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Abstract.

Two new fuzzy relational identification algorithms were formulated  the Neuron-
Based Predictive Identification (NBPI) algorithm and the Fuzzy Relational Pre-
dictive Tdentification (FRPI) algorithm. These algorithms minimize the fuzzy
prediction ervor over a user-specified prediction horizon and maintain the predic-
tive capability of fuzzy relational models. These proposed schemes were found
to give better results than Snaw’s fuzzy relational identification technique. The
FRPI algorithm was also found to be practical for on-line applications.

The servo and regulatory performance of two fuzzy relational controllers
namely the Self-Learning Predictive Fuzzy Controller (SLPFC) and the Fuzzy
Relational Long Range Predictive Controller (FRLRPC) were evaluated experi-
mentally on a highly non-lincar, interacting level process. Based on the integral
sum of errovs, the SLPFC gave a slighty better performance. The impact of on-line
fuzzy relational identification algorithms on controller performance was also veri-
fied. Tt was found that the FRPI algorithm results in an improvement in controller

performance compared to Shaw's fuzzy relational identification algorithm.
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Chapter 1

Introduction

So far as the laws of mathemalics refer Lo realily, they are not certain. And so

far as they are certain, they do nol refer Lo reality.

Albert Einstein

Introduced in 1965 by Zadeh, fuzzy logic is an attempt to capture the essence of the
human decision-making and thought process. The human mind works in a fuzzy
manner, it uses linguistic concepts rather than precise numerical values in the
dncision-making process. This fuzziness allows humans to perform complicated
tasks which computers and machines do not do well. From a process control
standpoint, the use of fuzzy logic has usually met with a high degree of success
(sce Mamdani (1974), Ostergaad (1977), Tong et al. (1980), Ono et al. (1989),
Czogala & Rawlik (1989), Roffel & Chan (1991) and Oishi et al. (1991)). Some

of the features found in successful applications of fuzzy logic controllers are

e Fuzzy, inprecise or uncertain process measurements

1



e Complex and poorly understood processes

e Process as previously controlled by a human operator

Therefore, fuzzy control can be a good candidate for certain control problems but
can not be expected to replace conventional ¢ irol strategies.

Previous applications of fuzzy logic in process control have concentrated
on the use of a rule-base which consists of a set of “JF- THEN® rules. The fu-
guistic nature of the rule-base makes rule-based fuzzy systems simple to con-
struct and implement. However, the fine tuning of fuzzy logic controllers (FLC)
may be time-consuming as it is an iterative procedure. Relational-based fuzzy
logic has been used to introduce a more systematic controller design procedure.
Relational-based fuzzy logic foc:uso.s on the use of fuzzy relational equations. A sys-
tematic process identification procedure exists for relational-based fuzzy systems
(sec Pedrycz (1963, 1984) and Shaw & Kriiger (1992)). Recently, fuzzy relational
models have been used in the development of model-based control schemes (see
Graham & Newell (1988, 1989), Postlethwaite (1994), Bourke (1995), Bourke &

Fisher (1996) and Valente de Oliveira & Lemos (1995)).

1.1 Scope and Objectives of Study

One of the most comprehensive studies of fuzzy relational identification and con-
trol was conducted by Bourke (1995). The author surveyed fuzzy relational iden-
tification algorithms and presented the development of a sclf-learning predictive
controller. One of the shortcomings of fuzzy relational models raised by Bourke

2



was their poor predictive nature. This drawback limits ‘v effectiveness of fuzzy
relational controllers when dealing with systems with lengthy time-delays. In
chemical processes where time-delays are extremely common, this drawback of
fuzzy relational models is a serious problem and must be addressed. Therefore, in
this study, efforts will be . *~d to the improvement of the predictive capability
of fuzzy relational models.

Advances in fuzzy relational model-based control strategies has been made
by Graham & Newell (1988), Postlethwaite (1994), Bourke (1995) and Valente
de Oliveira (1995). Postlethwaite (1994) ha- hown that the performance of his
controller is superior to that by Graham el al. (1988). The controller by Postleth-
waite (1994) and Valente de Oliveira & Lemos (1995) are similar to conventional
Long Range Predictive Controller (LRPC) in that they minimize the sum of pre-
diction errors over a prediction horizon. The difference between Postlethwaite’s
controller to that of Valente de Oliven.a & Lemos (1995) lies in the fact that the
prediction horizon for Postlethwaite’s controller is restricted to two. Prior to this
work, no effurts has been made to compare the performance of Postlethwaite’s
controller to that by Bourke & Fisher (1996). In addition, limited experimental
results are available for these two controllers. It is an objective of this study to
compare the servo and regulatory performance of these controllers on a lab-scale
process.

Tence, the objectives of this thesis are summarized as follows :

e To improve the predictive capability of fuzzy relational models



e To gain a better understanding of fuzzy velational controllers

o To experiment 211y evaluate the pariormance of fuzzy relational controllers

1.2 Thesis Organization

The structure of this thesis is outlined below but a more det ailed description can
be found at the beginning of cach chapter.

The thesis is written assuming that the reader has no previous knowledge
of fuzzy logic. Therefore, Chapter 2 begins by introducing the fundamentals of
fuzzy logic. The intuitiveness of rule-based svstems is a good starting point for
the eventual understanding of fuzzy relational systems. The development of a
fuzzy tuner for PID controllers is also presented which illustrates the key ideas in
rule-based reasoning.

Chapter 3 introduces fuzzy relational equations or models. Interpretations
of fuzzy relational equations are first given which are then followed by some issues
pertaining to their role in process identification.

An in-depth description of the procedure involved in fuzzy relational iden-
tification is presented in Chapter 4. A review of key ideas in existing fuzzy rela-
tional identification algortihms is also given. The advantages and disadvantages
of current schemes are also identified.

The issue of the predictive capability of fuzzy relational models is ad-
dressed in Chapter 5. Specifically, two new fuzzy relational algorithms are formu-

lated, namely the Neuron-Based Predictive Identification (NBPI) algorithm and

4



the Fuzzy Relational Predictive Identification (FRPI) algorithm. The aim of these
new identification techniques is to provide fuzzy relational models with a better
predictive capability. A comparison between the proposed schemes with previous
fuzzy relational identification algorithms is also performed.

Chapter 6 begins by reviewing the recent developments in fuzzy relational
controllers. The effectiveness of two fuzzy relational controllers namely those by
Postlethwaite (1994) and Bourke & Fisher (1996) are evaluated experimentally on
a laboratory scale process. The impact of on-line fuzzy relational identification
algorithms on controller performance is also investigated.

Chapter 7 summarizes the main results and contributions of this thesis. Tt
also lists some of the arcas in fuzzy relational logic which deserve some further

rescarch and study.
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Chapter 2

Rule-Based Fuzzy Systems

2.1 Introduction

Fuzzy logic was introduced in - 965 by Zadeh. Tiis purpose was to provide a
tool 1o aid in the modeling of complex phenomena especially, but not restricted
to those imvolving human agents. Conventional mathematical techniques which
involve exact quantitative values do not fulfil this role. Zadeh's (1973) principle of
incompatibility states that “as the complexity of a system increases, our ability to
make precise and vet significant statements about its behaviour diminishes until a
threshold is reached bevond wi:ch precision and significance, or relevance, become
almost mutually exclusive characteristics™. This principle best sums up the role
fuzzy logic is to address.

In this chapter, the essentials of fuzzy set theory will be presented. This will
be followed by a description of rule-based fuzzy modeis ard fuzzy logic controllers.

The reasoning mechanism involved in fuzzy logic will also be presented. Finally,



the decision-making capabilitics of fuzzy logic will be applied to develop a tuner

for conventional PID controllers.

2.2 Fundamentals of Fuzzy Set Theory

Ordinary or classical set theory is a particular case of fuzzy set theory. There-
fore. starting with ordinary -ets, it is possible to generalize and obtain a helpful
understanding of fuzzy set theo:y.

In ordinary set theory, a subset must be defined with vespect to some
universe of discourse (domain). If A is a subset in the universe U, A c U,
an clement x in U which is a member of A is written as r € 4. The idea of an
element, 2, being a member of a subset A can also be indicated by its characteristic
function, p(x). The concept of membership is then summed up as

1 ifred
palr) = (2.1)
0 ifrgAd
In other words, ordinary set theory draws its degree of membership or membership
grade from two values; 0 or 1.

Like ordinary subsets, fuzzy subsets are also defined on some universe of

discourse. However, the fuzzy subset extends the idea of an ordinary subset by

allowing the characteristic function to lic in the interval [0,1] instead of in the

10



finite set {0,1}. Therefore, there are now infinite degrees of belonging. Formally,

palr) =1[0.1]

In the framework of fuzzy set theory. the characteristic function is called the
membership function. The membership function assigns the degree for which 2 is
a member of A.

Fuzzy scts are usually used to convey the meaning in the natural language
of s.me variable. For example, one can define a fuzzy set to represent hol which is
one linguistic value for the variable temperature. To illustrate, consider a variable
such as ambient temperature. One possible definition of the concept of hol is
shown in Figure (2.1). A temperature of 40 is considered to be trully hot (I ving
a membership grade of 1) and as the temperature decreases its degree of belonging
to hol is also reduced. At a temperature of less than 5, the fuzzy set hot does not
describe the condition of the ambient temperature. Clearly more fuzzy sets can be
defined to fully deseribe the ambient temperature. Figure (2.2) uses three fuzzy
sets name cold, lepid and hol to convey the status of the ambient temperature.
In this illustration, the temperature is known as a linguistic variable since its
status is expressed by words in the natural language. Cold, tepid and hot are
called labels of fuzzy sets.

For the following definitions, the fuzzy set Y is defined in the universe Y.

The elements in Y are denoted as {y}.

Definition 2.1 A fuzzy set Y is normal if there exisls at least one elementy €'Y

11
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such thal its membership grade im Y us 1.

Definition 2.2 The support. of a fuzzy set Y is the sel of all elements y in Y

such that the membership grade is greater than 0 i.e. iy (y) > 0.

Definition 2.3 The height of a fuzzy sel Y is the largest membership grade of

all elements in Y.

Definition 2.4 A fuzzy singleton is a fuzzy sel whose supporl is a single point

in U with a membership grade of 1.

2.3 Set Theoretic Operations

For the following definitions, assume and B 1o be fuzzy sets in U. p4(-) indicates

the membership grade of (1) in A.

Definition 2.5 The union of A unth B resulls in o fuzzy sel wilh membership
Junction given by

aun(u) = max(ua(u), ip()

for all w € U. The max operation is often denoted by V.

Definition 2.6 The intersection of A with B gives a fuzzy sei with the mem-

bership function given by

pans(u) = min(u(u), pp(w))

for all w € U. The min operalion is often denoted by A.

13



Definition 2.7 The negation or complement of A. denoted A, qives a member-
ship function given by

pi=1—pau)

for all we U.

Definition 2.8 Lel Ay, Aoy o0 1, be fuzzy sels defined in Uy Us, ... U, respec-
tively. The Cartesian Product of Ay, Aoe oo An denoled A ox Ao xooxody s

a fuzzy set in Uy, Uy, ... Uy with membership function given by

/‘A|><A-2x...x/l,,(“1a Uy o v ey “n) = "‘i"{“.'h (“l)v /Ix\;‘,(”'.!)v coea (“n)}

or
LA 5 Agxoox An (U1 U2y« ooy U} = pra, () - g () - oo, (itn)

for u; € U where i =1,2,...,n.

Definition 2.9 An n-ary fuzzy relationship is o Juzzy set in Uy x Ugpx...xU,

and 1s expressed as

RU]XU-)X...XU,, = {((“‘137121'-'7“71)3/1'17(“11“2"'-3“‘11))

|(reyy gy ..oy tin) € Uy X U,y x ... x Uy}
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2.4 Rule-Based Fuzzy Models

Zadeh (1973) proposed the use of fuzzy conditional stalements in the modeling
of systems which are too complex or ill-defined to be modelled by conventional
mathematical techniques. The fuzzy condilional statements are rules of the form
IF A THEN B where A and B have some meaning, ¢.g., IF T is cold THEN U
is large. From a process control perspective, a set of rules may be derived and
implemented as a control strategy. Roflel el al.(1991) and Oishi (1991) are some
examples of the use of rule-based fuzzy logic in process control. Much interest
is focused on controllers with a PID structure known as Fuzzy Logic Controllers

(FL.C). A typical rule in a FLC has the following form

IF error ¢(k) is ZERO AND change in error, Ae(k) is POSITIVE
AND sum of crrors 3 e(k) is POSITIVE (2.2)

THEN the control u(k) is SMALLPOSITIVE

The above fuzzy rule / model has a consequence which attaches a linguistic value,
SMALLPOSITIVE to the consequent variable, u(k). Takagi & Sugeno (1985)
proposed a fuzzy rule model where the consequent variable is some explicit math-

ematical function of the premise variables. In a FLC using the Takagi type model,



a rule would have the following form :

IF crror e(k) is ZERO AND change in error, Ae(k) is POSITIVE
AND sum of errors ¥ (k) is POSITIVE (2.3)

THEN the control u(k) = biic(k) + boi Ne(k) + by, 22 e(K)

Often times a fuzzy model is required to process precise or erisp measure-
ments. and produce a crisp output. Since a fuzzy model processes and produces
fuzzy values, an interface before and after the fuzzy model is required. The con-
figuration of a fuzzy model with the fuzzification and defuzzification interface is

shown in Figure (2.3).

Non-fuzzy Fuzzy Fuzzy Non-huzzy
measurements . . Inpuis . Outputs] . Ouiput
—— Fuzzifier »  Fuzzy Madel > Defuzzifier |

Figure 2.3: A Block Diagram of a Fuzzy Model Processing Crisp Data

The fuzzification interface transforms crisp data into membership grades
in fuzzy sets defined in an universe of discourse. Given ¢ = ¢,, the membership

grade of ¢, in the fuzzy set E; is calculated by :

pe; (o) = Filcs) (2.4)
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where F, is the membership IUNCUOTL T IBUIE (£ ) THHSLEALS i pessesig 2 vy

[~
@
~

Membership
Grade
[=]
o

0 0 o4 S0=06 1
Figure 2.4: Fuzzification of Crisp Value

The defuzzification interface converts fuzzy sets into a crisp value. Hence,
defuzzification performs the opposite task as fuzzification. There is no fixed

method to perform defuzzification. The commonly used strategies are

Average of Maxima

Median

o Centre of Gravity

e Arca

The most widely used strategy is the centre of gravity approach which is given

by :
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where N, denotes number of membership functions, g, is the membership grade
in the j** membership function and ¢} is a representative value for the J™ mem-

bership function.

2.5 Reasoning In Rule-Based Systems

Lee (1990) and Yager & Filev (1994) provide a detailed description of the reasoning
mechanism involved in rule-based systems. In this section, a graphical interpreta-
tion of the reasoning mechanism is given. For simplicity, two rules in a fuzzy logic

controller with a PT structure will be considered. Consider the following rules :

IF e(k) = POSITIVE AND Ac(k) = ZERO
THEN Au(k) = POSITIVE
IF ¢(k) = ZERO AND Ac(k) = NEGATIVE

THEN Au(k) = NEGATIVE

For the above rules, Negalive, Zero and Posilive are fuzzy sets. Before the
reasoning process can be carried out, some mathematical operators must. be spec-

ified for fuzzy connectives {AND, OR), fuzzy implication and aggregation. For

18
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Fuzzy implication is represented by mimmum and the aggregation is performed
by mazimum. The role of these operators in the reasoning process is best shown
graphically. Figure (2.5) shows the details involved in rule-based reasoning with

the rules as given in (2.5).

Rute L (i)
L]
]
[]
Rule
2 W é
e atuintataieiiabd Attty + :o0s 06
Booorernnnnd
- : 05
1
|
[}
|
1 (iv)
|
§
|
|
[}
03 0.1 0.141
Fuzzification Fuzzification AND (min) Fuzzy Implication Defuzzification

(min)

Firure 2.5: Graphical Tllustration of Reasoning in Rule-Based System

1ie Giat step in the reasoning process as shown in Figure (2.5) involves
the « ~oicatier f the crisp values for e(k) and Ae(k) via equation (2.4). The

fuzsit sation oi et ) vields two membership grades as indicated by lines (ii) and

19



implemented by the minimum operator, the minimum of the two truth values in
each rule (i.e. (iii) and (vi) for vule 1, and (i7) and (¢) for vule 2) is found. For
rule 1 and rule 2 the above mentioned operation gives (/i ) and () vespectively. A
fuzzv set results from each rule after fuzzy implication. For rule 1, this fuzzy set
ie “und by taking the minimum between (iii) and the output fuzzy set. This is
1apeated for the rule 2. To aggregate the two resultant fuzzy sets, the mazunum
operator is used which gives the fuzzy set as scen above “Defuzzification™ in Figure

(2.5). A suitable defuzzification is then used to compute a crisp value.

2.6 Fuzzy Logic Based Tuner for PID Controllers

Since close to 95% of feedback control loops still use conventional PID controllers,
it is not surprising that there is a great deal of interest in improving the tuning
of PID controllers. In recent years the development of PID tuners especially
those that use fuzzy logic has increased (see Chand (1991), e el al. (1993)
and Lee (1994)). In this section, the ability of fuzzy logic to capture the human
decision-making process is demonstrated with the development of a tuner for PID

controllers. Most tuners for PID controllers consists of two major components :
e A Metric for Performance

e Decision-making Logic

20



errors (ISE) to measure the performance of the controller. For the fuzzy tuner
described here, the performance is measured by the control loop performance
monitoring scheme of Huang ef al. (7993 The performance monitoring scheme by
Huang ef al. (1995) is named “FCOR” and uses the minimum variance controller
as its benchmark. A performance measure of 0 to 1 corresponds to the range
from the worst to the hest achievable control performance respectively. This
performance measure is then used by the fuzzy-logic tuner which only modifies
the proportional term in the PID controller. The task of the fuzzy-logic tuner is
then to adjust the proportional gain so that the performance measure approaches
1. More specifically if increasing or decreasing the proportional action results in an
increase in the performance index then the proportional action will be continually
increased or decreased. TTowever, the adjustment of the proportional gain is more
conservative as the performance index approaches 1.

The update mechanism is as follows :

K. (1) = K.(l = 1) + AKR:(1) (2.6)
AR (1) = sign(AR(1 = 1)) - 6(1) (2.7)
&(t) = o - An(f) (2.8)

An(t) =n(t) = n(t — 1) (2.9)



function respectively. ! denotes the instant where adjustment of the proportional
term is to take place. Clearly, tuning does not have to correspond to cach and every
sampling interval. The fuzzy tuner produces o given the current performance
index and o determines the magnitude of AR, The rule-hase in the fuzzy tuner

may be as follows .

IF = SMALL THEN o, = [11G1

IF n= MEDIU" TN e = MEDIUM (2.10)
IF = LARGL .= LOW
The ossense of these rules is that as smance index appriaches 1, the

change made to the controller decreases. The meaning of the fuzzy sets G,
MEDIUM, LOW will determine the magnitude of the changes in K. The fuzzy-
logic tuner was implemented on a simulated process with the following, transfer
function :

0.39

Gol2) = TG

The following disturbance was assumed :

2z + 0.80)
(z = 0.61)(=—1)

Galz) =

A block diagram of the process is shown in Figure (2.G) where (/) is a zero-
mean white noise sequence. A change in K. was made at every 600 sampling

intervals. The initial tuning parameters were obtained using the Ziegler-Nichols

22



oty
B S Gd

et p:)m'm Em—— e . "
-() « Controller }—-—— Gp L ——1—

4
1
1
‘
'
"

]
]

1

t

]

Kc '
[}

]

1

i

t

r L Performance | ___________ ;
uzzy Tuner - Meter

Fagure 2.6: Block Diagram of Process with a Fuzzy-Logic Tuner for PID controllers

tuning method. The fuzz: model of Takagi & Sugeno (1985) was used where

HIGH. MEDIUM and LOW for o have the following meaning :

LOW =a;y+ a1

MEDIUM =apg+ a9 7

HIGH = agy+ a3 -1

For the following simulation, ajp = 0, a;y = 0.2, ap = 0.2, ay = 0.4, azp = 0.8
and ay, = —0.01. Denoting

=0+ a; N



then o is calculated by

v,
Z i) - a,
1=1

N

> wiln)

J=1

where N, corresponds to the number of rules. After a period of tuning the aver-

aged performance index, 7, over 9000 sampling intervals was calculated together

with the integral sum of error (ISE) and are tabulated in Table (2.1).

Table 2.1: Performance Measures for PID Controller after 9000 Sampling Intervals

n | ISFE
Initial ZN tuning | 0.41 | 187.7
With fuzzy tuner | 0.43 | 180.5

Figure (2.7) shows the performance index # for both the above cases and
it is worthwhile noting that the fluctuation in 7 is not due to the tuner since the
7 for the untuned case exhibits some fluctuation as well. Tt is also important to
note that this fluctuation in n makes controller tuning difficult. Overall, the tuner

appears to function well.

2.7 Conclusions

An introductory tutorial on rule-based fuzzy logic was presented in this chapter.

The objective was to provide the reader with an appreciation of this area and the
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Figure 2.7: Performance Index, 7, for the Controller with and without the Fuzzy
Tuner

essential theory involved in rule-based fuzzy logic. An illustration of the rcasoning
mechanism was given which was followed by the application of fuzzy-logic in the
development of a fuzzy-tuner for the proportional mode of PID controllers. The
fuzzy-tuner developed gave better controller performance compared to a controller

without the fuzzy-tuner.
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Chapter 3

Fuzzy Relational Systems

The importance of relalions is almost self cvident.  Science is i a sense, the

discovery of relations belween observables ...

Goguen {1967)

3.1 Introduction

Engineers are frequently interested in quantifying the behaviour of a system in
terms of some known variables. In highly complex systems, it may be difficult to
express such a relationship in a useful mathematical form. In addition, there are
also processes where information cannot be represented in a deterministic or crisp
fashion. Fuzzy relational equations provide a platform to represent such complex-
ities and fuzziness. Consequently, fuzzy relational equations have been applied
to a broad class of problems such as medical diagnosis (Sanchez(1977)), fuzzy

controllers (Mamdani(1976) , Kickert & Mamdani (1978)), technical diagnostics
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(Tsukamoto(1978)) and decision-making (Beliman & Zadeh (1970),

The main purpose of this chapter is to provide a foundation for the de-
velopment of fuzzy relational equations for a svstem identification and control
application. The next section will give a description of the terminology and nota-
tion which is then followed by some interpretations of fuzzy relational equations.
In addition, some results for the analytical resolution of fuzzy relational equations
will be presented. Finally, an explanation of the justification for an alternative to

the analytical solution of fuzzy relational equations will be given.

3.2 Notation and Terminology

A static single input single output fuzzy relational equation can be expressed as

Y=XoR (3.1)

where

X € F(X) and Y € F(Y)

ReF(X xY)

o denotes the max triangular norm operator

Here F(-) denotes a family of fuzzy sets (or relations) defined in a relevant
universe of discourse (or a Cartesian product space) . For example, X' €F(X)
means that X is defined in a universe of discourse X, and R €F(X x Y) denotes

a fuzzy relation defined in the Cartesian product of X and Y. R is also known as

29



the relational matrix. The notation introduced above will be adhered to for the
remainder of this chapter.

Examples of triangular norm operators are minimum, algebraic product,
bounded product and drastic product. 1f the algebraic product is chosen as the

triangular norm operator then the membership grade of Y is found by:

marx

V(y) = reX [X(r) * R(r,y)] (3.2)

where
* is the algebraic product

Relationships involving more than one input can be similarly expressed as

V=X, 0Xp0...0X,0R (3.3)

where R € F(X1 X X2 x -+ X Xp X Y).
And if the triangular norm is substituted by the algebraic product, the

degree of membership is given by :

Yy = Jé’i’ﬂ [N1() * Xo(ag) * .ok Na(wn) * Rxy, oy an,y)] (3.4)
J‘GX2

II‘EXn
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3.3 Interpretation of Fuzzy Relational Equa-
tions

An interpretation of the fuzzy relational equation is provided in Pedrycz (1984).

Consider a fuzzy relational equation of the form :
'\’I-'+l = (.'v;,._-,- o] ,\'].. oR (35)

where 7 is the time-delay of the system. U and X are possibility vectors rep-
resenting the input and state respectively. The relational matrix R has Ny, _,
Ny, Nx,,, implication statements where N, denotes the number of term sets
(fuzzy subsets in the membership function) for the variable (). The implication

statements are of the following form :

if input is U; and state (k' time moment) is X

th

then state ((k + 1)" time inoment) is X; (3.6)

i=1,2,..., No._., i=1,2,...Nx,, 1=1,2,.. ,Nx,,, with a possibility measure A
assigned to cach implication statement. The possibility measure, Ayji, corresponds
to the (1) entry of the matrix R. When Uy, and X are known and transformed
according to (3.5), we obtain Ny, ,, possibility measures which correspond to the
following linguistic interpretation :

Possibility that the state Xy is X =)\
Possibility that the state X4y is Xy = A
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Possibility that the state Ny is Ny, = Ave
+ Vg N b1

An alternative interpretation of the relational equation is that it is simply
a mapping between the fuzzy sets of the variables present in the equation which
for (3.5) are Ug_r, N} and Xgyi. Consider the following example.
Example

Let X = {x, 22, 13 }, Y = {0, 4o 43 }, and

Y=XNoR

Let

' W

(xr.n) (o) (Fnus)

R o= | (x9,4n) (w2o1p) (22,43)

(x5, ) (s, ) (23, s)

0.1 0.2 09

= 0.0 1.0 0.2

LO'S 0.2 0.0

Cell (z;,y;) corresponds to the likelihood or possibility that Y is y; given
j p i

X is z;. For the above, z; and y; may have linguistic values such as the following:

z; = low, 19 = medium, xy = high
Y, = neqalive, Yo = 2€70, y3 = posilive
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Therefore, if X is arbitrarily defined as (0.8 0.2 0], Y is obtaincd as follows:

Y = XoR
[ T
0.1 02 09
= [0.80 0.20 0.00]o | 0.0 1.0 0.2
] 0.8 0.2 0.0
If o = max-product, applying (3.2) gives
= [0.08 0.20 0.72]
Y can then be interpretated as follows :
Membership grade of Y in the linguistic value negative is 0.08
Membership grade of Y in the linguistic value zero is 0.20
Membership grade of Y in the linguistic value positive is 0.72
a

The two interpretations of the fuzzy relational equations can be easily

extended to relational equations of higher order.

3.4 Resolution of Fuzzy Relational Equations

Taking (3.1) into account, the problem of resolution of fuzzy relational equations

can be stated as follows :

1. X, Y are given, determine R
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2. Y, R are given. determine .\

(1) is the identification problem, that is, determine the model parameters given
a set of input-output data. (2) is the control problem which involves finding the
input which achieves some objective given the model parameters. The resolution
of these equations was first performed by Sanchez (1976) . But before stating the

results, the following definitions are required.

Definition 3.1

apb=sup{c€(0,1]|alec<b)

If the triangular norm operator specified is the munumaun, then the « op-

erator results.

Definition 3.2

io= sup{ce[0,1]|anc<b}
1 fa<h

b ifa>b

Considering equation (3.1) for problems (1) and (2), we first assume that

the corresponding families of solutions of R and A" are non-emiply, namely

R={R

XoR=Y}#¢

X ={X

XoR=Y}#6¢
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Theorem 3.1 For problem (1), if R # &, then the grealesl element of R denoted
by R, is given by :

R=X¢Y

Theorem 3.2 For problem (2), if X # @, then the greatest element of X , denoted

by X is given by :

The proof of the above propositions can be found in Sanchez (1976).

3.5 Why Alternative Solutions?

The analytical resolution of a fuzzy relational equation relies on the assumption
that the family of solutions is a non-empty one. However, it is difficult to guarantee
that the family of solutions is indeed non-emptv. When more than one fuzzy
relational equation has to be solved, the likelihoud that there exists a non-empty
solution is reduced. This is often encountered in system identification whereby
a sot of data is available. To illustrate, given a set of fuzzy input-output data
namely (X, ¥1), (X2, ¥2), ..., (XY, (Xx,Yr) where X; and ¥} 4,5 =
1,2, ..., K are fuzzy sets defined in universes of discourse X and Y. Then we have

the following equations,



N,oR = Y

\,oR = Y,
\;oR = Y
NyoR = Yy (3.7)

Denoting R; as a family of fuzzy relations satislving the j™ equation of

(3.7) as follows
Rj={ReFXxY)|X;0R=1j}

and assume R; # ¢. If the intersection of the families of equations forms a
non-empty set, that is,

K
R=() R;#o

=1

then its greatest clement, denoted R is given by
) K
R = n (4‘\';'. ¥ 3")
k=1
It is easy to see that if one pair of (Xja: Yjo) has an empty solution set,
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R, the intersection with all the remaining families of solutions R; where j # jo,

namely
K
R’ = ﬂ Rk ;‘: (f)
J#JO
and

Rjo N R =0

This implics that the entire system of equations has no solution. In short,
if al least one data pair of (X,.Y5), j = 1,2,. .., K results in an empty solution,
the analvtical solution will not exist for the entire system of equations. In a real
plant environment, an analytical solution of fuzzy relational equations may not
oxist due to noise, disturbance and model plant mismatch. Therefore, alternative
solutions to the identification and centrol problem are needed. They are discussed

in Chapters 4 and 6.

36 Summary

This chapter has reviewed the basics of fuzzy relational equations. In addition,
interpretations of the fuzzy relational equation were given. Tt has also been pointed
out why an exact analvtical solution to the identification and control problem may

not exist.
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Chapter 4

Fuzzy Relational Identification

4.1 Introduction

The use of fuzzy models has I . gaining popularity in recent years because
they have the ability to approximate processes which are not well modelled by
conventional identification techniques. The fuzzy identification goal involves the
derivation of a set of rules or fuzzy implications. Fuzzy models can be divided into
rule-based or relational based. The identification procedure for rule-based systems
usually involves the translation of knowledge from an expert usually a process
operator. On the other hand, fuzzy relational identification accepts input-output
data and offers a systematic procedure for model development.

This chapter will focus on fuzzy relational identification. After an introduc-
tory tutorial to fuzzy relational identification, a survey of existing identification
algorithms will be presented. This survey will touch on some key ideas which are

essential to the understanding of fuzzy relational identification.
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4.2 Fuzzy Identification Procedure

Consider the following single-input single-ontput fuzzv relational equation of order

7"

Y (k) = Y (k=1)oY (k—2)o.. oY (k=n)ol (k=d—1)olU (k—d=2)o.. oU(k=d—p)onrt
(4.1)

The objective of fuzzy relational identification is to determine the param-

oters in the relational matrix, R. The number of parameters in R is given by the

product of the following terms:

]VY(I;— 1) 17\‘73'“._.2) e "\r('(k—-d—l) ]\’Y(j(;‘._d_g) e Nf'(k--d—p) ‘NY(L')
where N, denotes the number of fuzzy sets associated with (-). The identification
procedure can be summarized as follows :

e Dofine the universes of discourse for input-output variables.

e Sclect the number and shape of referential membership functions for each

variable.
e Fuzzifiy data in terms of membership functions defined previously.
e Select model order and choice of compositional operator.
e Determine model parameters in relational matrix.

e Model Validation
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4.2.1 TUniverse of Discourse

The universe of discourse for a given variable is the range which covers all possible
values for that variable. For example. the universe of discourse for an input which

corresponds to a valve position is from 0-100 %

4.2.2 Selection of Membership Function

For each variable present in the fuzzy model. membership functions must be se-
lected. The membership functions are made up of fuzzy subsets which may have
linguistic values attached to them. A variable such as temperature may have
membership functions as shown in Figure (4.1) which consists of five fu7zy sets.
The fuzzy sets defined are also called veferential fuzzy sets. The selected refer-
ential fuzzy sets will be used in fuzzification and defuzzification.  The choice of
membership functions involves the selection of the number, shape and. distribu-
tion of the referential fuzzy sets. The number of referential membership functions
selected impacts on the resolution or accuracy of the model. However, a larger
number of referential fuzzy sets results in an exponential increase in the number of
parameters in the relational matrix. For example, for (4.1) ifn =1 and p =1 and
if both input and output variables have 5 referential fuzzy sets, then the relational
matrix will have 5% = 125 clements. 1. the number of referential fuzzy sets were
increased to 7, then there will be 7% = 343 clements in the relational matrix. If
n and p are both increased to 2 with 7 referential fuzzy sets then the relational

matrix will have 75 = 16807 clements. In short, an increase in referential fuzzy
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Figure 4.1: An Example of Membership Functions

sels increases storage and computational requirements. Therefore, one should be

parsimonious on the choice of the number of referential fuzzy sets.

Before proceeding any further, some definitions must be given.

Definition 4.1 A fuzzy subset Y defined in the universe Y is normal if there

ezists af least one element, y € Y such thal its membership grade in Y is 1.

Definition 4.2 A fuzzy subsel Y is convex if

py( Ay + (1= Ny ) = min(uy (1) 5 #y(y2))

Jor yi,y2 € Y, A €[0,1]. py(:) denotes the membership grade of (+) in the fuzzy

subsel Y. A graphical inlerprelalion of converity and non-convezity can be found

in Figure (4.2) and Figure (4.3).

To ensure the performance of the fuzzy model, the referential fuzzy sets

should be normal, convex and satisfy the completeness condition as outlined below.
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Figure 4.3: A Non-Convex Fuzzy Set

Definition 4.3 If Y}, Y5, ..., Y, are the 1e erential fuzzy sels defined e the unai-

verse of discourse Y, then

Vyk)inY 31 <i<c such that juy (y(k)) >0 (4.2)

for k=1,2,...,N where N is the number of duia podls.

This means that for any given data point, its membership grade must be
non-zero in at least one referential fuzzy set. Although the conditions given above
are necessary, there still remains much choice in specifying the shape and dis-
tribution of the referential membership functions. Previously, the selection was

done subjectively or by clustering techniques. Xu & Lu (1987) states that there
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s no evidence to support that any analytical or computational method yields
better results than a subjective decision. Recently, de Oliveira (1993) has formu-
Jated the problem of membership function selection into a contrained optimization
problem. Based on the Box-Jenkins gas furnace data set, the author showed that
the selection of membership functions via the contrained optimization method
yvields superior results compared to fuzzy clustering. Pedrycz (1994) provided a
theroretical motivation behind the common use of triangular membership func-
tions. More specifically, if triangular membership functions with a specific overlap
of IZ (namely the height of intersection of cach two successive fuzzy sets equals
5)» the objective used in the constrained optimization method will be satisfied.
Based on these developments, there is now a svstematic approach in membership

function selection.

4.2.3 Fuzzification

The fuzzification step converts either a fuzzy or non-fuzzy value into a possibility
vector based on the previously defined referential fuzzy sets. The possibility vector
has N eclements where N is the number of referential fuzzy sets in a particular
universe of discourse. The i* element in a possibility vector is the degree of
membership of the original value (fuzzy or non-fuzzy) in the it referential fuzzy
set. Th: vrocess of fuzzification is described below.

Given a fuzzy set Y defined in Y with reference fuzzy sets Y1,Y2,...,Yn,,

the possibility vector p=[p1 p2... pw,] can be found via
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8

pi = Possibility(Y | 1) 2 1] l'ng Vi (4.3)

where p; € [0,1] and [ is a triangular-norm operator. fi given a crisp or non-fuzzy

value y,, then (4.3) reduces to

pi = iv; (Uo) (-1.1)

where jy;(-) represents the membership grade of (-) in };.

4.2.4 Model Structure

For the input-output fuzzy relational equation defined in (4.1), the model order,
n and p, the time-delay, d, and the composition operator o must be selected.

Once again, the selection of n and p has an impact on storage and com-
putational requirements. The number of paramelers grows exponentially with
increased model order. Tt is important to strike a balance between model perfor-
mance and computational demands when choosing the model order. The time-
delay, d, can be estimated based on some ¢ priori knowledge about the plant.
This estimated value can be further refined by defining an objective flunction such
as the mean prediction error and picking the time delay which minimizes the
objective function.

There is a family of compositional operators that can be applied to (4.1).
Any max triangular-norm operator can be used but the most widely used ones

are the max-min and max-product. Bourke {1995) explored the use of these two
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operators when applied to identification and control.

4.2.5 Parameter Estimation

In recent years, much effort has been devoted to the development of better schemes
to estimate the parameters in the relational matrix. There exist many algorithms

but they can be divided into two groups namely
e Linguistic Algorithms
e Numecrical Algorithms

Some of the more notable algorithms which are classified as linguistic are
Pedrycz (1984) , Xu & Lu (1987) , Shaw & Kriiger , Chen el al. (1994) and
Bourke (1995) . Pedrycz (1983, 1991) , Tkoma el al. (1993) and Valente de
Oliveira (1993a) presented numerical identification algorithms. A more in-depth

coverage of these identification algorithms will be the subject of the next section.

4.2.6 Model Validation

As in conventional identification techniques, the model validation stage verifies
the accuracy of the identified model. The predicted model output is compared
with the actual process output. If the actual output is deterministic or crisp then
the fuzzy values obtained via the fuzzy model must be defuzzified.

Defuzzification refers to the process of converting a fuzzy possibility vector
into a crisp or deterministic value. There are various defuzzification techniques
namely :
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Average of Maxima

Median

e Centre of Gravity

e Arca

Of the above methods, the centre of gravity method is the most popu-
lar. However, there are results (see Mizumoto (1989)) which suggest that it does
not necessarily give the best performance. It must be pointed out that a fair
comparison of defuzzification techniques is rather difficult duc to the fact that
the performance of a particular defuzzification techniques may rely on the iden-
tification algorithm used and the data set which was used in the identification

exercise.

4.3 Survey of Existing Identification Methods

In order to present a complete foundation for fuzzy relational identification, the
key idea behind some of the popular identification techniques will be investigated.
Pedrycz’s identification algorithm (1984) and its many variants will be presented
first, followed by Shaw's (1992) algorithm together with some of its modifications.
Identification methods which solve fuzzy relational equations numerically will also

be dealt with.
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4.3-1 PedryCZ'S laentlll(:'dbluu I‘LIBUI AVRAARL |\ AV Ay

The identification algorithm by Pedrycz (1984) is considered to be a linguistic
algorithm. Consider a first order SISO fuzzy relational equation such as the

following :

V(k)=Y(k=1)oUl(k—d—1)oR (4.5)

where U(k —d — 1), Y (k = 1) and Y (k) are possibility vectors. Czogala et.al.
(1981) has shown that there exists a family of relational matrices satisfying (4.5),
bounded by a least upper bound matrix, R(k) and a greatest lower bound matrix,

R(k). Any solution B(k), sausiics
R(k) < R(k) < R(k)
One such solution is given by
R(k) = Uk—=d=1)xY(k—=1)x ¥(k) (4.6)

whore x is the Cartesian product. Then the final relational matrix, R, derived

from an entire data set, is calculated by
N
R= |J ™k (4.7)

where U stands for union. The cartesian produci, X, is calculated with respect
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L0 LNE COMIPUDILIVIL UPULALUE WG ser seprgrees =e ooy 50
operator then x is the minimumn. If o represents the max-product operator then x
is the product. To estimate the time delay for a system with crisp micasurements,
the optimum time-delay would be one which minimizes the sum of squares of the
prediction errors :
hY
J= 5 (k) - ulk)y’ (-4.8)
k=dopr +72
Similarly, a suitable performance index for fuzzy data can be defined as
N Nw X
J= 3 Y (k- Yi(k))? (1.9)
k=dopt+2 1=
where Ny, is the number of referential fuzzy sets in Y;. This identification al-
gorithm maximizes the relational matrix over all data points. In a real plant
environment, disturbances usually corrupt the data set. Since relational models
such as 4.5 do not explicitly contain a disturbance variable, the identified model
will be corrupted with the disturbance. Therefore, if a maximization of the rela-
tional matrix is performed over all data points, the fuzzy model will not have the
ability to forget corrupted data or forget old data of a stowly time-varying process.

Xu & Lu (1987) and later Chen (1994) attempted to remedy the drawback of this

algorithm.
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Identification Algorithm of Xu (1987)

The essence of this on-line algorithm is the modification of the relational matrix
via a tuning pavameter, a. The new ostimate of the relational matrix at the kth

instant, IR(k), is updated by

Rik)y=a-R'(k)+ (1 =a)- R(k=1) (4.10)

where R'(k) is given by (4.6). When a =0, no update is performed while ifa=1,
the previous relational matrix is totally replaced with information from the latest
data which is incorporated into R'(F). The magnitude of this tuning parameter

is influenced by

1. The amplitude of the prediction error, e(k)

9 The relative contribution of the rules, 3,, which give the predicted output,

.
The algorithm can be summarized as follows :
e Use R(k—1) and data U(k —d=1), Y (k- 1) to produce a prediction, f’(k).
e Calculate R'(k) by (4.6).
e Determine prediction error, (k) = y(k) - y(k)
e The relative contribution 3, 2 [Y.',]2 where s = 1,2, ..., Ny,.

e The tuning parameter is found by a = h- 3; - le(k)| where s=1,2, ..., Ny.
h is a constant used to control the range of a,.
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e If ¢, > € where € is some tolerance level, update the relational matrix via

(4.10).

Identification Algorithm by Chen el. al.(19¢4)

Chen et. al. (1994) proposed to improve on Pedryez's (1984) algorithm by intro-
ducing a forgetting factor which enables the climination of errorncous or old data.

The update is performed by :

Rk)=[R(k—1)A - R(R)]Va (k) (4.11)

where

R'E)=U(k—d=1)x Y(k=1)xY(k)
R"(k)=1- R"(k)
Rk)=Ulk-d=1)x¥Y(k=1)xY(k)

3 is the forgetting factor which is some function of the prediction error. /3 is
directly proportional to the rate of forgetting. The first part of (4.11) ze. (R(k —
1) A B- R'(k)) forgets data while the second part ie. (o R'(k)) incorporates
the latest information into the relational matrix.

Since R"(k) contains all parameters which give the current prediction, and
if the current prediction is poor then these parameters must be updated. Tt is
important to remember that Y (k) is taken over a maximum. Therefore, the first

part of (4.11) reduces the relevant elements in R so that its effect on Y (k) will be
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diminished. o is defined as

1 if o] > ¢

0 if le] <e

Therefore, if the error is less than some specified tolerance, the latest data

is not incorporated into the relational matrix.

4.3.2 Weighted Average Identification Algorithms

Shaw & Kriiger (1992) proposed a probablistic fuzzy relation building method.
The key feature of this approach is to treat cach entry in the relational matrix
as the possibility of obtaining an output referential fuzzy set given a referential
fuzzy set for each state and input variable in the relational equation. If the fuzzy
relational equation has the form as given in (4.5}, then the (ijl)** entry of R, Ry,
is the possibility of obtaining Y;(k) from Yj(k — 1) and Uj(k — d - 1) where ¢, j
and [ indicates the i, j*"* and I** referential fuzzy set respectively.

The relational matrix is found via

~

N Ne No o
.

> II H y (Ui(k —d = 1), ¥;(k = 1), Yi(k))

k=d+2 I=1 j=1 i=Il

R = (4.12)
N NIA AYI‘

Y I HWk-d=1),¥5(k=1))

k=d+2 =1 j=1

Bourke (1995) modified the above equation to



NI
Y H (k= d = 1) u—n)@x

k=d42 I=1 j=I1 1= |

R = (4.13)
N )
Z Wk =d =D (k= 1)

where @ is the minimum inverse operator for the max-product composition de-

fined below.

Definition 4.4 For a and b € [0,1],

0 ifa<bora=1b=0
a @b =
:,—' ifa>h
Bourke (1995) pointed out that if the weighted average identification al-
gorithms were implemented on-line it would lose its adaptation ability or “fall-
asleep” after a huge number of data points have been processed. This is analogous
to the determination of the mean of a series of points &y, 2y, .., ¥N. As N in-
creases the effect of the latest data xx on the mean is greatly diminished. Bourke

proposed a method to overcome this problem by resetting or normalizing the

relati nal matrix.

4.3.3 Numerical Resolution of Identification Problem

Pedrycz (1927 provided a numerica’ resolution of fuzzy relational equations for
static fuzzy relational equtions. It can easily be extended to dynamic fuzzy

relational equations. Consider,



V() =Y(k=1)o U(k—d=1)o R (4.14)

where o denotes the max triangular-norm operator. The triangular-norm operator
will be assumed to be the product operator from here on. Tn terms of membership

functions (.11 can be written as

AYE
V (k=1)-Uy(k=d=1)- Ri) (4.15)

Ny

=1

~
.

for | = 1,2,..., Ny» and where ¥; and U denotes the i and j** element of the

possibility vector respectively. Then the identification problem is :

min Vyz My e
Re F(Y (k= 1) Ulk=d-11>Y (k) J = Z [V VQOik=1) (kt—(l—l)-l?,,-ﬂ)-—?}(k)]?
=1 1=1 [:i

(4.16)
A necessary condition for a minimum is that :)% = 0 where 0 is a null
matrix of dimension (Ny, x Ni= x Ny»). The Newton method can be used to

solve this svstems of equations but due to the computational load required, the

following update for the relational matrix clements may be preferable.

(n) aJ

R(n+l)_R P

1jl il

oJ

th iqorat; ;= j =
where n is the n™ iteration step. The derivative i) o i =1,2...Nyy, J =

1,2,...Np, 1=1,2,...,Nyo i8 calculated by

Ct
(11



a.] a Nya Ny N |
PRm ~ ORm SV VOt =10k =d = 1 Ry = Vit }

= 2SO = 1) Uik = d = 1) Ryg) = Yi(k) | Paan

where

Ny N

Pcv: :A'— h—d—=1) R,
“ anm.[,\/l,\/,( DUtk = d = 1) B |

- Yi(k = 1) - Uj(h —d = 1) - Riju
aRshr{ ,\;4:/5 ,\;{'( ( ( ) ! )
\ (Vi = 1) - Uik = d = 1) Ran)}
Yok =1 Tk =d—=1) if @, s true

0 otherwise

where @, is defined as

(Valk = 1) - Uk = d = 1)+ Ryw) 2 (\ V (Vilk = 1) - Uk =d = 1) - Ijn)
i#s j#L

Although the above analysis was for a first order fuzzy relational equation under
max-product composition, it can casily be extended to higher order equations
under max triangular-norm composition. Tkoma cl.al. (1993) proposed a proba-
blistic descent minimization which is suppose to overcome problems arising from

convergence to a local minima.
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4.3.4 Neurcn Inspired Identification Algorithms

Focusing on static fuzzy relational equations Pedryvez (1991) gave a neural net-
work representation and provided a solution under max-min composition. Valente
de Oliveira (1993) extended the algorithm to dynamic fuzzy relational equations
under max triangular-norm compositional operator. The neural network represen-
tation for one basic unit of (4.14) with three referential fuzzy sets in U(k —d —1)
and Y (k — 1) is shown in Figure (4.4). In Figure (4.4), the output, }; denotes
(he it* element of the output possibility vector. If there are Ny referential fuzzy

sots in Y (k) then the complete neural network representation will consist of Ny

outputs.

Riut x1y)

Figure 4.4: Basic Unit of First-Order Fuzzy Relational Equation

A performance index typically used in neural networks is defined as

N -
Ji = A_2_:0;(k) = Yi(k)) (4.17)



where = is the equality index and / denotes the i roferential fuzzy set. Therefore,
if ¢ referential fuzzy sets were selected for the output variable then ¢ performance

indices will be optimized. The equality index is given the following interpretation:

Y=V = HO3AWAG¥HW]+HTafA@mHWH (1.18)

| =

where — denotes implication specified between two membership grades. The first
part of (4.18) describes the degree of equality between Y and Y @ it gives the
minimum degree to which ¥’ implies Y and vice versa. The second part of (4.18)
is similar to the first except that it uses the negation of Y and Y. With this
definition, the purpose of identification will be to maximize the equality index
for cach output referential fuzzy set. By choosing a Lukasiewicz implication for

(4.18), a relatively simple realization for the equality index is

(

1+4Y =Y iy >V

3§?=T1+Y—Y iy <V (4.19)
! iy =Y
Applying (4.19) to (4.17) gives
N N ,
Ji = v+ xR - k)

k: Yi(b)=Yi(k) k: Vi(k)<Y;(k)
N
+ Y (1 Yilk) - Yilk)

k: Vi(k)>Yilk)



Now taking the derivative with respect to a generic element of R(:) results in

aJ, N aVi(k) N oYi(k)
G L RO B (420

k: Vi(k)y<Yi(k) ke Yi(k)>Vi(k)

With this expression, a gradient based learning e “.»1 ran then be used in learn-
ing the parameters in the relational matrix. Valen.o w2 Oliveira (1993) extended
this algorithim to dynamic fis” relational equations under max triangular-norm

compasitional operator.

4.4 Summary of Identification Algorithms

Identification algovithms as presented in the previous section can be divided into

two major groups.

e Those based on the Linguistic Approach
e Those based on the Numerical Approach

The Numerical approaches minimize or maximize an objective function
to calculate the parameters in the relational matrix. On the other hand, the
linguistic approach builds the relational matrix by applying one possible solution
derived from the analytical resolution of fuzzy relational equation. Therefore,
numerical schemes offer the flexibility of optimizing the relational matrix based
on any desired criteria.

Bourke & Fisher (1995) compared the performance of various fuzzy rela-
tional identification algorithms. It was observed that based on the sum of squares
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of the prediction errors. the numerical schemes gave slightly better results. How-
ever, the drawback of numerical schemes appear to be the diflicultics in selecting
the tuning parameters. Most importantly. these types of algorithms may not he
practical for on-line implementation since they process information in a batch fash-
ion. Therefore, if a new numerical on-line fuzzy relational identification algovithm

is proposed, the following issues must be addressed :
e Practicality as an on-line implementation

e Convergence
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Chapter 5

Fuzzy Predictive Identification

5.1 Introduction

The availability of a systematic uzzy rolational identificatizu procedure has re-
sulted in the development of predictive controllers which = ilize the fuzzy relational
eqquation. Graham & Newell (1988), Postlethwaite (1994). Valente de Oliveira &
Lemos (1995) and Bourke & Fisher (1996) have proposed the use of fuzzy predic-
tive controllers. Obviously, the performance of such controllers depends on the
identilication algorithm used. Bourke (1995) compared the performance of various
identification algorithms based on the Box-Jenkins gas furnace data set. Clearly,
the fuzzy identification algorithm has an impact on the quality of the model.

In this chapter, two fuzzy relational identification algorithms namely the
Neuron-Based Predicitive Identification ( <BPT) algorithm and the Fuzzy Rela-
tional Predictive Identification (FRPI) algorithm will be presented. The distin-
guishing feature of the proposed algorithms from previous fuzzy relational identi-
fication algorithms is the optimization of the model parameters so that the predic-

tion ¢ or is minimized over a user-defined prediction horizon. The minimization
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of the prediction error over a prediction horizon is an attempt at improving the
predictive capability of fuzzy relational models. Finally, the effectiveness of these
new algorithms will be demenstrated by a comparison with a popular identifica-

tion scheme.

5.2 Why Fuzzy Predictive Identification?

In conventional control, the concept of control-relevant wdentification was
proposed by Shook et al. (1991, 1992). The authors proposed an on-line identifi-
cation strategy for the Generalized Predictive Controller (GPC). The same idea
will be used but this time from the point of view of fuzzy predictive controllers.
The following discussion will concentrate on fuzzy predictive controllers as pro-
posed by Postlethwaite (1994) and Bourke & Fisher (1996). An important poind
10 note about fuzzy predictive controllers is that they wilize some form of numer-
ical search to obtain the control action that will minimize the predicted future
error(s). For this numerical search to work, the fuzzy relational equation must
provide a prediction of the output. Therefore, the predictive capability of the
relational model is of key importance.

Postlethwaite (1994) proposed a controller which has the same objective
function as conventional Long Range Predictive Controllers (LRPC). The objee-
tive function of the controller is then

N2
J = Z (ysplh 4+ 4) — ylk + Nt 4 du(k)? (5.1)
=N
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However, Postlethwaite restricted Ny to be equal to (Ny + 1),

The comtroller by Bonrke & Fisher (1996) uses two different models - a
vty model and a steady state model. The dynamic model is used to obtain
a dead heat control action Therefore, the objective s simply the first term of
(3 1) where N, = d o1 For these conrollers a (¢l 4+ 1) step ahead prediction must
e tnade where (e + 1) corresponds to the total time-delay of the process. For a

process described by fivst order relational equation which is expressed as

Yiky- Yik=1)yol(kh=d=1)o R} (5.2)

where o represents the max triangular norm operator. The one-step ahead pre-

diction can be found via

Ykt ) =YkyolU(k—d)oR (5.3)

To obtain a multi-step ahead prediction, Y (k+1) must be defuzzified and fuzzified
again hefore heing fod back into (5.2). This is pecessary to alleviate leakage effects
which results in a distortion of the states which are used for the next prediction.
Leakage effects oceur due to the fact that the fuzzification and defuzzification
Operalions are not eXact INVerses.

Definition 5.1 Define o as the fuzzification operator which is the 1 Lo Ny-p map-

ping wherehy a erisp value s converled mlo a possibility vector with Ny elements.

Definition 5.2 Define o' as the defuzzification operalor which is the Ny, to 1
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mapping whereby a possibility veetor is coverted into a crisp value.

Then the next prediction is given by

Vb4 =V(k+ Dol (k—d—1oR (5.4)

where {'(k +1) = (fn,")“‘(\\'(k + 1)). By applying the same procedure morve pre-
dictions can be made. It is obvious that even for the minimization of (5.1) a
multi-step prediction may be required.

All existing identification algorithms attempt to obtain a good single step
prediction. For example, linguistic identilication mel hods st as those by Pedryez
(1984), Xu (1987), Shaw & Kriiger (1992), Chen (1994) and Bourke (1995) would
loarn a first order fuzzy relational equation by processing fuzzy data Y (k), Y (k=1)
and Uk —d—1) for k =d +2, d 43, ..., N. No effort is made to optimize the
relational matrix over some prediction horizon. The same can be said about nu-
merical identification algorithms such as those by Pedryez (1983, 1991) , Valente
de Oliveira (1993) , and Tkoma el.al. (1993) whick estimates the relational matrix
based on some objective function. The objective function used by Pedryez (1983)

and Tkoma ef.al. (1993) has the following form.

1 - , . ,
J=3 S [ Yk +1) =Yk +1]k) 1 (5.5)
k=d+1
for i = 1,2,..., Nyy where Ny, is the number of referential fuzzy sets in Y.

The neuron-based schemes by Pedrycz (1991) and Valente de Oliveira (1993)
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maximizes an equality index and the objective function is expressed as

N
L= S [Vik+1)=Yik+11k) ] (5.6)

k=d+!

fori =1,2,..., Ny, and = denotes the equality index. A common feature in equa-
tions (5.5) and (5.6) is that the model parameters are that which gives a good
one-step ahead prediction. A good single-step prediction does not guarantee that
the multi-step prediction is good. Hence, none of the above mentioned schemes
is really designed for use with a fuzzy predictive controller. For algorithms which
maximize or minimize an objective function, a new objective function which con-
siders a multi-step ahead prediction must be included.

In general, all fuzzy relational predictive controllers to date have a control

objective which is a subset of the following objective function :

N2

Jepe =Y [ yplk +j) — vk +J) )? (5.7)

j:}\’]

For Bourke (1995) and Postlethwaite (1994), Na is equal to d + 1 and
d + 2 respectively. For the Fuzzy Relational Long Range Predictive Controller
(FRLRPC), N, and N, would correspond to the prediction horizon. Following
the development of the LRPT for conventional Generalized Predictive Controllers

(Shook, 1991), (5.7) can be written as :

Na Na
Jere = Y [ysplk + ) = 9k + jlk) I+ [y(k +j) — 9(k + jlk) I?
=N =N
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-2 [ yep(k +4) = ik + J1k) ] [u(k +0) = gk 4 K] (B.8)

The first and second term m (5.8) corresponds to the objective function for
the control and identification algorithm respectively. So the optimal identification
method for the control objective must provide the model which predicts best over

I, steps. The identification objective is then given by

Ny

Tip=S Lulk+.0) — otk +jlk) | (5:9)

J=N

Since the model in a fuzzy predictive controller deals with fuzzy values

in tcad of crisp measurements, (5.9) must be modified to

N

Jrrini = Z [ Yi(h -+ ) ) = Yi(h + k) ) (H.10)

i= Ny

fori=1,2,..., Nys where Ny is the number of referential fuzzy sets in Y (k).

5.3 A Necuron Based Predictive Identification
Algorithm (NBPI)

The neuron based identification algorithm as presented by Pedryez (1991) and
Valente de Oliveira (1993) involves the maximization of the following performance
index

Z [Vi(k+ 1) = Yi(k+ 1|k} | (5.11)

k=d+!
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fori =1,2,..., Ny, where i dentoes ithe i referential fuzzy set and = indicates

the equality index. The interpret ation for the equality index is given by

(=)= LI S TIAG ST S AT ST

ot
—
[S%)
~—

where — is the implication specified between two membership grades and ~rep-
resents the negation. This equality index is a .acasure of the similarity between
two membership grades and hence, in fuzzy relational identification, it is desired
that the equality index be as hign as possible at any time for all elements in the
output possibility vector. By selecting the implication to be represented by the

Lukasiewitez implication, (5.12) is reduced to

L+Y =Y ity >Y
Y=Y)={ 147 -V ifY <Y (5.13)

1 iy =Y

To incorporate a long range predictive capability into this algorithm, 5.11

can be reformulated to

NNy Ny )
=3 % Dik+j) = Yilk +jlk)] (5.14)
k=d+1 =1
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Rewrite (5.14) as

= > Y [Yik+)) EAMUESIISIEDY STIYk ) ) = Yok 4 JlA) ]

K oivVieY; koy sy,

+3 Y (vik+i) = Yik + k) ] (5.15)

ko e {",':Y.'

Then applying (5.13) to (5.15) and taking the derivative with respect Lo a generic

clement in R, denoted by R(:) vields

0.J; aY;(k + jlk) OYi(k + jlk)
- ______..__ 5.16
oR() g oR () ?,:‘Z‘ OR(-) (5:16)

where Yi(k + jlk) for a first-order relational equation is found by :

Nu Ny
Vik+ilk) =1V V Ul (k4 j—d—=1) Y (k+ j—1{k) )1 Ryni) |V v

h=11la=1

where v; is the bias term and [ is a {riangular-norm operator.  The bias t m

is incorporated to ensure that each Y;(k) produces significant output. Details of

calculating the predicted output were discussed in the previous section. Therefore,

oVik+ilk) _ ANk +ilk)

OR(") OR;yj25
anf:m Ui (k+j—=d=1)1 Vig(k 4 j = k) & R3]V i
= ﬁ if &, is true
| 0 Otherwise
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where

Nie Ny,
V \/[[/Il\+/—(1—])/3]2(]\+/—])/Rll121]>l/,

h=1lh=|
and

\/ V [ Ull(k +5=d=1)1 ’A;z(l"“/ = 1) L Ruygi ] <
hi#iy l2#52
[Uj(k+j—d=1) t Vi (k+j = 1) { Ry |

The gradient of J; with respect to the bias terms, v; must also be calculated.

Taking the derivative with respect to v in (5.15) vields :

0.J; oY; (l. +J|A OY;(k + jlk)
D D I e D DD Dy v

0" VY

where

0{;(}\ +}|}') B 1 if I‘,- is true

ov,
0 Otherwise
where T is defined as :
Ny Ny
\/ V[L’h(" +j—-d=1)t 3,2(1.* +j=d=1) 1t Ry S v
Li=1 =1

Model parameters are updated by

HJrH! oJ?
+1
R?uu = R’;l]z] + Mjijaj [ m + O'jljzjm ] (6.17)
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and,

oI+t DI

p+1 r
L= : + 0=
! ! | v, "Ov,

] (5.18)

where Rj,j,; indicates the j,joj™ entry of the relational matrix and p is the iter-
ation namber, 7 is the learning rate and a i< the momentum term.

Although convergence difficulties have been citied as a drawback of nu-
merical identification algorithms such as this one, this problem can be quite casily
remedied. A linguistic fuzzy identification algorithm can be used to obtain an
initial estimate of the relational matrix and conservative tuning parameters can
be used. This usually results in significantly faster convergence. The simple vet
effective linguistic algorithm by Pedrycz (1984) is recommended.

However, the computational requirenients for this algorithm are still quite
high and may not be a good candidate in an on-line implementation. A compu-

tationally cheaper algorithm is sought.

5.4 Fuzzy Relational Predictive Ider:tification
(FRPI)

With the objective of identifying a model which gives optimal predictions over
some prediction horizon for GPC, Shook et al. (1991, 1992) proposed ¢ he following

objective function :

1 N-N2 1 N2 ,
JirPI = T 22 + ) = plk -+ Gk 1P 5.1¢
LRPI = TN, 2 ijg.[y(k b)) — ik -+ jlk) ] (5.19)

where N, = Np = N; + 1. N, and N is the prediction horizon. In the fuzzy
P
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domain, y(k) is represented by its possibilitv vector. Hence, (5.19) becomes

N-Nz 4 N2 Nya )
Trrrt = i 0o o O 2 Vilk+d) = Vilk+lk) ] (5.20)
Ny k=) P j=N; i=|

Here V; is the predicted membership grade for the it" element of the possibility

vector. Rearranging (5.20) vields,

Ny, 1 N--Ny N
Jr = L — -Y; (k k) 3.21
Irrp1 ;Np-(N——NQ) AZ:I ;[3(’~+l) +jlk) I° (5.21)
1= =1 j=N
Then,
Ny
Jrrpr = Z JrrPI1,;
where
N--Ny N,
J ".=————————— k+}—¥ (k + jlk) 5.22
FRPI N, (N - M) I.Zl ,—ZN k) )2 ( )

Minimization of Jrrp; involves the minimization of each Jrrp1, fori =1,2...., Nys.

Let

ek + ) = Yilk +j) = Yilk + jlk) (5.23)
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forj =N, Mi+1,..., No. And further define

(',‘(’\7 + ‘\"; )

ik + N+ 1)
eilk) = (5.24)

L eilk + Na)

Then (5.22) can be rewritten as

1 " ;
= = (k) eilk 5.205
JrrpI,; NN =) ?_::l £ (k) (k) (5.25)

A recursive prediction error identification method can then be applied on
(5.25) to obtain the model parameters. Details of such a method can be found in

the literature, for example, see Soderstrém & Stoica (1989). Further denoting

Oe;(k
wlk) = 1252

OR,'(L‘+N1) ('72;([.‘+N|ﬂ . ('hf,'!l\'—f-N-z) W

o0 a0y a0y

de;(k+Ny) e (k+N+1) :
_ a0, s ; ) (r) ()G)

dei(k+N1)  Oei(b+N 1 +1) | Qe (k4 Na)

0, ;i 0q ; ) My i

01,024, .+, 0n; are the relational matrix elements which gives the it membership

grade for Y ie. ;. For example, in a first order fuzzy relational equation as given
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by

Vik)=Y(k—-1)oUlk—d- 1)oR

with Ny, Ny1, Ny referential fuzzy sets in U(k —d—1),Y(k—-1) and Y (k),
respectively, R would be a Ny x Ny, x Ny, matrix. The possibility vector for

Y (k) is found via

Ni: Ny
Vitky= V| V [Ua (k= d=1) 1 Vi (k= 1) £ Ripi (5.27)

i1=112=1

fori=1,2,..., Nya. Then Ry, is now a Ny X Ny, matrix in the following form :

Rll,i R|2‘i Ri:\'n.i

RZl,i R??,i Tt R2 Nyi.

LR.’Vul,i RNU’Z.i RNUNHJ'

01 Ba.i KRN

BNy +14 BNy +2.i cor Oanyy

LONY‘I(NIY—l)"'l.i 0NY1(NIV—1)+2.i BNU*NYhi

n as defined in (5.26) is Niy X Ny. The elements in (5.26) are found as follows :

Oci(k + j) _ 60,—
96i() ORpgi



_OYi(k + jlk)
(7qui

- “al? [V V Gk =d=1+ eV, =10 R,
pq1 1#Ep 12#q

\V (Up(k = d =1+ .j) o Yg(k = 1) 0 Rpgi) |

If the triangular-norm operator in (5.27) is the product, then

des(k +3) Up(h —d =14 ) Yok = 1) if €, is true.

a0;(-) . .
0 if T, is true

where Q; is defined as

(Up(k—d_] +/)};I(L_])qu1) > ( \/ \/ Un(k—d—] *‘/)Yt:(,"—] +.j)'Rin-zi)
H#EP 12749

and T, is defined as

(Uy(k—d=147) Yok =1)-Rogi) < (Y V Ui (k=d=1+5) Vi, (k-1 +7) Riyigi)
iL1#p i27¢

The above analysis ar plies to other triangnlar-norm operators and to higher
. . - dei(k + 4
order fuzzy relational equations. Tt is important to note that for INE there
2

is usually only one non-zero value. Equation (5.28) is undefined if

(Uy(k—d=1+4)-Yy(k=1+j)-Rpgs) = (V V Ui, (k=d=145)-Yi, (k=1475) R i51)-
i1#p 12#9

To overcome this problem, one approach is to approximate the maximum function
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Figure 5.1: Effect of k on Sigmoid Furction

by some smooth function. Following in the approach by Tkoma el al. (1993), the
max function is replaced by the sigmoid function. Equation (5.28) becomes

) Up(k —d =1 +_j)-3‘},(kf—1)-—-L(mT if Q, is true.
S 1+em o7 (5.29)

0 if T, is true

Gl
o6,

where
r=Upk—d—14+j) Yy(k—1+)) * Rpgi
o=\ VUik=d=1+]) Yk =1 +) Rui
150 D2#q
k is used to control the shape of the function. The effect of & on the shape of the
sigmoid function is shown in Figure (3.1).
The update equations for the recursive prediction error method can then

be used to obtain new cstimates of the relational matrix elements. The update
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equations as given by Soderstrém & Stoica (1989) are

O(k) = B(k — 1) + K, (k) - = (k)

Ky(k) = Pk = 1) ei(h) [T+ el ) - Ptk = 10 th) 1
Pik) = Dk = 1) = K;(k) - o[ (k) - Po(k = D) (5.30)

Summary of Algorithm :

For the i" element in the output possibility vector

—

. Caleulate ¢;(k + j) according to (5.23).

Q)

. Determine CNpand i = 12,0000 Ny

3. Form v; which is defined by (5.26).

SN

. Update elements in R according to (5.30)

5.5 Results

To evaluate the proposed identification algorithms namely the NBPT and FRPI
algorithms, two data sets were used which are the Box-Jenkins gas furnace data

set and the simuiated pIl neutralization data set of Tlall & Sehorg (1989).

5.5.1 Box-Jenkins Gas Furnace Data Set

The Box-Jenkins gas furnace data set is often used as a benchmark in fuzzy
relational identification. This data set consists of one input and one output. The
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Table 5.1: Mean Prediction Frvor For Box-Jenkins Data

No. of Prediction S((‘[).\ 'I',’.\'l?l‘l .l-_»‘,.'“p, .]1)”\')“:;“
1 00720 | 0.2607 | 01528
3 01953 | 04960 | 0.7867 J

input is the gas flowrate into the furnace while the output is the O concentrat on
of the exit gas. Single step and three steps ahead predictions were made. A\
measure of the quality of the model s determined by computing the mean squaved

prediction ervor which is given by

1 Al : 12
Jo = -X,—:'—d—:_]‘ k;g[ !/(l') - !/(}') |

As a comparison basis. the algorithim of Shaw & Nriger (1992) was also used
to build the relational matrix, and the one and three steps ahead predictions
are made. Figure (5.2) and Figure (5.3) shows the single step prediction of the
NBPI and FRPI respectively. The three steps ahead prediction using NBPI and
FRPI are shown in Figure (5.4) and Figure (5.5) respectively. Also inchided in
all the figures is the output predicted using Shaw’s scheme. The computed mean
squared prediction error for all three methods are summarized in Table (H.1).
The two proposed algorithms give better results than Shaw's algorithin even for
a single step prediction. As expected when the number of prediction steps is
increased, the accuracy of the prediction deteriorates (Pedryez, 1993) but the

proposed algorithms continue to outperform Shaw’s algorithm.
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Table 5.2: Mean Prediction Ervor for Simulated pll Process

No. of Prediction Steps || Joxprer Jo rrrr | J2.shaw
4 0.0055 | 0.0028 | 0.0049

5.5.2 pH Neutralization Data Set

The pll neatralization process offers a challenge due to its highly non-lincar be-
haviour. The control of pll is of greal interest as it is encountered in many
chemical processes. The simulated neutralization process is depicted in Figure
(5.G). The base and buffer flowrates were kept constant which reduces the identi-
fication problem to the SISO case. The output is the pIl and the input is the acid
flowrate into the stirred vessel. A four steps ahead prediction was miade and the
rosults are shown in Figure (5.7). Table (5.2) shows the mean squared prediction

ervor for the three methods.

5.6 Convergence Properties

Convergence difficulties arise due to a poor choice of tuning parameters and/or
a poor initial estimate of the relational matrix. Therefore, a good identification
algorithm should give good predictions and at the same time be relatively robust.
Figure (5.8) and Figure (5.9) shows the mean prediction error versus the iteration
number of the NBPI and FRPI method, optimized over a prediction horizon of one
with different initial guesses for R. The FRPI approach converges much quicker

than the NBPI method. For batch identification especially for a very lengthy data
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set, the ease of convergence can rosult in a substantial reduction in computational

time.

5.7 Conclusions

Based on the identification results from the previous sections, it can be concluded
that the FRPI approach is indeed an offective fuzzv relational identification tech-

nique. Tts advantages include
e The prediction error is minimized over a prediction horizon
e It is a practical on-line scheme due to its recursive formulaiion

e It offers rapid convergence and is relatively insensitive to initial guesses of

the relational matrix.

Although the NBPI technique gives a comparable performance to the
FRPI, its utility is somewhat limited as it processes data in a batch sense. It
s also more sensitive to the initial guess of the relational matrix and convergence

is slower.
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Chapter 6

Adaptive Fuzzy Relational
Predictive Control

6.1 Introduction

There are certain control problems in which conventional control strategies have

proven to be inadequate. These problems have the following characteristics :
e The process has fuzzy or imprecise measurements
e The process is poorly understood and highty complex

e The process is opcrated manually

Fuzzy logic based controllers have been used to contral processes with the above
characterics. There are two types of fuzzy controllers  rule-based and relational-
based. This chapter dwells into the issues of identification and design of fuzzy
relational controllers for processes with the above mentioned characteristics.
Rule-based fuzzy controllers have been more widely used and in many cases
have met with a high degree of success (c.g. Roffel & Chan (1991) and Oishi et al.
(1991)) . These controllers utilize a set of “TF-THEN" rules involving linguistic
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values as its control strategy. However. a svstematic controller design procedure
Goes not exist. Controller design is intuitive and iterative. When a large number
of variables are involved, this controller design procedure may be time-consuming,.

A systematic identification procedure exists for Mmzzy relational niode!
This leads to an orderly design met hodology for model based controllers. This
aspect of fuzzy relational models have led to the development of fuzzy relational
controllers.  Some of the more notable fuszv relational controllers are those of
CGiraham & Newell (1938). Postlethwaite (1994). Valente de Oliveira & Lemos
(1995) and Bourke & Fisher (1996).

The main contribution of this chapter is a systematic theoretical and ex-
perimental evaluation of adaptive fuzzy relational predictive controllers especially
those by Postlethwaite (1994) and Bourke & Fisher (1996). The performance of
ihe above mentioned controllers are ovaluated experimentally on a highlv non-
linear process. In addition, the offoctiviness of different on-line fuzzy relational
identification schemes namely those by Shaw & Kriiger (1992) and the Fuzzy
Relational Predictive Identification (FRPT) algorithm will be investigated when

implemented with the fuzzy controllers.

6.2 Fuzzy Relational Identification

A fuzzy relational model is required for all fuzzy relational predictive controllers.

The fuzzy relational identification procedure is summarized as follows :
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e Detormine an operating region and solect the universe of discomse of cach

variable.

e Scloct the shape and size of membership function for hoth input and output

vaviables.

e Collect input-output data over range of intevest.

e Fuzzify input-output data.

e Sclect time-delay and nodel order.

» TFstimate parameters of relational model using an appropriate fuzzv rela-

tional identification technigue.

e Validate model.

Some of the identification algorithms in the literature include Pedryez
(1983, 1984, 1991), Shaw & Kriiger (1992) and Tkoma ef al. (1993). The iden-
tification algorithm by Shaw & Kriger (1992) estimates the parameters in the
relational matrix by treating cach entry of ihe relational matrix as the possibil-
ity of obtaining an output referential fuzzy sct given a referential fuzzy set for
cach state and input variable in the relational equation. For a first order fuzzy

relational equation such as the following

Yk =Yk -1)ol (k- d—1)o It

N



where Y(+), U(-) are possibility vectors, R is the relational matrix and d is the
time-delay. 2 is computed from

Nee Nya Nya

N
)3 (T = d = 1), 350k = 1), Yi(k)

f=d4?2 I=1 j=t 1=1

N Nu \Y i
S I (Cy(k —d=1),Y;(k—1))
L=d+2 I=1 j=!
The FRPI algorithm is a numerical fuzzy relational identification algorithm
which optimizes the relational matrix, R. such that the prediction error is min-

imized over some prediction horizon. The objection function for FRPI is then

expressed as :

-N\2 N2 Ny2
Jrrp1 = Z — 3 Y[ Viik+J) ) = Yilk + jlk) ) 12
- Ny iz ]\p 3=N i=I

where N, = N =N + 1. N, and N, is the prediction horizon. Y; is the predicted
membership grade for the i" olement of the possibility vector and Ny is the
number of elements in the output possibility vector. Using a recursive prediction
orror method, the parameters in R which minimizes Jrrpr can be found.

Upon successful completion of the identification procedure, a fuzzy rela-
tional model will be available. The same membership functions chosen for the
identification procedure must also be used for the controller since the fuzzy model
was defined with respect to the membership functions used in the identification

step.
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There is an important didercace between on-line fuzzy relational identifica-
tion and conventional identification schomes. Conventional identification schemes
assume a model and as the adaptation proceeds, the parameters of the model
are refined to become increasingly accurate Although the madel may be inae-
curate, it is complete. and can alwavs be used to predict. Fuzzy identification
starts with an empty model and no predictions can be made. When some data
are available, cnly the part of the input-output space where the data is found will
be updated. Therefore a funzy model may give pood predictions at some parts
of the operating regime and yet give meaningless predictions in others. A model
which exhibits this deficency is known as an incomplete model. No analysis tools
exist to guarantee that a given model is complete. Therefore it is desirable to
collect open loop data which covers the entire operating range and obtain a model
before implementing the controller. In addition, it may be wise to incorporate an
on-line fuzzy relational identification scheme with the ebjective of maintaining a

complete and accurate modecl.

6.3 Self-Learning Predictive Fuzzy Controller
of Bourke (1995)

The Self-Learning Predictive Fuzzy Controller (SLPFC) is a SISO (d + 1) step
ahead predictive controller where (d + 1) is the time-delay of the process (zero-
order hold included). This controller utilizes two fuzzy relational models — a

dynamic model and a steady state model. A control action is found from each .
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model and a combination of the two is selected based on the magnitude of a user-
specified tuning parameter, o. The control action to be implemented at the k'

instant, w(k) is caleulated via,

ulk) = o - gain (k) + (1 = o) < Udyne(K)

where iy (k) and tgyne (k) are the control action as given by the steady-state and
dynamic model respectively. tgein (k) which corresponds to the mean-level control

action is calculated as follows :

Ugain(k) = Vip(k + d+1)eG (6.1)

where Uggin and Yip(h +d+ 1) ar tiie fuzzy values of ugqin and yp(k+d + 1)
respectively. G represents the fuzzy mapping between steady-state values of the
output and manipulated valuns,

Ugyne (k) is the deadbeat control action and is calculated by minimizing the

following objective function :

Jsrpre = |ysplk +d+1) =gk +d+ 1) (6.2)

A numerical search procedure must be used to compute Ugync(k), and the heuristic
search technique which was used involves the manipulation of the fuzzy vector
Ugync(k) to minimize (6.2). Details of the controller can be found in Bourke

(1995). Figure (6.1) shows a block diagram of the SLPFC.
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6.4 Fuzzy Relational Long Range Predictive Con-
troller

The Fuzzy Relational Long Range Predictive Controller (FRLRPC) is designed
to minimize the error over a multi-step prediction horizon. This is similar to
the objective of conventional Long Range Predictive Controllers (LRPC) which is

expressed as

No Nu
Jirpe = 3 (splk + ) — 9k + NP+ oA Auk+i—1)° (6.3)
=N =1

where N, and N, is the prediction horizon and N, is the control horizon. The
FRLRPC described here was proposed by Postlethwaite (1994). Postlethwaite
(1994) used the fuzzy relational model instead of a discrete linear input-output

model and minimized the following objective function :

N2
Jrrirre = 3 (usplk +3) — 9k + )2 + Mu(k)? (6.4)

=N

However, Postlethwaite (1994) restricted N, to be Ny + 1. To minimize (6.4) a
numerical scarch technique must be used. Valente de Oliveira & Lemos (1995)
provided a method to determine the gradient of JrrLrpc With respect to u(k)
and presented simulation results for N, greater than Ny +1. Computing the opti-
mal control action via a gradient-based search method is computationally expen-
sive. To circumvent this problem, search methods which use function evaluations

only are considered. Postlethwaite (1994) used the Fibonacci search method. Fi-
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bonacei's search is a highly efficient search technique which arrives at the optimum
in a fixed number of function evaluations. To achiove a resolution of 1% of the
mauipulated variable vinge, cloven function evaluations are vequired.

The block diazram of the FRLRPC is shown in Figure (6.2).

e(k) = u(k) = u(k)

E(k) = fo- E(k = 1)+ (1 = [} - ¢(F)

and

“(k) = fu . “(k’ - ]) + (] - .fu) : “n(k)

6.5 Remarks about Fuzzy Relational Controllers

6.5.1 Offset

From a philosophical perspective, “zero-offset” should not be an issue in fuzzy
control. It is unreasonable to measure the performance of fuzzy controllers using
the same indicators as conventional control strategics since fuzzy controllers are
supposed to coriplement conventional control strategies in areas where conven-
tional control strategies have proven to be inadequate.  Therefore, it does not
seem reasonable to apply the same performance criteria to fuzzy controllers and
expect to get results which will be classified as good when viewed from a conven-

tional control strategy standpoint. 1ne fuzzy equivalent of an offset free response
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should be when the output tracks the setpoint in the same membership function.
Tracking within the same membership function does not mean that the output
and setpoint are equal.

From a conventional control point of view one can sce that for fuzzy ve-
lational controllers no explicit integrator exists for offset elimination. This was
evident from the results of the SLPFC of Bourke (1995) when offset was observed
in some of the closed-loop experiments. This can be attributed to the fact that
in fuzzy relational models, the estimated process output, Y (k) is a function of
the value of the manipulated variable, e U (k). A numerical search procedure is
used to calculate the control action, u(k), not the change in control action, Au(k).

If Aw(k) were determined, then an integrator would be present in the controller

u(k) = -/]S -f

where [ is some function and the offset for step inputs would be climinated. For
the FRLRPC, the minimization of (6.4) does not yield the increment in control
action. An alternative approach is to adjust the process model so that the caleu-
lated control action, u(k), will cause the process ontput to approach the desired
value, i.e. drive the offset towards zero. This can be achieved by the incorpora-
tion of an on-line fuzzy relational identification scheme into the controller. The
model has to be adapted such that offset is climinated, 2.e. a biassed gain may be

estimated to remove or reduce offset.
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6.5.2 Stability

Another concern regarding fuzzy controllers is the difficulty in proving their sta-
bility. P . “hwaite (1994) argues that since conventional controllers use linear
proofs which cannot really be applied to non-lincar systems, and more impor-
tantly, it is impossible to prove that a particular process model really represents

the actual process then the issue of stabilitv should not be considered as a major

problem for fuzzy controller

6.6 Simulation Results

Bourke (1995) conducted extensive simulation studies on the SLPFC, hence, no
further simulation rv s will be performed. Although Postlethwaite (1994) and
Valente de Oliveira & Lemos (1995) have both conducted some closed-loop exper-
iments using the FRLRPC, the ability of the FRLRPC in rcjecting unmodelled
and unmeasured disturbances has not been studied. In the following, both servo
and regulatory performance of the FRLRPC will be investigated on processes

which might be encountered in the chemical process industries.

6.6.1 pH Neutralization Process (Hall and Seborg (1989))

pll neutralization processes are often found in chemical processes. The highly
non-linear behaviour makes it a very challenging control problem. A schematic
diagram of the pIT neutralization process of Hall & Seborg (1989) is shown in Fig-

ure (6.3). For simplicity, a SISO control problem was considered for this study.
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Figure 6.3: Schematic Diagram of pIT Neutralization Process

The controlled and manipulated variables were eflluent pIt and acid flowrate re-
spectively. The base and buffer flowrate were kept constant, and the level in the
tank is not controlled. An urmodelled disturbance in the form of a variation in
the base flowrate is introduced into the process to avaluate the regulatory perfor-
mance at { = 2700 s (180" sampling interval). A process model was identified
off-line via the FRPI algorithm prior to the start of the closed-loop runs.

Figure (6.4) shows the servo and regulatory performance of the controller
with FRPI as the on-line identification algorithm. The controller parameters as
implemented in Figure (6.4) are Ny = 33 2=0, f.=09 and f, = 0.1. Overall,
the controller is able to produce a good servo and regulatory performance.

Figure (6.5) shows the servo performance of the FRLRPC with FRPT im-
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Figure 6.4: Servo & Regulatory Performance of FRLRPC in pH process

plemented while Figure (6.6) shows the controller performance without an on-
line identification algorithm. The controller parameters for both these cases are
Ny=3,1=0,f =09 and f, = 0.1. In Figure (6.5) the offset was finally elimi-
nated with time but for Figure (6.6) the offset remained constant. Therefore, it is
clear that the on-line identification algorithm eliminates offset. The on-line iden-
tification algorithm improves the model accuracy around the set-point such that
any departure from the set-point can be detected. However, there is no guarantee
that the incorporation of an on-line identification scheme will always eliminate

offset.
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Figure 6.7: Performance of FRLRPC in McIntosh's Process (N2 =3)

6.6.2 High Order Process (MclIntosh (1987))

The third-order lincar process of McIntosh (1987) has the following transfer func-

tion :

1

G(s) = (s+1)(3s+1)(5s+1)

A first-order fuzzy relational model was used to approximate this process which
was identified off-line with the FRPI algorithm prior to the start of the closed-
loop run. A disturbance was introduced at ¢ = 320s. The servo and regulatory
response of the FRLRPC with FRPI as the on-line identification algorithm is
shown in Figure (6.7) where Np = 3, A=0, f,=09and f, =0. The controller

performs well even in the presence of model plant mismatch.
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6.7 Experimental Evaluation of Non-linear In-
teracting Tanks

The interact..g tank apparatus consists of a pair of glass vessels connected by
a manually adjustable valve (resist ance). as shown schematically in Figure (G.R).
The objective is to control the level at the conical section of the first tark by
manipulating the inlet water flowrate to the firsttank. This results in a highly
non-linear behaviour. Fignre (6.9) shows step ~hanges on the process; approxi-
male process gains are listed as functions of level in Table (6.1). A paranetric
change in the process can be introduced by changing the poesitions of the ad-
justable valves at the outlet of either tank. This can be viewed as a disturbance
in the process because in open-loop, an immediate chang. in liguid level will be
observed. Nominal operating conditions for the interacting tanks are tabulated in

Table (6.2).

Table 6.1: Approximate Gains of Experiment

Tevel (cm) | Gain (em/%)
12.1 -13.5 0.39
13.5 - 16.7 1.11

As mentioned earlier, the purpose of the experiment was also to assess the
impact of different on-line fuzzy relational identification techniques on controller
performance. The on-line algorithms which are to be evaluated include the FRPI
algorithm and the algorithm by Shaw & Kriiger (1992). The model was first

identified by the algorithm to be ovaluated on-line before starting the closed-loop
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Table 6.2: Nominal Operating Conditions for the Interacting Tanks

Pump Speed H0%
\alve Dosition 0%
Level 14.5 ¢m

runs.

A number of set-point changes were made and then a “disturbance™ was
introduced at the 160™ sampling interval (/ =1600 ). Figure (6.10) and (G.11)
shows the performance of the SLPFC implemented with Shaw’s identification
algorithm and FRPI algorithm respectively. Using the FRPI algovithm, the per-
formance of the FRLRPC with a prediction horizon of 2 and 3 are shown in Figure
(6.12) and (6.13) respectively. For the FRLRPC with a prediction horizon of 3,
Shaw's identification algorithm was implemented and shown in Figure (6.14). Fx-
cept for Ny the rest of the controller parameters for all of the above three runs
are identical, i.e. A =0, fo = 0.9, fu = 0. Table (6.3) summarizes the mean
squared error (MSE) for all the experimental runs. Each run seen in Table (6.3)
was repeated at least three times and the MSE varied by less than 0.01. The MSE
tabulated are the least of all the runs made.

From Table (6.3), it is evident that the FRPI does offer some improvement
in control performance. The improvement is most pronounced when the predic-
tion horizon is longer 7.e. when using the FRLRPC with N, = 3. An offset was
observed at certain periods of the experimental run when using the FRLRPC with

Shaw's scheme. As mentioned earlier, the on-line identification algorithm should
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improve model accuracy and climinate offset. So it is shown here (Figure (6.14)
that the conflict in identification objective (1-step prediction) and control objec-
tive (3-steps prediction) can sometimes lead to a significant decrease in fuzzy re-
lational controller performance. In other words, the model obtained using Shaw’s
scheme gave good single step predictions but very poor long-range predictions
which resulted in the poor control performance. Tt r:ast be pointed out that the
doterioration in controller performance when using a single step identification ob-
jective may not always be as severe as seen here. The highly non-linear behaviour
of tha process may have magnified the shortcomings of single step identification
algorithms.

The aggresiveness of the controller output for both controllers can be fur-

ther reduced if desired. For the SLFPC, this is achieved by increasing a. Increas-
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Table 6.3: Mean Square of Ervors for Experimental Runs

Controller M SEshanw | MSErRP:
FRLRPC (N, =2) 0.5281
FRLRPC (N, = 3) 0.6456 0.4501

SLFPC 0.4850 (. 4408

ing v increases the weighting on the output given by the steady-state model and
detunes the controller. For the FRLRPC. a detuned controller performance can be
achioved by increasing the prediction horizon or filtering the control action. Ac-
cording to Pedrycz (1993) the predictive capability of the fuzzy relational models
deteriorate rapidly with an increasing prediction horizon. Therefore, increasing
the prediction horizon may not be a good approach to detune the controller as
it may result in poor control performance. The effect of filtering the controller
output is presented in Figure (6.15) where except for [u = 0.3 the rest of the
tuning parameters arc identical to that used in Figure (6.12) . Based on the for-
mulation of FRLRPC, increasing A should also reduce the variance of the control
action. In conventional LRPC, a good choice for A is dependent on the process
gain (McIntosh (1988)). For a non-linear process especially when the process gain
varies greatly, a good choice of A is not obvious. Further research must be directed

at utilizing the A-weighting in the FRLRPC.

6.8 Conclusions

Experimental evaluation of servo and regulatory tracking of two fuzzy relational

predictive controllers namely the SLPFC (Bourke & Fisher, 1996) and FRLRPC
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mented.

(Postlethwaite, 1994) were performed. In addition, the effectiveness of on-line
fuzzy relational identification algorithms such as those by Shaw & Kriiger (1992)
and the FRPI algorithm were investigated.

The two fuzzy relational controllers were found to give good performance.
Based on the MSE, the SLPFC was slightly better than the FRLRPC. For on-
line fuzzy relational identification algorithms, the FRPI algorithm as proposed
in this thesis gave better control performances than the algorithm by Shaw &
Kriiger (1992). Tt was shown that the inconsistency between control objective and
on-line identification objective may lead to a significant deterioration of control

performance.
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Chapter 7

Conclusions

7.1 Contributions and Conclusions

Although rule-based fuzzy logic has been used to solve very difficult problems in
the area of process control, it is still difficult to svnthesize fuzzy logic controllers.
The difficulty is due to the number of parameters that must be decided, and the
lack of tools to facilitate this decision. As a result, the task of controller design is
often iterative and can often be time-consuming. The ability of relational-based
fuzzy logic to derive process models directly from input-output data leads to a
svstematic controller design procedure. The trial-and-crror inherent in fuzzy rule-
based systems is eliminated. Therefore, the relational-based fuzzy system is indeed
o~ attractive alternative to rule-based fuzzy logic. However, the study of fuzzy
~olational models in the context of process identification and control has not been
ve.v well-studied. Pedrycz (1983, 1984, 1991, 1994), Graham et al. (1988), Shaw

ef ¢. 7992y, Valente de Oliveira (1993), Postlethwaite (1994) and Bourke (1995)

116



have madc some contributions in this arca. The purpose of this thesis is to further
improve the effectiveness of fuzzv relational logic as applied to process cont rol and

identification. Some of the contributions made toward this end include:

7.1.1 Identification

Two fuzzy relational identification algorithms anned at giving accurate predictions
over a practical prediction horizon were developed namely — the Neuron-Based
Predictive Tdentification (NBPT) algorithm and the Fuzzy Relational Predictive
Identification (FRPI) algorithm. Based on the Box-Jenkins data set, both these
algorithms gave better predictions (single and multi-step) compared to the effec-
tive fuzzy relational identification by Shaw el al. (1992). The FRPT algoritin is

better than the NBPI because

e FRPI is formulated in a recursive fashion and is therefore, better suited for

on-line implementations.

e FRPI gives faster convergence rates.

e FRPI is relatively insensitive to the initial guess of the velational matrix.

As a comfirmation of the utility of FRPI, the algorithm was implemented on-
line to previde the model for fuzzy relational controllers. The fuzzy relational
controllers were used to control a laboratory scale process. The controllers with
FRPI gave significantly better performance in terms of sum of squares of error

compared to those using the algorithm by Shaw el al. (1992).
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7.1.2 Control

Two controllers paracly “hose by Postlethwaite (1994) and Bourke (1995) were
evalu: ‘ed experimentally on a jaboratory scale interating tanks process. Postleth-
waite nsed a prediction horizon of (d + 2) where (d+1) is the total time-delay of
the process. In this work. the prediction horizon of the controller was extended
and the controller was named as ~Fuzzy Relational Long Range Predictive Con-
troller” (FRLRPC). The performance of the FRLRPC was compared to Bourke's
Solf-Learning Predictive Fuzzy Controller (SLPFC). Both the servo and regulatory
(unmeasured disturbance rejection) properties of this controller were investigated.
The two controllers performed well under ex ~rimental servo and regulatory track-
ing. The performance of these two controllers was compared and the conclusion

was the SLPFC gave a slightly better performance.

7.2 Recommendations

There still rens. i1s some aspects of fuzzy relational logic which deserve further
rosearch before th types of controllers can be implemented in a real plant

environment.

7.2.1 Identification

Although the FRPT algorithm gives good results. it is conceivable that the pre-
diction ervor achieved may not be the global minimum. Therefore global mini-

mization techniques can be applied to solve for the relational matrix. However,
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global optimization schemes are known to he computationally intensive and may
not be a practical on-line identification met hod. 1t is important to note that even
if an alternative method which gives a global minimum can he found, the FRPY
algorithm can still be used as an on-line fuzzy velational algorithm. The underly-
ing assumption used in the recursive prediction error in FRP is that the initial
guess be relatively close to the minimum. So if a better initial guess is supplied,

the FRPT approact: shonad aventually converge or stay ai the global minimum.

The who vo~-n of fuzzy relational models must be excited to ensure
that the model is ¢.. incomplete meelis one that gives poor predictions
at certain parts of tne U space. Hewever, there still semains no tools to aid in

the design of the input sequence excitation during open loop test to ensure that

the model is complete.

7.2.2 Control

A key part of all fuzzy relational controllers is the optimization which calculates
the optimum process input. Again an optimization approach which guarantees a
globzl solution is sought. An additional demansi on this optimization approach is
that it be computationally efficient since a control action must be calenlated in a
finite amount of time.

One of the key differences between the SLPFC and the FRLRPC is the
presence of a steady-state model in the SLPFC. Since the SLPFC was found to

perform slightly better the FRLRPC, perhaps a steady-state model can be in-
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corporated into the FRLRPC. In addition, there is no explicit tuning parameter

(A-weighting in LRPC) to reduce the aggresiveness of the FRLRPC. Further re-

soarch should be done so that the A-weighting in FRLRPC can be fully utilized.
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Appendix A

Real-time Implementations

The real-time experimental evaluation of the Self-Learning Predictive Fuzzy Con-
troller (SLPFC) and the Fuzzy Relational Long Range Predictive Controller (FRL-
RPC) was implemented on a 486-33 computer. The SLTFC and FRLRPC were
implemented in LabVIEW and Real-time Matlab-Simulink respectively. The im-

plementation of the two controllers is described in the next section.

A.1 Self-Learning Predictive Fuzzy Controller

LabVIEW is a graphical programming language with a front panel and a block
diagram. The front panel is the interface between man and machine (program).
Hence, it contains various knobs and dials to enable different options to be entered
and also charts to show the state of the process under control. The block diagram
in LabVIEW is where the source code of the program is written. The simplified

block diagram of the SLPFC is shown in Figure (A.1).
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Fach block in Figure(A.1) is a sub-VT (sub virtual-instrument) which is
equivalent to a subroutine in text-based programming language. The function of

cach of those blocks are :
e (0 ID : Allows for the on-line identification of the relational gain matrix, G.
e FRPI : Identifies the relational matrix, R.
e Read Y : Contains the necessary driver files to read the process outputs.
e MS Pred. : Performs a multi-step prediction.

e Ilerate: Contains a heuristic numerical search technique that compr'es the

optimum deadhead control action.
e U AVG : Computes the control .wetion to be implemented.
e Write : Tmplements the control action on the process.
e Cirl Log : Stores the data of the experiment in a file.

In Figure (A.1), P is the covariance matrix in the FRPI algorithm, Fy is the
fuzzified measured value of the process, Prey contains all the previous process
measurements and implemented control actions and Neuy is the updated values

of Prey-.
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Figure A.1: LabVIEW Block Diagram of SLPFC
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Figure A.2: Matlab-Simulink Block Diagram of FRLRPC

A.2 Fuzzy Relational Long Range Predictive
Controller

The Real-time Matlab Simulink block diagram implementation of the FRL-
RPC is shown in Figure (A.2).

The Analog-Digital Converter (A DC) and Digiini-Analog Converter (DAC)
blocks perform the convertion from analog signals to digital signals and vice versa.
The actual control algorithm is written in a Matlab script file and is called from the
MATLAB Fen block. The Unit Delay block feeds back previous measured values
and implemeated control moves into the control algorithm. The % to V1 and 14

to Input1 blocks are calibration blocks which perform the necessary convertions.
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Appendix B

Matlab Script Files

The Matlab script files required torun the Fuzzy Relational Long Kange Predictive
Controller (FRLRPC) are listed below. The files include meontra.m and fibon3a.m
.T%eadmxmandcﬂxﬁxnﬁMsawnnmﬁmdtonmthomeanhﬁomﬂPnﬂkao

Identification (FRPI) algorithm.

function [Outl=m_contra(In);
%*********************************************************#***#*****#
Y% The input vector Im contains the following information in order :
% ysp, y(t), uopt, U_f, Y_f, Yhat_f, Yhat_fd, Idx_hat, yhat, FB

% Sizes are :

%“ysp = 1 x 1

%y) =1 x 1

% uopt = n2 x 1

% U_f =n2 x nref

Y% Y_f =n2 x nref

% Yhat_f = n2°2 x nref

% Yhat_fd = n2°2 x nref

% Idx_hat = n2°2 x 2#nref

% yhat = n1 x 1

Y“FB=1x1

Yt=1 x1

% R = nref~2 x nref

127



v p = nref~3 x nref"2

%

% The output vector (Out contains the following information in order :
% uwopt, U_f, Y_f, Yhat_f, Yhat_fd, Idx_hat, yhat, FB
%, Sizes are :

% uwopt = n2 x 1

¥ Uf = n2 x nref

v Y_f =n2 x nref

Y% Yhat_f = n2"2 x nref

Y Yhat_fd = n272 x nref

% Idx_hat = n272 x 2+nref

% yhat = nil x 1

Y FB=1x1
Yt=1x1

% R = nref~2 x nref

Y P = nref~3 x nref”2
tic;

global imfmid imfend omfmid omfend n2 nl Ki lambda gamma alpha up down;
global imfmid._ss imfend_ss omfmid_ss omfend_ss epsi dT

load mfn_4
nref=5;

% Extracting
[ysp,y,uopt,U_f,Y_f,Yhat_f,Yhat_fd,Idx_hat,yhat,FB,t,R,P]=extr1(In,
ni,n2,nref);

dT=t;

%, Fuzzify measured y value
Y_f(2:n2,:)=Y_f(1:n2—1,:);
Y_f(l,:)=trifuzz(y,omfmid,omfend);

% Update R and P

if t> n2
remain=rem(t,n2);

if remain ==

start = (n2-1)*n2 +1;
endd = n272;

else

start = (remain-1)*n2 + 1;
endd = remain¥n2;
end

% more (20)

% Yhat_f
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Y_id=Yhat_f (start:endd,:);

Index=Idx_hat (start:endd,:);

if t>15
[R,P]=adap(Y_id,Index,Y_f(1:n2,:),R,P,nref);
else
[Ri,P]=adap(Y_id,Index,Y_f(i:n2,:),R,P,nref);
end

end

%, Controller
remain=rem(t,nl);
if remain ==
pix=nl;

else

pix=remain;

end

MPM= y - yhat(pix);
FB = £ilt*FB + (1-filt)*MPM;

disp(t);
[utemp,Utemp_f,yhatn,yss,Yhat_fdn,Idx_hatn,Yhat_fn]=fibon3a(fneval,
uopt,U_f,Y_f(l,:),R,ysp,FB,sum_error,rate_c,G,O,filt?);

%utemp

yhat (pix)=yhatn;

remain = rem(t,n2);

if remain ==

start = (n2-1)*n2 +1;

endd = n272;

else

start = (remain-1)#*n2 + 1;
endd = remain*n2;

end

Yhat_f (start:endd, :)=Yhat_£n;
Yhat_fd(start:endd, :)=Yhat_fdn;
Idx_hat(start:endd, :)=Idx_hatn;
U_f(2:n2,:)=U_f(1:n2—1,:);
U_f(1,:)=Utemp_£;

uopt (2:n2) =uopt (1:n2-1);

uopt (1)=utemp;

% Increment time
t = t+l;
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% Restore output
[0ut]=restr1(uopt,U_f,Y_f,Yhat_f,Yhat_fd,Idx_hat,yhat,FB,t,R,P);

Y% Save R,P if required

Y% if t==t_end % Define t_end
Y% save Rspacel R P Out

% end

% Clock and pause
time = toc;
ptime=Sam_T-time;
pause on

pause (ptime);

end

function [ut,Unew_f,yy,yss,Yhat_fd,Idx_hat,Yhat_f]=fibon3a(feva1,uimp,
Uimp_f,Y_f,R,ysp,MPM,serr,rate_c,G,MPM2,filt2);
%**********************************************************************
Y function [ut,Unew_f,yy,yss,Yhat_fd,Idx_hat,Yhat_f]=fibon3(feva1,uimp,
Uimp_f,Y_f,R,ysp,MPM,serr,rate_c,G);

% Numerical search for optimum u in the LRPFC using Fibonacci’s method
% ut : optimum u

Y Unew_f : optimum u - fuzzified

Y% Yhat_fd : predicted output conditioned on time=t (fuzzy)

% uimp : implemented u sequences

%, Uimp_f : implemented fuzzy u sequences

v Y_f : fuzzy y from time = 1:t

Y R : relational matrix

% ysp : set-point

% MPM : Model Plant Mismatch

% yy : estimated output nl steps ahead
Y serr : sum of error

Y rate_c : rate conmstraint on input

v G : steady state relational matrix

%*********************************************************************
global omfmid omfend imfmid imfend n2 nl Ki lambda gamma gain

global omfmid_ss omfend_ss imfm.d_ss imfend_ss epsi

global dT neval

% Fill in implemented U’s

if nl==
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u={1;

else
U(1:n1-1,:)=Uimp_f(ni-1:-1:1,:);
end

% Set search region

if nargin>=9

h_bound = rate_c + uimp(1);
1_bound = -rate_c + uimp(1):
else

h_bound=1el?2;

1_bound=-1el2;

end

if size(imfmid,2)==3 Y% Triangular %
u_low=max(imfend(1,1),1_bound); % Low %
u_high=min(imfend(2,2),h_bound);% High%
else

u_low=max (imfend(1,1),1_bound); % Low %
u_high=min(imfend(2,1) ,h_bound); % Highl,
end

ysp_hat=ysp+Kikserr;

%k e ke ok
% . = total number of fn evaluations across search region

Yar o cora(l)-u_low;
et o (epsi* (uimp(1)-u_low)/(u_high-u_low)) ;

if n_low<=0

n_low=1;

end
n_high=epsi-n_low;
if n_high<=0
n_high=1;
n_low=epsi-1;

end

d_low=(uimp(1)-u_low)/(n_low+1);
d_high=(u_high-uimp(1))/(n_high+1);

for i=1:n_low
u(i)=u_low+i*d_low;
end

i=i+l;
u(i)=uimp(1);
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for j=1:n_high

i=i+l;
u(i)=uimp (1) +j*d_high;
end

for ii=1:epsi+l

22=U;

tvec=trifuzz(u(ii),imfmid, imfend) ;

22=[2Z; tvec];

for jj=1:n2-nl

Z22={2Z; tvec];

end
JZ(ii)=djdu_ssZ(R,Y_f,ZZ,MPM,ysp_hat,uimp,G,MPMQ);
end

[Jz_min,Jz_idx]=min(JZ);
if Jz_idx==
u_high=u(Jz_idx+1);
elseif Jz_idx==epsi+l
u_low=u(Jz_idx-1);

else

u_low=u(Jz_idx-1);
u_high=u(Jz_idx+1);

end

3,

Y Fibonacci Search Foli-ws °

U_1£ft=U;

U_rgt=U;

if (u_high-u_low)>le-8

FN=[1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765] ;
% Set up region for Fibonacci search %

TOP=feval-1; BOT=feval+l;
delta=(u_high-u_low)*FN(TOP)/FN(BOT) ;
x_1ft=u_low+delta;

x_rgt=u_high-delta;

fprintf (’x_1ft = %g ; x_rgt = 4g \n’,x_1ft,x_rgt);

% fprintf(’u_low = %g ; u_high = g \n’,u_low,u_high);

tvec_lft=trifuzz(x_1ft,imfmid,imfend);
tvec_rgt=trifuzz(x_rgt,imfmid,imfend);
% pause;
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U_1ft=[U_1ft; tvec_1lft];

U_rgt=[U_rgt; tvec_rgtl;

for j=1:n2-nl

U_1ft=[U_1ft; tvec_1ft];

U_rgt=[U_rgt; tvec_rgtl;

end

[J_1ft,y_1  ss_1ft,Yid_1ft,Idx_1ft,Yud_1lft]l=djdu_ss2(R,Y_f,
U_1ft,MPM,y  aat,uimp,G,MPM2);
[J_rgt,y_rgt,yss_rgt,Yid_rgt,Idx_rgt,Yud_rgtl=djdu_ss2(R,Y_f,
U_rgt ,MPM,ysp_hat ,uimp,G,MPM2) ;

TOP=TOP-1; BOT=BOT-1,

% disp(J_1ft); disp(J_rgt);

% pause;

if J_1ft<J_rgt

u_high=x_rgt;

delta=(u_high-u_low)*FN(TOP)/FN(BOT);
xnext=u_low+delta;

J_rgt=J_1ft; x_rgt=x_1ft; y_rgt=y_1ft; yss_rgt=yss_lft;
Yid_rgt=vid_1ft; Idx_rgt=Idx_1ft; Yud_rgt=Yud_1lft;
J_1fe=01; x_1ft=[1; y_1ft=[];

yss_1ft=[1; Yid_1ft=[]; Idx_1ft=[]; Yud 1ft=[];

elseif J_1ft>J_rgt

u_low=x_1ft;

delta=(u_high-u_low)*FN(TOP)/FN(BQT) ;
xnext=u_high-delta;

J_1ft=J_rgt; x_1lft=x_rgt; y_lft=y_rgt; yss_lfi=yss_rgt;
Yid_1ft=Yid_rgt; Idx_lft=Idx_rgt; Yud_lft=Yud_rgt;
J_rgt=[1; x_rgt=01; y_rgt=01;

yss_rgt=[]; Yid_rgt=[]; Idx_rgt=[]; Yud_rgt=[];

end

for neval=3:feval-1
tvec=trifuzz(xnext,imfmid, imfend) ;
UZ=[U; tvec];

for j=1:n2-nl

UZ=[UZ; tvecl;

end

[J,ytemp, ytemp2,ytemp3, ytemp4,ytemp5]=djdu_ss2(R,Y_f ,UZ,MPM,
ysp_hat ,uimp, G,MPM2) ;

if J_1ft==[]

J_1ft=J;

y_lft=ytemp;

yss_lft=ytemp2;

Yid_lft=ytemp3;

Idx_1ft=ytemp4;
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z_lft=xnext,

Yud_lft=ytemp5;

elseif J_rgt==[]

J_rgt=J;

y_rgt=ytemp;

yss_rgt=ytemp2;

Yid_rgt=ytemp3;

Idx_rgt=ytemp4;

x_rgt=xnext;

Yud_rgt=ytemp5;

end

if neval==feval-1

%, fprintf ('Final Evaluation at time %g \n’,t);
fprintf (’J_1ft = hg , J_rgt = g \n v J_1ft,J_rgt);
% pause;

if J_1ft<=J_rgt

Y, fprintf(’Path 1 \n’);

uti=x_1ft,;

yy=y.1£ft;

yss=yss_1ft;

Yhat_fd=Yid_1ft;

Yhat_f=Yud_1ft;

Idx_hat=Idx_1ft;
Unew_f=trifuzz(utl,imfmid,imfend);
elseif J_1ft>J_rgt

%, fprintf(’Path 2 \n’);

utl=x_rgt;

yy=y-rgt;

yss=yss_rgt;

Yhat_fd=Yid_rgt;

Yhat_f=Yud_rgt;

Idx_hat=Idx_rgt;
Unew_f=trifuzz(ut1,imfmid,imfend);
end

% utl

ut=filt2*uimp(1) + (1-filt2)*utl;
% ut
tvec=trifuzz(ut,imfmid, imfend);
UZ=[U; tvec];

for j=1:n2-nl

Uz=[UZ; tvec];

end
[J,yy,yss,\nat_fd,Idx_hat,Yhat_f]=djdu_ss2(R,Y_f,
UZ,MPM,ysp_hat,uimp,G,MPM2);
Unew_£f=tvec;
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break;

end

TOP=TOP-1; BOT=BOT-1;

if J_1ft<=J_rgt

u_high=x_rgt;

delta=(u_high—u_low)*FN(TOP)/FN(BOT);
xnext=u_low+delta;

J_rgt=J_1ft; x_rgt=x_1ft; y_rgt=y_1ft; yss_rgt=yss_1ft;
J_1ft=[1; x_1ft=[1; y_.1ft=01; yss_1ft=[1;

elseif J_1ft>J_rgt

u_low=x_1ft;

delta=(u_high-u_low)*FN(TOP) /FN(BOT);
xnext=u_high-delta;

J_1ft=J_rgt; x_lft=x_rgt; y_1ft=y_rgt; yss_1lft=yss_rgt;
J_rgt=[1; x_rgt=01; y_rgt=01; yss_rgt=[];

end

end

else

Ueq=U;

uti=u_high;

ut=filt2+uimp(1) + (1-filt2)*utl;
Unew_f=trifuzz(ut,imfmid,imfend);
Ueq=[Ueq;Unew_£];

for j=1:n2-nl

Ueq=[Ueq;Unew_£1];

end
[J,yy,yss,Yhat_fd,Idx_hat,Yhat_f]=djdu_ssQ(R,Y_f,Ueq,MPM,
ysp_hat,uimp,G,MPM2);

end

fprintf (’Optimum u = %g \n’,ut);

function [R,P]=adap(Y_id,Id_idx,Y_f,R,P,nref);

dim_R=[ 5 5 5];

for i=i:nref
Xsi=cal_xsi(Y_id,Id_idx,Y_f,i,dim_R,R);
=Y _f(:,1)-Y_id{:,1);
[R,P]=update(P,E,Xsi,R,i,dim_R);

end



function [Xsi]=ca1_Xsi(Yhat,Index,Y,i,dim_R,R);
%***********************************************************************%
% function [Xsi]=ca1_Xsi(Yhat,Index,Y,i,dim_R,R); %

% Xsi is a npar X np matrix instead of a npar X 1 A

% vector. Xsi is calculated wrt the ith possibility vector element in Y
%

% Inputs : %

Y Yhat = fuzzy estimated output and has the form %

% Yhat=[Yhat(n1) :...;Yhat(n2)1; %

% Index= contains pairs of numbers corresponding to %

' locaticr of maxima as returned by ms_pred.m %

% the function ms_pred.m %

Wy = fuzzy actual output. %

v 2,m_R= dimensions of R matrix u X x Xy %
Z***********************************************************************%
nref_y = size(Y,2);

np = size(Yhat,1);

bhat = Yhat(:,1);

b = Y(:,1i);

Y Extract relevant indices for ith mf of Yhat %
indx_i = Index(:,2%{i-1)+1:2%i);

% Convert 2D indices into a single numbar %
n_tita = (indx_i(:,1)-1)*dim_R(1)+indx_i(:,2);

Y Extract relevant layer for ith mf h
R_i = R((i-1)*dim_R(1)+1:i*dim_R(1),:);
Xsi = zeros(dim_R(1)*dim_R(2),np);

B = Yhat;

for j=1:np

Y% if R_i(indx_i(j,1),indx_i(j,2))==
% error(’Error in cal_Xsi 1’);

% end

Y% if sum(B(j,1:size(B,2)))==0

Y% error(’Error in cal_Xsi 2’);

% end
Xsi(n_tita(j),j)=bhat(j)/max(R_i(indx_i(j,1),indx_i(j,2)),1e-6);
% S(j =sum(B(j,1:size(B,2)));

% Xsi(n_tita(j),j)=dy/s(j);

end
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