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Abstract

Although they are intended to support and encourage reuse, object-oriented application
frameworks are difficult to use. The architecture and implementation details of frameworks,
because of their size and complexity, are rarely fully understood. Instead, faced with a
framework problem, developers must somehow learn just enough about the parts of the
framework required for their task and ask for assistance or muddle through using a trial-
and-error approach. In many cases, they misuse the framework by not learning what the
framework designer had in mind as the proper solution to their problem.

This thesis investigates both the feasibility and the effectiveness of tools support for the
problem: The idea is to formalize the patterns to which the code structure of the application
should conform, and thereafter detect violations of such patterns with an automated checker
program. To capture the know-how knowledge about frameworks use, we introduce the
notion of framework constraints: framework constraints are rules that frameworks impose
on the code of framework-based applications.

The tool consists of a specification language and an associated checker. The specification
language, FCL (Framework Constraints Language), is defined to formally specify framework
constraints. The semantics of FCL is based on a first-order logic extended with set and
sequence operations. Essentially, framework constraints can be regarded as framework-
specific typing rules conveyed by FCL specifications and thus can be enforced by techniques
analogous to those of conventional type checking.

Several case studies have been conducted to evaluate the approach. These include a part
of the MFC (Microsoft Foundation Classes) framework, the law of Demeter, Scott Meyers’
C++ guidelines, and the Observer design pattern. Lessons in terms of both the strengths
and the limitations of FCL are reported.
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Chapter 1

Introduction

1.1 Statement of Research Problem

An object-oriented framework is a reusable design for all or part of a system that is rep-
resented by a set of abstract classes and the way their instances interact [JF88]. From
the perspective of application programmers, it is a skeleton application that can be cus-
tomized to produce specific applications in a certain domain. Framework builders provide
mechanisms, the variation points, to enable this [Deu89)].

While a deep understanding of general framework-based development [Joh97, BMMB9S|
remains a research problem, many frameworks are being used for production development.
Having chosen a framework, how does the development team address the problem of correct
usage of the chosen framework? The essence of software determines that solutions are likely
to be multi-faceted and complementary to each other.

Experience with using industrial strength frameworks has shown that in order for frame-
works users to understand and properly use a framework, precise, concise, and complete
documentation is required [FHLS97, Fro02]. However, textual and diagrammatic docu-
ments are informal, and in general, we do not know yet how to test whether a programmer
has understood a document.

Other conventional approaches such as framework design review, manual code inspection,
and testing can also be helpful. But they are not without problems. Frameworks are
supposed to capture commonality in a way that makes reuse easier. But applying most
current frameworks requires a nontrivial body of knowledge about the frameworks on the
part of users. Lack of understanding makes debugging difficult because it can be hard
to follow a thread of execution that is mostly buried in the framework code. Testing is
similarly difficult since it often requires a fundamental understanding of the architecture of
the framework.

The size and complexity of frameworks and their notorious lack of design and intended-

usage documentation make framework-based development a learning-intensive and error-



prone process [HHY03]. Commonly framework users misunderstand the relationships be-
tween their application and the framework and are unaware of how the framework designer

intends the framework to be used, resulting in overly complex solutions or subtle bugs.

This work was inspired by our initial observation that many errors of using frame-
works are due to wrong structures or misunderstanding of structures. This observation has
been backed up by two studies on user groups of MFC (Microsoft Foundation Classes) and
Java/Swing: In the Java/Swing case, we collected and analyzed about 200 news group ques-
tions related to the JTree component and confirmed that structural errors indeed represent
an important class of errors [HHY03]; our MFC study supports the observation in a more
rigorous manner because the evidences are documented by an expert user who has been
using MFC and answering news group questions for several years [New]. We analyzed only
a subset of his essays and found many of them are structural errors (see Chapter 6). In
addition, our experience of interacting with active users of other frameworks also supports

this observation [ML].

For the framework user with shallow knowledge, something more akin to type-checking
is desirable. That is, framework developer takes on the burden of describing/specifying how
to properly use the framework so that compliance by the framework user can be checked
mechanically. Although correct type matching is no guarantee that a function is used
properly, it does catch many common mistakes. We would like something similar to apply

to framework use.

We use the term framework constraints to denote the knowledge that a user needs to
know in order to use a framework properly. The idea is to formalize the framework con-
straints on hot spots and check whether a framework instantiation satisfies these constraints.
Our goals are twofold: to create specification languages and tools so that framework builders
can specify the intended use of their frameworks and framework users can then use the tools

to check their applications.

In the long run, we want to look into the feasibility of two technologies, namely, static
analysis and model checking, to the problem [HHS02]. Along that line, framework con-
straints can be categorized into structural constraints and behavioral constraints. Structural
constraints can be evaluated by parsing and analyzing source code while behavioral con-

straints could be dealt with by model checking.

This thesis focuses on the structural aspect of framework constraints. A specification
language, FCL (Framework Constraint Language), is designed to express the constraints
on the structure of source code. The feasibility and effectiveness of FCL are demonstrated

through several case studies. We conclude that it is indeed useful to framework users.



1.2 FCL

FCL is a strongly typed first-order logic extended with set and sequence operations. Its term
language consists of a special set of total functions, reflecting the entities and relationships
of programming languages.

FCL’s formalism lends to its automation. Specifiers specify a set of constraints on
program structure, and conformance of a specific program to the constraints is then auto-
matically determined by an FCL checker.

Since FCL is typed, run-time errors can be ruled out, but it is up to the specifiers to
ensure the consistency of FCL specifications. With FCL, it is the specifiers who carry out
the reasoning process and determine to what constraints the code structure should conform.
FCL specifications are only the “conclusion” of that process.

The need for FCL stems from the absence of constraint languages rich enough to express
the kinds of structural constraints we explored and the possibility to do inference with FCL
specifications in formal systems such as the Mizar environment [Org] in the future.

Several case studies have been done to gain knowledge on how FCL can be better designed

and used, and whether it can be helpful in practice:
e The Observer Pattern
e MFC(C’s dialog architecture
e Swing’s JTree component
In addition to frameworks, FCL has also been used to encode general design rules:
e Law of Demeter
e Scott Meyers’ C++ guidelines

False positives and false negatives are always a big concern with any error detection tool.
When specifying constraints, one often inclines to add as many constraints as possible, hop-
ing to pick up more errors. But care must be taken not to add too many; otherwise spurious
errors might be generated. Ideally, one would expect to have just enough constraints, no
more and no less, so that FCL can help pick up all errors but the spurious ones. We do not
have any hard principles on how this can be achieved yet, but our experience suggests that

the following guidelines tend to be useful:

e In general, the more specific the context is, the more effective FCL tends to be.
Many examples show that the components which FCL is used to constrain are highly
specialized; they often assume a great deal of context. FCL can be more effective

under such circumstances.



o Specifiers should know the design well and avoid immature generalization. However,
this often implies that the specifiers should be the designers or somebody who works

closely with them.

e Specifying against specific symptoms sometimes can be economical.

The errors FCL detects include both errors of omission and errors of commission. Many
errors are design errors caused by misunderstanding and/or by being unaware of properties
and interaction at system interfaces. The errors are both system- and domain-specific. They
are different from generic implementation errors such as dereferencing null pointers or array
bound overflow; independent of the domains of the inspected programs, such implementation
€rTors can OCcur in any programs.

Our experience so far shows that FCL specifications tend to be short. This is encouraging
since practitioners would be more likely to pick up and use it.

The current version of FCL is targeted at C++ for several reasons. C++ has many fea-
tures that can potentially complicate program analyses: separate compilation, inheritance,
overloading, templates, exception handling, and so on. Thus choosing C++ as the target
is more likely to expose potential problems with the approach. A real C++ framework,
MFC (Microsoft Foundation Classes), is publicly available [SW96]; furthermore, extensive
user experience with MFC is also available in the forms of both news group discussion and
essays by expert users [New]. We are relatively familiar with MFC. But the idea should be
ready to extend to other strongly-typed programming languages such as Java.

The implementation of FCL consists about 20,000 lines of C++ code, and to date about
1,200 lines of FCL specifications have been written.

The FCL approach is different from program verification; there, the specifications are
mainly concerned with program behavior. Moreover, conventional methods of specification
and verification emphasize abstractions; typically, abstraction functions are used to tie a
piece of specification with a specific implementation [Hoa72]. The idea is that by focusing
on the abstract specification and ensuring its correctness, one can not only reuse it in
many different implementations, but also use it as a surrogate when reasoning about other
implementations that use it.

Verification in theory can guarantee the correctness of a program with respect to a
specification. But automatic theorem proving is intractable, which burdens the users to
provide both lemmas and proof strategies. Typically, the process is labor-intensive and
tedious. In contrast, FCL is fully automated and FCL specifications tend to be short and
thus easier to write. Its drawback is that even if a program passes all the constraints in an
FCL specification, FCL cannot guarantee its full correctness. FCL is partial in its expressive
power, modeling ability (only on syntactic structure), degree of analysis, and degree of

compositionality. Thus FCL belongs to the family of “lightweight” formal methods [JW96].
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Although FCL has no constructs for specifying abstractions, its focus on syntactic struc-

ture seems to be desirable in practice, to quote the authors of the Larch book [GH93]:

Specifications should not just describe mathematical abstractions, but real inter-
faces supplied by programs. They should be written at the level of abstraction at
which clients program. This usually means sinking to the level of a programming

language.

In a sense, FCL is a technique that complements conventional formal specifications.

The relation between FCL and model checking can be characterized as follows: The pro-
gram being checked would be the model, while the FCL specification would be the properties
that the model is supposed to uphold. The difference lies in the fact that technically, tools
for model checking often assume the responsibility of constructing all the possible models
and check them ezhaustively, whereas in FCL, it is the programmers who provide programs
to the tool one by one.

Technically, FCL is more akin to type-checking. The difference can be best illustrated
by an example: while the empty program would pass all the type checkers, it can hardly
pass any non-trivial FCL specifications.

FCL complements testing. Testing requires executability and execution implies com-
pleteness, in the sense of both the completeness of the application and the coverage of the
test cases. Testing is also intrusive. In contrast, a completed application is not necessary
in order for FCL to work; FCL can check partial implementations. Thus FCL fits well with

incremental development.

1.3 Summary of Contributions

This thesis is motivated by the desire to have tools support for detecting errors in framework-
based development. More specifically, it proposes to extend the technique of type checking
and apply it to framework-based development. A summary of the main result and contri-

butions are as follows:

1. The design and implementation of FCL make the bulk of the work. A model of the
static properties of C++ programs is presented, and FCL is defined based on that

model. A formal semantics is also defined for FCL.

2. The feasibility and the potential usefulness of the approach are then demonstrated
by applying FCL to real frameworks. Specific lessons learned from the experience are
reported. These lessons are important for both the use and future development of

tools like FCL.



To use a framework is to learn its design; many problems originate from a lack of
understanding about its architecture, design pitfalls, and evolution. FCL has been

used to perform the following kinds of tasks:

e Detecting omission of programming obligations;
e Detecting violations of programming constraints implied by a design;
e Detecting violations of programming constraints implied by a “negative design;”

e Enforcing programming disciplines;

Helping with the co-evolution of both the framework and its intended use.

1.4 Outline of the Rest of the Thesis

The rest of this thesis is organized as follows:

e Chapter 2 provides the necessary background for understanding framework-based de-
velopment. It traces the origin of the related concepts such as program families,
frameworks, and software product lines. The state of the art of frameworks is then
surveyed. Finally, we show the current status of the research area, presenting one
recent result in better modularization support for reusing large scale components, the

maxin layers.

e Chapters 3 and 4 describe the design and implementation of FCL. Specifically, chap-
ter 4 presents a model of the static properties of C++ in the object-oriented notation;
chapter 3 describes how a first-order logic, FCL, is defined and implemented on top
of that model. Appendix A presents a formal treatment of the static and dynamic

semantics of FCL.

e Chapters 5, 6, and 7 present three case studies on the application of FCL. Chapter 5
is purported to demonstrate the main features of FCL. It was done to explore the
design space of FCL. One lesson reported in the chapter is that FCL depends on the
specificity of the contexts: The more specific they are, the more effective FCL can be.
Chapter 6 describes how FCL is applied to part of the MFC framework and analyzes
the kinds of situations where FCL may help. Chapter 7 describes how FCL is applied
to general design principles and programming guidelines with the law of Demeter and

a subset of Meyers’ C++ guidelines as examples.

e Chapter 8 positions FCL in related works. Program analyses, error detection tools,
formal specification languages, and work specifically for frameworks are surveyed and
analyzed. Closely related works such as CCEL and CoffeeStrainer are compared with

FCL.



e Finally, chapter 9 summarizes the main contributions of the thesis and outlines some

future work.






Chapter 2

Background

The essence of software construction is the formulation of complex conceptual constructs
that are abstract in the sense that they remain the same under different representations.
The four inherent properties of this essence are complexity, conformity, changeability, and
invisibility [Bro87].

Software does not grow by a mere duplication of the same elements; instead, a scaling-up
of a software is necessarily an increase in the number of different elements. In most cases,
the elements interact with each other in some nonlinear fashion, and the complexity of the
whole increases much more than linearly. This comprises the complexity of software.

Many technical and managerial problems stem from this complexity including: the dif-
ficulty of enumerating and understanding all the possible states of the program and the
difficulty of communication among team members, the cause of product flaws, cost over-
runs, and schedule delays. This makes an overview challenging and thus impedes conceptual
integrity. The subsequent learning and understanding burden makes personnel turnover a
disaster.

Managing complexity therefore has been a central topic in the pioneering work of our
field [Dij70, Par01b, Dij68, HFC76]. In particular, these works all center on the hierarchical
structures of systems for a number of reasons, among which its linear structure is probably
the most attractive one for its lower complexity and thus better intellectual manageability.

The rest of this chapter traces the common origin of such seemingly different concepts
as frameworks, program families, and software product lines, demonstrating that they are
indeed all derived from early research on programming methodologies whose main concern

is how to construct correct and reliable programs systematically.

2.1 Stepwise Refinement and Program Families

With stepwise refinement [Dij70], one composes programs in minute steps, deciding each

time as little as possible. Each of the steps contains such design decisions as choosing a
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particular data structure or creating a loop statement. As one proceeds with the problem
analysis, so does the further refinement of their program. At any given moment, the pro-
gram can be viewed as being derived from successive levels, with the later levels containing
refinements to entities in the earlier ones. When a program has to be made, the desired
computation has to be composed from actions corresponding to a well-understood repertoire
of instructions.

Since the steps are small, their correctness, with respect to the entities they refine,
should subject to rigorous proofs immediately. This way, one essentially obtains a correct
program by construction. This is the so-called constructive approach to program correctness,
examples of which can be found in, for instance, [Dij70].

One important insight inspired by stepwise refinement is the notion of program families.
During stepwise program composition, the following may happen: (1) often one encounters
situations where more than one refinement exists for an entity of the higher level, and (2)
sometimes, two entities at the same level can be refined independently. Therefore, many
programs rather than the only one for the task at hand can be conceived using these two
kinds of variations. These programs either do the same task in different ways or carry out
similar tasks. Thus it makes sense to create and study a program family and to consider
the programs as members of the family.

Another motivation for program families comes from the evolution of large software
systems. Large software are often changed for two reasons: the software is not satisfactory
in one way or another and thus needs to be changed; and/or the software is suitable for the
task at hand, but people want to adapt it to similar tasks. In either case, the programmer
would have to “change some design decisions.” On the other hand, at any instant of stepwise
refinement, what has been built up is an intermediate program that is a suitable “common
ancestor” for all the possible programs produced by further refinements. In this process, one
defers design decisions. It is the potential similarity between “the decision to be changed”
and “the decision still left open” that inspires the concept of “program families.”

It pays off for one to focus on creating a program family instead of individual programs.
The benefit of regarding programs as family members derived from a common ancestor can

be summarized as follows:

e Members of the family share the correctness proof as far as possible. Regardless what
decisions are made at the current level, the coding of the earlier levels remains valid.
e Members share as far as possible the common coding.

e The regions that can be adapted or modified are well localized.

The paper [Par01d] further develops the concept of program families in the context of
information hiding modules [Par0Olc]. It considers “a set of programs to constitute a family,

whenever it is worthwhile to study programs from the set by first studying the common
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properties of the set and then determining the special properties of the individual family
members.” Although the discussion on program families and the method of developing
them in [Dij70] is general and not necessarily tied to any specific computing mechanism, it
is demonstrated primarily through algorithmic programs at the level of control statements.
Thus the contributions of [Par01d] are to introduce the concept of modules and demonstrate
how module specifications work in designing program families. The conclusion is that these
two methods complement each other.

The paper [Par01la] studies the design of software both extensible and easily contracted.
The most critical step is the design of a software structure called the “use” relation. Having
defined the “use” structure, one can then identify subsets of modules that can be used
independently of their dependents. The resulting practical benefit means that one can not
only reuse a subset in different contexts, but also “failsafe” in case of schedule slippage by
delivering only the subset. The identification of minimal subsets and minimal extensions
can lead to such software.

Operating systems have been a good subject for studying design in general [Dij68] and
program families in particular [HFC76, CT93]. To describe systems structure, an important
concept, variously named as “layered abstraction,” “levels of abstraction,” or ”hierarchical
structure,” was used in these studies. One well-known observation is that, even in strictly
layered domains like operating systems, the notion of “information module” [Par0Olc] does
not necessarily coincide with the notion of “layers of abstraction”: modules may encompass
different parts of several layers [HFCT76].

A note has to be made here about the distinction between the concept of modularization
and language constructs such as macros, procedures, and classes. Parnas’ early work clearly
treated modularization as a design issue, not a language issue. A module was a work
assignment, not a sub-routine or any other language element, although language supports

could make the job easier [D*03].

2.2 Software Product Lines and Object-Oriented Frame-
works

While the idea of program families is old, it has become a popular topic only recently. The
latest incarnation of the notion is software product lines [WL99]. A product-line architecture
(PLA) [BCSO00] is a design for a family of related applications. The motivation for PLAs
is to simplify the design and maintenance of program families and to address the needs of
highly customizable applications in an economical manner.

A framework is an abstract design for a family of related problems within a certain
domain; the abstract design consists of a set of abstract classes, each of which defines the

interface for a major component of the applications [Deu89, JF88]. Certain methods of
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these classes are left unspecified (and hence are “abstract”) because their implementation is
application-specific. Thus a framework is a “code template”: key methods and other details
still need to be supplied, but all common code is present in abstract classes. A framework
instance provides the missing details. The pairing of a concrete class with each abstract

class of the framework provides a complete implementation.

Object-oriented application frameworks are appropriate for reusing software parts and
specializing them in multiple ways for distinct applications, and thus are an enabling technol-
ogy for producing members of program families. This is due to three features supported by
object oriented languages: data abstraction, polymorphism, and inheritance. Data abstrac-
tions define interfaces behind which implementation can change. Polymorphism increases
the likelihood that a given component will be usable in new contexts. Inheritance promotes
the emergence of standard protocols and abstract classes, and allows existing components
to be customized. Therefore, frameworks are a simple and general technique-from an imple-
mentation standpoint, they are just a coordinated use of inheritance. Since data abstraction,
polymorphism, and inheritance are fundamental mechanisms of object-oriented languages,

the applicability of the framework approach is wide.

Through the means of customization, frameworks can be categorized into whitebox and
blackbox [JF88]. For whitebox frameworks, one mainly relies on inheritance and subclass-
ing. Thus one would have to know the implementation details of the frameworks in order
to use them correctly. For blackbox frameworks, one primarily relies on composition of
existing components; to customize the frameworks, one only has to know the interfaces of
the components. One the surface, it seems that blackbox frameworks are easier to use than
whitebox ones; thus they are claimed to be the ideal towards which a framework should

evolve.

Frameworks are a kind of reuse technique [Kru92] different from both components and
design patterns [Joh97]. Components are code reuse, while design patterns represent design
reuse; design reuse reuses concepts while code reuse reuses implementation. Frameworks are
both code and design reuse. One of the problems in reusing design knowledge is the lack of
standard notations to capture and express them [BR89]. In frameworks, no special notations
represent designs: object-oriented programming language are used as both implementation
and design notations. While both design reuse and code reuse are important, in the long
run it is probably the design and understanding of the domains that provide the biggest
payoff [BR89].

Many frameworks have been built for such diverse areas as graphical user interfaces [Deu89,
Inc89, SW96], operating systems [CT93], drawing editors [VL89], distributed software and
manufacturing control [FS97], to mention a few. Frameworks that can be reused across

many domains are foundation frameworks, and those only applicable to a certain domain are
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domain or application frameworks. Most domain frameworks are kept proprietary [Joh97].
Frameworks are harder to build than plain applications. Building a framework requires
experience, and the process is almost always iterative and incremental [JF88]. The reasons

are as follows [Joh97]:

e Domain analysis is needed to understand a domain. Mistakes in domain analysis are
discovered when a system is built, which leads to iteration.

e A framework makes explicit the parts of a design likely to change. In general, the only
way to learn what change is by experience.

e Frameworks are abstractions, and abstractions are expensive to discover and verify.

Framework developers should always start with concrete examples and generalize from
them [Joh97]. For large and complex domains, the number of examples can be huge. This
proliferation of examples also explains why frameworks are both hard to build and difficult
to build on schedule. They should be built by advanced development or research groups,
with close collaboration of application teams.

A common mistake is to start using a framework while its design is still changing. On
the other hand, the only way to find out what is wrong with a framework is to use it [Joh97].

However, a framework should only be released to public use when it is stable enough.

2.3 Scaling Stepwise Refinement

It is well-known that in object-oriented design, objects are encapsulated but rarely self-
sufficient entities. The semantics of an object is often defined by its relationship with
others. Object interdependencies can be expressed as collaborations. A collaboration is a
set of objects and a protocol that determines how the objects interact [BCS00]. The part
of an object that enforces the protocol of a collaboration is called the object’s role in that
collaboration [BCSO00].

Two problems with object-oriented frameworks are identified [BCS00, SB02]. One is
that frameworks “grow” in a “top down” fashion: subclasses are coded in terms of super-
classes; they cannot exist independently. It is desirable, however, for subclasses to exist
independently of superclasses; for instance, if the strategies for graph traversal could exist
independently of the graphs, regardless whether the graphs are directed or not, then given a
graph, it would be possible to compose a traversal collaboration with it, instead of reimple-
menting the traversal for the graph. The other problem has to do with “optional features.”
Given an optional feature, a framework would have to either include it in the code base,
which would be inappropriate for those applications that do not need it, or exclude it. In
the latter case, if the implementation of the feature is nontrivial, then it would be inappro-

priate for those who need the feature since they would have to reimplement it each time it
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is needed. One way to get out of this dilemma is to provide a simple way so that users can
specify that a certain feature is needed; accordingly, code for the feature is composed into
the final program.

Historically, software design and programming languages intimately evolve around the
concept of modularity. The language solution to this problem is a new construct that allows
one to represent collaborations as modules parameterized by their dependees and supports
the composition of such collaborations.

In collaboration based design, however, each collaboration usually involves more than one
program fragment; to refine a collaboration, one typically would have to change more than
one program fragment. Mixin layers extend the notion of mizins and are a programming
technique that allows one to program all the changes in one place.

In object-oriented languages, a superclass can be defined independently of any subclass.
This property, however, is not symmetric; it does not hold for subclasses. Mizin classes
are abstract subclasses. Mixins represent a mechanism for specifying classes that eventually
inherit from a superclass, but the superclass is not specified at the site of the mixin’s
definition. Thus a single mixin can be instantiated with different superclasses, yielding
widely varying classes. Note that this is different from C++’s concept of mixin classes.
In C++, mixin classes are classes that share a common virtual base class, each of which
implements part of the interface of the base class [Str99].

One can implement mixins through C++ template classes:

template<class Super>
class Mixin: public Super {
... // mixin body

}s

Mixin layers can then be implemented with parameterized templates and nested classes
in languages such as Java and C++. In C++, a mixin layer is a mixin class that may
define multiple nested classes. The mixin layer itself is called the outer mizins, while the
nested classes are called the inner mizins. An outer mixin is implemented as a template
class whose type parameter is the layer that it depends on. Some nested classes within an
outer mixin may be newly defined while others refine the corresponding nested classes of

the layer on which the current layer depends.

template<class SuperLayer>

class MixinLayer: public SuperLayer {
class rolel: Superlayer::rolel
// rolel body

class role2: Superlayer::role2

// role2 body

}
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class newClass

// newClass body

}

}s

Collaboration-based designs in general and mixin layers in particular are not universally
applicable but more suitable to mature domains that are well-understood and amenable to
detailed decompositions. The domains should be decomposable into largely independent
refinements. Clearly, this is different from frameworks, which pose no such requirements on
the domains. In fact, some future extensions to frameworks can be completely open at the
time the frameworks are constructed. Therefore, collaboration-based design and frameworks
are two complementary techniques.

Examples for the applications of mixin layers can be found in [SB02]. A case study
that applies both mixin layers and a domain specific language for finite state machines to a

software product line appears in [B*02].
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Chapter 3

Design and Implementation of
FCL

3.1 An Example

Let us introduce FCL with a simple example with two files F.h and F.cpp:

// F.h
class F {

virtual void m();

s

// F.cpp
#include "F.h"

void F::mki{
}
s

Note that class F defines a virtual member function m. Assume class F belongs to a
framework and a constraint on F is that if a subclass overrides m, then the override must
call F::m.

The following code shows how a user might break this constraint; they forget to call the

base class version from the subclass:

// A.h
#include "F.h"
class A: public F {

void m();
}s
// A.cpp
#include "A.h"

void A::m(){
... // does not call F::m
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FCL is meant to detect violations of such framework constraints. This constraint may
be specified using FCL as follows:

1 forall c: subclass(class("F")) holds
[mas {f: function(c) | sizeof(paran(f)) = 0 and name(f)="nm };]
(sizeof (m=0 or
exist e: exp(m holds
function(e) = function("m', class("F"))
or print(c) and println(" breaks the constraint!"))

O WN

In this specification, subclass, class, function, param, and exp are primitive functions on
the syntactic structure of C++ source code (see Table 3.2 for their semantics); sizeof is a
standard set operation returning the size of a set; print and println are printing functions

and always return true. These will be explained in more detail in Section 3.2.2.

3.1.1 Tools Operation

Four steps are involved in checking a program:

1. Preprocess each .cpp file with an appropriate preprocessing tool. On Unix, use the
cpp program; for Microsoft C++, use ¢l /P, where cl is the name of the compiler.

2. For each preprocessed file f.i, run dxparscpp f.i —asgf.asg, where f.asg is the file con-
taining the generated Datrix ASG. dzparscpp is a parser from Bell Canada.

3. Run dzlinker on the set of ASG files, asgi, ..., asg,, with the following format:
dzlinker asgi,...,asg, > final.link,
where final.link is the file that stores the full ASG. dzlinker performs type analysis on
the outputs of dxparscpp to form a single ASG.

4. Given a file f.fel containing the FCL specification, we can check whether the above
program conforms to it by issuing the command:

fel f.fel -d final link.

Although still rudimentary, the output of the fel program is informative enough for
debugging purpose. For example, running fel on a small program that forgot to call the

member function m of class F yields the following message:

Parse FCL file base.fcl...
Check FCL file base.fcl...

$INSTANCE 16 cAggrType

16{
beg = 10.1
end = 17.6
name = "A"

type = class

}

breaks the constraint.
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This message corresponds to line 6 of the specification, showing what the output of the
printing facility looks like. Note that the current implementation outputs the corresponding
ASG node of a program entity; in this example, the ASG node for class A is shown, which
does not call the base class version of member function m.

This implementation is only a prototype; depending on the nature of the environment
to which FCL is attached, in the future the output can be more interesting, for example, a

highlight of the code region that violates the constraint.

3.2 Introduction to FCL

FCL is a little language for talking about the structure of object-oriented programs. Its
notations are borrowed from first-order logic extended with set and sequence operations; its
term language consists of a set of total functions reflecting the entity-relationships in the
domain of object-oriented programs.

Abstractly, the syntactic structure of an object-oriented program forms a graph whose
nodes represent syntactic elements such as namespaces, classes, functions, variables, and
expressions and whose edges represent the relationships between these elements such as an
expression and the function that it is statically bound to and a variable and its type. In this
chapter we will appeal to readers’ intuitive understanding of such a data model for C++
source code; a detailed account for our C++ source code model appears in Chapter 4.

In the rest of this section we introduce FCL based on the syntax of Table 3.1.

At the topmost level, an FCL specification consists of a sequence of interleaved decla-
rations and formulas. Declarations do not have to be defined all at once before formulas;
they can be freely interspersed among formulas as long as variables are defined before they
are used. The combination of a top-level formula and all the declarations that it refers to
forms an FCL constraint.

Each declaration binds a variable to an associated expression, and the variable takes the
value of the expression. FCL variables are different from programming language variables
because their values do not change over time. In particular, logical formulas are treated
as a special kind of expressions; they are expressions that yield values of the boolean type.
Therefore, FCL allows one to define boolean variables with formulas as their value expres-
sions.

FCL allows one to introduce local variables for expressions through a syntactic structure
called block; blocks are a simple grouping mechanism, and each expression is allowed to
have at most one block. One variable overrides another variable if the former has the same
name as the latter, appears after the latter, and is defined either in the same scope or in
any enclosed scope of the latter.

Local variables are most useful when writing formulas; the variables assigned for expres-
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FCL_spec
Statement
Declaration

Formula

Expr

Existential
Universal
BVar_Declaration
ExprWithVars

Operation
Set_op

Set_comprehension
Set_enumeration
Seq_op

Relational

Constant
Variable
T list

Statement_list
Declaration | Formula
Variable as Expr

not Formula| Formula and Formula| Formula or Formula|
Existential | Universal | Expr

Variable | Constant | Operation | Formula | ExprWithVars
exist BVar_Declaration_list hold Formula

forall BVar_Declaration_list hold Formula

Declaration

‘['Declaration_list‘]” Expr

Set_op | Seq-op | Relational | FCL_fct

subset(s1, s2) | belongsTo(ele,s) | s1 + s2 | sl -s2 | union(setOfsets) |
sizeof(s) | Set_comprehension | Set_enumeration

{ BVar_Declaration_list | Formula | Expr} | { BVar_Declaration | Formula}
‘" Exprlist |’

member(seq, index) | indexOf(ele, seq)

>S|i>=< | <=]| =

true | false | Str | Int | global
Str
T*

Table 3.1: The Syntax of FCL

sions, if properly named, can help reveal intent; it also helps structure the specification by

avoiding long or repeated expressions.

Formulas have conventional semantics; the syntax replaces Greek symbols with English

words. Formulas include negation, conjunction, disjunction, and universal and existential

quantifications.

Elementary formulas include the boolean constants true and false, relational operations,

and such predefined predicates as the subset relation and the membership relation (stating

that an element belongs to a set). Syntactically, these predicates are represented as function

applications (that is, in the form of f(eq, ..

.y €en))-

In both universal and existential quantifications one is allowed to define more than one

bound variable at once, binding their values to the elements of the set-valued expressions.

For the sequence of bound variables, those that appear later can both refer to and override

the ones that appear before them.

As mentioned, FCL treats formulas as a special kind of expression.

Other kinds of

expressions include variable references, literal constants, function applications, and sets.

Variable references and literals are elementary expressions; they can be used to con-

struct more complex expressions. In addition to the usual kinds of literals, true and false,

integral constants, and strings, FCL has a special literal, global, which represents the global

namespace of a given program.
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Function applications of the form f(ey,...,e,) are probably the most frequently-used
expressions. FCL predefines a variety of functions. Some of them are standard set and
sequence operations. Others are functions defined on the data model for source code. For
instance, given a variable ¢ of type Cls, function application var(c) returns the set of data
members defined in the class represented by c¢. These functions are specified in detail in
section 3.2.2.

One can get sets in three ways: through function applications (some functions return
sets as their result), set comprehension, and through set enumeration.

FCL supports two forms of set comprehension:

{e:s]f(e)}

and

{ei:s;,1<i<n]| fler,...,en) | Eler,...,en) }

The first form defines a subset of the set s, of those elements e that make the formula f
true. But it only permits one bound variable e. The second form allows more than one
bound variable, eq,...,e,, over multiple sets si,...,s,. If a tuple eq,...,e, satisfies f, the
function E is then applied to the tuple and the value E(eq, ..., e,) is taken as an element of
the new set. The second form is more general than the first one in that the first is a special
case of it, which can be represented as follows: { e : s | f(e) | I(e) }, where I denotes an
identity function.

Unlike for sets, FCL does not provide constructor functions to create new sequences
from scratch; instead, sequences are return values from function applications. For instance,
an execution path consists of an array of expressions; a function can have a sequence of
parameters; and a path on an inheritance hierarchy contains all the classes from a source
class to a target class. To model these, FCL needs sequences. A sequence can also be used

as a set; the range of the sequence will be used.

3.2.1 FCL’s Type System

FCL is strongly typed so that when evaluating an FCL specification, an FCL checker will
not suffer run-time errors. This is ensured by putting a set of constraints on the structure
of FCL specifications. The constraints comprise the static semantics of FCL.

The type system of FCL includes two kinds of types: basic types (Figure 3.1) and com-
pound types. Basic types can be further divided into “facility” types and “domain” types.
“Facility” types help form constraints, including Str for string values, Int for integers, and
Bool for boolean values. “Domain” types come from the problem domain of programming
constructs, including Exp for expressions, Var for variables, NS for namespaces, Fct for

functions, Cls for classes, Name for named entities, Unit for program units, Gen for types
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/J&m\ [Exp] [str ] [t ] [Boor ]

4\|_yu [Var]

Fct

(1) Undef is the subtype of all other types
(2)sub—>sup: sub is a subtype of sup.

Figure 3.1: Basic types and the subtype relation

generated through template instantiations, and Type for types. The current FCL covers
only a subset of the object model; for instance, pointer and reference types, arrays, builtin
types, and generated functions are not included.

Undef is the type for “undefined” values. Undef is considered as the subtype of any
types.

Figure 3.1 also defines the subtype relation between basic types. Besides basic types,
subtype relations can also exist between compound types. One set type is the subtype of
another if and only if the base type of the former is the subtype of the latter. Similar

definition holds for sequence types.

3.2.2 Functions on Source Code Model

Table 3.2 presents the signatures of all FCL functions. The following is a brief explanation

for each of them:

e class, var, function:
These constructors allow one to refer to a known entity of the checked program. Their
arguments specifies the name of the entity and its context. For instance, if one wants
to refer to a method named m within a class C, one can write it as function("m",
class("C", global)). Since global can be omitted, it can also be written as function("m",
class("C")).

e isPrivate, isProtected, isPublic:
Test visibility. Can only be applied to variables and functions.

e isStatic, isConst:
Test staticness and constness. Can only be applied to variables and functions.

e isBranch:
Test whether an expression is conditional.

e isReturn:

Test whether an expression is the argument of a return statement.
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class: StrxUnit—Cls
Constructors var: StrxUnit— Var
function: StrxUnit — F Fect

isPrivate/isProtected /isPublic: Var|Fct — Bool
Property isStatic/isConst: Var—Fct — Bool

Predicates isBranch/isReturn: Exp — Bool

isVirtual: Fct — Bool

name: Name — Str

isClass/isGenerated/isVar: Name — Bool
class: Type — Cls

Type Query Generated: Type — Gen

and Type Coersion | ptdType: Type — Type

ptdTypeStar: Type — Type

var: Name — Var

unit: Name | Expr — Seq Unit
class: Unit — F Cls

exp: Unit —» F Exp

Unit Operations var: Unit - F Var

function: NS | Cls - F Fct
expClosure: Fct - F Exp
param: Fet — Seq Var

receiver: Exp — Exp

arg: Exp — Seq Exp

parent: Exp — Exp

top: Exp — Exp

Expressions exp: Exp — F Exp
upPath/downPath: Exp — F Seq Exp
function: Exp — Fct

refd: Exp — Name

refSet: Name — F Exp

change: Exp x Var — Bool

subclass: Cls — F Cls
Inheritance superclass: Cls -+ F Cls
descendant: Cls - F Cls

type: Exp — Type
Type type: Var — Type
type: Fct — Type

isDefined: Any — Bool
print: Any — Bool

Misc println: Any — Bool
regex: Str x Str — Bool
concat: Str x Str — Str

Table 3.2: FCL functions: F T: finite subsets of type T; Seq T: sequences of type T.
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isVirtual:

Test whether a function is virtual.

name:

Returns the name of a named entity.

isClass, isGenerated, isVar:

Test whether a named entity is a class, a generated type, and a variable, respectively.
class:

Downcast the argument from Type to Cls. If the argument is not a class, then the
result is the “undefined” value.

Generated:

Downcast the argument from Type to Gen. If the argument is not a generated type,
then the result is the “undefined” value.

ptdType:

If the argument is a pointer type, then returns the type pointed. Otherwise, return
the type itself.

ptdTypeStar:

If the argument is a pointer type, then returns the base type. Otherwise, return the
type itself.

var:

Downcast the argument from Name to Var. If the argument is not a variable, then the
result is the “undefined” value.

unit:

Returns the context of the argument, a sequence of Unit. Can be applied to both
Name and Expr.

class:

Returns the set of classes defined within a Unit.

exp:

Returns the set of expressions defined within a Unit.

var:

Returns the set of variables defined within a Unit.

function:

Returns the set of functions defined within either a NS or a Cls.

expClosure:

Returns the set of expressions that can be statically reached from the argument Fct.
param:

Returns the sequence of parameters of an argument of type Fct.

receiver:
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Returns the receiver expression of an argument expression. If the expression has no
receiver expression, e.g., an arithmetic one, then “undefined” is returned.

arg:

Returns the sequence of argument expressions of a given expression.

parent:

Returns the parent expression of a given expression. If the expression has no parent,
then “undefined” is returned.

top:

Returns the root expression of a given expression.

exp:

Returns the set of all sub-expressions of a given one, including itself.

upPath, downPath:

If the argument is an expression within a function, then returns the sets of its up paths
and down paths respectively. Otherwise, return the empty set.

function:

Returns the function that a given expression invokes.

refd:

If the argument is a name reference expression, returns the named entity referred.
Otherwise, returns “undefined.”

refSet:

Returns the set of name references that refer to the given named entity.

change: change(exp, aVar) tells whether a given expression may change the variable
represented by the parameter aVar.

If aVar is not referenced by the expression, change returns false. Otherwise, for each

of the expressions where aVar is referenced:

— If the expression is the pre-defined assignment and aVar is at its left-hand side,
then change returns true.

— If the expression is a function call and aVar is the receiver: If the function invoked
is not const, then change returns true; otherwise, change returns false.

— If the expression is a function call and aVar is an argument to it: If the corre-
sponding parameter of the invoked function is not const but of reference type,

then change returns true; otherwise, change returns false.

subclass:

Returns the set of classes that are the subclass of the given class.
superclass:

Returns the set of classes that are the super class of the given class.

descendant:
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Returns the set of classes that are the descendant classes of the given class.
e type:
Returns the type of a given expression.
e type:
Returns the type of a given variable.
e type:
Returns the return type of a given function.
e isDefined:
If a given value is “undefined,” returns false. Otherwise, returns true.
e print:
Prints the textual representation of the given value, and returns true.
e println:
Prints the textual representation of the given value, followed by a new line, and returns
true.
® regex:
Returns true if the second argument is an instance of the first one, which should be a
pattern of regular expressions.
e concat:

Returns a new string which is the concatenation of the two string arguments.

3.2.3 FCL’s Treatment of “undefined”

In FCL several ways can lead to a value of “undefined.” Casting an element of one type to
another can generate values of “undefined.” For instance, casting a type that is not a class
to a class will yield the value “undefined” as the result. Asking for a receiver expression
from an arithmetic expression will also result in “undefined.”

For any function applications with values of “undefined” as arguments, if the return
types of the functions are basic types but not boolean, then the result will be a value of
“undefined.” But if the return type is boolean, then the function application will return
false. If the return types are compound types, that is, sequences or sets, then the function
application will return empty sequences and empty sets respectively.

Further detail on other treatments of “undefined” can be found in [Jac02] and [ParOle].

3.3 Implementation

FCL requires a FCL parser and interpreter and a program database. The program database
is populated with a link program called dzlinker. Our prototype implementation consists of
about 20,000 lines of C++ code: 11,000 lines for dxlinker and 9,000 lines for FCL parser

and interpreter.
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3.3.1 Program Database

A program database for FCL should contain sufficient information so that the object model
described in Chapter 4 can be built. Our implementation adopts an abstract semantic graph
representation of source code. The program database is stored as a textual file using the
Datrix schema [HHL*00]. At run-time such a representation is mapped to an object-oriented

representation where source code entities are strongly-typed objects.

3.3.2 Parser and Linker

A parser is responsible for extracting facts out of C++ source code and storing them in
compliance to the Datrix schema. A linker then links the multiple graphs into one single
graph but still stores it in the Datrix schema. Conceptually a linker is needed to build a
graph where relationships such as all subclasses of a given class can be conveniently identified
and facts irrelevant to FCL, such as files and redundant declarations, are eliminated.

In our implementation we chose dzparscpp [HHL*00] from Bell Canada as our parser

and developed our own linker program dzlinker [HHRO3].

3.3.3 FCL Interpreter

FCL interpreter accepts two files as arguments from command line: one storing FCL spec-
ifications and the other a program database. It checks if all constraints are satisfied and
reports error messages if any of them is violated. Specifically, the FCL specifications are
first parsed using a Bison-generated parser. FCL interpreter then type-checks the FCL
specifications to rule out errors such as applying FCL function var to a Variable or using a
Variable as the scope of a quantifier.

The interpretation of constraints is done within the context of the given program database.
For each constraint, FCL interpreter evaluates its components first and then the constraint
itself. Primitive functions are interpreted directly against the data model. A formal treat-
ment of the semantics of FCL can be found in Appendix A, which provides more details on

the interpretation of FCL constraints.

3.4 Complexity Analysis

FCL is designed to be tractable at the first place. For instance, although Int appears in
the type system of FCL (Figure 3.1), quantifying directly over the infinite integer set is not
allowed. All sets in FCL specifications are finite.

In theory the complexity of evaluating FCL constraints is exponential. For example,
for the constraint presented at the beginning of this chapter, if the number of subclasses is

M and the maximal number of expressions within all member function m is N, then the
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complexity of that constraint is M N.

However, in practice we have not found performance to be a real problem: the deepest
level of nesting quantification formulas for the examples we have tried is 4, and the perfor-
mance of our simple interpreter is acceptable. On a laptop running Red Hat Linux 2.4.18
with a Pentium II Celeron 300 MHz CPU, all MFC constraints presented in Chapter 6 are
done in less than 20 seconds. Considering the size of the ASGs for the MFC examples (10-15
MBs), we do not think that performance will be a big problem for the acceptance of FCL.
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Chapter 4

A Model of Static Properties of
C++4 Programs

This chapter presents an object-oriented model of the structure of C++ programs, which
provides an anatomical view of program structures !. For instance, in our model, a function
application f(p) will be decomposed into two parts: the function name, f, and the sequence
of parameters, p. Therefore, the model is a meta one concerning with the elements of
programs. We will use the UML (Unified Modeling Language) class diagram to depict the
model.

The class diagram of Fig. 4.1 depicts the overall model. It forms the foundation of the
FCL language, whose syntax and semantics will be presented formally in chapter A. Due
to the limitation on visual space, some details, e.g., the kinds of expressions, have been left
out of the diagram; they will be further explained in later sections.

The goal of this chapter is to “digest” the diagram. We will proceed in the following
order: section 4.1 explains the top three levels, which abstract out the common properties
of all program elements; section 4.2 program units, the constructs for structuring programs;
section 4.3 types; section 4.4 operators, the constructs for defining computation; sections 4.5

and 4.6 expressions, the applications of operators.

4.1 Program Elements, Contexts, Names and Types

A program consists of a variety of program elements, which can be a class, a function, a
variable, an expression, or a class or function template, and so on. Program elements are
associated with each other through various relationships, for instance, that between a class
and its members, a function and its parameters, a loop or conditional and its condition,
variable declaration and references, inheritance and friendship, and so forth.

Program units are a special kind of program element that help to organize programs;

In the literature, there seem to exist at least two notions of structures, the semantics one and the
syntactic one. Our structure concerns with the abstract syntax of program languages.
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cAsgNode

A
A A
: o r 1 | |
[ cunit |  [cType | [ cObject | | cOperator | | cExpGeneralized |
: ; —
|
[ cExpression | *
cNamespace || [ cTypeAggr | [ cFunction [ cGeneric |
«si ngl et on» L 4 [P
cTypeMeta | cFctGenerated | |

| | | cFunctionTemplate |[ cClassTemplate |

| cUnion | [ cTypelnheritable |

* -

| cExpGeneralized |

| cstruct | [ cClass | [
T | |

| cTypeGenerated | | cTypeGenerated || cFctGenerated |

Figure 4.1: Object model for C++ programs

namespaces, classes, functions, and blocks are program units. In particular, the global

namespace is the topmost level program unit.

Each program element exists in a certain context that is composed of the sequence of
program units that enclose the element. For example, a class defined within the global
namespace takes the global namespace as its context; an expression within a member func-
tion will have the function, the class, and the context of the class, in this order, as its

context.

Each program element can also have a textual representation for display purpose, which

can be useful for diagnosis. For example, the textual representation for an expression a+b

9

can be “a+b”; a variable x of type int can have “int x;” as its representation.

cAsgNode
+get Uni t Sequence(): vector<cUnit *> *
+get Encl osi ngUnit(): cUnit *
+toString(): string

cName cTyped
+name(): string +get Type(): cType *

Figure 4.2: The class cAsgNode and subclasses
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The class cAsgNode 2 ® models the most common features of all program elements. For

a given program element:

e getUnitSequence returns the vector of its program units, which are modeled by the
class cUnit.
e getEnclosingUnit returns the innermost program unit that encloses it.

e toString returns the textual representation.

getUnitSequence and getEnclosingUnit together form a simple instance of the so-called
template design pattern [GHJV94]. The former is implemented on the basis of the lat-
ter. And since getEnclosingUnit is virtual, derived classes of cAsgNode can override it to
implement different ways of obtaining their corresponding innermost enclosing units.

Some program elements like classes and variables have names while others like expressions
do not. The abstract class cName is effectively the interface for any named element.

Similarly, some elements are typed while others are not. If the element is an operator
such as a function or class template, then the type is its algebraic type; for instance, the
arithmetic addition on integer set has the type Z x Z — Z. If the element is a variable or

an expression, then the type is the type of its value.

cUnit || cType || cObject |[ cOperator || cExpGeneralized

Figure 4.3: Abstract classes cName and cTyped

A number of classes inherit the classes cName and/or cTyped. cUnit is the abstract class
for all the program units, cType for types, cOperator for operators, and cExpGeneralized for
expressions, respectively. These will be described in the following sections.

The class cObject models all kinds of variables. A variable can be either a global one
or a local one, it can be a data member of aggregate types, or it can be a parameter to a
function. The kind which a variable can be (being local or global, for example) is determined

by examining its context information.

2As a naming convention, all classes of the FCL object model start with letter c. The name cAsgNode
is due to the Datrix tool that we use: Datrix models programs as graphs called ASGs (Abstract Semantics
Graph) [RW91], whose nodes are program elements.

3In this chapter, the font sans serif is used for names such as method names and class names in the FCL
model.

31



4.2 Program Units

Program units are mechanisms that help organize programs. C++ supports four kinds of
program units: namespaces, aggregates, functions, and blocks. FCL supports a limited
amount of control flow analysis (section 4.6), where no block information is needed. Thus

the current object model does not treat blocks as the first class entity.

/\

cUnit

+get Types(): set<cAsgNode *> *

+get C asses(): set<cAsgNode *> *

+get Expressions(): set<cExpression *> *

+get Obj ects(): set<cAsgNode *> *

+get TypeW t hNane( nane: const string): cType *
+get Cl assW t hNane( nane: const string): cC ass *

Figure 4.4: Program units

Essentially, the class cUnit provides a “container” view to program units. That is, a
program unit can contain new types, expressions, and/or variables. Thus it should support
queries on its internals, both collectively and individually.

A program unit may contain new types; the new types can be, for instance, an aggregate
type, an enumeration, or a template-generated type. In particular, the global namespace
contains all the built-in types. getTypes returns the set of all types that the current unit
contains, while getClasses returns only the subset of aggregate types. Given a name, get-
TypeWithName returns the type that has the name, while getClassWithName returns the
class. If there is no such a type or class, the respective method will return null.

A program unit may contain expressions. For example, the set of expressions for a
function includes both its default arguments and the expressions within its body (the current
version of FCL does not handle exceptions yet). The set of expressions for an aggregate
type or a namespace consists of all the initialization expressions. getExpressions returns the
set, of expressions of a unit.

A program unit may also define a set of variables. For a function, the set of variables
includes both its parameters and local variables; for a class, the set consists of all the data
members. getObjects returns the set of variables defined by a program unit.

Namespaces, aggregates, and functions are the concrete program units that FCL cur-
rently supports. In addition to the properties captured by the class cUnit, each of them also

has special ones:

e A namespace may have sub-namespaces defined within it. getNamespaces returns the

set of immediate sub-namespaces.
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N\
|

cNamespace

+get Namespaces(): set<cNanespace *> *
+get Functions(): set<cFunction *> *

cTypeAggr cFunction
+get Functions(): set<cFunction *> * +get Par anet er Sequence(): vector<cOhject *> *

Figure 4.5: Namespaces, aggregates, and functions

e Both namespaces and aggregates can have functions. getFunctions returns the set of
functions.
e Fach function has a sequence of parameters. getParameterSequence returns the se-

quence for the function.

4.3 Types
cTyped
/\
cType
+createPtrType(): cTypePtr
+cr eat eRef Type(): cTypeRef *
[ +get Der ef Type(): cType *
JAN
1
| cTypeMeta |
[ I I I
| cTypeAggr || cTypeBuiltin ][ [ cTypePtr ||| cTypeRef |
| cTypeEnum | | cTypeFct || cTypeArray |

Figure 4.6: Types

C++ supports seven different types: built-in types, pointer types, reference types, enu-
meration types, function types, array types, and aggregate types. In the FCL object model,
each of these types has a corresponding class (for instance, an aggregate type is an instance
of the class cTypeAggr). The class cType is the abstract interface for all of the seven classes.

The class cType inherits cTyped, thus types themselves are also considered being “typed.”
That is, each of them has a type. The singleton class cTypeMeta is used to denote the type
of types. The reason for assigning a type to types is that in C++, types can be referenced
as expressions, and all expressions have types.

The class cType defines the following operations:
e createPtrType: Given a type, createPtrType returns the pointer type to it. If the type
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is a meta type, that is, the instance of cTypeMeta, createPtrType returns the type
itself.

e createRefType: Given a type, createRefType returns the reference type to it. If the
type is a meta type, that is, the instance of cTypeMeta, createRefType returns the
type itself.

o getDerefType: If the given type is an indirect type, getDeref Type returns the type that
it points to; otherwise, getDerefType returns the type itself. For example, if the type
is of the form “**T” where T is not indirect, applying getDerefType to it will yield
the type “*T”. If, however, the type is “T”, then the result of applying getDerefType
to it will be “T” itself.

4.3.1 Aggregate Types

| cTypeAggr |

|
cTypelnheritable

+get Supercl asses(): set<cAsgNode *> *
+get Subcl asses(): set<cAsgNode *> *
+get Ancestors(): set<cAsgNode *> *
+get Descendant s(): set <cAsgNode *> *

cClass | cStruct |

| cTypeGenerated |

Figure 4.7: Aggregate types

C++ supports three kinds of aggregate types, class, struct, and union (Fig. 4.7). Only
class and struct can be part of an inheritance hierarchy. Given such a type, one can query
its direct base classes and derived classes, ancestor classes, and descendant classes, from the
inheritance graph. These commonalities are captured by the class cTypelnheritable. Both
class cClass and class cStruct are its subclasses. In particular, the class cTypeGenerated, for

types generated from class templates, is a subclass of cClass.

In contrast to class and struct, a union can be neither a base class nor a derived class.

The class cUnion is for unions.
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| cName || cTyped |

cOperator

+get Type(): cType *
|+get Resul t Type(): cType *

| cFunction | [ cGeneric |

Figure 4.8: Operators

4.4 Operators

Informally, an operator * is something that can be applied to some operands. Examples
of operators are functions and class and function templates (class templates and function
templates are modeled as subclasses of cGeneric).

The types of operators are their algebraic types, and getType returns the types. But for
a function, in addition to its type, normally one would also be interested in its return type.

The operation getResultType can be used to get the return type °.

4.5 Expressions

An expression is a sequence of operators and operands that specifies a computation. An
expression can result in a value and can cause side effects. FCL recognizes not only “normal,”
first-order expressions like arithmetic operations and function calls, but also second-order
expressions that either take types as operands or generate types as values. In Fig 4.9,
cExpression models first-order expressions. cTypeGenerated and cFunctionGenerated model

instantiations of class templates and function templates respectively.

cExpGeneralized

+get ArgSequence(): vector<void *> *
+get Al | SubExprs(): set<void *> *
+get Parent (): cExpGeneral *

+get TopExpr(): cExpGeneral *

+get Operator(): cOperator *

+get Type(): cType *

+get Val ue(): cNane *

| cExpression |[[ cTypeGenerated || cFunctionGenerated |

Figure 4.9: Expressions

4The term operator is much overloaded; here it does not refer specifically to C++ operators, and its
meaning is more general than that in C+4+.

5The current version of FCL has not been used to check any property of a function type or a template
type. getResultType is only a shortcut for obtaining the return types of functions and templates.
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Regardless of being first- or second-order, all expressions share some common properties.
Any expression can have sub-expressions as operands, which in turn can have their own sub-
expressions as operands, and so on. Thus, structurally, an expression can be viewed as a

tree, whose nodes represent expressions.

Consequently, cExpGeneralized supports the following “tree” operations:

e getArgSequence:
Each expression can have a sequence of arguments, which are also expressions. The
sequence can be obtained through getArgSequence. For instance, for y++ and *y, the
argument would be y, and for y=x+z(j), the arguments would be y and x+z(j).

o getAllSubExprs:
It returns the set of all sub-expressions of an expression.

e getParent:
If this expression is a top level expression, then getParent returns this expression itself;
otherwise, it will return the expression in which this expression is an argument.

e getTopExpr:
Returns the expression corresponding to the root node of the tree where this expression

“lives”.

The operator and result of an expression can be obtained through the following opera-

tions:

e getOperator:
Each expression is the result of invoking an operator on some operands (arguments).
For instance, a function call is the result of invoking a corresponding function. The
arithmetic expression a+b is the result of applying the pre-defined operator, + : Z x
Z — Z, to two integers, a and b. Particularly, a generated type is the result of
applying a class template to operands of types and/or expressions of constant values.
getOperator returns the operator that the expression uses.

e getType:
The result of evaluating an expression has a type, and getType returns the type. For
example, for a function call, getType will return the return type of the function being
invoked; for a generated type, getType will return cTypeMeta.

o getValue:

6. most of the time static analysis does not know their

For first-order expressions
values. In that case, getValue returns null. For second-order expressions, getValue

returns the types or functions generated.

6Expressions whose operands are not types are considered first-order, otherwise, second-order.
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4.5.1 Generated Types
| cClass |[ cExpGeneralized |
| cTypeGenerated |

Figure 4.10: Generated types

Like expressions, a generated type also has a sequence of arguments. Unlike expressions,
the arguments of a generated type can only be constant values and types. In addition,
the value of a generated type is the result of instantiating a class template with concrete

arguments, and it is viewed as a class.

4.6 “Normal” Expressions

The class cExpression models expressions other than generated types, hence the name “nor-
mal.” Such an expression can be a function call; a pre-defined operation such as arithmetic,
relational, and logical expressions; a cast call or a sizeof expression, both of which involve a

type as their operand; and name references (to variables and to types) and literals.

cExpression

+i sBranch(): bool
+trueBranch(): cExpression *
+f al seBranch(): cExpression *
+i sReturn(): bool

+cr eat eDownPat h( endExpr: cExpressi on *=NULL):
+creat eUpPat h( st art Exp: cExpressi on *=NULL):
+get Recel ver (): cExpression *

+change(aVvar: cObject *): bool

set< vector<void *> *> *
set <vect or<voi d *>*>*

| cExpFctCall |

cExpLiteral

| cExpPredefined ” cExpNameRef | |
I

| cExpSizeof | | cExpCast | [ cExpEntry | [ cExpExit |

Figure 4.11: Normal expressions

An expression can appear at several places. It can be an intializer to a static data
member, a constructor, or to a variable. It can also be a default argument to a function.
Of course, most often an expression will be a computational step within a function.

FCL builds a CFG (Control Flow Graph) for each function. The nodes of CFGs are
expressions. Particularly, two artificial expressions, of types cExpEntry and cExpExit, re-

spectively, are added to each CFG: cExpEntry represents the starting point of control, and
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cExpExit represents the end of control. Edges are also added, respectively, from the cExpEn-
try node to the entry expressions of a function, and from the exit expressions to the cExpExit
node.

Six operations are available for querying control flow related information about an ex-

pression:

e isBranch:
Given an expression, if it is the condition of a conditional or loop statement, isBranch
returns true; otherwise, isBranch returns false.

e trueBranch:
Given an expression, if it is the condition of a conditional or loop statement, trueBranch
returns the first expression on its true branch; otherwise, trueBranch returns null.

e falseBranch:
Given an expression, if it is the condition of a conditional or loop statement, falseBranch
returns the first expression on its false branch; otherwise, falseBranch returns null.

e isReturn:
Given an expression, if it is the expression of a return statement, isReturn returns true;
otherwise, isReturn returns false.

e createDownPath:
If this expression is within a function, createDownPath(endExp) returns the set of paths
starting from this expression and ending at endExp. By default, endExp has the value
of cExpExit. If this expression is not within a function, then createDownPath returns
the empty set.

e createUpPath:
If this expression is within a function, createUpPath(startExp) returns the set of paths
starting from startExp and ending at this expression. By default, startExp has the value
of cExpEntry. If this expression is not within a function, then createUpPath returns
the empty set.

The following example may help illustrate control paths:

(*) starting point
(1) if (a+b<100)

(2) doSomething() ;
(3) if (a+b>50)
(4) doTheRest () ;

(*) exiting point
The set of down paths from the function call at (2) to the exiting point is { <a, b, a+b,
50, a+b>50, doTheRest>, <a, b, a+b>50> } . The set of up paths to (2) from the starting
point is { < a, b, a+b, 100, a+b<100 > }.
The evaluation order of the constituent expressions is implementation-dependent [Int98].

The example assumes a left-to-right order.
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The operation getReceiver returns the receiver expression r for an expression of the form
“r.m(...).” Otherwise, that is, if the expression is not sending a message to an object,
getReceiver returns null.

bool change(cObject * aVar) tells whether a given expression may change the variable
represented by the parameter aVar.

If aVar is not referenced by the expression, change returns false. Otherwise, for each of

the expressions where aVar is referenced:

e If the expression is a pre-defined one, the pre-defined operator is an assignment, and
aVar is the left-hand side of the assignment, then change returns true.

e If the expression is a function call and aVar is the receiver: If the function invoked is
not const, then change returns true; otherwise, change returns false.

e If the expression is a function call and aVar is an argument to it: If the corresponding
parameter of the invoked function is not const but of reference type, then change

returns true; otherwise, change returns false.

If aVar is of pointer types, one may want to query whether an expression changes the

value that aVar points to. Currently, FCL has yet no constructs to express this.

4.6.1 Function Calls

| cExpFctCall |
JAN

| cExpCommonFctCall | | cExpOperatorCall |

Figure 4.12: Function calls

Function calls are further divided into two categories: common function calls and oper-
ator calls. Invocations of both free functions and member functions are common function
calls. Operator calls correspond to functions that use operators as names; in C++ operators

can also be overloaded.

4.6.2 Pre-defined Expressions

Pre-defined expressions invoke the pre-defined operators. FCL puts pre-defined operators
into the global namespace and treats the operators and their expressions in the same way

as user-defined functions.
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Assignments = &= |= "=>>= <<=

Bit manipulation: & | "> <™

Memory new delete & * . => ¥ ->x%
Arithmetic +-*/ % ++ (pre) —- (pre) ++ (post) —- (post)
Logical && !

Relational >>= ==<<=I=

Special , 7]

Table 4.1: Pre-defined Expressions

cExpNameRef
[+get Target (). cNanme *
JAN

| cExpVarRef || cExpTypeRef | | cExpFctRef

Figure 4.13: Name reference expressions

4.6.3 Name Reference Expressions

An identifier can be bound to a variable, a type, or a function. For a given name reference

expression, getTarget returns the corresponding elements that it is bound to.

4.6.4 Control Statements

Control statements are not treated as an essential part of the FCL object model. The reason
is that by building control flow in terms of expressions, many important constraints can be
handled without the need of information about control statements. They may be needed
when, say, one wants to enforce certain coding conventions. But that is not the focal point

of FCL at the moment.

cStmt
+bui | dCont r ol Gr aph( pred: set <cExpressi on *> *): void

| | | | |
| cstmtSwitch [|[ cStmtif ][ cStmtLoop |[ cStmtBlock || cStmtExpr |
[ cStmtCont |[ cStmtReturn | | _cStmtCaseBlock || cStmtDefaultBlock |
| cStmtBreak | [ cStmtCaseLabel | [ cStmtDefaultLabel |

Figure 4.14: Control statements

Control statements are used to generate control flow graphs for functions. The class
diagram for C++ statements is depicted in Fig. 4.14. The control statements of a function

form a tree structure. The control flow graph is built by a syntax-directed traversal of the
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tree, connecting the corresponding expressions at each node.
The following example may help illustrate the idea:

void f()

El;

if (E2)
B1;

else B2;

E3;

}
whose CFG is shown in Fig. 4.15.

Entry)

El

Legends:

true E2 fal se O special nodes

Bl B2 O expressi on

E3

subgr aph

- control

Figure 4.15: A CFG example

More details on constructing CFGs from statements can be found in [AU7S].
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Chapter 5

Case Study 1: Enforcing
Framework Constraints—the
Observer Design Pattern

The purpose of the Observer example is to introduce the main features of FCL. It also

illustrates how to use the checker program, fel, both the format of its command line and the

format of its output message.

5.1 The Observer Design Pattern

Design patterns [GHIJV94] can be seen as small frameworks made of a few classes. We intro-

duce FCL by specifying constraints for an implementation of the Observer design pattern

(Figure 5.1).

observers »

0

Subject Observer
+At t ach( Gbserver) +Updat e()
+Det ach( Gbser ver)
+Not i fy() |

for all o in observers I5'
0- >Updat e()
ncr j

- Cbp cseteSubject ConcreteObserver
subjecttate +observer St at e
+Cet St at e() TUndat
+Set St at e() Updat e() I

7\

subj ect

-y

Y

observer St at e=subj ect - >CGet St at e() |SI

Figure 5.1: The Observer Pattern
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Together, the abstract classes Subject and Observer implement an abstraction for the
notification of state changes, as depicted in the top of Figure 5.1. The class Subject provides
an interface for attaching and detaching Observer objects; a subject knows its observers.
Any number of observers may observe a subject. The Observer class defines an updating
interface for objects that should be notified of any state changes in a subject. A subject
should notify all of its observers whenever its state changes. This can be done by calling the
notify method of the class Subject, which in turn, calls the update method of each observer
object, with the subject itself as the actual argument. As a response to the notification,
each observer object should query the subject object to synchronize their states.

Let’s assume that any extensions to the framework are required to have at least one
subclass of the class Subject. Then, as designers, we can stipulate that each subclass of the

class Subject must obey the following constraints:

1. The Subject class has to define some state, thus it must define at least one instance
variable to represent the state.

2. All the instance variables must be private for sake of information hiding.

3. The class must define at least two methods. Because all of its instance variables are
required to be private, at least one method is needed to change the state and another
to query it.

4. In the class, there must exist at least one method that satisfies the following conditions:
e First, it changes some new variables defined by the class.
e Second, it calls the inherited notify method.
e And third, the change must happen before the notify method is called.

We use the name modifier for the set that contains all such methods.
Similarly, we require that:

1. Any extensions to the framework must have at least one subclass of the class Observer.
2. Furthermore, all the subclasses of Observer must override the update method.
3. In addition, the override must call some method defined in a subclass of the class

Subject. But it is prohibited to call any methods that belong to the set modifier.

5.2 Observer Pattern in FCL

The following is an FCL specification for the Observer pattern:

subj ect as cl ass("Subject");
observer as class("Qbserver");
nmodel as subcl ass(subject);
vi ew as subcl ass(observer);

forall mdl : nodel holds
[

nodifiers as { m: function(ndl) |

O~NO D WNE
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9 exist e: exp(m, v : var(mdl) holds

10 (

11 change(e, v)

12 and

13 exist p: downPath(e), notify : p holds
14 nane(notify)="notify"

=
(o]
——

19 for v being var(ndl) holds
20 i sPrivate(v)

21 and

22 si zeof (function(mdl)) > 1
23 and

24 sizeof (nmodifiers) > 0

25 and

26 forall v : view holds

28 update as { m: function(v) |

29 [

30 p as param(nm;

31 firstParam as nmenber(p, 0);

32 ]

33 (name(n) = "update" and sizeof (p) =1 and
34 type(firstParam) = ptr(subject))

35 and

36 forall e : exp(m holds

37 not bel ongsTo(function(e), nodifiers)
38 and

39 exist e :exp(m holds

40 [

41 i nvokedFunction as function(e);

42 programnits as unit(invokedFunction);
43 1

44 (

45 bel ongsTo(first(progranmnits), nodel)
46 and

47 | ast (progranbnits) =gl obal

48 )

49 }

51 si zeof (update) =1

Overall, this specification maps relatively straightforward with the natural language
description of the last section. For example, lines 7 through 24 correspond to the items 1
to 4 for the Subject class; the constraints of item 4 are reflected in the set comprehension
defined at lines 8 through 16. In the following, we remark on some peculiarities of the

specification.

The overall structure of the specification consists of two nested forall formulas, starting
at lines 6 and 26, respectively. This structure is used because constraints for each subclass of
the Observer class need to refer to the set modifier defined for each subclass of the Subject
class. Should there be no such a dependence between subjects and observers, we would have

had two independent forall formulas instead.

Note that both subject and observer are FCL variables that represent the Subject class
and the Observer class, respectively; they are constructed through the constructor func-

tion class. Moreover, the FCL variables model and view represent the respective sets of
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subclasses.

The set comprehension that defines the set modifier deserves some comments. One
question many may ask about the change predicate at line 11 goes along the lines of “what
if a subclass of the Subject class defines an instance variable of integer type, which does
not represent state, but some methods happen to change it, and thus make the code satisfy
the constraint?” In that case, indeed, FCL will miss the error, and there will be no error
messages reported. This example shows that although FCL can detect errors of omission,
it is not complete (that is, it generates false negatives); in particular, sometimes an error
might be camouflaged by code that happens to expose the same structure as expected, and
thus satisfies the constraint.

This specification also examplifies the use of sequences. FCL needs sequences to model
three things, the execution paths within a method, the parameter list of a method, and
the syntactical context of a program element. In the above specification, there are three
examples of sequences, at lines 13, 30, and 42, respectively.

The function downPath at line 13 returns the set of all the execution paths that start
from the argument ezp and end at the end of the method; each element of the set is a
sequence of expressions.

The function param at line 30 returns the parameter list of the function m. At the next
line, member(p, 0) returns the first element of the sequence; in fact, it is the first and the
only parameter of the function, as indicated by the constraint at lines 33 and 34. At line
34, ptr is a constructor function that constructs a pointer type to the subclass subject.

The last example is at line 42: the unit function returns the sequence of program units
that enclose the argument, which is a function in this case. Furthermore, the specification
goes on to check whether the class of this function belongs to the set model; the function
first at line 45 effectively obtains the enclosing scope of the function. If the return value is
a class that belongs to the set model, then the belongsTo test will yield true. Finally, the
formula at line 47 is a tautology since the last element of a context is always the global
namespace; the function last returns the last element of a sequence, and global is a constant

of FCL that denotes the global namespace.

5.3 Discussion
5.3.1 Expressions Are Important for FCL

In addition to classes and methods, it is also important to be able to specify constraints for
expressions. Without support for expressions, the content of the above specification would
drop rapidly; all that would remain are the requirements that the subject subclasses should
have both some methods and variables defined and that the observer subclasses should

override the update method. These are still useful, but their likelihood of detecting subtle
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errors is reduced.

Some of the constraints are implementation oriented, for example, the one that requires
all the instance variables of a subject class be private and the one on the number of methods.
Although they may not be as important as design constraints, it is worth enforcing them.

Certain parts of a specification can get very detailed; for example, to accurately specify
a method, one needs to provide not only its name, but also the number of parameters and
their respective types.

Context knowledge can be used to shorten FCL specifications. At lines 13 and 14 of the
above specification, we only check whether there is a function call expression that invokes a
function named notify. This may be insufficient under certain circumstances; for example,
the function being called may be a global one that has the same name. On the other hand,
within the specialized context of a project, it may be the case that this will never happen.
Therefore, the specifier may take advantage of the knowledge, and the above specification
becomes acceptable. For another example, notice that line 34 specifies the update in full
detail. If one knows that the update method will not be overloaded, then one can eliminate

the code that specifies the parameters.

5.3.2 FCL Depends on Specialized Context

Conventional methods of program specification emphasize abstractions and generality [GH93].
This is achieved through using concepts and constructs such as specification variables and
abstraction functions in the specifications. By concentrating on only properties of the ab-
stractions, one obtains the benefits of easier maintenance and a higher chance of reusing the
specifications. With abstractions, it becomes clear what properties must be preserved when
one changes the implementations. By programming to abstractions, an abstraction can be
used in various contexts without the programmer having to worry about the underlying im-
plementations. Moreover, one implementation can be replaced by another without affecting
correctness.

In contrast, FCL depends on specialized context; it specifies constraints in terms of im-
plementation details such as variable names, expressions, and specific classes and methods.
However, FCL complements rather than contradicts the established wisdom. Traditional
methods focus on identifying and specifying the core abstractions within a problem domain.
This is of course a right strategy. But frameworks by definition already contain the key ab-
stractions of the corresponding problem domains. Therefore, FCL is not concerned with the
correctness of the abstractions themselves. In contrast, FCL is addressing a different issue;
it is meant to detect the potential errors that may occur at the boundary between the core
and the extension. This requires that FCL specifications explicitly mention implementation

details.
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Specific implementations of a generic design may specialize in certain aspects. For ex-
ample, there are several dimensions along which a particular implementation of the generic

observer design pattern can vary:

States Both primitive types and user—defined types can be used to represent states. Fur-
thermore, if the state representation is of a collection type, the state may be either
the collection, the elements that it contains, or both. Clearly, at the general level,
without further information, what FCL can speak about is limited. The best that one
can say about the state is probably that “there must be a change to the state, and
it is followed by a call to the notify method.” Although quite conservative, it cap-
tures the key requirement that the user of the pattern has to fulfill. When specifying
constraints, one has to balance between picking up more errors and avoiding spurious

ones.

There are also examples of the pattern in which the state is divided into substates and,
subsequently, a different notification method is provided for each individual substate.
The JTree component of the Swing framework provides a default implementation
for the TreeModel interface, which corresponds to the Subject class of the Observer
pattern. For performance reason, the default implementation distinguishes four kinds
of state changes: change to the whole tree, addition of nodes to or removal from a

particular internal node, and change to a whole sub—tree.

Registration Where can an observer be attached to a subject? The registration can be
done by the client of the pattern, that is, outside of both the subjects and observers.
It can be done by the observers; the JTree class actually registers itself to the tree

model. It is also conceivable to do it in the subject classes.

Cardinalities Not only can each subject have multiple observers, but each observer can

watch multiple subjects. Moreover, these subjects can belong to different classes.

Who calls notify? Notification does not have to always be issued by the methods of sub-
ject classes. It can also be done by the client of the pattern. The related advantages

and disadvantages are discussed in [GHIJV94].

Specializations can influence the content of the specifications. In the following, a special
implementation of the observer pattern will be used to illustrate this point.

The implementation of Figure 5.2 makes several changes to the generic one:

1. In this example, the state is a name of the string type, and a modifier setName is
implemented to change it. As a result, the class Subject is not abstract any more.
2. The Observer class also becomes concrete. In addition, it adds a private data member

to remember the name. It also implements a method printName.
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Subject
+nane: string = "" Observer
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+Not i fy() +Updat e()
+set Nane( nane: const string &: void +printNane(): void

Figure 5.2: A Specific Implementation of the Observer Pattern

3. Both setName and printName are virtual.

4. The data member name of the Subject class is deliberately made public to illustrate

how FCL can be used to restrict the access to data.

The FCL specification for this implementation is as follows:

1 /1 Constraint 1: not call attach

2 set Of Expl nFreeFunction as { fct: function(global) | true | exp(fct) };
3 expl nFreeFuncti on as uni on(set O Expl nFreeFuncti on);

4 set O ExplnClass as { cls: class(global) | true | expClosure(cls) } ;
5 expl nCl ass as uni on(set O Expl nd ass) ;

6 attach as function("attach", class("Subject"));

7

8 exi st exp bei ng expl nFreeFuncti on+expl nCl ass hol ds

9 function(exp) = attach

10

11 // Constraint 2: directly assign to Subject::nane

12 Subj ect as cl ass("Subject");

13 bserver as class("Qbserver");

14 cl assesOf Subj ect AndObserver as [ Subject, Cbserver ]+descendant (Subject)+
15 descendant (Observer);

16 expCOf Subj ect AndCbserver as union( { cls: classesO Subject AndCbserver |
17 true | expl osure(cls) } )

18

19 /1l version 1:

20 not exist exp : explnFreeFuncti on+texpl nC ass- expO Subj ect AndObser ver hol ds
21 (

22 name( exp) ="="

23 and

24 [arg as arg(exp); |eftHand as menber(arg, 0);

25 argl as arg(leftHand);

26 recei ver Type as ptdTypeStar (type(nenber(argl, 0)));

27 var Ref as nenber(argl, 1);]

28 (

29 name( var Ref ) ="nane"

30 and

31 bel ongsTo(recei ver Type, cl assesO Subj ect AndCoser ver)

32 and println(nanme(varRef))

33 )

34 )

35

36 /'l version 2:

37 forall exp being explnFreeFunction+expl nC ass- expOf Subj ect AndCbser ver hol ds
38 (

39 not (

40 name( exp) ="="

41 and

42 [arg as arg(exp); |eftHand as menber(arg, 0);

43 argl as arg(leftHand);

44 recei ver Type as ptdTypeStar (type(nenber(argl, 0)));

45 var Ref as menber(argl, 1);]

46 (

47 name( var Ref ) ="nane" and

48 bel ongsTo(recei ver Type, cl assesO Subj ect AndCoser ver)
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49 )

50 )

51 or not (println("the node for the expression is") and println(exp))
52 )

53

54 /] Constraint 3: NewCbserver::printName does not call Observer::printName
55 NewCbserver as subcl ass(cl ass("Cbserver"));

56 print NameCOf Cbserver as function("printNane", class("Cbserver"));

57

58 forall observer being NewObserver hol ds

59 [

60 printNane as { fct:function(observer) | name(fct)="printNanme" and
61 si zeof (param(fct))=0 } ;

62 expOf PrintName as union( { fct:printName | true | exp(fct) } )

63 ]

64 exi st exp bei ng expOf PrintName hol ds

65 functi on(exp)=print NameOf Cbser ver

66

67 /1 Constraint 4: NewCbserver::update calls Subject::setNane

68 set NameOf Subj ect as function("set Name", class("Subject"));

69

70 forall observer bei ng NewObserver hol ds

71 [

72 updat e as{ fct:function(observer) | name(fct)="update" and

73 si zeof (paran(fct))=1 } ;

74 expOf Update as union( { fct:update | true | exp(fct) } )

75 ]

76 forall exp being expOf Update hol ds

77 not function(exp)=set NameCf Subj ect

There are four constraints in the specification. A few comments about them fall in place:

Constraint 1 requires that the attach method be called. To enforce this, the specification
considers not only all the expressions of classes, but also those of free functions. The
constructor function on attach returns a set. The equality at line 9 is actually a
shorthand supported by FCL; it requires both that the set attach be a singleton and
that its only element be equal to the left hand side.

Constraint 2 demonstrates how access to data can be restricted. Note that how verbose
it can be to detect even such a simple assignment expression. The two versions of
the constraint also show how the printing facility of FCL can be used. Currently, the
print and println expressions are treated as predicates that alway return the value of
true. It is up to the specifier to make sure that the use of them does not change the

meaning of the original specification.

Constraint 3 is representative; it requires that the overriding methods call their corre-

sponding superclass versions.

Constraint 4 requires that the overriding update method in any subclass of the Observer
class do not call the setName method of the Subject class. This is a specialized version
of the corresponding constraint for the generic observer pattern. It is considered
“specialized” in that now we know what the modifier method is, and thus can directly

use it to specify constraints.
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Chapter 6

Case Study 2: Enforcing
Framework Constraints-MFC

This chapter provides a few examples of framework constraints taken from the MFC frame-
work. The purposes of these examples are twofold: first, they demonstrate that framework
constraints are nontrivial in the practice of framework-based development; second, they
show how FCL can be applied to a real framework and what lessons we can learn.

These examples are adopted from a third party, which brings us certain benefits in terms
of the quality of our validation. First, it increases our confidence in the authenticity of the
examples since contrived examples can be more easily and often accused of being not real.
The quality of the examples also depends on the calibre of the author. In our case, the
author, Dr. Joseph M. Newcomer, has a strong background in both the theory and practice
of software construction, which can be evidenced by the following quotation from his web

site [New]:

Dr. Joseph M. Newcomer is a Microsoft MVP [(Microsoft Valued Professional)],
an award presented to a fairly small group of people who help out on a volunteer
basis on the Microsoft newsgroups. A collection of his articles, expanded beyond
the postings on the newsgroups, is now available on his MVP essays page, as

well as useful code samples.

Joseph M. Newcomer is the author of several articles on Windows programming
as well as co-author of two books on Windows programming and a course in writ-
ing Windows NT Device Drivers and a course in Windows System Programming.

He also is co-author of three U.S. patents on distributed information technology.

Section 6.1 presents some preliminaries for MFC. Sections 6.2 through 6.10 present exam-
ples of MFC related problems and how FCL is used to detect them. Section 6.11 summarizes

lessons learned.
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6.1 Preliminaries of MFC
6.1.1 The Windows World and the MFC World

CWind handle to Windows widgets
HWND m_hwnd ¢~
\
MFC ‘ ‘ ‘
CButton CEdit CFrame CDialog

4 I
File Edit About
. A text field Dialo
Windows OS Frame a0
o Windows
Application
:CWnd M
Creation methodg | Register a callback
D store this
::CreateWindowEx
Call the callback
to accomplish
1 the mapping

Figure 6.1: The relation between Windows and MFC

As an operating system, Microsoft Windows provides a set of APIs that can be used
to create, manipulate, modify, and delete objects of both graphical interfaces and other
resources. Graphical objects are often called controls. As usual in systems design, each
control has a corresponding piece of information called ‘handle’ to identify itself; the type
of handles is HWND. Similarly, resources are also managed through handles; for example,
fonts have handles of type HFONT, and brushes have handles of type HBRUSH, and so on.

To support an object-oriented style of programming, MFC provides a set of “wrapper
classes” that encapsulate the Windows controls and resources (top of Figure 6.1). For
example, a CWnd object wraps an HWND, a CFont wraps an HFONT, a CBrush wraps
an HBRUSH, and so on. Thus given a wrapper object, one can access its wrapped control
through the instance variable m_hWnd. By default, MFC designates a default class for each
type of controls and resources, for example, CButton for buttons, CListBox for lists, CEdit
for input fields, and so on. But programmers can customize the default behavior of these
classes through subclassing.

The wrapper classes provide various message handlers to handle the messages that the
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underlying controls need to respond to. Moreover, operations are also designed so that one
can move freely between the Windows object domain, where objects are represented by
handles, and the MFC object domain, where objects are represented by instances of the
C++ classes. In practice, it is important to understand the relationship between these two
representations in order to use them in a safe and non-leaking fashion.

It is also known that when an event happens for a Windows control, the event loop
mechanism can get the handle of the control from the operating system. Because the
message handlers are defined as methods of the wrapper object, in order to find the right
handler for the event, however, the event loop of MFC has to find the object first. It turns
out that MFC uses a map data structure to maintain the relation between the handles and
their wrapper objects; given a handle as a key, MFC can retrieve the corresponding wrapper
object from the map.

The bottom of Figure 6.1 illustrates how the mapping relation is established. It starts
by calling one of the creation methods for the wrapper object. After the method is invoked,
it first registers a callback function for a certain pre-defined event of the operating system;
the pre-defined event has the following property: when a control is created, Windows will
generate an instance of the event, which will then trigger the registered callback function.
Then, the creation method stores a pointer to the wrapper object into a global variable.
Eventually, the method will call the windows API CreateWindowEx to actually create a
control. As a response to the invocation of the API, Windows automatically calls the
previously registered callback with the handle of the new control as an argument. The
callback then retrieves the previously stored pointer to the wrapper object from the global

variable and adds the pair of pointer and handle to the map.

6.1.2 Dialog, Control ID, GetDlgltem, and Control Variables

A dialog is a container that can contain other controls that have visual appearance. In MFC
programming, a dialog is represented by a class that inherits the framework class CDialog.
Each control of the dialog can have a constant integer called “control ID” associated with
it. A control ID can uniquely identify the control and is only valid relative to the dialog
that contains it.

The method CWnd::GetDlgltem is defined to retrieve a child control from a dialog. Note
that CDialog inherits CWnd. Figure 6.2 depicts artifacts related to the implementation
of CWnd::GetDlgltem. CWnd::GetDlgltem is implemented using ::GetDlgltem and the
FromHandle method of the CWnd class.

The free function ::GetDlgltem is a Windows API function. It takes a handle to a dialog
and a control ID and returns the handle to the control. Also note that the handle to a

Windows control, HWND, is implemented as a pointer to a structure. In particular, a
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struct HWND {int unused};
typedef struct HWND_ * HWND;
HWD CetDl gltem(HWND hDi g, int niDD gltem;

CWnd

+m hWwid: HWAD

+CetDigltem(nID:int): Cwd *

+Fr onrHandl e( hwad: HVWAD) : CWhd *

+Fr onHand| ePer manent (hWhd: HVAD) : CWhd *
+At t ach( hwhd: HAND) :  BOOL

+Detach(): HWD

Figure 6.2: CWnd::GetDlgltem

dialog can be represented by a handle of type HWND.

The diagram for the class CWnd shows only a small portion of its implementation. Each
CWnd object can wrap a Windows control, represented by the instance variable m_hWnd.
Both FromHandle and FromHandlePermanent are static methods, which, given a handle, can
look up the map for a corresponding CWnd object; the difference is that FromHandlePer-
manent will return NULL if there does not exist a CWnd object whereas FromHandle will
return a temporary one in that case (and MFC can automatically manage the memory).
Attach and Detach, as their names suggest, effectively add and remove a pair of handle and
CWnd object to and from the map.

Sometimes one may want to customize the behavior of a control; this can be done by
creating a subclass of the default MFC class for the control. For example, one may want
to create a subclass, CHorzListBox, for the CListBox class; CHorzListBox overrides the
AddString method to recompute the horizontal extent of the box and call SetHorizontal Ex-
tent, and consequently also overrides ResetContent to set the horizontal extent to 0.

Each control of the dialog may also be represented by an instance variable of the dialog
class whose type is the corresponding class of the control. The instance variable is then
called a “control variable.” With control variables, one can operate on a control in the

“normal” C++ way:

CButton c_Button; // c_Button is an instance variable of the dialog

if (c_Button.GetCheck() == BST_CHECKED)

6.1.3 Dialog Control Management: Continuous Validation

A user interacts with a computer not only by reading data from it, but also by writing data
to it. Typically, when users input data to a program, the program has to provide certain
capabilities of checking whether the data are valid according to some criteria. The process

of checking is called “validation.”
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There exist two ways of validation: one is “continuous validation,” and the other can
be called “validation-on-ok,” which does not validate the data until the user presses the
ok button. They are distinguished by the immediacy of the provided feedback; coded in
the style of continuous validation, the program can provide immediate feedback to the user
whenever the value of the current input field becomes invalid, instead of deferring it until the
user presses the ok button. The benefit of “validation-on-ok” is that it is easier to program;
in fact, many introductory textbooks use this style of validation as examples.

To provide better interaction experience to the end user, “continuous validation” is
preferred to the simple, “validating-on-ok” style. In fact, product quality software should
all be programmed with “continuous validation.” Section 6.3 will discuss issues on how to
properly program with the style.

So much for the MFC preliminaries. More information on the architectural design of
MFC can be found from the article [DiL95]. For information on the detailed design, one
can consult the book [SW96].

6.2 Avoiding CWnd::GetDlgltem

MFC supports a style of dialog programming without creating control variables. Instead,
one obtains an MFC object for the underlying control through the method GetDlgltem,

with a control ID as the argument:

CButton * aButton = (CButton *)GetDlgItem(IDC_BUTTON) ;

if (aButton->GetCheck( ) == BST_CHECKED)

IDC_BUTTON is the control ID for a button in the dialog, and BST_CHECKED is a
constant that represents the state that a button is checked. CWnd::GetDlgltem returns a
pointer to CWnd. A downcast to “CButton *” is then applied to the return value. After
getting the pointer to the MFC object in the variable aButton, one can send it button-
specific messages. For example, the code above sends the message GetCheck to determine
whether the button has been checked.

Programming in the GetDlgltem style is all right as long as one programs only simple
dialogs, which may, for example, manage only a few controls. In fact, many introductory
MFC programming books use GetDlgltem to illustrate how to program (simple) dialogs.
Unfortunately, real world dialogs are usually much more complex than that; it is normal
for one dialog to have tens of controls in it. Furthermore, sometimes using GetDlgltem can
pose a severe maintenance headache.

The problem happens when your program has many GetDlgltem casts and you want to
subclass a control. You then will have to find all uses of the control obtained by GetDlgltem
and change the casts to the new class. Say, for example, you have created a subclass,

CMyButton, of the CButton class, then you will have to find all the GetDlgltem and change
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the target type of the casts from “CButton *” to “CMyButton *.” It can be time-consuming
to make such changes. However, if you use control variables, all you have to do is to change
the variable type in the declaration, and all the overloading and inheritance work correctly.
Much better. This is how C++ is supposed to be used.

Avoiding CWnd::GetDlgltem can be enforced by FCL as follows:

1 Cwd as class("Cwd");

2 CDialog as class("CDi al og");

3 DerivedDi al og as descendant (CDi al og) ;

4 || GetDigltemas function("GetD gltent', CWd);

5 // CMMd * CWd::CGetDigltenm(int); CWMd * CMd:: GetDiglten(int, HAD);
6 CetDigltemas {fct:function(CwWd) | nane(fct)="CetDl gltenr and

7 si zeof (paranm(fct))=1};

8 forall derivedD al og being DerivedDi al og hol ds

9 forall fctCall Exp bei ng expC osure(derivedDi al og) hol ds

10 not function(fctCallExp) = CGetDl gltem

This specification requires that no derived classes of CDialog invoke the method “CWnd
* CWnd::GetDlgltem(int).” As shown at line 5, the class CWnd has two overloaded Get-
Dlgltem methods. Thus, had we defined the set GetDlgltem as line 4, the set would have
contained two elements, and the negation at line 10 will always yield true regardless whether
there are invocations of the method GetDlgltem. The above specification fixes this problem
by defining the set GetDlgltem through set comprehension; since we know that the class
CWnd defines two GetDlgltem methods with different number of parameters, it suffices to
define the set as containing methods with the name “GetDlgltem” and only one parameter.
Effectively, this will yield a singleton set with “CWnd * CWnd::GetDlgltem(int)” as its
only element.

Note that the equality test at line 10 is a shortcut for:

1 forall getD gltembeing GetD gltem holds

2 function(fctCall Exp) = getDi gltem

This effectively requires GetDIgltem to be a singleton set.

6.3 Continuous Validation in Dialog

When programming in the style of continuous validation, based on the current values of
some other controls, one often wants to enable or disable certain controls or turn them into
visible or invisible states. There are two ways to do this: One is to implement the logic in
the code that responds to events such as button presses, ListBox selections, and so on. That
is, put the logic in the event handlers. The other is to put the control manipulation code in
precisely one place in the program. The “event handler” approach can create code scattered
all over the place and thus hard to change and maintain. In the following, we first use an
example illustrating why the former approach is a bad idea and then show how to improve
it by localizing the code. Finally, we analyze the main characteristics of the localized code

and capture them with FCL.
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Now, assume we have a dialog with 4 controls: one button ¢c_OK, two edits, c_Text and
c-Count, and one check box c_Option, and we want to handle the updating of c_.OK and

c-Count based on the following requirements:

e ¢_OK is disabled if c_Text is empty.
e ¢_OK is disabled if ¢c_Option is selected and c_Count is 0.

e c_Count is enabled if and only if ¢c_Option is checked.

The event handler solution is as follows:

void CMyDialog: :0nChangeText ()

t CString s;
c_Text.GetWindowText (s);
s.TrimLeft(); // ignore leading space
if (s.GetLength()==0)
c_OK.EnableWindow (FALSE) ;

void CMyDialog: :0nChangeCount ()

CString s;

c_Count.GetWindowText(s);

s.TrimLeft(); // ignore leading space

if (s=="0" && c_Option.GetCheck()==BST_CHECKED)
c_0OK.EnableWindow (FALSE) ;

void CMyDialog::0nChangeOption()

BOOL enable = (c_0Option.GetCheck()==BST_CHECKED) ;
c_Count .EnableWindow(enable) ;
CString s;
c_Count.GetWindowText(s);
s.TrimLeft(); // ignore leading space
if (s=="0" && enable)
c_OK.EnableWindow (FALSE) ;

This code is hard to write correctly, not to mention maintaining it. The disabling of
¢_OK depends on the state of all other three controls; thus all of the three event handlers
above have to check whether c_OK should be disabled. If we want to add another condition
to c_OK, then we shall have to revisit all three places. This is error-prone: one may miss
updating some of the places or mess up with the computation of the enabling condition. We
need a better strategy to deal with this kind of code.

One alternative is to encode each enabling condition into a single compound boolean
expression and allow each control to have only a minimum number of “EnableWindow”
and “ShowWindow.” Normally, at most one instance of “EnableWindow” and at most one
instance of “ShowWindow” should suffice. But there can be exceptions: for example, a

simple if-statement may have two instances, one in each branch.
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Furthermore, all invocations of “EnableWindow” and “ShowWindow” should be local-
ized in one single place. To localize the control updating logic, a dialog can have a method,
say, “updateControls,” in which all state changes on all controls are computed. The short-
coming of this scheme is that we may end up with some control handlers (for example, those
for checkboxes) doing nothing but calling “updateControls.”

When the state of one control depends on one or more other controls, the state of the
controls affecting it should be directly accessed only at the time the computation is done.
Always compute from the first principles, every time; every variable that can affect the state
is computed when needed, not at any instant before it is needed, and no references to any
boolean variables set magically from some other functions are allowed.

The alternative implementation is as follows:

void MyDialog: :0nChangeText ()

{
}

void CMyDialog: :updateControls()

updateControls();

BOOL enable;

// c_OK
CString s;

c_Text.GetWindowText(s);

s.TrimLeft(); // ignore leading spaces

enable = s.GetLength() !'= 0 &&
(c_Option.GetCheck() == BST_UNCHECKED | |
c_Count !'= "0");

c_0OK.EnableWindow(enable) ;

// c_Count
enable = c_Option.GetCheck()==BST_CHECKED;
c_Count.EnableWindow(enable) ;

x_Count.EnableWindow(enable); // x_Count is the caption of c_Count

//

Now if we want to add or change a condition to c_.OK, all we have to do is to concen-
trate on the first assignment to the variable enable. That everything is physically centered
together makes changes easier. This is a much better approach.

The dialog should conform to three constraints: (1) minimizing the number of invocations
of “EnableWindow” and “ShowWindow,” (2) always computing the condition directly from
the state of the controls, and (3) localizing the calls to one single place. Ideally, we should
enforce all three of them. In the following, we shall show a specification of (3) in FCL and
then explain why we leave the first two not enforced.

1 // Based on the essay ‘‘Dialog Box Control Managenent’'’' by Joseph Newconer

2 |/ Revision: all "Enabl eWndow' and "ShowW ndow" of each control nust be
3 // in the same routine.
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4
5 wi ndowCl asses as descendant (cl ass("CWd"));
6 Dial ogs as descendant (cl ass("CDi al og"));
7
8
9

forall subclassO Dial og bei ng Di al ogs hol ds

[
10 Enabl eW ndowOr ShowW ndow as

11 {exp: expd osure(subcl assO Di al og) |

12 [recei ver Type as type(receiver(exp));]

13 ((nanme(exp) = "Enabl eW ndow" or nane(exp) = "Showw ndow")
14 and

15 bel ongsTo(recei ver Type, w ndowCl asses))

16

17 ]

18 forall el, e2 being Enabl eW ndowOr Showw ndow hol ds
19 (

20 (el = e2) or

21 (not refd(receiver(el)) = refd(receiver(e2)) or
22 unit(el) = unit(e2) or

23 not (println(el) and println(e2))

24

25 )

One special case of constraint (1) is to require that for each control, there be at most
one instance for each of the two methods; this effectively forces everybody to program in
the idiom embodied in the above improved implementation, that is, do not call the methods
until a final enabling condition is completely computed. But sometimes this may be too

restrictive; it would be reasonable for one to write code as follows:

c_0OK.EnableWindow (TRUE) ;

if (c_Option.GetCheck()==BST_CHECKED &&
s_Count == "0")
c_0OK.EnableWindow (FALSE) ;

if (s_Text.GetLength()==0)
c_OK.EnableWindow (FALSE) ;

Constraint (2) is an example that we would like to enforce but cannot with FCL. It
might become feasible if we add to FCL more sophisticated analyses of data dependences
such as Aspects [Jac95]. But in the context of this example, we feel that enforcing (3) alone
yields the best benefit versus cost ratio. Following it, one is getting on the right track for
dealing with the distributed update problem. Once one gets the structure right, chances are

much lower for them to mess up with (1) and (2).

6.4 Avoiding CWnd::UpdateData(BOOL) in Dialogs

A dialog is a control that can contain a set of other controls, allows a user to edit the data
associated with the controls, and provides validation to the user during the interaction.
Designing dialogs involves two aspects: a way to transfer data items back and forth between
data members and the controls and a mechanism to validate the data. Figure 6.3 depicts

MFC(C’s design for dialogs.
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CWnd

+Updat eDat a( bSaveAndVal i dat e: BOOL=1): BOOL
#DoDat aExchange( pDX: CDat aExchange *): void el = = = = = = = = = =

try{pDX->m pDl gWwd = this;

pDX- >m bSaveAndVal i dat e = bSaveAndVal i dat e;
DoDat aExchange( pDx) ;

return 1;}

CDiang catch(...){...return 0;}
+Onl ni tDi al og(): BOOL i .
#OnCk(): void | \
#OnCancel (): void | |
+EndDi al og(nResul t:int): void v
1
Vi | Updat eDat a( FALSE) ; ﬁ

i f (UpdateDat a( TRUE))
EndDi al og(1);

Figure 6.3: DoDataExchange

6.4.1 CWnd::DoDataExchange

The core of the design is a virtual method CWnd::DoDataExchange that is based on a
set of so-called “data exchange and data validation routines.” Data exchange routines
are prefixed with “DDX_,” and data validation routines “DDV_.” For example, “void
DDX_Text(CDataExchange* pDX, int nIDC, CString& value)” is a data exchange routine
that transfers a string between the parameter, value, and a control with a control ID nIDC.
The parameter pDX is a pointer to an object that carries the context information for the con-
trol. The class CDataExchange will be explained later. “void DDV_MinMaxInt(CDataExchange*
pDX, int value, int minVal, int maxVal)” is an example of data validation routines: this
routine checks that the parameter, value, falls between minVal and maxVal inclusively;
otherwise it will pop up a window to inform the user.

A specific subclass of the class CDialog that has only one edit as its child control, say,

CModalDialog, can then override DoDataExchange. Its code may look like as follows:

void CModalDlg: :DoDataExchange(CDataExchange* pDX)

{

CDialog: :DoDataExchange (pDX) ;

DDX_Control (pDX, 1001, c_MyEdit);
DDX_Text (pDX, 1001, m_MyEdit);
DDV_MaxChars (pDX, m_MyEdit, 4);

In this code, DDX_Control is a data exchange routine mapping the control variable c. MyEdit
to a Windows control with a control ID 1001. Next, DDX_Text transfers the string be-
tween the edit and the member variable m_MyEdit, which is of the CString type. At last,
DDV_MaxChars, when pDX->m_bSaveAndValidate is true, validates if the length of the
string is less than or equal to 4.

It is up to the programmer to decide which DDX and DDV routines they want to use
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in the DoDataExchange method. Particularly, since the capability of both DDV routines
and the error handling is quite primitive and inflexible, one may elect not to use the DDV

mechanism at all.

6.4.2 DDX and DDV Routines

The implementation of all DDX and DDV routines exploits the helper class CDataExchange

shown in Figure 6.4:

e m_bSaveAndValidate: if !m_bSaveAndValidate, then loads the data state into the
controls; if m_bSaveAndValidate, then validates and sets the data members from the
controls. Validation occurs only when m_bSaveAndValidate is true.

e m _pDIlgWnd: The dialog that contains controls. The dialog is needed to get the control
from a given control ID.

e PrepareCtrl and PrepareEditCtrl: Remember the current control that is exchanging
data. The handle will be used to set the focus if a validation fails. PrepareCtrl is used
for nonedit controls and PrepareEditCtrl is used for edit controls.

e Fail: If there is an input error, this routine will be called, bringing up a message
box to alert the user. This routine will restore the focus to the last control (the one
referenced by PrepareCtrl/PrepareEditCtrl) and throw an exception. This member
function may be called from both DDX_ and DDV_ routines.

CDataExchange

+m bSaveAndVal i dat e: BOOL
+m pDl gWwd: Cwhd *
+PrepareCrl: HAND
+PrepareEditC&rl: HWD

+Fail (): void

Figure 6.4: Class CDataExchange

6.4.3 CWnd::UpdateData

CWnd::UpdateData, as shown in Figure 6.3, does the initialization and exception handling
around the call to CWnd::DoDataExchange. It takes a boolean as its parameter. If the
parameter is true, then UpdateData will transfer data from the controls to the member
variables and validate them; otherwise, it will transfer the data from member variables to
the controls. UpdateData returns 0 if there is an exception thrown by a data validation
routine; otherwise, it returns 1.

The class CDialog implements the standard behavior for dialogs. On the initialization of
a dialog, an initialization event is generated, and the corresponding event handler OnlInitDi-

alog will be invoked. OnlnitDialog calls UpdateData with false as the argument to initialize
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all the controls with the values of their corresponding member variables. A standard dialog
has both an ok button and a cancel button with OnOK and OnCancel as their respective
event handlers. Particularly, OnOk calls UpdateData to transfer data from the controls to
the member variables. If the transfer succeeds, that is, no exceptions are thrown by any
DDYV routines, then the dialog will be closed off by calling the EndDialog method.

So much for dialog design.

6.4.4 Why One Should Avoid CWnd::UpdateData

In dialog programming, data validation can be done in two ways: the simple, “validating-
on-ok” style and the sophisticated, continuous validation style. MFC fully supports the
former with the design presented before. Customizing the design to implement continuous
validation is also possible, but requires more work on the part of the programmer.

In practice, many programmers have trouble with implementing continuous validation
for several reasons. For one thing, Microsoft does not adequately document the correct way
to work with controls; thus it is left up to the programmers to somehow magically infer
how to do it correctly. For another, many MFC programmers do not fully understand the
design of the dialog, and thus cannot correctly extend it. Even worse, the “Microsoft model”
(simple validation) is designed in such a way that one does not have to fully understand
the above design before using it. One gets so used to the simple model that they are not
prepared well enough to transit to the sophisticated one. For example, one mistake that
many make is to call UpdateData(TRUE) to get the current values of the controls. In fact,
assigning control variables to controls can eliminate calling UpdateData since one can access
the values through the control variables.

Of course, the Microsoft model has its use in certain simple scenarios, provided that one
is satisfied with the error handling provided by the default implementation. Sometimes one
may need a dialog only to obtain some data from the end user even without validation,
then the default model is certainly adequate for the purpose. In either case, however, no
UpdateData(TRUE) is needed to be called in any subclasses of the CDialog class.

Therefore, we conclude that one should avoid calling UpdateData(TRUE), and that

calling it is a sign of trouble.

6.4.5 “Avoiding CWnd::UpdateData” in FCL
1 // Based on Dr. Joseph Newconer’s M-C essay ‘ Avoi di ng Updat eDat a’

2

3 DerivedDi al og as descendant (cl ass("CDi al 0g"));

4

5 forall derivedD al og being DerivedD al og hol ds

6 [

7 doDat aExchange as functi on("DoDat aExchange", derivedDi al og);
8 cal | M-CDdv as si zeof (doDat aExchange) =1 and

9 exi st ddv bei ng exp(dobDat aExchange) hol ds

10 regex("DDV.. +", nane(ddv));

11 al |l Meth as function(derivedDi al og);
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12 onCk as function("OnCK", derivedD al 0g);

13 ]

14

15 (not cal |l M-CDdv or sizeof (onCk)=0) // call MFCDdv => si zeof (onCk) =0
16 and

17 not exist e being exp(all Meth-onCk) hol ds

18 (

19 name( e) ="Updat eDat a"

20 and

21 [argunent as nenber(arg(e),0)]

22 (

23 nanme(argunment ) ="1" or nane(argunent)="true"

A few comments are in order:

e This specification exemplifies how to use the FCL function “function.” This function
is overloaded, with one version being a constructor that returns a set of functions
sharing the given name and the other returning a set of functions contained by a given
program unit. Lines 7 and 12 define two singleton sets, ‘doDataExchange’ and ‘onOk,’
respectively. They apply the constructor version whereas the one at line 11 applies
the non-constructor version.

e The FCL variable ‘callMFCDdv,” defined at lines 8 through 10, is of type boolean.
This is an example where one can define a variable for a formula, because FCL allows
for treating formulas as expressions. The definition also makes use of ‘regex,” the
regular expression operator of FCL. In this case, it matches any function call whose
name starts with “DDV_.”

e Note that the ‘exp’ operator at line 17 is applied to a set of methods instead of an
individual method.

e ‘argument’ at line 21 represents the first argument of expression ‘e’; ‘arg(e)’ returns
the sequence of arguments of ‘e’, and ‘member’ then returns the one at index 0.

e TRUE is a macro representing ‘1.” The formula at line 23 checks whether ‘argument’

is ‘1’ or ‘true.’

6.5 Use the Combo Box Controls Correctly

A combo box control can display a list of strings, each of which has an associated data item
and an index identifying its position in the list. A user can select a certain item from a
combo box by clicking on its corresponding string.

Figure 6.5 depicts a relevant part of the design. Some brief specifications for the methods

follow:

e GetCount: Returns the number of items in the combo box.

e GetCurSel: Returns the index of the current selected item.
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CComboBox

+CGet Count (): int
+CGet CurSel (): int
+Set CurSel (): int

+AddString(str:CString &: int

+CGet LBText (nl ndex:int,str:CString &: void
+Cet | t enDat a( nl ndex:int): DWORD

+Set | t enDat a( nl ndex: i nt, dw tenDat a: DAORD) : i nt

CString
+LoadStri ng(nl D: U NT): BOOL

Figure 6.5: Class CComboBox

SetCurSel: Sets the current selected item.

AddString: Adds a string into the list and returns its index.

GetLBText: Retrieves the string of the nIndexth item and returns it with str.
SetItemData: Sets the data associated with the nIndexth item.

GetltemData: Gets the data associated with the nlndexth item.

9

The IDE for MFC, Microsoft Visual Studio, supports a notion of “resources;” any com-

pilation time constants can be treated as

‘resources.” For instance, both icon images and
constant, strings can be resources. Each resource belongs to a specific category and is as-
signed a constant ID. Each type of resource has a special set of APIs to load the real resource.
For example, given the ID of a string resource, CString::LoadString effectively initializes a
CString object with the string corresponding to the ID.

A tool of the IDE called “resource editor” can help set up the list of strings for a combo
box. For example, suppose that one wants to program a combo box with the following color
names: Black, Blue, Red, and Green. With the resource editor, one can simply type in these
strings; at runtime MFC will automatically load the strings into the combo box. The tool
saves the programmer from explicitly writing code for loading the strings.

With the support of the resource editor, many programmers have developed some wrong
ways of programming combo boxes, ways that can cause problems for future maintenance.
Their programs depend on either the item index or the item string, both of which can
subject to future change. When such change happens, one is then forced to inspect and
adjust existing source code to make sure that the software will still work. Such adjustment
can be both tedious and error-prone.

The following subsections will use the color example to show first two typical wrong
ways of programming combo boxes and then the correct way. FCL specifications are then

written to help reveal the errors.
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6.5.1 “Order Sensitive”

One kind of solution is exemplified by the following code:

switch(c_ComboBox.GetCurSel())

case 0: // black
color = RGB(0, 0, 0);
break;

case 1: // blue

color = RGB(0, 0, 255);
break;

This solution implicitly associates each index with a certain color, that is, 0 with Black, 1
with Blue, and so on.

The problem is that it is “order sensitive:” if later on one decides to sort the strings or
insert some new colors into the list, then it is highly possible that the index-to-name map
will have to change. The only way to make the change is to examine the source code line
by line. Since examining source code can be tedious and error prone, a better approach is

needed.

6.5.2 “Language Sensitive”

Another kind of solution is as follows:

CString s;
int index = c_CComboBox.GetCurSel() ;

c_CComboBox.GetLBText (index,s) ;
if (s == CString("Black"))

color = RGB(0, 0, 0);
else

if (s == CString("Blue"))

color = RGB(0, 0, 255);

e T TSN

This solution has the benefit that one does not have to read the source code again if they
add or re-order the strings, since the code does not depend on the index for the meaning of
the item.

But this code has a “language sensitive” problem. If, for example, one is asked to port
this software to German, then one will have to find from the source all the strings for colors
and change them to the corresponding German words. This change may be easier to make

than the last one, but another solution can make all these changes much easier.
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6.5.3 The Right Solution

The key to the right solution is to associate data with each item and use the data, rather
than the index or string, to determine which item the user wants to select from the list. In
the following, a sample implementation is provided.

First, the string-to-data pairs can be established by the following data structure:

typedef struct IDData {
UINT id;
DWORD value;

}s

IDData colors [] = {
IDS_BLACK, RGB(0, 0, 0),
IDS_BLUE, RGB(0, 0, 255),

0,.6.// end of table
}s
Note that the IDSs are for string resources defined by the IDE. This solution has a single
point of definition for all values in the combo box. Thus, to add or delete items, one needs
to look at and change only one place.
The next step is to initialize the combo box with the above data. This can be done

through a method of the subclass of CComboBox, defined as follows:
void CIDCombo::load(IDData * data)

for(int i = 0; data[i].id !'= 0; i++)

{ CString s;
s.LoadString(data[i].id);
int index = AddString(s);
SetItemData(index, data[i].value);

}

where CIDCombo is a subclass of CComboBox.

And make sure to call CIDCombo::load from within the event handler OnlnitDialog:
BOOL CMyDialog::0nInitDialog ( )

c_Colors.load(colors);

)

One can create the method CIDCombo::GetColor to get the color value of the current

selected item:
COLORREF CIDCombo: :GetColor()

{

int sel = GetCurSel();
if (sel == CB_ERR)

return RGB(0, 0, 0); // or other suitable default value
return GetItemData(sel);

}
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Another method CIDCombo::Select is needed to select an item:
int CIDCombo: :Select (DWORD value)

{
for(int i = 0; i < CComboBox::GetCount(); i++)
{ /* compare */
DWORD v = CComboBox: :GetItemData(i);
if (value == v)
{ /* found it */
CComboBox: :SetCurSel(i);
return i;
} /* found it */

CComboBox: :SetCurSel(-1);
return CB_ERR;

}

This ends our presentation of the right solution.

6.5.4 Combo Box Programming in FCL

One has to be selective when writing FCL specifications. Usually, many details can be
specified and it is up to the specifier to choose the “appropriate” constraints on the structure.
The specifier has to weigh all the candidates and choose only those that are most likely to
reveal errors. Sometimes one specifies against specific symptoms with the expectation to
catch recurring, common mistakes. Other times one specifies the necessary features that a
correct solution must possess, expecting to detect errors of omission.

The following two specifications are targeted at specific symptoms. The first one requires
no invocations of the GetCurSel method on any combo box whose return value is compared
with something else to make a decision. If otherwise such a code pattern does appear, then
the programmer must have assigned some meaning to the offset, which is not desirable. The

specification follows:

1 // Based on Dr. Joseph Newconer’s M-C essay ‘' Conbo Box Initialization’
/1 In any derived classes of CDialog, there nust not be such patterns:
/1 conparing return value of CConboBox::GetCurSel with constant integers.

3
4
5 DerivedDi al og as descendant (cl ass("CDi al 0g"));
6 defaul t Combo as cl ass("CConboBox");

7 DerivedConboBox as descendant (def aul t Conbo) ;

8

9 forall derivedD al og being DerivedDi al og hol ds

10 not exists exp being expC osure(derivedDi al og) hol ds

11 (nanme(exp) ="Get Cur Sel " and

12 bel ongsTo(type(receiver(exp)), DerivedConboBox) and
13 exi st path bei ng downPat h(exp) hol ds

14 exi st conpExp being path hol ds

15 (i sBranch(conpExp) and dep(conmpExp, exp)))

Note the two predicates isBranch and dep: isBranch determines whether the parameter
expression is a branch condition, and dep determines whether the value of the first parameter
depends on the value of the second.

Similarly, the following specification requires the control flow of the program to not

depend on the display strings:
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/1 In any derived classes of CDialog, there nust not be such patterns:
/1 conparing text returned by CConboBox:: Get LBText with constant strings.

DerivedDi al og as descendant (cl ass("CDi al og"));
def aul t Conbo as cl ass( "CConboBox");
Deri vedConboBox as descendant (def aul t Conbo) ;

forall derivedDi al og being DerivedDi al og hol ds
not exists exp being expC osure(derivedDi al og) hol ds
(nanme(exp) ="Get LBText " and
bel ongsTo(type(receiver(exp)), DerivedConboBox) and
exi st path bei ng downPat h(exp) hol ds
exi st conpExp being path hol ds
(i sBranch(conpExp) and dep(conmpExp, exp)))

In contrast to the above two, the following specification constrains the structure of the

right solution. It requires all the classes of the combo boxes contained in a dialog to call

both the GetltemData method and the SetItemData method, and the dialog to initialize

the combo box by calling one of its methods in the OnInitDialog method.

©CoO~NOODWNE

/1 In any derived classes of CConboBox, there nust be expressions of both
/] CetltenData and SetltenData

DerivedDi al og as descendant (cl ass("CDi al og"));
def aul t Conbo as cl ass("CConboBox");
Deri vedConboBox as descendant (def aul t Conbo) ;

forall derivedDi al og being DerivedDi al og hol ds
forall aVar being var(derivedDi al og) holds
[ varType as type(aVar)]
(
not bel ongsTo(var Type, DerivedConboBox) or
exi st onlnitDial og being function(derivedDi al og) hol ds
(
name(onl nitDi al og) = "OnlnitDial og" and
exist fctCall being exp(onlnitbhi alog) holds
(
refd(receiver(fctCall)) = avar and
exi st setltenData bei ng exp(function(fctCall)) holds
name(set | tenDat a) ="Set | t enDat a"
)

)

and
exi st getltenData bei ng expC osure(var Type) hol ds
nanme(get|tenData)="CGetltenData"

Even if the implementation of a combo box class satisfies this specification, it is not

guaranteed to be correct: it may contain other kinds of errors. What the specification is

interested in is to detect the opposite: when it is not satisfied, chances are high that the

implementation has an error; FCL helps us catch such errors.

6.6

Constraints on Control Flow

Suppose you have a dialog that contains a text control and want to resize the text control

whenever the size of the dialog changes. In MFC, this can be done by subclassing the

class CDialog and in the subclass, implementing the message handler OnSize for message

WM _SIZE:
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CMyDialog: :0nSize(...)
CDialog: :0nSize(...);

// c_text is a control in the dialog
c_text.SetSize(...);

This implementation is problematic. When running it, you will find that the program
crashes in the middle of an ASSERT statement, which requires that the control object
c-text must have a control associated with it. If you trace the program, you will find that
the ASSERT statement comes from the SetSize call.

The problem is because of a mismatch between MFC and the underlying Windows. A
dialog can receive the WM _SIZE message in two states: (1) where the dialog is created but
some of its child windows have not been initialized yet, and (2) where both the dialog and
all of its child windows are properly initialized. What has happened is that at state (1), a
WM_SIZE is generated and dispatched to the dialog, and the corresponding event handler,
OnSize, is called. But since the c_text control has not been properly initialized, the call to
SetSize will cause the assertion failure.

The solution is to distinguish the two states of the dialog. One can set up a condition
that indicates whether the controls are ready and guard all the control operations by that
condition. Usually a member of int or boolean in the dialog class would suffice. It should
be initialized as false in the constructors and set to true at the end of the OnlnitDialog
method, since by then all the controls of the dialog should have been properly initialized.

Thus we can write a specification to detect the key features of this solution:

1 // Assertion failure caused by the nismatch between W ndows and MFC

g Predefi nedDi al og as [cl ass("CComonDi al og"), cl ass("CPropertyPage")];

4 DerivedDi al og as subcl ass(cl ass("CDi al og")) - Predefi nedD al og

5 cWhdSet as descendant (cl ass("CWwd"));

g forall derivedDi al og being DerivedDi al og hol ds

g OnlnitDialog as { fct:function(derivedD al og)| name(fct)="OnlnitD al og"};
11 Cstor as { fct:function(derivedDi al og) | name(fct)=nanme(derivedDi al og) };
13 OnSi ze as { fct:function(derivedDi al og) | nane(fct)="OnSi ze" };

15 expOf OnSi ze as union( { fct:OnSize | true | exp(fct) } );

17 ctrl Exp as { exp :expOf OnSi ze

18 [receiver as receiver(exp); type as type(receiver);]

19 (bel ongsTo(type, cWwdSet))

20 h

22 bool eanVar as { v: var(derivedDi al og)

23 [type as type(V)]
24 (nane(type)="bool ean" or nanme(type)="int")

(
28 si zeof (OnSi ze) =0
29 or
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30 exi st aBool being bool eanVar hol ds

31 (

32 /'l assigned in both OnlnitD al og and Constructors
33 forall fct being OnlnitDial og+Cstor hol ds

34 exi st expr being exp(fct) holds

35 (var (expr) = aBool and nane(top(expr))="=")

36 and

37 forall fct being OnSize holds // control operations guarded
38 [control | edExp as union({ expr: exp(fct) |

39 var (expr) = aBool and isBranch(parent(expr)) |
40 uni on( downPat h( parent (expr)))

41 Pk

42 1

43 subset (ctrl Exp, controll edExp)

44 )

45 )

A brief explanation for the specification follows. The main part runs from line 28 to line
44. Line 28 says that if the checked program does not define the OnSize handler, then the
specification is satisfied; otherwise, proceed. The rest of the specification, lines 30 through
44, says that both OnlInitDialog and the constructors must have at least one assignment
statement that involves a member of boolean or int and that all the control operations in the

OnSize method must be guarded by a predicate expression that involves that data member.

Note that the specification requires not only that there be member variables of appro-
priate types, but also that there exist at least one such variable being changed in both
the constructors and the OnlnitDialog method. We should know some subtleties with this

specification. Let us explore two alternative specifications.

The simplest one would be to check only that the class has the required condition vari-
able. In general, any primitive types can be used as the type of the variable. In practice,
however, normally only int and boolean would be considered; even it is acceptable by the
compiler, it would be rather unusual to use a char to represent a boolean. Even such a
simple specification can be useful: when using dialogs, often one does not define member
variables at all, and a miss of such a variable will indeed be an error. Of course, if one does
define other member variables in the dialog class, this specification risks treating member
variables for other purposes as the condition variable and thus generates false negatives.

Clearly, the situation calls for engineering judgment for the right decision.

The other alternative is to check only that the member variable is changed in both the
constructors and the OnlInitDialog method. In fact, compared with the last one, it provides
a better chance of detecting the error of missing the definition of the condition variable.
Since the OnlnitDialog method is only for initializing the dialog, application logic that
has nothing to do with GUI normally would not get into this method. But the condition
variable should be used here. Therefore, it is less likely to mistakenly treat variables for
other purposes as the condition variable; thus a violation of the specification has a high

chance of revealing a genuine error.
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One concern for this alternative goes like this: “what if, instead of changing the variable
directly by itself, OnInitDialog calls another method that indirectly changes the variable?”
This is certainly a valid concern; if that does happen, one can use the expClosure operator
of FCL, which returns the set of expressions that are statically reachable from a certain
method. On the other hand, for this example this is unlikely; thus the specification should
remain as it is. Clearly, again, engineering judgement is needed here.

However, the two alternatives fail to detect an error where one does define a condition
variable but does not guard all the control operations with it. Our specification considers
this. So much for the two alternatives.

FCL specifications must be sufficiently strong to detect as many errors as possible, but
must not be so strong as to report false positives (spurious errors). One example is the
definition of the set controlledExp, from line 38 to line 41, representing the set of guarded
control operations (to be more precise: all the control operations that execute after the
first evaluation of the condition expression). It would be too restrictive to define a guarded
control operation as one guarded by a condition expression consisting of only the boolean
itself, since it is possible for one to define the meaning of the boolean as “not initialized”
rather than “initialized.” In that case, the guard would then have to be the negation of
the boolean. The specification has been relaxed to cover both cases. On the other hand, it
would be unconceivable to implement the logic in idioms other than these two. Hence the
current specification.

Strictly speaking, the current specification is not sufficient either. It assumes that code
for all control operations appears in the OnSize handler. It may be so for most cases, but
it is also possible for one to create another method to separate the code for “updating
controls,” then this specification would fail to check that the control operations there are
also properly guarded. The aforementioned call graph operator ‘expClosure’ might come to

the rescue in this case.

6.7 Optional Features

Optional features are logical functionalities provided by the framework but not mandatory
for all applications. In general, programmers may have two types of problems with optional
features: how to find them and how to correctly use them. FCL can help with the latter
type of problem.

To apply FCL to a certain optional feature, one needs first to know whether the feature
is indeed used. With that information, FCL can then check whether the feature has been
correctly used. Logically, this is a pattern of the form F; => F,, where Fj is a formula
indicating that the feature is used, and F3 the constraints to which the solution has to

conform.
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There are two possible ways of getting Fi: One is to ask the programmer to provide
the list of features that he thinks his application is using, and the other is to find some
code patterns whose appearance can be used to infer safely that the feature is indeed used.
Since the latter method is less demanding of information, normally it should be preferred;
however, not all features possess the necessary code patterns for FCL to leverage; thus
sometimes user input may be needed as well. The following two examples illustrate the

respective types of optional features.

6.7.1 Enabling/Disabling ESC and RETURN Keys

It is common in GUI programming to provide multiple ways of issuing a command, for
instance, through a button, a menu item, a hot key, and so forth. In particular, a dialog
can be terminated in three ways: through the ok and cancel buttons, through the close icon
provided as part of the Microsoft user interface standard, and through the ESC and ENTER
keys.

CDialog

+PreTransl at eMessage(pMsg: MSG *): bool ean
+OnK(): void e e e e e e e e e e mm - =
+OnCancel (): void \Vi

i.f.(pMsg->h\Md is an edit &&
pMsg- >nessage i s WM KEYDON &&
pMsg- >WParam i s ESC) {
: SendMessage( W COMMAND, | DCANCEL, O0);
CMyDialog return TRUE;

+OnOK(): void
+OnCancel (): void

f e e e mm— = - = = = =

CWDi al 0g: : OnOK(){

i:M/Di al og: : OnCancel () {

Figure 6.6: Disabling ESC and RETURN Keys in a Dialog

Figure 6.6 depicts the relevant design. The OnOK and OnCancel methods are the
corresponding event handlers for pressing the ok and cancel buttons. PreTranslateMessage
is a virtual method that can be overridden to pre-process a message; only when the method
returns true will the message be further passed on to the message dispatch mechanism.
By default, CDialog::PreTranslateMessage intercepts key presses such as ESC and ENTER,
interprets them as requests to terminate the dialog, and invokes the corresponding event
handlers.

At least two solutions can prevent the ESC key and the ENTER key from terminating
a dialog, as shown in Figure 6.6. One solution is to (1) define two empty event handlers for
the ok and cancel buttons, which are provided as default by the GUI editor, and (2) remove
the two buttons from the dialog. This works because of polymorphism: both OnOk and
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OnCancel are virtual methods; thus when ESC and ENTER, are pressed, their corresponding
empty versions of handlers will be executed, which effectively disables them.

The other solution is through overriding PreTranslateMessage in the CMyDialog subclass
and checking the message represented by the pMsg parameter. If the message is an ESC
key or an ENTER key, then the method returns false, and thus effectively consumes the
message without any effect. The shortcoming of this solution would be that it distributes
the termination logic into two places, which might cause a potential maintenance problem
in the future. Thus the first solution is preferred.

It is easy to write an FCL specification to detect the presence of the two empty handlers;

thus we omit it.

6.7.2 Enabling Tooltips

Tooltips is an example with a code pattern indicating that the tooltips feature is being
used. MFC Internally keeps track of when the mouse pointer enters or leaves the boundary
of a control. If the pointer stays within the control for over a certain amount of time,
a notification message will be generated and sent to the dialog that contains the control.
To respond to the notification, the dialog has to define its corresponding message handler
named “OnToolTipNotify.” Inside that method, one can prepare the tooltip text to be
displayed.

But to enable the tooltips feature for the dialog, one also has to call the EnableToolTips
method in the OnlnitDialog method. This is a programming obligation that many often

forget. The following FCL specification can be used to detect this error of omission:

1 DerivedD al og as subcl ass(cl ass("CbDi al og"));

2

3 forall derivedD al og being DerivedD al og hol ds

4

5 onTool Ti pNotify as { fct:function(derivedDi al og) |
6 name(fct)="OnTool Ti pNotify"

7 ;

8

9 onlnitDialog as { fct:function(derivedDi al og) |

10 name(fct)="0nlnitDi al og"

11 IS

12 ]

13 (

14 si zeof (onTool Ti pNoti fy)=0

15 or

16 sizeof (onlnitDialog) = 1

17 and

18 forall onlnitDi alog being onlnitDial og hol ds

19 exi st enabl eTool Ti ps bei ng exp(onlnitD al og) holds
20 (

21 name( enabl eTool Ti ps) ="Enabl eTool Ti ps"

22 and si zeof (arg(enabl eTool Ti ps)) =1

23 and

24 [theOnl yArg as nenber (ar g( enabl eTool Ti ps), 0)]
25 (nanme(t heOnl yArg) ="true" or nane(theOnl yArg)="1")
26 )

27 )
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In this example, the appearance of the OnTool TipNotify method is used to indicate that

the tooltip feature has been used.

6.8 The Windows Creation Methods

The class CWnd is the base class of all the MFC classes ‘wrapping’ Windows controls. It
defines three public methods for window creation, as shown in Figure 6.7. Among the
three methods, CreateEx; ! is the core. It calls the Windows API CreateWindowEx to create
the control object. It also implements the crucial mapping between the operating system
controls and C++ wrapper objects so that once the mapping is established, all messages
for the controls can be routed to the message handlers of the MFC subclasses rather than
the default message processing routines provided by the Windows operating system. Both

CWnd::Create and Cwnd::CreateExs eventually call CWnd::CreateEx; .

CwWhd

v BOOL Create(...) O |~~~ ~|CreateExi(...)

BOOL CreateEx1(...) N
BOOL CreateEx2(.) 0|

|
’

class €Wnd : public CCmdTarget
[ i

public: | .
| /IFor child'windows, views; panes etc
'\ virtual BOOL Create(LPCTSTR IpszClassName,
LPCTSTR IpszWindowName, DWORD dwStyle,
N const RECT & rect, CWnd * pParentWnd, UINT nID,
CCreateContext * pContext = NULL);
//Ad\ranceﬁ creation (allows access to extended style)
BOOL I\,réateEx(DWORD dwExStyle, LPCTSTR IpszClassName,
LPCTSTR IpszWindowName, DWORD dwStyle,
intx, int y, int nWidth, int nHeight, HWND hwndParent,
HMENU niDorHMenu, LPVOID IpParam = NULL);
BOOL CreateEx(DWORD dwExStyle, LPCTSTR IpszClassName,
LPCTSTR IpszWindowName, DWORD dwStyle,
const RECT & rect, CWnd * pParentWnd, UINT nID,
LPVOID IpParam = NULL);

Figure 6.7: CWnd::Create and the two overloaded CWnd::CreateEx

If a programmer subclasses the class CWnd, then each subclass must define at least
one public method directly or indirectly calling one of the three methods: CWhnd::Create,
CWnd::CreateEx;, or CWnd::CreateEx,. Furthermore, outside of the subclasses there must
exist invocations of at least one of the methods.

These constraints can be specified using FCL as follows:

1 // for child windows, views, panes etc

2 def create = CwWid:: Creat e(LPCTSTR,
3 LPCTSTR, DWORD,

IThe first CreateEz in Figure 6.7. We use subscripts to distinguish between the two CreateFEr.
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4 const RECT&,

5 CwWd*, U NT,

6 CCreateContext*);
7

8

/| advanced creation (allows access to extended styles)
9 def createl = CWid:: Creat eEx(DWORD, LPCTSTR,
10 LPCTSTR, DWORD,
11 int, int, int, int,
12 HWND, HMVENU, LPVQA D);

14 def create2 = CwWid:: Creat eEx(DWORD, LPCTSTR,
15 LPCTSTR, DWORD,

16 const RECT&,

17 Cwhd*, UINT,

18 LPVOD);

20 allCd asses as class(global);
21 newW ndows as subcl ass(cl ass("Cwd"));

23 not si zeof (newW ndows) > 0 or
24 forall class being newN ndows hol ds

25 |

26 creationMethods as {m function(class) |

27 exi st exp: expd osure(m holds

28 [fct as function(exp);]

29 (fct=createl or fct=create2 or fct=create)
30 b

31 ]

32 (

33 sizeof (creati onMethods) > 0 and
34 exist anotherC ass being all C asses - newW ndows hol ds
35 exi st exp being expd osure(anot herd ass) hol ds

36 [fct as function(exp);]
37 bel ongsTo(fct, creationMethods)
38 )

The first three statements of the specification are shorthands for the long method pro-

totypes.

6.9 Overriding CDocManager::DoPromptFileName

Figure 6.8 depicts the most important classes of MFC’s MDI (Multiple Document Inter-
face) architecture (the MFC variant of the MVC architecture [KP88]). The singleton class
CWinApp hooks up all aspects of an MFC-based application. The class runs the event loop-
ing logic; GUI messages due to user interaction first arrive at and are dispatched from this
class. The class CDocManager manages and coordinates the classes that implement doc-
uments. Particularly, each application contains a document manager to manage both the
types of documents that it supports and the documents currently opened by the application.

MDI standardizes the looks and feel of applications. In particular, each application can
have two menu items: “File/Open ...” and “File/Save as ...”. If either item is selected, the
standard behavior is to pop up a file dialog, allowing users to choose from a list of files.
It turns out that the virtual method CDocManager::DoPromptFileName(..., int IFlags, ...) is
responsible for popping up the dialog and displaying files according to certain criteria, which

are set up through the parameter IFlags. IFlags specifies the file filtering patterns using a
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CDocument * createDocument()

L.

CDocument

1
1
1
1
1
1
1
1
1
|
CView * createView() 1
|
1
|
1
1
1
1
1
1

CDocTemplate* m_pTemplate

| |
CDocManager (] CWinApp <<singleton>>
[ (v) Initinstance() ©-----
(v) BOOL 1 b DoPromptFileName(...)
DoPromptFileName(...) <! 1 S
[ CDocManager *
! m_pDocManager
1
1 |
e e e e = = =
MODEL
1
0.* ICMDIFrameWnd <<win>>|
CDocTemplate

CView * m_pViewActive

instantiate

c

AddDocTemplate

DocManager

An intermediate window
which contains multiple

MDIChildWnd widgets

\
\
\
\
\

1

v

CMDIChildwnd

E— Association through object pointers
Parent =+ - - -> child Association through parent-children relation maintained by Windows

<<singleton>> Each MFC based application has only one global object of CWinApp
<<win>> Wrapper class for Windows control

\
CView <<win>>
1>
P

Figure 6.8: Class diagram for the MDI architecture

combination of bit patterns. The sequence diagrams of Figure 6.9 depict how the method

is invoked in the two scenarios respectively.

Now, suppose that a framework user is asked to change the default file filtering pattern

for his specific application. In order to

1. Subclass the class CDocManager.

2. Override the DoPromptFileName method. The override should first change IFlags and

do so, he must:

then call CDocManager::DoPromptFileName.

3. Subclass the class CWinApp.

4. Override the CMyWinApp::InitInstance() method. The override should create an object

of CMyDocManager on the heap and assign it to the instance variable m_pDocManager

before call the AddDocTemplate method.

Figure 6.10 illustrates these constraints, where the class CMyDocManger is the subclass

of CDocManager, and CMyWinApp is the subclass of CWinApp.

The constraints can be specified with FCL as follows:

(
not si zeof ( DoPronpt Fi | eNane) =

©CoO~NOOUTO_WNPRE

10 (

CDocManager as cl ass("CDocManager");

CMWyDocManager as subcl ass(CDocManager) ;
DoPr onpt Fi | eNameOf DocManager as functi on( "DoPronpt Fi | eName", CDocManager) ;
si zeof (CMyDocManager) =1 or si zeof (CMyDocManager) =0;
forall docManager bei ng CWyDocManager hol ds
[ DoPronptFil eName as function("DoPronptFil eNane", docManager); |

1 or

exi st e being exp(DoPronptFi |l eNane) hol ds

11 DoPr onpt Fi | eNaneOf DocManager =f uncti on(e) and

12 [

13 | Fl ags as menber (par an( DoPronpt Fi | eNane) , 3) ;
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e + CDocMnoger :CWinApp : CDocManager

,,,,,,>51FileOpen

- CDocument
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) DoSave
DoPromptFileName onFileOpen
DoPromptHileName DoomptFleNae
g > OpenDocumentFile
‘
- Eventflow

— control flow
itaic  message handlers

2

Figure 6.9: How is DoPromptFileName invoked after choosing the “File/Open ..” or

“File/Save as ...” menu items

14 ar gFl ags as nenber(arg(e), 3);

]
16 dep(argFl ags, | Fl ags);

20 CWnApp as cl ass("CW nApp");

21 CWMYW nApp as subcl ass(CW nApp) ;

22 sizeof (CWW ndApp) =0 or si zeof (CWW nApp) = 1;
23 sizeof (CWDocManager) =0 or

24 sizeof (CWW nApp) =1 and

25 forall nyWnApp being CWW nApp hol ds

26 [ Initlnstance as function("Initlnstance", nyWnApp); ]
27 (

28 si zeof (I nitlnstance)=1 and

29 exi st e being exp(lnitlnstance) hol ds

30 [type as refd(menmber(arg(e),0));]

31 (nanme(e) ="new"' and type = CMyDocManager)

32 )

This example shows that sometimes a variation point can involve more than one point of
a framework. In particular, the variation point may be part of the behavior of two methods.
To elaborate it, one has to understand the surrounding context, that is, how these two
methods work in general, how the variation point works within them, and how to hook the
variant back into the framework. This is not a trivial task.

Furthermore, the current design of DoPromptFileName seems inadequate to support all
the customization that users may want to perform. It could be redesigned as a template

method design pattern [GHIV94] so that one can do either one of the following:
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CDocManager = A CWinApp

+DoPronpt Fi | eNane(...): BOOL #m pDocManager: CDocManager *

+lnitlnstance(): BOOL

CMyDocManager CMyWinApp

+DoPronpt Fi | eNane(...): BOOL +l nitlnstance(): BOOL

Figure 6.10: Overriding the method DoPromptFileName

e replacing the default dialog used to display files;
e changing IFlags;
e deciding whether the file filter pattern “*.*” is needed in a file dialog.

This example illustrates that frameworks may evolve even after they are used in production.

6.10 Enforcing Naming Conventions

The function regex has been added to FCL to express regular expression patterns on charac-
ter strings; thus FCL can also be used to enforce certain naming conventions. For example,

in MFC programming, one may require that the names of control variables be prefixed with

113 »” »”

c.” instead of “m_" and use “m_” only for value variables. Clearly this constraint can be

expressed with regular expression patterns.

6.11 Discussion

This section discusses the nature of the previous problems and put them into perspectives:

1. Lack of knowledge on the design of the framework

Learning to use a framework is not an easy task, and the devil is in the details.
The challenge stems both from the complexity of software in general and from the
difficulty of communication. This challenge is for both the framework developers and
the framework users. As exemplified by the examples in sections 6.4, 6.5, 6.6, 6.7.1,
and 6.9, documentation of the detailed designs can get fairly verbose. Framework
developers face the task of effectively documenting and communicating the design to
the users. On the other hand, to avoid the problems, users must know enough about
the details. This is a ramification of the essential difficulty of software.

The difficulty can be informally appreciated by counting the number of classes and
methods each design involves. Although this is not an objective means of measuring

design complexity, it seems sufficient to allow us to conclude that most of the designs
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are not as trivial as creating an object or calling an API and that the complexity of
the design is one of the main contributors to the problem of using frameworks.

Early reuse efforts focus mostly on libraries and generally do not pay off as much
as expected. The recent trend is to reuse architectures as a whole, which essentially
provide the contexts for reuse. As Johnson [Joh97] points out, “although a good com-
ponent library is a crucial companion to a framework, the essence of a framework is
not the component library, but the model of interaction and control flow among its

” Programmers have to learn how to live within the provided architectural

objects.
contexts. That is, to learn the model of interaction and control flow instead of indi-
vidual functions or classes. Experience has indicated that this is not a trivial matter.
Automatically detecting errors is needed to support this kind of reuse.

Another observation is that some variation points are “open.” It seems challenging for
a user to elaborate on an “open” variation point since to do that, they would have to
not only understand the design of the relevant part of the framework, but also make
design decisions to fill in the open parts.

Also note that some constraints originate not from exploiting the design to achieve
certain functionalities, but from avoiding problems caused by the design. Handling
the OnSize message is such an example. We call such a design a “negative design.”
This does not necessarily mean that overall the design is poor, although they can be
triggers for revising the design.

Can we design better to solve the problem? The answer is both yes and no. In general,
it is always possible to improve a particular design for concerns like usability. But we
suspect that due to the nature of reusing frameworks, the essential difficulty cannot
be removed simply by a better design. We just have to live with it.

. Enforcing programming disciplines

Sometimes one may want to enforce important programming disciplines for both mod-
ifiability and maintainability. Sections 6.5 and 6.3 provide two relevant examples.

. Forgetting programming obligations

At least two types of programming obligations are easy to forget. One is for the
override to call an appropriate version from the base class, the other is what we
call “distributed obligations,” where to fulfill a logical function, one has to change
more than one spot of the source code. Section 6.7.2 is an example of “distributed
obligations.”

. Evolving Frameworks

It is rarely possible to deliver a high quality framework once and for all; instead,
frameworks are more likely to evolve as they are used and feedbacks are gathered from

the users. Likewise, the intended ways of using a framework may evolve as well.
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Some constraints are related to software evolution; both frameworks and applications
can evolve. One example for framework evolution is the DoPromptFileName method.
Another is the GetDlgltem method; initially, it is designed as the main way of retriev-
ing the object for a control. But this turns out not to be the right way. FCL can be

used to prevent any further use of the method.

Factors that a specifier needs to consider when applying FCL include:

1. Choosing between symptom-oriented and feature-oriented strategies;
2. Avoiding false positives and false negatives;

3.
4

. Knowing the limitation of FCL: some semantics are useful but cannot be captured in

Applying engineering judgments when writing FCL specifications;

FCL.
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Chapter 7

Case Study 3: Enforcing
General Design Rules

This chapter presents how to specify the law of Demeter [LH89] and Meyers’ C++ guide-
lines [Mey92b, Mey96] in FCL. Our purpose is to illustrate that the applicable scope of
FCL is not confined to frameworks; it can also be used to enforce existing generic design
principles.

FCL specification for a version of the “Law of Demeter” is written. It is then tested on
two small examples. One is taken from the paper: “Assuring Good Style for Object-Oriented
Programs” [LH89]. The other is taken from Martin Fowler’s refactoring book [F799]. The
specification is also tested against the corrected versions of the examples. In all cases, FCL
can respond correctly, either pointing out the place of the violations or reporting that there
are no errors.

This chapter also analyzes a subset of C++ programming rules. The goal is to justify

our belief that expressions are indispensable for any such tools as FCL.

7.1 Introduction to the “Law of Demeter”

The “Law of Demeter” expresses the general principles of software design, such as infor-
mation hiding and low coupling and high cohesion, in an easy-to-follow form. The basic
idea is to reduce as much as possible the amount of dependency that a method puts on
its environment. Simply put it, if one finds oneself making use of more than one level of
indirection in code, it is mostly likely that one is violating the “Law of Demeter.” It is
because of this that some people define the law by simply saying: “Don’t use more than one
dot.” This simplification is not a hundred percent accurate, but it captures the main idea.
Figure 7.1 depicts an example that violates the law; the implementation of the statements
method of the Customer class uses the class Movie through the Rental class, which should
have been avoided.

Even though its name suggests otherwise, it is more accurate to consider the “Law of
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Customer

- rentals: vector<Rental *>
+statenents(): string

cust oner R i I
1
1
1
y
as » tri 't
string result;
rental g
ol result+=_rental s[i]->getMvie()->getTitle();
Rental return resul t;

- _aMovie: Mvie *
+get Movi e(): Myvie *

has »

Movie
+getTitle(): string

Figure 7.1: Video Store

Demeter” a heuristic or guideline; in practice, certain violations of the law are considered
acceptable.

Therefore, the general design principles are still the ultimate standards for judging the
quality of a specific design. In a sense, the “Law of Demeter” is only a “surface” version of
the general principles. Yet, because the law is phrased in terms of programming constructs,

it is possible to enforce it at compile-time with automated tools.

7.2 The Class Version of the “Law of Demeter”

Several versions of the law exist for different purposes. For example, the object version
states the law in terms of run-time objects, and thus provides us the best conceptual model
to follow. But it is difficult to enforce it with tools. In contrast, the class version phrases
the law in terms of compile-time artifacts, and thus makes it possible to programmatically
check any violation of the law. Since our goal here is to demonstrate how FCL can be used
to encode the law, we choose the class version.

To present the class version of the law, we need to define several terms first:

Client Method: A method can be either an instance method or a static method. If the im-
plementation of a method M has at least one expression either of the form “o.m(...)”,
where the static type of o is the class C, or “C.m(...)”, where m is a static method of
the class C, then M is the client of the method m of the class C; M is also the client
of the class C itself.

Supplier Class: A supplier class to a method M is the class whose methods are called by
M. Thus if the method M is the client of the class C, then C is M’s supplier class.
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Preferred Supplier Class: A class C is a preferred supplier class to a method M if C is a

supplier class to M and one of the following conditions holds:

e C is used as a part of the type of an instance variable of Cps, where Cys is the

class to which M belongs.

e (C is used as a part of the type of a formal parameter of M.

e (C is used as a part of the type of a local variable of M.

e Cis used as a part of the type of a global variable referenced by M.
Languages like C++ allows indirect types, i.e., pointer or reference types, array types,
and container types generated by instantiating templates of STL. In the case of indirect
types, we consider the types that are referenced as suppliers. In the case of array and

containers, we consider the element types as suppliers. That is why in the above

conditions, C is required to be “a part of the type of” the respective variables.
With the definitions of these terms, the “Law of Demeter” can be phrased as follows:

Every supplier class to a method must be a preferred supplier class.

7.3 The “Law of Demeter” in FCL

1 Al'l G asses as [class("Mvie"), class("Rental "), class("Custoner")];
2 forall C AlC asses holds

3

4 /1 classes thru instance variabl es

5 cl assesBylnstance as { v: var(C |

6 [var Type as type(v);]

7 i sCl ass(ptdTypeStar (var Type)) |

8 Cl ass(ptdTypeStar (type(v)))

9 }

10 /] types thru tenplates instantiations

11 generated as { v: var(Q |

12 [var Type as type(Vv);]

13 i sGener at ed( ptdTypeStar (var Type)) |

14 Gener at ed(ptdTypeStar (type(v)))

15 1

16 templ Args as union({ t: generated | true |exp(t)} )
17 cl assesReferredByCol | ection as { expr: tenplArgs |
18 i sCl ass(ptdTypeStar(refd(expr))) |

19 Cl ass(ptdTypeStar (refd(expr)))

20 }

21 ]

22 forall Mfunction(C) holds

23 [

24 cl assesByParamas { v: param(M |

25 [var Type as type(Vv);]

26 i sCl ass(ptdTypeStar (var Type))

27 |

28 Cl ass(ptdTypeStar (type(v)))

29 1

30 preferredSuppliers as classesBylnstance + generated + cl assesByParam +
31 cl assesRef erredByCol l ection + [C ];

32

33 1

34 forall E: exp(M holds

35 [

36 Recei ver as receiver(E);
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37 referredVar as Var(refd(Receiver));

38 typeOf Var as type(referredVar);

39

40 ( // The receiver is a var: a global variable or a |local variable
41 (isdass(typeOVar) or isCenerated(typeCfVar))
42 and

43 (

44 first(unit(referredvar))=gl obal

45 or

46 uni t(referredVar)=unit(E)

a7 )

48 /1 The receiver is an expression

49 or

50 (I

51 typeOf Recei ver as type(Receiver);

52 basi cType as ptdTypeStar (typeO Recei ver);

53 ]

54 (

55 not isDefined(basicType) or bel ongsTo(basicType, preferredSuppliers)
56 )

57 )

58 or not println(E)

59 )

The overall structure of the specification consists of three nested universal quantifica-

tions, starting at lines 2, 22, and 34, respectively. Rephrased in English, they mean:

For each class C, of the set of classes that need to be checked, for each method
M, of C’s methods, for each expression E, of the expressions that belong to the
method M, E must obey the Law of Demeter.

The block from line 3 to 21 defines local variables for the sub-formula of line 2; that is,
these variables will be visible with the formula starting at line 22. The local variables define
the sets of supplier classes that are generated due to the class C; specifically, classesByIn-
stance defines the set of supplier classes that are introduced through the instance variables
of the class C. generated represents the sets of template instantiations. And classesByCol-
lection is the sets of supplier classes that are the argument to the template instantiations.

Together, lines 5 to 9 form a set comprehension that defines classesByInstance. var is
a function that returns the set of instance variables of the class C. type is a function that
returns the type of a variable. ptdTypeStar is a function that returns the “basic” type of a
type; if the type is a pointer to another non-pointer type, the function will return the latter
as its basic type. isClass return true if its argument is a class. Class is a cast function that
casts a type to class.

Lines 11 to 15 is another set comprehension that defines generated. isGenerated is a
predicate that returns true if and only if its argument type is a generated type. Generated
is a casting function that can cast a type to a generated type.

templArgs is a temporary variable that represents the set of types that are used as
arguments to the generated types. A generated type is an expression. The function exp
returns the set of the sub-expressions of its argument. For example, if the argument to exp

is a generated type of the form “L1<L2<L3 *>, L4>,” then the result of applying exp to
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it should be a set that contains “L2<L3 *>”, “L3 *”, and “L4”. The operation union then
flattens all the sets to form a new one.

With templArgs, classByCollection is then defined as the set of supplier classes that are
introduced through template instantiations. Note that refd is a function that returns the
object that a name reference refers to.

Lines 23 to 33 defines local variables for the second forall formula. It first defines class-
esByParam, which represents the set of supplier classes introduced through the parameters
of the method M. Then it defines the preferred classes of the method M as the union of
relative sets, as shown in lines 30 and 31.

With all these variables defined, we can proceed to check each expression E of the method
M (lines 34 through 59). For each expression E, Receiver is defined as its receiver expression.
If, however, E is not a message sending expression, Receiver will be “undefined.” In this
case, the whole formula eventually will be true. This is because both typeOfReceiver and
basicType will be “undefined” (line 51 and line 52),and thus isDefined at line 55 will yield
false, which in turn, makes the whole sub-formula at line 55 true. This reflects our intention;
In this version of the law, we are only interested in checking nested message sending.

There can be three cases for the receiver expression. It can be a reference to a variable,
which can be either a local one or a global one. It can also be a compound expression.
If Receiver is a reference to a variable, then referredVar will be the variable that Receiver
refers to and typeOfVar the type of the variable. According to the law, in order for the
message sending expression to be valid, referredVar has to be either a global variable or a
local variable. The locality of referredVar is checked using the unit function, as show in
lines 44 and 46, respectively.

If, however, the Receiver is a compound expression, then we have to check whether its
type is one of the preferred supplier classes. This is reflected in the FCL specification at
lines 50 through 57.

Finally, if E does not satisfy any of the above conditions, then it is not a valid expression

in terms of the law. And its content will be printed out (line 58).

7.3.1 Discussion

Note that the calculation of the set of classes involved through parameters is a bit simplified;
parameter types can be generated types, and thus a complete specification would need some
extra specification similar to lines 4 through 20. This is all right for our examples since they
do not use generated types in the declaration of parameters, but to use this specification in
a more general context, we would have to fix this problem.

This example also makes extensive use of the type-related features of FCL. In particular,

note that FCL treats generated types as expressions, as shown by line 16.
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Note that there is a major flaw in the above treatment of the law: if, instead of accessing
the movie through array indexing as the example does, one defines a local variable that is
a pointer to the class Movie, and accesses the movie through the local variable, then FCL
would not be able to detect this violation of the law. Thus a false negative is generated. A
remedy to this problem would be to add to FCL some sort of pointer analyses, reporting
errors when a local variable obtains some value that lives beyond the current methods.
Pointer analyses, however, are known to be conservative by nature [Ryd03], therefore cannot
completely eliminate all such false negatives. This example illustrates the kind of tradeoff

which one has to make when using static analyses like FCL.

7.4 Specifying a Subset of Meyers’ C++ Rules in FCL

In an article of Dr. Dobb’s journal [MK97], Scott Meyers and Martin Klaus reports an
evaluation of 5 C++ compilers and 8 static analyzers, including CCEL [MDR93], on their
ability of detecting anomalies from C++ programs. The benchmark consists of 36 rules, 34
of which are taken from Meyers’ two books: “Effective C++” [Mey92b] and “More Effective
C++” [Mey96].

These tools take different approaches on expressing the constraints; some, like the com-
pilers, hard-code the rules, some define special languages for specifying constraints, and still
some pre-define a library of common rules while provide the ability for users to define their
own custom rules. One finding reported by the article is that the specification languages
must be designed with care, and that declarative ones are easier to write and understand
than imperative ones.

CCEL fails 17 of the 36 rules. Upon closer scrutiny, we find that most of them involve
expressions in one way or another. This is not surprising since CCEL stops at the level
of functions and methods: it does not support expressions. This reinforces our belief that
expressions are an indispensable part of such tools, and we are glad that FCL has taken
them into account right from the beginning.

In the following, we study the 17 rules which CCEL fails to handle. Each rule starts
with a number, a letter, and another number, following by a short description. The first
number is the number of the rule in the original list [MK97]; letter M represents the book
“More Effective C++” and E “Effective C++.” The number that follows the letter is the
number of the corresponding item in the books. Being lazy, we only rephrase the rules in

English; it should be evident that they can be specified in FCL.

1. 2 M 2 Use new-style casts instead of C-style casts

This can be rephrased as “there are no C-style cast expressions in C++ programs,”

and thus is checkable in FCL.
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2. 3 M 3 Don'’t treat [a pointer to] Derived[] as [a pointer to] Base]].

For any argument to any function call, if its type is an array, and the element type
of the array is a subtype of the element type of the corresponding parameter of the

function, then it violates this rule.

3. 4 E 5 Use the same form for calls to new and delete. (In general, this calls for dynamic
analysis, but static analysis can catch some special cases, e.g., calls to new in ctors

and to delete in dtors.)
If there is a new expression in a ctor, then there must exist a delete in a dtor; if there
is a new[] expression in a ctor, then there must exist a delete[] in a dtor.

4. 5 E 6 When the result of a new expression in a ctor is stored in a class member, make
sure delete is called on the member in the dtors.
For any pointer data member, if it is initialized by a new expression in any ctor, then
there must be a delete expression in a dtor.

5. 8 E 12 Initialize each class data member via the member initialization list.
Within each ctor, for each class data member, there is at most one of ctors and
assignment operators invoked.

6. 9 E 13 List members in a member initialization list in an order consistent with the
order in which they are actually initialized.
This example needs lexical information: in this case, the line and column numbers of
each data member would be needed to compare their positions.

7. 11 E 15 Have the definition of operator= return a reference to *this. (Note: this says
nothing about declarations.)
This boils down to the requirement that there be at least one expression of the form
“*this.”

8. 12a E 16 Assign to every local data member inside operator=.

This seems to be too strong; a member of “char *” may very well be first initialized in
a ctor and then obtain its content through strcpy in operator=. Instead, we require
that inside operator= there be an assignment expression for each non-pointer data
member.

9. 12b E 16 Call a base class operator= from a derived class operator=.

Of course, the prerequisite for this is that the base class defines operator=.
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10.

11.

12.

13.

14.

15.

16.

17.

12c¢ E 16 Use the member initialization list to ensure that a base class copy ctor is
called from a derived class copy ctor.
13 Don’t call virtual functions in constructors or destructors.

Being virtual is a property of functions, and FCL can tell constructors and destructors
through their special naming conventions. This is checkable in FCL. In fact, I did make

such an error when implementing FCL.
21 E 29 and E 30 Don’t return pointers/references to internal data structures unless
they are pointers/references-to-const.

I am not sure this rule is absolutely correct; it seems highly depend on the semantics
of the specific application. For example, to return a reference to char from a string
seems appropriate to me. Instead, I would like to require that any expression returned

be neither a pointer nor an array.

22 M 26 Never define a static variable inside a non-member inline function unless the
function is declared extern.

Any non-extern and inline function should not define static variables.

26 M 5 Avoid use of user-defined conversion operators (i.e., non-explicit single argu-
ment ctors and implicit type conversion operators).

No expressions invoke conversion operators.

29 M 6 Use prefix ++ and -- when the result of the increment or decrement expression
is unused.

In a program, there exist no such expressions that are either postfix ++ or --, but
have no parent expressions.

31 M 11 Prevent exceptions from leaving destructors.

Currently FCL does not handle exceptions.

32 M 13 Catch exceptions by reference.
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Chapter 8

Related Works

This chapter surveys works related to FCL:

e Program analyses are technically relevant since they all require parsing and type anal-
ysis. Section 8.1 surveys and compares a set of such tools, analyzing their similarities
and differences.

e Program specification languages are relevant since FCL is a specification language
too. Section 8.2 summarizes the main features of two recent specification languages:
Alloy [Jac02] and OCL [WK99], the interaction contract [HHG90], and the Wright
architecture specification language [AG97].

e Tools specifically for error detection are surveyed in section 8.3. In particular, two
closely related works, CCEL [LM93, MDR93] and CoffeeStrainer [Bok99], are com-
pared with FCL.

e Other related works include documentation, tools for framework instantiation, and

semantics for object-oriented languages. Section 8.4 surveys works in these areas.

8.1 Program Analyses

Many source code analysis tools [CNR90, PP96, PP94a, MN96, Dev99, DRW96, LRI5,
C*00b, MS95, Cre97] have been developed to perform a variety of software engineering tasks,
ranging from program understanding, design recovery, and reverse engineering, through
software testing, to software transformation and restructuring. These tools are technically
relevant to our work; knowing them can help us answer such questions: “since many tools
have been created before, why bother developing a new one?” Moreover, by putting the tools
together and comparing them, one can gain a better understanding of the whole problem
space, the position of our tool in that space, and its strengths and limitations.

In general, these tools can be divided into two categories according to whether they need
to change the source: query tools that only read source code and restructuring tools that

both read and write source code.
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Query tools parse existing source code and extract facts. The process can be summarized

into three steps:

e Extract: Parse the source and extract elementary facts from it.

e Abstract: Perform queries on the extracted facts to derive information relevant to

one’s analysis tasks.

e View: Visualize the derived information.

Restructuring tools also parse and extract facts from source, but with a different goal:

to either transform the source to another language or to “improve” it according to certain

criteria. Consequently, the process now becomes extract-abstract-transformations, where

the transformation step restructures code using the semantic information obtained in the

abstraction step.

At the high level, all these tools consist of three key elements:

e program databases (also called fact bases, program repository, and so on),

e schemas (also called conceptual model [CNRIO] or data model [CGK98]) for the pro-

gram databases, and

e a query or manipulation language of some sort.

8.1.1 A summary of common tasks

A list of common tasks may help us better understand the needs for such tools. Query tasks

found in the literature include:

e Architecture reconstruction and visualization

e Program organization

Examples include the set of files in a program, header file inclusion, file interfaces (the

set of functions defined in one file and called by another file), and so on.

e Reachability analysis and dead code detection [CNR90, CGK98]

e Computing metrics

Examples include McCabe’s cyclomatic complexity [Cre97, DRW96, PP96], average
function and file sizes [PP96], FANIN and FANOUT [PP96], and so forth.

e Fine-grained query of syntactic code patterns, e.g. [PP94a, Cre97, Dev99):

Finding all instances of simple assignment expressions appearing in any condi-
tional expressions.

Finding all instances of equality-tests and dereference expressions whose results
are discarded.

Finding all instances of conditional or iteration statements that have empty bod-
ies.

Finding all case statement fallthroughs.
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— Finding the set of case conditions of a switch statement.

— Finding all switch statements without the default branches.

— Finding gaps (unused space due to memory alignment) in structure definition.

— Finding instances of code patterns, such as three levels of nested loops or long
if-then-else, as a candidate of rewriting to switch statements.

— Finding all compound statements whose bodies are not enclosed within curly
braces.

— Finding all instances of variable redeclaration in nested scopes.

e Resource flow analyses such as data binding [PP96, CNR90]
e Control flow analyses such as Call Graph Extraction [PP96, CNR90]

Examples of transformation tasks include:

e Pretty printing,
e Semantics preserving transformation (refactorings) such as renaming variables and
extracting methods,

e Code rewriting.

8.1.2 Some criteria for classifying tools

Lexical vs. syntactic approaches Many software tasks involve extracting facts from soft-
ware artifacts, which may include not only source code but also documentation. These
tasks are sufficiently broad so that it is hard to have one tool to satisfy all the needs.
Instead, a spectrum of tools would have to be built, which can be categorized into

lexical ones and syntactic ones.

Historically, programmers have been using utility tools such as grep and awk and
scripts written in languages like Perl to perform such tasks. Since the underlying
model that these tools have for the analyzed text is either character streams or record
streams, they are lexical tools. Lexical tools provide certain formalisms of regular

expressions to support pattern matching.

As described in the work of LSME (Lexical Source Model Extractor) [MNO96], the

lexical approach has the advantages of being:

e lightweight, in terms of writing specifications,
e flexible, in terms of the diversity of text that it can handle, and

e tolerant to certain syntactic errors in the text.

On the other hand, the simplicity of regular expressions often does not allow one to
express queries that involve deep knowledge of the structure of the source code, or

even if possible, the answers may be highly approximate in nature. Consider tasks
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such as “querying the calls to an overloaded operator” or“querying all the variables
whose names are z” for C++. For some task, this loss of precision is not tolerable;

thus syntactic approaches are also needed.

Granularity and precision of program facts Program databases may contain three types
of information with different granularities, global structural information, statement
structural information, and expressions and flow information. Global information in-
cludes files, functions, global variables and types, for C, and namespaces, classes,
templates, and so forth, for C++. Statement structural information includes details
such as statement types and blocks; these are useful to identify code patterns that
match a programming plan or cliche [RW88]. Last, ezpressions and flow information

concern with the data and control flows among the expressions within procedures.

Choices of what information a program database may contain are driven by both the
consideration of efficiency and the nature of the tasks at hand. In general, the more
information, the more space occupied, and the slower the tools would be. Some tools,
for example, CIA [CNR90], CIA++ [CGK98], and Hy+ /GraphLog [CEH94, MS95],

trade the completeness of information for speed and space.

Completeness of program information has different impacts on different tasks. Works
such as reconstructing architectural views from source code [Hol98] focus on the overall
program structures and thus do not need detailed information about expressions and
data and control flows. In contrast, FCL needs the full detail about expressions and

some flow information to detect errors more effectively.

File based vs. whole-program based repositories Some tools [Dev99] work on a file-
to-file basis whereas others such as [CNR90, CGK98, PP96] assume that a linkage
has been performed over the compilation units and work on the whole-program repos-
itories. While program based repository may cause some performance problem, it
allows one to express certain types of queries more naturally and succinctly. Since the
specifiers have no way to know the file names a framework user may use, file-based

approach does not work for FCL. A whole program repository is necessary.

Concrete syntax vs. abstract syntax Some tools base their query languages on the
concrete syntax of the subject languages while others on the abstract syntax. One
advantage of using concrete syntax would be the ability to query syntactic patterns
such as “all if statements that do not use curly braces.” The disadvantage of using it is
that if an abstract pattern has more than one corresponding concrete syntax pattern,
the query can get quite verbose. Therefore, the advantage of using abstract syntax is

the conciseness of queries.
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Supported subject languages CIA [CNR90], SCA [PP96], SCRUPLE [PP94a], and

TAWK [GAM96] support only C. Hy+/GraphLog [CEHT94, MS95], ASTLOG [Cre97],
and CIA++ [CGK98] also support C++.

Query vs. transformation This has been discussed in the beginning of this section.

Supported formalisms A* [LR95] and TAWK [GAM96] support the awk style of pro-

gramming, where the programs consist of pattern-action pairs and traversal strategies.
SCRUPLE [PP94a] is a query language expressing code patterns as regular expressions.

SCA [PP96] is based on a multi-sorted, sort-ordered algebra. Hy+/GraphLog [CEH94,
MS95] is based on a relational calculus extended with the closure operator. And AST-

LOG [Cre97] is based on an extended Prolog.

Tool generators In this context, tool generators are tools that can generate program anal-
ysis tools. This definition can be confusing since it is not clear whether a tool or system
that provides a language, such as a database management system with a SQL, is a tool
or a generator. Our executive definition requires a tool to satisfy at least one of the fol-
lowing conditions to be a generator: either some of its components can be customized
or replaced to produce a new tool, or the tools programmed with the provided lan-
guage are important enough that it is justified to call them tools. GENOA [Dev99] is
a generator in the former sense whereas A* [LR95], Aria [DRW96], and TXL [CT00D]
the latter.

8.1.3 Tool generators

GENOA [Dev99] is motivated by two observations: first it is expensive to build reliable
parsers for complex languages like C and C++; and moreover, in production environments
it is a significant task to manage the build procedure for a product. Thus it is important
for tools to preserve the efforts in creating the build procedures. GENOA emphasizes both
the retargetability and the language-independence of the back end. The retargetability is
achieved by defining a common denominator representation for most languages, ASG. A
query interface is defined over this data model, and in turn a reusable scripting language
is defined in terms of the interface. A translator generator, GENII, is also provided to
facilitate the specification and implementation of the transition to a new language.

A summary of the important features of GENOA follows:

e It is front-end retargetable.
e It grafts itself onto a parser by replacing its back end with GENII generated code,
which manipulates the parser produced AST and provides an ASG interface to the
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scripting language. Since a parser works with compilation units, current instantiations
of GENOA are all based on ASGs for individual files.

e The scripting language is procedural, and it allows users to determine traversal strate-
gies.

e The scripting language cannot change the underlying ASGs.

Aria [DRW96] is a tool generator produced by retargeting GENOA to Reprise [RW91], a
C++ ASG representation. Aria is used to generate a number of tools that would require long
development time otherwise: a metrics tool, a path expression tool, and a CDG (Control
Dependence Graph) generator. In essence, Aria is a validation of GENOA.

The TXL system [C*T00b] supports program transformation. It was motivated by the
desire to experiment with different dialects of the same base language. Using TXL, one
can translate programs of a dialect to programs written in the base language. This is
accomplished by transforming the parse tree built using the dialect grammar into a tree of
the base grammar. A recursive tree matching algorithm is used to achieve this. TXL also

finds many other applications [DCMS02].

8.1.4 Pattern based Tools

A* [LR95] is motivated by the desire to create language processing tools with extremely
low overhead. The goal is to allow inexperienced users to build simple tools in a matter
of minutes with a few lines of code. Therefore, the usual combination of YACC and C
is considered too expensive for this. Moreover, the authors observe the similarity between
language processing and file processing provided by tools such as Awk. A* comes combining
the language definition facility of YACC with the pattern matching capability of Awk!,

which is described as follows:

e retaining the Awk action language and its interpreter;

e providing a mechanism for replacing Awk’s parser with an arbitrary LALR(1) parser;
e providing a new data structure and notation for parse trees;

e providing a way to describe parse tree traversal;

e augmenting the action language to ease the construction of larger programs.

One important change that A* makes to Awk is its pattern language; instead of boolean
expressions, patterns are specified using the concrete syntax of the processed language.
The following is an example of an infix-to-prefix translation with a yacc-like pattern:

_expression: _expression ‘+’ _expression

LAwk is a language for file processing; the essence of its convenience is a control structure in all Awk
programs. Awk breaks each file into records, and each record into fields. A typical Awk program consists
of an implicit loop over all all records, and within this loop the user’s code is executed. Usr’s code consists
of “pattern-action” pairs; a pattern is a boolean expression based on the value of the current record. An
action is the statements to be executed once the pattern evaluates to “true.”
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printf "Add(";
traverse ($$kids [expression#1])

printf ",";
traverse ($$kids [expression#2])
printf ")";

Where underscore prefixed symbols represent non-terminals in the concrete grammar.

A summary of the key features of A* is as follows:

e It provides mechanism to support new languages; therefore, it is a tool generator.

e Its pattern language is based on concrete rather than abstract syntax of the processed
language. Therefore, its pattern-matching facilities are limited.

e The syntax must be LALR(1); this would make it impossible to process “irregular”
but popular languages such as C and C++.

e It allows tool builders to specify arbitrary traversals of the ASTs.

o Its action language allows one to change the underlying ASTs, such as performing tree

surgery.
Therefore, A* is suitable for tasks satisfying at least one of the following conditions:

e the semantics of the language is low (the language is simple).
e the desired tool implements little of the semantics.

e or the tool needs to examine only a proper subset of grammatical constructs.

SCRUPLE [PP94a] is a pure query system that can locate code fragments matching

certain patterns. It exceeds in its support for a rich set of patterns.

e The pattern language is based on the abstract syntax of the language; at the same
time, it also supports most code fragments of the subject language. This means that
in certain cases one can directly type in a fragment of code and let the tool search for
it.

e The tool appears to work on program-based ASTs.

e The pattern language provides a certain level of abstraction that allows users to control
the precision of patterns. For example, Query: Find sequences of statements that
contain three if statements can be specified as follows:
if # Q;

Q*;

if # Q;

(CEN

if # Q;

In SCRUPPLE, # represents expressions, @ statements, and @* zero or more state-

ments. @* provides the abstraction to represent arbitrary sequences of statements.
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e Patterns are compiled into finite state machines, and search is efficient.

e Traversal is implicit and always starts globally.
Two more SCRUPPLE queries are included to give a taste of SCRUPPLE works:

1. Query: Find all functions that have references to the identifier xmax:

$t $f<xmax>($vx) { ©x };

Where $t represents types, $f functions, and $v* a sequence of variables.

2. Query: Find all instances of three consecutive if statements:

TAWK [GAM96] is a tool similar to A* in terms of its overall structure, with differences

summarized as follows:

e TAWK is a tool, not a generator; it does not assume the responsibility of parsing
source code.

e TAWK’s patterns are specified in terms of abstract syntax.

e TAWK’s action language is C.

e TAWK recognizes the importance of abstract patterns, and provides a simple, macro
based mechanism.

e TAWK provides implicit traversal control.

e TAWK recognizes the importance of dealing with macros and compilation directives

in languages like C, and can recognize function-like macro invocation as function calls.

8.1.5 Algebra based Tools

Informally, algebras are mathematical structures that consist of data types (sorts) and
operations defined on the data types (operators). One familiar example is the classical
relational algebra [UW97]; Operators of the algebra such as union, set difference, select,
project, cartesian product, and join, take relations as arguments and produce new relations.
It is, however, a one sort algebra, that is, it deals with only one data type, i.e., relations.
SCA (Source Code Algebra) [PP96, PP94b] is an algebra-based formalism that can

express queries on C programs. Its main features are summarized as follows:

e SCA is both many-sorted and order-sorted.

e SCA recognizes the importance of information completeness. Its data model contains
not only global structural information, but also statement-level structural information
and control and data flow information. It also supports queries that use both structural

information and program flow information.
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e The operators of SCA can be categorized into:

— operators on object attributes
SCA defines four types of attributes for objects, components to reflect the struc-
tural relations between a conditional and its condition and body, references to
capture name references, annotations for information such as line numbers that
an object appear at, and methods for dynamically computation of new informa-
tion from the model. It is less clear how useful methods would be.
To get an attribute, one can apply the name of the attribute to the objects. For
example, applying the operator name to a file f, name(f), will return the file
name.
An important feature of SCA is closure; for example, it allows one to specify all
the functions that a certain function can be reach.

— operators on collections
SCA allows one to select a subset or pick one element, which satisfy a given con-
dition, from a collection of objects. It also supports columns projection through
the project operator, and cartesian products through the product operator.
One important feature of SCA is the extend operator, which allows one to extend
the existing type definitions with new attributes. Another is that it supports
logical quantifiers forall and exists by, however, treating them as operators. SCA
also defines two higher order operators, apply and reduce; apply takes both a
collection and a unary operator, and apply the operator to each element of the
collection to get a new collection; reduce takes a collection and a binary operator,
and apply the operator to each pair made of elements of the collection to get a
new collection.

— set operators

— sequence operators

Two questions are left unanswered by the SCA work: First, it seems that SCA is more
driven by the desire of having a formalism than by the kinds of queries that would be needed
in practice; it is not clear under what circumstances operators like the methods attributes
on objects and the reduce operator on collections would be useful. Second, SCA is only

demonstrated with C as its subject language.

8.1.6 Logic based Tools

Hy+ [CEH'94, MS95] is a generic visualization tool that supports a visual query language
called GraphLog. Hy+ supports a graphical formalism that allows comprehensible represen-
tations of databases, GraphLog queries, and query answers to be interactively manipulated.

Hy+ [MS95] has been applied to tasks such as software metrics, verifying constraints, and
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identifying design patterns from code.

GraphLog supports two types of queries, define and filter. Both queries represent a pat-
tern in the hygraph; the query interpreter searches the hygraph designated as the database
for all occurrences of that pattern. A define query can be translated to stratified Data-
log [UWO97]. A filter query can be viewed as composed of multiple define queries, and its
result is the combination of evaluating all the define queries.

GraphLog also supports aggregate functions on multisets of tuples, such as MAX, MIN,
COUNT, SUM, and AVG.

Since GraphLog is based on Datalog [UW97] and has the same expressiveness as a
relational algebra extended with generalized transitive closure, which can be used to, for
example, compute the inheritance relation through inheritance chains, it is more expressive
than relational algebra. But adopting a relational model of source code prevents it from
conveniently expressing queries that pertain to abstract syntax trees. Moreover, when the
complexity of GraphLog queries increase, to what extent its visualization facility can scale
up is questionable.

ASTLOG [Cre97] exploits the unification and backtracking facility provided by Prolog
to examine ASTs. The key changes ASTLOG makes to Prolog are:

e ASTLOG extends Prolog with primitives suitable for examining tree structures.

e For performance, instead of importing program databases into Prolog as its fact bases,
ASTLOG interprets its predicates and queries on top of external objects, in this case,
nodes of ASTs.

e ASTLOG adopts the so-called Prolog-with-an-ambient-current-object approach, that
is, terms are always evaluated against a current object. For example, a predicate

assignment can be defined as follows:

assignment (target, value)
<= op(#=),
kid (#LEFT, target),
kid (#RIGHT, value);

Note that in the example, there is an implicit current object.

e ASTLOG implements some second-order features such as lamdas and function appli-
cations, and Prolog set-predicates through manipulating the current object.

e Compared with the AWK approach, ASTLOG provides additional expressive power;
for example, with ASTLOG, one can compare two trees.

e The author feels that ASTLOG needs a support for type checking.

The SOUL (Smalltalk Open Unification Language) work [Wuy98, MMW02] advocates a
logic programming approach to manipulate structural information in source code. SOUL is a
Prolog variant that currently works with Smalltalk as the subject language. Implementation-

wise, SOUL [Wuy98] adopts the same strategy as ASTLOG, that is, instead of importing the
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program databases as Prolog fact bases, it interprets logic primitives against the Smalltalk

image, through a well-defined access interface.

SOUL is targeted at general programming, instead of specific domains like frameworks.
As a result, its rules might be less accurate in terms of finding code patterns, and it is
undesirable for a tool to generate too many false positives and false negatives. There is no
work seen towards addressing these issues. Therefore, it is not clear how effective it would

be in practice.

8.1.7 Schemas for Program Databases

One early work in storing program facts into a relational database is OMEGA [Lin84], which
uses the INGRES database management system to store information for a programming
language called Model. One of the goals of OMEGA is to reconstruct software objects
from the program database. Therefore, detailed information about variables, expressions,
statements, and relationships among them are stored in the database. A total of 58 relations
were used in the database schema. According to [Lin84], the prototype implementation of
OMEGA had poor response time in retrieving the body of a procedure. Different objects
within the procedure had to be retrieved, and each retrieval required a separate database
query.

Over the years, many schemas have been proposed and tried, e.g., Reprise [RW91],
CIA++ [CGK98], RSF [MOTU93], and Datrix [HHL*00]. More recently, there have also
been works towards a common format for exchanging software information [Hol97, FSHO1,

WKRO02].

When choosing a schema, one should consider many factors, such as the level of seman-
tics, the amount of information, the granularity of the information, and the precision of
the information. The level of semantics refers to lexical, syntactic, and semantic kinds of
information. The amount of information a schema can provide may also vary, some may
provide only lexical and syntactic information while others all three kinds. Granularity
refers to the level of detail which the information can reach, for example, Rigi [MOTU93]
and CIA++ [CGK98] only keep global structural information such as function and class
declarations whereas Datrix tools also provide information about statements and expres-
sions. Finally, precision refers to the extent to which a schema can recognize things such as
implicit conversions and operator calls.

It is not clear whether it is possible to devise a universal schema that fits all languages
and all needs. But it is clear that the current focus should be in understanding the needs of
different tasks and the intricacy of individual languages, and correspondingly, experimenting

with different combinations.
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8.1.8 Query Languages for Program Databases

In general, the nature of a query language closely depends on the underlying schema that
organizes the data. Therefore, it is critical to having the right schemas that capture the
essence of the data, otherwise, unnecessary details will creep into the query language. For
example, the goal of the relational model is to achieve better data independence, as shown
in [Cod70], by formalizing the data model with the relation theory to eliminate several
unwarranted dependencies.

SCA is a many-sorts, sort-ordered algebra whereas both GraphLog and ASTLOG are
logic based. In addition, GraphLog is a visual formalism purported to facilitate the query
and display of program facts. One of the advantages of having a many-sorts algebra is the
possibility of type checking, of which several authors [LR95, Cre97] have felt the need.

Grok [Hol02] is based on a binary relation algebra extended with some procedural con-
structs such as assignments and loops. A comparison between Grok and another query

language, GReQL (Graph Repository Query Language), can be found in [HWWO02].

8.1.9 Potential Research Problems

We have identified five problems for future research:

e It is a challenging task to engineer reliable parsers for complicated languages such as
C++ [SEHO03].
Sim et al proposed to build and share a common set of correct parsers within the re-
search community. Free, open-source parsers for C and C++, for example, CPPX [MDHO01],
are now available.

e Dealing with macros and compilation directives in languages like C is a problem.

¢ Query languages need to support abstract patterns for better expressiveness.

e Is it possible to have one query language that serves all the purposes?
Rather than serving as a generic query language on program databases, FCL was
designed specially for “framework constraints”; this is evident from, for example, the
inclusion of the existential operator and the exclusion of a potentially useful “ancestor”
operator for obtaining all base classes.
FCL is certainly not complete if one views it as a generic query language for program
databases. It remains an interesting question whether one can extend it to a generic
one.

e Given the modern computing power, is it feasible to build full ASGs?
FCL is based on the assumption that a full ASG is available. Real projects often
require fast turn-around time. One concern is the feasibility of building ASGs in such

a short time.
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8.2 Specification Languages

The Alloy [Jac02] specification language is for formalizing and analyzing ‘object models’.
The OCL (Object Constraint Language) [WK99] of UML was developed with many the
same goals as Alloy. They both have the Z specification language [Spi92] as their common
root.

Many specification languages can be found in the literature. We choose these two to

show that they cannot be used in place of FCL.

8.2.1 Alloy

In Alloy [Jac02], an object model captures the basic structure of a certain problem domain,
as well as constraints and operations describing how the structure changes dynamically.
Alloy is meant to give an entirely abstract, implementation-free semantics to object models.
The insight is that such a semantic model is a better starting point for object-oriented
development than a model in which objects have methods and fields. One outstanding
feature of Alloy is its fully automated analyses.

Alloy’s starting point is Z [Spi92]. Like Z, Alloy is also based on sets and relations, but

it contains a few novelties:

e Alloy treats scalars as singleton sets.

e Alloy’s navigation syntax for relational image allows one to form expressions by fol-
lowing relations. This feature, combined with the scalars as singleton sets feature,
both simplifies and unifies navigation expressions.

e Alloy allows one to put both type information and multiplicity into relation definitions.
Moreover, instead of the range notation, Alloy uses the regular expression style for
multiplicity, that is, * (zero or more), + (more than zero), ! (exactly one), and ? (zero

or one). These can help shorten specifications considerably.

Unlike Z, however, Alloy is designed with automatic analysis in mind at the first place.

This requirement has a number of important implications on the design of Alloy:

e Alloy specifications are explicitly structured into paragraphs, which include domain
declarations, state declarations, conditions, invariants, operations, and assertions. Z
exploits conventions to distinguish the roles of the various schemas.

e Alloy exploits two forms of analyses on its specifications, simulation and checking.
Alloy’s structuring makes the two analyses possible. The goal of simulation is to find
a model? for a specification; if a model is found, then the specification is considered

consistent. The goal of checking is to find counter examples that fail the assertions,

2model is an overloaded term; here it means a configuration of state that satisfies the specification.
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which is done by finding models for the conjunction of the negation of the assertions
and the rest of the specification.

e Since the language is undecidable, compromise is inevitable to make the analyses
feasible. Alloy’s analysis works by limiting the scopes of the carrier sets of the primitive
types to a given size. The analysis is done by first translating each relation into a
boolean formula, and an off-the-shelf SAT solver is then used to find solutions to the
formula.

e Alloy is implicitly typed.

FCL can be viewed as an Alloy whose domains are the syntactic elements of object-
oriented programming languages. It would be interesting to encode FCL specifications
with Alloy and detect inconsistency of FCL specifications. Some difficulties would be the

constructor functions of FCL, string, and integers, which Alloy does not support yet.

8.2.2 OCL

The Object Constraint Language [WK99] of UML is meant to bring rigors into the UML
notation. However, many shortcomings have been identified [VJ99, Jac99]. OCL is still not
amenable to automatic analysis. As it is, OCL is more a notation for human communication
than for automation, yet far from natural languages.

A summary of OCL’s shortcomings is as follows:

e OCLisdriven by the desire to support the practical use of object-oriented languages, as
such, it is too implementation-oriented, thus is not as well-suited for problem analysis
as Alloy.

e OCL is more expressive than Alloy; it has integer and string datatypes, and sequences.
But it does not have transitive closure. And attempt to use operations to simulate
transitive closure turns out to be unsafe [VJ99].

e Giving OCL a semantics is likely to be challenging because of its many features such as
the elaborate type system, type casting, multiple inheritance, and iteration construct.

e The syntax of OCL has some shortcomings. OCL’s expressions are stacked in the
style of Smalltalk, which makes it hard to see the scope of quantified variables. Unlike
Alloy, navigations in OCL are applied to atoms and not sets of atoms. Attributes are

modeled as partial functions in OCL, and result in expressions with undefined values.

Although OCL has been used to specify constraints for the UML meta model, it is not
suitable for our purpose. OCL supports quantification formulas and standard set opera-
tions, but it does not contain sufficient information about source code: for example, neither
expressions nor control paths are supported by OCL. This is all right for a design modeling

language such as UML but not for FCL. As mentioned, OCL’s syntax is not standard but
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chooses to keep close to the object-oriented notations, presumably to make programmers
feel familiar. FCL is designed to be close to classic notations. One benefit of this design
decision is that we may do inference about FCL specifications in formal systems such as
Mizar [Org]. At last, although tools are available for OCL, we did not find they are suit-
able for FCL; for example, the Dresdren OCL toolkit works only at the first-order level: it
allows only for specifying pre- and post-conditions and class invariants but not constraints

on syntactic structures.

8.2.3 Other Notations

Interaction contracts [HHGO0] are the first notational constructs proposed to specify be-
havioral compositions. Particularly, it focuses on specifying the obligations that the partic-
ipating objects should fulfill in order to function correctly. The aim is to explicitly capture
the dependencies among cooperating objects, which otherwise will be buried in the code
of classes and methods. Contracts and FCL are close in that both want to specify how
objects can correctly interacted with each others. There are also important differences be-
tween them. Contract specifications need to be complete and self-contained whereas FCL
specifications can be partial. Contracts can contain statically uncheckable invariants while
FCL is fully automated. However, contracts can be more expressive than FCL due to its
informality.

The Wright language [AG97, AGI98, SG96] aims to describe software architectures,
especially concurrency-related ones. It is an extra layer beyond code, meant to be used as
a stand-alone design language, and there is no support to ensure the consistency between
the code and the Wright specification.

In contrast, FCL works directly on the syntax and semantics of specific object-oriented
programming languages. Instead of full architectures, FCL specifies checkable constraints
on the code of framework extensions. The applicable scope of FCL is limited in that it is
designed to ensure the appropriate reuse of object-oriented frameworks rather than arbitrary
software. But since frameworks are concrete implementations of software architectures,
we can also regard FCL as a specification language on ad hoc object-oriented software
architectures, and we believe that this study can further our understanding of software

architectures.

8.3 Error Detection Tools
8.3.1 (Partial) Specification based

Aspect [Jac95] is a static analysis technique that aims to detect errors of missing dependences
from within procedure implementations. A simple specification language is defined so that,

for each procedure, the specifier can specify dependences that should exist between its
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prestate and poststate. A dataflow analysis is then performed on each procedure, any
dependences that exist in the specification but not in the result of the dataflow analysis will
be reported as errors. To deal with pointers and pointer aliases, reconfiguration assertions
are introduced; a reconfiguration assertion states all the possible bindings that may exist
between a pointer value at the poststate and pointers of the prestate. It is a special case of
dependence assertions.

Specifications written directly in terms of implementation variables are vulnerable to
changes in representation. To cope with this problem, the concept of aspects is introduced;
aspects are simply names for abstract components of abstract types. For example, a two-
dimensional vector can have two abstract components, X and Y, as its coordinates. The de-
pendence and reconfiguration assertions are written with aspects instead of concrete names,
so clients of the abstract type see only the division into aspects, with the actual represen-
tation remaining hidden. Abstraction functions are then used to associate representation
with aspects.

A summary of the important features of Aspect follows:

e It requires specifications, albeit simple, for each procedure.

e It works in a modular fashion, that is, checking is performed on one procedure at a
time.

e It never produces false positives, provided that the specifications are correct.

e It may produce false negatives, though.

e It is incremental in that it does not require the completeness of the project to work.
Therefore, it can precede testing.

e Compared with verification, its specifications are cheaper and easier to write.

e It detects errors of omission, which complements state-based techniques such as type
checking, which detects errors of commission. The empty procedure, SKIP, satisfies

most type specifications, but no nonempty Aspect specification.

The LCLint tool [ET94, Eva96], subsequently renamed as Splint [E*], exploits simple
annotations to explicitly specify the otherwise hidden assumptions at interface points about
the return value of functions, parameters, and global variables. The tool then combines
these knowledge with static analysis to detect errors in a modular fashion. For example,
by default a pointer is considered being not null; one can use null to annotate the fact
that it can take the null value. A function that uses this pointer without proper check of
the nullness of the pointer would then contain an error. Similarly, if the memory pointed
by a pointer is not allowed to be shared, one can use only to annotate it. In [Eva96], 15
annotations are defined to help capture dynamic memory errors.

The ESC (Extended Static Checking) tools [DLNS98, LNS00, FLL*02] shares the same

goal of detecting errors from code as many other tools. It is static yet can detect such
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errors as dereferencing null pointers, array index errors, and race conditions and deadlocks,
which conventional static analysis like type checking cannot find, hence the name ezxtended
static checking. ESC exploits the automated program verification approach rather than
static analysis. Therefore, it requires specification support for both procedural abstraction
and data abstraction. Verification is carried out in a modular fashion; for each module, a
verification condition is generated and a program verifier then attempts to prove it. ESC
sacrifices soundness for error detection: it is more interested in a failed proof; then an error
message can be produced. Tools for both Modula-3 [DLNS98] and Java [FLL*02] have been
constructed. A methodology for verifying programs with the appearance of data abstraction
and information hiding is generated with the ESC/Modula project [LN02].

The Vault [DF01] language allows users to specify typestates for resources, such as
memory regions, files, and sockets, to track their safe uses. Programs written correctly
using the language would then be protected from the resource management related bugs.
Despite the language approach adopted, the notions of keys and type guards are very close
to the annotations of LCLint [Eva96]; indeed, they are meant to solve the same resource
management problem. Historically, language adoptions have been an erratic process. In

contrast, analysis tools work immediately.

8.3.2 Model checking based

Dawson Engler’s metacompilation (MC) research group at Stanford investigates the uses of
both static analyses and model checking for finding bugs from code. Their static analysis
allows programmers to add simple system-specific compiler extensions that automatically
check or optimize the code. They also build a model checker, CMC, for C, and apply it to
several case studies [MPC*02, ME03].

The static analysis is based on an extension language and a back-end engine added to
the gee compiler. The extension language, metal, is defined to specifying analyses, and the
back end, zgcce, is used to execute the analyses efficiently. The detail of metal and zgcc is

documented in [HCXE(02, CHE02], but a brief summary follows:

e The extension language is program object-centered; it can specify the states of any
program objects, such as pointers, as a finite state machine. In particular, erroneous
states are explicitly modeled by the state machine; when the state machine reaches
such states, error messages will be reported.

state decl any_pointer v;
start: { kfree(v) } ==> v.freed;
v.freed: { *v } ==> v.stop,
{ err("using %s after free!", mc_identifier(v); }

| { kfree(v) } ==> v.stop,
{ err("double free of %s after free!", mc_identifier(v); }
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This example specification can detect two errors about a pointer, dereferencing freed
memory and double frees, by tracing its state. v is a (specification) variable repre-
senting a pointer variable in the checked program. A variable can have states; for
example, v has two states, freed and stop. The current state of a variable such as v
is written as v.freed. The alphabet of the state machine consists of code patterns; for
example, kfree(v) is actually a free call on v, and *v is an expression dereferencing v.

e The gee compiler is used to construct an AST for each C file. The zgce engine then
reads in the ASTs and performs analyses on the control flow graphs of all functions
not called by any others, e.g., the main function.

e The engine essentially traverses each AST one path at a time with a depth-first search,
evaluating the current state of each path and using the state to drive the transitions
of the finite state machine model.

e The traversal performed by zgcc is interprocedural, and a simple, path-sensitive anal-

ysis is used to eliminate nonexecutable paths.

The most interesting insight of this work is that the seemingly simple technique can be
effective in finding errors in real systems. The paper [C*00a] shows how metal is applied to
the Stanford FLASH machine’s embedded cache coherence protocol code. The paper [ET00]
discusses a set of small extensions that found roughly 500 bugs in Linux, OpenBSD, and
the Xok exokernel; the extensions are usually less than 100 lines. It also uses extensions to
find hundreds of optimization opportunities in heavy-tuned software.

CMC [MPC™02] is a model checker that directly executes C and C++ programs and
performs model checking on the monitored state space. CMC has some limitations, though.
The current CMC assumes an event driven model of the checked system. Its correctness
properties are coded as boolean functions directly in terms of the saved states. Further-
more, the AODV case study in [MPC*02] does not present how temporal properties can be
supported. Without temporal properties, CMC seems to be more an advanced testing tool
than a model checker.

Based on the experience applying both approaches to three non-trivial case studies,
[MEO3] presents an interesting comparison between the two approaches and some lessons

learned:

e Static analyses generally can find more errors than model checking. There are two
reasons for this: first, models and environments are abstractions of the underlying
implementation and many details are suppressed from them, thus model checking tends
to miss many errors that static checking can directly get from code; second, model

checking, similar to testing, can only find errors from executed paths; incomplete
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environment modeling is bound to miss many errors on the non-executed paths.

e Easy-of-inspection really matters; tool users prefer to having the priority of the errors
ranked, especially when facing thousands of errors.

e Model checking is better at finding errors involving global invariants and values, thus
complements static analyses.

e The more analyses applied to find an error, the harder the error is to reason about and
to fix. Furthermore, the higher the chances are for one of the analyses to go wrong.

e Model checking requires manual construction of both the models and (optionally) the
environments within which the models are supposed to function, these tasks can be
both expensive and error prone. Errors in the models can trigger false positives. More-
over, applying approximation and abstraction during model construction suppresses
implementation details, thus can miss real errors in code. It is crucial to reuse the

efforts invested in constructing the models.

One more thing worth noting is that the implementation model of the subject systems
(the FLASH protocol [CT00a], AODV [MPC*02], and TCP [MEO03]) is closer to the finite
state machine model of the model checker. These systems are all implemented in C.

In the paper “Lightweight Analysis of Object Interactions” [JF01], Jackson and Fekete
outline a method for automatically detecting design errors that are related to object inter-
actions. The formal notation Alloy [Jac02] is used to represent the abstract program. With
Alloy, the heap structure of the system under analysis is explicitly modeled; a global relation
that maps an object reference to its abstract value is included in the program state. Meth-
ods called but not under reasoning are specified declaratively. In order to analyze whether
a particular method maintains a certain property, an interaction diagram is extracted from
the method; all the methods called within the diagram are specified, and their specifications
are conjuncted to form a formula, with different variables explicitly representing the states
between the method calls. The formula is then conjoined with the specifications for the
other parts of the system, that is, the heap, classes, and methods. The combined speci-
fications are an assertion that the system should support. Alloy checks this by finding a
counter example-that is, a model of the negation of the formula. The formula is solved by
first translating it to a propositional boolean formula, and then applying an off-the-shelf
SAT solver to the boolean formula. An example of the so-called comodification problem is
used to illustrate the whole process.

A number of challenges have also been pointed out. For example, one is that given an
interested property, how to automatically extract a behavioral skeleton like an interaction
diagram, from the source code, using some form of static analysis. Another is how to deal
with conditional and loop statements so that a formula can be formed and the analysis can

be carried out.
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8.3.3 Static analysis based

This subsection reviews two works most closely related to FCL. They share the similar goals
with FCL. One has special notations and the other depends on annotations on code. In both

cases the checking is automated.

8.3.4 CCEL (C++ Constraint Expression Language)

CCEL [LM93, MDR93] and FCL have different contents in the data models for the underly-
ing programming language (C++). CCEL models only at the C++ interface level. It does
not consider for example, expressions. FCL not only covers expressions, but also provides
some rudimentary intraprocedural control flow analyses. This turns out to be fairly useful.
FCL at present handles more constructs than CCEL, for instance, template instantiations,
pointer and reference types, namespaces, function pointers, and so on.

CCEL models program elements separately. This is unnecessary and inappropriate.
For example, parameters, data members, and variables were treated as three independent
elements, so were member functions and free functions. In contrast, FCL has a different
way of modeling. For instance, by introducing the notion of program units, FCL makes
it possible to distinguish parameters, data members, and ordinary variables by examining
their respective program units. Therefore, FCL significantly simplifies the data model. This
is important. It simplifies concepts and makes it possible for a simpler FCL.

FCL has developed a better formalism than CCEL and is more expressive than CCEL.
FCL bases itself explicitly on the first-order logic with the additional support of sets and
sequences, whereas CCEL at best does so implicitly. For example, it is not clear whether
CCEL can support arbitrary levels of nested universal and existential quantifications. With
sets, FCL can express constraints on the size of sets, so that one can say something like “the
size of the set is 1.” CCEL has no way to express this.

CCEL defines CCEL variables through a syntax that mimics C++. For example, in

CCEL one needs to specify a member function of a class as follows:

Class C;
MemberFunction C::mfunc;
mfunc.name() == "aName";

whereas in FCL:

mfunc as function("aName",C);

The advantage of our notation is that it is more likely to be portable, since it does not
depend on the special syntax of any particular programming language. More importantly,

by using well-known mathematical operations such as set comprehension, FCL specifications

should be clearer in terms of semantics and thus easier to learn.
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FCL aims at frameworks whereas CCEL so far has been mostly applied to generic design
principles or implementation guidelines. It seems that frameworks bring FCL a unique
advantage by providing more specific contexts, such that the tools can cover a broader
range of common mistakes, and at the same time, generate fewer spurious ones. In fact, even
Meyers himself admitted that “it quickly became apparent that the great majority of the
guidelines used by good C++ programmers were too difficult to formalize, or had too many

important exceptions, to be blindly enforced by a lint++[CCEL]- like program” [Mey92b].

8.3.5 CoffeeStrainer

CoffeeStrainer [Bok99] is a framework that allows programmers to specify constraints on
the structure of Java programs. It works on the Java AST [BS98] to enforce constraints on
programming conventions, type definitions, and type uses.

CoffeeStrainer does not have a specification language, instead, it depends on special
annotations on the checked code. To use it, a programmer has to define an empty interface
to express the constraints, and manually marks the class to which they want to apply the
constraints with the interface. The constraints are implemented as Java code that works on
the AST, and is hidden as comments within the body of the empty interface. At compile
time, once the framework detects such interfaces, it will extract and dynamically compile
the constraint code and apply the constraints to the corresponding types of AST nodes.
CoffeeStrainer relies on naming conventions to relate the constraint code to the type of
node to which it is applicable. For example, a constraint implemented by the method
“checkField” would be applicable to all the fields within a checked class.

Clearly, because of its dependence on features such as dynamic compilation and empty
interfaces, it is not easy to port CoffeeStrainer to other languages such as C++. In addition,
to apply it programmers would have to annotate their code with the constraint code. It
is not clear whether this “intrusiveness” is desirable. Furthermore, CoffeeStrainer requires
programmers to write the constraints. Typically, if one knows the constraints, then one
should be able to check them manually right away, without bothering writing them down;

it seems hard to justify the need of such a tool.

8.3.6 Hybrid Approaches

Pattern-Lint [SSC96b] aims at monitoring the compliance of a software system with its high
level design models using program databases and a Prolog engine. Pattern-Lint explores
three types of design models, concrete but low level rules that can be phrased directly in terms
of programming elements, architectural level rules such as design patterns and architectural
styles, and design heuristics such as low coupling and high cohesion. Realizing that general

design rules can have multiple concrete implementations, and that checking the conformance
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to such heuristics as low coupling and high cohesion is largely human-dependent, the authors
adopt a hybrid approach: in addition to static analyses, techniques of dynamic analyses and
visualization [SSC96a] are also combined to help query and visualize the implementation,
not only to detect violations, but also to increase the confidence that an implementation is
faithful to a certain design model. Examples taken from the Choices [CT93] framework is

used throughout the paper. More details can be found from Sefika’s Ph.D. thesis [Sef96].

8.4 Other Related Works

Documentation The problem of framework usability has led to the proposal of several
documentation approaches ranging from prescriptive to descriptive, and from infor-
mal to formal. Prescriptive methods describe how the framework should be used
while descriptive ones describe only the design of the framework and users have to
deduce how to use it. Examples of both prescriptive and informal approaches in-
clude patterns [Joh92], cookbooks [KP88], and hooks [FHLS97]. Examples of formal
but descriptive methods include the interaction contracts [HHG90] and the interface
contracts [Mey92a]. Other methods such as design patterns [GHIV94] and metapat-

terns [Pre95] are both prescriptive and descriptive.

Tools Support for Framework Instantiation Several authors have been working on
providing tool support for framework instantiation. Active cookbooks [PPSS95] is
a semi-automated tool that can enact recipe descriptions, providing users an interac-
tive interface that guides them through the instantiation process. However, recipes do
not explain design rationales; they describe only how the problem can be solved using
the framework. The primary drawback of the approach is its inflexibility, namely, users
have to either follow the recipe up to the last detail or abandon the tool completely.
Ortigosa et al [OCMO00] present another tool that utilizes intelligent agent technology
to assist framework instantiation. The tool asks users to select from a list of func-
tionalities and based on the selection, an agent elaborates a sequence of programming
activities that should be carried out in order to implement it. In [FBML0O0], Fontoura
et al propose to use DSLs (Domain Specific Language) to describe the variation points
of frameworks. The user uses the provided DSLs to specialize variation points and
the application is generated by transforming the DSL descriptions into the underlying
implementation language. These works are fundamentally different from ours: first,
they are all synthetic rather than analytic approaches; this may lead to the difficulty of
integrating with existing development processes. Second, all the approaches work only
on the structural aspects of programs such as class skeletons and method signatures;

none of them support method implementation.
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Several industrial frameworks have IDEs (Integrated Development Environment) asso-
ciated with them [IBM, Mic]. In particular, the Visual C++ IDE provides tools such
as GUI builder, resource editor, class wizard and application wizard to help the user
instantiate the MFC framework; some of these tools can even generate code. However,
tools cannot serve best unless they are mastered by the users, as some expert MFC
users have criticized: “automation does not help much until the user knows exactly

what is happening behind the scene” [SW96, New].

Specialization Interfaces Several authors have been working on issues related to the spe-
cialization interface. Kiczales and Lamping [KL92] discuss the issues in the design of
class libraries and emphasize the importance of documenting internal dependencies.
Lamping [Lam93] proposes to extend type systems to formalize not only the client in-
terface but also the specialization interface so that the latter can also benefit from the
automatic checking provided by type systems. However, the expressiveness of type sys-
tems is limited. Stata and Guttag [SG95] propose a methodology for the specialization
interface based on specifications rather than type systems. Their approach partitions
a specialization interface into method groups and associating substates with them;
programmers are required to re-verify a whole group whenever any element within it
is changed by a subclass. Reuse contracts [SLMD95] document the design relevant
part of a specialization interface. A reuse contract is a set of method signatures, each
associated with a specialization clause. A specialization clause names the signatures
of those methods of the same class that are crucial for the design of the particular
method. Furthermore, several operators on reuse contracts will be applied each time
a subclass is created or a class is changed by developers. Reuse contracts and their
operators serve as structured documentation and facilitate the propagation of changes
to reusable assets by indicating how much work is needed to update applications built

previously and where and how to test and adjust these applications.

Object Types and Subtyping Conventional type rules for object-oriented programming
languages such as the covariance/contravariance rules are more about “syntax” than
“semantics.” Nierstrasz [Nie95] proposed the notion of “regular type” to characterize
the non-uniform availability of object services. Liskov and Wing [LW94] present two
definitions for the subtype relation that differ on the treatment of history properties.
One definition demands the explicit specification of constraint rules in the supertype;
any subtype has to verify that they preserve the rules. The other definition requires
that any new method of the subtype be expressed in terms of the methods of the
supertype, resulting in an extension map. In addition, both definitions require that

(1) values of both supertype and subtype satisfy type invariants and (2) behavior con-
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formance between the same methods of supertype and subtype. The authors further
distinguish between extension subtypes and constrained subtypes; both are applied in
practice. For example, commonly framework builders implement part of a class and
let the users extend the uncertain part by subclassing it and adding new methods
and variables. It is also common for users to override a method and provide a more
constrained version. These are in general related to our work because we should at

least be aware of the formal semantics of object types and subtyping.
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Chapter 9

Summary and Future Work

9.1 Summary of Result and Contributions

Object-Oriented frameworks are composed of collaborating classes that provide standard
solutions to a family of problems commonly encountered among applications in some do-
main [JF88]. Framework builders provide mechanisms, the variation points, that enable
developers to use the framework to construct their specific application [Deu89).

The size and complexity of frameworks and their notorious lack of design and intended-
usage documentation make framework-based development a learning-intensive and error-
prone process [HHY03]. Commonly framework users misunderstand the relation between
their application and how the framework designer intended the framework to be used, re-
sulting in overly complex solutions or subtle bugs.

For the framework user with shallow knowledge, something more akin to type-checking
is desirable. That is, framework developer takes on the burden of describing/specifying how
to properly use the framework so that compliance by the framework user can be checked
mechanically. Although correct type matching is no guarantee that a function is called
properly, it does catch many common mistakes. We would like something similar to apply
to framework use.

We use the term framework constraints to denote the knowledge that a user needs to
know in order to use a framework properly. The idea is to formalize the framework con-
straints on hot spots and check whether a framework instantiation satisfies these constraints.
Our goals are to create specification languages and tools that enable framework builders to
encode their knowledge about the intended use of the framework and use the knowledge to
check user applications.

This thesis focuses on the structural aspect of framework constraints. A specification
language, FCL (Framework Constraint Language), is designed to express the constraints
on the structure of source code. The feasibility and effectiveness of FCL are demonstrated

through several case studies. We conclude that it is indeed useful to framework users.
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FCL is a typed first-order logic extended with set and sequence operations. Its term
language is a special set of total functions, reflecting the entities and relationships of pro-
gramming languages. This formalism lends to the automation of FCL.

Technically, FCL is more akin to type-checking. The difference can best be illustrated
by an example: while the empty program would pass all the type checkers, it can hardly
pass any non-trivial FCL specifications.

Several case studies have been done to gain knowledge on how FCL can be better designed
and used, and whether it can be helpful to practice. The following are the general guidelines

that we learn from our experience:

e In general, the more specific the context is, the more effective FCL tends to be.
Many examples show that the components that FCL is used to constrain are highly
specialized; they often assume a great deal of context. FCL can be more effective

under this kind of circumstances.

e Specifiers should know the design well and avoid immature generalization. However,
this often implies that the specifiers should be the designers or somebody who works

closely with them.
e Specifying against specific symptoms sometimes can be more economical.

In practice FCL has found both errors of omission and errors of commission. Many errors
are design errors. They are caused by misunderstanding and/or being unaware of properties
and interaction at system interfaces. The errors are both system- and domain-specific. They
are different from the generic implementation errors such as dereferencing null pointers or
array bound overflow. Independent of the domains of the programs being inspected, they
can occur in any of them.

In short, this work proposes to extend the technique of type checking and apply it to
framework-based development. A summary of the main result and contributions are as

follows:

1. The design and implementation of FCL make the bulk of the work. A model of the
static properties of C++ programs is presented, and an FCL is defined based on the

model. A formal semantics is also defined for FCL.

2. The feasibility and the potential usefulness of the approach are then demonstrated
by applying FCL to real frameworks. Specific lessons learned from the experience are
reported. These lessons are important for both the use and future development of

FCL.

To use a framework is to learn its design; many problems originate from a lack of
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9.2

understanding about its architecture, design pitfalls, and evolution. FCL has been

used to perform the following kinds of tasks:

Detecting omission of programming obligations;

Detecting violations of programming constraints implied by a design;

Detecting violations of programming constraints implied by a “negative design;”

Enforcing programming disciplines;

Helping with the evolution of both the framework and its intended use.

Future Work

Framework-based development has become indispensable in modern software engineering.

The difficulty of framework use probably will stay with us as long as we program; thus it

is important to both further develop FCL in particular and deepen our understanding of

framework-based development in general. In the following, I outline some possible future

work:

Designing FCLs for other languages like Java and oo Perl In general, I believe that

it should be straightforward to develop FCLs for other languages. Based on experience
with developing FCL for C++, the development of FCL can be divided into following

aspects:

e Parsing and type analysis;
e Designing a model of static properties of programs;

e Designing and grafting FCL onto the model.

Parsing and type analysis generally have been well understood; thus they are largely a
matter of engineering though it can be challenging to get them right. To get a model
of static properties of programs demands a deep understanding of the semantics of the
subject language. I believe our experience with C+4 can be helpful to dealing with
Java and oo Perl. Last, it is clear that FCL can be divided into domain independent
part, that is, the first-order logic and set and sequence operations, and domain de-
pendent part, namely, the term language and the type system. Therefore, it should
be straightforward to grafting FCL to models developed for other languages. In fact,
it would be an interesting experiment to mold the current FCL into a framework and

develop other FCLs as its instances.

Applying FCL It is necessary to apply FCL to more cases and more importantly, to

observe how well it works in assisting real programmers.

Another direction is to investigate whether one can use FCL when developing new

frameworks. All examples so far are retrofits; how would it look like to apply FCL
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when one is designing a new framework? For example, when should framework de-
velopers spend time encoding constraints with FCL? In addition to framework-based

development, would FCL be helpful to routine software development?

FCL as a basis for other program manipulation tasks such as refactorings [F+99] and

other program transformation.

Architectures and frameworks Software architectures are about the gross structures of
large software systems [BCK98]. The most important thing that a framework delivers
is its software architecture [Joh97]. Many problems of using frameworks seem to come
from the lack of understanding of the architectures of the frameworks. There can
be many reasons for this state of practice including, for example, the competence of
the user. I am particularly interested in documenting framework architecture for the

purposes of both human communication and formal analysis.

Applying model checking to framework-based development Model checking has been
applied to both software requirements specifications [ABBT96, AG93] and source
code [DT97, MPC*02, JF01]. Our previous attempt on model checking frameworks
with Spin [Hol91] was not successful [HHS02]. An interesting research question re-
mains: Whether and how can one leverage model checking techniques in framework-

based development?
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Appendix A
FCL: Abstract Syntax and Semantics

This appendix introduces the abstract syntax (Table 9.1), type rules (static semantics),
and the dynamic semantics of FCL. Meyer’s notation [Mey88] is adopted. The concrete
syntax can be found in Chapter 3.

A.1 Notational Conventions

The denotational method specifies the meaning of a programming language through associ-
ating with each construct 7' two functions of the following general forms:

Vr : T — Bool
Myt :T — Dt

where T can be, for instance, Statement, Declaration, Formula, and so forth.

The function Vr is a predicate. It yields the value ¢rue if and only if its argument is
a valid instance of the program construct 7. The sets of constructs are called syntactic
domains. The set of validity functions for a language defines all the “constraints” to which
its programs have to conform. They form the static semantics of the language.

For each construct T, the function M7 denotes its dynamic semantics with a set of
mathematical objects, which is also called its denotation. For each T, Dt represents the set
of mathematical objects; the set may vary for the various constructs. The set of denotations
for all the constructs of a language defines the semantic domains of the language.

Most of the M functions will turn out to be “higher order” functions that yield functions
as results. To highlight the specific nature of these functions, their arguments will be
enclosed in square brackets rather than the ordinary parentheses, as in Mr[t].

The following common mathematical operators will also be used:

1. indexing : Seq T x Int — T': get the ith element of a sequence. Syntactically, it is
written as s(i), where s is the sequence and i the index.

2. tail : Seq T — Seq T: get a new sequence from the argument by removing its first
element.

3. add_to_head : T x Seq T — Seq T: get a new sequence whose first element is the
element argument and whose tail is the sequence argument.

4. |#:“overriding union” of two functions f, g: X — Y:

h=fWg:

dom h =dom fUdom g;

h(z) = f(z) if z € dom f and z ¢ dom g;
h(z) = g(z) if z € dom g.

These notational conventions are adopted from Meyer’s book [Mey88].

A.2 Static Semantics

FCL is strongly typed so that when evaluating an FCL specification, an FCL checker will not
suffer any run-time errors. This is ensured by putting a set of constraints on the structure
of FCL specifications. The constraints comprise the static semantics of FCL.

From Object Model to Type System

An object model presents the entity-relationship model within a certain domain; the classes
are entities, and the relationships are modeled by the operations that the classes support.
Given such a model, one can design a logical language for it by assigning a sort to each
entity and a total function to each operation supported by the entity. An inheritance
relation between a pair of classes can be translated into a subtype/subset relation between
their corresponding sorts.

However, sometimes it may not be necessary to assign sorts for all classes. Fig. 4.1
depicts the object model for C++, and Fig. 9.1 the basic types and the subtype relation for
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FCL_spec
Statement
Declaration

Formula

Expr

Negation
Conjunction
Disjunction
Existential
Universal
BVar_Declaration
ExprWithVars

Operation
Set_op

Set_comprehension
Set_enumeration
Seq_op

Relational

Constant
Variable
T list

sl: Statement_list
Declaration | Formula
v: Variable; expr: Expr

Negation | Conjunction | Disjunction |
Existential | Universal | Expr

Variable | Constant | Operation | Formula | ExprWithVars

f: Formula

fi: Formula; f5: Formula

fi: Formula; f5: Formula

bVarl: BVar_Declaration_list; f: Formula
bVarl: BVar_Declaration_list; f: Formula
Declaration

vl: Declaration_list; expr: Expr

Set_op | Seq_op | Relational | FCL_fct

Subset | Memberof | union | difference | family_union |
card | Set_comprehension | Set_enumeration

bVarl: BVar_Declaration_list; p: Formula; ele: Expr
exprl: Expr_list

Seq-member | Seq-indexOf

S >=|<|<=| =

true | false | Str | Int | global
id: Str
T*

Table 9.1: The Abstract Syntax of FCL
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the current version of FCL. Upon comparing them, one may find that, for instance, the class
cAsgNode and the class cTyped have no corresponding sorts in FCL. This is because we have
not found examples where assigning sorts for them would be necessary. If the operations
supported by these classes are useful, we can move them downwards to the corresponding
sorts of their subclasses. For example, retrieving the context of an identifier is defined as
an operation for the class cAsgNode, but since the class is not modeled in FCL, a function
unit (Table 3.2) has to be defined on two sorts, Name and Exp, which correspond to two of
its subclasses, cName and cExpGeneralized, respectively.

Type System of Current FCL

/J&m\ [Exp] [str] [t ] [Boor ]

unit | [ Ty

Fct

(1) Undef is the subtype of all other types
(2)sub—>sup: sub is a subtype of sup.

Figure 9.1: Basic types and the subtype relation

The type system of FCL includes two kinds of types: basic types (Fig. 9.1) and com-
pound types. Basic types can be further divided into “facility” types and “domain” types.
“Facility” types help form constraints, including Str for string values, Int for integers, and
Bool for boolean values. “Domain” types come from the problem domain of programming
constructs, including Exp for expressions, Var for variables, NS for namespaces, Fct for
functions, Cls for classes, Name for named entities, Unit for program units, Gen for types
generated through template instantiations, and Type for types.

The current FCL covers only a subset of the object model; for instance, pointer and
reference types, arrays, builtin types, and generated functions are not included.

The set of basic types can be represented by Type_value_basic defined as follows:

Type_value_basic = { Str, Int, Bool, Exp, Var, NS, Fct, Cls, Name, Unit, Gen, Type, Undef

Compound types are types for sequences and sets:

Seq-type = { <t> |t : {Var, Exp, Unit}}, where <t> represents the set of sequences the
type of whose elements is t.

Set_type = { F t | t:Type_value_basic U Set_type }, where F ¢ represents the power set of
the type t.

Given a type t, the function build_set_type creates a new type, which is the set of t:
build_set_type(¢: Type_value_basic U Set_type) = F ¢.

Given a set type of the form F ¢, the function elementType returns its element type:
elementType(F ) = t.

Undef is the type for the undefined value.

Fig. 9.1 also defines the subtype relation between basic types. Besides basic types,
subtype relations can also exist between compound types. One set type is the subtype of
another if and only if the base type of the former is the subtype of the latter. Similar
definition holds for sequence types.

The subtype relation is necessary for the set union operation; For a set union expression
to be valid, FCL requires that the base types of both its operand sets have one and only
one common ancestor in Fig. 9.1. This notion will be further formalized in section A.3.

Finally, the set of types that FCL supports, Type_value, is defined as follows:
Type_value = Type_value_basic U Set_type U Seq-type
Given a type, the predicate is_Set can tell whether it is a set type.
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Type Maps

Whenever one says that an instance of some construct is “correct,” one really means that
it is valid in a certain context, in which each identifier has a designated type. In compiler
design, this notion of context corresponds to “symbol tables”, which can be modeled by a
function Type_map:

Type_map : Variable — Type_value

FCL variables are only implicitly typed; that is, one does not declare a variable in the
form of “v: T”, where T is a named type. Instead, one writes “v: Ezpr”, where the type
of Ezxpr can be inferred, and the type of v is assigned as that of Ezpr. In the following, we
will use the function type_val, which evaluates the type of an expression:

type_val : Expr x Type_map — Type_value
whose definition will be deferred to the end of this section.
For a construct T in the context of a type map, the function typingr constructs a type
map for the new variables defined in 7T
typingr : T X Type_map — Type_map
where T can be Declaration, Declaration_list, BVar_Declaration, BVar_Declaration_list, or
Statement,

A declaration yields a type map consisting of only one pair, whose name is that of the
variable, and whose type is that of the expression:

tYping peciaration|del : Declaration,tm : Type_map] = { < dcl.v, type_val[del.expr,tm] > }

The type map that a list of variable declarations introduces is the “overriding union” of
the type maps of each of the variables, from head to tail:

LYPIng pectaration_tist|Vl : Declaration_list,tm : Type_map| =
if vl.length = 0 then

else
given firstT'M = typingDeclaration[Ul(O)a tm]
then
firstT M | typingpectaration_tist [Vl .tail, newT M)
end
end

Both quantification formulas and set comprehension introduce a list of bound variables.
The type map for the list is the “overriding union” of the type maps of all the variables,
from left to right:

tYyPINgBV ar_Declaration_tist DV arl : BV ar_Declarationlist,tm : Type_map| =
if bV arl.length = 0 then ()

else
giVeH fZTStTM = typingBVm‘_Declaration [bVarl(O), tm]
then
firstT M |8 typing Bvar_pectaration_tist [PV arl.tail, newT M]
end
end

The type map of each bound variable is defined as follows:

LYPINGBV ar_Declaration|dcl : Declaration,tm : Type_map| =
given setType = type_val[dcl.expr, tm];
setElementType = elementType(setType);
then
{ < dcl.v, setElementType > }
end
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Note that the type of a bound variable is the type of the elements of the set whereas the
type of a declared variable is that of its expression. For example, in ¢ as classSet;, ¢ has the
type of classSet whereas in forall ¢ being classSet holds ..., c has the type of the element type
of classSet.

The following is the typing function for statements:

typingstatement|St : Statement, tm : Type_map| =
case st of
Declaration : typingpeciaration|st, tm]
Formula : 0
end

If the statement is a formula, it does not introduce any new variables that can be used
by subsequent statements, therefore, the function returns the empty set; Otherwise, it is a
declaration and the function returns the new type map defined by the declaration.

An outline of the function type_val is as follows:

type_val : Expr x Type_map — Type_value

type_vallexp : Expr,tm : Type_-map| =
case exp of
Variable : tm(exp)
Constant : type_valconstant[€Tp)
Formula : Bool
Operation : type_valoperation[exD, tm]
ExprWithVars : type_val[exp.expr, tm |H typingpeciaration_tist[€Tp.vl, tm] |
end

A.3 Static Semantic Functions

An FCL specification consists of a sequence of statements. The specification is valid if and
only if the statements list is valid:

VrcL_spec : FCL_spec — Bool
VFCL—SPGC[p : FCL_spec] = Vstatement_list [p-Sl, w]

A statement list is valid if and only if all of its statements are valid:
Vstatement_tist : Statement_list x Type_map — Bool
Vstatement_tist[sl : Statement list,tm : Type_map| =

if sl.length = 0 then true

else Vstatement [Sl(0)7 tm] A

Vistatement_tist|sl-tail, tm |{) typing[sl(0), tm]]
end

Note how the type map for subsequent statements is updated in the above function.

Vstatement : Statement x Type_map — Bool

Vstatement[st : Statement,tm : Type_map| =
case st of
Declaration : Vpeciaration|St, tm]
Formula : Viormula[St, tm]
end

The validity of a declaration is equivalent to the validity of its expression:

Vbectaration : Declaration x Type_map — Bool
VDeclaration|dcl : Declaration, tm : Type_map] = Vigpr|dcl.expr, tm)
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The validity of an expression is the result of following case analyses:

VEazpr : Expr x Type_map — Bool
VEzprlexp : Expr,tm : Type_map] =
case exp of
Variable : Vi ariapie[exp, tm)
Constant : true
Formula : VFarmula[empa tm]
ExzprwithVars : Vgeprwithvars[ezp, tm]
Set_comprehension : Vset_comprehension[€TD, tM)]
Operation : Voperation[exp, tm]
end

Of course, a name reference is valid if and only if there is a variable with the same name
in the type map:

W ariabie : Variable x Type_map — Bool

Wariabie[V : Variable,tm : Type_-map] = v € dom tm

An expression can have a list of local variables. Such an expression is valid if and only
if its expression is valid under the new type map:

VEeprwithvars : ExprWithVars x Type_map — Bool

VEzprwithVarslexp : ExprWithVars,tm : Type_map| =
given newT M = tm |4 typing[exp.vl, tm]
then
VEzpr[exp.expr, newT M]
end

The validity of formulas are also the result of case analyses:

VEormula : Formula x Type_map — Bool

Vrormutalf @ Formula,tm : Type_map] =

case f of
Negation : Viegation[f, tm]
Conjunction : VConjunction [f: tm]
Disjunction : Vpisjunction|f, tm]
Ezistential : Vegistentiat|f, tm)
Universal : Vuniversatf, tm]
Ezxpr : Viapr [ f, tm] A type_val[f,tm] = Bool

end

Note that for an expression to be a formula, it not only has to be a valid expression, but
also has to be of the Bool type.

A negation, conjunction, or disjunction is valid if and only if their constituent formulas
are valid; we omit the validity functions since they are obvious.

The validity functions of both universal and existential quantifications are the same, the
following only presents the one for existentials:

VEzistential : Existential x Type_map — Bool

VEgistentiat|ext : Existential, tm : Type_map| =
VBVar_Declaration_tist [emt-bvarl, tm]/\
VFormuialext. f,tm 4 typinglext.bV arl, tm])
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A set comprehension is valid if and only if all of its three parts, the list of bound variables,
the “filter” predicate, and the “element” function, are valid:

Vet _comprehension : Set_comprehension x Type_-map — Bool

VSet_comprehension|SC 1 Set_comprehension,tm : Type_map| =
if VBV ar_Declaration_list [sc.bVarl, tm] then
given newT M = tm | typing[sc.bVarl, tm)]
then
VFormula [Sc.p, TL@’U)TM]/\
VEapr|sc.ele, newT M)
end
else false
end

The type of set comprehension is calculated as follows:

type_valset_comprehension : Set_comprehension x Type_map — Set_type

type_valset_comprehension|SC : Set_comprehension, tm : Type_map] =
given newT M = tm ¢ typing[sc.bV arl, tm];
elementType = type_val ggpr[sc.ele, newT M|
then
build_set_type(elementType)
end

For a bound variable list to be valid, all of its elements have to valid:

VBVar_Declaration_tist - BV ar_Declaration_list x Type_map — Bool
VBV ar_Declaration_tist [PV arl : BV ar_Declarationlist,tm : Type_-map] =
if bVarl.length = 0 then true
else
VBVar_Declaration [bVarl(O), tm]/\
VBVar_Declaration_list [bVarl.tail, tm L'!'J typmg [bVar(O), tm]]
end

The definition of a bound variable is valid if and only if its set expression is valid and
the set expression is of set types:

VBVar_Declaration : Declaration x Type_map — Bool

VBVar_Declaration[DV ar : Declaration, tm : Type_map| =
given exprType = type_val[bV ar.expr,tm]
then
VEzpr [DV ar.expr, tm] A is_Set(exprType)
end

Before discussing the typing rules for set operations union and set enumeration, the lub
(least upper bound) operator for two types has to be defined first. For two types ¢; and s,

lub : Type_value x Type_value — Type_value

lub(t1, t2) =
(>t AE> A Bt <EAE >t AL > L)
then ¢ else null
end

where t; < ty denotes that t; is a subtype of . The subtype relation is introduced in
section A.2.
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Now the validity function for set union can be defined as follows:

Vunion : union x Type_map — Bool
Vunion|t : union, tm : Type_map| =
given ¢, = type_val[u.l,tm]; t2 = type_val[u.r, tm];
then
Vezpr[u.l, tm] A VEgpr[u.r, tm]A
is_Set(t1) Nis_Set(ta) A lub(t1, ta) # null
end

And that for set enumeration can be defined as follows:

Vset_enumeration : Set_enumeration X Type_map — Bool
Vset_enumeration|[se€ : Set_enumeration,tm : Type_map| =
if se.exprl.length = 0 then true
else given eT'ype = elementT ype(typevalset_enumeration[se-exprl.tail,tm])
Vezpr[se.exprl(0),tm] A Vset_enumeration|S€.exprl.tail, tm]A
lub(type_val[se.exprl(0), tm],eType) # null
end

type_valset_enumeration : Set-enumeration X Type_map — Set_type
type valset_enumeration|se : Set_enumeration,tm : Type_map] =
if se.expri.length = 0 then build_set_type(null)
else given tailType = elementType(type valset_enumeration|S€.exprl.tail, tm])
build_set_type(lub(type_val pypr[se.exprl(0),tm], taill Type))
end

A.4 Dynamic Semantics

Semantic Domains

The dynamic semantic domain of FCL, Value, is defined as follows:
Value={ x }U U Type_value

* is a special symbol for the “undefined” value. Each element of the set Type_value, if viewed
by intent, represents a type; if, however, viewed by extent, it represents the set of elements
that are characterized by the type. In the definition of Value, types are viewed from the
extent point of view.
At the top level, a program can be denoted as a function that maps from names to
namespaces:
Program = Str - NS

It has only one pair within it, that is, the global namespace:
Program = {{global, the_global _namespace)}

At the next level, each namespace can contain zero or more nested namespaces, types,
variables, and functions. Thus VS can be characterized as follows:

NS =ns: Str — NS;type : Str — Type;
var : Str — Var; fct : Str - F Fct

That is, a namespace can be formalized as an aggregate of functions. Note that we do not
intend to use this equation as a definition of NS, for otherwise this would be a recursive
domain equation that has no solution under the usual category of sets. Instead, we intend
to use it to characterize a given NS.

In a similar way one can give other constructs denotations. We omit them because formal
treatments for these construncts would be quite tedious without increasing the clarity of
presentation; instead, we choose to explain them informally in Section 3.2.2.
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Dynamic Semantic Functions

The dynamic semantics of FCL specifications are characterized by State, a function from
FCL variables to the elements of Value:

State : Variable — Value
The meaning of the FCL constant global is defined as follows:

Mgiobar : Program — State
Mgiopar[p : Program] = p(global)
An FCL specification consists of zero or more constraints. Evaluating the specification

against a given program yields a sequence of boolean values, one for each constraint. Thus,
the meaning of a specification can be defined as follows:

Mpcr _spec : FCL_spec — Program — Seq Bool
Mrpcr_spec|spec : FCL_spec] = \p : Program-
given startState = {(global, Mgiopar[p]) }
then Mstatement_tist|spec.sl, startState]
end

That is, the evaluation of a specification starts with the statement list and the startState.
The semantic function for the statement list is defined as follows:
Mstatement_tist - Statement_list x State — Seq Bool
Mstatement_tist[Sl : Statement_list, s : State] =
if sl.length = 0 then ()
else case sl(0) of
Declaration : Msiatement_ist|sl-tail, s ) Mpeciaration[s1(0), s] ]
Formaula : add_to_-head(Mpormuia[sl(0), 8], Mstatement_tist[Sl-tail, s])
end
end

Thus, the notion of a program p being correct with regard to a specification spec can be
defined as:
Vb € MFCL_spec[Spec] (p) -b

In the above definition, the evaluation of each declaration generates a variable associated
with a value, and the evaluation of each formula generates a boolean value.
The semantic function for declarations is as follows:
Mpectaration : Declaration x State — (Variable — Value)

Mbpeciaration|dcl : Declaration, s : State] =
{{dcl.v, Mpgp,[dcl.expr, s]) }

The semantic function for formulas is as follows:

MFEormula : Formula x State — Bool
Mpormutalf : Formula, s : State] =
case f of
Negation !Mpormuialf-f, 8]
Conjunction : Mpormuialf-f1,5] N Mrormuialf-f2, §]
Disjunction : Mpormutalf-T1,8] ¥V Mpormuialf-f2, 9]
Existential : Mgyistentiall f, 8]
Universal : MUniversal [f) S]
end

An existential formula is true if and only if there is at least one assignment to its bound
variables satisfying the formula:

MEgistential - Existential x State — Bool
MEggistentiat|ext : Existential, s : State] =
given bindings = MBv ar_Declaration_tist|€xt.bV arl, s]
then \/{Mpormuialext.f, sl b] | b € bindings]}
end
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A universal formula is true if and only if all of the assignments to its bound variables
satisfy the formula:

Muyniversal - Universal x State — Bool

Muyniversai[uni : Universal, s : State] =
given bmdmgS = MBVar_Declaration_list [uni.bVarl, 5]
then A{MFpormualuni.f,slgb] | b € bindings]}
end

A list of bound variable definitions generates a set of “bindings”. Each “binding” is a
set of name-value pairs:

MBvVar_peclaration_tist : BV ar_Declaration_list x State — F (Variable — Value)
MBvVar_Declaration_tist|dl : BV ar_Declaration_list, s : State] =
if dl.length = 0 then
else given pairs = {dl(0).v} X Mpyp-[dl(0).expr, s];
resthdmgs = MBVar_Declaration_list [dltaZl; S Up]
then {{p}Wr | p € pairs Ar € restBindings}
end
end

Each expression yields a value. The value depends on the type of the expression:

MEgqpr : Expr x State = Value
MEgaprlexp : Expr,s : State] =
case exp of
Constant : Mconstant[€TD, S]
Variable : My qriaple[€xp, $)
Formula : MFormula[empa S]
ExprithVars : MggprwithVvars[€TD, S)
Operation : MOperation [ea:p, S]
end

Each constant has a real value as its denotation; we omit their semantic functions.
The semantics of Variable is defined as follows:

My ariabie : Variable x State — Value
Mv ariapie[v : Variable, s : State] = s(v)

The semantics of ExprWithVars is defined as follows:

MEgprwithvars : ExprWithVars x State — Value
MEzprwithvarslexp : ExprWithVars, s : State] =
MEsz [61'])-@1’]77', S t",l Mpectaration_tist [emp.dl, 5] ]

The semantics of the declaration list is defined as follows:

Mpectaration_tist : Declaration_list x State — F(Variable — Value)
Mpeciaration_tist[dl : Declarationlist, s : State] =
if dl.length = 0 then
else given pair = {{(dl(0).v, Mgyp-[dl(0).expr, s]}
then pair U MDeclaration_list [dltaZl; S Upa”l]
end
end

In the abstract syntax, set and sequence operations, relational operations, and functions

on the object model are under the category of operations. Since the semantics of most
of the set, sequence, and relational operations are standard, we will present the semantic
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function for only set comprehension. FC'L_fct represents all the FCL functions on source
code model; these functions are described in Section 3.2.2.
The semantic function of Set_comprehension is defined as follows:

Mset_comprehension © Set_comprehension x State — Set_type

Mset_comprehension[sC : Set_comprehension, s : State] =
given bindings = MBvar_Declaration_tist|Sc.bV arl, s]
then {ele | Mpormuialsc-p, s|Hb] = true,ele = Mpgpr[sc.ele, s|Hb], ele # *,b € bindings}
end

Note that if the result of the element function is “undefined,” the element will not be
included in the set. Thus set comprehensions always return “valid” sets.
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