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Chapter 1

Introduction

Wireless communication has been one of the fastest growing fields over the past several 

years. The tremendous demand for wireless services has led to a renewal of the research 

activities related to wireless techniques. The fundamental limit to reliable wireless com­

munications is the severe random fading phenomenon inherent in wireless channels; unlike 

the wired environment, the wireless channels are non-stationary and less predictable due to 

the radio propagation effects. To overcome this problem, many techniques are employed 

including: diversity techniques, smart antennas, adaptive filters and equalizers and orthog­

onal frequency division multiplexing (OFDM) [7].

1.1 Multi-path Fading

In wireless communications, the radio signals may not reach the receiver antennas directly. 

In fact, due to reflection, diffraction and scattering by the surrounded buildings, trees and 

other obstacles, the received signal is a superposition of radio signals coming from differ­

ent directions with random amplitudes and phases. These multiple signals can interfere 

constructively or destructively. Consequently, the amplitudes of the received signal can 

fluctuate widely and this effect is known as multi-path fading or simply fading [8].

1.1.1 Statistical Models

Fading is modelled or described using several statistical models. To characterize the sta­

tistical channel models, the cumulative distribution function (cdf), the probability density 

function (pdf) and the moment generating function (mgf) of the fading amplitudes are of-

1
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ten required. The cdf of a RV X, Fx(x),  is defined as the probability that the RV X  is no 

greater than a fixed value of x [9, Eq. (4-1)]:

Fx (x) =  M X  < *]. (1-1)

The corresponding pdf, which indicates the relative frequency of the occurrence of the 

event {X =  x], is obtained by differentiating the cdf with respect to x  [9, Eq. (4-13)]:

Px(x) = Fx (x). (1.2)
ax

The mgf of a RV X  is defined as the Laplace transform of the corresponding pdf:
fOO

Mx (s) = /  px(x)e~sx dx.  (1.3)
Jo

The mgf is related to another statistical function, the characteristic function (chf), as

<]>x(ia>) =  Mx(-ico).  (1-4)

Next, we will introduce several widely-used, statistical fading channel models.

Rayleigh distribution

Rayleigh distribution is frequently used to model the amplitudes of the received signals in

urban and suburban areas [10-12]. Let R = ^ j x 2 + X 2, where X\  and Xi  are zero-mean

independent Gaussian random variables (RVs) with common variance E(X\)  =  E (X 2) =

a 2, where E(X)  is the mean of the RV X,  i.e., X \ , X 2 ~  N (0, a 2). It can be shown that R

is Rayleigh distributed and its pdf is given by [6]

P R ( r )  =  r > 0. (1.5)
a 1

The corresponding squared-envelope is central chi-square distributed with two degrees of 

freedom, i.e., R2 ~  X2(0, cr2) or exponential distributed, whose cdf, pdf and mgf are given 

respectively by [6]

FR2 (y) =  1 -  exp ( - ^ 2 )  . y > 0. (l-6a)

p r 2(y) = ^ 2  exP ( - ^ 2 )  ’ y ^  °> (L6b)

=  S  >  ~ 2 a 2 ' ( L 6 C )
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Ricean distribution

In rural regions, which often lack tall structures, the received signal contains a direct line- 

of-sight (LOS) component; so the Ricean distribution is more suitable in such channels. Let 

R =  y X  j  +  X\,  where X  i and X 2 are independent Gaussian RVs with non-zero means m 1 ,  

m 2 and common variance £[(Xi — mi)2] =  E[{X2 — m2 )2] =  cr2, i.e., Xi ~  N { m \ ,a 2)
9 9

and X2 ~  N(m 2 , <j ). Then i? is Ricean distributed with the Rice factor K — — an(l 

the average power S3 =  E{R2) = m2 + m2 + 2a2, i.e., R ~  7£ m2 +  +  2cr2

and its pdf is given by [6]

2 r(K  +  1) 
P*(r) = -----   exp - K  -

(K +  l )r 2 1
/ 0 2 r r > 0 ,  (1.7)

where Io(x) is the zero-th order modified Bessel function of the first kind which can be 

found [3, Eq. (8.406.3)]:

Io(x) i f .
w Jo

cos 6 de. (1.8)

The squared-envelope of a Ricean RV is non-central chi-square distributed with two 

degrees of freedom and non-centrality parameter i.e., R2 ~  X2 °'2̂ > whose

cdf, pdf and mgf are given respectively by [6]

FR2 (y)

p & i y )

MR2(S) =

1

K + l

y  >0,

exp
£2
1 + K

- K  -

exp (-

(K +  l)y '
a

sKQ

/o 2
X(X +  l)y

y > 0 ,

1 + K

(1.9a)

(1.9b)

(1.9c)
1 -(- K  ,s£2 \  1 -4- K  -f- s£2 J  £2

where Q(a, b) is the first order Marcum Q-function. The m-th order Marcum Q-function 

Qm(a, b) is given by [5, Eq. (1)]

f°°  r  jc2 +  a2i
Qm(a,b) = J  x  ( - j  exp I   — I Im- i (a x )d x  (1.10)

where Im(x) is the m-th order modified Bessel function of the first kind [3, Eq. (8.406.3)]. 

As expected, when K  =  0, (1.9) reduces to (1.6). That is, the Rayleigh distribution is a 

special case of the Ricean distribution.
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Lognormal distribution

The above two channel models are only valid in relatively small areas where the local mean 

of the envelope is approximately constant [13], In larger areas, where the local mean fluc­

tuates due to shadowing effects, the lognormal distribution is used [12,14], The lognormal 

pdf is given by [15]

(101ogi0 r2 — /X(dB))2"1p R(r) = —— -— exp 
y/27C^ar

r  >  0, (1.11)
2<r2

where £ =  In 10/10, p  and a 1 are the mean and variance of 101og10(r2), respectively. 

Nakagami-m distribution

The Nakagami-m distribution is a versatile statistical distribution which can accurately 

model a variety of fading environments. It has greater flexibility in matching some empiri­

cal data than the Rayleigh, Ricean or Lognormal distribution. It also includes the Rayleigh 

and the one-sided Gaussian distributions as special cases. Moreover, the Nakagami-m dis­

tribution can closely approximate the Ricean and the Hoyt distributions [16]. The pdf for 

this distribution is given by [6]

where £2 =  E(R 2) is the average envelope power, T(m) is the Gamma function [3, Eq. 

(8.310.1)] which is related to the factorial by T(n) =  (n — 1)! when n is a positive integer 

and the fading figure m is defined as

m =  £ [ ( / - « ) * ] • M -  °-5' (L13) 
When m =  1 and m =  0.5, Nakagami-m distribution reduces to the Rayleigh and the one­

sided Gaussian distributions, respectively. The squared-envelope of a Nakagami-m RV is 

Gamma distributed with cdf, pdf and mgf given by [15]

" 2 0 - (114a)

p*2(y) =  ’ ^ ° ’ (1-14b)
/  m \ m m

=  ’ s > ~ a -  ( U 4 c )
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where F {a, x) is the complementary incomplete gamma function which can be defined as 

a finite integral [3, Eq. (8.310.1)]
f 00

r (« , jc) =  J  dt, n >0.  (1.15)

1.1.2 Performance Loss due to Multi-path Fading

©
Cfl

CL
ug
m
eofflU>

*5

10'
—  No Fading
-  -  Rayleigh Fading

, -a
10'

10 '

. -510*

10-6
5 10 15 25 3020

Average SNR (dB)

Figure 1.1: The effect of Rayleigh fading on the BER of BPSK.

Multi-path fading significantly impairs the quality of wireless communications [17]. 

For example, the bit error rate (BER) of uncoded binary phase-shift-keying (BPSK) in 

additive white Gaussian noise (AWGN) channel (i.e., no fading) is given by [6]

Pe = Q ( \ /2 y )  «  e~y , as y  -> oo, (1.16)

where y  is the signal-to-noise ratio (SNR) and Q(x) is the area under the tail of the Gaus­

sian pdf [6, Eq. (2-1-97)]. The BER decays exponentially with the increasing SNR. How­

ever, if the signal is transmitted through a Rayleigh fading channel, the average BER of 

BPSK is given by [15]:

1
P, =  - 1 -

1 + y
^  -j-z, for y  »  1.

4 y
( 1.17)
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Hence, Rayleigh fading converts the exponential dependency of BER on SNR into an in­

verse linear one.

Fig. 1.1 shows the effect of Rayleigh fading on the BER of BPSK as compared to that 

in AWGN. Clearly, Rayleigh fading significantly degrades the performance of BPSK. For 

example, Rayleigh fading causes a 17dB SNR penalty at a BER of 10~3, as compared to 

the AWGN case. In other words, to maintain the same average BER as that of an unfaded 

wireless link, the transmit power in a Rayleigh fading wireless link must increase by a 

factor of 50! Appropriate countermeasures should therefore be taken to mitigate the effect 

of multi-path fading.

1.2 Diversity Techniques

Combined

coTJ
W0)-o
3

£ ~5 
<
"ScO)w

-10

Branch 1 I Branch 2

-15
150 200100 250 300 350 400 450 500

Time

Figure 1.2: Diversity benefit.

Diversity is an effective means to reduce the effect of multi-path fading on the perfor­

mance of wireless communication systems. The basic idea of diversity is simple. Multiple 

copies of the transmitted signal are collected using so-called diversity branches. Let p  <$C 1 

be the probability that the received signal at one diversity branch experiences severe fading.

6
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For L identically and independently faded branches, the probability that all the received 

signals fade simultaneously is p L, which is much smaller than p.

Fig. 1.2 shows the diversity benefit. Branch 1 and branch 2 are independently faded. 

Observe that the amplitudes of the received signals at each diversity branch fluctuate widely, 

which degrades the performance of wireless communication systems significantly (see Fig. 

1.1). However, if we make use of both branches by selecting the better one as an output, the 

combined signal experiences less severe fading than either diversity branch. Hence, diver­

sity techniques can be used to mitigate the effect of the deep fades experienced in wireless 

fading channels.

1.2.1 Types of Diversity

Diversity can be achieved by many methods. Time diversity is achieved by transmitting 

the same signal at different time slots. This, however, is rarely used in practice, because 

unacceptable delay can be introduced by delayed retransmission. Frequency diversity is 

obtained by transmitting the same signal at different carrier frequencies, which is undesir­

able when bandwidth is limited. Compared with the above two methods, space diversity, 

using multiple transmitter or receiver antennas, is preferred. No time delay or additional 

bandwidth is required in space diversity. Multi-path diversity, resolving the multi-path 

components at different delays, is also an attractive type of diversity in wide-band commu­

nications. A Rake receiver, which employs a single delay line through which the received 

signal is passed to collect the signal energy from the resolvable multi-paths, is often used to 

achieve multi-path diversity. Other types of diversity include angle diversity, polarization 

diversity and feedback diversity [15].

1.2.2 Diversity Combining Schemes

Consider a diversity combiner system with L branches which produce L replicas of the 

same transmitted signal using one of the above methods (see Fig. 1.3). Notice that the L 

diversity branches can be L receiver antennas in space diversity systems, L Rake fingers in 

multi-path diversity systems, L time slots in time diversity systems and so on. It is common 

to refer to L as the diversity order.

7
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Figure 1.3: System Model.

The received signal after the matched filter at the fc-th diversity branch can be written

as

yk =  gkS +  nk (1-18)

where gk is the random channel gain or fading gain associated with the fc-th branch, s is 

the transmitted signal with energy Es and n* is AWGN at the k-th branch with identical 

power spectral density (PSD) ^  per dimension. We assume that the noise components at 

different diversity branches are independent of the fading components, i.e., E(rijg£) =  0 

for any j  and k, where x* is the complex conjugate of x, and uncorrelated with each other, 

i.e., E{rijril) — NoSjk where 8jk is the Kronecker delta function defined as

Sjk
1, j = k ,  
0, j ^ k .

(1.19)

We consider only slow and flat fading channels, which means that the channel gains gk s, 

where k e {1, . . . ,  L], remain constant for the duration of the signaling interval and for all 

the frequencies of the transmitted signal (that is, gk is not a function of time t or frequency 

/ ) .  Note that the channel gains gk s have to be estimated in practice. In this context, gk's 

are also known as channel state information (CSI). We assume that the diversity receiver 

has perfect CSI, i.e., it knows the values of gk s exactly. This assumption is reasonable for 

slow fading communications. In Section 3.3.5, we briefly discuss the impact of imperfect 

CSI on the performance of diversity systems.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The instantaneous and the average SNRs at the k-th diversity branch are given by

n  =  d-20)
N q

Yk =  E(Yk) =  E(\Gk\2) ^ ,  (1.21)
N q

where \x\ is the absolute value of x  and gk denotes a realization of the RV Gk. Throughout 

this thesis, all RVs are denoted by capital letters and the corresponding realizations are de­

noted by small letters. The average branch SNRs in identically distributed fading channels 

are denoted by yk = y  for k e {1, . . . ,  L).

Once the L replicas of the same transmitted signal are obtained, the problem is how 

to make use of these signals. We use Unear diversity combiner that linearly weights the 

L received signals by weighting factors { p \ , , p i )  and then sums them up to form an 

output. The output signal of a linear combiner can be written as [18]
L /  L \  L

S =  ^ 2 > P k y k  =  \ Y l P k 8 k ) s  +  Y l P k n k - (1-22)
jfc=l \k=l /  *=1

One can also develop non-linear diversity combiners, which will not be considered in this 

thesis as Unear combiners are much more popular. Different weighting factors for the linear 

combiners have been proposed and studied in the Uterature [15,17-19]. Several diversity 

combiners are briefly discussed next. The first three are well-known classical techniques 

and the rest are recent innovations.

Maximal Ratio Combining (MRC)

The optimal linear combiner in noise-limited channel is one in which the received signals 

are multipUed by the conjugates of the corresponding channel gains, i.e., Pk =  g*k - The 

optimality can be readily proven using Cauchy-Schwarz inequaUty [19]. The instantaneous 

SNR of the linear combiner output (1.22) is given by

(ELl Pkgk)  E s Es L 
Yout =  7 ~ — -------------r <  T ( L2 3 )

(ELi Ip*I2) N o t l

with equaUty when pk = Cg\ for any arbitrary constant C. MRC, employing the weighting 

factors pk =  gk for k e  [ 1 , . . . ,  L], thus achieves the maximal output SNR, which is the
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sum of all the L branch SNRs as
L

Kmrc =  E Yk- d-24)
*=i

MRC is widely studied as a performance benchmark. Although MRC performs op­

timally, it is fairly complicated to implement in dense multi-path fading channels where 

the number of the diversity branches is very large. This has motivated the development of 

reduced-complexity suboptimal diversity combining schemes.

Equal Gain Combining (EGC)

EGC is simpler than MRC because it avoids measuring the amplitudes of the channel 

gains |gjt|. The received signals at different diversity branches are co-phased and equally 

weighted, i.e., pk =  e~l9k where Ok is the angle of the channel gain gk, and then summed 

up to form an output as
L L

Segc =  \gk\s + Y ^ e~l&nk- (1-25)
Jt=l k=l

EGC thus only compensates for the phase shift in the channels. The instantaneous output 

SNR of EGC is obtained as

Ytgc = XlVo' (L26)

EGC offers performance close to the optimal MRC but with greater simplicity (see [20] 

for an extended discussion on the EGC and MRC performance difference). However, its 

complexity still increases as L increases.

Selection combining (SC)

In SC, the branch with the highest SNR is selected as an output whose SNR is given by

ysc =  max(yi, y2, ■ ■ ■ , n ) -  (1-27)

SC is a simple combining scheme as it picks the best among L branches. Since it dis­

cards many branches with SNRs perhaps close to the largest, it has the worst performance 

compared with other diversity combiners.

10
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Switched Combining (SWC)

SC system has to monitor all the L diversity branches simultaneously, which requires L de­

tectors. Switched combining scans the L  branches until finding one with the SNR exceed­

ing a preset threshold and uses it until its SNR drops below the threshold. An advantage 

of switched combining is that only one detector is needed. However, the performance of 

switched combining is even worse than that of SC, because the unused branches may have 

SNRs larger than the branch in use. We will not consider SWC in this thesis.

Generalized Selection Combining (GSC(M, L))

An L-branch MRC performs the best with the highest complexity and SC, on the other 

hand, performs the worst comparatively with the least complexity. This motivates the de­

velopment of other diversity schemes whose complexity and performance lie between these 

two extreme cases. Therefore, several suboptimum hybrid diversity combining schemes 

that achieve a tradeoff between performance and implementation complexity have recently 

been proposed and studied in the literature. One such recent innovation is GSC(M, L), 

which is also known as hybrid SC/MRC. Here, M  (1 < M  < L) branches with the largest 

instantaneous SNRs out of L branches are coherently combined as in MRC, i.e., Pk = 8 t if 

Yk > y(M)> where y(i) > y(2) . . .  > y(L), and pk =  0 otherwise. The instantaneous output 

SNR of GSC(M, L) can be written as

Note that GSC(M, L) reduces to the traditional MRC and SC by setting M  =  L and M  =  1, 

respectively.

Absolute Threshold GSC (AT-GSC) and Normalized Threshold GSC (NT-GSC)

Research efforts have also been made to improve GSC(M, L ) by allowing the number of 

the combined branches M  to vary dynamically with channel fading conditions. Two GSC 

schemes where M  is a random variable, are proposed and analyzed in the literature [21-25]. 

AT-GSC [22,23] combines all the branches with SNRs exceeding a fixed threshold y±,

M

(1.28)

11
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whose instantaneous output SNR is given by

0, if all Yk < tth,

Y a t = ' X  n ’ if  any Yk -  ^
(1.29)

Yk>Yth

The error state of AT-GSC in which no branch contributes to the combiner output occurs 

when all the branch SNRs fall below the threshold y* simultaneously. When it is taken into 

consideration, the AT-GSC performance degrades monotonically with the increasing y*. In 

fact, AT-GSC performs even worse than SC when the threshold yth is high.

NT-GSC [21,22] combines the branches whose branch relative strength (the ratio of the 

each branch SNR to the maximum branch SNR) exceeds a fixed normalized threshold T 

(0 < T < 1), whose instantaneous output SNR is given by

Since the number of the combined branches varies according to the channel fading 

conditions, AT-GSC and NT-GSC are more flexible than GSC(M, L) in fading channels.

Partial MRC (P-MRC(M, L))

More recently, P-MRC(M, L ) [26], which coherently combines the first M (0 < M  < L) 

branches out of the L available branches, i.e., pk = gl  for k e  [ 1 , . . . ,  M] and pk =  

0 otherwise, has been proposed for the Rake receivers. P-MRC(M, L) is equivalent to 

the classical MRC with reduced diversity order M. The instantaneous output SNR of P- 

MRC(M, L) is given by

1.2.3 Performance Measures and Analysis Techniques

To characterize the performance of diversity systems in slow and flat fading channels, per­

formance measures, such as the average error rate, the outage probability and the moments 

of the combiner output SNR, are frequently used in the literature. Next, we briefly intro­

duce some commonly used performance analysis techniques.

(1.30)

M

(1.31)
k= 1

12
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Average Error Rate

The average error rate is the most commonly used performance criteria, which evaluates 

the effectiveness of digital modulations in wireless fading channels. The average error rate 

is obtained by averaging the conditional error probability (CEP) over the statistics of the 

fading amplitudes. Many approaches have been proposed to evaluate the average error rates 

of various digital modulations with diversity combiners in different fading channels. The 

most popular one is the pdf-based approach, which averages the CEP over the pdf of the 

diversity combiner output SNR:
»oo

Pe(y)Pout(y)dy (1.32)/Jo

where Pe(y)  is the probability of error of a certain digital modulation in AWGN channel 

for a given SNR y  at the combiner output and pout(y) is the pdf of the diversity combiner 

output SNR in a specified fading channel.

Recently, the mgf-based approach has been widely used to evaluate the error rate per­

formance of various digital modulations with coherent diversity combiners. The basic idea 

of the mgf-based approach is to find an exponential-type representation for the CEPs so 

that the average error rates can be expressed strictly in terms of the mgf of the combiner 

output SNR. For example, Craig [27] shows that the symbol error rate (SER) of any two- 

dimensional linear coherent modulations can be expressed as

1 rm
Pe(y) =  —  Y ]  w k /  exp 

l7t Jo

- y a k  sin (ff&) 
sin2(0 +  <pk)

dO (1.33)
k=1

where S is the total number of signal points or decision subregions, Wk > 0 is the a priori 

probability of the symbol to which subregion k corresponds, ak >  0 is a normalization 

factor, t]k and (pk are parameters relating to decision subregion k and they are independent 

of the instantaneous SNR y.  Various common digital modulations can be described by 

choosing these parameters appropriately: for special cases of (1.33), see Section 2.4.1. 

Thus, using the mgf-based approach with (1.33) yields the average SER as

s  (1 3 4 )
\sm  2(0+<pk) /

13
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where Mout(s) is the mgf of the diversity combiner output SNR.

However, the mgf-based approach fails to work in the analysis of coherent EGC re­

ceivers. The chf-based approach is proposed to unify the average error rate analysis of 

different digital modulations with various diversity combiners, including coherent EGC, 

within a single common framework [28]. The key idea of this approach is to express the 

CEPs in terms of the combiner output envelop X = *Jy and transform (1.32) into frequency 

domain using Parseval’s theorem. The chf-based approach enables the average error rates 

analysis for coherent EGC systems [1,29] (see Section 4.4.2).

Outage Probability

Another commonly used performance measure is the outage probability, which is defined 

as the probability that the instantaneous output SNR y  falls below a certain given threshold 

yj .  Outage probability is a useful statistical measure of the radio link performance of 

cellular systems in the presence of interference. The outage threshold yr is determined 

by many factors, such as the receiver structure and the propagation environment [15]. For 

example, if an equalizer is used, the receiver will be more tolerant to the interference and 

the threshold y j  can be reduced [15].

The outage probability of a diversity combiner relates to the cdf of the combiner output 

SNR as follows:

Pout(Kr) =  Pr(0 < y < yr) =  Fout(yr ) (1-35)

where Fout(x) is the cdf of the combiner output SNR.

Moments

As an alternative to average error rate analysis, we can use performance measures based 

on the moments of a combiner output SNR. For example, the average output SNR is some­

times used as a performance measure. However, a single moment, such as the average 

output SNR, alone does not reveal enough information and the higher order moments can 

furnish additional information for system design. For example, if the variance of the out­

put is small, large fades from the average is not likely (which follows from the Chebyshev 

inequality).

14
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The moments of the combiner output SNR can be obtained using the output pdf or the 

output mgf as

f  00
=  E(y"ut) =  / y npont(r)dy

Jo (1.36)
( I  M a ,1» I  .V  I

=  ( - 1)*
n dMoat(s)

s—0ds

Using the output moments, we can obtain other useful statistical measures. Skewness is 

a measure of the asymmetry of the combiner output SNR around the mean value m\ [30]:

M3
3

A

(1.37)

where /x„ is the central moments defined as

n

Hn =  E l O w - m , ) " ]  =  £ ( "  W - m , ) * " ' .  (1.38)
t=o

For symmetric distributions, u =  0. If v > 0, the output SNRs are spread out more to the 

right. If v < 0 , the output SNRs are spread out more to the left.

Kurtosis is a measure of the ‘tail weight’ of distribution, which is defined as [30]

k = ^ .  (1.39)
A

For normal distribution, k  =  3. For a distribution, the greater the relative probability in one 

or both tails is, the larger k  will be.

Karl Pearson’s coefficient of variation is defined as [30]
i

Ac v = ^ ,  (1.40)
m i

which is frequently used to describe the severity of the channel fading. For example, 

Win and Winters [31] used this output indicator to assess the effectiveness of GSC(M, L ) 
scheme in Rayleigh fading channels. Charash [32] introduced the square value of the Karl 

Pearson’s coefficient as a unified measure of the amount of fading (AF). More recently, 

Alouini and Simon [33] derived closed-form expressions for AFs of dual diversity combin­

ers in correlated log-normal fading channels.
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1.3 The Contribution of this Thesis

Traditional diversity combining techniques, such as MRC, EGC and SC, have long been 

employed to mitigate the effect of multi-path fading on wireless communication systems. 

Recent rapid growth in the use of wireless technology has revitalized this classic research 

area and two broad trends have emerged. First, research shows that the use of a large 

number of multiple antennas and ultra wide-band (UWB) systems can support high data 

rate communications, where diversity receivers have to process a large number of diversity 

branches. Second, the wireless receivers, for example, wireless handsets, are continually 

being miniaturized. This makes it difficult to provide complete independence among an­

tenna elements. These two trends suggest that emphasis should be placed upon designing 

reduced-complexity suboptimal diversity algorithms and analyzing the impact of correla­

tion among antenna elements. In contrast, in classical diversity theory, optimal algorithms 

and independent antennas are considered. Hence, in this thesis, we develop suboptimal 

diversity algorithms with reduced complexity and also develop analytic techniques for per­

formance analysis of diversity systems in correlated fading.

With the former goal in mind, we propose two new diversity combining schemes, 

switching GSC (S-GSC) and adaptive MRC (A-MRC). S-GSC coherently combines all 

the branches whose SNRs exceed a preset threshold yth- If no branch SNR exceeds the 

threshold, S-GSC picks the best branch as the output. S-GSC outperforms the recently 

proposed AT-GSC with only slightly increased complexity. A-MRC adaptively combines 

the first Nc branches whose cumulative output SNR exceeds a preset threshold. A-MRC 

outperforms GSC(M, L) when the channel power decays rapidly. A-MRC does not require 

monitoring all the diversity branches and sorting them while GSC(M, L) does. Moreover, 

in both S-GSC and A-MRC, the number of the combined branches varies according to 

the channel fading conditions. These two schemes are more flexible than GSC(M, L) and 

P-MRC(M, L ) in fading channels. We also provide a detailed theoretical analysis of the 

S-GSC and A-MRC performance in various fading channels. This allows for a comparative 

evaluation of our new schemes vis-a-vis other combining methods.

The maximum diversity gain occurs when the diversity branches experience identical
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and independent fading. However, in some practical situations such as wireless commu­

nication handsets, fading is correlated because of the insufficient separation between the 

antennas. Correlated fading between diversity branches can significantly degrade the per­

formance of diversity systems. A large number of experimental and theoretical studies 

have been devoted to evaluate the impact of correlation on the performance of diversity 

systems [34-38]. Thus, quantifying the resultant degradation of the performance of diver­

sity systems is a long standing problem of importance [39-42].

Nevertheless, complete analytical results for all the diversity combiners are not known, 

except for MRC. Performance analysis of some diversity combiners requires distributional 

results for order statistics of correlated RVs, which are not available. This thesis, however, 

makes two specific contributions to the state-of-art. First, we develop a novel approach 

for analyzing the performance of multi-branch diversity combining systems in equally 

correlated Rayleigh, Ricean and Nakagami-m fading channels. The novel insight of our 

approach is that a set of independent complex Gaussian RVs (CGRVs) can be linearly 

combined to form a set of equally correlated CGRVs. Using this insight, we translate the 

problem of performance in equally correlated fading to the problem of performance in 

a conditionally independent fading environment. This reformulation allows us to extend 

known results for independent fading to analyze the multi-branch SC and EGC perfor­

mance in correlated fading. Using our new representations for the channel gains, we derive 

the output cdfs, the output moments, the outage probabilities and the average error rates of 

a wide class of digital modulations for multi-branch SC and EGC systems.

Unlike the other existing methods for the SC performance analysis [43,44], our re­

sults can handle any number of diversity branches as a single-fold integral (for the outage 

probability) or 2-dimensional integral (for the average error rates and the output moments). 

The complexity of our approach does not increase with the number of diversity branches. 

To the best of our knowledge, theoretical results for the multi-branch EGC performance 

in correlated fading channels do not exist in the literature. We therefore partially resolve 

the long-standing open problem of the multi-branch EGC performance in correlated fading 

channels. We also show that diversity gain still exists in correlated fading channels. Addi­

tional diversity gain diminishes as the diversity order increases. As the fading correlation
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increases, the performance of a diversity system degrades and the rate of degradation in­

creases. Higher-order diversity systems are much more sensitive to the fading correlation. 

We also find that the performance of diversity systems in correlated Ricean fading chan­

nels can be worse than that in correlated Rayleigh fading channels, which has never been 

observed for the independent fading case. These observations help the design of diversity 

systems.

Second, the channel gain representations developed in Chapter 4 holds only for equally 

correlated fading channels. For arbitrarily correlated fading channels, simple analytical 

performance results for multi-branch SC and EGC do not exist in the literature, as the joint 

distribution is not known for three or more arbitrarily correlated Rayleigh RVs. We thus 

redress this gap by deriving new infinite series representations for the joint pdf and the 

joint cdf of three and four correlated Rayleigh RVs. Bounds on the error resulting from 

truncating the infinite series are derived. A classical approach due to Miller is used to 

derive our results. Unfortunately, Miller’s approach cannot be extended to more than 4 

variates and, in fact, the quadri-variate case considered in this thesis appears to be the most 

general result possible. For brevity, we treat only a limited number of applications in this 

thesis. The new pdf and cdf expressions are used to evaluate the 3-branch SC performance, 

the moments of the 3-branch EGC output SNR and the mgf of the GSC(2,3) output SNR 

in arbitrarily correlated Rayleigh fading. A novel application of Bonferroni’s inequalities 

allows new bounds for the complementary cdf (ccdf) of the multi-branch SC output SNR 

in arbitrarily correlated Rayleigh channels.

This thesis is organized as follows. Chapter 2 proposes a new hybrid diversity combin­

ing scheme, S-GSC, and analyzes its performance in independent fading channels. Numer­

ical results which compare the S-GSC performance with AT-GSC and SC are also provided. 

Chapter 3 proposes another reduced-complexity diversity combining scheme, A-MRC, and 

analyzes its performance in various independent fading channels. The performance of A- 

MRC is also compared with that of GSC(M, L) and P-MRC(M, L). Chapter 4 develops 

new representations for the equally correlated Rayleigh, Ricean and Nakagami-m channel 

gains and uses the new results to evaluate the performance of multi-branch SC and EGC 

in such channels. Numerical and semi-analytical simulation results are provided to inves-
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tigate the performance of multi-branch diversity combiner in various equally correlated 

fading channels. Chapter 5 derives new infinite series representations for the joint cdf and 

the joint pdf of the tri-variate and a certain class of quadri-variate Rayleigh distributions. 

The new results are further applied to solve certain long-standing diversity problems, such 

as the performance of 3-branch SC, EGC and GSC(2,3) systems in arbitrarily correlated 

Rayleigh fading channels. Chapter 6 concludes this thesis and outlines future work in this 

area.
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Chapter 2

A New Switching Hybrid Combining 
Scheme

This chapter proposes a new hybrid combining scheme, switching GSC (S-GSC). Section

2.1 introduces a short background on the problem. Section 2.2 analyzes the effect of the 

threshold on the AT-GSC performance. Section 2.3 develops the new diversity combining 

scheme, S-GSC, and derives the mgf, pdf and cdf of its output SNR in independent fading 

channels. In Section 2.4, the average error rates of various modulation schemes, the outage 

probability and the output moments of S-GSC are evaluated. Section 2.5 presents some nu­

merical results to compare S-GSC with other combining techniques. Section 2.6 concludes 

this chapter.

2.1 Introduction

As proven in (1.23), MRC is the optimal linear combiner in a noise-limited channel. All the 

other linear combiners are suboptimal and their performance cannot be better than that of 

MRC. In (1.29), we briefly described AT-GSC and found an error state in AT-GSC, which 

results in poor BER performance. We are therefore motivated to find diversity algorithms 

better than AT-GSC.

This chapter thus develops a new diversity combining scheme, referred to as switching 

GSC (S-GSC). This scheme combines all branches whose SNRs exceed a preset threshold 

yth as in AT-GSC and if all the branch SNRs drop below the threshold, the output is the 

single branch with the maximum SNR as in SC. The main difference between our proposed
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S-GSC and AT-GSC is that S-GSC eliminates the error state that presents in AT-GSC. We 

prove that both the average error rate performance and the processing complexity of S-GSC 

lie between those of MRC and SC. Importantly, the complexity of S-GSC is only slightly 

above that of AT-GSC. We derive the mgf of the S-GSC output SNR in independent fading 

channels. For independently and identically distributed (i.i.d.) Rayleigh fading channels, 

we derive the pdf and cdf of the S-GSC output SNR and analyze the average error rate and 

the outage probability performance of S-GSC. Moments of the S-GSC output SNR are also 

derived. These theoretical results are sufficient to completely characterize the performance 

of S-GSC and enable one to compare S-GSC with conventional diversity schemes.

2.2 AT-GSC Performance as a Function of Threshold

Before developing S-GSC, we highlight why AT-GSC does not perform acceptably. We 

expect that as the threshold yth increases, fewer branches will be combined in AT-GSC, 

which results in higher error rate. We prove this intuitive notion rigorously by using the 

mgf of the AT-GSC output SNR. For i.i.d. Rayleigh fading channels, the output mgf of 

AT-GSC is given by [23]

1 -  e y +
e- f ( i+ s ? y L

1 + s y

For any real value s > 0 and y* > 0, we have Mat(s) > 0 and 

3Mat(5 ) L

(2.1)

3nh y
(1 -  e~s^ ) 1 — e y + >  0 . (2.2)

1 + s y

Hence the output mgf Mat(s) monotonically increases with yth- Combining (2.2) and (1.34), 

we find that the average error rate of any two-dimensional coherent modulations with AT- 

GSC monotonically increases with yth, which means that the AT-GSC performance de­

grades monotonically as y* increases.

Fig. 2.1 shows that for a fixed average branch SNR y and the diversity order L, the 

average BER Pe of BPSK with AT-GSC increases dramatically as the preset threshold y* 

increases. It approaches 1/2 in the worst case. This makes AT-GSC unsuitable for practical 

applications and motivates improvements for AT-GSC.
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23 S-GSC

To mitigate the worsening system performance of AT-GSC as the threshold yth increases, 

we present S-GSC, in which all the branches with SNRs exceeding yth are combined as the 

output. If no branch SNR exceeds yth, the branch with the largest SNR is selected. S-GSC 

switches therefore between AT-GSC and SC depending on how many branch SNRs exceed 

yth- Consequently, the S-GSC output SNR can be written as

max(y/), if all yi < yth,
Ksg =  ' ^  yi, otherwise. @.3)

,YI>Yth

The first case of (2.3) accounts for the event that all the branch SNRs drop below the thresh­

old and S-GSC switches to SC (this eliminates the error state of AT-GSC). The second case 

corresponds to the event that some of the branch SNRs exceed the threshold and S-GSC 

combines them just like AT-GSC. Comparing the output SNR of S-GSC (2.3) with that 

of AT-GSC (1.29), we find that S-GSC eliminates the error state that presents in AT-GSC 

when all the branch SNRs drop below yth simultaneously.

To evaluate the performance of S-GSC, we derive the mgf of its output SNR. Using the 

previous analysis of SC [15] and AT-GSC [23], we derive a general expression for the mgf 

of the S-GSC output SNR in independent fading channels in terms of the cdfs Fn (x)’s and 

the pdfs p y i  (jc)’s of the branch SNRs as

M s g «  =  y ,
i=i

n[i = i L

r(-e sxp n (x) Y \  FyM )  1 dx 
i=\ |_"u \  j=ijy=i

L i" n 00
+  111 ^n(tth) +  / p Yl(x)e~sx

"Yth

(2.4)

Fn {yth).

When y* =  0 and y* =  oo, S-GSC reduces to classical MRC and SC, respectively.

1. When yth =  0, all the branch SNRs exceed the threshold yth. S-GSC thus combines 

all the branches and its output mgf (2.4) simplifies to

Ms g (s) Dlfp n (x)e sx dx (2.5)

which is equivalent to the case of MRC.
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2. When yth =  oo, no branch SNR exceeds the threshold y±. S-GSC always selects the 

best branch and its output mgf (2.4) reduces to

Msg(s) = Y ]  f  l e  sxp n (x) FT Fyj(x) I dx  , (2.6)
J=i |_ 0 \

which is equivalent to the case of SC.

Note that (2.4) is general enough to handle any independent fading channels. For inde­

pendently and non-identically distributed (i.n.d.) and i.i.d. Rayleigh fading channels, (2.4) 

reduces to

MSg (s)
bj =0,1 

b\-\—\ -b i= l

L

\ l = 1

+n
i=i

e
1 -  e » + -

~ ( s + 7i) yth

1 +syi

Yi

n
l = \

e~(s+T,L1 y t h

* + E t  11
(2.7)

 23th.
1 -  e n

and
J l  / t \  i _  e~p(.*+?s)

Mss(s) = J 2  (  ) ( - l T +1n  -------“  \ n  )  n + ys
n= 1

1 = 1
+ £ (  ■

L - l
e - f ( l  + y S)' 

1 + ys

(2 .8)

respectively. Differentiating (2.8) with respect to y±, we can show that for a certain y  and
3M,real s >  0, Msg(s) >  0 and > 0. Hence, the output mgf increases monotonically 

with yth- Noticing that the average SER of any two-dimensional coherent modulations can 

be expressed in terms of the output mgf Msg(s) (1.34), we can prove that the error rate 

performance of S-GSC is upper bounded by MRC (yth =  0) and lower bounded by SC

(yth =  OO).

The pdf of the S-GSC output SNR in i.i.d. Rayleigh fading channels can be derived 

using the properties of Laplace transform as,

PsgOO =  -r( l -  e 9)L 9 [1 -  u(x -  y*)]

+ 1 V '  ( 1  _ i  f  X  — /yth V  1 r
(2.9)

I Yth)
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where u(x)  is the step function defined as

2.4 Performance Analysis

Using (2.8), we next derive the average error rates, the outage probability and several output 

quality measures of S-GSC in i.i.d. Rayleigh fading channels. For other independent fading 

channels, the S-GSC performance can be readily evaluated using (2.4). For brevity, we do 

not develop such results here.

2.4.1 Average Error Rate

The mgf-based approach [45,46] can be readily applied with (2.8) to evaluate the average 

error rates of a multitude of digital modulations with S-GSC in i.i.d. Rayleigh fading 

channels. We show that the average error rates can be expressed as either a finite integral 

of the output mgf or the output mgf itself.

BPSK and Binary Frequency-Shift-Keying (BFSK)

BPSK has been adopted for reverse link in the CDMA2000 systems due to its high power 

efficiency.

The CEP for BPSK and BFSK in AWGN channel is in the form of -function [6], 

which can be expressed in a finite integral form as

The advantage of the exponential representation for error rate analysis is that the final 

average error rates can be expressed strictly in terms of the mgf of the combiner output 

SNR. Using the definition of the mgf (1.3) and substituting (2.11) into (1.32), we obtain 

the average BER of BPSK and BFSK as a finite integral of the output mgf [47]

1, for BPSK, 
i ,  for BFSK.

(2.11)

(2 .12)
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For example, the average BER of BPSK with S-GSC is given by 

’ - o r i  - nP ,  =  ^ - Q  ( / 2y» )  [1 -  (1 -  e"T )L]

y  +  n
/2yth(n +  y)

1 +  - ^sin (

(2.13)

Since (2.13) is a simple, finite range integral of exponential and trigonometric functions, 

it can easily be evaluated numerically using any common mathematical software such as 

Matlab and Maple. The same applies to all formulas derived for the average error rates in 

this section.

Non-Coherent BFSK and Binary Differential PSK (DPSK)

Since the coherent diversity combiners, such as MRC and GSC(M, L), require phase co­

herency, they are typically employed with coherent modulations. However the analysis of 

non-coherent and differentially coherent modulation schemes with coherent diversity com­

biners is also of interest because they provide a lower bound on the average error rates with 

non-coherent diversity combiners.

The CEP for non-coherent BFSK and binary DPSK is an exponential function [6]

a  =
1, for binary DPSK, 
j ,  for non-coherent BFSK.

(2.14)

The average BER of non-coherent BFSK and binary DPSK with coherent S-GSC can be 

directly obtained using the output mgf as,

Pe = l- M s%{a). (2.15)

Using (2.8), we obtain closed-form expression for (2.15).

M -ary PSK and M -ary DPSK

Noise resistance and the ease of implementation have made M-ary PSK being adopted for 

various kinds of third generation (3G) standards. For example, 4PSK is used for the forward
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link in ETSMEurope (European Telecommunications Standards Institute) and ARIB/Japan 

(Association of Radio Industries and Business), and 8PSK is adopted in EDGE (Enhanced 

Data for Global Evolution).

Expressing the CEP of M-ary PSK as an exponential-type finite integral, we obtain the 

corresponding average SER as [47]

tcj ( sin2 (f?)
M s g   : >-y- I de. (2.16)

o \  sin 9~ fn  Jo

Pawula [48] showed that the CEP of M-ary DPSK can also be written as a finite integral 

of an exponential function. Hence, the corresponding average SER is obtained as a finite 

integral of the output mgf as

(  sifl2 (It)
1+cos ( § ) e

. i r
x  Jo

Msg ( — — - r h r  I de. (2.17)

M-ary quadrature amplitude modulation (QAM)

M-ary QAM, which applies amplitude modulation on quadrature carries, is another attrac­

tive modulation scheme due to its spectral efficiency. 16-QAM and 64-QAM are adopted 

in the IEEE 802.1 la  standard.

Utilizing the exponential integral representation for the Q-function, we obtain the av­

erage SER of M-ary QAM as [47]

* ■ ( = ; ) * (2.18)

where a  = 2(M—1)'

7T/4-Quadrature DPSK (tt/4-QDPSK)

The performance analysis of 7T/4-QDPSK has received considerable attention, owing to its 

adoption in the second generation of North American and Japanese digital cellular stan­

dards, such as the North American IS-54 and Japanese PDC (Personal Digital Cellular) 

(see [49-51] and their references).
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Using the CEP expression for 7r/4-QDPSK with Gray coding [52], we obtain the cor­

responding average SER as

2.4.2 Outage Probability

As discussed in Section 1.2.3, the outage probability is a common performance measure of 

digital communication systems. Since the outage probability is related to the output cdf as 

(1.35), the outage probability of S-GSC in i.i.d. Rayleigh fading channels can be obtained 

by integrating the output pdf of S-GSC (2.9) as

where |_xj denotes the largest integer which is smaller than x.

2.4.3 Moments of the Output SNR

The output moments of S-GSC in i.i.d. Rayleigh fading channels can be obtained using 

the output pdf (2.9) or the output mgf (2.8) with (1.36) (see Section 1.2.3 for details). For 

example, the average output SNR of S-GSC is obtained as

(2.19)

min{L,[yr/nbJ} \
( » - » >  E 0

I'M ---1 '  ' (2.20)

(2.21)

x (-1 )"

We also obtain the second order moment of the output SNR as

n2 ny \ Y  )  }
(2.22)
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Pr{Ac =  /}

2.4.4 Number of the Combined Branches

The average number of the combined branches Nc, which indicates how often channel 

estimation is required, may be considered as a measure of the processing complexity of a 

diversity combiner.

In S-GSC, the probability that Nc =  I out of L branches are combined as the output is 

given by

[Fsg(nh)JL + £ [ l  -  Fsg(yth)][Fsg(yth)]L~l , for/  =  l,

( f y [ F ag(yth)]i_Z[l -  Fsg(Kth)]', for 2 < / < L. (223)

Thus, the average number of the combined branches of S-GSC in i.i.d. Rayleigh fading 

channels is derived as
L

Nc =  ]T/Pr{iVc = 1} =  (1 -  e~Vf ) L + Le~Vf .  (2.24)
l=l

We compare the processing complexity of different diversity combiners by listing the aver­

age number of the combined branches for each:

L,  MRC,
1. sc,

_ m  r (2.25)
Le y +  (1 -  e r )L, S-GSC,

L e ~ f ,  AT-GSC.

Nr =

Eq. (2.25) shows that MRC is the most complicated scheme, while SC is the simplest one 

provided yth < Y ln L. As the threshold y* increases, the average number of the combined 

branches Nc of S-GSC approaches 1 and S-GSC reduces to SC. As y* decreases, Nc of S- 

GSC approaches L  and S-GSC approaches MRC. The complexity of S-GSC lies between
rth j

that of SC and MRC. S-GSC combines only (1 — e v )L < 1 more branches than AT-GSC 

on average. When the diversity order L  is large, the complexity of S-GSC is comparable to 

that of AT-GSC.

2.5 Numerical Results

Numerical results are presented to illustrate the performance of S-GSC in i.i.d. Rayleigh 

fading channels. In all the figures, the normalized threshold is defined as the threshold
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normalized by the average branch SNR yth =  Kh/y •

10°

10-5I---------------1-------------- 1-------------- 1---------------1---------------
-1 5  -10  -5  0 5 10

Norm alized T hreshold  (dB)

Figure 2.1: The average BER of BPSK with S-GSC, AT-GSC, MRC and SC as a function 
of the normalized threshold, y — 5dB, L  =  5.

Fig. 2.1 shows the average BER of BPSK with several diversity schemes as a function 

of the normalized threshold yth- Clearly, the MRC and SC performance does not change 

with the threshold. However, the AT-GSC and S-GSC performance is highly dependent 

on pth- As yth increases, AT-GSC performs very poorly. When y* 1 (the threshold 

y* is much higher than the average SNR y), the average BER of AT-GSC approaches 

1/2. Clearly, as the threshold increases, the probability that no branch is selected increases. 

However, the performance of our proposed S-GSC is less sensitive to the threshold com­

pared to that of AT-GSC. When the threshold is low, S-GSC performs as well as AT-GSC. 

However, for high threshold values, the BER of S-GSC approaches that of SC, which is 

much lower than that of AT-GSC.

Fig. 2.2 compares the normalized average output SNR yout =  yout / Y achieved by dif­

ferent diversity schemes. As expected, the average output SNR of MRC increases linearly 

with the increasing diversity order L while for SC, it increases much more slowly. This
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Figure 2.2: The normalized average output SNR y0ut =  Y o v a / y  ° f  S-GSC, MRC and SC.

Y =-5dB

otooc
0
01

0O)fO 7th = -15dB

S-GSC
AT-GSC

A verage  B ranch SN R (dB)

Figure 2.3: The average BER of binary DPSK with S-GSC, AT-GSC, MRC and SC. L — 3.
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observation agrees with the result in [13]. The average output SNR of S-GSC is upper 

and lower bounded by that of MRC and SC, respectively. As the threshold y± decreases 

(S-GSC behaves more like MRC), the average output SNR of S-GSC increases. The av­

erage output SNR of S-GSC increases much faster when the normalized threshold yth is 

low. Therefore, lowering the threshold improves the average output SNR, especially for a 

higher diversity order.

The average BER of binary DPSK with different diversity combiners is shown in Fig. 

2.3. As expected, MRC performs the best and AT-GSC performs even worse than SC when 

the normalized threshold yth is large. This is because high threshold sends AT-GSC to the 

error state (the event that all the branch SNRs drop below the threshold), which results 

in significantly high error rate. However, our proposed S-GSC outperforms both SC and 

AT-GSC.

v = 0 d B

7  =-5dB

o>

" "  S-GSC
  SC
-  -  MRC

-10 -8 -4 -2 0 2 4
Normalized Average Branch SNR7* (dB)

Figure 2.4: The outage probability of S-GSC, SC and MRC. yr  — y /Yr,  L = 6.

Fig. 2.4 compares the outage probability of S-GSC with those of SC and MRC. The 

outage probability of S-GSC approaches that of MRC when the normalized threshold yth 

is low. As y* increases, S-GSC performs close to SC.
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2.6 Conclusion

This chapter has shown that AT-GSC performs poorly as the preset threshold yth increases. 

To improve system performance, we developed a new combining scheme, called S-GSC, 

which is a hybrid of SC and AT-GSC. We also developed theoretical performance results for 

S-GSC, which are general enough to handle any independent fading model. Results show 

that S-GSC outperforms both SC and AT-GSC. As the threshold decreases, the S-GSC 

performance improves but its processing complexity increases. We showed that both the 

performance and the complexity of S-GSC lie between those of MRC and SC. The number 

of the branches contributing to the output of S-GSC is not fixed, but varies corresponding 

to the channel fading conditions. Depending on the requirements of an application, S-GSC 

can be made to operate with different levels of complexity and performance.
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Chapter 3 

An Adaptive MRC Scheme

This chapter develops another suboptimal, reduced-complexity scheme called adaptive 

MRC (A-MRC). Section 3.1 compares the processing complexity of several coherent lin­

ear combining schemes. Section 3.2 introduces our A-MRC scheme and derives the mgf 

of its output SNR in independent Rayleigh and Nakagami-m fading channels. Section 3.3 

analyzes the performance of a wide class of digital modulations with A-MRC in indepen­

dent Rayleigh fading channels and also derives the mgf of the A-MRC output SNR with 

imperfect CSI in i.i.d. Rayleigh fading channels. Section 3.4 shows some numerical results 

that compare the performance of A-MRC with that of other combiners in different fading 

channels. Section 3.5 concludes this chapter.

3.1 Introduction

For emerging high data-rate wireless communication in dense multi-path channels, the 

number of the resolvable multi-path components (or diversity branches) can be very large. 

Rake receivers with a large number of fingers and MRC are optimal in this case. However, 

power consumption limits and implementation cost render MRC impractical in dense multi- 

path fading channels. For example, in UWB systems, the number of the resolvable multi- 

path components L can be up to several hundred paths [53]. To employ ideal MRC in this 

case requires channel estimation for all the L branches, clearly an extremely complicated 

task. GSC(M, L) has thus received much attention for Rake receiver design [47,54-57]. 

However, in order to select the best M  branches, GSC(M, L) measures the instantaneous 

SNRs of all the L branches and ranks them. This is just as complicated as MRC when L
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Table 3.1: Processing Complexity of Diversity Combining Techniques

Diversity scheme Measuring all the L  paths Ranking Complexity
MRC Yes No Fixed

GSC(M, L) Yes Yes Fixed
P-MRC(M, L) No No Fixed

AT-GSC Yes No Variable
NT-GSC Yes Yes Variable
S-GSC Yes Yes Variable

A-MRC No No Variable

is large. Therefore, P-MRC(M, L) [26] is proposed for Rake receptions. This approach 

reduces the number of branches which are needed to be measured and avoids the sorting 

operation as well. However, in time-varying channels, choosing an appropriate M  for 

GSC(M, L ) and P-MRC(M, L) may be difficult [22].

GSC may be improved by allowing the number of the combined branches M  to vary 

dynamically with channel fading conditions. In AT-GSC, NT-GSC and our new proposed 

S-GSC, the number of the combined branches M  is a random variable. These GSC deriva­

tives are more flexible than GSC(M, L) in fading channels. However, they also require 

monitoring the instantaneous SNRs of all the L available branches.

This chapter proposes an adaptive MRC (A-MRC) scheme which coherently combines 

the first Nc (0 < Nc < L) branches whose cumulative output SNR is above a preset thresh­

old yth- That is, A-MRC continues adding branches until the total output SNR exceeds 

yth- A-MRC only requires to monitor the first Nc branches where Nc varies depending on 

channel fading conditions. This is a desirable feature for a Rake receiver. When MRC 

or GSC(M, L) is used in Rake receiver, its output can only be formed after the combiner 

receives all the L multi-path components. This is both time and power consuming. A Rake 

receiver with A-MRC does not need to wait for the arrival of the last multi-path compo­

nent. Once the cumulative sum of the branch SNRs exceeds the threshold, A-MRC will 

discard all the remaining branches and form an output immediately. Moreover, no sorting 

operation is needed in A-MRC, which reduces the computational complexity. Table 3.1 

compares the processing complexity of several combining schemes.
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We provide a detailed theoretical analysis of the A-MRC performance. This allows for 

a comparative evaluation of A-MRC vis-a-vis other GSC methods. We derive the mgf of 

the A-MRC output SNR in standard fading channels, such as Rayleigh and Nakagami-m 

fading. Asymptotic analysis of A-MRC in independent Rayleigh fading channels shows 

that the effective diversity order of A-MRC varies depending on the preset threshold yth- 

When yth is large, A-MRC has the same diversity order as MRC. Numerical results show 

that, A-MRC outperforms GSC(M, L) when the channel power decays rapidly. Note that 

our main analytical results are predicated on the availability of perfect CSI. However, the 

analysis can be made more realistic if channel estimation errors are taken into considera­

tion. We thus develop theoretical performance results for A-MRC with Gaussian channel 

estimation errors in i.i.d. Rayleigh fading channels. These analytical results are sufficient 

to completely characterize the performance of A-MRC and enable one to compare A-MRC 

with other diversity schemes.

A-MRC coherently combines the first Nc (0 < Nc < L) branches whose cumulative output 

SNR is above a preset threshold y*. It behaves like MRC while the number of the combined 

branches Nc varies dynamically with the fading condition. The instantaneous output SNR 

of A-MRC is given by

Note that the number of the combined branches Nc is highly dependent on the preset thresh­

old yth and the channel gains. Alternatively, the output SNR of A-MRC can be written as

The first case in (3.2) accounts for the optimistic event that the first branch SNR exceeds 

the threshold, i.e., yi > y*. Only the first branch is then applied to the A-MRC output

3.2 A-MRC

(3-1)

N c
if yi >  yth,

N c N c- 1

Yam  — ' fe==1 
L

(3-2)k=l 
L - 1

jfc=l

U=1 k=1
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and all the remaining branches are not processed. The second case accounts for the event 

that N c, N c e {2, . . . ,  L — 1 } ,  branches are required to be coherently combined to form an 

output whose SNR exceeds the threshold yth- The third case corresponds to the worst case

branches have to be combined as the output, just like MRC.

The following procedure describes the operation of A-MRC:

1. Initialize the number of the combined branches Nc = 1 and the cumulative sum of the 

branch SNRs V  =  0. Select the threshold yth according to the system performance 

requirement.

2. Estimate the channel gain guc and the instantaneous SNR y n c at the Nc-th branch. 

Update V =  V + y n c ■

3. Compare V  with the preset threshold Yth- If V  > Kth, discard the remaining branches 

and output the weighted sum of the first Nc branches; otherwise, let Nc =  Nc + 1. If 

Nc >  L,  all the branches are combined to form the output and A-MRC is equivalent 

to MRC; otherwise, repeat step 2.

That is, A-MRC continues to add diversity branches until the cumulative sum of the branch 

SNRs exceeds the preset threshold. This method avoids the sorting operation required in 

GSC(M, L) and allows the number of the combined branches Nc to vary according to the 

channel fading conditions. Compared with MRC and GSC schemes, our proposed A-MRC 

only measures the first Nc branches instead of all the L branches.

3.2.1 General Independent Fading

Next we derive the mgf of the A-MRC output SNR in various fading channels:

where the cumulative sum of the first L — 1  branch SNRs does not exceed Yth  and all the L

POO

Mamis) =  I p n {x)e~sx dx +
Jyth

(v,x)e s v̂+x  ̂dxdv (3.3)

where Vj — Ysi=i Yi is the sum of the first j  branch SNRs and PVj~.t,yj(v, x ) is the joint 

pdf of V j - 1 and yj,  for j  e [ 2 , L }.
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An immediate question is if there is a value of the threshold yth which is optimal in the 

average B E R  minimizing sense. We can answer this question in a fairly general setting (i.e., 

without assuming a particular fading distribution). Differentiating the output mgf (3.3) over 

Yth, we obtain that for any real value s > 0,

Hence, the output mgf monotonically decreases with yth- Noting the relation between the 

average error rates and the output mgf (1.34), we find that the average error rates of A-MRC 

decreases with y*. That is, as y± increases, the performance of A-MRC improves. Next, 

we consider two extreme cases of (3.3).

1. No diversity y* =  0. When y* =  0, A-MRC selects the first branch as the output.

This is equivalent to no diversity case. As expected, the output mgf (3.3) reduces to

2. MRC yth =  oo. When the threshold approaches infinity, all the available branches 

have to be combined and the output mgf (3.3) reduces to

which is equivalent to the output mgf of MRC.

Note that (3.3) holds for arbitrary independent fading channels. Using (3.3), the output 

mgf of A-MRC for any standard fading distribution can be obtained. For brevity, we next 

analyze Rayleigh and Nakagami-m fading channels only.

9Mam(-s) 
9Xth p yi(yth) + Y ,  /

j=2

(3.4)

/•OO
Mam(s )=  j p VL(v)e~sv dv, (3.6)
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3.2.2 Independent Rayleigh Fading

For independent Rayleigh fading channels, closed-form expressions for the mgf of the A-
MRC output SNR can be readily derived. Noticing that the instantaneous branch SNR yk

is exponentially distributed, whose pdf is given by (1.6b)

Pyj (x) = ~ e  fJ , x  > 0, (3.7)
Yj

we simplify (3.3) as

e - ^ ( l + s ? i )  L ~ l  ^
M a m i s )  =  — — — = h  V  — — — =—  /  P V j ^ ( v ) e yj  d v

l + J W  1 + S Y J  Jo (38)
yth1 f Yth 

+  t ——— /  PVl^ { v ) e ~ svdv. 
1 +  syL Jo

Clearly, we need to find the pdf of the sum of exponential RVs pvj{v). Next, we de­

rive closed-from expressions for the output mgf (3.8) for different cases of independent 

Rayleigh fading. Asymptotic analysis results are also provided.

Li.d. Rayleigh fading

In i.i.d. Rayleigh fading channels, all the average branch SNRs are identical to each other, 

i.e., y\ — yi — ■ ■ ■ = Yl  — y  ■ The pdf of a sum of j  identical exponential RVs is given 

by [6]

=  ,’ - a  ( 3 ’9 )

Substituting (3.9) into (3.8), we obtain the output mgf of A-MRC in i.i.d. Rayleigh fading 

channels in closed-form as
1 - h N l + j y )  L - 2  1 /  \ j

=  —— ——j- -)----— 7  = "T (  ) [1 -  ( l + s y ) i+1~Ll  (3.10)(1 + s y ) L l + s y  *—i j \  \  Y )j=v

The corresponding output pdf can also be derived in closed-form as

1 - 1  - 4  - *  l - 2  ,  /  x  jx  e  y ,   ̂ , e  y x - '  1 ( yth Y
Pam  OO =  — r j z  ~ u ( x )  +  - z ~  >  —  I —  I

r H L - \ y .  Y ( 3 n )

K* -  w ,)/y ]w _ 1  1 ,
1 ------- ( i - j - D !  . “ (j t - yth)
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I.n.d. Rayleigh fading

We assume that the average SNRs at different branches are different from each other, i.e., 

yic yi for any k ^  I and k, I e  {1, . . . ,  L}. The pdf of the sum of the first j  branch SNRs 

Vj  can be obtained as [6]

P V j i v )  =  Y ]  v > 0 ,  (3.12)
t x  W

where

=  (3.13)
yk -  W

Ijkk
Substituting (3.12) into (3.8), we obtain the mgf of the A-MRC output SNR in i.n.d. 

Rayleigh fading channels as

Mam(s) = —r - — =—  +  V  — r - — =-------- > *  (*, j ) -----------
i +  ^ n  f r i  1 +  SYj+x 1 -

Yk
j = 1 ’ k= 1 * y7+i (3 .14)

^  1 _
+  > jr(fc, L -  1)----------------------------

^  ' ( l + m X l + s j a )

where Jt(k, j )  is defined as (3.13).

General independent Rayleigh fading

More generally, we assume that the average SNRs of the first j  branches {yi, . . . ,  Yj) have 

1 < rij < j  distinct values {a i , . . .  anj}. Without loss of generality, we assume that

YX =  ■ • • =  Yr},i = «1 

Yrj, i+l =  •■• =  Yrj,i+rj,2 =  «2 (3.15)

Y r j , i + . : + r j , n j - 1+1  =  • • • =  Y r j ' i + . . . + r j , n j  =  a n j

where ry,*, (& =  1 , . . . ,  n/) is the number of the average branch SNRs which are equal 

to ccfc among the first j  branches. It is clearly that r j j  +  . . .  +  rj^nj =  j .  Since the
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channel is assumed to be independently faded, the mgf of the sum of the first j  branch 

SNRs Vj — ]C/_i Yi can be obtained as the product of the mgfs of the individual branch 

SNRs yi (I = 1 , ,  j):

X  i X t  \ v j *
(3.16)^w=nTT^=nfTx—)14 -syi “  V1 4- sak)

Using partial fraction-based techniques, we may derive a closed-form expression for 

the pdf of Vj,  which is the inverse Laplace transform of (3.16) [58]

fk,lU> ah) x rJ*~le ~ ^
pv, w ~ a o ) ' ^ E - T i  T)f T , 7 T o , '

where A ( j )  = YtiL\ ai ^  a°d

(3.17)

i \  (  i

q = 1 
q^k

(3.18)

where Q : YLq^k sj =1 — 1 and sj is non-negative integer.

Substituting (3.17) into (3.8), we obtain the mgf of the A-MRC output SNR in general 

independent Rayleigh fading channels

- ^ ■ ( l+ j y i )  L —2 -J -^ - ( l+ $ y7 + i)  nj  r j j  . . .  . . . .
 ̂ e  1 , Y - '  e  A r •% V '  i ^ k j i j ,  <Xk )gk , l ( j )Mam(s) = —  _  + > —— =----- A(j) > > ----—------- —

i + m  i +  syj+i ^ ^ ( ( -  i ) K o . * - 0 !

tlL- 1 '_  fk, i(L -  1 ,ctk)y (rL- h k - l  + 1, g*(l + s a k))
+  A ( L - l ) V r  --------------------------- -̂-------------------------  r ~ ■

s  ( l l - U  -  /)!(/ -  1)!(1 +  syL)(s +  ± .y L - u - l+i

(3.19)

where

8k,l i j )  = ' \<Xk Yj+1 /  L oik \
1 rM - / + l

Yth ’

Oik X
Yj+l 1

rj,k — I 4-1

» oik #  y/+i,

otherwise,

(3.20)

and y(n ,x )  is the incomplete gamma function which can be defined as a finite integral [3,

Eq. (8.350.1)]

y ( n , x ) =  f  dt, n > 0. (3.21)
Jo
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When n >  1 is an integer, (3.21) can be expressed as a finite series:

(
n - l  A

l ~ e~XT ^ y  (3-22)

It can be shown that (3.10) and (3.14) are two special cases of (3.19).

Asymptotic Analysis

Asymptotic performance analysis provides an insight on the effective diversity order of a 

diversity system. Using (3.3) with the polynomial approximation for the pdf of the instan­

taneous branch SNR (3.7) in Rayleigh fading channels [59]

p Yj (x) ~  for high average branch SNR f j , (3.23)
Yj

we obtain the asymptotic mgf of the A-MRC output SNR as

1 1i . .-™ . (s rih)J
VimO) -

‘ LYp J-
(3.24)

y + i n / i ‘ «  sLyv_

where yp =  Yi is the production of all the L average branch SNRs. Note that (3.24) 

holds for any kind of independent Rayleigh fading channels. For i.i.d. Rayleigh fading 

channels, (3.24) reduces to

Mtxnis) ~  - L j -  + -  (s y ) j+1~Ll  (3.25)
( s y r  "  j ' . (sy)J+l

The diversity order L of A-MRC is highly dependent on the threshold y±. When yth ap­

proach infinity, Mam(s) — i.e., A-MRC has the same diversity order L  as that of

MRC. However, when yth approach zero, Mam(5 ) — jp, i.e., no diversity benefit can be 

achieved. As y^  increases, the effective diversity order of A-MRC increases, which results 

in better performance.

3.2.3 Independent Nakagami-m Fading

In independent Nakagami-m fading channels, the instantaneous SNR of the j-th  branch is 

gamma distributed whose pdf is given by (1.14b)
 X_

x mi~ le ni
P y j i x )  = --------- — 5̂ - ,  X > 0 ,  (3.26)r ( m j ) r } j J 
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where mj  is the fading severity parameters associated with the j'-th branch and t]j =  

Y j /mj-
Due to Moschopoulos [60], the pdf of the sum of the first j  branch SNRs, i.e., the sum 

of independent gamma random variables, is given by

PVj( .v) n
72—1

^ €j<kVPj+k- le "U
>   - o - r i , ---------------------- , V >  0 ,

n i J+  r ( P j  +  k )
(3.27)

where l m”’ =: nfin{?ji,. . . ,  rjj} and can be computed recursively as

1, * =  0,

(3.28)
, k =  1,2, —

Using (3.26) and (3.27), we obtain the mgf of the A-MRC output SNR in independent 

Nakagami-m fading channels as

'  J-1

r ( m i ) ( l  +  S t ] i ) m i (1  +  S T ] j ) m i n C^y„,,v % )

€  j —\ ,k
f S j - l + k  

*=0 7 i j - i

1
X

r ( p M + k ) r ( m
~L—l

+
1

a+sr]L )mL

-  £ *  r  [ m y , ( s  +  ^  (yth -  y ) j  y h - ' + k - l e  ( S + ”^ ) y d y

P l ~ 1 + k ’ ( s  +  ^ Z i r )  H h]^  ^l - u  y

JLj
k = 0 r05L_! +  *)(! +  517!, L - l ) ^ - 1+fe

. (3.29)

Note that (3.29) is general enough to handle any kind of independent Nakagami-m fading 

channels, including the case where some of the fading severity parameters m f  s and/or 

some of the average branch SNRs y /s  are identical and the others are different.

When all the fading severity parameters m f  s are integers, (3.29) can be simplified as

i
r (mi ) ( l  +  srji)mi (1 +  sr]j)mJ

J—̂
n ' w ~
n—1 r\n

oo
E €j - U  

fij—\ +k  
k=o Vi j - i

A s+y)m mj~l

+

, V i j / rm 1 /  i V  i

- \ + k  — 1)! §  V +  ^77 § (_1) ( t - r ) ! r ! nh

0 L_ i  +  * , ( 5  +  ^ )  yth]

(1 +$r}L)mL

t=o 
L- 1

a ~  ei-i,ifcy

k = 0
(^L-l +  & — 1)!(1 +  ST]i'L-i)PL- 1+k

(3.30)

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where the incomplete gamma function y(n ,x )  can be evaluated using the finite series (3.22) 

and the complementary incomplete gamma function F (n, x ) is related to y(n, x) by

n~l x k
F (n, x) =  T(n) — y(n, x) =  1 — e~x — , when n is an integer, (3.31)

“  kl k=0

and

Y [ f t - l  +  * +  r, m  -  i ) ]
/  . \ W j - i + k + r )  ’ ^ y - i  ^  r i j ,
( —*-------i-) (3.32)

t 1 1+fc+r, otherwise.

/ ( ? 7 i j - i , ? 7 y )  =

fij—l k + r

3.3 Performance Analysis

We next use the output mgfs (3.10), (3.14) to evaluate the average error rates, the outage 

probability, the average output SNR and the average number of the combined branches of 

A-MRC in i.i.d. and i.n.d. Rayleigh fading channels. The same analysis can be performed 

for general independent Rayleigh fading and Nakagami-m fading with the aid of (3.19) and

(3.29), respectively. For brevity, we do not develop such results here. We also derive the 

output mgf of A-MRC with imperfect CSI in i.i.d. Rayleigh fading channels.

3.3.1 Average Error Rate

As is shown in Chapter 2, the mgf-based technique [45,46] can be readily applied with 

the output mgfs to evaluate the average error rates of a wide class of digital modulations 

with a certain diversity combiner. In the following, we provide just three examples of such 

analysis for brevity.

BPSK and Coherent BFSK

Replacing Msg(s) with Mam(s) in (2.12), we obtain the average BER of BPSK and coherent 

BFSK with A-MRC as

A  =  -  f 2 M u n f  - A - : )  de. (3.33)
Jo \sm  9 )

The infinite integral can be readily evaluated using simple numerical methods.
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Alternatively, using the output pdf (3.11) and integrating by parts, we obtain the average 

BER of BPSK and coherent BFSK with A-MRC in i.i.d. Rayleigh fading channels as

a _  1 1 I S ?
b   J  (.8  ̂ rf o t /  1 I2 2V I + g y

x

k=0 

L - j - 1
- 2G(vS )  + -L  g  _ 2 _ fg Q (_4>yr( » + / _ l,u

(3.34)

where co =  . We define 7(g) for subsequent use.

Binary DPSK and Non-Coherent BFSK

Similarly, replacing Msg(s) with Mam(s) in (2.12) and using the output mgf (3.10), we 

obtain the closed-form expression for the average BER of binary DPSK and non-coherent 

BFSK in i.i.d. Rayleigh fading channels as

e - f V + g r )  ^  x
Pb =

1
+

2(1 + g y ) t  2(1 + g y )
35)

16-QAM

16-QAM has a wide application in satellite and mobile communications. The BER of 

square 16-QAM is given by [61]

+ Q 3 ,r -  ] -  - Q \  5 J - i rP b (y )  — -^Q

Hence, we obtain the average BER in terms of the output mgf as

1 \  __ (  9

(3.36)

h  =  -  f 2n  Jo \_2 \ 5 s  m d j
„  .  +  Mam . »

5 sin 0 /  V lOsin 0
d9. (3.37)

For i.i.d. Rayleigh fading channels, we can simplify the average BER as

I \  1
,  V , /  v . 0 - ) - 2 / ( 5 )

where 7(g) is defined as (3.34).

(3.38)
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3.3.2 Outage Probability

Noticing the relation between the outage probability and the output cdf (1.35), we obtain 

the outage probability of A-MRC in i.i.d. Rayleigh fading channels by integrating the 

output pdf (3.11) as

P o a t i Y T )  =  ( L ’ y  ) +  ~  Hh)

_ »  r ( l  -  j ,
e y

( L - j -  1)!
_yjl 

— e v
(3.39)

3.3.3 Average Output SNR

The average output SNR of A-MRC can be derived using the output mgf (3.10) for i.i.d. 

Rayleigh fading channels,

L—2
Vout =  y

-M  L — e y m f)' ( L - j -  1) (3.40)

Note that as yth -> oo, the average output SNR of A-MRC approaches Ly,  which is 

equivalent to that of MRC. Similarly, using (3.14), we obtain the average output SNR for 

i.n.d. Rayleigh fading channels as

_m  1 - e
Yom =(yi +  yth)e n +  2 _ , ( ? j+1 +  yth)e ri+1 2_^x(k, j )

j=1 *=1

v - ' -

+  2 ^  71 (k ’ L -  + ? k - e  (yL + h  + Kth)]
k=l

- 21k ( 1__
yj+1 /

1 - JL.
Yj+l (3.41)

Higher-order moments of the A-MRC output SNR can be obtained using the output mgfs. 

For brevity, we do not develop such results here.

3.3.4 Number of the Combined Branches

The number of the combined branches Nc of A-MRC varies dynamically with the channel 

fading conditions. We use the average number of the combined branches to evaluate the 

processing complexity of A-MRC.
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For i.i.d Rayleigh fading channels, the probability that I branches are combined in A- 

MRC is given by

Pr (Nc =  /) =

1 _25h
-e y

(I ~  1)' - ' ( f )
L~2 „ /

l- l

- M  1 
-  e  r J  —

1 ( Kth Y

7 = 0

I = L,
(3.42)

Thus, we can readily obtain the average number of the combined branches as
‘/.-I / \ i—\

- m .
Nr = L - e  ? .£(?)

L - l
(3.43)

( / - ! ) ! _

From (3.43), we readily find that as yth increases, the average number of the combined 

branches Nc increases and so does the computational complexity of the system. As y* —> 

oo, (3.43) approaches L, which is expected. Recall that as yth increases, the A-MRC 

performance improves. Hence, there is a tradeoff between performance and complexity. 

A-MRC can be made to operate with difference levels of complexity and performance 

according to the application requirements.

The variance of the number of the combined branches can also be obtained with (3.42) 

and (3.43) as

VAR{Nc) - e  y J 2
4-4 /y th V -1 (L - 1)2 -  e v

(I ~  1)!

L —l /  \ l —1

fe(?) L - l  
(I ~  1)!

. (3.44)

As y* —> oo, (3.44) tends to zero, as expected.

For i.n.d. Rayleigh fading channels, the average and the variance of Nc are given by

1=2 k = l
1 _  21

Yl
L - l

(3.45)

+  L ^ 2 n (k, L — 1)(1 — e 9k)
k=l

and

_M 4—1 9  23tb. 4-4 1 — e
VAR(Nc) =e 9\ + J 2 l e  91 T , * ® ’ 1 ~  1)_

-tk)  
Y k \  Yl )

k = l1=2 

L-l
+  L 2 J 2 * ( k ’ L ~  1)(1 — e 9 k ) - N c2 . 

k = 1

1 - m
Yl (3.46)
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3.3.5 Imperfect Channel Estimation

Note that all the previous analysis is based on the assumption that CSI is perfectly known 

at the receiver. However, perfect CSI is not available in practice. For example, with pilot 

symbol assisted estimation, a Gaussian estimation error may arise in the estimate due to 

the large time or frequency separation between pilot and signal [62]. We next show that 

our results for the perfect A-MRC in i.i.d. Rayleigh fading channels can be readily used to 

analyze the A-MRC performance with Gaussian estimation errors in i.i.d. Rayleigh fading 

channels.

With pilot symbol assisted estimation, the channel estimate gk can be written as

gk =  gk + ek, k e {1,. . .  ,L},  (3.47)

where e* is the difference between the estimate gk and the actual channel gain gk, which 

is assumed to be a zero-mean CGRV with identical variance ct2 =  E(\ek\2). We as­

sume that the Gaussian error e* is independent of the actual channel gain gk and the 

noise components, i.e., E(ejg l ) =  E(ejn%) = 0 for any j  and k. Thus, gk and gk are 

joint complex Gaussian distributed with zero means and variances E{\gk\2) — Og and 

E(\gk\2) =  o 2 = ag + <jg, respectively. The correlation between gk and gk is given by

p(gk, &) =  ?*■ =  (3.48)

We express the actual channel gain gk in terms of the estimate gk as

gk =  Ag* +  ek (3.49)

2 2^.2 

where A =  - j j n .  and ek is a zero-mean CGRV with variance E(\ek\2) =  o 2 =
Ekg i EE g (7g  I ' g

Note that E(ejgf)  =  E(ejf ip  — 0 for all j  and k.

Given the transmitted signal s and the channel estimates g*’s, we obtain the output 

signal of A-MRC as

Nc N c  Nc Nc

S = J 2 8 k rk=: te'%2\gk\2 + J 2 s t sek +  gtnk ■ (3.50)
k= 1 k= 1 k= 1 k= 1

    .
Desired signal Gaussian estimation error AWGN
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Note that the second term in (3.50) is a zero-mean CGRV which can be regarded as the 

Gaussian noise from the estimator. Hence, the Gaussian estimation errors enlarge the noise 

components in the received signal. The output SNR conditioned on the channel estimates 

g it’s is given by
|a* e £ ,  | j t i ¥

S [ ! E £ i l t* f e s + n ) l2]

Nc

Yam — (3.51)
jt= 1

where /Xk is the instantaneous SNR of the k-th branch given by

A* = \gk\2
X2Es \gkY

Nq +  ar^E,
gEs ( l + /f)2 ( ^ )  + ^ ( 1  + k )

(3.52)

where k — a 2/ a 2 Hence, the average SNR of the k-th branch is given by

fx = E(fxk) =
1

(1 + k)y ~1 + k
(3.53)

where y  — a 2 the average SNR at the fc-th branch when perfect CSI is available. 

Since k > 0, we have jx < y  which means that the imperfect CSI decreases the average 

branch SNR, resulting in worse performance. When k = 0, i.e., no estimation noise, (3.51) 

reduces to (3.1) for the perfect CSI case.

Assume that a 2 and o 2 are known at the receiver. The instantaneous output SNR of 

A-MRC with Gaussian estimation errors is given by

yout

H  l .  i f >  Kth,
Nc Nc Nc- 1

if Y 2 ^ k — Yth and 0 < ^  ^  < yth,
J t= l  k=l k=l

L L - l

k=l k=l

(3.54)

Comparing (3.51) and (3.1), we find that the instantaneous output SNR of A-MRC with 

imperfect CSI has the same distribution as that with perfect CSI but different mean values. 

Therefore, replacing the average branch SNR y  (for perfect CSI) in (3.10) with jx (3.53) 

(for imperfect CSI), we can obtain the mgf of the A-MRC output SNR with imperfect CSI 

in i.i.d. Rayleigh fading channels. Other performance measures can then be readily derived 

using the output mgf.
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For example, the BER of BPSK with imperfect A-MRC in i.i.d. Rayleigh fading chan­

nels is given by

'  L- 1 L—2
Pb = l ~ 12 2 V 1 +  gfji

k = 0  N x j —0
L - j - 1 , /

'  / i  \ , ,

. . .  ~  • . 0)P \ t / \ 7.
1=0 K a ^ '  t = 0

(3.55)

where coe = yth(1+g4).

3.4 Numerical Results

We now provide some numerical results to show the performance of A-MRC in indepen­

dent Rayleigh and Nakagami-m fading channels. In all the figures, we assume that the 

total number of the resolvable multi-path components is L =  10. The normalized thresh­

old yth is defined as the threshold normalized by the average SNR of the first branch, i.e., 

Kth =  Yth/Yi- The average receive SNR is defined as the sum of the average branch SNRs 

i.e.,Yb = Y^j=\ Yj- *n Figs- 3.1-3.7, we assume that perfect CSI is available at the receiver. 

In Figs. 3.1-3.5 and 3.7, the channel is assumed to have an exponential power delay profile 

(EPDP), i.e., the average received SNR at the j'-th branch is given by Yj — 

where 8 is the power decay factor. Note that if 5 =  0, fk =  yi for k € {1, . . . ,  L) and we 

obtain so-called uniform PDP (UPDP). Both EPDP and UPDP are commonly used in var­

ious studies. Semi-analytical simulation results are provided for the A-MRC performance 

as an independent check of our analytical results.

Figs. 3.1 and 3.2 plot the average and the variance of the number of the combined 

branches Nc versus the normalized threshold in independent Rayleigh fading channels with 

EPDPs. Both the average and the variance of Nc are highly dependent on the preset thresh­

old yth. As y* increases, Nc increases. When yth is chosen to be a medium value, Nc 

increases much faster and the variance of Nc becomes large. When Yth is either very small 

or very large, Nc does not change much and the variance of Nc is small. As the chan­

nel power decay factor 8 increases, the Nc increases and the variance of Nc changes more
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Figure 3.1: The average number of the combined branches.
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Figure 3.2: The variance of the number of the combined branches.
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Figure 3.3: The average BER of BPSK with A-MRC as a function of the normalized thresh­
old in independent Rayleigh fading channels with EPDP S =  0.2.

widely. This is much more pronounced in medium yth region.

Fig. 3.3 shows the average BER of BPSK with A-MRC as a function of the normal­

ized threshold yth- As expected, the average error rate performance depends on the preset 

threshold. As y* increases, the A-MRC performance improves because more branches are 

combined to form the output. However, due to the limit of the average received SNR y ,̂ 

error floor occurs in high yth region. When y* approaches infinity, A-MRC is equivalent 

to MRC. As the average received SNR yb increases, the average BER decreases and the 

A-MRC performance becomes much more sensitive to the threshold yth- From Figs. 3.1 

and 3.3, increasing the threshold y* improves the A-MRC performance, but increases the 

average number of the combined branches Nc, which results in higher computational com­

plexity. Therefore, we should adjust y* to achieve a better tradeoff between performance 

and complexity.

Fig. 3.4 compares the performance of A-MRC with that of GSC(6,10) in EPDP chan­

nels. The number of the combined branches is fixed in GSC(M, 10) while it is a random
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Figure 3.4: The average BER of BPSK with GSC(6,10) and A-MRC in independent 
Rayleigh fading channels with different EPDPs <5 = 0 .1 ,0 .3 ,0 .5 .

Table 3.2: Choosing the normalized threshold yth (dB) in A-MRC with L = 10

9th
1VC =  5 Nc =  6

8 =0.1 5.197 6.058
S = 0 .2 4.387 5.164
8 =  0.3 3.635 4.379
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Figure 3.5: The average BER of BPSK with different diversity combining schemes in 
independent Rayleigh fading channels with EPDP 5 =  0.2.

variable in our A-MRC. To compare the performance on a fair basis, we choose the A- 

MRC threshold yth, such that the average numbers of the combined branches Nc is equal 

to M  (see Table 3.2). Hence, the processing complexities of two combining schemes are 

almost the same on average. In fact, A-MRC is still simpler than GSC(M, L). Because 

less branches have to be measured and no sorting operation is required in our approach. 

Interestingly, as the power decay factor 8 increases, the A-MRC performance degrades in 

higher SNRs but improves in lower SNRs, while the GSC(6, 10) performance becomes 

worse in all the SNRs. Hence, our approach can perform better than GSC(M, L) even in 

lower SNRs when the channel power decays fast, i.e. 8 is large.

Figs. 3.5 and 3.6 compare the average BER performance of A-MRC with that of 

GSC(M, 10) and P-MRC(M, 10) in i.n.d. and i.i.d. Rayleigh fading channels, respectively. 

The A-MRC threshold y* is carefully chosen such that the average number of the com­

bined branches is Nc = M. The MRC performance is also plotted for comparison. Clearly, 

the P-MRC(M, L)  performs the worst and MRC performs the best. When the channel has

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10-’

CD
to
tE

£
Ui
oo0) M = 5

—  A -M R C 
- -  MRC 

G SC(M ,10) 
P-M RC{M ,10) 

O Sim ulation

M = 6

155 10
A verage  R ece iv ed  SN R  yb (dB)

o

Figure 3.6: The average BER of BPSK with different diversity combining schemes in i.i.d. 
Rayleigh fading channels.

an EPDP, our A-MRC outperforms GSC(M, L) and approaches MRC in high SNRs (see 

Fig. 3.5). However, when the channel has a UPDP, our A-MRC does not perform well 

(see Fig. 3.6). As the average number of the combined branches M  decreases, our A-MRC 

performs much worse than GSC(M, L). Therefore, our A-MRC is more suitable in non- 

identically distributed fading channels. In fact, UPDP rarely occurs in practical multi-path 

fading channels and is widely used as a worse-case benchmark.

Using (3.30) with (3.35), we plot the BER of binary DPSK with A-MRC in independent 

Nakagami-m fading channels when m is an integer in Fig. 3.7. We assume that the fading 

severity parameters on different branches are the same, i.e., m* =  m for k e {1 , . . . ,  L}. 

The BER of binary DPSK with MRC is plotted for comparison. As m increases (the fading 

condition improves), the performance of both MRC and A-MRC improves. However, the 

A-MRC performance does not improve as much as that of MRC. As the threshold y* 

increases, A-MRC behaves more like MRC.

Fig. 3.8 shows the impact of Gaussian estimation errors on the BER performance of
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Figure 3.7: The average BER of binary DPSK with A-MRC in independent Nakagami-m 
fading channels with different fading severity parameters m =  1,2 ,4  and EPDP 8 =  0.2.
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Figure 3.8: The average BER of BPSK with A-MRC with imperfect CSI in i.i.d. Rayleigh 
fading channels. The normalized threshold y± = yth/Yi =  5dB.
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A-MRC with BPSK in i.i.d. Rayleigh fading channels. As expected, error floor is more 

obvious with the increasing k  which is defined as the ratio of the variance of the Gaussian 

estimation error to the variance of the actual channel gain. Simulation results prove the 

rightness of our analytical results.

3.5 Conclusion

In this chapter, we have developed a new diversity combining scheme, A-MRC, which 

adaptively combines the first Nc branches whose output SNR is above a preset threshold yth- 

This method measures the first Nc branches only. It avoids the sorting operation required 

in GSC(M, L) and allows the number of the combined branches Nc to vary according 

to the channel fading conditions. For performance analysis, we have derived the mgfs 

of the A-MRC output SNR in independent Rayleigh and Nakagami-m fading channels. 

Asymptotic analysis showed that the effective diversity order of A-MRC increases as the 

threshold increases. Using the output mgfs, we analyzed the performance of A-MRC with 

perfect CSI in independent Rayleigh fading channels and the performance of A-MRC with 

Gaussian channel estimation errors in i.i.d. Rayleigh fading channels. Numerical results 

showed that our proposed A-MRC outperforms GSC(M, L) when channel power decays 

rapidly. Our approach may achieve a better tradeoff between performance degradation 

and implementation complexity than GSC(M, L) in non-uniform dense multi-path fading 

channels.
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Chapter 4

Performance Analysis of Diversity 
Combiners in Equally Correlated 
Fading Channels

In Chapters 2 and 3, we proposed two new diversity combiners and analyzed their perfor­

mance in independent fading channels. However, the channel fading is usually correlated 

in practice. This chapter develops a novel approach for performance analysis of multi­

branch diversity combiners in equally correlated fading channels. Section 4.1 reviews the 

analytical results for the performance of diversity combiners in the literature. Section 4.2 

develops new representations for equally correlated Rayleigh, Ricean and Nakagami-m 

channel gains. Section 4.3 derives integral and infinite series expressions for the cdfs of the 

multi-branch SC output SNR in three types of equally correlated fading channels. These 

new results are then used to evaluate the average error rates, the outage probability and the 

output moments of multi-branch SC. Section 4.4 derives the cdfs and the moments of the 

multi-branch EGC output SNR and evaluates the average error rate performance of EGC in 

equally correlated fading channels. Numerical and semi-analytical simulation results that 

illustrate the effect of fading correlation on the performance of multi-branch SC and EGC 

are provided in Section 4.5. Section 4.6 concludes this chapter.

4.1 Introduction

Correlated fading among diversity branches can significantly degrade the performance of 

diversity systems. However, performance analysis of diversity combiners in correlated fad-
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ing channels is inherently more difficult. The reason is that the joint distributions of the 

channel gains at different diversity branches are in general required. For arbitrary correla­

tion patterns, such joint distributions are not available.

4.1.1 Equally Correlated Model

In this chapter, we study the performance of multi-branch diversity combiners in equally 

correlated Rayleigh, Ricean and Nakagami-m fading channels. The equally correlated 

model may be valid for a set of closely placed antennas [41]. It can also be used as a 

worst-case benchmark or as a rough approximation of arbitrary correlation pattern by re­

placing every element pjk (j  ^  k) in the correlation matrix with the average value of pjk 

(j  ^  k ). However, experimental measurements have shown that for three equally placed 

antennas (a triangular antenna array), the fading correlation among them does not follow 

the equally correlated model [63].

4.1.2 Relation to the Previous Papers

While comprehensive theoretical results for the average error rate and the outage perfor­

mance of multi-branch MRC systems in various correlated fading channels are available, 

by comparison, such performance analysis for multi-branch SC and EGC is not available. 

This is due to the lack of explicit expressions for the joint pdf of the branch SNRs for 

L > 2, when the channel gains are correlated.

The SC performance has therefore been comprehensively treated for various indepen­

dent fading models and modulation methods [15,19,64-69]. For correlated fading, al­

most all results for SC deal with two branches (L =  2) or three branches (L  =  3) 

(see [19,70-77]). In the extensive list of papers dealing with SC, we know of only a 

few papers that address multi-branch (L > 3) SC in correlated fading channels. Exception­

ally, Ugweje and Aalo [43] derive the pdf of the SC output SNR in correlated Nakagami-m 

fading channels as a multiple series of the generalized Laguerre polynomials. This work 

is based on the earlier work of Krishnamoorthy and Parthasarathy on the multi-variate 

gamma distribution [78]. They developed an orthogonal series expansion for the multi­

variate gamma chf in terms of the generalized Laguerre polynomials. However, the con-
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vergence properties of this series appear to be poor and the complexity of this approach 

increases rapidly for L > 3. Zhang and Lu [44] have developed a general approach to 

analyze the multi-branch SC performance in correlated fading channels. The basic idea 

behind this approach is to express the joint pdf as an L-dimensional inverse integral of 

the joint chf and to manipulate a resulting kernel expression. However, their results re­

quire L-dimensional integration. For large L (> 3), this method is also fairly complicated. 

Mallik and Win [79] analyze the GSC(M, L) in equally correlated Nakagami-m fading 

channels using its output chf. All these methods utilize the joint chf of the branch SNRs 

and the complexity increases as L increases. Following Miller [80], Mallik [81] derives the 

joint pdf of the multi-variate Rayleigh distribution. However, the pdf expression again re­

quires L-dimensional integration. Karagiannidis et al. derive the joint pdf of exponentially 

correlated Nakagami-m distribution [82] and apply this result with the Green’s matrix to 

approximate the multi-variate Nakagami-m distribution [83]. Although such an approxi­

mation is accurate for the exponentially and linearly correlated models, it is not good for 

the equally correlated model.

Performance analysis of EGC is notoriously difficult. Even for independent fading, 

a closed-form solution to the pdf of the EGC output SNR is only known for dual-branch 

EGC in Rayleigh fading channels [65]. Different methods have therefore been developed to 

analyze the EGC performance. Brennan [18] numerically evaluates the distribution of the 

EGC output SNR in Rayleigh fading channels. Beaulieu and Abu-Dayya [65-67] apply 

an accurate approximation to the pdf of a sum of independent RVs. Annamalai et al. 

[1,2,84] use the Parseval theorem to transform the problem to the frequency domain. Zhang 

[68,69] provides several closed-form solutions to the average BER using the chf of the 

decision variables. While much progress has been made regarding the EGC performance in 

independent fading channels, little is known about that in correlated fading channels. Only 

the dual-branch EGC in correlated fading channels has been completely solved. Mallik et 

al. [85] derive the average BER for coherent detected binary signals with dual-branch EGC 

in correlated Rayleigh fading channels. Tellambura and Annamalai [7] derive the chf of the 

EGC output SNR and utilizq an infinite series representation for the complementary error 

function to obtain the average BER. In [86], an integral representation for the Gaussian
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probability integral is used to derive the BER. As far as we know, theoretical performance 

results for multi-branch EGC in correlated fading channels do not exist for L > 2.

4.1.3 Our Contributions

We thus develop a new approach to analyze the performance of multi-branch SC and EGC 

in equally correlated Rayleigh, Ricean and Nakagami-m fading channels. The novel insight 

of our approach is that a set of independent Gaussian RVs can be linearly combined to form 

a set of equally correlated CGRVs. We extend the representations for the equally correlated 

Gaussian RVs [87,88] to complex domain. Using this insight, we translate the problem of 

the SC and EGC performance in equally correlated fading to the problem of the SC and 

EGC performance in a conditionally independent fading environment. This reformulation 

allows us to extend known results for independent fading to analyze the multi-branch SC 

and EGC performance in correlated fading channels. We show that diversity benefits still 

exist in correlated fading channels. When the fading correlation is small, the diversity 

combiners perform as well as they do in independent fading channels. We also find that 

higher-order diversity systems are much more sensitive to the fading correlation. Correlated 

Ricean fading may cause larger performance loss than correlated Rayleigh fading. These 

observations may be useful in diversity system design.

It should be emphasized that our approach can be used to analyze not only SC and EGC, 

but also more general diversity combining schemes, such as GSC(M, L). For brevity, we 

do not give such results. Further, our new representations for equally correlated channel 

gains may also be useful in other applications such as co-channel interference modelling 

and multiple antenna systems.

4.2 Representations of the Channel Gains

Rayleigh, Ricean and Nakagami-m distributions are widely used to model the amplitude 

fluctuations of the received signals from different multi-path fading channels (Section 

1.1.1). In this section, new representations for the equally correlated channel gains are 

developed for these fading models.
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4.2.1 Correlated Rayleigh Envelopes

Since the envelope of a zero-mean CGRV is Rayleigh distributed (see the definition of the 

Rayleigh distribution in Section 1.1.1), Rayleigh envelopes can be associated with a set of 

CGRVs given by:

G/c =  ( 7 l  — p Xk +  *J~p X o)  +  i — P Yk +  7 ~P Yo) (4-1)

where k e  {1 , . . . ,  L}, 0 < p < 1, and Xk, Yk ~  N  (0, y) are independent for any

k e {0,1, • ■ • , L}. That is, for any j , k <s {0, . . . ,  L},

E ( X k Y j )  =  0, (4.2a)

E(X kX j ) =  E(YkYj) =  i Skj. (4.2b)

The validity of (4.1) for non-negative p only may at first seem a significant limitation. 

However, the entire range for p is between — and 1 (the lower limit follows from the 

positive-definiteness constraint on the covariance matrix). For large L, we may therefore 

ignore the negative values — < p < 0. However, a more complicated representation

than (4.1) may be developed to handle negative p values.

Since Gk ~  C (0, 5 ), |G*| is Rayleigh distributed with the mean-square value

£(|G *|2) =  1. (4.3)

The cross-correlation coefficient between any Gk and Gj (k j )  equals to a constant,

E(GkG*j)

E ( \ G k \z ) E ( \ G j \ 2)
= P. (4.4)

This specifies the correlation (fading correlation) between two complex Gaussian samples. 

However, it is required to relate this to the power correlation (i.e., the correlation between 

|G*|2 and |Gy |2 where k ^  j ) and the envelope correlation (i.e., the correlation between 

two Rayleigh samples |G&| and |Gy | where k ^  j).  It can be readily shown that the power 

correlation equals to the square of fading correlation [41], i.e.,

Pn =  P 2 , (4.5)
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and the envelope correlation can be expressed in terms of the fading correlation p as [13],

2 F 1 ( _ i , - 1 ;  1; p 2) -  1
Pe = -------------------------   (4.6,

71
where iF\{a, h ; c; z) is the Gauss hypergeometric function defined as [3, Eq. (9.100)]

(4.6) yields p. Several solution methods are discussed in [89,90] and we also provide a 

new, more general solution in (4.21). Thus, using (4.1) with (4.5) or (4.6), we can readily 

represent a set of equally correlated Rayleigh envelopes with a specified value of power 

correlation pn or envelope correlation pe.

Next, we introduce a ‘trick’ that enables performance analysis. We consider X q  =  x q  

and Yq =  yo to be fixed. Then, Gk ~  C (^/p(xo +  iyo), are conditional independent 

for k e ( 1 , . . . ,  L}. Performance analysis can now be carried out in two steps. First, 

conditional performance results, which are functions of Xq +  y£, are obtained for the set 

of conditionally independent channel gains. The second step is to average the conditional 

results over the distribution of Xq + Yq.

4.2.2 Correlated Ricean Envelopes

The envelope of a non-zero mean CGRV is known to be Ricean distributed (see the defini­

tion of the Ricean distribution in Section 1.1.1). Assuming that the Rice factors at different 

diversity branches are identical, we represent the Ricean fading envelopes by using:

where k e {1 , . . . ,  L] and X k, F* ~  iV (0, | )  are independent for any k e  {0,1, ■ ■ • , L] 

and mi +  iwi2 is the non-zero LOS component.

Since G* ~  C (mi +  im2 , y), |G*| ~  7l(m2x+m\,  \ + K), i.e., for any k e {1, . . . ,  L), 

\Gk\ is a Ricean RV with the Rice factor

(4.7)

where (a)n _ r (a+n)
~  r(a) = a (a +  1) . . . ( a  + n — 1) and (a) o =  1. For a given pe, solving

Gk = ( ^ /1 — p Xk 4- *Jp X q +  m i^ + i  ( y / 1 — p Yk +  yfp Fq +  m2̂  (4.8)

(4.9)
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and the mean-square value

E(\G k\2) = l + K. (4.10)

The fading correlation between any Gk and G j  (k j )  equals to a constant,

E{[Gk -  E ( G k) ] [ G j  -  E ( G j ) T }

yE [ \ G k -  E ( G k ) \2] E [ \ G j  -  E ( G j ) \ 2]
= p. (4.11)

The power correlation between any \Gk\2 and \G j\2 (k j )  can be obtained as [91, Eq.

(2.4-9)]

f t - p f f ± f  (4.>2)

Thus, (4.12) and (4.8) can be used to represent the equally correlated Ricean fading en­

velopes with a specified value of power correlation.

4.2.3 Correlated Nakagami-m Envelopes

When the fading severity index (m ) is an integer, a Nakagami-m envelope is the square 

root of the sum of squares of m independent Rayleigh RVs. Hence, we can associate the 

Nakagami-m fading envelopes with a set of Lm  zero-mean CGRVs given by:

Gkj = ( y w X kj + J p X o j )  +  i ( V w  Ykj +  4~p Toy) (4.13)

where k e [ 1 , . . . ,  L}, j  e  {1, . . . ,  m] and X kj ,  Ykj  ~ N  (0, |) are independent for any k e

{0 ,1 , . . . ,  L} and j  e {1 , . . . ,  m). That is, for any k, I e {0 , . . . ,  L] and j , n  e {1, . . . ,  m},

E ( X kJYln) =  0, (4.14)

E ( X k j X ln) =  E ( Y k j Yin) =  i 8ki8jn. (4.15)

The fading correlation between any G kj  and is given by

E (G kjG*n)
Pg

p, k i=-l and j  =  n, 
0, j  #  n.E{\Gkj \2)E{\Gin\2)

Let R\  denote the summation of the absolute square of Gkf  s for j  — I , . . .  ,m,

(4.16)

*f = E  <4-17)
j =i
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From (4.16), we find that for any fixed k, Gkj ~  C (0, | )  are independent for any j  e 

{ I , . . . ,  m}. Thus i? | ~  X2m (0, | )  is the sum of squares of m independent Rayleigh en­

velopes with constant cross-correlation coefficient (power correlation) given by [16]

E (R }R h  ,
P, =  ' - P 2, /. (4.18)

/ £ ( < ) £ ( « ? )

Therefore, {Rk} is a set of equally correlated Nakagami-m fading envelopes with the mean- 

square value

E(R 2k) =  m. (4.19)

The relationship between the power correlation pn and the envelope correlation pe is (16],

yE\(—i ,  —4; m; p„) — 1 
Pe =  - 2 , ( ■■  -----  (4.20)

where xl/(m) =  HeIOe+II Note that for m =  1, (4.20) reduces to (4.6). Since there is
r 2(m+|J

no closed-form solution, for a given pe, we may use a polynomial approximation for pn. 

Expressing the hypergeometric function in the form of Gauss series [92, Eq. (15.1.1)] and 

using the reversion of power series [93, R 138], we obtain the approximation for pn as

~  4xm lm2xl  2( 2̂m +  1)m3jc3 5(5m +3)(2m +  l)m4x4
pn xm  m +  1 (m +  2)(m +  l)2 2(m +  3)(m +  2)(m +  l )3 (4 21)

(2m +  1)(256ot3 +  843m2 +  743m +  198)m V  
2 (m +  4)(m +  3 )(m +  2 )2(m +  l)4

where x  =  pe(i/c(m) — 1). Then using (4.18), we can immediately obtain the corresponding 

fading correlation p.

4.3 SC Performance in Equally Correlated Fading Chan­
nels

In this section, we derive the cdfs of the SC output SNR in equally correlated Rayleigh, 

Ricean and Nakagami-m fading channels. We show that the cdfs of the SC output SNR 

can be represented as a single-fold integral. Infinite series representations for the output 

cdfs are also derived. Using these new results, we evaluate the average error rates, the
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outage probability and the output moments of multi-branch SC in equally correlated fad­

ing channels. Consequently, unlike the other existing methods [43,44], any number of 

diversity branches can be handled as a single-fold integral (for the outage probability) or 

two-dimensional integral (for the error rate and the average output SNR). The complexity 

of our approach does not increase with the number of diversity branches.

4.3.1 Cdfs of the SC Output SNR

SC picks the best branch as the output. Its output SNR is given by (1.27). We can show 

that the output cdf of SC is given by

ŝc(y) = P r (n  < y , . . . , n  < y )

=  P r f lG i l2 < £ ( |G i |2) ^ - , . . . ,  |G l |2 < E(\GL\2)4 ~ )  (422)
\  Yi Yl J

where Yk and yk, k e {1 , . . . ,  L}, are the instantaneous SNR and the average SNR asso­

ciated with the k-th branch, which are given by (1.20) and (1.21), respectively. When the 

channel gains G&’s are independent, (4.22) can be evaluated using the cdfs of the branch 

powers |G*|2 as

Fsdy) =  n P r ( W  < E{\Gk\2) j ^ j  =  f ]  FlGk]2 (^E(\Gk\2) £ j  . (4.23)

However, if the channel gains are correlated, the joint cdf of |G*|2 is usually required to 

evaluate (4.22). In this section, we use the new representations for the channel gains to 

derive the cdfs of the SC output SNR in equally correlated fading channels. Our approach 

does not directly require the joint cdf of the correlated channel gain amplitudes.

Rayleigh Fading Channels

Careful inspection of (4.1) reveals that all Gk s contain two common RVs X q and To- This 

is what ensures that the correlation between any two Gk and Gj  is a constant. When Xfi and 

Fq are fixed {Xq + Yq = t), the branch powers |G*|2 ~  X2 (v7>C independent,

whose cdf is given by [6, Eq. (2-1-124)]

F\fi,A2lGkl2 lT (y 10  =  Pr (|G *|2 < y |f) =  1 -  Q . (4.24)
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Noting that the average power of Gk is given by (4.3) and using (4.23), we can readily 

obtain the conditional cdf of the SC output SNR as

L

Fsc\t (y  10 = 1 - 2 2y2 pt

W ’ V P d - P )
(4.25)

Notice that T  ~  X2 (0, | ) ,  where T = X q +  Yq, and its pdf is given by a special case 

of [6, Eq. (2-1-110)]

p r ( t )  — e ~ f , t  > 0. (4.26)

Averaging the conditional cdf (4.25) over the distribution of T  (4.26), we obtain the cdf 

of the multi-branch SC output SNR in equally correlated Rayleigh fading as a single-fold 

integral

pOQ
Fsciy) =  /  Fsc1t  (y 10 P t O )  d t  

Jo

1 - Q
POO

Jo
2 p t 2 y

1 -  p  V y ( l - p )

(4.27)
e dt.

Notice that Matlab provides the function NCX2CDF to compute the cdf of the non-central 

chi-square distribution, which is in the form of the Marcum Q-function. Therefore, we can 

readily evaluate (4.27) numerically using Matlab.

To the best of our knowledge, (4.27) is a novel result. It reduces the L-dimensional 

integration [44, Eq. (9)] necessary for the output cdf of SC in correlated fading channels 

to a single-fold integral, enabling the performance analysis of multi-branch SC in equally 

correlated Rayleigh fading. This new expression (4.27) for the SC output cdf reduces to 

the previous results for two special cases.

1. Independent Rayleigh fading (p =  0).

Using the relation /o(0) =  1 and Q(0,x) = e t ,  the cdf of the SC output SNR 

(4.27) simplifies to

Fsc(y) =  [ i -

which is equivalent to the well-known result [19, Eq. (10-4-12)].

(4.28)
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2. Dual-branch SC (L — 2).

Integrating (4.27) by parts, we can show that the output cdf of dual-branch SC in 

correlated Rayleigh fading channels can be written as (see Appendix A)

Fsciy) =  1 — 2e y Q

___
+  e vd-p2) /0

2y 2y
y (  1 -  p2) ’ kC1 -  P2)

2py
(4.29)

_K(1 -  P2)_ '

This result is equivalent to the well-known expression [19, Eq. (10-10-8)].

Next, infinite series representation for computation of the SC output cdf in equally 

correlated Rayleigh fading channels is provided. Expressing the Marcum Q-function in an 

integral form [5], we rewire the output cdf (4.27) as

L

Fsc(y) - r  rJo Jo
xe \ 2 E L  I d x

1 -  p
e l dt. (4.30)

Using an infinite series [92, Eq. (9.6.10)] for Io(x) and interchanging the order of 

integration and summation, we obtain an infinite series representation of the output cdf 

after some algebra as

00

FscOO =  (l -  p) ] T
kldkiy)

k— 0 (pL +  1 -  p f + l
(4.31)

where a/dy) can be computed recursively as

kL

<*k(y) =

( l - e - i )  ,

^ ( n L - k  + n)p'
2 ^ ----------  P(n + 1, *})
n= 1

n\

* = 0,

ajfc-nOO. k >  1,

(4.32)

k{  1 - e - f )

where rj =  y(yZp) and P (n ,x ) is the normalized incomplete gamma function, which can 

be evaluated using the finite series (3.22) when n is a positive integer:

/ \ n~ t k

r (B) k—0 kl
(4.33)
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The number of the terms required in the infinite series (4.31) to achieve a target accuracy 

depends on several factors, including the fading correlation p, the normalized branch SNR 

y / y  and the diversity order L as well. Table 4.1 lists the results for a five significant figure 

accuracy over a range of values of p, y and L with the average branch SNR y = 1. As the 

fading correlation p or the branch SNR y or the diversity order L increases, more terms are 

required in (4.31) to achieve the target accuracy.

Table 4.1: The number of terms required in (4.31) to achieve five significant figure accu­
racy. (y =  1)

p

L = 3 L =  6
y = —5dB y = OdB y =  5dB y =  —5dB y =  OdB y =  5dB

0.2 6 8 12 7 10 17
0.4 7 11 19 8 14 28
0.6 9 15 30 10 20 46
0.8 14 27 59 16 37 96

Differentiating (4.27) yields the pdf of the SC output SNR:
’®o •- y V iL - l

Psdy)
L f 00 r /  j___

=  — e v / e M 1 -  Q [yflpt,
Y Jo  1 v

Iq (2y/prjt) dt (4.34)

where rj =  . There is no closed-form solution to this integral. However, in the case

of L =  2, the output pdf can be written in terms of the Marcum Q-function:

l - Q \ pt \ 2 ~ lPsdy) = - e  y
y

2 y 2 y
(4.35)

y (  1 -  P2) ’ Y y ( l - p 2)

This special case is already known [73, Eq. (11)].

Using the output pdf (4.34), we can also derive the corresponding output mgf as a two- 

dimensional integral

<t>sc(s) = L(1 -  p) f
Jo

x j f V  [l  - Q  ( 7 2 ^ , ^ ) '
L-l

Io {2,^/pyi) dt dy.
(4.36)

In the special case of dual-branch SC, the mgf can be expressed in closed-form [73],

2 4(i0sc(^) —
1 +  SY [sy(l  — p 2) 4- 2]2 — 4p2 — sy ( l  — p 2)^/[sy(  1 — p2) +  2]2 — 4p2

(4.37)
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Clearly, unlike previous results [44,79], our new expressions (4.27), (4.34) and (4.36) are 

either single-fold or two-fold integrals and their computational complexity does not in­

crease as the diversity order L increases.

Ricean Fading Channels

Using the representation for the equally correlated Ricean channel gains (4.8), we can 

also derive the output cdf of multi-branch SC in equally correlated Ricean channels. Fix 

(X0 +  + ( lb  +  ^ ) =  t, \Gk\2 ~  X2 { / P t ,  - 0 ^  are independent, whose cdf is

given by (4.24). Noting that the average power of Ricean channel gains is given by (4.10), 

we obtain the conditional output cdf as
L

Fsc\t (y 10 = 1 -  Q
2pt  /2(1 4- K)y

?(1 -  P)1
(4.38)

where K  is the Rice factor defined as (4.9). Also notice that T ~  X2 where

T = ( x 0 + + ( f 0 +  ^ j 2, and its pdf is given by [6, Eq.2-1-118]

P T ( t ) (4.39)

Averaging the conditional output cdf (4.38) over the distribution of T (4.39), we obtain the 

output cdf of multi-branch SC in equally correlated Ricean fading channels as a single-fold 

integral
L

Fsc(y)
_£

= e f> I
Jo 1 - Q

2 pt  / 2(1 +  K)y
dt  (4.40)

1 - p ’ V F ( l - P )
To the best of our knowledge, (4.40) is also a new result. Compared with the available 

result which requires L-dimensional integration [44], our result (4.40) is much easier to 

handle.

Similarly, we derive an infinite series representation for the output cdf of SC in equally 

correlated Ricean fading channels as
OO

Fsc(y) =  (1 -  p)e
kl E(pL +  1 -  p)k+1 k=o j =o

K ( l - p ) k- j aj[(K +  l)y]
[(k -  j)!]2

(4.41)

where a*00 is given by (4.32).
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Nakagami-m Fading Channels

When m is a positive integer, the channel gain representations (4.13) and (4.17) can be used 

to derive the output cdf of SC in equally correlated Nakagami-m fading channels. Fixing 

2 ^7 = 1  (* ? , +  Yqj'J = t, we obtain that the branch powers ~  xim are

independent, whose cdf is given by [6, Eq. (2-1-124)],

2y
l -  p

(4.42)

Substituting the average power of Nakagami-m channel gains (4.19) and (4.42) into (4.23), 

we readily obtain the conditional output cdf of multi-branch SC as

L

FSC|r (y  10 = 1- 2 , 2 my2 pt
1 -  p V y ( l -  p)

(4.43)

Also notice that T ~  X2m (0, j ) ,  where T =  ^7=1 (^o j  +  lq/)> aD(l lts P^f may be 

found as [6, Eq. (2-1-110)]

Pr(t) =
tm~ ie-t

t > 0. (4.44)
( m  -  1 ) ! ’

Averaging the conditional output cdf (4.43) over the distribution of T (4.44), we obtain 

the output cdf of multi-branch SC in equally correlated Nakagami-m fading channels as a 

single-fold integral

L

Fsdy)
( m  -  1)! I

00
1 - 2 , 2 my2 pt

1 -  p  V y (  1 - p )

This novel result reduces to several well-known special cases. The output cdf of SC in 

independent Nakagami-m fading channels can be obtained by setting p = 0 in (4.45),

Fsc(y)  = 1 -  Qm 0 ,
I2my my

1 -  e v (4.46)

which is equivalent to the result [52]. As expected, when m =  1, this new expression 

reduces to (4.27) for the equally correlated Rayleigh fading case. For dual-branch SC
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(L =  2), (4.45) is numerically checked against an infinite series for the output cdf derived 

from [94, Eq. (3)]. Both methods give exactly the same numerical values.

Infinite series representation for the SC output cdf in equally correlated Nakagami-m 

fading channels can also be obtained as:

where

Ck(y)  =

r* , , (1 -  P)m v -  E (k + m)ck(y)
r (m) Z .  {pL + j _  p)k+n

[P(m, rjm)] ,

^  ( n L - k  + n)pn 
)  , ---------- ;---------P(m +  n, t]m)
n—\

(4.47)

k = 0,

nl
(4.48)

kP(m, r]m) C k - n i y ) .  k  >  1,

mywhere rjm m ^ py

Differentiating (4.45) yields the output pdf of multi-branch SC in equally correlated 

Nakagami-m fading channels. For dual-branch (L =  2) SC, the output pdf reduces to

y m  1m m my

Psciy)  =  7 r(m — 1 ) \ym 1 -  Qn
2 my 2 my

y (  1 -  p2) ’ V y ( l  -  p2)
(4.49)

This result is equivalent to that of [73]. These special cases reaffirm the rightness of (4.45).

4.3.2 Average Error Rate

In Chapters 2 and 3, we evaluated the average error rates of various digital modulations 

using the mgf of the diversity combiner output SNR. Here, since SC is being investigated, 

we show that the average error rates can be directly derived from the combiner output cdf. 

This can readily be done using integration by parts method:

f ° °

Jo
-P'(y)Fout(y)dy (4.50)

where —P'e(y) =  — Pe(y)  denotes the negative derivative of the CEP Pe(y)- According 

to the CEP forms of different digital modulations, we present the corresponding average er­

ror rates in terms of the SC output cdfs Fsc(y), which have already been derived for equally 

correlated Rayleigh, Ricean and Nakagami-m fading channels (4.27), (4.40), (4.45).
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1. The CEP of BPSK, coherent BFSK and Af-ary pulse amplitude modulation (PAM) 

is in the form of Q-function [6]

where (a, b) =  (1, 2) for BPSK, (a ,b ) =  (1,1) for coherent BFSK, (a, b) =  

^ for Af-ary PAM. Substituting (4.51) into (4.50), we obtain the 

following expression for the average error rates

Notice that there is a removable singularity at y  =  0 in (4.52). That is, the integrand 

approaches 0 as y  -» 0, i.e.,

When a numerical quadrature technique such as Gaussian quadrature is used, this 

singularity can be readily handled. Common mathematical software provides both 

Gaussian quadrature techniques and also the straightforward techniques such as Newton- 

Cotes formulas. All such techniques can readily be adapted to handle all the integral 

expressions derived in this section.

2. The CEP of non-coherent BFSK and binary DPSK can be expressed in an exponential 

form [6]

where (a, b) = (0.5,1) for binary DPSK and (a, b) — (0.5,0.5) for non-coherent 

BFSK. Following the same procedure as the above, we obtain the average BER as

The CEP for non-coherent Af-ary FSK can be expressed as a sum of exponential 

forms [6, Eq. (5-4-46)]. Thus, we can readily write down the average SER for Af-ary 
FSK using (4.55)

(4.51)

(4.52)

- b y / 2
(4.53)

Pe(y) =  ae by. (4.54)

(4.55)

(—1 )n+lnk ( M -  1M  -  1 \ t°°  nk%_
) /  e n+l Fsc(y) d y  (4.56)

n J  Jo
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where k = log2 M  is the number of bits per symbol.

3. The CEP of 4PSK, QAM, minimum-shift-keying (MSK) and coherent detected DPSK 

is in the following form [6]

Pe ( r )  =  a Q  ( y £ y )  - CQ2 ( y b i )  (4.57)

where (a, b, c) =  (2, 2, 1) for 4PSK or MSK, (a, &, c) =  (2, 2, 2) for coherent 

detected DPSK and (a, ft, c) =  4(v^ ~ 1)2)  for QAM. The corre­

sponding average SER is obtained as

e~ W [ \ - c Q { - f i r ) \ F^ d y- <4-58>

4. The CEP of 7T/4-QDPSK and non-coherent correlated BFSK can be written as [6,51]

Peiy) = Q {a^/y, b*fy) -  ^ I 0 ( a b y ) e ~ ^ ^ y (4.59)

where (a, b) = (y/ 2  — V2, ^ 2  + V2^ and (a ,b ) =  y j l+v2 ^ ^

for 7T/4-QDPSK and correlated non-coherent BFSK, respectively, where X is the 

correlation coefficient between the binary signals. Substituting (4.59) into (4.50), we 

obtain the average SER as

a 2  —  b2 f ° °  (a2 +b2)y
Pe = — z—  / e 2 Io(aby)Fsc(y )d y .  (4.60)

4 JO

4.3.3 Moments of the SC Output SNR

Using the output pdf (4.34) and the output mgf (4.36), the moments of the multi-branch SC 

output SNR in equally correlated Rayleigh fading channels can be readily determined. The 

average output SNR is obtained as a two-dimensional integral
nOQ pOQ

ysc = L y( I  — p ) 2 I xe~x I e~l [l -  Q(y/ 2 p t , V 2 x )]L~ 1Io(2 ^ /p x i ) d td x .  (4.61) 
Jo Jo

Similarly, we can readily derive higher-order moments of the SC output SNR and other 

useful measures, such as the central moments, the skewness, the kurtosis and the Karl 

Pearson’s coefficient of variation [30] (see Section 1.2.3). Further simplification of these 

formulas seems to be impossible.
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4.4 EGC Performance in Equally Correlated Fading Chan­
nels

The output cdfs and the average error rates of EGC in equally correlated Rayleigh and 

Ricean fading channels are next derived using our new representations for the equally cor­

related fading channel gains and the available results for the EGC performance in indepen­

dent Ricean fading channels. We also derive the moments of the multi-branch EGC output 

SNR in three types of equally correlated fading channels.

Due to [67], the cdf of a sum of L i.i.d. Ricean RVs can be evaluated using an effective 

approximation:

where \F\(a, c; z) is the confluent hypergeometric function defined as [3, Eq. (9.210.1)]

4.4.1 Cdfs of the EGC Output SNR

(A/j) sin(T0/j)

n—1 
n is odd

(4.62)

where V =  Vi +  . . .  +  Vi, V* ~  lZ(Kf,  O/ )  and

An =  yf E 2 [cos(ncoVic)] + E 2 [sin(ncoVk)] (4.63a)
E[sm(nco(Vk -  e))]
E[cos(nco(Vk -  e))]

(4.63b)

where e =  (o =  y 1 and T is the period of squarewave defined in [65]. Abu-Dayya and

Beaulieu also provide solutions to E[cos(na)Vk)] and E[sin(ncoVk)] in [67]:

E[cos(ncoVk)] =e Kf

E[mi{ncoVk)]

(4.64b)

(4.64a)

(4.65)
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Hence, the cdf of a sum of Ricean RVs (4.62) can be computed using (4.63) and (4.64). The 

above results enable our derivation of the EGC output cdfs in equally correlated Rayleigh 

and Ricean fading channels.

Rayleigh Fading Channels

Using the new representation for equally correlated Rayleigh channel gains (4.1), we first 

calculate the cdf of the sum of equally correlated Rayleigh envelopes denoted by R  = 

|Gi|  +  . . .  +  \Gl \. Fix X 2 +  Y 2 =  t in (4.1). Then \ G k \ ~  K  1 -  p +  p t)  are 

independent and R is a sum of L i.i.d. Ricean RVs. Hence using (4.62), we obtain the 

conditional cdf of the sum of channel gain envelopes R as

FR\r(y\t) =  Fv i - p  + p t , y ^  (4.66)

where Fy(a, b, x ) is given by (4.62). Averaging the conditional cdf (4.66) over the distri­

bution of T = X q + Yq (4.26), we obtain the cdf of R as

FR(y) =  j f  Fv ( j ^ ,  1 -  p +  pt, y j  e~{dt. (4.67)

Noticing the definition of the average branch SNR y  (1.21) and the average power of the 

Rayleigh channel gains E ( \ G k \2) given by (4.3), we derive the cdf of the EGC output SNR 

(1.26) as

fegcW =  PKXegc < >) =  Pr f e  l ° ‘ l

L
(4.68)

- p  + p l . M  \ e - d t .

This novel result enables the evaluation of the outage probability of multi-branch EGC 

systems in equally correlated Rayleigh fading channels. We do not know any results on the 

multi-branch EGC performance in correlated fading channels. For the independent case, 

our new result (4.68) reduces to the well-known result [65, Eq. (5)]. Eq. (4.68) can be 

readily evaluated via numerical quadrature techniques with high accuracy (details omitted 

for brevity).
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Ricean Fading Channels
, 2

When ( x 0 +  ^ )  +  ( r 0 +  =  t in (4.8) is fixed, \Gk\ ~  K  ( ^ ,  1 - p  +  pr)

are independent and R =  |Gj|  4- . . .  +  |Gl |  is a sum of L i.i.d. Ricean RVs whose

conditional cdf is given by (4.66). Averaging the conditional cdf over the distribution of
2 2

T =  ( X q +  1Vo + (4.39), we obtain the cdf of the sum of equally correlated

Ricean envelopes R as

Fji(y) = Fv ( j ~ '  1 -  p + p t , y ^  e~{IQ dt. (4.69)

Using the average power of the Ricean channel gains (4.10) with the average branch SNR 

(1.21), we can derive the cdf of the EGC output SNR as

f » (Ftgciy)  =  e » [  Fv  ( 1 -  p +  p t , J ] e %  { 2J ~  J dt .

This is also a novel result. The outage probability of multi-branch EGC in equally corre­

lated Ricean fading channels can be readily evaluated using (4.70).

4.4.2 Average Error Rate

Using the output cdfs (4.68) and (4.70) with (4.50), we may evaluate the average error 

rates of several digital modulations with multi-branch EGC in equally correlated Rayleigh 

and Ricean fading channels (see Section 4.3.2). Alternatively, we may use the chf-based 

approach to evaluate the average error rates [1].

With the aid of Parseval’s theorem, the average error rates of different modulations with 

coherent EGC can be transformed to frequency domain as [1]

f°°
Pe= Pe(x)pX(x)dx  

Jo

=  —  / G(co)<t>*x (co)dco (4.71)
L it J —oo
2 f t  i/r(tan£)

ijt Jo sin(2£)
■dt
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where X  =  y/Yaat is the amplitude of the combiner output SNR, G(co) is the Fourier 

transform of the conditional error probability Pe(x) with respect to jc, is the chf of

X  and =  91 [a>G(<y)0j(a/)] where 91 (z) is the real part of z.

Using Gauss-Chebyshev quadrature [92, Eq. (25.4.38)], we may obtain a rapidly con­

verging series to approximate (4.71)

where 0 — . There is a tradeoff involved in the choice of M. A greater accuracy may

be obtained using larger values, but at the expense of increasing computational complexity.

Note that G(co) in (4.71) only depends on the modulation formats while 0x(<n) depends 

on the types of the fading channels and the diversity combiners. Since the expressions for 

G(co) of a wide class of digital modulations can be readily found in [1,2] (also see Table 

4.2), we only need to derive the corresponding <px(u>) to evaluate the average error rate 

performance of EGC Pe in equally correlated Rayleigh and Ricean fading channels.

Table 4.2: The Fourier Transform of the CEPs G(co) [1,2].

Modulation Format Pe(x) G(co)

aQ ( V b x ) a
2 co

whe:re D(z) is the Dawson’s integral [4].

ae~ bx2
a

■Jb

aQ (ybx^j  -  cQ 2 (V b x ) o>jaD ( j k )  D (  

+ i { & ( 1

V®) D ( u h ) e ® ]

For subsequent use, we show the chf of X,  the square root of the EGC output SNR, in 

i.i.d. Ricean fading channels here [1]

L

4 > x ( K f ,  | ,  (o)

/2K f cose \
e~Kf  r  f   2  j

7t fJo
D—2 (z(Kf , 6 )) dd (4.73)
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where K f  is the Rice factor, D _ 2 (z) is the parabolic cylinder function which is related to 

the confluent hypergeometric function as [3, Eq. (9.240)]

,2 \ /  i ,2 \ /ZT / J 2 '
D . 2 (z) =  exp ( - 1 . )  , F , (  l , I ; L ) _ y | z e x p ( i - )  (4.74)

and

z ( £ / ,  f,  0) =  -io>§ -  s / l K f  cosO, (4.75a)

|  =  I .........?.9 f  (4.75b)
^ 2 L ( l  + K f )E(\Gk\2)

where £2/ is the average power of the Ricean channel gain. Using (4.74), we may express 

(4.73) in terms of the confluent hypergeometric function as

I e~Kf  r  
<Px(Kf, f , (o) =  I J

„  , ,  1 z2( K f , $ , 6 )  
l F l ( 1 ' 2 '  2 ----------

2

where z (K f ,  ij, 6 ) is defined as (4.75a).

7t zHKf.W)-j ] J
- J - z (Kf , $ , d) e— i — \ dQj

(4.76)

Rayleigh Fading Channels

Recall that when X q +  Yq = t is fixed, \Gk\ ~  1Z 1 — p +  pt'j are independent. The 

conditional chf of X  =  can be obtained using (4.73) and (4.3) as

(ftxirMO =  <t>x | y  ( 2 L ^ ,(°  J (4-77)

where 0x(a, b, w) can be computed using (4.73) or (4.76). Averaging the conditional result 

over the distribution of T  (4.26), we obtain the chf of X  for equally correlated Rayleigh 

fading channels as

pt /(I  -  p) y  j _t
4>x(a>) = I <t>x I y  — ^ — . M l e dt. (4.78)

Therefore, we may evaluate the average error rates of various digital modulations with 

multi-branch EGC in equally correlated Rayleigh fading channels using (4.78) and Table 

4.2 with (4.71).
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Ricean Fading Channels

Similarly, when ( x 0 +  +  ( f 0 +  = t is fixed, |G*| ~  K  ( ^ ,  1 -  p +  pf)

are independent. Using b, co) (4.73) or (4.76), we obtain the conditional chf of X as

fe lH M O  =  f a  ^ ^  . <») ■ (4.79)

Averaging the conditional result over the distribution of T  (4.39), we obtain the chf of X  

for equally correlated Ricean fading channels as

-K f 00 ~ I  = e , J ' pt j (1 -  p)y  \  _ tT ( n jK t
4>x(co) = e p I <f>x ( T— ^ ,  y  2 L 0 + T )  ’ ^  ^ 7° l 2i / —  I d t - (4-80)

Substituting (4.80) with Table 4.2 to (4.71), we obtain the average error rates of different 

modulations with EGC in equally correlated Ricean fading channels.

4.4.3 Moments of the EGC Output SNR

Using the multinomial expansion, we obtain the moments of the EGC output SNR (1.26)

as

[(*>+■•■ ♦ f t ) * ]

e  ( n f = .  *5J)  <4-8 l>
=(2n)!

L E  (R\)

2 n
T-ri, £.|

J jfel.—.*£==o ll/=i */■
&lH hki=2n

where Rk =  |G*|, k e {1, . . . ,  L}, is the amplitude of the channel gain and E(Rf) — 

E(\Gk\2) are given by (4.3), (4.10) and (4.19) for equally correlated Rayleigh, Ricean and 

Nakagami-m fading channels, respectively. When R^s  are independent, (4.81) can be 

readily evaluated using the following property,

£ ( n  * j  j = n  [£ (*,•)] • <4-g2>

However, it is an extremely complicated task to compute (4.81) when the joint pdf of cor­

related Rj’s is unknown. Next, we use the new channel gain representations to derive the 

moments of the EGC output SNR in three types of equally correlated fading channels. Our 

approach does not directly require the joint pdf of the correlated channel gain amplitudes.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Rayleigh Fading Channels

We consider Xo and To to be fixed (Xq+Yq =  t) in (4.1). Then Rk ~  1Z 1 — p 4- p t j

are independent whose moments are given by [6, Eq. (2-1-146)]

E ( r J )  =(1 -  p ) l e - ^ T  ( l  +  jFj ^1 +  1;

= d - ^ r (i  + | )
pt

~  P

(4.83)

Using the property (4.82) and substituting (4.83) into (4.81), we obtain the output moments 

of EGC conditioned on t as

mn(t) =  (2 n)\ 

where

y( 1 -p) i 2 n

E
&!,■■■ ,fci=0 

k\-\— \-ki,—2,n

A(kj)
• Q + tQ

(4.84)

kjl
(4.85)

Averaging the conditional moments (4.84) over the distribution of T  (4.26) and inter­

changing the order of integration and summation, we obtain the moments of the multi­

branch EGC output SNR in equally correlated Rayleigh fading channels as

mn = ( 2  n)!
> (  1 -  p) '

t

n 2n

E /(^l ,  -
L

. , k L) Y \ A ( k j )
,&£,=()

--- - j=l
(4.86)

order Appell hypergeometric function [2, Eq. (C.l)] as

^  w - / o” « - n ^ ( 4 i : - i ^ ) dt

I k\ k i
- F a j 1; ■■■ , — y ;  1, ■ • • , 1; *i, . . . , x L

L terms

(4.87)

where xk =  -  for k 6 {1, . . . ,  L} and Fa (a; A ,  ■ • •, Pn, Yi, ■ ■ ■, Yn\x\ , . . . ,  xn) is the 

n-th order Appell hypergeometric function defined as [3, (9.180.2)]

FA(a; Pi , . . . ,  pn) yu  • • •, yn\ x \ , . . . ,  xn) =

_ y  ( ® ) p i + - + p n(Pi )pi  • • • {fin)pn pi "Xpn (4.88)

“ 0 “ 0 ( n ) p i  •••(>'»)*.Pi!-"?»! 1
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whose convergence region is defined by |jq| +  . . .  +  \xi\ < 1 [95]. Obviously (4.87) 

only converges for < p < Applying a transformation formula for the higher 

transcendental function of Fa, we obtain a convergent expression for (4.87) as

l - o
I(k\ ,  . . . , k L) =

i + ( L -  \)p Fa (1; Pi,  ■ ■ • ,  Pv,  1- • ■ ■, l;  z i , . . . ,  z l ) (4 .89)

where Pj — 1 +  -f and Zj =  y+(l-i)p for j  e ( 1 , . . . ,  L}. Since 0 < p < 1, \zi | +  . . .  +  

\zl\ =  Lp-t(\-p) < i-e-> the Appell hypergeometric function Fa in (4.89) converges.

Therefore, the moments of the EGC output SNR in equally correlated Rayleigh fading 

channel can be calculated using (4.89) and (4.85) with (4.86).

As comparison, we present the moments of the MRC output SNR in equally correlated 

Rayleigh fading channels here. The pdf of the MRC output SNR in such channels is given 

by [41, Eq. (12)]. Hence, the output moments are obtained as

e <a j  =  r  [ ~ 7
— p)1+n(L +  « — !)!

p + L p ) ( L -  1)!

Next we present some special cases of (4.86).

0 ’
2Fi 1, L +  «; L;

Lp
1 -  p + Lp ) (4.90)

1. Average output SNR

Using [2, Eq. (C.4)], we can simplify the average output SNR of EGC in equally 

correlated Rayleigh fading channel in terms of the Gaussian hypergeometric function 

[3, Eq. (9.100)] as

yegc =  m i  =  y
\  , { L - D *  r 
1 +    2*1 (4.91)

When p  =  0, (4.91) reduces to the well-known result [13, Eq. (5.2-20)],

( L -  DflT
Kegc — Y 1 + (4.92)

2. I.i.d. Rayleigh fading

In the independent case (p =  0), (4.86) reduces to a closed-form expression as

L

mn =  (2n)\ ( j-
2 n

E
 b-ki—2n

n
7=1

(4.93)
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3. Dual-branch EGC

The moments of the dual-branch (L =  2) EGC output SNR can be written as

2 n - k
mn =

(2n)ly 2n
f > ( f c ) A ( 2 «  -  k ) 2 F1 1; p 2)  . (4.94)
k=o \  1  1  /

The second moments of the dual-branch EGC output SNR can also be simplified as

m2

- d
5 3 9 3tt ^
— I— p H lF\2 2 4

LI  _ I .  j.
V 2 ’ 2 ’ ’

(4.95)

Ricean Fading Channels

Following the above procedure, we first fix (Xo + +  ^Fo +  =  t in (4.8) and

obtain a set of conditional independent Ricean RVs, |G*| ~  Ft 1 — p +  pt^j- Then 

(4.83) can be used with (4.81) to derive the output moments for a given t:

mn(t) =  (2n)! > (1  ~  P) 
L(  1 -(- K)

! 2n

E
h ,— ,kL= 0  

k\-\---hki=2n

pr

1 - p
. (4.96)

Similarly, averaging the conditional output moments (4.96) over the distribution of T 

(4.39), we obtain the moments of the EGC output SNR in equally correlated Ricean fading 

channels as

mn =  (2n)! y (i -  p)
(1 +  K)L  

where Aikj)  is defined as (4.85) and

n 2 n L

E J ( k \ , . . , k L) l \ A (kj)
k i , - , k L = 0 - J=1

(4.97)

J(ki,  . . . , k L) = e~$  jf°°  e~flQ f ]  i Fi ^  dL (4‘98)
j = i

Using an infinite series expression [92, Eq. (9.6.10)] for I q (x ) and applying the integral 

identity [2, Eq. (C.l)] and the transformation formula of Fa [95], we may express (4.98) 

in terms of the L-th order Appell hypergeometric function
1 , 1_ p y + i

+ ( L -  1 ) p )
J ( k \ , . . . , k L) = e p

(4.99)

x Fa (I + 1; A . • • • - Pl\  1, ■ • • . 1; z i , . . ■, z l )  
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where fij =  l+-£  and Zj = i+(£z\yp for j  e {1, . . . ,  L). The moments of the multi-branch 

EGC output SNR in equally correlated Ricean fading channels can thus be computed using

(4.99) and (4.85) with (4.97).

The average output SNR of EGC in equally correlated Ricean fading channels can be 

simplified in terms of the hypergeometric function of two variables, i.e., the second order 

Appell hypergeometric function, as

Yegc — m \ = Y
. (1 -  p) (L -  \)n
1 + e p

00 1 ( K ( l - p )
4 ( l + p ) ( l  + K) \ p ( l + p ) )' (4.100)

I ■, 1 3 3 1 1 P P
X A , 7 +  ’ 2 ’ 2 ’ ’ ’ 1 +  p ’ 1 + p / J

Notice that the second order Appell hypergeometric function is available in common math­

ematical software such as Maple and Mathematica.

Nakagami-m Fading Channels

When m is an integer, the equally correlated Nakagami-m channel gains can be represented 

by (4.13) and (4.17). Fixing Y£j=i ( X qj +  — t, we obtain a set of i.i.d. channel gains,

R2j  ~  X2m (Vp?. The moments of Rj  can be found [6, Eq. (2-1-146)]

E  ( r / )  =  (1 -  p)  ̂ - 4 -----------------1 -7 T , m-
pt (4.101)

(m -  1)! V 2 1 - p )

Applying (4.19) and (4.101) with the property (4.82), we obtain the output moments of 

EGC conditioned on t as

' ? ( 1 ~  P)m n(t) =  (2 n)\

where

mL

i 2n

E
k\,-- ,ki— 0 

-fcH \-ki—2n

(4.102)

B(k j )  =
(m +  ^ )

(4.103)
(,m — 1)! kj\

Averaging the conditional output moments (4.102) over the distribution of T (4.44), we 

can obtain the moments of the EGC output SNR in equally correlated Nakagami-m fading
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channels as

fin =  (2 n)l 9 ( 1 - p )
mL

, 2 n

E
*1,- ,ki= 0 

k\-\ hkL=2n

K ( k \ , . kL) 0  B(kj)
2 = 1

(4.104)

where K ( k i , . . . ,  kp) can also be expressed in terms of the L-th order Appell hypergeo­

metric function as

L ' kj Pt'00

K ( k \ , . . . , k L) = -— -  f tm le f Y \  iFi - -
(m -  1)! J0 V 2 1 -  p

=  1 (  l ~ p X
(m — 1)! \ 1  + ( L - I ) p j  

x Fa (to; A , • ■ • - , m; z i , . . . ,  z l )  •

(4.105)

where fij = m + ^  and zj — for j  e  {1, . . . ,  L).  Combining (4.105) with

(4.103) and (4.104), we can readily compute the moments of the multi-branch EGC output 

SNR in equally correlated Nakagami-m fading channels.

The average output SNR of EGC can be simplified as

Y&gc =  m\ -  y 1 +
(L -  l )T2(m +  1) 

m [(m — l)!]2
2-Fi (4 4m; (4.106)

4.5 Numerical Results

Several numerical results are given to illustrate the effect of fading correlation on the per­

formance of multi-branch SC and EGC in several equally correlated fading channels. In all 

the figures, p is the fading correlation, L is the diversity order and y = j  is the normalized 

branch SNR. Note that semi-analytical simulation results (denoted by circles or plus signs) 

are provided as an independent check of our analytical results. We use the Cholesky de­

composition approach [96] to generate the equally correlated complex Gaussian variables 

and transform them to the Rayleigh, Ricean and Nakagami-m envelopes.

Fig. 4.1 shows the effect of diversity order L on the output cdf Fsc(y) of SC in equally 

correlated Rayleigh. The case of L — 1 represents a situation with no diversity. As ex­

pected, diversity gain can still be achieved even with correlated fading. The maximum
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Figure 4.1: The cdf of the SC output SNR in equally correlated Rayleigh fading with 
different diversity orders, p =  0.5.
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Figure 4.2: The cdf of the 4-branch SC output SNR in equally correlated Rayleigh fading 
with different fading correlations.
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additional diversity gain is achieved with dual-branch diversity. With increasing L, the 

additional diversity gain diminishes, as is the case for independent fading.

—_  K = 2 
-  -  K = 5

+  Simulation (K = 2) 
Q  Simulation (K = 5)

v

£cc
zCD
3£-3o
<v£
oBO

p - 0 .5

-30 -20 -15  -10  -5
Normalized Branch SNR y (dB)

-25

Figure 4.3: The cdf of the 4-branch SC output SNR in equally correlated Ricean fading 
with different fading correlations.

Figs. 4.2, 4.3 and 4.4 show the impact of fading correlation p on the output cdf of 

4-branch SC in equally correlated Rayleigh, Ricean and Nakagami-m fading channels, re­

spectively. The cases of p =  0 and p — 1 represent independent fading and the single 

branch case, respectively. Observe that the maximum diversity gain will not be achieved 

when correlated fading exists. The diversity gain decreases as p increases. However, the 

diversity gain is still available even with high correlation. We can also see that, in the low 

correlation case, where p is small, the performance of SC is comparable to that in the inde­

pendent case. However, in heavily correlated fading channels, where p tends to 1, a minute 

increase of p will cause severe degradation of the SC performance.

Fig. 4.5 shows the impact of fading correlation p on the BER of BPSK with 4-branch 

SC in equally correlated Rayleigh fading channels. The correlation between the diversity 

branches results in significant loss in performance. As p increases, the performance of SC

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—  m = 2
-  ™ m = 4

+ Simulation (m = 2) 
©  Simulation (m = 4)

v

ol
ccz
CO
3
Q .3O
0)JZ

p = 0

o

S
p = 0.5

-25 -20 -15 -10 -5
Normalized Branch SNR 7'  (dB)

Figure 4.4: The cdf of the 4-branch SC output SNR in equally correlated Nakagami-m 
fading with different fading correlations.
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30

Average Branch SNR (dB)

Figure 4.5: The average BER of BPSK with 4-branch SC in equally correlated Rayleigh 
fading channels, p e {0,0.3, 0.5,0.6,0.7,0.8,0.9,0.95,1}.
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-  - K = 0
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O  Simulation (K = 0)

p = 0.5

UJ
co p = 0.8

P = 0

p = 0.2
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Figure 4.6: The average BER of binary DPSK with 4-branch SC in equally corre­
lated Ricean fading channels with different fading correlations and Rice factors, p e  
{0,0.2, 0.5, 0.8, 1}, K  G {0, 3dB}.

degrades and the rate of degradation also increases.

Fig. 4.6 shows the impact of fading correlation p on the BER of binary DPSK with SC 

in equally correlated Rayleigh (K =  0) and Ricean fading channels. As p increases, the SC 

performance in both correlated Rayleigh and Ricean fading channels degrades. However, 

the SC performance in correlated Ricean fading degrades more rapidly in the low correla­

tion case, but more slowly in the high correlation case than that in Rayleigh fading chan­

nels. This observation can be explained by the relationship between the fading correlation 

p and the power correlation pn. As p increases, the pn of Ricean fading (4.12) increases 

more rapidly when p is small but more slowly when p is large than that of Rayleigh fading 

(4.5). That is, Ricean fading is more sensitive than Rayleigh fading in the low correlation 

case, but less sensitive in the high correlation case. We also find that the impact of fading 

correlation in both Rayleigh and Ricean fading is more pronounced in the high SNR region.

Fig. 4.7 shows the impact of the fading correlation p on the performance of multi-
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Figure 4.7: The average BER of binary DPSK with multi-branch EGC in equally correlated 
Rayleigh fading channels, p e {0,0.4,0.9}.

branch EGC in equally correlated Rayleigh fading channels. As expected, the diversity 

gain can still be achieved even in highly correlated fading channels. Similar to the SC 

performance, the maximum diversity gain is achieved with dual-branch diversity. With 

increasing L ,  the additional diversity gain diminishes. This is more pronounced in higher 

SNRs. We also observe that, as p increases, the performance of binary DPSK degrades 

more rapidly when L  is large. That is, higher-order diversity combiners are more sensitive 

to the fading correlation.

Fig. 4.8 shows the BER of binary DPSK with EGC in equally correlated Rayleigh 

( K  — 0) and Ricean fading channels. For independent fading (p =  0), EGC always per­

forms better in Ricean fading than Rayleigh fading. For correlated fading, the opposite 

occurs in the high SNRs. The same unexpected behavior has occurred for the SC perfor­

mance (see Fig. 4.6). These surprising observations may also be explained by using the 

definition of fading correlation p (4.11). The fading correlation is defined as the correlation 

between two underlying CGRVs G* and G j  (k ^  j).  However, from (4.5) and (4.12), we
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Figure 4.8: The average BER of binary DPSK with 4-branch EGC in equally correlated 
Ricean fading channels with different fading correlations and Rice factors, p G {0, 0.5}, 
K  G  {0, 3dB, 5dB, 7dB}.

find that for a certain value of p, the power correlation pn of Ricean fading is larger than 

that of Rayleigh fading, that is the combined branches are more highly correlated in Ricean 

fading channels. Hence, two opposing mechanisms influence the diversity combiner per­

formance in Ricean fading channels. First, the LOS component improves the performance. 

Second, the larger power correlation than that in Rayleigh fading channels degrades the 

performance. When the second mechanism dominates, the Ricean fading channel can be 

worse than the Rayleigh fading channel. Chang and McLane [97] have observed this situ­

ation for square-law combiners.

4.6 Conclusion

In this chapter, we have developed new representations for equally correlated Rayleigh, 

Ricean and Nakagami-m fading gains and these enable the performance analysis of multi­

branch SC and EGC in correlated fading. We have derived analytical results for the average
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error rates, the outage probability and the output moments of multi-branch SC and EGC 

in such channels. We have therefore solved the long-standing open problem of the multi­

branch SC and EGC performance in equally correlated fading channels. Numerical results 

show that diversity benefits still exist in correlated fading channels, although the maximum 

diversity gain will not be achieved when fading is correlated. Higher-order diversity com­

biners are more sensitive to the fading correlation. We also observed and explained that the 

performance of diversity systems in correlated Ricean fading channels can be worse than 

that in correlated Rayleigh fading channels.
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Chapter 5

Joint Distribution Functions of Three or 
Four Correlated Rayleigh RVs and 
Their Application in Diversity System 
Analysis

The channel gain representations developed in Chapter 4 only hold for equally correlated 

fading channels. For arbitrarily correlated fading channels, simple analytical results for 

the performance of multi-branch SC, EGC and GSC(M, L) are unknown. In this chap­

ter, we derive new infinite series representations for the joint cdfs of the tri-variate and a 

certain class of quadri-variate Rayleigh distributions, which enable us to analyze the per­

formance of 3-branch and 4-branch diversity combiners in arbitrarily correlated Rayleigh 

fading channels. Section 5.1 gives a short background introduction. Section 5.2 derives 

new infinite series representations for the joint pdfs and the joint cdfs of the tri-variate and 

a certain class of quadri-variate Rayleigh distributions. Bounds on the truncation errors of 

the infinite series, the joint moments and the joint chf of the tri-variate Rayleigh distribu­

tion are also derived. Section 5.3 presents some applications of the new results. Section 

5.4 provides several numerical and simulation results. Section 5.5 concludes this chapter.

5.1 Introduction

The Rayleigh distribution is frequently used to model the received signal amplitudes in 

urban and suburban areas [10]. The joint pdf of a set of L correlated Rayleigh RVs is re­

quired for some performance analysis problems which include determining the impact of
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fading correlation on diversity systems and modelling fading processes [13,19,98-100]. 

The pdf o f bivariate correlated Rayleigh RVs has been derived by Rice [101]. Tan and 

Beaulieu [94] derived an infinite series representation for this bivariate joint cdf. It is 

exceedingly difficult to derive the joint pdf of the multi-variate correlated Rayleigh dis­

tribution and, indeed, Schwartz, Bennett and Stein claim that such joint pdf cannot be 

found [19]. Consequently, many published papers treating SC and EGC in correlated 

Rayleigh fading are limited to the dual-branch case [19,73,85,86].

However, since the envelopes of multiple correlated CGRVs are Rayleigh distributed, 

the underlying complex Gaussian joint pdf can be converted to the polar form to give the 

joint pdf o f amplitudes and phases and, in principle, the phase terms can be integrated 

out to give the joint amplitude pdf. Following this approach, Mallik [81] derives the joint 

pdf of the multi-variate Rayleigh distribution, which requires L-dimensional integration. 

Miller [102] derives an infinite series of products of the modified Bessel functions for 

the joint pdf of three correlated Rayleigh RVs. While this holds for arbitrary correlation 

models, it is intractable to derive the infinite series representation for the joint pdf when 

L > 3 using this approach. All the available results therefore treat restricted correlation 

models. For example, Blumenson and Miller [103] derive the joint pdf of L correlated 

Rayleigh RVs, providing the inverse covariance matrix $  of the underlying Gaussian RVs 

is tri-diagonal (i.e. 0!;- =  0 if |i — j  | > 1). The exponential correlation model generates this 

particular pattern. Using Blumenson and Miller’s result [103], Karagiannidis et al. [77,82] 

derive a joint distribution that holds only for exponentially correlated Nakagami fading 

channels.

In this chapter, we use Miller’s result [102] to derive new infinite series representations 

for the joint pdf, cdf, moments and chf of three arbitrarily correlated Rayleigh RVs. For 

four correlated Rayleigh RVs, we generalize Blumenson and Miller’s result [103] (which is 

limited to tri-diagonal inverse covariance matrices) to the case where the inverse covariance 

has five non-zero diagonals (i.e. only and 041 need to be zero). Our tri-variate and

quadri-variate cdf series generalize Tan and Beaulieu’s series for the bivariate Rayleigh 

cdf [94]. Although there are many applications of the new pdf and cdf expressions, 3- 

branch and 4-branch diversity systems are particularly of interest. For diversity systems in
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arbitrarily correlated Rayleigh channels, we evaluate the performance of 3-branch SC and 

derive the upper and lower bounds for the output ccdf of multi-branch (L > 3) SC. We 

further derive the moments of the 3-branch EGC output SNR and the output mgf of the 

GSC(2,3) receiver.

5.2 Tri-Variate and Quadri-Variate Distributions

This section derives infinite series representations for the joint pdf and the joint cdf of the 

tri-variate and a special class of quadri-variate Rayleigh distributions. The quadri-variate 

case considered in this section is more general than previous results [82]. New bounds for 

the truncation error of the infinite series are developed. The joint moments and the joint 

chf of the tri-variate Rayleigh distribution are also derived.

5.2.1 Joint Pdf and Cdf of Tri-Variate Rayleigh Distribution

Let G =  [Gi, G2 , G3 } be joint CGRVs with zero means and positive definite covariance 

matrix gf. We may write Gk in terms of polar coordinates as,

Gk = Rk expo©*), k e  {1,2, 3}, (5.1)

where Rk =  \Gk\ is the envelope of Gk- Thus, R = {Ri, R2, R3} is a set of Rayleigh RVs 

and © =  {©1 , ©2 , @3 } is a set of jointly distributed phases. The joint pdf PR,e(r, 6 ) of R  

and 0  can be related to the density pG(g) of G.  Hence, the marginal density p r ( t )  can be 

obtained by integrating out PR,@(r,0) over 6  [80,102]. This approach yields
OO

PR in ,r2, r3) = 8 det(^)r}r2 r3 e~(r̂ u+r^ 22+r̂ 33) S k ( - l ) k cos(kx)
t o  (5.2)

x Ik(2 rir2 \(pl2\) h ( 2 r2 r3 \<p23\) Ik(2 r3 n \ 4>3 i\) 

where Sk is the Neumann factor (so =  1, Sk = 2 for k  =  1,2, • • •) and

X = XU +  X23 +  X31, (5.3)

and #  is the inverse covariance matrix

011 012 013
«  =  9 - 1 = 01*2 022 023 , 4>jk =  14>jk\elXjk

J>*X3 023 0 33_
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The expression (5.2) is not much useful as it is not in a product form of the variables r\, 

r 2 and r 3 . Representing the modified Bessel function by an infinite series [92, Eq. (9.6.10)],

we readily obtain an infinite series representation for the joint pdf as
00 0° . , ,2i+k

M ( r i , r 2 ,r3 ) = 8 d e t( # > - (̂ » +'-22te+ r32t e ) ^ %(„ i )* Co s ( ^ )  £  Z )  , , , .
k = 0  t , m , n = 0

\<t>23\2 m + k \ < h l \ 2 n + k  „ 2 ( l + n + k ) + l , 2 ( l + m + k ) + l „ 2 ( m + n + k ) + l  ^X ---------------------------Tl T rs Try . {DoDf
m\(m + k)\n\(n + k)i 1 2  3 v '

Note that (5.5) is in a product form of r\, r2, r3 and is therefore suitable for our purposes. 

The joint tri-variate cdf is now given by

~  ~  \(f>12\2 l + k \(l)23\2 m + k \<p3l\2n+k
FR( k i , k 2 , k 3) = 8 ( d e t $ ) E e*(~1) cos(kx)  E. /!(/ +  k)!m!(m +  k)\n\(n +  A:)!

k —0 i , J , k ~  0

x [ Xl r f +n+k)+1e~r^ n d n  r^ l+m+k)+le~r̂  dr2
Jo Jo

Lh  r2 (m+n+k)+\e-rl ^ 3 ^  (5.6)

Making the transformation x\ =  rf <f>\ 1 , x2 =  r |0 22 and X3 =  r | 033 and using the definition 

of the incomplete gamma function [92], we obtain the infinite series representation for the 

joint tri-variate cdf as

det(4>) ^  ™ /+* m+k n+k
FR( k i , k 2 ,X3) =    y ]g fc ( - l) fecos(fcx) E  C

ifcwf fin ill"#♦ • . t e t e f c s - ' 1,12 ”23 ■* (s.?)

X y ( 5 l ,  y (^ 2 . ^ 2 ^ 22 ) x (^ 3 . ^ 3^ 3 3 )

where x  is defined as (5.3) and

C =    , (5.8a)
/! (n +  k)!m! (/ +  k)!n! (m -f £)!

10/fc I2 o u
V/* =  , , (5.8b)

4>jj4>kk
<5j =  / 4- n -|- k T  1, (5.8c)

8 2 =■ m 1 -]r k \ , (5.8d)

S3 = n + m  + k + l, (5.8e)

which will be used throughout this chapter for brevity. The cdf (5.7) holds for any arbitrary

3 x 3  correlation matrix. Let us consider two commonly used spatial correlation models.
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1. Equally correlated model

The equally correlated model is valid for a set of closely-placed antennas [41]. The 

normalized correlation matrix of this model is given by rjfjk = p ( j  j* k) and iffjj =  

1, where - \ < p <  1. It can be shown that x  — X12 +  X23 +  X3i =  3jt. Thus, the

joint cdf (5.7) reduces to

FR(ki,X2 , X3 )
( l - p ) ( l + 2 p ) 2 00 00

( i + p ) 3 E* E c
k= 0 l,m,n=0

2

1 + p

i5] +52+53—3

, s (i +  p ) f \  \  ( s (i +  p U 2 ,
S3 ,

(1 +  P)^3 
1 +  p  -  2 p 2

(5.9)

1 +  p -  2 p 2

2. Exponentially correlated model

The exponentially correlated model can be used to describe the correlation among 

equally-spaced linear antenna arrays [82]. The normalized correlation matrix of this 

model is described as =  £’(Gy G p  =  p ^ ~ kK where 0 < p < 1. It can then be 

shown that 031 =  0i3 =  0. Thus the joint cdf can be simplified considerably to

X2, h )  =
1 -  p 2

00

E 1
1 +  P 2 (ml) 2

l ,m—0

l+m

x Y

1 + p 2

m + 1,

Y \ l  + h
1 - P 2

k 2

1
(5.10)

which is equivalent to [82, Eq. (6)].

5.2.2 Joint Pdf and Cdf of Quadri-Variate Rayleigh Distribution

Blumenson and Miller [103] derive the joint pdf and the joint cdf of the multi-variate 

Rayleigh distribution. However, their expression is only valid when the inverse covari­

ance matrix satisfies <pjk — 0 for | j  —k | > 1 (i.e. for the matrix in (5.11), both 0i3 and 024 

would be zero). However, we can derive more general results than [103], and we consider 

the inverse covariance matrix given by

011 012 013 0

-1  _  012 022 023 024

013 023 033 034
0 0'24 034 044.

X j k (5 .11)
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We show that the joint pdf of the quadri-variate Rayleigh distribution with positive definite 

#  and its #  satisfying (5.11) can be obtained as a product of the modified Bessel functions 

of the first kind (see Appendix B)
00 oo

P r (T \ ,  r 2 ,  r 3 , r ^ )  =  1 6 d e t ( # ) r i r 2 r 3r4e (ri ^ u + r2t e + r 3f o s + U £ j { - \ ) j + k

j =0 k=—oo

X cos[z'(xi2 +  X23 +  X3l) +  k ( x 23 +  X34 +  X42>] /y(2rir2|0i21) (5.12) 

x //(2 rir3|0i31) 4 (2 r2r4|024l) 4 (2 r3r4|034|) /;+*(2r2r3|023|).

To the best of our knowledge, (5.12) is a novel result which allows evaluation of 4-branch 

diversity combiners in several kinds of correlated fading channels. Eq. (5.12) reduces to 

previous results for two special cases. We believe that an expression akin to (5.12) cannot 

be derived unless <j>u = 0. Thus, this appears to be the most general quadri-variate case 

that yields an infinite series solution. Moreover, if <fo4 is not zero in a given application, 

we may choose a “best” approximation of $  satisfying (5.11).

1. Independent Rayleigh envelopes

Since the covariance matrix ^  for independent Rayleigh RVs is diagonal, the inverse 

covariance matrix $  is also diagonal, which is given by 4>jk =  0 0' ^  k) and <pjj =  1 

for j , k  e  ,4}. Therefore, our new expression (5.12) can be simplified to

M (A.,,X2,X3,X4) =  (5.13)
^11^22^33^44

which is the product of four independent Rayleigh pdfs [6, Eq. (2-1-128)].

2. Exponentially correlated Rayleigh envelopes

Substituting <f>24 =  013 =  0 into (5.12), we obtain the joint pdf of the exponentially

correlated quadri-variate Rayleigh distribution

16r1r2r3r4 f ^ ) ( 2 n r l P \
PR( n , r2, r3,r4) 1 V ^  ^  ' h

( 1 - P 2) 3 \ 1  ~ P 2 J  ( 5 .1 4 )

" •(S M fi? )
where p =  ^ 1 2  =  E{G\G |) .  This expression is equivalent to the previous result [82, 

Eq. (3)].
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Expanding Im(x) in infinite series and integrating (5.12) yield an infinite series repre­

sentation for the corresponding joint cdf

i , /  x  \  0 0  0 0  0 0  • • ijLi

v n v i w i i v m  .= l , m, n, u=0

w y“+T X(» +  [fc| +  n +  1, ^ 4 ^ 4 4 ) y (/ +  j  +  m +  1, „+ii+M
X 1)34 / !mlnlul  (/ +  i ) ! (m +  y)! (n +  |A:|)! (n +  |it|)!

y ( m + n  + v + r  +  1 , y(m  +  M +  u +  r  +  l, A3 0 3 3 ) /c 1 ̂
x „7(y +  ii+M)! (5-i5)

where co =  ;(xi2 +  X23 +  X3 i) +  £(X23 +  X3 4  +  X4 2 ) and r  =  ( |;  +k\ + |fc| +  j ) / 2. We 

observe that both (5.5) and (5.12) are series of the product of the modified Bessel functions. 

For brevity, we only discuss the tri-variate Rayleigh distribution and its applications in the 

rest of this chapter. Similar results can be obtained for the special class of quadri-variate 

Rayleigh distribution.

5.2.3 Truncation Error

Assume that the cdf series (5.7) is limited to K, L, M  and N  terms in the variables k, I, m 

and n, respectively. The remaining terms constitute the truncation error. It is desirable to 

obtain a simple bound for the truncation error because such a bound is useful for studying 

the impact of correlation ¥  on the truncation error. Unfortunately, this is not always pos­

sible. For example, Tan and Beaulieu [94] derive a truncation error bound in terms of the 

confluent hypergeometric functions, where the relationship between the correlation p and 

the truncation error is not immediately evident. Here we provide an alternative method to 

bound the truncation error.

We notice that the incomplete gamma function y(a, x ) < T(a) and | cos(x)| < 1. The 

truncation error of (5.7) can therefore be upper bounded by

00 00 00 00 K - 1 00 00 00

\Et \ < J 2  G (k , l ,m ,n )
k = K I—0 m=  0 n=0 k =0 l—L m= 0 n— 0 (5.16)Jf-l L—1 oo oo K - 1 L- 1 M—1 oo
+ G (k ' l ' m’ ” ) +  J 2  J 2  £  G(~k' l>m>

k =0 1=0 m = M n =0 &=0 1=0 m = 0 n = N

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where

G(k, I, m, n)
det(#) /I  +  n +  k \  f l  + m + k

011022033 \  I ) \  m )
X

m + n + k \  
n J

Z+4 m+ti n+£  
v 12 y23 31

(5.17)

Further simplification of (5.16) is complicated. Due to the space limitation, we only pro­

vide an upper bound for the truncation error in the special case of exponentially correlated 

models where <£13 =  0. This leads to

\Et \ <
1 - p 2

OO OO

EE
_Z=L m =01 +P2

,  2 L - l  M - 11 — Pz v-'v 'S—V (I

I + m 
m j  1 1 +  p 2

2 x Z+/n L—1 00 / ,  ,
P \  (I + m+E E

Z=0 m —M
m

9 x Z+m"

1 - P 2  V - / /  +  /  p 2 \
! +  p2 ~  V ^  /  \ i +  p 2/

Z+m

< 1 - ( 1 - P " ) 1 +P^

M l

(5.18)

As expected, the upper bound for the truncation error increases as p increases and decreases 

as the number of terms increases.

5.2.4 Joint Moments and Chf of Tri-Variate Rayleigh Distribution

Moments and chf are often used to characterize the RVs. Using the infinite series repre­

sentation for the joint tri-variate pdf (5.5), we derive the corresponding joint moments and 

joint chf.

If a , fi,Q > —2, the joint moments are given by

’OO poo poopoo poo poo
E (rjVzfrf) =  / / / r f  rf  p* (r i , r2, r3) dr3dr2dr\

J 0  Jo Jo
det(S) 00 00

, i+f  , 1+^ ,1+1 011 2022 2 033 *=0
^ e * ( - l ) * c o s ( f c x )  ^  C

Z +| m + f n + f  
V12 V23 V31 (5.19)

X r  (s ' +  f ) r  +  2 )  r  ( i3 + 5 ) '

The joint moments have many applications. We will show that statistical moments of the 

output SNR of certain diversity systems can be evaluated using (5.19).
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The joint chf of the tri-variate Rayleigh distribution is defined as the statistical average

<f>Oi, v2, v3) = E [ e i{v

f  de t#  / -I\k n  \  n  l + 5 m+I n + 3

= U ^ h 3 j ^ ek(~ 1) C°S(kX) ^  V12 v23 V31W i W i z m /  k==Q l,m ,n—0

~ (g ^ I + 5 ^ + g ^ i)  (2^i ~  1)1(232 -  1)!(2^3 -  1)!
** ^ 281+82+83—3

x c - “ ' t e )  D- 2*  ( v i § )  ^  t e )  - (5-20)

5.3 Applications

The new results developed in the last section enable the performance analysis of several 

3-branch and 4-branch diversity systems in arbitrarily correlated Rayleigh fading channels. 

This section presents four possible applications.

5.3.1 Performance Analysis of 3-Branch SC

The cdf of the 3-branch SC output SNR can be readily derived using (5.7) and (1.27) as

Eq. (5.21) holds for any arbitrary 3x3  correlation matrix. For independent fading channels, 

the cdf of the 3-branch SC output SNR (5.21) reduces to

Fsc(x) = (1 -  e ~ n ) ( l  -  e~ n ) ( l  -  e~%), (5.22)

which is equivalent to the well-known result [19, 10-4-9]. Replacing A.* with in

(5.9) and (5.10), we obtain simplified expressions for the output cdf of 3-branch SC in 

equally and exponentially correlated fading channels. For example, the cdf of 3-branch SC 

in equally correlated fading channel is given by

„ , N (i _ p ) ( i  +  2p)2 ^  ^  p y i + ^ 3 - 3  ^  (j +  p)x ^

<1 + ^  £ * , £ , '  V i+J  T  ■•(1+P-2P’)?)
( S ( !  +  p ) x  \  (  (1  +  p ) x  \

X Y I  2’ (1 + P  ~ 2 p 2 ) y )  7  \  3’ (1 + p - 2 p 2 ) y )  '
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We have checked (5.23) numerically against an alternative cdf expression (4.40). Both the 

methods give exactly the same numerical values.

The convergence rate of the cdf series (5.21) depends not only on the correlation among 

the branch signals ^  but also on the normalized branch SNRs x/ fk-  Without loss of gen­

erality, we investigate the convergence property of the cdf series for the equally correlated 

case. Table 5.1 lists the number of terms required in each sum of (5.23) to achieve five sig­

nificant figure accuracy for different correlations p and the normalized branch SNRs x / y .  

The total number of terms required is equal to K  x L x M  x N,  where K,  L, M,  N  denote 

the number of terms required in the variables k, I, m and n, respectively. We find that the 

cdf series (5.23) converges much faster as the correlation or the normalized branch SNR 

decreases.

Table 5.1: The number of terms needed in (5.23) to achieve five significant figure accuracy.

x / y  = OdB x / y  =  5dB
p =  0,2 II N> t-< II II H UJ >5 II u> f" II II II 4̂

p =  0.5 II t> II II II IIIIII*4II

II o 00 K = 4 , L  = M = N  = 6 K = 7, L = M  = N  = 10

Average Error Rate

Eq. (5.21) can be readily used with (4.50) to derive single-integral expressions for the 

average error rates of various digital modulations with 3-branch SC in arbitrarily correlated 

Rayleigh fading channels (see 4.3.2 for details). In the following, we provide just two 

examples of such analysis for brevity.

1. BPSK and Coherent BFSK: Substituting the output cdf (5.21) into (4.52), we ob­

tain the average BER of BPSK and coherent BFSK with 3-branch SC in arbitrarily 

correlated Rayleigh fading channels as
OO OO

- det(4>) ^  (j \ V '  *+! m+i n+i
p e =  i ; y ,  ejfc(-l)*cos(*x) > ,  c  v n  v 23 v 3i

*11*22033 t i  l i t - 0 (5.24)
a b 00 1 bx

X 2 V 2n j  X 2 y ( S i , d i x ) y ( 8 2 , d 2x ) y ( S 3 ,dsx )dx
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where (a, b) =  (1, 2) for BPSK, (a, b) = (1, 1) for coherent BFSK and

dk =  fkk<t>kk/Yk, k € {1, 2, 3}. (5.25)

Noticing the relation between the incomplete gamma function and the confluent hy­

pergeometric function [3, Eq. (9.236.4)] and applying the integral identity [2, Eq. 

(C.l)] and the transformation formula of the Appell hypergeometric function [95], 

we obtain the average BER as

a det($) ^  k /r ^
Pe =  -----  , y ^ g f c ( —1) cos(fcx)

011022033 ^

^  12 23 31 1 2 3 ^ 3  +
>n,n=0

/  1 2di 2d2 2J 3 \
x f ^ a  +  5 ; l , l , l ; 6 1 +  M 2 +  M ,  +  l ; —

X

l,m,n= 0

where <4’s are defined as (5.25) and

6  -|- 82 $ 3  =  2(1 -+- m +  ri) +  3(k 4 -1), (5.27a)
3

d — d\ +  d2 +  fkk<t>kk!Yk- (5.27b)
k=l

These notations will be used in the subsequent results.

2. Binary DPSK and Non-Coherent BFSK: Similarly, substituting (5.21) into (4.55), we 

obtain the average BER of binary DPSK and non-coherent BFSK after some algebra,

P e =  < * » (* * )
011022033 ^

00 . . Ir . 1 . 1  S S  I 1 M  /  U  \  ^ + 1

X

l ,m ,n=  0

d \  d i  d j

< 5 ' 2 8 )

('x F a ( 5  +  1; 1 , 1 , 1 ; ^i  +  1 , ^2 +  E^3 +  1 ; ,  ,> , , , ,  ,d + b d  + b d  + h

Moments of the 3-Branch SC Output SNR

We can also obtain the moments of the 3-branch SC output SNR in arbitrarily correlated 

Rayleigh fading. Differentiating the cdf of the SC output SNR (5.21) with respect to x
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yields the corresponding output pdf:

011022033
J% * (-l)* c o s(£ x )

(5.29)

J 1

Using (5.29), we can obtained the output moments as

x y ( h ,  dxx) y(S2, d2x) y(S3, d3x)

e (y£>
s & ' - 1 1 , c o s t o )  £  12 1 2  3Y'ilV'ZZY'.W ft—0 l ,m,n=0

F a <̂5 4- /S; 1 ,1; +  1, <5̂  4-1;
(5.30)

where (w, u, u>) € {(1,2, 3), (2 ,3,1), (3,1, 2)}.

Using (5.30), we can obtain other useful performance measures, such as the central 

moments, the skewness, the Kurtosis and the amount of fading.

Performance of multi-branch SC (L > 3) is completely known for independent fading 

branches. If, however, branch signals are allowed to be correlated (which is a much re­

alistic assumption), known theoretical results are few and far between. In [43] and [44], 

the performance of multi-branch SC in correlated Rayleigh fading channel is analyzed. 

However, their results are fairly complicated for large L(> 3). From a both practical and 

theoretical standpoint, performance bounds for multi-branch SC are therefore desirable. 

For this problem in its most general setting, we need to know the L-th order joint distribu­

tion of the instantaneous branch SNRs for any correlation structure. As mentioned before, 

unfortunately, it is impossible or extremely difficult to derive this joint pdf for L  > 3. 

Using (5.5) and (5.7), we can handle any arbitrary correlation pattern for L = 3. Can 

we use our new results to obtain the performance bounds of multi-branch SC for L  > 3? 

Strangely enough, the answer is yes. For this purpose, we need to use the Boole formula 

which shows that the probability that at least one of the L  events {A\, A 2,- • ■ , A i)  occurs

5.3.2 Bounds for the Output Ccdf of Multi-Branch SC
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is given by [104]

/  L \ L L L

Pr I U A“ ) =  J 2  Pr(A«} -  J 2  Pr(A“ n A v)+  Y  Pr(A„ n  Ay n  A w)
\M = 1  /  u  u , v = l  u , v , w = l

Si
(5.31)

S2 53
+  •■• ( - i ) i_1 Pr(Ai n  a 2 n  • • • n  a l ).

Note that S\ is the sum of the first order event probabilities ignoring any dependency among 

the events. However, S2 is the sum of the pairwise event probabilities, which takes into 

consideration pairwise dependencies among the events. Using the fact that the sum of an 

even (or odd) number of terms on the right hand equation (5.31) provides a lower (or upper) 

bound of Pr A«^, we obtain the Bonferroni inequalities, of which the second is

Si ~  S2 < Pr A „j < S i - S 2 + S3. (5.32)

We are now in a position to apply this to evaluate the performance of multi-branch SC 

in correlated Rayleigh fading channels. Let Au denote the event that the instantaneous SNR 

of the u-th branch yu exceeds*: Au — {yu > x}. Since the SC output SNR is the maximum 

of all the branch SNRs, when at least one branch SNR exceeds x, so does the SC output. 

Therefore, we readily bound the ccdf of the multi-branch SC output SNR by 

L L L

J ^ P r (yu > x ) -  ?T(Yu > x , y v > x ) <  Pr(ysc > x) < J^ P r(y K > x)
u = 1 u, v = \  u = 1

u < v
L L

-  Y  Pr(>« > x , y v > *)-)- ^  ] Pr(yu > x, yv > x, yw > x)
«,v= 1 u ,v ,w = 1

U < V  U < V < U )

(5.33)

where Pr(yu > x) is the probability that any single branch SNR exceeds x and Pr(y„ > 

x, yv > x) is the probability that any two branch SNRs exceed x simultaneously, which are 

given respectively by [19, Eqs. (10-4-8, A-7-1)]

Pr(yM > x) =  e~ n ,  (5.34a)

 x_
Pr(yu > x, yv > x) =e

1 Q W  (1 -  pL W v ' P" i  (1 -
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where puv =  i^uv/V^uuWvv is the fading correlation between the u-th and the u-th branches, 

and Pr(y„ > x ,y v > x, yw > x) is the probability that any three branch SNRs exceed x 

simultaneously, which can be derived using (5.5) as

OO/ aet «p \
Pr(y„ > x , y v > x, yw >

k=0
OO h t lr/+7 ftl + Ty

x) =  ( ■ ■, 2 —  J Y ] e k( - l ) k cosk(x uv  "I" Xv w  X w u )
ytyuutyvvrww /  , n

X £  C v ^ v ^ 1 vnwt 2 r ( 8 1 ,d ux ) r ( 8 2 ,d vx )r(S 3 ,d wx). (5.35)
l,m ,n=o

5.3.3 Moments of the 3-Branch EGC Output SNR

The moments of the combiner output SNR can be used as alternative performance measures 

to the conventional average error rate analysis. The new expression (5.19) enables us to 

evaluate the moments of the output SNR of a 3-branch EGC system whose output is given 

by (1.26)
(ri + r 2 + r3 )2 Es

“  m  ' ( 5 ' 3 6 )

The moments of the output SNR can be obtained as (4.81)

E h "  i ( 9i V Y ' <2" )! / r r r V v 1̂

ki+k2+ki=2n

where E{r\lr ^ r ^ )  can be computed using (5.19). The average output SNR of 3-branch 

EGC can be simplified as

K egc — Y l

OO
1 \l/2 2  1̂ 33 2de t$  .
— I---------- 1---------- 1 )  Sk(—l) cos(kx)
3 3^11 3 ^ ii 3 f  11<PU<P22<P33

00 , , ,
/+ §  m + f n+*5  f / t - r*  ™-r=>

12 v23 V31 /! ml (I +  fc)! (n +  k)\*J(pu<p22

(V)r («, + i) r («3 + i) + (sv‘)r («2 + i) r («3 +1)
llnl  (m +  A:)! (n + k)\*J(pu<p33 ml nl (I + k)l (m +  ky.^fip2 2 ^ 3 3
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To the best of our knowledge, (5.38) is a new result and provides the average SNR for the 

most general 3-branch EGC case. Similar results can be derived for higher-order moments 

and for 4-branch EGC. These are omitted for brevity.

5.3.4 Performance Analysis of 3-Branch GSC

GSC(M, L) achieves a good tradeoff between performance and implementation complexity 

[22,105]. However, very few theoretical results are known for the GSC performance in 

correlated fading channels. The only published paper dealing with this topic is Mallik and 

Win [79], who analyze the performance of GSC(M, L) in equally correlated Nakagami 

fading. The distribution theory for order statistics of arbitrarily correlated RVs is not fully 

developed [104]. Our new result (5.7) enables the performance analysis of 3-branch GSC 

in arbitrarily correlated Rayleigh fading channels.

Since GSC( 1,3) and GSC(3,3) are simply SC and MRC, these cases are not treated here. 

Instead, we consider the GSC(2,3) system, which combines the largest two branch SNRs 

to form the output:

We derive the joint cdf of y(i) and y(2) via the first principles as

FYahY(2)(P’ “) = Pr(n < £, y2 < a, K3 < a) + Pr(yi < a, 72 < P, 73 < oc)
(5.40)

+  Pr(yi < a ,y 2 < a, y3 < /B) -2 P r (y i  < a, y2 < a, y3 < a)

where > a > 0 .

Applying (5.7) and differentiating (5.40) with respect to and a  yield the joint pdf of 

y(i) and y(2) as

Vgsc =  7(1) +  7(2)- (5.39)

PY(\),Y(2)(y  ’ x ) — V  ek( - l ) k cos(kx) Y l  C v125v j  5U
OO (+| tn + j  n-t-& 

’12 y23 V31

(5.41)

u ,v ,w —l
u£v=£w

where y > x  >  0 .

The mgf of the GSC(2,3) output SNR is the defined as (1.3), i.e.,

Mgsc(s) =  E(e~s^ ) . (5.42)
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Thus, using (5.41), we can obtained the output mgf as

/•oo f oo
MgSC(s) =  J  p y(lhy(2)(y ,x )e~ ix+y)s dyd x

d e t#
011022033

QQ QQ / i t  k k
2 ^£*(—1)*cos(&x) Cvn 2v2$2vl \ 2
k=0

E
û =v̂ w

dv
dv + s

Sv
d&uug{u, v, w)

where
POO

g(u, v, w) =  /  xa“_1e_x(a'"+f)y(^iy,X£/U; ) r [ ^ ,  (</„ +  s)x] Jx
Jo
dsJ  r(8u + 8 w - m S v - l ) lr (a» +

L ( 4<5u; L ( 4  +  <4 +  ■S)5“+5
(«5- 1 ) 1 ( 4 , + ^

2^1 I &u +  Sw, 1; Sw‘,
dw

F a  (<5; 1,1; &w +  1 ,8V 4- 1;

dw +  du + s
dy I" S \  
d + 2 s)_

(5 .43)

) (5.44)

8 v(d + 2 s)s 1 d + 2 s'

Eq. (5.44) follows from [3, Eq. (9.236.4)] and [2, Eq. (C.l)]. Using the output mgf (5.43), 

the performance of various digital modulations with GSC(2,3) can be readily evaluated (see 

Section 2.4.1 for details).

5.4 Numerical Results

Numerical results are here provided to show the performance of 3-branch SC and EGC 

in arbitrarily correlated Rayleigh fading channels. Note that semi-analytical simulation 

results are provided for the 3-branch SC and EGC performance as an independent check 

of our analytical results. We use the Cholesky decomposition approach [96] to generate 

correlated complex Gaussian variables and their amplitudes give the required correlated 

Rayleigh envelopes.

Let us first consider an antenna array with normalized covariance matrix

*  =

/1.0000 0.2920 0.2998 0 .112l\ 
0.2920 0.6602 0.2031 0.1585 
0.2998 0.2031 0.7625 0.1888 

VO. 1121 0.1585 0.1888 0.6431/

(5.45)
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—  Exact 
O  Simulation

-5 0 5 10 15
Normalized Average SNR of the First Branch (dB)

Figure 5.1: The outage probability of 4-branch SC versus the normalized average SNR of 
the first branch y j  =  y \ / y r  in correlated Rayleigh fading channel.

The corresponding inverse covariance matrix now satisfies (5.11). Thus, using (5.15), we 

may evaluate the outage probability of 4-branch SC, as is shown in Fig. 5.1. Our numerical 

results agree with the simulation results.

Next, we consider only the performance of the 3-branch balanced SC and EGC (the 

average SNRs at all the branches are identical, i.e., y\ = y2 = y^ — y) for brevity. A 

linear antenna array of three antennas, with equal antenna spacing d, is considered so that 

the distance between the y'-th and the £-th antenna can be obtained as | j  — k\d. Several sta­

tistical models have been proposed to describe the correlation between antennas. Clarke’s 

two-dimensional isotropic scattering model assumes a uniform angle of arrival (AOA) dis­

tribution. The covariance between two antennas follows the zero-th order Bessel function

where X is the carrier wavelength.

However, measurement data [106] suggests that a Gaussian AOA distribution is more

Jo(x) [15]:

(5.46)
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realistic than the uniform AOA distribution for GSM systems in rural and suburban areas. 

The AOA is assumed to be Gaussian distributed [107] with mean <po and variance (angular 

spread) Hence, the covariance matrix of the underlying complex Gaussian components 

can be computed using [34, Eq. (33,34)] for different antenna spacing d. For example, 

when 0o =  30° and =  10°, the covariance matrix is given by

/  1 -0 .60  +  0.45/ 0 .1 3 -0 .3 0 / \
-0 .60  -  0.45/ 1 -0 .6 0  +  0.45/
0.13 +  0.30/ -0 .60  -  0.45/ 1

#  =  y

for antenna spacing d  =  0.8A..
\

(5.47)

/

— Independent 
“ ■ Numerical (Uniform AOA)
* - Numerical (Gaussian AOA) 
O Simulation (Uniform AOA)
♦ Simulation (Gaussian AOA)

2-branch SC
d = 0.8X.£  10"

d » 0.3X

3-branch SC

Normalized Average SNR (dB) ŷ.

Figure 5.2: The outage probability of the balanced SC with two spacial correlation models 
(the uniform AOA model and the Gaussian AOA model with 0o =  30° — 10°).

Using our new results, we can evaluate the 3-branch SC and EGC performance with the 

above linear antenna arrays. The performance of 2-branch SC, which combines the first 

two antennas, is plotted for comparison.

Fig. 5.2 compares the outage probability of 3-branch SC with that of 2-branch SC for 

both the uniform AOA model and the Gaussian AOA model with <po — 30° and =  10°.
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loi§k v v ------
• ■*. «»>• V . . —  3-branch MRC

-  -  3-branch SC 
. - ,  2 -branch SC
O  Simulation

d = 0.8A, 1.0 a, 1.2X,

10'6
Average Branch SNR (dB)

Figure 5.3: The average BER of binary DPSK with SC and MRC using the Gaussian AOA 
model with 0o =  30° a$ =  10°. The antenna spacing d e [0.8A, 1.0A., \.2X, oo}.

The normalized average SNR is given by y j  =  y /y r -  The covariance matrices for the 

above two AOA models are determined using (5.46) and [34, Eq. (33,34)], respectively. 

A significant performance loss is caused by the insufficient antenna spacing. As antenna 

spacing d increases, the performance of 3-branch SC improves more rapidly than that of 

2-branch SC. This effect is more pronounced in high SNRs. That is, 3-branch SC is more 

sensitive to the fading correlation than 2-branch SC. Compared with the uniform AOA 

distribution model, the Gaussian AOA model describes a worse case of spacial correlation.

Fig. 5.3 plots the average BER performance of SC. The Gaussian AOA correlation 

model with <po =  30° and cty =  10° is used. The MRC performance [108] is plotted for 

comparison. The performance gain of 3-branch MRC with respect to 3-branch SC is about 

2.5dB, regardless of the antenna spacing. As the antenna spacing decreases, the correlation 

between branch signals increases and the diversity gain of 3-branch SC with respect to 

2-branch SC diminishes.

Figs. 5.4 and 5.5 show the effect of the fading correlation p on the normalized average
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output SNRs of SC and EGC, respectively. For simplicity, we consider equally correlated 

Rayleigh fading. As the fading correlation p  increases, the average output SNR of 3-branch 

SC decreases more rapidly than that of 2-branch SC. This observation agrees with our ex­

pectation that 3-branch SC is more sensitive to the fading correlation. But, as fading corre­

lation increases, the average output SNR of 3-branch EGC also increases. This contradicts 

the conventional wisdom that diversity combiner performance degrades with increasing 

correlation. However, it can be explained by (5.37). Since E(RjRk) > E(Rj)E(Rk), 

(j ^  k), for p > 0, the average output SNR of EGC in correlated fading channels is higher 

than that in independent fading channels [18]. As p approaches 1, the average output SNR 

of EGC approaches that of MRC. It should be noted that common EGC performance mea­

sures, such as BER, cannot be solely characterized by the average output SNR; they also 

depend on the higher moments. The average output SNR by itself is not a comprehensive 

metric for the EGC performance in correlated fading channels. Caution must be exercised 

when using the average output SNR as a performance measure. Performance measures that 

consider the higher-order moments of the combiner output SNR are required.

10

10'

CL
t r

to
10"

10

-  ~ Upper Bound 
Lower Bound 

O  Simulation

1l
l
l
l
»\  »\  »

®  »

'♦
\

\
\
I a

8 9
Normalized SNR y  (dB)

10 12

Figure 5.6: Bounds of the output ccdf of 5-branch SC.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Finally, let us consider a linear antenna array of five vertical omnidirectional antennas, 

with antenna spacing d — 0.8A. The AOA is assumed to be Gaussian distributed [107] 

with mean <po =  30° and variance (angular spread) 0 $ =  10°. The covariance matrix of the 

underlying complex Gaussian components can be computed using [34, Eq. (33,34)]. Fig. 

5.6 shows that our bounds fit the simulation results well in high SNRs. The lower bound is 

more accurate than the upper bound to predict the ccdf.

5.5 Conclusion

In this chapter, using Miller’s classical approach, we have derived new infinite series rep­

resentations for the joint pdf and the joint cdf of three and four correlated Rayleigh RVs. 

Several previous results have turned out to be special cases of our new results. Our results 

are canonical, in that they can accommodate any arbitrary 3 x 3  correlation matrix as well 

as a fairly general class of 4 x 4 correlation matrices. These representations pave the way 

for solving certain long-standing diversity problems. For example, the performance of 3- 

branch SC, EGC and GSC in arbitrarily correlated Rayleigh fading can now be evaluated 

analytically. To the best of our knowledge, these have never been developed up to now. 

Similarly, the performance of 4-branch diversity combiners in a fairly general correlation 

setting can now be completely solved using our results. Our novel use of Bonferroni’s in­

equality allows the bounding of the multi-branch SC performance for arbitrary correlation 

structures among the diversity branches. Other applications may include finding transition 

probabilities for Markov modelling of the Rayleigh fading channel [109]. Finally, theoreti­

cal performance results of diversity systems in correlated fading are much scarce compared 

to that of independent fading. The results derived in this chapter partly redress this issue, 

while much more work remains to be done.
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Chapter 6 

Conclusion

For emerging very high data-rate wireless communications, the complexity of traditional 

diversity algorithms, such as MRC, can be prohibitive. This has motivated the development 

of several suboptimal diversity combining schemes whose performance is sacrificed for 

complexity reduction. In Chapters 2 and 3, we proposed two such diversity combining 

schemes, S-GSC and A-MRC, which achieve a flexible tradeoff between performance and 

implementation complexity in dense multi-path fading channels.

In Chapter 2, we studied the effect of the threshold on the performance of the recently- 

developed AT-GSC and found that AT-GSC performs even worse than SC when the thresh­

old is high. Hence, we proposed a new hybrid scheme, named S-GSC, which combines all 

the branches with SNRs above the threshold. If all the branch SNRs drop below the thresh­

old, S-GSC outputs the best branch. We also derived closed-form expressions for the mgf 

of the S-GSC output SNR in independent Rayleigh fading channels and applied the output 

mgfs to evaluate the average error rates, the outage probability and the output moments 

of S-GSC. We observed that S-GSC outperforms both AT-GSC and SC, while S-GSC is 

only slightly complicated than AT-GSC in terms of the average number of the combined 

branches. We also showed that both the performance and the processing complexity of 

S-GSC lie between those of MRC and SC.

Comparing the processing complexity of several diversity combiners, we found that the 

suboptimal GSC derivatives, such as GSC(M, L), AT-GSC and S-GSC, require measuring 

all the L diversity branches. The output of a RAKE receiver employing GSC schemes can 

only be formed after all the resolvable multi-paths arrived. This is both time-consuming
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and power-consuming. In Chapter 3 , we thus proposed an adaptive combining scheme, 

A-MRC, which combines the first Nc out of the L branches whose cumulative branch SNR 
exceeds the threshold. A-MRC only needs to measure the first Nc branches where Nc is 

adaptive to the channel fading conditions. We also derived analytical results for the mgf of 

the A-MRC output SNR in various independent fading channels and evaluated its average 

error rates, outage probability and output moments. We observed that A-MRC outperforms 

GSC(M, L ) when the channel power decays fast. A-MRC is more suitable for non-uniform 

dense multi-path fading channels.

Experimental studies have shown that independent fading can hardly be achieved in 

practice. It is important to evaluate the performance of diversity combiners in correlated 

fading channels. In Chapters 4 and 5, we derived theoretical results for the performance of 

multi-branch (L > 2) diversity combiners in various correlated fading channels.

In Chapter 4, we developed new channel gain representations for equally Rayleigh, 

Ricean and Nakagami-m fading channels, which enable the performance analysis of var­

ious diversity combiners in such channels. We derived single-fold integral expression for 

the cdf of the multi-branch SC output SNR, which is much simpler than the available L- 

dimensional integrals. We also evaluated the average error rates of a wide class of digital 

modulations with SC directly from the output cdfs. Unlike the available results, the com­

plexity of our new results does not increase as the diversity order L increases. Not aware 

of any results on the multi-branch EGC performance in correlated fading channels, we 

first derived analytical results for the average error rates and the output moments of multi­

branch EGC in various equally correlated fading channels. We observed that diversity gain 

exists despite fading correlation and higher-order diversity combiners are more sensitive to 

the fading correlation. The performance of diversity combiners in correlated Ricean fading 

channels can be worse than that in correlated Rayleigh fading channels.

While Chapter 4 dealt with the equally correlated channel models, Chapter 5 investi­

gated the performance of diversity combiners in arbitrarily correlated channels. We derived 

new infinite series representations for the joint distribution functions of the tri-variate and 

a certain class of quadri-variate Rayleigh distributions. Bounds for the truncation errors 

of the infinite series were also provided. Using these new representations, we derived new
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theoretical results for the average error rates and the output moments of 3-branch SC, the 

output moments of 3-branch EGC and the mgf of the GSC(2,3) output SNR in arbitrarily 

correlated Rayleigh fading channels. We also provided bounds for the ccdf of the multi­

branch SC output SNR.

We have thus partially solved some long-standing diversity problems.

6.1 Future Work

Future work in this area may include:

1. Analyze the performance of multi-branch EGC and GSC in arbitrarily correlated 

fading channels,

2. Analyze the performance of S-GSC and A-MRC in arbitrarily correlated fading chan­

nels,

3. Investigate the effect of channel PDPs on the performance of diversity combiners,

4. Investigate the effect of both Gaussian estimation errors and the fading correlation 

on the performance of diversity combiners,

5. Apply our new proposed S-GSC and A-MRC schemes to multiple input and multiple 

output (MIMO) systems.
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Appendix A

Dual-Branch SC in Correlated Rayleigh 
Fading Channels

Here, we prove that our general cdf expression reduces to (4.29) in the case of dual-branch 

SC in correlated Rayleigh fading.

The output cdf of dual-branch SC can be written as
r00 p , . - .2

FSc(y) =  J  [ l -  Q [ a V 2 t , b j \  e ~ f d t  (A.l)

where

a = J i £^ '  6 = V ? ( r ^ ) '  ( A - 2 )

Integrating (A.l) by parts using
2

u  =  |̂ 1 — Q {a s P T t ,  b j dv = e f dt, (A.3)

and using the results in [5], we obtain the output cdf as

u2 -  1,2 b2
Fsc(y) = l+ e ~ b - 2 e  2d+aJ) + 2e~ " 2 A (A.4)

where
(l+a2)u2

A = ab I e 2 Q(au, b)I\(abu) du. (A.5)
Jo

Again, integrating (A.5) by parts using

(1 + a2)u2
u = e 2 Q(au, b), dv = I\(abu)du , (A.6)

we obtain
1 b2 a2 -b2 i  b2

A  =  ——e t  +  e 2o+“2) Q{fi, a) — - e  2(i+2a2) /0(or^) (A.7)
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where

a — b*
1 + a2 2  y

1 + 2  a2 y yc(l — p2) ’

a2b

7(1  +  a2) ( 1 + 2a2) 

Substituting (A.7) to (A.4), we finally obtain

b2

2y
Kcd -  P2)2 V

( l+ a 2 )fr2

Fsc(y) =  1 — 2^ 2d+fl2> £?(«;, /?) +  <? i+2^~la(afi)

= 1 — 2e k Q

2y__
+  e vc(i-p2) IQ

2 y 2 y
Ycil -  p2) ’ P]j yc{l ~  P2)

2  py
yd  1 -  p2)

which is exactly the expression in [19, Eq. (10-10-8)].
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Appendix B

Derivation of (5.12)

Let G — {Gi, G2, G3, G4 } be jointly CGRVs with zero means and the inverse covariance 

matrix $  given by (5.11). The joint pdf pR,&(r, 6 ) of the corresponding amplitudes R  and 

phases © o f G is given by [102]

PR,e(r, 0) =  -K \det($ )|r1r2r3 r4e_^ * ^ . (B.l)
TC*

The marginal density p r {t) can therefore be obtained

I  p 2 n  p i n  p i n  p i n  ^

P R ( r i , n ,  r3,  r4) =  —j \ det$|/*ir2r3r4 / /  /  /  e ~ g**8 d 6 \  d d 2 d d 3 d d 4 .
n Jo Jo Jo Jo

(B.2)

Writing Gk in terms of polar coordinates, we obtain

g*&g =^i20 ll +  r l $ 22 +  r l f a  +  r|044 +  2rir2|0 i2| cos(0i -  02 -  X1 2)

+  2rir3|0 i3| cos(0i -  03 -  X13) +  2r2r3|023| cos(02 - 6 3 -  X 23 )  (B.3)

+  2r2r4|024| cos(02 -  04 -  X2 4 ) +  2r3r4|034| cos(03 -  04 -  X3 4).

Making variable transforms 0i -  02 =  u, 02 — 03 =  v and 03 — 04 =  w and substituting

(B.3) into (B.2), we obtain the pdf of if as

2
PR in , r2, r3, r4) = — | det<h|rir2r3r4 exp [-(r?0n  +  r f f e  +  r2<f>33 + rfau)]

p  2 n  p 2 n  p 2  n

I I I  exp[—(ct\ cos u +  a2 sin u) — (a3 cos w + a 4 sin w)
Jo Jo Jo
— 2r2r310231 cos(u — X23 )]d u d vd w  (B.4)
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where a \ , a2, a3 and a4 depend on v, but not on u and w

a\ =  2rir2| î2|cosxi2+  2rir3|0i3|cos(i; -  X13), (B.5a)
<32 = 2rir2|0i2l sin/1 2  -  2r1r3[0i3| sin(u -  X13), (B.5b)
<33 = 2r3r4|034| cos / 34 + 2r2r4|024| cos(i> -  / 24), (B.5c)
<34 = 2r3r4|034| sin / 34 -  2r2r4|024| cos(u -  / 24). (B.5d)

Using the relationship [102]

J  exp[—(a cos 6  +  b sin 0)] d9 = 2 tcIq {yja1 +  b2  ̂  , (B.6 )

and Neumann’s addition theorem [110, P. 365], we obtain

P R (n ,r2, r3, r4) =  - ( d e t$ ) n r 2 r3 r4  ex p [-(rfy n  +  r f </>2 2  +  r f </>33 +  r j0 44)]
7r
00  00

eme„/m(2 r ir 2 |0 i2 |)/m(2 r ir 3 |0 i3 |)/n(2 r2 r4 |0 2 4 |) /n(2 r3 r4 |0 34|)
m=0 n=0 

/>2 jr
X / g-2r2<-31023Icos(u X23){cos[m(U +  Xl2 “  Xl3) +  n(v +  X34 ~  X24>]

JO

+  cos[m(u +  X12 -  X13) -  n ( v  +  X34 -  X2 4 )]}dv. (B.7)

Using the relation [80, Eq. (3-3.14)], we obtain (5.12) after algebraic manipulation.
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