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ABSTRACT

A first implementation of the Modular Smalltalk object-oriented programming language is
presented. The implementation includes an object-oriented parser, object-oriented representa-
tion for code fragments and an object-oriented C-code generator, all implemented in
Smalltalk-80. This implementation validates two of the five design principles of the Modular
Smalltalk language and provides a vehicle for validating the other three design principles.
The macro-based C-code generator is easily adaptable to generating production code in other
languages like assembler. In addition, the generation technique applies to source languages
other than Modular Smalltalk. The implementation includes an efficient method dispatch

based on new extensions to incremental cache table coloring.
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Chapter 1 : Introduction

Modular Smalitalk (MS) [Tek89] is an object-oriented descendant of the Smalltalk-80
(ST-80) [GR89) programming language. This thesis describes a first implementation of MS
(there are no previously published implementations, although there may be some unpublished
ones in the commercial sector).

Since the MS language attempts to correct the problems of Smalitalk without losing any
of its advantages, MS provides both a programming environment for rapid prototyping and
code generation for efficient stand-alone execution. To provide these capabilties, there are
two different base languages in which MS code can be executed. ST80 was used to imple-
ment the programming environment, and MS programs can be interpreted by appropriate
ST80 code, providing MS with rapid prototyping facilities. C is used to implement the
stand-alone application capability and MS programs can be executed by having the PE gen-
erate C-code. The C-code is compiled together with all needed primitives and library func-
tions to produce an executable file. The purpose of the PE is rapid prototyping, and thus exe-
cution efficiency is not a priority within the PE. The purpose of the C code is to provide an
efficient implementation, and thus execution efficiency is the biggest priority during C-code
generation.

The programming environment (PE), is responsible for parsing MS programs and pro-
viding an environment in which the program can be interpreted and debugged. The PE was
written in ST80, chosen to allow rapid experimentation with different implementation stra-
tegies and interpretations of the language specification. Although other implementation
languages would have resulted in faster parsing and interpretation, speed of interpretation was
not the primary consideration. In addition, all of the classes designed for debugging
Smalltalk programs can be used without change to debug MS programs, since MS debugging
methods can be implemented as primitives which call the associated ST-80 methods.

Although efficiency was not a high priority during parsing and interpretation, it is of
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paramount interest when a production program is executed. Thus, the implementation pro-
vides a technique for generating macro-based C code for any MS program. A small library of
essential miscellaneous C functions, along with the C-code that is generated, is compiled
together with the applications’s primitive C functions to create a stand-alone application.

Chapter 2 gives the specification of the MS language. Since this thesis attempts to be
self-contained with respect to the language, it augments and expands on the initial language
proposal found in {Tek89].

Chapter 3 describes the internal representation of MS programs as ST-80 objects — the
parse tree. The internal representation was designed to separate the extensive compile-time
responsibilities from the minimal runtime responsibilities (execution). Compile time respon-
sibilities include: symbol tables, coloring dispatch tables, dispatch optimization, de-
compilation, and generation of an equivalent C language program. An interpreter written in
ST-80 can be used to interpret this internal form. Chapter 3 also describes the parser that
wranslates MS to the internal form. The conventional scanner-parser-code generator approach
is not used. Instead, an elegant use of object-oriented facilities implemented in ST-80 is
presented. During the creation of this parsing mechanism, an automated framework for gen-
erating such parse trees was developed [SH93].

Chapter 4 describes the implemented approach to method dispatch. We have chosen an
incremental coloring approach instead of the much slower dynamic look-up approach of ST-
80. The given incremental coloring algorithm expands on previous algorithms [AR92] and
was designed with static typing in mind. By extending the MS language to provide static typ-
ing, the dispatch algoritm can eliminate the need for lookup in many message sends.

Chapter 5 descaibes the C-code generation mechanism that translates the internal
representation of a program into an equivalent C program that can be compiled and executed
with any ANSI C compiler. The code generated is macro based to allow for implementations
in an arbitrary language by defining the macros appropriately.

Chapter 6 summarizes current results and describes future directions.
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Appendix A contains the BNF grammar rules of the MS language. Appendix B contains
the method dispatch algorithms and ICP algorithms. Appendix C contains a sample of the
C-code generated from an MS program. Appendix D contains the Object and Xernel Module

Source Code. Appendix E contains a discussion of implementation dependent issues.

The research contributions of this thesis are:

1. Validation of the design goal that the execution semantics of Modular Smalltalk are con-
sistent. The only exception is for class extensions, which are not currently implemented.

No inconsistencies are expected for class extensions,

2. Partial validation of the design goal that an efficient implementation of Modular
Smalltalk is possible. Comparisons between the ICP dispatch approach and convential
lookup dispatch have been made, showing the former to be substantially better. Since
method dispatch is the most significant factor in slowing down the speed of Smalltalk,
this result is important. However, general program efficiency benchmarks have not yet

been obtained against C++, Eiffel and Smalltalk.

3. The generation of a platform to support the validation of the other three design goals of
Modular Smalltalk: increased programmer productivity through code reuse and code re-
definition, design and implementation efficiency for multiple programmer applications

and simplicity for new users,

4. A concise description of an object-oriented parser, which can serve as the basis for a
parser framework,

5. Corrections to the André-Royer [AR92] incremental coloring algorithm and extensions
that support inheritance exceptions, and

6. A new macro approach to C-code generation that can easily be modified to generate

assembly language code and could be adapted to other programming environments.
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Chapter 2 : Modular Smalitalk

The initial language proposal for Modular Smalltalk is in [Tek89). However, since this
thesis attempts to be self-contained with respect to Modular Smalltalk, this chapter is & supes-
set of the above technical report. A working knowledge of Smalltalk will be beneficial fora
full understanding of this thesis.

Appendix A gives the complete BNF grammar specification, Appendix D describes the
behavior currently defined in the Object and Kernel Modules, and Appendix E lists the imple-

mentation dependent issues of the language specification and the approach taken for them.

2.1. Design Goals
Several desirable goals for an object-oriented language guided the specification of

Modular Smalltalk. These goals were [WBW88]:

1. to provide a simple, consistent execution semantics,
2. to increase programmer productivity through code reuse and code re-definition,

3. to provide efficient facilities for design and implementation in multiple programmer

applications,
4. to provide for efficient implementations, and

5. to be simple enough for new users to leamn easily.

Smalltalk does not satisfy these goals by failing to :

1. maintain a clear distinction between the language specification, its implementation and

its development environment,
2. define explicit language semantics, independent of any implementation, and

3. support the development of application programs that execute independently of their

development environment.



2.2. An Example Module
Below is a small MS module (MS programs consist soley of a collection of modules).

This code will be used as a reference throughout the thesis.

module "Numbers' "Module Start”
Object -> { from 'Kernel’ ) “Import Declaration”
Complex (public) -> “Class Declaration Start”
class { refines Object } “"Superclass Declaration”
instance “Instance Behavior Start”
{ behavior
{ real real: } -> variable *State Method Declaration”
{ imag imag: } -> variable
+ -> method "Binary Block Method Start”
[ :aComplex | "Formal Parameters”
result "Temporary Variable”
result := Complex “Assignment”
real: (self real + aComplex real) "Unary & Binary Message Send”
imag: (self imag + aComplex imag). "Keyword Message Send”
“result “Explicit Remmn”
] "Binary Block Method End"
} “Instance Behavior End"
class "Class Behavior Start”
{ behavior
real:imag: -> *Keyword Block Method Start”
[ :real :imag | "Method Arguments”
Complex new “Unary Message Send"
real: real; imag: imag. “Cascaded Message Send”
] "Keyword Block Method End"
) "Class Behavior End”
} “Class Declaration End"
i -> { expression Complex real: 0 imag: 1 } "Module Expression”
"Module End”

Figure 1 : Example MS code — Numbers Module

Each line in the example has a comment attached to it. In the discussion below, when a
specific part of the example is being presented, the line will be identified by its associated
comment. For example, to direct attention to the line in the figure containing the literal
objects 0 and 1, the reference used would be (Figure 1: Module Expression — 0 and 1 are

literal objects).

2.3. Objects, Classes and Instances

An object is an encapsulation of data together with the procedures that operate on that



-6-

data. All data that can be referred to during program execution is represented by an object.
An object is created dynamically by other objects during execution or is statically created via
syntactic constructs. Objects exist at least as long as there is a reference to them (within some
other object).

There are two different types of object in MS : instance objects and class objects. A
class object acts as a template, specifying the behavior of its instances. A class object can
have an arbitrary number of associated instance objects. An instance object represents one

possible instantiation of its associated class object.

2.4. Messages and Selectors

A message send consists of a receiver object and a message. A message is a request to an
object to perform a specific operation, and consists of a selector and a list of zero or more
arguments, all of which are objects. A selector is a name used to identify to the receiver the
operation being requested. A method selector is the object representing a selector, and thus
MethodSclector is a required class. The receiver object and the method selector uniquely
identify a method to execute. There are three types of method selector: unary, binary, and
keyword. A unary selector consists solely of a name, and has zero arguments. A binary selec-
tor consists of one or more operator characters, and has 1 argument. A keyword selector con-
sists of one or more names separated by colons, and has as many arguments as there are
colons. The precedence of message sends is the same as in ST-80 — from highest to lowest :
unary, binary, keyword. Selector names follow the same rules as identifiers. Section 2.7.4

contains some examples.

2.5. Methods and Behaviors

A method is the executable representation of an operation, and can retrieve state infor-
mation from the receiver object, modify the state of the receiver object, and initiate other
messages. A method is defined by a method declaration, which associates a selector with a

method (Figure 1: State Method Declaration, Binary Block Method Stars, Keyword Block
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Method Start). A method consists of zero or more parameters (Figure 1: Method Arguments)
and an executable body. Each method returns a single object. A message is said to rezurn
this object when method execution is complete. The object to be returned can be specified
explicitly via the *** token (Figure 1: Explicit Return) but is implicitly defined as the result of
the last expression executed within the method (Figure 1: Keyword Block Method End) for
methods without explicit returns. Note that the implicit return value is different than most
object-oriented languages, for whom the default return object is the receiver. If the operation

has no expressions, the destinguished value nil is returned. Methods can be recursive.

2.6. State, Variables and Scope

Unlike most other O-O languages, MS has no instance variables. Instead, state is
represented by groups of messages that are implemented as stored methods as opposed to
computed methods. Named instance variables from Smalltalk (or member-data from C++)
are replaced by a pair of messages which provide access and change behavior (Figure 1: State
Method Declarations). Thus, state method declarations explicitly define the message selec-
tors needed to access and change specific state, implicitly increase the amount of space used
by objects and implicitly define the behavior associated with the access and change method
selectors specified. The change state method (Figure 1: State Method Declaration — real:
and imag:) has as its single argument an object that will be used as the new state value of the
receiving object and the return value of this method is this new state value. The return value
of the access state method (Figure 1: State Method Declaration — real and imag) is the last
value assigned by the corresponding assignment message, or nil if the assignment message
has not yet been sent (Figure 1: Unary & Binary Message Sends — the unary messages are
state method message sends).

Indexed instance variables from Smalltalk are replaced by a set of four messages that
define an indexed state. An accessing method uses a single-keyword selector and its argu-
ment specifies which part of the state to access. Two different types of indexed state exist:

object-valued and byte-valued. If no value has been set at the given index, the value nil is
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returned for object-valued states, and the value 0 is returned for byte-valued states. Object-
valued states may assume any value, whereas byte-valued states are restricted to objects
representing integers in the range O to 255 inclusive. The assignment state method uses a
two-keyword selector where the first argument is an index that identifies which index of the
indexed state and the second argument is the new value for that index of the state. The
method returns the second argument. Two other selectors are associated with indexed states.
The size accessing state method retumns the number of indexable states associated with the
two selectors above. The size changing state method sets the total number of indexable states
dynamically. A typical example of such variables exist in the Array class (Appendix D),
which defines an indexed instance variable. The index modifying message selector is at:, the
index changing message is at:put:, the size accessing message is size, and the size changing

method is size..

2.7. Expressions
An expression is a construct denoting a rule of computation for obtaining a vaiue by
sending zero or more messages. Expressions are used in method declarations and expression

declarations to perform computations.

2.7.1. Character groupings
To facilitate the presentation, various hierarchial groupings for the ASCII characters are
given names. These groupings are used to describe tokens. For a full description refer to

Appendix A.

2.7.2. Literals

MS provides for literal representations of characters, integers, floating point numbers,
strings, selectors, and arrays of these literals. Such literals are immutable, so the object
represented by a literal is always apparent from its lexical representation. The result of

attempting to modify literals is implementation dependent. Any object with a literal



representation can be used in literal arrays.

Numeric literals consists of integers and floats. The initial language specification does
not specify the range of numeric values that an implementation must support. This imple-
mentation supports the same numeric ranges as does the C language. Integer literals are
instances of the required class Integer. Although usually expressed in decimal (Figure 1:
Module Expression) , they can be represented in any base between 1 and 36 by giving a radix
specification after the number. The radix for bases 11 through 36 is A through Z respectively.
Only digits less than the radix can be used in the integer. Floating point literals are instance
of the required class Float and consists of a decimal part, fractional part and optional
exponent.

Character literals are instances of the required class Character. They represent only the
subset of characters in the ASCII character set which have a printable representation. Other
characters may be accessed by sending a message to the class Character with an ASCII integer
value as an argument. This implies that the class Character also has a required method to per-
form this operation. The language specification does not specify what this method should be
called. Although there is no real need to specify the name, as long as the associated behavior
is defined, it is advantageous that all implementations have the same names for the came
required behaviors. Thus, an extension to the language specification consists of requiring that
the Character class implement the method value:, which accepts an MS integer and returns
the character associated with the ASCII code of that integer.

String literals represent instances of the required class String, and selector literals
represent instances of the required class MethodSelector. Array literals represent instances of
the required class Array. They can have any number of elements but all elements must be
literals (including imbedded arrays).

2.7.3. White Space
MS expressions are free-format, and thus any number of scparator characters or com-

ments may appear between any two nonterminals. To save space and improve readability, the
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BNF grammar in Appendix A does not show these separators.

2.7.4. Message-sends

Message sends come in three varieties, but all three have the same basic form, a receiver
object followed by the message selector and arguments. Unary messages do not have any
arguments. Binary messages have special message selectors and one argument. Keyword
messages have an arbitrary number of keywords in their message selector, and one argument

for each keyword. The following are examples of message sends :

Message Send Description
data size unary n.essage send asking an object for its size
1+7 binary message send adding two literal integers
self at: 3 put: data keyword message send modifying state
data from: 3 to: 7 add: 10 | keyword message send

Table 1 : Example Message Sends

2.7.5. Identifiers

There are three types of identifiers: module constants (Figure 1: Import Declaration —
Object is a module constant), method parameters (Figure 1: Method Arguments — real and
imag are parameters), and temporary variables (Figure 1: Temporary Variable — result is a
temporary variable). Of these three, only temporary variables may have theit values changed
by assignment, and are thus the only true variables. The values of madule constants and
method parameters vary only on successive executions of the module o block.

The scoping rules for temporary variables are more complex than for Smahitalk. An
object bound to an identifier declared within a block is inaccessibd: by that identifier outside
the block. The same rule applies to identifiers that are declased in modules (module con-
stants), unless the identifier is exported by the declaring s#wdule and imported by another
module. Identifier scopes can be statically nested by sextirg blocks, but modules cannot be

nested.
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2.8. Methods

A method declaration consists of a message selector, a visibility attribute and a method.

2.8.1. Visibility

A method declared as private is only understood (executed) if its sender and receiver are
in the same class. Unlike C++, there is no protected visibility mode that allows senders to be
objects from subclasses. This is due to the philosophical view in MS that subclasses are
clients of their superclasses with no special status beyond what any other client class can

claim.

2.8.2. Method Types

There are six types of method implementation, with examples of each shown in the table
below. The first three are named abstract, undefined and primitive respectively. An abstract
or undefined method requires no additional syntactic information. A primitive method is
uniquely specified by its class and selector and does not require any other MS information,
but the code associated with the primitive method selector must be written in the appropriate
base language. The fourth type of method, called an aliased method, allows behavior defined
in superclasses to be associated with a new selector. The fifth type of method is a state
method (Figure 1: State Method Declaration) that specifies part of a state declaration, as
described in Section 2.5. The sixth type of method is a block method (Figure 1: Binary Block
Method Start — Binary Block Method End). A block method consists of a list of formal
parameters (Figure 1: Formal Parameters), a list of temporary variables (Figure 1: Tem-
porary Variable), and a list of expressions (Figure 1: Assignment, Explict Return). When a
block is evaluated, statements within the block are not actually executed. Instead, the evalua-
tion of a block returns a closure. A closure consists of the block and a context. The consext
maintains the values of all variables visible within the block and provides space for their
modification during a particular execution of the method represented by that block. To actu-

ally execute a method, this context is executed, which results in some unique object being
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returned as the result of the execution.

MethodType Example
sbstract size -> abstract
undefined menuList -> undefined
primitive value: -> primitive
aliased myNew -> alias Object new
{ real real: } -> variable
state { size size: | at: auput: ) -> variable

( size size: | at: suput: } -> binary
blockMethod -> method
{

block self at: 1 put: true,
“self at: 10
]

Table 2 : Example Method Types

2.9, Classes

A class declaration (Figure 1: Class Declaration Start — Class Declaration End) con-
sists of an optional superclass declaration (Figure 1: Superclass Declaration), an optional
instance behavior (Figure 1: Instance Behavior Start — Instance Behavior End), and an
optional class behavior (Figure 1: Class Behavior Start — Class Behavior End). Class
declarations can inherit from zero or more existing class declarations, as long as the intended
superclasses are visible within the module containing the class declaration and these superc-
lasses do not inherit from the class being defined (the inheritance hierarchy must be acyclic).
Unlike Smalltalk, class declarations are static, are not objects or expressions, and do not exist
during the execution of a program. Thus, classes cannot be created at run-time or have their
behavior modified. However, each class itself is an object and its state can change at run time
in response to class messages. The instance behavior of a class consists of the locally
declared instance behavior (native behavior) and instance behaviors inherited from all superc-
lasses. The class behavior is similarly derived.

There are four rules governing the merging of native and inherited behavior.

1. All method declarations in the native behavior are included. Any inherited method with



-13-

the same selector as a native selector is excluded.

2. Ctherwise, if a selector is bound to exactly one inherited method, that binding is
included. This is true even if the binding is shared by more than one superclass. A
method is shared only if the superclasses in question inherited the method from the same
ancestor, and none of the ancestors between that ancestor and the superclass (including

itself) re-defined a selector with the same name.

3. Otherwise, if all but one of the bindings from the inherited behavior is declared as
abstract, the non- abstract binding is included.

4. Otherwise, there is a conflict and the program is invalid.

The fourth rule implies that if any selector is inherited from two (or more) different
superclasses, that selector must be defined within the native behavior, either explicitly or via
an alias. For example, if both class A and class B define native behavior for selector alpha,
and class C inherits {rom both, C must define native behavior for alpha. However, one possi-
ble native behavior declaration is to use the same method as is used by one of the superc-
lasses, via an alias. Thus, the native behavior “alpha -> alias A alpha" within C will resolve

the conflict.

2.10. Modules

Modules manage the scope of names. A module (Figure 1: Module Start — Module
End) consists of an optional module name and a set of constant bindings between names and
objects. Each binding has one of three forms: an import declaration, a class declaration or an
expression declaration. When a module imports an object by name from another module
(Figure 1: Import Declaration), it creates a local name for that object in the importing
module. Class declarations (Figure 1: Class Declaration Stars) provide the state and behavior
of programs. Module Expressions (Figure 1: Module Expression) provide the starting point
for execution.

Each name binding in a module has an associated visibility attribute, private or public,
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that determines whether other modules can import the name. Modules are not objects and do
not exist during the execution of a program. Modules also provide a facility for class exten-
sion, whereby behavior can be added to a class (which was presumably imported from a dif-
ferent module). Class extensions are not allowed to remove or redefine existing behavior;

they can only add behavior.
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Chapter 3 : The Programmimg Environment

3.1. Design Approaches to Implementation

Before beginning a detailed discussion of the MS Programming Environment (PE),
some comments on design approaches and implementation goals is merited. During the
designing of the PE and C-code components of the MS language implementation, two general
design approaches evolved, representing profoundly different ways of viewing the data struc-
tures used to implement the language. Both approaches have their advantages and disadvan-
tages, as will be discussed below.

The difference between the two approaches is centered around the most critical data-
structure used when implementing an object-oriented language, namely the data-structure
representing an object. For MS, the name of this data-structure will be MSObject. In the
meta-object approach, this is the only data-structure defined in the base language (all data-
structures are treated as MSObjects), whereas in the dedicated-structure approach, a different
structure is defined in the base language for every data-structure required.

Within the MS implementation, the following data-structures needed to be implemented:
object, class, cachetable, context, context stack, closure, programming environment, module,
indexed instance variable. Keep these data-structures in mind while reading the discussion

below describing the two design approaches.

3.1.1. Meta-Object Design Approach

Pure object-oriented languages have an interesting advantage over other types of
languages during implementation. Normally, the data structures used in the implementation
language to represent run-time concepts are not accessible by the implemented language. For
example, there is no way to access the assembler language data blocks used to represent a

context stack for the C language from within a C program. However, since the run-time
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environment of a pure object-oriented language is maintained by a single data structure
representing an object, it is possible to allow the language to access the structures in the
underlying language which implement it.

In the meta-object approach to implementation, all data-structures are treated as MS
classes, with individual instances of those data-structures represented as MSObjects. For
example, the cache tables would be stored in an MSObject structure, whose state is appropri-
ately defined by a MS cachetable class. The state (and possibly behavior) of data-structures
used to implement the language is defined by code written in the language being imple-
mented. The primary advantage of this approach is that the data-structures used to implement
the language are visible from programs within the language. This in turn provides for supe-
rior debugging facilities and the potential for implementing MS in MS.

Another advantage is the improvement in code readability and maintenance by using the
rigorously structured OO data-structure paradigm (state is accessed in a uniform manner that
is not affected by the addition or modification of state). The disadvantage of this approach is
the extra level of indirection incurred, and thus a reduction in execution efficiency. In the C-
code implementation, where efficiency is paramount, this disadvantage is the critical factor in
determining which approach is used. However, in the PE, the Meta-Object approach is desir-
able.

This ability to define the data-structures used during the implementation of the language
in such a way that programs within the language can access them is a profound one, whose
potential needs to be further explored. To take the approach to its extreme, in addition to the
language implementation data-structures (i.e. statc) being represented as MSObjects, all
behavior acting on these data-structures would be defined by behavior specified by MS pro-
grams. However, using functions to perform simple accessing and changing operations on
data is unacceptable from an efficiency perspective, so in the discussion below, the meta-
object approach refers to data-structures as MSObjects without requiring special MS behavior

to be defined in order to access these data-structures. That is, the implementation may
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assume a knowledge of the format of a particular MSObject in order to access part of its state

without having to worry about abstractions.

3.1.2. Dedicated-Structure Design Approach.

The more conventional approach to data-structures is to define a separate data-structure
within the base language for each concept necessary. This approach will be referred to as the
dedicated-structure approach. Its primary advantage is efficiency, both from a time and a
space perspective. However, from a maintenance perspecitve, it is inferior to the meta-object
approach, since it requires specific code to access elements of the data-structures, which in
turn results in maintenance problems if implementation data-structures need to be extended or
modified. Usually this disadvantage is not serious during language implementation since the
data-structures needed to implement a language do not change unless the language changes.
However, as will be mentioned below, flexibility of design is an important goal of this
language implementation, due to the expectation of extensions to the language. Without this

implementation flexibility, language extensions could require substantial code modification.

3.1.3. Hybrid Design Approaches.

Some data-structures in the MS implementation cannot be represented as MSObjects,
due to self-referencing problems. For example, an indexed instance variable cannot be
represented as an instance of MS class Array, since the Array class implements its state as an
indexed instance variable (requiring the indexed state data-structure in order to implement the
indexed state date-structure). Thus, a pure meta-object approach is not possible. However, a
combination of the two approaches can be used to provide the advantages of both. The
approach taken in both the PE and C-code implementations is such a hybrid approach. Some
data-structures are represented as MSObjects, with associated MS classes defined appropri-

ately. Others are dedicated structures to provide for efficiency.
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3.2. Implementation Goals
There were three primary goals to be achieved during implementation. Howevcr, the

importance placed on individual goals differs between the PE and C-code, as will be dis-
cussed below.

1. Implementation Flexibility
Flexible design to provide for rapid prototyping of different methods of imple-
menting MS and to provide for language extensions. This implies a preference for
the meta-object design approach over the dedicated-structure approach. Within
the PE, explicit separation of run-time and compile-time responsibilities contri-
butes to implementation flexibility, whereas within the C-code, the reliance on

macros satisfies this goal.

2. Efficient Execution
To validate the MS language specification goal of efficient implementations, exe-
cution should be optimal. This implies a preference for the dedicated-structure

approach over the meta-object approach.

3. Minimal Special-case Code
The amount of special case code for required classes is kept to a minimum. For
example, it is desirable to have required class state and behavior be defined in
exactly the same way that any other module would be defined (i.c. by writing MS
source code). As will be discussed below, it is impossible to avoid some special-

case code, but very little is needed.

There is an important difference in emphasis between the PE and C-code. In the C-code,
execution efficiency is the highest priority, whereas in the PE, flexible design is more impor-
tant. However, implementation flexibility is still an important part of the C-code, and execu-
tion efficiency is attempted within the PE when it doesn’t conflict with implementation flexi-

bility.
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The rest of this chapter contains a discussion of the programming environment, includ-
ing its responsibilities and the implementation approaf:hes used. Specifically, the parsing of
MS programs and the generation of base language code is discussed in detail. The approach
taken towards these operations is fundamentally different than the conventional parsing and
code generation paradigm.

The PE is implemented in ST80 and thus all data-structures and implementation code is
defined by ST80 classes. The classes for the PE can be divided into three groups : node
classes, program classes, and language classes. Node classes represent syntactic constructs of
the language which have a well-defined execution semantics. Program classes maintain infor-
mation about the entire program. Language classes control behavior that is general to all pro-

grams and not dependent on a specific program.

3.3. Language Classes

The current implementation of the PE has taken the dedicated-structure approach of
representing MS objects, MS contexts and MS classes as different Smalltalk classes. MS
dlasses are represented by a subclass of MSObject, so MS classes have the state and behavior
of objects, but are represented by a class different than MSObject. Since Closure is a required
class in MS, MS closures must be represented as MS objects. The various auxillary data-
structures, such as cache-tables and indexed state are also dedicated structures, but subsequent

versions of the PE will place more emphasis on the meta-object design approach.

3.3.1. Objects — MSObject

The most important ST-80 language class is the class responsible for representing an MS
object. The state of the MSObject class consists of an msClass instance variable (MSClass)
storing a reference to a class object, and a staze instance variable (Array) which maintains the
list of named instance variables, indexed instance variables and byte indexed instance vari-
ables, as well as the associated numbers of such variables. There are various methods of

implementing the MSObject, some better from an abstraction perspective, others better from
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an efficiency perspective. To provide for the implementation flexibility goal mentioned
above, several different implementations exist, so that comparisons can be made between
them as to effects on efficiency, etc. Cnapter 5 describes the most efficient implementation,

which is the one used within the C-code implementation.

3.3.2. Classes — MSClass

Since MS classes are objects, the MSObject class could be used to represent them.
However, the MSObject as defined above only stores that information needed by instance
objects. In addition to all of the state and behavior of instance objects, class objects need to
store the instance behavior and class behavior, and have behavior specific to themselves.
Instead of providing additional space and behavior within each MSObject which is used only
by relatively few instances, a subclass of MSObject is used to describe class objects. This
new class (MSClass) inherits all the state and behavior from MSObject, then defines addi-
tional state and behavior specific to class objects. Remember that instance objects do not
mairiain their associated behavior. Class objects in MS are responsible for maintaining two
scts of behavior, one applicable to instance objects of that class, and one applicable to the
class object itself. Class objects also store their name, the number of class variables and vari-
ous implementation dependent flags.

The current PE implementation is somewhat flawed, in that it has merged the node class
representing class descriptions (MSClassDesc) with the run-time data structure used to
represent class objects (MSClass). Future versions of the implementation will not merge
them, and will instead use the implementation described above. The primary reason for keep-
ing node classes and run-time data structures separate is the potential for automatic generation
of the parsing behavior of the PE[SH93]. An indepth discussion of node classes is presented

later in this chapter.

3.3.3. Contexts — MSContext

Some structure within STS0 is needed to represent contexts in MS. The narrow opera-
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tional definition of a context is a structure representing all variables defined at a particular
scoping level. Each variable is assigned an offset into this context. The wider operational
definition of a context is actually a linked list of contexts (a static context chain), for
representing all variables defined at a particular scoping level and any higher scoping level in
which the current scoping level is embedded. Variables defined at any given level are
assigned offsets into the context associated with that scoping level. In this way, any variable
visible within a particular scoping level can be identified by a level-offset pair, specifying
which context and which offset within that context to use in order to find the value of the
variable. In this broader definition, contexts not only maintain values of variables, but also a
static link to their parent context. During the execution of a program, there will always be a
current context, namely the context of the block (or module) currently executing. Remember
that a variable is simply a position within a static context chain, specified by a level and an
offset. The level of a variable is relative to the current context, and thus the level of the same
variable can differ in two different contexts. The current context is at level 0, and thus the
level specifies how many times to follow the static link.

The ST80 class used to represent such contexts is MSContext. Its state includes an
instance of class Array, whose indices are equivalent to the offsets assigned to MS variables,
and whose elements are MSObject instances storing the values of those variables. Further-
more, the state includes an MSContext instance, and refers to the parent context of the current
context (i.c. the context associated with the scope of the scope associated with the current
context).

Associated with contexts is the concept of the dynamic context stack. This stack
represents the order in which blocks are called within a program, since modules, block
methods and literal blocks are uniquely identified by their associated context. Such a context
stack always has a module context as its bottom element. Each time a block method or literal
block is called, either by the module or by another block method or literal block, the context

associated with the new block is pushed onto this dynamic context stack. Such a context stack
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must be explicitly maintained at run-time so that after a method finishes execution, the previ-
ous context can be made the current context again. Within the PE, contexts are passed to the
ST80 methods used to implement message sending so this context stack docs not need to be
explicitly stored, since it is automatically maintained by the ST80 context stack. However,

within the C-code, such a context stack must be explicitly maintained.

3.3.4. Clesures — MSObject

Within MS, modules have a read-only context, whose values can never been modified
by run-time code. Block methods and literal blocks, however, may have temporary variables,
in which case their contexts can change on successive calls. A closure is used 10 uniquely
identify a particular execution of a block. Thus, a closure consists of a block (some form of
executable code) and a context associated with that block. All closures for a particular block
will have the same block reference, but each one will have a different context. This is neces-
sary because the language specification states that methods can be recursive. Thus, a block
may exist on the dynamic context stack more than once at the same time (with different static
context chains). If the context ased was the same in both instances, modifications during the
execution of one would make modifications in the context of the other, which is not the
expected execution semantics. Furthermore, although literal blocks cannot be called directly,
the block method in which they are embedded can be, so literal block contexts can also be on
the dynamic stack more than once, and thus must also be unique on each occurence. There
are times when unique contexts are not needed, such as when the block method or literal
block does not have any temporary variables. However, it is questionable whether it is more
efficient to take this into consideration or not.

A closure is used to represent an unexecuted literal block which was specified as an
argument to a method. Within the called method, it may be required that the literal block
argument (a closure) be evaluated, in which case the called method evaluates the closure
object argument (via a message send to some object, usually the closure itself, that knows

how to execute closure objects).
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3.3.5. MSReturnObject

An MSRetumObject is a special wrapper that contains an MSObject. {rrsidér s method
block that contains a literal block. If an explicit return is cxecuted ir the: i-ceral block, then
control must be returned to the caller of the method block. Note thit . . liveral blocl. may
have been passed as an argument to an arbitrary number of methods ¥ e it was wotually
executed. The literal block returns an MSRetumObject to its caller. T3z MSketrnObject
contains the actual return object as well as the context of the method in which the literal block
lexically appears. When the caller receives an MSRetuziObjzct, it checks to see if the curzen:
context (the context on the top of the dynamic cortext chain) is equal to the context stored
within the MSReturnObject. If it is equal, the caller s:wips the MSReturnObject wrapper irom
the actual MSObject and returns the MSObiect. If it isn’t egsl, it simply returns the MSRe-
turnObject to its caller. The dynamic context stack will have changed, and the process is
repeated until a match is found and the real MSObject is returned.

As a contrived example (Figure 2), suppose the method item:block: is defined for a par-
ticular class Example. Senders of this message specify a literal block as the second argument.
Suppose in addition that this method sends that literal block argument to another method
called properBlockEval:, and only within this message is the block actually evaluated (via the
value method). If the literal block contains an explicit return, that method immediately
returns the explicit value. Furthermore, item:block: immediately returns to its sender with
that return value. Finally, the sending block returns with the specified value.

The result of performing Example new example is the integer *1°. Note that the explicit
return of the integer 2 within the method example does not get executed. Furthermore, the

method incrBlockEval within properBlockEval: is also not executed.
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example ->
self item: #iprimary block: [*1 ).
2

1

itum:block ->
[ :item :block |
| tmp | .
item isPrimary
ifTrue: [ self properBlockEval: block. |
ifFalse: [ “nil }
]

properBlockEval: ->
[ :block |
self incrBlockCall.
block value.
self incrBlockEval.

Figure 2 : Explicit Return Behavior

3.4. Program Classes
Some utility classes are used for parsing. These include a scanner (MSScanner), a pro-
gramming environment (MSPEnv), and an inheritance conflict resolution class (MSCon-

flictSet).

3.4.1. Programming Environment — MSPEnv

A single instance of the ST80 class MSPEnv represents an entire MS programming
environment, performing similar duties to the System Browser in ST80, plus much more. It
provides facilities for parsing new MS programs into internal representations, as well as
browsing and manipulating the internal representation of MS code existing in the program. It
also maintains the method cache tables, assigns unique identifying indices to classes, main-
tains class index-to-class maps, maintains the uniqueness of syntactically specified literals
used in the program, maintains code for primitives as well as facilities for defining them and
mapping them to appropriate MS classes, monitors modifications to hard coded modules,
classes and methods, and controls the incremental coloring and re-partitioning needed to pro-

vide efficient method dispatch?.

% Because the topic is so important to this implementation of MS, a discussion of
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The state of an MSPEnv includes : primitives, library, scanner, display, literals, numLi-
terals, instTable, classTable, classMap, classInfo and numClasses.

3.4.1.1. Browsing and Defining Modules

An instance of MSPEnv maintains a dictionary (library) associating strings representing
MS module names with the internal representations of the modules, for all modules parsed
within the environment. It also provides facilities for displaying modules, all classes within a
module, all methods within a class, and the method code itself. This is similar to the System
Browser in ST80. The current implementation is simplistic, and a substantial amount of work
can be done to improve it.

Text files representing MS modules can be brought into the programming environment
by sending a MSPEnv instance the message parse: with a string argument representing a
UNIX file. The string represented by the file is converted into an internal representation
(parse-tree) and stored within the MSPEnv. A discussion of parsing and the internal represen-

tation is presented later in the chapter.

34.1.2, Literals

Within Modular Smalltalk, literals are required to be immutable. This implies that a
literal string assigned to a variable cannot have any of its character changed. One technique
of guaranteeing immutability is to make literals unique. This is advantageous not only from a
space saving perspective, but also with respect to the object identity method (==). If literals
were not unique, message sends such as I==1 or "hello"=="hello" would evaluate to false
under the normal implementation which comparies two pointers for equality. However, there
is some runtime overhead involved in enforcing unique literals.

The runtime efficiency problem occurs because uniqueness of literals suggests that all
integer, float and character objects should be unique. This in turn implies that the collection

of literals specified syntactically within a program is not necessarily the entirety of literals

the incremental coloring algorithm and method dispatch is reserved until Ch. 4.
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objects used at runtime, because every instance of Integer, Floar and Character should be a
literal, and it is possible for an instance of one of these classes to be created dynamically at
run-time without being statically specified as a literal. However, this results in a potentially
infinite number of literals, and thus they cannot all be generated before execution of the pro-
gram. This requires that each time a new integer/float/character instance is created at run-
time, a check be made to see if that literal instance already exists (in a global literal hash
table). If it does, the existing object is returned; otherwise a new instance is created, stored in
the literal hash table, and returned. Even though hash tables could make the searching fairly
efficient, this does put a severe limit on the efficiency of both integer and floating point
operations within the language. Because of this, the uniqueness of literals may not be strictly
enforced. However, this problem does not preclude the attempt to keep the number of objects
representing the same literal to an efficient minimum. Literals specified syntactically in the
program should be represented only once. Literals created during runtime may or may not be
unique, which implies that the == method should be written to handle this possiblity. Note
that the unique literal approach is not necessarily impossible. Most intensive number usage
involves the use of looping constructs, such as the to:do: method. It is nozsible to avoid gen-
erating a new MS literal object to represent every number in the specified range by writing
the fo:do: method as a primitive. Within the primitive, one instance of the appropriate class
(Integer,Float, etc.) is created. This object stores within its state the representation of the
number within the base language. Thus, this base number can be changed on successive itera-
tions of the loop without having to create an entire new object each time. Thus, the only
mathematical operations which will necessarily introduce inefficiencies are those operations

which are not primitives.

3.4.1.3. Primitives
In ST80, primitives are specified by unique integers. However, in MS primitives need
not have an associated integer, since the defining class and method selector uniquely identify

a primitive. The MSPEnv is responsible for maintaining 2 mapping from class-selector pairs
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to appropriate primitive implementations within the base language. Obviously, it is the
responsibility of the programmer defining a primitive to implement the primitive in the base
language and to notify the PE of the method to use. Since Smalltatk is used as a base
language for the PE and C is used for stand-alone execution, the primitive behavior must be

implemented in both languages for each MS primitive declared.

3.4.1.4. Kernel module and Kernel group

There exists a special module called the Kernel module, in which required classes and
methods are specified. Because the required classes can potentially have superclasses (even
though such super classes are not required), a concept referred to as the Kernel Group is intro-
duced. The Kernel Group consists of the Kernel module and all modules recursively
imported by it. One of the design goals was to keep the amount of special treatment of the
Kemel module (and Kemnel group) to a minimum. One subgoal that was deemed crucial was
that the parsing of the Kernel Group be done by the same parsing methods as for any other
MS Module. Hand compilation of the kernel group would have been far too restrictive.

Some special case code is required before parsing occurs because certain classes and
objects are needed during parsing. These classes and objects include all of the literal
(required) classes (Integer, Float, Character, String, MethodSelector, Array) since literals
imply the creation of an object of a specific class at the time of parsing. Furthermore, the
pseudo-variables nil, true, and false imply the need for unique instances of classes Unde-
finedObject, True and False respectively. One problem with the language specification is that
the classes True and False are not required, nor is there any official mention for the require-
ment of unique insances of them (true and false). Because a language is useless with selec-
tion, these classes and pseudo-variables should be part of the language specification.

Since only the objects themselves are required (the state and behavior of these objects is
not needed during parsing) a simple solution to the problem exists. Each time a new MSPEnv
instance is made, MSObjects representing the required classes are made. However, no state

or behavior is given to these created objects. The MSPEnv keeps a record of which instance
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and class objects have been created. Thus, during parsing, if a class object or instance object
is being defined which has already been created, the specified information is associated with
the created object instead of creating a new object. This allows the objects to exist before
they are parsed, but leaves the specification of what those objects contain in the realm of MS

programs.

3.4.15. Class Information

In the compiler, when C code is to be generated, it is much more efficient to identify
classes by a unique index than by their associated name. Thus, the environment is responsi-
ble for assigning indices to classes and maintaining a classIndex-to-class map. Each time a
MSCClass parse node (see below for details) is encountered during parsing, one of its respon-

sibilities is to register the class with the environment.

3.4.1.6. The Cache Tables

The environment maintains two cache tables, one for instance behavior (instTable), and
one for class behavior (classTable). A full discussion of the state and behavior of cache
tables is discussed later. Each time a new class or s.  ctor is parsed, the node class /#:ing the
parsing must notify the appropriate table within the environment. Thus, if instance behavior
is being parsed, and a new class definition is encountered, the MSCClass parse node must
send the addSuperClasses:toClass:usingConflict: method to the instTable of the environment.
This message is sent immediately upon establishing the superclasses of the class being
parsed. The argument to usingConflict: is expected to be an instance of MSConflictSet,
which will be described below. When a new selector is being parsed, the message

forceSelector forClass:method:behavior: is sent.

3.4.1.7. Miscellaneous Environment State
A variety of miscellaneous instances variables are used within the environment to main-
tain the current class being parsed (curremtParsingClass), the current block being parsed

(currentParsingBlock), the level of the module relevant to the current level (moduleLevel) and
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the number of literal blocks encountered at the current level (blockCount).

3.4.2. Scanner

An instance of MSScanner is responsible for converting an MS source string into tokens.
Tokens are represented by special classes, called token classes, which will be described in
section 3.5. A scanner knows the string to be parsed and the current parsing position within
the string. The primary behavior of the scanner involves scanning the input string for the next
token and advancing the string position past this token. In addition, the scanner has the capa-
bility to peek at subsequent tokens (obtaining the token without advancing the string posi-
tion). For MS, a look-ahead of more than two tokens is never required.

Since tokens are reprented by instances of token classes, it is the scanner’s responsibility
10 create such instances and return them. Briefly, the scanner knows the sequence of charac-
ters that represent any given token. The character at the current string position (and possible
subsequent characters) determines which token is being represented. The scanner creates an
instance of the appropriate token class, initializes the token’s state as needed, and returns it to
the caller. What is assigned for token state depends on the kind of token. There are two dif-
ferent Hnds : variable and constant. Keywords and static syntactic constructs within the
language are constant tokens, in that their state does not change. For example, there is a token
(MSDeclarer) to represent *->° within MS. The value of this token is always the string ’->’.
On the other hand, variable tokens have a well-defined structure, but there may be an arbi-
trary number of actual tokens of that type. For example, there exists one token class to
represent any integer, but the state of a given instance depends on the exact integer found on
the input string.

The scanner is also responsible for error handlicg. If a syntax error occurs either during
the tokenization process, or within a node parse, a message is sent to the scanner, who reports
the error to the user and provides facilities for errecting the error so that the program seg-

ment can be reparsed.
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3.4.3. MSCacheTable

Each MS environment contains two instances of MSCacheTable, one for instance
behavior, and the other for class behavior. Each MSCacheTable has the following state. The
cache state is an instance of an ST-80 Matrix class with behavior to easily add and modify
existing entries and to expand the size of the matrix. Two dimensions are needed to store the
relevant information, one for classes, the other for selectors (or something equivalent to selec-
tors). In addition to the cache state, each MSCacheTable maintains information on all selec-
tors encountered in the program within its realm, namely a mapping from MS message selec-
tor to corresponding MSSelector instance and a mapping from selector index to associated
MSSelector instance. There is a unique instance of MSSelector for every syntactically unique

MS message selector. The state and behavior of MSSelectors is described in Chapter 5.

3.4.4. MSConflictSet
An instance of MSConfictSet is created each time an instance or class behavior within a
class declaration is encountered during parsing. It is responsible for maintaining a conflict set

of all differing methods defined for a single selector.

3.5. Internal Representation

Figure 3 and Figure 4 represent two different approaches to compiling a program and
generating base language code. The convential approach, shown in Figure 3, has a scanner
which tokenizes an input stream, a parser which uses these tokens to create parse trees, and a

code generator which uses the parse trees to produce base language code.



-31-

lwurca

Scanner

l..,k....

Parser

‘pnne tree

Code
Generator

|

C-code

Figure 3 : Convential parsing/code generation

Figure 4, on the other hand, represents a profoundly different approach using the object-
oriented paradigm. In this approach, tokens are still generated by a scanner, but this is the
only similarity in design. Here, there is no single block of code to perform parsing or base
language code generation. Instead, the BNF grammar describing a language is used to create
a collection of token classes and a hierarchial collection of special node classes which form a
parse tree. Each BNF grammar rule uniquely specifies a node class and the state of that node
class. Since a BNF grammar rule consists of tokens and other BNF grammar rules, the state
of a node class consists of tokens and other node classes. The fundamental difference of this
approach is that each node class provides individualized behavior for a variety of activities,

including parsing, execution, and decompilation.
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Figure 4 : Object oriented parsing/code generation

The sections below describe the ST-80 node classes and token classes that represent pro-
gram fragments. The string representing such a program fragment is not treated as a sequence
of characters, but rather as a sequence of tokens. These tokens are atomic constructs
representing the smallest units of syntactically correct code. The rules in a BNF specification
do not distinguish between tokens and nodes, and the decision as to where to stop tokeniza-
tion and begin node parsing is sometimes arbitrary. Within MS, all BNF rules representing
literals, syntactically constant language keywords and identifiers are treated as tokens, and all
other rules are nodes classes.

In general, the exact number of rules in a BNF grammar specification is arbitrary,
depending on the level of abstraction desired. Since BNF grammar rules are analgous to node
classes, the BNF grammar specification should be rewritten so all subrules within a grammar
rule are also node classes or token classes. Any subrules which are not to be represented as

such should be placed directly into the specification for the rule being defined, instead of
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referred as a subrule. After rewriting, each grammar rule is to represent a node class. Thus,
each grammar rule should be a syntactic construct within the language, and should also be a
construct with some well defined execution (run-time) semantics.

The reason for requiring node classes to have execution semantics demonstrates the true
power of the object-oriented approach to parsing. If each node class has both a syntactic
(grammar) structure and an execution semantics, each node class can define behavior to parse
itself and execute itself in an interpreted environment (the PE). In this way, one data struc-
ture (the node class) has multiple capabilities. As will be seen later, each node class has addi-
tional behavior beyond parsing and execution.

To see what type of rewriting of BNF rules is implied, compare Figures 5 and 6 with the
grammar specifications in the second part of Appendix A. The first part of Appendix A pro-
vides an augmented BNF grammar similiar to Figures 5 and 6 that lists all information neces-
sary to automate the node class state and parsing behavior process [SH93). The second part
of the appendix gives the BNF grammar rules as described in [Tex89). Figures 5 and 6 show
the rewritten BNF grammar structure so that node classes have well-defined execution seman-
tics.

Within the BNF grammars below, expressions enclosed in square brackets ([...]) may
occur zero or one times. Expressions enclosed in curly brackets ({...}) may occur zero or
more times. All characters or strings (i.e. constant tokens) of characters appearing in the
language are enclosed in single quotes (’..."). Nonprinting ASCII characters are given by
using the associated C language backslash convention (i.e. for tab).

Tokens are denoted by >TokenName< and node classes are denoted by <NodeName>.

3.5.1. Token Classes

Every token class has a single named instance variable value which stores the value
represented by the token. There are two categories of tokens, constant and variable. The
value associated with constant token classes is always the same, whereas the value associated

with variable token classes may be different between different instances of the token.
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>Integer< 2=["-"] <digits> | <radix specifications> '-'] <based digit> ( <based digit>}
>LiteralSelector< u= "#° <method selector>

>Float< 2= [*-*] <digits> <sub floating point>

>Character< u= '$’ <printing character>

>Armay< u= #(" (<literal>} ')

>String< := *** { <literal character> | <separator character> | *"quote" quote™ | '™}~
>KeywordSelector<  ::= <identifier> "' { <identifier> ":" }

>BinarySelector< ::= <operator character> {<operator character>}

>Declarer< u= >’

>VisPublic< =2 "(public)’

>VisPrivate< = "(private)’

>TypeVariable< := “variable’

>TypeBinary< == 'binary’

>Word< = <letter> { <letter> | <digit> )

Figure 5 : BNF Grammar Rules for Parse Tree Token Classes

3.5.1.1. Constant Token Classes
The constant token classes are : Declarer, VisPublic, VISPrivate, TypeVariable, Type-
Binary. They represent the strings *->’, ’(public)’, *(private)’, "variable’, and *binary’ respec-

tively.

3.5.1.2. Variable Token Classes

The variable token classes are : Integer, LiteralSelector, Float, Character, String, Array,
KeywordSelector, BinarySelector, Word. The value state of instances of such token classes is
always an ST-80 String, with the exception of Array, whose state is an Array of Strings.
Conversion to appropriate internal representations is not the responsibility of the token class.
Instead, there exists a node class Literal which defines behavior to provide such conversions,

as well as enforcing uniqueness of literals within the PE.
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Since node classes correspond to BNF grammar rules, each node class should know

what tokens and grammar rules make up instances of themselves. This information allows

behavior to be associated with each node class to parse itself. This is the fundamental differ-

ence between the conventional and object-oriented approach to parsing. In the former, one

dedicated program is responsible for creating a parse-tree, whereas in the object-oriented

paradigm, individual nodes within a template parse-tree (the node-classes) know how to ini-

tialize instances of themselves.

<Module>
<Binding>
<Import>
<ModExpr>
<ClassDefn>
<Behavior>
<StateMethod>

<Method>

<AliasMethod>
<PrimitiveMethod>
<AbstractMethod>
<UndefMethod>
<Block>

<Assignment>
<MessageSend>
<Message>
<Expression>
<Literal>

s
=

*{* ‘module’ [>String<] (<Binding>} *}*

= >Word< [>VisAtx<] *->* (<Import> | <ClassDefn> | <ModExpr>)

*{* [ *import* >Word< } ‘from* >String< *}*

*(* *expression* <MessageSend> ‘)"

*{* *class’ [ *{* ‘sefines' { >Word< } *}* ] { ‘instance* <Behavior> ] [ ‘class’ <Behavior> 1 ')*
*(* *behavior* { <StateMethod> | <Method> } *}*

= *(* ( ( >UnarySelector< [>VisAtr<] >SingleKeywordSelector< [>VisAwr<] )

>SingleKeywordSelector< [>VisAttr<] >UnarySelector< [>VisAur<] ) ¢} *->* ‘variable’ ) |
(  >UnarySelectorc  [>VisAtu<] >SingleKeywordSelectorc¢  [>VisAtir<]
>SingleKeywordSelector<  [>VisAtr<]  >UnarySelector<  [>VisAw<] ) °I*

(
|

(

>SingleKeywordSelector< [>VisAttr<] >DoubleKeywordSelector< [>VisAur<] | >Doub-
leKeywordSelector< [>VisAur<] >SingleKeywordSelector< [>VisAtrc] ) ¢)* *->* ( ‘variable!

| *binary* )))

== >Selector< [ >VisAtre ] *->* ([ ‘method* ] ( <Block> | <PrimitiveMethod> | <UndefMethod> |

<AbstractMethod> | <AliasMethod> )
alias* >Word< >Selector<

‘undefined*

o [ (% >Word< ) *1*)[*|* { >Word< } *|*] { ( <Assignment> | <MessagcSend> ) ¢ ) [ (¢

<Assignment> | <MessageSend> ) | *** ( <Assignment> | <MessageSend>))[*.']]
[ >Word(addVarisble)< *:=* ] <MessageSend>

u= (>Worde | <Literal> | <Block> | <Expression> ) [ <Message> { *;* <Message> } ]
1= very complex

‘(* (<Assignment> | <MessageSend> ) *)*

«:= >Literal<

Figure 6 : BNF Grammar Rules for Parse Tree Node Classes

Each node class has a parseWith: message selector defined. The behavior associated

with this message depends entirely on the BNF grammar associated with the node class. The

argument to the message is an instance of a scanner, which is used to obtain tokens from the
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input stream. The method knows what tokens are expected from the input, and must simply
read tokens from input and compare them against what is expected. During this process, the
method will eventually encounter a token that is the start of a grammar subrule. Since this
grammar subrule is also represented by a node class, the method creates an instance of the
appropriate node class and has this new instance parse itself. After the newly created node
class instance has finished parsing it retuns itself and the method can add this node class
instance to its own state.

Figure 7 and Figure 8 show the has-a hierarchy of the node classes. Ovals refer to nodes
and squares refer to tokens which must be stored as part of a node class’ state. Constant
tokens which are expected to exist on the input stream but which need not be stored are not
shown in the figures. Single solid lines indicate that the node class on the top contains the
node class/token on the bottom. Single dotted lines indicate that the has-a relationship is
optional. Double solid lines indicate that one or more instances of the node class/token can
be contained within the parent node class, and double dotted lines indicate zero or more

instances.
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Figure 7 : High-Level Node Class Relationships
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Figure 8 : Low-Level Node Class Relationships
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One of the goals during the PE parser/interpreter implementation was to keep the run-
time and compile-time responsibilities completely scparate, thus providing for flexible imple-
mentations. To this end, there are actually two node classes for every BNF rule, a run-time
node class and a compile-time node class. During parsing, the state of the compile-time node
class must maintain all information needed to recreate the source program (decompile). How-
ever, only part of the information stored at compile-time is needed during execution. Thus,
the compile-time node class is made a sub-class of the zun-time class. The run-time class
defines only that state needed during execution, and the compile-time class inherits this state,
and adds any additional state needed. The run-time class is responsible for implementing
behavior to perform execution of the parse tree, and the compile-time class must implement
additional behavior to parse, de-compile, and perform C-code generation.

During the description of individual node classes, references to an expression node class
refer to any one of : MSName, MSLiteral, MSMessageSend, MSCascadedMessageSend,
MSAssignment or MSReturn.

The MS code in Figure 9 expands on the module defined in Chapter 2. Figures S
through 9 should be kept in mind while reading the following sections.



(
module "Numbers® “Module Start”
Object -> { from "Kemnel’ } *Namelmport Declaration”
{ use "MathConstants’ ) "Modulelmport Declaration™
Complex (public) -> “Class Declzration Start™
class { refines Object } “Superclass Declaration™
instance “Instance Behavior Start”
{ behavior
{ real real: } -> variable “State Method Declaration”
{ imag imag: } -> variable
* _> primitive “Primitive Method Declaration”
< -> undefined “Undefined Method Declaration”
dummy -> abstract *Abstract Method Declaration”
isNew -> alias Object isNew “Alias Method Declaration”
+->method “Binary Block Method Siant”
( :aComplex | “Formal Paramaters”
result “Temporary Variable"
result := Complex “Assignment”
real: (self real + aComplex real) “Unary & Binary Message Send”
imag: (self imag + aComplex imag). “Keyword Message Send”
“result “Explicit Return”
] “Binary Block Method End”
asReal -> "Method with Literal Blocks™
(
self imag == U
ifTrue: { “self real ) “Literal Block #1°"
ifFalse; [ “nil ]. “Literal Block #2"
]
) “Instance Behavior End”
class "Class Behavior Stant”
{ behavior
real:imag: -> "Keyword Block Method Start”
{ :real :imag | "Method Arguments”
self new “Unary Message Send”
real: real; imag: imag. "Cascaded Message Send”
] “Keyword Block Method End”
} "Class Behavior End"
} “Class Declaration End"
i -> { expression Complex real: 0 imag: 1 } “Module Expression”
} “Module End”
Figure 9 : MS Module Code — Extended Numbers Module
3.5.2.1. MSName

An MS variable is represented by an instance of class MSName. Variables are mapped

to level-offset pairs specifying a unique location within a context chain. The value of a vari-
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able is stored in a location uniquely identifed by the level and offset associated witii it.

The MSName class has state for a level and offset. The associated compiler class has
additional state for the identifier represented by this levei-offset pair. It is used during
decompilation to print out the variable being reprcsented.'

As an example, Figure 9 defines many variables in the module. Remember that the level
of a variable is relative to the current level. Thus, within a literal block within a m=thod (Fig-
ure 9: Literal Block #1 or Literal Block #2) the module context has level 2. The first variable
within the module’s scope is "Object’, with offset 0. Thus, a level-offset pair of 2-0 uniquely
identifies the position within the static context chain of the object represented by the class
object *Complex’ (when within one of the aforementioned literal blocks). Because every con-
text representing a block method or literal block stores the receiver of the method in the first
context location, references to the pseudovariable self can always be obtained by the level-
offset pair 0-0. If the current context is a literal block, self could also be accessed by 1-0, etc.
Although there is a degree of space inefficiency in this implementation, it does give optimal
execution performance. If self was stored only in the context of block methods (i.e. not in
literal block contexts), then the time needed to access the ’self* variable would be dependent

on how deeply imbedded within a block one was.

3.5.2.2. MSLiteral

Although there is a token class that represents literals, the current implementation also
has a node class for them. Furthermore, in the current implementation MSLiteral is a sub-
class of MSObject. Subsequent versions will not have a node class to represent literals, but
some language class which provides the current behaviors of MSLiteral will be implemented.
The behaviors provided include conversion of a token value string to an appropriate internal
form (i.c. the string representing a floating number is converted to a Float) and a clean
method of registering literals with the environment to insure their uniqueness.

As an example of the current use of MSLiteral node clases, the literal tokens 0 and 1
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(Figure 9: Module Expression), upon being encountered during the parsing of a message send,
are used to create instances of MSLiteral whose state consists of a unique representation of
the literal in question. The creation message asks the environment (MSPEnv) if it has a
representation for the given token already. If it does, that object is used, otherwise an
appropriate MSObject is created and registered with the environment, and this new object is
used.

3.5.2.3. MSMessageSend

Syntactically, a message send contains a receiver, a selector, and zero or more argu-
ments. However, the state for the node class MSMessageSend stores only the receiver and an
instance of the node class MSMessage. The receiver is an instance of any MS expression
node class. An MSMessageSend also maintains the defining block node class instance @i.c.
the instance of MSBlock representing the entire method where the message send syntactically
occurs). If the message send occurs in a module expression, the defining block is the
appropriate MSModule node class.

Instances of MSMessage store an array of the arguments to the message and the selector
name. The receiver-message pair representation of MSMessageSend is used instead of plac-
ing the receiver, selector and arguments all within a single node class because it simplifies
support for cascaded messages sends, which have a single receiver and multiple sclector-arg
pairs. An MSCascadedMessageSend is similar to an MSMessageSend except that it contains
an array of MSMessages instead of just one. The compiler node classes do not add any extra
state.

Fignare 9 gives many examples of message sends. asReal (Figure 9: Method with Literal
Blocks) contains a keyword message (if True:ifFalse:) whose receiver is the result of a binary
message send (==) whose receiver is the result of a unary message send (imag) whose
receiver is self. For each of these nested message sends, an instance of MSMessageSend

would hold the receiver and an MSMessage, which would hold the appropriate selector and
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any arguments. real:imag: (Figure 9: Keyword Block Method Start) contains an example of a
cascaded message send, where the receiver is the result of self new and the two message sends

cascaded are real: and imag:.

3.5.2.4. MSReturn

Syntactically, a return statement consists of the literal token *~* followed by any MS
expression node class. MSRetumn state consists solely of an expression node class. No com-
piler state is needed.

The runtime execution of an explicit return results in the evaluated form of the associ-
ated expression being returned as the result of the block method in which the return was
found. This occurs even if the return was nested within many literal blocks. To provide this
outcome, the execution behavior of instances of the MSReturn node class consists of encapsu-
lating itself within an instance of a MSRetumObject wrapper. See the discussion below
under MSBlock for more details.

Figure 9 has explicit returns within a block method (Figure 9: Explicit Return) and

within a literal block (Figure 9: Literal Block #1, Literal Block #2).

3.5.2.5. MSAssignment

An assignment consists of an MSName to represent the assignment variable and an MS
expression node class describing what is to be assigned to the variable. During evaluation of
an assignment, the evaluated form of the expression is to be stored in the appropriate context
location identified by the assignment variable. The object resulting from an assignment
expression is the object assigned to the variable. This is important because the language
requires that nested assignment staterents be legal. |

As an example (Figure 9: Assignment), the temporary variable result is assigned the

result of a keyword message send.



3.5.2.6. MSBlock

Syntactically, a block contains lists for formal arguments, temporary variables and mes-
sage expressions (statements). The only information needed at run-time is the number of
arguments and temporaries, and the list of statements.

The compile-time node maintains d'ictionaries mapping variable names to their
corresponding MSName instances. The variable names are needed for decompilation, and
MSName instances are needed during compilation to enforce the language specification con-
straint that only temporary variables be assigned values. Thus, there are two separate dic-
tionaries, one each for arguments and temporaries. These dictionaries contain not only the
variables defined within the current scoping level, but also those defined in parent scoping
levels. The block also maintains the MSClass node class instance in which the block syntac-
tically exists, a flag denoting whether the block is literal or not, the name of the method, the
name of the C function to be generated for compilation, and a list of all immediate subblocks
of the current block. The subblocks are stored as they are encountered so as to make C gen-
eration easier. Since these literal blocks are usually arguments to arbitrarily deeply nested
message sends, and since C code for these blocks must be generated separately from the C
code for the message sends themselves, this list of subblocks must be obtained either during
parsing or during C code generation.

In Figure 9 there are three names in the module context, Object, Complex and i. When
parsing the block method for + (Figure 9: Binary Block Method Start— Binary Block Method
End), upon creation of a MSBlock node class instance (discussed below), its argument dic-
tionary (initially empty) is augmented by adding copies of all MSName instances in the
module’s context (namely Object, Complex and i). Within the module context, the levels of
the MSName instances is 0, but within the block method context, they are level i. Thus, the
copied MSName instances in the argDict have their level incremented by 1 (but their offset
stays the same). The argument variables for the block (Figure 9: Frsmal Parameters) are

then parsed and added to the argDict with level 0 and offsets starting at 0. Thus aComplex
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has level 0 and offset 0. Next, the temporary variables (Figure 9: Temporary Variable) are
added with level 0 and offsets starting after the last offset from the argument list. Thus result
is added to the tempDict state with level 0 and offset 1.

Continuing the parsing of the MSBlock instance, an MSAssignment node class instance
is formed and added to the (currently empty) statemeizt OrderedCollection. Then, an MSRe-
turn instance is added after the MSAssignment instance (the order of statements is obviously

important).

3.5.2.7. MSMethod

As discussed in Chapter 2, MS has six different types of method specification, MSSta-
teMethod, MSPrimitiveMethod, MSAbstractMethod, MSUndefinedMethod, MSAliased-
Method, and MSBlock. The abstract superclass of all of these execept MSBIlock is
MSMethod, which has state for recording whether or not the given method’s visibility is
private. It also defines behavior common to all method node class instances, such as initiali-
zation, default C code generation, testing methods and access methods for its state. MSBIlock
defines the state and behavior found in MSMethod so that all six node classes are compatible.

The compiler node classes for each of the message node classes also maintains the defin-
ing class of the method, the MSClass node class in which the definition for the method syn-
tactically resides. It is used during execution of private methods to insure that the class of the
receiver is the same as the defining class of the method. It is also used during inheritance
conflict resolution to determine the *sameness’ of methods. However, because the PE imple-
mentation is in ST-80, which has single inheritance, and because compiler classes are already
subclasses of their associated runtime node class, there is no way of abstracting this state (and
associated behavior ). Thus, in addition to the state and behavior described below, each com-

piler method node class must explicitly define this state.

3.5.2.7.1. MSStateMethod

In the current implementation, the MSStateMethod class is an abstract superclass main-
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taining a state index. There are two or four state methods associated with a given state method
specification. The state index represents which specification an individual state method
belongs to. State indices start at 1 with the first syntactically encountered state method
declaration. MSStateMethod has 4 ‘subclasses, MSSizeAccess, MSSizeChange, MSAccess
and MSChange, which in turn are abstract superclasses for 2 (MSByteldxSizeAccess, MSIdx-
SizeAccess), 2 (MSByteldxSizeChange, MSIdxSizeChange), 3 (MSByteldxAccess, MSIdx-
Access, MSNamedAccess) and 3 (MSByteldxChange, MSIdxChange, MSNamedChange)
classes respectively. Each message selector in a state method specification is represented by
a node class instance.

In Figure 9, the Complex class declares state methods for accessing and changing the
real and imaginary components of the number (Figure 9: State Method Declarations). The
access methods are real and real:, and the changing methods are real: and imag:. An example
of indexed and byte indexed state method specification can be found in Appendix D in the

definitions of Array and String in the Kernel module.

3.5.2.7.2. MSPrimitive, MSAbstract, MSUndefined

Instances of MSPrimitive record the selector name of the associated ST-80 primitive,
and a string denoting the name of the primitive within the compiled environment.

Within MS, the syntax of declaring a method primitive is trivial (Figure 9: Primitive
Method Declaration). However it is the responsibility of the programmer to insure that the
MSPEnv in which a module was being parsed has an appropriate ST80 selector and C func-
tion name associated with the class-selector pair identifying a primitive. The programmer is
also reponsible for writing the ST80 code (within the MSPEnv class) and the C code (in the
back-end C library) using the names specified.

MSAbstractMethod does not have any additional state. Its runtime execution results in
an MS error message similar (currently identical, in the PE) to the ST-80 message sub-
classResponsibility. Attempting to execute an abstract method (Figure 9: Abstract Method

Declaration) will generate the aforementioned MS error.
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MSCUndefinedMethod also doesn’t have any special state (Figure 9: Undefined
Method). Its runtime execution results in an MS error message similar (currently identical, in

the PE) to the ST-80 message shouldNotimplement.

3.5.2.7.3. MSAliasedMethod

An MSAliasedMethods stores the MSClass node class from which the alias is to take
place, and the MSSelector which is to be aliased (Figure 9: Alias Method Declaration). The
aliased class must be an immediate superclass of the class currently being parsed, and this
condition is checked for during the parsing of an aliased method declaration. If this condition
fails, a compiler error is generated. Furthermore, the selector must be the name of a method
within the aliased class, although this is not checked for until runtime.

The runtime execution of an instance of MSAliasedMethod is simpiy the execution of its

associated alias method.

3.5.2.8. MSClass

Syntactically, a class (Figure 9: Class Declaration Start — Class Declaration End) con-
sists of a list of superclasses (Figure 9: Superclass Declaration), an instance behavior (Figure
9: Instance Behavior Start — Instance Behavior End), and a class behavior (Figure 9: Class
Behavior Start — Class Behavior End). Required run-time information consists of the
number of named, indexed and byte indexed states for the instance behavior. In addition, if a
naive recursive look-up method dispatch strategy is used, then a map of selectors to methods
and visibility attributes is required for instances and for classes. The equivalent compile-time

class stores a mapping from selectors to methods for both instance and class behaviors.

3.5.2.9. MSModule
At run-time, an MSModule maintains a context of name-value pairs. An MS module can
bind a name to instances of one of five node classes, MSClass, MSNamelmport, MSModu-

leImport, MSClassExtension, or MSModuleExpression. Thus, MSModule instances have
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state for an array of bindings and a parallel array for the context, whose indicies store the
evaluated versions of the corresponding index in the bindings array.

An MSModuleExpression is a wrapper than contains an instance of one of MSMes-
sageSend, MSCascadedMessageSend, MSName or MSLiteral. Instances of MSReturn,
MSBlock or MSAssignment are not allowed, although literal blocks can exist as arguments.
Thus, although the language specification allows explicit returns to exist within literal blocks
within module expressions, the effect of this is not defined. To maintain consistency with the
corresponding action within blocks, the entire module should stop immediately. The utility
of such an action is doubtful, and thus explicit returns should not be allowed within module
expressions and should result in a parsing error. However, the current implementation does
not check for this. Module expressions are the entry point of meaningful execution within a
program (Figure 9: Module Expression).

An MSNamelImport represents the binding of a name within the current module to the
object represented by a name imported from another module’s context (Figure 9: Namelmport
Declaration). Tt thus has state for an MSName instance whose offset specifies the index
within the source module’s context, and whose level is unused (and always 0), as well as state
for an MSModule instance from which to import. Since an exporting module is executed
before a module that imports from it, the object will exist when it is referenced.

An MSModulelmport represents the importation of every binding from a specified
module (Figure 9: Modulelmport Declaration). 1t is simply syntactic shorthand for many
MSNameImport specifications. Its state consists solely of an MSModule instance from which
to import. Such a node class does not currently exist. The current implementation actually
generates MSNamelImport node classes for every name in the source module. Although this
works properly, decompilation does not give the expected results.

An MSClassExtension has state for an MSClass instance representing the class to be
extended (or maybe only the name of the class, since it would otherwise be necessary for the

base class to exists in order to parse a class extension). Also included is state for dictionary
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state analagous to that for MSClass. MSClassExtensions have not been implemented in the

current version.
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Chapter 4 : Method Dispatch

4.1. Method Dispatch Techniques

Method dispatch is needed because the object-oriented paradigm allows two distinct
classes to define differing methods for the same selector. Thus a selector by itself does not
necessarily uniquely identify a single executable method; usually the class of the receiver
object is also needed. Since the receiver (and thus the class of the receiver) cannot be deter-
mined at compile-time, method dispatch is needed to resolve the issue at run-time. As will be
seen in the discussion below, the selection of a method dispatch technig::c is usually a trade-

off between time and space [CU91].

4.1.1. Smalltalk’s Lookup Dispatch

The basic ST-80 method dispatch algorithm involves a path traversal, starting in the
method dictionary of the receiver of the message[GR89]. If no method for the message selec-
tor is found, the method dictionary of the sus.crclass is checked. This process continues until
a method is found or no further superclasses exist (at which time a messageNotUnderstood
method is invoked to warn the user). This algorithm is slow for long inheritance chains and is
even slower in MS where multiple inheritance is involved and multiple superclass chains
need to be searched (resulting in a tree traversal).

Note that this lookup dispatch approach is as efficient as possible from a space perspec-

tive.

4.1.2. Cache-table Dispatch

The fastest possible implementation (assuming the needed for method dispatch) uses a
two-dimensional cache-table which stores a method to use for each class-selector pair. Each
selector in the environment would have a unique row in this table, and each class would have
a unique column. At run-time, the receiver object class and selector are used to obtain an

entry into the cachetable, which stores the method to execute. Although this approach is fast,
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it is not feasible since the space required is the product of the number of classes and selectors.

4.1.3. Colored Cache-table Dispatch

A similar cache-table algorithm [DMSV89] assigns colors to selectors, utilizing infor-
mation about which classes understand specific selectors to reduce the amount of space
needed. Esch selector 16 onger has a unique Tow, but in=tead shares the row with other
selectors that do not conflic: with it. The iz4sx of the row to which a selector belongs is
refered to as the selestor’s color. Two different seleviors {alpka and heta) can be assigricd the
same color as long as the set of classes using alpha is disjoint fro:x: the set of classes using
beta. For example, consider the case where there are 7 classes A-G. Assume that classes A,
C and G recognize the message selector a/pha but not beta. Classes B and E recognizes the
message selector beis, but not alpha. Finally, classes D and F recognize neither. A single

color can be used to represent the selectors alpha and beta (Table 3).

color || A B |C D E F G
1 alpha | beta alpia empty | beta | empty | alpha

Table 3 ;: Colored CacheTable : Two selectors sharing same color

The run-time efficiency of this approach is only slightly less than in the non-colored
cache-table approach described above. The inefficiency occurs because the selector and class
are used to obtain a color-class entry into the cache-table. The cache-table must, in addition
to storing the method, store the selector for which it is applicable. A run-time check for
equality between the current selector and the store selector must be performed. If they are not
equal, the entry should be treated as if it were empty (the generation of an appropriate mes-
sage telling the user the specified method was not found).

This technique provides substantial space savings over the previous cache-table
approach, at the expense of added compilation time. Each time a new class and/or selector is
added to the environment, the current color of an arbitrary number of selectors can change. As

discussed in [AR92], the technique proposed in [DMSV89] separates the processes of defin-
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ing code and coloring the selectors. However, this means that the entire envircnment must be
recolored each time compilation is desired. The resulting compilation time for large systems

makes the technique useless.

4.1.4. Incremental Coloring Cache-table Dispatch
The paper [AR92] suggests a method of performing incremental coloring, in which the
color of a selector is determined when it is defined. We will refer to this algorithm as the

André-Royer algorithm. This algorithm is presented below and analyzed in detail.

4.1.5. Incremental Coloring and Partitioning Dispatch (ICP)

The method dispatch technique used for MS is an incremental coloring and partitioning
(ICP) technique based on the André-Royer algorithm. ICP is more general than the André-
Royer algorithm, which has been enhanced in a variety of ways. Both the André-Royer algo-
rithm and the ICP algorithm are discussed in detail below.

The most important difference between the ICP dispaich algorithm used for MS and the
André-Royer algorithm invoives the maintenance of information which will allow for the effi-
cient determination of whether method dispatch can be avoided entirely for certain message
sends. Although the André-Royer algorithm does partition selectors into differing categories,
these partition types are only used as abstractions while defining the algorithm. Furthermore,
the André-Royer algorithm does not provide efficient means of obtaining these partition
types, and thus the algorithm itself is inefficient. Within ICP, partition types are substantially
more important and the algorithm maintains information which allows for immediate deter-
mination of a selector’s partition type by incrementally adjusting partition information at the
same time that color information is adjusted.

Partition types are important because selectors of certain partition types are uniquely
specified by the selector itself, and thus no lookup is required so a method to be executed can
be found at compile-time. However, the number of selectors which fall into one of these par-

tition types is quite low without static typing. Thus, the full power of the ICP algorithm can--
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not be realized in MS without a language extension to provide for static typing.

4.2. André-Royer algorithm
Before presenting the ICP algorithm as implemented for MS, the André-Royer algorithm

is given. Enhancements, corrections and generalizations are made to the algorithm. The final
result of these moaifications is the ICP algorithm.

Although the André-Royer algorithm does not explicitly state it, each entry in the
cache-table consists of a method and a selector. Such an entry will be refered to as a division
in subsequent discussions.

The definitions in the table below are needed in oraer to understand the algorithm. The
letters C and Ci refer to classes, G to a group of classes, S to a selector, D and E to divisions,
and L to a color. The symbol Q is used to denote an empty division (i.e. empty cache-table

entry). The notation Ci < C means that class Ci is in the inheritance sub-graph with root class

C.
Symbol Definition
divisionAt[L, C] the cache-table entry for color L and class C
divisionSelector(D) the selector associated with division D
color(S) color mapped to selector §
superclasses(C) immediate superclasses of C
nativeBehavior(C) set of all selectors explicitly defined in class C
superBehavior(C) =V Jasses(C) oomplewBehévior(Ci)
exceptedBehavior(C) = s|se superBehavior(C) and § ¢ nativeBehavior(C) }
completeBehavior(C) = ( nativeBehavior(C) U superBehavior(C) ) - exceredBehavior(C)
subBehavior(C) = Ye e aliSubclasses(C) nativeBchavior(Ci)
classesDefiningSelector(S) | = (C | S € nativeBehavior(C)}
allSubClasses(C) =(C, 1 C,<C)
allSuperClasses(C) =(C; 1 €<C;)
relatedClasses(C) = aliSubClasses(C) L allSuperClasses(C)  (C)
colorsUsedBy(C) ={L | divisionAt[L, C] # Q}
colorsFreeFor(G) =N, { L | divisionAtlL. C] = Q}
classesUsingColor(L) = {C | divisionAt[L, C] # Q}
dependentClasses(D) ={(C; 1 ¢;<C.C; <C,§ = divisionSelector(D), S ¢ nativeBehavior(C;) and
ifSe nativeBchavior(Ci) then C, < C)

Table 4 : Definitions for the André-Royer Algorithm



Partition Definition

specific(S,C) = [classesDefiningSelector(S) = {C}]

separate(S,C) = [relatedClasses(C) N classesDefiningSelector(S) = {C N
redefined(S,C) | =[S € superBehavior(C)]

declared(S.C) | =[not specific(D) and not scparate(D) and not redefined(D))

Table 5 : André-Royer Partition Types for selectors

The colors assigned to selectors can change when a new class is added to the environ-
ment, or when a new method is associated with a selector in an existing class. Thus the origi-
nal André-Royer algorithm is divided into two parts, one handling incremental coloring when
a new class is added to the cache-ta.ble, and the other handling a new method. The André-

Royer Class Algorithm has no flaws and is left unchanged within the ICP algorithm.

4.2.1. Actions During Class Definition
During compilation, upon encountering a declaration for a class, some steps must be
taken before any methods within the class are parsed. Specifically, a new class column must

be added to the cache-table

4.2.1.1. Inheritance Copying

To provide for the mechanism of inheritance, the class columns for all superclasses are
collected. For each color, the corresponding entries in these columns are compared. Depend-
ing on the conflict resolution scheme specified for the language under development, actions
will be taken to add a unique value to the corresponding color row in the new class column,
report an error, or postpone copying of values until conflicts have been resolved. Method
conflict resolution in Modular Smalltalk requires that if conflicting methods exist, one such
inethod be explicitly selected by the user (via an explicit definition or an alias) Hence, if a
conflict exists for a particular color index due to the same selector having different implemen-
tations in different superclasses, the Modular Smalltalk implementation does not copy any
value to the new class index array until one unique method is associated with the selector.

The MSConflictSet class handles this automatically up. 1 receiving alias information which
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results in a unique method for a given selector.

4.2.2, Selector Color Conflicts

Although the inheritance method conflict resolution scheme will vary between
languages, there are invariant concerns during class definition. Predominant among them is
the possibility that two classes, say A and B, have different selectors stored at the same color
(say aipha and beta with color 1). If class C were to inherit from both of them, alpha and beta
would no longer be allowed to have the same color. If such a conflict is detected during
inheritance copying, one of these selectors must be moved to a different color. In addition to
changing the color of the associated selector, this involves moving every division defining the
selector from the old color index to the new color index (maintaining the same class indices,

of course). Figure 10 gives the algorithm to implement the discussion above.

ICPNewClass( infout C : Class )
add a ncw column to cachetable.
for all colors L, divisionAt[L,C] =Q

for cach Cs € superClasses( C ) do
for cach L & colorsUsedBy( C, )
Let D = divisionAt{L,C]
if(D#Q)and
( divisionSelector(D ) ==
divisionSclector( divisionAt[L,C ] ) )
MoveSelectorToFreeColor( divisionSelector(D) )
endif
divisionAt{L,C| = divisionAl[L.Cs]
end ICPNewClass

Procedurc MoveSelectorToFreeColor(S)
G = classesDefiningSclector(S)
sclect L from colorsFreeFor(G)
sct D = new MSEmptyDivision
for Ci inG
set divisionAt[C;, L] = divisionAt[C;, color(S)]
set divisionAY(C;, color(S)] = D
end MoveSclectorToFreeColor

Figure 10 : André-Royer Class Algorithm
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4.2.3. Actions During Methodi Definition

The original André-Royer method algorithm is concerned with assigning a color to a
selector S defined in a class C. The partition type of the selector determines what type of
recoloring is necessary.

The algorithm is presented in Figure 11, after which is a collection of notes which
explain the algorithm and point out areas where enharcements or corrections can be made.
After these notes is the modified André-Royer, which is the starting point for the ICP algo-

rithm.

Algorithm AR(in C : Class, infout S : Selector, infout T: CacheTable)

let L = colo#(S)

Switch partition of S
case specific: find free color for allSubClasses(C) (NOTE 1)
case redefined: no change (NOTE 2)
case separate: (NOTE 3)
If color(S) € colorsFreeFor({C}) then no change (NOTE 4)
else color(S) = any color in colorsFreeFor(classesUsingColor(color(S))) (NOTE 5)
case declared: (NOTE 6)
If for X < C, color(S) € colorsFreeFor({X}) or S € nativeBchavior(X) then
no change (NOTE 7)
else color(S) = any color in colorsFreeFor(classesUsingColor(color(S))) (NOTE 8)
If L # color(S) (NOTE 9)
forC e classesUsingColor(L)

divisionAt[color(S), Ci] = divisionAt[L, C}]
divisionAt[L, C,] = Q

Figure 11 : The André-Royer Algorithm

Notes

1.  If only one class in the PE defines S, partition(S) is specific. The color associated
with the selector can be any color that is not used by subclasses of C. However,
the André-Royer Algorithm makes the assumption that there are no exceptions to
inheritance, which is why the class C itself is not also checked. Supposing inheri-
tance exceptions do not occur, it is actually sufficient to check only the leaf subc-

lasses of C for free colors, since selector S will be in the leaf subclasses if they are



.57-

in any of the classes between a leaf and C. However, to handle inheritance excep-
tions, the algorithm must check class C and every subclass of C since a superclass

may use selectors that a subclass does not.

According to André-Royer, if the selector S exists in the behavior inherited from
superclasses of C, partition(S) is redefined. Farthermore, redefined selectors do
not need their colors changed. Note that the definition of redefined partitions has
been carefully worded. If S is defined in a super class but an inheritance excep-
tion occurs before class C so that S is not part of the behavior inherited from

superclasses of C, then S will not be considered redefined.

If the only class within the forest containing C which defines S is C, then
partition(S) = separate (the forest containing C is the set of all superclasses of C,

all subclasses of C, and C itself).

If S is declared, André-Royer states that one need only check to insure that the
current color of S is free for C. However, this is not true. It must also be free in
certain subclasses of C, namely all subclasses of C which will share the same
" method for S as C. The collection of such classes has been termed the
dependendClasses(C). Since S is separate, by definition the dependentClasses(C)
= allSubClasses(C). As an example illustrating why André-Royer is not suffi-
cient, suppose class B inherits from class A, and a selector beta is defined in class
B, with color of 1. If class A later defines alpha, it is not sufficient to ensure that
color 1 is free only for A — it must also be free for B, since B will inherit alpha.
As will be seen, this correction to the André-Royer algorithm implies that the code

for the separate and declared partitions are identical and can be merged.

Supposing that selector S is not free for C (and its subclasses) as discussed in Note
4, André-Royer states that a new color can be obtained by finding a color free for
all classes using the current color. This is only true if we assume that C and its

subclasses are considered to be using S at the time that S is being defined in C. To
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make this assumption clear, the test for the color free for class C and all of its

subclasses is made explicit.

If a selector S is not defined in the completeBehavior of any of the immediate
superclasses of C but is defined in the subBehavior of C, then pastition(S) is

declared.

The test as proposed by André-Royer is inefficient. The second test can be
avoided entirely, and the number of subclasses tested reduced by asking only for

dependent subclasses (those subclasses which inherit S from C).

As in note 4, we must also insure the color is free for the dependent classes of C.
Note that here, the number of dependentClasses(C) will generally be substantially
less than the number of allSubClasses(C) since at least one subclass re-defines S
(otherwise, the partition would be separate instead of declared). Since all classes
in the set must be checked, it is desirable to have as small a set as possible for effi-
ciency.

If a selector changes color, the divisions for all classes within the cache-table that

use that selector must be moved from the old color row to the new color row.
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Algorithm MAR(in C : Class, in/out S : Selector, infout T: CacheTable)
let L = color(S)

Switch partition of S
case specific:
find free color for allSubClasses(Cj u (C]}
case redefined:
no change
case separate:
case declared:
If for C € dependentClasses(C),
(carrentColor(S) € freeColorsFor(C))
no change
else
find color free for classesUsing(currentColor(S)) v dependentClasses(C)

If L # color(S)
forC € classesUsingColor(L)
divisionAt[color(8S), C;] = divisionAl[L, C;]
divisionAt[L, C)=Q

Figure 12 : Modified André-Royer Algorithm.

4.3. The ICP Algorithm

The ICP algorithm is an extension of the modified André-Royer Algorithm presented in
Figure 12. As discussed previously, the most substantial difference between the André-Royer
and ICP algorithms is the importance attached to partitions and the efficiency with which par-
tition types can be determined for selectors. In order to provide the most efficient selector-
to-partition determination, the ICP algorithm incrementally maintains partition information in

addition to color information.

4.3.1. ICP Dispatch Classes

Four classes are defined in the PE to implement the ICP algorithm. In the discussion of
the André-Royer algorithm, there was no mention of how a color was associated with a selec-
tor, and a variety of other details were ignored. Here, we present the classes used to store all

information needed for ICP.



4.3.1.1. MSSelector

An MSSelector is an encapsulation of the information associated with a MS selector,
and consists of a unique index (Integer), color (Integer), name (Symbol) and msClasses (a Set
of defining classes).

When a method declazation is parsed, the MS message selector name (an ST-80 Symbol)
must be registered by sending a message (addSelector:toClass:method:behavior:) to the
appropriate cache table (instance or class). A check is made to see if an instance of MSSelec-
tor exists for the selector (i.e. an MSSelector instance whose name state matches the selector).
Each cachetable maintains a selectorMap which provides an efficient method of mapping
between ST80 symbols (representing MS selectors) and MSSelector instances (which encap-
sulate all information associated with a MS selector). If no such MSSelector instance is
found, one is created with a new index. The name is set to the ST80 symbol, and msClasses is
initialized to a Set with one element — the instance of MSClass currently being parsing. The
state msClasses stores only the instances of MSCClass which explicitly define the selector.
Classes which respond to the selector due to inheritance are not stored. Finally, color is set by
executing the ICP algorithm as discussed below. This implementation provides the best

trade-off between execution efficiency and space usage.

4.3.1.2. MSDivision

During the discussion of the André-Royer it was mentioned that cache-table entries must
store both a method and a selector. Within ICP, a substantial amount of additional informa-
tion is needed at compile-time, although no additional informaticn is needed at run-time.
Although the André-Royer revolved around a discussion of selectors, the ICP algorithm
places more emphasis on divisions (cache-table entries). A single division is used to
represent a group of classes which use the same method for a specific selector. For each selec-
tor, ICP logically divides the classes that recognize it into mutually exclusive MSDivisions.
Each division determines a set of classes that form a connected component of the inheritance

hierarchy and use the same method for a given selector. The root of this sub-graph is the
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defining class for the selector (division) and the additional classes in the connected sub-graph
are called dependent classes because they are dependent on the defining class for the imple-
mentation of the method associated with the selector. A non-dependent class is a subclass of
the defining class or any dependent class of the defining class which redefines the selector. A
non-determined dependent class is a dependent class which has non-dependent subclasses,
and a determined dependent class is one which does not have any non-dependent subclasses.
The state of a division includes a selector, a defining class, a method, a set of non-
dependent classes, a st:t of non-determined dependent classes, and a flag denoting whether
superclassss define tiie associated selector. The information stored in a division provides the
optimal combination of space efficiency and partition-type determination. Note that since
every division has a selector, a property of a selector can also be considered a property of a
division. In particular, in the discussion below, we will talk of divisions having a particular
partition type, and this is to be understood to mean that the selector associated with the divi-
sion has the given partition type. Note that the information stored in each division allows for
an immediate determination of its partition type without any tree searching required.
MSEmptyDivisions are 'pecial subclasses of MSDivision used when a new row or
column is first added to a cache-table. By treating empty divisions in a manner identical to

full divisions, no special case code needs to be written.

4.3.1.3. MSCacheTable

An MSCacheTable contains a two dimensional array (matrix) with rows indexed by
colors and columns indexed by class indexes. The values of the matrix are MSDivisions. An
MSDivision represents a set of classes which use a common method for a selector. The selec-
tor specifies a color, and the set of classes specify a set of class indices. Within the matrix, a
row is specified by the color. The set of columns (classes) from this row identified by the
MSDivision all contain the same MSDivision object. Any class that does not support a selec-
tor for a given color contains an instance of MSEmptyDivision in its column. The

MSCacheTable supplies other services in addition to the cache matrix.
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As an example, suppose a hierarchy exist such that B and C inherit from A, which is the
root of a tree, and E and F inherit from D, also the root of a tree. Classes O and G are defined
but have no behavior. Both A and D separately define a selector alpha (with color 1), and it is
not redefined any any of the other classes. Suppose O has class index 1, and classes A-G
have indicies 2-8 respectively. One MSDivision instance is used to represent A, B and C;
columns 2, 3 and 4 of row 1 of the cache table will store this MSDivision object. A different
MSDivision instance represents D, E and I¥; columns 5, 6 and 7 all store this object. Table 6

shows the resulting cache table.

Color 0 A B C D E F G
1 EmpDivl | Divl | Divl | Divl | Div2 | Div2 Div2 | EmpDiv2

Table 6 : Example MSCacheTable

In Table 6, EmpDiv1 and EmpDiv2 are instances of MSEmptyDivision, and Div1 and
Div2 are instances of MSDivision.

At run-time, when executing a message send, the MSMessageSend node knows its
receiver and MSMessage. The receiver knows its class index. The MSMessage knows its
selector index. To find the method, the selector index is used to obtain a MSSelector
instance, which in turn is used to obtain a color index. The color index and class index are
used to access a color/class entry in the cache. Note that a run-time check must be performed
to ensure that the selector associated with the stored method is the same as the current selector
(due to the coloring algorithm mapping multiple selectors to the same color). This overhead
will be discussed in more detail later. The current implementation contains two cache tables,
one for instance methods and one for class methods. For each selector, the compiler gen-
erates two indices, one for each cache. At run-time, the appropriate index is used, depending
on whether the receiver is a class object or not. It is possible to combine these two cache
tables into one, but the compiler must still generate two indices because the same message
selector may be used for a class and an instance message and there is no way to tell at

compile-time whether the receiver is a class or not. Additional research on the merits of one
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cache table versus two as well as multiple cache tables, one for each tree in the inheritance

forest, is needed.

4.3.1.4. MSConflictSet

An MSConflictSet is responsible for resolving message selector name conflicts caused
by multiple inheritance. An instance of MSConflictSet is used for every class parsed. During
parsing, after obtaining the superclasses for the class, the conflict set is initialized with all
inherited behavior. Using a double dictionary, with selectors as primary keys, MSDivisions
as secondary keys, and classes as values, the MSConflictSet records conflicts. A conflict
exists for any primary key which has more than one secondary key. Remember that a MSDi-
vision represents one particular method implementation, so different MSDivisions represent
different implementations. During the parsing of the native behavior, such conflicts can be
removed in one of two ways. First, if a selector is defined in the native behavior, all secon-
dary keys for that primary selector key are removed, since native behavior has precedence
over ini-erited behavior. Second, an alias can move one of the secondary MSDivision keys to
a different primary key.

The following is an example to show the usage of the MSConflictSet. Suppose C inher-
its from A and B, both of which define different versions of alpha, beta and gamma. Only B
defines delta. C redefines gamma and aliases the beta inherited by B to epsilon. During the
parsing of the class declaration of C, the superclasses are obtained. At this point, a new

MSConflictSet instance is made and initialized.

Primary Key | Secondary Key | Value

alpha Divl {A)
Div2 {B)

beta Div3 {A)
Div4 {B)

gamma Div5 {A)
Div6 {B)

delta Div? {B)

Table 7 ;: MSConflictSet before parsing native behavior
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Currently conflicts exist for alpha, beta and gamma. Upon parsing the native behavior,

the conflict set looks like this:

Primary Key | Secondary Key | Value
alpha Divl (A}
Div2 {B)
beta Div3 {A}
gamma Div8 {C}
delta Div7 {B)
epsilon Div4 (B}

Table 8 : MSConflictSet after native behavior

Notice that the conflict for beta no longer exists because Div4 has been moved to selec-
tor epsilon. The conflict for gamma was removed because C explicitly defined a gamma.
However, a conflict still exists for alpha, so a parsing error will be generated stating where
the conflict exists. It is at this time that the value of the double dictionary is used — the

class(es) stored are printed out in the error message.

4.3.2. The Incremental Coloring Algorithm (ICP)

As mentioned above during the discussion of André-Royer, the part of the algorithm
associated with class declarations remains the same. It is the algorithm for method declara-
tion that is substantially changed.

The definitions in Table 9 below are needed in addition to the definitions presented in

the André-Royer section.
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Symbol Definition

divisionDefiningClass(D) | the root class of the division D

superDefined(D) boolean stored value of a division denoting whether its associated
selector is defined in the superBehavior of its associated class.

nonDependents(D) = {C; [ C;<Cand S € definedBehavior(C) and
if § € definedBehavior(C,) then C; < C:}

nonDetDeps(D) = (C, | C; € dependentClasses(D) and
divisionSelector(D) € subBehavior(C;)

| superClassChain(C,C) | =(C; | C;<Cand C,<C;)

Table 9 : Definitions for the ICP Algorithm

Table 10 defines partition types using the stored division information, and these defini-
tions can be seen to be much more efficient than André-Royer. In the table, D represents a

division and C is the divisionDefiningClass(D).

Partition | Definition !

specific(D) = [ classesDefiningSelector(S) = {C}]

separate(D) = [ not superDefined(D) and nonDependents(D) = Q ]
intemal(D) = | superDefined(S) = true and nonDependents(D) # Q ]
determined(D) | = [ superDefined(S) = true and nonDependents(D) = Q ]
declared(D) = [ not superDefined(S) and nonDependents(D) # 2 ]

Table 10 : Partition types for divisions
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4.3.3. The ICP Algorithm
Algorithm ICP is called when a selector S is added to a class C.

["Algorithm ICP(in C : Class, in S : Selector, injout T: CacheTable) NOTE1

let D = anew division
let L = color(S)

let divisionSelecto:{D) = §
let divisionDefiningClass(D) = C

If specific(D) then NOTE 2
set color(S) from colorsFreeFor(dependentClasses(D))
else
let E = divisionAt[C, L]
if (divisionDefiningClass(E) # C) then NOTE 3
if ( ( divisionSelector(E) # ) and (divisionSelector(E) # S) ) then NOTE 4
MoveSelectorToFreeColor(divisionSelector(E))
endif
if ( superDefined(E) = false ) then NOTE §
if (dependentClasses(D) N classesUsingColor(L) = ¢) then
no color change.
else
let G = classesUsingColor{currentColor(S)) U dependentClasses(D)
set color(S) from colorsFreeFor(G)
endif
else
no color change
endif

for each C' in nonDependentClasses(D) NOTE 6
divisionPartition(D) += superClassesChain( C_. C)

for each C_in superclasses(divisionDefiningClass(D)) NOTE ?
D1 = divisionAt( C , currentColor(S) )
nonDependents( DI ) -= nonDependents( D ) union (C}
divisionPartition{ D1 ) = divisionPartition( div )

endif NOTE 8
endif

for Ci in dependentClasses(D) L {D} NOTE 9
set divisionAt[C, color(S)} =D
endfor
end ICP

Figure 13 : The ICP algorithm

Notes

1. Before selectors are added to a class, the ICPNewClass Algorithm must be called
to insure that a column exists in the cache-table for the given class C and that the

initial divisions stored within this column are correct.

2. Partition is specific — use modified André-Royer for specific partitions. Namely,
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remember that the new color must be free for C and its subclasses. Checking just
the subclasses is not sufficient, since inheritance exceptions do exist in MS. For
specific paritions, dependentClasses(D) is the same as C and all of its subclasses,

if definingClass(D) = C.

If the defining class of the division equals the current class, a selector in C is being
recompiled — it has already been defined in C. Thus, absolutely nothing needs to

be done, so there is no ’else’ clause to this primary ’if’ condition.

Even though the division is obtained by accessing the ' <he-table at the specified
class index and selector color, there is no guarantee thai the division obtained is
for the selector in question (since there are multiple selectors per color). If the
division accessed does not reference the current selector S, one of the two selec-
tors must be moved to a different color — the old selector is chosen arbitrarily to
be moved. If selectors stored all classes that use them, the selector using the fewer
classes could be moved to improve time efficiency, but the amount of space
needed to store this information is prohibitive. Of course, if it was determined that
the new selector should find another color instead of moving the other one, this is
done simply by newColor = colorsFreeFor( classesUsingSelector(S) U
allSubClassesAndSelf(C)). The determination of which is more efficient, moving
the old selector or obtaining this new color, is non-trivial. Since the relative

improvement in efficiency will be minimal, the issue is not of great concern.

If superDefined(E) = false, this implies that no superclass defines selector S, so
the partition is declared or separate — use the modified André-Royer algorithm

for separate or declared partions.

Since the set of nondependents for a division specify those classes which have the
associated selector S defined, all classes between these classes and the defining
class C must be added to the division partition — the set of dependent classes

which have definitions for S in their subBebaviour.
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Since the set of nonDependents includes only the closest subclasses redefining S,
if a new division is added, all nonDependents of that division (and C, the defining
class of that division) are no longer recorded in the nonDependent information of
superDef classes. Similiarily, since the partition represents only dependent classes
with certain properties, adding a riew division makes any classes in the partition of
this new division not dependents of any superDef divisions.

No modification need o be made to the dependents of the division, since this
information is not stored behavior, due to space considerations. The number of
nonDependent classes will in general be much smaller than the number of classes
inheriting any specific behavior. Since dependent information is not needed at the
time of repartitioning, it is not stored. The only time it comes into play is when

determining the partition of selectors in classes, as discussed below.

Furthermore, no modification is made to the superDefs of the division since this
information is currently not stored behavior of a division. One superDef is always
trivial — by looking at the current definingClass of the division. However, more
superDefs may exist due to MS’s alias capability — some superClass may have
defined the selector and an intermediate superclass aliased the selector away (so,
from the perspective of the selector, it has been deleted). Currently, it is easier to
simply search up the tree when superDef information is needed than it is to incre-
mentally modify this information if it were stored. More research into relative

advantages and disadvantages is needed.

Note that a boolean flag determining whether there are any redefinitions is stored
within each division. This flag is necessary to allow divisions to determine the

partition of its selector immediately.

After initializing the new division D, a reference to it is stored for every dependent

class of it.
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4.3.3.1. An ICP example

Figure 14 displays 6 inheritance graphs representing differing stages of selector defini-
tion. The first graph has no behavior defined for any of its classes, the second has selector b
defined for class B, and so on. Below a step by step execution of the ICP algorithm using this
figure. The example has been designed to demonstrate all of the recoloring code within the
algorithm. Due to the complexity involved in the full algorithm, the reader is referred to
[HS93] for a complete discussion of both recoloring and repartitioning.

When defining b within B the ICP algorithm indicates that a new division should be
made, whose divisionSelector is b and whose definingClass is B. The selector and defining
class uniquely identify a division, thus in the example below divisions will be denoted by
selector:className. For example, the newly created division is denoted b:B.

Since the selector b is unique in the environment, it is specific. According to ICP, this
implies that the associated color of b can be any color free for the dependentClasses(b:B).
Since dependentClasses(b:B) = { B }, and no colors currently exist in the environment, color
1 is free and can be used.

After setting the color of b to 1, the algorithm specifies that for C €
dependentClasses(D), the cache-table entry at color 1 and class C should store the division

b:B.

Color[|A}] B {C|D
1 [QlbBiQ]|Q

Table 11 ;: CacheTable after b:B

When defining ¢ within D, the same code is used as for b above. Since

dependentClasses(c:D) = {D} and color 1 is free for D, it can be used to store ¢ as well as b.

Colr | A| B |C| D
1 QB | Q] cD

Table 12 : CacheTable after c:D
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When defining b in C, new code within the ICP algorithm is encountered. Division b:C
is created by making an new instance of MSDivision and associating selector b and
definingClass C with it. Since the division is not specific, ICP states that the current division
stored at class C and the color associated with b (namely color 1) should be obtained. From
Table 12 it can be seen that E = Q. Since E is an empty division (denoted here by £2), its
divisionDefiningClass is not equal to C. The algorithm skips the MoveSelector procedure
call because E is empty. Since superDefined(Q) is false, a check is made to see if the inter-
section of dependentClasses(b:C) and classesUsingColor(1) is empty. The first set is {C, D},
the second set is {B, D) and the intersection is {D}, which isn’t empty. Hence, let G =
classesUsingColor(1) w dependentClasses(b:C) = { B, C, D}. Choose any color from
colorsFreeFor(G) = { 2, 3, ... }. Set color(S) = 2. Next, move the divisions associated with
all classes defining S from the old color to the new color. Thus, division b:B is moved from
zow 1to row 2. After the partition updating information, the final part of the algorithm stores
the new division D into the appropriate cache-table locations, namely row 2, in columns for

class C and class D.

Color [A|[ B | C [ D
1 || ol |Q |[ceD
2 “ Qi bB|bC | bC

Table 13 : CacheTable after b:C

When defining a in C, parition type is specific and dependentClasses(Div) = {C, D}.
Note that colorsFreeFor(dependentClasses(Div)) = (3,4, ..}, so since color(S) = 1 is not in
this set, we pick a new color, say color(S) = 3. The division is stored into C and D as

required.
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Color{{ A| B C D
1 QB | Q cD
2 Q]bB|bC|bC
3 QlQ aC | aC

Table 14 : CacheTable after a:C

Finally, when defining ain A, E = Q, superDefined(E) is false, dependentClasses(D) N
classesUsingColor(3) is (C, D}, G = ( A, B, C, D}, colorsFreeFor(G) = {3,4,.. })sowe

keep color(S) = S. The dependent classes of a:A are {B].

Color || A B C D

1 Q Q Q cD
2 Q bB | bC | b:C
3 aA | aA | aC | aC

Table 15 : CacheTable after a:A

In this example, a in A is partition type declared, a in C is partition type determined, b in
B is separate, b in C is separate, and ¢ in D is specific. If a were defined in D, a in C would
become internal, and a in D would be determined.

For a complete discussion of the algorithm, including the incremental partitioning infor-

mation, the interested reader is referred to [HS93].

4.3.3.2. Using Partition Types to Avoid Method Dispatch

Within the ICP algorithm, the redefined André-Royer partition type has been separated
into two partitions. For André-Royer, the definition was : S is redefined if S is in
completeBehaviour(C). In MS, though, for a class C which redefines S, a distinction is made
between whether the selector S is redefined further in subBehaviour or not. The importance
of this distinction will be seen later. Thus, instead of redefined, the partition types internal
and determined have been defined in Table 10.

There are a variety of times in which no run-time lookup is needed. If the receiver of the
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message is self or a literal, the class is known, and thus the method associated with any selec-
tor is known. Furthermore, if any selector has partition type specific, no lookup is needed,
since this partition type implies that there is only one class implementing the selector.

The true use for partitions, however, comes with static typing. If MS were extended to
provide static typing, more runtime lookup can be avoided. Suppose each variable, argument
and message return specifies at least the root class of the tree of the possible classes of the
expected object values. Then selectors with partition type separate will also be uniquely
defined. If variables and methods are typed more finely, to some set of specific class types,
then if, during a message send, the selector for all of these classes has partition type ’deter-
mined’, no runtime lookup is required.

Given this, the rationale behind the design of the MSDivision object becomes apparent,
given a MSDivision, the partition type of its associated selector can be determined immedi-
ately. If the selector has only one defining class, it has partition type specific (Note that deter-
mining if a selector is specific does not rely on the MSDivision at all). Otherwise, if
superDefined(D) is true, the selector is partition type internal or determined, depending on
whether nonDependents(D) is non-empty or empty respectively. Finally, if superDefined(D)
is false, the selector is partition type declared or separate, depending on whether
nonDependents(D) is non-empty or empty.

Figure 15 shows a small inheritance graph based on the graph from [AR92], but with an
inheritance exception added. The exception occurs by renaming the o message to g in class A

(denoted o ->a). Table 16 shows the results of coloring this graph using the ICP algorithm.
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6 Q Q Q Q Q D | 4D db Q Q Q da:D

Table 16 : An ICP generated coloring for the inheritance graph of Figure 15

To test the algorithm on real graphs, we developed an ST-80 to MS conversion program.
We are translating the Collection classes and modifying them to reflect the multiple inkeri-
tance class re-factorization developed by {C0092]. So far, we have translated and re-factored
the ST-80 collection classes: Collection, SequenceableCollection and Set to the MS classes:

Collection, IndexedCollection, SequenceableCollection and Set. The ICP algorithm gen-

erated 49 colors for the 90 selectors.
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4.4. Space Efficiency (Tail Removal)

There are several ways to reduce the run-time space requirements for cache table
dispatch. These reductions are often obtained by increasing compile-time space requirements
which in most cases is not disadvantageous. Suppose the basic cache-table has size N
(colors) x M (classes). Let n be the color index of the last non-empty selector in a class
column, m. The entries from row index n+1 to N are called the tail of column m and this tail
can be discarded. Therefore the cache-table can be implemented as an array of columns of
variable size.

Note that the specific color associated with a group of selectors is not important; only
that the selectors in the group have the same color. Thus, entire rows of the cache-table can
be swapped. To optimize the size of the cache table, rows should be swapped to maximize the

sum of the tail sizes.

4.5. The Method Dispatch Algorithms
Appendix B contains the code executed at run-time for the ICP method dispatch algo-
rithm and for the ST80 lookup dispatch algorithm. The information required (at 1un-time) to

perform method dispatch in each case is listed in Table 17

Cache Table Approach Class Look-up Approach
Divisions a selector and a method amethod and a visibility (public/private)
Selectors | aunique index and a color index a unique index
Classes an index an index and a dictionary of divisions

Table 17 : Method dispatch information

The current implementation uses the table approach with separate cache-tables for class
and instance selectors with tails removed. For table dispatch, the appropriate selector index
and cache-table are determined at run-time by determining whether the receiver is a class or
instance object. Next, the color/class entry in the appropriate table is obtained. This entry is
a division, but its method is not necessarily the correct one. Two exceptional conditions must

be checked for; the division may be empty or the division may define a selector that is
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different than the one in question. In either case, the desired selector is not understood by the
receiver, and an appropriate error message is generated. If neither of these cases occur, the
division specifies the method to execute.

For class look-up dispatch, the execute algorithm simply asks for a division by calling
lookup_dispatch. If the resulting division is empty, a messageNotUnderstood message is
sent, otherwise, the associated method is executed and returned as the result.

The lookup_dispatch algorithm is recursive. It needs a receiver, a current class, and the
instance and class selectors. The current class is initially the class of the receiver, but may
change in recursive calls. The behavior type of the receiver (instance or class object) is used
to obtain the appropriate selector index, as well the proper method dictionary from the current
class. Next, the specified selector is searched for in the method dictionary. Even if the selec-
tor exists, a test must be made o determine whether the method is private. If it is, the method
is only applicable if the class of the receive: is equal to the current class (definition of private
in MS). If a method is found and is legal, its division is returned. Otherwise, a recursive call
must be made to lookup_dispatch, with the receiver and selectors remaining the same, but
with the current class bring changed to one of the superclasses of the current ciass. If the
result of this recursive call is an empty division, it is attempted again on another superclass,
until a non-empty division is found, or all super classes have been searched. The resulting
division is returnid as the result of the algorithm, even if it is empty.

Table 18 contains comparative performance results for the class look-up and coloring
dispatch algorithms, based on illustrative code that will riot occur in practice. Subclasses of
the array class were created at depths of: 1, 5, 10, 15 and 19. Note that although a trce depth
of 19 is unrealistic, a class having four superclasses which are each 5 classes removed from a
root is not nearly as unrealistic, and from the perspective of look-up dispatch is the same as 2
depth of 20.

The same array initialization message was sent to instances of the leaf node classes of

these inheritance chains and the time was recorded. The array initialization code is given in
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Appendix A for the subclass at depth 1. In every case, an array size of 50 and iteration size of

5000 were used so that a total of 250,000 dispatches were done. The trials were done on a

SPARC ELC and the average of 10 trials was used in each case.

Depth
1 | 19,400 | 24,500 | 26%
5 | 10400 | 24,500 | 135%
10 | 5720 | 24,500 | 328%
15 | 3,750 | 24,500 | 553%
19 | 2980 | 24,500 | 722%

Table 18 : Method dispatch comparison
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Chapter 5 : C-Code Generation

As discussed in Chapter 4 the object-oriented approach to parsing is substantially dif-
ferent than the convential approach. Here, the node classes representing synactic and execut-
able fragments of MS programs each have behavior to parse themselves, executes themselves
and generate C-code for themselves. This chapter describes the C data-structures used and
explains how the parse nodes within the PE generate stand-alone C code.

The list of goals described in Chapter 4 is applicable to the C code as well as the PE.
The primary goal is efficiency, but implementation flexibility is also important. In order to
provide for such flexibility without reducing efficiency, the code generated by node classes
consists entirely of macros. Macros provide a level of abstraction, allowing different imple-
mentations of the macros to exist so as to determine the effects of such implementations.
Furthermore, the reliance on macros implies that the code generated by the PE is not actually
C-code. Since the macros discussed below are defined in C-code, we have been refering to
the C-code implementation. However, the macros can just as well be defined to expand into
assembler langaage or any other language of choice. Finally, using macros makes the gen-
erated code much more readable.

Within the current implementation there are two levels of macro definitions: cgen-
macros and access-macros. The nodz classes generate text representing cgen-macros which
expand out into artibrarily complex C code. However, because implementation flexibility is a
priority, some mechanism for testing differing implementations of various data-structures is
desirable. To provide such a mechanism, access to all data-structures (both retrieval and
storage) is obtained by using access-macros. Thus, in the C-code written to define cgen-
macros, access-macros are used whenever information is required from a data-structure or
needs to be added to a data-structure. For example, there are many access-macros for
accessing/modifying the C language data-structure representing an MSObject, such as

OBJ_CLASS(obj) or OBJ_NAMED_AT(obj,i). The first one returns the class object of the object
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obj, and the second one returns the ith named instance variable within object obyj.
Before discussing the code generated by individual node classes within the PE, the data-
structures and auxillary code needed to implement an object-oriented language in C are

described.

§.1. C-Structures

Five primary data-structures exist in the C-code implementation: MSObject, MSPEnv,

MSModule, CacheTable, and MSContext.

5.1.1. MSObject

The most important C data structure, called an MSObject, is used to represent an MS
object. For efficiency reasons, objects are dynamically allocated arrays. In this section,
stored behaviors will be referred to as instance variables, where each instance variable is
pamed, indexed or byte-indexed. Each object aiso stores a flag denoting whether the object is
the result of an explicit retum from a method, a flag denotizg whether the object is immutable
or not, the position within the object of the first indewexd instance variable and first byte
indexed instance variable, and the size of the object. Indexed and byte indexed instance vari-
ables are implemented as arrays, whose first element is the MS integer object denoting the

size of the variabie, and whose successive elements are the values of the variable.

Type Specification | Description

word 0 class_pir Address of object representing the class of this object.
word 1 : Bit0 return_flag If 1, this is a retum object.

word 1 : Bit1 literal_flag If 1, this is a literal object, and is immutable

word 1 :Bit8-15 [ obj_size Size in words of this object (maximum is 256)

word 1 : Bit 16-23 | first_idx Index within MSObject array of first byte indexed variable
word 1 : Bit 24-31 | first_byteldx | Index within MSObject array of first indexed variable
Word 2 state Start of state information,

Table 19 : MSObject array
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5.1.2. Classes as MSObjects

For uniformity, MS class objects are stored as MSObjects. Since class objects require

space to store a variety of information not needed to be stored by instance objects, this space

is added after the first two words and before the start of the class named instance variable

state, and is considered hidden state. Such information includes the number of named,

indexed and byte indexed variables for instances and classes, and the unique intc ot index

representing the class.

5.1.3. MSPEnv

The entire execution environment of a program is stored in an MSPEnv structure. Each

program has one global variable of this type, accessible within any file in the program.

Besides fields to provide for memory allocation and diagnostic printing, the MSPEnv struc-

ture has an array of modules, a context stack, a list of all literals statically specified in the pro-

gram, and cache tables for instance and class selectors.

Type Specification Description
MSObject* | classfMAXIMUM_CLASS_NUMBER] Only needed for si80_dispatch
MSModule modulefMAXIMUM_MODULE_NUMBER] | All modules in program
MSObject * contextMAXIMUM_CONTEXT_DEPTH] Stack representation of dynamic link
MSObject * literalContext used by literal blocks
MSObiject ** | literals array of literal MSObjects specified statically within program
CacheTable | instTable Table for methods
CacheTable | classTable Table for class methods
MSObject* | hardcode[NUM_HARDCODE]
int* InstSelectorColor Array mapping instance selector index to color
im* ClassSelectorColor Array mapping class selector index to color
char ** ClassName Array mapping class index to class name - diagnostics only
Memory * G_memory[MEMORY_MAX] memory for program - garbage collection facility T
Table 20 : MSPEnv structure
5.1.4. MSModule

A module is represented by an MSModule structure that contains a context and an

integer representing the index of the module within the environment’s module array.
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Type Specification | Description
MSObject * | context instance of class MSContext
int modulelndex | index within MSPEnv module array of this module

Table 21 : MSModule structure

5.1.5. CacheTable

The entries in the cache tables store three values : a C function address, the index of the
selector associated with the C function, and a C string representing the function name. The C
string is needed only for diagnostic purposes and can be omitted for space optimization (see
Section 4.4). In addition, since the tail-removal space optimization technique has been imple-
mented, the cachetable stores information associated with each column, namely the index of
the last non-empty cache table entry within the column. If a particular color/class entry does
not have a value, the function address index and function name index are NULL, and the

selector index is -1.

Type Specification | Description
int numColors
CacheRow * | colors Array of substructures representing a single row (color)

Table 22 : CacheTable structure

Type Specification | Description

int numClass size of the three parallel arrays belows

MSFuncPur * | functions Amay of function addresses ‘

ime* selectorindex | Array specifying selector index at a given class index

char ** functionName | Array specifying function name at given class index (diagnostics)

Table 23 : CacheRow structure

5.1.6. MSContext

There are two useful ways in which contexts can be implemented. From a object-
oriented perspective, the best implementation is to define a Context class within MS, and
have contexts be instances of this class (the meta-obje-st approach). This would allow users to
manipulate the contexts during execution — a useful feature during debugging. On the other

hand, from an efficiency perspective, a simple array representing the context is desirable
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(dedicated-structure approach). To study the relative advantages of both implementations,
access to contexts are provided by access-macros, and both implementations are provided.

Any implementation of contexts must provide a facility for recording the static link of
the current context, where the static link is itself a context. Since contexts exist only for
modules and blocks, and blocks are always associated with a module, every block, no matter
how deeply nested, has the concept of its associated module context. Finally, contexts must
also record the size of the context they are storing, as well as providing space and efficient
accessing mechanisms (i.e. an array) for elements. Each element is a MSObject, and the
index of the array is the offset of that element within the context.

The issue of meta-object representation of implementation code requires more study to
getermine its advantages and disadvantages. It is possible to implement the MSPEnv struc-
ture as a MSObject, thus allowing programs to view the entire run-time environment, but this
requires that every component of the MSPEnv structure also be an MSObject. Preliminary
analysis does not reveal any unsurmountable problems with this approach, and thus future
versions of the implementation can be expected to provide this MSObject representation of all
primary C structures.

A static context chain consists of a context and its recursive static links. To obtain a
particular object from a static context chain, a level and an offset are required. The level is an
integer relative to the current context specifying how many times to follow the static link.
For a level of 0, this implies that the context to use is the current one. For a level of n, the
static link of the current context is followed "n’ times, and the resulting context is used. Once
the appropriate context has been obtained, the "offset’ is used to obtain the correct object.

Each context is part of a static context chain specifying the nesting of the associated
blocks. The end of all static context chains is a module context (module contexts do not have
a static link). In addition to this static context chain, there is a dynamic context chain,
representing what block is currently being executed, and thus, representing the current con-

text. When a block is executed, its context is added to the front of this dynamic chain, and
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when the block has finished execution, the context is removed from the dynamic context
chain. Within the current implementation, the dynamic context chain is represented as a stack

in MSPEnv.

5.1.7. State

Although indexed and byte indexed state can be implemented in a variety of ways, the
most efficient is a simply array whose first index stores an MSObject of class Integer
representing the size, and whose succesive indicies store the corresponding values of the
indexed state. Note that the size is stored as an MSObject of class integer for efficiency rea-
sons — MS programs can ask for this size, and such a request must return an MSObject. By

storing the object explicitly, no run-time inefficiency is introduced creating one.

5.2. Primitive C Functions

MS methods are mapped to C functions in the C-code implementation. Generated func-
tions for MS methods have a common argument list which is also shared by all primitive C
functions. Thus, the first argument is the receiver rec of type MSObject *, the second argu-
ment is an array of arguments args, where each argument is an MSObject * type, and thus the
array is an MSObject ** type. Finally, the third argument is an integer size representing the
size of the argument array. The only constraints put on primitive functions is that they return
MSObject * results. Primitives should always use macros to access data-structures. Further-

more, many macros have been defined to make primitive writing easier.

5.2.1. undefinedMethod and abstractMethod

Modular Smalltalk has the concept of undefined and abstract methods, both of which do
not have user specified executable code associated with them. Any method defined as such
will end up calling the primitive undefinedMethod or abstractMethod respectively. The
language specification does not give details on how to handle such circumstances. The
current versions print out a diagnostic error explaining that execution of an undefined or

abstract method was attempted, and stops execution.
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5.2.2. msBasicNew
The msBasicNew primitive function has a class object as an argument and is used to
create a new instance object of that class, and to initialize the state of this new object. Named

instance variables are initialized to nil and the size of indexed instance variables is set to zero.

5.2.3. Required Class primitives
A variety of primitives mast be implemented for the required classes in order to give the
language some functionality. These include the value and value: messages for Closures,

accessing methods for arrays, arithmetic operations for integers and floats, etc.

5.3. Library Functions
In addition to the C generated code from the ST-80 PE and any C primitives needed,
there is surprisingly little ad:*itional code needed in order to provide for an executable MS

program. The following sections describe the library functions required.

5.3.1. execute

One C function is responsible for implementing the method dispatch at run-time. Each
time a message-sendloccurs, execute is called with arguments specifying a receiver, message
arguments, class index, instance selector index and class selector index. The receiver is used
to determine if it is a instance or class object, and the appropriate color for the corresponding
selector index is obtained and used along with the class index to obtain an index into the
proper cachetable. Appendix B presents this function and provides a small discussion about

it.

5.3.2. makeClass

The makeClass function is used to create a new class object. Its arguments consist of :
an instance and class dictionary of methods and associated visibilities (needed only if a
ST8O-like dispatch mechanism is used), a set of superclass indices, integers for number of

variables (of all types), and finally, an integer class index. These arguments are uset to ini-
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tialize the default elements of the newly created class object.

This is not a primitive function because the language specification states that class
descriptions are not objects, and thus new classes cannot be made during execution. Thus, the
execution of a program consists of two separate parts. The first part initializes the environ-
ment, which includes creating all classes specified within the program, as well as the cache
tables, et.al. The second part involves the actual execution of the modules. During the execu-

tion of this second part, new classes cannot be made.

5.3.3. makeMSPEnv

This routine initializes the environment. This consists of assigning the size variables
classNum, moduleNum, contextSize and numLiterals the value 0, initializing diagnostics and
memory management variables, parsing any flags from the command line, and creating the
required classes and instances. All of these things are done in the same way no matter what
program is run. Finally, the program specific environment information is obtained by calling
the function init_mspenv, which is generated from ST80 code every time a new program is
made. This function in turn initializes the selector index to color maps and the class index to
class name map, creates and fills in the instance and class cache tables, executes the kemel

module and creates any literal MSObjects specified within the program.

5.4. Code Generation

The PE class MSPEnv controls the generation of C-code. Upon receiving a request to
generate C-code for a specific module (which defines a program), a sequence of actions
occurs. First, the specified module and all modules recursively imported by it are collected.
This collection will be referred to as the minimal module set. Next, a new cache table is
created and all of the collected modules are parsed to initialize the new cache table. The
result is a cache table which defines only those classes and selectors needed for the specified
program (i.e. a minimal cache-table). The PE then generates a program file in C which ini-

tializes the C cache-table structure with the required information. Finally, the PE asks each
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module node class within the minimal module set to generate C-code for itself. Each module
in turn generates C-macros explicitly, and implicitly by asking component node classes to
generate C code for themselves. The result of this C generation is a source file for general
program information (the main function and the cache table initialization), an associated
header file, and a source file and header file for every module in the minimal module set.

Below, the process described above is discussed in more detail.

5.4.1. Program Code Generation

A C source file is generated to hold the program functions. This includes the main func-
tion for the program, and the init_mspenv function mentioned previously. The name of this
file is the concatentation of the main module name and the string "_program.c". Thus, for the
example program, the file is named "Numbers_program.c".

The main program consists of macro calls to initialize global variables, initialize the
MSPEnv, and executes the modules in the minimal module set in the correct order, such that
a module is executed before it is imported by another module. The determination of order is
done by the PE during code generation.

Figure 16 shows an algorithmic description of what the code generated for the

init_mspenv function does.

INIT_DEF()
initialize instance selector index to color static array
initialize class selector index to color static array
initialize class index to class name static array

store selector index to color maps in MS environment structure
store class index to class name map in MS environment structure

Make instance cache table
Make class cache table

Make all literals specified in program
INIT ENIX):

Figure 16 : Algorithmic description of init_mspenv function

Note that the last thing the function does is make all literals specified in the program.

The MS specification states that literals are immutable. This implies that it is possible
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(although not a requirement) that literals be unique. The current version takes this approach,
and thus each literal is only created once and stored as part of the environment. Note that
literals, being syntactic constructs, are identifiable at compile-time, so that all such literals
can be created before execution of modules begins. In other words, the literals found in a pro-
gram are identifiable from the MS program source code. Unique literals are discussed in

more detail in Chapter 4.

5.4.2. Module Code Generation

All code needed to execute a module is placed in a C file, whose name is formed by
appending a ".c" to the string representing the name of the module within the MS program.
For example the C file storing the code for module Numbers is named Numbers.c.

Each module contains all the code needed to execute a module and all executable items
declared within a module. C functions are used to execute class declarations, methods, literal
blocks and method expressions.

A module is executed by a function whose name is formed by concentating the name of
the module with "Module". Thus, for module Numbers, the name of the C function that exe-
cutes it is NumbersModule.

Modules exist only within the environment (a MSPEnv C-structure), and the execution
of a module results in a context that is inserted into the module array of the environment. The
values of the context are MSObject * arrays, consisting of instances or classes, obtained via
class definitions, modules expressions, or import statements. Note that the current implemen-
tation does not implement class extensions. Explicit module imports are treated as short-hand

for implicit importation of every binding within the specified module.

MODULE_DEF( NumbersModulc )
ASSIGN_MODULE_SPACE( 3, “NumbersModule" );

ASSIGN_MODULE_IMPORT(0, 1,0);

ASSIGN | “MODULE CLASS(l ComplexClass );

ASSIGN _| “MODULE_EXPRESSION( 2, NumbersModule_E1 );
MODULE END():

Figure 17 : Example Code Generated for Module Function




-88-

5.4.3. Class Definition Code Generation

C code generated for creating classes is placed in the module file to which the class
belongs. The name of class functions consists of concentating the name of the class within
the MS program with the string "Class". Thus, for a class called Complex within a module,
the associated C function name is ComplexClass. Unless the ST80 dispatch miechanism is to
be used, the only code generated within the C-function for classes is a macro calling the
makeClass library function with appropriate arguments specifying ihe number of different
types of variables. However, if a ST80 lookup mechanism is to be provided, code to create
instance and class method dictionaries must also be specified. Figure 18 gives an example of

generated C-code.

CLASSDEF_VARS( "ComplexClass”, 5, 1 );
CLASSDEF_MAKE(2,0,0,0,0,0,23 );
CLASSDEF END();

Figure 18 : Example Code Generated for Class Function

lTLASSDEF HEADER( ComplexClass )

5.4.4. Method Code Generation

Method definitions are placed in the module C file in which they are defined. The code
for them occurs after the code for their associated class. Method function names have a spe-
cial format. Since C functions are not allowed to have ’:* character or operator characters
within them, a mechanism for generating an equivalent name for an MS program selector was
used. Furthermore, since different classes can define the same selector, the name of the selec-
tor is not sufficient to uniquely identify the associated C function. Thus, all C function names
start with the name of the class to which the current method belongs, followed by a "_", fol-
lowed by the converted form of the selector. As examples, assuming the operator character
’+' has been mapped to 'K’ and the defining class is Complex, the C function names for
instance selectors real, +, and class selector real:imag: are Complex_real,
Complex_binary_K, and Complex_class_realK_imagK respectively.

The code generated for methods depends on the type of method. For undefined and

abstract methods, the name of the C-function is renamed (using the C #define preprocessor
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command) to the primitive functions undefinedMethod and abstractMerhod respectively. For
primitive methods, the function is renamed to the name of the associated C primitive. The
ST80 PE maintains implementations for all primitives, as well as the C function name of the
primitive when generated in C. It is the responsibility of the programmer who makes MS
primitives in the ST-80 environment to insure that the associated C function name is correctly
specified. For aliased methods, the code generated is simply a preprocess define mapping the
C function name to the aliased name specified.

The code for state methods depends on the kind. An accessing state method returns the
value of the specified variable (or the size, in the case of an indexed size access state method).
An assignment state method assigns a new value to the specified variable (or changes the size
of the variahle in the case of an indexed size assignment state method), and return the new
value.

The code for block method definitions and for literals blocks within block methods is the
same, both represented by individual C functions. The code generated first defines the func-
tion and three standard arguments (rec, args and size), and declares special local variables.
The result (type MSObject *) variable stores the return value of the method. The sub-
BlockResult (type MSObject *) variable stores the result of the last message send executed
within the method, and will be described later. The cntxt variable (type MSContext *)
represents the context of this method. After declaring these three variables, the context is ini-
tialized and pushed onto the dynamic context stack. How the context is initialized depends on
whether the function is implementing a block method or a literal block. Note that even
though literal blocks do not have names, and thus cannot be called directly, they can still exist
on the dynamic stack more than once at the same time because the block method in which
they reside can be called more than once. The static link of a block method’s context is set to
the context of the module in which the block method is defined. The static link of literal
block contexts will be discussed later along with the concept of closures.

After the set-up macro code above, C code is generated for each statement within the
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method. The code generated for each type of statement is discussed below. An example of

generated C code for a entire method is given in Figure 19.

BLOCKDEF HEADER( Complex_binary K /* + %)
BLOCKDEF_VARS( “Complex_binery K /*+ */",1,1,3, BLOCK_IS_METHOD )

MESS_SEND(2 );
MESS_REC() = CNTXT_OFFSET(CC,1); /* CNTXT(-1,1) %/
SEND_MESSAGE(2,-1,2); /* reakimag: */

MESS_END( T );

CNTXT_OFFSET( CC, 2) = MESS_RESULT();

BLOCK _RESULT() = CNTXT_OFFSET(CC,2);, /* UNTXT(0,2) */
BLOCKDEF_EXPLICIi’ RETURN( BLOCK_IS_METHOD :
BLOCKDEF ENIX);

Figure 19 : Example Code Generated for Block Method

5.4.5. Code Generation for Variables, Self and Literals

Code generated for variables is a macro accessing the proper level and offset within the
current conter  The pseudo variable self is always stored as the object at offset 0 of all con-
texts, so the context macro, with a level and offset of 0, can be used to obtain the proper
(receiver) object. Code for a literal consists of a macro accessing a specific index in the literal

hash table.

5.4.6. Code Generation for Literal blocks

Literal blocks within a parent block are represented by another C function This is always
necessary when the literal blocks are arguments to a message send, since the block is not
necessarily executed within the method in which it syntactically appears. Note that it is pos-
sible to generate C code for non-argument literal blocks in-line within the function of the
parent block, but the current implementation does not do this.

For literal blocks whose parent is a block method, the name of the function implement-
ing the literal block consists of the name of the block method function, followed by " _block "
followed by an integer, starting at 1, and incrementing by one for every literal block at the
same level. Thus, if there are two literal blocks within a block method whose function name
is test, then the names of the functions implementing the two literal blocks are test_block_1"

and rest_block_2". The order of the numbers is specified by the syntactic order of the blocks
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within the program.

For literal blocks whose parent is a literal block, the name of the function is the name of
the parent block function, followed by "_", followed by an integer starting at 1, with the same
semantics as above.

The code generated within a parent block when a literal block is encountered consists of
a macro to create a new closure object. A closure is an MSObject instance of the MS class
Closure, consisting of a function address and a context. The current implementation does not

handle literal blocks that are not arguments to a message send.

5.4.7. Code Generation for Message Sends

An MSMessageSend parse node generates C-code that uses C-subblocks. Subblocks are
required because the arguments to message sends can themselves be arbitrarily complex mes-
sage sends. Certain variables must be maintained during the execution of the current message
send, and it is desirable if every message send uses a consistent format (to rnake code genera-
tion possible). The C language has subblocks, in which variables can be defined and assigned
values, such that if the variable existed in an outer scope, its value within the subblock does
not affect the value it had outside the subblock. Although access to the variable in the outer
block is not possible from within the subblock (they both have the same name, and any refer-
ence to that name references the variable associated with the current block), this does not pose
a problem for our purposes, since nested message sends do not need to know any information
of messages sends above them. This subblock facility thus provides the ability to nest blocks
arbitrarily deeply, providing for arbitrarily deep message send nesting.

With this in mind, C code generation for messages sends proceeds as follows. A macro
is generated to create a subblock and &2 ine two local variables, rec (an MSObject *) and args
(array of MSObject *). The args variable is initialized to a dynamically created array whose
size equals the number of arguments to the message send. Macros to assign appropriate argu-
ment objects to the args array and to the receiver are then generated. Note that the code so

generated may be arbitrarily complex, involving many nested message sends, assignments,
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variable accesées, etc. After the args and rec variables have been assigned values, C code is
generated to actually perform the message send. The execute function is called which
accesses the cache table, finds the desired method, executes it and returns a result object,
which is assigned to the variable subBlockResult. Remember that subBlockResult was a vari-
able defined at the beginning of the C function for the block in question. Finally, a macro to
check for explicit returns and to close the subblock is generated.

In order to understand the code generated for an arbitrarily complex message send, in
which arguments are also message sends, it is best to first look at the MS source code and
resulting C code generated for a simply message send whose arguments do not perform mes-

sage sends.

r
For an MS message send like :

self at: tput: 3

Where it is assumed that the message occured within a literal block
within a block method, that the literal block has one temporaiy variable
called °t’, aid that there are at least 2 literals in the program,
with the MSObject representing the integer literal *3° being stored
in index 1 of the MS.literal array.

*

MESS_SEND(2 );
MESS_ARG( 0 ) = CNTXT_OFFSET(CC,0); /* CNTXT (0,0) */
MESS_ARG(1 )= LITERAL AT INDEX(1);, /*3%
MESS_REC() = CNTXT OFFSEI'( CN(CC),0); /* CNTXT(1,0) */
SEND_MESSAGE(2, 23,1 ); /* auput: */

MESS END(0);

Figure 20 : Example Code Generated for Simple Message Send

In the example, the MESS_SEND( numArgs ) macro specifies that a message send with two argu-
ments is coming. The rec and args variable are defined in a subblock, and the args array is
dynamically allocated. Next, the args array is initialized. Index 0 is initialized to the value of
the variable whose level is 0, and whose offset is 0. This refers to the variable ’t’. Index 1 is
assigned the MSObject representing the literal 3, since it is assigned the value of index 1 of
the environment literal array. Next, the rec variable is assigned. The C macro CNTXT_OFFSET(
CN(CC), 0 ) specifies that the variable with level 1 and offset 0 is desired (the level is deter-

mined by counting the number of cN) macros in the expression). This code says to obtain the
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siatic link of the current context and obtain offset 0 from the data array of this context. Since
level 1 for this example refers to the block method, offset 0 is the pseudo variable "self’. The
SEND_MESSAGE executes the execute function, which requires a receiver (rec), an array of argu-
ments (args), the number of args (2), the instance selector index of desired message to send
(23), and the class selector index of desired message to send (-1). The result of calling the
function is assigned to the variable suhBlockResult. Finally, the MESS_END() macro frees the
local args array, checks to see if the resulit of the message send is a return object. Since,
according to the example code, it is impossible for it to be a return object, nothing more is
done. The macro generates a close brace to finish the subblock.

Since the result of a message send is stored in the variable subBlockResult, it is possible
to assign an argument index to the result of a message send by first generating the code for
the sub message send, then assigning the appropriate argument index to the subBlockResult

variables. The macro used to access the subBlockResult variable is MESS_RESULT().

,‘
For an MS message send like :

0to: t- 1 do: [ "anything” ]

Where the message send occurs in & literal block inside a block method,
t is the first variable declared in the block method, and the literal
array contains an MSobject representing °0’ atindex 0 and *1' at index 1.
*/
MESS_SEND(2 ),
MESS_SENIX( 1 );
MESS_ARG(0)=LITERAL AT INDEX(1), /1%
MESS_REC() = CNTXT_OFFSET(CN(CC),1);  CNTXT(1.1) ¢/
SEND MESSAGB( 1,16,-1) /*-%
MESS_ENIX 0 );
MESS_ARG( 0 ) = MESS_RESULT();
ASSIGN NEW CLDSURB( MESS_ARG( 1), A_initializeK _iterationsK_block_1, 1,CC );
MESS_REC() = LITERAL_AT INDEX(0), /* 0%/
SEND_MESSAGE(2, 19, -1 ) /* 10:do: */
MESS END(0):

Figure 21 : Example Code Generated for Compiex Message Send

In the example above, code to define a subblock and allocate a 2 index args array and
define a rec variable is specified. Since the first argument to the message send is itself a mes-
sage send, a subblock is made within the first subblock which allocates a 1 index args array

and defines a rec variable. Index O of this args array is set to the literal at index 1 of the glo-



.94.

bal literal array. The rec variable is set to a variable reference which has level 1 and offset 1.
The message is executed, the args awray is freed and the submessage send is finished. Since
the subsubblock has closed, the values of the args and rec variable are back to what they were
before the subsubblock was defined (i.e. the args array is of size 2). Index O of this args array
is set to the result of the sub message send. Index 1 is set to a closure representing a literal
block. ‘i":: v+ variable is set to zhe literal object '0’, and this message is sent of for execu-

tion. - . - _the args array is freed and the message send is finished.

5.4.8. Code Generation for Assignments and Returns

Since the left hand side of an assignment is always a variable reference, it will always be
represented in C as variable access code a. described above. The right hand side will be
represented by one of the macros already described. An assignment cannot have an MSCRe-
turn as its expression since the compiler would have generated an error.

An MSReturn parse node must generate code to return immediately whatever its associ-
ated expression is. It generates an C code assignment of its associated expression to the result
variable, then generates a macro which sets the explicit return flag and immediately returns

from the C function.

/* For the MS code

“self
. The following is generated
B,wCK_RESULT() = BLOCK _SELF();
| BLOCKDEF EXPLICIT RETURN(BLOCK METHOD ); |

Figure 22 : Example Code Generated for Explicit Return

5.5. Optimizations
To increase the efficiency of the compiler version of a MS program, various optimiza-

tions are possible. Discussed below are two primary areas in which optimization has promise.
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§.5.1. Method Dispatch

At the time that C-Code generation occurs, the ST-80 MS Environment knows which
selectors are uniquely defined. These are the selectors whose divisions are specific or whose
receiver is a literal or self. In these cases, message sends can be optimized - the execute func-
tion does not need to be called to obtain the function. Instead, where the execute would have
occurred, a direct call to the appropriate function can be made. That is, a macro can be gen-
erated that pushes the appropriate arguments onto the stack and performs this direct call.

This optimization can be extended in the case of state accessing methods if self is the
receiver. In this case, no function call is needed at all — the code to access the desired vari-
able can be placed in-line where the message would have been called.

If static typing is added to the language, the amount of lockup required will also be
reduced, since more selectors will be uniquely defined. Even if the selecinr isn’t unique,
polyfnorphic in-line caches will be more efficient than look-up, provided that the number of

different methods is small enough.

§.5.2. Literal Blocks and Module Expressions.

Inefficiency exists whenever a function call is made. Currently, literal blocks are always
represented as independent C functions. However, if these literal blocks are not arguments to
a message send, and are instead stand-alone subblocks within a method, the code for them can
be imbedded directly within the code for the parent block. However, it is suspected that this
optimization will provide very [ittle speed-up unless the method in question is called many
times. Furthermore some complexity exists in implementing the generation this code in-line.

A related opiimization involves module expressions, which are also currently imple-
mented by dedicated functions. Code generated directly within the function for the module
would provide some improvement. However, even more so than for literal blocks, the

amount of speed improvement is questionable.
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Chapter 6 : Future Directions

6.1. Conclusions

This thesis presented a first implementation of Modular Smalltalk that validates two of
the language design goals: consistent execution semantics and efficient code execution We
intend to use this implementation to validate the other three design goals: increased program-
mer productivity through code reuse and code re-definition, design and implementation effi-
ciency for multiple programmer applications and simplicity for new users.

The implementation is an object-oriented one and illustrates the use of an object-
oriented approach to: parsing, program representation and code generation. The code genera-
tion is modalar and based on macros so it can be easily modified to support a variety of target
languages including C and assembly language. The efficient implementation includes a cache
table approach to method dispatch that uses extensions to the André-Royer incremental color-
ing algorithm. The new coloring algorithm includes support for optional static typing and we
are currently studying the effects of typing and multiple cache tables on dispatch efficiency.
Currently, we have only implemented a simple reference-counting storage manager. We
intend to incorporate a more efficient scavenging approach [UJ88] [WM89]. Our implemen-

tation will be available by anonymous ftp when the documentation is complete.

6.2. Future Directions

There are many different areas in which future research is planned.

6.2.1. Static Typing
One of the more important planned modifications to the language consists of introducing
optional static typing. The iC? dispatch algorithm maintains information which, when com-

bined with static typing, can reduce the amount of lookup needed to obtain methods. Because
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method lookup is such a large part of the efficiency issue, static typing should give good
results in providing more efficiency. Furthermore, more compile time error checking can be

performed.

6.2.2. Software Verifiability
As another extension to the language, providing mechanisms similar 1o Eiffel such as

pre and post conditions and assertions will provide for software verifiability.

6.2.3. Cache Tables

The current implementation uses one cache table for all instance behavior in the environ-
ment, and another for all class behavior in the environment. The advantages of this two table
approach over a single table approacil were discussed in Chapter 4, primarily involving space
savings.

If static typing exists in the language, the same type of space savings can also be had by
dividing each of the two cache tables into multiple tables, one table for each trce in the hierar-
chy forest.

More research on the relevant advantages and disadvantages of these approaches is
needed, both from an implementation complexity stand point, and a space efficiency one.

Note that all approaches will have very close to the same runtime execution efficiency.

6.2.4. Garbage Collection
The current implementation of the PE does not have any garbage collection, and for the
compiled code, a simple reference count garbage collector is used. In both cases, efficient

versions based on generational scavenging will be implemented.

6.2.5. MS Library and Automatic ST-MS Converter

During the creation of the language, an automatic Smalltalk to MS converter was writ-
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ten. This, coupled with small changes to the MS parser, provides for an efficient method of
obtaining MS code from Smalltalk code.

The current MS library consists of basic behavior for a Object class and its superclasses,
trivial behavior and appropriate state for the required classes, aud a partial implementation of
the Collection hierarchy, refactored to use multiple inheritance to its best advantage.

Future work will extend this library. The minimum acceptable library must have a

working collection hierarchy and I/O in the form of a Stream hiearchy.

6.2.6. STACC : Automated Parsing Framework and Generator

During the implementation of the parsing code, it was recognized that an automated
mechanism for doing the work would be relatively easy to create. The result is a generator of
node classes capable of forming an internal representation of any BNF specifiable language
[SH93]. This generator only requires augmented BNF grammar rules to describe the tokens
and grammar rules needed in order to generate all node classes needed. Additional behavior
can then be added to provide for execution, other-language generation, decompilation, etc.

The limit on the amount of behavior that can be automatically generated has not yet been
exhausted. For example, with minimal additional information, decompilation should be

automatable.

6.2.7. Self-Implementation

Having multiple inheritance during the implementation of the PE would have made the inter-
nal representation much cleaner. Creating the current PE, but written in MS, would provide
such a mechanism, and should be quite straightforward. However, there are distinct disad-
vantages — currently one can use all of the graphical debugging facilities of ST80. Self-
implementation would imply that many complex Smalltalk functions would have to be writ-

ten to provide the same graphical environment.
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Appendix A : BNF Syntax Reference

In the following BNF grammar rules, expressions enclosed in square brackets([...]) may
eecur zero or one times. Expressions enclosed in curly brackets({...}) may cccur zero or
more times. All characters or strings (i.e. literal tokens) of characters appearing in the
language are enclosed in single quotes (..."). Nonprinting ASCII characters are given by
using the associated C language backslash convention (i.e. for tab).

The following is a description of the actual token classes used in the PE.

>Integer< 1= [*-'] «digits> | <radix specifications> [’-'] <based digit> { <based digit>)
>LiteralSelector< := "#' <method selector>

>Floatc :={"."] <digits> <sub floating point>

>Character< := '$’ <printing character>

>Array< = #( (<literal>) °)’

>String< 1= ** { <dieral character> | <separator character> | *"quote™“quote"* | *** } *
>KeywordSelectorc  ::= <identifier> *:’ { <identifier> *:" )

>BinarySelector< := <operator character> {<operator character>)

>Declarer< = >

>VisPublic< 1= "(public)’

>VisPrivatec = "(private)’

>TypeVariable< := 'variable’

>TypeBinary< := ‘binary’

>Word< u= <letter> ( <letter> | <digit> )

Figure 23 : BNF Grammar Rules for Parse Tree Token Classes

The following is a description of the actual node classes used in the PE. An augmented
BNF grammar format provides all information necessary to automate the process of creating
all token classes, node classes and corresponding parsing behavior.

Within a rule, tokens are denoted by

>TokenName(state)<
and node classes are denoted by

<NodeName(state)<

The state referred to above is used by the automated code to determine which state
methods to use when adding a token/node instance to the current parsing node. This state is

not needed to understand the syntax of the MS language and can be ignored.
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<Module>
<Binding>

<ModExpr>
<ClassDefn>

<Behavior>
<StuteMethod>

<Method>

<AliasMethod>
<PrimitiveMethod>
<AbstractMethod>
<UndefMethod>
<Bloclo

<Assignment>
<MessageSend>

<Message>
<Expression>
<Literal>

= *{* ‘module’ [>String(name)<] {<Binding(addBinding)>) '}*
u= >Word(name)< [>VisAur(privacy)<] ‘->* (<Import(value)> | <ClassDefn(value)> |
<ModExpr(value)>)
1= *(* [ ‘import® >Word(bindingName)< ] ‘from* >String(moduleName)< ‘}*
:= *[* ‘expression’ <MessageSend(expression)> '}
1= ¢{* class* [ *{* ‘refines* { >Word(addSuperclass)< } ‘)* ) [ ‘instance* <Behavior(instBehavior)>
[ ‘class* <Behavior(classBehavior)> ] *)*
:= *{* *behavior* { <StateMethod(addStateMethod)> | <Method(addMethod)> } *}*
= *{* ( ( >UnarySelectorc [>VisAtr<] >SingleKeywordSelector< [>VisAtu<] )
>SingleKeywordSelector< [>VisAur<] >UnarySelector< [>VisAttr<] ) *}* *->* ‘variable® ) |

Il ll Il

|

_ (
(  >UnarySelectorc  [>VisAmr<]  >SingleKeywordSelector<  [>VisAtu<] | !
( H

>SingleKeywordSelector<  [>VisAtr<]  >UnarySelector<  [>VisAwr<] ) *I*
>SingleKeywordSelector< [>VisAttr<] >DoubleKeywordSelector< [>VisAtir<] | >Doub-
leKeywordSelector< [>VisAttr<] ;SingleKeywordSelecm« [>VisAur<] ) *}* *->* ( ‘variable’

| *binary*)))
u= >Selectorc [ oSVisAtr< ] ‘> ( [ ‘method* ] ( <Block(definition)> |
<PrimitiveMethod(definition)> | <UndefMethod(definition)>

<AbstractMethod(definition)> | <AliasMethod(definition)> )
2= alias* >Word(className)< >Selector(methodName)<
2= primitive*
= ‘abstract’

:= ‘undefined*

«=*[* [ { +* >Word(addParameter)< } *|* 1 *|* { >Word(addTemporary)< } *|* ] { ( <Assignmenc>
| <MessageSend> ) *.* )} [ ( ( <Assignment> | <MessageSend> ) | *** ( <Assignment> I
<MessageSend> ) )[*.* 1]

= [ >Word(addVarisble)< *:' ] <MessageSend(statement)>

1= ( >Word(receiver)< J <L1tcal(reoezver)> | <Block(receiver)> | <Expression(receiver)> ) |
<Message(addMessage)> { ‘;' <Message(addMessage)> } ]

1= very complex
1= (" ( <Assignment(statement)> I <MessageSend(statement)> ) *)*
1= >Literal(state)<

Figure 24 : BNF Grammar Rules for Parse Tree Node Classes

The following productions describe the syntax of Modular Smalltalk as it was given in the

original specification.

Productions have been grouped into sections for the reader’s convenience.

Character Class Productlons

<digi> = 109"

<letter> = [a-zA-Z)’

<character> u= <printing character> | <separator character>

<printing character>  ::= <nongquole character> | *** | *"*

<nonquote character> = <letter> | «digit> | <operator character> | <special character>
<opentor character> = '[+-‘/<->'&|.@"%!']‘

<special character>  z= “[ON( 8.5 )’

<sepearator character>

= (\:\:\n]
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Literal Producti

<literal>
<numeric literal>
<integer>

fixi

<1adix specifications>

<based digit>
<floating point>
<sub floating point>
<fraction part>
<exponent part>
<sub exponent part>
<literal character>
<string>

<sub string>

<literal selector>
<method selector>
<umary selector>
<identifier>

<binary selector>
<keyword selector>

ons

::= <numeric literal> | <literal character> | <string> | <literal selector> | <array>
u=<integer> | <floating point>

z=["."] <digits> | <radix specifications> ['-'] <based digit> { <based digit>)

== <digit> (<digit>)

u=<digits> ’r’

= <digit> | <letter>

2= ['-"] <digits> <sub floating point>

u:= <fraction par> | <fraction part> <exponent part> | <exponent part>

u= . <digits>

:1= <sub exponent part> ['-'] <digits>

u= ‘e’ | 'E'

'S’ <printing character>

von [ <sub st!inp ) ()

u:= <literal character> | <separator character> | *"quote™"quote™ | **

u= "#' <method selector>

:1= <unary selector> | <binary selector> | <keyword selector> (<keyword selector>}
u= <identifier>

u=<letter> { <lener> | <digit> )

::= <operator character> (<operator characler>}

::= <identifiers %'

<two arg keyword selector> ::= <keyword selector> <keyword selector>

<mmay> u= "#( {<literal>} ')’

Separator Productions

<separator> u:= ( <separator character> | <comment> }

<comment> u= **  <nonquote character> | *** | <separator character> } ***!

Expression Productions

<expression> = { <variable> ":=' } <message send>

<message send> 1= <primary> [ <message paitern> { ';’ <message pattern>} ]

<primary> u:= <name> | <literal> | °(" <expression> *)’ | <block>

<name> ::= <module constant> | <parameter> | <variable>

<module constant>  ::= <constant name> | <class name>

<constant name> 1= <identifier>

<class name> = <identifier>

<parameter> = <identifier>

<varisble> = <identifier>

<message patiern> :t= <unary message> { <unary message> )} (<binary message>} [<keyword message>] | <binary
message> { <binary message> } [ <keyword message> ] | <keyword message>

<unary message> 3= <unary selector>

<binary message> = <binary selector> <primary> { <unary message> }

<keyword message> = <keyword part> { <keyword part> }

<keyword part> = <keyword selector> <primary> ( <unary message> } { <binary message> }

1. Exroneous in [TEX89], since it requires that every character be prepended with

a'y.
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Method Declaration Productions
<method declaration> ::= <state declaration> | <method>

<state declaration>  ::= <named state decl.> | <indexable state decl.>

<named state decl.> = '(° <state pair> '}’ <is declared as> ‘variable’

<state pair> u:= <access selector> <change selector> | <change selector> <access selector>
<is declared as> u= >’

<access selector> = <unary selector> [ <visibility attribute> )

<change selector> 1= <keyword selector> { <visibility attribute> }

<indexable state deck> ::= *{” <state pair> | <indexing pair> °}* <is declared as> <sub isd>

<sub isd> == 'variable’ | "binary’

<indexing pair> u:= <indexed access sel.> <indexed change sel.> | <indexed change sel.> <indexed access sel.>
<indexed access sel.> = <keyword selector> [ <visibility attribute> }

<indexed change sel> = <two argument keyword selector> [ <visibility attribute> ]

<method> = <method selector> [ <visibility attribute> ] <is declared as> <method definition>

<visibility attribute> = *(private)’ | *(public)’

<method definition>  ::= <block declaration> | <method alias> | <primitive declaration> | <abstract declaration> |

<undefined declaration>
<block declaration>  ::=['method’] <block>
<block> z= "["[ { "' <parameter> ) '|* ] <code body> ']’
<code body> u=["]" { <variable> } *|') <expression list>
<expression list> = { <expression>'." ) [<subel> ]
<sub el> u:= <expression> | *** <expression> ['."]
<method alias> u= ‘alias’ <class name> <method selector>

<primitive declaration> ::= "primitive’
<abstract declaration> ::= 'abstract’
<undefined declaration> ::= ‘undefined’

Class Declaration Productions
<class declaration> u= '{* ‘class’ [<class interface> ] [<instance behaviour declaration> ] [<class behaviour
declaration> ] '}’

<class interface> = *{* "refines’ { <class name> ) '}’
<instance beh. decl.> ::= ‘instance’ <behaviour declaration>
<class beh. decl.> := "class’ <behaviowr declaration>

<behaviour decl.> u= *(* behaviour' { <method declaration> ) '}’

Module Declaration Productions

<module declaration> = *{’ ‘'module’ [ <module name> ] { <declaration> } '}’

<module name> u=<string>

<declaration> ::= <binding> | <class extension> | <module import>

<binding> 1= <identifier> [ <visibility attribute> ] <is declared as> <binding declaration>

<binding declaration> ::= <import declaration> | <class declaration> | <expression declaration>

<import declaration> *{’ [ "impont’ <identifier> ) 'from’ <module name> '}’

<expression decl.> *(* ‘expression’ <message send> '}’

<class extension> = *{* "extend’ <class name> { <instance behaviour declaration> ] [ <class behaviour declaration> }
’ ] 1]

*{* 'use’ <module name> '}’

<module import>
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Appendix B : Method Dispatch Algorithms

The following definitions extend the definitions given in the ICP algorithm discussion:

Symbo! Definition ‘
executeMethod(D) return the result of executing the method for divisionD |
divisionAl[T,C,L] entry in table T at class index of C and color index L
isClass(0) return true if object O is a class.

divisionEmpty(D) if division D isKindOf: MSEmptyDivision, true else false
classMethods(C) hash table of all class methods (as divisions)
mstanceMethods(C) hash table of all instance methods (as divisions)
selectorPrivateInClass(C,S) [if selector § is private in class C, true else false]
maxColorStoredForClass(C,T) | maximum color index stored for class C in table T.
colorStoredForClass(L,C.T) [ L <= maxColorStoredForClass(C, T ) ]

execute(receiver : 6bje¢,:l; args : Object; size : Integer; instSelector,
classSelector : Selector) : Object

begin
if isClass( receiver ) then
set S = classSelector
set T = class table
else
set S = instSelector
set T = inst table
endif

set D = divisionAt[ T, class(receiver), color(S) ]

if ((colorStoredForClass(color(S), class(receiver), T) and
(divisionSelector(D) == S)) then
set result = executeMethod( D )

else
generate messageNotUnderstood error.

endif

return result
end

Figure 25 : Method Dispatch Algorithm For MS using Two Cache Tables
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execute( receiver : Object; args : Object; size : Integet )
instSelector, classSelector : Selector ) : Object

begin
set D = lookup_dispatch(receiver, class(receiver), instSelector, classSelector)

if (not divisionEmpty(D))
set result = executeMethod(D)
else

generate messageNotUnderstood error.
endif

return result
end

lookup_dispatch(receiver: Object; class: Object; instSelector, classSelector :
Selector) : Division

begin
if isClass(receiver) then

set selector = classSelector

set methodDictionary = classMethods(class)
else

set selector = instSelector

set methodDictionary = instanceMethods(class)
endif

find bucket K for selector S in methodDictionary hash.
if K includes S,
set D = division stored for S in K.
if (selectorPrivateInClass(class(receiver), S)) then
if (class(receiver) 1= class) then
set D = emptyDivision
endif
endif
else
set D = emtpyDivision
endif

if (divisionEmpty(D)) then
loap over superclasses(C)
set D =lookup_dispatch(receiver, newClass)

until ((not divisionEmpty(D)))
endif

retum D
end

Figure 26 : Class Look-up Dispatch Algorithm for Multiple Inheritance
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Appendix C : Sample of Generated C Code

This appendix lists the C macro code generated for the Numbers Module given in Chapter 3.
After this code is the actual C code (macro expanded). Anytime /* ... ¥/ is seen in the text,
information has been removed to save space.

The code below represents the program file generated to create the cache-tables, execute

the modules, etc.

# include “cgen_lib.h"
# include "Numbers_all modules.h”

DECLARE_GLOBALS():

BROGRAM_MAIN()
PROGRAM_INIT( "Numbers" );

EXECUTE_MODULE( NumbersModule, 3 );
PROGRAM_ENDY);

INIT_DEF()
INSTCOLORS()
45,44,41,42,-1,36,37,.1,40,8
Y
END_COLORS();

CLASSCOLORS()
0.1,1
END_COLORS();

CLASSNAMES()
“MemoryObject”, Mo
“TestableObject”, r1y
“ComparableObject”, r2y
P
"Complex”, r23e
END_NAMES();

INIT_ENV_NAMES();
INIT_ENV_COLORS();

TABLE_NEW( INST_TABLE, 24 );
P

TABLE_NEWAT( INST_TABLE, 10, 36 );

r..t

TABLE_ATPUT(INST_TABLE, 10, 19, 41, PrintableObject_printOnK, "PrintableObject_printOnK" );
TABLE_ATPUT( INST_TABLE, 10, 20, 27, ClassableObject_species, "ClassableObject_species” );
TABLE_ATPUT( INST_TABLE, 10, 21, 37, EmorHandlingObject_errorK, “ErrorHandlingObject_errorK" );
P

TABLE_NEWAT(INST_TABLE, 23,48 );
TABLE_ATPUT(INST_TABLE, 23, 35, 30, ClassableObject_respondsToK, “ClassableObject_respondsToK" );
TABLE_ATPUT(INST_TABLE, 23, 36, 45, Complex_binary K /* + */, “Complex_binary K /*+ */);
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TABLE_ATPUT(INST_TABLE, 23, 37, 79, Complex_real, "Complex_real" );
TABLE_ATPUT(INST_TABLE, 23, 38, -1, NO_FUNCTION, "NO_FUNCTION" );
TABLE_ATPUT(INST_TABLE, 23, 39, 81, Complex_imag, "Complex_imag" );
Pt

TABLE_NEW( CLASS_TABLE, 24 );

TABLE_NEWAT( CLASS TABLE, 0,0);
..t

EXECUTE_MODULE( ObjectModule, 0 );
EXECUTE_MODULE( KemelModule, 1 );

LITERAL_ASSIGN_SPACE(70);

’*..t
LITERAL_SET_INDEX( 65,

ASSIGN NEW_SIMPLE_LITERAL( LITERAL TMP, GO_CLASS_INTEGER, 0) );
LITERAL,_SET _INDEX( 66,
ASSIGN_NEW_SIMPLE_LITERAL( LITERAL TMP, GO_CLASS_INTEGER, 1) );
LR -

The following shows sample code generated for a module. The C-code generation used
the decompile facility to automatically generate the MS Source code listing associated with

vaxious blocks of code (each class definition, for example).

/* This file implements the creation of all classes in the
Numbers module, as well as the Numbers module itself. */

# include “Numbers.h"
# include “cgen_lib.h"

ot
s Complex
]

r
class

{ refines Object )

instance

{ behaviowr
{ imag imag: } -> variable
{ real real: } -> variable

asReal -> method

[self imag ==0
ifTrue: ["self real .}
ifFalse: ["nil .].]

* > primitive

+ -> method
 :aComplex |
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| result |
result := Complex
real: (self real + aComplex real )
imag: (self imag + aComplex imag ).
“result .

)
isNil -> alias Object isNil
dummy -> sbstract

< -> undefined
)

class
{ behaviour

real:imag: -> method

[ :real :imag | self real: real ;
) imag: imag .]

*

CLASSDEF_HEADER( ComplexClass )
CLASSDEF_VARS( “"ComplexClass”, 10, 1 );

# ifdef ST80_DISPATCH
CLASSDEF INIT_HASH(10,1,1);
CLASSDEF ADD_SUPERCLASS( 10 );

CLASSDEF_SET_INST( 0, 11, Complex_isNil, VIS_PUBLIC );
CLASSDEF_SET_INST( 1, 45, Complex_binary K LA _PUBLIC );
CLASSDEF_SET_INST( 2, 47, Complex_binary J /** ¢/, VIS PUBLIC Y
CLASSDEF_SET | " INST( 3, 50, Complex_binary Q /*< */, VIS _PUBLIC );
CLASSDEF_SET_INST( 4, 76, Complex_dummy, VIS_PUBLIC %
CLASSDEF_SET_INST( 5, 79, Complex_real, VIS | PUBLIC );

CLASSDEF SET lNST( 6, 80, Complex_realK, VIS_PUBLIC %
CLASSDEF_SET_INST( 7, 81, Complex_imag, VIS_PUBLIC );
CLASSDEF SET_INST( 8, 82, Complex_imagK, VIS_PUBLIC );
CLASSDEF _SET_INST(9, 83, Complex_asReal, VIS_PUBLIC );

CLASSDEF_SET_CLASS( 0, 2, Complex_class_realK_imagK, VIS_PUBLIC );
# endif

CLASSDEF_MAKE(2,0,0,0,0,0,23 )
CLASSDEF_END();

BLOCKDEF_HEADER( Complex_binary K /* + */)
BLOCKDEF_VARS( "Complex_binary K /*+ */*,1,1,3, BLOCK_IS_ METHOD );

MESS_SEND(2);
MESS_SENDX 1 );

MESS_SEND( 0 );
MESS_REC() = CNTXT_OFFSET(CC,1); /* CNTXT (0,1) %
SEND_MESSAGE(0,79, -1); /*real */

MESS_ENDX 1 );

MESS_ARG( 0 ) = MESS_RESULT(:

MESS_SEND(0 );
MESS_REC() = CNTXT OFFSET(CC,0); /* CNTXT (0,0) */
SEND_MESSAGE(0, *U; -1); /* real %/
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MESS_ENIX 1 );
MESS_REC() = MESS_RESULTY();
SEND _MESSAGE(1,45,-1);, /*+*/
MESS_ENID(1);
MESS_ARG( 0 ) = MESS_RESULT();
MESS_SEND(1);
MESS_SEND( 0 );
MESS_REC() = CNTXT_OFFSET(CC,1); /* CNTXT(0,1) ¥/
SEND_MESSAGE(0, 81, -1 ); /*imag*/
MESS_END(1 );
MESS_ARG( 0 ) = MESS_RESULT();
MESS_SEND( 0 );
MESS_REC() = CNTXT_OFFSET(CC,0); /* CNTXT(0,0) ¥/
SEND_MESSAGE(0, 81,-1); /*imag®*/
MESS_END( 1 );
MESS_REC() = MESS_RESULT();
SEND_MESSAGE(1,45,-1); /*+*/
MESS_ENIX 1)
MESS_ARG( 1 ) = MESS_RESULT();
MESS_REC()= CNTXT_OFFSET(CC,1); /* CNTXT(-1.1) */
SEND_MESSAGE(2,-1,2); /*real:imag: */
MESS_END(1);
CNTXT_OFFSET( CC, 2 ) = MESS_RESULT();

BLOCK_RESULT() = CNTXT_OFFSET(CC,2); /* CNTXT(0,2) */
BLOCKDEF EXPLICIT RETURN( BLOCK_1S_METHOD ),
BUX:KDEF END().
/* Primitive Complex _binary J //* /]%/

STATEMETHOD_HEADER( Complex_real );
STATEMETHOD_ACCESSNAMED( “Compiex_real", OB NAMED_AT( BLOCK_SELF().0)
STATEMETHOD_END();

STATEMETHOD_HEADER( Complex_realK );

STATEMETHOD_CHANGENAMEDX "Complex_realK", OBj NAMED_AT(BLOCK_SELF(), 0 ), MESS_ARG(0) );
STATEMETHOD_END();

STATEMETHOD_HEADER( Complex_imag );
STATEMETHOD_ACCESSNAMED( “Complex_imag", OBJ_NAMED_AT( BLOCK_SELF(). 1));
STATEMETHOD_END();

STATEMETHOD_HEADER( Complex_imagK );
STATEMETHOD_CHANGENAMELDX “Cemplex_imagK", OBJ_NAMED_AT( BLOCK_SELF(), 1 ), MESS_ARG(0) );
STATEMETHOD_ENDX);

BLOCKDEF_HEADER( Complex_asReal_block_1 )
BLOCKDEF_VARS( "Complex_ssReal_block_1", 0, 0, 3, BLOCK_IS_LITERAL );

MESS_SEND(0 );
MESS_REC() = CNTXT_OFFSET(CN(CC),0); /* CNTXT (1.0) */
SEND_MESSAGE(0, 79, -1 ); /*real ¥/
MESS_END(0);
BLOCK_RESULT() = MESS_RESULT();
BLOCKDEF_EXPLICIT_RETURN( BLOCK_IS_LITERAL );

BLOCKDEF_ENDX);

BLOCKDEF_HEADER( Complex_asReal_block 2 )
BLOCKDEF_VARS( "Complex_asReal_block_2", 0, 0, 3, BLOCK_IS_LITERAL );
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BLOCKDEF_EXPLICIT RETURN(BLOCK_IS_LITERAL );
BLOCKBEF_ENIDX);

BLOCKDEF_HEADER( Complex_asReal )
BLOCKDEF_VARS( "Complex_asReal", 0, 0, 3, BLOCK_IS_METHOD );

MESS_SEND(2 );
ASSIGN_MEW_CLOSURE( MESS_ARG( 0), Complex_ssReal_block_1, 0, CC );
ASSIGN_NEW_CLOSURE( MESS_ARG( 1), Complex_asReal_block_2, 0, CC );
MESS_SEND(1 );
MESS_ARG(0 ) = LITERAL_AT_INDEX(6S); /* 0/
MESS_SEND( 0 );
MESS_REC() = CNTXT_OFFSET(CC,0); /* CNTXT (0,0) */
SEND_MESSAGE(0, 81, -1 ); /*imag*/
MESS_ENIX 1 );
MESS_REC() = MESS_RESULTY();
SEND_MESSAGE(1,19,-1);
MESS_ENIX 1 );
MESS_REC() = MESS_RESULT:);
SEND_MESSAGE(2, 9,-1); /* ifTrue:ifFalse: ¥/
MESS_END( 1 );

BLOCKDEF_DEFAULTRETURN( MESS_RESULT() );
BLOCKDEF_END();

BLOCKDEF HEADER( Complex_class_realK_imagK )
BLOCKDEF _VARS( "Complex_class_realK_imagK", 2, 0, 3, BLOCK_1S_METHOD );

MESS_SEND(1);
MESS_ARG( 0 ) = CNTXT_OFFSET(CC,1); /* CNTXT(0,1) ¥/
MESS_REC() = BLOCK_SELF().
SEND_MESSAGE( 1,80,-1); /*real: */

MESS_END(1);

MESS_SEND( 1 );
MESS_ARG( 0 ) = CNTXT_OFFSET(CC,2); f* CNTXT(0,2) ¥/
MESS_REC() = BLOCK_SELF().
SEND_MESSAGE( !, 82,-1); /*imag:*%/

MESS END( 1)

BLOCKDEF_DEFAULTRETURN( MESS_RESULT() ;
BLOCKDEF_END();

,.“
ss¢  NumbersModule_E!

‘l‘/

MODBLOCK_HEADER( NumbersModule_E1)
MODBLOCK_VARS( “NumbersModule : E1°);

MESS_SENDX 2 );
MESS_ARG( 0 ) = LITERAL_AT_INDEX( 65 ); /* 0%/
MESS_ARG( 1) = LITERAL_AT _INDEX( 66 ); /* 1 %/
MESS_REC() = CNTXT_OFFSET(CC, 1), /* CNTXT(0,1) %
SEND_MESSAGE(2,-1,2); /* realiimag: */

MESS_END( 1);

BLOCK_RESULT() = MESS_RESULT();



-111-

MODBLOCK_ENDY);

,‘."“

ssss+  NumbersModule

t‘.‘t‘l

MODULE_DEF( NumbersModule )
ASSIGN_MODULE_SPACE( 3, "NumbersModule" );

ASSIGN_ MODULE_IMPORT(0,1,0 );

ASSIGN MODULE_CLASS( 1, ComplexClass );

ASSIGN_MODULE_EXPRESSION( 2, NumbersModule_E1 );
MODULE_ENDX);

The expanded C-code for the module is as follows:

int **
ComplexClass ()
{
struct dict_t * inst[2};
struct dict_t * class[2];
st ‘- _t% superclasses;
int= .ol

result = (int **) makeClass( inst[0], inst[1], class[0], class| 1], superclasses,
2,0,0,0,0,0 23 )
return( result );;
B

int **
Complex_binary_K( self, args, size )
int ** self;
int *** args;
int size;
(
int ** result;
int ** subBlockResult;
int ** cnixt;

if(1=1)
{
(
intibe_i;
{
int ** mssz;
{
( mssz ) = (int **) myalloc( (2)+ 1+ 0+NBI , sizeof( int **) );
((int) ( mssz)[1])) = ( ((2)}+ 1+ 0+NBI << 8) | ((2}+ 140<< 16) | ((2)+1<<249));
)
(int **) ((int **) ( mssz )[0]) = (int **) (int **) (MS.hardcode([0 ]);
(Gnt **) ((mssz )[(Gn) ((2)) 1+ 0]} ) =(int**) 1+ 1+ 1;
{
( cntxt) = (int **) myalloc( (2)+ 2+1+NBI , sizeof( int **) );
(Gnt) (( entxe)[1])) = ( ( (2)+ 2+1+NBI << 8) | ((2)+2+1 << 16) | ((2)+2<< 24) );

)

(int **) ((int **) ( entxt )[0]) = (int **) 0;

((int **) (( entxt)[( (int) ((2)) }+0]) ) = (im **) O
((int **) (( cnext){((int) ((2)) # 11) ) = (int **) O;



-112 -

{
( (int **) ( entxt){( (int) ( ( (((int} (( cnixt){1])))>>24) ) )+0]) =
(int **) (int ** *) myalloc( (int) (( (int **) (( mssz )[( (int) ((2) ) *+0]))) + 1, sizeof( int **) );
((int **X ( (int **) ( cntxt)[( (int) ( (( ((int) (( entx1)[1])) ) >> 24) ) 14+0 1 )))(0] = (int **) mssz ;
)
}
{ ((int **) (( entxt )[( (int) ((2)))+01]))) = ((int **) (MS.module| 3 ].context ) ),
(((int **) (( cntxt)[( (int) ((2) ) )+ 1]))) = (int **) 3;
((((int **)(  (int **) ( cnext){( (int) ( (( ((int) ((entx)[1])) ) >> 24) ) HOI N O +1]) ) = self;
for(ibc_i=1;ibc_i <= 1;ibc_i++)
{
(((Cint **)( ( (int **) ( entxt){( (int) ( (( ((int) (( cnxt)[1])) ) >>24) ) HO] ) ibc_i +1]) )=
(int **)(args{ibc_i-1]);
}
for(ibc_i= 1+1;ibc_i<(l+ 1+ 1);ibc_i++)
{
(((Cimn **)( ( (int **) ( cnxt)[( (int) ( ( ( ((int) (( cnxt){1])) ) >> 24) ) O] M) ibc_i +1]) )=
(int **) (M$.hardcode[10 ]);
)
)
)
els;
{
{
intibc_i;
cnixt = MS literalContext;
for (ibc_i = 0; ibc_i < 1; ibc_i++)
{
(((Cimt **)( ( (int **) ( enx){ ( £int) ( (( ((int) (( entxt){1])) ) >> 24) ) }O] D) ibe_i +1])) =
(int **)(args[ibc_i});
)
for (ibc_i= 1;ibc_i<(1+ 1);ibc_i++)
{
{ ((CGint **)( ((int **) (cnext)[( (int) ( ( ( ((int) ((cntxt){1])) ) >> 24) ) }+O] D) ibc_i +1])) =
(int **) (MS.hardcode[10 ]);
)
)
)
MS context[MS.contextSize] = (int **) cntxt ;
+HMS.contextSize);

{
int ** rec;
int *** args = ( int ** *) myalloc( 2 , sizeof( int **) );
{
in1 ** rec;
int *** args = (int ** *) myalloc( 1 , sizeof( int **) );
{
int ** rec;
int *** args = (int ** *) niyalloc( 0 , sizeof( int **) );
rec = (int **) ( (int **) (((int **X ( (int **) ( ( MS.context[MS.contextSize-1] ))
[( (int) ( (( ((int) (( ( MS.context[MS.contextSize-1} )){11)) ) >>24) ) }+0) [ 1 +1]) )
subBlockResult = execute( rec, args, 0, 79, -1 );
myfree( args );
if((1 !=1) && (((int) ( ( ((int) (( subBlockResult ){1]))) & 0x1))))
{
result = subBlockResult;
{
--(MS.contextSize);
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}
return( result );
)

)
args[ 0 }=subBlockResuit;
{

int ** rec;
int *** args = ( int ** *) myalloc( 0 , sizeof(int **) );
rec = ((((int **X ( (int **) ( ( MS.context[MS.contextSize-1] ))
{( (int) ( ( ( ((int) (( ( MS.context[MS.contexiSize-1] )){1])) ) >> 24) ) K01 )L 0 +1]) );
subBlockResult = execute( rec, args, 0, 79, -1 )i
myfree( args )
(1 =1) && (((int) ( ( ((int) (( subBlockResult )[1})) ) & 0x1))))
{

result = subBlockResult;

--(MS.contextSize);
)

return( result )

)

rec = subBlockResult;

subBlockResult = execute( rec, args, 1, 45, -1 );

myfree( args );

if ((1 1= 1) && ( ( (int) ( ( ((int) (( subBlockResult )[1)))) & 0x1))))

result = subBlockResult;
--(MS.contextSize);

return( result );

)

}
args[ O ] = subBlockResult;
(
int ** rec;
int *** args = ( int ** *) myalloc( 1 , sizeof( int **));
{
int ** rec;
int *** args = (int ** *) myalloc( 0 , size>{{ int **) );
rec = ((((int **X ( (int **) (( MS comexl[MS contexiSize-1] ))
{( (int) ( ( ( ((int) (( ( MS.context[MS.contextSize-1] ))[1))) ) >> 24) ) #O} ) 1 +1]} )
subBlockResult = execute( rec, args, 0, 81, -1 );
myfree( args );
if((1 1=1) && (((int) ( ( ((int) (( subBlockResult )[1]))) & 0x1))))
{

result = subBlockResult;

--(MS.contexiSize);
}
return( result );
)
I
args[ 0 ]=subBlockResult;
{
int ** rec;
int *** args = ( int ** *) myalloc( O , sizeof( int **) );
rec = ((((int **X ( (int **) ( ( MS.context[MS.contextSize-1] ))
[€ Gint) ( ( ( ((int) (( ( MS.contex{MS.contexiSize-1] )){1])) ) >> 24) ) #O1 D)l 0 +1)));
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subBlockResult = exccute( rec, args, 0, 81, -1 );

myfree( args );

if ((1 1=1)&& (((int) ( ( ((int) (( subBlockResult ){1])) ) & 0x1))))
{

result = subBlockResult;
--(MS.contextSize);

return( result );
)
)

rec = subBlockResult;

subBlockResult = execute( rec, args, 1, 45, -1 );

myfree( args );

if((1 1=1) && (( (int) { ( ((int) (( subBlockResult ){1])) ) & 0x1))))
{

result = subBlockResult;

{
--(MS.contextSize);

)
return( result );
)
)
args[ 1 ] =subBlockResult;
rec = ((((int **X ( (int **) ( ( MS.context[MS.contextSize-1] ))
[( (int) ( ( ( ((int) (( (MS.context[MS.contextSize-1] )){11)) ) >>24) ) HO] N 1 +1]) )i

subBlockResult = execute( rec, args, 2, -1, 2 );
myfree( args );
if((1 1=1) && ( ((int) ( ( ((int) (( subBlockResult ){11)) )& 0x1))))
(

result = subBlockResult;

-(MS.contexiSize);
)
return( result );
| )
((((int **X ( (int **) ( ( MS.context{MS.contextSize-1]))
[( Gint) ( ( ( ((int) (( ( MS.context[MS.contextSize-1] ))[11)) ) >> 24) ) HOI D) 2 +1])) =
subBlockResult;
result = ((((int **)( ( (int **) ( ( MS.context{MS.contextSize-1] ))
[( (int) € ( ( ((int) (( ( MS.context[MS.coniextSize-1] ))[1])) ) >> 24) ) )}+0) D[ 2 +1D) );

if(l!=1)
{
: (Cint) (C result )[1D)) = ( (((int) (( result Y1 ])) | 1)
{
-«(MS.contextSize);
)

return( result );;
|

int ** Complex_real( self, args, size )
int ** self;
int #** grgs;
int size;
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{
| reurn( (int **) ( ( (int **) ((selD( (int) ((2)) }+ 0 1)) );

int ** Qomplex_realK( self, args, size )
int ** gelf;
int *** args;
int size;

{
| (( (int **) (( sel[( (int) ((2) ) }+01))) = (args[ 0] ); return( (int **) (args[ 0]) );

im ** Complex_imag( self, args, size )
int ** self;
int *** args;
int size;

{
) return( (int **) ( ( (int **) (( selD[( (int) ((2)) )+ 1 1)))):

int ** Complex_imagK( self, args, size )
int ** self;
int **# args;
int size;

{
: (( Gint **) (( selD){( (int) ((2) ) )+1]))) = (args[ 0] ); return( (int **) (args[ 0 ]) );

int ** Complex_asReal_block_1( self, args, size )
int ** self;
int ¥** args;
int size;
{
]
1§

int ** Complex_asReal_block 2 ( self, args, size )
int ** self;
int *** args;
int size;
{
*.
k

int** Complex_asReal ( self, args, size )
int ** self;
int *** args;
int size;
{
m..*
|

int ** Complex_class_realK_imagK ( self, args, size )
int ** self;
int *** args;
int size;
{
P4
15
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int **
NumbersModule_E1()

{
int ** result;
int ** subBlockResult;

(
int ** rec;
int *** args = ( int ** *) myalloc( 2 , sizeof( int **) );
args[ 0 )= MS.literals[ 65 ;
args{ 1 ] = MS literals] 66 ];
rec = ((((int **) ( (int **) ( ( MS.context{MS.contextSize-1] ))
{C (int) (€ ( (Gint) (( ( MS.context{MS..contextSize-1] )){1])) ) >> 24) ) HOI D) 1 +1]) )i
subBlockResult = execute( rec, args, 2, -1, 2 );

myfree( args );
if((1 1= 1) && (( (int) ( ( ((int) (( subBlockResult )[1]))) & 0x1))))

{
result = subBlockResult;

--(MS.contextSize);

retumn( result );
)
|1
result = subBlockResult;
return( result ); };
)

void
Nmnmeodlpm result )
struct msnodulie_{ * result;
{
{
im ** cnixy;
{
int ** mssz;
{
(mssz ) = (int **) myalloc( (21 1+ 0+NBI, sizeof( int **) );
(Gint) (( mssz){1])) = (( (2)+ 1+ 0+NBI << 8) | ((2)+1+0<< 16) | ((2)+1<< 24));

)
(int **) ((int **) ( mssz )[0]) = (int **) (it **) (MS.hardcode[0 ]);
(((im **) ((mssz )[( () (2)) )+ 0]))=(imt**) 3;

( catxt) = (int **) myalloc( (2)+ 2+1+NBI, sizeof( int **) );
((nt) (( entxt){1])) = ( ( 2)+ 2+14NBI << 8) | (@)+ 2+1 << 16) [ ((2+2<<20));

(int **) ((int **) ( cntxt )[0]) = (int **) G;
((nt **) (( entxt)[( (int) ((2) ) }+01) ) = (int **) 0;
(( (int **) (( entxt)[( (int) ((2) ) }+ 1 ])) = (int **) 0;
(Gint **) ( entxt){( Gint) ((((Gint) (( enuxt){1])) ) >>24) 3 }+01) =
(int ** *) myalloc( (int) (( (int **) (( mssz)[( (int) ((2)))+01))) +1, sizeof(int **));
((int **) ( (int **) ( entxe)[( (int) ( ( (((int) (¢ entxt){1])) ) >> 24) ) }+0 ] O] = (it **) mssz ;

)
)
result->context = cntxt;
MS.contextSize = 0;
if (MS.contextSize ==0)

(
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MS.context[0] = result->context ;
MS.contextSize = 1;
)
{
((((int **X ( (int **) ( result->context){( (int) ( ( ( ((int) (( result->context)(1])) ) >> 24) ) O} N O +1]))=
((((int **X ( (int **) ( MS.module| 1].context)
l { (int) € ( € ((int) (( MS.module] 1].context){1])))>>24) ) KOIN) O +1])):

{
(((Gint **X ( (int **)  result->context){( (int) ( ( ( ((int) (( result->context)[1])) ) >> 24) ) KO} M 1 +1]))=
(int **) ComplexClass ();
i
(((Gint **X{ ( (int **) ( result->context){( (int) ( ( ( ((int) ( result->context)(1])) ) >> 24) ) KO} N 2 +1))) =
(int **) NumbersModule E1 ();
)
h
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Appendix D : Object Module and Kernel Module Source Code

The Object module was obtained by dividing the behavior of the Smalltalk Object class into
related areas. Since methods within Object depend on the existence of other classes, those
classes must be defined and placed in appropriate modules to be imported by the Object
module. In order to avoid having to implement the entire Smalltalk system library, only
methods that use fundamentally important classes are implemented. Fundamentally impor-
tant classes consists of classes to perform I/O (something similiar to the Stream hierarchy in

ST80) and basic behavior in collection classes.

{
module "Object’

MemoryObject (public) ->
{
class { refines nil }

instance
{ behavior

release -> primitive
)

)
TestableObject (public) ->
{

class { refines nil }

instance
{ behavior
isInteger -> primitive
isNil -> primitive
isSequenceable -> primitive
isString -> primitive
isSymbol -> primitive
isLiteral -> primitive
notNil -> primitive
respondsToArithmetic -> primitive

)
ComparableObject (public) ->
{

class { refines nil }

instance

{ behavior
= -> primitive
== -> primitive
"= -> primitive
= -> primitive
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)
CopyableObject (public) ->
{

class { refines nil }

instance
{ behavior
deepCopy -> primitive
shallowCopy -> primitive
copy -> method [ “self shallowCopy postCopy ]
postCopy -> [ “self ]

}

ClassableObject (public) ->

{
class { refines nil }

instance
{ behavior
class -> primitive
species -> method
(
“Answer the preferred class for reconstructing the receiver.
For example, collections create new colie:tions whenever
enumeration messages such as collect: or select: are invoked.
The new kind of collection is determined by the species of the
original collection. Species and class are not always the
same, For example, the species of Interval is Array.”

“self class
]
isKindOf: -> method
{ :aClass |
"Answer a Boolean as to whether the class, aClass, is a
superclass or class of the receiver.”
self.clus == aClass
ifTrue: [“true)
ifFalse: [*self class inheritsFrom: aClass)
]

isMemberOf: -> method [ :aClass | “self class == aClass }
respondsTo: -> method
{ :aSymbol |
“Answer a Boolean as to whether the method dictionary of the
receiver's class contains aSymbol as a message selector.”

“self class canUnderstand: aSymbol

)

CreatableObject (public) ->
{
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class { refines nil )

class
{ behavior

new -> primitive
)

)
PerformableObject (public) ->
{

class { refines nil }

instance

{ behavior
perform: -> primitive
perform:with: -> primitive
perform:with:with: -> primitive
perform:with:with:with: -> primitive
perform:withArguments: -> primitive

}

EsrorHandlingObject (public) ->
(
class { refines nil )

instance
{ behavior
doesNotUnderstand: -> primitive
error: -> method
[ :aString |
]

errorSignal -> method {]

|
“ Answer the Signal used for miscellaneous errors "
" Currently just returns nil”

)

halt -> primitive
“"Call the ST80 halt method”

PrintableObject (public) ->
{
class ( refines nil }

instance

{ behavior
printString -> primitive
printOn: -> method
[ :aStream |

"Append to the argument aStream a sequence of characters that
identifies the receiver.”

| tide |
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title := self class name.
aStream nextPutAll: ((title at: 1) isVowel
ifTrue: ["an *]
ifFalse: ['2 ']) , title
]

storeOn: -> method [ ]

[ :aStream |
"Append to the argument aStream & sequence of characters that is an
expression whose evaluation creates an object similar to the receiver.

aStream nextPut: $(.

self class isVariable

ifTrue:

[
aStream nextPutAll: *(’, self class name, * basicNew: °;
store: self basicSize;
nextPutAll: °) °

]

ifFalse:

{

1 ui: self class instSize do:
[:
aStream nextPutAll: * instVarAt: *;
store: i;
nextPutAll: * put: *;
store: (self instVarAt: i);
nextPut: §;

aStream nextPutAll: self class name, * basicNew’

).

1 ui: self basicSize do:

[:i
aStream nextPutAll * basicAt: ;
store: §;
nextPutAll: * put: *;
store: (self basicAt: i);
nextPut: §;

]

aStream nextPutAll: * yourself)’

)

storeString -> method ()

(
“"Answer a String representation of the receiver from which the

receiver can be reconstrucied.”

| aStream |

aStream := WriteStream on: (String new: 16).
self storeOn: aStream.

“aStream contents

}

IOObject (public) ->
{
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class { refines nil }
instance
{ behavior
outpwtString: -> primitive
)
)
Object (pudlic) ->
(

class

{ refines
MemoryObiject
TestableObject
ComparableObject
CopyableObject
ClassableObject
CreatableObject
PerformableObject
ErrorHandlingObject
PrintableObject
100bject

)
)

The Kernel module defines all required classes and required methods, as well as adding
methods required due to the implementation strategy choosen. There is some question as to
whether these required classes should inherit from Object or some other class (like
CreateableObject). On one hand, it is better to allow the programmer to determine exactly
what behavior is to be inherited, but on the other hand, libraries exist to reduce the amount of
work programmers have to do. Because of the class extension facility, the final MS library
structure will probably define a base kernel module which does not inherit from anything
(except maybe CreateableQbject), and then define a ExtendedKernel module which refines
and adds superclasses.

The behavior defined in this module is expected to be expanded substantial as it is more fully
developed. Also, superclasses besides Object will be defined in other modules and imported
here. Such modules will by definition be part of the Kernel Group.

{
module ‘Kerne!’

Object -> { from ‘Object’ }
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Integer (public) ->
{
class { refines Object }

instance

{ behavior
+ -> primitive
- <> primitive
* .> primitive
{/ -> primitive
\-> primitive
= -> primitive
"= -> primitive
< -> primitive
> <> primitive
<= -> primitive
>= -> primitive
to:do: -> primitive

)

Array (public) ->
{
class { refines Object )

instance
{ behavior
{ size size: | at: at:put: } -> variable
)
}
Character (public) ->
{
class { refines Object )

instance
{ behavior

value: -> primitive
)

]

Closure (public) ->
{
class { refines Object )

instance
{ behavior

"Order of specification of state doesn’t matter - hardcoded.

user can change these around without problems. However,

what if use wants to add behavior? Must somehow know what the
starting index for variables is!!! "

{ block block: } -> variable
{ context context: } -> variable

whileTrue: ->



}
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“(self value)
ifTrue:
aBlock value.
(self value]
whileTrue:
aBlock value
I
1
]
value -> primitive
value: -> primitive
valueWithArgs: -> primitive

messageNotUnderstood: -> primitive
invalidArgumentCount: -> primitive

Float (public) ->

{
)

class { refines Object }

Message (public) ->

}

class { refines Object }

instance
{ behavior

{ selector selector: } -> variable
{ args args: } -> varisble

MethodSelector (public) ->

{

class { refines Object )

instance
{ behavior

{ name name: } -> variable

String (public) ->

{

}

class { refines Object }

instance
{ behavior

{ size size: | at: at:put: ) -> binary

UndefinedObject {public) ->

{



)

class { refines Object )

True (public) ->
{

}

class { refines Object }

instance

{ behavior
ifTrue: -> primitive
ifFalse: -> primitive

False (public) ->

{

class | refines Object }

instance

{ behavior
ifTrue: -> primitive
ifFalse: -> primitive

-125-
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Appendix E : Implementation Dependent Issues

1. Immutable Literals

Literals are immutable, but the result of attempting to modify them is implementation
dependent.

To handle the immutability of integers, characters and floats, their representation within a
MS program is stateless — no state methods are declared for them). Obviously the underlying
implementation must provide space to save different instances, but this space is not accessible
from within MS.

However, Strings, Arrays and Methodselectors do have state. Literal instances of such
classes are marked as immutable. The changing methods for these classes are primitives
which check to insure that the object is not immutable; if it is, an MS run-time error is gen-

erated. The exact form of this error has not been determined.

2. Unrecognized Messages

The language specifications states if a message is not understood, the receiver of the mes-
sage send is to be sent the message doesNotUnderstand:withArguments:, except when the
message that is not understood is doesNotUnderstand:withArguments:, in which case the
results are implementation independent. A generic MS "implementation-dependent’ runtime

error is generated.

3. Incorrect Argument Counts

If a method is executed, but the number of actual arguments does not match the number of
formal parameters, the results are implementation dependent.

The action performed is similiar to that for unrecognized messages. The message invali-
dArgumentCount: will be sent to the receiver. If this method is not undierstood, a generic MS

*incorrect argument count’ runtime error will be generated.

4. Extended Character Classes

The language specification allows implementations to extend the character classes.
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The current implementation ﬁmvides only those classes specified.

5. Nested Assignment Order

The language specification allows assignment statements to be nested, so that a single
expression is assigned to one or more variables. The order in which the assignment to vari-
ables takes place is implementation dependent.

The current implementation assigns values from right to left. However, since the order in

which values is assign is completely irrelevant, any ordering is possible.

6. Indexed Variable Size Changing

When specifying the size of an indexed instance variable, if the argument to the size
changing method is anything other than a non-negative integer, the results are
implementation-dependent.

A runtime error is generated. This error will not provide the ability to continue runtime

execution until the error is corrected.

7. Indexed Variable Size Accessing

When accessing the size of an indexed instance variable, the return value is 0 if the associ-
ated size changing message as not yet been called, and is otherwise equal to the integer argu-
ment to the size changing method. However, if the argument to the size changing method
was not an valid integer, the return value is implementation dependent.

Note that even if an error is generated within the size changing method for illegal size
arguments, it is still possible for the above situation to occur if the run-time environment error
allows one to continue (although why it would is questionable). This error will never occur in

current implementation.

8. Accessing Index of Indexable Variable
When accessing the index of an indexable variable, the results are implementation depen-

dent if the index argument is not a valid integer or if the size argument to the lasi call of the
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associated size changing method was not a valid integer.
A runtime error is generated if a non-valid integer argument is given. The second possibil-
ity will never occur, due to the handling of non-valid integers to size changing state methods.
Note that the language specification should be more rigorous in its description of a valid

integer. A valid integer is one between 0 and ’size-1’ inclusive.

9. Changing Index of Indexable Variable

When changing the valse of an index of an indexable variable, the results are implementa-
tion dependent if the index is not valid, the size is not a valid integer, or if the variable is
binary and the value to be stored into the index is not an integer between 0 and 255 inclusive.

A non-continuable runtime is generated for cases 1 and 3. Case 2 will never occur.



