
University of Alberta 

LOGIC-ORIENTED FUZZY MODELS AND FUZZY 
MODELING 

by 

Xiaofeng Liang ff*' 

A thesis submitted to the Faculty of Graduate Studies and Research 
in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

Department of Electrical and Computer Engineering 

Edmonton, Alberta 
Spring, 2008 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-45555-5 
Our file Notre reference 
ISBN: 978-0-494-45555-5 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 
As the complexity of systems increases, their successful modeling becomes a 

difficult and complex task. Key challenges in system modeling include 

constructing accurate as well as transparent and highly interpretable models 

easily comprehended by humans. With this respect, the development of 

user-centric models endowed with highly interactive interfaces is a highly 

relevant and timely task. 

The objective of our research is to investigate and develop a generalized logic 

model that is able to achieve a meaningful balance between accuracy and 

transparency when interacting with users. Such a model can deal efficiently with 

highly dimensional modeling problems. Fuzzy logic and fuzzy sets are able to 

cope with linguistic information (information granules) and are therefore 

compatible with human perception. We exploit the technology of fuzzy neural 

networks. Such networks combine the superb learning abilities of 

neurocomputing with the high interpretability aspects associated with fuzzy logic. 

The design scheme consists of three fundamental phases, namely the design of 

efficient information granulation mechanisms realized by the interface layout, 

the formation of learning schemes in the processing core, and the interpretation 

of model, delivering readable rales back to the user. Several design techniques 

are presented in the thesis including fuzzy equalization, conditional Fuzzy 

C-means clustering, particle swarm optimization, gradient-based learning, and 

network pruning. Experimental studies are reported and the obtained results 

demonstrate the feasibility and efficiency of the proposed models. 
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Chapter 1 
Introduction 
1.1 Motivation 

As the complexity of systems increases, their successful modeling becomes a 
difficult and complex task. Neural networks (NNs) [4] [7] and fuzzy logic (fuzzy 
sets)[17] approaches have been proven to be efficient vehicles to cope with 
challenging modeling issues when applied to a variety of problems emerging in 
numerous areas of technology and science[l-2][8-10][13-15]. There has also 
been a growing interest in combining the two technologies, giving rise to what is 
commonly referred to as neurofuzzy models and neurofuzzy modeling [3][6][18]. 
These hybrid architectures have started to receive more attention and thus have 
evolved substantially in the past decade. 

However, with the rapid growth of neurofuzzy modeling, we are faced with 
several fundamental challenges. One of the most important is accuracy. The 
accuracy of a model is two-fold. First, the model must be able to capture the 
nature of the data by minimizing a certain performance index, such as the root 
mean squared errors (RMSE)[11], where the error is measured by comparing the 
real output to the output produced by the system. Secondly, the model must 
produce correct results when output is computed for new data. Another challenge 
is the need for high transparency in the fuzzy models. Surprisingly, with the 
inception of neurofuzzy systems and the growing dominance of evolutionary 
computing as a vehicle of global optimization, the notion of transparency of 
fuzzy models seems to have been somewhat overlooked—in spite the fact that 
readability and ease of comprehension of fuzzy models were driving forces 
behind the inception of the entire area several decades ago. 

The architecture of fuzzy models is predominantly focused on processing 
information granules. The external world for which the models are formed is to a 
very high extent numeric. Because they are focused on handling information 
granules, fuzzy models are abstract constructs. In light of this, there is a need to 
construct efficient interfaces between the modeling environment and fuzzy 
models; this functional module calls for an effective way of interfacing numeric 
and granular information. One of the fundamental tasks of the fuzzy modeling 
agenda is the construction of interfaces of such nature. 

Moreover, in order to enhance the model's performance, there is usually a 
genuine need to develop an efficient interaction with the designer of the model. 
In particular, it is highly beneficial to facilitate a seamless interaction between 
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the model designer and the identification environment. In this manner we are 
able to accommodate and take full advantage of domain knowledge and 
experience. User-centric modeling aims to create models with higher human 
interactivity and friendliness. 

Motivated by the existing challenges, this research seeks to construct a 
generalized logic model that is able to achieve an optimal and effective balance 
between accuracy and transparency by accepting user interactive inputs. Such a 
model can efficiently deal with problems of many dimensions and with the 
involvement of human interaction. 

1.2 Objectives 

This study is a continuation of ongoing research on logic-driven fuzzy models. 
There are several objectives of this research: 

1. Revisit and systematization of existing logic processing units with respect to 
their functionality, underlying logic, interpretation aspects, and learning abilities: 

These logic processing units include fuzzy neurons and unineurons [5][12][16]. 
With respect to their functionality, underlying logic, interpretation aspects, and 
learning abilities, some have been well documented in the existing literature, but 
some still require systematization and further investigation. In this research, we 
aim to systematically explore the properties of these logic processing units. 

2. Development of logic structures of fuzzy models based on different types of 
neurons: 

Our ultimate goal is to develop a logic network with superb learning ability and 
transparent interpretability. The logic processing units discussed in our research, 
including fuzzy neurons and unineurons, are conceptually simple logic-oriented 
elements that come with well-defined semantics and plasticity. Owing to their 
diversity, such neurons form essential building blocks of any fuzzy model 
architecture. By arranging the neurons in successive layers, we can produce a 
rich collection of meaningful logic expressions and nonlinear characteristics of 
input-output mappings. 

3. Enhancement of model interpretability and improvement of effective 
readability through pertinent pruning mechanisms: 

The advantage of a network built by fuzzy neurons and unineurons resides with 
its significant interpretability capabilities. There are several parameters that 
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directly impact the readability of the results. In particular, the numeric 
connections of neurons determine the weights of the conditions in the rules, and 
the number of neurons in the hidden layers indicates the number of rules 
generated. The introduction of a pruning mechanism sheds light on ways to 
further reduce the network, in this way improving its interpretability. 

4. Forming mechanisms of information granulation of experimental data: 

Real-world data are continuous while logic-based processing realized by fuzzy 
models operates on the more abstract constructs of information granules. The 
phase of granulation of information, and discretization in particular, has to be 
carefully investigated. The impact of the discretization scheme on the quality of 
data formed in this manner is critical and needs to be quantified. Suitable criteria 
are of interest when dealing with an assessment of the level of possible distortion 
introduced via discretization and its impact on the performance of the model 

5. Consideration of various schemes of the development of networks with special 
emphasis on the parametric aspects of learning and its realization in terms of 
evolutionary optimization, such as particle swarm optimization (PSO) and the 
hybrid of PSO with gradient-based learning: 

The issue of optimization is important so the logic constructs have to exhibit a 
significant level of parametric flexibility. Optimization thus requires a suitable 
development environment. There are quite a few learning schemes available in 
the literature. Among them, evolutionary optimization and gradient-based 
learning are two sound options to be explored in this regard. In order to fully 
exploit these learning schemes, we need to compare and investigate the 
performance of these methods and their hybrid. 

1.3 Main contributions 

The findings of our research activities contribute to the field of logic-driven 
modeling in the following ways: 

1. Construction of a logic network with the aid of fuzzy neurons and unineurons: 

Motivated by the need to construct networks that exhibit plasticity and retain 
interpretability, we have developed two types of fuzzy modeling frameworks 
which have the flexibility to model a wide range of problems in various fields. 
The first type of framework consists of a set of logic AND and OR neurons, and 
the second type of framework is built by fuzzy unineurons. Because of the 
general nature of unineurons, the second type of framework exhibits more 
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flexibility than the first. Both networks offer unique synergy in transparency and 
learning. 

2. Approaches suitable for parametric optimization: 

Three learning strategies are proposed for model identification. These learning 
strategies are capable of discovering concise, human-interpretable logic-based 
structures in data, which are then further refined in order to achieve high levels 
of accuracy and generalization while retaining transparency. 

3. Assessment of strengths and weaknesses of different discretization 
methodologies: 

We identify strengths and weaknesses of different methodologies of 
discretization in the literature and assess the impact of these discretization 
schemes on the quality of data formed for processing. We thus propose design 
guidelines and a new discretization method that copes with the current 
limitations. Through extensive experimentation we reveal and quantify the 
quality of the discretized data. The fact that this study takes into consideration 
information granules of output space and all of the variables in the input space 
makes this contribution unique. 

4. A complete investigation of model performance by Boolean data and induced 
fuzzy data: 

Based on the Boolean partition created by discretization, we introduce fuzzy sets 
to the resulting intervals to form the induced fuzzy data. Such fuzzy data has 
high level flexibility and further helps investigate the performance of the logic 
model introduced in this thesis. We report on the performance of the logic model 
after a comprehensive suite of experiments and deliver several interesting 
conclusions for further development. 

5. User interactive design procedure including a pruning mechanism: 

In order to generate simple and easily understood logic expressions, user 
interactive designs are introduced in this thesis. The pruning mechanism, whose 
intention is to simplify the logic network, takes advantage of the logic nature of 
the neurons and removes some of the neurons' connections, thus enhancing the 
network's interpretability. Such a mechanism is highly user-oriented: its 
interpretation benefits from the reduced form of the model by the acceptance of 
somewhat higher values of the approximation error. 
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1.4 Dissertation Organization 

The dissertation is organized as follows: 

Chapter 2 Fuzzy modeling fundamentals 
This chapter provides a comprehensive literature review of fuzzy modeling. We 
include a discussion on neural networks and logic operations and also discuss the 
interpretability of these networks. A general framework of fuzzy modeling is 
presented in this chapter. 

Chapter 3 Basic logic-based neurons 
This chapter gives a detailed introduction to the generic constructs of fuzzy 
neurons, including AND and OR neurons, as well as the fuzzy uninorm-based 
unineurons. These logic neurons are the basic processing units of the logic 
networks discussed in the next chapter. 

Chapter 4 Architecture of logic-based neural networks 
In this chapter we introduce the architecture of networks in detail. Several design 
issues are presented that contrast with other topologies. For example, fuzzy 
equalization, context-based clustering, etc. We also investigate the 
interpretability of these networks. 

Chapter 5 Discretization 
This chapter offers a comprehensive overview of the state of the art of 
discretization. We also propose a hybrid discretization and discuss the detailed 
design issues and performance evaluation criteria. Investigations are conducted 
to show the importance of this new development methodology. 

Chapter 6 Learning strategies 
In this chapter we discuss the strengths and weaknesses of several learning 
strategies. Based on the investigation, we then propose three learning strategies 
for the aforementioned fuzzy model. Detailed design issues for the learning are 
also covered in this chapter. 

Chapter 7 Experimental studies 
This chapter presents extensive experiments that demonstrate the effectiveness 
and transparent interpretability of the networks. 

Chapter 8 Conclusions and future work 
In this chapter, we draw conclusions from our work; we review our contributions 
to the field and consider future work in the area of system modeling and 
knowledge discovery. 

- 5 -



Bibliography 

[I] R. Babuska, Fuzzy Modeling for Control, Kluwer Academic Publishers, 
Boston, 1998. 
[2] S.R Chitra, "Using neural networks for problem solving", Chemical 
Engineering Progress, pp. 44-52,1993. 
[3] S.R. Gunn, M. Brown, and K. M. Bossley, "Network performance assessment 
for neurofuzzy data modelling", Advances in Intelligent Data Analysis: 
Reasoning about Data, Springer Verlag Publishers, pp. 313-324, 1997. 
[4] S. Haykin, Neural Networks: a Comprehensive Foundation, Prentice Hall, 
New Jersey, 2nd edition, 1999. 
[5] K. Hirota, and W. Pedrycz, "OR/AND neuron in modeling fuzzy set 
connectives", IEEE Transactions on Fuzzy Systems, vol. 2, pp. 151-161, 1994. 
[6] J.S.R. Jang, and C.T. Sun, "Neurofuzzy modeling and control", IEEE 
Transactions on Fuzzy Systems, vol. 3, pp. 378-406, 1995. 
[7] P.A. Jansson, "Neural networks: an overview", Analytical Chemistry, vol. 63, 
pp. 357-362,1991. 
[8] C.L. Karr, and E.J. Gentry, "Fuzzy control of pH using genetic algorithms", 
IEEE Transactions on Fuzzy Systems, vol. 1, pp. 46-53,1993. 
[9] D. Kim, and C. Kim, "Forecasting time series with genetic fuzzy predictor 
ensemble", IEEE Transactions on Fuzzy Systems, vol. 5, pp. 523-535, 1997. 
[10] M.T. Leung, W.E. Engeler, and P. Frank, "Fingerprint processing using 
backpropagation neural networks", Proceedings of the International Joint 
Conference on Neural Networks I, pp. 15-20, 1990. 
[II] N. Levinson, "The wiener RMS (root mean square) error criterion in filter 
design and prediction", Journal of Mathematics and Physics, vol. 25, pp. 
261-278,1947. 
[12] W. Pedrycz, and K. Hirota, "Uninorm-based logic neurons as adaptive and 
interpretable processing constructs", Soft Computing, vol. 11, no. 1, pp. 41-52, 
2007. 
[13] D.A. Pomerleau, Neural Network Perception for Mobile Robot Guidance, 
Boston: Kluwer, 1993. 
[14] N. Quian, and T.J. Sejnowski, "Predicting the secondary structure of 
globular proteins using neural network models", Journal of Molecular Biology, 
vol. 202, pp. 865-884, 1988. 
[15] T.J. Sejnowski, B.P. Yuhas, M.H. Goldstein, and R.E. Jenkins, "Combining 
visual and acoustic speech signals with a neural network improves intelligibility", 
Advances in Neural Information Processing Systems, vol. 2, pp. 232-239, 1990. 
[16] R.R. Yager, "Uninorms in fuzzy systems modeling", Fuzzy Sets and 
Systems, vol. 122, pp. 167-175, 2001. 
[17] L.A. Zadeh, "Toward a theory of fuzzy information granulation and its 
centrality in human reasoning and fuzzy logic", Fuzzy Sets and Systems, vol. 90, 
no. 2, pp. 111-127,1997. 
[18] Q.Y. Zhang, and A. Kandel, "Compensatory neurofuzzy systems with fast 

- 6 -



learning algorithms", IEEE Transactions on Neural Networks, vol. 9, no. 1, pp. 
83-105,1998. 

-7 -



Chapter 2 
Fuzzy Modeling Fundamentals 
In order to investigate the strengths and weaknesses of the existing logic 
modeling techniques, in this chapter we offer a comprehensive review of the 
underlying concepts of neural networks, fuzzy logic, and fuzzy neural networks, 
starting with an overview of the general architecture of fuzzy models. We then 
provide detailed architectural considerations and a discussion of several key 
techniques involved in fuzzy modeling. 

2.1 Neural Networks - Literature Review 

The history of neural networks can be tracked back to the earliest simulation of a 
biological neuron proposed by McCulloch and Pitts in 1943 [42]. The model of 
the neuron was a simple linear threshold computing unit with two inputs and a 
single output. The output was activated only when the inputs summed and 
exceeded a threshold level. In the next neural model, the perceptron, developed 
by Rosenblatt in 1958 [74], weights were introduced to the neurons. With a 
change of weights, the neurons could achieve certain "learning," but the 
adjustment of weights was based on trial-and-error. In 1958 Selfridge suggested 
a process to update the weights—he named it "mountain climbing." This process 
is now referred to as the gradient descent method. In Selfridge's method, update 
of the weights was guided by a randomly assigned direction vector [78]. If the 
performance of the neuron did not improve, the weights were returned to their 
previous values and a new random direction vector was assigned. Widrow and 
Hoff developed another type of gradient search method for adapting the weights 
[87]. Their approach was based on minimizing the squared error, a method 
known as the least mean squares algorithm (LMS). LMS reduced the computing 
time, making perceptron a useful neuron model which received much attention 
over the following years [75]. 

However, in 1969 Minsky and Papert pointed out that perceptrons can solve only 
linearly separable problems[44]; a single perceptron is incapable of representing 
simple functions that are linearly inseparable such as the "exclusive or" (XOR). 
In order to solve an n-separable problem, "n-1" perceptrons are needed. After 
Minsky and Papert's book was published, the area of neurocomputing fell into a 
decline during the 1970s. 

In 1974 Werbos described the back propagation (BP) algorithm [86], but the 
method received little attention. In 1985 and 1986, three researchers, Parker, 
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Rumelhart and McClelland, independently re-proposed the back propagation 
algorithm [51, 70]. The BP algorithm is supervised learning in which 
perceptrons are arranged in a multilayer fashion and trained in so that 
n-separable problems can be solved. The BP algorithm also enhanced 
perceptrons by replacing the threshold function by a sigmoidal function. The 
development of the BP algorithm led to a renaissance in neural networks in the 
1980s and 1990s [4, 64, 73, 79, 89]. Since then, neural networks have 
established a reputation in various areas of modeling and prediction such as 
robot navigation [48, 49], robotic telemanipulation and robotic tactile 
recognition [65-68], modeling of 3D objects [10, 11, 63, 64], simulation of a 
dielectric ring resonator antenna [70], speech recognition [80], handwritten 
character recognition [37], natural gas load prediction [50], wastewater treatment 
plant control [30], fingerprint recognition [36], etc. 

Various types of neural networks are found in the literature [19, 20, 22, 23, 31, 
32]. For instance, in a feed-forward neural network, we organize neurons in a 
sequence of layers with the layers being fully connected. Such networks have 
been implemented to solve a variety of problems in various branches of 
engineering and science. Figure 2.1 shows a typical architecture of the 
feed-forward neural network. 

O-' 

Input layer Output layer 

Figure 2.1 The structure of a three-layered feed-forward neural network 
(the inputs are treated as a single layer) 

The BP algorithm suffers from the limitation of falling into the local minima 
during the learning. Therefore there is interest in introducing new techniques into 
neural networks to alleviate this problem. Genetic Algorithms (GAs) [16, 45] 
have been used successfully in this context and global learning techniques have 
substantially improved the performance of neural networks constructed in this 
manner. 
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Another drawback to neural networks is a lack of transparency; that is, 
knowledge acquired in a trained network is difficult to interpret. Thus a neural 
network is sometimes viewed as a black-box model which realizes a mapping 
from Rn->Rm, where n and m are the dimensions of input and output, 
respectively. 

2.2 Fuzzy Sets and Fuzzy Logic 

The principles of fuzzy sets and fuzzy logic were introduced by Lotfi Zadeh 
several decades ago [91]. A fuzzy set is an extension of a crisp set which allows 
the elements discussed to either belong to or not belong to the set; there is a clear 
boundary between "belong" and "not belong." Fuzzy logic is known to cope 
with linguistic information granules [53, 59, 91] in line with ideas of human 
perception and strongly supporting the development of transparent models. For 
instance, humans usually use the concepts "young" and "old" to describe age. If 
a person is younger than 40 years old, we may say he is "young." By introducing 
linguistic terms [53, 59, 91] we can further describe these concepts. Instead of 
"young" and "old" we can use "very young," "young," "old," and "very old" to 
describe a person's age. Such characterizations benefit from well-defined fuzzy 
sets. 

Triangular norms (t-norm) and triangular conorms (t-conorm, or s-norm) are two 
fundamental logic operations in fuzzy logic [8, 14, 18, 29]. t-norm is a 
generalization of the Boolean logical conjunction; t-norm is a function t: [0, l]2 

-* [0, 1] which satisfies the following properties: 

Commutativity: t(a, b) = t(b, a) 
Monotonicity: t(a, b) <t(c, d) if a <c and b <d 
Associativity: t(a, t(b, c)) = t(t(a, b), c) 
Identity element 1: t(a, 1) = a, a e [0,1] 

Similarly, t-conorm (s-norm) is a function s: [0, l]2 -» [0, 1] which satisfies the 
properties of commutativity, monotonicity, and associativity with s(a, 0) = a for 
all a e [0,1]. Clearly, the min operator is a t-norm, and max is an s-norm, and 
can be regarded as generalized set intersection and union operations. The 
t-conorms are dual to the t-norms. Given a t-norm, the dual t-conorm is: 

s(a,b) = l-t(l-a, 1-b) 

which generalizes De Morgan's laws. 
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In the literature there are several examples of t-norms and t-conorms. Among 
them, four pairs of t- and s-norms are commonly used, namely min-max, 
product-probabilistic sum, Lukasiewicz t-s, and drastic t-s. Table 2.1 and Table 
2.2 summarize these norms by means of 3D plots and 2D contour plots. 

Table 2.1 Plots of selected t-norms (min, product, Lukasiewicz, and drastic product) 

t-norm Plots of the t-norm (3D and 2D contours) 
Min 

t(a,b)=min(a,b) 

Product 

t(a,b)=axb 
WW 

Lukasiewicz 

t(a,b)=max(0,a+b-1) 

^ \ 
y >-

\ 

\x 

\N 

\ ' 

Drastic Product 
b a = l 

t(a,b)=ja b = l 
0 otherwise 

Table 2.2 Plots of selected s-norms (max, probabilistic sum, Lukasiewicz, and drastic sum) 

s-norm Graph of Ihc s-norm (3D and 2D contours) 
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Max 

s(a,b)=max(a,b) 

„v.:ftV :.•.;•%«». 

^ 

Probabilistic sum 

s(a,b)=a+b-ab 

m< 

\\ 1 

v\\\\ 

Lukasiewicz 

s(a,b)=min(a+b,l) 

\ 
\ \ 
* V 

S\\. 

^ 
\ \ 

N \ 

\ 

o o.i 0.4 o.e o.« 

Drastic Sum 
b a = 0 

s(a,b)=^a b = 0 

1 otherwise 

The output exhibits various properties with different combinations of t-norms 
and t-conorms. 

2.3 Fuzzy Modeling and Neurofuzzy Modeling 

Fuzzy models are developed using the linguistic information granules' capability 
of fuzzy logic. Such models differ from other types of models because they can 
represent knowledge in a transparent manner via a collection of fuzzy "if-then" 
rales, or via an equivalent format such as fuzzy associative matrices [33]. Figure 
2.2 illustrates a sample fuzzy model of a temperature controller described by a 
set of "if-then" rules: 
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if temperature is cold then turn on the heater 
if temperature is normal then do nothing 
if temperature is hot then turn down the heater 

Figure 2.2 Fuzzy model interpreted by extracted fuzzy rules 

These "if-then" rules are usually generalized as "if antecedent then consequent." 

As fuzzy models come with a clear interpretation, they are often referred to as 
white-box models in contrast to the previously discussed neural networks-based 
models which are considered to be black-box models. Essentially two main types 
of fuzzy model has been extensively studied, namely the Mamdani [41] model 
and the Takagi-Sugeno-Kang (TSK) model [82]. The difference between the 
Mamdani model and the TSK model lies in the consequent part of IF-THEN 
rules. In the TSK model, the consequents are usually calculated as linear 
functions of the antecedent variables, while the Mamdani model represents the 
consequent output by means of fuzzy sets. In essence, the Mamdani fuzzy model 
focuses more on interpretation and the TSK model pays more attention to the 
accuracy of the model. 

Aside from the two main types of fuzzy model, some other popular types of 
fuzzy models are reported in the literature. The fuzzy decision tree [25] 
generalizes the decision tree to its fuzzy counterpart by admitting fuzzy sets as 
decision components positioned at individual nodes. The fuzzy cognitive map 
[81] is an extension of cognitive maps. The fuzzy expert system [15] is an expert 
system that applies fuzzy logic instead of Boolean logic encountered in the 
"traditional" expert systems. 

A wide range of research and industrial areas such as electrical engineering, civil 
engineering, aerospace science, finance and business, medical science, etc. 
employ applications of fuzzy models. Examples of specific applications include 
analysis of electrical circuits [90], civil engineering [40, 71], modeling and 
analysis of financial and business performance [83], diagnosis of diseases [84], 
modeling software costs in software engineering [46, 47], etc. 

However, building of "if-then" rules is not a trivial task. These white-box models 
exhibit very limited learning ability when tuning the parameters of the rules 
against model performance. The learning problem of fuzzy models significantly 
limits their application. Many techniques have been introduced to improve the 
learning of fuzzy models including fuzzy clustering [57], evolutionary 
techniques [13, 43, 54], etc. However, the accuracy of the resulting models has 
often been somewhat lacking. 

- 1 3 -



To enable a system to avoid the drawbacks of a neural network and deal with 
cognitive uncertainties in a manner more like a human, one may intuitively think 
of incorporating the concept of fuzzy logic into a neural network. The resulting 
hybrid system is known as a fuzzy neural network (FNN) or neurofuzzy system 
[5, 7, 35, 52, 72]. The conventional neurofuzzy system underwent substantial 
improvement in the recent decade [39, 77]. The adaptive-network-based fuzzy 
inference system (ANFIS) proposed by Jang in 1993 [24] is one of the early 
neurofuzzy models implemented in the framework of adaptive networks. By 
using the hybrid learning procedure, the proposed ANFIS can construct 
input-output mapping in the form of fuzzy "if-then" rules. ANFIS however has 
strong computational restrictions. In addition, the linear representation at the 
consequent part of the generated rules limits the transparency of the rules to 
some extent. 

Neurofuzzy modeling has evolved substantially in recent years; we can divide 
the research into two groups: 

1) Research is focused on solving the trade-off between interpretability and 
accuracy: 

In reviewing the referenced literature, the major difficulty of neurofuzzy 
modeling becomes apparent—it is the tradeoff between interpretation and 
accuracy. Ideally, neurofuzzy systems should fully exploit the strength of these 
two technologies, that is, accuracy—capability to precisely represent the real 
system, and interpretability—capability to express the behavior of the real 
system by means of rules. Unfortunately, accuracy and interpretability are 
always contradictory in neurofuzzy computing; thus this synergy is a target yet 
to be satisfied. Many hybrid approaches are analyzed to develop accurate and 
still-interpretable fuzzy rule-based systems including the use of weighted rules 
[1-3], scaling function [28], and induced expert knowledge [17]. 

One of the most interesting approaches is Pedrycz's fuzzy neural networks (FNN) 
based on fuzzy neurons [21]. Such fuzzy neurons emerge as result of a vivid 
synergy between fuzzy set constructs and neural networks. In essence, these 
neurons are functional units that retain logic aspects of processing and learning 
capabilities characteristic of artificial neurons and neural networks. In the setting 
of fuzzy neurons, the synergy of learning and transparency is well addressed. 
Resulting fuzzy neural networks have been discussed in detail in a number of 
previous studies [38, 55, 56, 58, 60, 62]. Our research is based on this type of 
neurofuzzy system. 

2) Research is devoted to input selection and to developing new learning 
approaches: 
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Conventional neurofuzzy models suffer from combinatorial rule explosion [5, 
26]; that is, model complexity grows exponentially as input increases. To deal 
with this problem, several approaches have been developed. One popular method 
builds a hierarchical structure [9, 12, 61, 69, 85] so that each level only deals 
with a small number of inputs and the total number is only linearly increased. 
Such a hierarchical structure is especially helpful in high dimension problems as 
it substantially reduces the number of rules. Many new learning approaches are 
also introduced in the area of neurofuzzy computing. 

2.4 General Architecture of the Fuzzy Model 

Although there are various types of fuzzy models presented in the literature, all 
these models can be summarized in the general framework illustrated in Figure 
2.3. The general framework of a fuzzy model is composed of three main 
functional components: input interface, processing core, and output interface 
[55]. The input interface realizes all communication between the external 
physical world (say, a modeling environment) and the processing core (logic 
model) which operates on a higher, more abstract conceptual level. The input 
interface accepts any input data no matter what its format (say, continuous 
values or discrete values) and transforms it into the internal format of 
information granules as understood by the logic model. To communicate the 
results of logic processing back to the physical environment, a broad range of 
so-called defuzzification procedures [34, 53] are implemented. The architecture 
of the logic model itself is focused on processing information granules coming 
from the interface; thus the construction of interfaces is a fundamental and 
critical task of fuzzy modeling. The processing core is the most important 
component of the fuzzy model. It consists of a knowledge base that contains the 
structure and details of system behavior and that realizes inference through 
granular computation. The topology of such a core often consists of a collection 
of fuzzy "if-then" rules. 
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Figure 2.3 General topology of a logic model 

2.5. Interfaces of a Fuzzy Model 

As a fuzzy model interacts with a physical world whose manifestation does not 
usually arise at the level of information granulation, it becomes apparent that 
there is a need for some interface between the model and this world. Such 
interfaces are well known in fuzzy modeling. The input interface is usually 
composed of fuzzifiers (granular encoders) and the output interface is comprised 
of defuzzifiers (granular decoders) [53]. 

The interfaces allow interaction between the processing core of the model and 
the physical world outside the model. More specifically, the input interface 
realizes the transformation of physical world data into an internal format of 
information granules understood by the logic-processing core. 

The input interface can be implemented by a "filter" or a "wrapper". Filter and 
wrapper are two fundamental strategies originating from the feature selection [6, 
27, 88]. In the filter strategy, features are filtered independently of the model in a 
preprocessing step as shown in Figure 2.4 (a). In contrast, the wrapper strategy 
wraps the model and uses the model itself as part of the function evaluation of 
the feature subset (see Figure 2.4 (b)). 
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Figure 2.4 Filter vs. wrapper strategies of feature subset selection 

Since the filtering model is a preprocessing procedure which ignores the effect of 
the attribute subset on the performance of the induction algorithm, many 
researchers have pointed out that it may not be as effective and general as the 
wrapper model. However, the wrapper strategy is usually model-dependent and 
computationally expensive, and therefore is implemented less frequently. 

In fuzzy modeling we can consider the input interface as a filter that 
preprocesses the data and passes the processed data into the processing core. As 
illustrated in Figure 2.5, there are two fundamental phases in the input interface: 
in the first phase each variable is granulated into a collection of semantically 
meaningful information granules. Discretization is a process of transforming 
continuous models and equations into discrete counterparts. This process is 
usually carried out as a first step toward making them suitable for numerical 
evaluation and implementation on digital computers. Hence discretization is a 
reasonable way to deal with information granulation. Quantization is essential 
for information to be processed on a digital computer. The process of 
quantization is the second phase in the input interface in which fuzzy granules 
are converted to binary format (binarization). Discretization is discussed in 
Chapter 5. 
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Fuzzy granulation 

Binarization 

Processing 
core 

Figure 2.5 Two-phase processing flow chart of an input interface 

The output interface decodes the results from the "internal" world (processing 
core) of the unit hypercube back to numeric values in the output space. The 
decoding process is discussed in Section 6.2 of Chapter 6. 

2.6 Conclusions 

This chapter presents a literature review of the diversity of logic-based modeling 
techniques including neural networks, fuzzy modeling, and neurofuzzy modeling. 
The aim is to provide the reader with a background to the predominant 
challenges in neurofuzzy modeling. Current trends in neurofuzzy modeling and 
limitations of current models are discussed. Among existing models, the fuzzy 
neuron-based model exhibits a superb learning ability and interpretability; thus it 
is highly applicable to the objectives outlined in this thesis. A general fuzzy 
modeling framework is presented and key components are discussed. 
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Chapter 3 
Logic-Based Neurons 
In this chapter we deal with a category of neurons known as fuzzy neurons 
which perform the logical aggregation of inputs. Within this category there are 
two main types of logic-driven processing units, namely AND neurons and OR 
neurons, cf. [4,6-8,10-12]. We will discuss recent developments in the 
generalization of logic processing units, i.e., unineurons [9,11]. Given their 
generality, unineurons show logic processing in a new light and provide 
opportunities for new interpretations and versatile learning capabilities. 
Unineurons will also be discussed with regard to selected combinations of logic 
operations. 

3.1. AND and OR Logic Neurons 

AND and OR neurons are examples of fuzzy neurons that realize some and- and 
or-like logic aggregation of inputs. Their realization hinges upon the use of 
t-norms and t-conorms (s-norms) [3,5]. 

Given a collection of n inputs Xj i=l,2,.. .,n, denoted in a vector form x e [0,1 ]n , 
the AND neuron, as shown in Figure 3.1, is a nonlinear logic processing element 
with the n-input x governed by the following relationship 

y=AND(x;w) (3.1) 

where w represents an n-dimensional vector of adjustable connections (or 
weights) whose values are in the unit interval. The composition of x and w is 
realized by a certain t-s composition that makes use of some t- and t-conorms. 

Figure 3.1 Logic processing of neurons: AND neuron 

The aggregation consists of two steps. In the first step inputs are combined with 
the corresponding weight. In the second step we aggregate these partial results 

- 2 5 -



with the aid of some t-norm. In other words we obtain 

y=AND(x;w)=T[wisxi] (3.2) 
i=l 

Here "s" and "t" stand for the t-conorms and the t-norms, respectively. We can 
rewrite (3.1) in an equivalent format that facilitates its further interpretation 

y = (x,)W( and (x2)Wj •••and(xn)Wi (3.3) 

where (x ;) w. stands for a shorthand notation for (x ; or w ;), i = 1,... .n. 

The AND neuron realizes logic operations on the input values, and the 
connections w play an important role: the connections are to adjust the impact 
that individual input may have on the aggregation results. In particular, when 
setting the AND neuron with the connection w = 0, expression (3.3) can be 
further reduced to the "pure" type of and-like aggregation, 

y = xi and X2 and .... and xn 

Similarly when connection w = 1 we get y =1. 

Thus for the AND neuron, in general, the lower the value of the connection, the 
more essential the corresponding input. In limit, we view the input meaningless 
if the associated connection is equal to 1. 

By reverting the order of the t- and t-conorms in (3.2), we arrive at the construct 
of an OR neuron 

y=OR(x;w)= Stw.tx,] (3.4) 

Figure 3.2 illustrates such aggregation offered by the OR neurons. 

Figure 3.2 Logic processing of neurons: OR neuron 

For interpretation purposes, we adhere to the notation 

y = [x,]w, or [x2]w - o r [ x l (3.5) 
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where [ x j w denotes (x; and w () i=l,....n. 

Similarly, when the connection of the OR neuron w = 1, the expression (3.5) is 
reduced to 

y = xi or X2 or .... or xn 

when the connection w = 0, y = 0. 

The above expressions indicate that the higher the value of the connection, the 
more relevant the corresponding input. In limit, if Wj -0 , the i-th input x* can be 
fully eliminated. 

3.2 Characteristics of AND and OR Logic Neurons 

As discussed in the previous section, AND and OR neurons exhibit nonlinear 
characteristics which are inherently implied by the use of t- and s-norms. To 
visualize such characteristics, we consider a two-dimensional feature space 
(xi-x2) so that each neuron has only two input variables. 

3.2.1 Input-output characteristics of AND neurons 

Figure 3.3 (a)-(f) and Figure 3.4 (a)-(f) show a diversity of input-output 
characteristics of the AND neuron. Note that the characteristics are affected by 
the use of triangular norms and the values of the connections. 

(b) 
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(c) 

(e) (f) 
Figure 3.3 Input-output characteristics of an AND neuron for selected pairs of t- and 
s-norms. In all cases, the corresponding connections are set to w = [0.05 0.30]. Both 3D 
plots (left) and contour plots (right) are used here to visualize the characteristics, (a, b) min 
and max; (c, d) product and probabilistic sum; (e, f) Lukasiewicz and and or connectives. 
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Figure 3.4 Input-output characteristics of an AND neuron for selected pairs of t- and 
s-norms. In all cases, the corresponding connections are set to w = [0.69 0.30]. Both 3D 
plots (left) and contour plots (right) are used here to visualize the characteristics, (a, b) min 
and max; (c, d) product and probabilistic sum; (e, f) Lukasiewicz and and or connectives. 

3.2.2 Input-output characteristics of OR neurons 

Figure 3.5 (a)-(f) and Figure 3.6 (a)-(f) show a diversity of input-output 
characteristics of the OR neuron. Again note that the characteristics are affected 
by the use of triangular norms and by the values of the connections. 
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Figure 3.5 Input-output characteristics of an OR neuron for selected pairs of t- and 
s-norms. In all cases, the corresponding connections are set to w = [0.05 0.30]. Both 
3D plots (left) and contour plots (right) are used here to visualize the characteristics, 
(a, b) mill and max; (c, d) product and probabilistic sum; (e, f) Lukasiewicz and and 
or connectives. 
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Figure 3.6 Input-output characteristics of an OR neuron for selected pairs oft- and s-norms. 
In all cases, the corresponding connections are set to w = [0.65 0.23]. Both 3D plots (left) 
and contour plots (right) are used here to visualize the characteristics, (a, b) min and max; (c, 
d) product and probabilistic sum; (e, f) Lukasiewicz and and or connectives 

From the above figures, two things become clear. First, the connections help us 
control the form of the input-output characteristics and they deliver all the 
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necessary plasticity; this shows their important role in any learning activity. 
Second, various t-norms and t-conorms are used to adjust the input-output 
mapping to conform to available experimental data. 

3.3 Fuzzy AND and OR unineurons 

Before proceeding with a description of fuzzy unineurons, we will briefly revisit 
the fuzzy uninorm. 

Uninorms form hybrids of t- and t-conorms by binding the two standard logic 
operators encountered in logic and fuzzy sets [1-2, 13-15]. One such uninorm is 
a mapping u: [0, l]2->[0, 1] which satisfies properties of commutativity, 
monotonicity, and associativity. 

Commutativity u(x, y) = u(y, x) 
Monotonicity u(x, y) > u(z, v) for x > z and y > v 
Associativity u(x, u(y, z)) = u(u(x, y), z) 

More importantly, by introducing the identity element "g" which varies between 
0 and 1, we can implement switching between the "and" and "or" properties of 
the logic operators. For instance, given input x and identity element g, u(x, g) = x, 
ge [0,1]. So when g = 0 we end up with the "or" type of aggregation, u(x, 0) = x, 
and when g = 1, it returns the "and" type of aggregation, namely u(x, 1) = x. 

In the literature, there are many types of realizations for uninorms. Here, we 
choose the following equation which is logic meaningful. 

u(x,y,g): 

or 

u(x, y, g): 

g + (l-g)s(^,fH) 
1-g 1-g 

min(x,y) 

i - g i - g 
max(x, y) 

x,ye[0,g] 

x,ye[g,l] 

otherwise 

x,ye[0,g] 

x,ye[g,l] 

otherwise 

(3.6) 

(3.7) 

In equations (3.6) and (3.7), x and y are two inputs between 0 and 1; t and s are 
the t-norm and s-norm defined previously. Figure 3.7 illustrates the computation 
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of a uninorm as expressed in equation (6). 

L 

Min 

t-norm 

s-norm 

Min 

• ' ' • x 
0 g 1 X 

Figure 3.7 Computing of uninorms 

From Figure 3.7, we note that identity point g splits the unit square into four 
regions, with t-norm and s-norm located diagonally. When g = 1, the uninorm 
becomes the t-norm: u(x, y) = t(x, y), and when g = 0, the uninorm becomes 
s-norm: u(x, y) = s(x, y). 

As discussed in the previous subsection, incorporating uninorms into fuzzy 
neurons turns them into unineurons[9,ll]. Like general neurons, unineurons are 
treated as n-input nonlinear static processing units that map elements in the unit 
hypercube [0, l]n into elements in the unit interval of [0, 1]. There are two levels 
of logic processing carried out in the processing units. More specifically, given a 
collection of inputs x = [xi X2.. .x„] and the parameters of unineurons, including 
connections w = [wi W2 ...wn] and identity points g = [gi g2 • ..gn], at the first 
level we exploit the use of uninorms by combining individual input Xj with 
corresponding connections w* and identity points gi giving rise to the expression 
U(XJ; Wj, gi); the resulting aggregation is realized at the second level. 

Two fundamental categories of logic neurons are introduced here which will be 
referred to as AND unineurons and OR unineurons, or A N D U and OR_U in 
shorthand notation. 

AND unineurons (AND IP) 

As shown in Figure 3.8 (a), given a collection of "n" inputs x = [xi x2 .. .x„] and 
the parameters of unineurons including connections w = [wi w2 ...wn] and 
identity points g = [gi g2 • • -gn], the ANDU neurons process them in the form of 

y = AND_U(x;w,g) (3.8) 

or in coordinates it can be rewritten as 
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y = T(u(x i;w j ,g i)) 
1=1 

(3.9) 

In the above equation, the uninorm operation is realized in the form governed by 
the uninorm equation while T(t) denotes a certain t-norm. As becomes apparent, 
the name of the unineuron is implied by the "and" type of aggregation of the 
individual inputs. Moreover, the standard AND neurons are subsumed by the 
AND_U neurons when using the zero vector of the identity points g = 0, that is: 

y = T(u(x i;w j,0)) = T(s(x i;w j)) 
1=1 j 1=1 j 

(3.10) 

Wi,gi 

HAND_UJ-
Wi,g: 

Xj 

Xi 
max 
t 

s 
max 

mill 

I 

s 
min 

gi Wi gi Wi 

(a) (b) 

Figure 3.8 Logic processing of unineurons (a) AND unineuron and (b) OR unineuron 

OR unineuron (ORJJ) 

Similarly, an n-input single output g realized by this processing unit 

y = OR_U(x;w,g) (3.11) 

represents an or-type of aggregation of the partial results produced by the 
uninorm combination of the corresponding inputs, see Figure 3.8 (b). We can 
rewrite the above equation as 

y = S ( u ( x i ; w , g i ) ) (3.12) 

where S(s) stands for any s-norm (t-conorm). Also, the standard OR neurons are 
subsumed by the OR_U neurons when entries of the identity points g are all ones 
(g = 1), that is, 

y=S(u(x i ;w j , l ) )=S(t (x 1 ;w j ) ) . 
i=l 

(3.13) 
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3.4 Characteristics of AND and OR unineurons 

Here we examine the nonlinear characteristics of AND and OR unineurons. To 
simplify for illustration, we still consider each neuron as having only two input 
variables. 

3.4.1 Input-output characteristics of AND unineurons 

Figure 3.9 (a)-(f) and Figure 3.10 (a)-(f) show a diversity of input-output 
characteristics of the AND unineuron. Note that aside from the use of some 
norms which change the values of the connections, the characteristics of 
unineurons are also affected by the values of the identity points. 

(c) (d) 
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Figure 3.9 Input-output characteristics of AND unineurons for selected pairs of t- and 
s-norms. In all cases, the corresponding connections and identity points are set to w = [0.05 
0.30] and g = [0.40 0.60], respectively. Both 3D plots (left) and contour plots (right) are used 
here to visualize the characteristics, (a, b) min and max; (c, d) product and probabilistic sum; 
(e, f) Lukasiewicz and and or connectives. 
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Figure 3.10 Input-output characteristics of AND unineurons for selected pairs of t- and 
s-norms. In all cases, the corresponding connections and identity points are set to w = [0.69 
0.30] and g = [0.30 0.70], respectively. Both 3D plots (left) and contour plots (right) are 
used here to visualize the characteristics, (a, b) min and max; (c, d) product and probabilistic 
sum; (e, f) Lukasiewicz and and or connectives. 

3.4.2 Input-output characteristics of OR unineurons 

Figure 3.11 (a)-(f) and 3.12 (a)-(f) show a diversity of input-output 
characteristics of the OR unineuron. 

(a) (b) 
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Figure 3.11 Input-output characteristics of OR unineurons for selected pairs of t- and 
s-norms. In all cases, the corresponding connections and identity points are set to w = [0.05 
0.30] and g = [0.40 0.60], respectively. Both 3D plots (left) and contour plots (right) are 
used here to visualize the characteristics, (a, b) min and max; (c, d) product and probabilistic 
sum; (e, f) Lukasiewicz and and or connectives. 
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Figure 3.12 Input-output characteristics of an AND unineuron for selected pairs of t- and 
s-norms. In all cases, the corresponding connections and identity points are set to w = [0.65 
0.23] and g = [0.50 0.30], respectively. Both 3D plots (left) and contour plots (right) are 
used here to visualize the characteristics, (a, b) min and max; (c, d) product and probabilistic 
sum; (e, f) Lukasiewicz and and or connectives. 

With the setting of the identity point in an AND unineuron to zero, i.e., g = 0, the 
AND unineuron becomes an AND neuron. In particular, with the setting of g = 0 
in the example shown in Figure 3.9, the characteristics will be represented 
exactly the same as the plots shown in Figure 3.3. Similarly, the same processing 
effect occurs when dealing with the OR unineurons. By setting the g of an OR 
unineuron to one, i.e., g = 1, the OR unineuron is turned into an OR neuron. 
Figure 3.5 shows the input-output characteristics of an OR unineuron with the 
identity point g = 1. 

The nonlinear character of input-output dependencies can be seen very clearly. 
Such nonlinear character depends upon the specific t-norms and conorms 
involved. The connections and identity points impact the neurons in a direct 
manner. Thus, the advantage of unineurons resides with the significant flexibility 

- 3 9 -



and learning capabilities offered by the connections, identity points, and 
triangular norms. Even though the neuron itself may look a bit complicated, its 
underlying logic expression becomes straightforward and readable. 

3.5 Conclusions 

The neurons discussed in this chapter accept the logic type of aggregation of 
inputs, and are thus categorized as aggregative neurons. Fuzzy neurons emerge 
as a result of a vivid synergy between fuzzy set constructs and neural networks. 
In essence, given that logic operators are used in the development of logic 
neurons, logic neurons retain logic aspects of processing and learning 
capabilities characteristic of artificial neurons and neural networks. Such 
interesting functional properties can be beneficial when designing networks 
formed with logic neurons. 
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Chapter 4 
Architecture of Logic-Based Networks 
In this chapter, we introduce and discuss several highly effective fuzzy modeling 
frameworks based on the logic-based neurons covered in the previous chapter. 
During the design of these frameworks, we are guided by two main objectives. 
First, we would like to achieve a substantial level of flexibility so that the models 
can be easily and effectively adjusted to experimental data by a suitable learning 
algorithm, such as e.g., gradient-based optimization. Second, we wish to assure a 
high level of interpretability of the model, such that it could be easily understood 
by the user. With this regard, we will take advantage of the logic nature and 
well-defined semantics of fuzzy neurons which once learned can be easily 
translated into a collection of well-structured and transparent logic expressions. 
Finally, we will describe the details of the underlying design issues and present 
the key technologies involved here. 

4.1 The topology of AND and OR neuron-based neural 

networks 

In Boolean algebra, Boolean function can be expressed in a canonical form as 
"sum of minterms" (SOM) or "product of maxterms" (POM) [2,7,8,9]. In 
essence, this is usually an aggregation of several simple compound logic 
expressions which provides a sound insight into the simplification of these logic 
functions. Logic-based neurons, AND and OR neurons, aggregate the inputs and 
realize some quantified logic expression. Furthermore by arranging AND and 
OR neurons in layers, we can arrive at the generic logic realization of the well 
known representation scheme being used in the realization of Boolean functions. 

In the case of the SOM representation, from the perspective of the architectural 
realization of such logic expressions we end up with two layer logic networks as 
shown in Figure 4.1. 
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Figure 4.1 A topology of the SOM type logic network 

The network is uniquely characterized by such parameters as the number of 
inputs (n), number of AND nodes located in the hidden layer (h). The 
connections of the AND neurons are organized in some matrix V and the vector 
of the connections of the OR neuron is denoted here by w. The network can be 
written in the form 

fZ j=AND(x,V j) j = l,2,...,h 

ly = OR(z,w) 
(4.1) 

where x is the input vector (x = [x,,x2,---,xn]T), z is a vector of outputs of 

the AND neurons (z = [z1,z2,---,zh]T) and Vj denotes the j-th column of the 

connection matrix V. 

Our intent is to visualize a diversity of the input-output characteristics of the 
network that arises when changing the values of the connections and 
combination of logic operators. For illustrative purposes we consider a two-input 
(xi, X2) SOM network with two AND neurons at the hidden layer so that each 
AND neuron has only two input variables. In this particular case the overall 
network can be described as follows 

f z, =AND(x,v.) 
First layer: \ ' v " (4.2) J I z2 = AND(x,v2) 

Output layer: y = OR(z,w) (4.3) 

where V = [vi V2] is the connection matrix, x is the input vector x =[xi x2]T, and 
z =[zi Z2]T is the output vector of the AND neurons at the first layer, y is the 
overall aggregation of the logic behaviors and is completed by the OR neuron 
located at the output layer. 
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The plots of the input-output characteristics of a two-input-single-output 
structure are illustrated in Figure 4.2, Figure 4.3 and Figure 4.4 (a)-(f). Here we 
consider three collections of triangular norms and conorms, namely min-max, 
product probabilistic sum, and Lukasiewicz t-norm and t-conorm (s-norm). 

Figure 4.2 Characteristics of SOM network for selected values of the connections and 
realizations oft- and t-conorms(min and max) 

First AND neuron in the hidden layer w = [0.05 0.30] 
Second AND neuron in the hidden layer w = [0.69 0.30] 

OR unineuron at output layer w = [0.90 0.50] 
(a) 3D plot of network input-output (xi-x2-y) (b) 2D contour plot of network output y 

(c) 3D plot of the first AND neuron input-output (xi-x2-Zi) (d) 2D contour plot of 
intermediate output zi 

(e) 3D plot of the second AND neuron input-output (xi-x2-z2) (f) 2D contour plot of 
intermediate output z2 
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Figure 4.3 Characteristics of SOM network for selected values of the connections and 
realizations oft- and t-conorms(product and probabilistic sum) 

First AND neuron in the hidden layer w = [0.05 0.30] 
Second AND neuron in the hidden layer w = [0.69 0.30] 

OR unineuron at output layer w = [0.90 0.50] 
(a) 3D plot of network input-output (xi-x2-y) (b) 2D contour plot of network output y 

(c) 3D plot of the first AND neuron input-output (x!-x2-Zi) (d) 2D contour plot of 
intermediate output z\ 

(e) 3D plot of the second AND neuron input-output (xi-x2-z2) (f) 2D contour plot of 
intermediate output z2 
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Figure 4.4 Characteristics of SOM network for selected values of the connections and 
realizations oft- and t-conorms (Lukasiewicz t and s-norm) 

First AND neuron in the hidden layer w = [0.05 0.30] 
Second AND neuron in the hidden layer w = [0.69 0.30] 

OR unineuron at output layer w = [0.90 0.50] 
(a) 3D plot of network input-output (xrX2-y) (b) 2D contour plot of network output y 

(c) 3D plot of the first AND neuron input-output (x^-Zj) (d) 2D contour plot of 
intermediate output Zi 

(e) 3D plot of the second AND neuron input-output (xi-x2-z2) (f) 2D contour plot of 
intermediate output z2 

By inspecting the figures, we conclude that the network exhibits highly nonlinear 
processing ability depending upon the specific realizations of the logic 
connectives. By using different combinations of t- and s-norms we realize a 
substantial level of plasticity whose usage becomes critical when learning the 
networks involving these neurons. 

In particular, by switching the AND and OR neurons in the SOM network, we 
can end up with the other equivalent topology that represents the POM version 
of Boolean function; refer to Figure 4.5. In essence, the behavior of the OR 
neurons in the hidden layer is aggregated (weighted) by using the outputs of 
AND neurons located in the output layer. 

-46-



Figure 4.5 A topology of the POM type logic network 

Given this functional structure, the detailed formulas of the overall network are 
as follows: 

j z - O R f r v p j = l,2,...,h 

I y = AND(z,w) 

where x is the input vector (x = [x,,x2,---,xn]T), z is an vector of outputs of 

the OR neurons (z = [z15z2,---,zh]T) and Vj denotes the j-th column of the 

connection matrix V. 

Figure 4.6 - 4.8 illustrate the characteristics of POM networks with selected t-
and s-norms and specific numeric values of the connections. 
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Figure 4.6 Characteristics of POM network for selected values of the connections and 
realizations oft- and t-conorms (min and max) 

First OR neuron in the hidden layer w = [0.05 0.30] 
Second OR neuron in the hidden layer w = [0.65 0.23] 

AND unineuron at output layer w = [0.10 0.60] 
(a) 3D plot of network input-output (xrx2-y) (b) 2D contour plot of network output y 

(c) 3D plot of the first OR neuron input-output (xi-x2-z0 (d) 2D contour plot of intermediate 
output Z\ 

(e) 3D plot of the second OR neuron input-output (xrx2-z2) (f) 2D contour plot of 
intermediate output z2 
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Figure 4.7 Characteristics of POM network for selected values of the connections and 
realizations of t- and t-conorms (product and probabilistic sum) 

First OR neuron in the hidden layer w = [0.05 0.30] 
Second OR neuron in the hidden layer w = [0.65 0.23] 

AND unineuron at output layer w = [0.10 0.60] 
(a) 3D plot of network input-output (xi-x2-y) (b) 2D contour plot of network output y 

(c) 3D plot of the first OR neuron input-output (XJ^-ZJ) (d) 2D contour plot of intermediate 
OUtpUt Z\ 

(e) 3D plot of the second OR neuron input-output (X1-X2-Z2) (f) 2D contour plot of 
intermediate output z2 
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Figure 4.8 Characteristics of POM network for selected values of the connections and 
realizations oft- and t-conorms (Lukasiewicz t and s-norm) 

First OR neuron in the hidden layer w = [0.05 0.30] 
Second OR neuron in the hidden layer w = [0.65 0.23] 

AND unineuron at output layer w = [0.10 0.60] 
(a) 3D plot of network input-output (xrx2-y) (b) 2D contour plot of network output y 

(c) 3D plot of the first OR neuron input-output (xi-x2-z0 (d) 2D contour plot of intermediate 
output zi 

(e) 3D plot of the second OR neuron input-output (xrx2-z2) (f) 2D contour plot of 
intermediate output z2 

4.2 The topology of AND and OR unineuron-based 

neural networks 

As for the architecture of unineuron-based logic networks, we consider the same 
topology by considering a two-layer structure in which the first layer consists of 
a collection of AND unineurons whereas the processing at the second layer is 
realized by means of OR unineurons, see Figure 4.9. 

0.5, 
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Figure 4.9 A topology of a multiple-input-single-output SOM network 
formed by means of AND_U and OR_U neurons 

This figure illustrates the parameters of the logic network that become available 
in the design of the network. In addition to the adjustable number (h) of AND_U 
neurons (processing units in the hidden layer), the connections and neutral points 
of the neurons are organized in matrices of connections v and w and g and q, 
respectively. The network can be written as 

rz j=AND_U(x,v j ,gj) j=l,2,...,h (4.5) 
\ y = OR_U(z,w,q) 

Figure 4.10 - 4.12 illustrate the input-output characteristics of the network for 
several selected combinations of values of connections and triangular norms of 
the neurons. 
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Figure 4.10 Characteristics of unineuron-based network for selected values of the 
connections and realizations oft- and t-conorms(min and max) 

First AND unineuron in the hidden layer w = [0.05 0.30] g = [0.40 0.60] 
Second AND unineuron in the hidden layer w = [0.15 0.85] g = [0.30 0.70] 

OR unineuron at output layer w = [0.05 0.30] g = [0.60 0.40] 
(a) 3D plot of network input-output (xi-x2-Y) (b) 2D contour plot of network output Y 
(c) 3D plot of the first AND unineuron input-output (x!-x2-Zi) (d) 2D contour plot of 

intermediate output zi 
(e) 3D plot of the second AND unineuron input-output (xrx2-z2) (f) 2D contour plot of 

intermediate output z2 
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Figure 4.11 Characteristics of unineuron-based network for selected values of the 
connections and realizations oft- and t-conorms(product and probabilistic sum) 

First AND unineuron in the hidden layer w = [0.05 0.30] g = [0.40 0.60] 
Second AND unineuron in the hidden layer w = [0.15 0.85] g = [0.30 0.70] 

OR unineuron at output layer w = [0.05 0.30] g = [0.60 0.40] 
(a) 3D plot of network input-output (xrx2-Y) (b) 2D contour plot of network output Y 
(c) 3D plot of the first AND unineuron input-output (xi-x2-zi) (d) 2D contour plot of 

intermediate output zt 

(e) 3D plot of the second AND unineuron input-output (xi-x2-z2) (f) 2D contour plot of 
intermediate output z2 
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Figure 4.12 Characteristics of unineuron-based network for selected values of the 
connections and realizations oft- and t-conorms (Lukasiewicz t and s-norm) 

First AND unineuron in the hidden layer w = [0.05 0.30] g = [0.40 0.60] 
Second AND unineuron in the hidden layer w = [0.15 0.85] g = [0.30 0.70] 

OR unineuron at output layer w = [0.05 0.30] g = [0.60 0.40] 
(a) 3D plot of network input-output (xrx2-Y) (b) 2D contour plot of network output Y 
(c) 3D plot of the first AND unineuron input-output (xi-x2-Zi) (d) 2D contour plot of 

intermediate output z\ 
(e) 3D plot of the second AND unineuron input-output (xrx2-z2) (f) 2D contour plot of 

intermediate output z2 

When we set the values of the neutral point vectors g = 0 and q = 1, the networks 
built by AND_U and OR_U neurons converts into the networks constructed by 
AND and OR neurons. In other words, networks built by fuzzy neurons are 
subsumed by the networks built by fuzzy unineurons. 

Similarly, we can have equivalent POM version of the network built by fuzzy 
unineurons, see Figure 4.13. 
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Zh 

Figure 4.13 A topology of a multiple-input-single-output POM network 
formed by means of OR_U and ANDJJ neurons 

4.3 Interpretation of logic networks 

The logic networks come with clearly defined semantics. Evidently, the model 
stands for a one-to-one correspondence with its logic fabric. As illustrated in 
Figure 4.14, the SOM network comes with "h" AND nodes, each of which 
contains "n" inputs. In particular, each node in the network comes with a 
straightforward interpretation: as the AND node, the "n" inputs are weighted and 
"and"-wisely aggregated as "n" conditions. Similarly, the OR node weighs the 
"h" outputs from the AND nodes and aggregates them by means of "or" 
operations. 

Condition! 
Condition2 

Condition,, 

Condition^ 
Condi tion2' 

Condition,, 

Condition] • 
Conditio^' 

Condition,, 

AND 

§-(AND 111 

IK AND J 

h 

\ 
OR 

Figure 4.14 Structure of a fuzzy model represented as an aggregation of fuzzy rules 
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Subsequently, the network can be written as a collection of composite "if-then" 
rules 

if 

conditioni and conditio^ and... and ... condition 

or 

conditionr and condition and... and ... conditionn 

or 

The learning endows the neurons with numeric connections and their values are 
useful in some further reduction of the network in this way improving its 
interpretability. Let us recall that higher values of the connections of the OR 
neurons are more essential while the connections with lower values could be 
dropped. The opposite situation occurs for AND neurons: here the higher values 
of the connections could be viewed as meaningless and therefore dropped. 
Owing to the monotonicity property, we can proceed with pruning of the 
weakest connections by considering the following relationships. 

In particular, for AND neurons the weakest connections (which are those above 
some threshold) are converted to 1 

fv v< JU, 

" [1 otherwise 

For the OR neuron we use the following relationship by bringing the values of 
the weakest connections to zero 

fw w > X 
™x=\ (4-7) 

[ 0 otherwise 
where n,X e[0,l]; v, w denote some connections of the neurons. By changing 
the values of the threshold (j. and A,, we can affect the intensity of the pruning 
of the overall network. 

The previous "h" rules then can be reduced to the new h' (h' <h) "if-then" rules 
as follows. 

if 
condition] and conditio^ and... and ... conditionL 

or 
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condition^ and condition2> and... and ... condition^ 

or 

where L, L' . . .<n 

In these expressions, the subconditions in each rule are arranged starting with the 
lowest value of the connections of the AND neuron. The rules themselves are 
organized starting with the highest values of the OR neuron. The pruning could 
be completed in two different ways 

(a) by applying some thresholding mechanisms. For example, by accepting 
some threshold values X and \i for OR and AND neurons, respectively, 
we eliminate all connections whose values are below X (OR neurons) and 
above [i (AND neurons) 

(b) by admitting some allowable structural complexity of the logic 
description. Accepting a maximal number of conditions and rules, we 
eliminate "weaker" rules and conditions produced by the network 

In general, the pruning of networks constructed by unineurons takes two steps, 
the first step is pruning the identity points so that some AND_U and OR_U turn 
into AND and OR neurons, then pruning the resulting AND and OR neurons. As 
the uninorm, the lower g is, the more of a t-conorm property it becomes. The 
higher value of g, the more essential the t-norm property it is associated. Bearing 
such properties in mind, we can introduce a certain threshold r\ e [0,1] that can 
turn the O R U into OR neurons. 

[ 1 gj >n 
ln [gj otherwise 

where g = [gi g2 • • -gn] is the neutral points of ORU. 

Thus, when all the entries of the identity points g of a unineuron are all ones (g = 
1) or can be treated as one when its value is larger than a certain threshold n, 
we can regard the O R U as an OR neuron. 
Similarly, we can introduce threshold y e [0,1] which makes 

g = i 8 S ~ Y (4-9) 
Y [0 otherwise 

where g = [gi g2 • • -gn] is the vector of identity points of AND_U. When all of the 
entries of the neutral points g of a unineuron are zeros (g = 0) or have the values 
lower than the threshold y, we can turn the AND_U into a AND neuron. 
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After the above two-step pruning process, the network can still be rewritten and 
generalized as a collection of composite "if-then" rules with the ranking of 
connections (descent order) of the O R U at the output layer. Although the rules 
itself may look a bit complicated, the logic expression is still straightforward and 
readable. 

4.4 The design of the network 

In this section, we will focus on the key design phases of the network, namely (1) 
forming contexts in the output space through the mechanism of fuzzy 
equalization; (2) context-based clustering applied to the input variables; (3) 
projection and reduction for each variable. 

4.4.1 Formation of contexts through fuzzy equalization 

The underlying idea is to construct fuzzy sets in such a way that they come with 
clearly defined semantics and are experimentally justifiable. Fuzzy equalization 
[6] helps construct linguistic labels (fuzzy sets) that are both semantically and 
experimentally legitimate. With the fuzzy equalization completed in the output 
space, we end up with "p" contexts (fuzzy sets). We assume that these fuzzy sets 
are described by triangular membership functions with an overlap of 0.5 between 
two successive linguistic terms. Furthermore, we denote the family of fuzzy sets 
as A = {Ai, A2, ..., Ap}. Assume that the probability density function (pdf) of 
this output is given by p(y). We can then start the lower bound of y (denoted by 
ymjn ) and allow the parameters of each fuzzy set to be computed as shown in 
Table 4.1; for more details refer to[6]. 

Table 4.1 Fuzzy equalization for triangular fuzzy sets Al, A2, ..., Ap 

Shown above are formulas for the parameters of the corresponding fuzzy sets 

Ai(a,m,b) 

A2(a,m,b) 

a 

m 

b 

a 
m 

Ymin 

f A1(y)p(y)dy=^-
•ymin 2 p 

£A,(y)p(y)dy=i 

mof Ai 
bofA! 
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Ap(a,m,b) 

b 

a 
m 
b 

s= £A1(y)p(y)dy £A2(y)p(y)dy = - - e 
P 

• . • 

m of Ap-i 

b of Ap.i 

ymax 

Note that for the discrete data set Y={yi, y2,..., yN}, the calculations for the 
probability of A, P(A) is computed through the summation of the discrete 
probability values. 

4.4.2 Conditional Fuzzy C-Means in the formation of the 

blueprint of the logic network 

Conditional (context-based) Fuzzy C-Means was introduced in [3,4,5] as a 
certain modification of the generic Fuzzy C-Means (FCM)[1] which is guided by 
an auxiliary (conditional) variable. This method reveals a structure within a 
family of data by considering their vicinity in a feature space along with the 
similarity of the associated values assumed by a certain conditional variable. The 
algorithmic underpinnings go as follows. Assume that xi, \i XN are 
n-dimensional data defined in R", and we have been provided with "p" contexts 
(say, context-1, ..., context-p) being the result of the fuzzy equalization 
described in the previous section. Figure 4.15 summarizes the complete 
algorithm. 

Given: dataset {xi, X2,..., x»} c Rn 

membership values for context-j: fk (k=l, 2,..., N, j=l, ... , p) 

Defined: the number of prototypes c (Kc<N), exponential weight 
m(l<m<oo), the termination criterions (s >0), and the distance 
function ||-|| 

Initialization Randomly initialize partition matrix U: 
U(0)=[uik](i=l,..,c,k=l,...N) 

Processing 
Iterate iter = 1 , 2 , . . . and compute 
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N 
I u i k x k 
k=l 

prototypes \{: \{= N 

partition matrix U: ujk = 

I 
1=1 

x k - v ; 

Until||U(iter+1)-U(iter)||< 8 
VHxk vmy 

2/(m-l) 

Results prototypes and partition matrix 

Figure 4.15 Conditional Fuzzy C-Means: a flow of computing 

4.4.3 Projection and reduction of input variables 

As becomes obvious, for each context in the output space, we have generated "c" 
corresponding prototypes (clusters) in the input space. Thus for "p" contexts we 
end up with c*p prototypes (clusters) as schematically displayed in Figure 4.16. 

context-1 
(c clusters) 

context-i 
(c clusters) 

context-p 
(c clusters) 

Figure 4.16 A concept of the context-based clustering; note that each context induces "c" 
clusters in the input space 

Each prototype is then projected onto the individual variables of the input space. 
Along with the minimum and maximum values of each variable, the coordinates 
of the prototypes in the corresponding input space form c*p+2 fuzzy sets. As an 
example, for two contexts with two clusters per context, a relationship between 
the fuzzy sets of contexts and the resulting fuzzy sets arising for each input is 
visualized in Figure 4.17. 
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(a) 

B2 A2 Bt 

(b) 

Figure 4.17 Projection of prototypes along with the contexts and induced clusters in the 
input space 

We merge fuzzy sets if their modal values are close to each other (which make 
these fuzzy sets quite indistinguishable). The merging is guided by the following 
merging criterion. 

Consider a certain input variable, say x. Its lower and upper bound are denoted 
as min and max, respectively. The coordinates of "c*p" prototypes result in 
c*p+2 fuzzy sets {Ai, A2,..., Ac*p+2}built in the region of [min, max]. Define D 

as a threshold measure (D = ), evaluate the distance of any two 
c p 

successive fuzzy sets. We merge two successive fuzzy sets by making a single 
fuzzy set with a trapezoidal membership function if the distance satisfies the 
following merging criterion: 

Li+i •A, < e - D i = l ,2 , . . . , c -p+l (4.10) 

where se [0 , 1], and • is the distance function. 

For instance, as a result of such merging of Figure 4.17, instead of two triangular 
fuzzy sets A4 and A5 we obtain a single trapezoidal fuzzy set Ci. Given this, we 
update the relationships replacing the fuzzy sets that have been merged by their 
new generalized version, see Figure 4.18 for more details. The structures shown 
in Figure 4.18(b) are then used as a blueprint to form the fuzzy logic network. 
Each prototype inside the context represents an AND neuron, aggregated by an 
OR neuron to form the output as the corresponding context. 
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Figure 4.18 Merging of close fuzzy sets and construct of contexts using updated fuzzy sets 

Note that, with such projecting and reduction measures, different number of 
fuzzy sets will be used for each input variable. 

4.5 Conclusions 

In this chapter, we have proposed several effective fuzzy model frameworks. The 
input-output characteristics of the networks are investigated with various 
numeric connections and selected triangular norms and conorms. The 
interpretation of the networks is also discussed and pruning mechanism is 
proposed to allow for some further reduction of the network so as to improve the 
network interpretability. Based on the proposed logic network, three key 
technologies are presented here for model development, namely the mechanism 
of fuzzy equalization, context-based clustering, and the projection and reduction 
of each variable. 
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Chapter 5 
Discretization 
As shown in Chapter 2, a general fuzzy model consists of three fundamental 
components, namely input interface, processing core, and output interface. The 
input interface plays an important role in the information granulation necessary 
to deal with real-world data. Through the input interface, the processing core of a 
fuzzy model receives granular information upon which it can perform logic 
computations. Discretization is a process of aggregation that abstracts real-world 
numeric data into information granules that are more concise and closer to the 
knowledge-level representation [5, 20]. Hence discretization is used here as a 
reasonable way to deal with information granulation. This chapter presents a 
comprehensive literature review of existing discretization approaches and 
proposes a new discretization method which is of interest in the context of fuzzy 
modeling. 

5.1. Terms and notations 

Before we proceed with describing the process of discretization, it will be useful 
to clarify some commonly encountered terms and notations. 

Variable: also called feature or attribute; refers to an individual measurable 
property of the data. There are three formats of variables: discrete, continuous, 
and nominal. 

Instance: also called pattern or data point; refers to a collection of feature values. 
A data set is a collection of instances. Usually a data set is in matrix form where 
a row represents an instance and a column corresponds to a variable. 

Cutoff point: also known as split point; it refers to the value within a certain 
range of continuous values which divides the range into two intervals, one 
interval being less than or equal to the cutoff point, the other being greater than 
the cutoff point. 

Discretization level: refers to the number of intervals or partitions of a 
continuous variable. It is also called discretization region. 

Inconsistency: two instances are considered inconsistent (or conflicting) when 
they are the same in attribute values but different in output value. For example, 
instance (a, 0) and instance (a, 1) are considered inconsistent because they have 
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the same input (a) but different outputs (0) and (1). 

Least inconsistency: refers to the smallest inconsistency count for a given input. 
For example, given seven instances with the same input, (a, 0), (a, 0), (a, 0), (a, 
0), (a, 1), (a, 1), (a, 2). The smallest inconsistency count for the input a is 3—[(a, 
1), (a, 1), (a, 2)]. Usually the least inconsistency is calculated as the total number 
of instances with matched input minus the largest count for consistency. In this 
case, the least inconsistency can be calculated as 7-4=3. 

Inconsistency rate: also known as conflict rate, refers to the percentage of the 
least inconsistent data count over total number of instances. We use C, to denote 
the inconsistency rate in this thesis. 

Discrete data: values that can be counted. An example of discrete data is the 
number of cylinders in a car. 

Continuous data: all values on the number line within a value range. The value 
range is usually denoted as [min, max] where min and max are denoted as the 
lowest and the highest values of the variable range, respectively. 

5.2 Approaches to discretization - Literature survey 

Real-world data usually comes in a mixed format, such as continuous and 
discrete, while logic-based processing realized by fuzzy models operates on the 
more abstract constructs of information granules. Discretization, a bridge 
between the real-world and a fuzzy model core, plays an important role in fuzzy 
modeling. There are a large number of discretization approaches available in the 
literature. In this section, we provide an extensive survey of existing approaches 
and discuss strengths and weaknesses of each of them. 

Equal-width discretization (EWD) 

Equal-width discretization (EWD)[2] is one of the simplest methods in the 
literature to discretize a continuous variable. In particular, it is a binning 
technique that splits the variable range [min, max] into k intervals of equal width, 
where k is a user predefined parameter. Each interval is associated with a distinct 
discrete value. The width of each interval is: w = (max-min)/k, and the cutoff 
points are min+w, min+2w, ..., min+(k-l)w. Figure 5.1 illustrates an idea of such 
a discretization process: 
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Figure 5.1 Equal-width discretization 
(discretize the range of [min, max] into three intervals with same width) 

EWD is the most straightforward discretization technique as it does not require 
any knowledge of the data. But the weakness is obvious as the distribution of 
cutoff points is sensitive only to the number of intervals that are predefined by 
the user. Except for the lowest and highest values of the variable, no other output 
information or domain knowledge is involved during the discretization. This is a 
typical example of unsupervised discretization. 

Equal-frequency discretization (EFD) 

Equal-frequency discretization (EFD) is another example of a simple 
discretization method [2]. It is also known as a binning technique, and the 
predefined parameter k is used to determine the number of intervals. In EFD, the 
intervals are created so that each interval contains approximately the same 
number of continuous variable values. Note that instances with identical values 
must be placed in the same interval so that it usually results in only an 
approximate same frequency for each interval. 

For instance, if there are N instances for a given variable, then each adjacent 
interval contains N/k instances. Figure 5.2 shows the mechanism of EFD: nine 
instances are discretized into three predefined intervals, each of which contains 
three instances. 

* 4 # _ ! « • • ! ft-S * • 
min j j j j max 

Figure 5.2 Equal-frequency discretization 
(discretize nine instances into three same frequency intervals) 

Compared to EWD, EFD achieves better data understanding because it takes the 
distribution of data into consideration. However, this method does not consider 
the output information to determine the discretization cutoff points, thus it is also 
regarded as an unsupervised discretization technique. 

Both EWD and EFD are unsupervised discretization methods and are further 
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problematic because they can handle the discreitzation of only one variable at a 
time. Although these weaknesses are well known, both methods receive a lot of 
usage in data mining and knowledge discovery because of their simplicity and 
ease of implementation. 

As the need for more accurate and efficient discretizations grows, the technology 
for discretization has developed rapidly. Over the years, many discretization 
algorithms have been proposed and have demonstrated that discretization has the 
potential to improve the model and predict accuracy. These methods can be 
categorized in several dimensions due to different needs: namely: supervised vs. 
unsupervised[5], splitting (top-down) vs. merging (bottom-up)[13], and 
univariate vs. multivariate [1]. 

Supervised vs. Unsupervised Methods that use output class information for 
the selection of cutoff points during discretization are supervised. Methods that 
do not use output class information are unsupervised. 

Splitting vs. Merging In splitting discretization, initially the whole value 
range is considered as one interval. The whole value range is then split into 
sub-intervals until some stopping criteria are met. In merging discretization, 
intervals initially divided are merged through adjacent intervals until certain 
stoping criteria are met. Splitting and merging discretizations are often 
regarded as hierarchical discretizations; splitting discretizations are called 
top-down methods and merging discretizations are called bottom-up methods. 

Univariate vs. Multivariate Methods that discretize one continuous attribute 
at a time are univariate. Multivariate methods consider multiple attributes and 
relationships between attributes. 

Entropy-based discretization (EBP) 

In 1991, Catlett introduced an entropy measure to find potential cutoff points to 
split a continuous variable [2]. However, the stopping criteria of discretization in 
his method is rather ad hoc, thus this method did not attract much attention. In 
1993, Fayyad and Iraniproposed another entropy-based method that provides a 
more general way to determine when to stop recursive splitting [7]. The method 
evaluates as a candidate cutoff point the midpoint between each successive pair 
of sorted values. For evaluating each candidate cutoff point, the data are 
discretized into two intervals and the resulting class information entropy is 
calculated. A minimum description length principle (MDLP) is used to 
determine when discretization is complete. This is a typical supervised 
discretization that makes use of output class information when calculating the 
entropy. 
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Although EBD has demonstrated an improvement in classification accuracy for 
naive-Bayesne [4, 14, 25], the method produces a too-coarse granulation of 
discretization intervals for some attributes caused by applying the MDL principle 
as a stopping criterion. Also, being a univariate approach EBD has limited 
available depth [6, 8]. 

ChiMerge, StatDisc, InfoMerge, and Chi2 discretization 

ChiMerge is the first discretization method that applied merging instead of 
splitting. ChiMerge uses ji statistics to determine if the relative class 
frequencies of adjacent intervals are distinctly different or if they are similar 
enough to justify merging them into a single interval [13]. The ChiMerge 
algorithm is a two-step method. The initial step starts with each instance in an 
interval. The second step is a bottom-up merging process: compute the yi for 
each pair of adjacent intervals and merge the pair of adjacent intervals with the 
lowest %2 value. Merging continues until all pairs of intervals have ji values 
exceeding a x2-threshold. ChiMerge requires the x2-threshold to be specified 
manually, ideally one x2-threshold for each attribute which is difficult to fulfill. 
A too big or too small x2-threshold will over- or under-discretize an attribute. 
Thus it is not easy for ChiMerge to find a proper x2-threshold for each attribute. 

Much work has been done to improve the efficiency and accuracy of ChiMerge 
discretization. ChiMerge can allow only two intervals to be evaluated and 
merged at a time. StatDisc discretization, proposed by Richeldi and Rossotto in 
1995 [19], extends the ChiMerge method to allow any number of intervals to be 
merged at a time. StatDisc is still based on a statistical measure to determine the 
merging and the statistical measures which treat an attribute and a class 
symmetrically. InfoMerge [10], on the other hand, treats an attribute and a class 
asymmetrically to discretize the attributes. 

Chi2 discretization [16] is another modification to the ChiMerge method. It was 
intended to overcome the weakness of ChiMerge and let the data itself determine 
what proper x2-threshold should be taken. It uses ChiMerge as a basis of the 
discretization and enhances the ChiMerge algorithm by introducing 
inconsistency rate checking as the stopping criterion. When the inconsistency 
rate is below a predefined level, it indicates that the discretized data set 
accurately represents the original data set and the discretization stops. However, 
how is a proper inconsistency rate level to be assigned to different attributes? So 
far, there have been a few suggestions proposed to solve this problem [22]. 

All the merging discretization methods discussed here are univariate. 

Fuzzy discretization (FD) 
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Traditional discretization methods divide continuous attributes into a number of 
intervals whose boundaries are represented by crisp cutoff points. Fuzzy 
discretization [11], introduced by Ishibuchi et al. in 2001, allows overlapping 
intervals. This method uses domain knowledge to define fuzzy membership 
functions. The borders of intervals are then represented by membership grades 
instead of crisp cutoff points. However, the number of intervals, the boundaries 
of intervals, and the degrees of overlapping are difficult to optimize. Little 
research has been conducted in this area so far [26]. 

Cluster-based discretization(CBD) 

The methods discussed so far are all univariate discretization. Cluster-based 
discretization [3], proposed by Chmielewski and Grzymala-Busse in 1996, is the 
first multivariate discretization method. It consists of two steps. The first step 
determines the initial intervals based upon the clusters formed in the feature 
space. The stopping criterion of cluster formation is whether the level of 
consistency of the partition is less than the level of consistency of the original 
data. Cutoff points are simultaneously determined in terms of all attributes once 
the cluster formation is completed. In the second step, the number of discretized 
intervals is minimized by merging adjacent intervals. Consistency is also 
checked at this stage to ensure the data consistency after discretization is above 
the given threshold. The second process stops once all the pairs of adjacent 
intervals are examined and no further intervals can be merged. 

Evolutionary discretization (ED) 

Evolutionary discretization was first implemented in EDRL-MD, an 
evolutionary-algorithm-based system that was built for learning decision rules 
from the dataset [15]. An evolutionary algorithm (EA) was employed in 
EDRL-MD. Here each string is composed of n sub-strings where n is the number 
of attributes and each sub-string encodes a condition related to one attribute. The 
cutoff points for all continuous attributes are simultaneously formed when the 
search stops and decision rules are induced. The main advantage of this method 
is its multivariate discretization ability. However, the fitness function in EA 
requires some parameters to be chosen on an experimental basis; this reduces the 
flexibility of the method. 

Figure 5.3 shows a systematic hierarchy chart for the discretization methods 
discussed previously. We divide the methods into two main categories, namely 
supervised and unsupervised methods; under each category there are two 
sub-categories, univariate methods and multivariate methods. 
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Figure 5.3 A hierarchy of discretization methods 

5.3 Proposed modeling environment 

In this section we discuss the ways discretization was implemented in our 
research. Since multivariate discretization is able to capture interdependencies 
between attributes, and supervised discretization helps select the proper cutoff 
points by considering output class information, we employ both techniques in 
our method. Given the different nature of the data and the way in which different 
variables play in the development of the model, the discretization processes 
realized for output and input variables are treated differently. 

Output variable 

For the output variable, we first use the K-Means clustering method [17] with 
"p" clusters. The center points (prototypes) of these "p" clusters are sorted and 
arranged in a vector format m = [mi, m2, .. .mp-i]. The "p-1" prototypes give rise 
to "p" intervals by defining its end points in-between the centers of the clusters. 
As illustrated in Figure 5.4, the "p-1" cutoff points (mid-point of the successive 
cluster center, marked as cross) split the range of the output [min, max] into "p" 
intervals. We denote these "p" intervals by labeli, label2, ... labelp. 

X X X X 

t t t 
min mi m2 mp.! max 

Figure 5.4 Mechanism of discretization by K-Means 

Input variable 
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We assume a "c" discretization level for each input variable which is continuous. 
The discretization is carried out by choosing cutoff points for all continuous 
variables simultaneously. With the determination of the cutoff points for input 
variables, the original dataset is then discretized into discrete datasets. 

The objective of discretization processes is to minimize the inconsistency rate 
for the discretized dataset. In this study we use the "inconsistency rate," which is 
defined as a percentage of conflicts taken with respect to all data involved in the 
discretization. More specifically, the inconsistency rate C, is calculated as 
follows: 

p 

Id. 
; = J i — i=l,...,P (5.1) 

N 
where N denotes the number of all instances of the dataset and p is the number of 
classes for the output discretized by K-Means. dj(i = 1, ... p) is the number of 
conflicts for each output class. 

The discretization process can be summarized as a two-phase processing; the 
first phase determines the cutoff points for the output by K-Means, and the 
second phase is to find the optimal cutoff points for the input variables that 
results in the minimum inconsistency rate. Though many alternatives can be 
considered to determine the optimal cutoff points of the input 
variable—equal-width discretization, taking into consideration searching through 
the space of all features simultaneously, and making use of output class 
information—particle swarm optimization (PSO) appeals here as a reasonable 
way to find cutoff points for the input variables. 

5.4 Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) is an example of social-behavior and 
population-driven optimization. It was first introduced in 1995 by James 
Kennedy and Russell C. Eberhart [12]. This technique has attracted much 
interest and has evolved greatly since then. It has been widely applied in various 
fields [9, 18,21,23,24,27]. 

In PSO, each particle is a possible solution in the multidimensional search space 
called a problem domain. A particle swarm is a population of particles, that is, a 
set of possible solutions. Each particle explores the search space and its 
performance during movement is assessed by means of some performance index 
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(fitness function). Depending upon the problem at hand, the objective is to either 
minimize or maximize the given fitness function. 

The movement of an individual particle is governed by the two values of the 
performance index. The first value reported is the best solution achieved by this 
particle so far. The second value is the value of the best solution obtained so far 
by all the particles in the population. The position of a particle is described by 
some vector Z(t) where "t" denotes consecutive discrete time moments. Its speed 
at time "t" is denoted as a vector V(t). Given these two values of the 
performance index, each particle updates its velocity V and position Z as 
follows: 

V(t + 1) = £V(t) + <fo(P - Z(t)) + <fc(Ptotai - Z(t)) //update speed (5.2) 
Z(t + 1) = Z(t) + V(t + 1) //update position (5.3) 

where P denotes the best position (characterized by the lowest performance 
index) reported so far for this particle and Ptotai is the best position overall 
developed so far across the whole population. £ is the inertial weight of [0, 1] 
which is to articulate some factor of resistance to change the current speed. 4>\ 
and 02 are random numbers drawn from the uniform distribution formed over the 
[0, 2] interval, that is U[0, 2]. Figure 5.5 shows the pseudo code of the PSO 
procedure. 

For each particle 
Initialize particle 

End 
Do 

For each particle 
Calculate fitness value 
If the fitness value is better than the best fitness value (pBest) in history 

Set current value as the new pBest 
End 
Select the particle with the best fitness value among all particles as gBest 
For each particle: 

Update particle velocity according to the velocity equation (5.2) 
Apply the velocity constriction 
Update particle position according to the position equation (5.3) 
Apply the position constriction 

End 
While maximum iterations or minimum error criteria is not attained 

Figure 5.5 The pseudo-code of PSO 
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Relating the PSO to the problem of discretization, the search space comprises all 
cutoff points for all input variables to be discretized. In other words, each 
particle Z is encoded by all cutoff points of input variables. The dimensionality 
of each particle Z is n(c-l) in length given that we are concerned with "n" 
variables with the discretization regions of "c." And the minimized performance 
index of each particle is evaluated by the inconsistency rate based on the 
discretization given by the particle. The number of discretization regions "c" are 
predetermined and are not a part of the PSO optimization process. 

Once the discretization has been completed, the continuous dataset is 
transformed into a discrete dataset. But such discrete datasets usually contain 
inconsistent data which will in turn affect the accuracy of the modeling. In this 
sense, eliminating conflict data becomes an essential aspect after the 
discretization. The simplest way of eliminating conflicts is by removing 
inconsistent data from the overall data set. Such resulting datasets are called 
clean datasets. By applying the one-out-of-n strategy to each variable, as well as 
the output of the clean dataset, it becomes a collection of Boolean input - output 
pairs in the form of 

{x,(k) x2(k)...xn(k) y~(k)} k=l,2,. . . ,N 

where X; (k) e {0,1 }c if the original i-th variable was continuous and 
x;(k)e{0,l}c with c'<=c in the case of the discrete variable. Furthermore, 
y~£{o,i}p. 

5.5 Illustrative example 

In this section, we use one synthetic data set to illustrate the discretization 
methods we have discussed previously. We compare the results by using EWD, 
EFD, EBD, ChiMerge, Chi2, and our proposed method (PSO+K-Means). 

Consider a three-input-one-output dataset, generated from the following equation: 
y(k) = max(Xl(k), min(x2(k), x3(k))) k=l, 2, ..., 100 

xi, x2, and x3 are all random variables with values in the range of [0, 1]. y is 
classified into three classes with the following equation: 

y = 

1 y < 0.4 

2 0.4<y<0.7 

3 y>0.7 
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We summarize the results in Table 5.1, which illustrates the cutoff points and 
inconsistency rate of each method. 

Table 5.1 Discretization results for the synthetic data 

Method 

EWD 

EFD 

EBD 

ChiMerge 

Chi2 

PSO+K-Means 

Distribution of cutoff points 

xl: [1/3,2/3] 
x2: [1/3, 2/3] 
x3: [1/3, 2/3] 
xl: [0.092,0.328] 
x2: [0.248, 0.512] 
x3: [0.377, 0.733] 
xl: [0.145, 0.257] 
x2: [0.242,0.631] 
x3: [0.327, 0.728] 
xl: [0.079, 0.183, 0.214, 0.358, 
0.603,0.813,0.887,0.931] 
x2: [0.034, 0.211,0.267] 
x3: [0.243, 0.355, 0.413, 0.706] 
xl: [0.092, 0.243, 0.509, 0.757, 0. 
869, 0.927] 
x2: [0.194, 0.509,0.771,0.857, 
0.921] 
x3: [0.292, 0.536, 0.663, 0.864] 
xl: [0.167, 0.473] 
x2: [0.294, 0.656] 
x3: [0.325, 0.791] 

Inconsistency 
rate 

21% 

6% 

8% 

5% 

3% 

1% 

Table 5.1 shows the different distributions of cutoff points obtained by different 
methods. Among them, ChiMerge and Chi2 need the most cutoff points. This is 
because of the bottom-up nature of the ChiMerge and Chi2 methods. Of all the 
methods considered, PSO+K-Means has the lowest inconsistency rate (1%) and 
EWD has the highest inconsistency rate (21%). 

5.6 Conclusions 

We have conducted an extensive literature review of the existing discretization 
methods and summarized these methods in a hierarchy chart. These methods are 
divided into two main categories, supervised and unsupervised discretization. 
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Unsupervised discretization is widely used due to its simplicity and ease of 
implementation. Supervised discretization makes use of output class information, 
which in turn helps improve the discretization results. Univariate vs. multivariate 
and splitting vs. merging are considered as sub-categories of these two. The 
modeling environment has been defined in terms of K-Means and particle swarm 
optimization (PSO) in this research. In particular, we discretize the output by 
K-Means clustering, then with the help of PSO we discrete all of the features 
simultaneously. The illustrative example shows promising results for such a 
modeling environment. The originality lies in the comparative analysis between 
the proposed discretization method and some existing discretization methods in 
literature. 
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Chapter 6 
Learning 
Network learning is a critical phase during network development. Learning 
usually includes structural optimization and parametric optimization. Structural 
optimization seeks the optimal structure and parametric optimization tunes the 
required parameters based on the optimal structure. In this chapter we first assess 
the overall development of the logic network. Based upon the assessment of the 
development environment, we then proceed with the detailed learning of the 
networks. Because the structure of the network is usually predetermined, the 
discussion of learning in this chapter will be primarily concerned with 
supervised parametric learning. Parametric learning aims to optimize the 
parameters of the fuzzy neural network and can be accomplished in many 
different ways [2-7]. Among these approaches, we focus on gradient-based 
learning, particle swarm optimization, and a hybrid of these two approaches. 

6.1 Assessment of the overall development of a logic 

network 

In the fuzzy neural network shown in Figure 6.1 there are three important layers, 
namely input, hidden, and output. In this construct the neurons are fully 
connected between each layer. The role of the connections of fuzzy neurons is to 
weigh the inputs and in this way offer them the required parametric flexibility. 
Several groups of parameters contribute to this flexibility; three groups are 
discussed below. 

1. The number of neurons in the hidden layer. 

While the number of inputs (n) and outputs (m) are predetermined by the 
specific problem itself, the number of the neurons in the hidden layer can be 
freely selected. The choice of the number of neurons in the hidden layer directly 
impacts the topology of the network and will very likely affect the accuracy of 
the mapping realized by the network. We anticipate that increasing the number 
of neurons will result in increased accuracy of the input-output mapping. 
However, a high number of neurons will cause an associated memorization 
effect, that is, as the number of neurons becomes high, we start losing the 
generalization ability of the network. 
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2. The choice oft- norms and conorms (s-norms) in the realization of neurons. 

With triangular norms and co-norms we are faced with an enormous diversity. 
The neurons can be realized with the use of different combinations of t- norms 
and s-norms. We consider several pairs of t-norms and co-norms such as (min, 
max), (product, probabilistic sum), (Lukasiewicz and, Lukasiewicz or). These 
pairs of t- and s-norms are very typical and have been used in a number of 
studies. Although other pairs are available, we do not envision a substantial gain 
from a more thorough exploration of other alternatives for this project. 

3. Numeric values of the connections between neurons, and the identity values of 
unineurons. 

The connectives of neurons are essential parameters that can offer superb 
learning ability to the logic-network. By changing the numeric values of these 
connectives, we can achieve flexibility in the network. 

Optimization of the network parameters is an essential part of the overall 
development process. The third group of parameters (connectives and identity 
values) is a focal point during learning efforts. Their values offer the unique 
possibility of optimizing the network. Our learning efforts will concentrate on 
them. 

Regardless of the implementation of the network, the principle idea of 
supervised parametric learning can be generalized as follows. Given a fuzzy 
neural network as shown in Figure 6.1, connectives between the input layer and 
the hidden layer are denoted by v, connectives between the hidden layer and the 
output layer are denoted by w. The objective of network learning is to modify 
the parameters v and w so that the difference between the output (y) and the 
target output (Target) can be minimized. 
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Target 

Figure 6.1 The optimization of network parameters v and w 

6.2 Internal and external performance index of the 

network 

A typical way to measure the difference between the desired (target) output and 
the output values of the network (model) is by calculating the sum of the squared 
errors (differences between model output and target output). Such a process 
provides an internal performance index Q, defined as follows: 

Q=ii>co-t(k)ir Nt 
(6.1) 

k=l 

where y(k) corresponds to the k-th data point of model output, t(k) is denoted as 
the corresponding target output, and ||| is the Euclidean distance. 

To assess the performance of the model with respect to the external world, we 
need to decode the results from the "internal" world of the unit hypercube and 
translate it back to the original output space. The decoding of y, gives rise to a 
numeric entity u <= R, expressed in the form: 

£cryr 
u = 

r=l 

2>. 
r=l 

(6.2) 

where cr (r=l,.. .,m) are entries of the center vector c = [ci, C2.. ..,cm]. 
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The external performance index V is a root mean squared error (RMSE) of 
deviations between the model and the data, that is: 

V = ^ S ( u k - t a r g e t , ) 2 (6.3) 

where N denotes the size of a training or testing data set, Uk stands for the 
decoded result of yk which is produced by the model that corresponds to the k-th 
data point, and targetk is the original k-th data point of the output. 

Note that the use of the performance index V applies to problems involving 
continuous outputs. In the case of classification problems, we can still consider 
the decoding procedure, however, the performance of the model will be 
expressed in terms of the classification error. 

6.3 Gradient-based learning 

Gradient-based learning has been successfully applied to the training of many 
applications [1, 8, 9]. Denoting all connections of the network by conn, the 
general scheme of gradient-based learning can be qualitatively written as: 

conn(iter+l)=conn(iter)- aV co„„ Q (6.4) 

where a is a positive learning rate and Q is the internal performance index 
expressed in equation (6.1). 

If we confine ourselves to the product (t-norm) and probabilistic sum (t-conorm), 
we can proceed with detailed computations of the gradient standing in the 
updates of the connections. Expressions for the AND-OR neurons can then be 
written as follows: 

zp = f l ( x i + v i j ~ x i v i j ) J = l»"-,h (6.5) 

y s = l - f l ( l - z j s w j s ) s=l,....,m (6.6) 

In the sequel we obtain 

v(iter +1) = v(iter) - aVvQ (6.7) 

w(iter +1) = w(iter) - aVwQ (6.8) 

- 8 1 -



where 

^=^l^=^S(y.ck)-tA))^42(y.ck)-^(k)x^na-zI,w11)] 

s=l....m; j=l....h (6.9) 

r=l 
r*j r*i 

i = l n (6.10) 

If the network is constructed with the aid of unineurons, the network can be 
expressed as follows: 

n 
zjs =T(u(x i,v i j,g i j)) i = l , - , n ; j = l , - , h 

i=l 

X ; V i j 
S i j — — 

o ii o ij 

-n 
i=l 

Xi,vg e[0,g ; j] 
lj Olj 

, x , x ( x i - § i j X v i j - S i j ) r n 

Sij + (xi -Sij) + (vij ~Sij) : x i f v s 6[g s , l ] 

max(xi,vij) 
otherwise 

(6.11) 

ys = S(u(z j s,w j s,q j s)) j = l,---,h s = !,-••,m 
j=i 

h Wj„ Z, 
l - r i t 1 - ^ ^ 1 — ] z j s ,w j se[0,q j s] 

H qjs qjs 

^ r i t 1 - ^ ~( z j S - q j s ) - ( w j s -q j s ) + — 7—^ —] z js,w js e[q js,l] 
j=i 1 q J S 

h 

1 - O C1 ~ m a x ( z j S ' w js)] otherwise 

(6.12) 

In the second step, the gradient-based learning for the network is: 
v(iter + l) = v(iter)-aVvQ (6.13) 

w(iter +1) = w(iter) - aVwQ (6.14) 
Where 
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<3w 
-]~J[l-max(z j s ,w j s)] 

js j=l 

Z J . . W J .
 e[o.qj.l 

VwQ = ̂ - = ̂ i (y s (k) - t s (k) )^ = Aj(ys(k)_t5(k)) 

js T T /-i _ W r s Z r s \ 

q j s r=i q r s 

(^^-l)fl[l-Z..-w.,+q,^(Z"-V(W""0 ' WK» 
1 - c i j s r=i 1 q r s 

**j 

d h otherwise 

(6.15) 

For the derivative in the last condition in equation (6.15), 

8 h 

J~[[ l -max(z j s ,w j s ) ] 

s=l, 2, ...,,m 

rid-wj Z j s ^ W j s 

r*J 

Z j s > W j s 

(6.16) 

v.Q-££M^£i>.«-'.«>*-&J 
s^^Ys 5 z j S dVg N t ? t ^ dzis dv{i 

where 

W- h 

JS 
w ^ . IK1 

4js r=l Hrs 

, w j s - q j s DW 
r*J 

• Z r s - W
r e + q r s + 

( Z r s - q r s X W r s - q r s ) 

r=l 
r*j 

l - q r 

s h 

J j [ l - m a x ( z j s , w j s ) ] 5 z j s j - l 

For the derivative in the last condition in equation (6.17) 

' 0 
8 h 

dz 
- f | [ l - m a x ( z j g , w j 5 ) ] = 

js j=l 

Z j s ^ W j s 

IK1-2-) Z j s > W j s 

] z js 'w js e[q j s , l ] 

otherwise 

(6.17) 

(6.18) 

r=l 
L r*J 
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dz-

X. A X r V 
L E [ — x,.vfle[0,ga] 

Sij r=l Sr »ij r=i Oij 

,- x i B^TTr 'Xr Srj)(vrj Sri)-, r ,-, 

1-gij J 1-grj 

-[max(xi,vij)] otherwise 
dv. 

(6.19) 
For the derivative in the last condition in equation(6.19), 

d fl x ; < vfi 

[max(x„vfl)]=:-|ft J _ ; J (6.20) 
5Vij ' 1° X , > V , 

Quite often, it is possible to include a momentum term during the calculation of 
V conn Q. The update of the connections is governed by 

conn(iter+l)=conn(iter)- a VconnQ + p VconnQ (6.21) 

where P is the momentum term. 

Because of the logic operations of neurons (and unineurons), the connections of 
neurons (and unineurons) must be confined to the unit interval during and after 
the gradient-based optimization. The learning rate is usually set up between 0 
and 1. The learning may become very slow if the learning rate is very close to 0. 
However, learning will easily get stuck in a local minimum of the performance 
index if the learning rate is set too high, say very close to 1. 

6.4 Learning with the use of PSO 

When dealing with a highly nonlinear character of some dependencies and a high 
dimensionality of search space, gradient-based learning can easily be 
compromised. In anticipation of this it is helpful to investigate other options 
offered by biologically inspired optimization. Particle swarm optimization (PSO) 
is a reasonable way to support the optimization of the logic networks. To 
illustrate the benefits of such a composition, three learning strategies will be 
envisioned with different parameters. 
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6.4.1 Strategy-1 PSO for all parameters of the network 

that are binary {0,1} 

The logic network is trained by the binary PSO which considers the entry of each 
particle as having a value of either 0 or 1, see Figure 6.2. In particular, the 
network becomes a Boolean network and the output of the network has a 
Boolean output. The organization of a particle follows the structure of the 
network, starting with the connections v and w. If the network is built by 
unineurons, then the identity values g and q are sequentially concatenated at the 
end. 

0 
"̂  

1 
J 

V 

V 
Y 

V 

J V. J K 

V 
g <3 

1 

V 
I 

0 

Figure 6.2 Particle with binary value encoded 

6.4.2 Strategy-2 PSO for all parameters that are in the 

range of [0,1] 

In this learning scenario, the connections of the network are all the unit interval 
values [0, 1]. Each particle in the PSO is encoded as a string with all connections 
concatenated in the same manner as Strategy-1. 

0.1 
^ 

0.3 

V 

J y 
V 
w 

) \ J (. 
V 

0.2 

q 
Y 

0.8 
j 

Figure 6.3 Partiicle with unit interval value [0,1] encoded 

6.4.3 Strategy-3 Hybrid of PSO and gradient-based 

learning 

This strategy takes advantage of PSO and gradient-based learning by hybridizing 
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them. In particular, the identity values g and q are trained by PSO and the 
gradient-based learning takes the values of g and q, and refines the connections v 
and w guided by an internal performance index. Each particle has some 
gradient-based learning which works individually to calculate the performance 
index and return a value back to the particle as the fitness value in PSO. The 
overall process can be regarded as two-level learning, with PSO working at the 
first level and gradient-based learning nested in the second level. The detailed 
scheme of this hybrid learning is summarized in Figure 6.3. 

Gradient-based learning 
(v and w optimization) 

PSO(identity g and q optimization) 

0.3 | 

^ 

| 0.1 

0.2 | | 

g 

| 0.9 | | 

l-l 
.*. 

1 ••• 1 

1 1 
Y 

q 

I | 

I 0.5 Ji. 
M, , J 

1 0.2 \ 

-v(iter +1) = v(iter) - aVvQ 

w(iter +1) = w(iter) - aV„Q 

^ 
v(iter +1) = v(iter) - aVvQ 

w(iter +1) = w(iter) - a VWQ 

Figure 6.3 Hybrid learning scheme 
gradient-based learning as nested learning inside the PSO 

Note that Strategy-3 is suitable only for a logic network constructed with 
unineurons. 

In Strategy-1 and Strategy-2 the PSO technique is used to optimize the network 
parameters. The difference is that Strategy-1 considers only the binary 
connections of the network, whereas the connections trained by Strategy-2 have 
a continuous value [0, 1]. However, the drawback of these two strategies is 
obvious. With an increase in optimized parameters, the length of the particles in 
PSO expands accordingly. For instance, for a given n-input-m-output unineuron 
network with "h" hidden AND_U and the length of the particle is 2*h*(n+m); 
when the h becomes h+1 the increase of length is 2*(n+m). Thus, the 
computation of learning becomes more challenging. In addition, there are too 
many parameters encoded in a single particle; that is, too many parameters need 
to be adjusted at one time, so that efficiency of the learning is easily 
compromised when the network becomes large or inputs multiply. In Strategy-3, 
parameter optimization is split into two levels, with each level optimizing some 
but not all of the parameters. The identity value optimization is carried out at the 
top level, while the connection optimization is performed at a lower level which 
acts like nested learning inside the top level. This approach makes the identity 
optimization disjointed from the phase that is concentrated on connection 
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adjustments. In this case, the PSO searches the space of all possible identity 
values, and passes the identity values into the gradient-based learning for further 
exploration of the connections. The performance returned by gradient-based 
learning in turn acts as the fitness value which guides the PSO at the top level for 
further optimization. However, the computation cost of this hybrid learning 
strategy is the highest among the three strategies. 

6.5 Fuzzy partition 

The model constructed so far has been formed with the use of Boolean partition. 
To construct the fuzzy model, we refine the interval form of the information. 

Output space. In the case of continuous output, we form a family of triangular 
fuzzy sets spanning over the intervals we have formed so far. The modal values 
of these fuzzy sets are taken as the centers of the intervals. Overlap between 
neighboring fuzzy sets is up to Vi. The choice of this form of fuzzy sets is 
motivated by their lossless reconstruction capabilities. For discrete outputs 
(characterizing classification problems), no transformation is required. 

Input space. Here we construct trapezoidal fuzzy sets over the intervals by 
retaining some portion of the interval whose length is specified by the core [0, 1], 
while the rest of the characteristic function is transformed into the linearly 
increasing and decreasing sections of the membership function. The Vz overlap 
between consecutive fuzzy sets is retained. The essence of this construct is 
illustrated in Figure 6.4. 

6 = 0.0 

2 12 
-0.2 r 

27 

i i . 
2 11 13 27 

(b+c)/2 

(a) ™JTK 
2 7 17 27 

(b) 

Figure 6.4 The development of fuzzy sets based on use of the original Boolean partition 
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The use of the core parameter s in [0, 1] controls the region of transition viz. 
the argument when the membership grades assume values between 0 and 1. Note 
that the value of A is determined as follows (see Figure 6.4 (a)): 

A = cmin(—-—, ) . In the case s = 0, we retain the original Boolean 

partition. Here an increase in the value of s leads to a more profound visibility 
of the fuzzy sets. The given value of 6 converts to trapezoidal fuzzy sets; these 
fuzzy sets need not be symmetric. Figure 6.4 (b), illustrates the formation of 
fuzzy sets with different values of 8. When s = 0, both the left and right 
partitions are Boolean; when s is between 0 and 1, the fuzzy sets for left and 
right partitions are both trapezoidal fuzzy sets; when s = 1, the fuzzy set for the 
left partition becomes a triangular fuzzy set, whereas the fuzzy set for the right 
partition remains trapezoidal. 

6.6. Conclusions 

In this chapter, we assessed the network parameters that contribute to the 
flexibility of logic networks. These parameters include the number of neurons in 
the hidden layer, the combination of selected t- and s-norms, and the values of 
the connections. Based on the assessment, we discussed approaches to 
parametric learning. Two performance indices are investigated during the 
discussion. We also introduced the core parameter to construct fuzzy partitions 
that further examined the performance of the logic network. 
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Chapter 7 
Experimental studies 
In this chapter, we report on a number of experiments carried out for selected 
machine learning datasets fhttp ://archive. ics. uci.edit/ml/] and datasets from other 
resources [1-2]. We consider two types of topology of fuzzy neural networks 
discussed in the previous chapters, namely the networks constructed by AND 
and OR neurons, and the networks built by AND and OR unineurons. In the 
former, we apply the fuzzy equalization and conditional fuzzy c-means algorithm 
for the information granulation. After the learning of the network, we examine 
the interpretation of the model by means of the pruning mechanism. In the latter, 
discretization methods (particle swarm optimization and K-Means) are applied at 
the interface of information granulation, and the three learning strategies 
discussed in chapter 6 are employed for network training. In addition, both 
Boolean data and fuzzy data are examined with regard to their relevance in 
network performance. 

7.1 Networks constructed by AND and OR neurons 

In this section, the obtained results are presented in a uniform manner by 
quantifying the approximation abilities of the corresponding models and 
showing the details of the resulting logic description of the data. We also point at 
some tradeoffs between the accuracy of the logic models and their 
interpretability. Throughout the experiments, we used 60% of the data for the 
training; the remaining 40% is used for the testing. 

7.1.1 Boston housing data 

This dataset concerns a description of real estate in the Boston area and its price. 
Each real estate is characterized by a number of features such as 
1. CREVI: per capita crime rate by town 
2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft. 
3. INDUS: proportion of non-retail business acres per town 
4. NOX: nitric oxides concentration (parts per 10 million) 
5. RM: average number of rooms per dwelling 
6. AGE: proportion of owner-occupied units built prior to 1940 
7. DIS: weighted distances to five Boston employment centres 

- 9 0 -



8. RAD: index of accessibility to radial highways 
9. TAX: full-value property-tax rate per $10,000 
10. PTRATIO: pupil-teacher ratio by town 
11. B: 1000(Bk - 0.63)A2 where Bk is the proportion of blacks by town 
12. LSTAT: % lower status of the population 

The output (MEDV) is a median value of the home expressed in $ 1000s. 
Following the overall development scheme intriduced in this study, we start with 
the fuzzy equalization completed in the output space. The meaningful fuzzy sets 
we could define there quantify the values of the house as LOW, MEDIUM and 
HIGH. These three terms are semantically sound and offer enough 
discrimination. The histogram of the output shown in Figure 7.1 is quite 
symmetrical with an exception of an elongated tail of higher values of the real 
estate. We note however that these values occur quite seldom and could be 
removed from the construction of the fuzzy sets. 

200 

0 10 20 30 40 50 
Figure 7.1 A histogram of MEDV 

We distribute the fuzzy sets in the space by eliminating all data points that are 
more than 2<r distant from the mean value of the population of all data; note that 
we make this requirement stronger than the standard one encountered in statistics 
that uses a 3CT rule. By completing the fuzzy equalization, we end up with the 
three linguistic labels (p = 3) for the output as shown in Figure 7.2. 

Figure 7.2 Fuzzy sets constructed in the output space 
(being the result of outlier elimination and fuzzy equalization) 
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Then context-based clustering is applied, followed by the projection on the 
individual input variables and possible reduction (merging) of the adjacent fuzzy 
sets. Consider the case of 3 clusters(c=3) for each context. Figure 7.3 illustrates 
the number of fuzzy sets produced for each input variable with respect to 
different values of e used in the merging criterion. Without any merging (s=0), 
we have c*p+2 =11 fuzzy sets for each variable. For higher values of 8, this 
number of fuzzy sets starts decreasing while the rate of decrease depends on the 
specific variable. Noticeably the differences are quite visible ranging between 2 
and 5 linguistic terms. 
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Figure 7.3 Number of fuzzy sets for each input variable with respect to different 

Figure 7.4 shows the overall number of fuzzy sets (as being counted for all 
variables) for the inputs with 3, 5, 9 clusters per each context when being 
plotted versus the varying values of s 

a 4DD 

Figure 7.4 Overall number of fuzzy sets for the inputs with 3,5 and 9 clusters 

By arbitrarily choosing 3 clusters for each context along with s =0.8 (at which 
value we obtain a relative small number of fuzzy sets), see Figure 8, we formed 
the following linguistic terms for each input variable 
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1. CRTM = {LOW, MEDIUM, HIGH}={L, M, H} 
2. ZN = {LOW, MEDIUM, HIGH, VERY HIGH} = {L, M, H, VH} 
3. INDUS = {VERY LOW, LOW, MEDIUM, HIGH, VERY HIGH} 

= {VL, L, M, H, VH} 
4. NOX = {VERY LOW, LOW, MEDIUM, HIGH, VERY HIGH } 

={VL, L, M, H, VH} 
5. RM = {SMALL, MEDIUM, LARGE, VERY LARGE}={S, M, L, 
VL} 
6. AGE = {OLD, MEDIUM, NEW}={0, M, N} 
7. DIS = {NEAR, FAR}={N, F} 
8. RAD = {SMALL, MEDIUM, LARGE}={S, M, L} 
9. TAX = {VERY LOW, LOW, MEDIUM, HIGH, VERY HIGH} 

={VL, L, M, H, VH} 
10.PTRATIO={ VERY LOW, LOW, MEDIUM, HIGH, VERY HIGH} 

={VL,L,M,H,VH} 
1 LB = {LOW, MEDIUM, HIGH}={L, M, H} 
12. LSTAT ={LOW, MEDIUM, HIGH, VERY HIGH} ={L, M, H, VH} 

Given all these structural components in place, we complete the gradient-based 
learning. For illustration, the resulting network for the LOW price is summarized 
in Table 7.1. Because of the logic transparency of the networks, the meaning of 
logic description of the data is quite straightforward: low MEDV has a strong 
association with average room number (RM), pupil-teacher ratio (PTRATIO), 
population (LSTAT) and accessibility to radial highways (RAD). Some other 
inputs such as per capita crime rate (CRIM), built year of houses (AGE) are less 
essential. For instance, in Rule 3, we can note that the higher LSTAT implies 
lower price. Also, we can see that the proportion of blacks (B) is always weighted 
quite high, implying that it has no effect to the low MEDV. The rest of the 
expression can be interpreted in a similar manner. 

Table 7.1 The interpretation of the network for MEDV = L 

Context: MEDV = LOW 
Performance 

index 
(RMSE) 

Rules 

Train = 0.1862 Test = 0.2442 

[(RM is M)0.oo and (RAD is M)0.oo and (AGE is N)028 and (TAX is 
M)o.33 and (NOX is M)0.5o and (LSTAT is H) 0.71] i.oo 
OR 

[(PTRATIO is H)0.oo and (CRIM is M)0.24 and (LSTAT is H)058 and 
(AGE is N)o.85 and (DIS is N)0.92 and (NOX is H)0. 98] 1.00 
OR 

[(LSTAT is H)0.oo and (AGE is N)o.34 and (INDUS is H)0.38 and (ZN is 
L)0.65 and (NOX is H)0.9o] i.oo 
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Possible tradeoffs between accuracy and compactness of the logic description is 
achieved by analyzing the values of the performance index while reducing the 
model and retaining a certain number of rules (K) and keeping some limited 
number of the conditions (L). The results shown in Figure 7.5 indicate that there 
are some values of these parameters at which the performance index does not 
increase while the structure has been reduced. 
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Figure 7.5 Values of the performance (training and testing set) treated 
as a function of K and L 

By inspecting the changes in the values of the performance index choose the 
most three important rules and no more than 4 conditions to interpret the 
network. This produces the following description of the data 

Context: 
MEDV = LOW 
Rules: 
[(RM is M)0.oo and (RAD is M)0.oo and (AGE is N)0.28 and (TAX is M)o.33] 1.00 
OR 

[(PTRATIO is H)0.oo and (CREVI is M)0.24 and (LSTAT is H)058 and (AGE is 
N)o.85 ] 1.00 

OR 

[(LSTAT is H)o.oo and (AGE is N)o.34 and (INDUS is H)0.38 and (ZN is L)0.65 ] 1.00 

In a similar way, we interpret the model for the two other contexts. By 
considering the accuracy and compactness of the logic expressions, we choose 
the essential subsets of conditions and rules. Table 7.2 summarizes two the most 
important rules for each context with at most four conditions in each rule. 

Table 7.2 The interpretations of networks for MEDV = M and H 

lniilc\l:MI-l>\ MI-.DIl \ l 
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Performance 
index 

(RMSE) 
Train =0.2843 Test = 0.3041 

[(RM is M)0.oo and (AGE is N)0.ooand (PTRATIO is M)0.02 and (CRIM 
is L)o.2o] 1.00 

Rules OR 
[(LSTAT is M)o.oo and (RM is M)02o and (PTRATIO is H)0.22 and 
(AGE is N)0.59 ] 0.79 

Context: MFDV = HIGH 
Performance 
index(RMSE) 

Train =0.3014 Test = 0.3058 

Rule 

[(RM is L)0.oo and (CRIM is L)02i and (RAD is M)0.79 and (ZN is 
M)o.85]l.OO 

OR 

[(CRIM is L)0.oo and (NOX is L)0.22 and (RM is L)0.59 and (PTRATIO is 
L)o.64]l,00 

From Table 7.2, we note that real estate of medium price is characterized by 
medium average room number (RM), comes with newer houses (AGE), and 
medium status of the population (LSTAT). As the high MEDV, the low crime 
rates (CRIM), larger average room number (RM) and nitric oxides concentration 
(NOX) are also the variables that reflect high prices. 

7.1.2 Auto-MPG dataset 

This experimental data set comes from the UCI Machine Learning repository 
and deals with the fuel efficiency expressed in miles per gallon (MPG). It has six 
input variables such as number of cylinders (CYL), displacement (DIS), 
horsepower (HP), weight (W), acceleration (ACC), and the model year 
(MODEL). As before, the fuzzy equalization was completed for three fuzzy sets, 
MPG ={SMALL, MEDIUM, LARGE}={S, M, L}), see Figure 7.6. 

80 
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Figure 7.6 Fuzzy equalization of the MPEG output: 
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(a) histogram, and (b) resulting fuzzy sets 

Applying the context-based clustering (with 3 clusters per context), projection 
and reduction (8=0.9), we end up with the following linguistic terms formed for 
each input variable 

1. CYL = {SMALL, MEDIUM, LARGE, VERY LARGE} ={S, M, L, VL} 
2. DIS = {VERY SMALL, SMALL, MEDIUM, LARGE, VERY LARGE} 

= {VS, S, M, L, VL} 
3. HP = {VERY SMALL, SMALL, MEDIUM, LARGE, VERY LARGE} 

= {VS, S, M, L, VL} 
4. W = {VERY LIGHT, LIGHT, MEDIUM, HEAVY, VERY HEAVY, 

EXTREMELY HEAVY} = {VL, L, M, H, VH, EH} 
5. ACC = {SMALL, MEDIUM, LARGE} = {S, M, L} 
6. MODEL = {VERY OLD, OLD, MEDIUM, NEW, VERY NEW} 

={VO, O, M, N, VN} 
The constructed networks come with the interpretation; refer to Table 7.3. 

Table 7.3 Interpretation of the network for MPG ={S, M, L} 

Context: MPG = S 
Performance 

index 
(RMSE) 

Rule 

Train =0.1579 Test = 0.1669 

[(HP is L)0.oo and (CYL is VL)0.68] i.oo 
OR 
[(CYL is VL)0.oo and (MODEL is O)0.74 and (HP is M)0.88 and 
(W is H)0.89] 1.00 

OR 
[(CYL is L)0.o9 and (MODEL is O)05i and (DIS is S)052 and (W 
is M)0.86] 1.00 

Context: MPG -= M 
Performance 
index(RMSE) 

Rule 

Train = 0.2098 Test = 0.2356 

[(W is M)0.2i and (MODEL is M)o.35 and (HP is S)06o and (ACC 
iS M)0.77] 0.71 

OR 
[(HP is S)o.oo and (ACC is M)0.oo and (W is L)0.oi and (MODEL 
is M)0.89] 0.70 
OR 
[(DIS is VS)0.oo and (MODEL is O)0.oo and (HP is S)0.27 and 
(CYLisM)o.70]o.59 
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Comcxl: MPG = L 

Performance 
index 

(RMSE) 
Train = 0.2158 Test = 0.2226 

[(DIS is VS)0.oo and (MODEL is N)0.o6 and (CYL is M)0 .80] 0.92 

Rule OR 
[(CYL is M)o.oo and (DIS is VS)0.oo and (W is VL)0.i8 and 
(MODEL is M)o,69 and (ACC is M)0, 92] 0.92 

From Table 7.3, we note that in general vehicles with the larger number of 
cylinders (CYL), older models (MODEL) and higher horsepower (HP) come 
with lower fuel efficiency. Likewise, cars with smaller displacement (DIS) with 
newer built models (MODEL) are characterized by higher fuel efficiency. 
Medium acceleration (ACC) is strongly linked with medium fuel consumption. 

7.1.3 Computer dataset 

This data set deals with relative CPU performance, described in terms of the 
following attributes 

1. MYCT: machine cycle time in nanoseconds 
2. MMIN: minimum main memory in kilobytes 
3. MM AX: maximum main memory in kilobytes 
4. CACHE: cache memory in kilobytes 
5. CHMIN: minimum channels in units 
6. CHMAX: maximum channels in units (integer) 
7. PRP: published relative performance (integer) 

The performance of the CPU is quantified in terms of three contexts, PRP = 
{LOW, MEDIUM, HIGH} = {L, M, H}. Their design follows the standard 
scheme used in the previous examples, see Figure 7.7. 

1000 1500 
(a) 

80 100 120 
(b) 

Figure 7.7 Fuzzy equalization of output PRP 
(a) A histogram of PRP; (b) Three linguistic labels 
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Carrying out the context-based clustering (with 3 clusters per cluster), projection 
and reduction (here s=0.3), the list of the linguistic terms looks as follows 

1. MYCT = {VERY LOW, LOW, MEDIUM, HIGH} = {VL, L, M, H} 
2. MMIN = {VERY LOW, LOW, MEDIUM, LARGE, VERY LARGE} 

={VLW, LW, M, LG, VLG} 
3. MMAX = {EXTREMELY LOW, VERY LOW, LOW, MEDIUM, LARGE, 

VERY LARGE, EXTREMELY LARGE} = {ELW, VLW, LW, 
M, LG, VLG, ELG} 

4. CACHE = {VERY LOW, LOW, MEDIUM, LARGE, VERY LARGE} 
={VLW, LW, M, LG, VLG} 

5. CHMIN = {VERY SMALL, SMALL, MEDIUM, LARGE, VERY LARGE} 
={VS,S,M,L,VL} 
6. CHMAX = {VERY SMALL, SMALL, MEDIUM, LARGE} 

={VS, S, M, L} 
The rule-based description of the data is included in Table 7.4. 

Table 7.4 The interpretations of networks for PRP = {LOW, MEDIUM, HIGH} 

Context: PRP = LOW 
Performance 

index 
Train = 0.2169 Test = 0.2402 

Rule 

[ (MMAX is ELW)0.oo and (CACHE is VLW)0.oo and (CHMAX 
is VS)0.oo and (MMIN is VLW)0.o7 and (CHMIN is VS)0. .31 ]l.00 
OR 

[ (MMAX is LW)0.oo and (CACHE is VLW)0.oo and (CHMAX is 
VS)0.oo and (MYCT is M)0 .24 ]l.00 
OR 

[ (CACHE is VLW)0.oi and (MMAX is VLW)0.o4 and (CHMAX 
is VS)0,56 and (CHMIN is VS)Q,88 ]o.56 

Performance 
index 

( HII ICM: PRP Ml I)H \ l 

Train = 0.2735 Test = 0.2818 

Rule 

[ (MMAX is LG)0.oo and (CACHE is VLW)0.oo and (CHMIN is 
VS)0.io and (MYCT is VL)o.52 and (MMIN is VLW)0.98 ]o.6s 
OR 

[ (MMIN is VLM)ooo and (MYCT is L)0.34 and (MMAX is 
VLW) 0 .82 ]0.61 

OR 

[ (MYCT is VL)ooo and (CHMAX is VS)0.oo and (MMAX is 
LW)o.i5 and (CACHE is VLW)0,62 ]o,5i 
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Context: PRP = HIGH 
Performance 

index 

Rule 

Train = 0.2726 Test = 0.2898 

[ (MMAX is ELG)o.oo and (MYCT is VL)0 .22 ]l.00 
OR 
[ (MYCT is VL)0.o8 and (CHMIN is S)052 and (MMIN is LW)o.58 

and (CACHE is LW)0 96] 1.00 1 

Low maximum main memory (MMAX), low cache memory (CACHE) and 
small number of maximum channels (CHMAX) imply low CPU performance. 
With the increase of MMAX and small machine cycle time (MYCT), the 
performance PRP is enhanced. 

7.1.4 Plasma Retinol Levels 

This data set comes from [1] and concerns a level of plasma retinol (expressed in 
ng/ml) whose level varies depending upon a number of factors including age, sex 
and alcohol consumption, etc. The dataset consists of 315 data and 12 input 
variables 

AGE: Age (years) 
SEX: Sex (l=Male, 2=Female). 
SMOKSTAT: Smoking status (l=Never, 2=Former, 3=Current Smoker) 
QUETELET: Quetelet (weight/(heightA2)) 
VITUSE: Vitamin Use (l=Yes, fairly often, 2=Yes, not often, 3=No) 
CALORIES: Number of calories consumed per day. 
FAT: Grams of fat consumed per day. 
FIBER: Grams of fiber consumed per day. 
ALCOHOL: Number of alcoholic drinks consumed per week. 
CHOLESTEROL: Cholesterol consumed (mg per day). 
RETDIET: Dietary retinol consumed (meg per day) 

We defined three linguistic labels of LOW, MEDIUM, and HIGH, see Figure 
7.8. 

JO 
D 500 1D0D 1500 2000 "200 400 600 800 1000 

0.5 
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(a) (b) 
Figure 7.8 Fuzzy equalization of RETPLASMA level 

(a) histogram and (b) resulting fuzzy sets 

For 2 clusters per context and the value of s equal to 0.9, we end up with the 
terms 
1. AGE ={YOUNG, MEDIUM, OLD} ={Y, M, 0} 
2. SEX ={MALE, FEMAIL}={M, F} 
3. SMOKSTAT = {NEVER, FORMER, CURRENT}={N, F, C} 
4. QUETELET ={L0W, MEDIUM, HIGH}={L, M, H} 
5. VITUSE ={ FAIRLY OFTEN, NOT OFTEN, NO} ={FOFTEN, NOFTEN, 
NO} 
6. CALORIES ={LOW, HIGH} = {L, H} 
7. FAT={L0W, MEDIUM, HIGH} = {L, M, H} 
8. FIBER={L0W, MEDIUM, HIGH} = {L, M, H} 
9. ALC0H0L={L0W, HIGH} = {L, H} 
10. CHOLESTEROL={LOW, MEDIUM, HIGH} = {L, M, H} 
11. RETDIET ={LOW, HIGH} = {L, H} 

Note that we have reported only the most important rule with no more than 3 
conditions per rule with 2 clusters for each context. 

Table 7.5 The interpretations of networks for RETPLASMA={LOW, MEDIUM, HIGH) 

Context: RETPLASMA = LOW 
Performance 
index(RMSE) 

Rule 

Train =0.3951 Test = 0. 4075 

[ (RETDIET is L ) o n and (SEX is F)047 and (CHOLESTEROLis 
M)o.55 and (FIBER is M)0.76 and (VITUSE is NOFTEN)0.98 ]o.4o 

Performance 
index(RMSE) 

Rule 

Context: RETPLASMA = MEDIUM 

Train = 0.3374 Test - 0.3527 

[ (CALORIES is L)0.oo and (ALCOHOL is L)0.oo and (SEX is 
F)o.57 ]o.32 

Context: RETPLASMA = HIGH 
Performance 
index(RMSE) 

Train = 0. 4259 Test = 0.4474 

Rule 
[ (CALORIES is L)0.oo and (RETDIET is L)0.oo and 
(QUETELET is M)02i and (FIBER is M)0.57 and (FAT is 
M)Q.76 ]o.32 

By carefully examining the rules in Table 7.5, we come up with a concise 
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description of the diagnostic nature: female (F) with low dietary retinol 
consumed (RETDIET) demonstrates low level of plasma retinol. Number of 
calories consumed per day (CALORIES) and alcoholic drinks consumed per 
week (ALCOHOL) also have a significant impact on plasma retinol. Medium 
consumption of fat (FAT) and fiber (FIBER) increase the plasma retinol level. 

7.1.5 Air pollution at a road — N02 dataset 

This dataset, originally collected by the Norwegian Public Roads Administration 
[2], deals with air pollution at a road. It shows the relationships of traffic volume 
and meteorological variables. It has 500 observations, and 7 input variables: 

NCAR: the logarithm of the number of cars per hour 
Tl: temperature 2 meters above ground (degree C) 
WSPEED: wind speed (meters/second) 
T2: the temperature difference between 25 and 2 meters above ground (degree 
C) 
WDIRECT: wind direction (degrees between 0 and 360) 
HOUR: hour of day from October 2001 to August 2003 
DAY : day number from October 2001 to August 2003 

The hourly values of the logarithm of the concentration of NO2 (particles) are 
treated as the output of the network. The results are shown in Figure 7.9 and 
Table 7.6 and 7.7. 

4 6 B 2 3 4 5 
(a) (b) 

Figure 7.9 Fuzzy equalization of the N02 
(a) the histogram and (b) resulting fuzzy sets 

Table 7.6 Fuzzy sets formed in the input space (5 clusters per context; e=0.7) 

NCAR 
{EXTREMELY LOW, VERY LOW, LOW, MEDIUM, HIGH, 
VERY HIGH, EXTREMELY HIGH} = {EL, VL, L, M, H, VH, 
EH} 

Tl {LOW, MEDIUM, HIGH, VERY HIGH } = {L, M, H, VH} 
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WSPEED 

T2 

WDIRECT 

HOUR 

DAY 

{LOW, MEDIUM, HIGH} = {L, M, H} 

{LOW, MEDIUM, HIGH} = {L, M, H} 

{SMALL, MEDIUM, LARGE, VERY LARGE}- {S, M, L, VL} 

{VERY SMALL, SMALL, MEDIUM, LARGE, VERY LARGE} 
={VS, S, M, L, VL} 
{EXTREMELY SMALL, VERY SMALL, SMALL, MEDIUM, 
LARGE, VERY LARGE} ={ES, VS, S, M, L, VL} 

Table 7.7 The interpretation of the networks 

Performance 
index(RMSE) 

Rule 

Context: N O - LOW 

Train =0.3439 Test = 0.3614 

[ (NCAR is M)0.oo and (Tl is H)0.00and (WSPEED is M)0.oo and 
(WDIRECT is L)o.oo and (HOUR is S)0.oo ]i.oo 
OR 

[ (WSPEED is M)o.oo and (T2 is M)0.oo and (WDIRECT is M)0.oo 
and (DAY is L)0.oo and (HOUR is S)0.io ]i.oo 
OR 

[ (T2 is M)0.oo and (NCAR is VL)0.i9 and (WSPEED is M)0.27 
and (DAY is S)0.78 and (WDIRECT is M)0 96 l l .OO 1 

Context: NO?= MHDIliM 
Performance 
index(RMSE) 

Train = 0.3261 Test = 0.3503 

[ (Tl is H)0.oo and (WSPEED is M)0.00 and (T2 is M)0.oo and 
(WDIRECT is M)0.oo and (DAY is L)0.oo ]i.oo 
OR 

Rule [ (WSPEED is M)o.oo and (T2 is M)0.oo and (HOUR is L)0.oo and 
(WDIRECT is L)0.o6 and (DAY is L)0.82 ]o.?2 
OR 

[ (DAY is VS)0.oo and (HOUR is M)0.3i and (Tl is M)0.46 and 
(NCAR is H)Q.99]Q.66 

Context: N O - HIGH 
Performance 
index(RMSE) 

Train = 0.3800 Test = 0.4180 
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[ (Tl is H)0.oo and (WDIRECT is L)005and (DAY is L)03o and 
(NCAR is VH)0.4i and (HOUR is L)0, 83 ]o.93 
OR 

[ (NCAR is VH)0.i5 and (DAY is M)0.20 ]o.74 
OR 

[ (WDIRECT is M)0.oo and (NCAR is VH)o.25 and (Tl is M)0.54 

and(DAYisVS)o,69]o.67 

This extensive suite of experiments led us to some general observations. The 
performance of the network on the training and testing set expressed as the ratio 
of Qtest/Qtrain varies from 101.46% to 131.15% on average the performance on 
the testing set deteriorated by 30.86%). The networks led to the fairly consistent 
logic description of the experimental data resulting in 2.33 rules (on average) 
with an average length of 4.06 variables. Interestingly, we noted that each model 
used only a portion of all inputs (and this amounts to 27.27%~83.33% of all 
inputs). This is quite indicative of the redundancy existing in the data where 
outputs could be quite well described by a limited portion of the inputs. 

7.2 Networks constructed by AND and OR unineurons 

Our experiments are guided by the three different strategies discussed in Chapter 
6. Throughout the experiments, we used 10-fold cross-validation: 90% of the 
data were used for the training and the remaining 10% were used for the testing; 
cycles of learning/testing were repeated 10 times. In all experiments, the size of 
the population of the PSO parameters was equal to 200. The value of the inertial 
weight ( I ) was set to 0.6. Internal performances are evaluated during the 
network learning, and external performances are reported for the induced fuzzy 
data. The experimented datasets in this section are the same as the ones in 
section 7.1, unless specified otherwise. 

7.2.1 Boston Housing dataset 

Following the overall development scheme introduced in this study, we start 
with k-means discretization completed in the output space and PSO 
discretization of input variables. The discretization results are reported in Table 
7.8 where we show the relationship between input and output discretization 
levels "p" and "c," respectively, and the resulting mean inconsistency rates C, ± a 
standard deviation. 
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Table 7.8 Inconsistency rate ^ as a function of p and c. 

c 
p 
2 
3 
4 
5 
6 
7 
8 
9 
10 

2 

0.04% ±0.001 
0.66% ±0.005 
1.18% ±0.021 
3.07% ±0.042 
3.81% ±0.047 
4.74% ±0.050 
5.09% ±0.038 
7.34% ±0.049 
7.78% ±0.057 

3 

0.00% ±0.001 
0.00%+0.000 
0.32% ±0.007 
0.41% ±0.011 
0.49% ±0.009 
2.07% ±0.012 
1.04% ±0.017 
1.95% ±0.020 
1.38% ±0.013 

4 

0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.002 
0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.001 
0.00% ±0.001 
0.00% ±0.002 

5 

0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.001 

6 

0.00% ±0.000 
0.00% ± 0.000 
0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.001 
0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.000 
0.00% ±0.000 

To examine the quality of the obtained discretization, we compare the above 
results to the results obtained by means of the simplest discretization, 
equal-width discretization, which divides the input variable into k intervals with 
equal size, where k is a predefined parameter. The selected entry for comparison, 
p = 3 and c = 3, has a minimum value of p+c and zero standard deviation. We 
apply the equal-width discretization and obtain the inconsistency rates listed in 
Table 7.9. 

Table 7.9 Comparison of inconsistency rates between two discretization methods. 

Discretization method 
PSO + K-Means 

Equal-width discretization 

Training 
0.00% ±0.000 

12.02% ±0.007 

Testing 
0.00% ±0.000 

3.8% ±0.022 

To illustrate the distribution of cutoff points by these two methods, we randomly 
selected one training data point and plotted some of the variables along with the 
cutoff points. Table 7.10 shows the difference between these two methods. PSO 
cutoff points are denoted with A (triangle up), and cutoff points from the 
equal-width discretization method are denoted with V (triangle down). Note that 
the cutoff points for features CRIM and B are grouped very closely due to the 
distribution of data points of these two features. 

Table 7.10 Distribution of cutoff points by PSO A (triangle-up) vs. Equal-width 

discretization V (triangle-down). 

Attribute Distribution of cutoff points 
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Having a discrete dataset, we now proceed with the development and training of 
the network. First we need to determine the number of fuzzy neurons h forming 
the hidden layer of the network. For experimentation, we arbitrarily select two to 
ten hidden neurons to illustrate the performance of the network with parameter 
[0, l]p , by means of learning Strategy-2. We experimented with this number to 
demonstrate its impact on the convergence of the method. The values of the 
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performance index Q obtained are shown in Figure 7.10. The optimal 
performance index in Figure 7.10 occurs with the number of hidden neurons 
equal to five. Thus, in our experiments we set the number of neurons in the 
hidden layer equal to five; that is, h = 5 for all networks. 

4 6 8 
Number of neurons 

10 12 

Figure 7.10 The number of neurons in the hidden layer vs. performance index Q 

Three learning strategies were then applied to the networks constructed for 
experimentations. Strategy-1 considers the Boolean parameters, i.e. {0,1 }p; 
Strategy-2 and Strategy-3 are both dealing with the continuous parameters that 
are between 0 and 1, i.e.[0,l]p. Table 7.11-7.13 illustrate the training and testing 
performance of the network on the housing data using the three learning 
strategies. The values of networks parameters are reported in Table 7.11 - Table 
7.13. Color map for the parameters are also listed in the bottom of the tables. The 
values of parameters ranges from zero to one, the color map shown in the figure 
is from dark to light. 

Table 7.11 Strategy-1 PSO training Boolean parameters {0,1}P 

Plot of Training 

500 1000 
Iteration 

1500 

Performance Index 0.70 ± 0.06 (Training) 0.74 ± 0.08 (Testing) 
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Parameters 
AND U^CEIMI ZN | INDUS | NOXJRM | AGE | DIS | RAD | TAX | PTRTJ B ILSTAT 

v 
Neuron 1 
Neuron2 
Neuron3 
Neuron4 
Neuron5 

g 
Neuron 1 
Neuron2 
Neuron3 
Neuron4 
Neuron5 
OR_U 

w Neuron 1 

q Neuron U Neuron2 Neuron3 

Color map for the figures 0.0 1.0 

Table 7.12 Strategy-2 PSO training continuous parameters [0,l]p 

Plot of Training 

500 1000 
Iteration 

1500 

Performance Index | 0.23 ± 0.04 (Training) 0.27 ±0.05 (Testing) 
Parameters 
^ D J J i C R I M I ZH jJNDUS | NOX | RM | AGE | DIS | RAD | TAX|PTRT| B |LSTAT 
v ~~ 
Neuron 1 
Neuron2 
Neuron3 
Neuron4 
NeuronS 

g 5 
Neuron 1 
Neuron2 
Neuron3 
Neuron4 
Neuron5 
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OR_U 

• 

Color map for the figures 

^^^^^^^^^^HfeiESllf ; t • - | 
0.0 0.2 0.4 0.6 0.6 1.0 

_• 

Table 7.13 Strategy-3 Hybrid learning (PSO and gradient-based learning) of continuous 

parameters [0,l]p 

Plot of Training 

500 1000 
Iteration 

1500 

Performance Index | 0.15 ± 0.04 (Training) 0.19 + 0.04 (Testing) 
parameters 
AND U 
v 
Neuron 1 
Neuron2 
Neuron3 
Neuron4 
Neuron5 

g 
Neuron 1 
Neuron2 
Neuron3 
Neuron4 
Neuron5 
OR U 
W Neuron 1 

q Neuron 1 

CRIMI ZN | INDUS | NOX | EM | AGE | PIS | RAD | TAX PTRT | B ILSTAT 

Color map for the figures 

0.0 0.2 0.4 0.6 0.8 1.0 
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For Strategy-3, we further examine the network interpretability by replacing the 
ANDU by AND neuron, and O R U by OR neuron. Only gradient-based 
learning is applied for parameter optimization. Results for Strategy-3 are 
compared with results for the AND-OR network. 

Table 7.14 AND-OR network trained by gradient-based learning 

of continuous parameters [0,1 ]p 

It is interesting that the network built by AND and OR neurons performs more 
poorly than the one constructed by unineurons. The following observations can 
be drawn from the above comparison. 
1. The identity points g and q offer more flexibility to the network so networks 
built by unineurons perform better that networks constructed with ordinary 
neurons. 
2. The neurons at the output layer, OR and O R U , act similarly and the weights 
(w) are all close to 1. 
3. For the connections (v) of AND neurons, the lighter color indicates weaker 
connectivity. Most of the dark areas are located in the blocks where attributes 
CRM, RM, AGE, TAX, and PTRATIO are represented, demonstrating stronger 
connections and identity points for ANDU neurons. 

We also examined the fuzzy partition performance index which is expressed as a 
function of e (Figure 7.11). Note that s is the same for all variables in Table 
7.11-7.13; all variables use the index shown above and include the result for 8 
= 0 (which assesses the quality of the Boolean model). 
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0.2 0.4 0.6 0.8 
E 

(a) Training 

0 0.2 0.4 0.6 0.8 
s 

(b) Testing 
Figure 7.11 Performance index V a function of £ 

Figure 7.11 shows the training and testing performance index V for variations of 
the core parameter s (ranging from 0 to 1). From Figure 7.11 we find the 
optimal core parameter s is approximately 0.8. The lower the value of s, the 
worse the performance of the network. Furthermore, these relationships are 
highly asymmetric and the induced fuzzy model performs much better than the 
Boolean model. We also examined the performance by means of a triangular 
membership function for all input variables, the resulting training and testing 
performance indexes V are 1.32 ±0.14 and 1.51 ±0.12, respectively, for the 
triangular membership function. 

7.2.2 Auto-MPG dataset 

Similarly, we first discretize this dataset by k-means and PSO. Figure 7.12 shows 
the inconsistency rate of the different combinations of p and c after the 
discretization. 

c 
3 4 5 6 7 8 9 

0.05 0.1 0.15 0.2 0.25 
Figure 7.12 Inconsistency rate after discretization 
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Table 7.15 summarizes the training and testing results of three different learning 
strategies. Strategy-3 outperforms the other learning strategies in both training 
and testing. 

Table 7.15 Comparison of training and testing performance index Q 

among three learning strategies 

Strategy 
Strategy-1 {0,1}+PSO 
Strategy-2 [0,1]+PSO 

Strategy-3 
[0,1 ]+PSO+gradient-based 

Strategy-3 OR-AND 
Structure 

Training 
0.14±0.07 
0.09 ±0.01 

0.04 ±0.01 

0.08 ±0.02 

Testing 
0.17±0.06 
0.11 ±0.03 

0.05 ±0.02 

0.11 ±0.02 
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Figure 7.13 Training and testing performance index V vs. core parameter £ . 

Figure 7.13 shows the training and testing performance index V for variations of 
the core parameter s (ranging from 0 to 1). From this figure we find that the 
optimal core parameter s is approximately 1.0. Instead of using the trapezoidal 
fuzzy membership functions, we use the triangular membership functions for all 
input variables. The resulting training and testing performance indexes V are 
1.73 ± 0.05 and 1.84 ± 0.04, respectively, for the triangular membership functions. 

7.2.3 Abalone dataset 

The Abalone dataset predicts the age of abalone from the physical measurements 
shown below. 
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1. Sex male (M), female (F), and infant (I) 
2. Length longest shell measurement 
3. Diameter perpendicular to length 
4. Height with meat in shell 
5. Whole weight grams of whole abalone 
6. Shucked weight grams of meat 
7. Viscera weight grams of gut weight (after bleeding) 
8. Shell weight grams after being dried 

The output is given by the number of rings. The number of rings plus 1.5 gives 
the abalone age in years. Figure 7.14 shows the inconsistency rate of different 
combinations of p and c after discretization. 

Figure 7.14 Inconsistency rate after discretization 

Table 7.16 presents the training and testing results of the three different learning 
strategies. Strategy-3 gives the best performance index. 

Table 7.16 Comparison of training and testing performance index Q 

among three learning strategies 

Strategy 
Strategy-1 {0,1}+PSO 
Strategy-2 [0,1]+PSO 

Strategy-3 
[0,1 ]+PSO+gradient-based 

Strategy-3 OR-AND 
Structure 

Training 
0.17 + 0.05 
0.05 ±0.01 

0.04 ±0.01 

0.07 ±0.02 

Testing 
0.21 ±0.06 
0.07 ±0.02 

0.05 ±0.02 

0.10±0.01 
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Figure 7.15 Training and testing performance index V vs. core parameter s . 

Figure 7.15 shows the training and testing performance index V for variations of 
the core parameter s (ranging from 0 to 1). We find the optimal core parameter 
s is approximately 0.8. Instead of using the trapezoidal fuzzy membership 
functions, we use the triangular membership functions for all input variables. 
The results of training and testing performance index V is 2.13 ±0.06 and 
2.68+0.05, respectively, for the triangular membership function. 

7.2.4 Computer dataset 

Figure 7.16 shows the detailed inconsistency rate after discretization. 
c 

p 
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Figure 7.16 Inconsistency rate after discretization 

The training and testing results of three different learning strategies are listed in 
Table 7.17. Again, the performance indexes obtained by Strategy-3 outperform 
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the other learning strategies in both training and testing. 

Table 7.17 Comparison of training and testing performance index Q 

among three learning strategies 

Strategy 
Strategy-1 {0,1}+PSO 
Strategy-2 [0,1]+PSO 

Strategy-3 
[0,1 ]+PSO+gradient-based 

Strategy-3 OR-AND 
Structure 

Training 
0.27 ±0.05 
0.15 ±0.02 

0.12±0.01 

0.19 ±0.02 

Testing 
0.31 + 0.06 
0.17 ±0.02 

0.14 ±0.02 

0.21 ±0.03 
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Figure 7.17 Training and testing performance index V vs. core parameter £ . 

Figure 7.17 shows the training and testing performance index V for variations of 
the core parameter s (ranging from 0 to 1). From Figure 7.17 we find that the 
optimal core parameter e is approximately 0.9. Instead of using the trapezoidal 
fuzzy membership functions, we use the triangular membership functions for all 
input variables. The training and testing performance index V is 2.7+0.09 and 
3.2 ± 0.15, respectively, for the triangular membership functions. 

7.3 Conclusions 

Extensive experiments have been carried out to express the research 
methodology and the research schemes adopted in this study. The experimental 
studies comprise two parts. First, we demonstrate the performance and the 
generation of logic expressions of the AND-OR network. The user-interactive 
procedure is included as a simple pruning mechanism to enhance the 
interpretability of the network while reducing the network size. Second, we 
discuss the experiments based on the networks built by unineurons. Three 
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learning strategies are applied for the parametric optimization, and fuzzy 
partition is introduced to further investigate the network performance. 
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Chapter 8 
Conclusions and Future Work 
The tradeoff between accuracy and interpretability is a genuine challenge to the 
constructs of neurofuzzy computing. Ideally, we would like to see these two 
modeling requirements being met to the highest extent. The model needs to not 
only achieve high approximation accuracy for the given data, but it must also 
realize accurate predictions under unforeseen circumstances. These 
accomplishments reflect the generalization and predictive capabilities of the 
developed model. Furthermore the model must be highly transparent so that its 
users/designers can easily interpret and understand the key relationships captured 
by it, thus gaining insight and knowledge that was previously unattainable. 
Given the essential interpretability aspects of the model, a user should be able to 
interact with it, modifying its structure in order to make further refinements and 
enhancements. 

The ultimate challenge of fuzzy system modeling is to build accurate and 
transparent models. This thesis presents research in the area and has focused on 
these fundamental requirements. We showed that the three-component 
architecture of fuzzy models (where we distinguish between an input interface, a 
processing core, and an output interface) offers a sound modeling layout using 
which we could map the modeling requirements. With respect to these three 
components, various significant research objectives were drawn and completed: 

• Investigation of information granulation in the input interface, 
• Description of the characteristics of neurons and the resulting neuron-based 

logic network, 
• Exploration of the use of evolutionary techniques in parametric optimization 

of networks, 
• Investigation of the tradeoff between accuracy of the network and 

interpretability of the logic description, 
• Evaluation of the performance of the constructed model by means of the 

internal and external performance indexes, 
• Discussion of dimensionality reduction in the model. 

With the outlined objectives in mind, this study has enumerated and carried out 
various lines of research. In particular, the thesis has delivered: 

1. An extensive investigation of existing logic modeling techniques: 

A comprehensive literature review was conducted to examine strengths and 
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weaknesses of existing modeling techniques. Based upon these investigations, 
we introduced the logic model framework based on fuzzy logic neurons, whose 
transparency and learning abilities are accentuated to the highest possible extent 
[11-13]. The resulting network constructs directly benefit from these features 
which are manifest in the overall network. 

2. The development of several techniques in information granulation: 

To construct efficient granular information for processing by the fuzzy model, 
several techniques are employed. First, we use fuzzy equalization and 
context-based clustering to transform the numeric value to the memberships of 
its linguistic term. Discretization realized by means of K-Means clustering and 
particle swarm optimization, is proposed as another data information granulation 
technique to enhance the transparency of the model. 

3. The introduction of merging measurement for the reduction of feature space 
and further optimization of the granular interface: 

Usually, after information granulation, each feature results in a collection of 
fuzzy sets, and the number of fuzzy sets for each feature is the same. By 
introducing the merging measurement, we can group the fuzzy sets that satisfy 
the criterion. By justifying the merging measurement, we end up with a different 
number of fuzzy sets for each input variable. This in essence reflects the nature 
of the data and further optimizes the granular interface. In addition, the total 
number of fuzzy sets is (far) less than the number before merging. 

4. The investigation of balance between accuracy and interpretability by means 
of the pruning mechanism: 

The development process of fuzzy networks is highly interactive and 
user-oriented. By selecting a user defined threshold, we can further reduce the 
size of the network. Such reduction results in improvement in interpretability of 
the logic description, and also ensures an acceptable level of accuracy. 

5. Comprehensive experimental studies: 

The proposed modeling techniques were assessed on real data coming from the 
UCI machine learning repository. Extensive experimental studies are carried out 
to demonstrate the feasibility and superiority of the proposed techniques. 

For further work we may suggest four main streams of promising research: 

1. Exploration of mechanisms of feature (variable) selection: 
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Feature selection is also known as subset selection or variable selection. Many 
recent studies in the literature have discussed the application of feature selection 
methods to high dimensional datasets [1-3,5,7,10,14]. In the presence of high 
dimensional systems, the challenge of modeling with high accuracy and 
interpretability are amplified considerably, and the learning of the models 
requires significantly longer computation times. One possible future direction for 
our research would introduce feature selection techniques before information 
granulation. This would reduce feature space through the selection of smaller 
subsets of interesting features and aid in the interpretation of models while 
retaining the highest possible degree of accuracy developed on a given dataset. 
There are two types of feature selection, namely filters and wrappers, as briefly 
discussed in Chapter 4. Filter methods require less computational effort and thus 
could constitute a plausible option of preprocessing for information granulation. 

2. Exploration of other methods of network learning: 

So far we have investigated gradient-based learning and particle swarm 
optimization. There are other interesting machine learning techniques available 
which are worth considering. For instance, the memetic algorithm [4,6,8,9] is 
another population-based approach for heuristic search in optimization problems. 
Another important issue is the computation time required for training, especially 
for strategy-3 which is a hybrid algorithm of PSO and gradient-based learning. 
Perhaps variations in the presented method would result in computationally 
efficient algorithms. In particular, we could substantially improve learning speed 
by employing the multi-thread technique or parallel computing during software 
implementation. 

3. Exploration of different structures of the model: 

Our research is based on a three-layer logic network. This can be expanded to 
different constructs, for example, a hierarchical structure, or a combination of 
fuzzy neurons and unineurons. Changing the topology of the network might 
improve the model. Further investigation on this issue may involve structure 
optimization during learning. Consider that a hierarchical structure, the number 
of levels (the depth of the network), the number of inputs for each level, and the 
sequence of the input are all structural parameters that need to be optimized 
before or during parametric learning. 

4. Investigation of more sophisticated pruning mechanisms: 

Our experiments show the pruning process can improve the interpretability of 
the network. As a starting point in this research, the pruning mechanism is 
carried out by setting a threshold for network connections. We could consider 
more sophisticated design criteria such as a weighted combination of structural 
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complexity measurement, accuracy measurement, and interpretability 
measurement, where structural complexity measures complexity of the network 
structure, the accuracy measurement deals with the correction of input-output 
mapping, and the interpretability measurement determines the readability of the 
final rules set. Pruning could also be considered during network learning; this 
would be more useful if the coupling issue in the model is substantial. 

5. Consideration of complexity 

There are some limitations in our approach, such as no consideration of the 
complexity. Usually, granularity is implied by complexity. The choice of a 
suitable level of granularity will be considered in our future work. 
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