1	A new species of longirostrine plioplatecarpine mosasaur (Squamata: Mosasauridae)
2	from the Late Cretaceous of Morocco, with a re-evaluation of the problematic taxon
3	'Platecarpus' ptychodon
4	Catherine R. C. Strong ^a *, Michael W. Caldwell ^{a,b} , Takuya Konishi ^c , and Alessandro Palci ^{d,e}
5	^a Department of Biological Sciences, University of Alberta, Edmonton, Canada, T6G 2E9;
6	^b Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada,
7	T6G 2E9; ^c Department of Biological Sciences, University of Cincinnati, Cincinnati, U.S.A.,
8	45221-0006; ^d Earth Sciences Section, South Australian Museum, Adelaide, Australia, 5000;
9	^e College of Science and Engineering, Flinders University, Adelaide, Australia, 5042
10	* Corresponding author. Email: crstrong@ualberta.ca
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

1 Abstract

2

3 The Upper Cretaceous phosphates of Morocco preserve one of the world's most 4 diverse assemblages of mosasaurs, reflecting the adaptive radiation of this clade during the 5 Maastrichtian Stage. We herein describe a new mosasaur from these deposits. Although the 6 teeth of this specimen resemble those of 'Platecarpus' ptychodon, suggesting referral to this 7 species, we re-examine and ultimately reject the fundamental validity of 'P.' ptychodon due 8 to the non-diagnostic nature of its holotype and original diagnosis. We instead designate the 9 new specimen as the holotype of a new genus and species, Gavialimimus almaghribensis, 10 gen. et sp. nov. G. almaghribensis is characterized by a highly elongate snout, highly 11 retracted nares, and large supratemporal fenestrae, among other features. Phylogenetic 12 analysis under multiple parsimony-based methods reveals novel substructure within the subfamily Plioplatecarpinae, consistently recovering a clade uniting the new species with 13 14 Selmasaurus and the enigmatic Goronyosaurus. Synapomorphies of this clade include a highly constricted parietal, with Selmasaurus and Gavialimimus being further united by a 15 16 broadly excavated medial surface of the quadrate suprastapedial process. The cranial 17 morphology of G. almaghribensis also provides new insight into several aspects of mosasaur 18 evolution and comparative anatomy, including adaptive radiation and niche partitioning in 19 Moroccan marine palaeoecosystems.

20

Keywords: adaptive radiation; functional morphology; niche partitioning; palaeoecology;
 taxonomic revision; vertebrate palaeontology

1 Introduction

3	Determining the phylogenetic relationships among extinct taxa is essential for
4	understanding broad evolutionary processes such as adaptive radiation. Despite this
5	importance, the evolutionary history of many major clades, such as mosasaurs, remains
6	unresolved (Wright & Shannon 1988; LeBlanc et al. 2012; Simões et al. 2017b). Mosasaurs
7	were a dominant group of marine reptiles during the Late Cretaceous (100.5-66.0 Ma), noted
8	for their worldwide adaptive radiation during the latter stages of this period (Everhart 2005).
9	This diversification into various body forms and predatory specializations is
10	particularly apparent in the Upper Cretaceous deposits of northwestern Africa. Both the
11	Maastrichtian phosphates of Morocco and the Iullemmeden Basin of the Dukamaje
12	Formation in Nigeria and Niger record extensive mosasaur assemblages (Lingham-Soliar
13	1991, 1998; Bardet et al. 2015; Bardet et al. 2018). The Moroccan phosphates preserve
14	remarkably high taxonomic and morphological diversity, containing at least seven genera
15	comprising species such as the halisaurine Halisaurus arambourgi Bardet & Pereda
16	Superbiola, 2005, and the mosasaurines Eremiasaurus heterodontus LeBlanc, Caldwell &
17	Bardet, 2012 and Globidens simplex LeBlanc, Mohr & Caldwell, 2019 (Bardet et al. 2005;
18	LeBlanc et al. 2012; Bardet et al. 2015; Bardet et al. 2018; LeBlanc et al. 2019). The
19	Dukamaje Formation preserves a similar level of diversity, with seven genera spanning the
20	Plioplatecarpinae, Halisaurinae, and Mosasaurinae; most notable among these taxa is the
21	enigmatic Goronyosaurus nigeriensis (Swinton, 1930), a poorly known species of uncertain
22	phylogenetic placement (Azzaroli et al. 1975; Soliar 1988). These deposits together
23	exemplify the remarkable capacity for evolutionary radiation present in mosasaurs.
24	Our study builds on current knowledge of this diversity via the description and
25	analysis of a new mosasaur specimen (MHNM.KHG.1231) from Morocco. The teeth of this

4

1 specimen resemble those of 'Platecarpus' ptychodon Arambourg, 1952, suggesting referral to 2 this species. However, the holotype and diagnosis of 'P.' ptychodon exhibit critical flaws forcing a re-evaluation – and ultimately a rejection – of its taxonomic validity. Morphological 3 4 and phylogenetic analyses of this specimen instead support referral to a new genus and species, closely related to Selmasaurus Wright & Shannon, 1988, a genus of plioplatecarpine 5 6 mosasaur currently known only from the Santonian (86.3–83.6 Ma) and early Campanian (83.6–80.6 Ma) of Kansas and Alabama (Wright & Shannon 1988; Polcyn & Everhart 2008; 7 8 Ogg et al. 2012). Specifically, the distribution of Selmasaurus russelli Wright & Shannon, 9 1988 within the Eutaw Formation (upper Santonian) in Alabama and within the unnamed 10 lower member of the Mooreville Chalk Formation (lower Campanian) in Kansas results in an 11 overall temporal range of 85-81.5 Ma (Wright & Shannon 1988; Kiernan 2002; Liu 2007; 12 Konishi 2008; Ogg et al. 2012). Selmasaurus johnsoni Polcyn & Everhart, 2008 occurs in 13 Kansas within the Smoky Hill Chalk Member of the Niobrara Formation, in biostratigraphic 14 units corresponding to the lower Santonian (86.3-85 Ma) (Polcyn & Everhart 2008; Ogg et 15 al. 2012). 16 We herein present a detailed osteological description of MHNM.KHG.1231, followed 17 by phylogenetic analyses of mosasauroid relationships incorporating this new specimen. We

18 then assess the evolutionary implications of these phylogenetic results for the new specimen

19 and associated taxa, including discussions of functional morphology and palaeoecology.

20 Ultimately, this specimen provides insight into the striking diversity – both morphological

21 and ecological – of the Late Cretaceous palaeoecosystems in which these mosasaurs lived, as

22 well as the phylogenetic framework underlying this diversity.

23 Geological context

24 MHNM.KHG.1231 originates from the Maastrichtian phosphate deposits of Morocco.
25 These deposits are a major component of the Mediterranean Tethyan Phosphogenic Province,

a belt of phosphates that extends around the Mediterranean Sea, from North Africa to the
 Middle East (Lucas & Prévôt-Lucas 1996). These deposits span the Upper Cretaceous
 (Maastrichtian) to the middle Eocene (Lutetian) and outcrop in five major basins: the Oulad
 Abdoun, Ganntour, Meskala, Sous, and Oued Eddahab (Bardet *et al.* 2010; LeBlanc *et al.* 2012; Fig. 1A).

6 Historically, establishing stratigraphic correlations within and among these phosphatic 7 basins has been difficult for many reasons, most significantly the drastic local lateral facies 8 changes and the low abundance of microvertebrate and invertebrate fossils typically used for 9 biostratigraphic correlations (Bardet et al. 2010; LeBlanc et al. 2012). Arambourg was the 10 first to perform a methodical biostratigraphic analysis for these deposits, focussing his efforts 11 on the Oulad Abdoun and Ganntour basins (Arambourg 1952; Bardet et al. 2010). Using 12 unique assemblages of vertebrate remains (mainly fishes and reptiles), Arambourg 13 established three main stratigraphic levels of phosphates in each basin, referring to them as 14 'couches', or 'beds' in English (Arambourg 1952; Bardet et al. 2010). These beds span the 15 Maastrichtian (Couche III) to the Ypresian (Couche I) (LeBlanc et al. 2012). The Maastrichtian component (Couche III) of the Oulad Abdoun basin contains three major 16 17 subdivisions: a basal limestone bonebed, an intermediate grey phosphatic layer (Lower Couche III), and an upper layer of fossiliferous, yellow phosphates of upper Maastrichtian 18 19 age (Upper Couche III) (LeBlanc et al. 2012; Fig. 1B). These layers are interspersed with 20 marly and calcareous beds (Bardet et al. 2015).

21 MHNM.KHG.1231 was discovered in a Moroccan phosphate mine, corresponding to 22 the aforementioned Couche III. This provenance is further supported by the sediments and 23 microfossils associated with this specimen. Teeth from the selachian taxa *Serratolamna* 24 *serrata* (Agassiz, 1843) and *Squalicorax pristodontus* (Agassiz, 1843) were present in the 25 matrix surrounding MHNM.KHG.1231 (C.S., pers. obs.), consistent with Couche III

1	(Maastrichtian) of the Oulad Abdoun basin (Arambourg 1952; Fig. 1). Furthermore, the soft,
2	yellow, phosphatic matrix itself unequivocally matches the description of Upper Couche III
3	(LeBlanc <i>et al.</i> 2012).
4	
5	[Insert Figure 1 here as a double-column (173 mm width) figure]
6	
7	Material and methods
8	
9	Specimen and figures
10	The holotype specimen is accessioned in the collections of the Museum of Natural
11	History of Marrakech at Cadi Ayyad University in Morocco as MHNM.KHG.1231 and has
12	been on loan to the University of Alberta Laboratory for Vertebrate Palaeontology (UALVP),
13	where it was studied. This specimen consists of: an articulated skull, complete except for the
14	chondrocranium (Figs 2–5); partial left and right mandibles (Figs 6, 7); a partial right
15	quadrate (Fig. 8); and other disarticulated cranial (pterygoids) and postcranial (humerus and
16	vertebrae) material (Fig. 9). Specimens were photographed using a Canon PowerShot 340HS
17	digital camera. Images were traced and figured in Adobe Photoshop CC 2019 and 2020 and
18	Adobe Illustrator 2020.
19	
20	[Insert Figures 2 & 3 here, each as a double-column (173 mm width) figure]
21	
22	Dataset selection
23	The two datasets used for this analysis (see Supplementary Material, S1–S4) were
24	modified from the two character matrices of Simões et al. (2017b). Both of these source
25	matrices include 44 mosasauroid taxa and are based on the same fundamental characters,

1 though implement different coding schemes. The source matrix applying multistate character 2 coding contained 125 characters before modification, whereas the source matrix applying 3 contingent character coding contained 131 characters (Simões et al. 2017b). These matrices 4 were chosen because they comprise the most recent large-scale mosasauroid phylogeny and 5 contain numerous species from every major mosasaur group. This thorough taxon sampling is 6 ideal, as it tests the phylogenetic placement of MHNM.KHG.1231 relative to all mosasaurs 7 (rather than just a select subfamily), thus eliminating ingroup choice as a potential source of 8 bias.

9 Because these source datasets use both multistate and contingent coding schemes in both unweighted and implied weighting maximum parsimony analyses, they therefore allow 10 11 the phylogenetic position of MHNM.KHG.1231 to be tested and compared under various 12 conditions and methods. Contingent coding schemes are useful for comparison to other mosasauroid phylogenies because most previous phylogenies have been generated using this 13 14 scheme (e.g., Palci et al. 2013; Jiménez-Huidobro et al. 2016; Simões et al. 2017b). 15 However, multistate coding schemes are more logically sound, as they evaluate dependent characters in a single transformational series, rather than parsing them into separate 16 17 characters (Simões et al. 2017a; Simões et al. 2017b). Similarly, unweighted maximum 18 parsimony analysis is the approach most commonly used in mosasauroid phylogenetics 19 (Simões *et al.* 2017b), though implied weighting has been proposed as a more accurate 20 method of phylogenetic reconstruction because it down-weights the impact of homoplasy in 21 tree construction (Goloboff 1993; Goloboff et al. 2008a; Simões et al. 2017b). Given this diversity of phylogenetic methods, the chosen source datasets therefore enable a range of 22 23 analyses and comparisons concerning the phylogenetic position of MHNM.KHG.1231 and 24 related taxa. Performing and reporting these analyses also accounts for algorithm choice as a potential source of methodological bias or error. 25

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Furthermore, the inclusion of multiple dolichosaur and aigialosaur species in these source matrices - with Adriosaurus suessi Seeley, 1881 being designated as the official outgroup – ensures that the outgroup is closely related to the ingroup (Mosasauridae), as opposed to the traditional usage of Varanidae as an outgroup. These datasets are therefore preferred over other mosasauroid matrices, in which the outgroup is typically an artificial operational taxonomic unit (OTU) generated using a compilation of varanid lizard character states (Simões *et al.* 2017b). Using a theoretical unit as an outgroup can cause bias in character polarization, as character polarity for the ingroup is often designated based on previous assumptions of character evolution rather than on the actual character states observed in a tangible outgroup taxon (Simões et al. 2017b). The use of varanids or a varanid-based artificial OTU is also problematic because varanids are more distantly related to mosasaurs than dolichosaurs or aigialosaurs are, thus increasing the possibility that independent character evolution along the outgroup and ingroup branches has changed the outgroup state from the true ancestral state (Simões et al. 2017b). Given these issues, using an actual (i.e., non-theoretical), closely-related taxon such as A. suessi as the outgroup is preferred, as this approach addresses the aforementioned inaccuracies that can result from outgroup choice.

18 **Dataset modifications**

19 Three taxa were added to the source matrices: MHNM.KHG.1231 as a new species 20 (see below), *Goronyosaurus nigeriensis*, and *Selmasaurus russelli*. These latter two taxa were 21 included because they each exhibit certain morphological similarities to MHNM.KHG.1231 22 (e.g., snout elongation and deep interdental pits for *G. nigeriensis*; similar medial excavation 23 of the suprastapedial process of the quadrate for *S. russelli*), suggesting the potential for a 24 close evolutionary relationship worth being tested phylogenetically. Both of these taxa were 25 scored directly. Published descriptions were used to complement these direct observations,

but were not used as the sole basis for scoring any particular character; if a feature was described in the manuscript but could not be directly observed by us, it was scored as '?', rather than relying on written descriptions. Although this approach may have reduced the number of characters that could be scored, it was employed in order to ensure soundness of methodology.

6 Certain characters within the source matrices were also modified. Character 51/55 7 (basioccipital tubera shape) in the multistate and contingent source matrices, respectively, 8 was deleted from this analysis on the basis of poor character construction. This character's 9 states (tubera not anteroposteriorly elongate [0], or anteroposteriorly elongate with rugose 10 ventrolateral surfaces [1]) conflate different features – elongation and rugosity – thus 11 exemplifying problematic character type I A.6 as outlined by Simões et al. (2017a). Character 12 74/79 (tooth replacement mode) in the multistate and contingent source matrices was also 13 deleted on the basis of poor character construction, as its character states (replacement teeth 14 form in shallow excavations [0], or in subdental crypts [1]) simply refer to different stages of 15 tooth replacement (e.g., see Caldwell 2007) and therefore carry no phylogenetic signal. A 16 new character (Character 124/130: quadrate mid-shaft lateral deflection; absent [0], or present 17 [1]) was added to both the multistate and contingent datasets. This is a modified version of character 95 in Konishi & Caldwell (2011) and was included because the quadrate shaft 18 19 deflection to which it refers is a synapomorphy of *Selmasaurus*.

The state for character 12/13 (frontal olfactory canal embrasure) in the modified multistate and contingent datasets was changed from '1' (canal almost or completely enclosed ventrally by descending processes) to '0' (canal not embraced ventrally by descending processes) for *Selmasaurus johnsoni* in light of re-interpretation of this character and its condition in *S. johnsoni* and *S. russelli*. The character states for multistate character 26 (prefrontal-postorbitofrontal contact) were originally mis-labelled as '0', '0', and '1' in the

1 source character list; this typographic error was corrected to '0', '1', '2' in the modified 2 dataset. For character 54/59 (dentary medial parapet), a new character state (state 3: medial 3 parapet taller than lateral wall of bone) was added to the original states (parapet positioned at 4 base of tooth roots [0], or parapet elevated and strap-like, enclosing about half of height of tooth attachment in shallow channel [1], or parapet equal in height to lateral wall of bone [2]). 5 6 This new state accounts for additional variation present in MHNM.KHG.1231 and some 7 individuals of *Plioplatecarpus* (cf. Konishi & Caldwell 2011:Ch. 54[2]). 8 **Phylogenetic analysis** 9 Unweighted maximum parsimony. Unweighted maximum parsimony analysis was performed for both the multistate and contingent character matrices using TNT v.1.5 10 11 (Goloboff et al. 2008b; Goloboff & Catalano 2016) via a heuristic 'traditional search' using 12 the tree bisection and reconnection (TBR) algorithm with 1000 random-addition-sequence 13 replicates. This method is consistent with that used by Simões et al. (2017b). 14 Implied weighting maximum parsimony. In these analyses, trees were generated from both 15 the multistate and contingent matrices using an implied weighting function of k = 3.0, as per the methods of Simões *et al.* (2017b). Values of k = 7.0 and k = 11.0 were also used to test 16 17 the effect of stringency of the concavity function on the resultant topology. All other settings and methods were retained from the unweighted maximum parsimony analysis. 18 19 **Character mapping.** Synapomorphies were mapped onto all most-parsimonious-trees (MPTs) in TNT v.1.5 (Goloboff et al. 2008b; Goloboff & Catalano 2016). Character history 20 21 was traced in Mesquite v.3.51, with ancestral states reconstructed using parsimony 22 (Maddison & Maddison 2018). Trees were visualized in Mesquite v.3.51 (Maddison & 23 Maddison 2018) and prepared for figures using Adobe Illustrator 2020.

24 Institutional abbreviations

1	BMNH, Natural History Museum (formerly the British Museum [Natural History]), London,
2	England; CMN, Canadian Museum of Nature, Ottawa, Canada; FHSM, Sternberg Museum
3	of Natural History, Fort Hays State University, Hays, Kansas; IGF, Institute of Geology and
4	Paleontology of the University of Florence, Florence, Italy; IRSNB, Institut Royal des
5	Sciences Naturelles de Belgique, Brussels, Belgium; MHNM, Museum of Natural History of
6	Marrakech at Cadi Ayyad University, Marrakech, Morocco; MNHN, Muséum National
7	d'Histoire Naturelle, Paris, France; UALVP, University of Alberta Laboratory for Vertebrate
8	Palaeontology, Edmonton, Canada; YPM, Yale Peabody Museum.
9	
10	Systematic palaeontology
11 12	Reptilia Linnaeus, 1758
13	Squamata Oppel, 1811
14	Mosasauridae Gervais, 1852
15	Plioplatecarpinae (Dollo, 1884) Williston, 1897b
16	Gavialimimus gen. nov.
17	(Figs 2–9)
18	
19	Type species. Gavialimimus almaghribensis, sp. nov.
20	Diagnosis. As for the type and only species.
21	Derivation of name. Meaning 'gharial mimic', from the Gallicised Hindi root 'gavial' and
22	the Greek root 'mimus', the genus name refers to morphological convergence between the
23	holotype specimen and the extant gharial (Gavialis gangeticus), primarily regarding their
24	distinctive longirostry and interlocking teeth.
25	Occurrence. As for the type and only species.

1	Gavialimimus almaghribensis sp. nov.
2	(Figs 2–9)
3	Holotype. MHNM.KHG.1231: articulated skull, including the premaxilla, maxillae,
4	prefrontals, frontal, parietal, postorbitofrontals, squamosals, vomers, and palatines; isolated
5	left and right dentaries; articulated right posterior mandibular unit; isolated pterygoids; partial
6	right quadrate; and four isolated vertebrae, one caudal, two cervical, and one indeterminate.
7	Diagnosis. Plioplatecarpine mosasaur species bearing the following autapomorphies: snout
8	highly elongate, with openings for the external nares small and highly retracted;
9	supratemporal fenestrae large, nearly as long as the entire frontal including the anterior
10	frontal processes; dentary medial parapet taller than lateral wall of dentary; Meckelian groove
11	of the dentary terminating anteriorly at the sixth tooth position; parietal markedly constricted,
12	resulting in a triangular parietal table with a distinct midsagittal crest posteriorly; prefrontal
13	extending posteriorly nearly to level of frontoparietal suture. Also distinguished by a unique
14	combination of the following features: marginal teeth not medially striated; interdental pits
15	deep, present along most of the length of the marginal tooth rows; pineal foramen elongate
16	and in slight contact with the frontoparietal suture; postorbitofrontal wide in dorsal view,
17	equal to roughly half the width of the frontal, and lacking a transverse dorsal ridge;
18	zygosphenes and zygantra absent; humerus ectepicondyle present. Differs from Selmasaurus
19	johnsoni in the following respects: premaxillary predental rostrum absent; postorbitofrontal in
20	contact with prefrontal; maxillary-premaxillary suture terminating posteriorly between the
21	eighth and ninth maxillary teeth. Differs from Selmasaurus russelli in the following respects:
22	posterior parietal shelf absent. Differs from Goronyosaurus nigeriensis in the following
23	respects: ectopterygoid processes of pterygoid not forked; maxilla terminating just posterior
24	to anterior border of orbit, as opposed to extending beyond posterior margin of orbit;
25	premaxillary teeth not caniniform.

1	Derivation of name. The specific epithet is a romanized version of the Arabic name for
2	Morocco, paired with the Latin suffix '-ensis', thus denoting the country of origin of the
3	holotype.
4	Occurrence. Upper Couche III (upper Maastrichtian) of the Oulad Abdoun basin in northern
5	Morocco.
6	
7	Description and comparisons
8	
9	General
10	MHNM.KHG.1231 consists of an articulated skull (mostly complete except for the
11	chondrocranium) (Figs 2-5), left and right dentaries (Figs 6, 7A-B), right posterior
12	mandibular unit (Fig. 7C-F), a partial right quadrate (Fig. 8), isolated right and left
13	pterygoids (Fig. 9A–D), four isolated vertebrae (Fig. 9C–F), and the right humerus (Fig. 9G).
14	Most of these elements were recovered in three major blocks: one containing the skull, one
15	containing the left dentary and partial quadrate, and one containing the right dentary. The
16	other elements were small enough to be recovered individually from the in situ matrix
17	surrounding the three main blocks. Several isolated teeth (UALVP 57049) matching the
18	morphology of those present in the jaw bones were also recovered from the matrix
19	surrounding the <i>in situ</i> elements.
20	The preorbital region of the skull comprises almost two-thirds of the total length of
21	the skull (Figs 2, 3). This striking elongation of the snout is an uncommon occurrence among
22	mosasaurs, with Ectenosaurus clidastoides (Merriam, 1894) and, to a lesser extent,
23	Plotosaurus bennisoni (Camp, 1942) and Goronyosaurus nigeriensis being the only
24	mosasaurs exhibiting a comparable condition.
25	Although the skull is articulated, taphonomic deformation has displaced some of the

14

1 bones from their natural positions. The entire skull is slanted to its right. Most significantly, 2 the palate and skull roof are collapsed onto each other, with the palate being offset from the 3 skull roof such that the right internal naris is aligned with the left external naris. The right 4 maxilla is also collapsed underneath the skull, such that it underlies the right external naris. 5 Skull 6 Premaxilla. In MHNM.KHG.1231, the premaxilla is preserved largely in natural position, though the internarial bar is broken slightly posterior to its midpoint (Fig. 2). The premaxilla 7 8 is smoothly rounded anteriorly, terminating just beyond the anteriormost premaxillary tooth 9 and thus lacking a rostrum (Figs 2, 3, 4A, 6A). The dorsal surface of the premaxilla is 10 smooth, possessing neither a sulcate texture nor a dorsal crest (Fig. 2B). Foramina marking 11 the exits of the ophthalmic ramus (V1 branch) of the trigeminal nerve are loosely dispersed 12 on either side of the dorsal midline (Russell 1967; Fig. 2). Although most mosasaurs exhibit

13 six or seven such foramina on each side of the premaxilla, MHNM.KHG.1231 possesses

14 approximately 10; this comparatively high number is similar to the state present in

15 Goronyosaurus nigeriensis (Lingham-Soliar 1991).

16 The premaxilla articulates with the maxilla via a long suture that is posteriorly 17 displaced due to deformation of the skull. Based on our interpretation of the skull, this suture likely would have extended to between the eighth and ninth maxillary tooth positions, at 18 19 which point the bones separate to surround the anterior extent of the openings for the external 20 nares (Fig. 2). The internarial bar forms the anteromedial border of the external nares, 21 extending to the posterior extent of the external narial openings, where it articulates on either side with the paired anterior processes of the frontal (Fig. 2). The internarial bar is mostly 22 23 uniform in width, being slightly narrower than half the width of the rostrum and tapering 24 slightly toward its posterior terminus.

25

The external nares themselves are unique in being highly retracted, extending

15

posteriorly almost to the level of the orbits and being restricted to the posterior 25% of the
 preorbital region (Fig. 2); similar external narial retraction has been noted in *Goronyosaurus* (Azzaroli *et al.* 1972; Soliar 1988).

The ventral surface of the premaxilla – including the junction of the internarial bar and dentigerous portion of the premaxilla – is largely obscured by the vomers (Figs 3, 4A–B). However, the vomerine process of the premaxilla is visible as a median ridge between the second pair of premaxillary teeth, separated from the roots of the teeth on either side by a shallow groove (Figs 3, 4A). Posteriorly, this ridge articulates with the vomers, though the exact suture is difficult to discern; anteriorly, it terminates just rostral to the second pair of premaxillary teeth. A slight groove separates the anterior pair of premaxillary teeth (Fig. 4A).

- 11
- 12

[Insert Figure 4 here as a full-page (232 mm x 173 mm) figure]

13

14 Maxilla. The maxillae terminate posteriorly at the anterior border of the orbits (Figs 2, 3, 4C, 15 5). They are fairly uniform in height along their extent, though taper anteriorly following the 16 curve of the maxillary-premaxillary suture (Fig. 2). The left maxilla is broken - either pathologically or taphonomically – at the level of the eighth maxillary tooth (Fig. 2). Several 17 large foramina are present along the ventral border of the lateral surface of the maxilla, above 18 roughly every other tooth position. Several smaller foramina are scattered over the rest of the 19 20 lateral surface, being mostly concentrated toward the anterior of the maxilla (Fig 2). These 21 foramina mark the exits of the maxillary (V2) branch of the trigeminal nerve (Russell 1967). The maxilla articulates with the prefrontal via a straight suture that extends 22 23 posterolaterally from the posterolateral edge of the external naris to the anterodorsal edge of 24 the orbit (Figs 2, 5C). Thus, the maxilla forms most of the lateral border of the external naris, with the prefrontal surrounding the posterior and posterolateral edges of the external nares 25

1 (Fig. 2).

The posterior terminus of the maxilla extends beyond the posteriormost maxillary tooth for a distance roughly equivalent to one alveolus length (Figs 3, 4C). The posterior extent of the lateral border of the left maxilla is marked by several large indentations or pits (Figs 2, 5C). However, as these pits are absent on the right maxilla, they are likely the result of taphonomic deformation.

7 The maxillae each bear 12 tooth positions (Fig. 2); the morphology of these teeth is 8 described in Description – Dentition. The maxillary tooth row is slightly inset from the 9 smoothly rounded ventrolateral border of the maxilla (Figs 3, 4B–C). The lingual shelf of the 10 maxilla is best visible posteriorly on the left maxilla (Fig. 4C) and anteriorly on the right 11 maxilla (Fig. 4B). It extends along the medial border of the maxillary tooth row and is quite 12 pronounced, especially posteriorly, causing the tooth row to effectively occupy a one-sided trough (Figs 3, 4B–C). Although the lingual shelf is about 1.8 cm wide at its widest point 13 14 posteriorly and remains quite pronounced along most of its length, it does become thinner 15 anteriorly, with its thinnest width of 0.1 cm occurring medial to the third maxillary tooth. 16 Anterior to this point, the lingual shelf is no longer visible, though it is unclear whether this absence is biological or simply the result of being obscured by matrix. 17

18

19

[Insert Figure 5 here as a full-page (173 mm x 232 mm) figure]

20

Dentition. Two pairs of teeth are present on the premaxilla (Figs 2, 3, 4A). The anterior pair is moderately recurved, with the teeth showing slight wear on their tips (Figs 4A, 6A). The right anterior tooth is slightly more prognathous than its left counterpart (Figs 3, 4A, 6A), likely the result of taphonomic deformation to the associated alveolus (see below; Fig. 6A). This displacement may also have been facilitated by the lack of fusion between this tooth and

its alveolus (see below; Fig. 6A). The second premaxillary tooth is absent on the left side of
the premaxilla and taphonomically distorted on the right side; however, based on the
dimensions of the alveolus and the remnants of the tooth that are present, this tooth was likely
of similar size to the anteriormost premaxillary tooth (Figs 3, 4A). As such, this specimen
lacks the prominent caniniform premaxillary dentition characteristic of *Goronyosaurus*(Lingham-Soliar 2002).

7 There are 12 tooth positions on the maxilla (Figs 2, 3) and at least 10 tooth positions 8 on the dentary (Fig. 7A-B). All of the marginal teeth are strongly fluted, bicarinate, and lack 9 serrations (Fig. 6). The teeth are widely spaced, indicating strong interdigitation of the tooth 10 rows when occluded. As in *Goronvosaurus*, deep interdental pits are present along the 11 premaxillary, maxillary, and dentary tooth rows to accommodate this interdigitation 12 (Lingham-Soliar 1991; Figs 3, 4, 6). These interdental pits can be distinguished from the 13 replacement tooth pits because they are located lateral to the tooth row, whereas the 14 replacement teeth form posteromedial to the tooth roots (Figs 3, 6). The interdental pits are 15 deepest anteriorly on the jaws and get progressively shallower until finally disappearing 16 posterior to the seventh dentary (Figs 6F, 7A) and at least the fifth maxillary tooth positions (Figs 3, 4B). The interdental pits may extend beyond the fifth tooth position on the maxilla, 17 18 but this location is obscured by the displaced humerus. This shallowing is related to 19 progressive changes in the dimensions of the teeth: the premaxillary and anterior maxillary 20 teeth are long and distinctly recurved whereas the more posterior maxillary teeth are 21 progressively shorter, stouter, and less recurved (Figs 3, 4, 6). This moderate heterodonty 22 allows the posterior teeth to interlock without interdental pits.

The tooth bases are oval in cross-section, and are posteriorly elongated toward the posterior extent of the maxillary tooth row (Figs 3, 4, 6). The teeth also exhibit progressive changes in the degree of wear. The premaxillary and anterior maxillary and dentary teeth are

1 barely worn (Figs 4A, 6), whereas the posterior maxillary teeth exhibit much more 2 pronounced wear (Figs 4B–C, 6C). In the tenth and eleventh left maxillary teeth, this wear 3 extends from the tip of the tooth crown along the tooth's mesial carina. 4 The marginal tooth roots are broadly exposed along their respective tooth rows, constituting between one-third and one-half of the height of the overall tooth (Figs 2B, 3B, 4, 5 6 6). Taphonomic damage to the alveolus of the right anterior premaxillary tooth has caused the 7 root of this tooth to be further exposed beyond the level of the maxillary tooth row, revealing 8 the root to be elongate and curved underneath the interdental pit between the right 9 premaxillary teeth (Figs 3B, 4A, 6A). Similar breakage at the fourth tooth position on the left 10 dentary reveals similar curvature of the tooth root underneath the interdental pit posterior to 11 this tooth position, with the exposed root being at least twice the length of the tooth crown 12 (Fig. 7A). The presence of this root curvature at both the first premaxillary and fourth dentary 13 tooth positions therefore indicates that this curvature is present and pronounced at least 14 anteriorly on the marginal tooth rows, though whether it continues into the posterior extent of 15 the tooth rows remains uncertain. Similar curvature is also present in the tooth roots of Prognathodon solvayi Dollo, 1889a (C.S., pers. obs.). 16 17 Three replacement teeth are visible on the marginal jaw elements: one in the early

stages of development occurs in association with the eleventh tooth on the left maxilla (Figs 18 19 3A, 6C); another replacement tooth at a slightly more advanced stage, indicated by its slightly 20 larger size, occurs in association with the third tooth on the right maxilla (Figs 3A, 6B); and a 21 final replacement tooth at a much more advanced developmental stage – indicated by its much larger size – occurs in association with the seventh tooth position on the left dentary 22 23 (Figs 6F, 7A). The two smaller replacement teeth occur in shallow pits directly posteromedial 24 to their respective tooth positions (Fig. 6B-C), whereas the largest replacement tooth is 25 present in a crypt underneath the functional tooth (Fig. 6F). As in the functional teeth, none

19

of the replacement teeth are serrated. However, these replacement teeth differ from the
 functional teeth in having smooth faces, thus lacking the plicae present on the fully
 developed, functional teeth.

4 Different stages of post-eruption tooth development are also visible along the left 5 dentary tooth row, reflecting the progressive fusion that occurs throughout this late-stage 6 tooth development. The roots of the second, fourth, and sixth teeth are separate from their surrounding alveoli, with each alveolus forming a rim around the associated tooth root (Figs 7 8 6F, 7A). The third tooth root is partially fused to the bone, such that the aforementioned rim 9 is less pronounced; instead, the junction between the tooth root and the alveolus is marked by 10 a slight groove encircling the root (Figs 6D, 7A). The fifth tooth is completely fused to its 11 alveolus, with the root being smoothly confluent with the surrounding dentary bone (Figs 6E, 12 7A). Similar developmental stages are evident along the upper marginal tooth row: the right 13 first premaxillary and first maxillary teeth are unfused to their respective tooth-bearing 14 elements (Fig. 6A); the right second premaxillary and second, third, tenth and eleventh 15 maxillary teeth are partially fused (Fig.6B); and the right fifth maxillary tooth is completely 16 fused to the maxilla. Various empty alveoli are present along all marginal tooth-bearing 17 elements (Figs 3, 4, 6, 7).

18

19

[Insert Figure 6 here as a double-column (173 mm width) figure] [Insert Figure 7 here as a full-page (232 mm x 173 mm) figure]

21

20

Prefrontal. The prefrontal articulates laterally with the maxilla, medially with the frontal,
and posteriorly with the postorbitofrontal, and is slightly curved to form the anterodorsal
border of the orbit (Figs 2, 5). The suture with the maxilla is described in Description –
Maxilla.

1 The anterior border of the prefrontal is smoothly and tightly curved, with two 2 processes – one medial and one lateral – that surround the posterior and posterolateral border 3 of the external naris (Fig. 2). The lateral process is much longer than the medial one, such 4 that the prefrontal fully surrounds the posterolateral margin of the external naris but only barely rounds the posteromedial portion before articulating with the frontal. This condition is 5 6 consistent with the lack of anterolateral processes of the frontal in MHNM.KHG.1231 and in 7 Selmasaurus, as discussed in Description – Frontal below; i.e., rather than the frontal bearing 8 anterolateral processes which surround the posterolateral borders of the external nares, it is 9 the prefrontal which embays the external narial openings (Fig. 2). 10 The prefrontal articulates with the frontal via a straight suture that extends from the 11 posteromedial corner of the external naris to the posterolateral corner of the frontal, another 12 unusual feature among mosasaurs, where in dorsal aspect the prefrontal typically terminates 13 posteriorly at the mid-length of the frontal supraorbital border (Figs 2, 5; see Russell 14 1967:fig. 4; and Bell 1997:fig. 6 for comparison). The posterior terminus of the prefrontal is 15 deeply notched, with diverging medial and lateral processes that articulate with the 16 anteriorly-projecting main body of the postorbitofrontal (Figs 2, 3, 4C, 5). The lateral process 17 extends to the midpoint of the orbit, thus forming the anterolateral border of the orbit, with the medial process being slightly longer (Figs 2, 3, 5C). This articulation of the prefrontal 18 with the postorbitofrontal excludes the frontal from the orbital margin. Similar to the 19 20 condition in Plotosaurus (see LeBlanc et al. 2013:figs 2, 6), the prefrontal and 21 postorbitofrontal exhibit extensive contact along the ventrolateral, lateral, and dorsolateral 22 borders of the orbit (Fig. 5). This pronounced articulation, previously considered unique to 23 Plotosaurus among mosasaurs, contributes to reduced kinesis between the muzzle and 24 posterior skull (LeBlanc et al. 2013).

Lacrimal. In many non-ophidian squamates, a lacrimal is present between the prefrontal and
 maxilla (see Konishi *et al.* 2016 for proposed location in mosasaurs). However, because this
 area of the skull is taphonomically distorted in MHNM.KHG.1231 (Figs 2, 5C), the presence
 of the lacrimal cannot be assessed in this specimen.

5 Frontal. The frontal is a triangular bone articulating anteriorly with the internarial bar of the 6 premaxilla, laterally with the prefrontal, posterolaterally with the postorbitofrontal, and posteriorly with the parietal (Figs 2, 5). In MHNM.KHG.1231, the frontal possesses a single 7 8 pair of long anterior projections, about half the length of the main body of the frontal, that 9 surround the posterior extent of the internarial bar and thus border the external nares 10 posteromedially (Fig. 2). These processes bear short but sharp ridges concentrated on the 11 medial half of their respective dorsal surfaces (Fig. 2). Though the posteriormost portion of 12 the premaxillary internarial bar is broken, the tight V-shaped notch formed by the frontal's 13 anterior processes indicates that the internarial bar would have invaded the frontal to a point 14 roughly in line with the posterior extent of the openings for the external nares (Fig. 2B). 15 Uniquely shared with Ectenosaurus and Selmasaurus among russellosaurines,

16 MHNM.KHG.1231 lacks a pair of frontal anterolateral processes, thus precluding the frontal

17 from forming the posterolateral corner of the naris (compare Fig. 2 to Russell 1967:figs 83,

18 86; Wright & Shannon 1988:fig. 1; Holmes 1996:fig. 2A; Konishi & Caldwell 2007:fig. 5A;

19 and Polcyn & Everhart 2008:fig. 3).

Though the dorsal surface of the frontal is quite deeply fractured, the sutures between the frontal and surrounding bones are still clear and the ventral surface is much more intact. The frontal is tightly joined to the parietal via a complex and interdigitating suture (Figs 2, 3, 4C, 5), similar to the condition described in *Goronyosaurus nigeriensis* (Lingham-Soliar 1999) and *Selmasaurus russelli* (Wright & Shannon 1988) and also present, albeit to a lesser extent, in *Ectenosaurus* (C.S., pers. obs., FHSM VP-401). The junction between the frontal

1	and prefrontal is similarly tightly articulated, though lacks clear interdigitation (Figs 2, 3, 4C,
2	5). The posterolateral corners of the frontal each bear an ala overlying the postorbitofrontal
3	between its anterior and medial processes and forming the main junction between the frontal
4	and postorbitofrontal (Figs 2, 5B-C). These alae are particularly long and narrow, resembling
5	the condition in Goronyosaurus and Phosphorosaurus ponpetelegans Konishi, Caldwell,
6	Nishimura, Sakurai & Tanoue, 2016, but differing from most other mosasaurs, including
7	closely related taxa such as Selmasaurus (C.S., pers. obs.; see also Azzaroli et al. 1972;
8	Soliar 1988; Wright & Shannon 1988; Konishi et al. 2016 for comparison to the
9	aforementioned taxa).
10	Ventrally, the frontal is underlain posterolaterally by the postorbitofrontals (Figs 3,
11	4C, 5A). These overlap the frontal alae so that the posterolateral corners of the frontal's
12	ventral surface are laterally concave (Figs 3, 4C, 5A) rather than triangularly projecting as the
13	alae are dorsally (Figs 2, 5B-C). Highly unusually for mosasaurs, the prefrontal extends
14	nearly as far posteriorly as to the frontoparietal suture (Figs 2, 3, 4C, 5; see also Description –
15	Prefrontal above). The posteromedian flanges of the frontal project posteriorly in ventral
16	view to a level about one-third along the length of the pineal foramen (Figs 3, 5A). These
17	flanges articulate medially with the parietal and so do not directly border the pineal foramen
18	(Figs 3, 5A). The only contact between the frontal and the pineal foramen occurs where the
19	anterior terminus of the pineal foramen contacts the midpoint of the posterior border of the
20	frontal (Figs 3, 4C, 5A).
21	Anterior to the pineal foramen, the frontal bears a pronounced, roughly triangular boss
22	on its ventral surface that tapers anteriorly to join the olfactory canal (Figs 3, 4C, 5A). The
23	edges of the tabular boss form a sharp ridge, whereas the central portion of the boss is slightly
24	concave and is at about the same level as the frontal's main ventral surface (Figs 4C, 5A).

25 The olfactory canal continues anteriorly along the ventral midline of the frontal, though is

1

2

3

4

5

6

7

8

only visible for about 1 cm before being obscured by the displaced palatal bones (Figs 3, 4C, 5A). The posterior portion of the canal is completely surrounded by bone, such that it appears on the frontal's ventral surface as a narrow rectangular tube extending from the anterior portion of the aforementioned boss (Figs 4C, 5A); however, as only this posteriormost extent is visible, it is uncertain whether this ventral enclosure continues along the rest of the canal or not. Lateral to the anterior half of the tabular boss and the posterior portion of the olfactory tract, narrow and smoothly concave depressions preserve the location of the cerebral hemispheres *sensu* Russell (1967) or, alternatively, the articulation surface for the

9 orbitosphenoids *sensu* Konishi & Caldwell (2011) (Figs 3, 4C, 5A). These depressions are
10 approximately 0.5–0.6 cm in width and 3.2 cm in length, though may extend further
11 anteriorly under the superimposed palatal bones.

12 Parietal. The parietal is an elongate element that forms the medial and anteromedial borders of the supratemporal fenestrae. The anterior portion of the parietal forms a flattened table 13 approximately 7 cm wide and almost 4 cm long, articulating with the frontal anteriorly and 14 15 the postorbitofrontal laterally (Figs 2, 3, 5B). The pineal foramen barely contacts the 16 frontoparietal suture anteriorly on this roughly triangular table (Figs 2, 3, 4C, 5A–B). This 17 foramen is large and elongate, measuring 2.4 cm long and 0.6 cm wide. Dorsally, its edges 18 are smoothly rounded (Figs 2B, 5B), whereas the ventral opening of this foramen is 19 surrounded by a high, sharp, oval ridge (Figs 3, 4C, 5A) akin to the condition in *Mosasaurus* 20 spp. (see e.g., Konishi et al. 2014:fig. 4C for comparison) and at least one specimen of 21 Ectenosaurus sp. (T.K., pers. obs., YPM 4674). This ridge projects sharply from the level of the rest of the parietal, reaches its peak about 1 cm from the pineal foramen's border, and 22 23 curves down smoothly into the foramen itself (Figs 4C, 5A). Anteriorly, this ridge is 24 confluent with the raised tabular boss on the ventral midline of the frontal (Figs 4C, 5A). Posteriorly, the sides of the ridge on either side of the pineal foramen converge to form a 25

24

groove that extends the length of the parietal's ventral midline, terminating where the parietal diverges posteriorly to form the suspensorial rami (Figs 3A, 4C, 5A). This groove is laterally offset near the anterior origin of the parietal descending processes, though this discontinuity is likely the result of taphonomy, as evidenced by the other breaks and grooves visible on the parietal.

6 The majority of the parietal consists of a narrow, elongate median body forming the 7 medial borders of the supratemporal fenestrae (Figs 2, 3). This portion of the parietal is 8 extremely constricted, a condition otherwise noted only in *Goronvosaurus* and *Selmasaurus* 9 (Wright & Shannon 1988; Polcyn & Everhart 2008). Dorsally, an overhanging lateral shelf is 10 present on each side of the parietal table posterolateral to the pineal foramen (Figs 2, 5B). 11 This shelf extends diagonally from the center of each side of the flattened anterior parietal to 12 a point about one-fifth of the way along the lateral surface of the constricted body of the 13 parietal (Fig. 2). This is in distinct contrast to the typical mosasaur condition: in other 14 mosasaurs, these overhanging crests typically extend to the suspensorial rami of the parietal, 15 causing almost the entire dorsal surface of the parietal to be distinctly flattened. In 16 MHNM.KHG.1231, by comparison, these crests are greatly shortened, restricting the parietal 17 table to the anterior one-third of the parietal. 18 Due to its marked constriction, the rest of the parietal forms a midsagittal crest. As 19 noted above, this marked parietal constriction is also present in Selmasaurus russelli (see 20 Wright & Shannon 1988:fig. 1) and S. johnsoni (see Polcyn & Everhart 2008:fig. 3); 21 however, the condition in MHNM.KHG.1231 is more pronounced than in these species,

resulting in a triangular, rather than subrectangular, parietal table and a posterior midsagittal,

23 rather than parasagittal, crest(s) (Fig. 2). As mentioned, the parietal of Goronyosaurus shows

24 similar constriction; however, it is too incomplete to fully assess the state of the sagittal crest

25 or table.

25

1 Ventrally, the parietal bears two broadly crescentic descending flanges that descend at 2 an angle from either side of the parietal's posterior body, forming the medial wall of the supratemporal fenestrae (Figs 2, 3). These flanges extend from the anteromedial corner of the 3 4 supratemporal fenestrae to a point about 4 cm anterior to the divergence of the parietal into 5 the suspensorial rami. In life they would have articulated with the prootics, though in 6 MHNM.KHG.1231 these bones, as well as other elements of the chondrocranium, are not 7 preserved. These descending flanges are about 0.5-0.6 cm thick, tapering ventrally to a width 8 of about 0.1 cm. 9 In mosasaurs, the posterior portion of the parietal is typically comprised of the

10 suspensorial rami, though in MHNM.KHG.1231 these structures are broken such that only 11 the most proximal portion of each ramus is preserved (Figs 2, 3). From what remains of the 12 posterior parietal, it is evident that the rami diverge horizontally at about 30° to the sagittal 13 midline. Proximally, the rami are relatively similar in height and width, though soon after 14 their divergence become dorsoventrally depressed so as to be wider than they are tall, as is 15 typical of non-halisaurine mosasaurs (e.g., Konishi *et al.* 2016).

16 **Postorbitofrontal.** The postorbitofrontal articulates anteriorly with the prefrontal,

17 anteromedially with the frontal, medially with the parietal, and posteroventrally with the 18 squamosal (Figs 2, 3, 4C, 5). Anteriorly, the main body of the postorbitofrontal extends to 19 form the posterior half of the dorsal orbital border, articulating with the notched posterior 20 terminus of the prefrontal just anterior to the midpoint of the orbit (Figs 4C, 5). The 21 prefrontal-postorbitofrontal suture thus delineates an anteriorly-facing wedge of the postorbitofrontal surrounded on either side by posteriorly-projecting medial and lateral 22 23 processes of the prefrontal. A similarly extensive articulation of the postorbitofrontal and 24 prefrontal has been described in *Plotosaurus* as an adaptation for reduced cranial kinesis (LeBlanc et al. 2013). 25

1 The postorbitofrontal's medial process to the parietal forms the anterolateral border of 2 the supratemporal fenestra. Dorsally, this medial process is overlapped by the posterolaterally-projecting frontal ala (Figs 2, 5B). The dorsal suture between the frontal ala 3 4 and the postorbitofrontal is complex and interdigitating, in contrast to the more linear sutures 5 connecting the postorbitofrontal to the prefrontal (Figs 2, 5B-C). Ventrally, the 6 postorbitofrontal meets the parietal in a laterally concave suture marked by a distinct groove 7 in the ventral skull roof (Figs 3, 4C, 5A). 8 At the junction between its anterior, medial, and posterior processes, the 9 postorbitofrontal bears a descending process that in life would have articulated with the jugal 10 (Russell 1967; Figs 3, 4C, 5A). This process is anteroposteriorly compressed and tapers to a 11 smoothly rounded ventrolateral border. 12 Posteriorly, the postorbitofrontal bears a long, thin process that articulates with the dorsal surface of the squamosal (Figs 2, 3, 5C). Whereas the anterior and medial processes of 13 14 the postorbitofrontal are dorsoventrally depressed, this squamosal process is laterally 15 compressed. The junction of this process with the main body of the postorbitofrontal forms the anterolateral corner of the supratemporal fenestra and occurs at approximately a right 16 17 angle (Fig. 2). This corner is obtuse in another plioplatecarpine Platecarpus tympaniticus

18 Cope, 1869 (e.g., Konishi & Caldwell 2009:fig. 5D), with *Selmasaurus* showing an

19 intermediate condition (e.g., Wright & Shannon 1988:fig. 1). The squamosal process extends

20 nearly to the posterior extent of the squamosal, becoming progressively thinner as it

21 approaches its posterior terminus (Figs 2, 3). A notch at the ventral junction of the

22 postorbitofrontal's squamosal and jugal processes articulates with the pointed anterior

23 terminus of the squamosal (Fig. 3).

24 Squamosal. The squamosal is a laterally compressed, rod-like bone that articulates dorsally

25 with the squamosal process of the postorbitofrontal (Figs 2, 3, 5C). In MHNM.KHG.1231,

27

1 the left squamosal is broken near its anterior extent and is twisted such that its dorsal surface 2 now lies medially (Fig. 2). The dorsal border of the squamosal is gently inclined, such that 3 the squamosal shaft is 2.8 cm high at its posterior terminus and tapers downward anteriorly to 4 a height of 1.1 cm, terminating anteriorly in a wedge that inserts between the 5 postorbitofrontal's jugal and squamosal processes (Figs 3, 5C). 6 The posterior terminus of the squamosal forms a ventromedially-expanded head (Fig. 7 3) that in life would have articulated medially with the supratemporal and parietal and 8 ventrally with the quadrate. The dorsal surface of the squamosal head is continuous with the 9 dorsal surface of the squamosal shaft (Fig. 2), whereas the ventral portion of the body 10 expands below the level of the ventral shaft (Fig. 3). The internal face of the squamosal head 11 is teardrop-shaped and medially concave, forming a facet for the posterior portion of the 12 supratemporal (Fig. 3). The squamosal head bears a flat facet anteroventrally that would have articulated with the dorsal surface of the quadrate, possibly along the suprastapedial process 13 14 (Fig. 3).

15 The squamosal bone and the squamosal process of the postorbitofrontal together form 16 the lateral border of the supratemporal fenestra. The junction of the squamosal shaft and 17 squamosal head forms the posterolateral corner of this fenestra, as the squamosal head 18 expands ventromedially from the shaft. The dorsal articulation between the squamosal and 19 postorbitofrontal extends nearly the full length of the squamosal, terminating at the 20 approximate dorsal midpoint of the squamosal head (Fig. 2).

Quadrate. A partial right quadrate was recovered from the matrix surrounding the right dentary (Fig. 8). Very little of the quadrate is preserved, with this fragment representing the dorsal-most portion of the quadrate shaft and most of the suprastapedial process. The medial surface of the suprastapedial process bears a broad excavation, causing the suprastapedial process to be constricted dorsally (Fig. 8B–C). This condition is limited to

28

1 MHNM.KHG.1231, Ectenosaurus, and Selmasaurus among the Plioplatecarpinae (Konishi 2 2008). Dorsal constriction of the suprastapedial process has been recognized in previous studies as a trait typical of mosasaurines (e.g., see Bell 1997:char. 45); however, given the 3 4 results of our and previous phylogenetic analyses (e.g., Bell 1997; Caldwell et al. 2008; Jiménez-Huidobro & Caldwell 2019), we discard the possibility that the condition in 5 6 mosasaurines could be homologous with that observed in *Gavialimimus* as unparsimonious. 7 (For further discussion of this condition, see description and scoring of characters 38 and 42 8 in our multistate [\$S1] and contingent [\$S2] character lists, respectively.) 9 The dorsal surface of the suprastapedial process is generally consistent in width, measuring about 1.3 cm wide along most of its length, though does flare outward distally and 10 11 taper proximally (Fig. 8C). This ventral flaring is mostly medial with minor lateral expansion, 12 likely reflecting medial deflection of the distal terminus of the suprastapedial process 13 combined with a minimal degree of distal expansion of this process. However, the distalmost 14 portion of the suprastapedial process was sheared off during excavation of the specimen (see 15 unfinished surface in Fig. 8D), so its exact morphology is unclear. The proximal tapering of 16 this quadrate fragment represents the small preserved remnant of the quadrate shaft. This 17 portion of the quadrate is exceptionally narrow, which if anatomically accurate would be 18 quite unique among mosasaurs; however, the highly fragmentary nature of this element 19 makes confident interpretation of the quadrate shaft morphology in its entirety impossible. 20 The alar concavity on the lateral surface is smooth and flat, curving tightly 21 dorsolaterally to give rise to the quadrate ala around its rim (Fig. 8A). The quadrate ala is 22 mostly broken off, though what is preserved is quite thin. The dorsal extent of the stapedial 23 notch is present and is smoothly and tightly curved, measuring about 0.8 cm in width (Fig. 24 8A–B, D). The stapedial pit overlies the stapedial notch anteromedially at the junction 25 between the suprastapedial process and the quadrate shaft (Fig. 8B, D). It is a relatively

narrow oval, measuring approximately 1.2 cm and 0.6 cm along its long and short axes,
 respectively. Its long axis is oriented parallel to the anterodorsal border of the stapedial notch
 (Fig. 8D).

4 Several of the features noted above are similar to the quadrate morphology of 5 Selmasaurus. For example, a medially excavated suprastapedial process and corresponding 6 narrow dorsal surface are also present in the holotypes of S. russelli and S. johnsoni and in 7 quadrates referred to Selmasaurus sp. (C.S., pers. obs.; see also Konishi 2008; Polcyn & 8 Everhart 2008:fig. 6). In Selmasaurus, the suprastapedial and infrastapedial processes are in 9 broad contact (Konishi 2008), with both processes being medially deflected. This medial 10 deflection also occurs in the suprastapedial process of MHNM.KHG.1231; however, the 11 infrastapedial process is not preserved and so this contact is impossible to assess. 12 Furthermore, in Selmasaurus, the suprastapedial process simply tapers to a blunt terminus, 13 without the distal expansion that appears to be present in MHNM.KHG.1231. A 14 synapomorphy of the genus Selmasaurus is the presence of a distinct lateral deflection 15 midway along the length of the quadrate shaft, a condition also present in *Taniwhasaurus* antarcticus (Novas, Fernández, Gasparini, Lirio, Nuñez & Puerta, 2002) and certain species 16 17 of Plioplatecarpus (e.g., Plioplatecarpus houzeaui Dollo, 1889b) (C.S., pers. obs.; see also Konishi 2008; Fernandez & Martin 2009). Again, the incomplete nature of the quadrate of 18 19 MHNM.KHG.1231 makes this feature impossible to assess in this specimen. Therefore, 20 although what little is left of the quadrate in MHNM.KHG.1231 is broadly similar to the 21 morphology of Selmasaurus, the degree of incompleteness of this specimen limits the extent of comparisons that can be made and synapomorphies evaluated. 22

23

24

[Insert Figure 8 here as a single-column (82 mm width) figure]

30

Vomer. The vomers in MHNM.KHG.1231 are long, splint-like bones that extend from the midpoint of the main body of the palatine to the posterior extent of the premaxilla, lying medially to and in close contact with the lingual shelves of the maxillae for most of their length, thus forming a nearly solid bony palate (Figs 3, 4).

5 The vomer-palatine suture is well-preserved. The posterior terminus of the vomer 6 articulates with the anteromedial corner of the main palatine body (Figs 3A, 4C). The lateral border of the vomer then curves medially to form the rounded posteromedial corner of the 7 8 internal naris (Figs 3, 4C). From this point onward, the lateral margin of the vomer extends 9 straight anteriorly toward its contact with the premaxilla (Figs 3, 4A–B). Medially, the 10 vomers articulate with each other along their entire length, forming a straight anteroposterior 11 suture along the midline of the palate (Figs 3, 4). As the snout thins anteriorly, so too do the 12 vomers, becoming narrower and less distinguishable from each other as they approach their 13 anterior articulation with the vomerine processes of the premaxilla (Figs 3, 4A). The ventral 14 oblique crest of the left vomer extends farther ventrally than that of the right vomer, due to 15 displacement of the palate.

Anterior to the disarticulated humerus – which obscures part of the posterior palate – a small splint of bone is present lateral to the right vomer (Figs 3, 4B). This splint lies medial to the fourth, fifth, and sixth tooth positions on the right maxilla. This bone may represent part of the right septomaxilla; alternatively, it may simply be a broken portion of the right vomer. Due to taphonomic distortion of the palate, especially at its anterior extent, it is not possible to definitively discount either of these options.

Palatine. Due to taphonomic compression of the skull in MHNM.KHG.1231, the skull roof is in direct contact with the palate. The palate is also offset laterally, such that the palatal midline is to the left of the skull roof midline and the right internal naris is in line with the left external naris (Figs 3, 4). The palatal bones themselves are quite well-preserved, including preservation of the articulation between the palatines and vomers (Figs 3, 4C), a contact
 rarely preserved in mosasaurs (Russell 1967).

3 The palatine in MHNM.KHG.1231 consists of a roughly triangular main body bearing 4 a process projecting anteriorly from the anterolateral corner of its ventral surface (Figs 3, 4C). 5 The vomero-palatine contact creates a diagonal suture running posteromedially from the 6 internal naris to the midpoint of the medial border of the palatine (Fig. 4C). Posterior to this suture, the medial border of the palatine runs almost straight posteriorly (Figs 3, 4C). The 7 8 palatines possess only a narrow contact with one another medially (Fig. 4C). This separation 9 may be the result of taphonomic distortion, but may alternatively represent where the 10 pterygoids, here not preserved *in situ*, would have articulated medially to the palatines [e.g., 11 as in Plesioplatecarpus planifrons (Cope, 1874), as figured in Konishi & Caldwell (2007):fig. 12 3].

As in most mosasaur specimens, the palatine-pterygoid articulation is not preserved (Russell 1967; Konishi & Caldwell 2007). The posterior extent of each palatine is broken, such that the posterior border is transversally straight on the right palatine and curved on the left palatine (Figs 3, 4C).

17 The palatine articulates laterally with the maxilla via an unusually long suture, at least four alveoli long based on the right side, due in part to a long anterolateral process (see 18 19 below). Posteriorly, the maxilla-palatine contact is directed anteromedially at about 45° in 20 ventral view (Fig. 4C). Anterior to this, the palatine bears a process projecting directly 21 anteriorly and articulating with a groove on the medial surface of the posterior maxilla (Figs 3, 4C). This process is about half the length of the main body of the palatine, terminating just 22 23 anterior to the eleventh maxillary tooth position and forming the posterolateral border of the 24 internal naris (Fig. 4C). The anterior border of the palatine is tightly curved to form the 25 oblong posterior border of the internal naris (Fig. 4C). The ventral surface of the palatine

1 slopes gently dorsally as it anteriorly approaches the internal naris.

2 Due to the taphonomic distortion of the skull roof and palate, as well as the placement 3 of a disarticulated humerus midway along the palate, the anterior extent of the internal nares 4 is unclear. However, based on the left internal naris – the more intact of the internal nares in 5 MHNM.KHG.1231 - the internal nares are teardrop-shaped, tapering anteromedially and 6 extending to at least the ninth maxillary tooth position (Fig. 3). Posteriorly, the internal nares terminate between the eleventh and twelfth maxillary tooth positions (Figs 3, 4C), whereas 7 8 this posterior termination typically occurs more anteriorly along the tooth row in other 9 mosasaurs. This is particularly true in short-snouted plioplatecarpines such as 10 Plioplatecarpus primaevus Russell, 1967 (see Holmes 1996:fig. 2) and Platecarpus 11 tympaniticus (see Russell 1967:fig. 84). This more anterior termination also occurs in long-12 snouted taxa such as early-diverging mosasaurines (e.g., BMNH R2946, C.S., pers. obs.). In 13 this latter specimen, the internal nares terminate posteriorly near the thirteenth of its 16-18 14 maxillary teeth and are therefore comparatively more anteriorly placed than those of 15 MHNM.KHG.1231. The internal nares in MHNM.KHG.1231 are thus somewhat retracted 16 compared to other mosasaurs.

Pterygoid. Both pterygoids are partially preserved in MHNM.KHG.1231 (Fig. 9A–D). The anterior and posterior termini of both pterygoids are broken, such that the pterygoids both terminate anteriorly midway along the tooth row on the main pterygoid body and posteriorly just beyond the divergence between the basisphenoid process and quadrate ramus. The ectopterygoid process is also preserved on both pterygoids (Fig. 9A–D). Both pterygoids are noticeably fractured, with the right pterygoid also being partially obscured laterally and dorsally by two vertebrae (Fig. 9C–D).

24 The main body of the pterygoid tapers to a thin, flat flange that projects laterally from 25 the pterygoid tooth row, causing the tooth row to be medially offset from the pterygoid

midline (Fig. 9A–B). Dorsally, the main body extends to form a narrow, rounded ridge that
sits directly above the tooth row (Fig. 9B).

3 The ectopterygoid process projects generally transversally, though taphonomic 4 distortion and differences in preservation between the left (Fig. 9A–B) and right (Fig. 9C–D) pterygoids cause subtle differences in morphology and orientation of the respective 5 6 ectopterygoid processes. The ectopterygoid process tapers anterolaterally, also bearing a posterodistal projection angled posteromedially toward the proximal end of the quadrate 7 8 ramus of the pterygoid. The posterior border of the ectopterygoid process meets the pterygoid 9 body posterolateral to the posterior terminus of the pterygoid tooth row (Fig. 9A, C). This 10 condition resembles that of *Goronvosaurus nigeriensis*, the holotype of *Platecarpus* 11 somenensis Thévenin, 1896, and Selmasaurus johnsoni (but unknown in S. russelli), in which 12 the base of the ectopterygoid process is also unusually broad (T.K., pers. obs.; see also Soliar 13 1988:fig. 5; Polcyn & Everhart 2008:fig. 4). The former two species also possess a 14 posterodistal projection of the ectopterygoid process, as described above for 15 MHNM.KHG.1231. This projection contacts the quadrate ramus of the pterygoid in G. 16 nigeriensis but not in P. somenensis. This process also appears to contact the quadrate ramus 17 in the left pterygoid of MHNM.KHG.1231 (Fig. 9A-B); however, this contact is likely taphonomic, as the distalmost tip of this projection is deeply broken on the left pterygoid, 18 giving rise to an artificial contact between these processes. The true anatomical configuration 19 20 would therefore likely resemble that of P. somenensis, with the posterodistal projection of the 21 ectopterygoid process approaching but not contacting the quadrate ramus, as seen in the right pterygoid of MHNM.KHG.1231 (Fig. 9D). 22

The basisphenoid process and quadrate ramus begin to diverge slightly posterior to the pterygoid tooth row. This divergence is visible dorsally, as the dorsally-rounded surfaces of these processes extend posteriorly from the main pterygoid body, forming ridges that

border a progressively deepening sulcus (Fig. 9B, D). About 5 cm posterior to the 1 2 posteriormost pterygoid tooth -a distance equivalent to approximately three pterygoid tooth 3 positions – this sulcus gives way to a complete divergence between these processes. The 4 basisphenoid process projects directly posteriorly from the main pterygoid body, with the 5 quadrate ramus projecting laterally at a 45° angle (Fig. 9B, D). The dorsal surface of the 6 basisphenoid process is smoothly rounded, whereas the quadrate ramus bears a thin groove lateral to its dorsal midline. The ventral surface of the quadrate ramus is uniformly smooth, 7 8 whereas the basisphenoid process bears a narrow, rounded ridge along the medial border of 9 its ventral surface.

10 The pterygoid tooth row preserves six tooth positions (Fig. 9A, C). A separate 11 fragment of the anterior pterygoid tooth row is present in a block containing two vertebrae 12 (Fig. 9E–F), though it is uncertain to which pterygoid this fragment belongs. Only four 13 pterygoid tooth crowns are preserved: two on the separated fragment and two on the right 14 pterygoid at the fifth- and sixth-posteriormost tooth positions (Fig. 9C, E). These teeth exhibit 15 narrow plicae, similar to the marginal dentition. The pterygoid teeth are much more recurved 16 and much smaller than the marginal teeth, an expected condition for plioplatecarpines among 17 russellosaurines. The tooth row itself is straight; the anteriormost teeth preserved on the right pterygoid project ventromedially from the tooth row, but this is clearly the result of 18 taphonomy (Fig. 9C). On the left pterygoid, breakage of the thin flange lateral to the tooth 19 20 row gives the appearance of the anterior part of the tooth row rising above the level of the 21 ventral surface (Fig. 9A); however, the posterior extent of both the left and right pterygoid 22 tooth rows is unbroken and shows the tooth row to be level with the ventral surface formed 23 by the diverging processes.

24

25

[Insert Figure 9 here as a full-page (173 mm x 232 mm) figure]

2 Mandible

3 Dentary. Both the left and right dentaries are heavily fractured posteriorly, with several less
4 severe fractures throughout (Fig. 7A–B). The posterior portion of the left dentary is also
5 separated from the rest of the dentary by a large break (Fig. 7A), though whether this break is
6 due to predation or to breakage during excavation of the specimen is indeterminable.

7 The ventral border of the dentary is horizontal along most of its length, though curves 8 dorsally at the anterior tooth position to form the anterior terminus of the dentary, and 9 curves ventrally posterior to the tenth tooth position (Fig. 7A). The ventral border of the 10 dentary is tightly rounded and is thicker anteriorly than posteriorly. The dorsal border of the 11 dentary is flattened to accommodate the tooth row and interdental pits (Fig. 7A). The 12 morphology of the teeth and associated features is described in Description – Dentition. 13 Medial to the tooth row, the medial parapet of the dentary rises vertically so as to be taller 14 than the lateral surface of the dentary (Figs 6D-F, 7A), a condition otherwise only known to 15 occur in *Plioplatecarpus* (see Konishi & Caldwell 2011). The medial parapet increases in 16 height posteriorly, progressing from covering the ventral one-third of the exposed portion of 17 the dentary tooth roots anteriorly to covering about one-half of the exposed roots of the posterior dentary teeth (Fig. 7A). Replacement tooth pits occur lateral to the medial parapet 18 19 and posteromedial to their respective tooth positions (Figs 6D-F, 7A).

The lateral surface of the dentary is almost entirely flat, though bulges slightly outward at its anteriormost extent under the first and second tooth positions (Fig. 7A). The height of the dentary increases along its length, such that the height of the posterior terminus is about threefold that of the anterior terminus (Fig. 7A–B). The lateral surface of the dentary bears several foramina marking the exits of the mandibular (V3) branch of the trigeminal nerve (cranial nerve V) (Russell 1967; Fig. 7A). These foramina are the same size as those on

1 the premaxilla and maxilla (Fig. 2). They form three loose anteroposterior rows along the 2 lateral surface of the anterior dentary, below the first four dentary tooth positions (Fig. 7A). 3 The medial surface of the dentary is mostly flat, though bears a deep excavation 4 marking the Meckelian groove (Fig. 7B). This groove runs along the ventral half of the 5 dentary's medial surface, with its anterior terminus under the sixth-anteriormost tooth 6 position. The Meckelian groove in MHNM.KHG.1231 thus extends markedly less anteriorly 7 compared to other mosasaurs, in which this groove typically extends almost all the way to the 8 anterior terminus of the dentary [e.g., Platecarpus tympaniticus: Russell (1967):fig. 29; 9 Selmasaurus johnsoni: Polcyn & Everhart (2008): fig. 7S]. This posteriorly retracted position 10 of the anterior terminus of the Meckelian groove therefore represents an autapomorphy of 11 this species. The Meckelian groove is tallest posteriorly, tapering from a height of 4.7 cm at 12 its posterior terminus to a height of 0.8 cm at its anterior terminus (Fig. 7B). The dorsal 13 margin of the Meckelian groove is horizontal and uniformly inset from the main plane of the 14 medial surface of the dentary (Fig. 7B). In contrast, the ventral margin is inset along the 15 anteriormost one-third of its length, though posterior to this, the Meckelian groove opens directly onto the ventral margin of the dentary (Fig. 7B). 16

17 Angular. The right angular is preserved in articulation with the rest of the right posterior 18 mandibular unit (Fig. 7C-F). The anterior terminus of the angular is broken, so the 19 morphology of the splenial-angular articulating surface is unknown. The angular is much 20 more exposed laterally (Fig. 7C–D) than it is medially (Fig. 7E–F). Laterally, the dorsal 21 border of the angular is parallel to its ventral border and is slightly ventrally concave (Fig. 22 7C–D). In contrast, in medial view the angular tapers sharply posteriorly to form a long, thin 23 sliver of bone that underlies the articular-prearticular (Fig. 7E–F). The angular extends 24 posteriorly much farther than is typical of mosasaurs [e.g., Platecarpus tympaniticus: Russell (1967):fig. 29], terminating below the glenoid fossa, just anterior to a posteroventral flange 25
on the articular that likely represents a crushed and distorted retroarticular process (Fig. 7E–
 F).

3 Surangular. The surangular is quite fragmented, especially anteriorly (Fig. 7C-F). The 4 dorsal border of the surangular is straight with a slight posterodorsal bump marking the anterodorsal portion of the glenoid fossa. In lateral view the surangular becomes taller 5 6 anteriorly, consistent with the anterior dorsoventral expansion of the overall posterior mandibular unit (Fig. 7C–D). Posteriorly, the surangular meets the articular at the middle of 7 8 the glenoid fossa (Fig. 7E–F). The medial surface of the surangular is slightly thickened near 9 its posterodorsal corner, delimiting the anteromedial border of the glenoid fossa. The suture 10 between the surangular and articular-prearticular is marked by a deep groove on the medial 11 surface of the posterior mandibular unit (Fig. 7E–F); such a groove is lacking on the lateral 12 surface, with the sutures between the surangular and surrounding elements being much less 13 pronounced (Fig. 7C–D).

14 Articular-Prearticular. The anterior extent of the prearticular is long and narrow,

15 underlying most of the surangular (Fig. 7E–F). The surangular-prearticular suture is strongly 16 grooved medially, representing the adductor fossa, though taphonomically compressed (Fig. 17 7F). The prearticular bears a pronounced ridge ventral to the anterior half of this suture, with 18 the surangular bearing a similar – though less pronounced – ridge on its ventral border at the 19 same position (Fig. 7F). Posteriorly, the dorsal border of the prearticular curves 20 posterodorsally at a 50° angle relative to its flat anterodorsal border as it gives way to the 21 articular (Fig. 7E-F). The surangular-articular suture terminates dorsally within the glenoid 22 fossa (Fig. 7C–F). This suture is marked by a medial thickening of the articular at the 23 posterior border of the glenoid fossa, causing the posteroventral corner of the surangular to be 24 inset relative to the articular (Fig. 7F). The dorsal border of the articular is relatively straight 25 and dips at a slight posteroventral angle. The posterior extent of the articular is relatively

1 complete except for a displaced flange preserved at its posteroventral corner, possibly

2 representing a taphonomically deformed and displaced retroarticular process (Fig. 7C–F).

3 Postcranial

4 Vertebrae. Three complete though disarticulated and distorted vertebrae are preserved, as 5 well as one highly crushed vertebral centrum (Fig. 9C-F). The synapophyses of each vertebra 6 project horizontally at a slight posterior angle, though the exact angle varies among the 7 vertebrae due to taphonomic distortion (Fig. 9C–F). The articulatory facet of each 8 synapophysis is a depressed oval distinctly shorter than the centrum height, suggesting a 9 position in the anterior to intermediate cervical region (Russell 1967). Two of the vertebrae 10 possess prominent hypapophyses (Fig. 9C, vertebra on the left; Fig. 9E), consistent with this 11 possible anterior cervical position. However, the other vertebra (Fig. 9D, vertebra on the left) 12 instead possesses a pair of haemapophyses, one intact and the other mostly sheared off (Fig. 9D). The presence of these haemapophyses, in conjunction with the narrower, taller, and less 13 14 concave and convex (i.e., flatter) vertebral centrum, suggests that this is a caudal vertebra. 15 The neural spine of each vertebra is slightly more than twice the height of the centrum, though all are broken at their dorsal extent (Fig. 9C-F). Each neural spine projects 16 from the centrum at about a 20° posterodorsal angle. The pre- and postzygapophyses are 17 18 particularly well preserved in one of the vertebrae (Fig. 9E-F). On this vertebra, the 19 prezygapophysis projects at a slight anterolateral and upturned angle from the lateral border 20 of the neural arch (Fig. 9E). The postzygapophyses are smaller than the prezygapophyses, 21 forming circular tubers that project laterally from the base of the neural spine just dorsal to 22 the neural arch (Fig. 9E-F). The articulatory facet of each postzygapophysis is directed 23 ventrolaterally (Fig. 9E–F). A small depression is present under one of the postzygapophyses, 24 potentially representing a zygantrum (Fig. 9F). However, the lack of zygosphenes on any of

25 the vertebrae, as well as the breakage of the neural spine of this vertebra, suggest that this

1 feature is the result of taphonomic distortion; it is more likely that this specimen lacks

2 zygantra and zygosphenes.

3 Humerus. The right humerus, in extensor view, is preserved on the underside of the palate 4 (Figs 3, 4B, 9G). Due to the fragility of the palate, the humerus was not removed. Breakage 5 and abrasion to the humerus obscure the position of muscle attachment scars. The length and 6 distal width of the humerus are essentially equal, with the length measuring 8.6 cm and the distal width measuring 9.0 cm (Fig. 9G). The distal end of the humerus is expanded relative 7 8 to the proximal end, similar to the condition in *Platecarpus* (Russell 1967; Fig. 9G). Both the 9 entepicondyle and ectepicondyle are present (Fig. 9G). Though both processes are broken, 10 the portions that are preserved indicate that the ectepicondyle was likely larger and more 11 laterally prominent than the entepicondyle. Both processes extend from the distal border of 12 the humerus to about midway along the humerus shaft. The shaft itself is smoothly concave 13 along its preaxial and postaxial borders (Fig. 9G). The extensor surface of the shaft is gently 14 constricted along its longitudinal axis, resulting in a slight ridge extending along this surface 15 from the proximal to distal ends of the humerus (Fig. 9G). This long ridge is not typical of 16 plioplatecarpines, though the thin cracks bordering this ridge suggest that it may be 17 taphonomically exaggerated in MHNM.KHG.1231 (Fig. 9G). The proximal end of the 18 humerus is mediolaterally deeper than the comparatively compressed distal end. The 19 proximal end exhibits a spongy texture, indicating the presence of a cartilage cap, similar to 20 the condition in *Platecarpus* and *Tylosaurus* (Russell 1967). As such, specific features such 21 as the postglenoid process and the glenoid condyle are not preserved.

22

- 23 Phylogenetic Analysis
- 24

25 Multistate coding scheme – Unweighted maximum parsimony analysis (Mu-UMP)

40

1 Unweighted maximum parsimony analysis of the dataset using a multistate coding 2 scheme recovered 26 most parsimonious trees (MPTs) of 464 steps (consistency index [CI] = 3 0.34913793, retention index [RI] = 0.70304818). A strict consensus tree was generated from 4 these optimal trees (Fig. S5A). For improved resolution, a 50% majority rule consensus tree 5 was also generated (Fig. S5B). 6 Multistate coding scheme – Implied weighting maximum parsimony analysis (Mu-7 IWMP) 8 Implied weighting maximum parsimony analysis of the dataset using a multistate 9 coding scheme and a k-value of 3.0 recovered one MPT of 468 steps (fit = 46.630811, CI = 10 0.34615385, RI = 0.69911504) (Fig. 10A). Implied weighting analyses using k-values of 7.0 11 (Fig. 7B) and 11.0 (Fig. 7C) each recovered one MPT of 465 steps (CI = 0.3483871, RI =12 0.7020649), with fit values of 28.187371 and 20.361057, respectively. This analytical approach produced the trees with the highest resolution (i.e., a single MPT for each k-value). 13 14 Each k-value also recovered the same topology within Mosasauridae, except within the 15 Mosasaurinae. 16 Contingent coding scheme – Unweighted maximum parsimony analysis (Co-UMP) 17 Unweighted maximum parsimony analysis of the dataset using a contingent coding scheme recovered 112 MPTs of 468 steps (CI = 0.34615385, RI = 0.70520231). Strict 18 19 consensus and 50% majority rule consensus trees were generated from these optimal trees 20 (Fig. S6). 21 Contingent coding scheme – Implied weighting maximum parsimony analysis (Co-22 IWMP) 23 Implied weighting maximum parsimony analysis of the dataset using a contingent 24 coding scheme and a k-value of 3.0 recovered two MPTs of 472 steps (fit = 48.300075, CI = 0.34322034, RI = 0.70134875). A strict consensus tree was generated from these optimal 25

1 trees (Fig. S7A). Analysis using a k-value of 7.0 (Fig. S7B) recovered one MPT of 468 steps 2 (fit = 29.016181, CI = 0.34615385, RI = 0.70520231). Analysis using a k-value of 11.0 3 recovered two MPTs of 468 steps (fit = 20.889202, CI = 0.34615385, RI = 0.70520231), 4 from which a strict consensus tree was generated (Fig. S7C). 5 6 [Insert Figure 10 here as a full-page (173 mm x 232 mm) figure 7 8 Topology 9 All of the phylogenies recovered generally similar topologies, with the major differences among them resulting from variation in resolution. A detailed comparison of the 10 11 various phylogenies is provided in the Supplementary Material (§S8). We herein focus on the 12 phylogenetic relationships within the Plioplatecarpinae (Fig. 10D), as this is the subfamily in 13 which MHNM.KHG.1231 was consistently recovered in all analyses (Figs 10, S5-7). 14 The Plioplatecarpinae exhibited a highly variable topology across different analyses,

15 with polytomies greatly reducing internal resolution in the Mu-UMP consensus trees (Fig.

16 S5) and essentially collapsing this clade in the Co-UMP strict consensus tree (Fig. S6A). That

17 being said, certain aspects of its internal topology were fairly consistent across the different

18 analytical conditions. The clade (Latoplatecarpus (Plioplatecarpus, Platecarpus

19 tympaniticus)) was recovered in every analysis, contra Konishi & Caldwell (2011) (Figs 10,

20 S5–7). In the Mu-IWMP (Fig. 10), Co-UMP majority rule consensus (Fig. S6B), and Co-

21 IWMP (Fig. S7) trees – i.e., all of the trees in which the Plioplatecarpinae were monophyletic

22 and fully resolved – *Ectenosaurus* was the earliest-diverging taxon, followed by

23 Plesioplatecarpus planifrons. In the Mu-IWMP trees (Fig. 10), this was followed by

24 (Latoplatecarpus (Plioplatecarpus, P. tympaniticus)), then Angolasaurus as the sister group

25 to a clade consisting of (Goronyosaurus (Selmasaurus johnsoni (S. russelli,

1	MHNM.KHG.1231))); in the contingent trees (Figs S6B, S7), the positions of
2	(Latoplatecarpus (Plioplatecarpus, P. tympaniticus)) and Angolasaurus were switched.
3	This Goronyosaurus-Selmasaurus-MHNM.KHG.1231 clade is of particular interest
4	for this study, as MHNM.KHG.1231 represents the species of interest, Gavialimimus
5	almaghribensis, gen. et sp. nov. This clade is supported by the following synapomorphies:
6	highly constricted parietal; sides of the frontal in front of the orbits relatively straight. It was
7	recovered in 93% of the MPTs in the Co-UMP majority rule consensus tree (Fig. S6B) and in
8	all of the IWMP trees (Figs 10, S7). Polytomies collapsed this clade in the Mu-UMP and Co-
9	UMP strict consensus tree (Figs S5A, S6A). Interestingly, the Mu-UMP majority rule
10	consensus tree (Fig. S5B) recovered G. nigeriensis as sister to (Latoplatecarpus
11	(Plioplatecarpus, Platecarpus tympaniticus)).
12	Gavialimimus almaghribensis was recovered as the sister to Selmasaurus russelli in
13	100% of the MPTs in the Mu-UMP majority rule consensus tree (Fig. S5B) and 91% of the
14	MPTs in the Co-UMP majority rule consensus tree (Fig. S6B). This sister-group relationship
15	was also recovered in the Mu-IWMP trees (Fig. 10) and Co-IWMP trees (Fig. S7). G.
16	almaghribensis and Selmasaurus share several synapomorphies from the multistate and
17	contingent datasets, comprising: parietal table elongate, triangular to subrectangular, and
18	highly medially constricted, with a distinct mid- or parasagittal crest anterior to the
19	divergence of the suspensorial rami (character 18/20 in the multistate and contingent
20	character lists, respectively); frontal not invaded by posterior end of nares (character 9/10);
21	and lack of a frontal midline dorsal keel (character 10/11). These taxa also share a distinct
22	broad excavation of the medial surface of the quadrate suprastapedial process (Konishi 2008;
23	Fig. 8). G. almaghribensis further shares the following synapomorphies with S. russelli:
24	pineal foramen ventral opening surrounded by a rounded, elongate ridge (character 21/23);
25	and pineal foramen large (character 19/21). Note that, although this latter character state does

occur in most other plioplatecarpines, it does not occur in *S. johnsoni*, thus distinguishing *S. russelli* and *G. almaghribensis* from *S. johnsoni*.

3

4 **Discussion**

5

10

6 **Rejection of 'Platecarpus' ptychodon**

7 The diagnosis for *'Platecarpus' ptychodon* is as follows (translated from Arambourg
8 1952):

9 *"Platecarpus (?)* with teeth that are relatively low and broad at the base of the crown,

slightly compressed with wide edges and no serrations along the symphyseal and

11 commissural borders; the lingual and labial faces are ornamented with numerous

12 irregular vertical plicae extending 2/3 of the tooth's height from the neck."

13 The teeth of MHNM.KHG.1231 match this diagnosis, suggesting referral of this specimen to

14 'P.' ptychodon. However, although the teeth of 'P.' ptychodon were considered by

15 Arambourg (1952) – and thus by subsequent workers (e.g., Bardet *et al.* 2000; Bardet *et al.*

16 2018) – to be highly diagnostic, their putatively unique features are also present in the teeth

17 of other mosasaur species, such as *Platecarpus somenensis* (Fig. 11). Given that this latter

18 species was named in 1896, well before the creation of 'P.' ptychodon in 1952, 'P.'

19 ptychodon is therefore not a valid species, as its diagnosis and holotype, represented by a

20 single isolated tooth (Fig. 11A), are insufficient in distinguishing it from the already-

21 established *P. somenensis* (Fig. 11G–I).

22 The teeth of '*Platecarpus' ptychodon* also resemble those of *Prognathodon solvayi*

23 (Fig. 11J–L), Tylosaurus ivoensis (Persson, 1963) (see Lindgren & Siverson 2002:fig. 4),

24 Taniwhasaurus (see Caldwell et al. 2008:fig. 5), and some specimens of Mosasaurus

25 *lemonnieri* Dollo, 1889b (Fig. 11M–O). However, a feature distinguishing the teeth of 'P.'

1

2

3

4

5

6

7

ptychodon from the mosasaurines *Prognathodon solvayi* and *Mosasaurus lemonnieri* is the presence of slight crenulations or serrations in the enamel along the carinae of mosasaurine teeth, best visible in histological thin section. Importantly, though, these crenulations are largely limited to the replacement teeth in mosasaurines, being worn down very quickly in functional teeth (A. LeBlanc., pers. comm.). Therefore, even this feature is unreliable as the sole basis for distinguishing taxa such as those listed above. *M. lemonnieri* and *Pr. solvayi* thus also exemplify already-established species with which the holotype of *'P.' ptychodon*

may be confounded. Furthermore, no plioplatecarpine – including 'P.' ptychodon and *Platecarpus somenensis* – has been observed to possess these crenulations (Bell 1997; A.
LeBlanc, pers. comm.). As such, 'P.' ptychodon remains indistinguishable from
plioplatecarpines such as *P. somenensis* regarding both histological and coarser-scale
morphology.

13 Indeed, although Mosasaurus lemonnieri, Platecarpus somenensis, Prognathodon solvayi, Tylosaurus ivoensis, Taniwhasaurus, and MHNM.KHG.1231 are clearly different 14 15 taxa, their teeth overlap so greatly in morphology that the 'Platecarpus' ptychodon type 16 material and similar isolated teeth often cannot be referred to a single species; this tooth 17 morphology is ultimately entirely non-diagnostic (Fig. 11). As cautioned by various authors (e.g., Massare 1987; LeBlanc et al. 2012), tooth morphology in general is highly susceptible 18 19 to convergence; as such, diagnosing a taxon based solely on such a homoplastic feature is a 20 fundamentally unreliable taxonomic approach. 'P.' ptychodon is thus a nomen dubium, as its 21 type material is indeterminate and lacks any autapomorphic features distinguishing it from 22 already-named species [see ICZN 4e, Glossary and Article 75.5 (International Commission 23 on Zoological Nomenclature 1999); see also e.g., Coombs (1990) and Modesto (1996) for 24 similar designations of other taxa as nomina dubia based on non-diagnostic type material]. As a consequence of this invalidity, all specimens that have since been referred to 'P.' ptychodon 25

no longer bear this designation and therefore must be re-examined for correct referral to a
 valid species. Ultimately, because '*P.*' *ptychodon* is not a valid species, MHNM.KHG.1231 is
 free to be assigned as the holotype of a new taxon.

- 4
- 5

[Insert Figure 11 here as a single-column (82 mm x 232 mm) figure]

- 6
- 7

Phylogenetic relationships of Gavialimimus almaghribensis

8 Before discussing the phylogenetic relationships of Gavialimimus almaghribensis, it 9 is important to first assess the various analytical approaches presented above. From a 10 theoretical viewpoint, we prefer implied weighting to unweighted parsimony analyses 11 because of the ability of implied weighting analyses to reduce the impact of homoplasy on 12 phylogenetic reconstruction (Goloboff 1993; Goloboff et al. 2008a; Simões et al. 2017b). We also prefer multistate character coding schemes, rather than contingent schemes, because of 13 14 their treatment of dependent characters as a single transformational series (Simões et al. 15 2017a; Simões *et al.* 2017b). This theoretical background was ultimately supported by our 16 results: of all the analyses presented above, the Mu-IWMP analyses (Fig. 10) produced the 17 trees with the highest resolution and among the lowest number of steps (465, second only to the Mu-UMP trees with 464 steps). For these methodological and empirical reasons, this is 18 19 our preferred analysis (Fig. 10).

The recovered *Goronyosaurus–Selmasaurus–*MHNM.KHG.1231 clade also warrants further discussion. As noted above in Phylogenetic Analysis – Topology, the latter two genera share several synapomorphies, raising the possibility that MHNM.KHG.1231 should be assigned to *Selmasaurus* rather than a new genus. However, because of the many autapomorphies of MHNM.KHG.1231, doing so would result in quite a high degree of intrageneric variation within *Selmasaurus*. MHNM.KHG.1231 also differs temporally from

46

1 Selmasaurus, occurring in the upper Maastrichtian at least 9 million years after the upper 2 Santonian-lower Campanian distribution of S. russelli (Wright & Shannon 1988; Kiernan 3 2002; Liu 2007; Konishi 2008; Ogg et al. 2012) and at least 13 million years after the lower Santonian range of S. johnsoni (Polcyn & Everhart 2008; Ogg et al. 2012). For these reasons, 4 5 although MHNM.KHG.1231 is in many ways morphologically similar to Selmasaurus and 6 was recovered herein as nested within this genus, we have concluded that it is sufficiently 7 different in various aspects to warrant the establishment of a new genus. 8 Furthermore, both Goronyosaurus and Selmasaurus are known from only a few 9 specimens, a level of incompleteness which makes assessing possible synapomorphies with 10 MHNM.KHG.1231 difficult (see below). As more specimens of these taxa are discovered 11 and more of their anatomy becomes known, it is quite possible that the exact phylogenetic 12 relationships hypothesized herein for this clade may change. Specifically, although

13 MHNM.KHG.1231 nests within *Selmasaurus* in the current analysis (Fig. 10), future

14 phylogenies may recover a different topology. This is especially likely given the overall

15 uncertainty surrounding mosasaur phylogenetics (e.g., Simões et al. 2017b); indeed, even

16 across our analyses, different methodological approaches produced disparate phylogenies,

17 including within the Plioplatecarpinae (Figs 10, S5–7). Therefore, although our assignment of

18 MHNM.KHG.1231 to a new genus renders *Selmasaurus* paraphyletic under the current

19 phylogeny (Fig. 10), we do not consider this a major concern, nor a valid impetus for

20 modifying the taxonomic status of MHNM.KHG.1231 or of either existing *Selmasaurus*

21 species.

Goronyosaurus was recovered as basal to *Selmasaurus* within this *Goronyosaurus– Selmasaurus–Gavialimimus* clade; however, it does share certain features with *Gavialimimus almaghribensis*, including highly retracted external nares, a distinctly elongated snout, deep interdental pits, and a high number of premaxillary foramina (C.S., pers. obs; see also

Azzaroli *et al.* 1972; Soliar 1988; Lingham-Soliar 1991). These features are unknown in *S. russelli*, as the related elements are not preserved in specimens of this taxon. However, these elements are preserved in *S. johnsoni*, revealing the aforementioned features to be absent in this latter species. This is potentially indicative of a closer relationship between *Goronyosaurus* and *Ga. almaghribensis* than recovered in this phylogenetic analysis. However, this possible affiliation remains equivocal. For example, interdental pits were described by Lingham-Soliar (1991) as the defining characteristic of the genus *Goronyosaurus*, but have since been noted to varying extents in several mosasaurines and were listed by LeBlanc *et al.* (2012) as a diagnostic feature of the Mosasaurini; as such, this characteristic by itself does not inherently necessitate referral of *Ga. almaghribensis* as a close relative of *Goronyosaurus*. Furthermore, although snout elongation and external narial retraction are diagnostic of both *Goronyosaurus* and *Ga. almaghribensis*, they are not necessarily synapomorphic for these taxa. Both of these features result from the modification of several constituent elements, such as the premaxilla, maxillae, vomers, palatines, frontal,

and prefrontals. As such, although the gross morphology of these taxa may be similar, the underlying components and modifications giving rise to that morphology may not be homologous (Caldwell et al. 1995; Caldwell 2012; Simões et al. 2017a). As a hypothetical example, snout elongation could incorporate elongation of the vomers in one taxon but elongation of the vomerine processes of the palatines in the other taxon. In order to properly assess the phylogenetic significance of this similarity, these overall conditions cannot be treated in terms of gross morphology; rather, the homology of each separate component of these integrated structures must be assessed independently (Caldwell et al. 1995; Caldwell 2012; Simões et al. 2017a). However, the poor quality of preservation of the only known articulated Goronyosaurus skull (IGF 14750) severely hinders our ability to make such precise anatomical comparisons, leaving the potential homology of these conditions

1 equivocal.

2 Indeed, the interrelationships among Goronyosaurus, Selmasaurus, and Gavialimimus 3 almaghribensis are further complicated by the fragmentary nature of existing Selmasaurus 4 material. For example, because snout elongation and narial retraction are not preserved in the 5 holotype of S. russelli, it is difficult to determine whether these features are unique to 6 Goronyosaurus and Ga. almaghribensis only or are more broadly characteristic of this overall clade. Of note, however, the degree of narial retraction can be assessed in the 7 8 holotype of S. *johnsoni*, whose naris begins very anteriorly above the level of the third 9 maxillary tooth (T.K., pers. obs.). Based on this observation, at least the overall condition of 10 narial retraction appears unique to Goronvosaurus and Ga. almaghribensis based on currently 11 available specimens; importantly, though, the above arguments regarding homology 12 assessments for complex morphologies still apply to this condition, and the condition in S. 13 russelli remains unknown. Similarly, because the posterior portion of the parietal of G. 14 *nigeriensis* is not sufficiently preserved in any currently available specimens, it is uncertain 15 whether the parietal constriction present in G. nigeriensis matches the condition described by 16 character 18/20 above and uniting Ga. almaghribensis and Selmasaurus; i.e., parietal 17 constriction in general is a synapomorphy of the Goronyosaurus-Selmasaurus-Gavialimimus clade, but the specific condition of the parietal as conveyed by our dataset is restricted to the 18 19 latter two genera.

A final intriguing feature involves the ectopterygoid process of the pterygoid. As noted above (see Description – Pterygoid), this process has an unusually broad base in *Selmasaurus johnsoni, Goronyosaurus nigeriensis*, the holotype of *Platecarpus somenensis*, and *Gavialimimus almaghribensis*. Furthermore, the latter three taxa possess a posterodistal projection on this process, which contacts the quadrate ramus of the pterygoid in *G*. *nigeriensis* but not the latter two taxa. The presence of this projection again suggests a

possible closer relationship between *Goronyosaurus* and *Ga. almaghribensis* than recovered herein, with the similarity of this feature in *P. somenensis* bringing yet another poorly-known taxon into the mix. However, a rigorous assessment of this condition would require detailed re-analysis of both the *Goronyosaurus* and *P. somenensis* holotype material, which falls outside the scope of this study. Furthermore, the *Goronyosaurus* type material is quite poorly preserved as previously noted, with much of the subsequently referred material possibly being chimaeric in nature.

8 Unfortunately, the aforementioned uncertainties regarding the anatomy and 9 phylogeny of these taxa can only be remedied with the discovery of more complete 10 specimens. In all, although Goronvosaurus and Gavialimimus almaghribensis do share 11 several intriguing cranial similarities, these similarities do not provide conclusive evidence of 12 a closer evolutionary relationship between these taxa than that recovered in this study's 13 phylogenetic analyses, and at this point do not necessitate referral of MHNM.KHG.1231 to 14 the genus Goronyosaurus. However, the presence of such similarities - including some 15 shared with the equally enigmatic *Platecarpus somenensis* – underlines the need for further 16 research into the relationships and morphologies of these taxa.

17 Palaeoecology and functional morphology

18 Massare (1987) divided Mesozoic marine reptiles into seven gradational predatory 19 guilds based on tooth morphology, emphasizing shape of the tooth apex, type of tooth wear, 20 presence of carinae or cutting edges, and shape and size of the tooth crown. These guilds 21 unite taxa based on primary prey preference, regardless of phylogenetic placement. The three 'end member' guilds are: 'Pierce I', consisting of taxa with long, slender, pointed teeth used 22 23 to pierce soft-bodied prey items; 'Cut', containing taxa with robust, pointed, carinated teeth 24 used to rip the flesh of large marine vertebrates; and 'Crush', consisting of taxa with robust, 25 blunt teeth used to crush thick-shelled invertebrates (Massare 1987; Fig. 12). The other

2

guilds, which bridge these end-point morphotypes, are 'Pierce II', 'Smash', 'Crunch', and 'General' (Massare 1987; Fig. 12).

3 In a palaeoecological analysis of niche partitioning within the Maastrichtian 4 phosphates of Morocco, Bardet et al. (2015) modified this system, adding a new guild, 5 'Crush-Cut' (Fig. 12). These authors included 'Platecarpus' ptychodon in their analysis 6 (Bardet et al. 2015). Although we reject this species as a nomen dubium (see preceding 7 discussion), the teeth used by Bardet et al. (2015) in their analysis are morphologically 8 equivalent to those of *Gavialimimus almaghribensis* (see preceding discussion and Fig. 11). 9 As such, these authors' conclusions regarding the 'P.' ptychodon morphotype can be 10 extrapolated to *Gavialimimus*, as they should be also to the other taxa depicted in Figure 11. 11 Though these authors assigned 'P.' ptychodon to a combination of the 'Pierce II' and 'Cut' 12 guilds, reflecting a diet of cephalopods and fishes (Bardet et al. 2015), new information from 13 the G. almaghribensis holotype allows refinement of this interpretation. 14 The narrow, highly elongate snout and interlocking teeth of Gavialimimus 15 *almaghribensis* are convergent with the condition in gharials, a distinctive taxon of 16 longirostrine crocodilians. In gharials, this morphotype reflects predation on rapidly moving 17 fish, with the interlocking teeth entrapping highly agile prev and the narrow snout reducing 18 drag and displacement of water as the head swings laterally and the jaws snap shut (McHenry 19 et al. 2006; Pierce et al. 2008; Cuff & Rayfield 2013; McCurry et al. 2017). Several aspects 20 of the cranial morphology of Gavialimimus also converge upon that of the derived 21 mosasaurine *Plotosaurus*, such as the elongate snout (though this longirostry is far more 22 pronounced in *Gavialimimus*), interlocking teeth, and reduced cranial kinesis, especially 23 along extensively articulating frontoparietal and prefrontal-postorbitofrontal sutures (LeBlanc 24 et al. 2013). A recent functional analysis of the skull of Plotosaurus interpreted these adaptations as evidence of predatory specialization on small, rapid prey, thus contributing 25

1 toward niche partitioning in the Maastrichtian of California (LeBlanc et al. 2013). Finally, 2 although the specific function of the fluted tooth morphology present in *Gavialimimus* 3 remains uncertain, similar fluting occurs convergently in several other mosasaur taxa (Fig. 4 11) and in several piscivorous snakes, such as Acrochordus and homalopsids (Vaeth et al. 5 1985). The widespread presence of tooth fluting across these taxa suggests that this feature 6 may represent an adaptation for piscivory. Altogether, these convergences with gharials and 7 other piscivorous squamates therefore suggest similar piscivory specialized on rapid, evasive 8 fish.

9 This diet would likely have been composed primarily of teleosts, which underwent an extensive radiation during the late Mesozoic enabled in large part by their more efficient and 10 11 rapid swimming compared to earlier fishes (Schaeffer 1969; Massare 1988). The radiation of 12 mosasaurs as a whole during the Late Cretaceous has been tied to their ability to predate upon 13 teleosts more effectively than pursuit predators such as ichthyosaurs could (Massare 1988). 14 The unique adaptations of Gavialimimus relative to other mosasaurs therefore suggest a 15 scenario of predation-based niche partitioning, with this morphology reflecting a particularly 16 specialized form of piscivory in *Gavialimimus* under this hypothesis.

17 In terms of feeding guilds, this interpretation of predatory behaviour in *Gavialimimus* almaghribensis adds detail to the findings of Bardet et al. (2015). Although these authors 18 assigned the morphologically-equivalent teeth of 'Platecarpus' ptychodon to the 'Pierce II'-19 20 'Cut' guilds, Massare (1987) describes the 'Cut' morphoguild as reflecting predation upon 21 large marine vertebrates, a diet that would cause significant breakage and wear to the teeth 22 (Massare 1987). This wear would logically occur along the entire tooth row, which is not the 23 case in G. almaghribensis. Instead, this specimen displays very minimal tooth wear anteriorly 24 on the tooth row (Fig. 6A–B), with this wear only becoming prominent on the posterior teeth 25 (Figs 4B–C, 6C). This minimal anterior tooth wear is more consistent with the 'Pierce I' or

52

1 'Pierce II' feeding guilds. Rather than being an indication of specific diet, the progressive 2 increase in wear posteriorly is largely an expected consequence of adductor muscle 3 attachment on the posterior mandible and resultant distribution of force along the jaws while 4 biting (e.g., see Callison 1967; Russell 1967). Extensive tooth replacement would also be 5 necessary to cope with the considerable breakage described by Massare (1987) for members 6 of the 'Cut' guild; in G. almaghribensis, however, tooth replacement is quite minimal, with replacement teeth visible at only three positions on the maxillae and dentaries (Figs 3, 6, 7). 7 8 Finally, although the teeth of *G. almaghribensis* do possess carinae, which Massare (1987) 9 uses to characterize the 'Cut' guild, these cutting edges could reasonably have aided in 10 capturing and killing evasive prey and therefore are not automatically indicative of 11 membership in the 'Cut' guild.

12 Re-interpretation of cranial features also present in *Goronyosaurus* further supports removal from the 'Cut' guild. In a biomechanical analysis of the skull of Goronyosaurus, 13 14 Lingham-Soliar (1999) discussed two possible feeding methods for this taxon based on 15 cranial morphology: predation upon small and evasive organisms, or predation upon larger 16 prey items involving the need for processing prior to ingestion. The prognathous condition of 17 the dentary teeth was used as evidence for the former mode, though the majority of cranial adaptations were interpreted as support for the latter. Lingham-Soliar (1999) concluded that 18 19 this taxon's deep interdental pits and lack of cranial kinesis would have strengthened the skull 20 and enabled tight interlocking of the jaws. Combined with the elongate snout and extensive 21 area for muscle attachment in the posterior skull, these features were interpreted as 22 adaptations for predation on large aquatic vertebrates, comparable to the 'Cut' guild (Massare 23 1987; Lingham-Soliar 1999). These adaptations also occur in *Gavialimimus almaghribensis*, 24 such as the large supratemporal fenestrae which would have accommodated massive jaw adductor musculature (Figs 2, 3), as well as the interlocking frontoparietal suture (Figs 2, 3, 25

5) which would have prevented or minimized movement along this mesokinetic axis (Wright
 & Shannon 1988; Lingham-Soliar 1999; LeBlanc *et al.* 2013). However, the strong
 convergence between *G. almaghribensis* and extant gharials suggests re-interpretation of
 these adaptations.

5 Instead of being used to predate upon large vertebrates, these modifications for 6 powerful closure and interlocking of the jaws are also consistent with a predation style reliant 7 upon rapidly closing the jaws and grasping evasive previtems (see also LeBlanc *et al.* 2013). 8 As suggested by Lingham-Soliar (1999) for Goronyosaurus, the recurved and slightly 9 prognathous anterior teeth of Gavialiminus could have contributed to this specialized 10 piscivory by directing prey into the mouth (Massare 1987; Lingham-Soliar 1999), where the 11 posterior marginal teeth could then grasp this prey. Finally, as noted above, a similar 12 connection between cranial akinesis and predatory specialization upon small, evasive prey is hypothesized to occur in the long-snouted mosasaurine Plotosaurus (LeBlanc et al. 2013). 13 14 These adaptations in G. almaghribensis are therefore consistent with a gharial-like 15 specialization on smaller, highly agile aquatic prev. 16 Altogether, the cranial adaptations and dental features of Gavialimimus 17 almaghribensis reflect membership in the 'Pierce II' guild, closer to the 'Pierce I' apex than 18 the 'Cut' apex (Fig. 12). Although this places G. almaghribensis in a similar position to Halisaurus arambourgi, the preorbital region of the skull of G. almaghribensis represents 19 20 almost two-thirds of the total skull length (Figs 2, 3), compared to only 50% in H. 21 arambourgi (Bardet et al. 2015). As well, H. arambourgi is a halisaurine, for which Konishi 22 et al. (2016) reported well-developed binocular vision possibly linked to nocturnal foraging 23 upon small, bioluminescent animals such as 10-armed cephalopods. Unlike in halisaurines, 24 the orbits of G. almaghribensis are neither forward facing nor large, therefore not conducive 25 to binocular vision. Thus, based on its extensive snout elongation, alongside its other cranial

adaptations, *G. almaghribensis* altogether exhibits increased specialization for piscivory,
most likely during the daytime. This proposed ecological niche specialization would make *G. almaghribensis* unique among Moroccan mosasaurs, if not mosasaurs as a whole. Under this
hypothesis, these adaptations would therefore have allowed *G. almaghribensis* to exploit prey
items with reduced or minimal competition from sympatric mosasaur species, enabling its
survival in such a diverse ecosystem (Fig. 13).

- 7
- 8

[Insert Figure 12 here as a single-column (82 mm width) figure]

9

10 Narial retraction

11 Pronounced retraction of the openings for the external nares is listed herein as a 12 diagnostic feature of Gavialimimus almaghribensis. We interpret this condition as 'true' 13 narial retraction, in contrast to the traditional concept of 'posteriorly retracted external nares' as a synapomorphy linking mosasauroids and varanoids (e.g., Rieppel et al. 2007; Conrad 14 15 2008; Conrad et al. 2008; Conrad et al. 2011). This distinction is important, as this traditional view of 'narial retraction' is pervasive in the squamate literature (e.g., the global squamate 16 17 dataset of Conrad 2008, and all phylogenies derived therefrom) and has long played a key 18 role in shaping perceptions of mosasaur evolution and phylogenetics (Caldwell 2012). However, as discussed below, it is deeply flawed as a primary homology concept (see also 19 20 Caldwell et al. 1995; Caldwell 2012). This clarification is particularly timely in light of 21 recent discussions of character construction (e.g., Simões et al. 2017a) and applications of 22 these guidelines in revising morphological phylogenetic datasets (e.g., Simões *et al.* 2018; 23 Garberoglio et al. 2019). As a longirostrine organism exemplifying 'true' narial retraction, 24 Gavialimimus therefore provides novel insight into and clarification of this anatomical condition. 25

1 The hypothesized homology of the openings for the external nares in varanoids with 2 those in mosasauroids is flawed in numerous aspects. Although the overall fenestration of the 3 snout may be superficially similar, this condition is achieved in these two groups via different 4 modifications to the shape and topology of the surrounding bones (Caldwell et al. 1995; see Caldwell 2012 for a detailed discussion of this issue). Employing the test of similarity for 5 6 primary homology (Rieppel & Kearney 2002), posterior expansion of the narial fenestrae in 7 varanoids and mosasauroids is therefore not homologous and does not unite these taxa. 8 Furthermore, the external nares themselves in varanoids are not in fact retracted compared to 9 the condition in other lizards. Instead, the soft-tissue external narial openings remain at an 10 anteriorly terminal position in varanoids (as in other lizards), with only the bony fenestrae 11 being posteriorly extended (Caldwell 2012). Although not terminal, slit-like soft-tissue 12 external nares also occur anteriorly inside the anteriormost, expanded section of the bony 13 fenestrae in *Platecarpus tympaniticus*, a condition that again does not exemplify retraction of 14 the nares and which could have been widespread among all mosasaurs except those few with 15 'true' narial retraction (Lindgren et al. 2010; Caldwell 2012). 16 In contrast to this erroneous conceptualization of the external narial openings in typical varanoids and mosasauroids, the condition in *Gavialimimus almaghribensis* is distinct 17 in portraying true retraction of the openings for the external nares relative to the tip of the 18 19 snout. The bony snout fenestrae terminate anteriorly around the eighth maxillary tooth 20 position, limiting this fenestration to only the posteriormost 25% of the preorbital region of 21 the skull (Fig. 2). The only non-plioplatecarpine taxa that potentially exhibit an analogous narial retraction would be halisaurines, in which the premaxillary-maxillary suture is longer 22 23 than the length of the entire external naris, which is hence closer to the frontal than to the 24 snout tip (e.g., Konishi et al. 2016:fig. 18).

1 In comparison, in other mosasaurs the bony openings for the external nares either 2 comprise a much greater proportion of the preorbital skull region and/or terminate anteriorly 3 much closer to the snout [e.g., Platecarpus tympaniticus: see Konishi et al. (2012):fig. 3; 4 Prognathodon overtoni (Williston, 1897a): see Konishi et al. (2011):fig. 2; Tylosaurus bernardi (Dollo, 1885): see Jiménez-Huidobro & Caldwell (2016):fig. 1]. Even in other 5 6 mosasaurs exhibiting snout elongation, the bony openings for the external nares are distinct 7 from the condition in *Gavialimimus almaghribensis*. For example, these openings extend 8 over most of the preorbital region of the skull in *Plotosaurus bennisoni* (e.g., see LeBlanc et 9 al. 2013:fig. 2). In Ectenosaurus clidastoides – the mosasaur most comparable to 10 Gavialimimus in terms of pronounced snout elongation – these openings are small, similar to 11 the condition in Gavialimimus, but are positioned much closer to the tip of the snout (e.g., see 12 Russell 1967:fig. 86). Finally, although the external narial openings appear to be small and 13 retracted in Goronyosaurus nigeriensis, as in Gavialimimus, the poor condition of the G. 14 nigeriensis holotype skull somewhat obscures this comparison (C.S., pers. obs.; see also 15 Azzaroli et al. 1972; Soliar 1988).

16 Therefore, even if the soft-tissue narial openings were located at the anterior termini 17 of the bony fenestrae in *Gavialimimus almaghribensis*, as in varanoids, the fenestrae 18 themselves are retracted enough that this position would still be distinctly posterior relative to 19 the typical condition in varanoids and presumably mosasaurs, save halisaurines. As such, *Ga.* 20 *almaghribensis* provides a rare example of true retraction of the external nares, in contrast to 21 the traditional but inaccurate conceptualization of external narial retraction in mosasaurs and 22 varanoids.

23

[Insert Figure 13 here as a double-column (173 mm width) figure]

25

1 Conclusions

2

3	The Maastrichtian phosphates of Morocco record an incredibly diverse assemblage of
4	numerous mosasaur genera from many subfamilies (Bardet et al. 2015; Bardet et al. 2018).
5	This study builds on our knowledge of this diversity via the description and analysis of a new
6	mosasaur specimen (MHNM.KHG.1231) from Morocco, consisting of relatively complete
7	cranial and isolated postcranial material (Figs 2-9). Although the teeth of this specimen
8	initially suggest referral to 'Platecarpus' ptychodon, closer examination of this species and
9	others exhibiting similar tooth morphology (Fig. 11) reveals the diagnosis of 'P.' ptychodon
10	to be fundamentally flawed, leading to the rejection of this species as a nomen dubium.
11	Phylogenetic analysis under multiple parsimony-based methods consistently recovers
12	MHNM.KHG.1231 as the sister taxon to Selmasaurus russelli, with these taxa forming a
13	clade within the Plioplatecarpinae alongside S. johnsoni and Goronyosaurus nigeriensis (Fig.
14	10). Due to its unique skull – with unequivocal features such as a highly elongate snout,
15	highly retracted nares, and large supratemporal fenestrae – we propose that
16	MHNM.KHG.1231 represents a new mosasaur genus and species. Features uniting this
17	specimen with Selmasaurus include the nature of the parietal constriction and the broadly
18	excavated medial surface of the quadrate suprastapedial process, with general constriction of
19	the parietal also present in G. nigeriensis. This new genus is distinguished from Selmasaurus
20	by a large, oval pineal foramen that contacts the frontoparietal suture, certain features of the
21	dentary and vertebrae, and a wide postorbitofrontal, among other features such as the
22	aforementioned autapomorphies.
23	Both Selmasaurus and Goronyosaurus have only rarely been included in mosasaur or

squamate phylogenies, and never in the same analysis in the literature. As such, recovery of
the aforementioned *Goronyosaurus–Selmasaurus–Gavialimimus* clade provides novel insight

into plioplatecarpine evolution. Cranial features present in this clade – including snout elongation and akinetic cranial sutures – suggest morphological specialization into distinct ecological and predatory niches to reduce competition and enable coexistence in diverse ecosystems.

5 The elongate snout of *Gavialimimus almaghribensis* also provides insight into 'true' 6 external narial retraction in mosasaurs, in contrast to how 'narial retraction' is typically but 7 incorrectly interpreted in many studies of mosasaur and varanoid evolution.

8

1

2

3

4

9 Acknowledgements

10

11 We thank: A. Murray for discussions regarding taxonomic guidelines; A. LeBlanc, I. 12 Paparella, and O. Vernygora for helpful discussions regarding phylogenetic analysis and mosasaur anatomy; A. LeBlanc for discussions regarding tooth morphology and histology; 13 14 and O. Vernygora for assistance in identifying isolated shark teeth used to support the 15 provenance of the holotype. We are especially grateful to L. A. Lindoe for his guidance in the 16 preparation of MHNM.KHG.1231. We also thank Drs. N.-E. Jalil and M. Ghamizi (Museum 17 of Natural History of Marrakech, Cadi Ayadd University, Marrakech) for their assistance 18 with the specimen. Finally, we thank J. Lively and H. Street for their helpful and thorough 19 reviews, both of which greatly improved the quality of this manuscript. Funding was 20 provided via an Alexander Graham Bell Canada Graduate Scholarship awarded by the 21 Natural Sciences and Engineering Research Council of Canada (NSERC) to CRCS, as well as 22 an NSERC Discovery Grant (#23458) and Chair's Research Allowance to MWC. All authors 23 report no conflicts of interest.

Figures 1 and 9 were modified with permission from the respective copyright holders.
These include: Figure 1 (Map and stratigraphic column of Oulad Abdoun Basin) of Bardet *et*

1	al. (2005), originally published in the Zoological Journal of the Linnean Society vol. 143, pg
2	448, included herein by permission of Oxford University Press; Figure 15 (Tooth
3	morphoguilds of Mesozoic marine predators) of Massare (1987), originally published in the
4	Journal of Vertebrate Paleontology vol. 7 (2), pg 131, adapted herein by permission of the
5	Society of Vertebrate Paleontology, <u>www.vertpaleo.org</u> , and of the publisher, Taylor &
6	Francis; and Figure 7 (Tooth morphoguilds and niche partitioning in Maastrichtian Moroccan
7	mosasaurs) of Bardet et al. (2015), originally published in Gondwana Research vol. 27, pg
8	1077, adapted herein with permission from Elsevier.
9	
10	References
11	
12	Agassiz, L. 1843. Recherches sur les poisson fossiles. Imprimerie de Petitnierre. Neuchâtel.
13	3 . 390 + 332 pp.
14	Arambourg, C. 1952. Les vertébrés fossiles des gisements de phosphates (Maroc–Algérie–
15	Tunisie). Notes et mémoires du Service géologique du Maroc. 92 , 1–372.
16	Azzaroli, A., de Giuli, C., Ficcarelli, G. & Torre, D. 1972. An aberrant mosasaur from the
17	Upper Cretaceous of north-western Nigeria. Accademia Nazionale dei Lincei Rendiconti
18	<i>Classe di scienze fisiche matematiche e naturali</i> 3 398–404.
19	Azzaroli, A., de Giuli, C., Ficcarelli, G. & Torre, D. 1975. Late Cretaceous mosasaurs
20	from the Sokoto district. Nigeria. Accademia Nazionale dei Lincei Memorie. Classe di
20	scienze fisiche matematiche e naturali 13 21–34
21	Bardet N Cannetta H Pereda Sunerhiola X Mouty M Al Maleh A K Ahmad
22	$\mathbf{A} = \mathbf{M} = $
23	A. M., Knrata, U. & Gannoum, N. 2000. The marine vertebrate faunas from the Late
24	Cretaceous phosphates of Syria. <i>Geological Magazine</i> , 137 (3), 269–290.

- 1 Bardet, N., Gheerbrant, E., Noubhani, A., Cappetta, H., Jouve, S., Bourdon, E., Pereda
- 2 Superbiola, X., Jalil, N.-E., Vincent, P., Houssaye, A., Sole, F., Elhoussaini Darif, K.,
- 3 Adnet, S., Rage, J.-C., de Lapparent de Broin, F., Sudre, J., Bouya, B., Amaghzaz, M. &
- 4 **Meslouh, S.** 2018. Les vertébrés fossiles des phosphates crétacés-paléogènes (72,1–47,8 Ma)
- 5 du Maroc. Pp. 351–452 in S. Zouhri (ed) Paléontologie des Vertébrés du Maroc: état des
- 6 connaissances. Mémoires de la Société Géologique de France, Paris.
- 7 Bardet, N., Houssaye, A., Vincent, P., Pereda Superbiola, X., Amaghzaz, M., Jourani, E.
- 8 & Meslouh, S. 2015. Mosasaurids (Squamata) from the Maastrichtian Phosphates of
- 9 Morocco: Biodiversity, palaeobiogeography and palaeoecology based on tooth morphoguilds.
- 10 Gondwana Research, 27, 1068–1078. doi:10.1016/j.gr.2014.08.014
- 11 Bardet, N., Pereda Suberbiola, X., Jouve, S., Bourdon, E., Vincent, P., Houssaye, A.,
- 12 Rage, J.-C., Jalil, N.-E., Bouya, B. & Amaghzaz, M. 2010. Reptilian assemblages from the
- 13 latest Cretaceous Palaeogene phosphates of Morocco: from Arambourg to present time.
- 14 Historical Biology, 22, 186–199. doi:10.1080/08912961003754945
- 15 Bardet, N., Pereda Superbiola, X., Iarochène, M., Bouya, B. & Amaghzaz, M. 2005. A
- 16 new species of *Halisaurus* from the Late Cretaceous phosphates of Morocco, and the
- 17 phylogenetical relationships of the Halisaurinae (Squamata: Mosasauridae). Zoological
- 18 Journal of the Linnean Society, **143**, 447–472.
- 19 Bell, G. L. 1997. A phylogenetic revision of North American and Adriatic Mosasauroidea.
- 20 Pp. 293–332 in J.M. Callaway and E.L. Nicholls (eds) Ancient Marine Reptiles. Academic
- 21 Press.
- 22 Caldwell, M. W. 2007. Ontogeny, anatomy and attachment of the dentition in mosasaurs
- 23 (Mosasauridae: Squamata). Zoological Journal of the Linnean Society, 149, 687–700.
- 24 Caldwell, M. W. 2012. A challenge to categories: "What, if anything, is a mosasaur?".
- 25 Bulletin de la Société Géologique de France, **183**(1), 7–34.

- 1 Caldwell, M. W., Carroll, R. L. & Kaiser, H. 1995. The pectoral girdle and forelimb of
- 2 Carsosaurus marchesetti (Aigialosauridae), with a preliminary phylogenetic analysis of
- 3 mosasauroids and varanoids. *Journal of Vertebrate Paleontology*, **15**(3), 516–531.
- 4 doi:10.1080/02724634.1995.10011245
- 5 Caldwell, M. W., Konishi, T., Obata, I. & Muramoto, K. 2008. A new species of
- 6 Taniwhasaurus (Mosasauridae, Tylosaurinae) from the upper Santonian-lower Campanian
- 7 (Upper Cretaceous) of Hokkaido, Japan. *Journal of Vertebrate Paleontology*, **28**(2), 339–348.
- 8 doi:10.1671/0272-4634(2008)28[339:ANSOTM]2.0.CO;2
- 9 Callison, G. 1967. Intracranial mobility in Kansas mosasaurs. University of Kansas
- 10 Paleontological Contributions, 26, 1–15.
- 11 Camp, C. L. 1942. California mosasaurs. *Memoirs of the University of California*, 13, 1–68.
- 12 Conrad, J. L. 2008. Phylogeny and systematics of Squamata (Reptilia) based on
- 13 morphology. Bulletin of the American Museum of Natural History, New York, **310**, 1–182.
- 14 doi:10.1206/310.1
- 15 Conrad, J. L., Ast, J. C., Montanari, S. & Norell, M. A. 2011. A combined evidence
- 16 phylogenetic analysis of Anguimorpha (Reptilia: Squamata). *Cladistics*, **27**, 230–277.
- 17 doi:10.1111/j.1096-0031.2010.00330.x
- 18 Conrad, J. L., Rieppel, O. & Grande, L. 2008. Re-assessment of varanid evolution based
- 19 on new data from Saniwa ensidens Leidy, 1870 (Squamata, Reptilia). American Museum
- 20 Novitates, **3630**, 1–15. doi:10.1206/596.1
- 21 Coombs, W. P. 1990. Teeth and taxonomy in ankylosaurs. Pp. 269–279 in K. Carpenter and
- 22 P.J. Currie (eds) Dinosaur systematics: approaches and perspectives. Cambridge University
- 23 Press, New York.
- 24 Cope, E. D. 1869. On the reptilian orders, Pythonomorpha and Streptosauria. *Boston Society*
- 25 of Natural History Proceedings, **12**, 250–266.

- 1 Cope, E. D. 1874. Review of the Vertebrata of the Cretaceous Period found west of the
- 2 Mississippi River. United States Geological Survey of the Territories Bulletin, 1, 3–48.

3 Cuff, A. R. & Rayfield, E. J. 2013. Feeding mechanics in spinosaurid theropods and extant

- 4 crocodilians. *PLoS ONE*, **8**(5), e65295. doi:10.1371/ journal.pone.0065295
- 5 **Dollo, L.** 1884. Le mosasaure. *Revue des questions scientifiques le ser.*, **16**, 648–653.
- 6 Dollo, L. 1885. Le hainosaure. *Révue des Questions Scientifiques*, 18, 285–289.
- 7 **Dollo, L.** 1889a. Note sur les vertébrés fossiles récemment offerts au Musée de Bruxelles par
- 8 M. Alfred Lemonnier. Bulletin de la Société belge de Géologie, de Paléontologie et
- 9 *d'Hydrologie*, **3**, 181–182.
- 10 Dollo, L. 1889b. Première note sur les mosasauriens de Mesvin. Bulletin de la Société Belge
- 11 *de Géologie, de Paléontologie, et d'Hydrologie*, **3**, 271–304.
- 12 Everhart, M. J. 2005. Rapid evolution, diversification and distribution of mosasaurs
- 13 (Reptilia; Squamata) prior to the K-T Boundary. Pp. 16–27. Tate Museum 2005 11th Annual
- 14 Symposium in Paleontology and Geology. Casper, WY.
- 15 Fernandez, M. & Martin, J. E. 2009. Description and phylogenetic relationships of
- 16 Taniwhasaurus antarcticus (Mosasauridae, Tylosaurinae) from the upper Campanian
- 17 (Cretaceous) of Antarctica. *Cretaceous Research*, **30**, 717–726.
- 18 doi:10.1016/j.cretres.2008.12.012
- 19 Garberoglio, F. F., Apesteguía, S., Simões, T. R., Palci, A., Gómez, R. O., Nydam, R. L.,
- 20 Larsson, H. C. E., Lee, M. S. Y. & Caldwell, M. W. 2019. New skulls and skeletons of the
- 21 Cretaceous legged snake *Najash*, and the evolution of the modern snake body plan. *Science*
- 22 Advances, 5(11), eaax5833. doi:10.1126/sciadv.aax5833
- 23 Gervais, P. 1852. Zoologie et Paléontologie Françaises (Animaux Vertébrés). First Edition.
- 24 Libraire de la Société de Géographie, Paris, 271 pp.
- 25 Goloboff, P. A. 1993. Estimating character weights during tree search. *Cladistics*, 9, 83–91.

2 against homoplasy improves phylogenetic analysis of morphological data sets. *Cladistics*, 24,

3 758–773. doi:10.1111/j.1096-0031.2008.00209.x

- 4 Goloboff, P. A. & Catalano, S. A. 2016. TNT version 1.5, including a full implementation
- 5 of phylogenetic morphometrics. *Cladistics*, **32**, 221–238. doi:10.1111/cla.12160
- 6 Goloboff, P. A., Farris, J. S. & Nixon, K. C. 2008b. TNT, a free program for phylogenetic

7 analysis. *Cladistics*, **24**, 774–786. doi:10.1111/j.1096-0031.2008.00217.x

8 Holmes, R. 1996. *Plioplatecarpus primaevus* (Mosasauridae) from the Bearpaw Formation

9 (Campanian, Upper Cretaceous) of the North American Western Interior Seaway. Journal of

10 Vertebrate Paleontology, 16(4), 673–687. doi:10.1080/02724634.1996.10011357

11 International Commission on Zoological Nomenclature 1999. International Code of

12 Zoological Nomenclature. The International Trust for Zoological Nomenclature, London.

13 Jiménez-Huidobro, P. & Caldwell, M. W. 2016. Reassessment and reassignment of the

14 early Maastrichtian mosasaur *Hainosaurus bernardi* Dollo, 1885, to Tylosaurus Marsh, 1872.

15 Journal of Vertebrate Paleontology, 36(3), e1096275. doi:10.1080/02724634.2016.1096275

16 Jiménez-Huidobro, P. & Caldwell, M. W. 2019. A new hypothesis of the phylogenetic

17 relationships of the Tylosaurinae (Squamata: Mosasauroidea). Frontiers in Earth Science, 7,

18 47. doi:10.3389/feart.2019.00047

19 Jiménez-Huidobro, P., Simões, T. R. & Caldwell, M. W. 2016. Re-characterization of

20 Tylosaurus nepaeolicus (Cope, 1874) and Tylosaurus kansasensis Everhart, 2005: Ontogeny

21 or sympatry? Cretaceous Research, 65, 68–81. doi:10.1016/j.cretres.2016.04.008

22 Kiernan, C. R. 2002. Stratigraphic distribution and habitat segregation of mosasaurs in the

- 23 Upper Cretaceous of western and central Alabama, with an historical review of alabama
- 24 mosasaur discoveries. Journal of Vertebrate Paleontology, 22(1), 91-103. doi:10.1671/0272-
- 25 4634(2002)022[0091:SDAHSO]2.0.CO;2

- 1 Konishi, T. 2008. A new specimen of *Selmasaurus* sp., cf. S. russelli (Mosasauridae:
- 2 Plioplatecarpini) from Greene County, western Alabama, USA. Pp. 95–105. Proceedings of
- 3 *the Second Mosasaur Meeting*. Hays, Kansas.
- 4 Konishi, T., Brinkman, D., Massare, J. A. & Caldwell, M. W. 2011. New exceptional
- 5 specimens of *Prognathodon overtoni* (Squamata, Mosasauridae) from the upper Campanian
- 6 of Alberta, Canada, and the systematics and ecology of the genus. Journal of Vertebrate
- 7 Paleontology, **31**(5), 1026–1046. doi:10.1080/02724634.2011.601714
- 8 Konishi, T. & Caldwell, M. W. 2007. New specimens of *Platecarpus planifrons* (Cope,
- 9 1874) (Squamata: Mosasauridae) and a revised taxonomy of the genus. Journal of Vertebrate
- 10 Paleontology, 27(1), 59–72. doi:10.1671/0272-4634(2007)27[59:NSOPPC]2.0.CO;2
- 11 Konishi, T. & Caldwell, M. W. 2009. New material of the mosasaur Plioplatecarpus
- 12 *nichollsae* Cuthbertson et al., 2007, clarifies problematic features of the holotype specimen.
- 13 Journal of Vertebrate Paleontology, **29**(2), 417–436. doi:10.1671/039.029.0225
- 14 Konishi, T. & Caldwell, M. W. 2011. Two new plioplatecarpine (Squamata, Mosasauridae)
- 15 genera from the Upper Cretaceous of North America, and a global phylogenetic analysis of
- 16 plioplatecarpines. Journal of Vertebrate Paleontology, **31**(4), 754–783.
- 17 doi:10.1080/02724634.2011.579023
- 18 Konishi, T., Caldwell, M. W., Nishimura, T., Sakurai, K. & Tanoue, K. 2016. A new
- 19 halisaurine mosasaur (Squamata: Halisaurinae) from Japan: the first record in the western
- 20 Pacific realm and the first documented insights into binocular vision in mosasaurs. Journal of
- 21 Systematic Palaeontology, 14(10), 809–839. doi:10.1080/14772019.2015.1113447
- 22 Konishi, T., Lindgren, J., Caldwell, M. W. & Chiappe, L. 2012. Platecarpus tympaniticus
- 23 (Squamata, Mosasauridae): osteology of an exceptionally preserved specimen and its insights
- 24 into the acquisition of a streamlined body shape in mosasaurs. Journal of Vertebrate
- 25 Paleontology, **32**(6), 1313–1327. doi:10.1080/02724634.2012.699811

2	specimen of Mosasaurus missouriensis (Squamata, Mosasauridae) from the upper Campanian
3	of the Bearpaw Formation, western Canada, and the first stomach contents for the genus.
4	Journal of Vertebrate Paleontology, 34(4), 802-819. doi:10.1080/02724634.2014.838573
5	LeBlanc, A. R. H., Caldwell, M. W. & Bardet, N. 2012. A new mosasaurine from the
6	Maastrichtian (Upper Cretaceous) phosphates of Morocco and its implications for
7	mosasaurine systematics. Journal of Vertebrate Paleontology, 32 (1), 82–104.

Konishi, T., Newbrey, M. G. & Caldwell, M. W. 2014. A small, exquisitely preserved

- 8 doi:10.1080/02724634.2012.624145
- 9 LeBlanc, A. R. H., Caldwell, M. W. & Lindgren, J. 2013. Aquatic adaptation, cranial
- 10 kinesis, and the skull of the mosasaurine mosasaur Plotosaurus bennisoni. Journal of
- 11 Vertebrate Paleontology, **33**(2), 349–362. doi:10.1080/02724634.2013.726675
- 12 LeBlanc, A. R. H., Mohr, S. R. & Caldwell, M. W. 2019. Insights into the anatomy and
- 13 functional morphology of durophagous mosasaurines (Squamata: Mosasauridae) from a new
- species of *Globidens* from Morocco. *Zoological Journal of the Linnean Society*, **10**, 1–27.
- 15 doi:10.1093/zoolinnean/zlz008/540165
- 16 Lindgren, J., Caldwell, M. W., Konishi, T. & Chiappe, L. M. 2010. Convergent evolution
- 17 in aquatic tetrapods: Insights from an exceptional fossil mosasaur. *PLoS ONE*, **5**(8), e11998.
- 18 doi:10.1371/journal.pone.0011998
- 19 Lindgren, J. & Siverson, M. 2002. *Tylosaurus ivoensis*: a giant mosasaur from the early
- 20 Campanian of Sweden. Transactions of the Royal Society of Edinburgh: Earth Sciences, 93,
- 21 73–93. doi:10.1017/S026359330000033X
- Lingham-Soliar, T. 1991. Mosasaurs from the Upper Cretaceous of Niger. *Palaeontology*,
 34, 653–670.

1 Lingham-Soliar, T. 1998. A new mosasaur *Pluridens walkeri* from the Upper Cretaceous,

- 2 Maastrichtian of the Iullemmeden Basin, southwest Niger. Journal of Vertebrate
- 3 *Paleontology*, **18**(4), 709–717.
- 4 Lingham-Soliar, T. 1999. A functional analysis of the skull of Goronyosaurus nigeriensis
- 5 (Squamata: Mosasauridae) and its bearing on the predatory behaviour and evolution of this
- 6 enigmatic taxon. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 213(3),
- 7 355–374.
- 8 Lingham-Soliar, T. 2002. First occurrence of premaxillary caniniform teeth in the
- 9 Varanoidea: Presence in the extinct mosasaur Goronyosaurus (Squamata: Mosasauridae) and
- 10 its functional and paleoecological implications. *Lethaia*, **35**, 187–190.
- 11 Linnaeus, C. 1758. Systema Naturae, edition X, vol. 1 (Systema naturae per regna tria
- 12 naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis,
- 13 synonymis, locis. Tomus I. Editio decima, reformata). Laurentii Salvii, Holmiae, 824 pp.
- 14 Liu, K. 2007. Sequence stratigraphy and orbital cyclostratigraphy of the Mooreville Chalk
- 15 (SantonianeCampanian), northeastern Gulf of Mexico area, USA. Cretaceous Research, 28,
- 16 405–418. doi:10.1016/j.cretres.2006.06.005
- 17 Lucas, J. & Prévôt-Lucas, L. 1996. Tethyan phosphates and bioproductites. Pp. 367–391 in
- 18 A.E.M. Nairn, L.-E. Ricou, B. Vrielynck and J. Dercourt (eds) The Ocean Basins and
- 19 Margins: The Tethys Ocean.
- 20 Maddison, W. & Maddison, D. 2018. Mesquite: a modular system for evolutionary
- 21 analysis.
- 22 Massare, J. A. 1987. Tooth morphology and prey preference of Mesozoic marine reptiles.
- 23 Journal of Vertebrate Paleontology, 7(2), 121–137. doi:10.1080/02724634.1987.10011647
- 24 Massare, J. A. 1988. Swimming capabilities of Mesozoic marine reptiles: implications for
- 25 method of predation. *Paleobiology*, **14**(2), 187–205.

- 1 McCurry, M. R., Evans, A. R., Fitzgerald, E. M. G., Adams, J. W., Clausen, P. D. &
- 2 McHenry, C. R. 2017. The remarkable convergence of skull shape in crocodilians and
- 3 toothed whales. Proceedings of the Royal Society of London, Series B: Biological Sciences,
- 4 **284**, 20162348. doi:10.1098/rspb.2016.2348
- 5 McHenry, C. R., Clausen, P. D., Daniel, W. J. T., Meers, M. B. & Pendharkar, A. 2006.
- 6 Biomechanics of the rostrum in crocodilians: A comparative analysis using finite-element
- 7 modeling. The Anatomical Record, 288, 827–849. doi:10.1002/ar.a.20360
- 8 Merriam, J. C. 1894. Ueber die Pythonomorphen der Kansas Kreide. Palaeontographica,
- **9 41**, 1–39.
- 10 Modesto, S. P. 1996. Noteosaurus africanus Broom is a nomen dubium. Journal of
- 11 Vertebrate Paleontology, **16**(1), 172–174. doi:10.1080/02724634.1996.10011296
- 12 Novas, F. E., Fernández, M., de Gasparini, Z., Lirio, J. M., Nuñez, H. J. & Puerta, P.
- 13 2002. Lakumasaurus antarcticus, n. gen. et sp., a new mosasaur (Reptilia, Squamata) from
- 14 the Upper Cretaceous of Antarctica. *Ameghiniana*, **39**, 245–249.
- 15 Ogg, J. G., Hinnov, L. A. & Huang, C. 2012. Cretaceous. Pp. 793–853 in F.M. Gradstein,
- 16 J.G. Ogg, M.B. Schmitz and G.M. Ogg (eds) *The Geologic Time Scale 2012*. Elsevier.
- 17 **Oppel, M.** 1811. *Die Ordungen Familien, und Gattungen der Reptilien als Prodrom einer*
- 18 *Naturgeschichte derselben*. J. Lindauer, München, 86 pp.
- 19 Palci, A., Caldwell, M. W. & Papazzoni, C. A. 2013. A new genus and subfamily of
- 20 mosasaurs from the Upper Cretaceous of northern Italy. Journal of Vertebrate Paleontology,
- 21 **33**(3), 599–612. doi:10.1080/02724634.2013.731024
- 22 Persson, P. O. 1963. Studies on Mesozoic marine reptile faunas with particular regard to the
- 23 Plesiosauria. Publications from the Institutes of Mineralogy, Paleontology, and Quaternary
- 24 *Geology, University of Lund, Sweden*, **118**, 1–15.

1	Pierce.	S.	E.,	Angi	elczy	/k.	K.	D.	&	Ra	vfield	I. E	. J.	2008.	Patterns	of mor	phos	pace
-		~ •						-			.,						P 0	~ ~ ~

- 2 occupation and mechanical performance in extant crocodilian skulls: A combined geometric
- 3 morphometric and finite element modeling approach. *Journal of Morphology*, **269**, 840–864.
- 4 doi:10.1002/jmor.10627
- 5 Polcyn, M. J. & Everhart, M. J. 2008. Description and phylogenetic analysis of a new
- 6 species of *Selmasaurus* (Mosasauridae: Plioplatecarpinae) from the Niobrara Chalk of
- 7 western Kansas. Pp. 13–28. Proceedings of the Second Mosasaur Meeting. Hays, Kansas.
- 8 Rieppel, O., Conrad, J. L. & Maisano, J. A. 2007. New morphological data for *Eosaniwa*
- 9 koehni Haubold, 1977 and a revised phylogenetic analysis. Journal of Paleontology, 81(4),
- 10 760–769.
- Rieppel, O. & Kearney, M. 2002. Similarity. *Biological Journal of the Linnean Society*, 75,
 59–82.
- 13 **Russell, D. A.** 1967. Systematics and morphology of American mosasaurs. *Bulletin of the*
- 14 *Peabody Museum of Natural History*, **23**, 1–241.
- 15 Schaeffer, B. 1969. Adaptive radiation of the fishes and the fish-amphibian transition. *Annals*
- 16 of the New York Academy of Sciences, **167**, 5–17.
- 17 Seeley, H. G. 1881. On remains of a small lizard from Neocomian rocks of Comen, near
- 18 Trieste, preserved in the Geological Museum of the University of Vienna. *Quarterly Journal*
- 19 of the Geological Society of London, **37**, 52–56.
- 20 Simões, T. R., Caldwell, M. W., Palci, A. & Nydam, R. L. 2017a. Giant taxon-character
- 21 matrices: Quality of character constructions remains critical regardless of size. *Cladistics*, 33,
- 22 198–219. doi:10.1111/cla.12163
- 23 Simões, T. R., Caldwell, M. W., Tałanda, M., Bernardi, M., Palci, A., Vernygora, O.,
- 24 Bernardini, F., Mancini, L. & Nydam, R. L. 2018. The origin of squamates revealed by a

- 1 Middle Triassic lizard from the Italian Alps. *Nature*, **557**, 706–709. doi:10.1038/s41586-018-
- 2 0093-3

3 Simões, T. R., Vernygora, O., Paparella, I., Jimenez-Huidobro, P. & Caldwell, M. W.

- 4 2017b. Mosasauroid phylogeny under multiple phylogenetic methods provides new insights
- 5 on the evolution of aquatic adaptations in the group. *PLoS ONE*, **12**(5), e0176773.
- 6 doi:10.1371/journal.pone.0176773
- 7 Soliar, T. 1988. The mosasaur *Goronyosaurus* from the Upper Cretaceous of Sokoto state,
- 8 Nigeria. Palaeontology, **31**, 747–762.
- 9 Swinton, W. E. 1930. On fossil Reptilia from Sokoto Province. Bulletin of the Geological
- 10 *Survey of Nigeria*, **13**, 1–56.
- 11 **Thévenin, A.** 1896. Mosasauriens de la craie grise de Vaux-Éclusier près Péronne (Somme).
- 12 Bulletin de la Société Géologique de France, 24, 900–916.
- 13 Vaeth, R. H., Rossman, D. A. & Shoop, W. 1985. Observations of tooth surface
- 14 morphology in snakes. *Journal of Herpetology*, **19**(1), 20–26.
- 15 Williston, S. W. 1897a. Brachysaurus, a new genus of mosasaurs. Kansas University
- 16 *Quarterly*, **6**, 95–98.
- 17 Williston, S. W. 1897b. Range and distribution of the mosasaurs. Kansas University
- 18 *Quarterly*, **6**, 177–189.
- 19 Wright, K. R. & Shannon, S. W. 1988. Selmasaurus russelli, a new plioplatecarpine
- 20 mosasaur (Squamata, Mosasauridae) from Alabama. Journal of Vertebrate Paleontology,
- 21 **8**(1), 102–107. doi:10.1080/02724634.1988.10011686
- 22
- 23 Figure Captions
- 24

1	Figure 1. Map and stratigraphic column of relevant geological features of Morocco. (A) Map
2	of northwestern Morocco, showing the Atlantic Ocean (light grey), Atlas Mountains (grey
3	lines), Oulad Abdoun Basin (black), and other major phosphatic basins (dark grey). Each
4	section of the scale bar represents 30 km. (B) Stratigraphy of the Oulad Abdoun basin. Beds
5	associated with the provenance of MHNM.KHG.1231 are italicized. Abbreviations: BB,
6	basal limestone bonebed; LCIII, Lower Couche III; UCIII, Upper Couche III; Ma, marls;
7	Ph, phosphates; Li, limestone. Modified from Arambourg (1952), and from Bardet et al.
8	(2005) by permission of Oxford University Press.
9	Figure 2. MHNM.KHG.1231 (articulated skull) in dorsal view. (A) Diagram; (B)
10	photograph. Light grey shading indicates the external nares and other openings in the skull.
11	Dark grey shading indicates openings in the skull resulting from taphonomic breakage.
12	Double-dashed lines indicate major breaks in or taphonomic distortion to the corresponding
13	elements. Bracketed numbers indicate tooth positions. Abbreviations: f, frontal; h, humerus;
14	mx, maxilla; oen, opening for the external naris; p, parietal; pf, pineal foramen; pmx,
15	premaxilla; pof , postorbitofrontal; prf , prefrontal; sq , squamosal; stf , supratemporal fenestra;
16	v, vomer. Paired bones are preceded by \mathbf{r} (right) or \mathbf{l} (left). Scale bar represents 5 cm.
17	Figure 3. MHNM.KHG.1231 (articulated skull) in ventral view. (A) Diagram; (B)
18	photograph. Black shading represents matrix. Light grey shading indicates the internal nares
19	and other openings in the skull. Dark grey shading indicates openings in the skull resulting
20	from taphonomic breakage. Solid arrowheads indicate interdental pits; fletched arrowheads
21	indicate replacement teeth. Double-dashed lines indicate major breaks in the corresponding
22	elements. Bracketed numbers indicate tooth positions. Abbreviations: f, frontal; fpf, frontal
23	posteromedian flange; h, humerus; mx, maxilla; p, parietal; pal, palatine; pf, pineal foramen;
24	pmx, premaxilla; pof, postorbitofrontal; prf, prefrontal; smx, septomaxilla; sq, squamosal;

71

stf, supratemporal fenestra; v, vomer; vp, vomerine process of the premaxilla. Paired bones
 are preceded by r (right) or l (left). Scale bar represents 5 cm.

Figure 4. Select palatal views of MHNM.KHG.1231. (A) Anterior palate; (B) mid-palatal 3 4 view; (C) posterior palate and ventral skull roof. Major anatomical features are labelled on 5 the diagram or photographs, with sutures indicated on the diagram. Insets on line drawing 6 correspond to panels denoted by the same letter. Arrows indicate interdental pits. Shading of 7 line drawing as in Figures 2 and 3. Abbreviations: ch/os, location of cerebral hemisphere or 8 of articulation of the orbitosphenoid; **Is**, lingual shelf of maxilla; **mx**, maxilla; **oc**, olfactory 9 canal; p, parietal; pal, palatine; pmx, premaxilla; pmx-v, premaxilla-vomer articulation; pof, 10 postorbitofrontal; prf, prefrontal; sq, squamosal; tb, tabular boss; v, vomer; vp, vomerine 11 process of the premaxilla. Paired bones are preceded by **r** (right) or **l** (left). Scale bars each 12 represent 2 cm.

13 Figure 5. Orbital region and skull roof of MHNM.KHG.1231. (A) Ventral view of skull roof; 14 (B) dorsal view of skull roof; (C) lateral view of left orbit. Major anatomical features are 15 labelled on the diagrams or photographs, with sutures indicated on the diagrams. Line 16 drawings correspond to panels denoted by the same letter. Shading of line drawings as in 17 Figures 2 and 3. In (c), dashed line indicates approximate dorsal midline and double-dashed 18 line indicates estimated location of suture given taxonomic distortion to specimen. Abbreviations: ch/os, location of cerebral hemisphere or of articulation of the orbitosphenoid; 19 20 f, frontal; fa, frontal ala; fpf, frontal posteromedian flange; jp, jugal process of 21 postorbitofrontal; mx, maxilla; oc, olfactory canal; p, parietal; pal, palatine; pof, 22 postorbitofrontal; prf, prefrontal; sq, squamosal; tb, tabular boss. Paired bones are preceded 23 by **r** (right) or **l** (left) where relevant. Scale bars each represent 5 cm. Line drawings not to 24 scale.

1 Figure 6. Select views of the dentition of MHNM.KHG.1231, highlighting key aspects of 2 dental anatomy and tooth development. (A) Anterior premaxillary teeth; (B) right maxillary 3 tooth 3; (C) left maxillary tooth 11; (D) left dentary tooth 3; (E) left dentary tooth 5; (F) left 4 dentary tooth 6 and tooth position 7. Insets on overview photographs correspond to panels 5 denoted by the same letter. Solid arrowheads point to interdental pits; fletched arrowheads 6 point to replacement teeth. Replacement teeth in early (C), intermediate (B), and late (F) stages of development are preserved in this specimen. Several stages of post-eruption tooth 7 8 development are also visible, from early stages in which the marginal teeth are unfused to 9 their respective alveolus (A & F), to intermediate stages of partial fusion to the tooth-bearing element (**B** & **D**), to the final stage of being fully fused to the alveolus (**E**). Abbreviations: 10 11 mp, medial parapet of the dentary. Scale bars each represent 1 cm. Overview photographs not 12 to scale.

Figure 7. Mandibular elements of MHNM.KHG.1231. (A) Left dentary in lateral view; (B) 13 14 right dentary in medial view; (C–D) right posterior mandibular unit in lateral view; (E–F) right posterior mandibular unit in medial view. Solid arrowheads indicate interdental pits; 15 16 fletched arrowheads indicate replacement teeth. Bracketed numbers indicate tooth positions. 17 Abbreviations: a, angular; art, articular; gf, glenoid fossa; mg, Meckelian groove; mp, 18 medial parapet of the dentary; part, prearticular; sa, surangular. Each scale bar represents 5 19 cm. Upper scale bar applies to panels A & B; lower scale bar applies to panels D & F. Panels 20 C & E show the location of sutures and are not to scale.

21 Figure 8. Partial right quadrate of MHNM.KHG.1231 in (A) lateral, (B) medial, (C) dorsal,

22 and (D) ventral views. Abbreviations: mex, medial excavation; qs, quadrate shaft (top

23 portion); sn, stapedial notch; sp, stapedial pit; ssp, suprastapedial process. Scale bar

24 represents 2 cm.
New species of Moroccan mosasaur

73

1	Figure 9. Disarticulated cranial and postcranial material of MHNM.KHG.1231. (A) Left
2	pterygoid in ventral view; (B) left pterygoid in dorsal view; (C) right pterygoid (ventral view)
3	and two vertebrae, the left one cervical and the right one caudal; (D) opposite view of C (i.e.,
4	right pterygoid in dorsal view); (E) complete cervical vertebra in left lateral view and crushed
5	vertebral centrum; (F) opposite view of E (i.e., the more complete vertebra is in right lateral
6	view); (G) right humerus in extensor view (proximal is to the top). Abbreviations: bp,
7	basisphenoid process; ecpp, ectopterygoid process of pterygoid; ect, ectepicondyle; ent,
8	entepicondyle; fl, flange; hae, haemapophysis; hyp, hypapophysis; ns, neural spine; pozyg,
9	postzygapophysis; pt , pterygoid; pzyg , prezygapophysis; qr , quadrate ramus; syn ,
10	synapophysis; vc, vertebral centrum; zg, zygantrum. Scale bar represents 5 cm; all bones to
11	scale.
12	Figure 10. Phylogenetic trees generated via implied weighting maximum parsimony analysis
13	of the dataset utilizing multistate character coding (Mu-IWMP). (A) Single most
14	parsimonious tree (MPT) (468 steps) generated when $k = 3.0$; (B) single MPT (465 steps)
15	generated when $k = 7.0$; (C) single MPT (465 steps) generated when $k = 11.0$; (D) enlarged
16	phylogeny of the subfamily Plioplatecarpinae. Abbreviations for mosasaur subfamilies: Ha,
17	Halisaurinae; Mo, Mosasaurinae; Pl, Plioplatecarpinae; Te, Tethysaurinae; Ty,
18	Tylosaurinae; Ya, Yaguarasaurinae.
19	Figure 11. Comparison of various marginal teeth of (A–C) 'Platecarpus' ptychodon, (D–F)
20	Gavialimimus almaghribensis, (G–I) Platecarpus somenensis, (J–L) Prognathodon solvayi,
21	and (M–O) Mosasaurus lemonnieri. Note how all of the teeth match the diagnosis of 'P.'
22	ptychodon, rendering this diagnosis – and thus this species – invalid. (A–C) Isolated teeth as
23	photographed by Arambourg (1952) in Plate 39, Fig. 2 (holotype of 'P. 'ptychodon), Fig. 4,
24	and Fig. 6, respectively; (D-E) MHNM.KHG.1231 (holotype), maxillary; (F)

25 MHNM.KHG.1231 (holotype), premaxillary; (G–I) MNHN 1895-7 (holotype), maxillary; (J)

IRSNB R33-4672 (holotype), maxillary; (K–L) IRSNB R33-4565, dentary; (M–N) IRSNB
 3109, maxillary and dentary; (O) IRSNB 3119, maxillary. Scale bar represents 1 cm; all teeth
 to scale.

4 Figure 12. Predatory guilds of Mesozoic marine reptiles based on tooth morphology 5 [modified from Massare (1987) and Bardet et al. (2015) with permission from Taylor & 6 Francis and Elsevier, respectively]. These marine predators – including Moroccan mosasaurs, 7 indicated in italicized text – can be classified into eight gradational feeding guilds based on 8 tooth size, shape, carinae, and pattern of wear. These tooth morphoguilds reflect similar prev 9 preference, regardless of phylogenetic position. Ideal 'end member' tooth morphologies are depicted at each apex of the diagram. Teeth assigned to 'Platecarpus' ptvchodon 10 11 (morphologically indistinguishable from those of Gavialimimus almaghribensis, pictured in 12 the diagram) were originally used to classify this organism as a member of the 'Pierce II'-13 'Cut' guilds (Bardet et al. 2015). However, cranial adaptations of G. almaghribensis suggest 14 ecological specialization as a highly adapted piscivore, thus supporting placement as a 'Pierce I'-'Pierce II' predator. 15

Figure 13. Life reconstruction of *Gavialimimus almaghribensis*, gen. et sp. nov., hunting a
school of teleosts. Image credit: Tatsuya Shinmura.

74

Figure 1. Map and stratigraphic column of relevant geological features of Morocco. (A) Map of northwestern Morocco, showing the Atlantic Ocean (light grey), Atlas Mountains (grey lines), Oulad Abdoun Basin (black), and other major phosphatic basins (dark grey). Each section of the scale bar represents 30 km. (B) Stratigraphy of the Oulad Abdoun basin. Beds associated with the provenance of MHNM.KHG.1231 are italicized. Abbreviations: **BB**, basal limestone bonebed; **LCIII**, Lower Couche III; **UCIII**, Upper Couche III; **Ma**, marls; **Ph**, phosphates; **Li**, limestone. Modified from Arambourg (1952), and from Bardet *et al.* (2005) by permission of Oxford University Press.

Figure 2. MHNM.KHG.1231 (articulated skull) in dorsal view. (A) Diagram; (B) photograph. Light grey shading indicates the external nares and other openings in the skull. Dark grey shading indicates openings in the skull resulting from taphonomic breakage. Double-dashed lines indicate major breaks in or taphonomic distortion to the corresponding elements. Bracketed numbers indicate tooth positions. Abbreviations: f, frontal; h, humerus; mx, maxilla; oen, opening for the external naris; p, parietal; pf, pineal foramen; pmx, premaxilla; pof, postorbitofrontal; prf, prefrontal; sq, squamosal; stf, supratemporal fenestra; v, vomer. Paired bones are preceded by r (right) or l (left). Scale bar represents 5 cm.

Figure 3. MHNM.KHG.1231 (articulated skull) in ventral view. (**A**) Diagram; (**B**) photograph. Black shading represents matrix. Light grey shading indicates the internal nares and other openings in the skull. Dark grey shading indicates openings in the skull resulting from taphonomic breakage. Solid arrowheads indicate interdental pits; fletched arrowheads indicate replacement teeth. Double-dashed lines indicate major breaks in the corresponding elements. Bracketed numbers indicate tooth positions. Abbreviations: **f**, frontal; **fpf**, frontal posteromedian flange; **h**, humerus; **mx**, maxilla; **p**, parietal; **pal**, palatine; **pf**, pineal foramen; **pmx**, premaxilla; **vp**, vomerine process of the premaxilla. Paired bones are preceded by **r** (right) or **l** (left). Scale bar represents 5 cm.

Figure 4. Select palatal views of MHNM.KHG.1231. (**A**) Anterior palate; (**B**) mid-palatal view; (**C**) posterior palate and ventral skull roof. Major anatomical features are labelled on the diagram or photographs, with sutures indicated on the diagram. Insets on line drawing correspond to panels denoted by the same letter. Arrows indicate interdental pits. Shading of line drawing as in Figures 2 and 3. Abbreviations: **ch/os**, location of cerebral hemisphere or of articulation of the orbitosphenoid; **ls**, lingual shelf of maxilla; **mx**, maxilla; **oc**, olfactory canal; **p**, parietal; **pal**, palatine; **pmx**, premaxilla; **pmx-v**, premaxilla-vomer articulation; **pof**, postorbitofrontal; **prf**, prefrontal; **sq**, squamosal; **tb**, tabular boss; **v**, vomer; **vp**, vomerine process of the premaxilla. Paired bones are preceded by **r** (right) or **l** (left). Scale bars each represent 2 cm.

Figure 5. Orbital region and skull roof of MHNM.KHG.1231. (**A**) Ventral view of skull roof; (**B**) dorsal view of skull roof; (**C**) lateral view of left orbit. Major anatomical features are labelled on the diagrams or photographs, with sutures indicated on the diagrams. Line drawings correspond to panels denoted by the same letter. Shading of line drawings as in Figures 2 and 3. In (**c**), dashed line indicates approximate dorsal midline and double-dashed line indicates estimated location of suture given taphonomic distortion to specimen. Abbreviations: **ch/os**, location of cerebral hemisphere or of articulation of the orbitosphenoid; **f**, frontal; **fa**, frontal ala; **fpf**, frontal posteromedian flange; **jp**, jugal process of postorbitofrontal; **mx**, maxilla; **oc**, olfactory canal; **p**, parietal; **pal**, palatine; **pof**, postorbitofrontal; **prf**, prefrontal; **sq**, squamosal; **tb**, tabular boss. Paired bones are preceded by **r** (right) or **l** (left) where relevant. Scale bars each represent 5 cm. Line drawings not to scale.

Figure 6. Select views of the dentition of MHNM.KHG.1231, highlighting key aspects of dental anatomy and tooth development. (A) Anterior premaxillary teeth; (B) right maxillary tooth 3; (C) left maxillary tooth 11; (D) left dentary tooth 3; (E) left dentary tooth 5; (F) left dentary tooth 6 and tooth position 7. Insets on overview photographs correspond to panels denoted by the same letter. Solid arrowheads point to interdental pits; fletched arrowheads point to replacement teeth. Replacement teeth in early (C), intermediate (B), and late (F) stages of development are preserved in this specimen. Several stages of post-eruption tooth development are also visible, from early stages in which the marginal teeth are unfused to their respective alveolus (A & F), to intermediate stages of partial fusion to the tooth-bearing element (B & D), to the final stage of being fully fused to the alveolus (E). Abbreviations: **mp**, medial parapet of the dentary. Scale bars each represent 1 cm. Overview photographs not to scale.

Figure 7. Mandibular elements of MHNM.KHG.1231. (A) Left dentary in lateral view; (B) right dentary in medial view; (C–D) right posterior mandibular unit in lateral view; (E–F) right posterior mandibular unit in medial view. Solid arrowheads indicate interdental pits; fletched arrowheads indicate replacement teeth. Bracketed numbers indicate tooth positions. Abbreviations: a, angular; art, articular; gf, glenoid fossa; mg, Meckelian groove; mp, medial parapet of the dentary; part, prearticular; sa, surangular. Each scale bar represents 5 cm. Upper scale bar applies to panels A & B; lower scale bar applies to panels D & F. Panels C & E show the location of sutures and are not to scale.

Figure 8. Partial right quadrate of MHNM.KHG.1231 in (**A**) lateral, (**B**) medial, (**C**) dorsal, and (**D**) ventral views. Abbreviations: **mex**, medial excavation; **qs**, quadrate shaft (top portion); **sn**, stapedial notch; **sp**, stapedial pit; **ssp**, suprastapedial process. Scale bar represents 2 cm.

Figure 9. Disarticulated cranial and postcranial material of MHNM.KHG.1231. (A) Left pterygoid in ventral view; (B) left pterygoid in dorsal view; (C) right pterygoid (ventral view) and two vertebrae, the left one cervical and the right one caudal; (D) opposite view of C (i.e., right pterygoid in dorsal view); (E) complete cervical vertebra in left lateral view and crushed vertebral centrum; (F) opposite view of E (i.e., the more complete vertebra is in right lateral view); (G) right humerus in extensor view (proximal is to the top).
Abbreviations: bp, basisphenoid process; ecpp, ectopterygoid process of pterygoid; ect, ectepicondyle; ent, entepicondyle; fl, flange; hae, haemapophysis; hyp, hypapophysis; ns, neural spine; pozyg, postzygapophysis; pt, pterygoid; pzyg, prezygapophysis; qr, quadrate ramus; syn, synapophysis; vc, vertebral centrum; zg, zygantrum. Scale bar represents 5 cm; all bones to scale.

Figure 10. Phylogenetic trees generated via implied weighting maximum parsimony analysis of the dataset utilizing multistate character coding (Mu-IWMP). (A) Single most parsimonious tree (MPT) (468 steps) generated when k = 3.0; (B) single MPT (465 steps) generated when k = 7.0; (C) single MPT (465 steps) generated when k = 11.0; (D) enlarged phylogeny of the subfamily Plioplatecarpinae. Abbreviations for mosasaur subfamilies: Ha, Halisaurinae; Mo, Mosasaurinae; Pl, Plioplatecarpinae; Te, Tethysaurinae; Ty, Tylosaurinae; Ya, Yaguarasaurinae.

Figure 11. Comparison of various marginal teeth of (A–C) '*Platecarpus' ptychodon*, (D–F) *Gavialimimus almaghribensis*, (G–I) *Platecarpus somenensis*, (J–L) *Prognathodon solvayi*, and (M–O) *Mosasaurus lemonnieri*. Note how all of the teeth match the diagnosis of '*P.' ptychodon*, rendering this diagnosis – and thus this species – invalid. (A–C) Isolated teeth as photographed by Arambourg (1952) in Plate 39, Fig. 2 (holotype of '*P.' ptychodon*), Fig. 4, and Fig. 6, respectively; (D–E) MHNM.KHG.1231 (holotype), maxillary; (F) MHNM.KHG.1231 (holotype), premaxillary; (G–I) MNHN 1895-7 (holotype), maxillary; (J) IRSNB R33-4672 (holotype), maxillary; (K–L) IRSNB R33-4565, dentary; (M–N) IRSNB 3109, maxillary and dentary; (O) IRSNB 3119, maxillary. Scale bar represents 1 cm; all teeth to scale.

Figure 12. Predatory guilds of Mesozoic marine reptiles based on tooth morphology [modified from Massare (1987) and Bardet *et al.* (2015) with permission from Taylor & Francis and Elsevier, respectively]. These marine predators – including Moroccan mosasaurs, indicated in italicized text – can be classified into eight gradational feeding guilds based on tooth size, shape, carinae, and pattern of wear. These tooth morphoguilds reflect similar prey preference, regardless of phylogenetic position. Ideal 'end member' tooth morphologies are depicted at each apex of the diagram. Teeth assigned to *'Platecarpus' ptychodon* (morphologically indistinguishable from those of *Gavialimimus almaghribensis*, pictured in the diagram) were originally used to classify this organism as a member of the 'Pierce II'–'Cut' guilds (Bardet *et al.* 2015). However, cranial adaptations of *G. almaghribensis* suggest ecological specialization as a highly adapted piscivore, thus supporting placement as a 'Pierce II'–'Pierce II' predator.

Figure 13. Life reconstruction of *Gavialimimus almaghribensis*, gen. et sp. nov., hunting a school of teleosts. Image credit: Tatsuya Shinmura.

REFERENCES

Arambourg, C. 1952. Les vertébrés fossiles des gisements de phosphates (Maroc–Algérie–Tunisie). Notes et mémoires du Service géologique du Maroc, 92, 1–372.

Bardet, N., Houssaye, A., Vincent, P., Pereda Superbiola, X., Amaghzaz, M., Jourani, E. & Meslouh, S. 2015. Mosasaurids (Squamata) from the Maastrichtian Phosphates of Morocco: Biodiversity, palaeobiogeography and palaeoecology based on tooth morphoguilds. *Gondwana Research*, **27**, 1068–1078. doi:10.1016/j.gr.2014.08.014

Bardet, N., Pereda Superbiola, X., Iarochène, M., Bouya, B. & Amaghzaz, M. 2005. A new species of *Halisaurus* from the Late Cretaceous phosphates of Morocco, and the phylogenetical relationships of the Halisaurinae (Squamata: Mosasauridae). *Zoological Journal of the Linnean Society*, 143, 447–472.

Massare, J. A. 1987. Tooth morphology and prey preference of Mesozoic marine reptiles. *Journal of Vertebrate Paleontology*, 7(2), 121–137. doi:10.1080/02724634.1987.10011647

A new species of longirostrine plioplatecarpine mosasaur (Squamata: Mosasauridae) from the Late Cretaceous of Morocco, with a re-evaluation of the problematic taxon *'Platecarpus' ptychodon*

Catherine R. C. Strong^a*, Michael W. Caldwell^{a,b}, Takuya Konishi^c, and Alessandro Palci^{d,e}

^aDepartment of Biological Sciences, University of Alberta, Edmonton, Canada, T6G 2E9;
^bDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada, T6G 2E9; ^cDepartment of Biological Sciences, University of Cincinnati, Cincinnati, U.S.A., 45221-0006; ^dEarth Sciences Section, South Australian Museum, Adelaide, Australia, 5000; ^eCollege of Science and Engineering, Flinders University, Adelaide, Australia, 5042

* Corresponding author. Email: crstrong@ualberta.ca

TABLE OF CONTENTS

- S1. Character List (Multistate)
- **S2.** Character List (Contingent)
- **S3.** Multistate Matrix (see separate Nexus file)
- S4. Contingent Matrix (see separate Nexus file)

S5–7. Supplementary Figures

Figure S5. Consensus trees produced via unweighted maximum parsimony

analysis of the dataset utilizing multistate character coding (Mu-UMP).

Figure S6. Consensus trees produced via unweighted maximum parsimony

analysis of the dataset utilizing contingent character coding (Co-UMP).

Figure S7. Trees produced via implied weighting maximum parsimony analysis

of a dataset utilizing contingent character coding (Co-IWMP).

S8. Topology (Extended)

S1. CHARACTER LIST (MULTISTATE)

Description of the characters used in the phylogenetic analysis applying multistate character coding, modified from Simões *et al.* (2017b) and Konishi & Caldwell (2011).

Part 1. Modifications to original character matrix in Simões et al. (2017)

- Three taxa were added to the source matrices: MHNM.KHG.1231 as a new species (*Gavialimimus almaghribensis*), *Goronyosaurus nigeriensis*, and *Selmasaurus russelli*. These latter two taxa were included because they each exhibit certain morphological similarities to MHNM.KHG.1231 (e.g., snout elongation and deep interdental pits for *G. nigeriensis*; similar medial excavation of the suprastapedial process of the quadrate for *S. russelli*), suggesting the potential for a close evolutionary relationship worth being tested phylogenetically.
- Characters 51 and 74 in the original matrix were removed from the analysis, though are listed here for reference. Character 51 (basioccipital tubera shape) was deleted from this analysis on the basis of poor character construction. This character's states (tubera not anteroposteriorly elongate [0], or anteroposteriorly elongate with rugose ventrolateral surfaces [1]) conflate different features elongation and rugosity thus exemplifying problematic character type I A.6 as outlined by Simões *et al.* (2017a). Character 74 (tooth replacement mode) was also deleted on the basis of poor character construction, as its character states (replacement teeth form in shallow excavations [0], or in subdental crypts [1]) simply refer to different stages of tooth replacement [e.g., see Caldwell (2007)] and therefore carry no phylogenetic signal.
- The state for character 12 (frontal olfactory canal embrasure) was changed from '1' (canal almost or completely enclosed ventrally by descending processes) to '0' (canal not embraced ventrally) for *Selmasaurus johnsoni* in light of re-interpretation of this character and its condition in *S. johnsoni* and *S. russelli*.
- The character states for multistate character 26 (prefrontal-postorbitofrontal contact) were originally mis-labelled as '0', '0', and '1' in the source character list; this typographic error was corrected to '0', '1', '2' in the modified dataset.
- For character 54 (dentary medial parapet), a new character state (state 3: medial parapet taller than lateral wall of bone) was added to the original states (parapet positioned at base of tooth roots [0], or parapet elevated and strap-like, enclosing about half of height of tooth attachment in shallow channel [1], or parapet equal in height to lateral wall of bone [2]). This new state accounts for additional variation present in

MHNM.KHG.1231/Gavialimimus and some individuals of Plioplatecarpus.

- A new character (Character 124): quadrate mid-shaft lateral deflection; absent [0], or present [1]) was added to both the multistate and contingent datasets. This is a modified version of character 95 in Konishi & Caldwell (2011) and was included because the quadrate shaft deflection to which it refers is a synapomorphy of *Selmasaurus*.

Part 2. Character list applying multistate coding

- (1) Premaxilla predental rostrum II: rostrum absent (0); rostrum very short and obtuse (1); or distinctly protruding (2); or very large and inflated (3). In *Clidastes* a short, acute, protruding rostrum (state 1) produces a 'V'-shaped dorsal profile and, as far as is known, is peculiar to that genus. An alternative condition, described as 'U'- shaped, includes those taxa whose rostral conditions span the whole range of states of characters 1 and 2. Hence, the descriptive character is abandoned in favor of a more informative structure-based series.
- (2) Premaxilla shape: bone broadly arcuate anteriorly (0); or relatively narrowly arcuate or acute anteriorly (1). In virtually all lizards the premaxilla is a very widely arcuate and lightly constructed element, and the base of the internarial process is quite narrow as in *Aigialosaurus bucchichi*. All other mosasaurids have a very narrowed premaxilla with the teeth forming a tight curve and the internarial process being proportionally wider (state 1). *Tethysaurus* was recoded as having state 0.
- (3) Premaxilla internarial bar width: narrow, distinctly less than half of the maximum width of the rostrum in dorsal view (0); or wide, being barely narrower than the rostrum (1). *Aigialosaurus* was recoded as having state 0.
- (4) Premaxilla internarial bar base shape: triangular (0); or rectangular (1). A vertical crosssection through the junction of the internarial bar and the dentigerous rostrum produces an inverted triangle in most taxa. But in state 1, this cross-section is transversely rectangular because the broad ventral surface of the bar is planar.
- (5) Premaxilla internarial bar dorsal keel: absent (0); or present (1). In state 1 a ridge rises above the level of a normally smoothly continuous transverse arch formed by the bones of the anterior muzzle.
- (6) Premaxilla internarial bar venter: with entrance for the fifth cranial nerve close to rostrum (0); or far removed from rostrum (1). The conduit that marks the path of the fifth cranial nerve from the maxilla into the premaxilla is expressed as a ventrolateral foramen within the premaxillo-maxillary sutural surface at the junction of the internarial bar and the dentigerous rostrum. State 1 includes a long shallow groove on the ventral surface of the bar. Anteriorly,

this groove becomes a tunnel entering the bone at an extremely shallow angle, but disappearing below the surface at least 1 cm behind the rostrum.

- (7) Frontal shape in front of the orbits: sides sinusoidal (0); or bone nearly triangular and sides relatively straight (1). In state 1, the area above the orbits is expanded and an isosceles triangle is formed by the rectilinear sides. In certain taxa, a slight concavity is seen above the orbits, but anterior and posterior to this, there is no indication of a sinusoidal or recurved edge.
- (8) Frontal width: element broad and short (0); intermediate dimensions (1); or long and narrow (2). Mosasauroid frontals can be separated into a group that generally has a maximum length to maximum width ratio greater than 2:1 (state 2), between 1.5:1 and 2:1 (state 1), or equal to or less than 1.5:1 (state 0).
- (9) Frontal narial emargination: frontal not invaded by posterior end of nares (0); or distinct embayment present (1). In some mosasauroids, the posterior ends of the nares are concomitant with the anterior terminus of the frontal-prefrontal suture and, therefore, there is no marginal invasion of the frontal by the opening. However, in other mosasauroids this suture begins anterior and lateral to the posterior ends of the nares, causing a short emargination into the frontal.
- (10) Frontal midline dorsal keel: absent (0); or low, fairly inconspicuous (1); or high, thin, and well-developed (2).
- (11) Frontal ala shape: sharply acuminate (0); or more broadly pointed or rounded (1). In state 0, the anterolateral edge of the ala is smoothly concave, thus helping to form the sharply pointed or rounded and laterally oriented posterior corners. In some forms the anterolateral edge of the ala may be concave, but the tip is not sharp and directed laterally.
- (12) Frontal olfactory canal embrasure: canal not embraced ventrally by descending processes (0); or canal almost or completely enclosed below (1). In state 1, very short descending processes from the sides of the olfactory canal surround and almost, or totally, enclose the olfactory nerve.
- (13) Frontal posteroventral midline: tabular boss immediately anterior to the frontal-parietal suture absent (0); or present (1). A triangular boss with a flattened ventral surface at the posterior end of the olfactory canal is represented by state 1.
- (14) Frontal-parietal suture overlap orientation: apposing surfaces with no overlap (0); suture with oblique median frontal and parietal ridges contributing to overlap (1); or with all three ridges

almost horizontal (2). In state 0, the median ridge from the frontal and the single parietal ridge are oriented at a distinct angle to the upper skull surface while the outer, or lateral, frontal ridge appears to be nearly horizontal. In *Tylosaurus nepaeolicus* and T. *proriger* (state 1), the obliquity of the intercalating ridges is reclined almost to the horizontal, greatly extending the amount of lateral overlap.

- (15) Frontal invasion of parietal I: lateral sutural flange of frontal posteriorly extended (0); or median frontal sutural flange posteriorly extended (1); or both extended (2); or suture straight (3). In all mosasaurines the oblique median frontal sutural ridge extends onto the dorsal surface of the parietal table and embraces a portion of the anterior table within a tightly crescentic midline embayment. In *Plioplatecarpus* and *Platecarpus*, the lateral oblique sutural ridge from the frontal is greatly protracted posteriorly to cause a large, anteriorly convex embayment in the dorsal frontal-parietal suture. In this case the entire posterolateral corner of the frontal is extended backwards to embrace the anterolateral portion of the parietal table on both sides. Consequently, the pineal foramen is very widely embraced laterally and the oblique anterior sutural ridge of the parietal occupies a position inside the embayment within the frontal. *Dallasaurus* was recoded as ?.
- (16) Frontal medial invasion of parietal II: if present, posteriorly extended median sutural flange short (0); or long (1). The median oblique sutural flange is either short, not reaching back to the pineal foramen (state 0), or tightly embraces the foramen while extending backwards to a position even with or beyond its posterior edge (state 1).
- (17) Parietal length: dorsal surface relatively short with epaxial musculature insertion posterior, between suspensorial rami only (0); or dorsal surface elongate, with epaxial musculature insertion dorsal as well as posterior (1).
- (18) Parietal table shape: generally rectangular to trapezoidal, with sides converging, but not meeting (0); or triangular, with sides contacting in front of suspensorial rami (1); or parietal table elongate, triangular to subrectangular, and highly medially constricted, with a distinct mid- or parasagittal crest anterior to the divergence of the suspensorial rami (2)
- (19) Pineal foramen size: relatively small (0); or large (1). If the foramen is smaller than or equal to the area of the stapedial pit, it is considered small. If the foramen is significantly larger or if the distance across the foramen is more than half the distance between it and the nearest edge of the parietal table, the derived state is achieved.
- (20) Pineal foramen position I: foramen generally nearer to center of parietal table, well away from frontal-parietal suture (0); or close to or barely touching suture (1); or huge foramen straddling suture and deeply invading frontal (2). Generally in state 1, the distance from the

foramen to the suture is about equal to or less than one foramen's length.

- (21) Pineal foramen ventral opening: opening is level with main ventral surface (0); or opening surrounded by a rounded, elongate ridge (1).
- (22) Parietal posterior shelf: presence of a distinct horizontal shelf projecting posteriorly from between the suspensorial rami (0); or shelf absent (1). In some mosasauroids, a somewhat crescent-shaped shelf (in dorsal view) lies at the posterior end of the bone medial to, and below, the origination of the suspensorial rami.
- (23) Parietal suspensorial ramus compression: greatest width vertical or oblique (0); or greatest width horizontal (1). In *Tylosaurus*, the anterior edge of the ramus begins very low on the lateral wall of the descending process, leading to formation of a proximoventral sulcus, but the straps are horizontal distally.
- (24) Parietal union with supratemporal: suspensorial ramus from parietal overlaps supratemporal without interdigitation (0); or forked distal ramus sandwiches proximal end of supratemporal (1).
- (25) Prefrontal supraorbital process: process absent, or present as a very small rounded knob (0); or a distinct, to large, triangular, or rounded overhanging wing (1).
- (26) Prefrontal-postorbitofrontal contact: absent (0); prefrontal overlapped ventrally by postorbitofrontal (1); or prefrontal overlapped laterally by postorbitofrontal (2). Postorbitofrontal ventral overlap of the prefrontal is extreme in Platecarpus tympaniticus and Plioplatecarpus, such that there is even a thin flange of the frontal interjected between the prefrontal above and the postorbitofrontal below. In *T. proriger*, the postorbitofrontal sends a long narrow process forward to fit into a lateral groove on the prefrontal. In *Plesiotylosaurus*, the overlap is relatively short and more oblique, and there is no groove on the prefrontal.
- (27) Postorbitofrontal shape: narrow (0); or wide (1). In *Clidastes* and the *Globidensini*, the lateral extent of the element is almost equal to half of the width of the frontal and the outline of the bone is basically squared.
- (28) Postorbitofrontal transverse dorsal ridge: absent (0); or present (1). In state 1, an inconspicuous, low, and narrowly rounded ridge traces from the anterolateral corner of the parietal suture across the top of the element to disappear behind the origin of the jugal process.
- (29) Maxilla tooth number: 20–24 (0); or 17–19 (1); or 15–16 (2); 12–14 (3).

- (30) Maxillo-premaxillary suture posterior terminus: suture ends above a point that is anterior to or level with the midline of the fourth maxillary tooth (0); or between the fourth and ninth teeth (1); or level with or posterior to the ninth tooth (2). These somewhat arbitrary divisions of the character states are meant to describe in more concrete terms those sutures that terminate far anteriorly, those that terminate less anteriorly, and those that terminate near the midlength of the maxilla, respectively.
- (31) Maxilla posterodorsal extent: process absent (0); recurved wing of maxilla prevents emargination of prefrontal on dorsolateral edge of external naris (1); or does not (2).
- (32) Jugal posteroventral angle: angle very obtuse or curvilinear (0); or slightly obtuse, near 120°
 (1); or 90° (2). *Aigialosaurus* was recoded as having state 1, *Russellosaurus* and *Tethysaurus* were recoded as having state 2.
- (33) Jugal posteroventral process: absent (0); or present (1).
- (34) Ectopterygoid contact with maxilla: present (0); or absent (1).
- (35) Pterygoid tooth row elevation: teeth arise from robust, transversely flattened, main shaft of pterygoid (0); or teeth arise from thin pronounced vertical ridge (1). In state 0, the teeth emanate from the relatively planar surface of the thick, slightly dorsoventrally compressed main shaft of the pterygoid. In state 1, a tall, thin dentigerous ridge emanates ventrally from a horizontal flange that forms the base of the quadratic ramus and the ectopterygoid process, thus causing the main shaft to be trough-shaped. Although the outgroup we selected (*Varanus*) does not possess pterygoid teeth we decided to code the primitive condition as state 0 because that is the condition observed in fossil varanoids like *Ovoo gurval* and basal anguimorphs like *Ophisaurus apodus*.
- (36) Pterygoid tooth size: anterior teeth significantly smaller than marginal teeth (0); or anterior teeth large, approaching size of marginal teeth (1). As per the argument discussed for character 40 we coded the outgroup as having state 0.
- (37) Quadrate suprastapedial process length: process short, ends at a level well above midheight (0); or of moderate length, ending very near midheight (1); or long, distinctly below midheight (2); suprastapedial process absent (3). *Russellosaurus* was recoded as having state 2.
- (38) Quadrate suprastapedial process constriction: distinct dorsal constriction (0); or virtually no dorsal constriction (1). Lack of constriction results in an essentially parallel-sided process in posterodorsal view, but can also include the tapering form characteristic of some *Tylosaurus*.

Remarks: This character refers to whether the sides of the suprastapedial process are parallel or not in posterodorsal view. State 0 occurs when there is a localized narrowing or 'pinching' of the suprastapedial process near its attachment with the quadrate shaft, causing the sides of the process to be non-parallel. This is generally typical of mosasaurines (see *Clidastes* as an exemplar). In some other taxa (e.g., *Selmasaurus, Gavialimimus*), the suprastapedial process is 'dorsally constricted' in terms of being broadly medially excavated; however, this is different from the morphology to which the present character is referring. Rather than being 'pinched in' at the junction of the suprastapedial process and quadrate shaft, the sides of the suprastapedial process remain continuous/parallel throughout its length in these taxa (see holotypes of *Gavialimimus* or *Selmasaurus* as exemplars). Based on the above criterion that a parallel-sided process reflects lack of constriction, these taxa would fall under state 1 (dorsal constriction – i.e., the narrowed base of the suprastapedial process – not present).

- (39) Quadrate suprastapedial ridge: if present, ridge on ventromedial edge of suprastapedial process indistinct, straight and/or narrow (0); or ridge wide, broadly rounded, and curving downward, especially above stapedial pit (1).
- (40) Quadrate suprastapedial process fusion: no fusion present (0); or process fused to, or in extensive contact with, elaborated process from below (1). A posterior rugose area may be inflated and broadened mediolaterally to partially enclose the ventral end of a broad and elongate suprastapedial process as in *Halisaurus*. In *Globidens, Prognathodon*, and *Plesiotylosaurus*, the process is fused ventrally to a narrow pedunculate medial extension of the tympanic rim. A similar condition is present in *Ectenosaurus*, except that the tympanic rim is not medially extended and has a short projection that overlaps a portion of the suprastapedial process posteriorly.
- (41) Quadrate stapedial pit shape: pit broadly oval to almost circular (0); or relatively narrowly oval (1); or extremely elongate with a constricted middle (2). In state 0, the length to width ratio is less than 1.8:1; in state 1 it ranges from 1.8:1 to 2.4:1; and in state 2, it is greater than 2.4:1.
- (42) Quadrate posteroventral ascending tympanic rim condition: ascending ridge small or absent (0); or a high, elongate triangular crest (1); or a crest extremely produced laterally (2). In state 1, this extended rim causes a fairly deep sulcus in the ventral portion of the intratympanic cavity. In *Plioplatecarpus*, the entire lower tympanic rim and ala are expanded into a large conch (state 2), which tremendously increases the depth of the intratympanic cavity.
- (43) Quadrate ala thickness: ala thin (0); or thick (1). In state 0, the bone in the central area of the ala is only about 1 mm thick in medium-sized specimens and that area is usually badly crushed or completely destroyed. Alternatively, the ala extends from the main shaft with only

minor thinning, providing a great deal of strength to the entire bone. *Tethysaurus* was recoded as having state 0.

- (44) Quadrate conch: ala and main shaft encompassing a deeply bowled area (0); or alar concavity shallow (1). A relatively deeper sulcus in the anterior part of the intratympanic cavity and more definition to the ala and the main shaft are features of state 0. *Tethysaurus* was recoded as having state 0.
- (45) Basisphenoid pterygoid process shape: process relatively narrow with articular surface facing mostly anterolaterally (0); or somewhat thinner, more fan- shaped with a posterior extension of the articular surface causing a more lateral orientation (1).
- (46) Quadrate ala groove: absent (0); or long, distinct, and deep groove present in anterolateral edge of ala (1); or groove along dorsal margin of quadrate ala (2).
- (47) Quadrate median ridge: single thin, high ridge, dorsal to ventral (0); or ridge low and rounded with divergent ventral ridges (1).
- (48) Quadrate anterior ventral condyle modification: no upward deflection of anterior edge of condyle (0); or distinct deflection present (1). A relatively narrow bump in the otherwise horizontal trace of the anterior articular edge is also supertended by a sulcus on the anteroventral face of the bone.
- (49) Quadrate ventral condyle: condyle saddle-shaped, concave in anteroposterior view (0); or gently domed, convex in any view (1).
- (50) Basioccipital tubera size: short (0); or long (1). Long tubera are typically parallel-sided in posterior profile and protrude ventrolaterally at exactly 45° from horizontal. Short tubera have relatively large bases that taper distally, and emanate more horizontally.

(former character 51) Basioccipital tubera shape: tubera not anteroposteriorly elongate (0); or anteroposteriorly elongate with rugose ventrolateral surfaces (1).

- (51) Basioccipital canal: absent (0); or present as a pair separated by a median septum (1); or present as a single bilobate canal (2).
- (52) Dentary tooth number: 20–24 (0); 17–19 (1); 15–16 (2); 14 (3); 13 (4); 12 (5). It is easy to assume this character is correlated with the number of maxillary teeth, except that is not the case in *Ectenosaurus clidastoides*, which has 16 or 17 maxillary teeth and only 13 dentary teeth.

- (53) Dentary anterior projection: absent (0); short (1); or long (2). In state 1, the projection of bone anterior to the first tooth is at least the length of a complete tooth space. *Russellosaurus* was recoded as not applicable.
- (54) Dentary medial parapet: parapet positioned at base of tooth roots (0); or elevated and straplike, enclosing about half of height of tooth attachment in shallow channel (1); or strap equal in height to lateral wall of bone (2); or medial parapet taller than lateral wall of bone (3). States 1, 2, and 3 are possible sequential stages of modification from a classically pleurodont dentition to the typical mosasaur 'sub-thecodont' dentition. *Tethysaurus* was recoded as ?.
- (55) Splenial-angular articulation shape: splenial articulation in posterior view almost circular (0); or laterally compressed (1).
- (56) Splenial-angular articular surface: essentially smooth concavoconvex surfaces (0); or distinct horizontal tongues and grooves present (1).
- (57) Coronoid shape: coronoid with slight dorsal curvature, posterior wing not widely fan-shaped
 (0); or very concave above, posterior wing greatly expanded (1). *Ectenosaurus* was recoded as having state 0.
- (58) Coronoid posteromedial process: small but present (0); or absent (1). *Russellosaurus* was recoded as having state 0, *Ectenosaurus* was recoded as having state 1.
- (59) Coronoid medial wing: does not reach angular (0); or contacts angular (1). *Aigialosaurus* was recoded as ?.
- (60) Coronoid posterior wing: without medial crescentic pit (0); or with distinct excavation (1). In state 1, there is a posteriorly open, 'C'-shaped excavation in the medial side of the posterior wing of this element. *Dallasaurus* was recoded as ?.
- (61) Surangular coronoid buttress: low, thick, about parallel to lower edge of mandible (0); or high, thin, rapidly rising anteriorly (1). A rounded dorsal edge of the surangular remains almost parallel to the ventral edge as it approaches the posterior end of the coronoid, meeting the latter element near its posteroventral edge in state 0. In state 1, the dorsal edge rises and thins anteriorly until meeting the posterior edge of the coronoid near its apex, producing a triangular posterior mandible in lateral aspect.
- (62) Surangular-articular suture position: behind the condyle in lateral view (0); or at middle of glenoid on lateral edge (1); anterior to condyle (2). In state 1, there is usually an

interdigitation in the dorsal part of the suture. Aigialosaurus dalmaticus was rescored as 2.

- (63) Surangular-articular lateral suture trace: suture descends and angles or curves anteriorly (0); or is virtually straight throughout its length (1). In state 1, the suture trails from the glenoid posteriorly about halfway along the dorsolateral margin of the retroarticular process, then abruptly turns anteriorly off the edge and strikes in a straight line for the posterior end of the angular.
- (64) Articular retroarticular process inflection: moderate inflection, less than 60° (0); or extreme inflection, almost 90° (1).
- (65) Articular retroarticular process innervation foramina: no large foramina on lateral face of retroarticular process (0); or one to three large foramina present (1).
- (66) Tooth surface I: teeth finely striate medially (0); or not medially striate (1). In"Russellosaurinae," medial tooth striations are very fine and groups of tightly spaced striae are usually set apart by facets, leading to a fasciculate appearance. *Angolasaurus* was recoded as ?, *Aigialosaurus* was recoded as having state 1.
- (67) Tooth surface II: teeth not coarsely textured (0); or very coarsely ornamented with bumps and ridges (1). In both species of *Globidens* and in *Prognathodon overtoni*, the coarse surface texture is extreme, consisting of thick pustules, and vermiform or anastomosing ridges. Teeth in *P. rapax* are smooth over the majority of their surface, but usually a few widely scattered, large, very long, sharp-crested vermiform ridges are present.
- (68) Tooth facets: absent (0); or present (1). *Halisaurus* teeth are smoothly rounded except for the inconspicuous carinae. *Clidastes* is described in numerous places as having smooth unfaceted teeth, but many immature individuals and some larger specimens have teeth with three distinct facets on the medial faces. Adult *Tylosaurus* proriger has indistinct facets. *Mosasaurus* has taken this characteristic to the extreme. *Russellosaurus*, *Tethysaurus*, *Angolasaurus*, *Ectenosaurus*, *Platecarpus* (*P. planifrons* and *P. tympaniticus*), and *Plioplatecarpus* have been recoded as having state 0.
- (69) Tooth fluting: absent (0); or present (1). In *Ectenosaurus*, and some *Platecarpus planifrons*, several broadly rounded vertical ridges alternate with shallow, round-bottomed grooves completely around the teeth. *Tethysaurus* was recoded as having both states 0 and 1, because grooves can be observed in larger specimens. *Angolasaurus* was recoded as having state 1.
- (70) Tooth inflation: crowns of posterior marginal teeth conical, tapering throughout (0); or crowns of posterior marginal teeth swollen near the tip or above the base (1). The rear teeth of *Globidens* and *Prognathodon overtoni* are distinctly fatter than other mosasauroid teeth, but

those of *P. rapax* are also swollen immediately distal to the base.

- (71) Tooth carinae I: absent (0); or present but extremely weak (1); or strong and elevated (2). *Halisaurus* exhibits the minimal expression of this character (state 1) in that its marginal teeth are almost perfectly round in cross-section; the carinae are extremely thin and barely stand above the surface of the teeth.
- (72) Tooth carinae serration: absent (0); or present (1).
- (73) Atlas neural arch: notch in anterior border (0); or no notch in anterior border (1). *Dallasaurus* was recoded as ?.

(former character 74) Tooth replacement mode: replacement teeth form in shallow excavations (0); or in subdental crypts (1). All mosasauroids that can be evaluated have an 'anguimorph' type of tooth replacement, which is to have interdental positioning of replacement teeth and resorption pits associated with each. *Angolasaurus* was recoded as ?.

- (74) Atlas synapophysis: extremely reduced (0); or large and elongate (1). In state 1, a robust synapophysis extends well posteroventral to the medial articular surface for the atlas centrum, and it may be pedunculate (*Clidastes*) or with a ventral 'skirt' that gives it a triangular shape (*Mosasaurus*). A very small triangular synapophysis barely, if at all, extends posterior to the medial articular edge in state 0.
- (75) Zygosphenes and zygantra: absent (0); or present (1). This character assesses only the presence of zygosphenes and zygantra, not their relative development. See Nonfunctional and functional are considered as present. Although the outgroup we selected (*Varanus*) does not possess zygosphene and zygantra we decided to code the primitive condition as present because these structures can be observed in primitive varanoids like *Saniwa*.
- (76) Zygosphene and zygantra number: present on many vertebrae (0); or present on only a few(1). As per the argument discussed for character 84 we coded the outgroup as having state 0.
- (77) Hypapophyses: last hypapophysis occurs on or anterior to seventh vertebra (0); or on eight or posteriorly (1).
- (78) Synapophysis height: facets for rib articulations tall and narrow on posterior cervicals and anterior trunk vertebrae (0); or facets ovoid, shorter than the centrum height on those vertebrae (1).

- (79) Synapophysis length: synapophyses of middle trunk vertebrae not laterally elongate (0); or distinctly laterally elongate (1). The lateral extension of the synapophyses from the middle of the trunk is as much as 70–80% of the length of the same vertebra is represented by state 1.
- (80) Synapophysis ventral extension: synapophyses extend barely or not at all below ventral margin of cervical centra (0); or some extend far below ventral margin of centrum (1). In state 1, two or more anterior cervical vertebrae have rib articulations that dip well below the centrum, causing a very deeply concave ventral margin in anterior profile.
- (81) Vertebral condyle inclination: condyles of trunk vertebrae inclined (0); or condyles vertical (1).
- (82) Vertebral condyle shape I: condyles of anterior-most trunk vertebrae extremely dorsoventrally depressed (0); or essentially equidimensional (1). In state 0, posterior height: width ratios of anterior trunk vertebrae are close to 2:1. In state 1, they are between to 4:3 and 1:1.
- (83) Vertebral condyle shape II: condyles of posterior trunk vertebrae not higher than wide (0); or slightly compressed (1). In state 1, the posterior condylar aspect reveals outlines that appear to be higher than wide and even perhaps slightly subrectangular, due to the slight emargination for the dorsal nerve cord.
- (84) Vertebral synapophysis dorsal ridge: sharp ridge absent on posterior trunk synapophyses (0); or with a sharp-edged and anteriorly precipitous ridge connecting distal synapophysis with prezygapophysis (1). In state 0, the ridge in question, if present, may be incomplete or it may be rounded across the crest with the anterior and posterior sides about equally sloping.
- (85) Vertebral length proportions: cervical vertebrae distinctly shorter than longest vertebrae (0); or almost equal or are the longest (1).
- (86) Presacral vertebrae number II: if few, then 28 or 29 (0); 30 or 31 (1); 39 or more (2). Here, presacral vertebrae are considered to be all those anterior to the first bearing an elongate transverse process.
- (87) Sacral vertebrae number: two (0); or less than two (1). Numerous well preserved specimens of derived mosasauroids have failed to show any direct contact of the pelvic girdle with vertebrae in the sacral area. Certainly, no transverse processes bear any type of concave facet for the ilium, and so it is generally assumed that a ligamentous contact was established with only one transverse process. Depending on one's perspective, it could be said that derived mosasauroids have either no or one sacral vertebra.

- (88) Caudal dorsal expansion: neural spines of tail all uniformly shortened posteriorly (0); or several spines dorsally elongated behind middle of tail (1). *Dallasaurus* was recoded as ?.
- (89) Haemal arch length: haemal arches about equal in length to neural arch of same vertebra (0); or length about 1.5 times greater than neural arch length (1). This ratio may be as great as 1.2:1 in state 0. Comparison is most accurate in the middle of the tail and is consistent even on those vertebrae in which the neural spines are also elongated.
- (90) Haemal arch articulation: arches articulating (0); or arches fused to centra (1).
- (91) Tail curvature: no structural downturn of tail (0); or tail with curved posterior portion (1).
- (92) Body proportions: head and trunk shorter than or about equal to tail length (0); or head and trunk longer than tail (1).
- (93) Scapula/coracoid size: both bones about equal (0); or scapula about half the size of coracoid (1). *Dallasaurus* was recoded as ?.
- (94) Scapula width: no anteroposterior widening (0); or distinct fan-shaped widening (1); or extreme widening (2). In state 0, the anterior and posterior edges of the scapula encompass less than one quarter of the arc of a circle, but in state 1, the arc is increased to approximately one third. In state 2, the distal margin encompasses almost a half-circle and the anterior and posterior borders are of almost equal length.
- (95) Scapula dorsal convexity: if scapula widened, dorsal margin very convex (0); or broadly convex (1). In state 0, the anteroposterior dimension is almost the same as the proximodistal dimension. In state 1, the anteroposterior dimension is much larger.
- (96) Scapula posterior emargination: posterior border of bone gently concave (0); or deeply concave (1). In state 1, there is a deeply arcuate emargination on the posterior scapular border, just dorsal to the glenoid. It is immediately bounded dorsally by a corner, which begins a straight-edged segment that continues to the dorsal margin.
- (97) Scapula-coracoid suture: unfused scapula-coracoid contact has interdigitate suture anteriorly (0); or apposing surfaces without interdigitation (1). *Dallasaurus* was recoded as ?.
- (98) Coracoid neck elongation: neck rapidly tapering from medial corners to a relatively broad base (0); or neck gradually tapering to a relatively narrow base (1); coracoid neck absent (2). In state 1, this character describes an outline of the bone, which is nearly symmetrical and gracefully fan-shaped, with gently concave, nearly equidistant sides.

- (99) Coracoid anterior emargination: present (0); or absent (1).
- (100) Humerus length: humerus distinctly elongate, about three or more times longer than distal width (0); or greatly shortened, about 1.5 to 2 times longer than distal width (1); or length and distal width virtually equal (2); or distal width slightly greater than length (3).
- (101) Humerus postglenoid process: absent or very small (0); or distinctly enlarged (1).
- (102) Humerus glenoid condyle: if present, condyle gently domed and elongate, ovoid in proximal view (0); or condyle saddle-shaped, subtriangular in proximal view and depressed (1); or condyle highly domed or protuberant and short ovoid to almost round in proximal view (2). In some taxa, the condylar surfaces of the limbs were finished in thick cartilage and there was no bony surface of the condyle to be preserved. This condition is scored as not represented. In some taxa, the glenoid condyle extends more proximally than does the postglenoid process (state 2), and it is not ovoid as state 0. *Dallasaurus* was recoded as having state 0.
- (103) Humerus deltopectoral crest: crest undivided (0); or split into two separate insertional areas(1). In state 1, the deltoid crest occupies an anterolateral or anterior position confluent with the glenoid condyle, while the pectoral crest occupies a medial or anteromedial area that may or may not be confluent with the glenoid condyle. The deltoid crest is often quite short, broad, and indistinct, being easily erased by degradational taphonomic processes.
- (104) Humerus pectoral crest: located anteriorly (0); or medially (1). In state 1, the pectoral crest is located near the middle of the flexor (or medial) side on the proximal end of the bone.
- (105) Humerus ectepicondylar groove: groove or foramen present on distolateral edge (0); or absent (1).
- (106) Humerus ectepicondyle: absent (0); or present as a prominence (1). A radial tuberosity is reduced in size in *Prognathodon*, but very elongated in *Plesiotylosaurus*. *Tethysaurus* was recoded as having state 0.
- (107) Humerus entepicondyle: absent (0); or present as a prominence (1). The ulnar tuberosity protrudes posteriorly and medially from the posterodistal corner of the bone immediately proximal to the ulnar facet, causing a substantial dilation of the posterodistal corner of the humerus. *Tethysaurus* was recoded as having state 0.
- (108) Radius shape: radius not expanded anterodistally (0); or slightly expanded (1); or broadly expanded (2).

- (109) Ulna contact with centrale: broad ulnare prevents contact (0); or ulna contacts centrale (1). In state 1, the ulnare is omitted from the border of the antebrachial foramen. There is usually a well-developed faceted articulation between the ulna and the centrale (or intermedium, as used by Russell, 1967).
- (110) Radiale size: large and broad (0); or small to absent (1).
- (111) Carpal reduction: carpals number six or more (0); or five or less (1).
- (112) Pisiform: present (0); or absent (1).
- (113) Metacarpal I expansion: spindle-shaped, elongate (0); or broadly expanded (1). The broad expansion is also associated with an anteroproximal overhanging crest in every case observed.
- (114) Phalanx shape: phalanges elongate, spindle-shaped (0); or blocky, hourglass-shaped (1). Mosasaurus and Plotosaurus have phalanges that are slightly compressed and anteroposteriorly expanded on both ends. Dallasaurus was recoded as ?.
- (115) Ilium crest: crest blade-like, articulates with sacral ribs (0); or elongate, cylindrical, does not articulate with sacral ribs (1).
- (116) Ilium acetabular area: arcuate ridge supertending acetabulum (0); or acetabulum set into broad, short 'V'-shaped notch (1). The primitive ilium has the acetabulum impressed on the lateral wall of the bone, with a long narrow crest anterodorsally as the only surrounding topographic feature. In state 1, the acetabular area is set into a short, broadly 'V'-shaped depression that tapers dorsally. The lateral walls of the ilium are therefore distinctly higher than the rim of the acetabulum.
- (117) Pubic tubercle condition: tubercle an elongate protuberance located closer to the midlength of the shaft (0); or a thin semicircular crest-like blade located close to the acetabulum (1).
- (118) Ischiadic tubercle size: elongate (0); or short (1). In state 0, the tubercle is as long as the shaft of the ischium is wide, but it is only a short narrow spur in state 1.
- (119) Astragalus: notched emargination for the crural foramen, without pedunculate fibular articulation (0); or without notch, pedunculate fibular articulation present (1). For state 0, the tibia and fibula are of equal length about the crural foramen and the astragalus contacts both to about the same degree. The form of the latter element is symmetrical and subcircular with a sharp proximal notch. In state 1, the outline of the element is basically reniform and the tibial

articulation is on the same line as the crural emargination. The fibula is also shortened and its contact with the astragalus is narrow.

- (120) Appendicular epiphyses: formed from ossified cartilage (0); or from thick unossified cartilage (1); or epiphyses missing or extremely thin (2). Ends of the limb bones show distinct vascularization and rugose surfaces indicating an apparently thick non-vascularized, unossified cartilage cap. Extremely smooth articular surfaces suggest the epiphyses were excessively thin or perhaps even lost.
- (121) Hyperphalangy: absent (0); or present (1). Hyperphalangy is defined as presence of one or more extra phalanges as compared to the primitive amniote formula of 2-3-4-5-3.
- (122) Posterior thoracic vertebra: not markedly longer than anterior thoracic vertebrae (0); or are markedly longer (1).
- (123) Ectopterygoid process of pterygoid: distal portion of process not offset anterolaterally and/or lacking longitudinal grooves and ridges (0); distal portion of process is offset anterolaterally and bears longitudinal grooves and ridges (1).
- (124) Quadrate mid-shaft lateral deflection: absent (0); present (1). In state 1, the quadrate shaft is bent laterally such that the suprastapedial process is deflected dorsolaterally relative to the main shaft of the quadrate.

NB: the wording of this character has been modified from Konishi and Caldwell (2011). The original character was phrased as "Quadrate mid-shaft medial bending," referring to the bend itself projecting medially, resulting in the ventromedial/dorsolateral deflection of the quadrate. The wording was changed to avoid confusion, as the original phrasing gave the impression of the dorsal quadrate shaft and suprastapedial process being deflected medially, when in reality they are deflected laterally [e.g., see amended diagnosis of quadrate in Konishi (2008); see also specimens GSATC 221 (*S. russelli* holotype) and ALMNH PV 995.4.1 (*Selmasaurus* quadrate, cf. *S. russelli*)].

S2. CHARACTER LIST (CONTINGENT)

Description of the characters used in the phylogenetic analysis applying contingent character coding, modified from Simões *et al.* (2017b) and Konishi & Caldwell (2011).

Part 1. Modifications to original character matrix in Simões et al. (2017)

- Three taxa were added to the source matrices: MHNM.KHG.1231 as a new species (*Gavialimimus almaghribensis*), *Goronyosaurus nigeriensis*, and *Selmasaurus russelli* Wright and Shannon, 1988. These latter two taxa were included because they each exhibit certain morphological similarities to MHNM.KHG.1231 (e.g., snout elongation and deep interdental pits for *G. nigeriensis*; similar medial excavation of the suprastapedial process of the quadrate for *S. russelli*), suggesting the potential for a close evolutionary relationship worth being tested phylogenetically.
- Characters 55 and 79 in the original matrix were removed from the analysis, though are listed here for reference. Character 55 (basioccipital tubera shape) was deleted from this analysis on the basis of poor character construction. This character's states (tubera not anteroposteriorly elongate [0], or anteroposteriorly elongate with rugose ventrolateral surfaces [1]) conflate different features elongation and rugosity thus exemplifying problematic character type I A.6 as outlined by Simões *et al.* (2017a). Character 79 (tooth replacement mode) was also deleted on the basis of poor character construction, as its character states (replacement teeth form in shallow excavations [0], or in subdental crypts [1]) simply refer to different stages of tooth replacement [e.g., see Caldwell (2007)] and therefore carry no phylogenetic signal.
- The state for character 13 (frontal olfactory canal embrasure) was changed from '1' (canal almost or completely enclosed ventrally by descending processes) to '0' (canal not embraced ventrally) for *Selmasaurus johnsoni* Polcyn and Everhart, 2008 in light of reinterpretation of this character and its condition in *S. johnsoni* and *S. russelli*.
- For character 59 (dentary medial parapet), a new character state (state 3: medial parapet taller than lateral wall of bone) was added to the original states (parapet positioned at base of tooth roots [0], or parapet elevated and strap-like, enclosing about half of height of tooth attachment in shallow channel [1], or parapet equal in height to lateral wall of bone [2]). This new state accounts for additional variation present in MHNM.KHG.1231/Gavialimimus and some individuals of *Plioplatecarpus*.
- A new character (Character 130): quadrate mid-shaft lateral deflection; absent [0], or present [1]) was added to both the multistate and contingent datasets. This is a modified

version of character 95 in Konishi & Caldwell (2011) and was included because the quadrate shaft deflection to which it refers is a synapomorphy of *Selmasaurus*.

Part 2. Character list applying contingent coding

- (1) Premaxilla predental rostrum I: total lack of a bony rostrum (0); or presence of any predental rostrum (1). In lateral profile, the anterior end of the premaxilla either exhibits some bony anterior projection above the dental margin, or the bone recedes posterodorsally from the dental margin. State 1 produces a relatively taller lateral profile with an obvious 'bow' or 'prow.'
- (2) Premaxilla predental rostrum II: rostrum very short and obtuse (0); or distinctly protruding (1); or very large and inflated (2). In *Clidastes* a short, acute, protruding rostrum (state 1) produces a 'V'-shaped dorsal profile and, as far as is known, is peculiar to that genus. An alternative condition, described as 'U'- shaped, includes those taxa whose rostral conditions span the whole range of states of characters 1 and 2. Hence, the descriptive character is abandoned in favor of a more informative structure-based series.
- (3) Premaxilla shape: bone broadly arcuate anteriorly (0); or relatively narrowly arcuate or acute anteriorly (1). In virtually all lizards the premaxilla is a very widely arcuate and lightly constructed element, and the base of the internarial process is quite narrow as in *Aigialosaurus bucchichi*. All other mosasaurids have a very narrowed premaxilla with the teeth forming a tight curve and the internarial process being proportionally wider (state 1). *Tethysaurus* was recoded as having state 0.
- (4) Premaxilla internarial bar width: narrow, distinctly less than half of the maximum width of the rostrum in dorsal view (0); or wide, being barely narrower than the rostrum (1). *Aigialosaurus* was recoded as having state 0.
- (5) Premaxilla internarial bar base shape: triangular (0); or rectangular (1). A vertical crosssection through the junction of the internarial bar and the dentigerous rostrum produces an inverted triangle in most taxa. But in state 1, this cross-section is transversely rectangular because the broad ventral surface of the bar is planar.
- (6) Premaxilla internarial bar dorsal keel: absent (0); or present (1). In state 1 a ridge rises above the level of a normally smoothly continuous transverse arch formed by the bones of the anterior muzzle.
- (7) Premaxilla internarial bar venter: with entrance for the fifth cranial nerve close to rostrum(0); or far removed from rostrum (1). The conduit that marks the path of the fifth cranial nerve from the maxilla into the premaxilla is expressed as a ventrolateral foramen within the
premaxillo-maxillary sutural surface at the junction of the internarial bar and the dentigerous rostrum. State 1 includes a long shallow groove on the ventral surface of the bar. Anteriorly, this groove becomes a tunnel entering the bone at an extremely shallow angle, but disappearing below the surface at least 1 cm behind the rostrum.

- (8) Frontal shape in front of the orbits: sides sinusoidal (0); or bone nearly triangular and sides relatively straight (1). In state 1, the area above the orbits is expanded and an isosceles triangle is formed by the rectilinear sides. In certain taxa, a slight concavity is seen above the orbits, but anterior and posterior to this, there is no indication of a sinusoidal or recurved edge.
- (9) Frontal width: element broad and short (0); intermediate dimensions (1); or long and narrow (2). Mosasauroid frontals can be separated into a group that generally has a maximum length to maximum width ratio greater than 2:1 (state 2), between 1.5:1 and 2:1 (state 1), or equal to or less than 1.5:1 (state 0).
- (10) Frontal narial emargination: frontal not invaded by posterior end of nares (0); or distinct embayment present (1). In some mosasauroids, the posterior ends of the nares are concomitant with the anterior terminus of the frontal-prefrontal suture and, therefore, there is no marginal invasion of the frontal by the opening. However, in other mosasauroids this suture begins anterior and lateral to the posterior ends of the nares, causing a short emargination into the frontal.
- (11) Frontal midline dorsal keel: absent (0); or low, fairly inconspicuous (1); or high, thin, and well-developed (2).
- (12) Frontal ala shape: sharply acuminate (0); or more broadly pointed or rounded (1). In state 0, the anterolateral edge of the ala is smoothly concave, thus helping to form the sharply pointed or rounded and laterally oriented posterior corners. In some forms the anterolateral edge of the ala may be concave, but the tip is not sharp and directed laterally.
- (13) Frontal olfactory canal embrasure: canal not embraced ventrally by descending processes (0); or canal almost or completely enclosed below (1). In state 1, very short descending processes from the sides of the olfactory canal surround and almost, or totally, enclose the olfactory nerve.
- (14) Frontal posteroventral midline: tabular boss immediately anterior to the frontal-parietal suture absent (0); or present (1). A triangular boss with a flattened ventral surface at the posterior end of the olfactory canal is represented by state 1.

- (15) Frontal-parietal suture: apposing surfaces with low interlocking ridges (0); or with overlapping flanges (1). In state 0, an oblique ridge on the anterior sutural surface of the parietal intercalates between a single median posterior and a single lateral posterior ridge from the frontal. In state 1, these ridges are protracted into strongly overlapping flanges. The dorsal trace of the suture can be quite complex with a portion of the parietal embraced by the posterior extension of these frontal flanges.
- (16) Frontal-parietal suture overlap orientation: suture with oblique median frontal and parietal ridges contributing to overlap (0); or with all three ridges almost horizontal (1). In state 0, the median ridge from the frontal and the single parietal ridge are oriented at a distinct angle to the upper skull surface while the outer, or lateral, frontal ridge appears to be nearly horizontal. In *Tylosaurus nepaeolicus* and T. *proriger* (state 1), the obliquity of the intercalating ridges is reclined almost to the horizontal, greatly extending the amount of lateral overlap.
- (17) Frontal invasion of parietal I: lateral sutural flange of frontal posteriorly extended (0); or median frontal sutural flange posteriorly extended (1); or both extended (2); or suture straight (3). In all mosasaurines the oblique median frontal sutural ridge extends onto the dorsal surface of the parietal table and embraces a portion of the anterior table within a tightly crescentic midline embayment. In *Plioplatecarpus* and *Platecarpus*, the lateral oblique sutural ridge from the frontal is greatly protracted posteriorly to cause a large, anteriorly convex embayment in the dorsal frontal-parietal suture. In this case the entire posterolateral corner of the frontal is extended backwards to embrace the anterolateral portion of the parietal table on both sides. Consequently, the pineal foramen is very widely embraced laterally and the oblique anterior sutural ridge of the parietal occupies a position inside the embayment within the frontal. *Dallasaurus* was recoded as ?.
- (18) Frontal medial invasion of parietal II: if present, posteriorly extended median sutural flange short (0); or long (1). The median oblique sutural flange is either short, not reaching back to the pineal foramen (state 0), or tightly embraces the foramen while extending backwards to a position even with or beyond its posterior edge (state 1).
- (19) Parietal length: dorsal surface relatively short with epaxial musculature insertion posterior, between suspensorial rami only (0); or dorsal surface elongate, with epaxial musculature insertion dorsal as well as posterior (1).
- (20) Parietal table shape: generally rectangular to trapezoidal, with sides converging, but not meeting (0); or triangular, with sides contacting in front of suspensorial rami (1); or parietal table elongate, triangular to subrectangular, and highly medially constricted, with a distinct mid- or parasagittal crest anterior to the divergence of the suspensorial rami (2).

- (21) Pineal foramen size: relatively small (0); or large (1). If the foramen is smaller than or equal to the area of the stapedial pit, it is considered small. If the foramen is significantly larger or if the distance across the foramen is more than half the distance between it and the nearest edge of the parietal table, the derived state is achieved.
- (22) Pineal foramen position I: foramen generally nearer to center of parietal table, well away from frontal-parietal suture (0); or close to or barely touching suture (1); or huge foramen straddling suture and deeply invading frontal (2). Generally in state 1, the distance from the foramen to the suture is about equal to or less than one foramen's length.
- (23) Pineal foramen ventral opening: opening is level with main ventral surface (0); or opening surrounded by a rounded, elongate ridge (1).
- (24) Parietal posterior shelf: presence of a distinct horizontal shelf projecting posteriorly from between the suspensorial rami (0); or shelf absent (1). In some mosasauroids, a somewhat crescent-shaped shelf (in dorsal view) lies at the posterior end of the bone medial to, and below, the origination of the suspensorial rami.
- (25) Parietal suspensorial ramus compression: greatest width vertical or oblique (0); or greatest width horizontal (1). In *Tylosaurus*, the anterior edge of the ramus begins very low on the lateral wall of the descending process, leading to formation of a proximoventral sulcus, but the straps are horizontal distally.
- (26) Parietal union with supratemporal: suspensorial ramus from parietal overlaps supratemporal without interdigitation (0); or forked distal ramus sandwiches proximal end of supratemporal (1).
- (27) Prefrontal supraorbital process: process absent, or present as a very small rounded knob(0); or a distinct, to large, triangular, or rounded overhanging wing (1).
- (28) Prefrontal contact with postorbitofrontal: no contact at edge of frontal (0); of elements in contact there (1). State 1 is usually described as the frontal being emarginated above the orbits. Often this character can be evaluated by examining the ventral surface of the frontal where depressions outline the limits of the sutures for the two ventral elements.
- (29) Prefrontal-postorbitofrontal overlap: prefrontal overlapped ventrally by postorbitofrontal (0); or prefrontal overlapped laterally (1). Postorbitofrontal ventral overlap of the prefrontal is extreme in *Platecarpus tympaniticus* and *Plioplatecarpus*, such that there is even a thin flange of the frontal interjected between the prefrontal above and the postorbitofrontal

below. In *T. proriger*, the postorbitofrontal sends a long narrow process forward to fit into a lateral groove on the prefrontal. In *Plesiotylosaurus*, the overlap is relatively short and more oblique, and there is no groove on the prefrontal.

- (30) Postorbitofrontal shape: narrow (0); or wide (1). In *Clidastes* and the *Globidensini*, the lateral extent of the element is almost equal to half of the width of the frontal and the outline of the bone is basically squared.
- (31) Postorbitofrontal transverse dorsal ridge: absent (0); or present (1). In state 1, an inconspicuous, low, and narrowly rounded ridge traces from the anterolateral corner of the parietal suture across the top of the element to disappear behind the origin of the jugal process.
- (32) Maxilla tooth number: 20–24 (0); or 17–19 (1); or 15–16 (2); 12–14 (3).
- (33) Maxillo-premaxillary suture posterior terminus: suture ends above a point that is anterior to or level with the midline of the fourth maxillary tooth (0); or between the fourth and ninth teeth (1); or level with or posterior to the ninth tooth (2). These somewhat arbitrary divisions of the character states are meant to describe in more concrete terms those sutures that terminate far anteriorly, those that terminate less anteriorly, and those that terminate near the midlength of the maxilla, respectively.
- (34) Maxilla posterodorsal process: recurved wing of maxilla dorsolaterally overlaps a portion of the anterior end of the prefrontal (0); or process absent (1).
- (35) Maxilla posterodorsal extent: recurved wing of maxilla prevents emargination of prefrontal on dorsolateral edge of external naris (0); or does not (1).
- (36) Jugal posteroventral angle: angle very obtuse or curvilinear (0); or slightly obtuse, near 120° (1); or 90° (2). *Aigialosaurus* was recoded as having state 1, *Russellosaurus* and *Tethysaurus* were recoded as having state 2.
- (37) Jugal posteroventral process: absent (0); or present (1).
- (38) Ectopterygoid contact with maxilla: present (0); or absent (1).
- (39) Pterygoid tooth row elevation: teeth arise from robust, transversely flattened, main shaft of pterygoid (0); or teeth arise from thin pronounced vertical ridge (1). In state 0, the teeth emanate from the relatively planar surface of the thick, slightly dorsoventrally compressed main shaft of the pterygoid. In state 1, a tall, thin dentigerous ridge emanates ventrally from

a horizontal flange that forms the base of the quadratic ramus and the ectopterygoid process, thus causing the main shaft to be trough-shaped. Although the outgroup we selected (*Varanus*) does not possess pterygoid teeth we decided to code the primitive condition as state 0 because that is the condition observed in fossil varanoids like *Ovoo gurval* and basal anguimorphs like *Ophisaurus apodus*.

- (40) Pterygoid tooth size: anterior teeth significantly smaller than marginal teeth (0); or anterior teeth large, approaching size of marginal teeth (1). As per the argument discussed for character 40 we coded the outgroup as having state 0.
- (41) Quadrate suprastapedial process length: process short, ends at a level well above midheight (0); or of moderate length, ending very near midheight (1); or long, distinctly below midheight (2); suprastapedial process absent (3). *Russellosaurus* was recoded as having state 2.
- (42) Quadrate suprastapedial process constriction: distinct dorsal constriction (0); or virtually no dorsal constriction (1). Lack of constriction results in an essentially parallel-sided process in posterodorsal view, but can also include the tapering form characteristic of some *Tylosaurus*.

Remarks: This character refers to whether the sides of the suprastapedial process are parallel or not in posterodorsal view. State 0 occurs when there is a localized narrowing or 'pinching' of the suprastapedial process near its attachment with the quadrate shaft, causing the sides of the process to be non-parallel. This is generally typical of mosasaurines (see *Clidastes* as an exemplar). In some other taxa (e.g., *Selmasaurus, Gavialimimus*), the suprastapedial process is 'dorsally constricted' in terms of being broadly medially excavated; however, this is different from the morphology to which the present character is referring. Rather than being 'pinched in' at the junction of the suprastapedial process and quadrate shaft, the sides of the suprastapedial process remain continuous/parallel throughout its length in these taxa (see holotypes of *Gavialimimus* or *Selmasaurus* as exemplars). Based on the above criterion that a parallel-sided process reflects lack of constriction, these taxa would fall under state 1 (dorsal constriction – i.e., the narrowed base of the suprastapedial process – not present).

- (43) Quadrate suprastapedial ridge: if present, ridge on ventromedial edge of suprastapedial process indistinct, straight and/or narrow (0); or ridge wide, broadly rounded, and curving downward, especially above stapedial pit (1).
- (44) Quadrate suprastapedial process fusion: no fusion present (0); or process fused to, or in extensive contact with, elaborated process from below (1). A posterior rugose area may be inflated and broadened mediolaterally to partially enclose the ventral end of a broad and elongate suprastapedial process as in *Halisaurus*. In *Globidens, Prognathodon*, and

Plesiotylosaurus, the process is fused ventrally to a narrow pedunculate medial extension of the tympanic rim. A similar condition is present in *Ectenosaurus*, except that the tympanic rim is not medially extended and has a short projection that overlaps a portion of the suprastapedial process posteriorly.

- (45) Quadrate stapedial pit shape: pit broadly oval to almost circular (0); or relatively narrowly oval (1); or extremely elongate with a constricted middle (2). In state 0, the length to width ratio is less than 1.8:1; in state 1 it ranges from 1.8:1 to 2.4:1; and in state 2, it is greater than 2.4:1.
- (46) Quadrate posteroventral ascending tympanic rim condition: ascending ridge small or absent (0); or a high, elongate triangular crest (1); or a crest extremely produced laterally (2). In state 1, this extended rim causes a fairly deep sulcus in the ventral portion of the intratympanic cavity. In *Plioplatecarpus*, the entire lower tympanic rim and ala are expanded into a large conch (state 2), which tremendously increases the depth of the intratympanic cavity.
- (47) Quadrate ala thickness: ala thin (0); or thick (1). In state 0, the bone in the central area of the ala is only about 1 mm thick in medium-sized specimens and that area is usually badly crushed or completely destroyed. Alternatively, the ala extends from the main shaft with only minor thinning, providing a great deal of strength to the entire bone. *Tethysaurus* was recoded as having state 0.
- (48) Quadrate conch: ala and main shaft encompassing a deeply bowled area (0); or alar concavity shallow (1). A relatively deeper sulcus in the anterior part of the intratympanic cavity and more definition to the ala and the main shaft are features of state 0. *Tethysaurus* was recoded as having state 0.
- (49) Basisphenoid pterygoid process shape: process relatively narrow with articular surface facing mostly anterolaterally (0); or somewhat thinner, more fan- shaped with a posterior extension of the articular surface causing a more lateral orientation (1).
- (50) Quadrate ala groove: absent (0); or long, distinct, and deep groove present in anterolateral edge of ala (1); or groove along dorsal margin of quadrate ala (2).
- (51) Quadrate median ridge: single thin, high ridge, dorsal to ventral (0); or ridge low and rounded with divergent ventral ridges (1).
- (52) Quadrate anterior ventral condyle modification: no upward deflection of anterior edge of condyle (0); or distinct deflection present (1). A relatively narrow bump in the otherwise

horizontal trace of the anterior articular edge is also supertended by a sulcus on the anteroventral face of the bone.

- (53) Quadrate ventral condyle: condyle saddle-shaped, concave in anteroposterior view (0); or gently domed, convex in any view (1).
- (54) Basioccipital tubera size: short (0); or long (1). Long tubera are typically parallel-sided in posterior profile and protrude ventrolaterally at exactly 45° from horizontal. Short tubera have relatively large bases that taper distally, and emanate more horizontally.

(former character 55) Basioccipital tubera shape: tubera not anteroposteriorly elongate (0); or anteroposteriorly elongate with rugose ventrolateral surfaces (1).

- (55) Basioccipital canal: absent (0); or present as a pair separated by a median septum (1); or present as a single bilobate canal (2).
- (56) Dentary tooth number: 20–24 (0); 17–19 (1); 15–16 (2); 14 (3); 13 (4); 12 (5). It is easy to assume this character is correlated with the number of maxillary teeth, except that is not the case in *Ectenosaurus clidastoides*, which has 16 or 17 maxillary teeth and only 13 dentary teeth.
- (57) Dentary anterior projection: projection of bone anterior to first tooth present (0); or absent (1).
- (58) Dentary anterior projection length: short (0); or long (1). In state 1, the projection of bone anterior to the first tooth is at least the length of a complete tooth space. *Russellosaurus* was recoded as not applicable.
- (59) Dentary medial parapet: parapet positioned at base of tooth roots (0); or elevated and strap-like, enclosing about half of height of tooth attachment in shallow channel (1); or strap equal in height to lateral wall of bone (2); or medial parapet taller than lateral wall of bone (3). States 1,2, and 3 are possible sequential stages of modification from a classically pleurodont dentition to the typical mosasaur 'sub-thecodont' dentition. *Tethysaurus* was recoded as ?.
- (60) Splenial-angular articulation shape: splenial articulation in posterior view almost circular(0); or laterally compressed (1).
- (61) Splenial-angular articular surface: essentially smooth concavoconvex surfaces (0); or distinct horizontal tongues and grooves present (1).

- (62) Coronoid shape: coronoid with slight dorsal curvature, posterior wing not widely fanshaped (0); or very concave above, posterior wing greatly expanded (1). *Ectenosaurus* was recoded as having state 0.
- (63) Coronoid posteromedial process: small but present (0); or absent (1). *Russellosaurus* was recoded as having state 0, *Ectenosaurus* was recoded as having state 1.
- (64) Coronoid medial wing: does not reach angular (0); or contacts angular (1). *Aigialosaurus* was recoded as ?.
- (65) Coronoid posterior wing: without medial crescentic pit (0); or with distinct excavation(1). In state 1, there is a posteriorly open, 'C'-shaped excavation in the medial side of the posterior wing of this element. *Dallasaurus* was recoded as ?.
- (66) Surangular coronoid buttress: low, thick, about parallel to lower edge of mandible (0); or high, thin, rapidly rising anteriorly (1). A rounded dorsal edge of the surangular remains almost parallel to the ventral edge as it approaches the posterior end of the coronoid, meeting the latter element near its posteroventral edge in state 0. In state 1, the dorsal edge rises and thins anteriorly until meeting the posterior edge of the coronoid near its apex, producing a triangular posterior mandible in lateral aspect.
- (67) Surangular-articular suture position: behind the condyle in lateral view (0); or at middle of glenoid on lateral edge (1); anterior to condyle (2). In state 1, there is usually an interdigitation in the dorsal part of the suture. *Aigialosaurus dalmaticus* was rescored as 2.
- (68) Surangular-articular lateral suture trace: suture descends and angles or curves anteriorly (0); or is virtually straight throughout its length (1). In state 1, the suture trails from the glenoid posteriorly about halfway along the dorsolateral margin of the retroarticular process, then abruptly turns anteriorly off the edge and strikes in a straight line for the posterior end of the angular.
- (69) Articular retroarticular process inflection: moderate inflection, less than 60° (0); or extreme inflection, almost 90° (1).
- (70) Articular retroarticular process innervation foramina: no large foramina on lateral face of retroarticular process (0); or one to three large foramina present (1).
- (71) Tooth surface I: teeth finely striate medially (0); or not medially striate (1). In "Russellosaurinae," medial tooth striations are very fine and groups of tightly spaced striae

are usually set apart by facets, leading to a fasciculate appearance. *Angolasaurus* was recoded as ?, *Aigialosaurus* was recoded as having state 1.

- (72) Tooth surface II: teeth not coarsely textured (0); or very coarsely ornamented with bumps and ridges (1). In both species of *Globidens* and in *Prognathodon overtoni*, the coarse surface texture is extreme, consisting of thick pustules, and vermiform or anastomosing ridges. Teeth in *P. rapax* are smooth over the majority of their surface, but usually a few widely scattered, large, very long, sharp-crested vermiform ridges are present.
- (73) Tooth facets: absent (0); or present (1). *Halisaurus* teeth are smoothly rounded except for the inconspicuous carinae. *Clidastes* is described in numerous places as having smooth unfaceted teeth, but many immature individuals and some larger specimens have teeth with three distinct facets on the medial faces. Adult *Tylosaurus* proriger has indistinct facets. *Mosasaurus* has taken this characteristic to the extreme. *Russellosaurus*, *Tethysaurus*, *Angolasaurus*, *Ectenosaurus*, *Platecarpus* (*P. planifrons* and *P. tympaniticus*), and *Plioplatecarpus* have been recoded as having state 0.
- (74) Tooth fluting: absent (0); or present (1). In *Ectenosaurus*, and some *Platecarpus* planifrons, several broadly rounded vertical ridges alternate with shallow, round-bottomed grooves completely around the teeth. *Tethysaurus* was recoded as having both states 0 and 1, because grooves can be observed in larger specimens. *Angolasaurus* was recoded as having state 1.
- (75) Tooth inflation: crowns of posterior marginal teeth conical, tapering throughout (0); or crowns of posterior marginal teeth swollen near the tip or above the base (1). The rear teeth of *Globidens* and *Prognathodon overtoni* are distinctly fatter than other mosasauroid teeth, but those of *P. rapax* are also swollen immediately distal to the base.
- (76) Tooth carinae I: absent (0); or present but extremely weak (1); or strong and elevated (2). *Halisaurus* exhibits the minimal expression of this character (state 1) in that its marginal teeth are almost perfectly round in cross-section; the carinae are extremely thin and barely stand above the surface of the teeth.
- (77) Tooth carinae serration: absent (0); or present (1).
- (78) Atlas neural arch: notch in anterior border (0); or no notch in anterior border (1). *Dallasaurus* was recoded as ?.

(former character 79) Tooth replacement mode: replacement teeth form in shallow excavations (0); or in subdental crypts (1). All mosasauroids that can be evaluated have an 'anguimorph' type of tooth replacement, which is to have interdental positioning of

replacement teeth and resorption pits associated with each. Angolasaurus was recoded as ?.

- (79) Atlas synapophysis: extremely reduced (0); or large and elongate (1). In state 1, a robust synapophysis extends well posteroventral to the medial articular surface for the atlas centrum, and it may be pedunculate (*Clidastes*) or with a ventral 'skirt' that gives it a triangular shape (*Mosasaurus*). A very small triangular synapophysis barely, if at all, extends posterior to the medial articular edge in state 0.
- (80) Zygosphenes and zygantra: absent (0); or present (1). This character assesses only the presence of zygosphenes and zygantra, not their relative development. Step: Nonfunctional and functional are considered as present. Although the outgroup we selected (*Varanus*) does not possess zygosphene and zygantra we decided to code the primitive condition as present because these structures can be observed in primitive varanoids like *Saniwa*.
- (81) Zygosphene and zygantra number: present on many vertebrae (0); or present on only a few (1). As per the argument discussed for character 84 we coded the outgroup as having state 0.
- (82) Hypapophyses: last hypapophysis occurs on or anterior to seventh vertebra (0); or on eight or posteriorly (1).
- (83) Synapophysis height: facets for rib articulations tall and narrow on posterior cervicals and anterior trunk vertebrae (0); or facets ovoid, shorter than the centrum height on those vertebrae (1).
- (84) Synapophysis length: synapophyses of middle trunk vertebrae not laterally elongate (0); or distinctly laterally elongate (1). The lateral extension of the synapophyses from the middle of the trunk is as much as 70–80% of the length of the same vertebra is represented by state 1.
- (85) Synapophysis ventral extension: synapophyses extend barely or not at all below ventral margin of cervical centra (0); or some extend far below ventral margin of centrum (1). In state 1, two or more anterior cervical vertebrae have rib articulations that dip well below the centrum, causing a very deeply concave ventral margin in anterior profile.
- (86) Vertebral condyle inclination: condyles of trunk vertebrae inclined (0); or condyles vertical (1).
- (87) Vertebral condyle shape I: condyles of anterior-most trunk vertebrae extremely dorsoventrally depressed (0); or essentially equidimensional (1). In state 0, posterior height:

width ratios of anterior trunk vertebrae are close to 2:1. In state 1, they are between to 4:3 and 1:1.

- (88) Vertebral condyle shape II: condyles of posterior trunk vertebrae not higher than wide (0); or slightly compressed (1). In state 1, the posterior condylar aspect reveals outlines that appear to be higher than wide and even perhaps slightly subrectangular, due to the slight emargination for the dorsal nerve cord.
- (89) Vertebral synapophysis dorsal ridge: sharp ridge absent on posterior trunk synapophyses (0); or with a sharp-edged and anteriorly precipitous ridge connecting distal synapophysis with prezygapophysis (1). In state 0, the ridge in question, if present, may be incomplete or it may be rounded across the crest with the anterior and posterior sides about equally sloping.
- (90) Vertebral length proportions: cervical vertebrae distinctly shorter than longest vertebrae(0); or almost equal or are the longest (1).
- (91) Presacral vertebrae number I: relatively few, 32 or less (0); or numerous, 39 or more (1). Here, presacral vertebrae are considered to be all those anterior to the first bearing an elongate transverse process.
- (92) Presacral vertebrae number II: if few, then 28 or 29 (0); 30 or 31 (1).
- (93) Sacral vertebrae number: two (0); or less than two (1). Numerous well preserved specimens of derived mosasauroids have failed to show any direct contact of the pelvic girdle with vertebrae in the sacral area. Certainly, no transverse processes bear any type of concave facet for the ilium, and so it is generally assumed that a ligamentous contact was established with only one transverse process. Depending on one's perspective, it could be said that derived mosasauroids have either no or one sacral vertebra.
- (94) Caudal dorsal expansion: neural spines of tail all uniformly shortened posteriorly (0); or several spines dorsally elongated behind middle of tail (1). *Dallasaurus* was recoded as ?.
- (95) Haemal arch length: haemal arches about equal in length to neural arch of same vertebra (0); or length about 1.5 times greater than neural arch length (1). This ratio may be as great as 1.2:1 in state 0. Comparison is most accurate in the middle of the tail and is consistent even on those vertebrae in which the neural spines are also elongated.
- (96) Haemal arch articulation: arches articulating (0); or arches fused to centra (1).

- (97) Tail curvature: no structural downturn of tail (0); or tail with curved posterior portion (1).
- (98) Body proportions: head and trunk shorter than or about equal to tail length (0); or head and trunk longer than tail (1).
- (99) Scapula/coracoid size: both bones about equal (0); or scapula about half the size of coracoid (1). *Dallasaurus* was recoded as ?.
- (100) Scapula width: no anteroposterior widening (0); or distinct fan-shaped widening (1); or extreme widening (2). In state 0, the anterior and posterior edges of the scapula encompass less than one quarter of the arc of a circle, but in state 1, the arc is increased to approximately one third. In state 2, the distal margin encompasses almost a half-circle and the anterior and posterior borders are of almost equal length.
- (101) Scapula dorsal convexity: if scapula widened, dorsal margin very convex (0); or broadly convex (1). In state 0, the anteroposterior dimension is almost the same as the proximodistal dimension. In state 1, the anteroposterior dimension is much larger.
- (102) Scapula posterior emargination: posterior border of bone gently concave (0); or deeply concave (1). In state 1, there is a deeply arcuate emargination on the posterior scapular border, just dorsal to the glenoid. It is immediately bounded dorsally by a corner, which begins a straight-edged segment that continues to the dorsal margin.
- (103) Scapula-coracoid suture: unfused scapula-coracoid contact has interdigitate suture anteriorly (0); or apposing surfaces without interdigitation (1). *Dallasaurus* was recoded as ?.
- (104) Coracoid neck elongation: neck rapidly tapering from medial corners to a relatively broad base (0); or neck gradually tapering to a relatively narrow base (1); coracoid neck absent (2). In state 1, this character describes an outline of the bone, which is nearly symmetrical and gracefully fan-shaped, with gently concave, nearly equidistant sides.
- (105) Coracoid anterior emargination: present (0); or absent (1).
- (106) Humerus length: humerus distinctly elongate, about three or more times longer than distal width (0); or greatly shortened, about 1.5 to 2 times longer than distal width (1); or length and distal width virtually equal (2); or distal width slightly greater than length (3).
- (107) Humerus postglenoid process: absent or very small (0); or distinctly enlarged (1).

- (108) Humerus glenoid condyle: if present, condyle gently domed and elongate, ovoid in proximal view (0); or condyle saddle-shaped, subtriangular in proximal view and depressed (1); or condyle highly domed or protuberant and short ovoid to almost round in proximal view (2). In some taxa, the condylar surfaces of the limbs were finished in thick cartilage and there was no bony surface of the condyle to be preserved. This condition is scored as not represented. In some taxa, the glenoid condyle extends more proximally than does the postglenoid process (state 2), and it is not ovoid as state 0. *Dallasaurus* was recoded as having state 0.
- (109) Humerus deltopectoral crest: crest undivided (0); or split into two separate insertional areas (1). In state 1, the deltoid crest occupies an anterolateral or anterior position confluent with the glenoid condyle, while the pectoral crest occupies a medial or anteromedial area that may or may not be confluent with the glenoid condyle. The deltoid crest is often quite short, broad, and indistinct, being easily erased by degradational taphonomic processes.
- (110) Humerus pectoral crest: located anteriorly (0); or medially (1). In state 1, the pectoral crest is located near the middle of the flexor (or medial) side on the proximal end of the bone.
- (111) Humerus ectepicondylar groove: groove or foramen present on distolateral edge (0); or absent (1).
- (112) Humerus ectepicondyle: absent (0); or present as a prominence (1). A radial tuberosity is reduced in size in *Prognathodon*, but very elongated in *Plesiotylosaurus*. *Tethysaurus* was recoded as having state 0.
- (113) Humerus entepicondyle: absent (0); or present as a prominence (1). The ulnar tuberosity protrudes posteriorly and medially from the posterodistal corner of the bone immediately proximal to the ulnar facet, causing a substantial dilation of the posterodistal corner of the humerus. *Tethysaurus* was recoded as having state 0.
- (114) Radius shape: radius not expanded anterodistally (0); or slightly expanded (1); or broadly expanded (2).
- (115) Ulna contact with centrale: broad ulnare prevents contact (0); or ulna contacts centrale(1). In state 1, the ulnare is omitted from the border of the antebrachial foramen. There is usually a well-developed faceted articulation between the ulna and the centrale (or intermedium, as used by Russell, 1967).
- (116) Radiale size: large and broad (0); or small to absent (1).

- (117) Carpal reduction: carpals number six or more (0); or five or less (1).
- (118) Pisiform: present (0); or absent (1).
- (119) Metacarpal I expansion: spindle-shaped, elongate (0); or broadly expanded (1). The broad expansion is also associated with an anteroproximal overhanging crest in every case observed.
- (120) Phalanx shape: phalanges elongate, spindle-shaped (0); or blocky, hourglass-shaped (1). *Mosasaurus* and *Plotosaurus* have phalanges that are slightly compressed and anteroposteriorly expanded on both ends. *Dallasaurus* was recoded as ?.
- (121) Ilium crest: crest blade-like, articulates with sacral ribs (0); or elongate, cylindrical, does not articulate with sacral ribs (1).
- (122) Ilium acetabular area: arcuate ridge supertending acetabulum (0); or acetabulum set into broad, short 'V'-shaped notch (1). The primitive ilium has the acetabulum impressed on the lateral wall of the bone, with a long narrow crest anterodorsally as the only surrounding topographic feature. In state 1, the acetabular area is set into a short, broadly 'V'-shaped depression that tapers dorsally. The lateral walls of the ilium are therefore distinctly higher than the rim of the acetabulum.
- (123) Pubic tubercle condition: tubercle an elongate protuberance located closer to the midlength of the shaft (0); or a thin semicircular crest-like blade located close to the acetabulum (1).
- (124) Ischiadic tubercle size: elongate (0); or short (1). In state 0, the tubercle is as long as the shaft of the ischium is wide, but it is only a short narrow spur in state 1.
- (125) Astragalus: notched emargination for the crural foramen, without pedunculate fibular articulation (0); or without notch, pedunculate fibular articulation present (1). For state 0, the tibia and fibula are of equal length about the crural foramen and the astragalus contacts both to about the same degree. The form of the latter element is symmetrical and subcircular with a sharp proximal notch. In state 1, the outline of the element is basically reniform and the tibial articulation is on the same line as the crural emargination. The fibula is also shortened and its contact with the astragalus is narrow.
- (126) Appendicular epiphyses: formed from ossified cartilage (0); or from thick unossified cartilage (1); or epiphyses missing or extremely thin (2). Ends of the limb bones show

distinct vascularization and rugose surfaces indicating an apparently thick non-vascularized, unossified cartilage cap. Extremely smooth articular surfaces suggest the epiphyses were excessively thin or perhaps even lost.

- (127) Hyperphalangy: absent (0); or present (1). Hyperphalangy is defined as presence of one or more extra phalanges as compared to the primitive amniote formula of 2-3-4-5-3.
- (128) Posterior thoracic vertebra: not markedly longer than anterior thoracic vertebrae (0); or are markedly longer (1).
- (129) Ectopterygoid process of pterygoid: distal portion of process not offset anterolaterally and/or lacking longitudinal grooves and ridges (0); distal portion of process is offset anterolaterally and bears longitudinal grooves and ridges (1).
- (130) Quadrate mid-shaft lateral deflection: absent (0); present (1). In state 1, the quadrate shaft is bent laterally such that the suprastapedial process is deflected dorsolaterally relative to the main shaft of the quadrate.

NB: the wording of this character has been modified from Konishi and Caldwell (2011). The original character was phrased as "Quadrate mid-shaft medial bending," referring to the bend itself projecting medially, resulting in the ventromedial/dorsolateral deflection of the quadrate. The wording was changed to avoid confusion, as the original phrasing gave the impression of the dorsal quadrate shaft and suprastapedial process being deflected medially, when in reality they are deflected laterally [e.g., see amended diagnosis of quadrate in Konishi (2008); see also specimens GSATC 221 (*S. russelli* holotype) and ALMNH PV 995.4.1 (*Selmasaurus* quadrate, cf. *S. russelli*)].

S5–7. SUPPLEMENTARY FIGURES

FIGURE S5. Consensus trees produced via unweighted maximum parsimony analysis of the dataset utilizing multistate character coding (Mu-UMP). (A) Strict consensus tree of 26 most parsimonious trees (MPTs) of 464 steps each; (B) 50% majority rule consensus tree of these 26 MPTs, including percentage of MPTs in which each clade was recovered. Each colour represents a mosasaur subfamily: **purple** = Mosasaurinae; **green** = Plioplatecarpinae; **blue** = Halisaurinae; **light pink** = Tylosaurinae; **dark pink** = Tethysaurinae; **yellow** = Yaguarasaurinae; **light grey** = non-mosasaurid Mosasauria; **dark grey** = outgroup.

FIGURE S6. Consensus trees produced via unweighted maximum parsimony analysis of the dataset utilizing contingent character coding (Co-UMP). (A) Strict consensus tree of 112 most parsimonious trees (MPTs) of 468 steps each; (B) 50% majority rule consensus tree of these 112 MPTs, including percentage of MPTs (if >50%) in which each clade was recovered. Colouration of boxes as in Fig. S5.

FIGURE S7. Trees produced via implied weighting maximum parsimony analysis of the dataset utilizing contingent character coding (Co-IWMP). (A) Strict consensus tree of the two most parsimonious trees (MPTs) (472 steps) produced when k = 3.0; (B) single MPT (468 steps) produced when k = 7.0; (C) strict consensus tree of the two MPTs (468 steps) produced when k = 11.0. Colouration of boxes as in Fig. S5.

S8. TOPOLOGY (EXTENDED)

As mentioned in the main text, all of the phylogenies recovered similar general topologies, with the major differences among them resulting from variation in resolution. Both of the implied weighting analyses produced the fewest and the best resolved MPTs, as expected due to their down-weighting of homoplastic characters. In contrast, the strict consensus trees in both the Mu-UMP (Fig. S5A) and Co-UMP (Fig. S6A) analyses exhibited extensive polytomies basally within the Mosasauridae. In the Mu-UMP strict consensus tree, this polytomy extended even more broadly into the Mosasauria (Dolichosauridae + Aigialosauridae + Mosasauridae), such that there was no clear distinction between these three constituent groups. In this sense, this analysis supports the findings of Simões *et al.* (2017b), in which the Mu-UMP strict consensus trees both produced the least resolved topology of any of the analyses. The strict consensus trees both moduced similar degrees of resolution at more internal nodes; for example, the Tylosaurinae, Yaguarasaurinae, Tethysaurinae, and Halisaurinae were fully resolved in both trees, whereas the Mosasaurinae and Plioplatecarpinae had much lower internal resolution.

Despite the aforementioned variation in resolution among the analyses, certain clades were recovered under all analytical conditions. The Tylosaurinae were consistently recovered as a clade in all of the analyses (Figs 7, S5–7), with the topology ((*Tylosaurus nepaeolicus* (*T. bernardi*, *T. proriger*))(*Taniwhasaurus oweni*, *Ta. antarcticus*)). The Tylosaurinae were also recovered as the sister group to the Plioplatecarpinae in all phylogenies, except for the unweighted strict consensus trees (Figs S5A, S6A), where lack of resolution collapsed this relationship.

The Mu-UMP and Co-UMP analyses both recovered a monophyletic Russellosaurina [*sensu* Polcyn & Bell (2005): Tylosaurinae + Plioplatecarpinae + the common ancestor of *Tethysaurus/Russellosaurus/Yaguarasaurus* and all of its descendants] in their respective majority rule consensus trees (Figs S5B, S6B), as did the Mu-UMP strict consensus tree (Fig. S5A) and the Mu-IWMP analyses (Fig. 7). The Co-UMP strict consensus tree (Fig. S6A) failed to recover this topology due to a basal polytomy, whereas the Co-IWMP analyses (Fig. S7) recovered the Yaguarasaurinae as sister to a clade containing the Halisaurinae and Mosasaurinae, and recovered the Tethysaurinae as the sister to all other mosasaurs and *Komensaurus carrolli* Caldwell & Palci, 2007. This recovery of a monophyletic Russellosaurina is consistent with the findings of Simões *et al.* (2017b), who recovered this clade in all of their parsimony-based

analyses.

The Yaguarasaurinae and Tethysaurinae were consistently recovered with the respective topologies (*Yaguarasaurus* (*Russellosaurus*, *Romeosaurus*)) and (*Tethysaurus*, *Pannoniasaurus*) (Figs 7, S5–7). These clades were in turn recovered as sister groups in the Mu-UMP majority rule consensus tree (Fig. S5B) and as successive outgroups to (Tylosaurinae + Plioplatecarpinae) in the Mu-IWMP trees (Fig. 7).

The Halisaurinae were also recovered as consistently monophyletic, though the placement of this clade varied (Figs 7, S5–7). In the multistate analyses (Figs 7, S5), the Halisaurinae formed the sister group to the Russellosaurina. In contrast, all contingent analyses recovered the Halisaurinae as sister to the monophyletic Mosasaurinae (Figs S6, S7). This varied placement of the Halisaurinae is a common occurrence in mosasaur phylogenies. For example, in the phylogenetic analyses of Simões *et al.* (2017b), the Mu-IWMP analysis recovered the Halisaurinae as sister to the Russellosaurina and the Co-UMP analysis recovered the Halisaurinae as sister to the Mosasaurinae, similar to the results reported herein. Several other studies have also reported contrasting placements of the Halisaurinae as associated with either the Russellosaurina (e.g., Bell & Polcyn 2005; LeBlanc *et al.* 2012; Grigoriev 2013; LeBlanc *et al.* 2019) or Mosasaurinae (e.g., Palci *et al.* 2013; Jiménez-Huidobro & Caldwell 2016).

In contrast to these more universal clades, other taxa were recovered less consistently. Though the Mosasaurinae were consistently recovered as monophyletic, the internal topology of this clade was quite variable, with particularly low internal resolution in the Co-UMP strict consensus tree (Fig. S6A). This internal topology was also the only major aspect of the trees to vary with different *k*-values in the implied weighting analyses (Figs 7, S7). The placement of *Prognathodon* spp. was particularly inconsistent, reflecting the likely non-monophyletic nature of this genus (LeBlanc *et al.* 2012; Palci *et al.* 2013; Simões *et al.* 2017b). The Globidensini – containing *Globidens, Plesiotylosaurus*, and *Prognathodon* – were universally recovered as paraphyletic, supporting the findings of LeBlanc *et al.* (2012). These authors also recovered a monophyletic Mosasaurini, consisting of (*Eremiasaurus* (*Mosasaurus, Plotosaurus*)). This clade was recovered in most of the analyses herein, except the IWMP analyses with a *k*-value of 3.0 (Figs 7A, S7A). When recovered, this clade exhibited the same topology as indicated by LeBlanc *et al.* (2012), with *Eremiasaurus* as the most basal member.

REFERENCES

Bell, G. L. & Polcyn, M. J. 2005. *Dallasaurus turneri*, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). *Netherlands Journal of Geosciences*, **84**(3), 177–194. doi:10.1017/S0016774600020965

Caldwell, M. W. 2007. Ontogeny, anatomy and attachment of the dentition in mosasaurs (Mosasauridae: Squamata). *Zoological Journal of the Linnean Society*, **149**, 687–700.

Caldwell, M. W. & Palci, A. 2007. A new basal mosasauroid from the Cenomanian (U. Cretaceous) of Slovenia with a review of mosasauroid phylogeny and evolution. *Journal of Vertebrate Paleontology*, **27**(4), 863–880. doi:10.1671/0272-4634(2007)27[863:ANBMFT]2.0.CO;2

Grigoriev, D. V. 2013. Redescription of *Prognathodon lutugini* (Squamata, Mosasauridae). *Proceedings of the Zoological Institute RAS*, **317**(3), 246–261.

Jiménez-Huidobro, P. & Caldwell, M. W. 2016. Reassessment and reassignment of the early Maastrichtian mosasaur *Hainosaurus bernardi* Dollo, 1885, to Tylosaurus Marsh, 1872. *Journal of Vertebrate Paleontology*, **36**(3), e1096275. doi:10.1080/02724634.2016.1096275

Konishi, T. 2008. A new specimen of *Selmasaurus* sp., cf. *S. russelli* (Mosasauridae: Plioplatecarpini) from Greene County, western Alabama, USA. Pp. 95–105. *Proceedings of the Second Mosasaur Meeting*. Hays, Kansas.

Konishi, T. & Caldwell, M. W. 2011. Two new plioplatecarpine (Squamata, Mosasauridae) genera from the Upper Cretaceous of North America, and a global phylogenetic analysis of plioplatecarpines. *Journal of Vertebrate Paleontology*, **31**(4), 754–783. doi:10.1080/02724634.2011.579023

LeBlanc, A. R. H., Caldwell, M. W. & Bardet, N. 2012. A new mosasaurine from the Maastrichtian (Upper Cretaceous) phosphates of Morocco and its implications for mosasaurine systematics. *Journal of Vertebrate Paleontology*, **32**(1), 82–104. doi:10.1080/02724634.2012.624145

LeBlanc, A. R. H., Mohr, S. R. & Caldwell, M. W. 2019. Insights into the anatomy and functional morphology of durophagous mosasaurines (Squamata: Mosasauridae) from a new species of *Globidens* from Morocco. *Zoological Journal of the Linnean Society*, **10**, 1–27. doi:10.1093/zoolinnean/zlz008/540165

Palci, A., Caldwell, M. W. & Papazzoni, C. A. 2013. A new genus and subfamily of mosasaurs from the Upper Cretaceous of northern Italy. *Journal of Vertebrate Paleontology*, **33**(3), 599–612. doi:10.1080/02724634.2013.731024

Polcyn, M. J. & Bell, G. L. 2005. *Russellosaurus coheni* n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina. *Netherlands Journal of Geosciences*, **84**(3), 321–333. doi:10.1017/S0016774600021107

Simões, T. R., Caldwell, M. W., Palci, A. & Nydam, R. L. 2017a. Giant taxon-character matrices: Quality of character constructions remains critical regardless of size. *Cladistics*, **33**, 198–219. doi:10.1111/cla.12163

Simões, T. R., Vernygora, O., Paparella, I., Jimenez-Huidobro, P. & Caldwell, M. W. 2017b. Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group. *PLoS ONE*, **12**(5), e0176773. doi:10.1371/journal.pone.0176773