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Abstract

Bhabha Scattering is the scattering of an electron off of a positron; it is everywhere

in particle physics and plays a special role in particle phenomenology. Its particular

use as a luminosity measure in particle colliders gives great motivation to reduce the

theoretical uncertainty in the cross section. We calculate the two loop contribution to

Bhabha scattering from high energy Sudakov logarithms. This contribution reduces

the overall uncertainty in the cross section to one per mille, the necessary level for use

at the ILC.
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1 Introduction

Bhabha scattering is one of the simplest known processes in the Standard Model of particle
physics. First calculated in QED in 1935 by Homi J. Bhabha, and later named in his honour,
it can be thought of as the rebounding of a positron off an incident electron, or e+e− → e+e−

[1]. Despite its uncomplicated nature, or in fact because of it, Bhabha scattering is of
great importance to the the experimental physics community for its use as a measure of
luminosity in particle accelerator experiments. For this reason a great effort has been made
in recent years to push the theoretical calculation of the Bhabha scattering cross section
to far higher degrees of accuracy. In this work we continue this project and calculate the
high energy electroweak cross section to two loops in the logarithmic approximation. With
existing results this reduces the total uncertainty in the Bhabha cross section to less than
one permille, the target for next generation experiments such as the ILC.

1.1 Motivation

The problem of luminosity determination is prevalent in every particle accelerator experi-
ment. To obtain the cross section for some process X, an experiment must measure both the
frequency of the process NX and the intensity of the beam L, known as the luminosity. The
cross section is then simply σX = NX/L. Although NX changes with process to process, the
luminosity L is a constant for an experiment and in general a complicated function of the
energy and spatial distribution of particles in the beam. Any uncertainty in L will lead to
an uncertainty in σX , hence the great motivation to determine the luminosity as precisely
as possible.

Since any direct measurement of the luminosity would alter the beam and the entire
experiment, measurements of L are typically done by measuring the rate of some calibration
process Ncal. If the theoretical value for the cross section of this process is known and
trusted, the luminosity can simply be taken as L = Ncal/σcal and the cross section for any
other process can be obtained via

σX =
σcal

Ncal

NX . (1)

Clearly the choice of calibration process must be made carefully. Any candidate should
have a very clear detector signature and large cross section to reduce the uncertainty in Ncal.
The theoretical uncertainty in σcal must be sufficiently low; typically this means the process
must be calculable to many1 orders in pertubation theory. For the next generation of particle
physics experiments a precision on the order of 0.1% or 1 permille will be required in σcal to
achieve the desired experimental accuracy.

Bhabha scattering is one of the best candidates for a calibration process in electron
positron colliders, and has been used as such for many experiments. The electron and
positron in the final state are easy to detect and distinguish since they are (oppositely)

1At the current state of the art, ‘many’ ∼ two.
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charged leptons. The process has several channels through which it can occur2 giving it the
requisite large cross section. It is the aim of the current work to fulfil the last condition;
lowering the theoretical uncertainty in the Bhabha scattering cross section. Until recently,
the cross section was only known accurately to one loop in QED and the full Electroweak
theory. A tremendous effort over the past several years has just recently completed the full
two loop calculation in QED. The Electroweak contributions at two loops to next-to-next-
to-leading logarithms are presented here for the first time.

Historically, Bhabha scattering has been used successfully as a luminosity measure in
high energy experiments, LEP and the SLC in particular, and the more moderate energy
B-factory experiments, such as BaBar and Belle. Both LEP and the SLC used a clever trick
to get around the uncertainty in the electroweak sector of Bhabha; they measured luminosity
based only on scattering as small angles [2,3]. It turns out due to the relatively large W and
Z mass, at small angles the Bhabha cross section is dominated by QED, and the electroweak
contributions are negligible. Having neither sensitivity nor statistics in the small angle limit,
BaBar and Belle were not able to take advantage of this, and used Bhabha scattering at
large angles for their luminosity [4].

The next energy frontier particle collider to be built will be the International Linear
Collider (ILC). It will be a TeV scale linear electron-positron collider, designed to perform
precision measurements in the energy scale we have only recently begun exploring at the
Large Hadron Collider. Signals of new physics beyond the Standard Model typically occur as
small pertubations of the Standard Model result. High precision experiments are necessary
in order to distinguish these small effects from the expected observation. Thus a precise
luminosity measure is crucial to the success of the physics program at the ILC. Unfortunately,
the ILC will not be able to perform the same trick as LEP and the SLC and restrict itself to
measuring the luminosity from small angle Bhabha alone. Due to interactions of particles
within the beam, the energy spectrum will not be monochromatic and the luminosity will vary
with the specific distribution of energies in the beam. Obtaining an accurate measurement of
the luminosity will require untangling this spectrum, and Bhabha scattering at large angles
has been put forward as a means of performing this [5,6]. To acquire the precise results the
ILC is capable of, the large angle Bhabha cross section must be known to within 1 permille.
At this precision the contribution to the cross section from electroweak effects can not be
ignored; the electroweak cross section will be necessary for the successful completion of the
ILC program.

1.2 Outline of the Calculation

Motivated by its utility as a luminosity measure, a remarkable effort has been made in recent
years to lower the theoretical uncertainty in the Bhabha scattering cross section. The QED
corrections have been calculated fully to second order [7–10] and reviewed in [11]. However,
the electroweak corrections have only been calculated to one loop [12].

2Bhabha scattering occurs through two kinematic channels, annihilation ‘S’ and scattering ‘T ’. Both of
these channels get contributions from electromagnetic and weak interactions.
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Calculating cross sections in the electroweak theory is a complicated business. There
are two gauge groups providing particle interactions, the symmetry is broken by the Higgs
mechanism, and there are several mass scales spanning several orders of magnitude.3 These
factors put a full diagrammatic calculation of the two loop electroweak Bhabha scattering
cross section beyond the reach of any known computational method, even in the high energy
limit. Nevertheless, significant progress can be made by restricting the calculation to the
dominant contributions at high energies, the Sudakov Logarithms [13–17].

It is well known that scattering amplitudes display a logarithmic dependence on energy
past leading order in pertubation theory [18, 19]. For example, in the high energy limit
of an SU(N) theory the O(αn) correction to the scattering amplitude will be an order 2n
polynomial in powers of log(s/M2), where s is the squared centre of mass energy and M is
the gauge boson mass. For the scales relevant here, the centre of mass energy is about 1 TeV
and M is on the order of the Z mass MZ ≈ 90 GeV. This gives a logarithm on the order of:

log
( s

M2

)
≈ 5. (2)

On its own this is not so intimidating. However the leading logarithm at two loops will
be log4(s/M2) ≈ 625, enhanced by two orders of magnitude over the constant4 contribution.
We will find to achieve the desired accuracy all logarithmic contributions will be required.
This is referred to as the next-to-next-to-next-to-leading logs approximation, or NNNLL.

We begin by explicitly calculating the Bhabha scattering cross section at tree level in
QED. The electroweak cross section will have the exact same spinor structure, and may be
extracted by simply substituting a chiral-dependent coupling for the electric charge e in the
final result. We demonstrate the calculation of the loop corrections in a pure SU(2) theory,
where the results are still simple enough to allow them to be written explicitly in analytic
form. Afterwards we move to the full electroweak model, taking into account both gauge
groups and subtracting the QED contribution which is known past logarithmic accuracy.
The electroweak results are presented here numerically.

3Two of these scales, the masses of the Higgs and the neutrinos, have not yet even been measured (or
even confirmed to exist, in the case of the Higgs).

4Here ‘constant’ refers to the contribution to the scattering amplitude which is independent of energy, ie.
the terms not enhanced by a power of log(s/M2).
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2 Preliminaries

Every journey has a first step. Before we descend into pertubation theory and multiloop
corrections, it is beneficial to explicitly state the kinematics of Bhabha scattering in our limit
and calculate the cross section at leading order. This result, also called the “tree level” or
Born approximation, is simply calculated directly from the Feynman rules. Unless otherwise
stated, all conventions set in the Kinematics section will be used throughout the text.

2.1 Kinematics

Bhabha Scattering is a 2 → 2 interaction with an electron positron pair in both the initial
and final states. The initial 4-momenta of the electron and positron are p and k respectively;
their final momenta are p′ and k′. All calculations are performed in the centre of mass frame,
pi + ki = 0. We follow the particle physics convention in defining the metric tensor:

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (3)

When possible, momentum dependence will be expressed through the Lorentz invariant
Mandelstam variables:

s ≡ (p+ k)2,

t ≡ (p′ − p)2,

u ≡ (k′ − p)2. (4)

We are concerned with the high energy limit |s|, |t|, |u| � m2
e. In particular this means

we can effectively set m2
e = p2 = k2 = p′2 = k′2 = 0.

Since this is a 2 → 2 process, all angular dependence can be expressed through a sin-
gle parameter. By convention we define this scattering angle θ as the angle between the
trajectories of the final and initial electrons:

θ ≡ arccos

(
~p · ~p′

|~p||~p′|

)
. (5)

By conservation of momentum and energy p0 = k0 = p′0 = k′0 = 1
2

√
s. We can calculate

all necessary dot products of 4-momenta:

4



p · k = p′ · k′ = 1

2
s,

p · p′ = k · k′ = 1

4
s (1− cos θ),

p · k′ = p′ · k =
1

4
s (1 + cos θ). (6)

It will be more useful to express angular dependence in terms of the variable x ≡ 1−cos θ
2

.
Realizing p · p′ = −1

2
t and p · k′ = −1

2
u we can then write:

t = −sx,
u = −s(1− x). (7)

A scattering event in particle physics is really just a transition from some initial state
of particles |I〉 to a final state |F 〉, where each state specifies all quantum numbers (charge,
spin, momentum, etc.) of the initial and final particles respectively. The amplitude for
transition from |I〉 to |F 〉 is called the scattering amplitude A:

A = 〈F |I〉 . (8)

Finally, we just need the standard result for cross sections in terms of matrix elements.
In the centre of mass frame with identical masses for all external particles, this takes the
simple form [20]:

dσ

dΩ
=
|A|2

64π2s
. (9)

This is all the information we need to compute the Born cross section and higher order
corrections.

2.2 The QED Born Cross Section

There are two channels through which an electron and positron may interact to produce
Bhabha scattering in QED. The S or annihilation channel has the initial particles meet
and annihilate at a vertex, a photon propagates forward and later spawns a new electron
positron pair. The T or scattering channel has the particles interact through the exchange
of a virtual photon. These processes must be summed at the amplitude level before squaring
to determine the cross section. This calculation is ubiquitous in quantum field theory classes
and textbooks [20]. We can write the matrix elements for each of these contributions directly
from their Feynman diagrams given in Fig. 1 with time flowing to the right. The amplitudes
for these processes are:

5



S-Channel T-Channel

Figure 1: The Feynman diagrams contributing to Bhabha scattering in the Born Approxi-
mation

ASIJ =
e2

(p+ k)2
v̄s(k)γµPIur(p)ūr′(p

′)γµPJvs′(k
′),

ATIJ =
e2

(p′ − p)2
ūr′(p

′)γµPIur(p)v̄s(k)γµPJvs′(k
′), (10)

where I, J ∈ {L,R},

PL =
1− γ5

2
and PR =

1 + γ5

2
.

We work in the chiral basis for all γµ. To calculate the cross section we need the square
matrix element:

|AIJ |2 = |ASIJ |2︸ ︷︷ ︸
S

+ |ATIJ |2︸ ︷︷ ︸
T

+ 2Re
(
(ASIJ)∗ATIJ

)︸ ︷︷ ︸
interference

. (11)

Making use of (ū1γ
µPIu2)∗ = ū2γ

µPIu1 we can write:

|ASIJ |2 =
e4

s2
tr(v̄s(k)γµPIur(p)ūr(p)γ

νPIvs(k)) tr(ūr′(p
′)γµPJvs′(k

′)v̄s′(k
′)γµPJur′(p

′)) ,

|ATIJ |2 =
e4

t2
tr(ūr′(p

′)γµPIur(p)ūr(p)γ
νPIur′(p

′)) tr(v̄s(k)γµPJvs′(k
′)v̄s′(k

′)γµPJvs(k)) ,

(ASIJ)∗ATIJ =
e4

st
tr(ūr′(p

′)γµPIur(p)ūr(p)γ
νPIvs(k)v̄s(k)γµPJvs′(k

′)v̄s′(k
′)γµPJur′(p

′)) .

(12)
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The cyclic property of the trace allows us to write tr (ū · · ·u) as tr (uū · · · ), after which
we can sum over spins using the completeness relations:∑

s

us(p)ūs(p) =6p+m,
∑
s

vs(p)v̄s(p) =6p−m. (13)

We work here in the high energy limit, where s, t, u � m2
e, so the electron mass in the

above expressions will be neglected. Assuming an unpolarized e+e− beam, we average over
initial spins and sum over final. After using the completeness relations an expression is
obtained containing only the trace of products of gamma matrices:

|ASIJ |2 =
e4

4s2
tr(6kγµPI 6pγνPI) tr(6p′γµPJ 6k′γµPJ) ,

|ATIJ |2 =
e4

4t2
tr(6p′γµPI 6pγνPI) tr(6kγµPJ 6k′γµPJ) ,

(ASIJ)∗ATIJ =
e4

4st
tr(6p′γµPI 6pγνPI 6kγµPJ 6k′γµPJ) . (14)

Using the trace identities of γµ, these products can be written in terms of dot products
of their momenta. Simple algebra gives:

|ASIJ |2 = 4
e4

s2

(
δIJ(p · k′)(p′ · k)︸ ︷︷ ︸

Same Chirality

+ (1− δIJ)(p · p′)(k · k′)︸ ︷︷ ︸
Different Chirality

)
,

|ATIJ |2 = 4
e4

t2

(
δIJ(p · k′)(p′ · k) + (1− δIJ)(p · k)(p′ · k′)

)
,

Re
(
(ASIJ)∗ATIJ

)
= 4

e4

st

(
δIJ(p · k′)(p′ · k)

)
. (15)

At this point the chiral structure of the cross section in made manifest. Since QED is a
parity conserving theory it does not distinguish between left and right chiral states. Cross
sections depend only on whether the states are the same or different, not on their exact
chirality.

We can use our knowledge of kinematics to cast this in a more useful form.

|ASIJ |2 =
e4

s2

(
δIJ u

2 + (1− δIJ)t2
)
,

|ATIJ |2 =
e4

t2

(
δIJ u

2 + (1− δIJ)s2
)
,

Re
(
(ASIJ)∗ATIJ

)
=
e4

st
δIJ u

2. (16)
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Writing the angular dependence explicitly:

|ASIJ |2 = e4
(
δIJ(1− x)2 + (1− δIJ) x2

)
,

|ATIJ |2 = e4
(
δIJ

(1− x)2

x2
+ (1− δIJ)

1

x2

)
,

Re
(
(ASIJ)∗ATIJ

)
= −e4δIJ

(1− x)2

x
. (17)

Finally we can sum over all polarizations to acquire the total squared matrix element in
the Born approximation

|AB|2 = 4e4

(
1− x+ x2

x

)2

. (18)

In terms of the QED fine structure constant α = e2

4π
we get:

|AB|2 = 64π2α2

(
1− x+ x2

x

)2

. (19)

The differential cross section for Bhabha scattering in the Born approximation is then:(
dσ

dΩ

)
Born

=
α2

s

(
1− x+ x2

x

)2

. (20)

2.3 Electroweak Suppression at Small Angles

It is quick to demonstrate the QED dominance of the Bhabha cross section at small angles.
The first thing to notice is the kinematic dependence of the S and T channel cross sections:

|AS|2 ∝
t2 + u2

s2
and |AT |2 ∝

s2 + u2

t2
. (21)

In the limit of small angles θ → 0 and hence x→ 0. It is clear then t→ 0, u→ −s and
the T channel will dominate in the cross section. The T channel interaction at tree level
involves the exchange of a virtual gauge boson between the electron and positron. In QED
this is the massless photon γ and in the weak interaction it is the massive Z boson Z0 [20].
We have seen the QED amplitude in (10), for I = J = L it reads:

ATQED =
e2

t
ūL(p′)γµuL(p)v̄L(k)γµvL(k′) . (22)

Since only left-chiral particles interact via the Electroweak SU(2) symmetry, this channel
will have the largest contribution from Weak effects. The Feynman rules for Z0 exchange
are well known [21]. The resulting amplitude in the high energy limit me → 0 is:
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ATWeak =
e2

t−M2
Z

(
1
2
− sin θW

)2

cos θW sin θW
ūL(p′)γµuL(p)v̄L(k)γµvL(k′) , (23)

where θW is the Weinberg angle. and MZ is the Z0 mass. To determine which effect is
stronger as θ → 0 we take the ratio of (23) and (22):

ATWeak

ATQED

=

(
1
2
− sin θW

)2

cos θW sin θW

t

t−M2
Z

(24)

As θ → 0 the behaviour becomes:

ATWeak

ATQED

≈ − t

M2
Z

. (25)

The Weak interaction is suppressed by a factor of t/M2
Z at small angles, hence the ability

of LEP and the SLC to obtain an accurate luminosity measure using only the QED cross
section. Of course, at large angles and high energy the factor t/(t −M2

Z) in (24) is of the
order of unity, and both QED and Weak effects contribute with approximately equal mag-
nitudes, and the full electroweak model should be employed in the calculation of scattering
amplitudes.

2.4 Electroweak corrections

In the Standard Model of particle physics, electromagnetic and weak phenomena have been
unified into the collective Electroweak interaction. The Electroweak theory postulates a
universal gauge symmetry:

SU(2)L × U(1)Y . (26)

The SU(2)L symmetry couples only to left-chiral particles, and the U(1)Y symmetry
couples to the hypercharge Y . Such a symmetry gives rise to four massless gauge bosons,
two charged and two neutral. The charged bosons W± acquire masses MW through the
Higgs Mechanism. Although all four bosons independently interact with the Higgs field, a
particular linear combination of the neutral bosons decouples from the field entirely [20].
This boson is the QED photon, it remains massless and invariant under a U(1)Q symmetry.
The orthogonal combination (the Z0) acquires a mass MZ through the Higgs Mechanism.
We can define the Weinberg (or Weak-Mixing) angle θW as the angle between the {γ, Z0}
basis and the original neutral bosons. This leads to a simple connection between the Z and
W masses: MW = MZ cos θW .

The inclusion of electroweak interactions leads to a host of corrections to the Bhabha
cross section. The tree level contribution comes from the inclusion of diagrams with exchange
of a Z0 boson. If we let I, J ∈ {L,R} denote the chirality of the fermion lines, the spinor
structure to this amplitude is exactly that of the QED amplitude, and the amplitude can be

9



determined through the effective substitution:

e2 → g2

(
T 3
I T

3
J + tan2 θW

YIYJ
4

)
. (27)

Where T 3 is the third component of the weak isospin, Y is the hypercharge, and g is the
SU(2) coupling. Note the coupling now depends explicitly on the chirality of the fermions.
For left handed electrons, TL = 1

2
and YL = −1, for right handed electrons TR = 0 and

YR = −2 [20].
In principle, the calculation of the electroweak loop corrections is a straightforward ex-

ercise in pertubation theory. As has been done in QED, we simply must sum up all the one
and two loop diagrams, and the problem is reduced to one of time. Of course, nature is not
so kind, and precision calculations in electroweak theory are complicated by a number of
requirements of the theory. The most important problem here is that of masses. In QED
the gauge boson is massless and the electron is light. To regularize infrared divergences a
small photon mass must be added to the theory, which turns the calculation of the Bhabha
cross section to a two scale problem.

In electroweak interactions, there are three distinct gauge boson masses, plus the mass of
the electron. At two loops, explicit diagrams with the Higgs also begin appearing, and the
final result will depend on the Higgs mass and the details of its coupling. This calculation
now includes five distinct mass scales over many orders of magnitude. At one loop it has
been completed, but the two loop corrections are beyond the power of current computational
techniques.

The best we can do then is an approximation, calculating only the logarithmically en-
hanced contributions to cross section. Such terms appear with a power of log(s/M2), where
M ≈ MW ,MZ . Fortunately, this will be sufficient to reduce the uncertainty in the elec-
troweak contributions below current experimental thresholds.

The plan is thus: we first calculate the cross section for a ”pure” SU(2) theory of unbroken
phase, ie. with identical masses for the gauge bosons (including the Higgs). This will then
be extended to include the full electroweak theory with a massive photon of mass equal to
the gauge bosons. Once this quantity is known, we subtract the portion due to photon so
it may be included later with Bremsstralung. The difference between MZ and MW is small,
so we can include it perturbatively near the end of the calculation. The simplification of
the Higgs mechanism we employ introduces an uncertainty of the same order as the non
logarithmic corrections, and can safely be neglected.

10



3 Bhabha Scattering in SU(2)

We begin our analysis with a calculation of the Bhabha Scattering cross section in a pure
SU(2) gauge theory. The result will include the bulk of the effects from the full electroweak
theory; simple corrections will allow us to transform it to the full physical Standard Model
cross section. We perform the calculation in the equal mass approximation.

M ≡MW = MZ = MH . (28)

In the Sudakov limit considered here |s|, |t|, |u| �M2 and me → 0. In this limit the only
mass scale in the problem is M and all energy dependence of the amplitude will be confined to
powers of the Sudakov logarithm log(Q2/M2), where Q2 is the Euclidean momentum transfer
of the interaction. Since we work in the high energy limit we neglect all powers of M2/Q2,
that is we only calculate the leading order asymptotic contribution to the amplitude. The
Sudakov logarithms arise from divergences in the Feynman integrals, and hence are very well
structured. It is this structure we will take advantage of to calculate the two loop corrections,
but first we require some notation.

3.1 Notation

The functions we will use to paramaterize the scattering amplitude are expressed as a power
series in terms of the coupling constant α = g2

4π
. We define the expansion as such:

f(α) =
∞∑
n=0

( α
4π

)n
f (n). (29)

The factor of 4π arises naturally in SU(N) loop calculations and so is included with α in
the expansion. Particles in SU(2) form doublets in weak isospin space; it will be convenient
to write the amplitudes in a flavour basis {Aλ,Ad} defined as:

Aλ = ψ̄2γ
µtaψ1ψ̄4γµt

aψ3 ,

Ad = ψ̄2γ
µψ1ψ̄4γµψ3 . (30)

where ta are the SU(2) isospin generators. Throughout the calculation we will take the
external particles to be eigenstates of weak isospin as well as chirality. The ta matrices then
simply act as projectors and the above can be simplified to:

AλIJ = T 3
I T

3
J ψ̄2γ

µPIψ1ψ̄4γµPJ ψ̄3 ,

AdIJ = ψ̄2γ
µPIψ1ψ̄4γµPJ ψ̄3 . (31)

For appropriately chosen ψi these are exactly the amplitudes for Bhabha scattering in
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QED. We then define for convenience:

AIJ ≡ v̄s(p2)γµPIur(p1)ūr′(p4)γµPJvs′(p3) . (32)

Which is the spinor structure of the scattering amplitude. For brevity and to avoid an
explosion of indices we will not explicitly denote whether the momenta pi are chosen for the
S or T channels, the specific choice will be made clear by the context. Absorbing the ψ’s
into AIJ allows us to abbreviate our notation somewhat:

AλIJ = T 3
I T

3
JAIJ ,

AdIJ = AIJ . (33)

We can now express the Born amplitude in the S-channel as:

AB =
ig2

s
Aλ . (34)

We remove the g2 prefactor before expanding the amplitude to all orders in α.

AS =
ig2

s

∞∑
n=0

( α
4π

)n
AS(n)

,

AT =
ig2

t

∞∑
n=0

( α
4π

)n
AT (n)

. (35)

for the S and T channels respectively. Only left handed particles interact via SU(2), so we
will drop the I, J subscripts for the time being and assume we are dealing with I = J = L.

3.2 The Origin of Sudakov Logarithms

Sudakov logarithms arise in loop corrections whenever Feynman integrals encounter a diver-
gence. The divergences are typically broken into three categories: hard, soft, and collinear.
Hard divergences occur as the loop momentum k → ∞; they are the controlled by renor-
malization and result in the running of the coupling constants, masses, etc. Soft divergences
occur as k2 → 0, and are controlled by including gauge boson masses. Collinear divergences
arise as the loop momentum becomes parallel with a fixed momenta p2 = 0 external to
the loop. Collinear divergences are mediated by including massive fermions, that is ensuring
p2 6= 0. Soft and collinear divergences are collectively referred to as “Infrared” divergences, in
a similar language hard divergences are collectively called “Ultraviolet”. Amplitudes involv-
ing massless particles are typically divergent even after regularization, and small auxillary
masses must be assigned to these particles to achieve finite results. The incorporation of real
radiative corrections from soft and collinear particle emission cancels this mass dependence
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and leaves cross sections finite.
In our pure SU(2) calculation with massless electrons all three divergences are present.

In a single loop, each divergence will produce a contribution to the amplitude proportional
to log(Q2/M2). However, the regions of the integration domain with soft and collinear di-
vergences intersect. This region will produce a term proportional to the product of the
individual soft and collinear contributions, that is log2(Q2/M2). This is the Sudakov Double
Logarithm, and is the highest degree of divergence encountered in these scattering ampli-
tudes. Calculations including only this term are said to be accurate to Leading Logarithms
(LL). In calculations past one loop the various single and double logarithms from each loop
combine to form a polynomial in log(Q2/M2). The order of this polynomial at order n in
pertubation theory (n loops) is 2n. At each order then the amplitude can be expanded:

A(n) =
2n∑
i=0

A(n)
i logi

(
Q2

M2

)
. (36)

Here we calculate the second order contribution to Bhabha scattering in the logarithmic
approximation, so we need A(2)

i for i = 4, 3, 2, 1.5 The advantage of only calculating in the
logarithmic approximation is the majority of contributions are going to come from products
of one loop contributions, not explicitly two loop effects. The few two loop results required
can be calculated for special cases, and the entire result follows.

3.3 Calculating the Scattering Amplitude

The scattering amplitudes for ff̄ → f ′f̄ ′ in SU(2) and the full Electroweak model have been
calculated to the required order in [17]. What follows is a sketch of that paper highlighting
the key results of interest to our calculation. The amplitudes given in the paper are from the
neutral current and so only relevant for the S channel. In this section we will not explicitly
denote the channel of the amplitudes, but it is assumed always to be S.

3.3.1 The Structure of Sudakov Logarithms

To calculate the scattering amplitude in the desired approximation we must individually take
into account the hard, collinear, and soft divergences of the loop integrals. The ultraviolet
(hard) region has been well studied. Ultraviolet divergences lead to running of the coupling
constants governed by the Callan-Symanzik equation. We will insert the running of α by
hand into our calculation, and in this way account for all hard divergences. At the present
accuracy we require the two loop running:

α(Q2) = α(µ2)

{
1− α(µ2)

4π
β0 log

(
Q2

µ2

)
+
α(µ2)2

16π2

[
β2

0 log2

(
Q2

µ2

)
− β1 log

(
Q2

µ2

)]}
. (37)

5that is, all A(2)
i except for i = 0
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In the above, µ2 is the renormalization scale of the theory, it is typically taken to be
the energy of the interaction or one of the relevant mass scales. The standard value of
the electromagnetic coupling αEM ≈ 1

137
is in fact the value measured at the electron mass

αEM(m2
e). The real numbers β0 and β1 are the leading and subleading order values of the β-

function, a parameter of the Callan-Symanzik equation. They depend on the specific theory
being employed; β0 in SU(2) is a different quantity than β0 in U(1).

It is a remarkable and well known result that the collinear divergences in any amplitude
depend only on the external particles, and not on the specific details of an interaction [22].
This allows us to factor out the collinear divergences from each loop integral, leaving only a
reduced amplitude Ã which contains only soft divergences. Since the collinear divergences
will be the same for all processes we may calculate them in a simple interaction, defining Ã to
collect all remaining soft divergences. We choose to use the SU(2) form factor F describing
scattering by an external abelian field. We need two copies of F , one for each external
fermion line. The resulting expression for the amplitude is:

A =
ig2

s
F2Ã . (38)

The reduced amplitude Ã will be a vector in the flavour basis. Since F is calculated for an
external abelian field, it is independent of flavour will be a scalar in this basis. We calculate
F and Ã using the infrared evolution equations, an infrared analogue to the ultraviolet
Callan-Symanzik equations. The evolution equations control how an amplitude scales with
the Euclidean momentum transfer Q. The theory of the infrared evolution equations was
formulated and developed in [23–26]. For the form factor it takes the following form:

∂

∂ log(Q2)
F =

(∫ Q2

M2

dx

x
γ(α(x)) + ζ(α(Q2)) + ξ(α(M2))

)
F . (39)

γ, ζ, and ξ are the parameters of anomalous dimension, and are dependent on both the
theory and the specific process involved. The contribution from ζ and ξ has been split so ξ
contains dependence only on α(M2); it will contain only infrared divergences. Since (39) is
linear, its solution may be written down immediately:

F = F0(α(M2)) exp

{∫ Q2

M2

dx

x

(∫ x

M2

dx′

x′
γ(α(x′)) + ζ(α(x)) + ξ(α(M2))

)}
. (40)

The integral is performed by expanding the anomalous dimensions in a power series in
α, taking into account the running of α in (37). We illustrate the calculation for the γ term
giving rise to the double logarithms. The renormalization scale µ is set as µ2 = M2, γ is
expanded to O(α2), and only the first order running of α is used. Any terms of higher order
in α will not contribute to our result and can safely be neglected. Bare α’s with no scale
dependence written will be assumed to be α(M2).
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∫ Q2

M2

dx

x

∫ x

M2

dx′

x′
γ(α(x)) =

∫ Q2

M2

dx

x

∫ x

M2

dx′

x′

[
γ(0) +

α(x′)

4π
γ(1) +

(
α(x′)

4π

)2

γ(2)

]

=

∫ Q2

M2

dx

x

∫ x

M2

dx′

x′

[
γ(0) +

α

4π
γ(1)

+
( α

4π

)2
(
γ(2) − β0γ

(1) log
x′

M2

)]
=

∫ Q2

M2

dx

x

[(
γ(0) +

α

4π
γ(1) +

( α
4π

)2

γ(2)

)
log

x

M2

−
( α

4π

)2 β0γ
(1)

2
log2 x

M2

]
=

1

2

(
γ(0) +

α

4π
γ(1) +

α2

16π2
γ(2)

)
log2 Q

2

M2

− α2

16π2

β0γ
(1)

6
log3 Q

2

M2
(41)

Doing the same process for ζ and ξ gives our exponentiated result for F . From simple
matching with the Born amplitude (34) we can determine the leading order values for all
our parameters

F (0)
0 = 1 and γ(0) = ζ(0) = ξ(0) = 0 . (42)

Simple algebra then gives:

F =
(

1 +
α

4π
F (1)

0

)
exp

{
α

4π

(
1

2
γ(1) log2 Q

2

M2
+
(
ζ(1) + ξ(1)

)
log

Q2

M2

)
+

α2

16π2

(
−1

6
β0γ

(1) log3 Q
2

M2
+

1

2

(
γ(2) − β0ζ

(1)
)

log2 Q
2

M2
+
(
ζ(2) + ξ(2)

)
log

Q2

M2

)}
.

(43)

We only expand F0 to O(α) because the only contribution of F (2)
0 is to the two loop

nonlogarithmic term, which is beyond the scope of the current work. The evolution equation
for Ã takes on a much simpler form, as it only has to account for the soft divergences:

∂

∂ log(Q2)
Ã = χ(α(Q2))Ã . (44)

It is complicated however by the vectorial nature of Ã; χ is in fact a matrix:
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χ =

(
χλλ χdλ
χλd χdd

)
. (45)

This complicates our expression of the solution to (44) as χ does not necessarily commute
with itself for different values of α. This is taken into account by expressing the solution as
the path ordered exponent:

Ã = P exp

{∫ Q2

M2

dx

x
χ (α (x))

}
Ã0(α(M2)) . (46)

As with F we can determine χ and Ã0 at leading order in α by making a strict comparison
with the Born amplitude (34). The result is:

Ã(0)
0 =

(
1
0

)
and χ(0) =

(
0 0
0 0

)
. (47)

Expanding χ in α then allows us to explicitly perform the integral in (46) just as with
F . As before, α = α(M2):

Ã = exp

{
α

4π
χ(1) log

Q2

M2
+

α2

16π2

(
χ(2) log

Q2

M2
− 1

2
β0χ

(1) log2 Q
2

M2

)}
×

([
1
0

]
+

α

4π

[
Ãλ(1)

0

Ãd(1)
0

])
. (48)

We now have all we need to construct the amplitude. Exponentials are expanded in a

power series, and we keep only contributions up to O
(
α2 log Q2

M2

)
:
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A =
ig2

s

{
Aλ
[
1 +

α

4π

(
γ(1) log2 Q

2

M2
+
(

2ζ(1) + 2ξ(1) + χ
(1)
λλ

)
log

Q2

M2
+ 2F (1)

0 + Ãλ(1)
0

)
+

α2

16π2

(
1

2

(
γ(1)
)2

log4 Q
2

M2
+

(
2ζ(1) + χ

(1)
λλ −

1

3
β0

)
γ(1) log3 Q

2

M2

+
(
γ(2) +

(
2ζ(1) − β0

)
ζ(1) + γ(1)

(
2F (1)

0 + Ãλ(1)
0

)
+

1

2

(
4ζ(1) − β0 + χ

(1)
λλ

)
χ

(1)
λλ +

1

2
χ

(1)
λdχ

(1)
dλ

)
log2 Q

2

M2

+
(

2ζ(2) + 2ξ(2) + 2F (1)
0

(
2ζ(1) + χ

(1)
λλ

)
+ χ

(2)
λλ

+
(

2ζ(1) + χ
(1)
λλ

)
Ãλ(1)

0 + χ
(1)
dλ Ã

d(1)
0

)
log

Q2

M2

)]
+Ad

[
α

4π

(
χ

(1)
λd log

Q2

M2
+ Ãd(1)

0

)
+

α2

16π2

(
χ

(1)
λd γ

(1) log3 Q
2

M2

+

(
1

2

(
4ζ(1) − β0 + χ

(1)
λλ

)
χ

(1)
λd + γ(1)Ãd(1)

0

)
log2 Q

2

M2

+
(

2F (1)
0 χ

(1)
λd + χ

(2)
λd + χ

(1)
λd Ã

λ(1)
0 +

(
2ζ(1) + χ

(1)
dd

)
Ãd(1)

0

)
log

Q2

M2

]}
. (49)

All that remains is to evaluate the anomalous dimensions γ, ζ, ξ, χ and the initial
conditions F0 and Ã0 to second and first order, respectively. The process ff̄ → f ′f̄ ′ has
been calculated fully to one loop, which allows us to effectively read off all our parameters
to first order from well established existing results [17]. We sketch this procedure for the
SU(N) form factor at one loop.

3.3.2 Calculating the SU(N) Form Factor

We want to calculate the one loop SU(N) form factor F for electron scattering in an external
abelian field. This quantity will contain the collinear divergences we can factorize from the
rest the full Bhabha amplitude, allowing us to treat the soft divergences independently. The
tree level amplitude for this process is:

AµB = ū(p′)γµu(p) . (50)

We define the initial momentum as p, the final as p′, and the momentum transfer q = p′−p.
The form factors are defined as the coefficients of the different Lorentz structures which
appear in the amplitude at higher orders. There are two such structures, which leads to the
following decomposition:

Aµ = ū(p′)

(
F1(q2)γµ + F2(q2)

iσµνqν
2me

)
u(p) . (51)
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Figure 2: The Feynman diagram resulting in the one-loop form factor.

The second term F2 is suppressed by a factor of Q2 is negligible in the high energy
limit [20]. We can then unambiguously define F :

Aµ = ū(p′) F(q2)γµ u(p) . (52)

This leads to the trivial tree level result:

F (0) = FB = 1 . (53)

The one loop value of F comes from a single diagram (Fig. 2) where a gauge boson of
momentum kµ is exchanged by the electrons. Its amplitude can be written:

Aµ = −
∫

d4k

(2π)4
ū(p′) (igγνta)

i( 6p′− 6k)

(p− k)2
γµ

−i
k2 −M2

i(6p− 6k)

(p− k)2
(igtaγν)u(p) . (54)

The gauge boson mass is M and the SU(N) coupling is g. The matrices ta are generators
of SU(N) and commute with all other elements. Using the contraction identities for gamma
matrices and p2 = p′2 = 0 we can write:

Aµ = ū(p′)

[
−2ig2CF

∫
d4k

(2π)4

(6p− 6k)γµ(6p′− 6k)

(k2 − 2p·k)(k2 − 2p′ ·k)(k2 −M2)

]
u(p) . (55)

CF = tata is the quadratic Casimir operator of the fundamental representation, in SU(2):

CF =
N2 − 1

2N
. (56)

We calculate this integral in dimensional regularization using the expansion by regions
approach [27,28]. In this method, one approximates an integral by its behaviour near poles,
then extends the approximation over the entire integration domain. If all poles have been
accounted for the singularities introduced by the approximation cancel, and a finite result
is achieved. Although this approach is perhaps overpowered for a one loop calculation, it
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has proved necessary for calculations at two loops. The advantage of using dimensional
regularization is the logarithmic contributions are easily read off from the final result.

We sketch this process for the form factor integral (55). The integrand becomes singular
in three obvious regions, when each of the terms in the denominator goes to zero. A fourth
region is obtained in limit as k2 →∞, as can be seen by simple power counting. If |k| = ω
in the Euclidean sense, the behaviour of the integral at large ω is:∫ ∞

d4k
k2

k6
→
∫ ∞

dω ω3ω
2

ω6
=

∫ ∞
dω

1

ω
→∞ . (57)

We then have four regions to expand in:

(h) hard: k2 ∼ q2 ,

(1c) 1-collinear: k ∼ 2p ,

(2c) 2-collinear: k ∼ 2p′ ,

(s) soft: k2 ∼M2 . (58)

We split the domain of integration over each of these regions. Denoting the integral (55)
as
∫
I we do the following decomposition:∫ ∞

0

I ≈
∫

k2∼q2

I +

∫
k∼2p

I +

∫
k∼2p′

I +

∫
k2∼M2

I . (59)

We then taylor expand the integrand in each of these regions in parameters considered
small there and keep only leading order terms. For instance in the hard region, M2 is far less
than any other scale and makes a good expansion parameter. The leading order behaviour
is obtained by simply setting M2 = 0 in the integrand:

∫
k2∼q2

I =

∫
k2∼q2

d4k

(2π)4

(6p− 6k)γµ(6p′− 6k)

(k2 − 2p·k)(k2 − 2p′ ·k)(k2 −M2)
(60)

≈
∫

k2∼q2

d4k

(2π)4

( 6p− 6k)γµ( 6p′− 6k)

(k2 − 2p·k)(k2 − 2p′ ·k)k2
≡
∫

k2∼q2

I(h) . (61)

We have defined I(h) as the leading order behaviour of I in the hard region. The same
can be done for I(1c), I(2c), and I(s). We now extend the integration limits in each term over
the full domain. It should be noted in this new domain the expansion we performed is not
valid. For instance, the hard integral will now include contributions from k2 � M2 where
the our approximation becomes singular. Nevertheless, we press on and extend the limits.
The integrals acquire divergences, for example

∫
I(h) will have infrared divergences of both
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the soft and collinear types. If dimensional regularization is used to handle these spurious6

divergences, the final result summed over all regions will be finite. Meanwhile, we are left
with integrals with one less mass scale which can be computed in a straightforward manner.
The final result will be exactly equal to the initial integral, that is:∫ ∞

0

I =

∫ ∞
0

I(h) +

∫ ∞
0

I(1c) +

∫ ∞
0

I(2c) +

∫ ∞
0

I(s) . (62)

Calculating the integrals is a straightforward exercise in dimensional regularization. In-
tegrals are Wick-rotated into the Euclidean regime and Feynman parameters are introduced.
In the hard region one gets a result proportional to (Q2)−ε, where ε been introduced through
the dimensional regularization by taking the spacetime dimension d = 4− 2ε [27]. Q is the
Euclidean momentum transfer, Q2 = −q2 > 0. We can taylor expand this factor as ε→ 0:(

Q2
)−ε ≈ 1− ε logQ2 +

1

2
ε2 log2Q2 . (63)

This factor multiplies the divergent integral
∫
I(h).7 In the limit as ε → 0 then, we

will obtain logarithms of Q2 only when (Q2)−ε multiplies the poles of
∫
I(h). Hence to get

an amplitude accurate only to logarithmic factors, we need calculate only the poles of the
expanded integrals. Double poles 1/ε2 will produce double logarithms log2Q2 and single
poles will give single logs.

The one loop amplitude has been known for some time, and this procedure may be carried
past the logarithmic terms to also produce the constant [17]. The results of this are:

F (1)
hard = CF

(
− 2

ε2
+

1

ε

(
2 logQ2 − 3

)
− log2Q2 + 3 logQ2 +

π2

6
− 8

)
,

F (1)
collinear = CF

(
2

ε2
− 1

ε

(
2 logQ2 − 4

)
+ 2 logQ2 logM2 − log2M2 − 4 logM2 − 5π2

6
+ 4

)
,

F (1)
soft = CF

(
−1

ε
+ logM2 +

1

2

)
. (64)

Notice how the poles of the individual contributions exactly cancel in the sum. Our final
result is then finite and we can read off the one loop values of γ, ζ, ξ, and F0. The only linear
logarithmic dependence comes from the hard contribution. Since ξ was defined to depend
only on infrared contributions it will be zero at this order.

6These divergences are ‘spurious’ because they are not from physical processes, merely artifacts of our
appriximation.

7Of course there is a slight abuse of notation here, as (Q2)−ε comes from exactly the integral
∫
I(h). Here

we mean the integral with this Q2 factored out.
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γ(1) = −2CF ,

ζ(1) = 3CF ,

ξ(1) = 0 ,

F (1)
0 = −CF

(
7

2
+

2

3
π2

)
. (65)

The calculation of Ã is done in a similar fashion. This calculation has been performed
up to O(α2 logQ2/M2) in [17]. We are now ready to move on to the full amplitude.

3.3.3 Final Results for the SU(N) Amplitude

In SU(N) the reduced amplitude Ã is determined by [17]:

χ
(1)
λλ = −2CA log

u

s
+ 4

(
CF −

Tf
N

)
log

u

t
,

χ
(1)
λd = 4

CFTf
N

log
u

t
,

χ
(1)
dλ = 4 log

u

t
,

χ
(1)
dd = 0 ,

Ãλ(1)
0 =

(
CF −

Tf
N

)
f
(u
s
,
t

s

)
+ CA

(
85

9
+ π2

)
− 20

9
Tfnf −

8

9
Tfns ,

Ãd(1)
0 =

CFTf
N

f
(u
s
,
t

s

)
. (66)

Where CA = N is the quadratic Casimir operator of the adjoint representation, nf is the
number of dirac fermions in the theory, ns is the number of dirac scalars in the theory, Tf is
the weak isospin of the fermion f , and the function f(x, y) is given by:

f(x, y) = −2

x
log y − y − x

x2

(
log2 y + π2

)
. (67)

Notice we are required to take the logarithm of a negative quantity: t/s. We resolve this
through the use of analytic continuation in the next section. Also required is the SU(2) beta
function:

β0 = −4

3
Ng +

43

6
,

β1 =
181

6
. (68)
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Where Ng = 3 is the number of generations. The second order parameters we need are
not as straightforward to determine. In [17] they were found by the expansion by regions
approach; expanding certain Feynman integrals around their divergences and reading off the
parameters from the appropriate terms in the expansion. The results of this procedure for
the form factor are:

γ(2) = CF

((
−134

9
+

2

3
π2

)
CA +

40

9
Tfnf +

16

9
Tfns

)
, (69)

ζ(2) + ξ(2) = CF

(
−34

3
Ng +

749

12
+

43

18
π2 − 176

3
ζ(3) + 5

√
3 π

+
26

3

√
3 Cl2

(π
3

)
+
CF
2

(
3− 4π2 + 48 ζ(3)

))
. (70)

In the above ζ(2) and ξ(2) are presented in a sum because it is independent of renor-
malization scheme. Cl2(x) = −

∫ x
0

log |2 sin(t/2)|dt is the Clausen function and ζ(3) is the
Reimann-Zeta function.8 Numerically Cl2(π/3) = 1.01494 and ζ(3) = 1.2026. This same
procedure applied to the soft divergences gives us the required components of χ(2):

χ
(2)
λλ =

(
−20

9
Ng +

130

9
− 2

3
π2

)(
−2CA log

u

s
+ 4

(
CF −

Tf
N

log
u

t

))
− β0Ãλ(1)

0 ,

χ
(2)
λd =

(
−5

3
Ng +

65

6
− 1

2
π2

)
log

u

t
− β0Ãd(1)

0 . (71)

We now have all the information required to compute the SU(2) Bhabha scattering am-
plitude and thus obtain the desired cross section. The first step will be extracting the S and
T channel amplitudes from (49) for non-Euclidean Q2.

3.4 Crossing Symmetry and Analytic Continuation

In the previous section we followed the derivation of [17] and computed the amplitude for
ff̄ → f ′f̄ ′ scattering in SU(2). There are two complications in moving from the result to the
amplitude for Bhabha scattering. The first is simply the fact that Bhabha has contributions
from two channels, S and T . The result (49) was calculated exclusively for annihilation (S
channel) interactions. To obtain the amplitude for T channel, we use crossing symmetry and
redefine external momenta, effectively making the switch s ↔ t. The second complication
arises from the fact that the infrared evolution equations were formulated for Euclidean
momentum transfer Q2 < 0 and the definition of the f−function in (67). These both cause
the arguments of logarithms in the amplitude to occur precisely on a branch cut. We make
use of the s+ iε prescription to resolve this in a consistent manner [17].

8Not to be confused with the anomalous dimension ζ(α).
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Our first goal is to express the amplitude obtained in (49), A(Q2) as function of our
kinematical invariants s > 0 and t, u < 0. Trouble may arise in two places; from the large
logarithms log Q2

M2 with negative argument and from the angular logarithms such as log u
s
.

These latter logarithms are referred to as “angular” because they in fact only depend on the
kinematic variable x. For example:

log
u

s
= log

(
−s(1− x)

s

)
= log(x− 1) . (72)

We run into a problem above, as since x ∈ [0, 1], the argument of the above log is
negative.9 The issue with the logarithms is in consistently choosing which branch to use,
effectively picking which sign to use in log(−x)→ log x±iπ. This ambiguity is lifted through
the use of analytic continuation by employing the conventional prescription s→ s+iε, where
ε is taken to be a very small positive number. This moves the argument of the logarithm
off the branch cut, making the choice of branch obvious. We illustrate the procedure for the
above logarithm:

log
u

s
≈ log

u

s+ iε
= log

( us

s2 + ε2
+ i

−εu
s2 + ε2︸ ︷︷ ︸
positive

)
=
ε→0

log

(
−u
s

)
+ iπ . (73)

The process is identical for all angular logs. Writing the angular dependence explicitly:

log
u

s
= log(1− x) + iπ ,

log
t

s
= log(x) + iπ . (74)

These are the only angular logs requiring analytic continuation in the SU(2) amplitude.
In the S channel the momentum transfer between the fermion lines is simply the centre
of mass energy

√
s. The S channel amplitude is then simply (49) with the identification

Q2 = −s. Analytic continuation with the s+ iε prescription gives us the correct branch for
the large Sudakov logarithms:

log
Q2

M2
= log

(
−s
M2

)
= log

( s

M2

)
− iπ . (75)

These factors of iπ will cascade through the amplitude, modifying all contributions at
lower orders of log s

M2 . The T channel can be computed in the same approach as the S
channel. The squared momentum transfer in T channel is t, so the identification with Q
becomes Q2 = −t. We can then write the Sudakov logarithms as:

log
Q2

M2
= log

(
−t
M2

)
= log

( sx
M2

)
= log

( s

M2

)
+ log(x) . (76)

9This of course is also trivially seen in the ratio u
s , s > 0 and u < 0.
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The angular dependence of A also changes as one goes from S to T channels. This is
accomplished through the use of crossing symmetry; the T channel amplitude is given by
taking the S channel amplitude and making the substitution s↔ t. It should be noted this
operation does not commute with the analytic continuation above, and so must be performed
on the amplitude A(Q2) before the negative arguments to the logarithms are resolved. We
define the crossing symmetry operator:

∆
s↔t
A(s, t) = A(t, s) . (77)

The last effect to take into account is the energy scale of the Born amplitude. To this
point we have been working under the implicit assumption the scale of g2 = 4πα in (35) is
Q2. We really should have written

AS =
4πiα(−s)

s

∞∑
n=0

( α
4π

)n
AS(n)

,

AT =
4πiα(−t)

t

∞∑
n=0

( α
4π

)n
AT (n)

. (78)

Of course to properly sum these amplitudes they should use α measured at the same
(positive) scale. To resolve this ambiguity we make the choice to set α(s) as the scale in
the Born amplitude, using the running of α in (37). We keep the convention that all loop
corrections are renormalized to α = α(M2), and use the s+ iε to resolve negative arguments
to logarithms.

α(−s) = α(s)

{
1 +

α

4π
iπβ0 −

α2

16π2
iπβ2

0 log
( s

M2

)}
α(−t) = α(s)

{
1− α

4π
β0 log(x) +

α2

16π2
β2

0 log(x) log
( s

M2

)}
(79)

We have dropped terms at subleading orders to the present calculation. Note the coupling
constant α is defined to be real, hence the need for a positive renormalization scale. The
imaginary parts of the α(−s) expansion are formally not a part of α, they are included as a
contribution to Im(Ã0) and are artifacts of performing the original calculation for Euclidean
Q2. With this information we can write the full expansions of AS and AT in terms of α
and log

(
s
M2

)
, taking into account the running of α in the Born amplitude and the analytic

continuation of logQ2/M2. The S channel expansion is:

AS =
ig2(s)

s

∞∑
n=0

2n∑
i=0

(
A(n)
i + δSA(n)

i

)
logi
( s

M2

)
. (80)
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Where A(n)
i is the O(αn logi Q

2

M2 ) term in A(Q2). The correction terms δSA(n)
i are given

to one loop by:

δSA(0)
0 = 0 ,

δSA(1)
2 = 0 ,

δSA(1)
1 = −2iπA(1)

2 ,

δSA(1)
0 = −π2A(1)

2 − iπA
(1)
1 + iπβ0A(0)

0 . (81)

At two loops the situation is a little simpler since only the real part of the amplitude will
contribute to the cross section. We define the correction terms δSA(n)

i to only include terms
relevant to the cross section.

δSA(2)
4 = 0 ,

δSA(2)
3 = −4iπIm

(
A(2)

4

)
,

δSA(2)
2 = −6π2Re

(
A(2)

4

)
− 3iπIm

(
A(2)

3

)
+ iπβ0Im

(
A(1)

2

)
,

δSA(2)
1 = 4iπ3Im

(
A(2)

4

)
− 3π2Re

(
A(2)

3

)
− 2iπIm

(
A(2)

2

)
+ iπβ0Im

(
A(1)

1

)
− iπβ2

0Im
(
A(0)

0

)
. (82)

The expansion of AT in α and log
(

s
M2

)
has the same structure as the S channel expansion

(80):

AT =
ig2(M2)

t

∞∑
n=0

2n∑
i=0

(
∆
s↔t
A(n)
i + δT ∆

s↔t
A(n)
i

)
logi
( s

M2

)
. (83)

The Born and one loop correction terms take the following form:

δT ∆
s↔t
A(0)

0 = 0 ,

δT ∆
s↔t
A(1)

2 = 0 ,

δT ∆
s↔t
A(1)

1 = 2 log(x) ∆
s↔t
A(1)

2 ,

δT ∆
s↔t
A(1)

0 = log2(x) ∆
s↔t
A(1)

2 + log(x) ∆
s↔t
A(1)

1 − β0 log(x) ∆
s↔t
A(0)

0 . (84)

The two loop corrections benefit from the same simplification as in S channel; only the
real part of the amplitude will be present in the cross section.
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δT ∆
s↔t
A(2)

4 = 0 ,

δT ∆
s↔t
A(2)

3 = 4 log(x) Re
(

∆
s↔t
A(2)

4

)
,

δT ∆
s↔t
A(2)

2 = 6 log2(x) Re
(

∆
s↔t
A(2)

4

)
+ 3 log(x) Re

(
∆
s↔t
A(2)

3

)
− β0 log(x)Re

(
∆
s↔t
A(1)

2

)
δT ∆

s↔t
A(2)

1 = 4 log3(x) Re
(

∆
s↔t
A(2)

4

)
+ 3 log2(x) Re

(
∆
s↔t
A(2)

3

)
+ 2 log(x) Re

(
∆
s↔t
A(2)

2

)
− β0 log(x)Re

(
∆
s↔t
A(1)

1

)
+ β2

0 log(x)Re
(

∆
s↔t
A(0)

0

)
. (85)

We now have robust expressions for the ff̄ → ff̄ scattering amplitude in SU(2) for the
S and T channels. Calculating the Bhabha cross section is a simple matter of specializing
the result to e+e− → e+e−.

3.5 SU(2) Cross Section - Analytical Results

The first step in calculating the cross section is determining exactly how our perturbative
expansion affects the cross section. We structured our corrections of the amplitude in the S
channel as such:

AS =
ig2(s)

s

∞∑
n=0

( α
4π

)n
AS(n)

. (86)

Although the g2 factor simply gives a factor of 4πα, we write it separately since each
factor of g comes from its own form factor. We can explicitly write out the breakdown into
Aλ,Ad components:

AS =
ig2(s)

s

∞∑
n=0

( α
4π

)n (
ASλ(n)Aλ +ASd(n)Ad

)
. (87)

Requiring the initial and final states to be eigenstates of weak isospin turns Aλ and Ad
into projectors:

AS =
ig2(s)

s
ASLL

∞∑
n=0

( α
4π

)n ((
T 3
e

)2ASλ(n)
+ASd(n)

)
. (88)

Where ALL is the spinor product defined in (32). Our perturbative corrections simply
multiply the Born amplitude; all spinor and vector structure can be factored out. The same
of course is true in the T channel.

AT =
ig2(s)

t
ATLL

∞∑
n=0

( α
4π

)n ((
T 3
e

)2AT λ(n)
+AT d(n)

)
. (89)
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We will give the corrections to the cross section individually for the S channel, T channel,
and interference. The differential cross section is structured in the following manner:

dσ

dΩ
=

1

64π2s

(
|AS|2 + |AT |2 + 2Re

((
AS
)∗AT )) . (90)

We present the SU(2) corrections dσ(n)as:

|AS|2 = |ASB|2
(

1 +
α

4π
dσ

(1)
S +

α2

16π2
dσ

(2)
S

)
,

|AT |2 = |ATB|2
(

1 +
α

4π
dσ

(1)
T +

α2

16π2
dσ

(2)
T

)
,

Re
((
AS
)∗AT ) = Re

((
ASB
)∗ATB)(1 +

α

4π
dσ

(1)
ST +

α2

16π2
dσ

(2)
ST

)
. (91)

Where AB is the Born amplitude:

ASB =
ig2(s)

s

(
T 3
e

)2
ASLL ,

ATB =
ig2(s)

t

(
T 3
e

)2
ATLL . (92)

From our calculation of the Born cross section (17) we can then write the SU(2) Bhabha
cross section as:

dσ

dΩ
=
α2(s)

4s

(
T 3
e

)4 (1− x)2

x2

[
x2

(
1 +

α

4π
dσ

(1)
S +

α2

16π2
dσ

(2)
S

)
+

(
1 +

α

4π
dσ

(1)
T +

α2

16π2
dσ

(2)
T

)
,

− 2x

(
1 +

α

4π
dσ

(1)
ST +

α2

16π2
dσ

(2)
ST

)]
. (93)

With α = g2/4π.10 We are now ready to present the results for the cross section. In
SU(2) the Casimir operator CF = Tf (Tf + 1) = 3

4
and clearly CA = 2. The number of Dirac

fermions nf = 2Ng and the number of scalars ns = 1. Left chiral electrons have weak isospin
TL = 1

2
with z-projection T 3

L = 1
2
.

We expand the contributions in each channel in powers of log s/M2:

10We follow the convention of the previous sections; α ≡ α(M2)
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dσ(1) = dσ
(1)
2 log2

( s

M2

)
+ dσ

(1)
1 log

( s

M2

)
+ dσ

(1)
0 ,

dσ(2) = dσ
(2)
4 log4

( s

M2

)
+ dσ

(2)
3 log3

( s

M2

)
+ dσ

(2)
2 log2

( s

M2

)
+ dσ

(2)
1 log

( s

M2

)
. (94)

The one loop corrections are well known. From the S channel:

dσ
(1)
S 2 = −3 ,

dσ
(1)
S 1 = 9 + 2 log(1− x)− 10 log(x) ,

dσ
(1)
S 0 =

235

18
− 3π2 +

5 log(x)

1− x
− 5(1− 2x) log2(x)

2(1− x)2
. (95)

The T channel:

dσ
(1)
T 2 = −3 ,

dσ
(1)
T 1 = 9 + 2 log(1− x) + 2 log(x) ,

dσ
(1)
T 0 =

235

18
+ 2π2 + 2 log(1− x) log(x)

+
(8 + 7x) log(x)

3(1− x)
+

5(2− 2x+ x2) log2(x)

2(1− x)2
. (96)

The ST interference:

dσ
(1)
ST 2 = −3 ,

dσ
(1)
ST 1 = 9 + 2 log(1− x)− 4 log(x) ,

dσ
(1)
ST 0 =

235

18
− 1

2
π2 + log(1− x) log(x)

+
(23 + 7x) log(x)

6(1− x)
+

5(1 + x2) log2(x)

4(1− x)2
. (97)

The two loop log s/M2 and log2 s/M2 corrections to Bhabha scattering are new. We
begin with the S channel:
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dσ
(2)
S 4 =

9

2
,

dσ
(2)
S 3 = −143

6
− 6 log(1− x) + 30 log(x) ,

dσ
(2)
S 2 = −145

4
+ 11π2 +

89

6
log(1− x) + 2 log2(1− x)− 8 log(x) log(1− x)

− (535− 445x) log(x)

6(1− x)
+

(91− 182x+ 76x2) log2(x)

2(1− x)2
,

dσ
(2)
S 1 =

28411

216
− 122ζ(3) + 26

√
3Cl2

(π
3

)
+ 15
√

3π − (199− 127x)π2

6(1− x)

+

(
125

3
+

50π2

3
+

10 log(x)

1− x
− 5(1− 2x) log2(x)

(1− x)2

)
log(1− x)

+

(
−1075− 1250x

6(1− x)
+

(74− 148x+ 38x2)π2

3(1− x)2

)
log(x)

− (631− 806x) log2(x)

4(1− x)2
+

19(1− 2x) log3(x)

(1− x)2
. (98)

The T channel:

dσ
(2)
T 4 =

9

2
,

dσ
(2)
T 3 = −143

6
− 6 log(1− x)− 6 log(x) ,

dσ
(2)
T 2 = −145

4
+ 8π2 +

89

6
log(1− x) + 2 log2(1− x)− 14 log(x) log(1− x)

+
(41− 131x) log(x)

6(1− x)
− (26− 22x+ 11x2) log2(x)

2(1− x)2
,

dσ
(2)
T 1 =

28411

216
− 122ζ(3) + 26

√
3Cl2

(π
3

)
+ 15
√

3π +
(8 + 4x)π2

1− x

+

(
125

3
+

8π2

3
+

(17− 7x) log(x)

1− x
− (10− 30x+ 15x2) log2(x)

(1− x)2

)
log(1− x)

+ 4 log(x) log2(1− x) +

(
1030− 505x

18(1− x)
+

(80− 88x+ 44x2)π2

3(1− x)2

)
log(x)

+
(414− 502x+ 263x2) log2(x)

12(1− x)2
+

(10− 22x+ 11x2) log3(x)

(1− x)2
. (99)

The ST interference:
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dσ
(2)
ST 4 =

9

2
,

dσ
(2)
ST 3 = −143

6
− 6 log(1− x) + 12 log(x) ,

dσ
(2)
ST 2 = −145

4
− 17

2
π2 +

89

6
log(1− x) + 2 log2(1− x)− 11 log(x) log(1− x)

− (247− 157x) log(x)

6(1− x)
− (7 + 16x+ 7x2) log2(x)

4(1− x)2
,

dσ
(2)
ST 1 =

28411

216
− 122ζ(3) + 26

√
3Cl2

(π
3

)
+ 15
√

3π − 67π2

12

+

(
125

3
+

11π2

3
+

(27− 7x) log(x)

2(1− x)
− (27− 64x+ 27x2) log2(x)

2(1− x)2

)
log(1− x)

+ 2 log(x) log2(1− x)−
(

2195− 3245x

36(1− x)
+

(13 + 41x)π2

3(1− x)

)
log(x)

− (49 + 32x− 431x2) log2(x)

24(1− x)2
− (8 + 2x2) log3(x)

(1− x)2
. (100)

We can numerically evaluate these expressions to determine the extent to which they
modify the Born cross section, and hence estimate the precision of this calculation. For the
numerics, we take the argument of the logarithms M to be equal to MW = 80.399(23) GeV
[29]. We are familiar with the Clausen and Reiman-Zeta functions Cl2(π/3) = 1.01494
and ζ(3) = 1.2026. For the coupling, we use α = αe/s

2
W , where αe is the electromagnetic

coupling constant and s2
W = sin2 θW is the sine of the weak mixing angle. At the Z0 mass

αe(MZ) = 1/(127.916± 0.015) and s2
W = 0.23116(13) [29].

In Fig. 3 we have plotted the angular dependence of the relative correction to the Born
cross section due to one loop and two loop effects for different collision energies. Even at
1 TeV the corrections are moderate, reaching the ten percent level for θ < 90◦. At higher
energies the logarithmic dependence on s becomes evident as the two loop corrections surpass
the one loop corrections for θ ∼ 90◦, reaching almost thirty percent at 2 TeV. The shaded
regions denote the kinematic area where either t or u are less than 10M2

Z . Our calculation
worked in the Sudakov limit s, t, u�M2. As θ → 0◦ (θ → 180◦) t (u) becomes small, and the
limit is no longer valid. This can be seen as the corrections become singular in these regions,
algebraically this is due to the presence of the angular logarithms log(x) and log(1 − x) in
the amplitude. As everything remains finite within these regions, these divergences may be
ignored.

In Fig. 4 we have plotted the angular dependence of the relative corrections to the Born
cross section for each logarithmic term; ie. dσ

(2)
i /dσ(0) for i = 4, 3, 2, 1. The most striking

feature is the importance of the NNLL or log2 s/M2 contribution at large angles, which makes
up most of the two loop contribution. Being independent of θ, the leading logarithmic term
simply gives a constant shift upwards, which is cancelled to the most part by the negative
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Figure 3: The percent correction to the Born cross section dσ(1,2)/dσ(0) versus the scattering
angle θ (in degrees) from one loop and two loop effects in SU(2) Bhabha Scattering for

√
s =

1 and 2 TeV.

NLL contribution. The linear log shows clear suppression relative to the higher order terms,
and is virtually constant for θ < 120◦.

In Fig. 5 we have plotted the energy dependence of the relative corrections to the Born
cross section for each logarithmic term at θ = 50◦. At the 1 TeV scale applicable to ILC
studies the two loop corrections are less than one percent, but this relies on cancellations
between the LL and NNNLL terms. As energy increases the leading logs show a clear
dominance over the lower order terms.

These plots are only for our “toy” SU(2) model, so the details should not be trusted.
The important information we can gain is that the subleading logarithms, especially the
log2 s/M2 contribution, are very important at large angles. From the suppression seen in
the linear log term we may infer the constant contribution, N4L or log0, will be similarly
suppressed and our approach of looking only at logarithmic contributions is justified.
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Figure 4: The percent correction to the Born cross section dσ
(1,2)
i /dσ(0) versus the scattering

angle θ (in degrees) from individual logarithmic two loop effects in SU(2) Bhabha Scattering
for
√
s = 1 TeV.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-10

-5

0

5

10

15

20

s

Total

LL

NLL

NNLL

N3LL

Figure 5: The percent correction to the Born cross section dσ
(1,2)
i /dσ(0) versus the centre

of mass energy
√
s (in GeV) from individual logarithmic two loop effects in SU(2) Bhabha

Scattering for θ = 50◦.
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4 Bhabha Scattering in the Standard Model

The Standard Model of particle physics accurately describes the phenomenology of all el-
ementary particles by postulating just three fundamental interactions; the strong force,
the weak force, and electromagnetism [20]. Strong interactions are modelled by Quantum
Chromodynamics (QCD), an SU(3) gauge theory which couples to colour charge. Weak
and electromagnetic interactions have been unified in the Glashow-Weinberg-Salam (GWS)
model [30,31]. This model contains the U(1) interaction of Quantum Electrodynamics (QED,
the quantum theory of electromagnetism) as a subgroup; the remainder gives the the W±

and Z0 interactions associated with the weak force.
In the study of Bhabha scattering our primary interest is the interactions between elec-

trons and positrons. Having no colour charge they are unable to interact directly via QCD
and we may consider the Bhabha cross section to be completely electroweak in nature.11

The most complicated part of the electroweak interaction is the contribution from the SU(2)
gauge group we have calculated in the previous section. We now extend this result to the full
electroweak correction by including coupling to the hypercharge U(1) gauge group. Since
the photon is massless divergences resulting from photon exchange must be regulated in a
different manner than those from the W and Z bosons. We subtract off the QED contri-
bution to the cross section so it can be included later with its own regularization scheme.
Finally we account for the mass splitting between the Z and W perturbatively, and present
the electroweak Bhabha cross section numerically to next-to-next-to-leading logarithmic ac-
curacy.

4.1 The Electroweak Theory

The fundamental principle of the GWS Electroweak theory is the gauge symmetry

SU(2)L × U(1)Y . (101)

Particles of left-handed chirality ‘see’ the SU(2) interaction and form doublets, whereas
right handed particles are oblivious to this interaction and are SU(2) singlets. Each generator
ta of SU(2) in the fundamental representation gives rise to a gauge boson. There are three
such generators:

ta =
σa

2
, a = 1, 2, 3. (102)

Where σa are the Pauli sigma matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (103)

11This is not to say QCD does not contribute to the Bhabha cross section. At the two loop level, we must
include effects such as gluon exchange by quarks in closed fermion loops. However, these processes only
affect the running of α and have been accounted for in the calculation of α(M2

Z).
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The Pauli matrices show themselves in elementary quantum mechanics when considering
the spin of particles. In this tradition, the quantum number of this SU(2) interaction is
referred to as the weak isospin T . Identifying the ta with spin operators, the quadratic
Casimir operator in the fundamental representation CF is simply the spin-squared operator:

CF ≡ tata = T (T + 1) . (104)

Summation is implied over repeated indices. Left handed leptons form doublets in the ta

space: (
νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
. (105)

The vertex for SU(2) coupling of strength g to fermions is of the following form:

igγµta . (106)

In Bhabha scattering always have electrons (or positrons) scattering into electrons (or
positrons). At tree level, each fermion line has a single interaction vertex, which carries with
it a ta. Since electrons and positrons are vectors (0 1) in SU(2) space, t1 and t2 will give
zero contribution to the amplitude as they are off diagonal. The only contribution at tree
level will then be from t3. Defining the third component of weak isospin T 3

f for some fermion
f in the obvious way:

t3f = T 3
f f . (107)

We can write the ff̄ → f ′f̄ ′ amplitude in SU(2) as:

A =
ig2

s
T 3
f T

3
f ′ v̄fγ

µuf ūf ′γµvf ′ . (108)

The U(1) gauge group generates as interaction with hypercharge Y having the exact
same structure as QED.12 The only difference between the two is the charge they couple to,
Y 6= Q, and that the U(1)Y gauge boson is massive. Let us define the SU(2) gauge bosons
as A1, A2, and A3 and the U(1)Y boson as B. If the masses of these bosons are generated
by the Higgs mechanism, as they are in the Standard Model, then there will be a unique
combination of A3 and B which will be exactly massless [20]:

A = sin θWA
3 + cos θWB . (109)

The angle θW is the weak-mixing (or Weinberg) angle. This state is identified as the
photon. It couples to with electric charge Q defined as:

Q = T 3 +
Y

2
. (110)

12This is obvious, since QED is also a U(1) gauge theory.

34



Taking Q = −1 for electrons, this tells us Ye = −1,−2 for left and right handed electrons
respectively. The magnitude of this interaction will be given by the coupling constant e:

e = g sin θW . (111)

We see that the complete QED is contained within the electroweak theory. The Z0 boson
is defined as the combination of A3 and B orthogonal to the photon:

Z0 = cos θAA
3 − sin θWB . (112)

The W± are defined as appropriate linear combinations of A1 and A2. Their masses will
be related by MW = cos θWMZ . For now we will work in the full electroweak theory, ie.
the Aa, B basis, and will not break into the mass eigenstates W±, Z0, A. This has the
advantage that the SU(2) and U(1) interactions decouple completely, and may be treated
independently. This would be impossible if we were dealing with QED explicitly, as it is a
combination of the couplings from both groups.

In this scheme the U(1) coupling is:

g′ = g tan θW . (113)

The ff̄ → f ′f̄ ′ amplitude can then be written in U(1) as:

AIJ =
ig2

s
tan2 θW

YfYf ′

4
v̄fγ

µuf ūf ′γµvf ′ . (114)

Where I, J is the chirality of f, f ′ respectively. We can now write the amplitude for the
entire electroweak interaction. For brevity we adopt the following shorthand:

sW ≡ sin θW , tW ≡ tan θW ,

AIJ = v̄fγ
µuf ūf ′γµvf ′ . (115)

The last line is simply a restatement of (32) for the S channel. In this notation we may
write the polarized ff̄ → f ′f̄ ′ amplitude as:

AIJ =
ig2

s

(
T 3
f T

3
f ′ + t2W

YfYf ′

4

)
AIJ . (116)

Where T 3
f = 0 for right-handed fermions. We see here the exact substitution rule quoted

in (27). This is enough information to calculate the required Born cross sections for Bhabha
scattering. We can now move to loop corrections.

4.2 Loop Corrections in the Electroweak Theory

The study of loop corrections in the electroweak model is very similar to its study in the
pure SU(2) theory. Working in the equal mass approximation M ≡ MZ = MW with fields
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of unbroken phase; that is, the exact fields Aa and B. In this scheme the only change in
moving from SU(2) to electroweak interactions is the addition of the U(1) gauge interaction.
This can be directly accounted for within the infrared evolution equation methods of the
SU(2) calculation.

The infrared evolution equations quantify the dependence of a scattering amplitude on
the Euclidean momentum transfer Q2. This is accomplished by ‘running’ the amplitude
from the known value at some initial scale13 to the desired momentum Q2. The advantage
of using fields of unbroken phase is that the SU(2) Aa fields with coupling g up to three
loops run completely independently of the U(1) field B with coupling g′. The running of
each interaction then factorizes, and multiplies the total initial amplitude [15]. For the form
factor F :

F = FSU(2)FU(1)F0 . (117)

Where each factor obeys its own evolution equation with the trivial initial condition
F0 = 1:

∂

∂ log(Q2)
FSU(2) =

(∫ Q2

M2

dx

x
γSU(2)(α(x)) + ζSU(2)(α(Q2)) + ξSU(2)(α(M2))

)
FSU(2) ,

∂

∂ log(Q2)
FU(1) =

(∫ Q2

M2

dx

x
γU(1)(α

′(x)) + ζU(1)(α
′(Q2)) + ξU(1)(α

′(M2))

)
FU(1) . (118)

Where α′ = g′2/4π = t2Wα. The running of α (or α′) in each equation will also be
different, as the beta function differs between U(1) and SU(2).

β0SU(2) = −4

3
Ng +

43

6
,

β0U(1) =

(
−20

9
Ng −

1

6

)
t2W . (119)

We do not include the U(1) β1 here, as the full electroweak calculation may only be taken
to O(α2 log2(s/M2)). At this order only β0 is required, as can be seen in (37). We have
written the t2W factor explicitly in the U(1) beta function so the expansion of the running of
the coupling (37) is still in terms of α and not α′. Ng = 3 is still the number of generations.

The initial condition F0 is taken as the sum of the contributions from each interaction:

F0 = 1 +
α

4π

(
F (1)

0
SU(2)

+ F (1)
0

U(1)

)
. (120)

13The initial scale of the infrared evolution equations in our analysis is always set to be M2.
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The anomalous dimensions γ, ζ, and ξ as well as the initial condition F0(M2) may be
calculated in U(1) in the expansion-by-regions approach as with SU(2), but it is easier to
simply use our SU(2) results directly. This is a simple procedure since we calculated F in
SU(2) for scattering off of an external Abelian field; there is no untoward matrix structure
to deal with in the translation to U(1). In fact, the only SU(2) parameter entering the final
results for these quantities at one loop is the Casimir operator CF . This quantity enters the
amplitude through the two interaction vertices from the SU(N) boson exchange; each vertex
carries a copy of ta, and their product is summed over. We can compare the interaction
vertices for U(1) and SU(2):

U(1): ig′
Y

2
γµ , SU(2): igγµta . (121)

CF in SU(2) is just the square of the coefficient of igγµ. We can then reproduce the U(1)
form factor from our SU(2) result by making the substitution:

CF → t2W
Y 2

4
. (122)

At the current time ξ(2) is unknown at two loops in the full electroweak model. We
then present the electroweak contribution to Bhabha scattering at two loops only to the
log2 s/M2 term, or in the next-to-next-to-leading logarithmic approximation. At this order
we still need γ(2) in SU(2) and U(1), and it depends directly on the weak isospin Tf of the
theory, the Casimir operator CA, and the number of dirac fermions nf . U(1) has no matrix
structure; its only generator is unity. Therefore Tf → 1 in U(1). The adjoint representation
of a Lie Group is the representation formed by matrices of the structure constants fabc

which define the commutation relation for the group generators. Being an Abelian group,
the structure constants for U(1) are all identically zero and hence the quadratic Casimir
operator in the adjoint representation CA = 0. The correct values for nf including Higgs
coupling are given in [15]. For U(1): Tfnf → 5Ng/3 and Tfns → 1/2. The form factor in
U(1) is then completely determined in our precision by:

γ(1) = −2t2W
Y 2

4
,

γ(2) = t4W
Y 2

4

(
200

27
Ng +

8

9

)
,

ζ(1) = 3t2W
Y 2

4
,

ξ(1) = 0 ,

F (1)
0 = −t2W

Y 2

4

(
7

2
+

2π2

3

)
. (123)

γ(2) gains an extra power of t2W because it is one order higher in the expansion around
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α/4π. It is important to remember both left and right chiral particles may interact through
U(1), but they have different hypercharges YI and must be distinguished in the final ampli-
tude.

The factorizing of the reduced amplitude Ã is made more complicated by the vector
structure of the SU(2) contribution. We remind ourselves Ã is expressed in a flavour basis
{Aλ,Ad} where to restate (30):

Aλ = ψ̄2γ
µtaψ1ψ̄4γµt

aψ3 ,

Ad = ψ̄2γ
µψ1ψ̄4γµψ3 . (124)

Solving the evolution equation gave us (46):

Ã = P exp

{∫ Q2

M2

dx

x
χ (α (x))

}
Ã0(α(M2)) . (125)

Where the soft anomalous dimension χ is a matrix in SU(2). We can then write the
reduced amplitude as:

Ã = exp

{∫ Q2

M2

dx

x
χ
U(1)

(α (x))

}
P exp

{∫ Q2

M2

dx

x
χ

SU(2)

(α (x))

}
Ã0 . (126)

With the initial condition Ã0 given by:

Ã0 = Ã0
U(1)

(α(M2)) + Ã0
SU(2)′

(α(M2)) . (127)

The U(1) interaction is blind to flavour, and so does not have the matrix structure of the
SU(2) interaction. The U(1) soft anomalous dimension χ is a scalar, and may be determined
from the χλd component of the SU(2) χ matrix. At next-to-next-to-leading logarithms only
the one loop value is needed. In the S channel where the chirality of the initial and final
fermion lines are I and J respectively:

χ(1) = t2WYIYJ log

(
1− x
x

)
. (128)

The most drastic change in the switch from pure SU(2) to the electroweak model is in the
initial condition Ã0. For mathematical consistency the U(1) contribution must be expressed
as a vector in our flavour basis. The Aλ must be zero since the U(1) interaction does not
contain any ta matrices. We can then write the contribution as:

Ã0 IJ
U(1)

= t2W
YIYJ

4

(
1 +

α

4π
Ã(1)

0 IJ
U(1)

)(
0
1

)
. (129)

The one loop value depends on chirality:
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Ã(1)
0 IJ
U(1)

= t2W
YIYJ

4

(
δIJf(

u

s
,
t

s
)︸ ︷︷ ︸

Same chirality

− (1− δIJ)f(
t

s
,
u

s
)︸ ︷︷ ︸

Different chirality

)
− t2W

(
100

27
Ng +

4

9

)
. (130)

Diagramatically, this term gives us the contribution from box diagrams with two B
bosons. The SU(2) value for Ã(1)

0 already in our possession gives also the contribution from
box diagrams with two Aa bosons. Contributions to Ad come when the two bosons in the
loop are identical; the product of two identical ta matrices is proportional to the identity
matrix, when summed over all a we get a contribution proportional to CF with no flavour
structure. However, there is a third box diagram not accounted for by either term; the
mixed box diagram with one each of the Aa and B bosons. Since this diagram includes
the exchange of an Aa, both fermion lines must be left-handed for it to occur. Also, each
fermion line will have a single copy of t3, so this will contribute to the Aλ term. It is natural
to include this diagram with the SU(2) contribution to Ã0. The magnitude of the term is
t2W

YIYJ
4
f(u/s, t/s), but this gets doubled because of the two permutations of the A3 and B

in the loop. We then define:

Ã0
SU(2)′

= Ã0
SU(2)

+
α

4π
t2W
YIYJ

2
f
(u
s
,
t

s

)( 1
0

)
. (131)

This constitutes all the information we need to assemble the electroweak Bhabha am-
plitude in the S channel. Since each fermion line may be left or right handed we split
the F2 from (38) into the contribution from each line separately. Since the SU(2) interac-
tion only couples to left handed particles, we know the SU(2) contributions FR = 1 and
ÃLR = ÃRL = ÃRR = 1. The final result will be:

ASIJ =
ig2

s
FIFJÃIJ . (132)

This was first calculated in [15]. To finish the calculation we follow the same procedure
of employing crossing symmetry and analytic continuation to derive the amplitude for scat-
tering via the T channel, then simply sum the amplitudes and take the modulus squared to
determine the cross section. Due to the presence of two couplings in the electroweak model,
g and gtW , we can not perform the simple factorization as in the SU(2) calculation which al-
lowed us to write the coupling in the Born cross section as α(s). Instead the full electroweak
cross section will be expressed with α = α(M2) everywhere, even at the Born level. This
will introduce new logarithmic corrections from the running of α, which are included simply
by the straight application of (37). There is only one subtle problem left to address; how to
differentiate the massless photon from the massive W± and Z0 bosons.
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4.3 QED Subtraction: Making Room for Bremsstrahlung

An important quality of the electroweak amplitude we have calculated is that it is finite. The
divergences we ran into in calculating the anomalous dimension parameters only occurred
because of the expansion by regions procedure; extending the limits of integration beyond
the range where our approximation of the integrand was valid. For instance the ‘hard’ part of
the form factor integral suffered from infrared divergences. The advantage of the expansion-
by-regions method is these divergences cancel with those from other regions to give in the
end a finite result.

However, we know physically the amplitude we have calculated should be infinite, because
the photon is massless. At one loop in QED, the form factor resulting from photon exchange
is infrared divergent. This divergence is traditionally regularized by assigning the photon a
small mass λ [20]. This successfully makes the loop integral finite, but makes the scattering
amplitude logarithmically dependent on λ. In the limit me → 0 this dependence shows itself
through terms proportional to logQ2/λ2 and log2Q2/λ2, with Q the Euclidean momentum
transfer.

This exclusive scattering cross section will still be infinite as λ→ 0. The solution to this
problem is to instead look at the inclusive cross section; that is the scattering cross section
with real radiation. When the radiated particle is a photon, these processes are referred to
as Bremsstralung radiation. Any physical detector of a finite size will only be sensitive to
photons above a certain frequency ωres. Photons below this frequency will not be detected
by the experiment, and should be included in the total cross section. That is, a complete
study of Bhabha scattering is really looking at the process e+e− → e+e−+nγsoft. When the
cross section for Bremsstralung radiation is calculated, the result includes terms proportional
to logω2

res/λ
2 and log2 ω2

resλ
2. The coefficients of these terms are identical to those of the

logarithms of λ in the exclusive result, except they differ by a sign. In the total inclusive
result then, the logarithmic dependence will be of the form logQ2/ω2

res, a fully physical
quantity [32,33].

This procedure is not necessary for the W± and Z0 bosons, their mass acts as a built in
infrared regulator, so their amplitudes are finite. We are now faced with the most drastic
breakdown of the equal mass limit assumed to this point. We have been operating under
the assumption all four electroweak bosons Aa and B are mass eigenstates with the same
mass M . This has allowed us to express all Q2 dependence in terms of a single mass scale,
which is a combination of the dependence from each individual boson. However, for practical
reasons we want to separate the contribution from the photon. For our result to be useful
to experimental work, the dependence on the photon mass λ must be made explicit so the
inclusive result with radiative corrections may be properly computed.

The procedure to acquire the full Bhabha cross section in a useful form then requires
the separation of the QED contributions to the electroweak cross section. Since generally
λ� me, calculations in QED can not universally set me = 0 as we have in the electroweak
calculation. In fact, inclusion of the electron mass is necessary as it acts as a regulator
of collinear divergences in QED. Thus when separating the QED contribution we must in
principle also include terms to account for the inclusion of this new regulator. The procedure
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for performing this operation is known as infrared matching, and is beyond the scope of the
current work. For us, it will be enough to simply subtract the QED contribution to the
amplitude so it may be properly added back in at a later date.

The process of the QED subtraction is simply performed. We introduce a factor U−1 into
the scattering amplitude A. The QED factor U is simply the amplitude for Bhabha scat-
tering calculated via the infrared evolution equations in QED. Multiplying the electroweak
amplitude by U−1 then simply ‘devolves’ the QED contribution to the amplitude from Q2

back to M2, eliminating the contributions of logarithms of the photon mass.
U is calculated in a straightforward manner from the evolution equations for the electro-

magnetic U(1) interaction with mass λ. To perform the subtraction we simply set λ = M .
Since the goal of this procedure is only to eliminate the logarithmic dependence on λ, we
have a freedom in the overall normalization of U . For convenience we choose it so that
U(Q2 = λ2) = 1, thus causing U (1) = 0 and eliminating the need to perform the subtraction
on F0 and Ã0. In terms of the photon mass λ and the electromagnetic coupling αe = e2/4π
the QED factor U for the ff̄ → f ′f̄ ′ process is given by [15]:

UIJ = U0(αe) exp

{
−αe(λ

2)

4π

[(
Q2
f +Q2

f ′

)
log2 Q

2

λ2

−
(

3
(
Q2
f +Q2

f ′

)
+ 4QfQf ′ log

1− x
x

)

)
log

Q2

λ2

+
αe
π

(
8

27

(
Q2
f +Q2

f ′

)
Ng log3 Q

2

λ2

−
(

76

27

(
Q2
f +Q2

f ′

)
+

16

9
QfQf ′

)
log2 Q

2

λ2

)]}
. (133)

From this we can determine the anomalous dimensions for QED. Combinations such as(
Q2
f +Q2

f ′

)
come from the FfFf ′ part of the amplitude, whereas mixed terms like 4QfQf ′ log 1−x

x

originate in the reduced amplitude Ã. In the case of Bhabha scattering, both fermions are
electrons so Qf = Qf ′ = −1. For consistency we still expand functions in a power series in
α = g2/4π. From the electroweak relation (111) we can make the relation:

αe = s2
Wα . (134)

Simple matching with (49) then gives:
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γ(1)
e = −s2

WQ
2
f ,

γ(2)
e = −320

27
Ngs

4
WQ

2
f ,

ζ(1)
e = 3s2

WQ
2
f ,

ξ(1)
e = 0 ,

χ(1)
e = −4s2

WQfQf ′ log
1− x
x

,

β0e = −32

9
Ngs

2
W . (135)

At face value this process seems to ignore the difference between massive and massless
particles. The propagator for a spin 1 particle of mass M and momentum q, the propagator
used in the calculations of F and Ã, has the form [21]

−i(gµν − qµqν
M2 )

q2 −M2
, (136)

whereas the photon propagator is simply

−igµν
q2

. (137)

Massive particles admit an additional degree of freedom (compared to the photon) be-
cause of their ability to be polarized both transversely (like the photon) and longitudinally.
This would seem to indicate that the factor U calculated from the QED amplitude with a
fictitious photon mass and not accounting for this degree of freedom, does not fully subtract
the QED portion of the Electroweak amplitude. However, all terms in the electroweak am-
plitude corresponding to longitudinal degrees of freedom are suppressed by a factor of M2/s,
and are neglected in this calculation. At the current order of accuracy, only transverse de-
grees of freedom contribute to the amplitude and the QED subtraction is valid. The only
other discrepancy, the extra term qµqν/M

2 in the numerator of (136), does not contribute
at all due to gauge invariance [34]. Our treatment of the QED portion of the electroweak
amplitude then is justified, and we may write our final amplitude for Bhabha scattering in
the S channel:

AIJ =
ig2

s
FIFJÃIJ U−1

IJ . (138)

4.4 The Effect of Mass Splitting

The last step before presenting the final electroweak cross section is to take into account the
difference between MW and MZ . The corrections to the amplitude are introduced perturba-
tively in the small parameter δM .
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δM ≡ 1− M2
W

M2
Z

≈ 0.2 . (139)

We only keep corrections linear in δM . From the SU(2) results we see that the two
loop corrections enter the cross section at ∼ 1%. Including these mass splitting effects to
first order will increase the precision of the results to about 1 permille. The second order
corrections will enter another order of magnitude beyond this, and are negligible at this
precision.

We define the mass appearing the in the Sudakov logarithms to be MW . Thus the mass
splitting is entirely due to effects from the Z0 [17]. These effects can not effect either γ or
ζ, since these were defined to contain only contributions from the hard region, which are
independent of the mass details. It turns out the only parameters affected are the SU(2) ξ
which acquires a non zero value, and the initial conditions F0 and Ã0. The modifications
were presented in [17]. They are:

ξ
(1)
I

SU(2)

∣∣∣
δM

=
2

3
TI(TI + 1)δM ,

F (1)
0 I

∣∣∣
δM

= −TI(TI + 1)δM ,

Ã(1)
0 IJ

∣∣∣
δM

= −4 log
1− x
x

(
T 3
I T

3
J + t2W

YIYJ
4

)
δMAλ . (140)

With these we finally have all the ingredients required to calculate the electroweak Bhabha
scattering cross section.

4.5 Electroweak Cross Section - Numerical Results

With the electroweak amplitude for Bhabha scattering in hand, determining the cross section
simply requires determining the T channel amplitude then calculating the complex modulus
squared of the sum AS + AT and plugging the result into the equation (9). We also have
different chiral amplitudes which must be summed over, so our cross section will look like:

dσ

dΩ
=

1

64π2s

∑
I,J∈{L,R}

|ASIJ +ATIJ |2 . (141)

This additional chiral structure plus the additional interaction makes the electroweak
cross section much longer than the SU(2) cross section, just in shear page count. Therefore
we will present the results numerically, as nothing useful can be gained by staring at the
analytic expression which would likely span several pages. We define a contribution to the
cross section dσIJ in the following way:
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|ASIJ |2 = g4dσSIJ ,

|ATIJ |2 = g4dσTIJ ,

Re
(
(ASIJ)∗ATIJ

)
= g4σSTIJ . (142)

Thus we may write the cross section as:

dσ

dΩ
=
α2

4s

∑
I,J∈{L,R}

(
dσSIJ + dσTIJ − 2 dσSTIJ

)
. (143)

Note the renormalization scale of the Born cross section is M2, not s as in the SU(2)
calculation (93). This introduces logarithmic corrections from (37) which are included in
the numerical results. Remembering the magnitude of the electroweak Born amplitude is
T 3
I T

3
J + tWYIYJ/4 and our result (17) we can immediately determine the Born coefficients:

dσSLL
(0)

=
(

1
4

+
t2W
4

)2

(1− x)2, dσSRR
(0)

= t4W (1− x)2, dσSLR
(0)

= dσSRL
(0)

=
t4W
4
x2,

dσTLL
(0)

=
(

1
4

+
t2W
4

)2
(1−x)2

x2
, dσTRR

(0)
= t4W

(1−x)2

x2
, dσTLR

(0)
= dσTRL

(0)
=

t4W
4

1
x2
,

dσSTLL
(0)

= −
(

1
4

+
t2W
4

)2
(1−x)2

x
, dσSTRR

(0)
= −t4W

(1−x)2

x
, dσSTLR = dσSTRL = 0.

(144)

Where we have used T 3
L = −1/2, T 3

R = 0, YL = −1, and YR = −2 for electrons. The
electroweak Born cross section is then:

(
dσ

dΩ

)
Born

=
α2

64 s x2

(
(1− x)4(1 + t2W )2 + 8t4W (3− 8x+ 12x2 − 8x3 + 3x4)

)
. (145)

We now present the loop corrections to the electroweak Bhabha scattering cross section
up to O(α2 log2 s/M2). The result is presented summed over chiralities and channels. That

is we present the result for dσ
(n)
i defined as:

dσ

dΩ
=
α2

4s

[
dσ(0) +

α

4π

(
dσ

(1)
2 log2

(
s

M2
W

)
+ dσ

(1)
1 log

(
s

M2
W

)
+ dσ

(1)
0

)
+
( α

4π

)2
(

dσ
(2)
4 log4

(
s

M2
W

)
+ dσ

(2)
3 log3

(
s

M2
W

)
+ dσ

(2)
2 log2

(
s

M2
W

))]
. (146)

We present numerical results for the dσ
(n)
i as functions of x = (1−cos θ)/2. We use (111)

to express our weak coupling constant α = g2/4π in terms of the electromagnetic coupling
αe = e2/4π.
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α(MZ) =
αe(MZ)

sin2 θW
. (147)

The tangent of the weak mixing angle is determined through elementary trigonometric
relations:

tan2 θW =
sin θW

1− sin2 θW
. (148)

We are then left with only four parameters to input: αe(MZ), sin2 θW , MW , and MZ .
Numerical constants are taken from the Particle Data Group [29]. Since both αe and θW
run with interaction energy, the particular choice of renormalization scheme is important.
We use the Minimal Subtraction or MS scheme [35].

αe(MZ) =
1

127.916± 0.015
,

sin2 θW (Mz)MS = 0.23116(13) ,

MZ = 91.1876(21) GeV ,

MW = 80.399 GeV . (149)

With these values our perturbative parameter α/4π takes the value:

α

4π
≈ 0.002691 . (150)

Without further ado we present the loop corrections to electroweak Bhabha scattering.
For brevity we round all numbers in the results to two decimal places. The exact one loop
electroweak corrections have been known for some time [12]. The one loop results presented
here are in the high energy limit with mass splitting only treated pertubatively and are
presented for only comparative purposes. The one loop leading logarithm reads:

dσ
(1)
2 = −0.34− 1.11x+ 1.66x2 − 1.11x3 + 0.34x4

x2
. (151)

The one loop next-to-leading logarithm coefficient is:

dσ
(1)
1 =

1.21− 3.33x+ 5.00x2 − 3.33x3 + 1.21x4

x2

+
0.10− 0.52x+ 0.78x2 − 0.52x3 + 0.10x4

x2
log(1− x)

− 0.02− 0.49x+ 2.05x2 − 2.24x3 + 0.75x4

x2
log(x) . (152)

The one loop constant:
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dσ
(1)
0 =

0.49− 1.77x− 2.62x2 + 5.35x3 − 2.61x4

x2
+ 0.03

1− x+ x2

x
log2(1− x)

− 0.05− 0.16x+ 0.28x2 − 0.16x3 + 0.05x4

x2
log(1− x)

+
0.31− 0.24x− 0.61x2 + 0.48x3

x2
log2(x)

+
1.21− 2.52x+ 2.64x2 − 0.97x3 + 0.05x4

x2
log(x)

+
0.10− 0.44x+ 0.42x2 − 0.13x3

x2
log(1− x) log(x) . (153)

Now for the two loop results. The leading logarithmic factor is:

dσ
(2)
4 =

0.34− 1.21x+ 1.81x2 − 1.21x3 + 0.34x4

x2
. (154)

The next-to-leading logarithm is given by:

dσ
(2)
3 =− 1.43− 3.51x+ 4.82x2 − 2.92x3 + 1.07x4

x2

− 0.16− 0.81x+ 1.22x2 − 0.81x3 + 0.16x4

x2
log(1− x)

− 0.18 + 0.74x− 4.23x2 + 4.91x3 − 1.71x4

x2
log(x) ,

(155)

The next-to-next-to-leading logarithm is given by:

dσ
(2)
2 =

5.79 + 6.38x− 19.98x2 + 8.16x3 + 3.99x4

x2

+
0.05− 0.21x+ 0.30x2 − 0.21x3 + 0.05x4

x2
log2(1− x)

+
0.97− 3.28x+ 3.63x2 − 1.49x3 − 0.13x4

x2
log(1− x)

− 0.28 + 0.29x− 4.06x2 + 5.22x3 − 1.97x4

x2
log2(x)

− 3.75− 7.57x+ 9.05x2 − 4.45x3 + 0.43x4

x2
log(x)

− 0.88− 2.76x+ 2.13x2 − 0.09x3 − 0.28x4

x2
log(1− x) log(x) . (156)
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This is the extent of our knowledge of the full electroweak cross section. Unfortunately,
it is not enough to get the uncertainty to 1 permille, as even the NNLL contribution can
contribute as much as one percent to the cross section. To achieve the accuracy we require
we include the pure SU(2) contribution at the linear log (NNNLL) level. This gives us a first
order approximation of the full electroweak contribution, which is sufficient for our purposes.
As can be seen from Fig. 4 the SU(2) linear log term already enters at less than one percent,
or a few permille. Corrections to this due to the U(1) interaction, QED subtraction, or mass
splitting will enter suppressed by either a factor of t2W or s2

W = δM , both of which have
the same small magnitude t2W ≈ s2

W ≈ 0.2. Thus these corrections to the linear logarithm
will give it an uncertainty of perhaps twenty percent. However, since the two loop linear
logarithm already contributes only at the permille level, these corrections will be less than
a permille and may be ignored at our precision. We have the exact expression for this term,
but we reproduce it here numerically for completeness:

dσ
(2)
1 = − 0.30− 0.87x− 0.41x2 + 2.21x3 − 1.24x4

x2

+
4.25− 18.23x+ 36.60x2 − 35.50x3 + 12.89x4

x2
log(1− x)

+
0.63− 0.38x+ 1.88x2 − 2.13x3

x2
log3(x)

+
0.18− 0.38x− 1.75x2 + 0.03x3

x2
log2(x)

+
18.97− 10.32x+ 6.39x2 − 9.83x3 − 5.21x4

x2
log(x)

+
0.25− 0.75x+ 0.75x2 − 0.25x3

x2
log2(1− x) log(x)

− 0.63− 3.56x+ 5.25x2 − 2.31x3

x2
log(1− x) log2(x)

+
0.27− 1.60x+ 2.40x2 − 1.06x3

x2
log(1− x) log(x) . (157)

We plot the the loop corrections relative to the Born cross section in Fig. 6. As before the
shaded regions denote the kinematic domain where either t or u are less than 10M2

Z and the
Sudakov limit used in this calculation begins to falter. The one loop corrections are almost
universally negative, about an order of magnitude larger than the two loop corrections. The
two loop corrections themselves (up to O(α2 log2 s/M2)) contribute at the one percent level
at 1 TeV and about twice that at 2 TeV. The breakdown of the two loop corrections into the
individual logarithmic contributions is given in Fig. 7. As in SU(2), it can be seen the next-
to-next-to-leading logarithms are essential. A cancellation between the leading and next-to-
leading logarithms causes the bulk of the two loop corrections to be due to the log2 s/M2

contribution. The contribution from our linear logarithmic term is highly suppressed in the
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large angle area, justifying our approximation. Overall the two loop corrections enter at the
1 percent level everywhere in the angular distribution, with the largest corrections coming
from the θ ∼ 90◦ region.

10 ° 30 ° 50 ° 70 ° 90 ° 110 ° 130 ° 150 ° 170 °
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Θ
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Two Loops

10 ° 30 ° 50 ° 70 ° 90 ° 110 ° 130 ° 150 ° 170 °

-5

0

5

Θ

One Loop

Two Loops

(a)
√
s = 1 TeV (b)

√
s = 2 TeV

Figure 6: The percent correction to the Born cross section dσ(1,2)/dσ(0) versus the scattering
angle θ (in degrees) from one loop and two loop effects in Electroweak Bhabha Scattering
for
√
s = 1 and 2 TeV.

In Fig. 8 we plot the running of the Bhabha scattering corrections dσ
(1,2)
i /dσ(0) with

energy scale at θ = 50◦. Again it can be seen that although as the energy increases the
leading log contribution becomes dominant, at smaller energies in the TeV range it is the
subleading next-to-next-to-leading logarithms which govern the cross section. Below 1 TeV
the two loop corrections contribute far less than one percent to the Bhabha cross section.

We directly evaluate the corrections at
√
s = 1 TeV and θ = 50◦ to quantitatively

estimate the uncertainty.

One loop: − 3.19%


LL: −9.45%

NLL: 7.36%
N2LL: −1.10%

Two loops: 0.68%


LL: 0.62%

NLL: −0.41%
N2LL: 1.37%
N3LL: −0.90%

.

(158)
An uncertainty in the two loop linear logarithm of approximately twenty percent will only
create an uncertainty on the order of 0.2% in the cross section. We have achieved the desired
accuracy in the Bhabha cross section.
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Figure 7: The percent correction to the Born cross section dσ
(1,2)
i /dσ(0) versus the scattering

angle θ (in degrees) from individual logarithmic two loop effects in Electroweak Bhabha
Scattering for

√
s = 1 TeV.
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Figure 8: The percent correction to the Born cross section dσ
(1,2)
i /dσ(0) versus the centre

of mass energy
√
s (in GeV) from individual logarithmic two loop effects in Electroweak

Bhabha Scattering for θ = 50◦.
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5 Summary

We have successfully calculated the electroweak Bhabha scattering cross section up to next-
to-next-to-next-to-leading logarithms at two loops. The logarithmic dependence of the scat-
tering amplitude was determined through the use of infrared evolution equations, which
reduces the problem to calculating the divergences of simple diagrams in the expansion-by-
regions approach. In order to calculate the linear logarithm we neglected the electroweak
mixing between SU(2)L and U(1)Y and took it to be of a pure SU(2) nature. This was
sufficient to achieve a total accuracy of approximately one per mille.

This work constitutes the last theoretical piece required to attain the accuracy required
to implement Bhabha scattering as a luminosity measure at the ILC. Signals of new physics
tend to appear as small effects over the large Standard Model background, an experiment’s
ability to discover new phenomena rests heavily on its ability to make observations as precise
as possible. Uncertainty in the luminosity effects every absolute measurement a particle
detector makes. The inclusion of the effects calculated here will lower this uncertainty at
the ILC below that of the experiments themselves, giving them the best possible chance to
discover new physics and expand our knowledge of the universe.
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