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Abstract 

Many attempts have been made in weather forecasting to predict future atmospheric 

conditions. As a part of automated weather forecasting, we present novel techniques 

to the precipitation type classification. A prime parameter to the precipitation clas­

sification is the vertical temperature profile. It consists of temperature and dew 

point temperature values at several vertical levels. 

A representation of vertical temperature profile is required for the classification 

system. We propose the application of genetic algorithms to search for the optimal 

location of the vertical levels whose corresponding temperature values best approx­

imate and represent sounding temperature data under the least square error criteria. 

As a result, the selected vertical levels are used as a baseline to retrieve temperature 

profiles as the attributes to a precipitation type classifier. 

The quality of the setup of vertical levels is assessed by its performance on the 

representation of the sounding profile with temperatures at selected vertical levels. 

As the approximated temperature profiles have been used to train the precipita­

tion type classifier, the classification accuracy can also be used as an indicator to 

measure the quality of the vertical levels. A neural network has been built as the 

precipitation type classifier with the under-sampling method applied to handle the 

imbalanced class problem. 

The results demonstrate that the optimal vertical levels obtained using genetic 

algorithms outperform both the standard levels from European Centre for Medium-

Range Weather Forecasts (ECMWF) and equal step vertical levels constructed by a 

simple method that equally divide the vertical range to select the levels. Lastly, the 

incorporation of the re-sampling method to manage the training data improves the 

performance on an important rare event class, the freezing rain. 
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Chapter 1 

Introduction 

1.1 Motivation 

Knowing future weather conditions is important for planning our activities as well 

as keeping out of weather hazards. Farmers need to know weather conditions to 

plan planting or harvesting. Sailors use weather information for scheduling and for 

preventing weather-related incidents before sailing. In 1998, the big ice storm that 

hit Eastern Canada and Northeastern USA was recorded as the worst storm of the 

century [13]. The precipitation lasted the longest in recorded history, starting out 

as a cold drizzle before turning into six days of snow, freezing rain, and ice pellets. 

The weight of ice pulled down thousands of power lines and millions of people 

were without electricity. According to Environment Canada, at least 25 people 

died, many people suffered from hypothermia, 945 people were injured, and over 

4 million people in Ontario, Quebec, and New Brunswick lost power. Estimated 

cost of damages caused by this ice storm was $5,410,184,000 [13]. This devas­

tating disaster reveals the need to automate and improve the accuracy of weather 

forecasts to prevent potential losses and damages. The purpose of this thesis is to 

construct a classification system for precipitation type prediction. In line with this 

goal, a method of representing and preparing input data for the learning classifier is 

developed as well. 

Many attempts have been made through centuries to forecast weather. Begin-
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ning with early civilizations, people predicted the seasonal changes by monitoring 

astronomical and meteorological events [29]. Although forecasters could make pre­

dictions based on observations and weather lore, it is evident that as more interests 

in the area has been developed, observation of nature became insufficient for accu­

rate forecasting, and that sophisticate techniques are required to better understand 

atmospheric conditions. 

Several instruments have been invented to measure the atmospheric properties 

such as thermometer to measure temperature, hygrometer to measure humidity, and 

barometer to measure pressure. In modern weather forecasting, more weather infor­

mation is collected through radiosondes or weather balloons - instruments for col­

lecting weather data including humidity, temperature, and pressure at high altitude, 

and sending them back to ground stations. These measurements are also known as 

soundings. After the radiosonde is launched, the data are used for weather analysis 

and to construct computer models for weather forecasting. In our study, the sound­

ings are important as sources of data to train both the classifier and the data fitting 

algorithms discussed later in this thesis. 

An automated weather forecast has been made possible by current modern tech­

nologies such as powerful computers, fast telecommunications, and advanced ob­

serving satellites. Meteorological data are collected over a wide area from many 

observations through sensing systems such as radars, satellites, and other mete­

orological sensors and instruments [29]. They are then sent via communication 

networks for analysis and compilation by forecasters. 

An automated weather forecast can be made by the insertion of observed me­

teorological data into a computer model which predicts the future state of the at­

mosphere. Weather types, including precipitation, can be identified using a clas­

sification system, which deploys the atmospheric parameters obtained from the 

numerical model to classify the weather conditions into categories. The required 

parameters to the system depend on the design of the application and the availabil­

ity of data. At this point, the accuracy of the automated forecast will depend on 

both efficiency and performance of numerical models and classification process. 

As a part of automated weather forecast, the task of constructing an accurate 
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classification system is necessary and definitely important. To accomplish this task, 

firstly, data preparation has to be made to give understandable information to a 

computer before being used as inputs of the classifier. Then the classifier is built 

and trained. The process of constructing the classification system for precipitation 

type classification will be discussed in this thesis. 

1.2 Task description and thesis objective 

1.2.1 Data representation 

It is a challenging task to represent raw data from real-world problems in machine 

learning. In some cases, data are well constructed through observation processes 

and are ready for use; however, in many applications the knowledge retrieved from 

raw data must be preprocessed and represented in the format that machines under­

stand and be able to use for learning. Typically, there are two types of attribute 

values we represent the data: numeric and symbolic values. Numeric values can ei­

ther be continuous values (floating point values) or discrete values. Symbolic values 

represent an interpretation of the observed data. For example, observed temperature 

values can be expressed as hot, mild, or cold symbolic values by pre-defining that 

the warm and hot temperature level is the temperature above 30 °C, the mild tem­

perature level is the temperature range between 15 °C and 30 °C, and the cold tem­

perature level is the temperature below 15 °C. Then, we use these attribute values, 

called features, as description of inputs to learn a function that generates desired 

outputs. 

In classification problems, it is essential to extract and construct attributes from 

the observing data. These attributes must be important for discriminating the events 

and representing the raw data either in numerical or nominal form which is mean­

ingful for learning. The accuracy and efficiency of classification depends on the 

quality of the attributes used in learning. 

In this thesis, we are interested in classification of a precipitation type given a 

vertical temperature profile (sounding data). The vertical temperature profile de-
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scribes temperature and dew point temperature values for different pressure levels. 

Nevertheless, it is not a trivial task to represent the profile for machine learning 

techniques. One difficulty is how to select pressure levels that provide significant 

information about temperature and dew point temperature which are sufficient for 

predicting the precipitation type. 

In general, a limited number of mandatory levels and significant pressure levels 

is used to represent the vertical temperature profile. Mandatory levels are fixed in 

numbers and locations, but significant levels are varied in both properties; thus, they 

cannot be used directly for learning. Instead of using a standard set of pressure lev­

els, an optimal set of pressure levels can be retrieved by using an efficient optimiza­

tion method. An objective of this thesis is to utilize machine learning methodology 

in selecting a set of significant pressure levels by using available sounding data. 

For this reason, an application of genetic algorithm (GA) is proposed to find this 

optimal set of pressure levels that are significant for predicting type of precipitation. 

1.2.2 Precipitation type classification 

The primary goal of the study is to construct a classification system to predict pre­

cipitation. The system requires atmospheric parameters from observations or nu­

merical model outputs along with their corresponding precipitation types as pairs 

of input and desired output for training the classifier. Generally, sounding data does 

not inform us of the weather type occurring during the period of radiosonde obser­

vation. Hence, our first mission is to construct a training data set which provides 

both information of examples and their corresponding classes. Next, the classifier 

must be designed properly to predict the precipitation type. A neural network is 

considered as a precipitation type algorithm because of its ability to learn adap-

tively and to model complex relationships between inputs and outputs. 

In supervised learning, given a set of examples containing description of inputs 

(features) and desired outputs, a learning function is optimized to generate outputs 

for unseen inputs. A classification problem is described as a problem whose output 

is a symbolic value (class). For example, given descriptions of a mushroom such as 
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cap shape, cap color, stalk surface, ring type and so on; a system classifies whether 

the mushroom is poisonous or edible. When the classes of interest are two classes 

between true and false values, we call these problems as binary classification prob­

lems. Likewise, problems that have more than two classes are called multi-class 

classification problems. 

The precipitation types of interest in this thesis are snow, rain, and freezing rain. 

These events do not occur uniformly, so it is crucial to capture the rare events which 

have potential to cause damages. In precipitation type classification, the number of 

examples in freezing rain class is very small compared to the other classes which 

are represented with a large numbers of examples. In this case, a classifier tends 

to predict samples as the majority class over the minority class, freezing rain. We 

have to ensure that the measurement metric are sufficient to measure the overall 

performance of the classifier. Also, a method to handle the rare events should be 

applied in order to solve this problem. 

1.3 Approach 

In this study, we apply machine learning techniques to the problem of weather type 

classification, specifically the precipitation types of rain, snow, and freezing rain. 

The atmospheric parameters used are the vertical temperature profiles of sounding 

data: temperature and dew point temperature. Three contributions are presented in­

cluding (1) feature construction using genetic algorithms which select the important 

pressure levels from the sounding data, (2) a neural network model as a classifier 

to predict the precipitation types, and (3) the use of an under-sampling method to 

handle the rare class problem, freezing rain. 

The data used in this study are vertical temperatures and dew point tempera­

tures from sounding data obtained from radiosonde database access, produced by 

NOAA's National Climatic Data Center (NCDC). Most of the data are available at 

significant and mandatory pressure levels. Since the data are available at different 

numbers of pressure levels depending on the height reached by the balloon, our 
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first task is to find the vertical levels that fit all data instances in such a way that the 

temperatures at these levels are significant for the classification task e.g. pressure 

levels whose temperatures undergo significant changes. 

In this research, we deploy the genetic algorithms (GAs) to find the significant 

vertical levels since GAs is capable of rapidly searching for optimal solution in 

a large problem space. Possible sets of pressure levels are represented by chro­

mosomes which undergo the evolutionary process. As a result, the evolutionary 

process will provide the optimal set of pressure values which will be later used 

to obtain temperature and dew point values as the attributes for the classification 

process. 

Once temperature features are extracted from the available sounding data, the 

neural network is used to predict the precipitation types. The architecture of the 

network composes of input layer, one hidden layer, and output layer. The number 

of input units is the same as the number of the features and the number of output 

units is the same as the number of classes. The number of hidden units is selected 

empirically by observing performance on the development set. The network has 

been trained with training data until a stopping criteria is achieved. 

In this thesis, an under-sampling technique is also explored to handle the imbal-

anced class problem. This method will randomly eliminate some examples of the 

majority classes to balance class distribution. As a result, a data set with balanced 

class distribution is obtained to train the classifier. A better performance is expected 

by applying this method. 

1.4 Overview of this thesis 

The thesis will be described as follows: background and description of related algo­

rithms, meteorological data and its use in precipitation prediction will be described 

in Chapter 2. In Chapter 3, design of genetic algorithms to search for the optimal 

set of vertical levels will be provided. Chapter 4 will describe the use of the neu­

ral network to classify precipitation type as well as the implementation of random 

under-sampling method to handle the imbalanced class problem. The evaluations 
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of the proposed methods will be given in Chapter 5. Lastly, the conclusion and 

possible further studies will be explored in Chapter 6. 
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Chapter 2 

Background 

2.1 Vertical temperature profile data and precipita­
tion type classification 

A vertical measurement of atmospheric conditions aloft from sea level to an al­

titude approximately 30 km above the sea level can be done through radiosonde. 

The radiosondes are launched from radiosonde stations twice daily, at 0000 and 

1200 UTC [20]. These weather balloons measure various meteorological param­

eters including temperature, pressure, moisture, and wind information at various 

atmospheric levels. Nearly continuous stream of information, called radiosonde ob­

servation (RAOB), is transmitted back to a ground-based receiver during the balloon 

ascending. After the radiosonde has been launched, the upper air stations report the 

radiosonde observation data for certain pressure levels to the National Meteorolog­

ical Center for analysis and for use in numerical weather prediction models. Only 

the temperature and dew point data for mandatory pressure levels and significant 

pressure levels are encoded for transmission because at these pressure levels, tem­

peratures and dew point temperatures have significant changes detected from the 

sounding plot [20]. The examples of soundings are shown in Figures 2.1 and 2.2 ', 

corresponding to rain and freezing rain from St.Johns station respectively. 

'The figures are taken from [30] 
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Figure 2.1: A sounding example of rain (00:00,01/05/2007)[30] 
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Figure 2.2: A sounding example of freezing rain (00:00,20/04/20)[30] 
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Many methods have been proposed to determine precipitation types using the 

vertical thermodynamic data. Some algorithms will be briefly described here. 

Bourgouin (2000) [3] introduced an area method for diagnosing precipitation 

type. The fundamental idea of this method is to determine the areas created by 

a vertical temperature profile as illustrated in Figure 2.3 where the precipitation 

type can be identified by determining the area in the plot. When the temperature 

falls through the freezing layer and develops the area in warm layer aloft and the 

area in cold layer near the surface, as in Figure 2.3.a, freezing rain and ice pellets 

are possible. If the area above the freezing layer (warm layer) aloft is too small, 

the freezing rain and ice pellets may not be formed, instead the precipitation will 

be snow. This is because of the fact that there is no sufficient warming energy to 

melt hydrometeors in the warm layer aloft. In Figure 2.3.b, precipitation types are 

varied, depending on the size of the area developing above surface and aloft. It may 

produce rain, snow, freezing rain, and ice pellets ,or a mix of them. Regarding the 

requirement of the area above freezing layer to produce liquid precipitations, rain 

is expected if temperature is greater than 0 °C and a large area occurs above the 

surface as in Figure 2.3.c; however, if the area is small, snow or mix of rain and 

snow can be produced instead of rain. Figure 2.3.d shows a case of snow, since the 

temperature along all pressure levels is below a freezing layer. 

The area is computed as follows 

cp\Area\ = cp § T d ln0 = Cp T, l n ( g £ ^ ) 

where cp is the heat capacity at constant pressure, T is the absolute temperature, 6 

is the potential temperature, 6top is the potential temperature at the top of the layer, 

^bottom is the potential temperature at the bottom of the layer, and Tj is the average 

temperature in the layer extending from 6top to Obottom-

By defining the area between 0 °C and the environment temperature above the 

freezing layer as positive area and the below freezing layer as negative area, the 

discriminating criteria between precipitation types can be defined as follows. 
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Temperature 

0 °C 

Temperature 

0 °C 

Temperature 

Negative area (NA) : Area below freezing layer 
Positive area (PA) : Area above freezing layer 

Figure 2.3: The samples of possible occasions of the vertical temperature profiles 
which produce the area. 

Freezing rain and Ice pellets. 

Negative and positive areas can be used as criteria to discriminate ice pellets 

from freezing rain. When plotting freezing rain, ice pellets, and mixed freezing rain 

and ice pellets as a function of negative and positive areas, a separating equation 

that represents the equal likelihood of freezing rain and ice pellets can be written as 

follows. 

NA = 56 + 0.66P.4 (2.1) 

Ice pellets are identified with a larger negative area (NA), so the larger area of 

NA than the one given by equation 2.1 for a specific positive area (PA) will result 

in ice pellets. On the other hand, a smaller value of NA will result in freezing 

rain. However, there are transition zones above and below the separation line where 

both freezing rain and ice pellets can be observed, so by adding and subtracting 10 

J kg"1 to the equation to cover the transition zone, ice pellets can be determined if 
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NA > 66 + 0.66PA, freezing rain can be determined if NA < 46 + 0.66PA, and 

both freezing rain and/or ice pellets can be determined if 46 + 0.66PA < NA < 

66 + 0.66PA 

Rain and Snow 

The precipitation type of rain, snow, and mix of the two are likely to be found 

under the following conditions. 

Snow, if PA < 5.6 J kg'1 

Snow and/or rain, if 5.6 J % - 1 < PA < 13.2 J kg'1 

Rain, if PA > 13.2 J ftp"1 

James Ramer (1993) [38] developed a method to determine precipitation types 

by using temperature (T), relative humidity (RH), and wet-bulb temperature (Tw) 

on different pressure levels. The algorithm firstly checks Tw. If it is > 2 °C at 

the surface, the precipitation will be rain. TwS represents the minimum wet-bulb 

temperature and snow is expected if Tw < Tws, In the study, the author used TwS = 

-6.6 °C. 

If these conditions are not satisfied, the algorithm will find the precipitation 

generating level by using the bottom pressure pi and top pressure p2> and minimum 

relative humidity Rn. Possible generating layer can be found when pi/p-2 > Sg 

and Rn > Rg (in the study 8g is a constant = 1.02 and Rg = 0.90) where the 

highest considered layer is < 400 mb. If the generating level is needed but cannot 

be identified, the algorithm will terminate and no precipitation type is identified. If 

the generating level is identified, the algorithm begins to calculate the ice fraction at 

the surface. Before doing so, the algorithm checks if Tw < —6.6°C at the generating 

level, and Tw < 0 °C at all other levels below the generating level, snow will be 

expected. If Tw > —6.6°C at the generating level, the precipitation is rain (/ = 0), 

otherwise, it will be snow (/ = 1). When the precipitation is mixed between liquid 

and solid phase (0 < / < 1), the ice fraction is determined by 

dl = (0°C-Tw) 
dln(p) E ( ' ' 
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where p is pressure, and E is melting energy that is E = RE0, where R is the rela­

tive humidity and E0 is an adjustable constant, E0 = 0.045 °C in the study. Once the 

value of / is calculated, precipitation type can be determined by using / and Tw val­

ues at the surface. The thresholds for I0 and h are set at 0.04 and 0.85 respectively. 

If / > I\, a solid precipitation type is predicted and if / < I0, a liquid precipitation 

type is predicted. Therefore, / value between I0 and h indicates a mixed precip­

itation type. If Tw < 0 °C at the surface for liquid and mixed precipitation types, 

freezing rain is diagnosed. 

Baldwin et al.( 1994) [1] developed an algorithm which uses a decision tree to 

determine precipitation types. The algorithm has been applied to National Mete­

orological Center's (NMC's) mesoscale Eta Model. This algorithm is referred as 

BTC algorithm2. It classifies precipitation as rain, snow, freezing rain or ice pellets 

from thermodynamic vertical profile. The algorithm starts by checking the initial 

state of precipitation if it is supercooled water or ice. The area between wet-bulb 

temperatures Tw and 0 °C is used to identify the cold and warm layers for a partic­

ular location. The area is used along with the surface temperature to determine the 

precipitation type [40]. 

To simplify the algorithm, following variables are used to describe atmospheric 

conditions for further use in describing the algorithm. 

TQ : Coldest temperature at any level with a pressure > 500 mb 

Tcs '• Coldest temperature in a saturated layer 

T0 : Temperature at lowest layer 

Area7}^ : Area of sounding between - 4 °C and Tw 

Areaow : Area of sounding between 0 °C and Tw of the surface-base layer 

Area^ : Area of sounding between 0 °C and Tw within the lowest 150 mb 

2Most of the reviews for this algorithm are described in [40] 
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The BTC algorithm identifies the precipitation type by the following criteria. 

• Snow 

Tc < - 4 °C and AredFjX < 3000 deg.m 

• Freezing rain 

Tcs > - 4 °C and T0 < 0 °C 

Arealw > -3000 deg.m and AreaTJ% > 3000 deg.m and T0 < 0 °C 

• Ice pellets 

If TCs < 4 °C and Area7}* > 3000 deg.m, ice pellet is diagnosed when 

Arealw < -3000 deg.m 

Areaoplso ^ -3000 deg.m and Arealw < 50 deg.m 

• Rain 

If T0 > 0 °C, rain is diagnosed when 

Tcs > - 4 °C 

AreaFjH > 3000 deg.m and Area^1S0 > -3000 deg.m or Arealw > 50 

deg.m 

2.2 Vertical coordinates 

In a numerical weather forecast model, it is important to represent the vertical struc­

ture of the atmosphere with proper vertical coordinates to achieve better resolution 

and forecasts [15]. In the same way, vertical temperature profiles can be depicted 

on the appropriate vertical coordinates instead of the actual pressure and height sur­

faces to escape the confusion at ground level. Some of the most popular coordinate 

systems used in current numerical models are Sigma(a), Eta(rj), and Theta((?) [15]. 

The Sigma is the coordinate system used in this thesis and a brief description of this 

system will be given in this section. 

Figure 2.4 shows the Sigma vertical diagram with 5 levels. The Sigma coordi­

nate is a ratio of difference between the pressure at a point (P) and the top pressure 
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(PT) of the domain to difference between the pressures at ground level (PQ) and the 

top pressure (Py). In other words, the Sigma coordinate can be calculated by the 

following equation: 

P-PT 

Coordinate value ranges between 0 and 1 shown in the diagram. The black 

section in the bottom of the diagram represents the topography of the landscape, 

while the vertical axis denotes the pressure in the atmospheric column. 

0.00 10 

20--

30" 

40-

50" 
60 
7 0 " 

"m 80--
Q. 90 + 

100 

3 
W 
w 
0) 

200 f 

300 f 

400 f 

_AQa_ 

0.14 

0.29 

800 f 
900 
1000 

Figure 2.4: Sigma coordinate model system 

While the fundamental base of the Sigma coordinate system is at the ground 

surface, the Eta(r/) coordinate system instead is at mean sea level. The eta coor­

dinate system defines the vertical of a particular point in the atmosphere as a ratio 
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Figure 2.5: Eta coordinate model system 

of pressure difference between that location and the top of the domain to pressure 

difference between the sea level below that point and the top of the domain. There­

fore, the eta coordinate system has surfaces that remain relatively horizontal at all 

times as shown in Figure 2.5. 

2.3 Data fitting and piecewise linear representation 

The sounding is a graph plotted between pressure and temperature values collected 

using radiosonde observation. This information is originally nearly continuous; 

however, during transmission to the National Meteorological Centre for analysis, 

only temperature profile at mandatory and significant pressure levels are encoded 

and transmitted. To reconstruct a continuous graph from available data points, one 

can linearly connect each data point to create the graph. Despite its simplicity, the 

method may encounter problems from outliers and due to the fact that the underlin­

ing function is restricted to a linear function. 
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A data fitting is a process of finding a function relationship between input and 

output variables given available data points. We can form this problem in the con­

text of optimization as we are searching for a function that provides the minimum 

errors given each input x with respect to the output y. The function can be based 

on linear, polynomial, or other functions. The errors can be based on fitting crite­

ria; for example, with a least-square fitting criterion, the Root Mean Square (RMS) 

function is used to calculate errors between the generated output y' and true output 

y. The RMS errors can be calculated using the following equation: 

RMS = ( £ £ i ( - f f o ) ~ f r ) 2 ) * (2.4) 
m 

where m is a number of available data points, / (XJ ) is a generated value from a 

function / given an input value Xi, and yi is a true output corresponding to the 

input Xi. The optimization objective is to find a function f(x) such that it gives the 

minimum RMS errors. When the function f(x) is in the form of: 

f(x) =aTx + b (2.5) 

This fitting problem can be solved via quadratic programming (QP) [4]. How­

ever, it is difficult to solve QP problems in practice due to a large number of vari­

ables which depend on a number of data points (m) and degree of polynomials 

(n). 

Alternatively, piecewise-linear functions have been studied to approximate data 

fitting. A high degree polynomial function can be approximated by several linear 

functions in several regions that are segmented from the original graph. The prob­

lem is to find end points of each segment by connecting these end points using either 

linear interpolation or linear regression functions. A linear interpolation function 

connects one end point to another end point with a simple straight line, while a 

linear regression function finds the best fitting line respecting the least-squares fit­

ting criteria [24]. The objective of this problem is to find the minimum number of 

segments to achieve errors which are under a threshold (accepted errors). 

Many approaches have been proposed for the problem including the dynamic 

programming-based approach [16], genetic algorithm-based approaches [36, 35] 
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and convex optimization-based approach [26]. Pedrycz et al., (2004) [35] proposed 

a Genetic Algorithm (GA)-based technique for piecewise-linear approximations for 

biomedical data. The result parameters of approximations form features for a clas­

sifier; in their case was the pseudo-inverse classifier [10]. 

2.4 Neural networks 

Our study uses a neural network as a classifier to determine precipitation types. 

Neural networks have been widely used in many machine learning applications, 

especially in classification problems. This section will introduce neural networks 

in general and their potential use in precipitation type classification. 

An aspect of human intelligence that surpasses computers is that human brains 

have a mechanism for recognizing objects. Even though a machine possesses high 

capability of computing complex numeric problems in much less time compared to 

human brain, it is difficult and requires a lot of resources for a computer to recog­

nize an object using traditional algorithms. This is due to the fact that human brains 

are very complex, consisting of approximately ten billion neurons interconnected to 

each other forming networks. A neuron in human brain is composed of a body, an 

axon, and many dendrites as illustrated in Figure 2.6. Also, a biological neuron con­

nects to thousands of other neurons. These connections of the neurons are similar 

to the connectivity in a powerful parallel computer. On the other hand, a powerful 

computer is composed of about ten thousands processing units - much less than 

those in a human brain. This lack of the number of processing units can be com­

pensated by the speed which computers can process information - approximately 

million times faster than biological neurons [5]. 

There have been many studies in machine learning area to make a computer able 

to learn as humans do. Neural networks are algorithms that mimic human brains. 

The first neural network was introduced in 1943 by McCulloch and Pitts [28] as 

a learning algorithm that mimics neurons of human brains. The McCulloch-Pitts 

neuron is a simple neuron which cannot do much and is composed of a simple 

computing unit. The simplest neural network called perceptron is based on the 
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Figure 2.6: Biological neurons 

McCulloch-Pitts neuron. It is composed of one input layer of neurons feeding for­

ward to one output layer. At each connection between input and output neurons is 

a weight indicating how much each input neuron contributes to the output. This 

architecture is the baseline of current feed-forward artificial neural networks which 

are also known as multi-layered perceptrons shown in Figure 2.7. 
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Figure 2.7: Typical architecture of multi-layered neural network 

Figure 2.8 shows similarities between artificial neural and a biological neural 

networks. In biological neural networks, the input signals are sent through den­

drites. This process can be compared with the input signals sent through weighted 
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connections of artificial neural networks. Cell nucleus is where the input signals 

are processed. It determines whether or not the signals are strong enough to fire the 

output signal through the axon to the next neuron, and also how strong the output 

signal will be. This depends on the strength of the stimulus coming into the neuron. 

Similarly, an artificial neuron computes the sum of product of connection weights 

and their corresponding input signals to determine if the value is large enough to 

trigger the output signal. The determination is done by using an activation function 

or transfer function. Synapses in biological neurons can be represented by the con­

nections of signals sent from one neuron through connection weights of an artificial 

neural network as the input signal for neurons in the next layer. 

w. Oi wu W2i W]i 

Dendrites 

Cell & Nucleus 

Synapsis 

Figure 2.8: Natural neuron vs. artificial neuron 

Typically there are three common structures of ANN: single layer feed-forward 

NNs, multi-layer feed-forward NNs, and recurrent NNs. A single layer feed-forward 

neural network consists of one input layer and one output layer. The connections 

are feed-forward from input neurons to output neurons and have no feedback con­

nection. Multi-layer feed forward NNs have input and output layers as same as 

single layer feed-forward NNs, but also have one or more hidden layers constructed 

in a feed-forward manner with no feedback connection. Hidden layers can be con­

sidered as a black box since they are hidden from outside, unlike input and output 

layers whose characteristics can easily be observed. Recurrent NNs have at least 
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one feedback connection. The feedback connections can be self-feedback and feed­

back to other neurons [5]. 

There are two basic goals of using artificial neural networks. Researchers who 

are interested the study of how human brains work would use artificial neural net­

works to simulate and study how brains work to understand human intelligence. 

This has been stated in [5] as follows. 

As with the field of AI in general, there are two basic goals for 

neural network research. Brain modeling: The scientific goal of build­

ing models of how real brains work. This can potentially help us un­

derstand the nature of human intelligence, formulate better teaching 

strategies, or better remedial actions for brain damaged patients. Ar­

tificial System Building: The engineering goal of building efficient sys­

tems for real world applications. This may make machines more pow­

erful, relieve humans of tedious tasks, and may even improve upon hu­

man performance. These should not be thought of as competing goals. 

We often use exactly the same networks and techniques for both. Fre­

quently progress is made when the two approaches are allowed to feed 

into each other. There are fundamental differences though, e.g. the 

need for biological plausibility in brain modeling, and the need for 

computational efficiency in artificial system building. (Bullinaria, LI-

11) 

One of the most powerful features of neural networks is their ability to learn and 

generalize from a set of training data. The connection weights are adjusted until 

the final outputs are correct. There are many applications where ANNs have been 

employed and proven to be efficient methods for dealing with problems including 

pattern recognition, financial modeling, time series prediction, bioinformatics, etc. 

2.4.1 Neural network training 

There are two major types of neural network when we consider supervised and un­

supervised learning. For supervised learning, the desired output of each input is 
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specified; the network is trained to map the input to its desired output. The target 

of the network is to minimize error. An example of supervised algorithms in neural 

network includes Hebbian learning and error correction learning. There are two 

categories of supervised learning: structural and temporal. The structural learning 

attempts to find the relationship between a given input and output. It includes the 

application of pattern classification and pattern matching. Temporal learning in­

volves the learning of sequential problems, so that a previous response is essential 

for a current response. Some examples of its applications are prediction problems, 

simulation and control. Unsupervised algorithms do not require a prior knowledge 

of the input-output relationship but rather use local information in the data to create 

clusters according to their collective properties [11]. In this study, we focus only on 

the supervised neural network since we are concerned with the neural network for 

classification application. The process of learning will be briefly discussed. 

Firstly, we would like to describe offline and online learning. Offline training 

is used in many applications. It requires all patterns to be present in training. The 

learning may involve several iterations to achieve the satisfied conditions such as a 

minimum error or a number of iterations is reached. The learning algorithm adjusts 

the weights in each iteration corresponding to the error of the previous iteration; for 

example, back-propagation algorithm adjusts the connection weights of the multi­

layers NN, until it achieves a minimum required error or a maximum number of 

epochs has been reached. After the network has learned, the weights are stored 

and the network can be used to recall the patterns. A drawback of offline learning 

is that new training patterns cannot be learned after the network has been trained. 

Therefore, if we would like to incorporate the new knowledge, it must be added into 

the training set and the network must be trained again. Although offline learning is 

mostly used, online learning has been used in some neural networks. 

The online learning incorporates new patterns without re-learning the entire set 

of training data, but the network can learn the new patterns immediately without 

loss of stored knowledge [11]. 

Knowledge of the network is stored in the connection weights. How the weights 

of network are adjusted until the desired output has been achieved will be discussed 
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in this section. Basically, the learning process of a neural network can be described 

as the following steps. 

• Initialization: 

Before training patterns are presented to the network, the connection weights 

of the network must be initialized. Generally, the value between (0, 1) or (-1, 

1) are randomly chosen as the initial weights and this range of values usually 

work well. Some implementations initialize weights at random locations in 

a unit hyper-sphere. However, the choice of the initial values of weights 

depends on the problem and normalization of variables. [27] 

• Output determination: 

Each training pair of input and output is presented to the network. Once the 

input pattern is applied to the network, a sum of products of input elements 

and their corresponding weights is calculated. The output can be determined 

by applying the activation function to the total net sum. The expression is 

shown below. 

Output — f(^2(xiWi + bias)) (2.6) 

where f is the activation function 

Figure 2.9 illustrates when an input pattern is applied to a neuron. The output 

is feed-forward to the next layer. 

• Error correction: 

The final output of the network will be compared with the desired output. The 

difference between these two values is the error which will be used to adjust 

the connection weights. Weight adjustment is determined in proportion to 

this error. The method to determine the difference between the output and 

the desired output depends on the algorithms used in the network. For ex­

ample, the back-propagation uses the gradient descend method which moves 

the weight adjustment to the opposite direction of the error, downward on 
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Figure 2.9: Feed-forward NN 

the error surface to minimize the error. Cumulative error in back-propagation 

neural network is described as follows: 

Ec = l±£lU(k)-oi(k)}2 
L k=\ »=i 

The weight adjustment can be determined by 

(2.7) 

Aw = — rj 
dE(k) 

dw 
(2.8) 

When a sigmoid function is used as the activation function, weight adjustment 

can be written as follow: 

wn 
woid + Aw (2.9) 

For output layer: 

Where : 

For hidden layer(s): 

Where: 

A < = Wa$ L„L-l 
•J 

<5f = (ti-Oi)f'(toti) 

Si = 

M-1 
•'i"] 

ntot^s^w^ 
P=i 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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2.4.2 Activation function 

The activation function used in neural networks varies by types of applications. A 

particular type of function may be appropriate for only some applications and it 

may not be suitable for other applications. The common activation functions in use 

with neural networks will be discussed as follows. 

• Sigmoid function 

Sigmoid function or logistic function is a nonlinear and differentiable func­

tion used in applications that require the mapping of non-linear process. It 

is commonly used because it has a simple derivative and limited range. The 

sigmoid function can be written in the following expression: 

1 
1 + e -a.net 

(2.14) 

net 

Hard limiting 

/ 
1, net > 0; 
- 1 , net < 0. 

(2.15) 

net 

Linear function 

/ = net (2.16) 

net 
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2.4.3 Data scaling 

The characteristic of data obtained from a particular problem plays a role in the de­

sign of the network architecture. For example, a number of attributes or features in 

classification task can determine the number of the network inputs and the number 

of classes can determine the number of output neurons. In addition, a structure of 

the network also depends on how the data is encoded e.g. binary encoding, real 

number encoding, and so on. 

Several neural networks need the data to be scaled before processing. The 

choice of scaling methods depends on the problem and can affect the performance 

of the network. The group of input vectors to be scaled together is also varied. Some 

implementations scale all input vectors together into the same scale while some ap­

plications scale each attribute of the data set separately or scale similar attributes 

together. 

The following is the typical size scaling method: 

2.5 Genetic Algorithms (GAs) 

Genetic Algorithm is a heuristic searching method inspired from evolution biology 

and natural selection that the fittest offspring will survive to the next generation. At 

each cycle of the evolution, genetic algorithms basically include these operators: 

inheritance or reproduction, mutation, and recombination to change the gene pool 

of a population over time in order to obtain a better generation. A computer sim­

ulates evolutionary operations in order to find the optimal solution by representing 

the possible solutions in chromosomes and evolving to better solutions. Typically, 

a solution is encoded with a string of binary numbers; however other types of en­

coding are also possible. The advantage of GA is that it can rapidly search a large, 

poorly understood problem, and it is excellent for tasks that require optimization. 

It is also highly effective to solve problems that have a vast number of possible 

solutions. 
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Figure 2.10: Typical genetic algorithm process 

The evolutionary process of simple Genetic algorithms is illustrated in Fig­

ure 2.10, starting with the initialization of a population representing the set of pos­

sible solutions. Generally, the first population is randomly generated at a required 

number of population that has been defined in advance. The randomly generating 

method for the first population makes it possible to have initial solutions posted 

throughout the problem space. 

After the initial state, each individual is evaluated and assigned with its fitness 

value. The objective function must be defined beforehand as a function to identify 

how much an individual fits to the solution of the problem. Then, multiple indi­

viduals are selected based on their fitness. The greater the fitness to the objective 

function, the better the chance to be selected. Next, pairs of parents are selected to 

recombine. The crossover/recombination changes the gene pool of the mates and 

then offspring are created. The new generation is evolved to the next generation by 

the same procedure and iterates until the stopping criterion is met. The summary of 

simple genetic algorithms is shown below. 

1. Population is randomly generated. 

2. The fitness value of each individual in the population is calculated 

3. Select two chromosomes as parents from the population according to their 

fitness values 

27 



4. Perform crossover and mutation and obtain offspring to the next generation 

5. Calculate individual fitness value of offspring. 

6. Place new offspring in a new population 

Repeat step 3 to 6 until stopping conditions is satisfied 

The following section will give a brief explanation of operators and methods in 

typical genetic algorithms. 

• Selection 

There are some selecting methods commonly used in the application of ge­

netic algorithms. They are listed as follows: 

- Roulette-wheel selection 

Each individual is given a probability of being selected according to 

its fitness value. A higher fitness value indicates a higher chance to 

be selected for reproduction. Similarly to a roulette wheel, the whole 

area of the wheel represents total probability. The portion in the wheel 

is assigned to each individual according to its probability value. Once 

every individual has been assigned with its portion, a random number is 

generated to select the individual whose portion spans over such random 

number. The process is repeated until the required number of selected 

individuals is achieved. 

- Ranked-roulette wheel selection 

This method of selection is similar to roulette-wheel selection. The only 

difference is that individuals are ranked base on their fitness values and 

portions of the wheel are assigned to individuals based on the ranking 

positions instead of their fitness values. 

- Tournament selection 

The set of individuals are randomly selected from the population and 

the fittest individual is selected as the parent. The process repeats until 
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the number of population is satisfied. It is called tournament since the 

only winner will be chosen as a parent. 

• Crossover 

Crossover combines the information of two or more chosen individuals (par­

ents), which have been selected in the selection process, to create new indi­

viduals. It can be done by combining the values of the parents. The choice 

of choosing crossover method depends on the representation of the chro­

mosomes which represents the solution of a particular problem. Some of 

crossover methods are listed here. 

- Single point/Multiple points crossover 

This crossover method locates the variables in the parents for the re­

quired number of points and exchanges the segments of the parents that 

have been separated by the points. For example, in the single point 

crossover method, parent chromosomes 101101 and 111100 might have 

a randomly cutting location at the third bit - written as 10| 1101 and 

1111100 which result in the offspring of 101100 and 111101. 

- Uniform crossover 

While single/multiple point crossover methods select a separated loca­

tion^) for producing offspring, the uniform crossover generates a set of 

bits indicating which bits will be exchanged. For example, the parents 

are 101101 and 111100. The first set of generated bits is 110010 and the 

second set of generated bits is 111101. Thus, the result of the offspring 

of the example parents are: 111101 and 111100. 

- Intermediate crossover 

Unlike the previous two crossover methods, the intermediate crossover 

method is mainly used for real-valued individuals. Some of intermediate 

crossover are described as follows: 
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Simple intermediate recombination 

Parents are xi,..., xm and yu..., ym 

Child I : x1,...,xk,axk+1 + (1 -a)yk+1,... 
+ (l 

Child2 : yx, ...,yk,ayk+l + (1 - a)xk+1, ...,aym + (1 

Single intermediate recombination 

Parents are xu..., xm and y1,..., ym 

Child 1 : xl,...,xk-.l,axk + {l-a)yk,xk+l,...,xm 

Child 2 : yu ...,yk-i, ayk + (1 - a)xk 

Whole intermediate recombination 

Parents are xu..., xm and yu..., ym 

Child! : x?ew = axfd + (1 - a)y?\i = 1,2,3,....m 

C/i*Zd2 : y™w = ayfd + (1 - a)xfd,i = 1,2,3,...,m 

• Mutation 

A mutation process alters some parts (bits or values) of the offspring that 

evolve at random with a low probability (mutation probability or mutation 

rate) pre-defined by users. There is no definite rule for defining this param­

eter; however, normally the mutation probability parameter is defined as 1 /n 

where n is a number of variables in an individual. The mutation rate controls 

the likelihood of mutation events. For real-valued individuals, the mutation 

process means that the variable values are changed with randomly-generated 

values. In the same way for binary-valued individuals, the mutation process 

means the flipping of variable from 0 to 1 or from 1 to 0 as there are only two 

possible values for each variable. 
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2.6 Handling imbalance class method 

Very often in classification problems we encounter imbalanced data sets. The im­

balance data set occurs when one class in the data set is represented with a small 

number of data points while other classes are much greater in number [22]. Deal­

ing with imbalanced data is also known as dealing with rare classes, or with skewed 

data. The rare class problem can be identified by two occasions. 

Firstly, the class is rare compared to other classes. We can compare this situation 

with the phrase "find a needle in a haystack". The difficulty of finding a needle is 

not because the needle is small, but because of the large number of threads of hay 

that hinder the searching ability [42]. In the same way, in classification problem, 

the classifiers are hindered by the overwhelming amount of majority class data. 

Secondly, the class is rare because there are very few data points in the data set 

that causes the lack of the information. It is difficult to find the regularities of the 

pattern with a small number of data. The learning algorithms cannot generalize the 

class that does not provide enough information for algorithms to learn. 

When dealing with imbalanced data sets, classifiers tend to predict samples as 

the majority class and ignore the minority class [43]. This problem is mainly due 

to the following reasons: 

Firstly, standard machine learning algorithms are built to achieve overall accu­

racy which the minority class contributes very little [41]. Considering a network 

transmission data consisting of 99% of regular transactions and only 1 % of intru­

sions, a classifier can achieve 99% accuracy by assigning all examples to the regular 

transmissions. If the minority class is the class of interest, saying that the classifier 

is designed to detect the intrusion, this classifier is futile because it achieves a high 

accuracy on the majority class but cannot detect the minority class. 

Secondly, classifiers usually assume that the algorithms will be employed on 

data drawn from the same distribution as the training data [41, 37]. In many real-

world problems, the training data does not have the same class distribution as the 
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testing data and they are rarely the same. The training data might be imbalanced 

but the unseen data might not be and vice versa. 

Finally, standard classifiers always assume that the errors from different classes 

have the same costs. The classification costs for each class in several applications 

are different. Consider the application of credit card fraud detection, hardware fault 

detection, medical diagnostics, and so on. The misclassification of the important 

class in these applications is very costly. If the actual cost of misclassification is 

known, the correct threshold can be determined for a classifier. [41]. 

For these reasons, many studies have been proposed to deal with the problem 

both in data and algorithmic levels. The solution in the data level includes different 

forms of re-sampling techniques which re-balance the distribution of underlining 

classes in the training set. Two common re-sampling techniques are under-sampling 

and over-sampling. 

• Under-sampling 

The under-sampling method eliminates the majority class examples to bal­

ance the class distribution. A simple method of under-sampling is where the 

examples of majority class are randomly eliminated. This method is called 

random under-sampling. A major draw-back of randomly under-sampling 

method is that the method can eliminate potentially useful data that could be 

important for the learning process [25]. Other than using the random method 

to eliminate the examples, the discarded examples could be selected deter­

minedly by choosing the majority examples that are closest to the minority 

class examples or ones that are far from the decision boundary since these 

examples are less relevant for learning. 

• Over-sampling 

The over-sampling method generates the minority class examples to eliminate 

the imbalance. The examples can be replicated from the available minority 

class examples. By this method, the training size will increase without any 
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gain of information since the new information is replicated from the exist­

ing ones. Chawla et al.(2002) [6] introduced an over-sampling method which 

synthetically generates the minority class examples called SMOTE (Synthetic 

Minority Over-sampling TEchnique). SMOTE computes k-nearest neigh­

bors (5-NN in SMOTE) for each minority example and selects some of them 

according to the re-sampling rate. The new examples are synthetically gener­

ated along the line between the selected nearest neighbor(s) and the minority 

class example. A drawback of this method is that it generates minority class 

examples without considering the majority class and may cause overgeneral-

ization [43]. 

With the studies of Japkowicz 2000 [21] and Drummond 2003 [9], it was observed 

that under-sampling methods perform better than over-sampling methods. 

Other than the solutions at the data level, the solutions to imbalanced class prob­

lems in the algorithmic level have been explored. Barandela et al. [2] proposed the 

weighted distance function to internally bias the discrimination procedure. The 

weights are assigned to the respective classes other than the individual examples in 

order to compensate the imbalance without changing the class distribution. With 

the Knn based classification, the weighting factor for the majority class is greater 

than that for the minority class; therefore, the distance to the minority examples is 

reduced and the tendency to find the minority class is increased. Pazzani et al. [34] 

published a paper to minimize classification cost rather than to minimize the clas­

sification error since the cost of misclassification is not equal for each class. Simi­

larly, Domingoes(1999) [8] incorporated costs in decision making to define unequal 

misclassification costs between classes. 

2.7 Evaluation Metrics 

In a classification problem which involves imbalance data set, appropriate evalua­

tion metrics must be employed to evaluate the performance of the algorithms. This 

is due to the fact that the accuracy measurement is not sufficient to measure the 
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performance of a classifier as the overall performance of the classifier is mostly 

contributed from the majority class rather than minority class. Because of this, ad­

ditional metrics are necessary. Some measurement metrics will be briefly described 

here as the evaluation metrics to measure the performance of the classifier. 

The classification of imbalanced data problem usually considers the problem 

as a two-class problem. A multi-class problem can be simplified into two class-

problems [25]. The simple way to represent the possible predicting outcome is to 

represent the decisions in the contingency table shown in table 2.1. 

Predict answer 

Yes 
No 

Actual answer 
Yes 
Hit 

Miss 

No 
False alarm 

Correct rejection 

Table 2.1: Contingency table 

Using the terminologies from information retrieval, Hit, False alarm, Miss, and 

Correct rejection are denoted with True Positive (TP), False Positive (FP), False 

Negative (FN), and True Negative (TN), respectively. Regarding the classification 

problem, the positive class is the class of interest or the minority class in the imbal­

ance class problem. When using these terminologies in the classification problem, 

TP and TN represent the number of positive and negative examples correctly clas­

sified, and FN and FP represent the number of misclassified positive and negative 

examples respectively. 

In the same way, many meteorological phenomena can be considered as two-

class or binary event in that the event will or will not take place or we can refer to 

them as a yes/no problem [23]. The evaluation techniques commonly used in the 

weather-prediction application includes probability of detection (POD), false alarm 

rate (FAR), Critical Success Index (CSI), Heidke Skill Score (HSS), and Bias. 

• Probability of detection (POD) 

Probability of detection, POD, is the proportion of the correctly classified 

examples. It is also known as a Hit rate. POD can be defined by: 
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TP 
POD = — — — (2.18) 

TP + FN K ' 

• False Alarm Ratio (FAR) 

The false alarm ratio is the proportion of false alarms on the event being 

predicted or the ratio of the number of incorrect predictions to overall predic­

tions. FAR is defined by: 

FAR = TFTFP
 (2"19) 

• Critical Success Index (CSI) 

Critical Success Index (CSI) does not take into account the non-occurrence 

events and non-predicted events. The CSI is calculated as the ratio of the 

true positive (TP) and the sum of the false positive (IT), false negative (FN) 

and true positive (TP) as defined in Equation 2.20. The value is in the range 

of [0, 1] where the perfect performance score of CSI is 1 when there are 

no FP and FN cases, and the worst performance score is zero when the TP 

value is zero. Unlike POD and FAR, the CSI takes into account both false 

alarms and missed events. If false alarms and miss events are greater, the 

CSI value is smaller. Therefore, it is a more stable measurement. The CSI is 

sensitive to the climatology of the events and tends to give poorer scores for 

rare events [14]. 

CSI-TP + IP + FN <2'20) 

• Heidke Skill Score (HSS) 

HSS is defined by: 

„ o o = 2*(TN*TP-FP*FN) 
(TN + FP)*(FP + TP) + (TN + FN)*(FN + TP) K ' } 
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Bias 

A bias in weather forecast is the ratio of positive forecasts to the number of 

observed events [33] as shown in equation 2.22 

TP + FP 
Blas =

 TPVFN
 (122) 
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Chapter 3 

Implementation of GAs to find the 
optimal set of vertical levels 

The implementation of Genetic Algorithms (GAs) which search for the optimal set 

of vertical levels will be described in this chapter. GAs typically start by randomly 

generating individuals in the population representing a group of possible solutions. 

Each individual is evaluated by determining its fitness to the objective function. 

Then, the selection operation selects pairs of individuals based on their fitness to 

reproduce the offspring to the next generation. The reproduction procedures ex­

change the gene pools of parents through a crossover operation and adapt genes 

of children by a mutation operation. These operations develop and introduce the 

new characteristics of the individuals to a better solution. Finally, the new popula­

tion is evolved by iterations with the same algorithm until the stopping condition is 

reached e.g. the required number of generations is attained, the fitness of the best 

individual converged to a satisfactory level, etc. 

We implement our genetic algorithm system approach by using MATLAB. The 

methodologies as well as an overview of the system to find the optimal locations of 

pressure levels will be explained in section 3.1. 

3.1 Methodologies 

The overview of the system is shown in Figure 3.1 and 3.2. 
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Figure 3.1: Overview of the GA main system 
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Figure 3.2: Main components of the GA system 
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3.1.1 Chromosome encoding 

An important issue of using the genetic algorithms is how we encode the solution 

into chromosomes. There are several methods to encode the chromosomes in GAs. 

Traditionally, binary encoding is used to represent the solution. A binary encoded 

chromosome is a string of Os and Is; each value represents the absence and presence 

of the searching components of the optimal solution. In our approach, the chromo­

somes are encoded with real numbers instead of the traditional binary numbers. 

Each individual is a string of real numbers which represent the possible vertical 

levels. The encoded values are in the range of (0, 1) indicating vertical levels in the 

Sigma(cr) coordinate system. 

3.1.2 Initialization 

In this step, the first generation is obtained. The population number and the length 

of the chromosomes have been predefined. Chromosomes in the population are the 

strings of real numbers which are randomly generated. Each number represents 

the vertical level in the Sigma coordinate system. The length of a chromosome 

indicates the number of required vertical levels which always includes the ground 

and the highest levels. The generated chromosomes always contain the vertical 

level at ground (represented by 1) and the highest level that the radiosonde has been 

reached (represented by 0). 

3.1.3 Evaluation method 

The fitness function used to determine the quality of the chromosome is based on 

how well the chromosome represents the vertical temperature data. The fitness 

value can be evaluated by using the least-square fitting criteria. Root Mean Square 

Error (RMSE) is used here. The fitness value is determined by the following pro­

cedure; the pseudo code of the fitness function is described in Algorithm 1. The 

evaluation method of our approach is also illustrated in Figure 3.3. The figure 

shows the example of a chromosome whose selected vertical levels are at 100, 200, 

300,..., 1000 mbar. The vertical temperature profile is constructed by connecting 
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the linear line between two adjacent temperature values of selected vertical levels. 

The grey area is the error between the constructed vertical temperature profile (il­

lustrated with the dotted line) and the actual temperature profile (illustrated with the 

solid line). To determine this error, we calculate the difference between these two 

lines by discretizing the area into small steps. 

Fitness determination of an individual procedure: 

1. The temperature and dew point temperature are calculated for each pressure 

level in a chromosome. 

2. For all training data points, the vertical profiles for each chromosome and 

training data are constructed from available temperature and dew point tem­

perature. 

3. The root mean square error is calculated by determining the difference be­

tween the chromosome vertical temperature profile and training data vertical 

temperature profile. 

4. 100 equal intervals are used to evaluate this error. The missing temperature 

profile is calculated by the interpolation between two available levels. 

3.1.4 Selection method 

After the evaluation process, the chromosomes are scored by their corresponding 

fitness values. We scale the fitness scores with a ranking method. A ranking roulette 

wheel selection method is used to select the potential chromosomes. The procedure 

of the ranking roulette wheel selection starts by ranking the individuals by their fit­

ness values and then receives new fitness values from their ranking positions. For 

example, the worst chromosome (evaluated by using its fitness value comparing 

with others in the population) receives the fitness value of 1, the second worst re­

ceives the fitness value of 2, and so on, until the best one receives fitness value of n, 

equivalent to the population number in the problem. These new fitness values will 
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Figure 3.3: Error determination for an example chromosome whose selected levels 
are 100, 200, 300,..., 1000 mbar 
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Algorithm 1 Fitness function 
Input: Training data consists of pressure, temperature, and dew point temperature 

(p, t,td), and chromosome c 
Output: Fitness value / 

ErrorT = 0 
2: ErrorTd = 0 
3: for all training data point (p, t, td) do 
4: i = interp(p, t, c) 
5: td = interp(p, id, c) 
6: for i = 0 to 1 with stepsize s do 
7: ij = interpQo, t, i) 

tdi = interp(p, td, i) 
ti = interp(p, t, i) 
tdi = interp(p, td, i) 

9 
10 

11: 

12 
13 
14 
15 

ErrorT + = yJ(U - U)2 

ErrorTd+ = y/(tdi -tdi)2 

end for 
end for 
return / = grrorT+frror:rrf 

be used as the probabilities of being selected. The chance that an individual will be 

selected increases with its fitness value. This selection method is done similarly to 

a roulette wheel method but the difference is that fitness values assigned by ranking 

are used rather than raw fitness values obtained by the fitness function. 

3.1.5 Crossover 

Two-point crossover with an intermediate crossover is used for the crossover oper­

ation. The selection method selects potential chromosomes to reproduce offspring 

to the next generation. Pairs of chromosomes are then chosen as parents for the 

reproduction process. The two crossover points are randomly selected for each pair 

of parents. Then, the gene pools of parents are exchanged according to the two 

crossover points. 

Example: 

Parent 1 = [ a b c d e f g ] 

Parent 2 = [12 3 4 5 6 7 ] 

Crossover points (at random) = 2,5 
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Child l = [ a b 3 4 5 f g ] 

Child 2 = [1 2 c d e 6 7 ] 

In addition to a simple exchange of gene pools, the intermediate crossover is 

employed in the middle section between the two cutting points. The intermediate 

crossover reproduces new genes by using weighted average of the parents' gene 

values. This is controlled by a single parameter, called Ratio. 

childl = parentl + rand * Ratio * (parent2 — parentl) ' 

If Ratio is in the range [0,1] then the children are produced within the hyper-

cube defined by the parents locations. If Ratio is in a larger range, for example 1.1, 

then children can be generated outside the hypercube. At the end of the crossover 

procedures, children are obtained. Note that the best individual of each generation 

will always be copied to the next generation. 

3.1.6 Mutation 

A uniform mutation is used. A single bit in the chromosome is chosen and a random 

probability P identifies if the bit value will be modified. The modified bit will be 

replaced with a new random number. The mutation rate value is set beforehand to 

determine the frequency of mutation occurrences. The procedure of the mutation is 

illustrated in Algorithm 2 

Algorithm 2 Mutation function 
Input: chromosome input c, mutation rate m. 
Output: chromosome output. 

for all gene g in chromosome c do 
generate uniform random number r 
if m > r then 

alter value of gene g 
end if 

end for 
return c 

'The description of intermediate crossover is described in section 2.5 
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Chapter 4 

Neural network for precipitation 
type classification 

4.1 Neural network implementation 

We evaluate the quality of the selected vertical levels with the performance of pre­

cipitation type classification by using the temperature and dew point temperature 

values at these vertical levels. We implement a neural network classifier to predict 

a precipitation type. The implementation detail of our classification approach will 

be described in this chapter. In addition, the under-sampling method will also be 

discussed as a method to deal with the unbalanced class problem. The method will 

be applied to balance the data before training the classifier. 

4.1.1 Neural network architecture 

In general, the multi-layered neural networks consist of multiple layers. The num­

ber of neurons in each layer depends on the problem. Commonly, the number of in­

put neurons in the classification problem is constrained by the number of attributes 

in the problem. The number of input neurons can also be alternatively designed ac­

cording to the problem. The number of output neurons is constrained by the number 

of outputs required by the problem. There is always at least one hidden layer in the 

network. Research indicates that using one hidden layer with a sufficient number 

of hidden neurons in the network can well approximate any finite function. 

The neural network in our approach consists of three layers: input layer, hidden 

layer, and output layer. All layers are fully connected in a feed-forward manner. The 
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input layer is connected to the hidden layer and the hidden layer is connected to the 

output layer. The topology of the three-layer neural network is shown in Figure 4.1. 

The implementation description of each layer is provided as the following. 

Class 1 

Class 2 

Class 3 

Input layer Hidden layer Output layer 

Figure 4.1: Topology of the neural network for precipitation type classification 

• Input layer 

The input layer is composed of the input neurons in the same number as there 

are temperature and dew point temperature values for a set of vertical levels 

that we would like to evaluate. The number of input neurons is twice the 

number of vertical levels because we obtain the temperature and dew point 

temperature for each vertical level in a level set. The activation functions of 

the input neurons are the linear functions since we directly use the tempera­

tures and dew point temperatures as the features of the domain. 

If n represents the number of vertical levels, the input vector X can be written 

as X = [TUT2, T3, ...Tn, TduTd2, Td3,..., Tdn], where T is a temperature 

value and Td is a dew point temperature value. 

• Hidden layer 

The hidden layer consists of hidden neurons which can be adjusted. The 

number of hidden neurons will be adjusted according to the problem. It is 
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unknown beforehand and is necessary to be derived by trial experiments. If 

the number of hidden neurons is too small, the complexity of the network 

is too simple and it cannot learn a complex function or it can lead to the 

under-fitting problem. Even though, the larger number of hidden neurons in 

the network makes the network more powerful and achieves a better capa­

bility to learn a complex function, we cannot keep increasing the number of 

hidden neurons. Too many hidden neurons may lead to the over-fitting prob­

lem, as well as unnecessarily enlarging the complexity of the network which 

consumes more time and computational resources in learning. The activation 

function for the hidden neurons in our implementation is sigmoid function. 

• Output layer 

The output layer consists of output neurons in the same number of classes. 

Each of the output neuron indicates a specific class in the problem. If the 

output value of the output neuron indicating class x is greater than a speci­

fied threshold, we can determine that the network classifies the given input as 

class x. Nevertheless, it is possible that more than one class is obtained at a 

time. For this reason, another criterion is necessary to control the classifier 

to provide only one class at a time. We consider the output neuron which 

provides the maximum output value as the result of classification. There­

fore, both threshold and maximum output value will be considered together 

to specify the output class. In the case that no output value is greater than the 

threshold, the classifier is designed to provide no class as the result. 

4.1.2 Methodologies 

The implementation of our neural network approach is based on Fast Artificial Neu­

ral Network Library (FANN)'. The FANN library is a free open source neuron net­

work library which implements multi-layered artificial neural networks in C. The 

summary of the implementation using the FANN library will be described in this 

section. 

'TheFANN library can be found at h t t p : / / l e e n i s s e n . d k / f ann/ 
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We use fixed topology training in which topology of the network is determined 

in advance. The weights will be altered through a training process to minimize 

the difference between the desired output and the system output. There are three 

main components of our neural network classifiers system which are used in train­

ing: training data manipulation, implementation of the neural network, and train­

ing/testing the neural network. 

The training data are manipulated before training. It is helpful to preprocess the 

data before training to ensure they fall into a specified range. The training data are 

scaled into the range of [0, 1] where the value of 0 indicates the minimum tempera­

ture value and value of 1 indicates the maximum temperature value in the data file. 

The training data is separated into folds in order to perform the cross validation and 

stored into files for later use. Each fold contains randomly selected data from all 

classes. The data in each class are evenly and randomly selected for each fold, so 

the folds will maintain the same distribution as that of original data. While using the 

library, the data is simply read by the fann_read_train_from_file function and stored 

in a structure called fann_train_data. To read the training file to train the network, 

the data must be in the following format. 

num_train_data num_input num_output 
input data separated by space 
output data separated by space 

input data separated by space, 
outputdata seperated by space 

The neural network described in Section 4.1.1 is created by using the standard 

creation function from the library which creates a standard fully connected back-

propagation neural network. There is a bias neuron in each layer (except the output 

layer), and this bias neuron will be connected to all neurons in the next layer. When 

running the network, the bias nodes always emit 1. 

The training process requires a training set which is comprised of examples in­

cluding network inputs and target outputs. During training, the connection weights 
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and biases of the network are altered iteratively to reduce the network error function. 

The average mean square error (MSE) between the network output and the desired 

output is used to determine the error of the network. The connection weights and 

biases of the network must be initialized before training. The weights are random in 

the range of [-1, 1] in our approach. The weights are adjusted according to the error 

function until the minimal error is achieved. The batch or offline training is used to 

train the network, so the network is trained to reduce the error as a whole for every 

epoch. The error obtained by MSE of training does not indicate the performance of 

the classification. The performance in training indicate the difference between all 

system output bits to the target output while the performance of the classification 

indicates the classification accuracy, which is either correct or incorrect. Therefore, 

after the network is trained, the classification performance of the network will be 

evaluated. 

After training is finished, the network is saved for later use. The trained network 

is evaluated on the testing data for assessing the performance of the classification. 

The maximum output bit will be considered as the result of the classification. How­

ever, the maximum value from the output neurons alone is not enough to determine 

the class since output values from output neurons can all be very small. There­

fore, the threshold value is applied as a minimum value to allow the output value 

to be considered as a predicted class. The performance of the classifier is assessed 

by POD (Probability Of Detection), FAR (False Alarm Ratio), and CSI (Critical 

Success Index). 

4.2 Incorporating under-sampling method to handle 
rare class 

One approach to resolve the problem of rare-event classification is to re-sample the 

training data in such a way that the distribution of classes in the training data is 

balanced. A random under-sampling method randomly removes the instances of 

the majority classes from the training set, such that the sizes of majority classes are 

reduced and the class distribution in the training set is more balanced. This method 
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Under-sampling with 

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 
100% 

Freezing rain 

201 
201 
201 
201 
201 
201 
201 
201 
201 
201 
201 

Rain 

201 
221 
241 
261 
281 
302 
322 
342 
362 
382 
402 

Snow 

201 
221 
241 
261 
281 
302 
322 
342 
362 
382 
402 

Table 4.1: Training instances for the under-sampling method 

is applied in the data preparation process to manipulate the data before training the 

classifier. The neural network classifier is sensitive to the problem of imbalance 

class distribution, so we expect that the under-sampling method can ameliorate the 

effect of the unbalanced class and improve the performance of the classification of 

the freezing rain class. 

We incorporate the under-sampling method to the precipitation type class classi­

fication by randomly eliminating the snow and rain class examples from the data set 

for variety sizes of eliminations. We investigate the performance effects of chang­

ing the size of snow and rain class data to be equal and larger than the freezing rain 

class size by 10% to 100%. The data set of each size is used to train the neuron net­

work to predict the precipitation type. We construct the data sets at these required 

numbers of examples by a uniformly random method. The method selects the rain 

and snow data points from the original data set until the required size is achieved. 

For example, there are 201, 571, and 404 training instances from freezing rain, 

rain, and snow classes respectively. With under-sampling at 10%, 20%, 30% greater 

than the number of freezing rain class, the examples from snow and rain classes 

are randomly selected for 221, 241, and 261 instances from the original instances. 

The rest of snow and rain data points are discarded. Table 4.1 shows numbers of 

examples of each class when training with under-sampling method. 
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Chapter 5 

Discussion of Results 

5.1 Data sets 

Two data sets have been constructed for training and evaluating the proposed meth­

ods. One is the data set used for the data representation model which employs 

genetic algorithms to find significant vertical locations. The other is the data set 

used for training and evaluating the classifier in the precipitation type classification 

task. 

5.1.1 Data set for data representation 

The data set which is used to train genetic algorithms consists of available verti­

cal levels and their corresponding temperature and dew point temperature values. 

These data are retrieved from Radiosonde database [18] produced by NOAA's Na­

tional Climatic Data Center (NCDC). The data consists of the observations from 

St. John's, Newfoundland (YYT) station from 01/01/2000 to 31/12/2002. It was 

retrieved for all pressure levels at the time of 00:00 and 12:00 UTC. The sounding 

data obtained from this source are in the format shown in table 5.1. 

The first 4 lines of the sounding are identification and information lines'. Miss­

ing or no reported data were recorded with 99999. The record time zone is in UTC. 

The type of identification line is described below. 

254 = indicates a new sounding in the output file 

1 = station identification line 

'Technical information of the sounding data was obtained from [17]. The original source is 
referred to [39] 
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254 
1 
2 
3 

9 
4 
5 
6 
7 
8 

HOUR 
WBAN 
HYDRO 
(blank) 

PRESSURE 

DAY 
WMO 
MXWD 
STAID 

HEIGHT 

Header line 
MONTH YEAR 
LAT D LON D 
TROPL LINES 
(blank) (blank) 

Data lines 
TEMP DEWPT 

(blank) 
ELEV 
TINDEX 
SONDE 

WIND DIR 

(blank) 
RTIME 
SOURCE 
WSUNITS 

WIND SPD 

Table 5.1: Original data format from Radiosonde database produced by NOAA's 
National Climatic Data Center (NCDC) 

2 = sounding checks line 

3 = station identifier and other indicators line 

4 = mandatory level 

5 = significant level 

6 = wind level (ppbb) (gts or merged data) 

7 = tropopause level (gts or merged data) 

8 = maximum wind level (gts or merged data) 

9 = surface level 

The original data are re-formatted to form the training data set. All available pres­

sure levels (the identification lines 9, 4, 5, 6, 7, and 8) and their corresponding 

temperatures and dew point temperatures are retrieved to construct the data set. 

In the original sounding data, the temperatures and dew point temperatures are in 

tenths of degrees Celsius and pressures are in tenths of millibar, so these variables 

are converted to degrees Celsius and millibars respectively. Each data point in the 

data set is composed of pressure levels paired with their temperature and dew point 

temperature values at a particular date and time. Due to the fact that the number 
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and location of pressure levels are different for each time the radiosonde has been 

launched, each data point contains different numbers and locations of pressure lev­

els. For this reason, some data points which contain very few number of pressure 

levels will be eliminated from the data set. 

In addition, each data point is encoded by using Sigma encoding. This method 

scales the pressure values into the range of [0,1], where the value of 1 represents 

the pressure at ground level and the value of 0 represents the highest pressure level 

that the balloon has reached. There are some missing and unreported values from 

the original data files, so these incomplete data will be removed from the data set. 

The data points whose lowest pressure values are greater than 500 mbar or highest 

pressure values are less than 950 mbar are considered as the outliers and are filtered 

out from the data set in order to maintain the consistency of the data. 

5.1.2 Data set for precipitation type classification 

In the precipitation type classification, the data set are created by using two data 

sources. One provides the vertical temperature and dew point temperature infor­

mation retrieved from the sounding data, while the other provides the precipitation 

observations or class information of the corresponding sounding data. The first 

data source is obtained from the Radiosonde database [18], the same data source 

previously described in the section 5.1.1. The sounding data of the St. John's, New­

foundland, station have been retrieved for the period of 1994 - 2007. This station 

was selected because it has the most freezing rain hours in Canada. 

In general, a neural network classifier requires a limited dimension of feature 

space as inputs, so the data set must be constructed with a particular number of 

features. Since the numbers and values of available pressure levels are different 

for each time radiosonde is launched, a set of pressure levels must be predefined in 

order to use as the baseline for retrieving the temperature values. The significant 

pressure levels that have been predefined for retrieving the temperature data some­

times do not exist in the sounding data, so the temperature values will be retrieved 

by the interpolation between two available pressure levels. As the result, each data 
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point is composed of the temperature values and dew point values in a predefined 

number. 

The precipitation type observations or class information are retrieved from the 

climate database of Environment Canada's official online-presence for meteorologi­

cal information and public forecasts [31]. Only observations of rain, snow, freezing 

rain, and freezing drizzle classes are considered, so other observations from this 

data source are discarded. Note that we also consider observations of freezing driz­

zle in our study because freezing drizzle and freezing rain observations are very 

similar. Thus we consider both of them as freezing rain class. The descriptions2 of 

rain, snow, freezing rain, and freezing drizzle are described as follows: 

• Freezing rain (FZRA, ZR): Freezing rain is liquid precipitation that reaches 

the surface in the form of drops that are greater than 0.5 millimeters in diam­

eter. The drops then freeze on the earth's surface. 

• Freezing Drizzle (FZDZ, ZL): Freezing Drizzle is liquid precipitation that 

reaches the surface in the form of drops that are less than 0.5 millimeters in 

diameter. The drops then freeze on the earth's surface. 

• Snow (SN, SNW, S): Snow is an aggregate of ice crystals that form into 

flakes. Snow forms at temperatures below freezing. For snow to reach the 

earth's surface the entire temperature profile in the troposphere needs to be at 

or below freezing. It can be slightly above freezing in some layers if the layer 

is not warm or deep enough to melt the snow flakes. 

• Rain (R, RA): Rain is liquid precipitation that reaches the surface in the form 

of drops that are greater than 0.5 millimeters in diameter. The intensity of 

rain is determined by the accumulation over a given time. 

The records from both data sources are matched by using date and time informa­

tion. Note that the class information from Environment Canada's climate database 

is recorded in local time, while the sounding data from Radiosonde database are 
2The description were obtained from [19] 
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recorded in UTC. Thus, the time difference must be considered when matching the 

data from these two sources, both in the period of standard and daylight saving 

time. After matching the temperature profile with its corresponding class, the total 

data for training the classifier consists of 1176 data points. The statistics of the data 

are shown in table 5.2. The observations of rain, snow, freezing rain, and freezing 

drizzle are sometimes observed with other weather types. These mixtures of ob­

servations are also collected and represented by the dominant precipitation. Each 

precipitation type statistics including its combination with other observations are 

shown in the tables 5.3, 5.4, 5.5, and 5.6. 

Precipitation type 

Freezing rain 
Rain 
Snow 
Freezing Drizzle 

Total 

# of instances 

57 
571 
404 
144 

1176 

Table 5.2: Data set statistics 

Freezing rain type 
Freezing rain/ 
Freezing rain/Blowing Snow/ 
Freezing rain/Fog/ 
Freezing rain/Freezing Drizzle/Fog/ 
Freezing rain/Freezing Fog/ 
Freezing rain/Ice Pellets/ 
Freezing rain/Ice Pellets/Fog/ 
Freezing rain/Snow Showers/ 
Freezing rain/Snow/Fog/ 
Freezing rain/Snow/Ice Pellets/ 
Freezing rain/Snow/Ice Pellets/Blowing Snow/ 
Total 

# of instances 
6 
1 

31 
2 
3 
1 
9 
1 
1 
1 
1 

57 

Table 5.3: Data set statistics of the freezing rain and its combinations with other 
observations 
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Rain type 
Rain 
Rain/Drizzle/Fog 
Rain/Fog 
Rain/Ice Pellets/Fog 
Rain/Snow 
Rain/Snow/Fog 

Total 

# of instances 
123 
66 

370 
1 
3 
8 

571 

Table 5.4: Data set statistics of the rain and its combinations with other observations 

Snow type 
Snow 
Snow/Blowing Snow 
Snow/Fog 
Snow/Freezing Fog 
Snow/Ice Pellets 
Snow/Ice Pellets/Blowing Snow 
Snow/Ice Pellets/Fog 
Snow/Snow Grains 
Snow/Snow Grains/Fog 

Total 

# of instances 
264 

77 
47 

2 
5 
3 
3 
2 
1 

404 

Table 5.5: Data set statistics of the snow and its combinations with other observa­
tions 

Freezing drizzle type 
Freezing Drizzle/ 
Freezing Drizzle/Fog/ 
Freezing Drizzle/Freezing Fog/ 
Freezing Drizzle/Ice Pellets/Fog/ 
Freezing Drizzle/Snow Grains/ 
Freezing Drizzle/Snow Grains/Fog/ 
Freezing Drizzle/Snow Grains/Freezing Fog/ 
Freezing Drizzle/Snow Showers/ 
Freezing Drizzle/Snow Showers/Fog/ 
Freezing Drizzle/Snow/ 
Freezing Drizzle/Snow/Blowing Snow/ 
Freezing Drizzle/Snow/Fog/ 
Freezing Drizzle/Snow/Ice Pellets/Fog/ 
Freezing Drizzle/Snow/Snow Grains/Fog/ 

Total 

# of instances 
13 
75 
18 

1 
5 
3 
1 
2 
2 
7 
2 

13 
1 
1 

144 

Table 5.6: Data set statistics of the freezing drizzle and its combinations with other 
observations 
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5.2 Application of GAs to find the optimal set of ver­
tical levels 

A simple genetic algorithm is used in our experiment. Each data point is encoded 

by using the Sigma (a) coordinate system. The chromosomes are encoded with real 

numbers in range of [0,1] and represent the sets of possible solutions (vertical lev­

els). The required number of pressure level is 31 levels in this experiment, so there 

are 31 genes in a chromosome, each of which represents a selected pressure level in 

Sigma encoding format. The GA was trained on 2119 data points of the St.John's, 

NF station, in the period of 2000 - 2002. The parameter setting for training the 

model is described below. 

GA parameters 

• Population size: 50 

• Population initial range (0, 1) 

• Stopping criteria 

Number of generations: 250 or 

Stall generation limitation: 10 

• Selection method: Ranked roulette wheel 

• Crossover method: Two point crossover with intermediate crossover in the 

middle section 

• Mutation: Uniform mutation with m-rate = 0.05 

• Number of individual copied to the next generation: 1 

Figure 5.1 illustrates the best and average fitness scores at each generation dur­

ing training. The fitness score is the average of root mean square errors (RMSE) 

between temperature profiles of the data points and the temperature profiles created 

at the selected pressure levels. The black and blue dots denote the best and mean 
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Figure 5.1: Best and mean individual fitness scores at each generation 

fitness values respectively. The result indicates that the training starts to converge 

at the 50*'1 generation. 

In this experiment, we compare the obtained pressure levels from our approach 

with two other sets of pressure levels: standard pressure levels from ECMWF (Eu­

ropean Centre for Medium-Range Weather Forecasts) and synthetic pressure levels 

which are created by selecting the pressure at equal step in the range of 0 to 1. The 

equal step of the pressure level is the simplest method to create a set of pressure 

levels without any prior knowledge. We use the RMSE and MAE to evaluate the 

pressure levels selected by our approach. The average RMSE and MAE on testing 

data (2081 data points from the St.John's station in the period of 2003 - 2005) for 

the three models are shown in the table 5.7. The RMSE and MAE are calculated 

based on 100 discretized steps along the graph. 

The results show that our approach (GAs) provided the best approximation of 

the data with a limited number of pressure levels compared to the data approximated 

by using standard levels from ECMWF and equal step pressure levels. Specifically, 

we obtained 13.81% relative RMSE reductions over the standard pressure levels 

from ECMWF. 

The pressure levels in the Sigma encoding format obtained by using GAs as 

well as the standard pressure levels from ECMWF and equal step pressure levels 
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Pressure levels 

GAs 
ECMWF 

Equal 

Measurement 
RMSE MAE 
1.704 
1.977 
2.249 

0.836 
0.882 
0.934 

Table 5.7: Average RMSE and MAE on testing data set 

are illustrated in figure 5.2. 

When using these pressure levels to obtain the temperature and dew point tem­

perature values, the sounding of a data point can be drawn for such pressure levels. 

A data point of freezing rain class is chosen as an example to illustrate the ap­

proximation of the data by using the three pressure level sets. The sounding of 

freezing rain data point (01/02/2000 12:00 UTC) is illustrated in Figure 5.3. For 

a better resolution, Figure 5.4 illustrates the sounding of the same data point at 

the pressure levels 0.6 to 1 where the temperature profile has undergone significant 

changes by moving from below-freezing layer to above-freezing layer and turning 

back to below-freezing layer that creates the positive area aloft and negative area 

at the surface. The pressure levels in this range are very important to predict the 

potential freezing rain. 

5.3 Precipitation type classification using NNs 

After obtaining the pressure levels from the experiment in section 5.2, we evaluate 

the quality of these pressure levels on precipitation type classification. The pressure 

levels from GAs, ECMWF, and equal step levels are used to approximate the data 

to train a neural network classifier described in Chapter 4. The data set is retrieved 

from the sounding data of the St.John's, Newfoundland station, from Jan 01, 1994 

to Dec 31, 2007. The statistics of the data are provided in section 5.1.2. 

The training set consists of 62 features: 31 features are from environment tem­

perature values and 31 features are from dew point temperature values for selected 

levels. We combine freezing rain and freezing drizzle classes into one class since 

these two classes are very similar and very difficult to distinguish from each other, 
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GAs selected levels, ECMWF levels, and Equal step levels 

t 
+ 

• • • • + • -

+ 

+ 

+ 

+ 

+ 
+ 
+ 
+ 
+ 

X 
X 
X 
X 

-X" 
X 

X 

X 

X 

X 

-x-

X 
-K-

+ GA selected pressure 
levels 

X ECMWF pressure 
levels 

• Equal step pressure 
levels 

Figure 5.2: Vertical levels selected by GAs vs. standard levels of ECMWF 
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Figure 5.3: Sounding of freezing rain with the GAs selected vertical levels, 
ECMWF levels, and Equal step levels 
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Figure 5.4: Sounding of freezing rain with the GAs selected vertical levels, 
ECMWF levels, and Equal step levels for range of 0.6 - 1 in Sigma coordinate 
system 
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even by human observations. The back propagation neural network was imple­

mented as a classifier to predict precipitation type in this study. The criteria and 

parameters for the neural network were set as the following. 

• Algorithm : Back-propagation 

• Validation : 5 fold-cross validation 

• System output is the output bit that provides maximum value 

• Maximum epochs : 5000 

• Number of layer : 3 

• Number of input: 62 (equal to the number of features) 

• Number of hidden neuron : 10 

• Number of output neuron : 3 (Each neuron represents each class) 

• Hidden neuron activation function : Sigmoid 

• Output neuron activation function : Sigmoid 

• Learning rate : 0.2 

• Momentum rate : 0.05 

• Error base on MSE 

• Desired error : 0.01 

• Training stopping function : Reach desired error or maximum number of epoch is 
reached 

We evaluate the performance of the classifier by using CSI, HSS, POD, FAR, 

and BIAS measurements described in section 2.7. The results of the experiment are 

illustrated in Figures 5.5, 5.6, and 5.7, which show the performance on the freezing 

precipitation, rain, and snow classes respectively. The figures show the performance 

of precipitation type classification based on 5-fold cross-validation. We also main­

tain the class distribution of each fold with the same distribution as that of original 

data set, so that the data of each class are evenly distributed in each fold. Addition­

ally, the same folds of the data are used for the three sets of pressure levels (GAs, 

ECMWF, and equal step levels). 
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Evaluation of Freezing rain 
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Figure 5.5: Performance on freezing rain classes 
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Figure 5.6: Performance on rain class 
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Evaluation of Snow class 
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Figure 5.7: Performance on snow class 

Ideally, a high performance can be determined by a large value of POD and 

small value of FAR. The results from the experiment show the equivalent perfor­

mance for the three pressure level sets on the snow class. For the rain class, the 

ECMWF levels provide slightly higher values for both POD and FAR. We can use 

the CSI value to evaluate the performance in this situation since CSI is the function 

of both POD and FAR. A high value of CSI indicates that the prediction system is 

of high quality. The CSI value of GAs level is slightly smaller than that of ECMWF 

value but the difference is not significant. The performance of the system on the 

freezing rain class is very important in evaluating the system since it is a rare event. 

The results show that the GA levels provide a better performance on this class than 

both ECMWF and equal levels. This can be observed by the greater value of POD 

as well as the CSI value. 

Further experiments have been conducted to find the best performance that each 

pressure level set can achieve regardless of the same architecture of the neural net­

work for the three pressure level models. The constraint of the previous experiment 

is that the three pressure level sets have been used on the same architecture and pa­

rameters of the neural network; specifically, the number of hidden neuron has been 
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fixed for all three sets of pressure levels. Thus, the evaluation of each pressure level 

set on variable numbers of hidden neurons is worth mentioning in order to find best 

performance with the most appropriate number of hidden neurons for a particular 

pressure level model. 

We vary the number of hidden neurons from 10 to 35. Figures 5.8, 5.9, and 5.10 

show the best classification results from incorporating GAs, ECMWF, and equal 

pressure levels to classify freezing rain, rain, and snow classes respectively3. The 

best performance achieved by GA levels uses only 10 hidden neurons in the net­

work while the best performance of using ECMWF levels and equal step vertical 

levels are achieved with 15 and 20 hidden neurons respectively. Use of GA vertical 

levels and ECMWF levels provide the comparable results in accuracy measured by 

CSI values, but GAs levels uses the least number of hidden neurons amongst other 

models. Thus, the set of levels found by GA allows construction of more parsimo­

nious classifiers. 

Performance on Freezing Rain class 
1.6 

1.4 

1.2 

1 

O.B 

0.6 

0.4 

0.2 

0 

HSS CSI POD FAR BIAS 

Figure 5.8: The best performance on freezing rain class achieved by each level 
model 

3 All performance results of using number of hidden neuron from 10 to 35 can be found in the 
Appendix A. 1 
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Figure 5.9: Performance on rain class 
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Figure 5.10: Performance on snow class 
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5.3.1 Using under-sampling to handle the freezing rain class 

In this section, we incorporate the under-sampling method to adjust the class dis­

tribution to improve the classifier performance on the rare-event class. The under-

sampling method eliminates the examples in majority classes to balance class dis­

tribution. One of our experiments involves the elimination of the examples in ma­

jority classes until the number of examples from both minority and majority classes 

are equal. We also vary the number of examples to be eliminated since the best 

class distribution for precipitation type classification is unknown. We can vary the 

class distributions by eliminating the majority class examples until they are 10%, 

20%, 30%, ...,or 100% greater than the number of minority class examples. The 

performance results of classifier of using under-sampling data set are shown in Fig­

ures 5.11, 5.12, and 5.13. 

CSI on freezing rain class 
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Figure 5.11: Performance on freezing rain class after applying under-sampling 
method. 

Figure 5.11 shows that the performance of the classifier on the freezing rain 

class tends to decrease when the sizes of other classes are relatively greater than 

the size of the freezing rain class. Conversely, the performance of the classifier 

on the rain class and snow class tends to increase with less elimination of these 
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Figure 5.12: Performance on rain class after applying under-sampling method. 
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Figure 5.13: Performance on snow class after applying under-sampling method. 
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class data samples. It is straightforward that more training data generally provide 

more information of the classes to the classifier and lead to better performance re­

sults. The results show that when the freezing rain class data are in the same size 

as other classes' data, the performance of the classifier on the freezing rain class 

is improved by as much as 15% CSI. The improvement after applying the under-

sampling method suggests that the overwhelming instances of other classes degrade 

the performance of the classifier for the freezing rain class. Nevertheless, the im­

proved performance on the freezing rain class is still in the low range compared to 

the performance on other classes. One possible reason to explain this phenomenon 

is that the small amount of freezing rain data in our training data set results in the 

lack of information for training the classifier to learn the pattern of the class. 

5.3.2 A comparison with other precipitation-type algorithms 

Precipitation type algorithms in previous studies4 [1, 38, 3] involve the use of rules 

and sets of assertions to identify the precipitation types. Bourgouin [3] uses the 

negative and positive area between environment temperature and freezing layer in­

corporating predefined constants and rules to discriminate precipitation types. The 

precipitation type algorithm developed by Ramer [38] uses temperature, relative 

humidity, and wet-bulb temperature on different levels along with adjustable pa­

rameters to create rules. These parameters can be adjusted by varying the values 

over a wide range and evaluating the results. Baldwin's method [1] exploits atmo­

spheric parameters such as coldest temperatures at many levels, temperature at the 

lowest layer, areas between 0 °C and wet-bulb temperature, etc. to create a set of 

rules. These algorithms are considered as rule-based algorithms which require ex­

perts in the domain to observe the data and encode their assertions into a rule set. 

Instead, our approach is a data-driven method which can learn patterns of pre­

cipitation with no requirement of experts. The neural network classifier can learn 

and associate complex relationships in the data without prior knowledge of the do­

main, so it is flexible for use to predict precipitation type at any location. Further-
4The description of the algorithms are described in section 2.1 
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more, a back propagation neural network is easy to implement and adjust to predict 

more types of precipitation. 

Due to different testing data for each algorithm, algorithms' quality can be in­

spected by indirect comparisons. The verification information of each algorithm is 

described below: 

The proposed method was evaluated with 5-fold cross-validation on 1176 ob­

servations consisting of 201 of freezing rain5, 571 of rain, and 404 of snow. Precip­

itation types occurring simultaneously with other precipitation were also included, 

but only the major occurring precipitation was selected. The best obtained CSI val­

ues for the experiment without using under-sampling method for rain, freezing rain, 

and snow are 0.91, 0.43, and 0.74 respectively and with under-sampling method are 

0.83, 0.62, and 0.72 respectively. 

Bourgouin's algorithm was evaluated on a small data set of 46 examples from 

12 to 22 January 1995 retrieved from the Canadian operational Regional Finite 

Element model. It consists of 12 examples of freezing rain, 2 examples of ice 

pellets, 3 examples of mix of rain and snow, 13 examples of snow, and 16 examples 

of rain. There is no training process, so 46 examples were all used to verify the 

set of hand-crafted rules. Precipitation types were categorized into 5 classes. The 

system achieved CSI scores of 0.85, 0.67, 1.00, 0.86, and 0.94 for freezing rain, ice 

pellets, mixed rain and snow, snow, and rain class respectively. 

Ramer's algorithm was evaluated on the data of rawinsonde and Surface Air­

ways Observation (SAO) from late November 1992 to early March 1993. There are 

in total of 2,084 data points including 945 of rain, 58 of freezing rain, 30 of mix of 

rain and snow, 16 of freezing mix, and 1035 of snow. The achieved CSI values are 

0.95 for rain, 0.45 for freezing rain, 0.23 for mix of rain and snow, 0 for freezing 

mix, and 0.93 for snow. 

Precipitation-type algorithms have been evaluated in [32]. The study also eval­

uated these three algorithms on 1828 observations collected from Canadian and 
5Note that the freezing rain class in the experiment consists of 57 observations of freezing rain 

and 144 observations of freezing drizzle 
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American rawinsonde. Only independent occurring precipitation types of snow, 

rain, freezing rain and ice pellets were selected. The data set consists of 627 obser­

vations of snow, 191 observations of ice pellets, 387 observations of freezing rain, 

and 623 observations of rain. Only the best achieved performance was reported. 

The best obtained CSI value for rain class is 0.8 which is achieved by Bourgouin's 

and Ramer's algorithms. The best CSI for freezing rain class is 0.6 achieved by 

Ramer's and Baldwin's algorithms and 0.8 for snow class achieved by CSTPS [7] 

method. 

By inspecting the performance information of the proposed method and other 

algorithms, the quality of the proposed algorithm is comparable. Although there 

are lower scores on freezing rain class when the under-sampling method is not 

applied, the performance on rain and snow class is comparable to other methods. 

The lower scores on the freezing rain class can be explained as the freezing rain data 

used to train and verify the proposed method are not independent occurring events. 

The occurring of precipitation with other types of precipitation definitely negatively 

affects the classifier's capability in discriminating the precipitation type from each 

other. It is expected that the quality of the proposed method can be improved with 

independently occurring precipitation. 
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Chapter 6 

Conclusions and future work 

The precipitation type classification system is an important part of a system for au­

tomatic weather forecasting. We present the use of machine learning techniques in 

precipitation type classification as well as methods of preparing and representing 

atmospheric data in a pattern that can be learned by a classifier. We use vertical 

temperature profile obtained by radiosonde as the parameters in our classification 

system. The temperature profile from sounding is approximated and represented at 

a set of meaningful vertical levels. We apply the genetic algorithm method to search 

for these important levels. Finally, the temperature profiles represented at these lev­

els are used to train the neural network classifier to predict the precipitation types. 

In our study, we are interested in the prediction of rain, snow, and freezing rain; 

especially, the prediction on freezing rain type that is of high significance in the 

study of rare event prediction. 

We propose to use genetic algorithms to search for vertical levels where the tem­

peratures values can well represent and approximate the actual temperature profile 

from soundings. The finite number of vertical levels makes it possible to automate 

the weather prediction process since the known locations of these levels can be used 

to acquire the significantly atmospheric parameters for classification task using nu­

merical weather prediction. The vertical temperature profile is of prime importance 

to identify a precipitation type. Thus, we construct the vertical temperature profile 

at these levels to represent the actual temperature profile. The profile can be approx­

imated by connecting every two adjacent points of temperature values at required 
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levels using a linear interpolation method. 

The sounding data from St.John's, Newfoundland (YYT), station has been used 

to train GAs in finding the optimal set of vertical levels. The chromosomes are en­

coded with real numbers in the range of (0, 1) which represent the selected vertical 

levels in a coordinate system. The experiment results demonstrate that the quality 

of vertical levels obtained from the proposed genetic algorithm method is better than 

that of standard levels from European Centre for Medium-Range Weather Forecasts 

(ECMWF). The quality of vertical levels can be directly assessed by determining 

the error between actual temperature profile and temperature profile constructed us­

ing the selected vertical levels. We use the Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) to measure this quality. 

Furthermore, the quality of the vertical level set is assessed through its applica­

tion in the precipitation type classification. The temperature and dew point tempera­

ture values obtained at the vertical levels are used as the attributes for classification 

algorithms. We propose the neural network as a precipitation type classifier. A 

three-layer back-propagation neural network has been designed with all layers fully 

connected in a feed-forward manner. Inputs of the neural network are vectors of 

temperature and dew point temperature values at the selected vertical levels. The 

output layer consists of output neurons corresponding to the predicted classes. Each 

output neuron then indicates each type of precipitation. We investigate the perfor­

mance of the neural network with three precipitation type including rain, snow, and 

freezing rain. 

The classification performance is measured by probability of detection (POD), 

false alarm rate (FAR), and Critical Success Index (CSI). The experiment results 

show that the vertical levels obtained by GAs provide better performance on freez­

ing rain class than the standard vertical levels from ECMWF. We are interested in 

the classification of the freezing rain class since it is a rare class, and its prediction 

is important for avoiding and mitigating damages it could cause. 
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To achieve a better classification performance, we incorporate the under-sampling 

method to balance class distribution. The experiment of under-sampling involves 

reduction of majority class examples until its number is equal to the number of mi­

nority class examples. We also vary the class distributions by eliminating the ma­

jority classes until the numbers of examples are 10%, 20%, 30%,..., 100% greater 

than the number of minority class examples. The experiment results of using under-

sampling method demonstrate the improvement of classification performance on 

freezing rain class. 

6.1 Future work 

We presented a novel approach to the classification of precipitation type. The goals 

of this work are to obtain the vertical levels which are important to categorize the 

precipitation type and to build an accuracy precipitation type classification system 

based on vertical temperature profile. While the experiments show promising re­

sults, there are some issues that can be improved in the future work. 

GAs to find the optimal number of vertical levels 

In our approach, we use GAs to find the optimal locations of vertical levels, 

while the number of required levels is specified in advance. It will be interesting to 

employ GA in searching for the optimal number of vertical levels as well. Genetic 

algorithms are suitable for multi-objective optimization; thus, with an appropriate 

chromosome encoding and sufficiently computational resources, it is promising that 

we can operate GA to find both the number of vertical levels and their locations at 

the same time. 

Other atmospheric parameters 

We have not used atmospheric parameters other than vertical temperature pro­

file. Although the temperature profile is the most important, ideally other related 

atmospheric parameters should be considered in diagnosis of precipitation type. 
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These parameters include pressure, relative humidity, wind speed and direction, 

etc. An advantage of incorporating other parameters is that they provide more in­

formation on weather conditions to the system. It is expected that their use would 

enhance the performance of the precipitation type classifier. 

Other rare event handling methods 

Our focus in this thesis is on the representation of temperature profile and the 

precipitation type classification by using neural network. The simple re-sampling 

method, random under-sampling, is used to illustrate that neural network classifier 

performance is affected by the problem of imbalanced class. Applying methods of 

handling imbalanced class can improve the overall performance of the precipitation 

type classification. There are other interesting rare event handling methods that can 

be explored further in future work such as over-sampling by using SMOTE [6], 

multiple re-sampling method [12], MetaCost method [8], etc. 
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Appendix A 

A.l Experiment results using 3 vertical level models 

Hidden NN 10 

Hidden NN 15 

Hidden NN 20 

Hidden NN 25 

Hidden NN 30 

Hidden NN 35 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

HSS 
0.49±0.07 
0.89±0.02 
0.75±0.05 

HSS 
0.49±0.07 
0.49±0.07 
0.72±0.05 

HSS 
0.43±0.04 
0.87±0.01 
0.69±0.05 

HSS 
0.47±0.10 
0.87±0.03 
0.67±0.08 

HSS 
0.40±0.09 
0.88±0.02 
0.70±0.09 

HSS 
0.38±0.10 
0.86±0.04 
0.71 ±0.04 

CSI 
0.39±0.06 
0.89±0.02 
0.72±0.05 

CSI 
0.41 ±0.05 
0.89±0.04 
0.69±0.05 

CSI 
0.36±0.03 
0.88±0.01 
0.66±0.05 

CSI 
0.39±0.09 
0.88±0.03 
0.65±0.08 

CSI 
0.34±0.07 
0.88±0.02 
0.67±0.08 

CSI 
0.31 ±0.09 
0.87±0.04 
0.68±0.04 

POD 
0.51 ±0.07 
0.95±0.02 
0.87±0.05 

POD 
0.58±0.09 
0.94±0.03 
0.82±0.08 

POD 
0.51 ±0.04 
0.95±0.02 
0.80±0.05 

POD 
0.58±0.13 
0.92±0.03 
0.79±0.11 

POD 
0.50±0.09 
0.92±0.03 
0.82±0.09 

POD 
0.46±0.18 
0.92±0.05 
0.84±0.05 

FAR 
0.37±0.08 
0.06±0.01 
0.19±0.03 

FAR 
0.40±0.11 
0.06±0.02 
0.18±0.03 

FAR 
0.44±0.08 
0.07±0.02 
0.20±0.02 

FAR 
0.44±0.10 
0.05±0.03 
0.22±0.03 

FAR 
0.48±0.11 
0.05±0.02 
0.21 ±0.06 

FAR 
0.48±0.06 
0.07±0.01 
0.21 ±0.04 

BIAS 
0.82±0.13 
1.01 ±0.03 
1.07±0.03 

BIAS 
1.00±0.25 
1.00±0.03 
1.01 ±0.12 

BIAS 
0.93±0.16 
1.02±0.04 
1.01 ±0.05 

BIAS 
1.05±0.27 
0.98±0.05 
1.01±0.13 

BIAS 
1.00±0.24 
0.98±0.04 
1.03±0.12 

BIAS 
0.88±0.36 
0.99±0.06 
1.07±0.11 

Table A. 1: Experiment results using ECMWF levels. 
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Hidden NN 10 

Hidden NN 15 

Hidden NN 20 

Hidden NN 25 

Hidden NN 30 

Hidden NN 35 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

HSS 
0.44±0.07 
0.87±0.04 
0.74±0.04 

HSS 
0.44±0.05 
0.83±0.05 
0.69±0.06 

HSS 
0.46±0.08 
0.84±0.04 
0.71 ±0.07 

HSS 
0.41 ±0.04 
0.82±0.05 
0.67±0.07 

HSS 
0.32±0.06 
0.81 ±0.03 
0.67±0.07 

HSS 
0.38±0.10 
0.83±0.03 
0.67±0.07 

CSI 
0.36±0.05 
0.87±0.04 
0.72±0.04 

CSI 
0.37±0.05 
0.84±0.05 
0.67±0.05 

CSI 
0.38±0.07 
0.85±0.04 
0.68±0.07 

CSI 
0.34±0.03 
0.84±0.04 
0.64±0.07 

CSI 
0.28±0.06 
0.82±0.03 
0.65±0.07 

CSI 
0.32±0.07 
0.84±0.03 
0.65±0.06 

POD 
0.48±0.09 
0.94±0.03 
0.86±0.06 

POD 
0.56±0.12 
0.88±0.06 
0.82±0.02 

POD 
0.58±0.14 
0.89±0.04 
0.82±0.10 

POD 
0.52±0.09 
0.91 ±0.04 
0.77±0.08 

POD 
0.45±0.18 
0.89±0.06 
0.79±0.09 

POD 
0.49±0.08 
0.91 ±0.04 
0.79±0.05 

FAR 
0.40±0.10 
0.08±0.02 
0.19±0.01 

FAR 
0.47±0.06 
0.06±0.04 
0.22±0.07 

FAR 
0.45±0.07 
0.06±0.04 
0.20±0.03 

FAR 
0.48±0.06 
0.09±0.04 
0.21 ±0.03 

FAR 
0.55±0.09 
0.08±0.04 
0.22±0.05 

FAR 
0.52±0.09 
0.08±0.03 
0.22±0.06 

BIAS 
0.81 ±0.22 
1.02±0.04 
1.06±0.07 

BIAS 
1.08±0.31 
0.94±0.09 
1.05±0.12 

BIAS 
1.08±0.29 
0.95±0.08 
1.02±0.13 

BIAS 
1.03±0.32 
1.01 ±0.06 
0.97±0.09 

BIAS 
1.04±0.51 
0.97±0.09 
1.02±0.15 

BIAS 
1.03±0.14 
0.99±0.07 
1.01±0.10 

Table A.2: Experiment results using equal step levels. 

82 



Hidden NN 10 

Hidden NN 15 

Hidden NN 20 

Hidden NN 25 

Hidden NN 30 

Hidden NN 35 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

FZRA 
Rain 
Snow 

HSS 
0.50±0.03 
0.87±0.03 
0.74±0.03 

HSS 
0.46±0.04 
0.84±0.05 
0.72±0.04 

HSS 
0.42±0.07 
0.87±0.02 
0.71 ±0.03 

HSS 
0.40±0.07 
0.84±0.07 
0.66±0.10 

HSS 
0.43±0.07 
0.86±0.04 
0.66±0.03 

HSS 
0.39±0.05 
0.83±0.05 
0.66±0.06 

CSI 
0.41 ±0.02 
0.87±0.04 
0.72±0.03 

CSI 
0.38±0.04 
0.85±0.05 
0.69±0.03 

CSI 
0.35±0.06 
0.88±0.01 
0.68±0.03 

CSI 
0.34±0.05 
0.84±0.07 
0.64±0.10 

CSI 
0.36±0.07 
0.86±0.04 
0.64±0.03 

CSI 
0.33±0.04 
0.83±0.05 
0.64±0.06 

POD 
0.60±0.05 
0.90±0.05 
0.86±0.05 

POD 
0.53±0.07 
0.91 ±0.07 
0.84±0.03 

POD 
0.50±0.08 
0.94±0.02 
0.82±0.03 

POD 
0.54±0.14 
0.89±0.07 
0.78±0.16 

POD 
0.55±0.13 
0.92±0.03 
0.77±0.07 

POD 
0.53±0.06 
0.88±0.05 
0.79±0.08 

FAR 
0.43±0.04 
0.04±0.02 
0.19±0.02 

FAR 
0.43±0.05 
0.07±0.04 
0.20±0.04 

FAR 
0.46±0.05 
0.07±0.02 
0.20±0.03 

FAR 
0.50±0.09 
0.06±0.02 
0.22±0.03 

FAR 
0.48±0.06 
0.07±0.04 
0.21 ±0.03 

FAR 
0.53±0.05 
0.06±0.02 
0.23±0.02 

BIAS 
1.04±0.12 
0.93±0.07 
1.07±0.07 

BIAS 
0.94±0.15 
0.98±0.10 
1.06±0.09 

BIAS 
0.93±0.08 
1.01 ±0.05 
1.02±0.05 

BIAS 
1.12±0.42 
0.95±0.08 
1.01 ±0.22 

BIAS 
1.07 ±0.31 
1.00±0.06 
0.97±0.12 

BIAS 
1.13±0.14 
0.93±0.05 
1.03±0.10 

Table A.3: Experiment results using GA levels 
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A.2 Experiment results using under-sampling method 
to handle rare class problem 

FR 
Rain 
Snow 

HSS 
0.47±0.11 
0.80±0.06 
0.58±0.13 

CSI 
0.47±0.09 
0.76±0.06 
0.58±0.11 

POD 
0.61 ±0.13 
0.85±0.09 
0.78±0.08 

FAR 
0.31 ±0.11 
0.10±0.10 
0.31 ±0.10 

BIAS 
0.91 ±0.24 
0.96±0.22 
1.14±0.10 

Table A.4: Performance results on equally distributed class data. 

FR 
Rain 
Snow 

HSS 
0.46±0.12 
0.84±0.06 
0.60±0.07 

CSI 
0.45±0.10 
0.81 ±0.06 
0.59±0.05 

POD 
0.61 ±0.16 
0.91 ±0.06 
0.75±0.08 

FAR 
0.35±0.07 
0.10±0.10 
0.26±0.09 

BIAS 
0.94±0.25 
1.02±0.16 
1.03±0.22 

Table A.5: Performance results on rain and snow data size is 10% greater than 
freezing rain class. 

FR 
Rain 
Snow 

HSS 
0.43±0.06 
0.81 ±0.05 
0.60±0.05 

CSI 
0.41 ±0.07 
0.79±0.05 
0.59±0.05 

POD 
0.57±0.16 
0.88±0.05 
0.76±0.11 

FAR 
0.38±0.06 
0.12±0.06 
0.26±0.05 

BIAS 
0.94±0.32 
1.01±0.10 
1.04±0.20 

Table A.6: Performance results on rain and snow data size is 20% greater than 
freezing rain class. 
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FR 
Rain 
Snow 

HSS 
0.42±0.09 
0.81 ±0.06 
0.53±0.08 

CSI 
0.42±0.08 
0.78±0.07 
0.53±0.04 

POD 
0.65±0.14 
0.86±0.07 
0.65±0.06 

FAR 
0.45±0.04 
0.10±0.07 
0.25±0.11 

BIAS 
1.18±0.24 
0.96±0.13 
0.90±0.24 

Table A.7: Performance results on rain and snow data size is 30% greater than 
freezing rain class. 

FR 
Rain 
Snow 

HSS 
0.42±0.07 
0.79±0.04 
0.63±0.07 

CSI 
0.40±0.04 
0.76±0.04 
0.62±0.07 

POD 
0.58±0.07 
0.84±0.06 
0.78±0.12 

FAR 
0.41±0.10 
0.11 ±0.06 
0.24±0.02 

BIAS 
1.02±0.27 
0.95±0.11 
1.03±0.17 

Table A. 8: Performance results on rain and snow data size is 40% greater than 
freezing rain class. 

FR 
Rain 
Snow 

HSS 
0.41±0.18 
0.83±0.05 
0.62±0.09 

CSI 
0.39±0.13 
0.81 ±0.05 
0.62±0.08 

POD 
0.57±0.17 
0.87±0.05 
0.77±0.12 

FAR 
0.47±0.13 
0.08±0.06 
0.23±0.08 

BIAS 
1.07±0.19 
0.95±0.10 
1.01±0.19 

Table A.9: Performance results on rain and snow data size is 50% greater than 
freezing rain class. 

FR 
Rain 
Snow 

HSS 
0.43±0.06 
0.82±0.03 
0.68±0.03 

CSI 
0.39±0.06 
0.80±0.03 
0.68±0.04 

POD 
0.53±0.14 
0.87±0.06 
0.85±0.12 

FAR 
0.38±0.09 
0.09±0.06 
0.21 ±0.09 

BIAS 
0.89±0.37 
0.96±0.12 
1.10±0.24 

Table A. 10: Performance results on rain and snow data size is 60% greater than 
freezing rain class. 

FR 
Rain 
Snow 

HSS 
0.44±0.04 
0.82±0.06 
0.66±0.03 

CSI 
0.40±0.04 
0.79±0.07 
0.66±0.05 

POD 
0.60±0.12 
0.84±0.09 
0.81 ±0.13 

FAR 
0.44±0.05 
0.06±0.03 
0.22±0.05 

BIAS 
1.08±0.29 
0.90±0.12 
1.05±0.23 

Table A.ll: Performance results on rain and snow data size is 70% greater than 
freezing rain class. 

FR 
Rain 
Snow 

HSS 
0.45±0.02 
0.84±0.04 
0.67±0.03 

CSI 
0.39±0.02 
0.82±0.04 
0.67±0.03 

POD 
0.55±0.07 
0.87±0.05 
0.84±0.06 

FAR 
0.41 ±0.08 
0.07±0.03 
0.23±0.03 

BIAS 
0.95±0.22 
0.93±0.07 
1.09±0.11 

Table A. 12: Performance results on rain and snow data size is 80% greater than 
freezing rain class. 
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FR 
Rain 
Snow 

HSS 
0.47±0.07 
0.85±0.05 
0.71 ±0.05 

CSI 
0.41 ±0.06 
0.83±0.06 
0.71 ±0.05 

POD 
0.57±0.09 
0.87±0.05 
0.87±0.05 

FAR 
0.40±0.05 
0.06±0.03 
0.21 ±0.02 

BIAS 
0.96±0.18 
0.92±0.06 
1.09±0.05 

Table A. 13: Performance results on rain and snow data size is 90% greater than 
freezing rain class. 

FR 
Rain 
Snow 

HSS 
0.45±0.05 
0.82±0.04 
0.69±0.08 

CSI 
0.38±0.03 
0.80±0.06 
0.70±0.07 

POD 
0.52±0.10 
0.87±0.11 
0.87±0.07 

FAR 
0.36±0.16 
0.07±0.07 
0.21 ±0.06 

BIAS 
0.89±0.34 
0.95±0.18 
1.11±0.13 

Table A. 14: Performance results on rain and snow data size is 100% greater than 
freezing rain class. 

FR 
Rain 
Snow 

HSS 
0.50±0.03 
0.87±0.03 
0.74±0.03 

CSI 
0.41 ±0.02 
0.87±0.04 
0.72±0.03 

POD 
0.60±0.05 
0.90±0.05 
0.86±0.05 

FAR 
0.43±0.04 
0.04±0.02 
0.19±0.02 

BIAS 
1.04±0.12 
0.93±0.07 
1.07±0.07 

Table A. 15: Performance results using the original data set. 
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