (Moradi Afrapoli, 2018)) were determined using historical data 

through the Arena Input Analyzer tool (Rockwell Automation, 2019). Incorrect analysis of 

collected data and choosing the wrong distribution can lead to an unrealistic representation of the 

system in a simulation model (Upreti et al., 2014). 

Table 4.3, and Table 4.4 display the characteristics for each shovel type and each truck type, 

respectively. 

Table 4.3. Shovels characteristics 

Shovel Type 
Maximum 

digging rate (tph) 
Capacity (t) Cycle time (s) 

HIT 2500 2300 NORM(14, 1) NORM(17, 0.5) 

HIT 5500 1850 NORM(21, 2) NORM(16, 1) 

 

Table 4.4. Trucks characteristics 

Truck 

Type 

Capacity 

(t) 

Backing time 

(s) 

Dumping time 

(s) 

Empty 

velocity(m/s) 

Loaded 

velocity(m/s) 

CAT 785C 140 
9.5 + 

GAMM(7, 1) 
NORM(60, 27) NORM(10.4, 3.5) 

7 + 

GAMM(0.8, 1.6) 

CAT 793C 240 
0.5 + 

ERLA(5, 3) 
NORM(52, 21) NORM(10.2, 3.2) 

2.3 + 

LOGN(5.2, 2.1) 
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Table 4.5 showcases the spot time in seconds for every combination of truck type and shovel type. 

Table 4.5. Spot time distributions 

Spot Time (s) HIT 2500  HIT 5500 

CAT 785C LOGN(32, 26) LOGN(69, 94) 

CAT 793C LOGN(42, 41) LOGN(79, 114) 

 

Table 4.6 demonstrates the best fitted distribution on the number of loading passes of each shovel 

type loading each truck type. 

Table 4.6. Number of loading passes distributions 

Number of 

Loading Passes 
HIT 2500  HIT 5500 

CAT 785C DISC(0.34,9,0.69,10,1,11) DISC(0.49,5,1,6) 

CAT 793C DISC(0.24,14,0.53,15,0.79,16,1,17) DISC(0.36,9,0.72,10,1,11) 

 

The mine has two processing plants, each equipped with a crusher that has two hoppers to ensure 

a constant supply of material. 2300 tonnes of ore material per hour is the target feed rate for each 

crusher (Table 4.7). Waste material mined from the mining faces is transported by trucks to a waste 

dump, where scrapers are actively working to accommodate simultaneous dumping by trucks. 

Table 4.7. Target feed rates of the active processing plants 

Dumping point Target feed rate (tph)  

Plant 1 Crusher 2300 

Plant 2 Crusher 2300 

 

The simulation run time and the number of replications employed in this case study are presented 

in Table 4.8. The model is designed to simulate a 10-day operation with 12 hours of operation per 

day. The precision and reliability of the outcomes are influenced by the suitable runtime and the 

number of replications. By running the simulation multiple times, the effects of randomness and 

variability can be reduced, leading to more robust outcomes. This is particularly crucial when 
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dealing with complex systems or scenarios with uncertainty. Additionally, a higher number of 

replications enhances the statistical validity of the results, allowing for better inference and 

generalization to real-world situations. It also enables the analysis of rare events or low-probability 

scenarios. Overall, a higher number of replications increases confidence in the simulation results 

and improves decision-making. 

Table 4.8. Simulation runtime and operation time period 

Number of simulation 

replications 

Operational planning 

duration (days) 
Daily operating hours 

5 10 12 

 

The operational planning time frame in this case was set to 10 days with 12 daily operating hours. 

By computing statistics, particularly confidence intervals, around the KPIs, we assess the precision 

and reliability of the results from the 5 replications. The narrow confidence intervals and consistent 

estimated values of the KPIs across the replications suggest that the simulation model's outcomes 

are stable and reliable with 5 replications. 

The requirements for the productions of ore and waste material within 10 operating days are listed 

in Table 4.9. 

Table 4.9. 10 days production requirements 

Total material (kt) Ore material (kt) SR 

1270 552 1.3 

 

The input data used in this research is identical to the input data utilized in the study conducted by 

(Moradi Afrapoli, 2018; Moradi Afrapoli et al., 2019). 

The rest of this chapter is divided into three subsections: scenarios involving modifications of 

objective weights, scenarios examining fleet size and truck types, and scenarios considering truck 

failures. However, the benchmark models are compared with the selected scenario from the first 

part, which involves adjusting the weights of objectives, and the fleet consists of 30 CAT 785C 

trucks without any occurrences of truck failures. 
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4.2 Objectives’ weights 

Selecting appropriate weights for the objective function is a critical aspect of multi-objective 

optimization problems that demands a deep comprehension of the problem domain and 

optimization objectives. One approach to determine the weights involves seeking insights and 

preferences from subject matter experts or stakeholders about the relative significance of different 

objectives. Another method involves conducting sensitivity analysis to observe changes in the 

objective function values resulting from varying the weights of the objectives. The choice of 

weights should stem from a thorough comprehension of the problem, taking into account 

stakeholder preferences, and carefully analyzing the trade-offs among different objectives. In the 

Table 4.10 and Table 4.11, various scenarios have been defined with different weights for the 

objective functions and their corresponding KPIs. 

 

Table 4.10. Weights of the objective functions 

Scenario W1(SIT) W2(TWT) W3(PD) W4(FC) 

S1 0.1 0.25 0.55 0.1 

S2 0.3 0.1 0.5 0.1 

S3 0.1 0.2 0.5 0.2 

S4 0.1 0.1 0.4 0.4 

S5 0.1 0.3 0.4 0.2 

S6 0.2 0.3 0.4 0.1 

S7 0.25 0.25 0.25 0.25 

S8 0.1 0.1 0.7 0.1 

S9 0.1 0.1 0.2 0.6 

S10 0.6 0.1 0.2 0.1 

S11 0.1 0.6 0.2 0.1 

S12 0.1 0.35 0.55 0 

S13 1 0 0 0 

S14 0 1 0 0 

S15 0 0 1 0 

S16 0 0 0 1 
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Table 4.11. Weighted scenarios' KPIs 

Scenario 
Utilization 

Ore (%) 

Utilization 

Waste (%) 

Q Time 

(Mins) 

FC 

(KL) 

Ore Tonnage 

(KT) 

Total Tonnage 

(KT) 

OTPGOH 

(T) 

S1 81.18 55.98 3.66 415.71 552.29 1272.61 4602.46 

S2 81.23 56.07 3.73 413.80 552.36 1273.03 4602.97 

S3 81.19 56.22 3.75 412.53 552.18 1277.73 4601.48 

S4 81.14 56.38 3.66 414.88 552.26 1279.06 4602.19 

S5 81.19 56.23 3.68 414.85 552.36 1277.72 4602.99 

S6 81.28 56.19 3.71 414.05 552.28 1275.51 4602.32 

S7 81.17 56.23 3.66 415.53 552.36 1276.74 4602.97 

S8 81.03 56.31 3.66 415.43 552.44 1276.66 4603.70 

S9 81.16 56.22 3.85 410.04 552.39 1277.51 4603.23 

S10 81.28 56.19 3.61 416.56 552.30 1276.54 4602.49 

S11 81.17 56.26 3.62 416.41 552.35 1278.04 4602.93 

S12 81.23 55.86 3.62 417.11 552.33 1270.68 4602.77 

S13 81.23 56.16 3.64 416.17 552.33 1274.78 4602.71 

S14 81.15 55.32 3.59 419.69 552.35 1263.39 4602.88 

S15 81.15 50.95 4.16 416.98 552.37 1205.09 4603.08 

S16 81.08 55.70 4.18 402.65 552.36 1269.25 4602.96 

 

The results presented in Table 4.11 demonstrate the consistency and stability of Key Performance 

Indicators (KPIs) across different scenarios, which can be attributed to the constraints of the 

mathematical model. As a result, most of these KPIs show relatively minor fluctuations within a 

narrow range, regardless of any adjustments made to the weights of objective functions. Notably, 

the Total Tonnage and Fuel Consumption indicators exhibit the most significant variations. 

Particularly, the weight of the fuel consumption objective function (W4) has a strong negative 

correlation of -0.91 with the total fuel consumption in the simulation model. Additionally, other 

objective functions' weights also demonstrate correlations with their corresponding KPIs. It is 

worthy to note that the correlation coefficient between Total Fuel Consumption and Average Queue 

Time of Trucks is -0.63, suggesting a negative relationship between these two variables. 

Considering that the main goal of this research is to minimize fuel consumption while ensuring an 

acceptable production rate within the 10-day period, we have chosen weight scenario number 9 

for further examination and comparison with the benchmark models. Total production, Average 

truck queue time, and total fuel consumption are displayed for all of scenarios in Figure 4.3, and 

Figure 4.4. 
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Figure 4.3. Total production for different scenarios 

 

 

Figure 4.4. Fuel consumption and queue time in each scenario 

 

4.2.1 Comparison with the benchmark models 

In this section, the Quad-Obj. model (model number 3) (the proposed model in this research) is 

compared with the Modular Mining Dispatch model (model number 1) and Tri-Obj. model (model 

number 2) (both models retrieved from (Moradi Afrapoli et al., 2019)), examining various key 

performance indicators (KPIs) such as tonnages transported to different destinations, stripping 

ratio, Ore TPGOH (tonne per gross operating hour) on a daily basis, waste tonnage per operating 
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day, total fuel consumption, fuel consumption per tonne of production, shovels' utilization, shovels' 

queue time, tonnages extracted by each shovel, and plants' queue time. Statistical data including 

mean, standard deviation, median, standard error, and confidence level are provided for these KPIs. 

It is worth considering that, on average, each experiment consisting of 5 replications had a runtime 

of 60 minutes for the Quad-Obj. model and 50 minutes for the Tri-Obj. model. 

4.2.1.1 Production Tonnages Statistics 

The data in the Table 4.12, Table 4.13, and Table 4.14 represents tonnages statistics for three 

different destinations of Plant 1, Plant 2, and the Waste Dump respectively. Regarding plant 1, the 

Modular Mining Dispatch model has a mean tonnage of 237.64 kt, while the Tri-Obj. and Quad-

Obj. models have means of 276.19 kt and 276.22 kt, respectively. The Tri-Obj. and Quad-Obj. 

models show an increase of approximately 16.23% compared to the Modular Mining Dispatch 

model. Regarding plant 2, the Modular Mining Dispatch model has a mean tonnage of 248.79 kt, 

while the Tri-Obj. and Quad-Obj. models have means of 276.21 kt and 276.19 kt, respectively. The 

Tri-Obj. and Quad-Obj. models exhibit an increase of around 11.01% compared to the Modular 

Mining Dispatch model. Regarding waste dump, the Modular Mining Dispatch model yields a 

mean tonnage of 857.56 kt, while the Tri-Obj. and Quad-Obj. models have means of 698.95 kt and 

725.12 kt, respectively. The Tri-Obj. and Quad-Obj. models show a decrease of approximately 

18.5%, and 15.44% compared to the Modular Mining Dispatch model. The standard deviations 

and standard errors are relatively small for all models, indicating consistency in tonnage estimates. 

The confidence levels are also reasonably low, suggesting high reliability in the model results. 

Table 4.12. Plant 1 Tonnages Statistics (kt) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 237.64 1.73 237.47 0.77 2.15 

Tri-Obj. 276.19 0.03 276.18 0.02 0.04 

Quad-Obj. 276.22 0.03 276.24 0.01 0.03 

Diff. 2 to 1 

(%) 
16.22 -98.06 16.3 -98.06 -98.06 

Diff. 3 to 1 

(%) 
16.23 -98.4 16.33 -98.4 -98.4 

Diff. 3 to 2 

(%) 
0.01 -17.62 0.02 -17.62 -17.62 
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Table 4.13. Plant 2 Tonnages Statistics (kt) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 248.79 0.49 248.77 0.22 0.61 

Tri-Obj. 276.21 0.04 276.23 0.02 0.05 

Quad-Obj. 276.17 0.05 276.17 0.02 0.06 

Diff. 2 to 1 

(%) 
11.02 -91.55 11.04 -91.55 -91.55 

Diff. 3 to 1 

(%) 
11.0 -90.74 11.02 -90.74 -90.74 

Diff. 3 to 2 

(%) 
-0.02 9.62 -0.02 9.62 9.62 

 

Table 4.14. Waste Dump Tonnages Statistics (kt) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 857.56 3.68 858.08 1.65 4.57 

Tri-Obj. 698.95 3.8 697.89 1.7 4.72 

Quad-Obj. 725.12 1.23 725.32 0.55 1.53 

Diff. 2 to 1 

(%) 
-18.5 3.36 -18.67 3.36 3.36 

Diff. 3 to 1 

(%) 
-15.44 -66.6 -15.47 -66.6 -66.6 

Diff. 3 to 2 

(%) 
3.74 -67.68 3.93 -67.68 -67.68 

 

Figure 4.5 illustrates the quantities of materials transported to plant 1, plant 2, and the waste dump 

across all models. Despite the Modular Mining Dispatch model transferring larger overall 

tonnages, it falls short in meeting the capacity of the plants, resulting in less ore being transported 

and a higher amount of waste being moved. In contrast, both the tri-obj. and quad-obj. models 

effectively meet the plants' capacity requirements, as shown in Figure 4.6. However, the quad-obj. 

model transports a higher volume of waste materials, surpassing the tri-obj. model by 3.74% 

(equivalent to 26.17 kt). 
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Figure 4.5. Tonnage Statistics for Plant1, Plant2, and Waste Dump for all modelss 

 

Figure 4.6. Production statistics for plant1, and plant2 
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The Tri-Obj. Model has the lowest average stripping ratio of 1.27, indicating a relatively lower 

waste-to-ore ratio compared to the other models. The Quad-Obj. Model has slightly higher average 

stripping ratio of 1.31, that is because of the higher waste production. The Modular Mining 

Dispatch model average stripping ratio is 1.76 which is significantly higher than other models. The 

absence of standard deviation and standard error values suggests that there is no significant 

variability or uncertainty associated with the mean value of stripping ratio. Table 4.15 and Figure 

4.7 compare models regarding the stripping ratio. 

Table 4.15. Stripping Ratio Statistics 

Model Mean Stdev Median StdErr ConLev 

Dispatch 1.76 0.0 1.76 0.0 0.01 

Tri-Obj. 1.27 0.01 1.26 0.0 0.01 

Quad-Obj. 1.31 0.0 1.31 0.0 0.01 

Diff. 2 to 1 

(%) 
-28.23 69.6 -28.29 69.6 69.6 

Diff. 3 to 1 

(%) 
-25.51 12.21 -25.51 12.21 12.21 

Diff. 3 to 2 

(%) 
3.79 -33.84 3.87 -33.84 -33.84 

 

 

Figure 4.7. Stripping Ratio of all models 
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The Tonne per Gross Operating Hour (TPGOH) is a key performance indicator that holds 

significance across industries such as manufacturing, mining, and transportation. It is crucial 

because it measures operational efficiency, tracks performance, and optimizes costs. By evaluating 

the amount of material or product produced per hour of operation, organizations can identify 

inefficiencies, improve productivity, reduce costs, and compare their performance against industry 

standards. TPGOH serves as a valuable tool for driving operational excellence and resource 

optimization. The Modular Mining Dispatch model has the lowest average TPGOH of 4053.63, 

while the Tri-Obj. and Quad-Obj. models have similar averages TPGOH of 4603.34 and 4603.23, 

respectively. Both the tri-obj. and quad-obj. models utilize the entire hopper capacity, which is set 

at 2300 tonnes per hour for each plant. This utilization of the full hopper capacity contributes to 

the increased ore production in both models. Table 4.16 presents the TPGOH statistics for all 

models. Figure 4.8 shows the average TPGOH levels of all models for 10 days simulation run time. 

The average TPGOH statistics for each operating day, including the average values from all 

replications (Avg) and their corresponding confidence levels (CL), are displayed in Table 4.17 and 

Figure 4.9. Higher TPGOH values are exhibited by the Tri-Obj. and Quad-Obj. models compared 

to the Modular Mining Dispatch model. Additionally, the average TPGOH levels remain relatively 

consistent across all the days. 

Table 4.16. TPGOH Statistics 

Model Mean Stdev Median StdErr ConLev 

Dispatch 4053.63 14.86 4054.47 6.65 18.45 

Tri-Obj. 4603.34 0.21 4600.05 0.09 0.26 

Quad-Obj. 4603.23 0.41 4601.15 0.18 0.5 

Diff. 2 to 1 

(%) 
13.56 -98.59 13.56 -98.59 -98.59 

Diff. 3 to 1 

(%) 
13.56 -97.27 13.55 -97.27 -97.27 

Diff. 3 to 2 

(%) 
0.0 -93.52 -0.01 93.52 93.52 
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Figure 4.8. TPGOH Comparison 

Table 4.17. TPGOH Statistics for 10 operating days 

Day 
Dispatch 

(Avg) 

TriObj 

(Avg) 

QuadObj 

(Avg) 

Dispatch 

(CL) 

TriObj 

(CL) 

QuadObj 

(CL) 

1 4012.86 4629.99 4625.3 120.67 141.13 127.78 

2 4076.25 4601.35 4600.16 78.58 43.15 63.83 

3 4038.46 4591.63 4601.78 80.97 35.3 37.91 

4 4073.57 4612.03 4603.89 69.19 41.89 39.56 

5 4015.35 4598.24 4591.76 78.68 38.82 42.23 

6 4053.8 4599.2 4608.87 70.86 37.16 51.77 

7 4075.8 4598.71 4587.45 75.12 49.5 43.51 

8 4100.51 4597.2 4610.56 58.43 36.58 53.68 

9 4034.97 4604.05 4600.06 78.55 36.92 44.82 

10 4054.77 4601.03 4602.51 70.4 37.37 36.27 
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Figure 4.9. TPGOH for 10 operating days 

In terms of delivered tonnages, the Quad-Obj. model demonstrates its superiority over the Tri-obj. 

model in the transportation of waste materials. Waste tonnage Statistics for 10 operating days is 

shown in Table 4.18. 

Figure 4.10 clearly indicates that the Quad-Obj. model consistently achieves higher waste delivery 

compared to the Tri-Obj. model on each day. However, it is worth noting that the Modular Mining 

Dispatch model surpasses both models in waste delivery, with significantly higher values than the 

Quad-Obj. model, within each day. Despite this, it is important to highlight that the Modular 

Mining Dispatch model fails to meet the required ore tonnages delivery for each plant. 
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Table 4.18. Waste tonnage Statistics for 10 operating days (kt) 

Day Dispatch (Avg) TriObj (Avg) QuadObj (Avg) 

1 85.83 73.48 75.15 

2 85.55 69.68 72.49 

3 84.77 68.93 72.17 

4 85.72 69.22 71.9 

5 86.34 69.6 72.67 

6 85.83 69.7 72.57 

7 86.02 70.31 70.94 

8 86.66 68.87 72.67 

9 85.5 68.92 72.33 

10 85.33 70.23 72.21 

 

 

Figure 4.10. Waste tonnage for 10 operating days 
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4.2.1.2 Fuel Consumption Statistics 

fuel consumption is crucial in mining fleet management due to its impact on cost efficiency, GHG 

mitigation, operational efficiency, and overall competitiveness. In this research, the primary 

emphasis is on minimizing fuel consumption, making it the most significant Key Performance 

Indicator (KPI) after achieving satisfaction in ore tonnages production. 

As shown in Table 4.19, the fuel consumption of Quad-Obj model is 12190 liters lower than the 

previous model (Tri-Obj. benchmark model). Based on the table provided, it can be observed that 

there is low variability in average fuel consumption across all models. 

Table 4.19. Fuel Consumption Statistics (kl) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 370.08 0.85 370.17 0.38 1.05 

Tri-Obj. 422.23 2.14 421.97 0.96 2.66 

Quad-Obj. 410.04 4.53 410.27 2.03 5.63 

Diff. 2 to 1 

(%) 
14.09 153.34 13.99 153.34 153.34 

Diff. 3 to 1 

(%) 
10.8 436.03 10.83 436.03 436.03 

Diff. 3 to 2 

(%) 
-2.89 111.58 -2.77 111.58 111.58 

 

The Modular Mining Dispatch model exhibits the lowest fuel consumption, primarily attributed to 

its focus on selecting the shortest path for each truck and delivering more waste materials rather 

than ore materials. This is influenced by the shorter distances between waste polygons and the 

waste dump in comparison to the distances between ore polygons and plant 1 and plant 2. Figure 

4.11 is the fuel consumption plot for Dispatch, Tri-Obj., and Quad-Obj. models. 

Purhamadani et al. (2021) considered the amount of energy consumed for the transportation of a 

certain quantity of minerals extracted as a criterion to evaluate and compare models in term of fuel 

efficiency. The liters of diesel utilized by each model to transport one tonne of ore materials is 

depicted in Figure 4.12. The Quad-Obj. model was found to exhibit the lowest fuel consumption 

per tonne of ore production, resulting in a reduction of about 2.88% compared to the Tri-Obj. 
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model (equivalent to approximately 22050 liters deduction). When total production, including 

waste materials, is taken into account, this reduction in fuel consumption is increased to 4.88%. 

 

Figure 4.11. Fuel Consumption 

 

Figure 4.12. Fuel Consumption Per Tonne Ore Production 
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Figure 4.13 shows the quantity of liters utilized by each model to generate 1000 tonnes of ore 

materials as well as a bar chart for the total fuel consumption for each model. 

 

Figure 4.13. Fuel consumption per a kilo tonne ore production 

4.2.1.3 Shovels utilization statistics 

Efficient utilization of shovels is crucial in mining operations for various reasons: 

• Enhanced Productivity: Shovels are instrumental in the excavation and loading process, 

particularly in open-pit mining. Maximizing shovel utilization results in efficient material 

handling, leading to increased productivity and the achievement of production targets. 

• Improved Equipment Efficiency: Shovel utilization directly impacts equipment 

performance. Optimized utilization minimizes downtime and idle periods, ensuring that 

the equipment remains active and productive. Effective utilization strategies, such as 

reducing waiting times and optimizing maintenance schedules, contribute to overall 

equipment efficiency. 

• Cost Optimization: Shovel utilization directly affects operational costs. By maximizing 

utilization, mining operations can reduce fuel consumption, maintenance expenses, and 

labor requirements. Smart planning and scheduling of shovel activities optimize resource 

allocation, resulting in cost savings. 
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• Streamlined Time Management: Shovels often serve as critical bottlenecks in mining 

operations. Efficient utilization of shovels minimizes delays and facilitates the smooth flow 

of materials, enabling effective time management. This minimizes production disruptions 

caused by shovel-related issues. 

• Safety and Risk Mitigation: Proper shovel utilization ensures a safe working environment. 

Effective utilization practices, including operator training and adherence to safety 

protocols, reduce the risk of accidents and equipment failures. Well-managed shovel 

utilization enhances operational control and reduces the potential for incidents. 

• Operational Planning and Optimization: Shovel utilization data provides valuable insights 

for operational planning and optimization. Monitoring and analyzing utilization patterns 

help identify areas for improvement, optimize resource allocation, and enhance operational 

efficiency. Utilizing this data-driven approach supports informed decision-making and 

continuous improvement efforts. 

In summary, optimizing shovel utilization is essential for mining operations, driving productivity, 

equipment efficiency, cost optimization, time management, safety, and operational planning. By 

maximizing shovel utilization, mining operations can enhance performance, increase productivity, 

control costs, and achieve long-term success. 

Table 4.20 presents the average utilization data for five different shovels (Shovel 1, Shovel 2, 

Shovel 3, Shovel 4, and Shovel 5) across three different models. Shovel 1 and shovel 2 extract ore 

materials while shovel 3, shovel 4, and shovel 5 extract waste materials. 

Table 4.20. Shovels Utilization (%) 

Model Shovel 1 Shovel 2 Shovel 3 Shovel 4 Shovel 5 

Dispatch 73.25 69.88 57.26 56.82 84.56 

Tri-Obj. 81.11 81.28 44.59 44.94 74.19 

Quad-Obj. 81.22 81.1 44.93 49.89 73.84 

Diff. 2 to 1 

(%) 
10.73 16.31 -22.13 -20.91 -12.26 

Diff. 3 to 1 

(%) 
10.88 16.06 -21.53 -12.2 -12.68 

Diff. 3 to 2 

(%) 
0.14 -0.22 0.76 11.01 -0.47 
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Figure 4.14. Shovels Utilization 

Figure 4.14 illustrates the average utilization patterns of ore and waste shovels in the Dispatch, 

Tri-Obj., and Quad-Obj. models. The higher average utilization for ore shovels is observed in the 

Tri-Obj. and Quad-Obj. models, while the average utilization for waste shovels is lower when 

compared to the Modular Mining Dispatch model. When comparing the Tri-Obj. model and Quad-

Obj. model, it is apparent that the average utilization rates for ore shovels including shovel 1 and 

shovel 2, are quite similar in both models. Additionally, in both models, shovel 1 and shovel 2 

operate at similar rates, with their average utilization hovering around 81%. However, in the 

Modular Mining Dispatch model, the average utilization values for shovel 1 and shovel 2 are 

approximately 73% and 70% respectively, indicating a lower utilization compared to the Tri-Obj. 

and Quad-Obj. models. In terms of waste shovels, shovel 5 exhibits higher utilization in all models 

due to its higher capacity and digging rate. The average utilization of shovel 5 in the Tri-Obj. and 

Quad-Obj. models is around 74%, which is more than 10% lower than its average utilization in the 

Modular Mining Dispatch model. Considering the overall utilization of the shovels, the Quad-Obj. 

model demonstrates its superiority by increasing the utilization rate of shovel 4 (50%) compared 

to the Tri-Obj.  model (45%). 
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4.2.1.4 Queue Time Statistics 

Trucks waiting time, also known as Queue Time, is a vital aspect of a mining fleet system that 

significantly impacts operational efficiency and productivity. The importance of trucks waiting 

time can be understood from the following perspectives: 

• Material Flow Optimization: Trucks queue time directly affects the flow of materials within 

the mining operation. When trucks experience longer wait times in queues before being 

loaded, it leads to disruptions in the material transport chain. Minimizing trucks queue time 

ensures a smooth and continuous flow of materials, optimizing the overall material 

handling process and maximizing production efficiency. 

• Equipment Utilization: Longer trucks waiting time results in underutilization of trucks 

within the fleet. Idle trucks waiting in queues are not actively transporting materials, 

leading to decreased equipment utilization. By minimizing wait times, more trucks can be 

actively engaged in material transport, maximizing the utilization of the fleet and 

improving overall operational efficiency. 

• Production Output: Delays in truck loading caused by longer queue times can have a direct 

impact on the production output of the mining operation. When trucks experience excessive 

wait times, it disrupts the loading sequence, leading to bottlenecks and reduced production. 

Minimizing trucks queue time ensures timely loading of trucks, maintaining a continuous 

material flow, and maximizing production output. 

• Resource Planning: Trucks queue time provides valuable data for resource planning and 

allocation. By analyzing queue time information, mining operations can identify areas of 

congestion and optimize the allocation of resources such as shovels, and trucks. This 

optimization improves overall operational efficiency, reduces inefficiencies in resource 

utilization, and enhances the profitability of the mining fleet system. 

• Cost Efficiency: Reducing trucks’ waiting time helps to minimize operational costs 

associated with idle equipment and fuel consumption. When trucks wait for extended 

periods in queues, it increases fuel consumption and labor costs. By minimizing wait times, 

the operation can reduce fuel consumption and optimize labor utilization, leading to cost 

savings and improved cost efficiency. 
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• Safety Considerations: Excessive wait times for trucks in queues can create congestion and 

potential safety hazards, such as collisions or accidents. Minimizing trucks queue time 

reduces the risk of accidents and enhances overall operational safety within the mining 

fleet system. 

In summary, Trucks waiting time plays a critical role in optimizing material flow, maximizing 

equipment utilization, enhancing production output, improving resource planning, reducing 

operational costs, and ensuring a safe working environment in mining fleet systems. By efficiently 

managing trucks queue time, mining operations can enhance their overall efficiency, productivity, 

and profitability. 

Table 4.21 provides information on the total waiting time in hours for trucks in the queue for three 

different models: Dispatch, Tri-Obj., and Quad-Obj. The waiting times for each shovel are given 

as follows: 

Table 4.21. Trucks Total Queue Time at Each Shovel (Hours) 

Model Shovel1 Shovel2 Shovel3 Shovel4 Shovel5 

Dispatch 75.22 61.98 163.2 141.25 410.08 

Tri-Obj. 155.5 160.69 71.39 79.56 96.53 

Quad-Obj. 165.9 166.72 68.96 130.03 90.69 

Diff. 2 to 1 

(%) 
106.73 159.26 -56.26 -43.67 -76.46 

Diff. 3 to 1 

(%) 
120.55 168.99 -57.75 -7.94 -77.88 

Diff. 3 to 2 

(%) 
6.69 3.75 -3.4 63.44 -6.05 

 

The Modular Mining Dispatch model has relatively lower waiting times for Shovels 1 and 2 

compared to the other models. However, Shovels 3, 4, and 5 experience significantly higher 

waiting times, with Shovel 5 having the longest waiting time of 410.08 hours. This suggests that 

the dispatching system may not be efficient in managing the queue for shovels. Since it does not 

consider queue times, the system simply allocates trucks to shovels based on the shortest available 

path and digging rates. The Tri-Obj. model shows higher waiting times across ore shovels 

compared to the Modular Mining Dispatch model. Shovels 1 and 2 have more than double the 
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waiting times compared to Dispatch. However, Shovels 3, 4, and 5 experience lower waiting times 

compared to the Modular Mining Dispatch model, indicating potential improvements in the queue 

management for those shovels. The Quad-Obj. model generally exhibits higher waiting times 

compared to the Tri-Obj. model. Shovels 1, 2, and 4 experience higher waiting times, with Shovel 

2 having the longest waiting time of 166.72 hours. Shovels 3 and 5 have slightly lower waiting 

times compared to the Tri-Obj. model. Overall, the table highlights variations in truck waiting 

times for different shovels and models. It indicates the potential for optimizing the queue 

management system to reduce waiting times and improve operational efficiency. By analyzing and 

addressing the specific bottlenecks causing longer waiting times, mining operations can enhance 

the productivity and effectiveness of their fleet systems. Figure 4.15 shows the average total trucks’ 

waiting time in hours for each shovel in each model. 

 

Figure 4.15. Trucks Total Queue Time at Each Shovel (Hours) 

The average queue time in mining systems quantifies the waiting period encountered by each truck, 

enabling focused enhancements and efficient dispatching. Conversely, the total queue time 

signifies the cumulative waiting time for all trucks, offering a comprehensive evaluation of system 

efficiency and congestion levels. Both metrics are vital for appraising and enhancing mining 

system performance. The average queue time emphasizes individual truck productivity, while the 

total queue time evaluates overall congestion within the system. Table 4.22 presents the average 
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truck waiting time, measured in minutes, for each shovel in three different models: Dispatch, Tri-

Obj., and Quad-Obj. Here is a brief discussion of the table: 

In the Modular Mining Dispatch model, the average truck waiting times for each shovel vary. 

Shovel 2 has the lowest waiting time of 1.27 minutes, followed by Shovel 1 with 1.47 minutes. 

Shovel 4 has a waiting time of 1.97 minutes, Shovel 3 has a waiting time of 2.23 minutes, and 

Shovel 5 has the highest waiting time of 5.49 minutes. In the Tri-Obj. model, the average truck 

waiting times for each ore shovel are generally higher compared to the Modular Mining Dispatch 

model. However, the average truck waiting times for each waste shovel are generally lower 

compared to the Modular Mining Dispatch model. Shovel 1 has an average waiting time of 2.52 

minutes, Shovel 2 has 2.60 minutes, Shovel 3 has 1.35 minutes, Shovel 4 has 1.69 minutes, and 

Shovel 5 has 1.83 minutes. The Quad-Obj. model shows similar trends to the Tri-Obj. model, with 

slightly higher average waiting times. Shovel 1 has an average waiting time of 2.67 minutes, 

Shovel 2 has 2.69 minutes, Shovel 3 has 1.28 minutes, Shovel 4 has 2.09 minutes, and Shovel 5 

has 1.74 minutes. 

Table 4.22. Trucks Average Queue Time at Each Shovel (Minutes) 

Model Shovel1 Shovel2 Shovel3 Shovel4 Shovel5 

Dispatch 1.47 1.27 2.23 1.97 5.49 

Tri-Obj. 2.52 2.6 1.35 1.69 1.83 

Quad-Obj. 2.67 2.69 1.28 2.09 1.74 

Diff. 2 to 1 

(%) 
71.43 104.72 -39.46 -14.21 -66.67 

Diff. 3 to 1 

(%) 
81.63 111.81 -42.6 6.09 -68.31 

Diff. 3 to 2 

(%) 
5.95 3.46 -5.19 23.67 -4.92 

 

Figure 4.16 depicts the average queue duration, expressed in minutes, for each shovel across 

different models. 
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Figure 4.16. Trucks Average Queue Time at Each Shovel (Minutes) 

In the case of shovel 4, the Quad-Obj. model exhibits a higher average queue time compared to 

the Tri-Obj. model. Also, the total queue time is higher for the Quad-Obj. model. This can be 

attributed to the fact that in the Quad-Obj. model, shovel 4 handles a greater number of cycles and 

loads a higher total number of trucks. As a result, shovel 4 experiences an increased average truck 

waiting time and total truck waiting time compared to the Tri-Obj. model. 

Trucks in the mining fleet do not experience any waiting time when unloading waste materials into 

the designated waste dump. This is because multiple unloading spots are available, ensuring 

efficient waste disposal. In the Modular Mining Dispatch model specifically, trucks predominantly 

transport waste materials and a smaller quantity of ore materials. As a result, there is a lower influx 

of trucks heading towards the processing plants, consequently minimizing, or eliminating any 

queue time for trucks at the plants. Trucks waiting time in plant’s queue is much lower than the 

truck waiting time in shovel’s queue. The reason is that truck’s loading time is higher than truck’s 

dumping time. The average total waiting times of trucks in the queue at Plant 1 and Plant 2 in the 

Quad-Obj. model are approximately 41% and 39% lower, respectively, compared to these key 

performance indicators (KPIs) in the Tri-Obj. model. Also, the average mean waiting times of 

trucks in the queue at Plant 1 and Plant 2 in the Quad-Obj. model are approximately 29% and 28% 

lower, respectively, compared to these key performance indicators (KPIs) in the Tri-Obj. model. 
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Table 4.23, and Figure 4.17 display destinations average total queue time in hour for each model. 

Table 4.24, and Figure 4.18 display destinations average mean queue time in minutes for each 

model. 

Table 4.23. Destinations Total Queue Time (Hours) 

Model Plant1 Plant2 Waste Dump 

Dispatch 0.0 0.0 0.0 

Tri-Obj. 47.0 67.46 0.0 

Quad-Obj. 27.6 41.43 0.0 

Diff. 3 to 2 (%) -41.28 -38.59 0.0 

 

 

 

Figure 4.17. Destinations Total Queue Time 
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Table 4.24. Destinations Average Queue Time (Minutes) 

Model Plant1 Plant2 Waste Dump 

Dispatch 0.0 0.0 0.0 

Tri-Obj. 0.83 1.05 0.0 

Quad-Obj. 0.59 0.76 0.0 

Diff. 3 to 2 (%) -28.92 -27.62 0.0 

 

 

Figure 4.18. Destinations Average Queue Time (Minutes) 

4.2.1.5 Hauled Tonnages Statistics 

Hauled tonnages from each shovel to each destination are crucial in open-pit mining fleet 

management. They are important for production planning, material balance, efficiency analysis, 

equipment utilization, performance evaluation, and cost analysis. Tracking tonnages helps estimate 

materials extracted, reconcile inventory, optimize fleet deployment, and evaluate productivity. 

Overall, hauled tonnages data enables effective truck allocation and dispatching, improves 

operational efficiency, reduces costs, and maintains a safe working environment. 
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Table 4.25, and Figure 4.19 present the average total extracted tonnages, measured in kilotonnes, 

from each shovel in three different models: Dispatch, Tri-Obj., and Quad-Obj. Here is a discussion 

of the data: 

In the Modular Mining Dispatch model, the average total extracted tonnages vary for each shovel. 

Shovel 1 has an average total extracted tonnage of 248.89 kilotonnes, Shovel 2 has 237.55 

kilotonnes, Shovel 3 has 286.45 kilotonnes, Shovel 4 has 283.51 kilotonnes, and Shovel 5 has 

287.60 kilotonnes. In the Tri-Obj. model, the average total extracted tonnages for each shovel show 

different values compared to the Modular Mining Dispatch model. Shovel 1 has an average total 

extracted tonnage of 275.72 kilotonnes, Shovel 2 has 276.68 kilotonnes, Shovel 3 has 222.45 

kilotonnes, Shovel 4 has 224.28 kilotonnes, and Shovel 5 has 252.22 kilotonnes. The Quad-Obj. 

model exhibits similar trends to the Tri-Obj. model, with slight variations in the average total 

extracted tonnages. Shovel 1 has an average total extracted tonnage of 276.49 kilotonnes, Shovel 

2 has 275.9 kilotonnes, Shovel 3 has 224.4 kilotonnes, Shovel 4 has 249.3 kilotonnes, and Shovel 

5 has 251.42 kilotonnes. In Quad-Obj. model trucks deliver about 1% more waste materials from 

the shovel 3, and 11% more waste tonnages from shovel 4 compared to Tri-Obj. model. 

 

Table 4.25. Shovels Total Hauled Tonnages (kt) 

Model Shovel1 Shovel2 Shovel3 Shovel4 Shovel5 

Dispatch 248.89 237.55 286.45 283.51 287.60 

Tri-Obj. 275.72 276.68 222.45 224.28 252.22 

Quad-Obj. 276.49 275.9 224.4 249.3 251.42 

Diff. 2 to 1 

(%) 
10.78 16.47 -22.34 -20.89 -12.3 

Diff. 3 to 1 

(%) 
11.09 16.15 -21.66 -12.07 -12.58 

Diff. 3 to 2 

(%) 
0.28 -0.28 0.88 11.16 -0.32 
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Figure 4.19. Shovels Total Hauled Tonnages (kt) 

Table 4.26, and Figure 4.20 present the total Hauled Tonnages of ore and waste materials to each 

plant and waste dump for each model. 

Table 4.26. Destinations Hauled Tonnages (kt) 

Model Plant1 Plant2 Waste Dump 

Dispatch 237.64 248.79 857.56 

Tri-Obj. 276.19 276.21 698.95 

Quad-Obj. 276.22 276.17 725.12 

Diff. 2 to 1 (%) 16.22 11.02 -18.5 

Diff. 3 to 1 (%) 16.23 11.0 -15.44 

Diff. 3 to 2 (%) 0.01 -0.02 3.74 

 

Waste materials hauled is around 3.74% higher in Quad-Obj. model compared to Tri-Obj. model 

that is about 53.17 kilotonnes of waste materials. 
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Figure 4.20. Destinations Hauled Tonnages (kt) 

The comprehensive statistical data pertaining to the utilization of each shovel, queue times, 

extracted tonnages, queue times at each destination, and hauled tonnages can be found in the 

APPENDIX A. The detailed information is available in Table A. 1 through Table A. 27. These 

statistical measures provide insights into the central tendencies, variability, and differences 

between the models, allowing for a better understanding of their performance characteristics. 

4.2.1.6 Comprehensive Fuel Consumption Comparison 

Table 4.27 presents the average fuel consumption, average tonnage production, and average fuel 

consumption per tonne production for each destination, namely plant 1, plant 2, and the waste 

dump, in both the Tri-Obj. and Quad-Obj. models. For Plant 1 (P1), the Quad-Obj. model shows a 

total fuel consumption of 112.11 kl, representing a 7.02% decrease compared to the Tri-Obj. 

model. The total production in P1 is 276.22 kt, with a negligible difference between the models. 

The fuel consumption per tonne production in P1 is 0.41 l/t in the Quad-Obj. model, reflecting a 

7.03% decrease compared to the Tri-Obj. model. Similarly, for Plant 2 (P2), the Quad-Obj. model 

exhibits a total fuel consumption of 111.91 kl, which is 7.90% lower than the Tri-Obj. model. The 

total production in P2 is 276.17 kt, with a slight difference between the models. The fuel 
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consumption per tonne production in P2 is 0.41 l/t in the Quad-Obj. model, showing a 7.88% 

decrease compared to the Tri-Obj. model. Moving to the Waste Dump (WD), the Quad-Obj. model 

demonstrates a total fuel consumption of 186.01 kl, indicating a 3.26% increase compared to the 

Tri-Obj. model. The total production in the Waste Dump is 725.12.95 kt, showing a 3.74% increase 

compared to the Tri-Obj. model. The fuel consumption per tonne production in the Waste Dump 

is 0.26 l/t in both models, with a slight decrease in the Quad-Obj. model. Considering the total 

values for all destinations, the Quad-Obj. model has a total fuel consumption of 410.04 kl, 

representing a 2.89% decrease compared to the Tri-Obj. model. The total production in the Quad-

Obj. model is 1277.51 kt, showing a 2.09% increase compared to the Tri-Obj. model. The fuel 

consumption per tonne production is 0.32 l/t in the Quad-Obj. model, reflecting a 4.88% decrease 

compared to the Tri-Obj. model. The greatest reduction in fuel consumption occurs at Plant 1 and 

Plant 2 destinations. This can be attributed to the fact that trucks have the flexibility to choose 

between these two locations. On the other hand, the Waste Dump has only one designated location, 

limiting the potential for fuel consumption reduction in that area. 

Table 4.27. Fuel Consumption on each of the Destinations 

Dest. Model 
Total FC 

(kl) 

Diff 

(%) 

Total Production 

(kt) 

Diff 

(%) 

FC/Production 

(l/t) 

Diff 

(%) 

P1Tri 120.58 
-7.02 

276.19 
0.01 

0.44 
-7.03 

P1Quad 112.11 276.22 0.41 

P2Tri 121.51 
-7.90 

276.21 
-0.02 

0.44 
-7.88 

P2Quad 111.91 276.17 0.41 

WDTri 180.14 
3.26 

698.95 
3.74 

0.26 
-0.46 

WDQuad 186.01 725.12 0.26 

TotalTri 422.23 
-2.89 

1251.35 
2.09 

0.34 
-4.88 

TotalQuad 410.04 1277.51 0.32 

 

Table 4.28 presents the findings of the S16 model, identified as the most efficient model in terms 

of fuel consumption, and its comparison with the Tri-Objective benchmark model. The results 

indicate that this scenario in the Quad-Obj. model achieves a 4.64% reduction in total fuel 

consumption, a 1.43% increase in total production, and a 5.98% decrease in fuel consumption per 

tonne of production. 
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Table 4.28. Fuel consumption comparison for the lowest fuel consuming scenario 

Model 
Total FC 

(kl) 

Total Production 

(kt) 

FC/Production 

(l/t) 

Model S16 402.65 1269.25 0.32 

Diff (%) -4.64 1.43 -5.98 

 

4.3 Number of trucks and their type 

Monitoring the total number of trucks and their types is essential for effective fleet management 

and resource allocation. It ensures the availability of adequate equipment for the operational needs 

of the mine. It is considered as an independent variable in this study and it can meaningfully change 

the values of all other KPIs that are dependent variables. Determining the total number of trucks 

and their types is indeed crucial in finding the optimal values for the combination of other key 

performance indicators (KPIs) in mining. The number of trucks and their types within a mining 

fleet wield a distinctive influence on the dispatching of trucks, thereby significantly impacting 

operational efficiency, productivity, and cost-effectiveness. To begin with, the quantity of trucks 

directly governs the fleet's efficiency and productivity. Augmenting the number of trucks has the 

potential to amplify productivity by enabling a greater volume of material transportation. However, 

a careful balance must be struck to prevent congestion, operational delays, and inefficient resource 

utilization that may arise from an excessive fleet size. Hence, judicious consideration is imperative 

to align the fleet's scale with the specific operational demands. The mining industry faces a 

significant challenge in optimizing its equipment selection and utilization to minimize materials 

handling costs and keep up with the trend of technology usage. The efficiency of the equipment 

depends on factors such as utilization, availability, and age. Effective use of technology will play 

a crucial role in shaping the future of the mining industry (Samatemba et al., 2020). When selecting 

trucks for mining operations, fuel efficiency is a critical factor that requires careful 

consideration.(Gonzalez et al., 2017). To avoid the risks of not meeting ore demand due to 

operational uncertainties, mine operators usually assign more trucks than necessary, leading to 

inefficient truck usage and long truck queues at dump locations and shovels. This approach limits 

trucks available for other tasks such as transporting overburden, and short-term truck shortages are 

usually addressed by costly truck rentals. Even small reductions in the total number of available 

trucks can result in substantial savings. Using simulation instead of approximation can improve 

accuracy, and having multiple truck sizes can increase flexibility and efficiency, reducing the total 
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number of trucks assigned and matching the mine's total throughput rate (Ta et al., 2013). In 

addition, the selection of truck types employed in the fleet is pivotal in determining its capacity 

and throughput. Diverse truck types exhibit distinctive payload capacities and capabilities. For 

instance, larger trucks possess superior load-carrying capacities, thereby elevating the mining 

operation's throughput. Conversely, smaller trucks excel in navigating restricted or challenging 

mining areas. Consequently, the deliberate choice of appropriate truck types, based on precise 

payload requirements, becomes paramount in optimizing the fleet's capacity and maximizing 

operational efficiency. Moreover, comprehensive cost analysis should underpin the decision-

making process concerning fleet size and truck types. Expanding the fleet by introducing 

additional trucks incurs costs related to acquisition, maintenance, fuel consumption, and personnel 

requirements. Consequently, a meticulous cost-benefit evaluation is indispensable to strike an 

optimal balance between fleet size aspirations and associated financial implications. By managing 

costs effectively, mining enterprises can achieve resource utilization optimization while 

minimizing financial burdens. Furthermore, the diversity of truck types within the fleet endows it 

with operational versatility. Embracing a varied fleet composition allows mining companies to 

adapt to diverse mining conditions and operational demands. To exemplify, smaller trucks are 

particularly well-suited for the transportation of constrained tonnages of material, given their 

comparatively lower capacity. This characteristic confers enhanced flexibility, allowing them to be 

allocated effectively to capacitated dumping areas. Moreover, their reduced size results in lower 

fuel consumption and decreased carbon emissions, making them environmentally advantageous. 

Conversely, larger trucks excel in the transportation of larger volumes of materials. With their 

greater capacity, they are capable of efficiently handling substantial loads, especially in situations 

where there are no limitations on dumping or unloading capacity. The utilization of larger trucks 

in such scenarios can significantly contribute to improved productivity and streamlined operations, 

facilitating the efficient movement of bulk materials within the mining environment. This 

adaptability enhances fleet flexibility and augments its ability to execute a broad spectrum of 

mining tasks with utmost efficiency. 

In conclusion, the quantity and types of trucks comprising a mining fleet exert a profound influence 

on operational efficiency, productivity, and cost-effectiveness. Achieving an optimal number of 

trucks, truck selection, and dispatching is pivotal to cultivate a productive and economically 

sustainable fleet system. By diligently deliberating these aspects and implementing robust fleet 
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management strategies, mining enterprises can optimize operations, enhance productivity, and 

mitigate costs. 

Table B. 1, provided in the APPENDIX B, presents a comprehensive overview of key performance 

indicators (KPIs) for a total of 40 distinct truck type and quantity scenarios. The first nine scenarios 

involve a homogeneous fleet composed solely of CAT 785C trucks. Following that, the subsequent 

eight scenarios utilize a homogeneous fleet of CAT 793C trucks, with different quantities of these 

vehicles. The rest of scenarios involve a heterogeneous fleet configuration composed of both CAT 

785C and CAT 793C trucks as part of the system. In reality, a heterogeneous fleet composition can 

lead to better results than a homogeneous one (Salhi and Rand, 1993). 

The findings presented in the table indicate that among the different scenarios analyzed, scenario 

6 comprising 30 CAT 785C trucks in a homogenous fleet, scenario 13 with 18 CAT 793C trucks 

in a homogenous fleet, and scenario 24 involving a combination of 20 CAT 785C trucks and 5 

CAT 793C trucks in a heterogeneous fleet exhibit the most favorable performance in terms of 

meeting production targets and minimizing fuel consumption. These results hold true when 

considering the specific fleet configurations of homogenous CAT 785C, homogenous CAT 793C, 

and a mixed fleet consisting of both CAT 785C and CAT 793C trucks, respectively. The ore 

production tonnages higher than 550000 tonnes is considered satisfactory in our research. 

Considering the primary goal to maximize production, scenario 24 proves to be the optimal choice 

as it meets the production rates and minimizes fuel consumption and reduces carbon emissions. 

This scenario entails a fleet composition of 20 small trucks (CAT 785C) and 5 larger trucks (CAT 

793C). By adopting this configuration, the need for high productivity can be effectively balanced 

with the imperative to minimize fuel consumption and environmental impact, thus aligning with 

the GHG mitigation objective of this study. Scenario 6 exhibits the highest utilization of ore and 

waste shovels, followed by scenario 24. Scenario 13 has the lowest shovels’ utilization among the 

three scenarios. Scenario 6 has the highest average trucks queue time, followed by scenario 24. 

Scenario 13 exhibits the lowest average trucks queue time among the three scenarios. All three 

scenarios exhibit acceptable ore tonnage, with scenario 6 having the slightly higher ore tonnage 

and scenario 13 having slightly lower ore tonnage. Scenario 13 demonstrates the highest total 

tonnage, followed closely by Scenario 6. Scenario 24 has a slightly lower total tonnage compared 

to the other two scenarios. All 3 models have acceptable Stripping ratios. Comparing the fuel 
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consumption of Scenario 6 and Scenario 13 to the lowest fuel consumption of Scenario 24, it is 

evident that Scenario 6 has a ratio difference of 5.83% higher fuel consumption, while Scenario 

13 has a significantly higher ratio difference of 17.35%. 

In Figure 4.21, the data presents the ore and waste productions for different scenarios, along with 

the total fuel consumption. Scenarios where the ore production meets the acceptable threshold are 

distinguished by a border in green color. On the other hand, scenarios with ore production falling 

below the acceptable threshold are indicated by a border in red color. 

 

Figure 4.21. Production and fuel consumption in fleet scenarios 

Another heterogeneous scenario, namely Scenario 20, consisting of 22 CAT 785C trucks and 4 

CAT 793C trucks, demonstrates commendable key performance indicators (KPIs) that closely rival 

those of Scenario 24. Scenario 20 exhibits slightly higher average shovels’ utilizations and average 

and total trucks’ waiting times due to its larger fleet size compared to Scenario 24. Moreover, it 

consumes a slightly greater amount of fuel and handles higher total tonnages of ore and waste, 

albeit transporting less ore tonnage compared to Scenario 24. 

Table 4.29 presents the average number of cycles from each shovel and the number of cycles to 

each destination for every truck in the system of scenario 24. Additionally, it includes the 

percentage of times a truck transports ore material over the total number of cycles (referred to as 

OreCycles %) and the percentage of times a truck transports waste material over the total number 

of cycles (referred to as WasteCycles %). Similarly, Table 4.31 offers the corresponding data, 

specifically for Scenario 20. 
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Table 4.29. Heterogenous fleet cycles of scenario 24 

Truck 

Type 
Truck# SH1 SH2 SH3 SH4 SH5 P1 P2 WD 

OreCycles 

(%) 

WasteCycles 

(%) 

785C 

1 84 82.2 50.4 56.6 51.6 82.8 83.4 158.6 51 49 

2 82.8 77.8 54.4 58.8 55.4 79.4 81.2 168.6 49 51 

3 75.4 78.4 60.4 59.8 58 74.8 79 178.2 46 54 

4 79.8 76.4 60.8 63.4 53 81.2 75 177.2 47 53 

5 80.6 74.6 61.6 67 52.6 75.6 79.6 181.2 46 54 

6 81.6 65.4 60.2 76 57.2 68.8 78.2 193.4 43 57 

7 84.2 67.6 65.8 71.8 51.2 69.6 82.2 188.8 45 55 

8 72.6 71.4 71.4 69.2 57.4 66.8 77.2 198 42 58 

9 81.6 65 66.6 83 51 69.4 77.2 200.6 42 58 

10 71.8 68.4 67.2 85.6 56.4 65.2 75 209.2 40 60 

11 72.2 70.8 77.4 82.4 47.6 69.8 73.2 207.4 41 59 

12 73.6 63.4 72 85.4 54 66.4 70.6 211.4 39 61 

13 73.4 65.8 76.6 88 48.2 67 72.2 212.8 40 60 

14 68.4 68 78.2 88.6 53 67.2 69.2 219.8 38 62 

15 71.4 64.6 79.4 82.8 55.2 63.8 72.2 217.4 38 62 

16 77 64.8 84.2 83.2 45.8 65.2 76.6 213.2 40 60 

17 78.4 64 73.2 80.2 50.2 67.6 74.8 203.6 41 59 

18 76.2 76 78.6 75 43.4 74 78.2 197 44 56 

19 70.6 77.6 78 84.4 41.4 67.6 80.6 203.8 42 58 

20 76 78.2 79 75.6 41 74 80.2 195.6 44 56 

793C 

21 47.8 67.8 48.4 44.8 95.8 67.4 48.2 189 38 62 

22 45.4 60.4 58.4 39 104.2 61.8 44 201.6 34 66 

23 48.2 61 53.8 42.6 98 61.4 47.8 194.4 36 64 

24 52.2 57 54.4 44.4 101.4 58.2 51 200.2 35 65 

25 51.4 61.6 46.8 39.4 103.2 61.8 51.2 189.4 37 63 

 

Table 4.30 provides the average percentage of cycles for each truck type in Scenario 24, while 

Table 4.32 displays the corresponding information for Scenario 20. Both tables present insights 

into the distribution of cycles across different truck types within their respective scenarios. 

Table 4.30. Truck Type’s cycles Comparison of scenario 24 

Truck 

Type 

SH1 

Cycles 

(%) 

SH2 

Cycles 

(%) 

SH3 

Cycles 

(%) 

SH4 

Cycles 

(%) 

SH5 

Cycles 

(%) 

P1 

Cycles 

(%) 

P2 

Cycles 

(%) 

WD 

Cycles 

(%) 

785C 22 21 20 22 15 21 22 57 

793C 16 20 17 14 33 20 16 64 
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Table 4.31 Heterogenous fleet cycles of scenario 20 

Truck 

Type 
Truck# SH1 SH2 SH3 SH4 SH5 P1 P2 WD 

OreCycles 

(%) 

WasteCycles 

(%) 

785C 

1 88.8 74.6 52 53.8 55 82.2 81.2 160.8 50 50 

2 83.4 78.2 57.2 59 50.8 84 77.6 167 49 51 

3 78.8 77.2 53.2 59.6 57.8 77.6 78.4 170.6 48 52 

4 74.4 75.6 59.8 67 56.4 74.8 75.2 183.2 45 55 

5 77.8 75.6 58.2 66.4 54.4 77.2 76.2 179 46 54 

6 79.2 70 62.6 66.2 57.8 76 73.2 186.6 44 56 

7 72.4 68 65.6 73.4 60.6 60.6 79.8 199.6 41 59 

8 77.6 66 64.6 74.8 57.4 66.8 76.8 196.8 42 58 

9 78.2 64.8 63.8 83.4 53.4 69.2 73.8 200.6 42 58 

10 75.4 64.2 68.8 75.4 59.2 65.6 74 203.4 41 59 

11 75.2 66 75.6 73 53.8 60.6 80.6 202.4 41 59 

12 73.8 63.8 73 76 59 64 73.6 208 40 60 

13 68.4 66 81 78.8 53.8 64.6 69.8 213.6 39 61 

14 66 69 74.6 83.2 54.8 64 71 212.6 39 61 

15 71.6 66.4 81.8 82.8 50.2 61.4 76.6 214.8 39 61 

16 73.6 62.8 76.6 84.6 52 68 68.4 213.2 39 61 

17 74.6 67.8 71.8 80.6 51.8 68.2 74.2 204.2 41 59 

18 71.4 69.6 74.4 78.2 53.2 67.2 73.8 205.8 41 59 

19 70.4 72.6 73.8 83.4 47.6 69.4 73.6 204.8 41 59 

20 82.4 66.8 71 78.4 48.6 71.4 77.8 198 43 57 

21 74.8 71.4 75.4 72.8 48.8 69.6 76.6 197 43 57 

22 75.6 76.6 70.8 70.2 46.4 75 77.2 187.4 45 55 

793C 

23 42.8 60.8 49 38.4 108.6 60.2 43.4 196 35 65 

24 42.4 54.6 46.8 41.2 114.4 54.8 42.2 202.4 32 68 

25 46.8 60 52.2 33.8 104.8 60.2 46.6 190.8 36 64 

26 38.8 67 51.2 34.2 106.8 67.2 38.6 192.2 36 64 

 

Table 4.32. Truck Type’s cycles Comparison of scenario 20 

Truck 

Type 

SH1 

Cycles 

(%) 

SH2 

Cycles 

(%) 

SH3 

Cycles 

(%) 

SH4 

Cycles 

(%) 

SH5 

Cycles 

(%) 

P1 

Cycles 

(%) 

P2 

Cycles 

(%) 

WD 

Cycles 

(%) 

785C 22 20 20 22 16 20 22 57 

793C 14 20 17 12 36 20 14 65 

 

Based on the findings, it can be observed that each CAT 793C truck transports greater quantities 

of waste compared to each CAT 785C truck. This can be attributed to the higher capacity of CAT 

793C trucks. Also, it is important to note that while there is no hourly capacity limitation for waste 

dumping, the plants have specific hourly hopper capacities. Trucks with lower capacity make more 

flexibility in transferring of ore materials in the system and they are more appropriate choice to be 

assigned to ore shovels. 
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In terms of ore shovels, it is preferable to assign larger trucks to shovel 2 due to its shorter cycle 

distance compared to shovel 1. This selection criterion also applies to waste shovels, where shovel 

3 is chosen as it is closest to the waste dump. However, there is a notable difference in the 

assignment of large trucks to waste shovel 5 compared to small trucks. This is primarily due to 

shovel 5 having a higher digging rate and capacity compared to the other waste shovels. As a result, 

trucks with higher capacities are required for efficient operations at shovel 5. 

4.4 Trucks’ uptime and downtime 

As open-pit mining equipment becomes larger and more complex, equipment failure can result in 

significant repair costs and production loss. Improving equipment reliability can help mitigate 

these impacts, and the first step is collecting and analyzing the necessary data (Hall and 

Daneshmend, 2003). The effective management of trucks' uptime and downtime plays a pivotal 

role in the fleet management and dispatching of trucks in open-pit mining. It is essential to consider 

these factors in order to enhance the overall productivity and operational efficiency of the mining 

fleet. 

Uptime refers to the duration when trucks are operational and available for hauling tasks. 

Maximizing uptime is of utmost importance as it directly influences the mining operation's ability 

to meet production targets and ensure timely material delivery. Efficient maintenance practices, 

regular inspections, and timely repairs are crucial in minimizing unplanned downtime and ensuring 

prolonged operational periods for trucks. Conversely, downtime pertains to the periods when 

trucks are out of service due to planned maintenance, repairs, or unexpected failures. Effective 

management and minimization of downtime are critical in reducing disruptions in mining 

operations, avoiding costly delays, and enhancing overall operational efficiency. Implementing 

efficient maintenance planning, proactive troubleshooting, and maintaining an inventory of readily 

available spare parts are key strategies in reducing downtime and optimizing truck availability. 

By closely monitoring and managing trucks' uptime and downtime, fleet managers can make 

informed decisions regarding truck dispatching. Understanding the maintenance requirements and 

failure patterns of trucks enables the effective dispatching of trucks, ensuring that trucks are 

assigned to tasks based on their availability and reliability. 
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In the mine dispatching model, considering trucks' failure is essential due to its significant impact 

on key performance indicators (KPIs). Failure events can disrupt productivity, increase idle times, 

and decrease overall performance. By incorporating failure into the model, fleet managers can 

make more accurate decisions that mitigate disruptions and optimize KPIs. 

Truck failures directly affect KPIs such as production rate, utilization, operating costs, and 

equipment availability. Unplanned downtime leads to decreased production rates and lower truck 

utilization, negatively impacting overall efficiency. The dispatching model must account for 

potential failure rates, maintenance needs, and repair times to optimize fleet performance. 

By taking truck failures into account, proactive maintenance planning and scheduling can be 

implemented, thereby minimizing the impact on production. Anticipating failures enables the 

development of contingency plans to cover the missed tonnages that would have been transported 

by the failed trucks during planned downtime. These plans optimize resources and minimize 

unexpected reductions in the production rate. They may involve strategies such as having substitute 

trucks readily available in case of failures, utilizing stockpiles to feed the plant with the missed 

tonnages, or incorporating conveyors into the fleet system. These measures ensure that the mining 

operation can maintain a steady flow of materials, mitigate the effects of truck failures, and 

optimize overall production efficiency. 

Uptimes and downtimes for trucks in the system are assumed to be in random time windows based 

on the distributions in Table 4.33. 

 

Table 4.33. Trucks’ Uptime and Downtime Distributions 

Truck 

Type 
Up Time (Hours) Down Time (Hours) 

CAT 785C LOGNORMAL (90, 30) WEIBULL (17,8) 

CAT 793C LOGNORMAL (100, 40) WEIBULL (30,5) 
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LOGNORMAL (90, 30): 

 

Figure 4.22. CAT 785C Up Time (Hours) Distribution 

The mean of this distribution should be 90 with the standard deviation of 30. Figure 4.22 is the 

frequency plot for this distribution. This lognormal distribution is skewed to the right. 

WEIBULL (8, 17): 

The scale of this distribution should be 17 with the shape of 8. Figure 4.23 is the density plot for 

this distribution. 

 

 

Figure 4.23. CAT 785C Down Time (Hours) Distribution 
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LOGNORMAL (100, 40): 

The mean of this distribution should be 100 with the standard deviation of 40. Figure 4.24 is the 

frequency plot for this distribution. This lognormal distribution is skewed to the right. 

 

Figure 4.24. CAT 793C Up Time (Hours) Distribution 

WEIBULL (5, 30): 

The scale of this distribution should be 30 with the shape of 5. Figure 4.25 is the density plot for 

this distribution. 

 

Figure 4.25. CAT 793C Down Time (Hours) Distribution 
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Table 4.34 shows the key performance indicators (KPIs) of the best scenarios considering trucks' 

failure. These scenarios were previously discussed without taking into account trucks' failure. 

Among them, scenario 6 with a homogeneous fleet of CAT 785C trucks emerges as the optimal 

choice when considering trucks' failure. It demonstrates superior performance in terms of tonnage 

transportation, and production rate. Similar to the previous observation, this scenario showcases 

higher average shovels' utilizations and average trucks' waiting times, which can be attributed to 

the larger number of trucks in the system compared to other scenarios. Although it does not have 

the lowest fuel consumption, it still maintains an acceptable fuel consumption rate per tonne of 

production. 

Considering trucks' failure, a fleet with a higher number of smaller trucks proves to be more 

advantageous in meeting the hourly ore production rate. This is attributed to the increased 

flexibility offered by a larger quantity of smaller trucks, despite their lower average capacity per 

truck. Additionally, smaller trucks exhibit a lower average downtime compared to larger trucks, 

further contributing to their improved performance in the context of trucks' failure. 

Table 4.34. KPIs of the Best Scenarios with the Trucks failure 

Scenario 

Util. 

Ore 

(%) 

Util. 

Waste 

(%) 

Average 

Qtime 

(Mins) 

Total 

Qtime 

(Hrs) 

FC 

(KL) 

Ore 

Tonnage 

(KT) 

Total 

Tonnage 

(KT) 

Ore 

TPGOH 

(T) 

SR 

6(F) 78.09 53.50 3.41 527.40 360.76 530.53 1221.59 4421.10 1.30 

13(F) 66.57 43.29 2.34 189.72 389.25 511.73 1180.48 4264.38 1.31 

24(F) 71.76 50.05 2.91 378.45 343.44 501.73 1170.65 4181.08 1.33 

 

Table 4.35 displays the percentage difference in KPIs resulting from the inclusion of the trucks' 

failure in the models. 

Table 4.35. Differences’ percentages in KPIs considering failure 

Scenarios 

Util. 

Ore 

(%) 

Util. 

Waste 

(%) 

Average 

Qtime 

(Mins) 

Total 

Qtime 

(Hrs) 

FC 

(KL) 

Ore 

Tonnage 

(KT) 

Total 

Tonnage 

(KT) 

Ore 

TPGOH 

(T) 

SR 

6(F) and 

6 
-3.78 -4.84 -11.43 -15.25 -12.02 -3.96 -4.38 -3.96 -0.76 

13(F) and 

13 
-7.03 -10.19 -11.03 -17.39 -14.36 -6.97 -8.86 -6.97 -2.96 

24(F) and 

24 
-8.83 -7.13 -15.65 -21.80 -11.36 -9.03 -8.30 -9.03 1.53 
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Scenario 6 stands out with the least variation in KPIs compared to other scenarios. This suggests 

that incorporating a larger number of smaller trucks in the fleet can minimize production losses in 

the event of unplanned failures. However, when considering the presence of a stockpile or several 

stockpiles in the system and a slightly higher number of trucks in both types, a heterogenous fleet 

still outperforms homogenous fleets. Now, let's discuss three additional scenarios that consider a 

higher number of trucks to examine how the number of trucks can impact the KPIs when trucks’ 

failure is considered. The selected scenarios include Scenario 9 with 36 CAT 785C trucks, Scenario 

15 with 20 CAT 793C trucks, and Scenario 20 with 22 CAT 785C trucks and 4 CAT 793C trucks. 

Table C. 1 and Table C. 2 in APPENDIX C provide important KPIs for 6 scenarios including 

scenarios 6, 9, 13, 15, 20, and 24. Below are the outcomes from the results in the table: 

Even with the addition of 6 more trucks to the fleet of 30 CAT 785C trucks in Scenario 9, the target 

production rate cannot be consistently met due to the requirement of around 30 trucks per hour 

based on the capacities of the plants. Despite having 36 trucks in this scenario, there are still 

instances where the available number of trucks falls below 30. Consequently, the higher number 

of trucks in the system results in a significant increase in waste tonnage transportation compared 

to ore tonnage transportation, leading to an increase in the stripping ratio. Although Scenario 9 

exhibits higher productivity, it is not the most efficient option as it consumes more fuel and fails 

to meet the scheduled stripping ratio rate. The addition of a stockpile would greatly improve this 

scenario's performance in terms of ore tonnage production and enable it to meet the planned 

stripping ratio rate. 

Increasing the number of trucks from 18 CAT 793C trucks (scenario 13) to 20 CAT 793C trucks 

(scenario 15) results in an increase in the production rate. However, it is evident that this increase 

is accompanied by a higher total fuel consumption. Comparing the fuel consumption per tonne of 

production, scenario 13 performs better than scenario 15, making it a more favorable option in 

terms of fuel efficiency. On the other hand, scenario 15 exhibits higher average tonnes per hour of 

operation (TPGOH) and total ore production, which may make it a more attractive choice. 

Ultimately, determining the optimal scenario requires a more comprehensive cost analysis, taking 

into account various factors and considering different operational scenarios. Depending on the 

specific circumstances, either scenario can be the preferred choice. 
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Both scenario 20 and scenario 24 feature a heterogeneous fleet, with scenario 20 having two 

additional CAT 785C trucks and one fewer CAT 973C truck compared to scenario 24. Scenario 20 

exhibits a slightly higher production rate and fuel consumption compared to scenario 24. Both 

scenarios demonstrate high productivity and have similar KPIs. When considering failure 

scenarios, introducing a greater number of small trucks to the optimal heterogeneous scenario can 

lead to increased efficiency. Smaller trucks are more flexible and better suited to meet the desired 

ore production rate, particularly due to the capacity of the hourly hoppers. Their agility allows for 

better adaptation to the operational demands and helps optimize the overall efficiency of the fleet. 

According to the provided failure time statistics, it can be inferred that the CAT 785C truck type 

has a lower average downtime compared to other truck type. However, scenarios involving this 

truck type have a higher total downtime. This is primarily due to the larger number of trucks 

present in the system for these scenarios. 

When considering fuel consumption per tonne production rate as the key factor, scenario 6 with a 

homogeneous fleet of small trucks, as well as scenarios 20 and 24 with heterogeneous fleets, 

emerge as the most reliable and efficient options. However, scenario 6 stands out with a higher 

production rate and its flexibility in truck dispatching, making it the optimal choice when 

accounting for unforeseen failures in the model. 

The failure effects are discussed in detail for 3 of these scenarios. Table C. 3, Table C. 4, Table C. 

5, and Table C. 6 are about failure time of each truck in each replication, trucks’ total and average 

failure times, and daily average TPGOH and trucks availability in the system respectively for the 

fleet with 30 CAT 785C trucks. Table C. 7, Table C. 8, and Table C. 9 provide same information 

data for the fleet with 20 CAT 793C trucks. Lastly, Table C. 10, Table C. 11, and Table C. 12 

present the similar information data for the fleet consisting of 20 CAT 785C trucks and 5 CAT 

793C. 

The results indicate that the daily average number of available trucks in the system has a significant 

impact on the daily average TPGOH, highlighting how a decrease in the number of available trucks 

can lead to a reduction in the TPGOH (Figure 4.26, Figure 4.27). 
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Figure 4.26. Truck failure effect on average TPGOH Whitin Scenario 6: (Homogenous fleet - 30 small trucks) 

 

Figure 4.27. Truck failure effect on average TPGOH Whitin Scenario 24: (Heterogenous fleet - 25 Small and 5 large trucks) 
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5 CONCLUSION AND RECOMMENDATION 

There are several methods to decrease fuel consumption and GHG emission in open-pit mining 

operations, including better dispatching system and proper allocation, applying fuel-efficient 

hauling trucks, decreasing human mistakes by automating the trucks, improving road network, and 

so on. 

The main emphasis of this study was on truck dispatching optimization and determining the 

optimal number of trucks required in the system. The presented model aimed to minimize the 

deviation from the flow rates of the paths, shovel idle time, truck wait time, and truck fuel 

consumption. A significant contribution of this study was the inclusion of fuel consumption 

minimization as an objective to the truck dispatching model, which had both economic and 

environmental benefits. Another major contribution of this work was to consider truck uptime and 

downtime, and subsequently enhancing its reliability and practicality. 

To capture the uncertainty associated with open-pit mining operations, a discrete event simulation 

model using Arena simulation software (Rockwell Automation, 2019) was developed. Various 

scenarios were examined, taking into account objective weights, the number of trucks, and their 

types. The effectiveness of the developed model was illustrated through its application in the Gol-

E-Gohar iron ore mine in Iran, which served as a case study. In the scenario with 30 CAT 785C 

trucks and no failure assumption, fuel consumption was reduced by 4.88% per tonne of production 

compared to the Tri-Obj. benchmark model, leading to a total fuel savings of over 12,000 liters. 

Giving priority to fuel consumption minimization objective, the implementation of the new model 

resulted in a potential reduction of up to 6% in fuel consumption per tonne of production, which 

led to a noticeable overall decrease of up to 20,000 liters in fuel consumption. Additionally, the 

model successfully maintained the scheduled production rate while achieving a 3.74% increase in 

waste material extraction, equivalent to approximately 26.2 kilotonnes over the ten days of the 

simulated operation. The number and types of trucks in a mining fleet significantly impacted 

operational efficiency, productivity, and cost-effectiveness. In addition to an efficient dispatching 

system, optimizing the size and selection of available trucks played a crucial role in establishing a 

productive and energy-efficient haulage system in open-pit mines. Among the explored scenarios, 

scenario 24, which involved a combination of 20 CAT 785C trucks and 5 CAT 793C trucks in a 

heterogeneous fleet, exhibited the most favorable performance in meeting production targets and 
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minimizing fuel consumption. This configuration effectively balanced the need for high 

productivity with the imperative to minimize fuel consumption and environmental impact, aligning 

with the GHG mitigation objective of the study. Scenario 6, consisting of 30 CAT 785C trucks, 

had a 5.83% higher fuel consumption ratio and 5.45% higher fuel consumption per tonne of 

production. Each CAT 793C truck transported greater quantities of waste compared to each CAT 

785C truck, attributed to its higher capacity. It is worth noting that while there was no hourly 

capacity limitation for dumping in the waste disposal area, the plants had specific hourly hopper 

capacities. Trucks with lower capacities offered more flexibility in transferring ore materials within 

the system and were a more appropriate choice for assignment to ore shovels. 

In scenarios where truck failures were considered, a fleet with a higher number of smaller trucks 

proved advantageous in meeting the hourly ore production rate due to increased flexibility, despite 

the lower average capacity per truck. Smaller trucks also exhibited lower average downtime 

compared to larger trucks, further contributing to their improved performance in the context of 

truck failures. When considering fuel consumption per tonne of production rate as the key factor, 

scenario 6 with a homogeneous fleet of 30 number of small trucks, as well as scenarios 20 (with 

22 small trucks and 4 large trucks) and 24 (with 20 small trucks and 5 large trucks) with 

heterogeneous fleets, emerged as the most reliable and efficient options. However, scenario 6 stood 

out with a higher production rate and flexibility in truck dispatching, making it the optimal choice 

when accounting for unforeseen failures in the model. 

In conclusion, considering factors such as truck failures, fuel consumption, and production rates, 

scenario 6 with a homogeneous fleet of 30 number of CAT 785C trucks demonstrated favorable 

performance. However, incorporating one or more stockpiles into the system and having a slightly 

higher number of trucks of both types available would likely lead to a heterogeneous fleet 

outperforming homogeneous fleets, it is important to note that stockpiling was not considered in 

the framework of this study. These considerations ensured a steady flow of materials, mitigated 

the effects of truck failures, and optimized overall production efficiency in the mining operation. 

The effectiveness of the thesis model in reducing fuel consumption can be better demonstrated in 

a larger mine with a more intricate road network, comprising a higher number of shovels and 

diverse unloading points, including stockpiles that can be considered as loading points as well. 
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Considering the age of trucks in simulation and optimization modeling is an important aspect to 

explore in future studies. Age can significantly impact a truck's performance, including factors 

such as failure rates, fuel consumption, and carbon emissions. By incorporating the age factor into 

the model, researchers can gain a more accurate understanding of how aging trucks affect overall 

system efficiency, operational costs, and environmental impact. This analysis can provide insights 

into optimal truck maintenance schedules, replacement strategies, and the potential benefits of 

utilizing newer and more fuel-efficient truck types. 

Another area for future study can involve in incorporating shovel failure into the simulation 

modeling. Shovels play a critical role in the mining operation, and their reliability and downtime 

can have a substantial impact on overall productivity. By considering shovel failures in the 

simulation model, researchers can assess the effects on production schedules, equipment 

utilization, and operational costs. This inclusion would result in a more reliable and realistic model, 

allowing for a comprehensive evaluation of the system's performance and potential areas for 

improvement. 

Furthermore, the current model's lack of stockpile consideration presents an opportunity for future 

research. Stockpiles are essential components in mining operations, serving as buffers to 

accommodate fluctuations in demand and supply. By incorporating stockpiles into the model, 

researchers can analyze their impact on system performance, equipment utilization, and material 

handling efficiency. This enhanced model would provide a more comprehensive understanding of 

the overall mining process, leading to improved decision-making regarding stockpile management, 

equipment requirements, and production planning. 

It is recommended that future studies include consideration of the age of trucks, shovel failure 

analysis, and consideration of stockpiles to improve the reliability, realism, and 

comprehensiveness of the modeling approach. By considering these additional factors, more 

accurate predictions can be made, better optimization strategies can be devised, and ultimately, 

mining operations can become more efficient. In addition, future studies can focus on applying In-

pit crushing and conveying (IPCC) in the mine haulage system. IPCC is a system used in mining 

that involves crushing ore or waste material in the pit and then conveying it to the processing plant 

or waste dump using conveyor belts. This approach reduces operating costs, energy consumption, 

and the need for truck transportation. 
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In-pit crushing and conveying systems (IPCC) are gaining attention due to their lower operating 

costs, continuous operation regime, reduced labor, and lower energy consumption. However, they 

require high capital costs and have reduced flexibility. The combination of IPCC and truck shovel 

hauling systems in open-pit mining offers advantages such as improved productivity, operational 

flexibility, enhanced safety, and energy efficiency. It allows for efficient material handling, reduces 

congestion, and optimizes resource allocation. Additionally, it helps in reducing GHG emissions 

and overall carbon footprint. Therefore, exploring the application of the combined IPCC and truck 

shovel hauling systems in mining as a future study would be advantageous. 
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APPENDIX A 
Table A. 1. Shovel 1 Utilization Statistics 

Model Mean Stdev Median StdErr ConLev 

Dispatch 73.25 0.11 73.28 0.05 0.14 

Tri-Obj. 81.11 0.23 81.0 0.1 0.29 

Quad-Obj. 81.22 0.28 81.3 0.13 0.35 

Diff. 2 to 1 

(%) 
10.72 110.58 10.53 110.58 110.58 

Diff. 3 to 1 

(%) 
10.88 155.29 10.94 155.29 155.29 

Diff. 3 to 2 

(%) 
0.14 21.23 0.37 21.23 21.23 

 

Table A. 2. Shovel 1 Total Queue Statistics (Hours) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 75.22 2.07 75.44 0.93 2.57 

Tri-Obj. 155.5 4.92 157.12 2.2 6.11 

Quad-Obj. 165.9 8.21 164.73 3.67 10.2 

Diff. 2 to 1 

(%) 
106.72 137.46 108.27 137.46 137.46 

Diff. 3 to 1 

(%) 
120.54 296.22 118.36 296.22 296.22 

Diff. 3 to 2 

(%) 
6.68 66.85 4.84 66.85 66.85 

 

Table A. 3. Shovel 1 Average Queue Statistics (mins) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 2.56 2.35 2.32 0.03 0.07 

Tri-Obj. 4.79 3.2 4.51 0.03 0.09 

Quad-Obj. 5.1 3.26 4.87 0.03 0.09 

Diff. 2 to 1 

(%) 
87.11 36.17 94.4 0.0 28.57 

Diff. 3 to 1 

(%) 
99.22 38.72 109.91 0.0 28.57 

Diff. 3 to 2 

(%) 
6.47 1.87 7.98 0.0 0.0 
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Table A. 4. Shovel 1 Hauled Tonnages Statistics (kt) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 248.89 0.65 248.74 0.29 0.81 

Tri-Obj. 275.72 0.68 276.04 0.3 0.85 

Quad-Obj. 276.49 0.72 276.5 0.32 0.89 

Diff. 2 to 1 

(%) 
10.78 4.22 10.97 4.22 4.22 

Diff. 3 to 1 

(%) 
11.09 10.16 11.16 10.16 10.16 

Diff. 3 to 2 

(%) 
0.28 5.7 0.17 5.7 5.7 

 

Table A. 5. Shovel 2 Utilization Statistics 

Model Mean Stdev Median StdErr ConLev 

Dispatch 69.88 0.43 69.83 0.19 0.53 

Tri-Obj. 81.28 0.25 81.26 0.11 0.32 

Quad-Obj. 81.1 0.39 81.2 0.17 0.48 

Diff. 2 to 1 

(%) 
16.32 -41.0 16.37 -41.0 -41.0 

Diff. 3 to 1 

(%) 
16.06 -10.52 16.28 -10.52 -10.52 

Diff. 3 to 2 

(%) 
-0.22 51.66 -0.07 51.66 51.66 

 

Table A. 6. Shovel 2 Total Queue Statistics (Hours) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 61.98 2.86 61.3 1.28 3.55 

Tri-Obj. 160.69 2.78 161.33 1.24 3.45 

Quad-Obj. 166.72 3.42 166.92 1.53 4.24 

Diff. 2 to 1 

(%) 
159.24 -2.57 163.18 -2.57 -2.57 

Diff. 3 to 1 

(%) 
168.97 19.65 172.3 19.65 19.65 

Diff. 3 to 2 

(%) 
3.75 22.81 3.46 22.81 22.81 
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Table A. 7. Shovel 2 Average Queue Statistics (mins) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 2.21 2.22 1.85 0.02 0.07 

Tri-Obj. 4.95 3.26 4.68 0.03 0.09 

Quad-Obj. 5.14 3.34 4.85 0.03 0.09 

Diff. 2 to 1 

(%) 
123.98 46.85 152.97 50.0 28.57 

Diff. 3 to 1 

(%) 
132.58 50.45 162.16 50.0 28.57 

Diff. 3 to 2 

(%) 
3.84 2.45 3.63 0.0 0.0 

 

Table A. 8. Shovel 2 Hauled Tonnages Statistics (kt) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 237.55 1.72 237.09 0.77 2.14 

Tri-Obj. 276.68 0.66 276.36 0.3 0.82 

Quad-Obj. 275.9 0.69 275.93 0.31 0.86 

Diff. 2 to 1 

(%) 
16.47 -61.69 16.56 -61.69 -61.69 

Diff. 3 to 1 

(%) 
16.15 -60.0 16.38 -60.0 -60.0 

Diff. 3 to 2 

(%) 
-0.28 4.4 -0.16 4.4 4.4 

 

Table A. 9. Shovel 3 Utilization Statistics 

Model Mean Stdev Median StdErr ConLev 

Dispatch 57.26 0.4 57.31 0.18 0.5 

Tri-Obj. 44.59 0.3 44.49 0.14 0.38 

Quad-Obj. 44.93 0.26 44.87 0.12 0.33 

Diff. 2 to 1 

(%) 
-22.13 -24.12 -22.37 -24.12 -24.12 

Diff. 3 to 1 

(%) 
-21.52 -34.32 -21.71 -34.32 -34.32 

Diff. 3 to 2 

(%) 
0.78 -13.44 0.85 -13.44 -13.44 
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Table A. 10. Shovel 3 Total Queue Statistics (Hours) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 163.2 6.35 162.81 2.84 7.88 

Tri-Obj. 71.39 5.14 70.07 2.3 6.39 

Quad-Obj. 68.96 5.36 69.6 2.4 6.65 

Diff. 2 to 1 

(%) 
-56.26 -18.95 -56.96 -18.95 -18.95 

Diff. 3 to 1 

(%) 
-57.75 -15.56 -57.25 -15.56 -15.56 

Diff. 3 to 2 

(%) 
-3.41 4.18 -0.67 4.18 4.18 

 

Table A. 11. Shovel 3 Average Queue Statistics (mins) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 4.04 3.69 3.29 0.03 0.09 

Tri-Obj. 2.27 3.07 1.3 0.03 0.09 

Quad-Obj. 2.18 2.86 1.25 0.03 0.08 

Diff. 2 to 1 

(%) 
-43.81 -16.8 -60.49 0.0 0.0 

Diff. 3 to 1 

(%) 
-46.04 -22.49 -62.01 0.0 -11.11 

Diff. 3 to 2 

(%) 
-3.96 -6.84 -3.85 0.0 -11.11 

 

Table A. 12. Shovel 3 Hauled Tonnages Statistics (kt) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 286.45 2.24 286.6 1.0 2.79 

Tri-Obj. 222.45 1.72 222.23 0.77 2.13 

Quad-Obj. 224.4 1.43 223.89 0.64 1.77 

Diff. 2 to 1 

(%) 
-22.34 -23.54 -22.46 -23.54 -23.54 

Diff. 3 to 1 

(%) 
-21.66 -36.36 -21.88 -36.36 -36.36 

Diff. 3 to 2 

(%) 
0.88 -16.78 0.75 -16.78 -16.78 
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Table A. 13. Shovel 4 Utilization Statistics 

Model Mean Stdev Median StdErr ConLev 

Dispatch 56.82 0.39 56.75 0.18 0.49 

Tri-Obj. 44.94 0.37 44.92 0.17 0.46 

Quad-Obj. 49.89 0.27 49.94 0.12 0.34 

Diff. 2 to 1 

(%) 
-20.91 -6.0 -20.85 -6.0 -6.0 

Diff. 3 to 1 

(%) 
-12.19 -31.03 -12.0 -31.03 -31.03 

Diff. 3 to 2 

(%) 
11.02 -26.63 11.18 -26.63 -26.63 

 

Table A. 14. Shovel 4 Total Queue Statistics (Hours) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 141.25 4.36 143.6 1.95 5.41 

Tri-Obj. 79.56 4.09 80.25 1.83 5.08 

Quad-Obj. 130.03 13.56 124.99 6.07 16.84 

Diff. 2 to 1 

(%) 
-43.67 -6.03 -44.12 -6.03 -6.03 

Diff. 3 to 1 

(%) 
-7.94 211.46 -12.96 211.46 211.46 

Diff. 3 to 2 

(%) 
63.43 231.47 55.75 231.47 231.47 

 

Table A. 15. Shovel 4 Average Queue Statistics (mins) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 3.52 3.41 2.8 0.03 0.09 

Tri-Obj. 2.51 4.44 1.34 0.05 0.13 

Quad-Obj. 3.69 4.28 2.32 0.04 0.12 

Diff. 2 to 1 

(%) 
-28.69 30.21 -52.14 66.67 44.44 

Diff. 3 to 1 

(%) 
4.83 25.51 -17.14 33.33 33.33 

Diff. 3 to 2 

(%) 
47.01 -3.6 73.13 -20.0 -7.69 
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Table A. 16. Shovel 4 Hauled Tonnages Statistics (kt) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 283.51 2.03 283.38 0.91 2.52 

Tri-Obj. 224.28 1.63 224.3 0.73 2.02 

Quad-Obj. 249.3 1.57 249.1 0.7 1.95 

Diff. 2 to 1 

(%) 
-20.89 -19.8 -20.85 -19.8 -19.8 

Diff. 3 to 1 

(%) 
-12.07 -22.59 -12.1 -22.59 -22.59 

Diff. 3 to 2 

(%) 
11.16 -3.48 11.05 -3.48 -3.48 

 

Table A. 17. Shovel 5 Utilization Statistics 

Model Mean Stdev Median StdErr ConLev 

Dispatch 84.56 0.25 84.48 0.11 0.31 

Tri-Obj. 74.19 0.42 74.25 0.19 0.52 

Quad-Obj. 73.84 0.36 73.92 0.16 0.44 

Diff. 2 to 1 

(%) 
-12.26 69.72 -12.11 69.72 69.72 

Diff. 3 to 1 

(%) 
-12.67 44.17 -12.5 44.17 44.17 

Diff. 3 to 2 

(%) 
-0.47 -15.06 -0.44 -15.06 -15.06 

 

Table A. 18. Shovel 5 Total Queue Statistics (Hours) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 410.08 3.28 408.5 1.47 4.07 

Tri-Obj. 96.53 1.87 96.16 0.84 2.32 

Quad-Obj. 90.69 1.84 90.17 0.82 2.28 

Diff. 2 to 1 

(%) 
-76.46 -42.89 -76.46 -42.89 -42.89 

Diff. 3 to 1 

(%) 
-77.88 -43.96 -77.93 -43.96 -43.96 

Diff. 3 to 2 

(%) 
-6.05 -1.88 -6.23 -1.88 -1.88 
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Table A. 19. Shovel 5 Average Queue Statistics (mins) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 12.11 3.14 12.07 0.03 0.09 

Tri-Obj. 3.25 2.78 3.02 0.03 0.08 

Quad-Obj. 3.07 2.65 2.87 0.03 0.08 

Diff. 2 to 1 

(%) 
-73.16 -11.46 -74.98 0.0 -11.11 

Diff. 3 to 1 

(%) 
-74.65 -15.61 -76.22 0.0 -11.11 

Diff. 3 to 2 

(%) 
-5.54 -4.68 -4.97 0.0 0.0 

 

Table A. 20. Shovel 5 Hauled Tonnages Statistics (kt) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 287.6 1.25 288.03 0.56 1.55 

Tri-Obj. 252.22 1.15 252.01 0.51 1.42 

Quad-Obj. 251.42 1.56 251.63 0.7 1.94 

Diff. 2 to 1 

(%) 
-12.3 -8.43 -12.51 -8.43 -8.43 

Diff. 3 to 1 

(%) 
-12.58 24.83 -12.64 24.83 24.83 

Diff. 3 to 2 

(%) 
-0.32 36.32 -0.15 36.32 36.32 

 

Table A. 21. Plant 1 Total Queue Statistics (Hours) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 0.0 0.0 0.0 0.0 0.0 

Tri-Obj. 47.0 8.39 47.32 3.75 10.42 

Quad-Obj. 27.6 9.0 24.94 4.03 11.18 

Diff. 3 to 2 

(%) 
-41.27 7.29 -47.3 7.29 7.29 
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Table A. 22. Plant 1 Average Queue Statistics (mins) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 0.0 0.0 0.0 0.0 0.0 

Tri-Obj. 1.45 2.59 0.0 0.03 0.07 

Quad-Obj. 0.85 2.01 0.0 0.02 0.06 

Diff. 3 to 2 

(%) 
-41.24 -22.52 0.0 -22.5 -22.5 

 

Table A. 23. Plant 1 Hauled Tonnages Statistics (kt) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 237.64 1.73 237.47 0.77 2.15 

Tri-Obj. 276.19 0.03 276.18 0.02 0.04 

Quad-Obj. 276.22 0.03 276.24 0.01 0.03 

Diff. 2 to 1 

(%) 
16.22 -98.06 16.3 -98.06 -98.06 

Diff. 3 to 1 

(%) 
16.23 -98.4 16.33 -98.4 -98.4 

Diff. 3 to 2 

(%) 
0.01 -17.62 0.02 -17.62 -17.62 

 

Table A. 24. Plant 2 Total Queue Statistics (Hours) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 0.0 0.0 0.0 0.0 0.0 

Tri-Obj. 67.46 6.49 66.04 2.9 8.06 

Quad-Obj. 41.43 2.89 41.51 1.29 3.59 

Diff. 3 to 2 

(%) 
-38.58 -55.42 -37.14 -55.42 -55.42 
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Table A. 25. Plant 2 Average Queue Statistics (mins) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 0.0 0.0 0.0 0.0 0.0 

Tri-Obj. 2.08 3.07 0.0 0.03 0.09 

Quad-Obj. 1.27 2.42 0.0 0.02 0.07 

Diff. 3 to 2 

(%) 
-38.59 -21.21 0.0 -35.76 -21.22 

 

Table A. 26. Plant 2 Hauled Tonnages Statistics (kt) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 248.79 0.49 248.77 0.22 0.61 

Tri-Obj. 276.21 0.04 276.23 0.02 0.05 

Quad-Obj. 276.17 0.05 276.17 0.02 0.06 

Diff. 2 to 1 

(%) 
11.02 -91.55 11.04 -91.55 -91.55 

Diff. 3 to 1 

(%) 
11.0 -90.74 11.02 -90.74 -90.74 

Diff. 3 to 2 

(%) 
-0.02 9.61 -0.02 9.61 9.61 

 

Table A. 27. WasteDump Hauled Tonnages Statistics (kt) 

Model Mean Stdev Median StdErr ConLev 

Dispatch 857.56 3.68 858.08 1.65 4.57 

Tri-Obj. 698.95 3.8 697.89 1.7 4.72 

Quad-Obj. 725.12 1.23 725.32 0.55 1.53 

Diff. 2 to 1 

(%) 
-18.5 3.36 -18.67 3.36 3.36 

Diff. 3 to 1 

(%) 
-15.44 -66.6 -15.47 -66.6 -66.6 

Diff. 3 to 2 

(%) 
3.74 -67.68 3.93 -67.68 -67.68 
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APPENDIX B 
Table B. 1. KPIs for Various Types of Trucks and Number of Trucks 

Scenario 

Number 

of trucks 

785C 

Number 

of trucks 

793C 

Utilization 

Ore 

(%) 

Utilization 

Waste 

(%) 

Average 

Qtime 

(Mins) 

Total 

Qtime 

(Hrs) 

FC 

(KL) 

Ore 

Tonnage 

(KT) 

Total 

Tonnage 

(KT) 

Ore 

TPGOH 

(T) 

SR 

1 22 0 67.84 47.55 2.72 373.29 298.31 461.50 1080.23 3845.87 1.34 

2 24 0 74.92 50.84 2.82 416.18 324.12 508.44 1166.06 4237.02 1.29 

3 26 0 79.40 54.31 3.12 488.36 346.97 541.50 1241.02 4512.54 1.29 

4 28 0 80.20 54.98 3.51 555.85 378.91 545.41 1253.44 4545.11 1.30 

5 29 0 80.60 56.15 3.67 591.81 392.78 548.64 1272.59 4572.02 1.32 

6* 30 0 81.16 56.22 3.85 622.29 410.04 552.39 1277.51 4603.23 1.31 

7 32 0 81.29 58.40 4.16 686.96 440.67 552.36 1304.78 4603.02 1.36 

8 34 0 81.18 59.44 4.61 770.65 470.49 552.26 1317.77 4602.15 1.39 

9* 36 0 81.19 60.14 4.92 825.31 506.12 552.32 1324.50 4602.65 1.40 

10 0 15 68.85 43.14 2.13 175.38 369.04 529.10 1196.37 4409.20 1.26 

11 0 16 70.85 45.66 2.28 195.68 393.42 544.77 1248.65 4539.73 1.29 

12 0 17 70.96 46.96 2.40 213.87 421.65 545.57 1270.10 4546.44 1.33 

13* 0 18 71.60 48.20 2.63 229.66 454.54 550.06 1295.28 4583.85 1.35 

14 0 19 71.73 49.06 2.66 239.92 485.36 551.08 1312.29 4592.29 1.38 

15* 0 20 71.95 48.64 2.84 254.45 517.51 552.31 1305.70 4602.59 1.36 

16 0 21 71.94 50.61 3.00 274.56 545.11 552.14 1333.44 4601.17 1.42 

17 0 22 72.07 52.89 3.18 299.42 572.12 552.27 1372.42 4602.28 1.49 

18 25 3 80.05 53.94 3.75 552.06 418.24 552.21 1263.46 4601.73 1.29 

19 26 3 80.15 55.59 3.83 577.76 433.62 552.23 1285.20 4601.89 1.33 

20* 22 4 79.39 54.70 3.59 521.00 388.72 551.17 1277.53 4593.06 1.32 

21 23 4 79.55 54.89 3.70 543.67 405.79 551.29 1281.59 4594.05 1.32 

22 24 4 79.70 55.45 3.77 549.45 429.54 551.96 1289.60 4599.71 1.34 

23 19 5 76.77 53.48 3.14 432.65 376.35 538.51 1258.84 4487.59 1.34 

24* 20 5 78.71 53.89 3.45 483.93 387.44 551.52 1276.65 4596.02 1.31 

25 21 5 79.12 55.32 3.67 522.96 400.03 551.37 1292.61 4594.76 1.34 
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26 22 5 79.12 56.31 3.75 543.72 417.23 552.27 1306.81 4602.26 1.37 

27 18 6 76.15 54.49 3.17 431.62 388.18 536.69 1279.36 4472.42 1.38 

28 19 6 78.55 54.92 3.46 481.03 398.40 551.41 1298.85 4595.12 1.36 

29 20 6 78.62 55.95 3.68 518.31 412.42 552.12 1309.17 4601.03 1.37 

30 21 6 78.71 56.96 3.82 545.51 428.61 552.37 1322.11 4603.12 1.39 

31 24 6 79.14 57.73 4.29 623.72 481.38 552.35 1334.03 4602.92 1.42 

32 17 7 76.28 54.88 3.32 445.52 397.33 540.61 1298.82 4505.10 1.40 

33 19 7 78.32 56.42 3.70 512.38 424.99 552.04 1322.56 4600.33 1.40 

34 20 7 78.52 57.61 3.85 543.51 440.50 552.04 1341.86 4600.34 1.43 

35 16 8 76.08 55.82 3.35 442.32 409.77 540.87 1321.28 4507.23 1.44 

36 18 8 77.87 57.77 3.80 522.46 433.74 551.64 1351.33 4597.04 1.45 

37 14 10 75.36 58.24 3.51 455.19 428.78 541.39 1375.32 4511.56 1.54 

38 12 12 74.47 59.72 3.67 462.28 449.87 540.02 1413.49 4500.14 1.62 

39 10 14 74.22 60.61 3.78 461.28 472.90 542.37 1449.22 4519.73 1.67 

40 8 15 73.56 58.48 3.80 437.64 470.42 541.60 1423.36 4513.37 1.63 

 

APPENDIX C 
 

Table C. 1. KPIs considering trucks' failure for selected scenarios 

Scenario 

Number 

of trucks 

785C 

Number 

of trucks 

793C 

Utilization 

Ore 

(%) 

Utilization 

Waste 

(%) 

Average 

Qtime 

(Mins) 

Total 

Qtime 

(Hrs) 

FC 

(KL) 

Ore 

Tonnage 

(KT) 

Total 

Tonnage 

(KT) 

Ore 

TPGOH 

(T) 

SR 

6(F) 30 0 78.09 53.50 3.41 527.40 360.76 530.53 1221.59 4421.10 1.30 

9(F) 36 0 80.78 58.33 4.41 725.99 435.97 548.19 1298.40 4568.29 1.37 

13(F) 0 18 66.57 43.29 2.34 189.72 389.25 511.73 1180.48 4264.38 1.31 

15(F) 0 20 70.06 45.12 2.51 213.17 440.18 537.50 1235.80 4479.19 1.30 

20(F) 22 4 73.77 50.49 3.04 409.93 345.31 511.46 1179.22 4262.17 1.31 

24(F) 20 5 71.76 50.05 2.91 378.45 343.44 501.73 1170.65 4181.08 1.33 
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Table C. 2. Production tonnage, Fuel consumption, and Failure time KPIs for selected scenarios 

Scenario 

Number 

of trucks 

785C 

Number 

of trucks 

793C 

FC 

(KL) 

Ore 

Tonnage 

(KT) 

Total 

Tonnage 

(KT) 

FC per Ton 

Total 

Production 

(L) 

FC per Ton 

Ore 

Production 

(L) 

Total 

Failure Time 

(Hrs) 

Average 

Failure 

Time (Hrs) 

6(F) 30 0 360.76 530.53 1221.59 0.30 0.68 332.04 11.07 

9(F) 36 0 435.97 548.19 1298.40 0.34 0.80 424.85 11.80 

13(F) 0 18 389.25 511.73 1180.48 0.33 0.76 239.33 13.30 

15(F) 0 20 440.18 537.50 1235.80 0.36 0.82 244.30 12.21 

20(F) 22 4 345.31 511.46 1179.22 0.29 0.68 298.73 11.49 

24(F) 20 5 343.44 501.73 1170.65 0.29 0.68 279.09 11.16 

 

Table C. 3. Homogeneous CAT 785C Failure Time of each truck (Hours) part 1 

Rep\Truck# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 14 19 0 0 16 14 0 0 16 18 0 0 0 15 20 

2 0 0 0 15 16 16 11 0 16 14 15 17 13 17 0 

3 16 15 16 0 12 18 19 10 0 0 17 18 17 16 0 

4 0 0 17 14 18 15 19 0 17 0 15 0 17 13 14 

5 0 12 15 17 0 12 13 12 0 10 14 11 13 20 0 

Avg 6 9.2 9.6 9.2 12.4 15 12.4 4.4 9.8 8.4 12.2 9.2 12 16.2 6.8 

 

Table C. 4. Homogeneous CAT 785C Failure Time of each truck (Hours) part 2 

Rep\Truck# 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 17 15 0 15 19 19 15 17 15 16 19 20 14 0 17 

2 0 15 12 19 12 18 17 18 17 0 15 18 15 16 0 

3 0 20 15 13 16 18 0 16 16 18 18 0 0 0 15 

4 14 0 19 14 0 18 14 18 0 0 0 11 0 0 20 

5 13 14 19 15 0 19 16 20 17 14 0 0 19 9 16 

Avg 8.8 12.8 13 15.2 9.4 18.4 12.4 17.8 13 9.6 10.4 9.8 9.6 5 13.6 
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Table C. 5. Homogeneous CAT 785C Total and Average Failure Times (Hours) 

Truck 

type 
Total failure time (Hrs) Average failure time (Hrs) 

785C 331.6 11.05 

 

Table C. 6. Homogeneous CAT 785C TPGOH Based on Available Number of Trucks in the System 

Day 
TPGOH 

(T) 

Average 

available trucks 

percentage (%) 

Average 

number of 

failed trucks 

Maximum 

number of 

failed trucks 

Average 

number of 

available trucks 

Minimum 

number of 

available trucks 

1 4618.85 100.00 0 0 30 30 

2 4609.8 100.00 0 0 30 30 

3 4597.2 99.53 0.14 1 30 29 

4 4590.73 97.17 0.85 2 29 28 

5 4527.71 93.10 2.07 5 28 25 

6 4493.05 86.03 4.19 8 26 22 

7 4199.62 79.77 6.07 10 24 20 

8 4168.29 79.17 6.25 10 24 20 

9 4171.35 78.57 6.43 11 24 19 

10 4235.24 79.73 6.08 11 24 19 

 

Table C. 7. Homogeneous CAT 793C Failure Time of each truck (Hours) 

Rep\Truck# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 23 37 0 0 28 22 0 0 27 32 0 0 0 25 38 29 24 0 25 0 

2 0 0 0 26 28 0 15 0 27 0 24 31 0 0 0 0 25 17 0 0 

3 27 0 28 0 0 0 35 12 0 0 31 32 0 27 0 0 38 26 0 0 

4 0 0 29 22 34 25 35 0 31 0 0 0 31 0 0 22 0 35 0 0 

5 0 0 24 30 0 0 19 17 0 13 0 0 19 0 0 20 23 35 0 0 

Avg 10 7.4 16.2 15.6 18 9.4 20.8 5.8 17 9 11 12.6 10 10.4 7.6 14.2 22 22.6 5 0 
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Table C. 8. Homogeneous CAT 793C Total and Average Failure Times (Hours) 

Truck 

type 
Total failure time (Hrs) Average failure time (Hrs) 

793C 244.6 12.23 

 

Table C. 9. Homogeneous CAT 793C TPGOH Based on Available Number of Trucks in the System 

Day 
TPGOH 

(T) 

Average 

available trucks 

percentage (%) 

Average 

number of 

failed trucks 

Maximum 

number of 

failed trucks 

Average 

number of 

available trucks 

Minimum 

number of 

available trucks 

1 4623.23 100.00 0.00 0.00 20.00 20.00 

2 4593.99 100.00 0.00 0.00 20.00 20.00 

3 4599.53 98.86 0.23 1.00 20.00 19.00 

4 4600.00 97.07 0.59 2.00 19.00 18.00 

5 4536.32 91.42 1.72 4.00 18.00 16.00 

6 4499.83 84.31 3.14 6.00 17.00 14.00 

7 4409.89 76.21 4.76 7.00 15.00 13.00 

8 4266.55 74.07 5.19 10.00 15.00 10.00 

9 4293.28 74.10 5.18 9.00 15.00 11.00 

10 4360.72 73.41 5.32 8.00 15.00 12.00 

 

Table C. 10. Heterogenous Fleet’s Failure Time of each truck (Hours) 

Truck Type 785C 793C 

Rep\Truck# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

1 14 19 0 0 16 14 0 0 16 18 0 0 0 15 20 17 15 0 15 19 0 24 0 25 27 

2 0 0 0 15 16 16 11 0 16 14 15 17 13 17 0 0 15 12 19 12 0 0 0 0 0 

3 16 15 16 0 12 18 19 10 0 19 17 18 17 16 0 0 20 15 13 16 33 0 27 0 0 

4 0 0 17 14 18 15 19 0 17 0 15 0 17 13 14 14 0 19 14 0 0 0 33 0 0 

5 0 12 15 17 0 12 13 12 0 10 14 11 13 20 0 13 14 19 15 0 36 28 0 31 21 

Avg 6 9.2 9.6 9.2 12.4 15 12.4 4.4 9.8 12.2 12.2 9.2 12 16.2 6.8 8.8 12.8 13 15.2 9.4 13.8 10.4 12 11.2 9.6 
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Table C. 11. Heterogenous Fleet's Total and Average Failure Times (Hours) 

Truck 

type 
Total failure time (Hrs) Average failure time (Hrs) 

785C 215.8 10.79 

793C 57 11.4 

 

 

Table C. 12. Heterogenous Fleet's TPGOH Based on Available Number of Trucks in the System 

Day 
TPGOH 

(T) 

Average 

available trucks 

percentage (%) 

Average 

number of 

failed trucks 

Maximum 

number of 

failed trucks 

Average 

number of 

available trucks 

Minimum 

number of 

available trucks 

785C 793C 785C 793C 785C 793C 785C 793C 785C 793C 

1 4529.79 100.00 100.00 0.00 0.00 0.00 0.00 20.00 5.00 20.00 5.00 

2 4654.67 100.00 100.00 0.00 0.00 0.00 0.00 20.00 5.00 20.00 5.00 

3 4585.53 99.42 99.00 0.12 0.05 1.00 1.00 20.00 5.00 19.00 4.00 

4 4511.60 97.66 94.67 0.47 0.27 1.00 1.00 20.00 5.00 19.00 4.00 

5 4407.13 93.18 90.64 1.36 0.47 4.00 2.00 19.00 5.00 16.00 3.00 

6 4129.28 84.89 90.33 3.02 0.48 5.00 2.00 17.00 5.00 15.00 3.00 

7 3906.56 80.87 81.94 3.83 0.90 7.00 2.00 16.00 4.00 13.00 3.00 

8 3901.58 80.75 67.39 3.85 1.63 8.00 3.00 16.00 3.00 12.00 2.00 

9 3634.35 79.49 55.64 4.10 2.22 6.00 3.00 16.00 3.00 14.00 2.00 

10 3614.84 82.47 50.67 3.51 2.47 6.00 5.00 16.00 3.00 14.00 0.00 

 


