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Abstract

Using data collected by the OPAL Detector during the 1997 and 1998 LEP runs, a
number of Artificial Neural Network analyses were performed to search for Higgs bosons
in the Minimal Supersymmetric Model (MSSM) through the production process ete™ —
Z% 5 h%40 5 494040 _, 3(8b) at centre of mass energies /3 = 183 GeV" (1997) and
Vs = 189 GeV (1998). No signal was seen and the scalar and pseudo-scalar MSSM
Higgs bosons, h® and A®, respectively, were excluded over 2maoc < mpo, mpo <
80GeV, and myo > 12GeV. The maximal production rate for this process, at 95%

CL, admitted by the data was shown to range from o x BR(qa,,5, < 0.192 pb for

(mpo, mao) = (40,12) GeV to ¢ x BR(so,p5) < 0.057 pb for (mpo, mao) = (80,40) GeV'.
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Chapter 1

Introduction

Early in this century, physicists believed protons, neutrons and electrons were the fundamental
building blocks of all matter. Since the Second World War, literally hundreds of particles have
been discovered. It was then proposed (1] that protons, neutrons and other previously ‘fundamental’
particles, were made up of just a few still smaller entities called quarks. Electrons, on the other
hand, are thought to be fundamental objects themselves and are part of a group of particles known
as leptons. Over the vears, a theory was developed which explained how a small number of quarks
and leptons, listed in Table 1.1, collectively known as fermions, combine to form all known particles,
as well as predicting the existence of a few which have not yet been seen. This theory, known as
the Standard Model, also introduces a new class of particles, known as gauge bosons, in order
to explain the known forces as interactions between these bosons and pairs of the fundamental
fermions. Table 1.2 lists the known forces with their associated bosons which are understood to
mediate the interactions.

Generation Particle Charge Mass
1 Quarks up (u) +2/3 325 MeV
down (d) -1/3 325 MeV
Leptons electron (e} -1 511 keV’
Ve 0 < 17 eV
2 Quarks charm (c) +2/3 1.6 GeV
strange (s} -1/3 500 MeV’
Leptons  muon (u) -1 106 MeV
Vy 0 < 0.27 MeV
3 Quarks top (t} +2/3 174 GeV
bottom (b} -1/3 5 GeV
Leptons tau (1) -1 1784 MeV\’
Vr 0 < 35 MeV

Table 1.1: The fundamental fermions in the Standard Model.

A key feature of the Standard Model is the SU(3)coiour XSU (2} xU(1)y symmetry. Were this
symmetry exact, all gauge bosons would be massless, resulting in an infinite range for all the
interactions. However, the short range of the Weak force implies its carriers, the Ws and the Z°,
are massive. The presence of the massive exchange bosons indicates symmetry of the original theory
has somehow been broken. If the theory is to be renormalizable (that is free of infinities and thus
calculable}, the breaking of the symmetry must be spontaneous. Within the Standard Model, the
spontaneous symmetry breaking is driven by the Higgs mechanism, resulting in a physical scalar,
the Higgs boson. Since the ¥'s and the Z° are known from experiment to be massive, the Higgs
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Boson Force Mass Range | Spin
photon ()} electromagnetism 0 infinite 1
W* weak (charged current) 80 Ge\ 10~ m 1
Z° weak (neutral current) 91 GeV 10-¥% m 1
gluon (g} strong 0 (assumed) | 10~ m 1
graviton gravity 0 (assumed) | infinite 2

Table 1.2: The four known forces and some properties of the exchange bosons.

mechanism, rather than being a cosmetic detail in the theory, appears to be indispensable. The
Higgs boson has, to date, eluded experimental observation.

In this thesis, quantities will be presented in so-called natural units, where k = ¢ = 1. In this
system [length]=Itime]={energy]~!=Imass]~!. The mass (m) of a particle is therefore equal to its
rest energy (mc?}, and to its inverse Compton wavelength (mc/h}. For example,

Metectron = 9.109x10728g = 0.511 MeV = (3.862x 10! c¢m) ™!

1.1 The Standard Model

The Standard Model (SM}, which combines the SU(2}, xU(1}y Glashow-Weinberg-Salam [2] theory
of electroweak interactions, together with Quantum Chromodynamics [3], constitutes a remarkable
achievement. The formulation of the theory as a renormalizable quantum field theory preserves its
predictive power bevond computations which are first order in the coupling constants (tree-level)
and allows for the probing of quantum effects. An array of experimental results have confirmed (4]
every feature of the theory to a high degree of precision. In fact, at present there is no compelling
evidence which is in conflict with the SM.

The Standard Model of electroweak interactions '5] is based on the gauge group SU(2). xU(1)y-,
where the generators of SU(2). correspond to the three components of weak isospin T; and the
U(1})y generator to the weak hypercharge Y. These are related to the electric charge by Q =
T3 + Y/2. The SU(2}. xU(1}y gauge theory contains three SU (2}, gauge bosons, W}, i =1,2,3,
and one [7(1}y gauge boson, B,, with kinetic energy terms,

| |
Cxe = —gWL W - 2B, B, (1.1}
where
Wi, = 3W.-08,0, +ge’ Winy,
Buv = avBu - aqu . (12)

Explicit mass terms for the gauge fields would appear as terms like %m%,,W,,W". However, such
terms can be shown [6] to violate local gauge invariance.

Masses for the non-abelian gauge fields are generated by the Higgs mechanism [7] via sponta-
neous symmetry breaking (SSB) which preserves the renormalizability (8] of the theory. The Higgs
fields are a complex scalar SU(2) iso~-doublet, ®.

+
@:(ﬁo ) , (1.3)

V() =p® |[®'B|+ 2| B0 7, (1.4)

with a scalar potential given by
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(A > 0). This is the most general renormalizable and SU(2), invariant potential allowed.

For the choice u? < 0, the ground state of the theory is not at & = 0 and the neutral member of
the Higgs doublet acquires a vacuum expectation value (VEV) [9]. The direction of the minimum
in SU(2}. space is not determined since the potential depends only on the combination ®®, and

we arbitrarily select,
1 0 -
(Q)_ﬁ(v) . (1.5}

With this choice the scalar doublet has U'(1)y charge (hypercharge} Yy = 1 and the electromagnetic
charge is!

Q= QE‘;_Y_) i (1.6)
Therefore,
Q(®) =0 (1.7)

so the scalar VEV is neutral and electromagnetism is unbroken, that is, the photon remains massless.
The VEV of Equation 1.5 therefore vields the desired symmetry breaking scheme,

SU2} x UL}y = U(1)Enr - (1.8)

It is now straightforward to see how the Higgs mechanism generates masses for the W and Z
gauge bosons. The contribution of the scalar doublet to the Lagrangian is,

L, = (D) (D, &) - V(®), (1.9)

where ,
D,=0,+ i%r W+ i%B,.Y (1.10)

is the covariant derivative, with g and g’ being the SU(2). and U(1)y coupling strengths, respec-
tively. Expanding & about its VVEV, the scalar doublet can be written as

1 0 \
@=\—/-5(L.+ho), (1.11)

which gives the contribution to the gauge boson masses from the scalar kinetic energy term of
Equation 1.9,

1 1 . 1,.\¥/o0
-2-(0,1:)(5_111"%,, +§g B,,) ( v ) . (1.12)

Rewriting Equation 1.1 in terms of mass eigenstates, the physical gauge fields are then two charged
fields, 117, and two neutral gauge bosons, Z and ~:

1
V2
—-g'B, + gW}

. /g? + gl 2

B, +¢gW}
ae = eI 0w (1.13)

wE = (Wi Fin?),

zr =

with masses from the Higgs mechanism:

2,2

g°? ;mzel=<(g°+g *? .ma=0. (1.14)

ha | =
on | 4

mw=? =

!The 1, are the Pauli matrices with Tr(w; i) = 26;;.
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Since the massless photon must couple with electromagnetic strength, e, the coupling constants
define the weak mixing angle -,

e =gsinfy = g'cosfy- . (1.15)

The measured value of sin® 8y = 0.23 implies that tan 8y = g’/g ~ 0.5, so the Weak force is not
weak compared to the Electromagnetic force because of its coupling strength. In fact, we see it has
a stronger coupling. Rather it is because the weak bosons are massive which causes the Weak force
to be short ranged.

It is instructive to count the degrees of freedom after the spontaneous symmetry breaking has
occurred. We began with: a complex scalar SU(2); doublet ® with four degrees of freedom; a
massless SU(2), gauge field, W7, with six degrees of freedom: and a massless U(1)y- gauge field,
B, with 2 degrees of freedom, for a total of 12. After the spontaneous symmetry breaking there
remains a physical real neutral scalar field h® (1 degree of freedom); massive W and Z fields (9
degrees of freedom}; and a massless photon (2 degrees of freedom). We say that the scalar degrees
of freedom have been “eaten™ to give the W' ¥ and Z gauge bosons their longitudinal components.

Fermions can easily be inciuded in the theory. It is convenient to write the fermions in terms
of their left- and right-handed projections,

) 1
YLR= 5(1 Fs)v - (1.16)

Since the neutrinos are (at least approximately [10]) massless, they can have only one helicity state
which is taken to be vy . Experimentally, we know that right-handed fields do not interact with the
W boson, so the right-handed electron, eg. must be an SU(2). singlet and thus has Y, = -2.
Therefore, to generate the left handed structure of the weak charged current interactions, the
SU(2;. symmetry is applied to left handed quarks (Q) and leptons (L} only. The fermion fields
are thus given by,

1 v 1 f u -
vL LL,.=:2'(1—75)(8: ) . QL,,=§(1-‘75)<d: ) s (1.17)
for the SU(2). left-handed doublets and

1
{(1+v5)ux, dgr, = 5(1 + vs)di , (1.18)

|~

1
YrR: €eRr, = 5(1 +slex, uR, =

for the right-handed singlets, with £ = 1 — 3 being a generation index. From Equation 1.6, the
hypercharge of the lepton doublet must be Yz = —1. The SU(2}, and U{1}y charge assignments
of the first generation of fermions are given in Table 1.3.

Using these hypercharge assignments, the leptons can be coupled in a gauge invariant manner
to the SU(2). x U(1)y gauge fields,

Liepton = i€p, 1" (au + i%}}Bu)eR, +ilp, " (a,, + i%r W, + i%YLB,,) Ly,. (1.19)
with a similar term for the quark sector.
A fermion mass term takes the form
Lomass = -mT/ =-m (ELUR +ER'~/’L) . (1.20)

As is obvious from Table 1.3, the left-and right-handed fermions transform differently under SU(2) .
and U(1)y so gauge invariance forbids a term like Equation 1.20. The Higgs boson can be used to
give the fermions mass, however. In order to generate a mass term for the fermions we use the fact



CHAPTER 1. INTRODUCTION 3

Field SUB)e SU(2) U(l)y
QL= ( ;:‘ ) 3 2 3
uR 3 1 :
dp 3 1 —%
L= ( Zf ) 1 2 -1
er 1 1 -2
&= ( z: ) 1 2 1

Table 1.3: Gauge charges of the Standard Model fermion fields.

that ¢ = —ir»®* is an SU(2). doublet, and we can write the SU(2). invariant Yukawa coupling
of the Higgs boson to the fermions as,
Cvukawa = —Ae,Li, Per, — Ay, Qr, ®up, — A, QL,¥dR, +h.c., (1.21)
Considering the up and down quarks for example, this is,
Lug=-24Q, ®dp + hec., (1.22)
which gives the effective coupling
~Ag—=(dL, d1) ( o ) dp+he. | (1.23)
V2 v+h
which can be seen to yield a mass term for the down quark if we make the identification
Ag = MaV2 (1.24)

v

For the multi-family case, the Yukawa couplings, Ay and A,, become Nr x Nr matrices (where Ng is
the number of families). Since the fermion mass matrices and Yukawa matrices are proportional, the
interactions of the Higgs boson with the fermion mass eigenstates are flavor diagonal and the Higgs
boson does not mediate flavor changing interactions. Diagonalization of the masses in the quark
sector introduces the weak mixing, or Cabibbo-Kobayashi-Maskawa (CKM) matrix {11]. Similar
couplings can be used to generate mass terms for the charged leptons. Since the neutrino has no
right handed partner, it remains massless. A complete set of Feynman rules for the interactions of
the fermions and gauge bosons of the Standard Model can be found elsewhere (6].

By expressing the fermion kinetic energy, Equation 1.19, in terms of the gauge boson mass
eigenstates of Equation 1.13, the charged and neutral weak current interactions of the fermions can
be determined. Heralded as the first significant success of the theory, Neutral Current interactions,
predicted by the Standard Model as the exchange of a neutral Z°, were first seen in neutrino
scattering experiments in 1972 [12] and the Z° boson was directly observed in proton-antiproton
collisions in 1983 [13].

One of the most important points about the Higgs mechanism is that all of the couplings of
the Higgs boson to fermions and gauge bosons are determined completely in terms of coupling
constants and fermion masses. The potential of Equation 1.4 has two free parameters, u and A.
Rewriting these as,

2
2 = &

22
mye? = 203\ . (1.25}
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The parameter v can be found from the y decay, p — €PD.v,, which proceeds through emission
of a virtual W. The strength of this interaction is related to G which has been measured very
accurately to be Gp = 1.16639x 103 GeV 2. Since the momentum carried by the W boson is of
order m,, it can be neglected in comparison with m =, and we make the identification,

Gr g° 1
ZE 9 _ 1.26
2 EME T 3 (1.26)
which gives the result,
v = (V2Gr)~'/? = 246 GeV . (1.27)

With only a siagle adjustable parameter, mys, remaining the Higgs sector of the Standard Model
is extremely predictive, with all couplings, decay widths, and production cross sections computed
unambiguously in terms of the unknown Higgs boson mass.

Having briefly introduced the essential ingredients of the SM, we now pause to examine its
general features and success as a theory. Three principal assumptions went into the building of the
theory:

o The gauge group is SU(3}c xSU(2). xU(1)}y.
e There is one complex scalar SU(2), doublet.
e The fermion representations are left-handed weak isodoublets and right-handed singlets.

In addition to these assumptions the theory contains 21 a priori free parameters which must be
inserted into the framework of the SM by hand. The missing ingredients of the model are the Higgs
boson, which has yet to be discovered, and the r-neutrino for which there is only indirect evidence
at present.

1.1.1 Properties of the Standard Model Higgs Boson

When the mass of the Higgs boson is below the W+~ threshold (x~ 160 GeV), it will decay most

often into fermion-antifermion (written h® — ff) pairs. In the Born approximation, the width into

charged lepton pairs is,

Gl“ml2 3
m ;

2= S

where §; = /1 - ‘lm,2 /mya? is the velocity of the final state leptons. The Higgs boson decay into
quarks is enhanced by the color factor, N. = 3, and also receives significant QCD corrections,

3Gl=‘m2 40, QCD :
4\/§“thoﬁg (1+--A,, ) . (1.29)

37
where AZS? is a QCD correction factor {5]. The Higgs boson clearly decays predominantly into
the heaviest fermion kinematically allowed.

For 10 Gel" < mpe < 160 GeV’, the most important fermion decay mode is h® — bb. The
electroweak radiative corrections to h® = qg are not significant and amount to only a few percent
correction [14]. These can be neglected in comparison with the much larger O(a,) QCD corrections
which, for a Higgs boson in the 100 GeV range, decrease the decay width for h® —» bb by a factor
of about two. The branching ratios for the dominant decays to ff pairs are shown in Figure 1.1 [5].
The decrease in the h®— ff branching ratios at mye ~ 150 GeV is due to the turn-on of the
WW?* decay channel, where W* denotes a virtual W. For most of the region below the W+W —
threshold, the Higgs decays almost entirely to bb pairs, although decays to v+~ are also used in
the experimental searches. The other fermionic Higgs boson decay channels are almost certainly
too small to be separated from the backgrounds.

Ph® =1+~ = (1.28)

T(h° - ) =
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Higgs Branching Ratios
Higgs Branching Ratios

Figure 1.1: Branching ratios of the Standard Model Higgs boson to T (left) and gauge boson (right)
pairs, including QCD radiative corrections. The peak in the W+W ~ branching ratio (supressed due to
the logarithmic scale) can be seen to correspond to the sharp drop in the {f branching ratios.

Figure 1.2: Higgs production through ete~ — h®Z°. Some of the important decay channels are
indicated.

Since the Higgs boson coupling to the electron is very small, ~ m. /¢, the s—channel production
mechanism, ete™ — h®, is minute and the dominant Higgs boson production mechanism at LEP
and LEP2 is the associated production with a Z° ,ete~ — Z* — Z°h°, as shown in Figure 1.2. At
LEP2, a physical Z° boson can be produced and the cross section is [15],

2-’
wazx%io[z\zoho + 1272211 + (1 — 4sin’ Gyy)?)

82

ete” = 2°h%) = , 1.30
o ) 192ssin! Bw cos? Bw (1 — mz02/s)? (1.30)

where 2 2 2 2
Agopo = (1 — 202 j'"z" )2 _ gMhe Fmzo” (1.31)

The centre of mass momentum of the produced Z° is A;{,ioﬁ/z where /5 is the centre of mass
interaction energy which, at LEP, is twice the beam energy. The cross section increases rapidly

with energy at production threshold and peaks at /s ~ mgzo + 2m,,0, so the best limits on the
Higgs boson mass will be obtained at the highest energy.
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As mentioned above, a Higgs boson which can be produced at LEP or LEP2 (my,» < 110GeV)
will usually decay to bb pairs, so the final state from e*e~ — Z%h® will have four fermions. The
dominant backgrounds are Z° —+ bb(g} and W+W ™~ — qgqq production, which can be efficiently
eliminated by b-tagging. LEP2 studies [16] estimate that with /s = 200 GeV and £ = 100 pb~!
per experiment, a Higgs boson mass of 107 Gel” could be observed at the 50 level.

Currently, the highest energy data at which the four LEP experiments have published a com-
bined Higgs mass limit is at /s = 183 Gel’, which is 17|,

muo > 89.8 Gel” at 95% CL (1.32)

This limit includes both hadronic and leptonic decay modes of the Z°.
The successes of the SM as a theory can be listed as:

e Unification of the electromagnetic and weak forces in a manner which maintains the renor-
malizability and unitarity of the theory.

e Prediction of a specific relationship between W~ and Z boson masses.
e The weak charged and neutral current structure agrees with experiment.

e All aspects have impressive agreement with all experimental data 4].

1.1.2 Deficiencies of the Standard Model

The SM provides a remarkably successful description of presently known phenomena. The ex-
perimental high-energy frontier has advanced into the hundreds of GeV range with no confirmed
deviations from Standard Model predictions and few unambiguous hints of additional structure.
Still, it seems quite clear that the Standard Model is a work in progress as there remain a number
of important questions which the SM does not address. These include:

e The fermion masses and mixings are not predicted.

e Are there massive neutrinos?

e Why are the particles arranged in generations and what sets the number of these generations?
e Charge quantization, i.e. why does ¢, = —¢qp?

e What are the origins of dark matter?

e Why is spacetime 4 dimensional?

e What is the electroweak symmetry breaking mechanism (is there really a light Higgs doublet)?

This list of unanswered questions provides the principle motivation for consideration of physics
beyond the SM. Numerous theories are studied in the hope that they will address at least one
of these issues. However, no single theory has been invented that successfully addresses all the
outstanding questions simultaneously. At the same time, there is not one shred of experimental
evidence to provide guidance for extending the theory, or to indicate that physics beyond the SM
exists.

Certainly a new framework will be required at the Planck scale mp = GrL/? | =1.2x10'% GeV,
where quantum gravitational effects become important. It seems nearly as obvious that new physics
exists in the 17 orders of magnitude in energy between the presently explored territory and the
Planck scale. The mere fact that the ratio mp/mw is so huge is already a powerful clue to the
character of physics beyond the SM, this is the infamous gauge hierarchy problem [18]. This is not
really a difficulty with the Standard Model itself, but rather a disturbing sensitivity of the Higgs
potential to new physics in almost any imaginable extension of the Standard Model.
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The Standard Model requires a non-vanishing vacuum expectation value (VEV} for the Higgs
field, &, at the minimum of the potential. Expanding ® about its VEV yields a single neutral scalar
with a classical potential given by

Vo= p?h? + A° (1.33)

where the mass of the physical scalar is myo? = —u®. SSB will occur if u?> < 0, resulting in
(h®) = == Vmno?/A. Since we know experimentally that v = 256 GeV it must be that myo?
is very roughly of order (100 GeV)}2. However, my,02 receives enormous quantum corrections from
the virtual effects of every particle which couples, directly or indirectly, to the Higgs field.

(a) ® g

Figure 1.3: Quantum corrections to the Higgs (mass)?.

For example, in Figure 1.3a we have a correction to my2? from a loop containing a Dirac fermion
f with mass my. The Higgs field couples to f with a term in the Lagrangian —Ash%ff, thus the
Fevnman diagram in Figure 1.3a yields a correction [19],

A2

Amya? = Er% =207+ 6mFIn(A/mygy + .. ] - (1.34)
Here A is an ultraviolet momentum cutoff used to regulate the loop integrals which appear in the
evaluation of Figure 1.3a; it should be interpreted as the energy scale at which new physics enters
to alter the high-energy behavior of the theory, presumably on the order of the Planck scale or a
grand unified scale. Each of the leptons and quarks of the Standard Model can play the role of f;
for quarks, Equation 1.34 should be multiplied by 3 to account for color. The largest correction
comes when f is the top quark with A, = 1.

The problem with Equation 1.34 is that the Higgs boson mass diverges quadratically, and this
divergence is independent of myo . If A is of order mp, say, then this quantum correction to my,o?
is some 30 orders of magnitude larger than the desired value of m;0% ~ (100 GeV'}>. There is no
syvmmetry to protect the Higgs mass from these large corrections and. in fact, the Higgs mass wants
to be as close to the largest mass scale in the theory. This is only a problem for corrections to
myo? because quantum corrections to fermion and gauge boson masses do not have the quadratic
sensitivity to .\ found in Equation 1.34. However, the quarks and leptons and the electroweak
gauge bosons Z°% W* of the SM all owe their masses to (h%), so that the entire mass spectrum of
the Standard Model is directly or indirectly sensitive to the cutoff A.

One could imagine that the solution is to simply pick an ultraviolet cutoff A which is not too
large. However, one would still have to invent some new physics at the scale A which cuts off
the loop integral. Furthermore, there is a contribution similar to Equation 1.34 from the virtual
effects of any arbitrarily heavy particles which might exist. For example, suppose there exists a
heavy complex scalar particle S with mass mgs which couples to the Higgs with a lagrangian term
—Ash®h®SS. Then the Feynman diagram in Figure 1.3b gives a correction

Amyo? = 12:;2 A —2miin(A/ms)+..] . (1.35)
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The term proportional to m% cannot be eliminated without the physically unjustifiable tuning of
a counter-term specifically for that purpose. So myo? is sensitive to the masses of the heaviest
particles that h% couples to; if ms is very large, its effects on the SM do not decouple, but instead
make it very difficult to understand why mys? is so small.

If the Higgs boson is a fundamental particle, we have two options: either we must make the
assumption that there exist no heavy particles which couple (even indirectly or extremely weakly)
to the Higgs scalar field, or some rather striking cancellation is needed between the various contri-
butions to Amyo2.

The systematic cancellation of the dangerous contributions to Amys? can only be brought about
by the addition of a new symmetry. It is apparent from comparing Equations 1.34 and 1.35 that
the new symmetry should relate fermions and bosons, because of the relazive minus sign ? between
fermion loop and boson loop contributions to Amy.2. If each of the quarks and leptons of the
Standard Model is accompanied by two complex scalars with Ag = |Az|2, then the A? contributions
of Figures 1.3a and 1.3b will neatly cancel {20]. Notice that the cancellation occurs independent of
the masses, m; and ms, and of the magnitudes of the couplings Ay and As.

Conditions for cancelling all such contributions to scalar masses are not only possible, but are
actually unavoidable once we merely assume that a symmetry relating fermions and bosons, called
a supersymmetry [19], should exist.

1.2 Supersymmetry:
Beyond the Standard Model

Supersymmetry (SUSY) {21, 22, 23] is considered an attractive extension of the SM, since it provides
a solution to the gauge hierarchy problem. Supersymmetry is a symmetry which relates particles
of differing spin. Once these particles are combined into superfields, which contain fields differing
by one-half unit of spin, the supersymmetry then completely specifies the allowed interactions. In
a supersymmetric theory, the scalars and fermions in a superfield have the same couplings to gauge
bosons, so the cancellation of quadratic divergences needed to regulate the contributions to the
scalar masses occur automatically.

The supersymmetric Lagrangian contains scalar and fermion pairs of equal mass, thus the su-
persymmetry connects particles of different spin, but with all other characteristics the same. It
is clear, then, that supersymmetry must be a broken symmetry. For example, there is no scalar
particle with the mass and quantum numbers of the electron. In fact, there are no candidate
supersymmetric partners for any of the known fermions or bosons.

Supersymmetric theories are easily constructed according to the rules of supersymmetry, but
not all such supersymmetric theories reproduce the successes of the SM. The easiest solution, then,
is to start with the SM, and make it supersymmetric in such a way as to preserve its predictive
power. The resulting theory, known as the Minimal Supersymmetric Model (MSSM} {24], respects
the same SU(3)¢c x SU(2)L x U(1l)y gauge symmetries as does the Standard Model. Since there
are no candidates for supersymmietric partners of the observed particles, we must double the entire
particle spectrum, placing the observed particles in superfields with new postulated superpartners,
often called sparticles.

The (s)particle spectrum of the MSSM can be found in a number of references 5, 19, 25]; we
will concern ourselves only with the Higgs sector.

2)s must be positive if the scalar potential is to be bounded from below.
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1.2.1 The Higgs Mechanism in MSSM

In the standard (non-supersymmetric} model of electroweak interactions, the fermion masses are
generated by the Yukawa terms in the Lagrangian

L=-2Q ¥dr ~ A\, Q¥ up + h.c. . (1.36)

In a supersymmetric theory, however, a term proportional to ¢ is not allowed, so another scalar
doublet must be added in order to give the 73 = 1 components of the SU(2), fermion doublets
mass. The MSSM, therefore, has two Higgs doublets, $, and $2. These fields couple separately to
up-type quarks for the first doublet, and to down-type quarks and charged leptons for the second
doublet. Scalar field doublets that couple in this manner may exist more generally in a class of
models known as Type IT Two Higgs Doublet Model (2HDM) (25].

The most general MSSM scalar potential can be shown to be [25],

Vo = (Ll emi) 1@ +(1uP +m3) | & -uBe, (#18) +nc.)
24 o ) 2 1
T (1P =182 1) + 50 818217 (137

This Higgs potential depends on 3 independent combinations of parameters: | u |2 +m?; | u |2 +m3;
and uB, where B is a new mass parameter. This is in contrast to the general 2HDM doublet model
where there are 6 arbitrary coupling constants (and a phase} in the potential. It is interesting to
note that the quartic couplings in Equation 1.37 are fixed in terms of the gauge couplings so they
are not free parameters, contrary to the SM.

Clearly, if uB = 0, then all the terms in the potential are positive and the minimum of the
potential occurs with V' = 0 and ($}) = ($3) = 0. Hence, all 3 parameters must be non-zero
in order for the electroweak symmetry to be broken. The symmetry is broken when the neutral
components of the Higgs doublets get vacuum expectation values,

(8%) = ( “ ) . (@9 = ( 32 ) . (1.38)

By redefining the Higgs fields, we can aiways choose v; and v positive.
In the MSSM, the Higgs mechanism works in the same manner as in the SM. When the elec-
troweak symmetry is broken, the 11" gauge boson gets a mass which is fixed by v, and v2,

2
mw=2= %(vf +12). (1.39)

Before the symmetry was broken, the 2 complex SU(2),; Higgs doublets had & degrees of freedom.
Three of these were absorbed to give the W and Z gauge bosons their masses, leaving 5 physical
degrees of freedom. There is now a charged Higgs boson, H*, a CP-odd neutral Higgs boson,
A%, and 2 CP-even neutral Higgs bosons, h® and HC. It is a general prediction of supersymmetric
models that there will be an expanded sector of physical Higgs bosons.

After fixing v{ + v such that the W boson gets the correct mass, the Higgs sector is then
described by 2 additional parameters. The usual choice is

v
tang = = (1.40)
and mao, the mass of the pseudoscalar Higgs boson. Once these two parameters are given, then

the masses of the remaining Higgs bosons can be calculated in terms of m o and tan 8. Note that
we can chose 0 < 3 < 5 since we have chosen vy,v2 > 0.
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In its most general form, the MSSM has more than one hundred parameters. In this thesis
we consider a constrained MSSM, with only six free parameters in addition to those of the SM.
The model assumes unification of: the scalar-fermion masses, mg, at the grand unification (GUT)
scale; unification of the gaugino masses, which are parametrized using M-, the SU(2) gaugino mass
term at the electroweak scale; and scalar-fermion tri-linear couplings, A, at the electroweak scale.
These simplifications have virtually no impact on the MSSM Higgs phenomenology. Other free
parameters of the model are the supersymmetric Higgs mass parameter g, tan3. and the mass of
the CP-odd neutral Higgs boson, mao.

It is straightforward to find the physical Higgs bosons and their masses in terms of the param-
eters of Equation 1.37; details can be found in Ref. {25]. The neutral Higgs masses are found by
diagonalizing the 2 x 2 Higgs mass matrix and, by convention, h? is taken to be the lighter of the
neutral scalar Higgs. This introduces the neutral Higgs mixing angle, a, which enters into many of
the couplings and can be expressed in terms of ma0 and 3:

sin 25(1’",\02 + mzoz)

tan2a = . 1.41
an ca cos28(mao? — mgzo?) ( )
With our conventions, ~% < a < 0.
At tree level, the masses of the neutral Higgs bosons are given by,
1 1/2
m%a,m = E{mhoz +mz?F ((m,\o2 + mz0%)? — 4mzo?myo? cos? 26) } . (1.42)
The pseudoscalar mass is given by,
2| uB|
2
T ee——— 1- 3
A? sin23 (1.43)
and the charged scalar mass is,
m‘z;,, =mw=2+m,\32 . (1.41)
which give important tree-level predictions about the relative masses of the Higgs bosons,
Mg+ > My= .,
myo > mzo ,
myoe < MmMpo,
mps < mzo |cos28], (1.45)

from which we notice the interesting prediction that the lightest neutral Higgs boson, h®, is lighter
than the Z° boson. However, loop corrections to the relations of Equation 1.45 are large. In fact the
corrections to myo? receive contributions from loops with both top quarks and squarks (quark super
partners). In a model with unbroken supersymmetry, these contributions would cancel. Since the
supersymmetry has been broken by splitting the masses of the fermions and their scalar partners,
the neutral Higgs boson masses become at one-loop,

2
1 €n €n
2 — 2 2 2 2
Mioys = -2-{on + mzo© + sn? 0 + [(m,\o — mgzo“)cos28 + sinzﬂ)
2 1/2
+ (m,\02 + mzoz) sin? 2ﬂ] } (1.46)

where ¢ is the contribution of the one-loop corrections,

_ 3GrF m? -
€ = ﬁrzm:ln(l-*“m_f) . (1.47)
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We have assumed that all of the squarks have equal masses, ri7, and have neglected the smaller effects
from the mixing parameters, 4; and . For tan 3 > 1, the mass eigenvalues increase monotonically
with increasing m s and give an upper bound to the mass of the lightest Higgs boson,

Mo’ < mzo®cos®28 + €y . (1.48)

The corrections from € are always positive and increase the mass of the lightest neutral Higgs boson
with increasing top quark mass. Theshift in m?, is approximately proportional to m{ In(m;2/m?),
which can be several tens of GeV. While the top quark mass has been measured to be m; =
(175£5) GeV [26], the masses of the scalar top quarks m; depend on the mixing in the t sector
which, in turn, depends on several other parameters of the MSSM.

There are many analyses {27] which include a variety of two-loop effects, renormalization group
effects, etc., which found that for given values of tan 3 and the squark masses, there is an upper
bound on the lightest neutral Higgs boson mass. For large values of tan 8 the limit is relatively
insensitive to the value of tan 3 and with a squark mass less than about 1 TeV, the upper limit
on the Higgs mass is about 110 GeV” if mixing in the top squark sector is negligible (A1 ~ 0}. For
large mixing, this limit is raised to about 130 GeVl". Although this bound is bevond the ultimate
reach of the LEP collider, a substantial fraction of this mass range is accessible and provides a
definitive test of the MSSM.

Another feature of the MSSM is that the fermion-Higgs couplings are no longer strictly propor-
tional to mass. Rather, these coefficients are determined in terms of the fermion masses and the
vacuum expectation values of the neutral members of the scalar components of the Higgs doublets.
It is convenient to write the couplings for the neutral Higgs bosons to the fermions in terms of the
SM Higgs couplings,

gm;

=g [Cm.'f,-fgho + Cau [, fiH® + Caa T fiA°] | (1.49)

where C, is 1 for a SM Higgs boson. As Cypa — 1, the A® ff coupling is equivalent to the S\
values, cf. Figure 1.1, so it decays preferentially to bb quark pairs. For large tan 3 this rate can
be significantly enhanced.

f _Cimm  Crqun Crra
COS 1
sin g ::l: 3 cot ﬁ
sin O COM O
d - COS 3 COs 5 tan B

Table 1.4: Higgs boson couplings to fermions.

The Higgs boson couplings to gauge bosons are fixed by the SU (2}, x U(1} gauge invariance.
Two of the phenomenologically important couplings are:

u vy 0 . igm2° - _ uv
ZHZVh" - p— sin(8 — a)g”? ,
80 Gty . ) _ Y’
Z*h" (p)A~(p') : 3 cos 0w cos(B—a}p+p)t. (1.50)

We see that the couplings of the Higgs bosons to these gauge bosons depend on the same angular
factor, 3 — a. The pseudoscalar, A%, has no tree level coupling to pairs of gauge bosons. The
couplings of the neutral scalars to vector bosons (1" = W*, Z) are suppressed relative to those of
the SM

98,1V + G = gaiy(SM) (1.51)
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where gs1-1- is the coupling of the Higgs boson to vector bosons. Lastly, the Higgs bosons may
couple to each other. The important coupling is

igmzo

h%ACAC ; —
2 cos By

cos 283 sin(8+a) . (1.52)
A complete set of couplings for all the Higgs bosons at tree level can be found elsewhere [23].

At the current ete™ centre of mass energies accessed by LEP, the h® and A% bosons are
expected to be produced predominantly via two processes: the Higgs-strahlung process ete™ —
h® Z° (as for the SM Higgs) and the pair production process e*e~ — h® A . For these two principal
processes, the cross-sections gnz and ona are related at tree-level to the SM cross-sections {25]:

ete” 2 h%Z° : oyz =sin?(8 ~ a) a3, (1.53)
ete” 5 h%A% : gu4 =cos?(8—a) A oS}, (1.54)

where oS3 and o5} are the cross-sections for the SM processes ete~™ — h2y, 2° and ete™ — v,
and A is a kinematic factor, depending on myo, mao and /3, typically having values between
0.5 and 0.7 for the centre of mass energies under consideration. The coefficients sin?(8 — a) and
cos?(8 — a) indicate complementarity of the cross-sections for the two processes, a feature which
is exploited in deriving bounds for Higgs boson masses and other model parameters.

1.2.2 MSSM at OPAL

Supersymmetric models have a rich particle spectrum in which to search for evidence of the Higgs
mechanism. The various production channels such as h®, H® = v+, h® —» #+7—, A% 5 bb, etc., are
sensitive to different regions in the myo — tan 3 parameter space. It takes the combination of many
decay channels in order to be able to cover the parameter space completely without any holes. In
order to make a statement about the (non}existence of an MSSM Higgs signal in the OPAL data,
the cross-sections and branching ratios for every possible combination of allowed MSSM parameters
must be calculated and used to predict the number of signal events expected for each search channel.
These can then be compared to the experimental resuit and a confidence level analysis [28] applied
to exclude regions of the MSSM parameter space.

Interpretation of the MSSM search results by the OPAL Higgs group was performed centrally,
chiefly due to the immense computing requirements. However, in order to motivate the analyses
presented in this thesis, a brief outline of the method (28] used to derive the MSSM Higgs boson
exclusion plots will be presented.

In scanning the MSSM parameter space, values of the six MSSM parameters introduced on
page 12 (mg, M3, A, u, tan3, and myo ), were input to the HZHA event generator {29, 30] which is
supplemented with parts of the SUSYGEN ;31| program. The HZHA program provides the masses and
couplings of all Higgs bosons as well as those of the supersymmetric partners. It also calculates
the cross-sections for ete~ — h® Z% and h® A° at each centre of mass energy, corrected for initial-
state radiation. SUSYGEN produces scalar-fermion masses on the electroweak scale, starting from
the same input parameters.

The MSSM parameters were varied independently in the following ranges:

e mg: 0 to 1000 GeV. The masses of physical scalar-fermions are obtained by running mg
from the GUT scale down to the electroweak scale using the relevant renormalization group
equations.

o M,: 0to 2000 GeV. The U(1) and SU(3) gaugino mass terms, A; and M3, are calculated from
Mo using the ratios of the corresponding coupling constants, M, : M, : M3 = a; : a2 : a3.

e A: —2.5-mg to 2.5-mg. This range is chosen to include all possible scalar-top mixings.

e u: —1000 to 1000 GeV'.
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Figure 1.4: The MSSM exclusion for the 172 GeV analysis. Excluded regions are shown for (a) the
(mpuo . mao ) planefortan8 > 1, (b) the (myo, m a0 ) plane for tan3 > 0.7. All exclusion limits are at
95% CL. The black areas are excluded soley by comparing data to the expected MSSM production rates,
without applying any additional theoretical criteria. The speckled areas are theoretically inaccessible.

e mao: 5to 160 GeV. Beyond this range, values in 5 GeV slices around mao = 250, 400, 1000
and 2000 GeV were also explored.

e tanfB: 0.7 to 50. This spans the theoretically favoured range, 1 < tan8 < m,/my, but also
includes values less than unity, which are not ruled out by theorv.

e m,: 165, 175 and 185 GeV. As mentioned previously, the top quark mass has a strong impact
on myo: Therefore, it is also varied within reasonable bounds. The range of values includes
approximately two standard deviations of the measured top quark mass.

Most parameters are scanned by dividing their ranges into bins of variable size and choosing the
values in each bin at random. Exceptions are the parameter m., for which three discrete values
are used, and the values of mso greater than 160 GeV, for which 5 GeV" bands around the values
are used. The number of parameter sets considered in this scan of the MSSM parameter space was
close to 6,000,000.

The results from the search with the OPAL detector for neutral Higgs bosons in the MSSM
model at /s < 172 GeV (28] are reported in Figure 1.4, in the form of experimental exclusion
limits, at the 95% CL.

1.2.3 The Search for ete~ — Z° — h09.49 — 4040 40

In Figure 1.4, one can see regions of unexcluded parameter sets with small values of myo. These
points are characterized by a small value of sin?(3 — a), hence the h® Z% production is suppressed
(cf. Equation 1.53). The h® A® production is kinematically allowed at LEP2 energies in most of
the affected region, but the cross-section is small, requiring a dedicated search to improve tagging
efficiency.

The analyses presented in this thesis were conducted in order to close the unexcluded regions
satisfying 2m o < myo. For 2mys < myo, the process h® = A% A? is also allowed and may even
be the dominant decay, leading to more complex final states than those from direct decays into
fermion pairs. Since the neutral Higgs bosons in the mass range accessible by LEP2 couple to
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Figure 1.5: MSSM Higgs production mechanism in the case mys > 2m 4o.

fermions with a strength proportional to the fermion mass, the A° dominantly decays into pairs of
the most massive fermions which are allowed by the kinematics, most notably into bb quark pairs.
Figure 1.5 presents the production processes leading to a three Higgs boson intermediate state. As
in the case of h® Z° and h® A? production, Equations 1.53 and 1.54, the h® Z% o A% A® Z% and
h® A% — A% AC AC are complementary in nature and so the suppression of h® Z° production, as
mentioned above, leads to an increase in the associated h® A® production. We are then searching
for the process depicted in Figure 1.5b, where the Higgs bosons decay into bb quark pairs. This is
an intriguing event topology with no less than six primary jets expected and significant B-hadron
production.

It is clear then that the search for A% A® A® 5 3(bb) will require good jet resolution with
efficient B-hadron identification, both of which depend heavily on the tracking efficiency of the
detector. The next chapter will describe the OPAL detector, with emphasis on the central tracking
system. This will be followed by a chapter which develops a method of event classification through
the use of Artificial Neural Networks. The final two chapters present the results of the search for
ete™ = h% A% A% A0 AC 4 3(bb) at /s = 183 GeV and 189 GeV, respectively.
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Chapter 2

LEP and the OPAL Detector

2.1 The Large Electron Positron Collider

The Large Electron Positron (LEP) collider [32] is located at the European Laboratory for Particle
Physics (CERN !), near Geneva, Switzerland. LEP accelerates electrons and positrons in a circular
underground tunnel 26.7 km long, and collides them at centre of mass energies up to around
200 GeV (196 GeV achieved in 1999). During the experimental run in 1996-1997, LEP operated
primarily at 183 GeV, rising to 183 GeV for the 1997-1998 season.

The LEP collider itself is actually the last step in a series of particle accelerators at CERN.
Electrons are initially accelerated to 200 MeV by the LEP Injector Linac {LIL). These electrons may
be directed onto a target to produce positrons. The electrons (or positrons) are then accelerated
to 600 MeV before entering the Electron Positron Accumulator (EPA), where they are stored until
eight compressed bunches have been accumulated. The beam is then injected into the Proton
Synchrotron (PS), where the energy is increased to 3.5 GeV'. Next, the beam energy is increased
to 20 GeV' by the Super Proton Synchrotron (SPS). Finally, the beam enters the LEP accelerator
and collider.

The LEP accelerator :33] consists of eight 2.8 km long arcs linked by eight straight sections.
The particles are kept in their orbits in the arcs by 3400 bending magnets and are focussed by 800
quadrupoles and 500 sextupoles. The only difference in this process between electron beams and
positron beams is that LEP accelerates the two beams in opposite directions. In the first phase
of the LEP programme (LEP1), which began in 1989, electrons and positrons were accelerated to
centre of mass energies of approximately 91 GeV (45.5 Ge\" per beam) using copper radiofrequency
(RF} accelerating cavities, located at diametrically opposite positions in the straight sections on
either side of the underground experimental halls. Once the beams were at collision energy, these
RF cavities then provided energy to compensate for the energy loss due to synchrotron radiation
in the arcs. This loss is proportional to E§,,,, and was about 125 Me\" per turn at LEP1 energies.

Operation at this energy continued until 1995 when the RF system underwent an upgrade for the
second phase of LEP (LEP2} by the installation of superconducting RF cavities, initially increasing
the centre of mass energy to about 133 GeV. Further upgrades have resulted in collisions at centre
of mass energies of 161 GeV, 172 GeV, 183 GeV, 189 GeV, and currently 196 GeV, which has been
attained using the complete installation of 272 superconducting RF cavities operating at average
gradients of 7 MV/m to compensate for the 2049 MeV lost per turn due to synchrotron radiation.
The maximum LEP luminosity (number of particles per unit area per unit time) that was achieved
in 1998 was 8.42x 10%'cm—2sec™!.

The electron and positron beams are made to collide at four interaction points around LEP.
Large, general purpose detectors (OPAL 34, 35], ALEPH [36], DELPHI '37], L3 :38]) were built

'Known in French as “Conseil Européen pour la Recherche Nucléaire™.
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in the large underground halls, 70 m long and 23 m in diameter, at each of these interaction
points. Electrostatic separators prevent the beams from colliding at locations where no detectors
are situated.

The beams have a lifetime of about 6 hours, during which they are stable enough to do physics.
The beams travel in two counter rotating sets of eight bunches per beam, known as 8 x 8 mode. At
the interaction points, these bunches are gaussian in shape with dimensions (39] of o, ~ 200 um,
0y ~ 4 pum and o: = 15 mm. The luminosity, £ icm~2sec™!], of a collider like LEP is given by,

_kyfoN*N~
~ dmo.o, (2.1}

where k; is the number of bunches, f, the bunch rotation frequency (= 11 kHz) and N*+{~} the
number of particles per e*(e~) bunch (O(3x10!!/Bunch}).

O eocsccees censnen anes

[ [ - Prysics 98 Zo

[ | —=-Pnysics 95 20, 65-70 GeV
| -=-Physics 96  80.5 - 86 GeV
4 - Physics 97 9t - 92 GaV

180 qeeo{_——Physice 36  94.5 GeV

integrated Laminosity (ph-1)

Days of Running

Figure 2.1: Integrated luminosity delivered at LEP2 from 1995-1998.

The rate for a particular reaction is related to the luminosity by R = o, where o is the
corresponding cross-section. The total number of events collected from this particular reaction,
after a period T of collision time, is then (N) = ¢Lin. = 0 fOT Ldt, where £;,,, is the integrated
luminosity. Henceforth, the luminosity will be understood to mean the integrated luminosity.

2.2 The OPAL Detector

The OPAL (Omni-Purpose Apparatus for LEP) detector is one of four detectors located at the
LEP ete~ storage ring. It is designed to provide efficient particle detection, with accurate and
unambiguous event reconstruction of all possible interactions occurring in ete~ collisions. The
general lavout of the detector is shown in Figure 2.2.

The main features of OPAL are:
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¢ Tracking of the trajectories of charged particles in a uniform magnetic field with measurements
of their direction and momentum; particle identification using dE/dr; and reconstruction of
primary and secondary vertices using the central tracking and vertex detectors.

e Measurement of energy and direction of photons and electrons using electromagnetic calorime-
ters.

o Measurement of hadronic energy by total absorption in the instrumented magnetic return
voke (the hadron calorimeter).

o Identification of muons using muon chambers to measure the position and direction of particles
which have passed through tne hadron calorimeter.

e Measurement of the absolute machine luminosity using Bhabha scattering events in the for-
ward direction, with respect to the beam line, using the forward detector or the silicon-
tungsten luminometer.

The OPAL collaboration (cf. Appendix B) currently consists of over 300 physicists and tech-
nicians, from over 30 institutions. The numerous development, construction, maintenance and
operation tasks are divided among the participating institutions.
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The OPAL Magnet

The magnet consists of a solenoidal coil and iron return yoke. The return yoke is constructed of
soft steel plates and can be dismantled into five parts; a central part, two ‘C’-shaped parts and
two poletips. In the central cylindrical volume, which is used for tracking, the magnetic field is
approximately 0.435 Tesla. In the jet chamber tracking volume, which constitutes the bulk of the
central tracking system, the magnetic field is measured to be uniform to within +£0.5%.

The OPAL Coordinate System

The z-direction is along the beam direction and in OPAL this coincides with the direction of the
electrons (which is anti-clockwise when LEP is viewed from above). The z-direction points towards
the centre of the LEP ring. The y-direction is normal to the r — z plane, such that the three
directions form a right-handed coordinate system. The z-direction is inclined by 1.39° with respect
to the horizontal and therefore the y-direction is inclined by 1.39° with respect to the vertical. It is
common for a mixture of cylindrical and spherical coordinates to be used, where the z-direction is
the same as defined above, the f-direction is the polar angle with respect to the positive z-axis and
¢ is the azimuthal angle which is 0 rad along the r-direction and #/2 rad along the y-direction.

The OPAL Track Parameters

The trajectories of charged tracks in the OPAL central detector are specified using a set of param-
eters (K, ¢g,do, tan A, and z5), defined as follows:

o x is the curvature, with & = 1/(2p} and p the radius of curvature. In OPAL, with the magnetic
field along the positive : axis, a positive value of x corresponds to a particle with negative
charge.

® op is the angle made by the track tangent at the point of closest approach (pca) to the origin
in the r — y plane.

e dp is the track impact parameter. |dp| is the distance from the origin to the point of closest
approach (pca) in the r — y plane. If d is the vector from the origin to the pca, @ the unit
vector at the pca and # the unit vector along the z axis then dy = ¢ x d - Z gives the sign of
the impact parameter.

e tan A is the dip angle, equal to cot8 where 8 is the polar angle measured from the : axis.

e 2pisthevalueof z at the pca. The s—:z projection of the track is a straight line, z = zg+stan A,
where s is the r — ¢ path length from the pca.

With a magnetic field of B kGauss and & in units of cm™! the momentum, in GeV, of the
particle in the r — ¢ plane is given by p, = 1.5x10"4B/x. The three components of the momentum
are then given by p, = pr cos ¢, p, = pr Singo and p: = p, tan A.

2.2.1 Central Tracking Chambers

Of primary importance to the analysis presented in this thesis, the OPAL central tracking system
consists of: a silicon microvertex detector (SI}; a precision vertex detector (CV); a large volume jet
chamber (CJ}; and z-chambers (CZ), all contained within the solenoid of the magnet.

The gas used in the central tracking detectors, which is common to the CJ, CV and CZ, is a
mixture consisting of 82% argon, 9.8% methane and 2.0% isobutane, contained under a pressure of
4 bar within a pressure vessel whose inner wall is at a radius of 7.8 cm from the interaction point.
This in turn houses the beampipe and silicon microvertex detector. The gas pressure is chosen
to optimize '40] particle separation using dE/dr and is a compromise between high pressure, to
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minimize diffusion effects which degrade spatial resolution at long drift distances, and low pressure,
to minimize multiple scattering which is conducive to good momentum resolution.

Silicon Microvertex Detector

A critical property of modern detectors is the ability to reconstruct the displaced vertices generated
by the decay of particles with typical decay lengths O(1 mm}. This is best achieved by building high
resolution detectors as close to the primary interaction point as possible. This was the motivation
for the construction of the vertex detector (Section 2.2.1} which is a high resolution wire chamber
sitting immediately outside the beampipe. However, in practice there are practical limits to how
close to the interaction point the detector can be instrumented. The chief concerns being the
damaging radiation flux, which increases closer to the interaction point, and the desire to minimize
the radiation lengths of material particles must traverse before interacting with the calorimetry.
For high rate environments, solid state detectors are required, but in the original OPAL design
the beampipe was large enough so that background rates were not a limiting issue and the more
standard Vertex detector was sufficient.

After the first LEP run in 1989, it was found that the lower than expected background rate
permitted the use of a smaller diameter beampipe. With the reduced beampipe a thin annular
region was created between the new beampipe, with an outer diameter of 56.5 mm, and the inner
wall of the wire chamber pressure vessel, with an inner diametre of 8 mm. This permitted the
installation of a new precision solid state detector closer to the interaction region.

The first silicon microvertex detector (SI) [41] was added to OPAL in the 1990/91 winter
shutdown, in between the original beampipe and a new 0.11 cm thick beryllium pipe at a radius of
5.35 cm. The first model began taking data in June 1991 and provided increased precision in the ¢
measurement (the r measurement was known from the surveyed position of the detector}. In 1993
a second model '42] was installed which used the same technology as the first but returned both =
and ¢ measurements.

The excellent single hit resolutions of the first ST detectors were demonstrated in Z° di-lepton
decays, where the impact parameter resolutions were g4, = 15 um in the r — ¢ plane, and 0., =
20— 50 um in the z plane, for polar angles ranging from | cos 8| = 0.0 —0.8. The additional precision
in the measured track parameters significantly improved the measurements of the 7 lepton {43] and
b flavoured hadron lifetimes i44], as well as the identification of b flavoured multi-hadron events.
The additional z information provided by the second model detector allowed for three dimensional
track fitting and significantly reduced the number of tracks falsely associated with reconstructed
vertices.

In autumn 1995, the LEP collider entered a new era, known as LEP2, in which the centre of
mass energy is being raised in steps from the Z° resonance to &~ 200 GeV'. One of the main goals of
the LEP2 phase of operation is the search for the Higgs boson. The most popular Higgs scenarios
predict that the Higgs boson(s} will decav predominately into bb quark pairs. To distinguish
Higgs bosons from irreducible backgrounds due to Z%and V'+W~ decays, b quark tagging is an
indispensable tool, from which the highest possible tagging efficiency and purity is desired. In this
light, it was felt that the SI detector should be upgraded to provide the largest possible geometrical
acceptance. This third phase of the SI detector was installed for the 1995 data run, and it is this
latest model which will be presented here. The detector is fully described elsewhere [43].

The basic modular unit of the detector is the ladder. The ladder consists of three back-to-back
z ¢ readout silicon wafers aligned lengthwise in a row, as shown in Figure 2.3. Twelve ladders form
the inner cylindrical detection layer and fifteen comprise the outer layer, together providing single
hit coverage within |cos#| < 0.93 and double hit coverage over |cosé| < 0.89.

In azimuthal coverage, the ladders are arranged with a small tilt angle with respect to the
circumference so that the detectors have a small overlap. The available radial space does not
allow an overlap in the sensitive detector area, but the dead region between the ladders in the
¢ coordinate is minimized. This geometry yields 97% single hit coverage within the double layer
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region, jcos§| < 0.89.
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Figure 2.3: Cut-away view of the third phase Silicon Microvertex detector, installed in 1995.

The main components of the ladders are the silicon wafers with strip readout. In the original
detector, each wafer supported 629 semi-conductor readout strips. In the upgraded model, each
wafer is, in fact, made of two layers. The first layer is a 250 um thick high resistivity (> 5 kQ cm)
n-type silicon wafer with a metallization on the backplane. Between the silicon and the backplane
is a thin protective layer of n* doped silicon. On the front (readout) side are the ¢ readout strips.
Adhered to that is a similar laver but with the readout strips running orthogonal to the previous
set, thus yielding the third coordinate measurement.

The offline cluster finding is performed separately in ¢ and z. A ¢ cluster is required to have
at least one strip (the seed) with a pedestal-subtracted pulse height greater than 40 where ¢ is
the rms noise of the individual strip. Adjacent strips are included if their pulse heights exceed 20.
Clusters in the z coordinate may include 2 strips on either side (provided their pulse heights are at
least 20} in allowance for the case where the incident particle traverses the detector thickness at a
wide angle.

The ¢ and : impact positions are then determined from the mean of the cluster strip positions
weighted by their pulse heights. These impact positions are then converted into hit positions within
the OPAL detector and result in one ¢ and three z hits, which is due to the three-fold ambiguity
in the z position because of the shared readout of the three : wafers on each ladder. The error
assignment is then the quadratic sum of the ¢ and : uncertainties.

One of the main obstacles in designing the z position measurement system was to incorporate
the readout without adding significant material within the acceptance of the detector in contrast
to putting the z-readout electronics directly at the end of the z strips. Successful results have
been achieved via routing the z strip signals, to the front-end electronics at the end of the ladders,
through metallized prints on glass. The OPAL design uses a gold printed circuit on a glass substrate.
The 200 pm thick glass substrate was chosen to minimize material in the active region. The wafer
dimensions are 33 x 66 mm.
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Care was taken to minimize the radiation length of material such that for a particle emerging
transverse to the beam line, the total amount of material traversed in detector is, on average,
1.3% of a radiation length at normal incidence. The main contributions are from the silicon detec-
tors ( 1.1% }, the z-readout substrate ( 0.3% ) and the beryllium support shells ( 0.1% }.

The precise knowledge of the position and orientation for the earlier phases of the detector
were acquired mostly by a software alignment procedure which utilized Z° - ¢+¢— decay data.
Although the ultimate alignment information still relies on such a procedure, the production rate
of tracks needed for software alignment is greatly reduced for data collected at energies above the
Z° peak. Nevertheless, a fast detector calibration is desirable for rapid analysis of new data at high
energies. For these reasons the phase three detector emploved a detailed optical survey prior to its
installation to ensure a reasonably accurate starting point for the software alignment procedure.
The ultimate position uncertainty resulting from the alignment was estimated to be about 8 — 10 um
in the r — ¢ plane and 10 — 12um in r — z coordinates and is limited by the systematic errors of
the overall OPAL tracking system.

An indication of how the detector improves the overall OPAL tracking performance is given by
the apparent separation at the interaction point of two tracks in a dilepton event, from which the
impact parameter resolutions o4, and 0., can be determined. Using the SI information, combined
with information from the rest of the tracking system, a resolution '45] of o4, = 18 um is achieved
for tracks with |cos@| < 0.75. A resolution of o., = 24 um is achieved for tracks emerging in the
region normal to the beam axis (cf. Figure 2.4). These values are slightly worse that those found
for the second phase detector {42] which can be attributed to the lower charged track statistics
available at LEP?2 for the alignment procedures.

An example of a typical LEP2 physics event, Figure 2.5 shows the hadronic decay of a pair of 1"
bosons, ete” - W+W~ , where it can be seen that nearly all of the reconstructed tracks have two
matching microvertex detector hits. All but two of the tracks are consistent with a single primary
vertex. The remaining two tracks originate from a clearly visible neutral particle decay, showing
the capability of reconstructing secondary vertices.

Vertex Detector

The vertex detector (CV} 46, 47] is a 1 m long and 0.47 m diameter cylindrical drift chamber
located within the pressure bell, between the outer beanipipe and the jet chamber {cf. Figure 2.6}.
As mentioned in the previous section, it is used to determine the position of decay vertices of short-
lived particles and to improve momentum resolution. The chamber is segmented radially, and has
an inner layver of 36 axial sectors and an outer layver of 36 stereo sectors.

In the inner laver, each sector has a plane of 12 anode or sensing wires strung parallel to the
beam direction, located between radii of 10.3 and 16.2 cm with a spacing of 5.3 mm. The outer
layer of stereo sectors each has 6 anode wires lving between radii of 18.8 and 21.3 em with a
spacing of 5 mm. Each anode wire defines a drift cell. ITonization from a charged particle passing
through the cell is collected at the anode wire. The anode wires are 20 um diameter gold plated
W-Rh, the potential wires are 200 um diameter gold plated Cu-Be and the cathode planes use 125
pm diameter Cu-Be wires spaced 1 mm apart. The cathode planes form the boundaries between
adjacent sectors.

The stereo angle of the wires in the outer layer is ~ 4°. Information from these wires is used
to obtain precise information about the : coordinate of the particle trajectory. All of the anode
wires are offset from the plane defined by the potential wires by an alternating stagger of + 41
pm in order to resolve the ambiguity as to whether a particle passed to the right or left side of
the wire plane. The average spatial resolution of the chamber is about 55 um. See Figure 2.7 for a
schematic of the CV wire layout.

The axial cells provide a precise measurement of position in the r — y plane by accurately
measuring the arrival time of the electrons at the anode wire. The maximum drift distance of
about 1.5 cm limits the effects due to diffusion. A goad multi-hit detection capability is necessary
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Figure 2.4: Impact parameter distributions in the r — ¢ plane (dy) and along the beam axis (zg) for
ete™ = €+€~ (£ =e,u) events taken in 1996. The points with error bars are the data and the full line
is a Gaussian fit [45].
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Figure 2.5: Example of an ete™ = W+W~ 5 qgq qGevent at LEP2. The left image presents the
charged tracks and energy deposits reconstructed for the whole detector. The right image shows the
hits in the S| microvertex detector, indicated by thick bars, which start at the position of the hit and
have a length proportional to the signal height.
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Figure 2.6: Cut-away view of the Vertex detector.
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to resolve individual particles within jets. By reducing the discrimination time between successive
pulses to about 40 - 50 ns, a two particle separation of about 2 mm is achieved, assuming an average
electron drift velocity of about 40 um/ns in a drift cell.

The signals from each wire end are then passed to a unit which measures the difference in their
arrival times. A measurement of this difference to 0.1 ns allows the z coordinate to be determined
to roughly 4 cm. This information is used in the trigger and in offline track finding and fitting.
A more precise : measurement is obtained by combining axial and stereo cell information in the
offline tracking analyvsis.

Jet Chamber

As it is of critical importance to the study of hadronic jets, in this section we will not only discuss
the general parameters of the jet chamber (CJ) but present more a more detailed performance
review of the detector.

Like the vertex detector, the jet chamber 48, 49, 50] is of cylindrical design and surrounds CV
within the pressure bell. CJ records the tracks of charged particles and is designed to combine good
space and double track resolution with accurate momenta determination through measurement of
their curvature in the magnetic field along with the possibility of particle identification by measuring
dE/dr through multiple sampling of the energy loss in the gas. A track traveling perpendicularly
to the anode wires encounters 4.9% X, of material due to chamber gas.

The chamber is 4 metres long with an inner radius of 25 cm and an outer radius of 185 cm.
It is divided into 24 identical sectors each with 159 anode wires parallel to the beam line. As in
the vertex chamber, cathode wire planes form the boundaries between adjacent sectors. The anode
wires are grounded and lie between radii of 25.5 and 183.5 cm, equally spaced by 1 cm, alternating
with potential wires. The maximum drift distance varies from 3 cm for the inner wires to 25 cm for
the outermost wires. To resolve left-right ambiguities, the anode wires are staggered by +£100 um
alternately to the left and right side of the plane defined by the potential wires.

Within the range 43° < 8 < 137°, up to 159 points can be measured along each track, and
at least eight points on a track are obtained over a solid angle of 98% of 4=x. For each drift cell.
the r¢ coordinates are determined from the wire position and drift time. The integrated charge
is measured at each end of the wire and the ratio determines the z coordinate to within several
centimetres. The sum of the charges is used to calculate the energy loss, dE/dr, of the particle.
The operating point of the jet chamber (gas gain ~ 10% and a drift field of 30 \'/cm) is chosen as
a trade-off between requirements for good dE/dr information (low gas gain} and good = resolution
(high gas gain}.

The jet chamber has had quite a successful run to date. The number of bad channels which are
unavailable to track reconstruction, due to failures in the electronic readout chain, are typically kept
as low as 0.3%. Single hit efficiencies of > 99% are measured by examination of the distribution of
the number of hits on tracks in ete~ = 2% = u*u~ events. Of primary importance to the ability
to reconstruct hadronic jets of closely packed tracks, Figure 2.8 shows the ability to resolve closely
spaced hits, where 80% of hits greater than 2.5 mm are resolved. The difference in these efficiencies,
for all hits and those where both hits are associated with tracks, is due to a low level of imperfect
hit assignment by the pattern recognition algorithm {51].

Figure 2.9 presents the distribution of 1/p for u* and p~ tracksin Z° = u*u~ events collected
at the Z° peak during the 1998 data run. After suitable cuts, the momentum of each track
should be equal to the beam energy, Egeam = 45.6 GeV. A momentum resolution of o,/p? =
1.5x1072 (GeV")~! is measured compared to the design goal of 1.6 —2.0x10~3 (GeV'}~!. Including
a term due to multiple scattering, the momentum in the r — ¢ plane (p, in GeV) is measured with
a resolution of

2l _ (0,022 + (0.0015p)2)F

Pt
The impact parameter resolution, g4,, of CJ is determined by studying the “miss distance”
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Figure 2.8: This plot, from the 1992 run, shows the efficiency of resolving a double hit (dashed line)
and a double hit associated to a track (solid line) as a function of the double hit separation in the jet
chamber. A double hit is resolved with 80% efficiency at a double hit separation of 2.5 mm. A double
hit associated to a track is resolved with 80% efficiency at a double hit separation of 3.5 mm.
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Figure 2.9: The plot on the left shows the distribution of 1/p for u* and u~ tracks in 2% — utu-
events collected at the Z° peak during the 1998 data run. The first subplot presents the measure-
ment using only the jet chamber (CJ), then with improvements through inclusion of additional track
information provided by the vertex chamber (CV) and the silicon microvertex detector (Sl) respectively.
The plot on the right shows the summary of the momentum resolution throughout the 1995-1998 data

taking periods.
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between muon tracks extrapolated to the beam axis in the r — ¢ plane using Z° - u*u~ events.
Figure 2.10 shows the intrinsic r — @ resolution determined using isolated ete™ — (Z/+)* = ptu~
events collected during the 1998 run. For the jet chamber alone, this distribution is centred on zero
with a resolution of 98 um. In general, the impact parameter of a track is not determined by the
jet chamber alone. Including the additional track information from CV and SI, the overall impact
parameter resolution is measured to be 19 um.
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Figure 2.10: The plot on the left shows the instrinsic coordinate resolution, 04,, measured using u*
and p~ tracks in Z% = utpu— events collected at the Z° peak during the 1998 data run. The first
subplot presents the measurement using only the jet chamber (CJ). then with improvements through
inclusion of additionai track information provided by the vertex chamber (CV) and the silicon microvertex
detector (SlI) respectively. The plot on the right shows the summary of o4, throughout the 1995-1998
data taking periods.

The jet chamber does not perform as well in reconstructing the z coordinates of tracks. Using
the method of charge division, which has been shown to be particularly sensitive to systematic
effects due to asymmetric long range crosstalk induced on the signal wires, and the time difference
of arrival times at each end of the signal wires a resolution of 0., = 1.6 cm is achieved in hadronic
Z° decay events and 2.5 cm for Z° — u*tu~ events. Including information from the vertex and =
chambers, discussed below, this resolution improves to ., = 1.0 cm, which is dominated by the
width of the beam.

The dE/dr resolution for u*u~ events [51] was calculated to be 3.1%. These values are
somewhat better than the values which would be obtained from multihadronic events. Figure 2.11
shows dE/dr values, measured using the jet chamber, for multihadronic tracks and muon-pairs
together with the expected functional form. In the region of the relativistic rise, a particle separation
with a probability of at least 2o is possible between electrons and pions for energies up to 13 GeV,
and between pions and kaons or protons for energies up to 20 GeV'.
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Figure 2.11: This large scatter plot shows the measured dE/dr (1994 data) for multihadronic tracks
and muon-pairs collected at the Z° peak, together with the expected functional form. The dE/dz
resolution for minimum ionising pions within multihadrons (p = 0.4 — 0.8 GeV) and muon-pairs with
159 dE/dz hits is also indicated.
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Z-Chambers

The Z-chambers (CZ} 52] are used to obtain a precise measurement of the z coordinate of charged
particles as they leave the jet chamber, thus improving polar angle resolutions. The precise z
measurements from these chambers improve both the polar angle and invariant mass resolutions,
which are both extremely important in standard particle jet reconstruction schemes {53, 54].

The Z-chamber system consists of 24 panels, 4 metres long, 50 cm wide and 5.9 cm thick. Each
panel is divided into eight 50 x 50 cm cells, giving a maximum drift distance of 25 cm in the z
direction. They are arranged to form a barrel layver around the jet chamber covering the polar angle
range 44° < 6 < 136° ( |cos@| < 0.72) and 94% of the azimuthal acceptance. The maximum drift
voltage is about 20 kV giving a drift field of 800 V/cm. Each cell has six anode wires with 4 mm
spacing and a stagger of +£250 um. Charge division is used to obtain the ¢ coordinate, in a method
analogous to that used to determine the z coordinate in the jet chamber. The r — ¢ resolution is
about 1.5 cm and the = resolution about 300 um.

2.2.2 Time-of-Flight

The Time-of-Flight (TOF) systems consists of two detectors, the Time-of-Flight Barrel (TB) and
Endcap (TE). The TOF system: generates trigger signals; helps in particle identification; and aides
in rejection of background particles such as cosmic rays.

Time-of-Flight Barrel

The TB system covers |cos#| < 0.82 and consists of 160 scintillation counters, each 6.4 m long
forming a barrel of mean radius 2.36 m.

Time-of-Flight Endcap

In contrast to earlier LEP studies at the Z° resonance, the research programme at LEP2 is char-
acterized by low cross-sections and an emphasis on new particle searches. Amongst the important
signatures of new physics are final states with unbalanced visible momenta; events containing iso-
lated photons; or those events with heavy, long lived (out of time) particles. In all cases, the
performance of OPAL would benefit by paying particular attention to improving particle tag-
ging efficiency, hermiticity and time resolution. This has been attained by the development of
a new system of scintillating tiles which was installed in the endcap region of OPAL during the
1995-96 winter shutdown. Two layers of scintillating tiles, complementing the existing TB scin-
tillators in the barrel region, were installed between the endcap presampler and the electromag-
netic calorimeter (see Figure 2.12): the Tile Endcap (TE), providing full azimuthal coverage over
0.85 < |cos8| < 0.93; and the Minimum Ionizing Particle (MIP) Plug, again providing full az-
imuthal coverage over 42 mrad < # < 200 mrad. The University of Alberta played a central role in
the design, construction and commissioning of the TE system [53].

Given the goal of improving tagging efficiency, hermiticity and time resolution mentioned above,
the essential requirements for the scintillating tile arrays were that they provide a high and uniform
light vield, low noise and a time resolution of < 5 ns. A number of physical constraints were also
imposed: there existed a limited (= 20 mm) thickness available for the detector; a restricted
volume of cabling which could exit the endcaps; the 0.4 T magnetic field; and the required solid
angle coverage. The only practical solution was to use scintillating tiles with embedded wavelength
shifting (WLS) fibres, which were chosen to optimize the collection of scintillation photons (A ~
420nm). There are a total of 120 TE and 32 MIP plug tiles in each endcap. All are 10 mm thick and
vary in area from 470 to 900 cm?. The scintillation light collected by the WLS fibres is re-emitted
at a longer wavelength (A ~ 500nm) and routed, by clear fibres, outside the detector where the
magnetic field is low enough for the use of conventional, shielded, photomutiplier tubes.
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Figure 2.12: Presented above is the y — = plane projection of the the position of the Tile Endcap and
MIP plug in the OPAL detector. The dashed lines represent particle trajectories at the limits of the
polar angle coverage by the various subdetectors. The dashed lines converge at the e*e~ interaction

point, approximately 2.5 m to the right of the centre of the figure.
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The scintillating tiles in each endcap are arranged in sectors as shown in Figures 2.13 and 2.14.
The outer two annuli of TE were subdivided into 48 sectors in order to match the 24-fold azimuthal
segmentation of the OPAL trigger logic while having at least 2 separate scintillator elements per
sector to match the truncated cone shape of the endcap electromagnetic calorimeter. To economize
on photomultiplier channels, the light output from tiles in the same outer 1/24 sector were grouped
together on the same photomultiplier. The inner 1/24 sectors are single piece tiles. Each of these
is read out by separate photomultipliers, allowing for disconnection of the inner sectors from the
trigger in case of high background rates caused by their proximity to the beamline. For the MIP
Plug, the tile layout was dictated by: the need to cover the required angular regions with at least a
two-fold coincidence of approximately annular layers; the azimuthal subdivision needed for trigger
and veto functions; and by the high beam-induced backgrounds expected. The t.les are arranged
as an inner and an outer pair of annular layvers, each divided into 8 tile sectors.

The precise timing information provided by TE simplifies the unambiguous determination of
the collision time, t;. Figure 2.15 shows the bunchlet identification as seen by the MIP plug and the
TE tiles. The observed spacing between bunches is 335 + 1.0 ns, compared to the expected value
of 334 ns. Gaussian fits to the bunchlet peaks vield a time jitter of 3.0 ns in bunchlet arrival times
compared to the design requirements of 5 ns. This precise determination of to is used throughout
the OPAL subdetectors to provide more robust and selective track triggers in order to veto out-of-
time hits such as those caused by cosmic rays, as well as by new particle searches looking for long
lived, heavy neutral particles. The TE scintillators, situated behind the presampler material, as
shown in Figure 2.12, may be the only source of the t; if the products are forward-going neutrals.

2.2.3 Calorimetery
Electromagnetic Calorimeter

The electromagnetic calorimeter system measures the energies and positions of electrons, positrons
and photons, ranging in energies from tens of MeV up to the beam energy. It is a total absorption
calorimeter for electromagnetic showers and is mounted outside the pressure vessel of the central
tracking system (and after the magnetic coil and the time of flight system), covering 98% of the
solid angle. Two distinct systems make up the electromagnetic calorimeter: a system of preshower
counters (presampler} and a lead-glass calorimeter. The material in front of the electromagnetic
calorimeter is approximately 2 radiation lengths thick which ensures that most electromagnetic
showers will have started before entering the calorimeter, necessitating the preshower detector.

The main component of the electromagnetic subdetector is the array of lead-glass blocks. Lead-
glass was chosen for its excellent intrinsic energy resolution. The energy measurement of a photon
or electron in lead-glass is based on collecting the Cerenkov light from the secondary electrons
generated in a electromagnetic shower. The blocks are designed to have good optical transmission
and to present a reasonably large number of radiation lengths to prevent shower leakage. The
resolution depends primarily on the photo-counting statistics.

The lead-glass system coupled with the presampler system provides some n%-photon discrimi-
nation and, in conjunction with the central tracking system, electron-hadron discrimination. The
angular resolution of electromagnetic clusters is approximately 4 mrad both in # and ¢ for shower
energies above 10 GeV'.

Presampler

The barrel presampler (PB) consists of a cylinder of limited streamer mode wire chambers between
the TB system and the barre! lead-glass calorimeter. There are 16 chambers covering the surface
of a cylinder of radius 2.4 m and a length of 6.62 m. Each chamber is 3 ecm thick and consists of
two layers of limited streamer mode tubes with sense wires running axially. Readout is obtained
by detecting signals induced on the 1 cm wide cathode strips located on both sides of each layer
of tubes and oriented at 15° to the wire direction. The strips on opposite sides of a layer are
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Figure 2.15: The uppermost plot shows the TE response to single tracks, corrected for angle of incidence,
summed over all segments. The insert shows the same spectrum for the minimim ionizing particles,
selected with the additional constraint that the associated electromagnetic cluster energy be iess than
3 GeV. The lower plot shows the bunchlet identification as seen by the MIP plug tiles (a) and the
TE tiles (b). The observed spacing bewteen bunches is 335 + 1.0 ns, compared to the expected value

of 334 ns.
requirements of 5 ns.

Gaussian fits to the bunchlet peaks yield a time jitter of 3.0 ns compared to the design
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orthogonal. In addition, the charge collected on each wire is measured at both ends to provide a =
position. Each module contains 480 pairs of strips in each orientation, and 192 wires.

The resolution for the position of electromagnetic showers, in the plane perpendicular to the
shower direction, varies from about 6 to 4 cm as the shower energy varies over 6 to 50 GeV'. This
corresponds to an angular resolution for the photon trajectories of appreximately 2 mrad. The
resolution in = from current division is &= 10 cm for a single charged particle.

The endcap presampler (PE} is an umbrella shaped arrangement of 32 thin multiwire chambers,
operating in high gain mode, in 16 sectors located between the pressure bell of the central tracking
system and the endcap calorimeter. They cover the full azimuthal angle and the polar annular
region defined by 0.83 < |[cosf#| < 0.95. The endcap presampler has an angular resolution of
ope = 4.6 mrad.

The anode wire plane consists of 432 (69} gold plated tungsten wires of 50 yum diameter spaced
by 2 mm. The cathode read-out is done via 32 (22) strips and 16 (10) pads; the numbers in
parenthesis refer to the small chamber. The total thickness of the chamber is 6.8 mm, and the
width between the two cathode planes is only 3.2 mm.

Lead-Glass Calorimeter

The barrel lead glass calorimeter (EB) consists of a cylindrical array of 9440 lead-glass blocks of
24.6 X, located at a radius of 2455 mm, outside the magnetic coil covering the full azimuthal
angle and the polar annular region defined by [cos§ | < 0.82. The calorimeter is segmented into 59
blocks in the z direction and 160 blocks in the ¢ direction. The longitudinal axes of the blocks are
arranged such that each block points not at, but approximately near to (approximately 30 mm)
the interaction point. This prevents neutral particles from escaping through gaps in between the
blocks. The blocks are instrumented with magnetic field tolerant phototubes. Each lead-glass block
is & 10 x 10 cm? in cross-section and 37cm deep. The blocks are polished and, for optical isolation,
each is wrapped in a sheet of vinyl flouride, the inner surface of which is coated with aluminum to
improve the collection of Cerenkov light.

The endcap lead glass calorimeter (EE) consists of two dome-shaped arrays, each containing
1132 lead-glass blocks, located between the pressure bell of the central tracking system and the pole
tip hadron calorimeter. EE covers the full azimuthal angle and the polar annular region defined by
0.81 < |cos@| < 0.98. Because of tight geometrical constraints, the lead-glass blocks are mounted
with their axes coaxial with the beam line. The detector follows the curve of the pressure bell and
thus the blocks come in three lengths, typically ~ 22 Xj.

The spatial resolution of electromagnetic showers was found to be approximately 35 mm for EB
and 2-5 mm for EE. The resolution for minimum ionizing particles is better and has been found to
be approximately 2 mm and 2-4 mm. respectively. The energy resolution of EB has been measured
to be og/E = (1.2 £ 0.3)% + (20.8 + 1.8)%/VE, and 0g/E = (4.6 £ 0.7)% + (12.5 £+ 3.6)%/VE
for EE. In Figure 2.16 we see the energy resolution of the EB calorimeter determined for photons
in £+¢~~ events collected at the Z° peak {56].

Hadron Calorimeter

The hadronic calorimetry system measures the energy of hadrons which emerge from the electro-
magnetic calorimeter and assists in muon identification 2. It is built in 3 sections: the barrel, the
endcaps and the poletips. The iron used in the hadronic calorimeter provides at least four interac-
tion lengths over a solid angle of 97% of 47, as well as providing the flux return of the magnetic field.
This yoke is segmented into layers, with planes of detectors between each layer. Since hadronic
interactions may occur in the 2.2 interaction lengths of material preceding the hadron calorimeter,
it is necessary to use information from the electromagnetic calorimeters to correctly measure the
hadronic energy.

2Most hadrons are absorbed in the hadron calorimeter, leaving only muons to pass through.
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Figure 2.16: Electromagnetic calorimeter energy resolution, in GeV, of photons determined from £¥¢~~
events collected at the Z° peak.

The barrel part of the hadronic calorimeter (HB) consists of nine active layers, alternating with
eight, 10 cm thick, iron slabs together forming a cylinder between radii of 3.39 and 4.39 metres.
The barrel ends are closed off by toroidal endcap regions (HE) consisting of eight layers of chambers
alternating with seven layers of iron.

The active layers are limit-streamer mode cells with pad and strip readout. The streamer tube
devices are strung with anode wires, 1 cm apart, in a mixture of 75% isobutane and 25% argon. The
HB strips have an axial geometry and a width of 10 mm, giving a ¢ resolution of about 2.5 mrad,
which is sufficient for muon identification.

The signals from the wires are used only for monitoring purposes and the energy measurement
is obtained by analysing the induced charge collected on pads located on the outer chamber surface
and from aluminum strips located on the inner surface. In the barrel, the strips are parallel to the
beam line and in the endcaps they are perpendicular.

For fast trigger development, the layers of pads are grouped together to form towers which
divide the solid angle into 48 bins of 7.5° in ¢ and 21 bins in 6. The signals from the pads are
summed to provide an estimate of the energy in the shower. The 57,000 strips are used to provide
muon tracking information and for shower profile mapping.

The pole-tip region (HP) extends the coverage of the hadron calorimeter from |cosé| = 0.91
down to 0.99. In this region the number of sampling layers is increased to 10. The detectors
are 0.7 cm thick multiwire proportional chambers containing a gas mixture of 55% CO. and 45%
n-pentane. As in HB and HE, the chambers have pads on one side and strips on the other.
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The hadron calorimeter is sufficiently thick so as to reduce the amount of punch through (parti-
cles from hadronic showers which penetrate the calorimeter volume) to less than 0.8% of all particles
at 3GeV. The response of the hadronic calorimeter, at fixed angle, was shown to be [35] linear
with energy and the energy resolution was measured to be og/E = 120%/VE for pions with an
incident energy of 10 GeV'.

2.2.4 Muon Detector

The muon detector is a system of large-area drift chambers constructed as a barrel, measuring r, ¢
and roughly z; and two endcaps, measuring r,y as well as z by the surveyed detector position.
It covers the iron voke almost completely; 93% of the solid angle is covered by at least one layer
of the detector. The amount of material that a particle has to traverse before reaching the muon
detector exceeds the equivalent of 1.4 m of iron (over 7 interaction lengths for pions). This reduces
the probability of a pion not interacting in the hadronic calorimeter, thus faking a muon, to less
than 0.001. The efficiency for detecting isolated muons above 3 GeV is essentially 100%.

The barrel part of the detector (MB) contains 110 drift chambers and covers [cos#| < 0.68 with
four layers and |cos#| < 0.72 with one or more layers. Each cell is 0.6 m wide, 1.5 cm thick and
the majority of length 10.4 m. The drift chamber hits have a resolution of 1.5 mm in the r — ¢
coordinate, corresponding to an angular resolution of 0.3 mrad. The z coordinate of each hit is
given by a combination of several pad readouts yielding a resolution of 2 mm.

The endcap detector (ME} covers 0.67 < |cos#| < 0.98 with four layers of limited streamer
tubes which are perpendicular to the beam axis. Using a series of 10 mm strip readouts, hits
in each layer can be reconstructed, permitting the measurement of both z and y coordinates for
particles traversing the chambers, with an angular resolution similar to that of MB.

Muon identification relies on extrapolating the track seen in the central tracking system through
the iron absorber, allowing for energy loss and multiple coulomb scattering, then looking for the
track in the muon detector which matches in position and angle in two views. The positional and
angular accuracy required for the track measurement are determined by the multiple scattering of
the highest energy muons of interest and are about 2 mm and 3 mrad respectively.

2.2.5 Forward Detectors

In new particle searches, 47 detector hermiticity is always a desirable goal, but just as critical is a
precise measurement of the machine luminosity which is needed in order to set the most accurate
exclusion limits possible. The forward detectors (FD) are used to measure the machine luminosity
by detecting the small-angle Bhabha scattering events, as well as providing instrumented coverage
as close to the beam pipe as possible, maximizing the detector acceptance. The forward detector
system consists of; from 1993 onwards, the silicon-tungsten calorimeter; and most recently the MIP
plug, combining to push the instrumented coverage of OPAL to ¢ > 43 mrad.

Silicon Tungsten Calorimeter

The silicon-tungsten detector (SW) consists of two cylindrical small-angle calorimeters, encircling
the beampipe at about £2.4 m from the interaction point, have an angular acceptance of 25 <
¢ < 59 mrad. Each calorimeter is built up from 19 layers of silicon sampling wafers and 18 layers
of tungsten, corresponding to a total of 22 radiation lengths. The radial resolution on electron
showers is approximately 10ugm with an energy resolution of og/E ~ 28%/VE.

Forward Calorimeter

The forward calorimeter (FK) has 35 sampling layers of lead-scintillator sandwich, divided into 16
azimuthal segments, presenting 24 radiation lengths, readout with wavelength shifter to vacuum
phototetrodes. It is divided into a presampler of 4 .X; and the main calorimeter of 20 Xi. The
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presampler has a wavelength shifter on the outside, but the main calorimeter is readout on both
the inner and outer edges, allowing a § measurement. The energy resolution has been measured as
oe/E ~ 18%/VE. The polar angle resolution on electron showers is +4 mrad near the inner edge,
but degrades to +10 mrad at the outer edge. The azimuthal resolution, determined from the ratio
of signal in adjacent segments, is approximately £2°.

The Minimum lonizing Particle Plug

The newest addition to the forward detectors, the Minimum Ionizing Particle (MIP) Plug, is de-
scribed in Section 2.2.2.

Tube Chambers

Between the presampler and the main sections of the calorimeter there are three planes of brass-
walled proportional tube chambers (FB). Individual shower positions have polar angle resolution
of £2 mrad. Within the tube chamber acceptance the tube chambers and calorimeter provide
combined cluster information. The energy measurement comes from the calorimeter which also
provides § and ¢ for showers falling outside the tube chamber acceptance.

Gamma Catcher

The gamma catcher (FE} is a small electromagnetic calorimeter physically extending in ¢ from 143
to 193 mrad. It thus covers the annular region between the outer physical edge of FK and the inner
EE lead-glass calorimeter. It comprises eight independent azimuthal segments at each end, which
provide a coarse determination of ¢. Each segment consists of a lead-scintillator sandwich which
is read out along the outer edge with a wavelength shifter bar and two 1 cm? silicon photodiodes.
The calorimeter is non-containing with approximately 7 X of active material, preceded by further
3 Xo. A high energy electromagnetic shower will thus be shared either with FK or the inner EE
blocks depending on the 6 angle of the interacting particle. The energy resolution of Bhabhas is
~ 20%.

Far Forward Monitor

The far forward luminosity monitor (FF) counters are small lead-scintillator calorimeters, approx-
imately 50 mm x 150 mm x 20 X is size, mounted on either side of the beam pipe at 7.85 m from
the primary interaction point. They are used for high statistics, realtime, luminosity measurements
and to monitor beam backgrounds.

2.2.6 The OPAL Trigger and Data Stream

OPAL only records events if they satisfy certain trigger conditions, allowing one to separate interest-
ing physics processes from uninteresting background processes, detector noise and beam-crossings
where no interaction occurs.

Triggers

Subdetector trigger signals are of two types, ‘stand alone’ signals (high thresholds) and signals from
6 — ¢ binning (low thresholds). The high threshold trigger signals are typically multiplicity counts or
energy sums. The low threshold trigger signals are formed from one of the 6(8} x 24{¢) overlapping
bins which cover the 47 solid angle of the detector. The programmable trigger logic makes a decision
by forming spatial correlations between subdetectors in 8 — ¢ along with stand-alone signals.

The central trigger [57] logic is installed in a dedicated Eurocrate with a special ‘trigger bus’
in addition the standard VME bus. Logical combinations of the signals on the trigger bus (i.e.
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subdetector stand-alone signals and 8 — ¢ matrix outputs} are formed by the patter arrangement
module (PAM), which uses look-up tables to derive the trigger decision from 120 possible outputs.

The global trigger unit (GTU) sends its trigger decision to the local trigger units (LTUs) of
each subdetector. If the trigger decision is negative, a reset pulse is distributed 6 us before the
next bunch crossing. If the decision is positive the GTU transfers a central event number and
other information to the LTUs. Each LTU inhibits further triggers when subdetector readout is
in progress. The amount of time during the readout when no new triggers can be taken is called
deadtime.

Multihadronic Trigger

CV and CJ provide fast measurements of the r — z coordinates of hits in bins of # and ¢. Tracks
are identified as straight lines in r — z, thus enabling a track based trigger decision. The time-of-
flight counters, outside the magnetic coil, provide trigger signals in 21 bins of ¢. The EB and EE
calorimeters together are divided into 6(f) x 24(¢) overlapping bins and triggers are formed from

analogue energy sums in each bin.
Some trigger conditions relevant for multihadronic events (any of which alone will cause a

trigger) are:
e > 3 tracks
e > 2 tracks in the barrel region, | cos8| < 0.82
o track trigger-TOF coincidence in ¢
e track trigger-ECAL coincidence in 8 — ¢
e TOF-ECAL coincidence in ¢
e > 7 TOF hits in ¢
s > 7GeV total energy in EB
e > 6GeV total energy in EE
e > 2.6 GeV energy in a # — ¢ bin EB
® > 3GeV energy in a 8 — ¢ bin EE

Data Stream

Each subdetector is read out separately by its own front-end electronics to the local system cre-
ate (LSC). This digitized information is collected and merged into a single data structure by the
event builder (EVB)} VME system. Each complete event is passed to the filter where events are
checked, analysed, monitored and compressed before being written to disk. Further event selection
can occur at this stage by rejecting obvious background events. Information generated from each
event is copied from the filter disk to the ROPE processor farm, where the full OPAL reconstruction
code ROPE 3 is run and where the calibration constants are applied.

3Reconstruction of OPAL Physics Events
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Chapter 3

Artificial Neural Networks

When signal efficiency is a concern, as it is when a process of interest has a cross-section many
times smaller than those of the associated backgrounds, optimally, we would prefer a method where
all the parameters relevant to an analysis can be taken into account to determine the likelihood
that a particular set of values came from a signal-like event. The Artificial Neural Network (ANN)
is one such method.

Our ability to learn from observation is our primary source of knowledge about the world. We
learn to classify objects, to tell cats from dogs or an ‘A’ from a ‘B’, on the basis of instances
presented to us, not by being given a set of classification rules. Experience also teaches us how to
predict events, such as a coming rain storm, and to estimate unseen quantities, such as when we
judge the likely weight of an object from its size and appearance. Without this ability to learn
from empiricai data, we would be unable to function in daily life.

Theories and methodologies of learning are interesting from a number of perspectives. Psy-
chologists trv to model learning abilities of animals and to formulate high-level theories of how
learning operates, while neurobiologists try to understand the biological mechanisms of learning at
a lower level. Workers in artificial intelligence would like to understand in a more general way how
learning is possible in a computational system, and engineers try to apply such insights to produce
useful devices. Philosophers would like to understand the fundamental nature of inductive learning.
Statisticians develop methods of inference from data that for certain tasks are more sensitive and
reliable than unaided common sense. It is in the latter sense that we will consider neural networks.
The applications of interest in this thesis are those designed for predicting an unknown category
on the basis of known attributes.

Although neural networks were originally intended as abstract models of the brain, this biological
connection is well developed in many references 58] and will not be explored in this thesis. Instead,
we will attempt to develop an understanding of the neural network as a strictly mathematical idea.

To set the scene, it is useful to begin with a definition of what is meant by ‘Neural Net’. A
Neural Network (58] is an interconnected assembly of simple processing elements, units or nodes,
whose functionality is loosely based on the animal neuron. The processing ability of the network
is stored in the inter-unit connection strengths, or weights, obtained by a process of adaptation to,
or learning from, a set of training patterns.

An artificial neural network (ANN) consists of a pool of simple processing units which communi-
cate by sending signals to each other over a large number of weighted connections. The architecture
of the ANNs considered here are based on very similar building blocks which perform the process-
ing. These are variations on the parallel distributed processing (PDP) idea and lend themselves
well to numerous applications in High Energy Physics (HEP), especially the growing interest in
network based computing due to its inherit speed and scalability.

The logical components of an ANN can be listed as

e A set of processing units, known as neurons.
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e Connections between the units. Generally, each connection is defined by a weight, w;;, which
determines the effect of the signal from unit j on another unit i.

e An external input, known as the bias, 8; for each unit.
e A propagation rule, which determines the effective input, i;, to unit i, from its external inputs.

e An activation function, g;(z}, which determines the nonlinear response of the i*" unit based
the effective input i; to that unit. .

A state of activation, a; = g;(z}, for the unit, which is equivalent to the output of the unit.

A learning rule. That is, the rule which determines the new level of activation of the unit
based on its effective input and current level of activation.

In the following sections, a mathematical description of the basic neuron will be presented,
followed by the construction of a neural network using a system of discrete neurons. The algorithm
used to adapt the network state to solve a given classification task will be developed and issues
relating to the implementation of neural networks in real world problems will be discussed. To
begin, we will take a small tour through the history of neural nets i58].

3.1 A Brief History of Neural Nets

Ideas concerning machines that incorporate neural features have existed since work on the first
general purpose computers began. In fact, the analogy between computing and the operation of
the brain was to the fore in much of the early work in this area.

In 1942 Norbert Weiner 59] and his colleagues were formulating the ideas that were later
christened ‘Cybernetics’, which he defined as ‘control and communication in the animal and the
machine’. Central to this programme, as the description suggests, is the idea that biological mech-
anisms can be treated from an engineering and mathematical perspective. Of central importance
here is the idea of feedback.

In the same year that Weiner was formulating Cybernetics, McCulloch and Pitts {60] published
the first formal treatment of artificial neural networks. The main result in this historic paper is
that any well defined input-output relation can be implemented in a formal neural network.

One of the key attributes of networks is that they can learn from their experience in a training
environment. In 1949, Donald Hebb [61] indicated a mechanism whereby this may occur in real
animal brains. Essentially, synaptic strengths change so as to reinforce any simultaneous corre-
spondence of activity levels between the pre-synaptic and post-synaptic neurons. Translated into
the language of artificial neural nets, the weight on an input should be augmented to reflect the
correlation between the input and the unit’s output. Learning schemes based on this ‘Hebb rule’
have always played a prominent role.

The next milestone was the invention of the perceptron by Rosenblatt in 1957 [62]. One of the
most significant results presented there was the proof that for a perceptron, a network consisting of
a single input layer and a single output layer, a simple training procedure, known as the perceptron
training rule, would converge if a solution to the problem existed.

In 1969 enthusiasm for neural networks was dampened somewhat when it was shown [63] that
there exists an interesting class of problems (those which are not linearly separable} which single
layer perceptron nets cannot solve. Further, it was felt there was little hope for the training of
multi-layer systems which might deal successfully with some of these classification tasks. The
fundamental obstacle to be overcome is the so-called ‘credit assignment problem’: in a multilayer
system, how much does each unit (especially one not in the output laver) contribute to the error
the net has made in processing the current training vector?

In spite of this theoretical setback, much work continued in what was now an unfashionable
area, and there have been several developments in recent vears that have led to a resurgence of
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interest in nets. A breakthrough occurred in connection with so called feed-forward networks, when
it was shown that the credit assignment problem had an exact solution. The resulting algorithm,
‘Back error propagation’ or simply Backpropagation, was popularized by Rumelhart, Hinton and
Williams 64].

In order to investigate these new models, it is often necessary to resort to computer simulation,
and the power of this method has obviously been greatly enhanced by advances in technology.
Certain experiments would simply have been unthinkable fifteen years ago by the average worker,
given the accessibility and power of the computing resources available. In recent vears, there has
been a marked increase in neural net research, both because of new mathematical insights and the
enormous improvement in the ability to perform simulation.

It has been a little more than ten years since the first investigations into the application of neural
networks in HEP were undertaken [65, 66] and much of todays work is still exploratory; however,
the growth in applications to HEP is striking. The proof-of-concept for using ANNs in HEP {67]
can be established by existing applications in off-line analysis of data from existing experiments. In
the domain of pattern recognition; quark-giuon separation [68], heavy quark tagging [69] and new
particle searches {70}, results have been achieved with feed-forward networks which are superior
to conventional approaches. For tasks such as mass reconstruction of a decayed particle from
calorimetry information or other cases of functional approximation, feed-forward networks have
outperformed standard methods [71]. Also, solving the optimization problem of track finding
through the use of ANNs have been proposed [66] and successfully applied with real data {72]. The
fast track reconstruction provided by ANN methods will prove to be crucial to the high speed event
triggers [73] in the high luminosity environment of the future hadron collider experiments.

3.2 The Fundamentals
3.2.1 The Neuron

As mentioned previously, the basic logical unit of a neural network is known as a neuron. A neuron
is a processing unit which has a number of inputs and one output.

Following observations of biological systems, a neuron performs a relatively simple job: it re-
ceives inputs from external sources and combines them, along with internal parameters, to form a
- highly non-linear response signal which can then be propagated to other neurons downstream.

This functionality is captured in the artificial neuron known as the Threshold Logic Unit (TLU},
originally proposed by McCulloch and Pitts [60]. While conceptually simple, the TLU model
captures the main features seen in its biological counterpart. The i**® TLU neuron receives N
inputs, a;, from its j = 1...N external sources through connections weighted by w;;j. These
weights can have both positive (excitory} and negative (inhibitory} values. This information is
combined in a weighted sum with a bias, or threshold, 6;, to form the total input to the i'* neuron,

i; = Zw,-jaj +86; . (31)
J

This linear input is then fed through a non-linear transfer, or activation, function g(i;), to produce
the non-linear response of the neuron, a;. That is,

a; = glis) = (3 _ wija; +6:) . (32)
J

This process is depicted schematically in Figure 3.1.
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Figure 3.1: The structure of the basic neuron is shown. The unit collects a number of inputs, a;. and
generates their effective input, i, as a sum over the connections weighted by w;. The activation, a, of
the unit is then calculated by applying the transfer function, g(z). to the effective input.

3.2.2 The Activation Function
McCulloch and Pitts originally proposed,

(z) = 1 z20
SE =10 <0

known as the Threshold or Heaviside function which modelled the “on/off” property observed in the
biological systems. However, further research in the field lead to the preference for differentiable,
non-decreasing transfer functions. The differentiable, linear extension of the Heaviside function is
the Threshold Linear function,

(3.3)

1 r>¢
g(x) = 1] r<0 (3.4)
cr otherwise
where c is a positive scaling constant. The activation derivative is:
dg 0 if I € (—oc,0)Ul/c, o)
’ —_— 2 = 1 ' s =\
9z =7; { c otherwise (3.5)

While differentiable, this function is not commonly used. More elegant solutions exist in a class
of smooth, readily evaluated, functions with simple derivatives collectively known as sigmoidal
functions.

The most used sigmoidal transfer function is the logistic signal function,
(3.6}

g(z) = €0, 1)Vre®R

1+e ¥
which is sigmoidal and strictly increases for positive temperature constant T > 0. T sets the inverse
gain of the function: a low temperature corresponds to a very steep sigmoid and a high temperature
corresponds to an approximately constant function. The limit T — 0 yields the Heaviside function,
Equation 3.3. Strict monotonicity implies that the activation derivative of g is positive:

,_dg 1

9= =791-9)>0. (3.7
Another common function in use is the hyperbolic-tangent function,
(2} =tanh(Z) = = o isnvrew (3.8)
= T' ™~ et +e F ’ * )
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where T > 0 is a positive scaling constant. Again, g is monotone increasing (¢ < 1}, so the
activation derivative of g is positive,
g = % -Tle(l

The choice of activation function can change the behaviour of a neural network considerably.
For hidden units, the standard choice is to use a sigmoidal type function, either in symmetric,
(—1,1), or asymmetric, (0, 1}, form. Sigmoidal functions are global in the sense that they divide the
parameter space represented by the inputs into two halves: one where the response is approaching
1 and another region where it approaches 0 (-1}). Hence, it is very efficient at making sweeping
cuts in feature space. Typical High Energy Physics applications are raost concerned with pattern
classification and so these type of divisions in feature space are extremely beneficial.

For output units, the standard choice for classification tasks is again to use sigmoidal functions.
The outputs are typically trained on binary target values, 0 or 1, depending on which class the
input training pattern was assigned. However, for continuous transfer functions the realized output
values, will generally not be exactly equal to one of these target values. One is still able to interpret
these outputs in a very useful way, if the following sufficient conditions are met:

-g¢y>0 (3.9)

e The training is accurate.

e The task is coded such that only one output unit is “on” at a time.

e A mean square error function is used.

e The training data patterns are selected with the correct a priori probabilities.

In this case the outputs correspond to Bayvesian a posteriori probabllm& '74], and we should find
that a sum over the values of the output nodes would yield Z ;=1 0i = 1. Due to the difficulty in
proving all the sufficient conditions listed above exist, this sum is typically not identically one. To
facilitate a winner-takes-all classification for networks with more than one output node, we ensure
the unit sum by welghung the i** output by a sum over all outputs, o;/ Z 0;, in the case o; € (0, 1)
and e% / Z €%, when o; € (—1,1), then taking the maximum weighted output as the classification.

In this analvsxs. the logistic sxgnal, Equation 3.6, was used as the transfer function for all nodes.
The use of Equation 3.8 was investigated but did not significantly affect the performance of the
networks.

3.2.3 Building a Network

Exploring the obvious utility of the basic neuron, a vast number of network topologies can be
imagined. When the output of one neuron is allowed to go to the input of any neuron, including
itseif, the options are almost limitless. However, the ultimate goal is to create a network topology
which is amenable to the development of an algorithm which defines how the network can learn;
be it pattern classification or functional representation. In this case, there are a number of well
known network topologies which can be used.

One of the most common topologies used in High Energy Physics applications is the feed-forward
network. Networks with this architecture are built by grouping a number of neurons in layers and
connecting the outputs of neurons from one layer to the inputs of the neurons in the next, or
downstream, layer (cf. Figure 3.2). There are no connections between nodes in the same layer, and
output from nodes are only used by the immediate downstream layer. Within neural networks it
is helpful to distinguish three types of neurons: input units which receive data from outside the
system, and typically do not perform any processing; Output units which hold the network result
for analysis outside the system; and hidden units, whose inputs and outputs remain internal to the
system. That is, inputs are presented to the input layer, and the network response is generated
by progressively feeding the output of one layer as inputs to the next, until the output layer
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Figure 3.2: The general layout of a neural network. Layer O distributes the input to the input layer 1.
The output of the network is (generally) the output of the output layer L.

is reached. This is called the forward pass phase of a feed-forward network analysis, for obvious
reasons. However, without a method for adjusting the internal parameters of the network to achieve
the desired response to some known set of input patterns, this method hardly seems interesting.

3.3 Learning with Neural Networks:
The Delta Rule

Unlike conventional data processing techniques which require complex programming, neural net-
works develop their own solutions to problems. In effect, neural networks are trained rather than
programmed.

A neural network has to be configured such that application of a set of inputs produces the
desired set of outputs. Various methods to set the strength of the connections exist. This process
is known as training the network and is accomplished by feeding the network training patterns and
letting it adjust its internal state according to some rule.

We can categorize two distinct types of learning situations: supervised learning, in which the
network is trained by providing it with both the input and the desired output patterns; and un-
supervised learning, in which an output unit is trained to respond to clusters of pattern within
the input. In this case, the system in supposed to determine the statistically salient features of
the input patterns for itself. Unlike the supervised learning method, there are no a priori set of
categories into which the patterns are to be classified. This is at odds with the envisioned appli-
cation in this thesis, as we do have well defined categories in which we would like to classify the
data. Further, this method is more sensitive to the relative population of signal events in the set
of training patterns and as we have no a priori knowledge of the signal cross-sections, this would
introduce an unavoidable bias. In this thesis, supervised learning was used to train all networks.

Virtually all learning rules for models of this type can be considered as a variant of the Hebbian
learning rule [61]. The basic idea is that if two units, i and j, are simultaneously active, their
interconnection should be strengthened. If unit i receives input from unit j, the simplest version
of Hebbian learning prescribes that we modify the weight w;; by,

Aw;j = va;a; , (3.10)

where + is a positive constant of proportionality representing the learning rate. Another common
rule uses not the actual activation of the i*! unit, a;, but its error. That is, the difference between
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the actual value and the desired, or target, value t;,
Aw;; = v(a; — ti)a; . (3.11)

This is often called the delta rule.

It should be noted that the delta rule as stated in the previous equation only makes sense for
an output node where the target value is known. How do we update the weight of a hidden unit?
This is the credit assignment problem discussed in the introduction to this section, where it was
mentioned that with feed-forward nets, it can be shown that the credit assignment problem can be
solved by backpropagation 58, 64].

3.3.1 Backpropagation

Backpropagation is probably the most well researched training algorithm in neural network research
and forms the starting point for most applications. The central idea to this solution of the credit
assignment problem is that the errors for the units in the hidden layers are determined by back-
propagating the errors of the units in the output layer. Backpropagation can be considered a
generalization of the delta rule for non-linear activation functions and multi-layer networks. The
discussion presented in this section is adapted from Ref. [75].

We begin by defining what we mean by network error. Formally for each training pattern, p,
we assign a network error, EP. This error function incorporates the actual and target values of
the output nodes for the current pattern and is a measure of the degree to which the network has
failed to generate the desired response. The goal, then, is to apply the specified learning algorithm
to adjust the internal network parameters in such as way as to minimize the value of E? over the
whole training set.

The form of the error function is immaterial to the present discussion, we only require that it
be a differentiable function of the values of the output units. The output units use differentiable
activation functions which, in turn, are functions of the inputs and weights from the previous layer.
Thus, through application of the chain rule, we see how we will develop the back-propagation
algorithm. For clarity, however, the most common measure of the network error is the Least Mean
Square measure. For a network with N, units in the output layer, the error for pattern p is

e
1 e
EP =3 (F 1), (3.12)
i=1
where we have introduced the notation o; = a; for the activation of the i** output unit. The

network error is then defined as the sum of the error over all training patterns,

No
E=)Er=) (%Z(o{’—tf)z) : (3.13)
P 1 4

i=1
The activation is a differentiable function of the total input, given by
af = g;(i%) , (3.14)

in which
i#=Y wijal +6;. (3.15)
J

The transfer function g(z) is indexed to indicate it need not be common to all units in the network,
although this is typically the case. In order to minimize the error function, we make the change in
the weights proportional to the negative of the derivative of the error, as measured on the current
pattern, with respect to each weight. This method, known as gradient descent, thus defines

OEP

B, (3.16)

APw;j = —v
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where v > 0 is a constant of proportionality controlling the step size of the updating increment.
Expanding the partial derivative in terms of the effective inputs to each of the output units, this

becomes 8EP  BEP 8i®
= i, 3.17
ow;;  Oif dw;; (3.17)

We can use Equation 3.15 to rewrite the second factor as

air X
S P .1
B, a’ (3.18)
If we now define BEP

0 =27 (3.19)

we will obtain the desired updating rule, resulting in a gradient descent of the error surface in
weight space. Therefore, the weights are updated according to

APw;; = 748PaP (3.20)

This is calculable for the output layer, where GE?/9i? exists by definition of EP, so the trick is
to calculate the &’s for each hidden unit in the network. What the discoverers of backpropagation
realized in the 1980°s is that there exists a simple recursive algorithm to do just that, and this is
implemented by propagating the error signals backward through the network.

Applying the chain rule, we write Equation 3.19 as

OE? _ QEP da”

= da? 3i¥

oF =~ 57 (3.21)
The first factor reflects the change in the error as a function of the output of the unit, and the

second reflects the change in the output as a function of the change in its input. By Equation 3.14

we see that 5a®
a; 14 - N
ai’,x’ =g':(i%) (3.22)

which is simply the derivative of the transfer function of the i*" unit. We now understand the
motivation for using transfer functions with easily expressed derivatives. Had this derivative merely
existed, but not in an analytical form, significant computational time would be spent evaluating
this derivative throughout the course of the training phase of the network.

To evaluate the first factor appearing in Equation 3.21 we will consider two cases. First assume
that the i** unit is an output unit of the network, written o;. In this case, we have specified that
OEP /8aP should exist, thus applying the results of Equation 3.22 to Equation 3.21 vields

OFP
& = —5=5g's(if) (3.23)

which is well defined for any output unit.

The second case to consider is when the unit is not an output unit. We will denote h; = a; as
the activation of the i*" unit in the hidden layer with N, units. In this case we do not readily know
the contribution of the unit to the overall training error E but we do know E as a function of the
inputs to the output layer, E? = EP(i},... ,iﬁ,o), and we known the effect of each of the hidden
units on each of the output units through Equation 3.15. We then use the chain rule to write

8EP Q= gpr 8i* L2 gEP oL BEP .
W=ZW3_1§.’= < Bir ah"z'”"”*‘z Bib ='Z‘5u ' (324
' j=1 J '
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Substituting this result into Equation 3.21 yields
No
82 =g',(if) Y 6Fwjq. (3.25)
j=1

as the delta value for the i*" unit in the hidden layer, as a function of the delta values of those
upstream units and the weights with which it is connected to them. With the delta’s for the first
hidden layer, this method can now clearly be applied recursively to generate the delta’s for the
whole network and, when applied in conjunction with Equation 3.16, defines the updating rule for
the weights in the network. This procedure constitutes the generalized delta rule for a feed-forward

network employing nonlinear units.
When the error function is given by Equation 3.13, as is used in the analyses presented in this

thesis, the results derived above can be summarized in three equations:

e The weight of the connection is adjusted by an amount proportional to the product of an
error measure, 4, on the unit i receiving the input, and the output of the unit j sending the

signal along the connection,
Apw;; = v6fal . (3.26)
e If the unit is an output unit, the error measure is given by
87 = — (of -t g':(if) . (3.27)
For the sigmoid activation function, Equation 3.6, ¢’ = $g(1 — g) yields

=)o) (3.28)

o The error measure for a hidden unit in laver L is determined recursively, in terms of error
measures of the units to which it directly connects, and the weights of those connections. For
the sigmoid transfer function,

Neas 1 Negr
8 = g';(i%) E 8fuwji = zof (1 — o) ,; 8w;; (3.29;

Improvements to Backpropagation:
Learning Rate and Momentum

E(w)
|

local maximum

local minimum
global minimum
—

w

Figure 3.3: The total error as a surface in weight space.
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The gradient descent learning procedure just developed requires that the change in the weight
be proportional to —3EP/8w. True gradient descent is based on infinitesimal steps through the
weight space. This is computationally impractical so the algorithm implemented in Equation 3.16
employvs a finite constant of proportionality, . to govern the steps sizes, or learning rate, in the
incremental updating.

There are two concerns which determine the a priori size of ~. Suppose we start network
training with some randomly set values of weights and thresholds. We perform a gradient descent
to find the global minimum, Figure 3.3, of the global error function, Equation 3.13. However, there
may exist a number of local minima, and during training the network may become trapped in the
first minimum it encounters (which may or may not be the global minimum), corresponding to a
partial solution of the network response to the training data set. If s is too small, not only will the
network take an inordinate amount of time to find a solution, but it may be unable to escape from
even the most shallow local minima it encounters. Conversely, if v is too large, the learning rate
will be much faster but the network may oscillate wildly about the global minimum.

One solution to this problem is to redefine the updating algorithm such that each step in the
weight space is governed not only by the error gradient but also by a random component which
may flip the direction of the step ( i.e., go up the gradient curve instead of down it}, in the hopes
that the network will be able to jostle itself out of a shallow local minima. Another method is
to add a term to the updating algorithm which is proportional to the last updating step. This is
known as a momentum term. The new rule replacing Equation 3.16 is

APw;j(n) = —véfaf + aAPw;j(n -1}, (3.30)

where n indexes the current updating iteration and a is a constant which determines the contri-
bution of the previous weight change. Thus if a previous weight change Aw;;(n — 1) was large, so
too will the next step Awy;(n). That is, the weight change carries some momentum to the next
iteration.

C

Figure 3.4: The gradient descent in weight space. Path a) is followed for a small learning rate, path
b) for a large learning rate, showing large oscillations, and path c) for a large learning rate but with a
momentum term added.

The role of the learning rate and momentum term can be seen in Figure 3.4. When no mo-
mentum term is used, it takes a number of steps for the minimum to be reached when using a low
learning rate (small 4}. With a faster learning rate (larger <), the minimum is never reached be-
cause of the large oscillations. Adding the momentum term prevents the oscillations while allowing
for a larger ~, and the minimum is reached must faster.

The crucial parameter in backpropagation is the learning rate, v. The ideal choice for v depends
on two things: the scale of the activations and the fan-in of the network. If the average activation
of the i*" node, (a;), is large, the optimal ~ for the weights connecting to that unit will be small.



CHAPTER 3. ARTIFICIAL NEURAL NETWORKS 54

The natural choice would be to rescale the inputs such that (a;) ~ O(1), in which case all units
will have approximately the same optimal . The fan-in to a unit is the number of units connecting
to that unit, in the forward direction. The optimal learning rate has been found to scale like
+ x 1/(fan — in} [74]. The optimal value for the momentum term, a, is closely related to the choice
of 4. a controls the averaging of the updates, and an increase in a translates to an increase in the
effective learning rate. A choice of a in the range 0.5 < a < 1 is often helpful.

The feed-forward networks with backpropagation updating used in this thesis are defined by:

e The network topology: the number of units in the input layer, the number of hidden layers
and the number of units in each of these, and the number of units in the output layer.

e The sigmoidal activation function used for each unit and the value of the corresponding
temperature, T.

e The learning rate, v, used in the updating steps, along with the contribution by the momen-
tum term controlled by the value of a.

3.3.2 Performance Issues

With the development of a detailed approach to training a neural network in the last section, the
actual implementation still needs to be discussed.

Generalization:
A Measure of Network Performance

Depending on the structure of the neural network, for each problem and network architecture there
exists a minimal representation error; this error is the error which is obtained with optimal weight
and threshold parameters for that particular network and problem.

Finding optimal weight values means minimization of an error function which expresses the
error in approximation by the neural network on a set of learning samples. This will lead to a low
optimization error. However, it is important that the approximation represents the underlying data
well, rather than being efficient at identifving random data patterns inherit to the specific sample
training data set. A low generalization error is what is desired.

The generalization error is measured by testing the approximation over a separate data set,
known as the validation set, obtained from the same process as the training sets. When the
optimization and generalization errors lie far apart, the neural net is said to have over-fitting;
the neural net has learned to represent the learning samples very well but does not represent the
underlying process from which the training data was generated.

The performance of a neural network is its accuracy when presented with data other than that
with which it has been trained. It must not be confused with its speed of operation, which is the
conventional meaning of the term. The concept of performance is connected with generalization,
such that a neural network that generalizes well will give good performance. Unfortunately, this is
not always easy to attain. Good performance on the training set can often be achieved by building
a large neural network and applying a large number of training cycles (many epochs). However, this
does not guarantee good performance on unseen data. Indeed, a large complex neural network often
gives very poor performance on previously unseen data such as that contained in the validation set.
Achieving balanced performance involves optimizing the complexity of the neural network.

Neural Network Complexity

Neural network complexity is a subtle issue, which is not just a matter of the number of units used.
It is, in fact, an indication of the modelling capabilities of a neural network: a complex neural
network can better model the relationships inherent in a large training set, while a simple neural
network cannot model the relationships as effectively. From Figure 3.5, we can infer the effect of
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network complexity on the generalization error. A network with low complexity is unable to fit the
trends in the data, resulting in both a large training error and generalization error. A network with
medium complexity is better able to fit the trends in the data, resulting in reductions in both the
training error and generalization error. Lastly, a network with high complexity begins to fit trends
in the training data which is not a general feature of the process from which they were drawn. This
results in a reduction in the training error but the generalization error increases.

a) medium complexity b) low complexity c) high complexity

Figure 3.5: Network compiexity as related to generalization error. The training set patterns are marked
with circles, validation patterns are marked with squares, exceptions are marked with a x.

Three main factors affect the complexity of a neural network and, hence, its ability to generalize.
They are:

e The neural network size.
o The size of the training set.
e The number of training cycles, or epochs, used.

Changing the size of the network is the most obvious way of changing the complexity of a neural
network. Unfortunately, the larger the neural network, the more likely it is to ‘learn’ any noise
embedded in the training data, giving it a false significance which will lead to poor generalization.
Good generalization is achieved by keeping the size of the neural network to a minimum compatible
with the required level of performance. The optimum size is usually found by carrying out a number
of training runs on differently sized networks and comparing their performance on validation data.

.
E31

a) small training sample b) larger training sample

Figure 3.6: Network complexity as related to training sample size. The training set patterns are marked
with circles, validation patterns are marked with squares, exceptions are marked with a x.
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Related to network size is the training sample size. This is easily understood by noting that
a larger training sample size contains more information to fit the free parameters in the neural
network model. Plot a) in Figure 3.6 shows what may happen when the training sample size
is too small. The neural network was not presented with a sufficiently representative sample to
efficiently categorize the two classes. In plot b) of the same figure we see the case were the training
sample size was sufficiently representative of the parent classes to allow the network to identify the
discriminating features.

The generalization performance depends mainly on the ratio N,./N,, where N, is the numbers
of weights in the network and N, is the number of training patterns. For a feed-forward network
with one hidden laver of sigmoidal thresholding neurons, the generalization error is of the order
O(Nw/Np) (76]. As a general rule, one should have at least ten times more training patterns than
weights in the network. In High Energy Physics applications the amount of Monte Carlo data
available for training is often limited, especially for the signal processes, so the only free parameter
left to control network complexity is the network size. The process of removing neurons from the
network is called pruning and will be discussed in detail in Section 3.4.

Given that the training sample size and network size are understood, at what stage do we call
the network trained?

Early Stopping

When a neural network is first trained, it learns the gross statistical properties of the training set.
As training proceeds through epoch after epoch, the network learns more of the detailed properties
of the data. Unfortunately, training data is sometimes not perfect and may include noise that was
present when the measurements were taken, and with further training, the network starts to model
the noise in the training data. This results in over-training, leading to poor generalization and
degraded performance with unseen data. One way to prevent this is to stop training at the point
where the performance on unseen data starts to degrade. This is known as early stopping.

Early stopping is the preferred method used in this thesis. A network is trained over a large
number of epochs and the resulting generalization error is observed. This error should fall initially,
as the network begin to learns how to classify the input patterns. Over-fitting is observed when the
generalization error ceases to fall and instead begins to rise again. This indicates the network has
begun to classifv the input patterns in the training set based on random internal correlations which
are not inherit properties of the data set they were derived from. The final network state is chosen
to be the point at which the generalization error on the validation set begins to rise. Figure 3.7
shows an example of the evolution of the training and generalization error. Although the training
error is seen to continually fall, the network state is chosen at that point where the generalization
error of the validation set begins to rise again.

Despite the demonstrated success of the backpropagation learning algorithm in many situations,
there are some aspects which make the algorithm a less than optimal choice for all applications.
Most troublesome is the long training process which can seemingly require disheartening amounts
of training data and an inordinate amount of computing time. Some factors which affect the rate
of network learning are discussed below .

Learning per Pattern

After the full set of learning patterns has been presented to the network for evaluation, it is said
to have performed one epoch. Although, theoretically, the backpropagation algorithm performs
gradient descent on the total error only if the weights are adjusted after each epoch, more often
than not the learning ruie is applied to smaller subsets of the training set, one at a time. There
exists empirical indication that this resuits in faster convergence. Care must be taken, however,
with the order that the patterns are taught. For example, when using the same sequence over and
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Error

Validation set

Training set

Number of training epochs

Figure 3.7: A representation of the evolution of the optimization and generalization error. Although
the optimization error, as would be measured using the training set, is seen to continously fall, the
generalization error, measured using the validation set, reaches a minimum then begins to rise indicating
the onset of over-fitting.

over again, the network may become focused on the first few patterns. This problem is overcome
randomly permuting the training set after each epoch.

In this thesis, the training sets were randomly permuted after each training cycle and the
training networks were updated a number of times per epoch. The size of the subsets were selected
so that, if the training set consists of N¢ classes to be categorized, a random sampling could be
expected to contain a representative of each class. This sample size was taken nominally to be at
least 2N¢, with larger values considered.

Network Saturation

Often long training times are indications of non-optimum network parameters: transfer function
temperature, the learning rate v or the momentum a. Much research has been devoted to developing
algorithmic approaches to solving these issues but to date there are no clear solutions, and the tried-
and-true method of brute force (change a parameter and observe the effect) is often still the best
choice for ensuring an informed use of a neural network in an application.

Outright training failures generally arise in two wavs: network paralysis and local minima. The
trouble presented by the presence of local minima has already been discussed in Section 3.3.1, so
we will concern ourselves with the issue of network paralysis. As a network trains, the weights
can be adjusted to very large values which can lead to very large inputs being presented to the
downstream neuron. If sigmoidal activation functions are used, this will result in an output very
close to zero or one. Considering Equation 3.28, the weight adjustments will be very close to zero
and the training process can be effectively halted. There are complex algorithmic methods which
attempt to address this but are limited in scope and applicability. Without an algorithmic solution
it is prudent to monitor for the occurrence of network paralysis.

The state of network training is captured by the networks saturation level. The saturation, s,
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defined for each layer in the network, is given by,

. { FES1-2Y g e©n (3.31)
ey o2 if g(x} e (—1,1)

and measures the resolution of the units. An s value close to one signifies that the units in the
layer are generating values very close to their extremes and implies that they have “made up their
mind”. An s close to zero means that the network is still learning and so s is a measure of to what
extent the network is learning or not.

Pre and Post Processing

Input representation is crucial for achieving good performance. Pre-processing describes any process
that converts inputs (signals or data) into a form suitable for use with a neural network. One form
of pre-processing would be the application of a data reduction algorithm, such as a Principal
Component Analysis, to decrease the number of input units, thus decreasing the number of weights
in the network. Often times such dimensional reduction algorithms lose discriminating information
which could be used by the network and so were not considered in this thesis.

Another form of pre-processing is to apply a non-linear scaling to the inputs so that they are
all treated equally by the network. If one of the inputs is much larger in magnitude than the
others, the network will concentrate on that one and take a very long time to learn the others.
The network learns most easily if all inputs are scaled to O(1}, where it can concentrate on the
important parameter correlations rather than the saturation effects of a single input. Thus, the i
inputs, z; are shifted by their means, £;, and then scaled by their standard deviations o;, ie. z; —
5*;’2- The means and standard deviations were calculated using the Standard Model backgrounds
only, correctly mixed by their relative cross-sections, which has the benefit that the results could
be directly compared to data. Further, to avoid the possibility that the tails in some of these

distributions could still be large, we transform as r; — tanh (ﬁ;—’*) €-1,1].
Post-processing, as it is related to the interpretation of the network output, was discussed
previously.

3.4 An Algorithmic Approach to Pruning

Having already introduced many of the techniques used to ensure efficient application of the neural
network method, we will return to the discussion of minimizing network complexity.

As stated previously, changing the size of the network is the most obvious way of changing the
complexity of a neural network. Good generalization is achieved by keeping the size of the neural
network to the minimum which is compatible with the required level of performance. The optimum
size is usually found by carrying out a number of training runs on differently sized networks and
comparing their performance on validation data. The process of removing neurons from the network
is called pruning. Network pruning can be considered for two cases: pruning of the analysis variables
and hence the number of units in the input layer; and pruning the number of units in the hidden
layers.

3.4.1 Pruning of the Input Layer

The original pool of possible inputs to a neural network is selected by highlighting certain aspects
of the signal or background processes, such as topology, event energy, etc. , which are felt to contain
significant discriminating information.

Each input, however, incurs a cost in terms of added complexity to the network, which in turn
requires larger data sets for efficient training [74]. Optimization of the ANN involves pruning of
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these input nodes, as well as the nodes in the hidden layer, to remove those which do not contribute
enough information to warrant their contribution to the complexity of the network.

A standard approach to selecting the relevant variables in an analysis is based on ordering their
figure of merit, F 77}, values. F measures the difference in distribution of a variable F for two
classes of event; if F' =~ 0, the distributions are similar and this variable has no separation power,
while if F = 1 the distributions have no overlap and complete separation is possible. F is defined
by the ‘inverse correlation integral’:

(fi(z) — f2(x))?
ahi@ Tofa® (3.32)

where class 1 contributes a fraction a; of the sample with normalized distribution fi(z), and class
2 contributes a; = 1 — a; with normalized distribution f2(z). This is performed intuitively in a
standard cut based analysis.

If a variable has F =~ 1 between the signal and all backgrounds, it will be a useful parameter, in
both standard cutting analysis as well as in a neural network based analysis. However, there may
exist variables with F = 0 but which are highly correlated in such a way that this information is not
easily observed in their projections. We would like a method which can realize these multidimen-
sional correlations in a more automated manner. A multi-layer neural network attempts to separate
regions of the input space into selected target classes (ie. signal and background), by constructing
hyperplanes around these regions in the input hypervolume. Although not obvious in terms of their
projections, and therefore in their F values, a neural network would have little difficulty separating
two orthogonal normal distributions such as those presented in Figure 3.8. Other common pruning
methods, such as the many variants of weight decay, also have their difficulties.
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Figure 3.8: Shown are two variables, X, Y, where we assume their correlations are unknown to the
researcher. These variables contain useful discriminatory information for a neural network analysis, but
would be missed by a standard cut based analysis.

Instead, the most direct method to achieve the pruning of the input variables was used. The
ANNs, distinguished by different sets of inputs, training parameters and topologies, were trained
and their resulting €ignai vs. expected background were graphically compared. In this way, one
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could compare the results as well as monitor the stability of the network over various background
sets and signal types. This is, of course, computationally intensive but in the applications common
to HEP, the networks are relatively small and this approach can be accomplished quickly.

3.4.2 Pruning of the Hidden Layers

Pruning of the hidden layer presents a better opportunity for a more automated analysis, as one is
not concerned with maintaining the aesthetically pleasing physical interpretations of the variables
as with the input laver. If there are N uncorrelated inputs, the minimum number of hyperplanes
needed to cut out a volume in the closed N-dimensional input space is (N + 1) {74]. Past this,
the more hyperplanes one uses, the smoother the border defining the classes. If subsets of the
inputs are correlated, this relation no longer holds and a smaller number of hyperplanes may be
appropriate. The realization of these hyperplanes in the ANN topology is related to the number of
hidden nodes.

When the inputs are correlated their contributions to the nodes in the hidden layer are often
highly correlated and in the cases where these correlations persist in the outputs of the hidden layer
nodes a type of Principal Component Analysis (PCA), common in Astrophysical papers {78, 79],
can rotate the hidden layer out put space to minimize these correlations. From this rotated space, a
smaller number of variables can be found to contain the majority of the discriminatory information.

Below, we first remind the reader of the standard PCA technique, and then describe the variant
of this method which was successfully used to prune the networks considered.

Principal Component Analysis

As an example, let us assume there exists a sample of P interesting events, where each event is
defined by a N parameters which can be represented by a vector x7 = (z,,Z2,...,zx’}). The goal
of the standard PCA analysis is to concentrate the information stored in the N-dimensional points
into a set of M-dimensional, Af < N, points which are able to reproduce the original data set to a
good approximation, in a least squares sense.

These events form a cloud of points in the N-dimensional parameter space, and we can imagine
the case where there exists a direction, a;, along which this cloud is most elongated. The variation
of the data is maximal in the direction of a;, and so contains the most useful information in terms
of discriminating the data points. Collapsing the the data along a, will yield a new data set of
dimension (N —1)}. This is the first order least squares description of the data and defines the first
principal component. The i'* principle component is determined by successive iterations of this
procedure, repeatedly collapsing the data along the 1°f to (i — 1)t* orthogonal basis vectors. This
process can be shown 78] to be equivalent to finding the eigenvectors corresponding to the largest

eigenvalues of the matrix,
P

C =" (xp)xp)T, (3.33)

i=1

where x,, is the p*" sample vector. As C is clearly real and symmetric, the eigenvectors are obtained
through diagonalization.

The maximum number of principle components which can be found in this manner is N. It may
turn out, however, that the last (N ~ M) principle components may contain minimal variation,
thus contribute little to describing the data set. By describing the data set in terms of their M
dimensional projections along the first M principle components, we will be able to account for
most of the discriminatory information contained in the sample, but with a smaller parameter
space. This dimensional reduction is often called whitening and is used in many image compression
algorithms.
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Optimization of PCA for Classification

The problem that needs to be addressed in our case is not simply how to compress the available
information into a smaller subspace, but how to discriminate between different classes of events.
The variant of PCA employed here 78] does not deconstruct a single set of inputs as above, but
rather the set of difference vectors between events of different classes (again in a least squares
sense).

We will denote xi“ ) as the kth sample vector of class u. The job is to find a linear coordinate
transformation, defined by a rotation matrix 4 and constant translation ¢, such that the new
coordinates, expressed as

vi =AT(x} ¢}, (3.34)
contain the maximum amount of discriminatory information based on a least-mean-square repre-

sentation of all the difference vectors between the sets.
Let a; be the normalized orthogonal column vectors comprising the rotation matrix A, 4 =
(at,a2,...,axrr), where M < N. We therefore seek the a; and ¢ which maximize the quantity,

I's vy 2
s2= Y (y;:’ —y* >) : (3.35)
kel
't "y
In order to determine the components of ¢, we first appeal to the maximization principle of
Equation 3.35. Rewriting it as,

s2= Y (.-1T(x§,“’—x§“"))2 (3.36)

[N R
e’

which when we maximize with respect to the constant translation ¢, vields 3‘;’;52 = 0, providing no
information about ¢. This tells us that the translation component of Equation 3.34 is not important
in maximizing the inter-class variance. Rather, we note that once Equation 3.31 is determined, it
will be applied on an event by event basis to assist in class categorization. In this sense, the rotation
matrix contains all the discriminatory information: the translation ¢ can then be determined by
minimizing the residual error, E:

T |

E2 — ZYL“) yi_ll) (3_37)

ko
(o) T (u)
> (x —¢) A4T (xi —c) (3.38)
k.u
3 (x{“’ - c)’ : (3.39)
k.
Minimizing E with respect to ¢ we obtain,

2= §(x‘.“’-c)2 =0 (3.40)

which is satisfied when Zk.“(xi“) —¢}) =0, or

(3.41)
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This result should not surprise us, since the mean spectrum should contain no discriminatory
information so we simply choose the new origin to be the centre of gravity of the data sample
before applyving any rotation. For simplicity we now assume X has been subtracted from the data,
x(u) — x(u) —_ i-

With this transformation, we are now interested in finding the linear transformation,

yi=ATx}, (3.42)

which maximizes Equation 3.35.
Using Lagrange multipliers, we may write,

LY (8 -v) () - ) - reaTa| =0, (3.43)
R W
et

where A; is the Lagrange multiplier for a;. Substituting for yi.") from Equation 3.42,

d: z (x:_u) —X§“")TAAT (x:_u) “"f‘”) —xafa;| =o. (3.44)
¢ et gs e’
P 'y

Defining b{“*") = (x{*) — x{*"?), Equation 3.44 becomes,

dia,- P (b;‘,‘"")T AAT b — \ala;| =0, (3.45)
ko loa.u!
S I
or,
d ) y a, -b‘k‘,”")
> = (ar b, .o - bi™") ;| -Aala| =0, (3.46)
pew an -b{*’
which upon differentiation becomes,
2| Y b (b},‘,‘“")T -xI{ai=0, (3.47)
o
or,
C—-\Ia;=0. (3.48)
Therefore the a; are eigenvectors of the Hermitian matrix C:
C= 3 (e —x"") (= - xﬁ“")T, (3.49)
koo’
witul

which is simply the covariance matrix of the difference vectors. The eigenvectors a;, .. .,aas of the
covariance matrix define the linear transformation 4 in Equation 3.42.
Returning to Equation 3.35, we may express S? as,

= ¥ - = T (o)

kdop.w! ke boe s’
nkul phu
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= TridTca]=Y"Ai, (3.50)

where the last equality follows from the fact that the rotation matrix A diagonalizes C. Clearly,
the larger the eigenvector, the larger the discriminating power of the corresponding eigenvector.
Therefore, the M eigenvectors with the largest eigenvalues give the best Af-dimensional linear
discrimination between classes u and u'.

Principal Component Pruning:
Application of PCA to Neural Networks

In supervised learning, a network is presented with a set of data vectors, x;, where k is the k"
input pattern, and an associated target output tg, dim(x} = N and dim(t) = M. The success
of the network classification is judged, in a least squares sense, by the ability of the network to

minimize the generalized error,
E=) (o —t:)?, (3.51)
k

where oy is the observed network response to the input training patterns.

Large networks have more functional flexibility than smaller networks, so are better able to fit
the training data. However large networks can have higher parameter variance than small networks,
resulting in poor network generalization. The number of parameters in a network is a crucial factor
in its ability to generalize.

No practical method exists for determining, a priori, the proper network size and connectivity.
The most direct approach is simply to remove a hidden node, retrain the network and calculate the
generalization error, repeating the process until the generalization error rises to an unacceptable
level. This is obviously extremely time consuming.

A promising approach is to start with a large, fully connected network and remove the infor-
mation passed through the network by projecting out the least significant principal components,
as determined using the algorithm derived in the previous section. This method has the advantage
that the effect of removing a hidden node can be determined without actually changing the network
topology. Nodes can be removed one-by-one in this manner, and the generalization error can be
calculated in a fraction of the time it would take to retrain a single new network. Once a limit
on the number of irrelevant nodes is determined, a new, smaller, network can be retrained. Let us
now consider the application of this method.

For simplicity, consider a feed-forward network with one input layer, one hidden layer and an
output layer. The weighted sum input (Equation 3.15}, of the p** input pattern, to the i*®, output

node is
=Y wi;h?+6;, (3.52)
J
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where hf is the activation value of the j®*.j = 1... N, hidden layer node. In vector notation,
i = wlh? +6, . (3.53}

This linear function is particularly suited for the PCA analysis discussed above. While stan-
dard PCA is useful in data compression, that is mapping R — R* with M < N where the
smaller M-dimensional space contains the majority of the discriminatory information as described
by Equation 3.50, we are not specifically interested in reducing the input dimensionality. Rather,
we can apply the method in an altered form to study the effect of removing discriminatory informa-
tion contained in the data. If we consider the N-dimensional input space to be the outputs of the
N hidden layer nodes, we would like to: calculate the class-discriminating principal components
(by construction, there will be N principal components), rotate the input space to the PCA space,
project out the components corresponding the M lowest eigenvalues, and rotate back to the original
N-dimensional input space. Using the ansatz that a network defined with (N — M) hidden units
would reconstruct the remaining (N — M} principal components, we calculate the generalization
error using these redefined inputs, and if there is no significant effect we say that we have pruned
the hidden layer.

More specifically, using the algorithm defined in the previous section, if h is the average vector
of the outputs of the hidden layer, A € Rn xn is the related PCA rotation, M € Ra xa is 2 matrix
which projects out the last N — A eigenvectors,

M= ( é“ xM 8 ) ) (3.54)

We define the projected hidden layer output to be
h? — AM (AT(h? - h))] +h . (3.55)

As it stands, this transformation must be applied to each input pattern and this would be very
computationally intensive. However, once calculated, the PCA transformation is constant so we
can redefine the network instead of the inputs.

Applying Equation 3.55 to Equation 3.53, we obtain,

i? = wlAM (AT(h®? —h)) +h] +6,
T(AMATR? + wl (1 - AMAT)h +6;
(~w ATw)Th? + (wI (1 - AMAT)h +6;)

= w/h?+6;, (3.56)

with,
w; = AMATw; (3.57)
6; = 6;+wi(1—AMAT)h (3.58)

Checking two extreme cases, if M = 1y xa, then 11,7' = w and 6; = 8:, as we would expect
since no information has been removed. If M = Onxn, then W] = 0 and 6; =6; + wTh, which
yields i? = wTh + 6;. In this case, once all discriminatory mformatlon is removed, the only thing
remaining is the unit threshold #; and the mean spectrum h; no class discrimination is possible.

In the intermediate case, when some number (N — M) eigenvectors are projected out, M =
Iarx M & QN Myx(N=A1), M < N, there may be a node which has most of its relevant information
removed, and it would approach the case where its output is equivalent to its mean value for all
input types, thus simulating the case where that node provides no discriminating power to the
network.
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Alogrithm

All neural networks studied in this thesis can be classified as a simple feed-forward, multi-layer
network with a input laver; hidden layver(s); and output laver architecture.
The following algorithm is used to calculate the effective number of hidden units needed:

In supervised learning, we present the network with a set of training events. The N output
values of the hidden layer units for each pattern p are represented by h?.

We then determine the mean spectrum of the output values of the hidden layer units, repre-
sented by the vector h.

Using h to mean-shift the outputs, the difference vector covariance matrix C is calculated.

The eigenvectors a; and related eigenvalues A; of the covariance matrix C are then calculated.
As explained above, the eigenvectors corresponding to the largest eigenvalues are those which
contain the greatest amount of discriminatory information.

The eigenvectors a;, ordered by deceasing eigenvalues A;, are the column vectors of the rota-
tion matrix A which diagonalizes C, such that Tr[ACAT] =¥, A;.

The (V — M} least significant eigenvectors are projected out of the rotated input space via
M=1mxM@ON_rAnyx(N-r), M =0...N.

A, h and M are used to recalculate the internal weights and thresholds, w and 6, connecting
the hidden layer to the output units.

For each projection, the generalization error of the network is determined and compared to
the original network error (corresponding to M = 1).

The network is considered maximally pruned when further projections significantly begin to
degrade the generalization error of the network.

This algorithm is diagrammatically depicted in Figure 3.9.
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" TI——"=
N L hand —— —— —— —
Y

TYYY

Generate Rotate to Project Rotate
Correlation Principal out least back to
Matrix Component signigicant input space
space components
Outputs Reweighted
from hidden Outputs
units from hidden

units

Figure 3.9: A diagrammatic respresentation of the Pricipal Component Pruning aigorithm. The outputs
from the hidden units are measured and used to calculate their correlation matrix, which in turn defines
the Principal Component rotation. Rotating to the Principal Component space, the direction with the
least significant eigenvalues are projected out. The surviving eigenvectors are rotated back to the input
space and used to re-weight the weights and thresholds connecting the hidden layer to the output layer.
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Application

To test this algorithm, a simple test case was considered. Two data classes, C = X and Y,
were simulated by generating two data sets, each consisting of five random parameters, gaussian
distributed with covariance matrix V= and mean values zero. The five parameters in each sample
were related by an arbitrary covariance matrix, V¢, with Vx # 13-, In Table 3.1 we see the results of
the Principal Component Discrimination Analysis applied to these sample data points. We can see
that three principal components contain ~ 95% of the information needed to discriminate between
the two test classes. We then train a small neural network with five inputs, 20 units in the hidden
layer and a single output unit. The output unit is trained to be 1 for events from class .\ and 0
for events from class Y.

Eigenvalue A | % of Trace | cum. % of Irace
1| 29.688 39.784 39.784 |
2 | 25.656 34.381 74.164
3| 16.989 22.767 96.932
1| 1.320 1.769 98.700
5 0.970 1.300 100.000

Table 3.1: Principal Component Discrimination Analysis applied to the raw inputs of the example
distributions.

Eigenvalue X | % of Trace | cum. % of Trace
B 1] 1.7695 31.1446 31.1446
2 | 1.2863 226401 53.7846 |
3| 1.0635 18.7185 72.5031
1] 0.1620 R.1315 80.6316
5 | 0.3804 6.6956 87.3302
6 | 0.3312 5.8816 932119
7 | 0.1362 2.3971 95.6090
8 | 0.0662 1.1653 96.7743
9 | 0.0603 1.0621 97 8365
10 | 0.0413 0.7269 98 5631
11 | 0.0313 0.5513 991147
12 | 0.0207 0.3643 99.4790 |
13 | 0.0111 0.1960 99.6750
14 | 0.0060 0.1049 99.7799
15 | 0.0055 0.0976 99 877
16 | 0.0025 0.0446 99.9222
17 | 0.0022 0.0389 99.9611
18 | 0.0010 0.01R80 99.9791
19 | 0.0008 0.0141 99.9932
20 | 0.0004 0.0068 100.0000

Table 3.2: Principal Component Analysis applied to the outputs of the twenty units in the hidden layer.
~ 95% of the discrimination power is contained in the first 6 eigenvectors.

Table 3.2 presents the Principal Component Analysis applied to the outputs of the ten units in
the hidden layer. It can be seen that the first ten eigenvectors contain > 98% of the discrimination
power between the two classes, with the last ten eigenvectors contributing less than 2%. The next
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[ Eigenvectors % Change in
Used Generalised Error
20 0.000
19 0.001
18 0.001
17 0.004
16 0.004
15 0.006
14 0.056
13 0.022
12 0.021
11 0.266
10 0.188
9 0.302
8 0.353
T 0.335
6 3.361
53 R.026
4 173.532
3 209.583
2 218.363
1 230.744

67

Table 3.3: Principal Component Pruning applied to the outputs of the twenty units in the hidden layer.
The lefthand column indicates the number of ordered principal component eigenvectors remaining after
the projection was applied. The righthand column shows the effect of the projection on the generalised
error, calculated by applying the network to a data set not used in the training phase. We see that
projecting out the ten least significant eigenvectors has little effect of the generalised error of the network,
indicating that a network trained with ten hidden units should be sufficient to efficiently classifiy the

data classes.
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step in the algorithm would be to project out the least significant eigenvectors by adjusting the
internal weights and thresholds in situ, and then calculating the generalized error of each new
network.

In Table 3.3 we see the effect on the Principal Component Pruning method. The left hand
column indicates the number of ordered principal component eigenvectors remaining after the
projection was applied. The right hand column shows the effect of the projection on the generalized
error, calculated by applying the network to a data set not used in the training phase. We see that
projecting out the ten least significant eigenvectors has little effect of the generalized error of the
network, = 0.2%, indicating that a network trained with ten hidden units should be sufficient to
classify the data classes.

This is most easily checked by comparing the outputs of the different networks directly, each
identical except for the number of units in the hidden layer. Figure 3.10 presents the classification
efficiencies, between classes X' and Y, for these networks. In agreement with the results of the
Principal Component Pruning method, presented in Table 3.3, there is little classification difference
between the twenty and ten hidden unit networks. We begin to see a loss in classification efficiency
for the signal class, at a constant background efficiency, for a five hidden unit network, again in
agreement with prediction. Significant loss in classification power is observed for networks with
still fewer hidden units.

3.5 Systematic Error Checks with Neural Networks

3.5.1 Transformation of Monte Carlo Distributions

In order to study the systematic uncertainties that arise from the imperfect modeling of the variables
used by the ANN, a mechanism has been developed to transform the monte carlo values of a given
variable (the original distribution) to yvield a new value that is consistent with the distribution
observed in the data (the target distribution). As the method is quite general, we will choose to
refer to the distributions as original and target, and later apply the results to some actual monte
carlo and data distributions.

The transformation of a continuous ! variable, r, € [a, b, which vields values consistent with the
target distribution, r, € a',b']. This transformation can be achieved by calculating the fractional
probability integral.

Let the original continuous distribution be represented by f,(z}, defined on r € [a.b]. This
curve is typically obtained by a fit to a histogram and, once properly normalized, lends itself to
the interpretation of a probability density. Let us now define F,(z,) as the normalized fractional

integral
— f: folz)d )
L folz)e

Similarly, for the target distribution we define f,(z) and F;(z}. For any original value, z, we may
associate y, = F,(z,}. Supposing we can invert F;(z), the desired transformation may be written

Fo(r)

-1
T =F (y)|y=Fo(:o)

. In essence, this is just an application of the standard {80] method for generating a known distri-
bution from a uniform distribution. The key element here is that we generate the required uniform
distribution from the original distribution.

After obtaining the fractional probability integrals for both the original and target distributions,
the transformation can be carried out in the following manner:

!The transformation of discrete variables is not consistent with this method. If a monte carlo event is generated
with a single track, it would be difficult to_accept a transformation which resulted in two, however, if that same
event were generated with, for example, V/s’, then a transformation o V3 + ¢ could be desirable to better agree
with the observed distribution of \/.;?in the data.
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Figure 3.10: Presented are the classification efficiencies, between signal class .\" and background class Y,
of a number of networks, differing only in the number of units in the hidden layer. In agreement with the
results of the Principal Component Pruning method, presented in Table 3.3, there is little classification
difference between the twenty and ten hidden unit networks. We begin to see a loss in classification
efficiency for the signal class, at a constant background efficiency, for a five hidden unit network, again
in agreement with prediction. Significant loss in classification power is observed for networks with fewer
still hidden units.
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e Obtain the value of the variable of interest for a particular event.

o Determine the value of the fractional probability integral obtained from the original distribu-
tion for this value of the variable.

e Taking this value for the fractional probability integral, invert target fractional integral eval-
uated at the given ordinate.

e The abscissa of the inversion is the value that should be used for the transformed variable

Implementation

The easiest implementation of the code would be to use the binned histograms to quickly calculate
approximate fractional integrals.

The original data point, z,, would be matched to a bin, i, in the original distribution. The
fractional integral would be calculated relative to the centre of that bin, z;, yielding a value y,.
One could then step through the target fractional integral and determine the bin j, such that
Yji-1 < Yo < yj+1 and the bin centre, x; would be the transformed value, z;.

This suffers from a number of problems. First, we can clearly see that we are in fact mapping
a continuous distribution to a discrete number of bins centres in the target distribution. Second,
if two bins in the target distribution happen to have zero entries, the fractional integral will not
change over this range and the inversion will not be analytic.

Evaluation of the Fractional Integral

The original and target distributions are first read in, and filled, to histograms of constant size.
The choice of binning here is typically determined by the user as algorithmic methods are not in
common use. One should aim to maximize the number of bins, Np;as, to avoid unnecessary loss of
information, while ensuring there is a statistically adequate number of events in each bin.

The range of the distribution is also worthy of consideration. One would usually choose to
minimize this range, since the inclusion of regions where the distributions are unpopulated will
make it difficult to choose a binning which maintains a reasonable number of events in each bin.
The effect of not including unpopulated regions will hopefully be minimal because, by definition,
they do not contain a large fraction of the events.

The distributions are then spline fit using the NAGLIB [81] routine EO2BEF, a least-squares cubic
spline curve fit with automatic knot placement. This spline returns a functional representation of
the distribution which we can later evaluate using the associated routine EO2BBF. This fitting plays
two roles in this analysis; not only does it allow the accurate evaluation of the fractional integrals,
but also smooths the data, which is a desirable property when dealing with target distributions of
real data where there may be significant statistical fluctuations.

The NAGLIB routine EO2BBF will not allow the user to query the spline outside its defined range.
To avoid potential problems, the derivatives at the end points were evaluated using the NAGLIB
routine EO2BCF allowing for a linear extrapolation of the fit for the over and underflow points.
Extrapolation in general is undesirable. However, we expect it to be a reasonable mapping within
a “small” region outside the defined range. If we choose this small region, A, to be on the order
of the mapping difference at the end points of the spline, A = [zF"? — zEnd|| we can make the
final transformation well defined and accurate over the whole real line by smoothly deforming the
extrapolation to a 1:1 mapping over this reasonable range A.

The spline fit is relatively automated and requires only one user input, S, which specifies
the desired x? between spline fit and the original distribution. If one assumes the spline fit is a
representation of the parent distribution from which our finite sample distribution was generated,
then any discrepancy will be due to statistical fluctuations, and so choosing, S = Snds(Nbins — 1}
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will make S an estimator of x2 with a x?/ndf = Saar '82]. Thus, choosing Snqr = 1.0 will vield a
spline fit consistent with the variance due to statistical fluctuations 2.

By choosing Snqy < 1.0. the fit will follow the fluctuations in the original distribution more
closely, thus we could simulate the effect of structure in the underlying distribution which may not
be due to statistical fluctuations.

Using E02BBF to query the spline fit, we numerically calculate the fractional integral by calling
the CERNLIB routine DGAUSS. As previously, mentioned we are also required to invert the fractional
integral of the target distribution, F;(z)}. Given the observation z,, the desired transformation
is achieved by numerically calculating the zero of the function F,(z) — F,(z,) using the CERNLIB
routine DZERD. The accuracy of the determined zero is set by the user and shouild be at least an
order of magnitude less than the accuracy of the evaluation of the fractional integral to ensure
reasonable results.

Ensuring a Monotonically Increasing Fractional Integral

The method of inversion by finding the zero of F;(z) — Fo(z,) is an obvious choice but needs some
attention. If there exists a finite range of the target distribution where the spline (distribution) is
zero, then the inversion will be ill-defined. By adding a constant bias to the distribution, we ensure
a monotonically increasing fractional integral and thus a well defined inversion. This bias is added
to both the numerator and denominator integrations in the definition of the fractional integral so
will not affect the results. However, the magnitude of the bias is important; if it is smaller than the
accuracy of the fractional integral evaluation its effect will not be noticed and the inversion may
become ill-defined, and if its magnitude is much larger than the distribution, then the distribution
itself will become lost in the integration and the fractional integral will approach a straight line
with unit slope. In this analysis, we chose 1o set the bias an order of magnitude greater than the
accuracy of the fractional integral evaluation.

Speed and Accuracy

The method of numerically evaluating the zero of the function Fy(z) - F,(z,) requires the fractional
integral to be evaluated many times for each inversion and soon becomes quite computationally
intensive for any substantial number of inversions. The accuracy of the method, however, easily can
be many orders of magnitude smaller than the bin size of the distributions, which we will assume
to be the minimum size for the given statistics and experimental precision of the available data.

Optimally, we need only invert specific points in the distribution and then use these points for
interpolating the transformation of the original distribution. As long as we choose a sufficiently large
number of points to calculate the inversion, the interpolation using the CERNLIB routine DIVDIF
will allow for the required transformation accuracy. This interpolation can then be incorporated
into a stand-alone routine to be used in the users main analysis.

Application

An example which illustrates this procedure is shown in Figure 3.11.

Plot ’(a}’ in the top left of the figure shows the original distribution, the one which we wish to
map to the target distribution. In this case it is a Gaussian distribution f(z) = Aexp (3"—;412)
with u = 1.0,0 = 0.5 and A = 1 was used to generate 10K events. The plot itself has been scaled
to agree with the integral of the target distribution. The histogram is fit with a gaussian and we
can see the fitted values for u,o as are expected.

Plot ’(b)’ in the top right of the figure shows the target distribution. In this case, the sum

of two Gaussians, f(z) = A; exp (L‘;;—L’) + Azexp (s—‘:;,;ﬂ-) with Ar/de = 2, py = 2,42 = 4

2Choosing Sudsf = 0.0 will result in EO2BBF returning an interpolating spline fit
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Figure 3.11: Plot (a) shows the original gaussian distribution. Plot (b) shows the target distribution
as the sum of two gaussians, with the smoothed spline fit overlayed. Plot (c) presents the results of
the method. The crossed points give the raw, unsmoothed target distribution and the open circles the
smoothed result with Sp,qy = 1.0. The solid histogram is the transform of the original distribution and
a fit, presented by a solid line, to this transformed histogram shows good agreement with the target
distribution.
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and 0, = 02 = 0.5, was used to generate a sample of 500 events, represented by the crossed data
points. Infrequently would it be the case that a simulated distribution would be so different from
the observed data distribution, but we will show that the method can easily handle this gross
example.

The statistical fluctuations in the target distribution are representative of analysis situations
where a small data sample is available for comparison to a much larger monte carlo set. As
mentioned earlier, to handle this, the distributions is smoothed using a spline fit. This smoothed
spline fit distribution, using Spq¢ = 1.0, is represented by the solid histogram. A fit of the sum of
two gaussians to this histogram is shown by the solid curve and fit results presented show good
agreement with their expected values.

Plot *(c)’ at the bottom of the figure presents the distributions of intercst for this method. The
crossed points give the raw, unsmoothed target distribution, and the open circles the smoothed
target with S,dar = 1.0. The solid histogram is the transformation of the original distribution and a
fit, presented by a solid line, to this transformed histogram shows good agreement with the target
distribution. Before proceeding we emphasize that the distribution in plot ’(a)’ has been smoothly
transformed to plot ’(b)’. The agreement of the transformed distribution (solid histogram} to the
smoothed target (open circles) appears to be quite accurate.

Changing the value of Spg4r is expected to give the user the ability to follow the fluctuations in
the target distribution as closely as they like. In plot *(c)’ we show the smoothed fit to the crossed
points for a Spdar = 0.2 as open squares. As expected, the fluctuations in the raw target distribution
are followed much more closely, and the dashed histogram shows the transformation of the original
distribution is mapped quite well again.

3.5.2 ANN Systematic Error

So far, we have only been concerned with mapping an arbitrary original distribution to an arbitrary
target distribution given some accepted accuracy. If we re-interpret this method, however, we will
find that this may be used in systematic error studies.

All systematic error sources in an anaiysis will contribute to the variations observed between the
associated data and monte carlo distributions. In a standard systematic error analysis one varies
the relevant parameters (or equivalently the cuts on those parameters) assuming, or ensuring, no
correlation between different systematic error contributions, and the final systematic error is then
tvpically a sum in quadrature of all those contributing sources.

One important feature of this transformation method, unlike standard re-weighting techniques,
is that correlations between variables are maintained. The degree of correlation may differ from
the original, but since the transformation performs a one-to-one mapping from the original to
transformed value, correlations are not destroved.

It would seem, then, that a transformation of all parameters relevant to an analysis can be
used to determine the total systematic error in a way which accounts for all the inherit sources of
systematic error, both known ard unknown, as well as deaiing with their correlations in a consistent
manner.

One caveat is that if the data distribution is consistent with a signal plus background hypothesis,
rather than a background only hypothesis, a background subtraction method should be used first
so that the transformation of the monte carlo background will not include artifacts of the signal
events. This obviously adds a further level of complexity, and in this case, the ability to make an
interpretation of the method as an estimator of the total systematic error is less clear.
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Chapter 4

The Search for B
ete™ = ZV - hVAY — 404049 5 3(bb)
at /s = 183 GeV

4.1 Introduction

The results presented in this chapter detail the search for h® A® =+ A® A® A% 4 3(bb) in the region
of the { myo ,mas ) mass plane satisfying 2mao < myo, parts of which were left unexcluded by the
previous /s = 172GeV, as discussed in Section 1.2.2. Due to the presence of six b-quarks the
events are characterized by a large number of jets and a large charged track multiplicity. To
reduce backgrounds, b-tagging plays a crucial role. At 183 GeV, backgrounds from (Z/+)}* —
bbg(~) with hard gluon emission and four-fermion processes contribute approximately equally.
Backgrounds from two-photon processes are reduced to a negligible level by the event selection.
The analysis presented here is based on data collected by the OPAL detector during the 1997-1998
run, representing a luminosity of £ = 54.5 = 0.2 pb™}. Selection of candidates is done through
a neural network analysis which combines kinematic and topological variables with heavy flavour

tagging.

4.2 Data and Monte Carlo

To simulate the signal, the process ete~ — h%® A% — A% A% A%, 3( bb) was generated, with vari-
ous mys, myo, at 184 GeV using HZHA 29] with the Standard Model parameters a, = .118, m,op =
175GeV,mzo = 91.189GeV, [z = 2.497GeV,GFr = 1.16639 x 10~5 GeV "2, and full simulation of
initial state radiation. The main contributions to the total background come from those processes
which have high charged track multiplicity and which can mimic multi-jet final states. The most im-
portant backgrounds contributing to this analysis were composed of the two fermion processes (with
initial state radiation), (Z/+)* — qg, generated by PYTHIA [83], and the four fermion final states from
W+W- and 2°2%*’ generated using GRCAF {84]. For systematic checks, described more fully below,
an alternative Standard Model background sample was generated using HERWIG [83] to simulate the
(Z/+)" = q§ contribution and PYTHIA for the remaining allowed W+W - and 2°Z%*’ channels.

Events were then processed through a full simulation of the OPAL detector [86] using the GOR019
and GOR021 descriptions of the detector layout with the OPAL97 constants and calibrations.

The first available Monte Carlo samples had been generated at /s = 184 GeV. The data runs,
however, were found to have energies closer to /s = 183 GeV, so new Monte Carlo samples were
generated due to threshold effects involved with some of the background channels, namely W+W~—
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production. The main background sample used in the this analysis was generated at the correct
Vs = 183GeV. However, the available /s = 184 GeV Monte Carlo was still useful, especially
for the two fermion processes which were not sensitive to threshold effects. Some of this 184 GeV
Monte Carlo was included in the alternative background samples used in the systematic studies.
The signal and Standard Model background samples used to optimize the selection cuts are listed
in Table 4.1

Process | Run | Number of Events | ipd}
Data, Pre CV Incident
Data Period 84, Pass 5 716 6.25
Data Period 85, Pass 5 789 7.00
Data Period 86, Pass 5 2593 | 22.84
Data Period 88, Pass 5 162 1.47
Data, Post CV Incident
Data Period 88, Pass 4 1488 13.40
Data Period 89, Pass 4 383 3.53
HZHA generated signal, /i — 3(bb)
mye = 60. ma o =30 | ...L20010/P184HA /R6725/P0008 0.5K
myo = 60, myo =30 | ...L20010/P184HA/R7048 5K
my,> = 80, mao =30 | ...L20010/P184HA /R6725/P0009 0.5K
my, = 80, mao =30 | ...L20010/P184HA/R7049 5K
myo = 80, muo =40 | ...L20010/P 184HA /R6725/P0010 0.5K
Main PYTHIA, GRC4F background

| Z%(v) = qa ...L20011/P183QQ/R5050 375K | 107.43
eTe” = qaqd ...L20011 /GRC4F/R7051 30K 7.86
eve” = qgfT € ...L20011/GRC4F/R7050 40.6K 8.11
eve” — qieTe” ...L20011/GRC4F /R7055 100K | 26.73

Alternative HERWIG, PYTHIA background

" Z%(1) — qq ..L20010/ZZHW59/R1124 T 150K | 101.42
W W~ — all ...L20011 /GRC4F/R7337 25K 15.54
7979 |, all ...L20011/P183ZZ/R7338 5K 0.61

Table 4.1: Monte Carlo and OPAL Data used in the 183 GeV analysis. ete~ — qgf+¢~ samples do
not include ete~ — qgete~. The right hand column reports the luminosity represented by the data
samples, or the cross-section of the background process.

During the 1997 data taking period, a set of three wires in sector 26 of CV stereo broke at
event 12773 in run 8679 (period 88) [87]. CV axial and stereo were down for a day, and the axial
portion was ramped up by run 892. Two thirds of the stereo section was ramped up starting with
run 8816. Runs 8679 (starting at event 12773) -8691 have C\" detector status of 1 (see Table 4.2},
and runs 8692 onwards have C\V detector status of 2. New calibrations of the stereo layer were
necessary as the field configurations had changed. Therefore, in order to monitor data quality, the
data was considered as pre and post CV incident.

4.3 Preselection

The full data set collected by OPAL during the 1997 data taking period amounted to more than
75000 multi-hadronic events. Due to this large number, it was impractical to analyse and import
all the available data. Rather, a cascading set of loose selection cuts were imposed to filter out
interesting events for further analysis. The cuts were selected with the aim to obtain a final sample
of signal candidate events which had as little contamination from other event types as possible.
This preselection is a multi-step process.

When OPAL data is recorded, a number of easily calculable quantities, such as the event’s energy
and number of charged tracks, are stored with each event. Selections based on these variables require
no additional computing, making them very fast, while significantly reducing the number of events
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to be analysed. Further computing intensive analysis was then only applied to those events passing
the initial selections.

The preselection cuts used in this analysis will be described in the following sections. At
times, a detailed description or motivation for a particular variable will be given, as well quantities
not directly related to the preselection, but relevant to later discussions, may be described when
they are logically related to a preselection variable. Because of these additional explanations, the
preselection cuts will be summarized in Section 4.3.8.

4.3.1 Subdetector Status

Each subdetector provides a status number for every event recorded. These status numbers, and
their meanings, are listed in Table 4.2. To begin the analysis, the status of the relevant subdetectors
were checked to ensure they were working well. For this analysis, the following subdetectors were
required to have good status flags: SI, CJ, EB, EE, and HT !, as well as SW (to ensure an accurate
luminosity calculation). The CV subdetector was required to have a good status flag before the
CV stereo incident and a status of > 2 after.

Status | Interpretation
0 Detector is dead
1 Detector is unreliable
2 Detector has small problems
3 Detector is reliable

Table 4.2: Detector status values and their interpretation.

Using only the detector status selection, the total luminosity for the data set analysed was
calculated, using the OPAL analysis routine ROCROS (88, and found to be £ = 54.5+ 0.2 pb™"'.

4.3.2 Hadronic Event Selection

The OPAL selection of hadronic events uses a combination of tracking and calorimetric require-
ments. In order to be used in forming this selection, the reconstructed tracks and clusters must
pass certain quality requirements listed in Table 4.3, where Evi, = 3 Crue ERaw is the visible
energy in the event, and Ega = 3_y_, .. ERaw c0s# is the balanced energy, the sums being taken
over the number of good clusters, Nciy,- The first set of conditions defines the standard LEP2
Muiti-Hadron (L2MH) [89] event selection. Additionally, due to the six jet nature of the sig-
nal, a higher number of tracks are expected. So, to reject Standard Model background, mainly
ete™ = (Z/7)" = qd(g), the minimum number of good tracks was increased to 25.

4.3.3 Event Reconstruction

Once these basic preselections are made, the more computing intensive phase of the analysis begins.
The analysis variables were generated using Higgs group analysis package, DH [90], along with
additional, signal specific, code added by the author.

Track and Cluster Quality

Tracks, electromagnetic clusters and hadronic clusters are identified using the selection criteria in
Table 4.4. These are similar to those discussed in [91], with the exception that the default value
for the maximum allowed track momenta was raised from 60 GeV — 120 GeV to reflect the higher

IThe Hadron Calorimeter Towers data acquisition system



CHAPTER 4. THE SEARCH AT 183 GEV

LEP2 Multi-Hadron (L2MH) selection
Tracks Number of Central >20
Detector hits, Ncp
|do| <2.0cm
|26l < 40.0cm
radiusjecp;, < 60.0cm
pr ., < 0.050 GeV
| cos 61 ri| < 0.995
Xi_o < 999
x3_: < 999
Clusters | FRraw > 0.100 GeV in the Barrel
> 0.200 GeV in the Endcaps
NBlocks > 1 in the Barrel
> 2 in the Endcaps
Event Rvi. = Evis/24/s > 0.14
|RBall = IEBaI/ERaw[ <0.75
NGood Clusters >7
‘ NGood Tracks >3
Additional Constraints
Event l NGood Tracks I > 25

7

Table 4.3: Tracks and cluster quality cuts in the LEP2 Multi-Hadron (L2MH) selection. These selection
criteria were developed to efficiently select samples of multi-hadronic events at LEP2 energies. The
additional constraint on the number of good tracks was imposed to increase the rejection of ete™ —

(Z/+)" = qq events.
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Vs at LEP2 . Information from the Silicon detector is used to improved track reconstruction using
the OPAL Silicon detector track matching routine, 0DSIZL &7].

[ Analysis Level Event Quality
Tracks | pra > 0.100GeV
PTrk < 120GeV
Number of CJ hits | > 20
Ido| < 2.5cm
B < 50.0cm
Xi-: < 100
|tan A| <373
Clusters | Eraw > 0.170GeV in the Barrel
> 0.250GeV in the Endcaps
NBiocks > 1 in the Barrel
> 1 in the Endcaps
Towers Erower ?).250 GeV

Table 4.4: Analysis level event quality selections.

As each track must be well measured to determine its energy and momentum, only those
tracks which satisfy the quality selections were used in this analysis. A minimum number of Jet
Chamber (CJ) hits, Ncs, on each track is demanded and the track must have: a minimum angle
(corresponding to a maximum | cos f1,x|); a minimum momentum pr.i; and a minimum transverse
momentum, with respect to the beam, p%, . In addition to being well measured, each track should
appear to originate from the primary interaction point, thus, cuts are made on z5, the apparent
z-coordinate from which the track originated, and dp, the distance at the point of closest approach
of the extrapolated track to the interaction point. Those which do not appear to come from the
interaction point may be artifacts due to jet chamber sparking, beam wall and beam gas interactions,
or backscatter in the solenoid from particles which have already left the jet chamber.

Clusters used in this analysis should not be due to either poorly calibrated blocks or noisy
electronics. Each cluster is compared to a list of noisy blocks and, if a match is made, it is dropped
from further analysis. The energy of a cluster must then be corrected to account for the energy
deposited in the material in front of the lead-glass. This is a large correction for clusters with a small
deposited energy, ERaw, SO a minimum cut is made on ER,w. For a cluster in an electromagnetic
endcap, which has its blocks mounted parallel to the beam axis, a minimum number of blocks,
NBlocks: Was required.

4.3.4 Track-Cluster Matching

In the hadronic final state, charged particles carry about 2/3 the total energy. The energy of these
charged tracks is measured twice: once in the central tracking system, using their curvature and
dE/dz information, and a second time by direct measurement in the electromagnetic and hadronic
calorimetry. The neutral hadronic energy, however, can only be measured with calorimetry.

For the OPAL detector, it is often the case that momenta and angular resolutions for charged
particles are measured much more accurately with the central tracking system than with the
calorimeters. So, we would like to define the event energy as the sum of the charged track energies,
measured with the central detector, with the neutral hadronic energy measured in the calorimetry.
To accomplish this, one needs to avoid the double-counting of energy from a good quality track
leaving a good quality cluster.

Naively, we could hope to remove this double counting by using only those clusters not associated
with any tracks. However, this would require that the clusters do not overlap which is incorrect.
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Rather, an algorithmic approach, using the MT /92] package, was used to subtract off the energy of
well measured tracks from their associated clusters.

4.3.5 Jet Reconstruction

One of the most striking, and in fact identifving, features of an hadronic event is the presence of
Jets.
The lowest ordei process for producing hadrons in ete~ colliders is ete™ = qq, where the
primary quarks fragment into hadrons. The essential assumption of the parton model, leading to
the expectation of jets, is that the transverse momenta of the quark fragmentation products arise
mainly from soft processes and remain small, whereas their longitudinal momenta can increase
with the quark energy. The nomenclature, then, is a description of a shower of particles confined
to a narrow cone about the direction of the primary quarks direction, or a jet of particles. Jet
production was first observed in e*e~ colliders in 1975 [93].

Figure 4.1: Presented is a graphic depiction of the hadronization process.

The process by which the q@ pairs in the signal and background events evolve into a system
of colourless hadrons is known as hadronization. Hadronization is dominated by nonperturbative
processes which in general cannot be expressed in analytic form.

To make this more quantitative, we need to introduce the concept of a jet measure, that is, a
procedure for classifyving a final state of hadrons according to the number of jets it contains. To be
useful, a jet measure should be caiculable in perturbation theory and give cross-sections which are
free of soft and collinear singularities as well as being relatively insensitive to the non-perturbative
fragmentation processes.

One of the first attempts to define jet cross-sections in perturbation theory was by Sterman
and Weinberg [94]. In this original attempt, a final state is classified according to the number of
non-overlapping cones of half-angle é required to account for all but a fraction € of the total energy.
It turns out that from an experimental and theoretical point of view, the Sterman-Weinberg jet
definition is not well suited to analysing multi-jet final states. One of the reasons being the inefficient
“tiling” of the 47 solid angle. For this reason various alternatives were proposed, one of the most
important being the minimum invaeriant mass, or JADE [95] algorithm, which is characterized by

a scale parameter often denoted as the y-cut.
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Starting from an n-parton/cluster state, identifv the pair with the minimum invariant mass
squared. If this is greater than y.y;, then the number of jets is n, if not then combine the two into
a single parton.

min :(p, +pj)2] = min :2E,'Ej(1 - cosﬂ,-,-)] > Yeut
Repeat for the (n — 1)-parton/cluster state until all parton/clusters have a relative invariant mass
squared > yey:. According to this definition, an n-parton/cluster state may yield between 2 to n
jets. Studies using hadronization models have shown that at high energies, QCD predictions of jet
production rates using this jet definition reproduces data well.

Unfortunately, this algorithm tends to reconstruct spurious jets (ie., clusters or hadrons whose
momentum does not obviously coincide with any approximately collinear set of partons). To avoid
this, the Durham [96] algorithm was proposed. This replaces the previous clustering measure by
the minimum of the relative transverse momenta,

2min {(EZ, EZ}(1 — c056i;)] > yeur

which also has the property that n-jet production rates can be calculated in perturbation theory.

Because of the striking multi-jet topology of h®A°® — 3(bb) production, the Durham algorithm
was chosen for this analysis. Using the Durham algorithm then, the corrected tracks and clusters
were used to reconstruct a six jet topology. Typically, this algorithm is applied by specifving a
minimum value for y2,,,, where yP, 41 is the jet resolution parameter at which events change
from n to n + 1 jets in the Durham scheme. Here, however, events which failed to be reconstructed
as six jets with y2 > 0 were rejected. The values of y2,,,, n = 2,...,5 were then used as
variables later in the analysis.

The jet 4-momenta were then corrected via a 4-C fit [97], enforcing overall energy and momenta
conservation. Events where this 4-C fit failed to converge were cut from the analysis.

4.3.6 Topological Variables

To describe and quantify the jettiness of an event, a number of variables calculable from the particle
distributions, independent of their jet association, are available [83].
For each event we define the normalized momentum tensor,

s _ Zippf
So-' = Szt 4.1
d.ip} D

where a, 8 run over the space indices and p; is the momentum of the i** particle, summed over
all particles in the event. Ideally, all particles would be used but typically only charged particle
information is available.

As §°¢ is a real symmetric matrix, it can be diagonalized with eigenvectors 7i; and eigenvalues
Ai; i =1,2,3, such that Ay +A; + A3 =1 and 0 < A} € A2 < A3. These eigenvalues can be used to
quantify the event shape:

e Roughly Spherical events = \; = A2 = A3
e Flat (Coplanar) events = A; <€ A,
e Cigar (Colinear) events = Ay < A3

Particular combinations of the eigenvalues have been given names. The Sphericity 98],

Ty2
S = g(A1 + A2} = gmin [%%)—] (4.2}

where p7 is the momentum component transverse to the axis which minimizes the numerator.The
Sphericity lies in the range 0 < § < 1. Events with S = 1 are rather spherical, $§ « 1 are
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back-to-back. In this analvsis then., a cut on large S values can be used to reduce the large
ete~ (Z/+)" qgbackground.
Other combinations of interest to this analysis are:

o C parameter, C' = 3(AA2 + A A3 + A2A3), is used to identify 3 jet structures, as it vanishes
in 2 jet case.

e D parameter, D = 27X A2]3, is used for 4 jet structures, as it vanishes for planar events.

The C parameter is particularly useful at the preselection level in reducing the ete™ = (Z/+)" -
fT background as it rapidly approaches zero for two-jet events. Thus, the C-parameter is required
to be >- 0.25.

Variables based on S$®Z, however, do have some shortcomings. The main drawback is the fact
that the particles are weighted by the squares of their momentum in the denominator of §23. This
has the effect that the occasional energetic track can have an exaggerated effect on the tensor. Fur-
thermore, S®? has a number of theoretical problems. From the parton point of view, the quark can
split into collinear quark-gluon pairs with a high probability, in fact diverging at the infra-red gluon
limit. In this case the final state quark and gluon have the same momentum as the parent quark
but contribute quite differently to any quadratic function. §°2 is therefore intrinsically unstable
to such collinear splittings, which are a very common features of QCD radiation. Calculating §°~
at the hadronic level also runs into the same problem when a decaying hadron is replaced by a
number of almost collinear daughter particles.

Variables based on the linear sums of particle momenta are stable against these collinear split-
tings, so are more insensitive to the fragmentation details in the hadronization of the primary
partons. One such variable is the Thrust [99], defined by

Lol

where the thrust azis is given by the n which maximizes T. Spherical events correspond to T = 1/2
and cigar-like events to T = 0. The thrust axis is a useful vector as it gives an indication of the
energy flow in the event. To ensure then that the event is well contained in the sensitive areas of
the detector, the polar angle of the thrust axis, 67, is required to satisfv |cosfr| < 0.9.

One last class of event variables considered in this analysis are due to G. Fox and S. Wol-
fram [100]. The Fox-Wolfram moments, H,, € =0,1,2, ... are defined as

T = max

H, = ZIPE",#’-IP;(COSOU) (4-4})
i.j

Lis

where 6, is the opening angle between particles i, j, E,;, the total visible energy of the event and P,
are the Legendre polynomials. To the extent particle masses may be neglected, Hg = 1. Otherwise
the normalized moments are defined as H,, = H;/H,. If momentum is balanced, H, = 0. Two-jet
events tend to give H; ~ 1 for £ even and = 0 for £ odd. The 2"¢ moment is linearly related to the
C parameter. However, the larger moments provide new topological variables.

4.3.7 Initial State Radiation

One last physical parameter that proved exceedingly valuable in reducing the ete™ — (Z/+) - ff
background was the identification of energetic Initial State Radiation (ISR). At LEP2 energies, the
fast decrease in the cross-section observed in ete~ interactions, as the energy moves away from
the Z° peak, favours the radiation of hard collinear photons which boost the effective centre of
mass energy, V's', of the e*e~ collision back to the Z° mass; this is the so called Z° return [101].

Vs' for each hadronic event was estimated as follows [102]. In approximately 20% of radiative
events the photon was detected directly in the electromagnetic calorimeter. Such photons were
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identified by requiring them to conform to the expected transverse shower shape and to be isolated
by observing no more than 1 GeV in a cone of half-angle 200 mrad. In the remaining cases jets
were identified using the Durham jet finding scheme, then the measured energy and momentum
were used to perform a kinematic fit to a system of jets and an unmeasured photon along the beam
direction, imposing constraints of energy and momentum conservation. The photon energy, E,,
derived from the event kinematics or the energy found in the calorimeter, whichever was the larger,
was used to compute s’ = s — 2E, /5 °.

ISR associated with ete~ — (Z/%)}° — I background tend to generate Vs’ ~ mzo and are
efficiently rejected by requiring Vs’ > 100GeV.

4.3.8 Summary of Preselection Cuts

As we have taken time to define the standard variables used in multi-hadronic analyses as we came
upon them, while also introducing new variables not directly related to the preselection, we will
summarize:

o The detector status was acceptable.

e The LEP2 Mutlihadronic (L2MH} event selection flag was set.

e Charged track multiplicity > 25.

e The polar angle of the thrust axis, 87, is required to satisfy | cosér| < 0.9.

e The C-parameter > 0.25.

e The effective centre of mass energy, after initial state photon radiation, Vs’ > 100GeV .
e 6 jets were found. as discussed on p. 80.

The signal Monte Carlo survived these preselections with better than 90% efficiency and reduced
the large (Z/~}" — ff background by =~ 90%.

Once manageable analysis sets were created, the following selections were applied at analysis
level,

e The jets’ charged track and electromagnetic cluster multiplicity > 2
o The 4C fit which enforces overall energy-momentum conservation was required to succeed.

These latter two cuts were not subject to optimization as the goal was to ensure good event quality
with well defined jets.

4.4 B Jet Tagging

Since neutral Higgs bosons decay preferentially to bb pairs, the tagging of jets originating from
b-quarks plays an important role in most Standard Model Higgs boson searches. This channel in
particular emphasizes the b-quark content in order to discriminate between the signal and (Z/+)®
or W+W~ multi-hadronic final states.

The existence of hadrons containing heavy quarks is deduced by observations of their decays.
Any experiment which depends of identifying the presence of heavy quarks would benefit from at
least a phenomenological, if not a theoretical, understanding of heavy quark decays processes. The
simplest approach is to treat the decays of hadrons containing heavy quarks in analogy with the

2If p,, pa are the initial electron momenta, then by conservation of four-momentum we can write py +p2 —py =
p'y +p'a, with p’,, p’s the electron momenta after the ISR, p,. Squaring both sides, and noting s = (p1 +p2)>, we
find s’ =5 —2E, /5.



CHAPTER 4. THE SEARCH AT 183 GEV 83

decay of a free muon. This is called the spectator model ‘96, 103, since the quarks which accompany
the heavy quark in the hadron are assumed to play no role in its decay. After the decay of the
heavy quark, via virtual W emission, all the remaining quarks form hadrons.

One immediate consequence of the spectator model is that all hadrons containing one heavy
quark of a particular flavour should have the same lifetime. For the case of the charm quark, this is
not precisely true. For example, for D%(ci), D*(cd) and A} (cud) the measured lifetimes are [80]:

Tpo = 4.76+0.04x107 13 s
rp+ = 10.57+0.15x107!3 5
To+ = 206£0.12x107%s

which are clearly not identical but are at least of the same magnitude. Aside from QCD corrections,
however, these complications mainly affect the non-leptonic decay modes; the leptonic decays modes
are relatively clean. One should note that the energy release in a ¢ quark decay is only O(1 GeV)
so we would expect the spectator approximation would improve with the heavier b quark.

At the b quark vertex, b—+ ¢W™~ and b+ uW~ are kinematically allowed, of which the CKM
mixing matrix indicates that b— ¢W ™~ is dominate. When leptons are present in the decay mode
of a hadron, the decay is termed semileptonic: otherwise, the decay is wholly hadronic. Including
a colour factor of 3, there are nine principal decay modes: the three semileptonic modes W~ —
€. € € {e,v, T} and the six hadronic modes W~ — dii, sé. To the accuracy of this discussion, the
70> and s¢ suffer relative phase space suppression of approximately 1/5 and 1/10 respectively.

In the spectator model, the b decay is closely analogous to u — v,e’, with the charm mass in b
decay playing a similar role to the electron mass in u decay. Hence, we may write,

5
Tl‘ (ml‘) 1 =\
Tb = 2] _ Frm.~ (4'3)
6[Vesl® \ms /) Sf(32}

where f(¢) = (1 —€'}(1 —8e?+ €'} —24e' In € is the phase space factor. A priori, one may expect the
B hadron lifetime to be a factor of (m./m,)? shorter than the estimate for charm flavoured hadrons,
as follows from the previous equation. This mass effect, however, is almost entirely canceled by the
CKM factor |V2,)%.

If we take [103] mp = -;-mr ~ 4.73GeVand m, = %mv ~ 1.55 GeV, we obtain an estimate for 7
of 1.8x 10712 x (0.05/ |Vep[)? s. Estimating V.4 &~ 0.05, from the observed B* and B° semileptonic
partial widths, we find our final estimate, 7, &~ 1.8 x 10~!'? s which compares favourably to the
observed average B hadron lifetime (80], Ty = 1.56 £ 0.04 x 10~!2 s, supporting the spectator
model assumptions in b quark systems. Likewise, the ground-state hadrons containing b quarks
have roughly equal lifetimes, further supporting the spectator model. The observed B hadron
lifetime corresponds to a proper lifetime expressed in units of length of cr = 468 um. A b quark
with a momentum of 20 GeV', a typical jet energy at OPAL will have a relativistic ~ factor of about
4, in which case the corresponding B hadron will travel O(2 mm). Such a decay length will produce
a secondary vertex, as depicted in Figure 4.2, which in OPAL is reconstructed using information
from the central tracking chambers in conjunction with the silicon microvertex detector.

Returning to the muon decay analogy, it can be shown that the decay electrons have a hard
energy spectrum. That is, in the muon rest frame the electron energy is a significant fraction of
the muon rest mass. A similar feature exists for the semileptonic decays of the b quark where the
leptonic energy spectrum of b—~ e and b— u are essentially the same since e -;& 1.

While the ¢ flavoured hadrons have been shown to vary more from the spectator model predic-
tions than the B hadrons, the basic phenomenology is still the same. So the decay of a charmed
hadron through virtual W™ emission can generate a displaced secondary vertex, larger jet multiplic-
ity and in the semileptonic case a hard lepton. When the charmed hadron appears in a cascading
decay chain of a primary B hadron, through 6— c¢— d, s . this will contribute to the identification
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Figure 4.2: Typical dimensions of a B-hadron decay at OPAL. Lifetime tagging through secondary
vertex reconstruction.

of b fiavoured jets, otherwise, primary ¢ production will be a source of irreducible background to
any b tagging methods.
In summary, the spectator model of B hadron decays predicts,

e All hadrons containing a b quark will decay with similar lifetimes.

e At tvpical OPAL jet energies, these lifetimes correspond to a decay length O(2 mm), large
enough to be measured in an experiment equipped with a microvertex detector.

e b flavoured jets will have larger charged track multiplicities due the hadronic contributions
from the virtual W bosons in the cascading decay chain involving b— c— d,s.

e The decay of the virtual W™ contributes to the jet charged track multiplicities through its
hadronic decay modes, or, in the leptonic case, produce easily identifiable hard leptons.

In order then to study b quark production at OPAL an algorithm will be presented in the next
section which exploits these properties.

4.4.1 Jet-wise B-Tagging Algorithm

In order to have the highest possible efficiency, a jet-wise b-tagging algorithm common to the OPAL
Higgs analyses has been deveioped [104]. While this method was not developed by the author, its
results are of such critical importance to the analyses presented in this thesis that the algorithm
will be presented in some detail.

The method employs three independent b-tagging methods: (1) lifetime tag, (2) high-p, lepton
tag, and (3} jet shape tag. These three methods, described below, are combined using a Bayesian
likelihood method to form a discriminator for each jet. Figure 4.3 schematically illustrates the
b-tagging procedure.
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Figure 4.3: Schematic presentation of the calculation of the jet-wise b-tagging variable Bje,. The
svmbols and algorithms are explained in the text.

Lifetime tag

The lifetime tag exploits the relatively long lifetime, high decay multiplicity and high mass of the
b-flavoured hadrons. Five quantities, based on these properties, are calculated from the tracks
and clusters assigned to a given jet. These five quantities are input to an artificial neural network
(ANN} to form a lifetime tag, 3., for each jet considered.

Three of these quantities rely on the reconstruction of secondary vertices. Within a jet, sub-jets
are formed using a cone algorithm [105] with a cone half angle of 0.5 radians and a minimum sub-jet
energy of 7 GeV. In each of these sub-jets, secondary vertices are reconstructed using the method
described in [106]. 4n attempt is made to fit all tracks in a sub-jet to a common vertex. Tracks are
discarded by an iterative procedure which drops the track with the largest contribution to the x2
of the vertex fit, until the largest x2 contribution is less than 4, with at least two tracks remaining.

The following quantities are calculated as inputs to the ANN:

e Secondary vertex likelihood, L£s: L is calculated from the probability density function of the
decay length significance, S (the decay length divided by its error) for b, ¢ and uds flavours.
If more than one sub-jet is formed, the secondary vertex with the largest £s in a given jet is
selected.

o Reduced secondary vertex likelihood, Lg: the reduced decay length is obtained from a vertex
fit using all tracks in the secondary vertex, except the one with the largest impact parameter
significance (i.e., the impact parameter with respect to the primary vertex divided by its
error). For b-flavoured hadron decays, the reduced decay length often coincides with the
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decay length, however, randomly formed vertices exhibit less robustness against removing the
most significant track. The reduced decay length significance R is given by the reduced decay
length divided by its error.

e Critical track discriminator., Teri:: An auxiliary ANN is trained to discriminate between
tracks originating from the b-flavoured hadron decay and from tracks due to fragmentation
or decays of light-flavoured hadrons. The inputs to this ANN are the impact parameter of
the track with respect to the primary vertex, df' ; the impact parameter with respect to
the secondary vertex, d*¢<; the momentum of the track, p**2<*: and its transverse momentum
with respect to the corresponding sub-jet axis, pi*¥. The tracks belonging to the sub-jet
are then sorted in descending order according to the output of the aux’liary ANN. Tracks are
added one by one to a ‘cluster’ of tracks whose invariant mass is calculated, assuming that
all tracks have the pion mass. Tei: is the auxiliary ANN output of the track which causes
the cluster invariant mass to exceed 1.9 GeV. This algorithm {107] exploits the higher mass
of b-flavoured hadrons compared to charmed and lighter hadrons.

Not all b-flavoured jets produce identifiable secondary vertices. Thus, in order to compensate
for the loss in b-tagging efficiency due to the requirement of secondary vertex reconstruction, two
of the inputs to the ANN are based on track impact parameters only.

e Two-dimensional impact parameter joint probability, (Pin): The impact parameter distri-
bution for tracks with negative impact parameter significance is assumed to come from the
primary vertex and, thus, provides an estimate of the detector resolution function 3. The
resolution function is then used to weight the tracks, and the joint probability for the tracks
in a jet to come from the primary vertex is given by

(= Ing)™
Pioin = y‘:-f;:é(—m—'y)'

where y is the product of the probabilities of all N tracks in the jet 108].

The five variables Ls, L, Terit: Pjoin and Puae are then input to an artificial neural network.
Monte Carlo samples at /s = mzo were used to train the ANN. with one output node, the lifetime-
tag B3-. The vertex tagging performance was found to depend on the jet polar angle, so three
separate ANNs are trained for jets with [cosfje:| < 0.75, 0.75 < |cosbje:| < 0.9, and |cosfje:] > 0.9.

The high-p, lepton and jet shape tags

Semileptonic b-decays are identified using electron and muon selections, rejecting electrons from
~ conversions as described in [109]. The transverse momentum, p{, of the lepton, calculated with
respect to the direction of the sub-jet which includes the lepton track, is used as a b-tag variabie.

The larger decay multiplicity and higher mass of the b-flavoured hadrons tend to result in a
more spherical shape for b-jets compared to lighter flavour jets. As a measure of the jet shape, the
boosted sphericity 3,, defined as the sphericity (page 80) of the jet calculated in its rest frame, is
used as the jet shape tag.

4.4.2 Application to the Six Jet Analysis

For a given jet then, we calculate the three quantities 8-, p{, and 3, as described above. Compar-
isons of Monte Carlo and Data can then be used to define the probability density functions, P(t|q),
as the probability of observing a value t, for the tagging method t € {Bf,pf , B, } for each jet flavour
g € {b,c,uds}.

3The impact parameter is taken to be positive if in the two-dimensional projection the track path. starting from
the point of closest approach to the primary vertex, crosses the jet axis in the flight direction: otherwise it is negative.
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Of interest now is the subsequent classification of the jet’s flavour based on these observations,
that is, given (8;, pf, 3s} what is the probability the jet is b-flavoured? If we denote P(3;,pf, 3|b}
as the conditional probability of observing (3;, pf. 3,} for a b-flavoured jet, then Bayes theorem [110]

tells us P8 ¢ 3 16} P(b}
P b - [’ ;3' = § fvpft (] }
(515 pe: B} P(B.. 1% Ba)

Since the choices of jet flavour classification are exhaustive, J,_; c 45 § = @. and mutually exclu-
sive, qi[1q; = 0,Vi, j € {b, c,uds}, the probability of the event (3:,pf,3,} can be written as

{1.6)

P(B-.p{. B} = Y_ P(B:pf Balq}Plg) (4.7}

q=b.c.uds
allowing us to write Equation 4.6

_ P(8-, p;, 345} P(b)
P b /?s ’* s = = t ) 4‘8
(b18-.pt . Bs) Y- —b.c.uds P(Bs. PE: Bela) P(q) 4o

The factors P(q) in Equation 4.8 are interpreted as the absolute probability of a jet being g-
flavoured which is, in turn, related to the cross-sections and branching fractions of the processes
contributing to the hadronic jets observed in data. These absolute probabilities are to be measured
from the flavour compositions in the contributing background channels and are herein parametrized
by the weight factors wp, w., and wyq,.

Further, since the three quantities described above, 3., pf, and 8, exploit different properties of
b-flavoured hadron decays and are almost uncorrelated, we can factor P(3;,pf{, B,|q) as the product

P(B:,p!. 319} = P(B-lq) - P(pflq) - P(Bslq) (4.9}

where each term in the expansion is known from the previous discussion.
The final b-tagging discriminant for each jet is defined as
wy - P(B:|b) - P(pf]b} - P(84|b)
Zq:b.c.uds Wq - P(B‘PIQ) - P(pl'lq) . P(ﬂle)

Bje. = P(b|8..pf. 8} =

1
- w;  P{3-iq)-Piptiq)-Pl3.1q)
L+ 3 mcuds we ERD NN ZEA)
1
= ——— 1.10
1+aC + 83U ( )

with a = w./wy, 8 = wyyq./ws and C, U are the respective ratios of the jets probability of being ¢
or uds-flavoured with respect to its probability of being b-flavoured. In this format, we see there
are only two free parameters, a, 3, related to the unknown flavour weights, which could be fit to
each analysis based on efficiency and purity requirements. .

The obvious way to define a b-tagging discriminant for NV-jet event is Beven: = l-[f;l Bje.;, where
the product is indexed by the jet number. This would work well when the ratios a and 3 are known,
but if not then the resulting product could be very sensitive to their selected values and will be too
non-linear to fit to data. For this analysis, we treat the factors a,3 as unknown, and define the
associated, N-jet, event b-tagging discriminant is

1
l+a[r,Ci+8I U

If we present only the C;, U; products as inputs to a neural network, we would then expect the
network to select the optimal values for a, 3 to classify the B’ness of signal and background events.

(4.11)

BE vent =
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Thus, we define the two input variables

ceike= [ ¢, vike= J] w, (1.12)

i=1.4 i=1.4

as the product of the C, U values for the 4 highest energy jets. This is done to reduce the effect of
poorly reconstructed low energy jets in the background.

4.4.3 Secondary Vertices

Before the development of the jet-based b-tagging method described in the previous sections, re-
searchers relied heavily on the direct reconstruction of secondary vertices to indicate the presence
of long lived b hadrons. At the time this analysis was performed, the jet-based b-tagging method
was not well tested, so the author felt it prudent to contrast it with the discriminating power of
standard vertex based variables.

Secondary vertices were constructed in each jet using the Build Up [111] (denoted BU) and Tear
Doun (denoted TD) {111, 106] methods.

The BU vertex finding method starts by trying to form a nucleus secondary vertex from tracks
with significant impact parameters with respect to the primary vertex. Tracks are added to this
nucleus if they are closer to it than the primary, and again the separation from the primary can be
used to tag b jets. The BU vertices were found to contribute little information to neural networks
which contained TD vertex information and so are not used in this analysis.

The TD method starts by forming a common vertex using all the tracks in the jet, and progres-
sively removes tracks which do not fit well. When all the remaining tracks form a good vertex, the
separation from the primary vertex is used to distinguish b from non-b jets. Accurate secondary
vertex reconstruction is achieved by requiring that a minitnum number of tracks assigned to the
vertex have well defined hits in the Silicon Microvertex Detector. A good{reduced) tear down sec-
ondary vertex is defined as having > 2(3) tracks each with > 2 r¢ and > 1 rz silicon hits, using the
tear down vertex reconstruction algorithm. As mentioned previously, the decay length significance
is defined as the decay length divided by its error.

For robustness, the reduced decay length significance is defined as the decay length significance
calculated for the vertex after the track with the highest impact significance had been removed.
For b-flavoured hadron decays, the reduced decav length often coincides with the decay length,
randomly formed vertices exhibit less robustness against removing the most significant track. In
this case we originally require 3 good tracks so that the vertex will still be well defined.

Following our expectation that b-flavoured jets will optimally return secondary vertices with
positive significance, we define the significance and reduced significance sum for an event by adding
the significances of all the good(reduced) secondary vertices with positive significance which we
will denote by TSUM(TRSUM}. Aithough highly correlated, a plot of Significance Sum vs. Reduced
Significance Sum was not perfectly linear and so includes discriminatory information. This was
directly confirmed by comparing ANN trained with and without one or the other of these inputs.

One may notice that information from the secondary vertices in the jets is used in determining
the C, U values described above. However, Figure 4.4 shows a comparison between TSUM and the
CLIKE, ULIKE variables where we see that the relationship is not linear and, thus, these additional
variables contain new discriminatory information.
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indicated along the horizontal axis of each plot. We see that the relationship is not linear and that there
exists discriminatory information between them.
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4.5 Artificial Neural Network Analysis

The (mys,ma0) = (60,30} GeV signal was found to present quite a different topology compared
to that of the (myo,ma0) = (80, 30) GeV signal and more closely resembled the qG(g) background.
Thus, the network was trained separately on the signal events h4 — 3(bb), with (mys,ma0) =
(60, 30) GeV and (mpo,ma0) = (80,30) GeV. We will refer to these two networks as a63 and a83,
respectively. The (my0,ma0} = (80,40) GeV case was not included in the training as it seemed to
have a very similar topology to the (myo,my0) = (80,30) GeV case. This seems to be supported
by similar final efficiencies for the (myo,m0) = (80, 30} Ge\™ and (80, 40) GeV cases.

4.5.1 Topology and Training

We use a simple feed-forward neural network with backpropagation updating programmed using
the JETNET-3.5 {74] package, with a topology defined by 15 input nodes, 10 hidden nodes and 1
output node.

It is generally accepted that a single hidden layer is sufficient for classification oriented neural
networks [74]. Using more hidden layers was not investigated for this analysis. The output node
was trained to yield an a priori bayesian probability of 0 or 1 depending on whether the event
was classified as signal or background. A sigmoidal activation function was employved and the
networks were trained with the following common parameter values; learning parameter n = 0.001,
momentum a = 0.5, temperature T = 1.0. The weights were updated every 10 training patterns
processed. Variation of these parameters within reasonable bounds had no significant effect on the
efficiency of the net.

The ANN was trained using those events which passed the preselections described in Sec-
tion 4.3.8. In this way the background rejection is maximized by ensuring that artifacts in the raw
Monte Carlo, filtered by the preselection, will not effect the training of the network.

4.5.2 Training and Testing data sets

The available Monte Carlo was split into two subsets: The training data, which was used to train
and validate the networks, and the analysis data, used determine the efficiencies quoted as the
results of this analysis.

The training sample, listed in Table 4.5, was composed of the large 5K signal samples and a
subset of the PYTHIA, GRC4F * background. This training subset was further subdivided into 90%
for training phase and 10% for the verification phase.

To help reduce statistical errors of the final signal efficiencies, the 10% of the signal training set
used for verification was re-used in the main analysis, effectively halving the statistical error of the
relevant signal samples.

During training the background data were mixed based on their relative effective cross-sections (
cross-sections multiplied by preselection efficiency }. In this case, only the channel with the highest
effective cross-section would use 90% of its available data for the training phase. The remaining
channels contribute based on their effective cross-section relative to the highest one, with all the
remaining data in these channels being used in the verification set. This mixing ensures that
all the available Monte Carlo data can be used for training purposes, while ensuring that the
networks are not biased by channels which have large sample sizes but physically low relative cross-
sections. This prevents the ANN from learning, for example, the ete~ — qgete~ background
channel at the expense of efficiency in tagging ete™ — qgqq or ete™ = qG¢*€~ when in actuality
the e*e™ — qge*e™ contributes very little to the Standard Model predicted background.

4ete~ — qete~ data was not used in training as its effective cross-section was too low to contribute to the final
expected background.
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Process ] Run | Events | o (pb)
HZHA generated signal, h" A" 5 3(bb)
mh=60, mA=30 | R7048 5Kk (3961)
mh=80, mA=30 | R7049 5K (4260)
Main PYTHIA, GRC4F background
Z°(7)— qq R5050 | 93.5K (5426} | 107.43(6.23)
e*e” - qiqd R7051 | 10K(5887) | 7.86(4.63)
ete” 5 qgf+t¢~ | R7050 | 40.6K(1307) 8.11(0.26)

Table 4.5: Monte Carlo signal and PYTHIA, GRC4F background data sample used in the training of the
ANNs. The values in the Events column indicate the total sample size considered before preselection,
those in parentheses indicate the number of events passing the preselections and thus are the total
number used in the training of the ANN. The cross-sections in parentheses are the effective cross-
sections used to mix the background sets during training.

4.5.3 Network Inputs

The ANNs in this analysis are based on the following 15 inputs, which can be loosely classed into
three categories:

B-Tagging To exploit the presence of the many b flavoured jets expected in a signal event, we use
a number of B-Tagging methods. The first method is based on the probabilistically defined
event b-discriminate, Equation 4.11, which lead to the definition of the CLIKE, ULIKE vari-
ables, Equation 4.12. The second method was based on the direct analysis of the secondary
vertices reconstructed using the teardown algorithm. It was noted that both methods are in
essence highly correlated and so perhaps one could be pruned from the ANN. However, com-
paring ANN s trained with and without both CLIKE, ULIKE variables and the significance sum
variables, TSUM, TRSUM showed that both methods contribute information and one cannot be
removed in favour of the other without a loss in discriminating power.

Summarizing then, the B-tagging variables used are:

e CLIKE, ULIKE, the product of the C, U/ values for the 4 highest energy jets.
e Tear down significance sum, TSUM
e Reduced tear down significance sum, TRSUM

Topology Relying on b-tagging alone was not sufficient due to a number of processes which can
contribute an irreducible background. These are multi-jet events with high b-hadron content
and include processes such as (Z/+)* — bb with hard gluon radiation and W+W~ — q§ q§
where heavy c-flavoured jets are falsely tagged as b-flavoured. The topology, however, of true
two or three jet events, such as (Z/v)" — q(g), can be quite different compared the six-jet
signal.

Standard variables such as the sphericity tensor derived C and D parameters along with the
Fox-Wolfram moments were found to have distributions which contain information useful for
discriminating between the signal and background channels. Further, the jet reconstruction
y-cut parameters needed to classify the event as 2, 3,4,5 and 6 jets have also been shown to
contain useful information.

The following kinematic variables were used:

e The effective centre of mass energy, v's'.
e The visible energy of the event, E,;,.
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e The event Thrust, denoted THRU.
e C and D parameters.
o Logarithms of y. y&. y& ;, were pruned with no serious effect on the ANN.

Hemispheres Related to event topology, considering opposite thrust hemispheres provides some
new information. In the cases myo + mao << Vs’ we imagine the initial hA pair is created
back to back with the A in one thrust hemisphere and the #— AA in the other.

In this case, we would expect the charged track multiplicity between the two hemispheres, as
well as the reconstructed the invariant mass of each hemisphere, to have an approximately
2 : 1 ratio.

The following input variables were used,

e Smallest of the hemisphere invariant masses, denoted AMASS, identified with the A — bb
decay.

o Largest of the hemisphere invariant masses, denoted HMASS, identified with the h— 44
decay.

Figures 4.5 - 4.6 present the comparisons between OPAL data and the Monte Carlo background
for these variables.
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Regulating Inputs

To avoid the saturation of the weights in the ANN due to inputs whose magnitude may be orders
of magnitude larger than others, the i inputs, r; are shifted by their means, Z;, and then scaled by
their standard deviations o;, ie. z; — -‘-7'3& The means and standard deviations were calculated
using the Standard Model backgrounds only, correctly mixed by their relative cross-sections, which
has the benefit that the resulting means could be directly compared to data. Further, to avoid
the possibility that the tails in some of these distributions could still be large, we transform as

z; ~ tanh (ﬁ;—" €l-1,1].

Figures 4.7 - 4.8 show the transformed distributions which were used in the ANN training.

Pruning

The original pool of possible inputs to the ANN was selected by highlighting certain aspects of the
signal, such as topology, b-tagging and hemisphere related variables. Pruning of the input variables
was performed by the time consuming, yet infallible, method of directly comparing networks trained
with differing sets of inputs. Figure 4.9 directly compares some of the networks considered by
plotting (mys,ms0) = (80,30) GeV efficiency of these networks for a given expected background
level.

At the time of this analysis, the Principal Component Pruning described in a previous chapter
had not yet developed, so the number of units in the hidden layer were pruned by directly comparing
networks trained with differing number of hidden units.

Network Selection

Once the inputs and network topology had beea determined, a choice had to be made as to what
stage in the training of the networks was to be selected for the final analysis.

To avoid over-training, the method of early stopping was employed. The networks were trained
for a large number of epochs and the generalization error recorded. Networks were considered
trained when this error reached its minimum. The selected networks for this analysis attained their
minimum generalized error after = 2000 epochs. The evidence for over-training was observed after
3000 epochs.
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Figure 4.7: Presented are the signal (solid line), Pythia qg (dashed line) and GRC4F four fermion (dotted
line) input distributions used in the training of the 363 ANN, after application of the z; — tanh (57'5)
transformation. Distributions are normalized to unity for ease of comparison.
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line) input distributions used in the training of the 283 ANN, after application of the z; — tanh (4‘4;—"*)
transformation. Distributions are normalized to unity for ease of comparison.



CHAPTER 4. THE SEARCH AT 183 GEV

98

4
® 13 input, main background
3T @ 13 input, olt background
A 15 input, main background
¥ 15input, alt background
O 19 input, main background
2 r O 19 input, alt bockground
s A 20 input, main background
e 0 20 input, alt background
o
°
[
3
2
g
[3] 1
(@}
@ 0.9
3
- 0.8
[+3]
< 0.7
O3]
0.6
0.5
0.4
0.3 l 1 L L A J . ) B S 1 - L 1 i ) S L l 1 I e 1 L
0.3 0.35 0.4 0.45 0.5 0.55 0.6
Efficiency

Figure 4.9: ANN ¢ ignai vs. Expected Background for a83 trained network. One can see (possibly) that
the 20 input ANN has a larger variation between main and alternative background sets. The 15 input
ANN is quite similar to the 19 input and the 13 input shows more significant variation.
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4.6 Systematic Checks

4.6.1 Preselection

The cuts on the pre-selection parameters v's’, charged track multiplicity and C-parameter were
varied by an amount equal to the difference between their distributions in data and monte carlo,
but had no effect on the primary results.

4.6.2 Si Resolution Smearing and Hit Dropping

To estimate the r¢ and z track resolution uncertainties due to imperfection in the Monte Carlo
modelling, the parameterized track smearing routine ODSMGL with smearing scale parameters be-
tween 0.9 and 1.1 were applied, simulating a 10% reduction and improvement in track resolution.
Some relevant distributions are shown in Figure 4.10. The observed results are tabulated in Ta-
bles 1.8 and 1.9 and are summarized in Table 4.6.

ANN Smearing of track resolution
Analysis | Smear Factor | €60.30)(d) €80.30)(d) €(80.40)(A) (n)(D)
a63 .1 0.130(0.013) 1.24(0.23))
0.9 0.430(0.013) 0.91(0.10)
a83 1.1 0.468(0.009) | 0.442(0.002) | 1.26(0.25))
0.9 0.456(0.003) | 0.424(0.020) | 1.07(0.06)

Table 4.6: Results for various smearing values are given for the two neural networks in this analysis.
The bracketed values then give the difference between a particular value compared to the primary result
which used a smearing of 1.0 .

As well, the parametrized Silicon Microvertex detector (Si} hit dropping in r¢ was varied to
measure the analysis’ sensitivity to the Si hit matching efficiency. Data showed that the hit matching
efficiency may have been slightly overestimated by the 0.08 value used to generate the primary
background samples therefore this value was increased by 2% to 1.0 to estimate the error [87]. The
complete results are presented in Tables 4.8 4.9 and are summarized in Table 4.7.

ANN Si hit dropping

Analysis | Hit Dropping | €(60.30)(d) €(30.30)(3) €(80.50)() {n)(d)
a63 1.0 0.434(0.017) 0.99(0.02))
a83 1.0 0.428(0.031) | 0.436(0.006) | 0.90(0.11)

Table 4.7: Results for and increase in Si hit dropping in r¢ from 0.8 to 1.0 for the two neural networks
in this analysis. The bracketed values then give the difference between a particular value compared to
the primary result.
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4.6.3 Different Monte Carlo Generators

The background estimate is subject to possible mismodelling of the jet resolution parameters due to
the complication of modelling higher-order QCD processes, including those in radiative events, and
hadronization. The charged track multiplicity and electromagnetic cluster multiplicity distributions
will be similarly affected by the jet evolution models chosen. In addition, the b-discriminate values
discussed previously will be affected by differences in the simulation of B hadron formation and
decays.

To estimate the sensitivity of the background estimate to errors related to the modelling of
Standard Model physics, alternate Monte Carlo generators were used as a consistency check for the
predicted background. This alternate background is described in Table 4.1. The result of running
on this background sample is presented in Table 4.10 and is summarized in Table 4.11.

No alternate Monte Carlo is available for the signal events so the signal efficiencies are not
changed by this systematic check and are not presented.
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ANN
Analysis (n)(A)

a63 1.52(0.51)

af3 1.16(0.15)

Table 4.11: Variations in expected background ({n})} is presented for the two neural networks in this
analysis. The bracketed values then give the difference between a particuiar value compared to the

primary resuit.

Not only is the difference of 0.51 of an event between the primary and alternative background
samples for the a63 neural network the largest source of systematic error for that analysis, but this
large difference was not observed in the a8&3 analysis.

Comparing Table 4.10 to the primary results in Table 4.14 will show that the expected con-
tribution to the total background from the four fermion processes is consistent with the primary
background sample within statistical errors. The source of the discrepancy is from the two fermion
channels, simulated by PYTHIA in the primary analysis and HERWIG in the alternative sample. The
fact that this discrepancy is not observed in the af3 analysis implies that the variables which are
causing the difference are emphasized by the a63 neural net more than in the a83 neural net.

The source was isolated to a systematic difference between the predicted y12 and y& distributions
as shown in Figure 4.11. For the two y,’,’.,,_,,l variables presented, the left plot, {a,c), compares
data (crossed points) to the main background (dashed) and the alternative background (dotted).
Both distributions seem to model the data well, although the alternative background appears
shifted to the right, which is in the direction of the (myo,ma0) = (60,30} GeV signal (dot-dash}.
The right hand plot, (b,d}, shows the PYTHIA two fermion (negative slope hatch) component of the
main background (dashed), compared with the HERWIG two fermion (positive slope hatch) of the
alternative background (dotted}. Unfortunately the statistics available are insufficient to make a
statement about which Monte Carlo is most correct.
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Figure 4.11: For the two variables shown, the left piot, (a.c), compares data (crossed points) to the
main background (dashed) and the alternative background (dotted). The alternative looks more shifted
to the right, which is in the direction of the ( my0 , mso )=(60.30)GeV'signal (dot-dash). The right hand
plots, (b.d), shows the PYTHIA two fermion (negative slope hatch) of the main background (dashed),
compared with the HERWIG two fermion (positive slope hatch) of the alternative background (dotted).
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4.6.4 ANN Systematic Error

In order to apply and interpret the Monte Carlo Transformation analysis, Section 3.5, one must
check that the data distribution is consistent with a background only hypothesis, rather than a
signal plus background hypothesis. In the latter case, a background subtraction method should be
used first, which would make an interpretation of this method as a estimator of the total systematic
error less clear.

In this analysis we see no significant excess in the data (cf., Table 4.13, Figure 4.14}, which
leads us to believe that we may proceed with the transformations as a total systematic error study.
Figures 4.12, 4.13 show the effect of this Monte Carlo transformation technique, using Spyqsr = 1.0,
applied to the ANN input distributions.

Given the discussion in Section 4.6.3, we pay special attention to the transformed log{y2) and
log(y&) distributions. In both cases, the transformed distribution are shifted to the right which
would imply that the HERWIG predicted distributions, which are right shifted relative to the PYTHIA
distributions as discussed above, better agree with data.

Table 4.12 shows the results of applying the transformations to the inputs of the a63 and
a83 networks. Rows 1 and 4 show that the effect of transforming all the inputs, and results in
efficiency and expected background variations, consistent with the largest systematic error sources
considered so far. To test whether the variations in log(y2} and log(y2) account for the majority
of the discrepancy in the a63 expected background, rows 2 and 3 present the results for the a63,
where the transformations were applied to the log(y2),log(y%) and the remaining distributions
separately. This seems to imply that log(y2) and log(y%:) do in fact account for the observed
differences, but this should not be taken too quantitatively since by transfroming these parameters
alone, leaving the remaining inputs untouched, we are introducing a variation in the correlations
which the neural network was trained with. This convolution is not easily removed.
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Figure 4.12: Input variables to the ANN after the Monte Carlo Transformation technique of Section 3.5
is applied. The spline fit (open circles) to the raw data distribution (crossed points) is the target for
the raw Monte Carlo Background (dashed histogram). The Solid histogram is the transformed Monte
Carlo distribution.
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Figure 4.13: Input variables to the ANN after the Monte Carlo Transformation technique of Section 3.5
is applied. The spline fit (open circles) to the raw data distribution (crossed points) is the target for
the raw Monte Carlo Background (dashed histogram). The Solid histogram is the transformed Monte
Carlo distribution.
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4.7 Results

Figure 4.14 shows the neural network distributions for the 400 data events which passed the pre-
selection in addition to the expected background normalized to the observed luminosity and the
associated signal distribution normalized to the number of observed data.

Summarizing then, the analysis applied was:

1. Preselection cuts:

e The LEP Multihadronic event selection flag was set.

e The polar angle of the thrust axis, 81, is required to satisfy |cos6r{ < 0.9.
o Charged track multiplicity > 25.

e The C-parameter is required to be > 0.25.

The effective centre of mass energy, /s > 100 GeV.

e 6 jets were reconstructed.
2. Jet quality cuts. Jet multiplicity > 2 and EM cluster multiplicity > 1.
3. The event 4-C fit was required to succeed.
4. Events passed the appropriate neural network cut.

Table 4.13 presents the results for the two neural networks, a63 and a83, applied to the main
background sample as well as the h? A = A®A%A® and h®Z% — Z°ACAQ at various mass points. Cuts
1 —3 are common to both neural networks. The fourth cut in this Table, as well as in the remaining
Tables in this section, is divided into a63 and a83 analysis results. The integral values along the first
row of each cut section are the actual number of events from the sample passing the cuts. The €is the
efficiency and (n} is the expected number of events, here at £ = 54.5+0.2 pb~!. The extra column
is the total sum of the expected background. Errors are statistical only. Table 4.14 summarizes the
svstematic errors, which are consistent with the Monte Carlo Transformation method predictions.

With a neural network output cut of > 0.95, the (myo,ma0)} = (60,30) GeV targeted analysis
predicts 1.01 £0.16 £ 0.56 event background at £ = 54.5+ 0.2 pb™! with a (60, 30) GeV" signal effi-
ciency 0.417+0.016+0.051, where the errors shown are statistical and systematic, respectively. One
event was observed in the data (Run=8294, Event=12343), which is consistent with the expected
background. This event, shown in Figure 4.13, is compared to the SM predicted distributions in
Figures 4.16 - 4.17.

With a neural network output cut of > 0.965, the (my,0,my0) = (80, 30} Ge\ targeted analysis
predicts 1.01 £0.17+0.31 event background at £ = 54.5+0.2 pb'l with signal efficiencies €(g9. 30, =
0.459 + 0.016 £ 0.071 and €(g0.40) = 0.444 £ 0.022 £ 0.049, where €;m ,.m,,) is the efficiency at the
mass point (mpo, myo), where the errors shown are statistical and systematic, respectively. One
event was observed in the data ( Run=8712, Event=89200), which is consistent with the expected
background. This event, shown in Figure 4.18, is compared to the SM predicted distributions in
Figures 4.19 - 4.20.
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Figure 4.14: Presented are the neural network output distributions for the two trained networks, the
(60,30) and (80,30). The signal distributions are for the mass values at which the network was trained.
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Event type bit

Figure 4.15: Event display of event 12343 in run 8294, selected by the a63 neural network in the
Vs = 183 GeV analysis as a signal candidate.
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OPAL Data vs. | Background MC after ANN Cut
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Figure 4.17: Distribution of the Neural Network input parameters for OPAL data (full circles), (60.30)
signal (dashed) and the SM prediction (open histogram) after application of the a63 network. The data
point surviving is consistent with the SM prediction.
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Figure 4.18: Event display of event 89200 in run 8712, selected by the a83 neural network in the
Vs = 183 GeV analysis as a signal candidate.
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Figure 4.19: Distribution of the Neural Network input parameters for OPAL data (full circles), (80,30)
signal (dashed) and the SM prediction (open histogram) after application of the a83 network. The data

point surviving is consistent with the SM prediction.
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Figure 4.20: Distribution of the Neural Network input parameters for OPAL data (full circles), (80,30)
signal (dashed) and the SM prediction (open histogram) after application of the a83 network. The data
point surviving is consistent with the SM prediction.



CHAPTER 4. THE SEARCH AT 183 GEV 121

4.7.1 MSSM Exclusion Limit

As discussed in section 1.2.2, a broad range of MSSM model parameters {listed on page 14} which
affect the production of signal events must be considered in order to place exclusion limits for
all possible values of these parameters. A constrained MSSM was considered when deriving the
exclusion limits. This model is parameterized by six free parameters in addition to those of the
SM: unification of the scalar-fermion masses (mg) at the grand unification (GUT) scale; unification
of the gaugino masses (which are parametrized using M», the SU(2) gaugino mass term at the
electroweak scale}; and scalar-fermion tri-linear couplings (4) at the electroweak scale. Other free
parameters of the model are the supersymmetric Higgs mass parameter u, tan8, and the mass
of the CP-odd neutral Higgs boson, mso. The top quark mass has a strong impact on mys ;
therefore, it was also varied within reasonable bounds.
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Figure 4.21: The MSSM exclusion for the 183 GeV analysis. Excluded regions are shown for (a) the
(mps. mao ) plane for tan3 > 1, (b) the (mya, mao ) plane for tan3 > 0.7. All exclusion limits are
at 95% CL. The black areas are excluded solely by comparing data to the expected MSSM production
rates, without applying any additional theoretical criteria. The non-hatched grey areas are theoretically
inaccessible.

The exclusion limits from the /s = 172 GeV analysis were combined with the results from
this new scan of the MSSM parameter space, which used results from all OPAL Higgs analyses
performed at /s = 183 GeV [104], to create the 95% CL exclusion limits shown in Figure 4.21.
The black areas are excluded solely by comparing data to the expected MSSM production rates,
without applyving any additional theoretical criteria. The non-hatched grey areas are theoretically
inaccessible.

For tanf > 1.0 {(Figure 4.21a), the regions where 2m o < my,o, which were left unexcluded by the
previous /s = 172 GeV, are now excluded. When the tan3 range is enlarged to include tan3 > 0.7
(Figure 4.21b), the exclusion region is now seen to cover the entire theoretically accessible area up
to myo = 75 GeV, except for a small unexcluded region at 5 GeV < myo < 15 GeV and 65 GeV
< mpo < 72 GeV.

The next chapter will focus on closing this remaining unexcluded region at a higher centre of
mass energy.
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Chapter 5

The Search for )
ete™ — Z0 5 hVAY — 494040 —; 3(b)
at /s = 189 GeV

In this chapter, we continue the search for Higgs production through channel ete~ — h® A® -
A% A% A%, 3(bb), at an increased centre of mass energy of 189 GeV.

Whereas the 183 GeV analysis presented in the last chapter focussed on the highest accessible
mass region, mzo < mpo + Mmae < /3, mpo =~ 2muo, that analysis identified a region, around
(mpo, mas) = (60, 12) GeV, which was not excluded in the MSSM. It was decided, then, to expand
the analysis with the aim of achieving high signal efficiency with low expected background over the
entire signal region my> > 2mgas, with the constraint that mss > 2my, where my is the b-quark
mass, given by the Particle Data Group 80] as my = 4.1 — 4.5 GeV. This would give the minimal
mao value as mas = 10Ge\. However, this sits almost directly upon a bb resonance, T, so the
minimum maso> was taken to be 12Ge\".

Note that the relevant ( my,o , m4y2 ) range can be split into two regions: myo + mao > mzo and
myuo + mao < mzo. In the latter region, radiative return events are quite common and no cut on
V's' is possible without sacrificing signal efficiency.

Further, depending on the ( mys , mas } mass point and whether radiative return occurred, many
of the Monte Carlo signal events could be better described as three jets, where the A? — bb decays
are sufficiently boosted so as to look like a single jet. At higher ( my> , ms9 ) mass points the three
A% 5 bb decays can be well separated and identified.

The analysis presented here is based on data collected by the OPAL detector during the 1998
1999 run, representing a luminosity of £ = 171.09 £ 0.15 + 0.50 pb~'. The selection of candidates
was performed in two ways: first, a simple cutting analysis, which emphasizes heavy flavour tagging,
was used in order to gauge the expected background level; a more detailed Neural Network based
analysis was then performed and found to vield higher signal efficiencies for the same expected
background.

5.1 Data and Monte Carlo

The signal processes, ete— — h? A® - 3 A% — 3(bb) with various myo, mao, were generated at
189 GeV using HZHA2.00 [29] with full simulation of initial state radiation. The main contributions
to the expected background are from those processes which have high charged track multiplicity
and which can mimic multi-jet final states. The most important backgrounds contributing to this
analysis were composed of the two fermion processes (with initial state radiation), (Z/~)}" — ff
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generated by PYTHIA &3], and the four fermion final states from W+W~and 2°Z%*' generated
using GRCAF '84]. For systematic checks, described more fully below, an alternative Standard Model
background sample was also generated using HERWIG [85] to simulate the (Z/+)° — qq contribution
and PYTHIA for the remaining allowed W+W~ and Z°Z°'" channels. Events were then processed
through a full simulation of the OPAL detector using the GORO21 ‘8] module with the OPAL98
detector constants and calibrations.

The signal and Standard Model background samples used to optimize the selection cuts are
listed in Table 5.1.

Process | File | Number of Events
Data, representing £ = 171.09 £ 0.15 £ 0.50 pb~"
Data Period 91. Pass 6 1352
Data Period 92. Pass 6 3224
Data Period 93. Pass 6 3569
Data Period 94. Pass 6 3809
Data Period 95. Pass 6 2153
Data Period 96. Pass 6 3969
HZHA generated signal. Zh — 3(bb)
mye = 40. myo =12 | ...L20012/P189HA /R8444 2.5K
myo = 40. mao =20 | ...L20012/P189HA /R8445 2.5K
myo = 50. mao =20 | ...L20012/P189HA /R8446 2.5K
mpo =60, myo =12 | ...L20012/P189HA /R8447 2.5K
mpo = 60, myo = 30 | ...L20012/P189HA /RB448 2.5K
mpo = 70, muo =20 | ...L20012/P189HA /R8449 2.5K
myo = 80, myo =12 | ...L20012/P189HA /R8450 25K
myo = 80. myo = 30 | ...L20012/P189HA /R8451 25K
myo = 80. mo =40 | ...L20012/P189HA /R7873/P0010 0.5K
Main PYTHIA, GRC4AF background
(Z/~) = qq ...L20012/P189QQ/R53078 225K
e”e” — qdqq ...L20012/GRC4F /R7846 20K
eTe” — geqe ...L20012/GRCA4F /R7849 3J0K
e~e” = qfql ...L20012/GRC4F /R8035 20K
Alternative HERWIG, PYTHIA background
(Z/~) = qq ---PASS12/HW59MH/R5080 100K
W-W-~ = all ...L20012/P189WW /R8027 20K
Z°7%°) 5 an ...L20012/P189ZZ /R8028 20K

Table 5.1: The signal and Standard Model background samples used in the 189 GeV analysis.
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5.2 Preselection

In order to create manageable data sets, certain preselections were applied at the event reconstruc-
tion level.

5.2.1 Subdetector Status

The following subdetectors were required to have good status flags (cf. Table 4.2}: SI, Cv, CJ,
EB, EE, HT, as well as SW (to ensure a good luminosity calculation}. Exceptionally, due a non-
critical HP gas problem in period 96 the status flag for HP was checked to be > 2, to prevent the
loss of data from this period.

Using this detector status selection. the total luminosity for the data set analysed, calculated
using ROCROS [88], was found to be £ = 171.09 + 0.15 £ 0.50 pb™".

5.2.2 Event Reconstruction

The analysis variables were generated using OPAL Higgs group’s analysis package, NT [112], gen-
eralized to n-jets by the author.

Tracks, electromagnetic and hadronic clusters were identified using the same selection criteria
as in the 183 GeV analysis (Section 4.3.3). Double counting of the energy deposition of tracks
is accounted for using the MT [92] package. The corrected tracks and clusters were then used
to reconstruct a six jet topology using the Durham {96] algorithm. Events which failed to be
reconstructed as six jets were rejected.

5.2.3 Changes from 183 GeV analysis

As the focus of this analysis shifted from the high mass regions considered in the 183 Ge\" analysis,
to include lower mass regions, a number of the preselection cuts described in Section 4.3 had to be
altered or removed altogether. Figures 5.1 to 5.4 show the comparison between data and monte
carlo for the kinematic and topological variables considered in this analysis.

First, the mean number of charged tracks, shown in Figure 3.1, in the low mass region signal
was lower than that seen in the high mass region of the 183 Ge\" analysis, so the preselection cut
was reduced from 25 tracks to 20. In this, and the subsequent figures, two mass points are overlaid,
(myo, mae) = (60, 12) GeV satisfyving myo + mas < mzo and (myo, my2) = (80, 30) GeV satisfying
mpo +m a0 > mizo, from which we can see the change in distributions of the topological parameters
over the allowed mass range.

One of the more powerful preselection cuts in the previous analysis was based on the effective
centre of mass energy of the event, vs'. In the previous analysis, the signal points of interest
had Vs' ~ /s and so the radiative return background events could be efficiently rejected with a
minimum Vs’ requirement. As can be seen in the /s distribution in Figure 5.1, signal points in
the lower mass region show significant ISR production and so this cut was removed.

As well, the topology of the signal events now includes those events, in the region m o < myo,
which are better classified as three jet rather than six jet events. Figure 5.4 presents the Durham
y-cut distributions for various numbers of reconstructed jets. As we can see in this figure, the
distribution of the lighter signal mass point, (myo0,mso) = (60,12) GeV, is more similar to the
two fermion component of the Standard Model background than is the distribution of the heavier
signal mass point, (myo0,ma0) = (80,30) GeV, which can be seen to be more distinct from the
expected Standard Model background distribution, as we would expect from a true multi-jet event
generated with little boost. In particular, the preselection efficiencies of the lighter signal points
were detrimentally affected by the high C-parameter preselection cut in the 183 GeV analysis where
it was applied to reduce the (Z/+}® = ff background. Thus, the constraint on the C-parameter,
seen in Figure 5.2, was lowered and is now required to be > 0.0075.
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To provide discrimination lost by the easing of the Vs’ and C-parameter selection cuts, a new
preselection cut, based on y&, was introduced. y}}, the jet resolution parameter in the Durham
scheme at which events change from 3 to 4 jets, was required to be > 0.0005. The reason for the
choice of y£ instead of, say y53 or y2, was to bring this selection cut in line with the other multi-jet
analysis in the Higgs group making comparisons of the selection efficiencies between the various
search channels easier.

To recover the rejection power lost due to the relaxation of the kinematics preselection cuts, a
loose b-tag was introduced. The jets were ordered in decreasing value of their b-discriminate, Bje.,
which is related to their probability of being b-flavoured jets through Equation 5.1 described on
page 131. Figure 5.7 presents the distributions of the first five of these ordered jet b-discriminates.
From this ordered list, the jet with the largest b-discriminate is required to have Bje, > 0.3 . The
final results were found to be independent of this preselection cut, as can be seen in the distribution
of this variable for those events passing the analysis (Figure 5.24).

None of these changes had a significant detrimental effect on the high mass points, (mpo,ma0) =
{(60, 30}, (80, 30)} GeV, and only improved the preselection efficiencies for the low mass region,
namely m o0 <« myo and myo + myo < mzo.

5.2.4 Summary of Preselection Cuts
Summarizing then, the preselection applied was:

e The LEP Multihadronic event selection flag was set.

e The polar angle of the thrust axis, 8, is required to satisfy | cosfr| < 0.9 so that the event
is well contained in the sensitive areas of the detector.

e Charged track multiplicity > 20.

e The C-parameter is required to be > 0.0075.

e y2 > 0.0005.

e 6 jets were reconstructed.

e Jet with the largest b-discriminate is required to have By, > 0.3.

The Monte Carlo signal survived these preselections with an efficiency > 0.95 and reduced the

background by == 88%.
Once manageable analysis data sets were created, the following selections were applied at anal-
vsis level,

e The jets’ charged track and electromagnetic cluster multiplicity > 2 and > 1 respectively.

This last cut was not subject to optimization as the goal was only to ensure good event quality
with well defined jets.
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OPAL Data vs. Background Monte Carlo
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Figure 5.1: Distributions of the relevant kinematic analysis parameters for OPAL data (full circles) and
the Standard Model prediction (solid histograms). Sample signal distributions at two mass points are
shown (solid and dashed histogram), normalized to the data for ease of comparison.
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OPAL Data vs. Background Monte Carlo
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Figure 5.2: Distributions of the relevant kinematic analysis parameters for OPAL data (full circles) and
the Standard Model prediction (solid histograms). Sample signal distributions at two mass points are
shown (solid and dashed histogram), normalized to the data for ease of comparison.



CHAPTER 5. THE SEARCH AT 189 GEV 128

OPAL Data vs. Background Monte Carlo
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Figure 5.3: Distributions of the relevant kinematic analysis parameters for OPAL data (full circles) and
the Standard Model prediction (solid histograms). Sampie signal distributions at two mass points are
shown (solid and dashed histogram), normalized to the data for ease of comparison.
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109PAL Data vs. Background Monte Carlo
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Figure 5.4: Distributions of the relevant kinematic analysis parameters for OPAL data (full circles) and
the Standard Model prediction (solid histograms). Sample signal distributions at two mass points are
shown (solid and dashed histogram), normalized to the data for ease of comparison.
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5.3 B Jet Tagging

While the basic scheme of the tagging procedure has been kept unchanged from that previously
discussed. improved tagging efficiencies were achieved for the 189 GeV data by introducing variables
more sensitive to the differences between jets with b hadrons and those without. A full description
of the algorithm can be found elsewhere (113] and only a brief description of the changes will be
presented here.

The algorithm used to tag displaced vertices was one of those updated. This method uses
an ANN to discriminate tracks originating at the event primary vertex from those originating at
secondary vertices. This track-based ANN (track-ANN) was trained using 2°-pole Monte Carlo
samples. It uses as input the impact parameter of the track with respect to the primary vertex
and the transverse momentum with respect to the jet axis, among other variables. The charged
tracks belonging to a given jet are then ranked according to the output of the track-ANN. The
most significant tracks in this ranking, up to a maximum of six, are then used to construct a vertex
candidate for each jet. For each remaining track, if the x2? in the vertex-refitting procedure indicates
the track is consistent with coming from the displaced vertex, it is added to the vertex.

In order to gain b-tagging efficiency in events where the secondary vertices are less distinct,
a method to combine track impact parameters was also introduced. In this method, the impact
parameter significances S™® and S, in the r¢ and r: projections, respectively, are formed by
dividing the track impact parameters by their estimated errors. The distributions of S™ and S'*
for each quark flavour from Z%-pole Monte Carlo are used as the probability density functions
(PDF’s) P(87°|q) and P(S7°|q) (¢=uds,c and b). The combined conditional probability for each
track is then P(S™®,S"*|q) = P(S7°|q) - P(S"*|q). As each track is presumed to be independent,
we can then define the combined estimator for each quark flavour q, F; = []; P(S7°,S"*|q); where
the product is taken over all tracks passing the quality requirements. The final estimator for the
event is then Lip = Fy/(Fud4, + Fo + Fb).

The lifetime tag is again based on an ANN. However, the five variables used in our 183 GeV
analysis were replaced by the following four:

o The vertex significance likelihood (Lv }: The likelihood for the vertex significance is computed
analogously to the Lip above, using the decay length significance of the secondary vertex
rather than the impact parameter significance of the tracks.

o The reduced significance likelihood (Ry'): The track with the largest impact parameter sig-
nificance with respect to the primary vertex has been removed from the secondary vertex
candidate, and the remaining tracks are used to recompute the likelihood Lv. If the original
vertex has only two tracks, the function is calculated from the impact parameter significance
of the remaining track. This input variable reduces the sensitivity to mismeasured tracks.

e The combined impact parameter likelihood (Lip) described above.

¢ The reduced impact parameter likelihood (Rip): The track having the biggest impact pa-
rameter significance has been removed in the calculation of Lip.

The boosted sphericity of the jet, used in previous b tag as an input to the final likelihood, has
been replaced with three variables, which are combined with a separate ANN. These three inputs
are: the number of energy-flow objects around the central part of the jet; the angle between the
jet axis and its boosted sphericity axis; and the C-parameter for the jet boosted back to its rest
frame. The high-p; lepton tag has not been changed.

The outputs from the lifetime ANN, the jet-kinematics ANN and the high-p, lepton tag are
combined in the same manner described by Equation 4.10 to define a final B-discriminate, B, for
each jet.

The distribution of B can be seen in Figure 5.5 for calibration data taken at /s = mzo in
1998. Figure 5.5 also shows the performance of the new b-tagging compared with the previous



CHAPTER 5. THE SEARCH AT 189 GEV 131

version [104]. The tagging efficiency for 6-flavoured jets have been verified to an accuracy of 1%
with a double-tagging technique using the Z° calibration data; a comparison of the results of this
double-tagging test between the data and Monte Carlo is also shown in Figure 5.5.

ot
[
L]

Number of Jets

0.2 0.4 0.6 0.8 4
Combined B jet Likelihood

Figure 5.5: B-tagging performance and modelling. The distribution of the output of the b-tagging
algorithm, B, for jets in calibration data taken at \/s = mgzo in 1998, compared to the Monte Carlo
expectation. The data distribution is given by the points, with error bars smaller than the plot sym-
bols. The open histogram shows the distribution of B for b-flavour jets, and the dark (light) grey
histogram shows the contribution from c (uds) flavour jets, expected in a Monte Carlo simulation.
inset: The b-tagging (1998) performance for hadronic jets in Z° decay compared with the previous

version (1997) [104].

5.3.1 Application to 6 Jet Analysis

From experience gained in the 183 GeV analysis, it was found that the discriminating efficiency of
Equation 4.10 did not strongly depend on the choice of the weight factors, a, 3. With no a priori
choice for their values, the case a = 8 = 1, corresponding to wyq4, = w. = wy = 1, was used. This
selection follows from the uniform prior assumption in Bayesian theory, from which Equation 4.10
was derived, and is desirable in that the b-discriminate of the jet is then based on its observed
parameters without weighting by prior expectation. The b-discriminate of the i** jet is defined as,

1 -
Bi=Ticw -1
and the b-discriminate of the event is defined as,
1
BE\'t = (5-2)

1+ ['[,.C.-+ ['I,-L(.- i
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where the products are take over the reconstructed jets. The distributions of Equations 5.1 and 5.2
for events reconstructed as six jets are shown in Figures 5.6 and 5.7, and in Figures 5.8 and 5.9 for
events reconstructed as three jets.

With the improvements in the b-tagging algorithms, it was found that there was no observable
benefit by including the additional vertex variables, TDSUM, TDRSUM (Section 4.4.3) in the analysis.
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OPAL Data vs. Background Monte Carlo
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Figure 5.6: Distributions of the relevant b-tagging analysis parameters for OPAL data (full circles) and
the Standard Model prediction (solid histograms). Sample signal distributions at two mass points are
shown (solid and dashed histogram), normalized to the data for ease of comparison.
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QPAL Data vs. Background Monte Carlo
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Figure 5.7: Distributions of the relevant b-tagging analysis parameters for OPAL data (full circles) and
the Standard Model prediction (solid histograms). Sample signal distributions at two mass points are
shown (solid and dashed histogram), normalized to the data for ease of comparison.
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OPAL Data vs. Background Monte Carlo
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Figure 5.8: Distributions of the relevant b-tagging analysis parameters for OPAL data (full circles) and
the Standard Model prediction (solid histograms). Sample signal distributions at two mass points are
shown (solid and dashed histogram), normalized to the data for ease of comparison.
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OPAL Data vs. Background Monte Carlo
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Figure 5.9: Distributions of the relevant b-tagging analysis parameters for OPAL data (full circles) and
the Standard Model prediction (solid histograms). Sample signal distributions at two mass points are
shown (solid and dashed histogram), normalized to the data for ease of comparison.
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Anaivas Signal Results
Data Signal Mass points

{24.12) | (40.12) | £60.12) | {20.12) | {40.20) | {50.20) | {70.20) | (60.30) | (80.30) | {30.40)
Total 15701 150 500 300 500 300 500 500 500 500 351
Proscl 3121 1138 152 51 163 353 ') 190 456 190 340
Trk Malt 2353 362 1 i 6 339 331 153 153 481 37 |
ot Trk Mult | 1841 I =0 per) 392 313 353 152 336 350 335
It Num. 35 132 199 253 310 337 330 364 375 113 353
Bres 7 39 56 ) 149 5 100 212 208 263 256
P 085 | 2] 66 ] 2T 50| A9 | A2t AG] 526 568
= (Stat) 03| oms| o7| o20] o016)] o018] 02} 02| 022| 0z

Table 5.2: The signal efficiencies for the Cut based 189 GeV analysis. The number of signal events
surviving each cut for the 189 GeV data. Efficiencies for the signal events, denoted by the columns
(myo, mao). are given in the last row along with the Statistical error estimates.

5.4 Cut Based Analysis

For the 189 GeV data, a simple cut based analysis was performed in order to gauge the expected
background levels for the neural network analysis, which will be developed in a later section.

The stated aim of achieving high signal efficiency over the whole of the relevant (mpo,mao)
region makes the successful application of topological cuts difficult, so they were avoided in pref-
erence for variables based on b-tagging which exploits the presence of the many b flavoured jets
expected in a signal event.

After the initial event quality and shape cuts, hard cuts were made on the b-quark content of
the event:

o Given C;(U:) is the ratio of probability of the it* jet being c(uds)-flavoured to its probability
of being b-flavoured, then B;, given by Equation 5.1, is the probability of the i** jet being b-
flavoured. Each jet was classified based on max {B;,C; - Bi,U; - Bi} and the event was required
to have at least 2 jets which were most likely b-flavoured and less than four jets which were
most likely uds-flavoured.

e The event b-discriminate, Bg,., where the products in Equation 5.2 are taken over all the
reconstructed jets, was selected to be greater than 0.92 .

The numbers of events passing each requirement, compared with estimates from the back-
ground simulations normalized to the integrated luminosity of £ = 171.09 + 0.15 £+ 0.50 pb™", are
shown in Tables 5.2 and 5.3. Also shown are the detection efficiencies for various ete™ — h® A% o
A% AC AC® _, 3(bb) signal mass points.

7 events pass the selection requirements, consistent with the background expectation of 8.08 s‘:‘;‘:L
0.88 events. Table 5.4 lists the Run end Event numbers of those events in the 189 GeV" OPAL data
which passed this analysis. Systematic errors where not calculated for this analysis as it was only
used to check the resulits of the Neural Network analysis, described below.
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Analysis Background Results

Data (Z/~) ~ qq eTe” — qqqq e~e~ — glgf e~e~ — gege {n)

Towal 18701 | 16976.4 (148604 | 14479 (27088) | 1492.8 (43396; | 4388.8 (99500} 24306.0
Presel 3121 | 2155.5 (18868) | 556.69 (10415} | 124.36(3615) | _ 53.06 (1203 388958
Trk Mule 2298 1502.45(13152} 509.57(9533) 83.86(2438; 31.75 (720) 2127.64
Jet Trk Muit 1841 1204.96( 10548 466.46 (8727} 46.75(1359} 21.75(493} 1739.91
Number of Jets 259 76.84(1548) 53.02 (992} 2.64 (77} J3.61(82} 236.12
 Brw 71 5.61=0.80(49) | 2.16 = 0.34(40) | 0.05= 0.04(1} | 0.36 = 0.11(6) | 5.08 = 0.88

Table 5.3: The predicted Standard Model background for the cut based 189 GeV analysis. The number
of predicted background Monte Carlo events surviving each cut for the 189 GeV data and the expected
background, (N), normalized to £ = 171.09 = 0.15 = 0.50 pb™'. Bracketed values are the number of
events passing the cuts from the Monte Calro data sample. Errors are Statistical only.

Data Events Selected

Run Event
9481 57123
957 29348
9579 19100
9824 22427
10209 56167
10248 24704
10259 43333

Table 5.4: Event numbers of those data events selected by the Cut based 189 GeV analysis.
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5.5 Neural Network Based Analysis

As demonstrated in Figures 5.1 to 5.9, the topology of the signal events change dramatically
between the allowed mass regions. However, many topological variables are seen to still contain
discriminatory information which cannot be efficiently used in the a standard cut based analysis.
This prompted a more detailed search for ete~ — h® A% 5 A® A® AC , 3(bb) to be performed.
In this analysis, candidates are selected using two neural networks: one combines kinematic and
topological variables; the other exploits heavy flavour tagging.

The previous 183 GeV ANN analysis was optimized at specific signal mass points and performed
well at the training mass but were not efficient for all signal masses. For this analysis, the neural
networks were trained with signal events from across the relevant { myo ,mao ) range. The effect
being that the acceptance at a single mass point was lower than that of a dedicated neural network,
but the efficiency of the single network was now acceptable for all signal masses.

The networks were constructed and trained as described in Section 4.5.1. The specific network
topologies of were course different, which will be discussed below, and the frequency of updating
during the training phase was changed. In the previous analysis the weights were updated with
every 10 training patterns processed. In this case, the training “signal® is in fact a randomly
ordered mixture of signal events generated at eight different mass points. To prevent the summed
error measure, used in the updating algorithm. from being based on only a small number of the
mass points, the frequency of updating was increased to every 25 training patterns processed.

A number of other network topologies were also studied including: a monolithic network as used
in the previous 183 GeV analysis; networks with more than a single hidden layer; networks with
more than one output node; and training identical networks at each mass point and subsequently
using their outputs as inputs to a final neural network. None of these schemes provided any
significant efficiency improvement over the others and, in the end, the analysis presented here was
chosen from observing trends in the networks studied with the goal of using the most simple system
possible.

It was found that networks which included both kinematic and heavy flavour information in-
variably trained to emphasize the heavy flavour component, which was the most consistent feature
between all the signal points. By training a network on kinematic variables specifically, the network
was forced to look deeper for discriminatory information contained in them. A separate network
emphasizing heavy flavour tagging was then trained, and both networks applied to maximize the
background rejection while keeping the signal efficiencies as large as possible.

To begin, events were first required to pass the preselection cuts described in Section 5.2.4.

5.5.1 Training and Testing data sets

The available Monte Carlo was split into two subsets: the training data, which was used to train
and validate the networks; and, the analysis data, used to determine the efficiencies quoted as the
results of this analysis. The training subset, listed in Table 5.5, was further subdivided into 80%
for training phase and 20% for the verification phase.

With one exception, the 2.5K events in each signal data sample listed in Table 5.1, were used for
training and verification. To maximize the data available for training, the 20%, or 500 events used
for the verification phase in each signal set, were reused in the evaluation phase of the analysis. The
mass point (mpo,mao) = (80, 40) was not used in training the networks as it is efficiently identified
by networks trained to identify (myo, mao0) = (80, 30).

A subset of the PYTHIA, GRC4F ! background sample listed in Table 5.1 was used for training
and verification purposes. The remaining data formed the Monte Carlo sample used to evaluate the
expected background in this analysis. The training sample was mixed based on the relative effective
cross-sections (cross-sections multiplied by preselection efficiency) of the contributing channels. In

lete~ — qfiet e~ data was not used in training as its effective cross-section was too low to contribute to the final
expected background.
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this case, only the channel with the highest effective cross-section would use 80% of its available data
for the training phase. The remaining channels contribute, based on their effective cross-section
relative to the highest one, with all the remaining data being used in the verification set.

Additional Preselections

To prevent the networks from learning characteristics of those events easily rejected by simple cuts,
the training data samples were filtered through a simple preselection. In addition to those cuts
described in Section 5.2.4, the training events were additionally required to pass:

e The most significant jet, in decreasing order of the value of its b-discriminate, Bj.., described
in Equation 5.1, was required to have Bj., > 0.5.

° log(H?=1 Ci) < 7.0 and log(l'[i;l U;) < 7.0 where C;,U;, are defined in Equation 5.2.

These additional cuts were not applied to the data in the main analysis and, in fact, were found
to have no impact on the final results, supporting the argument that once the network had been
sufficiently trained to identify signal-like events, the presence of additional background with low &
content was easily rejected.

Process | File | Number of Events | o (pb)
HZHA generated signal, Zh— 3(bb)

Mo = 40. mas = 12 | ...L20012/P189HA /R8444 2500(1400)

mpo = 40. mao = 20 | ...L20012/P189HA /R8445 2500(1390)

mpo = 50. mao = 20 | ...L20012/P189HA/R8446 2500(1397)

myo = 60. mao = 12 | ...L20012/P189HA /R8MT 2500(1534)

mpe = 60. mao = 30 | ...L20012/P189HA /R8448 2500(2074)

mys = 70. mao = 20 | ...L20012/P189HA/R8449 2500(2103)

myo = 80. mao = 12 | ...L20012/P189HA /R&450 2500(1957)

myo = 80. mao =30 | ...L20012/P189HA /R8451 2500(2232)
Main PYTHIA, GRC4F background

Z/-y = aa ~L20012/P189QQ/R3078 155095(4609) | 2.931

e~e” = qdaq .L20012/GRC4F /R7846 15000(910) | 0.511

e~e” — qlgl ...L20012/GRCAF /R&055 43396(173) | 0.035

Table 5.5: Monte Carlo signal and PYTHIA, GRCAF background data sample used in the training of the
ANNs. The values in the Events column indicate the total sample size considered before preselection,
those in parentheses indicate the number of events passing the preselections and thus are the total
number used in the training of the ANN. The cross-sections in the last column are the effective cross-
sections used to mix the background sets during training.
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5.5.2 Kinematic Neural Network

Recall the relevant ( mys.ma0) range can be split into two regions: myo + mas > mgzo and
mpo + mao < mzo. In the latter region. radiative return events are quite common and no cuts
on Vs',Cor D parameters, or a number of other topological variables were possible. However,
many of these topological variables were seen to still contain discriminatory information, on a mass
point by mass point analysis, which was not efficiently used in the cut based analysis described
above. It was felt that a neural network analysis could exploit the discriminatory information in
these variables as the method is well suited for untangling complicated correlations without using
a hard selection criteria.

The first network trained with 14 input nodes, 1 hidden layer with 50 hidden nodes and 1 output
node, using the following variables as inputs:

e Standard event quantities: thrust, sphericity, oblateness and the C and D parameters.
e The 2"d — 6*" normalized Fox-Wolfram [100] moments, and

e the logarithms of y32, Y43, yss and ygs where where y,4+1.n is the jet resolution parameter at
which events change from n + 1 to n jets in the Durham scheme.

The distributions of these inputs, after the preselection cuts in Section 5.2.4 were applied, are shown
in Figures 5.1 to 5.4

Network Pruning

Initial training used a network with fifty units in the hidden layer. It is expected that the network
can be pruned of hidden units without significantly effecting the generalization error of the final
system. To test this without needing to retrain a number of different networks, the Principal
Component Pruning (PCP} analysis described in Chapter 3 was applied.

Table 5.6 presents the twenty most significant eigenvalues from the Principal Component Anal-
vsis (PCA} applied to the outputs of the fiftv units in the hidden layer. Essentially, all the dis-
criminatory information is contained in these first twenty eigenvalues, implying the original choice
of fifty hidden units was indeed more complex than needed.

Principal Component Pruning is applied by successively projecting out the contributions of the
least significant eigenvectors in the PCA space and then rotating back to the space of the hidden
laver outputs to reset the internal weights and thresholds connecting the hidden layver to the output
nodes. The network, with its PCP adjusted weights, is then re-run on the validation data set to
calculate the new generalized error. This error is compared to the its original value, and a new
network topology is chosen based on the number of eigenvectors in the PCA space which are seen
not to contribute significantly to the performance of the network.

Table 5.7 presents the results on the current network topology. The left hand column indicates
the number of ordered principil component eigenvectors remaining after the projection was applied.
The right hand column shows the effect on the projection on the generalized error, calculated
by applying the network to the validation data set. We see that projecting out the thirty least
significant eigenvectors has little effect on the generalized error of the network, indicating that a
network trained with fewer than fifty hidden units should be sufficient to efficiently classify the
data classes.

Direct confirmation of the PCP analysis was then required to make the final selection of the
pruned network topology. Using the results in Table 5.7 as a guide, networks were trained with 5, 10,
20 and 30 units in the hidden layer. Figure 5.10 directly compares the (myo,m50) = (80, 30) GeV
efficiency of these networks for a given expected background level. From this we see that the original
network with fifty hidden units was significantly different than those with fewer nodes, indicating
the network may have been too complex. In this case, the network was chosen to have thirty hidden
nodes, which is large enough to maintain good signal efficiency while not being needlessly complex.
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Eigenvalue A | % of Trace | cum. % of Trace
1 2.1904 47.1772 47.1772
2 1.3724 29.5589 76.7360
3 0.3915 84312 85.1673
4 0.3098 6.6726 91.8399
5 0.1424 3.0666 94.9065
6 0.0750 1.6149 96.5214
7 0.0531 1.1431 97.6646
8 0.0321 0.6920 98.3566
9 0.0237 0.5094 98.8660
10 0.0126 0.2706 99.1366
11 0.0102 0.2191 99.3557
12 0.0078 0.1680 99.5237
13 0.0059 0.1273 99.6510
14 0.0055 0.1195 99.7705
15 0.0037 0.0791 99.8496
16 0.0031 0.0670 99.9166
17 0.0013 0.0272 99.9437
18 0.0008 0.0166 99.9604
19 0.0007 0.0150 99.9753
20 0.0004 0.0085 99.9839

Table 5.6: The twenty most significant eigenvalues from the Principal Component Analysis applied
to the outputs of the fifty units in the hidden layer. Essentially all the discriminatory information is
contained in these first twenty eigenvalues, implying the original choice of fifty hidden units was more
complex than needed.

Network Selection

The final network was trained with 14 input nodes, 1 hidden layer with 30 hidden nodes and 1 output
node. Figure 5.11 presents the training evolution of this network. Plot (a) shows the generalization
error evolution for the signal and background channels. After approximately 8000 epochs, the errors
have levelled off and we see, in plot (b}, that the hidden layer saturation, a measure of the learning
rate, has slowed. Plot (c) shows the efficiency evolution, here for (mys. mao) = (60,30) GeV with
an arbitrary cut of 0.8 on the network output, has reached a level plateau with little evidence for
over training after 8000 epochs. The final plot, (d}, presents normalized plots of the network output
for a sample signal (mp0,mao) = (60, 30} Ge¢V and the large background channel, (Z/~)" — fT, after
8000 epochs. From these observations, the network state after 8000 epochs was used as the network
in the final analysis.

Events were required to have a kinematic network output greater than 0.68 . The distribution
of the network output, after preselections have been applied, can be seen in Figure 5.15a.
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Eigenvectors % Change in
Used Generalised Error
50 0.000
20 0.001
15 0.006
10 0.335
9 0.354
8 1.596
7 4.180
6 6.858
3 7450
4 35.672
3 39.139
2 40.136
1 40.075

Table 5.7: Principal Component Pruning applied to the outputs of the units in the hidden layer of the
Kinematic ANN. The left hand column indicates the number of ordered principal component eigenvectors
remaining after the projection was applied. The right hand column shows the effect of the projection on
the generalized error, calculated by applying the network to a data set not used in the training phase.
We see that projecting out the thirty least significant eigenvectors has little effect on the generalized
error of the network, indicating that a network trained with fewer than fifty hidden units should be
sufficient to efficiently classify the data classes.
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Figure 5.10: Direct comparision of Kinematic Neural Networks trained for Principal Component Pruning
analysis.



CHAPTER 5. THE SEARCH AT 189 GEV 145

* k3 * [ 3
Training of Kinematic ANN
g TI'III'I"IIITII"T: g ﬁrr1f!v‘tﬁrlvrvlvvr
T 02 4 3%
2 3 2 04
D175 4 2
£ 3 03
=0.15 -3
@D Average test error 3
0.125 B Signal test error 3 0.2
] Background test error
0.1 -
0.075 r 0.1
0.08
0.05 007
0.06
o.ozs mllllllllll‘llllllll
2000 4000 6000 3000 10000 2000 4000 6000 8000 10000
Epoch Epoch
Error in Validation Set Hidden Layer Saturation
E l LR SIS I T I T T l’ﬁ L] ' 1 4 L] Ll | § LB ] T T L] ' LA l L] LB I LA
E 2 0.1 [ ] Signal
E ° % 3 Background
H ¥
a 0.08
: :
i €
z z
w 006
0.04
0.02
0 1 J od 1 l A4l l 4 1 2 l 4 1 ;2 o
2000 4000 6000 8000 10000 (1] 02 0.4 0.6 03 1
Epoch Net Output, 8000 Epochs
Efficiency Evolution for Signal Net Output for Signal and Background

Figure 5.11: Evolution of the Kinematic Neural Network training. Plot (a) shows the generalization
error evolution for the signal and background channels. After approximately 8000 epochs, the errors
have levelled off and we see, in plot (b), that the hidden layer saturation, a measure of the learning rate,
has slowed. Plot (c) shows the efficiency evolution, here for (my,0,m a0} = (60, 30) GeV, for an arbitrary
cut of 0.8 on the network output has reached a level plateau with little evidence for over training after
8000 epochs. The final plot, (d), presents normalized plots of the network output for a sample signal
(mpo, mao) = (60,30) GeV and the large background channel, (Z/+)}* — {f, after 8000 epochs.
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5.5.3 B-Tagging Neural Network

Once the kinematic information was exhausted, a final B-tagging network was applied. As
mentioned above, the topology of the signal events change dramatically between the regions
mpo + mao > mygs and myo +myo < mzo. Depending on the (mys ,myo ) mass point and whether
radiative return occurred, many of the signal events could be better described as three jets, where
the A? — bb decays are sufficiently boosted so as to look like a single jet. At higher ( myo,ma0 )
mass points the three A? — bb decays can be well separated and identified. Relying, then, on the
ability of the network to untangle correlated inputs and noting the above observation, a second
network was trained with 15 input nodes, 1 hidden layer with 50 hidden nodes and 1 output node,
using the following three and six jet B-tagging variables as inputs:

e B; for three jets and the largest four B; for six jets.
o Bg.., as well as the logarithms of [];C: and []; U, for both the three and six jets cases

o Additionally, Vs’ was included to help the network separate the three and six jet cases.

Network Pruning

The hidden layer was pruned in the same fashion as described above. Tables 5.8 and 5.9 present
the results of the PCP analysis applied to the outputs of the fifty units in the hidden layer of the
B-tagging network. It is shown that a network with as few as twenty units in the hidden layer
should contain almost all the discriminatory information.

Eigenvalue A | % of Trace | cum. % of Irace
1] 1.3809 75.6270 75.6270
2| 0.1472 8.0607 83.6877
3 | 0.0995 5.4493 89.1370
4| 0.0633 3.4654 92.6024
53 | 0.0491 2.6875 95.2899
6 | 0.0265 1.4510 96.7410
7| 0.0196 1.0715 97.8125
8| 0.0153 0.8366 98.6491
9 | 0.0092 0.5057 99.1548
0} 0.0057 0.3121 99.4669

11 | 0.0039 0.2113 99.6782
12 | 0.0029 0.1563 99.8345
13 | 0.0014 0.0787 99.9131
14 | 0.0010 0.0560 99.9692
15 | 0.0002 0.0125 99 9817
16 | 0.0001 0.0051 99.9868
17 | 0.0000 0.0023 99,9891
18 | 0.0000 0.001R 99.9909
19 | 0.0000 0.0013 99.9922
20 { 0.0000 0.0010 99.9932

Table 5.8: The twenty most significant eigenvalues from the Principal Component Analysis applied to
the outputs of the 50 units in the hidden layer of the b-tagging network. Essentially all the discriminatory
information is contained in these first twenty eigenvalues, implying the original choice of 50 hidden units
was more complex than needed.
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Eigenvectors % Change in
Used Generalised Error
20 0.000
20 0.000
15 0.000
10 0.005
9 -0.007
8 0.066
7 0.062
6 0.045
3 0.045
4 0.061
3 0.115
2 0.196
1 0.395

Table 5.9: Principal Component Pruning applied to the outputs of the units in the hidden layer of the
b-tagging ANN. The left hand column indicates the number of ordered principal component eigenvectors
remaining after the projection was applied. The right hand column shows the effect of the projection on
the generalized error, calculated by applying the network to a data set not used in the training phase.
We see that projecting out the forty least significant eigenvectors has little effect of the generalized error
of the network, indicating that a network trained with fewer than fifty hidden units should be sufficient
to efficiently classify the data classes.

This prediction was directly confirmed in Figure 5.12 which compares the (mo,mao} =
(60, 30} GeV" and (80, 30) GeV efficiency, of a select number of networks, for a given expected back-
ground level.

Network Selection

The final network trained with 15 input nodes, 1 hidden layer with 20 hidden nodes and 1 output
node. Figure 5.13 presents the training evolution of this network and, through a similar method as
discussed in Section 3.5.2, the network state after 5000 epochs was used as the network in the final
analysis.

Events were required to have a b-tagging network output greater than 0.92 . The distribu-
tion of the network output, after preselections in Section 5.2.4 have been applied, can be seen in
Figure 5.15b.
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Figure 5.12: Direct comparision of b-tagging Neural Networks trained for Principal Component Pruning
analysis. It is clear that networks trained with significantly fewer than fifty units in the hidden layer have
signal efficiencies similar to the largest networks. In this case, the network was chosen to have 20 hidden
nodes, which is large enough to maintain good signal efficiency while not being needlessly complex.
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Figure 5.13: Evolution of the B-tagging Neuial Network training. Plot (a) shows the generalization
error evolution for the signal and background channels. After approximately 5000 epochs, the errors
have leveiled off and we see, in plot (b), that the hidden layer saturation, a measure of the learning rate,
has slowed. Plot (c) shows the efficiency evolution, here for (myo0, ma0) = (60,30} GeV, for an arbitrary
cut of 0.8 on the network output has reached a level plateau with little evidence for over training after
5000 epochs. The final plot, (d), presents normalized plots of the network output for a sample signal
(mpa, mao) = (60, 30) GeV and the large background channel, (Z/v)* — ff, after 5000 epochs.



CHAPTER 5. THE SEARCH AT 189 GEV 150

5.5.4 Input Pruning

The obvious questions about this analysis are, * Are all the all input variables really needed? Could
some be pruned?” In this case, two networks were used, each of moderate size. The seemingly
large number of inputs in both networks were to address the issue of the large variance in event
topology over the mass range considered (myo > 2m a0, myo + mas > mzo and < mzo}, so it was
desirable to give the network a large parameter space to generalize efficiently for the high and low
mass cases.

A moderate amount of pruning could likely have been accomplished. However, the networks
found their minimums quickly, < 8000 epochs, and were trained long enough, 10000 epochs, to
have identified the onset of over-training, indicating that the selected networks were not overly
complex and could be trained with the available data sets.

5.5.5 Systematic Checks

Preselection

Varying the preselection cuts by an amount equal to the difference between the means of their
distributions in the data and Monte Carlo had no effect on the signal efficiencies of expected
background so no systematic error was assigned.

Si Resolution Smearing

To estimate the r¢ and z track resolution uncertainties due to imperfection in the Monte Carlo
modelling, parametrized track smearing was applied with the OPAL routine ODSMGL with smearing
parameters between 0.95-1.05 in r¢ and a slightly larger range, 0.9-1.1, in z. These smearing
parameters are scale factors so that a smearing of 1.0 would have no effect, while a value of 0.95
increases and 1.05 degrades the resolution uncertainties by 5%. With (r¢, z} smearing parameters of
(0.95,0.9) and (1.05, 1.1}, the background prediction was 7.43 & 1.00 and 10.72 + 1.11, respectively,
where the errors shown are statistical. The effect of this smearing on the signal is tabulated in
Table 5.10 and on the background in Table 5.11.

Silicon hit dropping has been investigated using the ODSIZR parameters available through
ODSMGL. It was found that the number of r¢ was slightly overestimated in Monte Carlo and the
number of z hits was slightly underestimated, thus the parametrized hit dropping was varied using
the r¢ hit-dropping scale parameter and : hit-dropping scale parameter. To bring the data in
better agreement with the data, the hit dropping scale parameters applied were were 1.05 for r¢
and 0.99 for z. The results were consistent with past experience were it has been shown that the
sensitivity to hit dropping is much less than that due to track resolution smearing.

The relative systematic error, due to track resolution uncertainties, amounted to & 15% for the
signal efficiency and 23.7% for the expected background prediction.
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Different Monte Carlo Generators

The background estimates are subject to possible mismodelling of higher-order QCD processes,
including those in radiative events, and of the high-end tail of the charged track multiplicity dis-
tribution.

To estimate all these sources of systematic errors related to the modelling of the Standard Model
physics, the (Z/+)® = qq(+) background calculated using the HERWIG Monte Carlo was compared
with that from PYTHIA. The backgrounds from the two models are consistent within the statistical
error. The background from four-fermion processes, qq q@ , predicted by GRC4F was compared with
that from PYTHIA and also found to agree to within the statistical error. The predicted background
using this alternative Monte Carlo sample is 7.10 £ 1.03. No alternate Monte Carlo is available for
the signal events.

The uncertainty in the b-quark fragmentation function was accounted for by assuming different
energy spectra for the weakly decaying b-hadrons. The energy spectra were varied such that the
mean value of the distribution was shifted by + 400 MeV [114]. Results of this +£400 MeV shift in
b-hadron energy spectra on the signal and predicted background are shown in Tables 5.12 and 5.13.

Transformation of Monte Carlo distributions

As discussed previously in this thesis, a transformation of all parameters relevant to an analysis
can be used to determine the total systematic error in a way which accounts for all the inherent
sources of systematic error, both known and unknown.

One caveat is that if the data distribution is consistent with a signal plus background hypothesis,
rather than a background only hypothesis, a background subtraction method should be used first
so that the transformation of the Monte Carlo background will not include artifacts of the signal
events. In this analysis we see no significant excess in the data which leads us to believe that we
may proceed with the transformations as a total systematic error study.

Figure 5.14 presents the effect of this Monte Carlo transformation technique applied to a sample
of the parameter distributions used in this analysis. The transformation had little effect, O(1%}),
on the signal efficiencies, as presented in Table 5.14. This can be explained by observing that signal
distributions which passed the analysis are typically out of the region of the Data vs. Monte Carlo
fitting used to define the transformations, in which case the transformation is reduced to a unit
mapping.

The transformation applied to the the background samples, Table 5.15, yields a predicted back-
ground of 7.16 £ 0.87 events, which is consistent with the other checks. This value was not used in
the calculation of the total systematic error but is presented as a check that no extreme differences
between data and Monte Carlo seem to exist.
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Figure 5.14: Sample of analysis variables after the Monte Carlo Transformation technique was applied.
The spline fit (open circles) to the raw data distribution (crossed points) is the target for the raw
Monte Carlo Background (dashed histogram). The Solid histogram is the transformed Monte Carlo
distribution.

Overlayed on the histogram is a plot of the generated Monte Carlo transformation function, to be
read with the upper and right axes. Had there been no difference between the data and Monte Carlo
distributions, this function would be a unit mapping. Deviations from a simple y = z line indicate
differences not modelled by the monte carlo which will contribute to the overall systematic uncertainty
calculated with this method.
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Systematic Errors Applied

The overall uncertainty on the detection efficiencies for the signal are dominated by the statistics of
the 500-event Monte Carlo samples, typically contributing 5% relative error. The relative systematic
error on the efficiency due to the track parameter resolution uncertainty was found to be ~ 15%.
The systematic error due to the uncertainty in the b-hadron decay multiplicity was found to be
= 10%. The total systematic error in the signal efficiencies are typically 15%.

The systematic errors on the background estimates similarly include contributions from the
modelling of the distributions used in the event selection and from Monte Carlo statistics. To
account for possible mismodelling of higher-order QCD processes affecting track multiplicity, jet
formation and the hadronization phenomena, the predicted background was checked using alterna-
tive Monte Carlo sample leading to a predicted background of 7.10 + 1.03. The systematic errors
due to the b-hadron multiplicity modelling and track resolutions were estimated to be 5.6% and
23.7%, respectively, using the same methods as were used to calculate the systematic errors on the
detection efficiencies. Combined with the statistical error of the Monte Carlo prediction (11%]),
the overall systematic error on the background amounts to 29%. The Monte Carlo transformation
method, which takes into account all errors contributing to the disagreement between data and
Monte Carlo, predicts a systematic error on the background of = 20%.

5.6 Results
Summarizing then, the analysis applied was:
1. e The LEP Multihadronic event selection flag was set

¢ The polar angle of the thrust axis, ér. is required to satisfy | cos8r| < 0.9.
e Charged track multiplicity > 20.
e The C-parameter is required to be > 0.0075.

y5 > 0.0005.

e 6 jets were reconstructed.

e Jet with the largest b-discriminate is required to have By, > 0.3.

2. The kinematic Neural Network, with 14 inputs, was required to have an output of > 0.68.

3. The b-tagging Neural Network, with 15 inputs, was required to have an output of > 0.92.
The output distributions of the two networks are shown in Figure 5.15.

The numbers of events passing each requirement, compared with estimates from the background
simulations normalized to the integrated luminosity of £ = 171.09 £+ 0.15 + 0.50 pb~", are shown
in Tables 5.17 and 5.18. Also shown are the detection efficiencies for various ete~ — h® A% —»
A% A0 A0 _, 3(bb) signal mass points. Figure 5.16 presents the signal efficiencies used to calculate
the signal efficiency surface needed in order to perform the exclusion scan of the MSSM parameter
space. Figure 5.17 presents the generated signal efficiency surface used in the scan.

After the final cut, 5 events were observed, consistent with the Standard Model expected back-
ground of 8.66 £ 0.96 + 2.4 events. Table 5.16 lists the Run and Event numbers of those events in
the 189 GeV OPAL data which were selected by this analysis. Figure 5.18 shows a display event
53614 in run 10311, which had one of the highest ANN output values of the selected data events:
0.859 for the kinematic network; and 0.947 for the b-tagging network. The surviving events are
compared to the the SM predicted distributions in Figures 5.19 - 5.26.
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Data Events Selected

Run Event
9644 33696
9646 66319
9840 6740
9937 25704
10311 53614

Table 5.16: Event numbers of those data events selected by the Neural Network based 189 GeV analysis.
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Figure 5.15: Presented are output distributions for the Kinematic (top) and B-tagging (bottom) neural

networks used in this analysis. A simulated signal with ( m,0 , mao )=(70,20) GeV, with a representative
o x Br = 0.04 pb, is also shown.
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Figure 5.16: Signal efficiencies determined in the Neural Network based analysis. Dark squares are mass
point efficiencies determined in this analysis. The open squares indicate interpolated efficiency points
which were used in the generation of the efficiency surface, Figure 5.17, used in the MSSM scan.
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Figure 5.17: The signal efficiency surface used in the MSSM scan.
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Figure 5.18: Event display of event 53614 in run 10311, selected by the 189 GeV neural network analysis
as a signal candidate.
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OPAL Data vs. Background Monte Carl
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Figure 5.19: Distributions of the relevant analysis parameters for OPAL data (full circles) and the
Standard Mode! prediction (solid histograms) after the analysis has been applied. Sample signal distri-
butions at two mass points are shown (solid and dashed histogram), normalized to the data for ease of
comparison.
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OPAL Data vs. Background Monte Carlo
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Figure 5.20: Distributions of the relevant analysis parameters for OPAL data (full circles) and the
Standard Model prediction (solid histograms) after the analysis has been applied. Sample signal distri-
butions at two mass points are shown (solid and dashed histogram), normalized to the data for ease of
comparison.
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Figure 5.21: Distributions of the relevant analysis parameters for OPAL data (full circles) and the
Standard Model prediction (solid histograms) after the analysis has been applied. Sample signal distri-
butions at two mass points are shown (solid and dashed histogram), normalized to the data for ease of

comparison.
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OPAL Data vs. Background Monte Carlo
s 2

m - LA I v Ld v I AL
] -
g 1 2 E
- ] -
E -1 5 3
S 10 1E
2 0.5
10 | 0 Ealoc
3 2 10 1 2 -6 -4 2
LOG(Y21) LOG(Y32)
§ 2 r-v T T l T i ' T v-: g 2 T ' v l LA S § 1 _',
sk 1€ 1s 3
g " R 3
U l — 4+ - Q l 9 i -
0.5 -— J‘r , - 0.5 f s -
0 : 1 r 1-’: L< 0 . - .'L—- :
-8 -6 '2 ‘8 '6 .4
LOG(Y43) LOG(YS4)
(ﬁ‘ 2 ,_—1 LA | L | S '-1
S 3 3 4 OPAL Daua
E1s E = ———  Signal, (mh.mA)=(60,12)
2 3 3 2 ee--- Signal, (mh.mA)=(80,30)
S 1 3 j 3 BEEE ¢-fermion
3 3 3 2-fermion
os b I
E 3
-10 -8 -6 -4

LOG(Y6S)

Figure 5.22: Distributions of the relevant analysis parameters for OPAL data (full circles) and the
Standard Model prediction (solid histograms) after the analysis has been applied. Sample signal distri-
butions at two mass points are shown (solid and dashed histogram), normalized to the data for ease of
comparison.
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OPAL Data vs. Background Monte Carlo
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Figure 5.23: Distributions of the relevant analysis parameters for OPAL data (full circles) and the
Standard Model prediction (solid histograms) after the analysis has been applied. Sample signal distri-
butions at two mass points are shown (solid and dashed histogram), normalized to the data for ease of
comparison.
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OPAL Data vs. Background Monte Carlo
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Figure 5.24: Distributions of the relevant analysis parameters for OPAL data (full circles) and the
Standard Model prediction (solid histograms) after the analysis has been applied. Sample signal distri-
butions at two mass points are shown (solid and dashed histogram), normalized to the data for ease of

comparison.
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OPAL Data vs. Background Monte Carlo
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Figure 5.25: Distributions of the relevant analysis parameters for OPAL data (full circles) and the
Standard Model prediction (solid histograms) after the analysis has been applied. Sample signal distri-
butions at two mass points are shown (solid and dashed histogram), normalized to the data for ease of
comparison.
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Figure 5.26: Distributions of the relevant analysis parameters for OPAL data (full circles) and the
Standard Model prediction (solid histograms) after the analysis has been applied. Sample signal distri-

butions at two mass points are shown (solid and dashed histogram), normalized to the data for ease of
comparison.
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5.6.1 MSSM Exclusion Limit

The exclusion limits from the /s = 183 GeV analysis were combined with this new scan of the
MSSM parameter space (cf. section 1.2.2), using results from all OPAL Higgs analyses performed
at /s = 183 GeV 113], to create the 95% CL exclusion limits shown in Figure 5.27. The black areas
are excluded solely by comparing data to the expected MSSM production rates, without applying
any additional theoretical criteria. The non-hatched grey areas are theoretically inaccessible.

00 20 40 60 80 100 120 1490 00 20 40 60 80 100 120 140
m, [GeV] m, [GeV]

Figure 5.27: The MSSM exclusion for the 189 GeV analysis. Excluded regions are shown for (a) the
(muns. mao) plane for tan3 > 1, (b) the (myo, mao) plane for tan3 > 0.7. All exclusion limits
are at 95% CL. The dark grey areas are excluded solely by comparing data to the expected MSSM
production rates, without applying any additional theoretical criteria. The unhatched light greay areas
are theoretically inaccessible.

The theoretically inaccessible limit defined by mpo = 80 GeV and 0 GeV < m s < 80GeV was
shifted, compared to the previous analysis, to slightly higher m,. values due to the higher centre
of mass energy. High signal efficiencies from the analysis presented in this chapter, for mass points
which lie in this border region, permitted the exclusion limit to again buttress the theoretically
inaccessible area. The lower limits on mya and my» slightly improved over the previous result
as the unexcluded, 5 GeV' < mys < 15 GeV and 65 GeV < mys < 72 GeV', observed in the
Vs = 183 GeV’ limit was reduced to the A% — bb threshold, ms> < 10GeV. An unexcluded region
still remains due to the insensitivity of this analysis to signals with mao < 10 GeV. In the MSSM,
we obtain the absolute mass limits of my2 > 72.2 GeV and mao > 76.0 GeV for tan3> 1.
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Chapter 6

Conclusion

This thesis presented Neural Network based searches for ete™ — Z% — h%4% 5 4%4%40 with
A% - bb using data collected by the OPAL detector at /s = 183 GeV, with a integrated luminosity
of L =54.5+0.2 pb™!, and 189 GeV, with £ = 171.09 = 0.15 + 0.50 pb~!. Exclusion limits were
calculated in the constrained Minimal Supersymmetric Model and Higgs production through this
channel was excluded, at 95% CL, for mpo > 2ma0, mpe < 80GeV, mao > 12GeV.

As there was no evidence for a Higgs signal with myo > 2mao in the mass regions considered,
more general limit on the 2HDM process ete~ =+ S°P° = P°POP? at /s = 189 GeV, where S°
and P° denote scalar and pseudo-scalar neutral bosons, respectively, can be drawn by identifying
S% and P° with h® and A°. The /s = 189GeV analysis presumed that the Higgs bosons in
h®A% - ACACAC decayed into b-quark pairs, thus, only the upper limit for the combined cross-
section times branching ratio, ogr. can be calculated. Figure 6.1 presents the ogr exclusion
surface, at 30% and 95% confidence level, for the results of the 189 GeV neural network analysis
calculated using the method described in Appendix A. The maximal production rate, at 95% CL.
for h94° — 4%1° 4% , 3(bb) admitted by the data ranges from ogr < 0.192 pb for (myo,ma0) =
(40, 12) GeV to ogr < 0.057 pb for (mys,ms0) = (80,40) GeV.

o XBr oXBr
tpb) (pb]
0.16 02
0.14 0.178
0.12 0.15
0.1 0.128
0.08 0.1
0.06 0.078
0.04 0.08
002 0.025
0 °
40 s0 0 ™ 20 40 50 [ ] b, ] 90
m, [GeV] m, [GeV]
Exicusion Surface at 90% CL Exicusion Surface at 95% CL

Figure 6.1: The 2HDM exclusion surface derived from the 189 GeV neural network analysis. The shaded
contour plots indicate the maximum cross-section times branching ratio allowed by the data over the
relevant mass region.
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Appendix A

Derivation of Exclusion Limit

In this Appendix, we will present a derivation of the calculation used to determine the upper limit on
a hypothesized signal production rate, at a desired confidence level. for counting experiments where the
signal and background levels are small enough to require the use of Poisson statistics. This method also
includes the uncertainties on the signal efficiencies and the number of expected background events.

If the mean signal production is s events with an associated background of b events then the probability
of observing n events is the the product of the individual Poisson probabilities for the signal and background,
summed over all possible combinations satisfying n. + ny = n,

n n—ny,

P(n|s + b) = e'“*")iﬂfﬂb—)" = Z Z P(ny[b)P(n.|s) . (A1)

ny=0 n,=0

where n.() is the number of signal (background) events observed.
If N events have been observed, the confidence level (CL) for excluding the possibility of simultaneous
presence of signal production and background (the s + b hypothesis). is

N
CLeys=P(n< Njs+b)=Y_ P(nls+b). (A.2)

n=0

i.e., the probability that the number of events produced. assuming the presence of both signal and back-
ground at their hypothesized levels. would be less than, or equal to, that observed in the data.

The confidence level (1 — CL.+5) may be used to quote exclusion limits, although it has the disturbing
property that if too few candidates are observed to account for the estimated background, then any signal,
even the background itself. may be excluded at high confidence. This situation is avoided by noting ns can
only take on values n, < N, so P(n,lb), in Equation A.l, must be renormalized to the new range of n,,
P(ny|b) — M_ .

> ny=o P(nsb)

The dominator can be seen to be CL;. the probability that the number of events produced by the background
alone would be less than, or equal to. that observed in the data. With this change. Equation A.2 becomes,

(A.3)

_ CLuss _ Lh o Plnls+b) e (45N (ebh)?
CL, = =532 - £=a= = =0 Al (A.4)
CL, Pony=o P(ns]b) ety &

where we have introduced the Poisson probabilities, P(n|A) = e~*A"/n!. Equation A.4 can be used to
solve for an the upper limit on the parameter s yielding a confidence level (1 — CL,).

This result is mathematically identical to the well know results recommended by the Particle Data
Group [80], but the interpretations are quite different [115]. This Modified Frequentist confidence level is
interpreted as follows: for an infinitely large number of experiments, looking for a signal with expectation s
and a Poisson distributed background with mean b, where the background is restricted to values of n, < N,
the frequency of observing N or less events is (1 — CL,).
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Writing the number of signal events as s = noprL. where opr = ¢ x BR(A? = bb) is the combined
cross-section times branching ratio for the signal. 5 its detection efficiency and £ the integrated luminosity
analysed. then uncertainties in the background b and detection efficiency n can be accounted for [116] by
convoluting the terms in Equation A.4.

_ fo'xz j;oo 9(6,6")g(m. 1) e~ (1 TBRCHY) 2:=0 {7 "Eﬂn‘_:"’b ) db'dy’
Jo e b) e T B dy

with the resolution functions, here taken to be gaussian,

CL. (A5)

gb¥) = eVl fo
o) = g /B

oy, and o, are the errors in the number of background events and signal efficiency, which include both
systematic and statistical uncertainties.

One can now numerically solve Equation A.5 for oBr, which vields the desired CL,, given the observed
values of 7+ o, and b £ o,. This will be interpreted as the maximum cross-section times branching ratio
permitted for any signal process present in the data.
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