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Abstract

Lithium-ion batteries are the leading contender for high density energy storage for

applications such as electric vehicles and personal electronic devices. While they

promise well over 4 V of potential per cell, actually realizing such high voltages is

quite difficult, given the many modes of energy loss during discharge. One dominant

loss, especially at high currents (e.g., fast-charging) is losses due to ionic transport in

the electrolyte.

Mathematical models and their computational implementation have been used to

simulate Lithium-ion battery discharge to better understand its complex physics and

to optimize its design. Because of the complex and dynamic nature of Lithium-ion

batteries, these models are transient and highly non-linear. A difficulty arises in that

the scales on which key physics occurs varies over many orders of magnitude, meaning

simulations often decouple scales to some degree to conserve computational resources.

In this thesis, a transient and non-linear numerical model is developed for the

lithium-ion battery macro-scale, that is, the scale on which heterogeneities due to

microscopic components can be ignored. Additionally, the electrolyte is studied sep-

arately by isolating the separator contribution by modelling a symmetric Li-foil cell.

The numerical model is supported by a rigorous set of mathematical derivations for

the governing equations. This process utilizes concentrated solution theory and the

finite element method.

First the symmetric cell system is verified by reproducing the voltage response

to a constant current step reported from experiments in the literature. A sensitivity

analysis is performed for the electrolyte characteristics and discussed in terms of their
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influence on cell performance. After concluding that the electrolyte model accurately

reproduces the real-world system, the model is applied to a novel electrolyte for

which no previous numerical modelling has been performed. It is concluded that

the experimental results do not match what is expected from the model, due to the

non-reproducibility of the experimental data.

The full macro-scale battery model is analyzed in terms of its voltage response

and solution variable profiles during a constant current discharge. Following a study

of the cell’s hysteresis, the battery’s capacity and efficiency are calculated. Another

sensitivity analysis provides insight into the importance of the active material’s char-

acteristics on cell performance. Finally, running the battery at different current den-

sities confirms that increasing the rate of cell charge/discharge will negatively impact

the efficiency of the system.

Keywords: Lithium-ion battery, Numerical simulation, Macro-scale, Electrolyte,

Finite element method, Concentrated solution theory
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Preface

This thesis is an original work by Cameron James Fenske. No part of this thesis has

been previously published.
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“So we fix our eyes not on what is seen but what is unseen. For what is seen is

temporary but what is unseen is eternal.”

-2 Corinthians 4:18
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Dedicated to my lovely wife, Tiana: who reminds me that beauty is more than just

an equation.
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Chapter 1

Introduction

1.1 Motivation

Ever since the invention of the first battery, the Volta-pile, by Italian physicist

Alessandro Volta in 1800, the world has been thrust into the age of portable electric-

ity. With the ability to store electric energy in the form of a chemical potential for

use at a later time, one now had a convenient method of harnessing raw electrical

energy with the ability to use it for new and greatly diverse applications.

Whether breakthroughs in battery technology drove industrial innovation or vise

versa, the emerging field of electrochemistry has produced newer and more powerful

batteries, capable of keeping up with society’s ever increasing demand for effective

energy storage. Examples of such breakthroughs would include Gaston Planté’s in-

vention of the first rechargeable lead-acid battery in 1860 and Carl Gassner’s first

dry-cell in 1887. With the development of the first modern Lithium-based battery

due to Whittingham, Goodenough, and Yoshino’s development of porous electrode

intercalation in 1974, the world was presented with the possibility of harnessing the

most electronegative atom on the periodic table. Theoretically, this technology would

be able to deliver over 4 V of potential; allowing for power densities that far exceed

all other battery options. Additionally, Lithium-ion batteries (LiB) promise large

energy densities [1], negligible self-discharge [2], good thermal stability [3], and minor

hysteresis [4]. Realistically, however, the practicality of realizing those potentials in
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a safe and cost effective manner has proven to be incredibly illusive. The challenges

facing LiB development include the cost of materials, safety due to dendrite growth,

mass transport loses, and cell expansion.

As the world today looks to green energy sources and storage techniques to assist

in mitigating the global climate change crisis, a renewed conquest is being waged to

finally unlock the full potential of LiBs. However, with new materials, geometries, and

operating conditions emerging each day, it is neither efficient nor effective to experi-

mentally measure all battery configurations in order to direct and streamline future

research. One solution to this issue is to create a comprehensive continuum-based

multi-physics framework of the battery that can be used to simulate its performance.

Such a mathematical model can also be used to understand the internal characteris-

tics of a cell in operation, which is something that is very challenging experimentally

due to poor accessibility to the electrode and the micron-size thicknesses of the com-

ponents. Furthermore, this framework could be computationally adapted, allowing

for a “virtual twin” battery simulation for design optimization.

A suitable continuum model will accurately describe the cell’s physics on both

a cell-level (macro-scale) and a pore/agglomerate/particle level (micro-scale). The

macro-scale physics model will track general concentration and potential profiles

within all phases of each layer in the cell. Not only will a strong macro-scale model

need to account for the kinetic reactions between phases, but should also consider any

relevant porosity, thermal, and strain effects. On the pore/particle scale, the model

must account for the composition and structure of the pores, how solid Lithium dif-

fuses radially into the active material particles, and how Lithium intercalation may

non-uniformly cover the reacting surface due a variety of mechanical factors. The two

scales must be completely coupled through the dependencies of the macro-scale coeffi-

cients on the micro-scale physics, and vise versa. Additionally, a complete model will

also tackle the molecular scale, with the use of either molecular or quantum theories.

Although West et al. [5] did propose a strictly 1D macro-scale model, currently
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the most common approach to modelling LiBs is based on the pseudo 2-dimensional

(P2D) formulation [6, 7], also known as the Doyle-Fuller-Newman (DFN) model. Be-

cause this model balances strong agreement to experimental results [8] with relative

ease in computation (due to the micro-scale not being fully resolved), it has become

the standard in the LiB modelling community. However, because the P2D model is

1-dimensional in the macro-scale, it precludes any study of multi-dimensional effects

due, for example, to non-homogeneous heating of the cell (due to a short) or local

changes in transport lengths (due to layer heterogeneities during manufacturing or

expansion of the active material during operation). Also, the approximations made

about the particles eliminates any opportunity of investigating how characteristics

within the microstructure might effect cell performance on both a micro- and macro-

scale. A considerable number of models have been proposed to either simplify or

expand the P2D model [9–27], but few have been suggested that would lift the P2D

approximations for the micro-scale altogether as well as allow for multi-dimensional

macro-scale modelling. Therefore, there exists a gap in the literature for a com-

prehensive and streamlined approach to studying the fully-resolved physics within a

LiB.

1.2 Background

Batteries work by harnessing the chemical potential of oxidation-reduction (redox)

reactions and converting it into electrical energy. A redox reaction is one in which the

oxidation numbers of the reactants change, which can result in either a positive or

negative energy release, depending on the electrochemical potentials of the reactants

versus the products. For a battery, the reaction is split into two half-cell reactions,

which, when combined, create the full reaction. Batteries isolate these two half-cell

reactions to separate electrodes, separated by an electrically insulating porous media

in which ions can travel, and connected by an electrical circuit which allows electrons

to be externally transferred between them. Therefore, unlike other redox reactions,
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such as corrosion or combustion, the energy is not lost to heat but can instead be

harnessed as usable electricity. Additionally, electrochemical conversion devices can

be much more efficient than other methods of harnessing chemical energy, as they are

not bounded by the Carnot cycle [28].

The cell is the basic building block on which battery stacks are built. They always

have three main components: an anode, a cathode, and a separator. A schematic of

the cell and reactions are given in Figure 1.1. The anode is the electrode at which

electrons are lost through oxidation, resulting in the reacting species increasing its ox-

idation number. The cathode is the electrode at which electrons are received through

reduction, which decreases the reacting species oxidation number. The separator

is the medium between the two electrodes in which ions are transferred, but which

inhibits the transfer of electrons. The separator electrolyte is often a liquid with dis-

solved salts, however, recently cells are being developed with solid electrolytes [29] or

even molten salts [30].

Electrodes are chosen based on numerous factors, including being an effective oxi-

dizing/reducing agent, having good conductivity and stability, the low cost of materi-

als and fabrication, and being light-weight. For certain battery configurations, it may

be advantageous to create a porous electrode, in which reactions occur volumetrically,

instead of at a planar interface. The most common types of anodes being researched

and actively developed are graphite, silicon-based compounds, and Lithium metal

[31]. Graphite anodes work by allowing Lithium-ions to intercalate into the gaps

created within the molecular structure. Graphite has the advantage of not allowing

dendrites to form, however, it has a relatively low capacity compared to other options.

While silicon-based anodes theoretically have a larger capacity than graphite, instead

of intercalating, the Lithium-ions react with the silicon to produce an entirely new

structure. This causes swelling of the anode, resulting in cracking and lost capacity

after multiple charge/discharge cycles. A planar Lithium-foil anode has the largest

capacity, however, it must contend with dendrite growth and higher material costs.
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Figure 1.1: Schematic of Lithium-ion battery containing Lithium foil anode and NMC
cathode.

The cathode is currently the limiting component in LiB design [32] and, there-

fore, dominates the research in this field. Porous electrodes contain active material

particles, connected by a conductive additive and binder. During fabrication, these

components are combined to create what’s known as the electrode slurry. This slurry

is coated onto Aluminium current collectors, dried, and compressed to create the

desired porosity [33]. The reactions occur at the surface of the active material. Dur-

ing discharge, a free electron existing in the solid phase and a positively-charged

Lithium-ion combine in a reaction site. The solid Lithium, can then diffuse inside

the active material particle lattice, freeing up the surface reaction site for future re-

actions to occur. During charging, the opposite occurs, where Lithium atoms at the

surface of the active material will split with the electron and be released into the

electrolyte. The active material is a metal oxide (i.e., XO2) in various molecular
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structures, including layered oxides, spinal oxides, and polyanion oxides [34]. Two of

the most common layered compositions, particularly for electric vehicle applications,

are Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2, or NMC) and Lithium

Iron Phosphate (LiFePO4, or LFP). While both have taken significant portions of the

LiB industry, they do differ and are useful for different applications. NMC has higher

power densities and is less susceptible to temperature variance, whereas LFP has a

higher energy density, is more cost effective, and experiences less deterioration over

time, both with and without use.

A suitable electrolyte is chosen based on the criteria of being a good ionic con-

ductor, not being reactive or easily flammable, inhibiting the growth of dendrites,

and being low cost and not prone to change properties or density when heated. The

types of available electrolytes include liquid electrolytes, solid polymer electrolytes,

gel polymer electrolytes, solid inorganic electrolytes, and hybrid electrolytes (being a

combination of the others) [35]. Liquid electrolytes dissolve an electrolyte in either

an organic or aqueous solution, allowing ions to move past one another as current is

passed through the cell. Organic electrolytes dissolve Lithium hexafluorophosphate

(LiPF6) in a mixture of organic carbonates, such as ethylene carbonate (EC) with

dimethyl carbonate (DMC), propylene carbonate (PC), diethyl carbonate (DEC), or

ethyl methyl carbonate (EMC) [36]. Each mixture offers its own advantages and

disadvantages, and is chosen based on the situation. Polymer electrolytes have the

advantage of a diminished risk of dendrite growth, however, tend to suffer from low

ionic conductivities. Solid polymers generally use Lithium salts (such as LiTf, LiTFSI,

LiBETI, LiClO4, and LiBOB), dissolved in Poly(ethylene oxide) (PEO). Gel polymer

electrolytes, typically Poly(vinylidenefluoride) (PVdF), offer an additional option,

with increased safety compared to solid polymer electrolytes, but with the downside

of reduced mechanical strength (i.e. the ability to withstand physical strain). Inor-

ganic solid electrolytes (ISE) are used for all-solid-state batteries; a promising option

for increased energy and power densities, safety, and durability [37]. Finally, hybrid
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electrolytes incorporate a combination of the aforementioned electrolytes to tailor the

electrolyte for specific needs.

A full cell design must also account for how each component of the system will inter-

act, which configuration the battery will take (e.g., cylindrical, button, pouch, etc.),

and whether the battery is a primary (non-rechargeable) or secondary (rechargeable)

battery.

During the discharge of a LiB, the Lithium-ions are created at a solid Lithium foil

anode when Lithium undergoes the oxidation half-cell reaction. This reaction, given

as a reduction, is,

Li+ + e−
charge−−−−−⇀↽−−−−−

discharge
Li(s) (1.1)

The electrons are carried through the external circuit due to the potential differ-

ence that will develop between the two electrodes. The Lithium-ions, on the other

hand, are transferred through the electrolyte separator until they react back into solid

Lithium at the cathode,

Li+ + e− +Θ
discharge−−−−−⇀↽−−−−−
charge

Li(s)—Θ (1.2)

where Θ is a reaction site in the active material. For the NMC composition, which

will be used in this work, the reaction at the surface of the active material particles

will be,

Li+ + e− +NiMnCoO2

discharge−−−−−⇀↽−−−−−
charge

LiNiMnCoO2 (1.3)

Each half-cell reaction has an associated potential, with respect to an arbitrary

standard. Generally, this is the Standard Hydrogen Electrode (SHE), however, in

this work, for reasons discussed in detail in Chapter 2, it will be with respect to

a Li/Li+ reference electrode. Reaction (1.1) will have a half-cell potential of 0 V.

The cathode half cell-potential for a NMC cathode is 4.3 V at standard atmospheric

temperature and pressure (SATP) [38]. The open cell voltage (OCV) is the difference

of the two half-cell reduction potentials. For NMC, at SATP and 1 M electrolyte

concentration, this value is 4.3 V.
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Once the cell begins to pass current, the realized voltage will always be less than the

OCV, as losses will occur due to ionic transport and overpotential. The transport of

Lithium-ions occurs through diffusion, being the propagation of a species from regions

of high concentration to low concentration; and migration, being the response of a

charged particle to an electric field. Both of these modes of transport accompanies

an energy loss. Transport via convection, which is due to the bulk motion of the

fluid, is not considered as the battery solvent is static. An overpotential is the step in

electrochemical potential that will develop at an interface in which reactions occur and

will dictate the speed and direction that the reactions proceed. The overpotential is

non-reversible and will therefore decrease the cell voltage based on the current density

passing through the cell.

Battery performance is generally characterized by investigating the cell discharge

curve created by measuring the cell voltage as a function of the dimensionless state of

charge (SOC) of the active material. The SOC of the active material during discharge

can be calculated, assuming constant current and that the system is fully charged at

t = 0, through the equation,

SOC(t) = 1− i

Fδcϵccsat
t (1.4)

where i is the current, F is Faraday’s constant, δc is the thickness of the cathode, ϵc

is the cathode porosity, csat is the saturation concentration of Lithium in the active

material, and t is the time. Additionally, the discharge curve will be highly dependant

on the current density at which the cell was run. Generally, the current is expressed in

terms of a non-dimensional C-rate; a measure of the number of identical batteries that

could be charged or discharged in one hour, given a constant current density. While

batteries are usually rated at 1C (meaning it takes exactly one hour to discharge

the battery), C-rates can cover several orders of magnitude, both larger and smaller,

based on the application. The definition of C-rate is given by,

C-rate =
i(1 hr)

zLi+Fδcϵccsat
(1.5)
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Figure 1.2: Schematic of the Lithium-ion battery at different scales, i.e., (a) battery
stack level, (b) cell level (macro-scale), and (c) particle level (micro-scale).

The derivation for both equations is provided in Appendix A.1.

Because of the complexity of the battery system, its analysis and modelling has

generally been divided into three spatial scales [27], as presented in Figure 1.2. Each

scale will play a crucial role in increasing battery performance, decreasing cost, and

maintaining safety during operation. The first level is the full battery stack. The

challenges of this level are to ensure equal utilization of each cell in the stack, proper

thermal management, and account for geometric constraints. The middle scale, re-

ferred to as the macro-scale, corresponds to the continuum mechanics within a single

cell. It is concerned with electrode and separator dimensions, electrolyte transport,

and spatial variances in concentration and potential, neglecting local heterogeneities.

The third scale is the particle level, or micro-scale. This scale concerns individual
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active material particles in the cathode and the reactions and solid diffusion within

them. It is small enough to assume macro-scale concentration and potential variances

are constant and only consider local heterogeneities. Theoretically, there are smaller

scales, including molecular and quantum scales, however, these will be left out of

this discussion because they are not usually included in battery models and are not

investigated in this work.

1.3 Literature Review

This section will provide a brief overview of the literature pertaining to the simulation

of Lithium-ion batteries. It will highlight the direction of research, the challenges

faced, the common approaches, and any perceived gaps.

First, this review will investigate the models used to simulate a Lithium-ion bat-

tery, progressing from heaviest computational expense, to least. Then, a closer in-

vestigation will be provided for the homogenized method, outlining previous works

and their results. Finally, this review will investigate the use and verification of the

concentrated solution theory in LiB simulation.

1.3.1 Electrochemical Models

The performance of a Lithium-ion battery is the result of the interdependent physics

operating on vastly different time and length scales. Being able to create a mathe-

matical abstraction of the the holistic system is necessary for understanding the inter-

dependent multi-physics better and for allowing accurate predictions that can supple-

ment and guide experimental research. At the smallest level are atomistic/quantum

models, which describe the individual nano-scale interactions within a very small

locality and for very short time-scales [39–43]. These scales can provide important

information but are not usually included in a full battery model due to the unreal-

istic fidelity that they would entail. By representing the discrete ions and atoms on

a continuum, one can model battery performance on larger time and length scales.
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Figure 1.3: Electrochemical models presented in terms of their predictability versus
computational time.

On the other extreme are full battery stack models [22, 44–48] and techno-economic

models that predict the utilization and degradation of batteries over the span of many

years [22]. While models on every scale are important for understanding the battery

physics fully, this work will be concerned with modelling the electrochemical system

within a single cell.

The compromise that is made when modelling any system is between the degree of

accuracy required versus the resulting computational time and resources. Therefore,

electrochemical battery models can be arranged in terms of the degree of fidelity to

which they are resolved. The various models discussed in this section are presented,

from most to least computationally laborious, as outlined in Figure 1.3 [27].

The most complex model, short of resolving the atomistic scale, is known as the

micro-scale model [49–51]. This model captures the entire cell domain, yet with a

fine enough mesh to model the individual microscopic components, which can be

on the order of microns, hence the name. In order for the potential of this model

11



to be fully realized, an accurate 3D representation of the micro-structure must be

obtained. Researchers have used various imaging techniques to recreate the micro-

structure, such as X-ray Computed Tomography (XCT) [52] and Focused-Ion-Beam

Scanning Electron Microscopy (FIB-SEM) [53]. In the micro-scale model, transport

is fully resolved within the porous media, including intercalated Lithium and electron

transport in the solid material and electrolyte transport in the pores. The reactions

are modelled in the electrodes at the interface between the electrolyte and active

material. Because this model is fully resolved, there is no requirement to specify

porosity, tortuosity, or effective transport parameters because they are already ac-

counted for through the use of an accurate geometry. Since the micro-scale model

is the highest fidelity model, it will provide results closest to reality and can there-

fore be used for situations where the assumptions made in simpler models will not

apply. This includes complicated micro-structures and cell geometries, cases where

the micro-structure changes throughout the domain, and the allowances for other

battery phenomena to be studied, such as active material cracking. However, this

model is extremely computationally demanding, meaning it is unrealistic for most

applications, and it requires the accurate micro-structure recreation, which can be

very difficult to obtain. Therefore, a simplification to the micro-scale model that will

drastically decrease computational resources, while maintaining a significant degree

of accuracy, was developed, called the homogenized model.

The homogenized model relies on the observation that most solution variables,

when solved using the micro-scale model only change substantially over large length

scales (i.e. at the cell-level). Therefore, this model treats the porous media as two

over-lapping continua, instead of distinct pore and particle domains. As such, het-

erogeneities at the microscopic level are neglected, allowing for a much courser mesh

and lower computational cost than the micro-scale model. This simplification has

three results: first, the gradients in solution variables are no longer calculated at each

point but instead averaged over the microscopic domain to describe cell level driving

12



forces. Second, certain parameters that describe transport will be described in terms

of their “effective” value, that is, the value accounting for the porosity and tortuosity

of the porous layer. Third, the reactions will no longer be described at the inter-

face between the active material and electrolyte, but instead as a volumetric source

term, given the active area per unit volume of the porous media. An issue arises,

however, in that the diffusion of intercalated Lithium within the active material is

very slow, resulting in substantial gradients within each microscopic particle. There-

fore, the concentration of solid Lithium cannot be extended to a volume averaged

property. The homogenized model is therefore split into two: the macro-scale model

and a representative micro-scale model. The macro-scale model is the continuum

based model previously discussed, that governs the cell-level variances in the elec-

trolyte concentration and electric potential. The micro-scale model component is a

high fidelity simulation, calculated at each point in the macro-scale domain, in which

the micro-structure is fully resolved for a representative volume, given the values of

the macro-scale variables at that location. Two methods for coupling these scales

are predominant. First, both scales can be resolved simultaneously by concurrently

solving the governing equations and transferring the state variables between them

in real time [54, 55]. Or alternatively, the surrogate coupling method could be em-

ployed which would involve preprocessed micro-scale solutions that are stored in a

database and looked up during macro-scale simulation [56]. While the surrogate cou-

pling method reduces computational time, it assumes quasi-static conditions, which

is not strictly appropriate for temporal simulations. The representative volume is

either, like the micro-scale model, obtained through advanced imaging techniques or

it can be artificially recreated based on theory and containing all the features of a real

electrode [57–60], i.e., volume fractions, length-scales, and particle shapes. Because

the representative volume can be much smaller than the actual volume it represents,

this coupled model will have a significant decrease in computational time and cost,

regardless of the method used to obtain the micro-structure. The homogenized model
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is advantageous because it drastically decreases computation while still allowing for

3D effects at the cell and particle levels to be considered. Disadvantages of this model

are that, unlike the micro-scale model, clear and accurate estimations of the effective

parameters are necessary for a quality model. Many relations exist for how these

parameters can be obtained (such as the Bruggeman correlation which is discussed

later), however, it has been concluded that these are highly dependent on the micro-

structure and therefore must be reconsidered for each new porous media. Also, for

certain applications/geometries in which the fidelity of the homogenized model is not

necessary, further simplification can be made. The predominant simplification made

is the P2D, or DFN, model.

The pseudo 2-dimensional model, which was originally conceptualized well before

the homogenized model [7, 61, 62], can be derived from the homogenized model, given

certain simplifications. The main labours of the homogenized model include the re-

solving of the micro-structure at each location and the use of a 3D geometry. The

P2D model assumes one-dimensional cell-level physics only and models intra-particle

diffusion using a generic spherical particle. As a result, both major computational

costs from the homogenized model are by-passed. The radius of the representative

spherical particle describes the diffusion within the active material and constitutes

the “pseudo” dimension. Unlike the previous model, the P2D model does not ac-

count for the actual micro-structure but instead merely fits the particle radius and

porosity to experimental observations. This concept expanded upon the West et al.

model in which the intra-particle solid Lithium concentration gradients were ignored

and the reaction term was instead based off of an experimentally determined corre-

lation with the average solid Lithium concentration [5]. Because of the relative ease

in computation for the P2D model and the accuracy at which is captures the bat-

tery performance, this model has become the most popular physics-based model for

Lithium-ion batteries. The open-source P2D program, Dualfoil, which has since be-

come the standard for all other battery simulations [63], was the first computational
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model to account for the micro-scale intercalation, and as a result had a significant

increase in battery predictability. The P2D concept has also been the framework

on which many extended models have been built to account for additional battery

complexities (i.e., stress-strain effects, thermal heating and the solid electrolyte inter-

phase (SEI)) [20, 44, 45, 61, 64–88]. Additionally, various groups have extended the

P2D model to multiple dimensions using various techniques [16, 32, 89–94].

The most common simplification of the P2D model is the single-particle model

(SPM) [9]. The SPM works on a similar principle as the P2D model, in that the

diffusion of the solid Lithium radially constitutes the pseudo dimension. However,

the SPM differs based on its treatment of the spatial macro-scale dimension. In

this model, the variability in SOC of each representative particle is assumed equal,

effectively requiring only a single particle to describe the Lithium diffusion through-

out the porous electrode. This also means that the reaction rate at all locations in

the electrode will be the same, which completely decouples the two phases from one

another. The SPM’s treatment of the electrolyte varies, depending on the degree

of accuracy required. Certain formulations will still spatially resolve the electrolyte

according to CST, others will resolve the electrolyte according to DST, and still

others will neglect to resolve the spatial variations in the electrolyte properties al-

together. Because the SPM model decouples the two phases, it will result in even

faster simulations than the P2D model, however, the major simplifications assumed

in its formulation will restrict its usage to a very narrow range of applicability, i.e.,

for applications in which a low level of accuracy is acceptable. One application in

which the SPM model returns comparable results, however, is for cases with very

thin electrodes and low current densities, as there will not be much spatial variation

in active material particles anyway [10]. Another common simplification to the P2D

model is the ohmic-porous electrode model, in which the spatial variation in potential

is considered and the variation in concentration is disregarded for both the solid and

electrolyte phases [11, 12]. While this can be particularly useful when trying to op-
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timize electrode dimensions and porosity [13, 62], this simplification is only valid for

systems in which mass-transport losses will be minimal (i.e. for thin electrodes and

non-viscous electrolytes). An intermediate step between the ohmic porous-electrode

model and the P2D model is to use polynomial expressions for the concentration pro-

files. This expands the usefulness and accuracy of the approximation while retaining

quick simulation times [14–16].

Finally, the fastest and least physical method is to model the Lithium-ion battery

using an empirical model. The most common approach is to create an equivalent cir-

cuit model (ECM) with fitted parameters based on previous experimental observation

[95, 96]. Because this model is void of any physical grounding, it is only useful for

quickly returning results within the range of its parameterization and, therefore, can-

not be used for any novel chemistries, operating conditions, or battery configurations

[97].

Each model is important for different applications. It would be irresponsible to

use a full micro-scale model when only rough estimates are required and likewise,

very unhelpful to use an empirical model when trying to understand the underlying

physics during cell discharge. Therefore, there must be research directed into each

level of model fidelity, tailored for the relevant application. As this work will focus on

the homogenized model implementation, a closer investigation of its implementation

be presented in the next section.

1.3.2 Homogenized Model Implementation

Three instances of the implementation of the homogenized model have been identified

in the literature. These instances will be discussed in this section.

Kashkooli et al. used the homogenized model to study LFP cathode performance

under high current densities [54]. It was noted that the P2D model was insufficient at

predicting the experimentally observed performance drop because of the substantial

influence of the micro-structure on cell behaviour at high current densities [98–101].
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Kashkooli et al. used XCT to image the 3D LFP micro-structure and virtually recre-

ated its digital twin, saturated with a 1 M LiPF6 electrolyte. The macro-scale was

modelled using the 1-dimensional CST formulation. Therefore, this model was only

useful for geometries with unidirectional macro-scale transport. These two scales

were coupled using state variables, passed iteratively between the two scales until

a reasonable threshold was achieved. Their simulation was solved using COMSOL

Multiphysics®. Kashkooli et al. observed that their homogenized model was con-

siderably more accurate at modelling battery performance compared to the standard

P2D model. This was especially noticeable when modelling the method and time-scale

of cell failure. Additionally, the homogenized model was more accurate at predict-

ing the spatial SOC within the cathode, noting that there exists larger disparity in

solid Lithium concentration within each micro-scale representative volume than was

accounted for in other models. Their model provided insight into how the micro-

structure effects cell performance, however, because it was developed in 1D only and

on a commercial software, it does not allow for complicated macro-scale geometries

or the opportunity for other groups to expand upon their model.

Kim et al. also used the homogenized model approach to study LFP performance

[55]. They used FIB-SEM to reconstruct the representative micro-structure which

they implemented into COMSOL Multiphysics®. The macro-scale was modelled

in 1D with a LiPF6 in EC-DMC electrolyte, treated with CST. Their simulation

also incorporated thermal and mechanical models. Kim et al. observed that larger

concentrations and concentration gradients were observed at the surface of the particle

than at the particle’s center. These observances were magnified for larger C-rates.

They concluded that higher temperatures and larger C-rates also induce larger stresses

on the active material particles. They observed a relationship between capacity fade

in particles that were about to crack.

Finally, Du et al. created a generic homogenized model, not specific to any par-

ticular cathode or electrolyte composition [56]. Unlike the previous two instances
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of the homogenized model, Du et al. created an artificial micro-structure based on

theory, and connected the two through a surrogate coupling. Contrary to Kashkooli

et al. and Kim et al., Du et al. did not observe significant cell performance depen-

dence on the solid Lithium distribution within the active particles and likewise, did

not observe much advantage to using the homogenized model over the standard P2D

model. While this model offers a unique method of coupling the two scales, which

was proven to greatly reduce computational time, it returned conclusions that were

contrary to what has been both experimentally and numerically observed. Unfortu-

nately, this work was neither applied to a specific battery configuration nor validated

with experiments or with other homogenized models.

Based on this review, it is concluded that the process taken by Kashkooli et al. and

Kim et al. would be used, in which the representative micro-structure is obtained from

advanced imaging techniques and the two scales would be coupled directly, instead of

through the use of a surrogate coupling. It is also recognized that the homogenized

models in this review have not been implemented in three macro-scale dimensions; a

characteristic advantage of this model. Therefore, this work will create a framework

from which a homogenized model can be developed in three macro-scale dimensions

and that is open-sourced, allowing others to expand upon it. Each of these model

instances were concerned with the accurate capturing of the micro-scale components

and as such, did not consider the importance of the electrolyte on cell performance.

The next section will investigate works that have sought to verify the electrolyte

adherence to CST in a LiB application.

1.3.3 Concentrated Solution Theory Validation

The modelling of electrolyte transport is paramount in this work. Reference [102]

concludes that the formulation concerning transport in dilute solutions falls apart

at Lithium-ion concentrations of 0.81 M, and that beyond that, at concentrations in

which LiBs tend to operate, a new concentrated solution theory (CST) is required.
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Therefore, a literature overview is provided pertaining to the use and validation of

the electrolyte models governed by CST.

Numerous studies have been conducted with the intention of parameterizing the

transport properties that characterize LiB electrolytes. These studies either at-

tempted to derive the parameterizations from first principles [103, 104] or merely

conceded that the physics is too intricate to dissect and, therefore, only gave polyno-

mial fits to experimental data, void of any physical significance [105]. While the former

is helpful insofar as to understand the nature of electrochemistry, it has proven diffi-

cult to explain and predict experimental observation based solely on first-principles.

On the other hand, the latter approach offers trivially accurate approximations to

experimentation, however, it fails to predict untested conditions. Another downfall

of polynomial fitting is that disagreements may arise based simply on the researchers

choice of trend fitting.

Regardless of the choice of parameterization, the issue is that few researchers have

validated their model to experimental conditions before introducing more complex

components, such as porous electrodes. As a result, the range of applicability of CST

is not well understood. A major exception to this trend is the work by Pesko et al. in

their characterization of the LiTFSI salt in PEO [105]. Pesko first parameterized the

relevant electrolyte transport properties and implemented them into a 1D symmetric

cell model based on CST. They then ran their model on a symmetric Li-foil cell,

passing it through charge and discharge cycles. The results were then compared with

experiments conducted under the same conditions. They observed that the model

exhibited excellent agreement with experiments for low current densities. At higher

densities, it was concluded that results deviated from experimental data due to the

influence of more complex phenomena, such as convection and/or dendrite formation.

Lundgren et al. also provided a brief experimental validation for their parame-

terization of a LiPF6 salt in EC:DEC (1:1 by weight) [106]. Unlike Pesko et al.,

Lundgren provided parameterizations against concentration as well as temperature,
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and was able to match relaxation profiles for a Li-foil symmetric cell with those from

experiments. Lundgren also compared a model in which the coefficients were de-

rived from first principles with one in which they were merely fitted to data. They

concluded that, although the scientifically derived values were less accurate, they

were still within error of the experiments and provided confidence in the underlying

principles governing transport in concentrated solutions. Lundgren’s work, however,

described the electrolyte in a much narrower range of concentrations compared to

Pesko (0.5− 1.5M compared to 0.47− 3.78M).

The literature aiming at understanding the validity and behaviour of the CST

model used to predict the ionic transport in the electrolyte of a LiB has been quite

minimal. Furthermore, a sensitivity analysis on the impact of individual physical

model coefficients on electrolyte potential and Lithium-ion concentration profiles, as

well as cell performance, has not yet been performed.

1.4 Objectives

The objective of this work is to develop a macro-scale continuum based LiB model

using FEM and the OpenFCST framework, incorporating a validated CST-based

electrolyte model.

Based on the literature review in Section 1.3, the following areas have been iden-

tified as gaps in the literature:

• While many studies have parameterized the characteristics of a LiB electrolyte,

few have implemented them into a computational framework to verify the appli-

cability of the CST theory. Further, no work has been identified that performs

a sensitivity analysis for these parameterizations to discuss their individual im-

pact on cell performance.

• Most CST models in the literature are in 1D; however, a FEM implementation,

including a detailed validation, has not yet been provided.
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• Many groups have developed full LiB computational models with varying levels

of simplification. There exists, however, a gap for a model that couples the 3D

macro-scale with a fully-resolved micro-scale.

As a result of these gaps, the following objectives have been defined for the scope

of this thesis:

• Create a succinct derivation of the CST governing equations, applied to the

electrolyte in an LiB. These equations will then be implemented into the Open-

FCST framework using FEM and validated with experimental observations.

This electrolyte model will then be used to perform a sensitivity analysis on the

influence of the electrolyte characteristics.

• The CST-based model above will then be extended to achieve a volume-averaged,

continuum macro-scale LiB model. This model will also be computationally im-

plemented and the results discussed, acting as a precursor to a fully coupled

LiB model.

1.5 Outline

The current chapter introduces the motivation for commencing a study of the macro-

scale LiB model and specifically the electrolyte. It outlines the current intellectual

topography in this field and identifies several gaps in the literature, in particular,

the lack of a well-validated, multi-dimensional CST-based electrolyte model and it’s

multi-dimensional implementation into a full macro-scale battery framework. Finally,

this chapter outlines the objectives of the project and the means by which they will

be tackled.

Chapter 2 will describe the two systems being modelled in detail: the symmetric

cell and macro-scale battery. For each system, this chapter will give a description

of the problem being solved along with any assumptions, provide a detailed deriva-

tion and summary of the governing equations, and discuss the appropriate boundary
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conditions. Then, the input parameters will be discussed, including their physical sig-

nificance and cited parameters. Finally, this chapter will describe how these equations

can be implemented into the computational framework using FEM.

Chapter 3 will provide results for both systems being analyzed. Beginning with

the symmetric cell analysis, the model will first be validated by comparison to exper-

imental observation. Then, a parametric analysis will be performed and discussed.

Lastly, the electrolyte model will be applied to an electrolyte for which a compu-

tational model has not yet been implemented, and the results discussed. For the

macro-scale model, the results of a charge/discharge cycle will be discussed, in terms

of the discharge curve profile, hysteresis, and transient solution variable profiles. Ad-

ditionally, a parametric study of the current density, solid conductivity and diffusivity,

and exchange current density will be performed and the cell efficiency discussed.

Chapter 4 will then give a brief summary of the work that has been done in

this thesis, the conclusions that were reached, and this work’s contribution to the

literature. It will also provide suggestions for future work.
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Chapter 2

Methodology

This chapter will give a description of the systems under analysis, the assumptions

and geometries of each system, which solution variables and governing equations will

be solved, and a look into the boundary conditions. For each system, the governing

equations will be fully derived, as their derivations are neither trivial nor easy to find

in the literature. Then, the input parameters will be discussed and a description of

how the finite element method can be applied to solve the governing equations will

be provided.

The two systems being studied are a symmetric cell and a full cell. The symmetric

cell is first implemented to isolate and study the electrolyte. This will allow for the

CST based electrolyte model to be verified and to provide a deeper understanding

of how the electrolyte parameters influence transport, and under which conditions

the cell will operate most effectively. Then, the full macro-scale cell model will be

discussed, consisting of a Li-metal anode and an NMC porous cathode, separated by

an electrolyte separator layer. The macro-scale cell model will utilize the electrolyte

model developed in the symmetric cell system in its electrolyte phase. This cell model

will then be useful in studying the behaviour of a cell during charge and discharge.
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2.1 Symmetric Cell Analysis

2.1.1 Problem Description

In order to develop an accurate electrolyte model, a symmetric cell with two Lithium

foil electrodes separated by the chosen electrolyte is first studied. Figure 2.1 presents

a visual schematic of the symmetric system. A separator thickness of 500 µm is

displayed because that is the thickness used in Chapter 3. The cell being modelled

is a 2032-button cell which is 20 mm in diameter, however, because the current is

passed on a per area basis and only in the axial direction (i.e., normal direction to

the planar electrodes), the radial dimensions are not resolved. Since both planar

electrodes are solid Lithium metal, the cell has a 0 V OCV. Therefore, the potential

across the cell is solely a result of the internal resistances. Two binary electrolytes will

be modelled in this work. The first one, shown in Figure 2.1, is a LiPF6 salt initially

at 0.6 M, dissolved in a polymer mixture of Ethylene Carbonate (EC) and Diethyl

Carbonate (DEC) in a one-to-one ratio, by weight. The other electrolyte is LiTFSI

in Poly-Ethylene Oxide (PEO). Besides the reactions at the boundary of the cell,

the only resistances are a result of mass transport limitations within the electrolyte.

Therefore, by creating a domain that isolates for the electrolyte, one can study the

impact of the electrolyte characteristics more directly. Once a firm understanding

of the electrolyte is achieved, it can be applied with confidence to more complicated

models (e.g., the macro-scale full cell model).

When a potential difference is applied to the two electrodes of this system, a

number of events will occur which will allow a current to pass between them. First, an

overpotential will develop between the Lithium foil and electrolyte layers at either end

of the separator. This overpotential will be described using the Butler-Volmer kinetics

model and will relate the solid phase potential, electrolyte potential, and current to

one another. Within the electrolyte, current will be passed across the domain by the

motion of charged particles: Lithium carrying positive charge, and the anion carrying
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Figure 2.1: Symmetric cell domain schematic. Planar reactions occur at the interface
between the separator domain and either electrode.

negative charge. However, because the anion does not participate in the surface

reactions, its steady-state flux will have to be zero at either electrode. Therefore, to

balance the electric driving force on the anions, a concentration gradient will form,

with high concentrations on the side experiencing Lithium oxidation. Because of

electroneutrality, the Lithium ions will develop the same profile. There will then be

two driving forces on the Lithium ions: the electric field and the ensuing concentration

gradient. This concentration gradient will be greatly dependent on the mobility of the

Lithium ions with respect to the mobility of the anion. As a result of the concentration

gradient, the overpotential will increase at both electrodes to account for the increase

in Li+ concentration at the anode and decrease of Li+ concentration at the cathode.

Therefore, after the initial jump, the cell voltage will increase as the concentration

profile develops and then eventually plateau as a steady state is achieved.

Electroneutrality states that within the bulk of a solution the sum of the positive

and negative charges must cancel out. This is because an enormous electric charge

would need to be applied to separate the positive and negative charges from one
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another. Electroneutrality is not, however, a fundamental law, nor even always true

at all points in the solution. At the boundaries, an electric “double layer” (DL) can

form, in which a surplus of one ion can cause a net charge in the solution to balance

the opposite charge developing within the solid.

By convention, the battery community has preferred to use one equation to describe

the cation motion and one equation for the solid potential of a reference Li/Li+

electrode instead of one equation for the anion and one for the cation. The reference

electrode potential will change throughout the domain due to the changing activity

across the separator.

2.1.2 Governing Equations

The aim of this model is to study the effects of the electrolyte in battery operation.

The symmetric cell is therefore used to isolate for the influence of the electrolyte only.

The following assumptions are made for this system:

• The system is isothermal and isobaric.

• The salt is binary and the solvent behaves as if it were a single species.

• The solvent and overall velocity is assumed to be zero. Additionally, the system

is incompressible (i.e. the specific volumes are constant).

• All gradients and spatial non-uniformities are assumed to exist only in the

normal direction to the reacting surfaces.

• The reactions are uniform across the entire planar electrode surface.

• The double layer capacitance can be neglected due to the short time scales in

which it operates.

As discussed in the previous section, the physics being modelled in this system is

the motion of the anions and cations, due to an imposed current or voltage. Because
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both ionic species are mobile, concentration gradients can be formed, as long as the

concentrations of both ions is the same everywhere, due to electroneutrality. An

electric field will be a driving force for the ionic species in opposite directions and

a concentration gradient will be a driving force for both ionic species in the same

direction. Additionally, the current passing through the planar electrodes will be a

result of the overpotential created between the electrode and electrolyte potentials.

The kinetics will be modelled using the Butler-Volmer equation and will be a function

of the concentration of cations at that electrode (Section 2.1.3.2). Instead of deriving

an equation for the motion of both ionic species, the system will use the concentration

of Lithium ions, cLi+ , and the solid potential of a reference electrode, ϕR, as its solution

variables. It will use a Lithium ion transport equation (Section 2.1.2.1) and MacInnes

equation (Section 2.1.2.2) to describe these variables, respectively.

2.1.2.1 Lithium Ion Transport in Concentrated Solutions

In traditional electrochemical systems, the flux of a charged species in solution is

given by the Nernst-Planck equation, i.e.,

N i = −Di∇ci − ziuiFci∇ϕm + civ0 (2.1)

where N i is the flux of species i, Di is the species self-diffusivity, ci is the species

concentration, zi is the species charge, ui is the species mobility, ϕm is the solution

phase potential (discussed in Section 2.2.2.4), and v0 is the bulk velocity. The three

terms on the right hand side of Equation (2.1) represent the three driving forces, i.e.,

diffusion, migration, and convection, respectively.

This equation is especially useful when a dilute solution can be assumed. However,

because the interaction between ions at higher concentrations cannot be neglected,

this equation is not valid in this application. Therefore, the development of an equa-

tion for species flux in concentrated solutions will be based on Onsager’s modification

[107] of the Stefan-Maxwell equations: a theory that suggests that the encompassing
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driving force for each species, the electrochemical potential, can be expressed in terms

of the species’ interactions with all other species in solution. A momentum balance

of species i leads to [6, 7],

ci∇µ̄i =
N∑︂
j ̸=i

Kij(vj − vi) (2.2)

where µ̄i is the electrochemical potential of species i, vi is the species average velocity,

and Kij is the coefficient relating to the drag experienced by species i due to the

motion of species j.

The drag coefficient is related to the binary diffusion coefficient, Dij, through,

Kij =
RTcicj
cTDij

(2.3)

where cT is the total concentration of all species, T is the absolute temperature, R is

the ideal gas constant, and Dij is the mutual diffusion coefficient. The mutual diffusion

coefficient describes the interaction between each species with all other species in

solution and is obtained experimentally by measuring the diffusion rate of species

i in species j. The system therefore requires 1
2
N(N − 1) diffusion coefficients and

N − 1 equations to completely describe the system, since, like the drag coefficients,

Dij equals Dji. Because the solvent velocity is taken to be zero, the N th equation is

linearly dependent on the others, i.e., its information is redundant, and therefore, is

not included.

Given a binary electrolyte within a homogeneous solvent, Equations (2.2) and (2.3)

will be expanded for two equations only, corresponding to the motion of the cation

and anion. Assuming no bulk convection (i.e. v0 = 0 and N0 = 0), these equations,

respectively, are,

c+∇µ̄+ =
RT

cT

(︃
1

D0+

(−c0N+) +
1

D+−
(c+N− − c−N+)

)︃
(2.4)

c−∇µ̄− =
RT

cT

(︃
1

D0−
(−c0N−) +

1

D+−
(c−N+ − c+N−)

)︃
(2.5)
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where N i is the species flux, given by,

N i = civi (2.6)

The assertion that bulk velocity is zero is applicable for the current work, due to the

porous matrix and the polymer electrolytes’ high viscosity [28, 108]. Additionally,

the assumption is made that all solvent species can be regarded as a single species,

inasmuch as their thermodynamic diffusion coefficients are concerned.

Combining Equations (2.4) and (2.5), and simplifying the RHS, one obtains an

expression for the driving force of the ionic pair,

c+∇µ̄+ + c−∇µ̄− = −c0RT
cT

(︂N+

D0+

+
N−

D0−

)︂
(2.7)

In doing so, however, information is lost about how each ion interacts with the other.

This information will be retrieved in Section 2.1.2.2 with the reintroduction of the

above cation equation (Equation (2.4)).

The definition of the total current, which states that the total current being passed

through the electrolyte phase is a result of the flux of charged particles in the elec-

trolyte, is used to eliminate N− from our equation,

i = F (z+N+ + z−N−) (2.8)

where i is the total current passing though the electrolyte.

Substituting Equation (2.8) into Equation (2.7), the driving force on the ionic pair

is given by,

c+∇µ̄+ + c−∇µ̄− = −c0RT
cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
(2.9)

Shifting focus to the left side of this equation, we will briefly introduce an electrolyte

concentration, ce, such that for binary electrolytes,

ce =
c+
ν+

=
c−
ν−

(2.10)
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where νi is the moles of ions per mole of salt. For a binary electrolyte, in which,

XxYy ⇋ νxX
zx + νyY

zy (2.11)

νi for an ion can be expressed in terms of the counter-ion’s charge, i.e., ν+ = −z−

and ν− = z+.

Applying this definition to Equation (2.9),

ce(ν+∇µ̄+ + ν−∇µ̄−) = −c0RT
cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
(2.12)

Assuming isobaric and isothermal conditions, the electrochemical potentials can be

expanded to [6],

µ̄i = µ⊖
i +RT ln ai + ziFϕm (2.13)

where µ⊖
i is the Gibb’s free energy of species i at the reference state and ai is the molal

activity coefficient which can be thought of as a measure of how the ionic activity

deviates from ideality and is given by,

ai = miγiλ
⊖
i (2.14)

where mi is the ionic molality of each species in moles of solvent per mole of solute,

γi is the molal activity coefficient with reciprocal units to mi, and λ⊖i is a unitless

proportionality constant, characteristic of each electrolyte and only dependent on

temperature and pressure. Because temperature and pressure are assumed constant,

λ⊖i is also constant. Note, like concentration for a binary electrolyte, the molality of

each species can be related to the electrolyte molality through,

me =
m+

ν+
=
m−

ν−
(2.15)

where me is the electrolyte molality.

By applying these definitions, Equation (2.12) becomes,

ce
(︁
ν+∇(µ⊖

+ +RT ln (m+γ+λ
⊖
+) + z+Fϕm)

+ ν−∇(µ⊖
− +RT ln (m−γ−λ

⊖
−) + z−Fϕm)

)︁
= −c0RT

cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃ (2.16)
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Another key characteristic of a liquid electrolyte, is the applicability of electroneu-

trality, which, for the binary solution in this derivation, is given as,

N∑︂
i

zici = z+c+ + z−c− = z+ν+ + z−ν− = 0 (2.17)

This condition will eliminate the ϕm terms from Equation (2.16).

Recognizing that the gradient of a constant is zero, Equation (2.16) will reduce to,

ce
(︁
ν+∇ ln (m+γ+) + ν−∇ ln (m−γ−)

)︁
= − c0

cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
(2.18)

which will further reduce to,

ce∇ ln
(︁
m

(ν++ν−)
+ γ

ν+
+ γ

ν−
−
)︁
= − c0

cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
(2.19)

by the derivation in Appendix A.2.

According to the literature [6], the mean molal activity coefficient is related to the

ionic molal activity coefficients through, γ+−,

γ
(ν++ν−)
+− = γ

ν+
+ γ

ν−
− (2.20)

Equation (2.19) can then be expressed by,

(c+ + c−)∇ ln (m+γ+−) = − c0
cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
(2.21)

given by the derivation in Appendix A.2 as well.

Now utilizing the following relationship,

∇ ln (ab) = ∇ ln a+∇ ln b =

(︃
1 +

∂ ln b

∂ ln a

)︃
∇ ln a (2.22)

we can extract what is known as the thermodynamic factor from the left-hand side

of Equation (2.21), to produce,

(c++ c−)

(︃
1+

∂ ln γ+−

∂ lnm+

)︃
∇ lnm+ = − c0

cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N++

1

z−D0−

i

F

)︃
(2.23)
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Equation (2.23) is then rearranged for the cation flux, N+,

N+ = −cT c+
c0

(︃
D0+D0−(z+ − z−)

z+D0+ − z−D0−

)︃(︃
1 +

∂ ln γ+−

∂ lnm+

)︃
∇ lnm+

+

(︃
z+D0+

z+D0+ − z−D0−

)︃
i

z+F

(2.24)

given the derivation in Appendix A.3.

Next, let’s define the diffusion coefficient of the electrolyte, based on the thermo-

dynamically driving force, De, as [6],

De =
D0+D0−(z+ − z−)

z+D0+ − z−D0−
(2.25)

and the positive transference number, t0+, as [6, 109],

t0+ =
z+D0+

z+D0+ − z−D0−
(2.26)

The positive transference number measures the conductivity fraction contributed by

the cation (see Section 2.3.3 for more detail). The negative transference number, t0−,

is conversely defined and the two must add to unity (i.e. t0+ + t0− = 1) [110].

The salt diffusion coefficient, D, is related to the electrolyte diffusion coefficient

and thermodynamic factor by [111, 112],

D = De
cT
c0

(︃
1 +

∂ ln γ+−

∂ lnm+

)︃
(2.27)

The salt diffusion is an experimentally measurable coefficient (see Section 2.3.1),

for which parameterized expressions have been developed in the literature [104–106,

110]. By substituting the identities in Equations (2.25), (2.26), and (2.27) into Equa-

tion (2.24), one obtains,

N+ = −c+D∇ lnm+ +
t0+i

z+F
(2.28)

Because molarity is the solution variable being solved for instead of molality, the

identity,

m+ =
c+
c0M0

(2.29)
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will be implemented into Equation (2.28), where M0 is the molar mass of the solvent.

By taking the gradient through the logarithm and applying the relation in Equa-

tion (2.22) once again, one can obtain an expression for the flux with respect to the

ionic concentration,

N+ = −D
(︃
1− d ln c0

d ln c+

)︃
∇c+ +

it0+
z+F

(2.30)

The bracketed factor in Equation (2.30) can be thought of as a molarity correction

factor. This term can be expressed in terms of the specific volumes of the electrolyte

pair,

1− d ln c0
d ln c+

=
1

1− v̄ec+
(2.31)

where v̄e is the specific volume of the solvent. The derivation for the Equation (2.31)

identity is given in Appendix A.4.

An equivalent equation to (2.30) can be similarly derived for the flux of anions,

N− = −D
(︃
1− d ln c0

d ln c+

)︃
∇c− +

it0−
z−F

(2.32)

Equation (2.30) can be substituted into the mass conservation equation,

∂ci
∂t

+∇ ·N i = 0 (2.33)

resulting in an expression for the cation flux,

∂c+
∂t

= ∇ ·
[︃
D

(︃
1− d ln c0

d ln c+

)︃
∇c+ −

it0+
z+F

]︃
(2.34)

Equation (2.34) is the generic form of the cation transport in concentrated solu-

tion equation. This equation can be specifically applied to the Lithium-ion battery

stoicheometry. The final form of the Lithium transport equation in the electrolyte is

then,

∂cLi+

∂t
= ∇ ·

[︃
D

(︃
1− d ln c0

d ln cLi+

)︃
∇cLi+

]︃
−

i · ∇t0+
F

(2.35)

This equation is equivalent to equation (4) in ref [7], applied to Lithium in a 1:1

binary electrolyte.
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2.1.2.2 MacInnes Equation in Concentrated Solutions

Unlike for a system in which one of the ionic species is fixed in place [113], concen-

tration imbalances and gradients can form in the separator electrolyte, acting as a

driving force for ionic movement. The electric field imposed by an external source will

also act as a driving force, influencing the ionic species proportional to their charge.

The concentration gradient will increase until the combination of these two forces will

balance each other for the anion species. A steady-state concentration profile will be

achieved in which all current will be transported by the cation flux. This equation,

therefore, describes how total charge will be carried throughout the domain as a result

of the flux of anions and cations. The MacInnes equation describes this relationship,

and will be derived in this section. It gives an explicit relationship for how current is

related to the gradient of the reference electrode potential and the gradient of the Li+

concentration. The MacInnes equation is presented in two separate forms, differing

only semantically, in their use of their electrolyte potential definition.

Nernst-Planck (NP) theory is usually used to describe ion flux in an electrolyte. It

is obtained from the definition of the electrochemical potential, i.e.,

µ̄i = µ⊖
i +RT ln ai + ziFϕm (2.13)

where ϕm is the first of these two electrolyte potential definitions and is known as the

quasi-electrostatic (or solution-phase) potential.

The second potential definition, based on the Onsager-Stefan-Maxwell (OSM) the-

ory, is the potential, ϕR, that would exist within a Li/Li+ reference electrode in

equilibrium with the neighbouring solution. Applying Equation (2.13) to the elec-

trons existing within the reference electrode, one can define the reference potential

as,

µ̄R
e− = µ⊖,R

e− − FϕR (2.36)

where µ⊖,R
e− is the Gibb’s free energy of an electron in the reference electrode.
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According to the laws of thermodynamics, at a porous interphase at equilibrium

the electrochemical potentials of the reactants in all phases, χ, must be equal to the

potential of the products in all phases,

∑︂
i=react

νiµ̄
χ
i =

∑︂
j=prod

νjµ̄
χ
j (2.37)

While other reactions would work as well, it is here assumed that the reaction is

reversible only with respect to the cation (as is the case for Lithium-ion batteries),

M
z+
+ + ne− ⇋M0 (2.38)

where n is the number of moles of electrons transferred per mole of reactant. Then,

the relationship between the NP solution-phase potential and the OSM reference

potential is:

ϕR = ϕm +
1

nF

[︁
µ⊖
+ + nµ⊖,R

e− − µ⊖,R
M0 +RT ln (a+)

]︁
(2.39)

However, because the MacInnes equation is concerned with the driving force in charge

flux, the relationship between the gradients of the two potentials is the critical com-

parison, i.e. (assuming isothermal conditions),

∇ϕR = ∇ϕm +
RT

nF
∇ ln (a+) (2.40)

From this result, it is evident that the OSM reference potential is a measure of not

only the electrostatic potential but also the fluctuating concentration gradients. Its

gradient is proportional to the gradient in electrochemical potential of the cation in

the electrolyte,

∇ϕR =
1

nF
∇µ̄+ (2.41)

As mentioned in Section 2.1.2.1, by combining the positive and negative momentum

equations in the derivation of the Lithium transport equation, information was lost

about how the mobility of the cation and anion relate to each other. Therefore,

the derivation for the MacInnes equation will begin with this lost information by
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reintroducing the cation momentum equation,

c+∇µ̄+ =
RT

cT

(︃
1

D0+

(−c0N+) +
1

D+−
(c+N− − c−N+)

)︃
(2.4)

First, the derived flux expressions for N+ and N− (Equations (2.30), (2.32), and

(2.27)) are inserted into Equation (2.4) and simplified, i.e.,

c+∇µ̄+ =
RT

cT

[︃
c+

D+−

(︃
z+cTDe

z−c0

(︂
1 +

∂ ln γ+−

∂ lnm+

)︂(︂
1− d ln c0

d ln c+

)︂
∇c+ +

it0−
z−F

)︃
+
(︂ z+c+
z−D+−

− c0
D0+

)︂(︃
− cTDe

c0

(︂
1 +

∂ ln γ+−

∂ lnm+

)︂(︂
1− d ln c0

d ln c+

)︂
∇c+ +

it0+
z+F

)︃]︃ (2.42)

Equation (2.42) can be further simplified by combining terms for ∇c+ and i, and

rearranging for current,

i

[︃
−RT

cT z−z+F 2

(︃
1

D+−
+

c0t
0
+

c−D0+

)︃]︃
=

[︃
− 1

z+F
∇µ̄+ +

RTt0−
c+F

(︃
1

z+
− 1

z−

)︃(︃
1 +

∂ ln γ+−

∂ lnm+

)︃(︃
1− d ln c0

d ln c+

)︃
∇c+

]︃ (2.43)

where the factor multiplying the current is the reciprocal of the ionic conductivity, κ

[6]; a coefficient that is experimentally measurable in the absence of a concentration

gradient [114], i.e.,

κ =

[︃
−RT

cT z−z+F 2

(︃
1

D+−
+

c0t
0
+

c−D0+

)︃]︃−1

(2.44)

An extended derivation for this step is given in Appendix A.5.

The gradient of cation electrochemical potential in Equation (2.43) was identified

earlier as the gradient of the reference potential, i.e., Equation (2.41). Recalling that,

according to Equation (2.38), n = z+ and the OSM MacInnes equation with respect

to the electric potential of a reference electrode, ϕR, is,

i = κ

[︃
−∇ϕR +

RTt0−
c+F

(︃
1

z+
− 1

z−

)︃(︃
1 +

∂ ln γ+−

∂ lnm+

)︃(︃
1− d ln c0

d ln c+

)︃
∇c+

]︃
(2.45)

Alternatively, the electrochemical potential in Equation (2.43) can be instead sub-

stituted by the electrochemical definition in Equation (2.13) and (2.14). This substi-

tution will involve the “solution-phase” potential, thus leading to the NP form of the
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MacInnes equation,

i = κ

[︃
−∇

(︁
µ⊖
+ +RT ln (m+γ+λ

⊖
+) + z+Fϕm

)︁
+
RTt0−
c+F

(︃
1

z+
− 1

z−

)︃(︃
1 +

∂ ln γ+−

∂ lnm+

)︃(︃
1− d ln c0

d ln c+

)︃
∇c+

]︃ (2.46)

By simplification of Equation (2.46), as shown in Appendix A.6, we obtain,

i = κ

[︃
−∇ϕm−

RT

c+F

(︃
t0−
z−

(︂
1 +

∂ ln γ−
∂ lnm+

)︂
+
t0+
z+

(︂
1 +

∂ ln γ+
∂ lnm+

)︂)︃
(︃
1− d ln c0

d ln c+

)︃
∇c+

]︃ (2.47)

This equation shows how, when using ϕm, the only impact the concentration gradient

will have on the potential is as a result of a discrepancy between the cation and anion

transference numbers and thermodynamic factors. If they were the same for both

ions, the coefficient for the concentration gradient term would be zero and ϕm would

be constant throughout.

The charge conservation equation in the electrolyte is given by,

∂ρ

∂t
+∇ · i = 0 (2.48)

where ρ is the charge density, given by,

ρ = F (z+c+ + z−c−) (2.49)

The first term in (2.48) describes the accumulation of charge in the electrolyte. This

occurs when electroneutrality does not apply. In the electrolyte, electroneutrality

is broken at the electrode surface due to the development of a double layer, which

effectively acts as a capacitor. Given the definition [115] of the volume averaged

double-layer capacitance, Cdl,

Cdl =
∂ρ

∂(ϕm − ϕs)
(2.50)

Equation (2.48) can be rewritten [116], as,

Cdl
∂(ϕm − ϕs)

∂t
+∇ · i = 0 (2.51)
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Note, however, for a typical battery charge/discharge, the transient component is

minor and only operates on very short time-scales and is therefore dropped in all LiB

model discussions [6, 7, 61], as it will be here. Equation (2.51) will then simplify to,

∇ · i = 0 (2.52)

Combining this with the MacInnes equation allows us to fully describe the potential

distribution in the system,

∇ ·
[︃
− κ∇ϕR+

κRTt0−
c+F

(︃
1

z+
− 1

z−

)︃(︃
1 +

∂ ln γ+−

∂ lnm+

)︃
(︃
1− d ln c0

d ln c+

)︃
∇c+

]︃
= 0

(2.53)

∇ ·
[︃
− κ∇ϕm−

κRT

c+F

(︃
t0−
z−

(︂
1 +

∂ ln γ−
∂ lnm+

)︂
+
t0+
z+

(︂
1 +

∂ ln γ+
∂ lnm+

)︂)︃
(︃
1− d ln c0

d ln c+

)︃
∇c+

]︃
= 0

(2.54)

where the former is obtained with the OSM formulation and the latter with the NP

formulation.

Finally, the charge flux equations applied to the Lithium-ion battery application

using the OSM and NP theories is, respectively,

∇ ·
[︃
− κ∇ϕR +

2κRTt0−
cLi+F

(︃
1 +

∂ ln γ+−

∂ lnmLi+

)︃(︃
1− d ln c0

d ln cLi+

)︃
∇cLi+

]︃
= 0 (2.55)

∇ ·
[︃
− κ∇ϕm+

κRT

cLi+F

(︃
t0−

(︂
1 +

∂ ln γ−
∂ lnmLi+

)︂
− t0+

(︂
1 +

∂ ln γ+
∂ lnmLi+

)︂)︃
(︃
1− d ln c0

d ln cLi+

)︃
∇cLi+

]︃
= 0

(2.56)

Due to convention within the battery community, Equation (2.55) will be used for the

remainder of this work. This equation is equivalent to equation (18) in reference [105],

with the only difference being the use of the molal activity coefficient, γ+−, instead

of the molar activity coefficient, f+−. As such, Equation (2.55) contains the molarity

correction that is absent in the reference’s work. While either form is appropriate,

this form was chosen because parametric relations for the molal activity coefficient

are more prevalent.
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2.1.2.3 Equation Summary

In summary, the two governing equations for the two solution variables, cLi+ and ϕR,

which fully describe the electrolyte are species transport (2.35) and the MacInnes

equation (2.55), i.e.,

∂cLi+

∂t
= ∇ ·

(︃
D
(︂
1− d ln c0

d ln cLi+

)︂
∇cLi+

)︃
−

i · ∇t0+
F

(2.35)

0 = ∇ ·
(︃
κ∇ϕR −

2κRTt0−
cLi+F

(︂
1 +

∂ ln γ+−

∂ lnmLi+

)︂(︂
1− d ln c0

d ln cLi+

)︂
∇cLi+

)︃
(2.55)

These equations are supported by those published in the literature [6, 7, 91, 105, 117].

The four coefficients, D, t0+, κ, and
(︂
1 + ∂ ln γ+−

∂ lnmLi+

)︂
, are parameterized in Section 2.3.

The system of governing equations can be written in vector notation,

A
∂u

∂t
= ∇ ·

[︁
B(u)∇u

]︁
+
[︁
i(u) · ∇t0+(u)

]︁
g + f(u) (2.57)

where,

u =

⎛⎝ cLi+

ϕR

⎞⎠ (2.58)

A =

⎛⎝ 1 0

0 0

⎞⎠ (2.59)

B(u) =

⎛⎝ D
(︂
1− d ln c0

d ln cLi+

)︂
0

−2κRTt0−
cLi+F

(︂
1 + ∂ ln γ+−

∂ lnmLi+

)︂(︂
1− d ln c0

d ln cLi+

)︂
κ

⎞⎠ (2.60)

g =

⎛⎝ − 1
F

0

⎞⎠ (2.61)

f(u) =

⎛⎝ 0

0

⎞⎠ (2.62)

2.1.3 Boundary Conditions

The simplest boundary condition to conceptualize and implement is to impose known

values for the solution variables at the boundary; that is, Lithium-ion concentration,
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(a)

(b)

Figure 2.2: Boundary condition schematic for symmetric cell application for an (a) im-
posed current and (b) imposed voltage. icell indicates the vector of imposed current
and Vcell is the scalar imposed voltage.

cLi+ , and the potential of a Li/Li+ reference electrode, ϕR. However, although these

variables are easily measured, they are not particularly useful boundary conditions

(except perhaps when trying to conceptualize the internal physics of the governing

equations) because neither variable is easily imposed in a physical system.

Instead, two more realistic boundary conditions would be imposing either a known

current through the cell (Section 2.1.3.1) or a known voltage across it (Section 2.1.3.2).

Figure 2.2 gives a visual representation of the boundary conditions that would be

applied for both imposed current and voltage. Note, the bracketed terms indicates

which parameters a particular boundary variable depends on (where u denotes the

solution variable vector).
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2.1.3.1 Current Boundary Condition

A flux, or Neumann, boundary condition is required when attempting to model a cell

that is operating potentiostatically: with either a constant or known, yet fluctuating,

Lithium flux at the boundary. The first application of this would be at the cell walls

in which, due to a lack of reaction, it is asserted that the flux of Lithium normal

to the surface is zero. At a planar Li electrode, on the other hand, the following

electrochemical equation is taking place,

Li+ + e− ⇋ Li(s) (1.1)

and either a known flux of Lithium-ions or a current can be specified. Since anions

do not participate in the reaction, it is clear that the current is related to the Li+

boundary flux only through,

i = FNLi+

⃓⃓⃓
(x=0,δ)

(2.63)

where x = 0 and x = δ correspond to the anode and cathode lengths respectively.

By considering the definition of cation flux from Equation (2.30), one can rearrange

Equation (2.63) to define the current at the boundary as a function of the mass

transport driving force [6],

i =
F

t0+ − 1
D

(︃
1− d ln c0

d ln cLi+

)︃
∇cLi+

⃓⃓⃓
(x=0,δ)

(2.64)

where this equation will be used as the boundary term for the Lithium-ion transport

equation.

Likewise, Equation (2.45) will be used to define the current as a function of the

charge transport driving forces,

i = −κ∇ϕR +
2κRT (1− t0+)

cLi+F

(︃
1 +

∂ ln γ+−

∂ lnmLi+

)︃(︃
1− d ln c0

d ln cLi+

)︃
∇cLi+

⃓⃓⃓
(x=0,δ)

(2.65)

where this term will be used as the boundary expression for the MacInnes equation.
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2.1.3.2 Voltage Boundary Condition

An alternative to imposing a current through the system would be to impose a known

voltage. A known voltage would specify the potential in the planar electrodes, ϕsp,

which can be connected to the solution variables through the use of a reaction equa-

tion. In this work, the Butler-Volmer single-electron transfer equation will be derived

and utilized, as it ensures versatility at a wide range of operating currents [118].

The reaction kinetics are modelled in this section as a single-electron transfer re-

action,

R + e− ⇋ P (2.66)

According to rate theory, the rate of forward and backward reactions is given by,

rforward = cRkforward (2.67)

rbackward = cPkbackward (2.68)

where ri is the reaction rate and ki is the reaction rate constant. The net rate of

reaction in the forward direction would be the difference between these two rates,

rnet = rforward − rbackward = cRkforward − cPkbackward (2.69)

The rate constants are given by [119],

kforward = k‡f exp

(︃
− αF

RT

(︁
E − E‡)︁)︃ (2.70)

kbackward = k‡b exp

(︃
(1− α)F

RT

(︁
E − E‡)︁)︃ (2.71)

where k‡i is the standard state reaction constant based on the standard free energy of

the reactions at their transition state, α is the charge transfer coefficient at the Li-foil

electrodes, and E‡ is the arbitrary reference potential at which k‡i is determined.

Now, assuming the electrode is existing within an electrolyte at reference conditions

(cR = crefR , cP = crefP ), one can imagine that for a given voltage, Eeq,ref , an equilibrium

state can be established. At this state, the rates of forward and backward reactions
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are equal. Although the reaction does not progress in either direction, reactions are

still taking place. The rate of these reactions, in either direction, can be captured by

a new rate constant, rref ,

k‡f c
ref
R exp

(︃
− αF

RT

(︁
Eeq,ref − E‡)︁)︃

= k‡f c
ref
P exp

(︃
(1− α)F

RT

(︁
Eeq,ref − E‡)︁)︃ = rref

(2.72)

Writing Equations (2.67) and (2.68) in terms of this reference rate gives the relations,

rforward = rref

(︃
cR

crefR

)︃
exp

(︃
− αF

RT

(︁
E − Eeq,ref

)︁)︃
(2.73)

rbackward = rref

(︃
cP

crefP

)︃
exp

(︃
(1− α)F

RT

(︁
E − Eeq,ref

)︁)︃
(2.74)

Finally, by inserting Equations (2.73) and (2.74) into Equation (2.69), the Butler-

Volmer equation is,

rnet = rref

[︃(︃
cR

crefR

)︃
exp

(︃
− αF

RT

(︁
E − Eeq,ref

)︁)︃
−
(︃
cP

crefP

)︃
exp

(︃
(1− α)F

RT

(︁
E − Eeq,ref

)︁)︃]︃ (2.75)

In this section, this equation will be applied to a planar electrode interfacing with

the electrolyte and undergoing the same reaction as that used to measure ϕR (i.e., an

Li/Li+ electrode).

Due to conservation of charge, at a planar reaction surface, all current passing from

the electrolyte must become current within the solid, i.e., at the surface,

∇ · (is + i) = 0 (2.76)

where is is the current passing through the solid phase. Both currents are directly

related to the rate of reaction through,

i = is = nFrnet (2.77)

where the vectoral direction of the current density is oriented towards the solid ma-

terial, normal to the reaction surface, n.
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Additionally, the exchange current density, iref , is merely defined as the current

equivalent of the reference rate, rref ,

iref = Frref (2.78)

Substituting Equations (2.77) and (2.78) into Equations (2.75), gives the Butler-

Volmer reaction equation for a planar electrode, with respect to the quasi-electrostatic

electrolyte potential, ϕm,

i =niref

[︃(︃
cR

crefR

)︃
exp

(︃
− αF

RT
(ϕsp − ϕm − Eeq,ref )

)︃
−

(︃
cP

crefP

)︃
exp

(︃
(1− α)F

RT
(ϕsp − ϕm − Eeq,ref )

)︃]︃ (2.79)

One can assume that for any combination of products and reactants, an equilib-

rium can be established by adjusting the imposed overpotential, that is, the difference

between the solid and electrolyte potentials. By definition, this electrode will then

be acting as a reference electrode, as no current is being passed to or from the elec-

trolyte. In this specific case, the working electrode is made of the same material as

the reference electrode and so ϕsp must equal ϕR. Equation (2.79) can then be written

at equilibrium,

0 =niref

[︃(︃
cR

crefR

)︃
exp

(︃
− αF

RT
(ϕR − ϕm − Eeq,ref )

)︃
−

(︃
cP

crefP

)︃
exp

(︃
(1− α)F

RT
(ϕR − ϕm − Eeq,ref )

)︃]︃ (2.80)

Evidently, the forward and backward rates of reaction must be equal. As such, Equa-

tion (2.80) can be rearranged and the magnitude of this current captured with a new

variable, ieq,

iref

(︃
cR

crefR

)︃
exp

(︃
− αF

RT
(ϕR − ϕm − Eeq,ref )

)︃
= iref

(︃
cP

crefP

)︃
exp

(︃
(1− α)F

RT
(ϕR − ϕm − Eeq,ref )

)︃
= ieq

(2.81)

This equilibrium current density, ieq, is specific to the local concentrations of products

and reactants. It can be related to the known exchange current density at the reference
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concentrations, iref through,

ieq = iref

(︃
cP

crefP

)︃α(︃
cR

crefR

)︃1−α

(2.82)

The derivation for this relationship is developed in Appendix A.7.

By bringing the exponential term in Equation (2.81) to the right-hand side, the

concentration ratios in Equation (2.79) can be isolated,

iref

(︃
cR

crefR

)︃
= ieq exp

(︃
αF

RT
(ϕR − ϕm − Eeq,ref )

)︃
(2.83)

iref

(︃
cP

crefP

)︃
= ieq exp

(︃
− (1− α)F

RT
(ϕR − ϕm − Eeq,ref )

)︃
(2.84)

Finally, by substituting Equations (2.83) and (2.84) into Equation (2.79), a Butler-

Volmer equation is presented that depends directly on the solution variable, ϕR, and

can therefore be used in conjuction with Equation (2.55) to define the reactions at

the boundary of the domain,

i = nieq

[︃
exp

(︃
− αF

RT
(ϕsp − ϕR)

)︃
− exp

(︃
(1− α)F

RT
(ϕsp − ϕR)

)︃]︃
(2.85)

The Butler-Volmer kinetics in Equation (2.85) is still applied to the generic reaction

outlined in Equation (2.66). The reaction specific to a solid Lithium-foil electrode is,

Li+(aq) + e− ⇋ Li(s) (1.1)

Since the products do not exist in the electrolyte phase, the forward and backward

reaction rates are,

rforward = cLi+kforward

rbackward = kbackward
(2.86)

Therefore, the reaction governing Lithium-ion reactions at the surface of a Li(s) planar

electrode is,

i = nieq

[︃
exp

(︃
− αF

RT
(ϕsp − ϕR)

)︃
− exp

(︃
(1− α)F

RT
(ϕsp − ϕR)

)︃]︃
(2.87)
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where,

ieq = iref

(︃
cLi+

crefLi+

)︃1−α

(2.88)

This form of the BV equation is supported by reference [118].

As in Section 2.1.3, Equations (2.64) and (2.65) can then be used to impose the

resulting current boundary condition on the solution variables.

2.2 Macro-Scale Lithium-Ion Battery Analysis

2.2.1 Problem Description

The domain for the macro-scale model of the Lithium-ion battery, consists of a

Lithium foil anode and an NMC porous cathode with the separator in between. The

separator, as well as the pores of the cathode are filled with the same electrolyte as in

the symmetric cell. The solid phase of the cathode consists of an active material, at

which the reaction occurs, connected by a conductive binder, that can transport the

electronic current to the current collector at the far end of the electrode. Note that

the current collector does not itself participate in the reaction. For the scope of this

work, the pores are not microscopically resolved and instead each phase is modelled

as a homogeneous, overlapping phase, using volume-averaging, in which continuum

equations can model the physics. A schematic of the domain for this application is

presented in Figure 2.3.

All assumptions made in Section 2.1.1 are also assumed for this system. Addition-

ally, the following assumptions are made for the macro-scale system:

• Heterogeneities are not considered. Locally volume-averaging is applied to ob-

tain representative parameters, such as, porosity, solid diffusion and conductiv-

ity, and the interficial area-to-volume ratio.

• Micro-scale intra-particle diffusion is infinitely fast and macro-scale inter-particle

diffusion is not constrained by any additional resistances [120]. These assump-

tions are discussed further in Section 2.3.5.
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Figure 2.3: Macro-scale battery domain schematic. The anodic reaction occur at
the interface between the Lithium foil electrode and the separator and the cathodic
reactions occur volumetrically within the porous cathode layer.

• Porosity is constant within each layer. Solid Lithium is only transferred through

the active material and electrons are only transferred through the conductive

binder.

2.2.2 Governing Equations

In addition to the governing equations describing the transport of Lithium and charge

in the electrolyte, this system will need to incorporate an additional two equations

to account for the transport of solid Lithium, cLi(s) , and charge in the solid phase,

ϕs. A source term that can couple the solution variables of both phases in the porous

electrode will also be implemented into each equation.

2.2.2.1 Lithium Transport in Solid Phase

For an uncharged species in the absence of any convective effects (which is the case in

the solid electrode phase), the only driving force would be that of diffusion. Diffusion

describes how a species tends to move from a location of high concentration towards
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a region of lower concentration. Unimpeded, this process would continue until a

uniform concentration is established across the entire domain. The flux of species

is directly proportional to the negative of the gradient in concentration, and made

equal through the use of a constant diffusion proportionality coefficient, Ds. This is a

simplification of the Nernst-Planck equation, that is, Equation (2.1) in Section 2.1.2.1,

i.e.,

N i = −Ds∇ci (2.89)

which is also known as Fick’s Law.

The solid phase in a porous electrode is modelled as a collection of micro-scale

particles of active material connected by a conductive matrix. Therefore, the flux of

ions, which is on a per unit area of both pore and matrix, must be accounted for

to isolate for the flux through the solid phase only. The factor, ϵAM , describes the

volumetric fraction of the active material in the cathode, i.e.,

N i

ϵAM

= −Ds∇ci (2.90)

Furthermore, the diffusion coefficients are multiplied by ϵ0.5AM to account for tortuos-

ity, as described by Bruggeman [121]. Therefore, an effective diffusion coefficient is

established for diffusion within the solid material,

Deff
s = ϵ1.5AMDs (2.91)

Similar to Equation (2.33) in the electrolyte phase, a species balance equation,

which enforces concentration continuity in the solid phase (assuming constant poros-

ity), is used as the governing equation, i.e.,

ϵAM
∂ci
∂t

+∇ ·N i = Si (2.92)

where Si denotes the species source term given in units of mol/(cm3 · s). This term is

associated with volumetric reactions occurring between different phases in the same

domain (as in a porous electrode) and will be discussed further in Section 2.2.2.5. The
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porosity factor in the transient term states that the solid species can only accumulate

in the solid phase, as opposed to existing in the electrolyte as well.

Inputting the flux definition into Equation (2.92) returns the equation for species

transport within the solid phase,

ϵAM
∂ci
∂t

= ∇ ·
(︁
Deff

s ∇ci
)︁
+ Si (2.93)

which, for solid Lithium within the active material of an insertion electrode, would

be in the form,

ϵAM

∂cLi(s)
∂t

= ∇ ·
(︁
Deff

s ∇cLi(s)
)︁
+ SLi(s) (2.94)

2.2.2.2 Charge Transport in Solid Phase

Within the solid phase, charge is carried by freely moving electrons. Therefore, unlike

the relatively massive solid Lithium atoms, the electron flux is only governed by the

influence of an electric field. Electrons pass from a locality of low potential to a

locality of high potential. By convention, current is defined as the negative flux of

electrons, meaning it proceeds against a potential gradient. This relationship is given

by,

is = −σs∇ϕs (2.95)

where ϕs is the electric potential of the solid phase and σs is a constant denoting the

conductivity, or proportionality constant, of the solid phase in Siemens (S = Ω−1).

Applying Equation (2.95) to a porous electrode, the effective conductivity of the

solid phase has been expressed in the literature [122] as,

σeff
s = ϵ1.5s σs (2.96)

where ϵs is the porosity of the conductive binder.

The charge balance equation, given the source term, Si, is,

ϵs
∂ρ

∂t
+∇ · is = FSi (2.97)
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where the charge density in the solid phase is,

ρ = Fze−ce− (2.98)

Substituting the definition of the DL capacitance in Equation (2.50), the charge

equation is,

ϵsCdl
∂(ϕs − ϕm)

∂t
+∇ · is = FSi (2.99)

As discussed in Section 2.1.2.2, the transient component will be dropped for the

current work, leading to,

∇ · is = FSi (2.100)

Equations (2.95) and (2.100) can be combined to return an equation for charge

transport in the solid phase of a Lithium-ion battery porous cathode,

0 = ∇ ·
(︁
σeff
s ∇ϕs

)︁
+ FSLi(s) (2.101)

2.2.2.3 Lithium Ion Transport in Electrolyte Phase

As in Section 2.2.2.1, the flux of ions in the electrolyte phase of the porous cathode

must also be corrected for porosity and tortuosity. This will be done by applying a

similar effective diffusion coefficient as for the solid phase in Equation (2.91) (except

this time being solved within the porous phase, ϵ),

Deff = ϵ1.5D (2.102)

The cation flux in Equation (2.30) is then given by,

N+ = −Deff

(︃
1− d ln c0

d ln c+

)︃
∇c+ +

it0+
z+F

(2.103)

The current term does not contain a porosity term because, likeN i in Equation (2.90),

i only describes the current passing through the pore phase.

The continuity equation for the cation in the electrolyte is also altered to account

for porosity through,

ϵ
∂c+
∂t

+∇ ·N+ = SLi+ (2.104)
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In this case, the reaction source term, SLi+ , can be related directly to the divergence of

current (outlined in Section 2.2.2.5), as Lithium is the only species undergoing a phase

change due to reactions in either electrodes. Finally, combining Equations (2.103)

and (2.104) and applying the LiB stoichiometry gives,

ϵ
∂cLi+

∂t
= ∇ ·

[︃
Deff

(︃
1− d ln c0

d ln cLi+

)︃
∇cLi+

]︃
−

i · ∇t0+
F

+ (1− t0+)SLi+ (2.105)

2.2.2.4 MacInnes Equation in Electrolyte Phase

The MacInnes equation in the electrolyte will also need to consider the porosity of the

electrode and the reaction source term. An effective conductivity is defined to correct

for this reality. Following the approaches of [6, 121, 123], the following relationship

is used as it is proven to be reasonably simple and accurate,

κeff = ϵ1.5κ (2.106)

Additionally, the charge conservation Equation (2.52) will contain a source term

for electron generation due to volumetric reactions, i.e.,

ϵ
∂ρ

∂t
+∇ · i = FSi (2.107)

Again, the transient term will be dropped as the DL effects are assumed negligible

on the longer time-scales of battery discharge.

Therefore, the OSM MacInnes equation in the porous electrode is,

∇ ·
[︃
− κeff∇ϕR+

κeffRTt0−
c+F

(︃
1

z+
− 1

z−

)︃(︃
1 +

∂ ln γ+−

∂ lnm+

)︃
(︃
1− d ln c0

d ln c+

)︃
∇c+

]︃
= FS+

(2.108)

And finally, the governing equation for the case of a LiB cathode is,

∇ ·
[︃
− κeff∇ϕR +

2κeffRTt0−
cLi+F

(︃
1 +

∂ ln γ+−

∂ lnmLi+

)︃(︃
1− d ln c0

d ln cLi+

)︃
∇cLi+

]︃
= FSLi+

(2.109)

This equation is equivalent to Equation (8) in [61], and Equations (12.27) and (22.5)

in [6].
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2.2.2.5 Electrochemical Reaction

As mentioned before, the source terms within the governing equations for the bat-

tery application will be a result of volumetric reactions in the porous cathode layer.

Specifically, this reaction is called Lithiation, in which a positive Lithium ion in the

electrolyte phase intercalates into the active material by combining with an electron

from the solid phase, and thus creating a solid Lithium atom. As with the P2D

model, in this work, the reaction will be modelled using a volume-averaged tech-

nique. The surface concentrations will be assumed to be the same as the average

solid concentration, as discussed later in this section. Eventually, with the addition

of the micro-scale model, this assumption will be lifted by splitting the domain into

electrolyte and solid domains, instead of superimposed continua, and coupling them

with surface BV kinetics. This extension is discussed further in the Future Work

section, i.e., Section 4.3. By assuming equality between the surface and bulk con-

centration in this work, the reactions will be modelled on a per volume basis instead

of solving for the current density on a per area basis at an electrode interface. The

source terms for Lithium-ion and solid Lithium are related through the use of charge

conservation and based upon the divergence of current in each phase, i.e.,

SLi(s) = −SLi+ =
1

F
∇ · is = − 1

F
∇ · i (2.110)

Practically, this means that any current lost in one phase must be gained in the other

phase, as the total current in the system must remain constant.

The equilibrium exchange current density can be related to the source term through

the interfacial surface area per unit volume factor, Av, given in units of cm2 of reacting

surface per cm3 of volume. The source term for intercalation into the active material

of the porous electrode is therefore given by the BV equation,

SLi(s) = −SLi+ =
Av

F
ieq

[︃
exp

(︃
− αcF

RT
(ϕs − ϕR − U)

)︃
− exp

(︃
(1− αc)F

RT
(ϕs − ϕR − U)

)︃]︃ (2.111)
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where αc is the cathodic charge transfer coefficient and U is the equilibrium potential

of the half-cell reaction with respect to a Li/Li+ electrode at the reference concentra-

tions.

The local reactions taking place at the interfaces between the solid and electrolyte

phases will be,

Li+ + e− +Θ ⇋ Li(s)—Θ (1.2)

where Θ denotes a reaction site within the active material. Since these are limited,

they will have a significant effect upon the reaction rates at the surface. The line

connecting the products indicate that the Lithium atom has filled this site.

The reaction rates for Equation (1.2) are,

rforward = kforwardcLi+cΘ

rbackward = kbackwardc(Li—Θ)

(2.112)

noting that the rates of forward and reverse reactions are dependent on the concen-

tration of empty and filled sites respectively.

At this point there are two possible ways to express the reaction kinetics at the ac-

tive material interface. The approach taken in references [6, 118, 119] is to substitute

Equation (2.112) into Equation (2.82). By doing so, the equilibrium current density

is given by,

ieq = iref,c

(︃
c(Li—Θ)

cref(Li—Θ)

)︃αc
(︃
cΘ

crefΘ

)︃1−αc
(︃
cLi+

crefLi+

)︃1−αc

(2.113)

where iref,c is the reference exchange current density for the cathodic reaction. Now,

taking the reference concentration for reaction sites to be at its fully saturated state,

the ratio of filled sites to saturation can be expressed as a ratio, θ, and conversely,

the ratio of empty sites to saturation as (1− θ), ieq becomes,

ieq = iref,cθ
αc(1− θ)1−αc

(︃
cLi+

crefLi+

)︃1−αc

(2.114)

An issue arises in that the potential difference between the reference electrode and

the electrolyte does not account for the activity of the filled and empty sites. The
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potential difference between the active material electrode and the electrolyte, however,

does. According to the derivation in Appendix A.7, the activity terms for filled and

empty sites cannot be incorporated into the ϕR solution variable. This complexity is

avoided by claiming that the reference electrode equilibrium potential, U , accounts

for these activities instead, and is therefore cited as being dependent on the extent of

Lithiation of the active material and independent of the Lithium-ion concentration

in the electrolyte [7, 118, 124, 125].

The alternative form of the Butler-Volmer equation at the active material interface

used by Newman [6] is to make the equilibrium current density, ieq, only dependent

on the activities of the reactants and products that are common to the reference and

active material electrodes (that being Lithium-ion concentration). The remaining

ratios are left in front of the exponential term corresponding to its respective reaction

direction, i.e.,

SLi(s) = −SLi+ =
Av

F
ieq

[︃
(1− θ) exp

(︃
− αcF

RT
(ϕs − ϕR − U ′)

)︃
− θ exp

(︃
(1− αc)F

RT
(ϕs − ϕR − U ′)

)︃]︃ (2.115)

where,

ieq = iref,c

(︃
cLi+

crefLi+

)︃1−αc

(2.116)

Theoretically, this would maintain the reference electrode equilibrium potential as

being both concentration and Lithiation independent, hence the distinction between

U and U ′.

While the two forms of the active material Butler-Volmer equations differ in form

and meaning of the equilibrium potential, either form is valid and physically mean-

ingful. However, for this work, Equation (2.115) will be used because U ′ is simply a

constant. Care must be taken to ensure that the correct definition of U or U ′ is cho-

sen, corresponding to the form of the equation being implemented. The relationship

between U and U ′ is,

U ′ +
RT

F
ln

(︃
1− θ

θ

)︃
= U (2.117)
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for which a derivation is provided in Appendix A.8.

In this work, a simplification is made, due to its scope only focusing on the macro-

scale. Instead of using the θ and (1 − θ) ratios, which correspond to the surface

concentration, cΘ, this work will simply use the locally averaged concentration of

Lithium in the solid phase, cLi(s) , relative to an assumed saturation concentration,

csat. Having a lower concentration of Lithium in the active material will be assumed

proportional to having many open reaction sites, and conversely, having a high con-

centration of solid Lithium will be assumed proportional to having many filled sites.

This simplification would be equivalent to assuming that the microscopic diffusion

within the particle is infinitely fast, while maintaining that diffusion macroscopically

is still slow. Therefore, the Butler-Volmer equation for intercalating into the active

material in this work is,

SLi(s) = −SLi+ =
Aviref,c
F

(︃
cLi+

crefLi+

)︃1−αc
[︃(︃

csat − cLi(s)
csat

)︃
exp

(︃
− αcF

RT
(ϕs − ϕR − U ′)

)︃
−

(︃
cLi(s)
csat

)︃
exp

(︃
(1− αc)F

RT
(ϕs − ϕR − U ′)

)︃]︃
(2.118)

2.2.2.6 Equation Summary

In summary, given the assumptions made about the system, the four governing equa-

tions describing the solution variables, cLi(s) , ϕs, cLi+ , and ϕR, within the macro-scale

battery are, respectively,

ϵAM

∂cLi(s)
∂t

= ∇ ·
(︁
Deff

s ∇cLi(s)
)︁

+ SLi(s) (2.94)

0 = ∇ ·
(︁
σeff
s ∇ϕs

)︁
+ FSLi(s) (2.101)

ϵ
∂cLi+

∂t
= ∇ ·

(︁
ζ∇cLi+

)︁
−

i · t0+
F

+ (1− t0+)SLi+ (2.105)

0 = ∇ ·
(︁
κeff∇ϕR + ξ∇cLi+

)︁
+ FSLi+ (2.109)

where, ξ = −
2κeffRTt0−
cLi+F

(︃
1 +

∂ ln γ+−

∂ lnmLi+

)︃(︃
1− d ln c0

d ln cLi+

)︃
and, ζ = Deff

(︂
1− d ln c0

d ln cLi+

)︂
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where all four equations are solved in the cathode and only the last two, correspond-

ing to the electrolyte phase equations, are solved in the separator. This system of

equations is supported by other works in the literature [54, 117, 126].

Using Equation (2.57) as a template, the terms u, A, B, g, and f are defined as,

u =

⎛⎜⎜⎜⎜⎜⎜⎝
cLi(s)

ϕs

cLi+

ϕR

⎞⎟⎟⎟⎟⎟⎟⎠ (2.119)

A =

⎛⎜⎜⎜⎜⎜⎜⎝
ϵAM 0 0 0

0 0 0 0

0 0 ϵ 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (2.120)

B(u) =

⎛⎜⎜⎜⎜⎜⎜⎝
Deff

s 0 0 0

0 σeff
s 0 0

0 0 Deff
(︂
1− d ln c0

d ln cLi+

)︂
0

0 0 −2κeffRTt0−
cLi+F

(︂
1 + ∂ ln γ+−

∂ lnmLi+

)︂(︂
1− d ln c0

d ln cLi+

)︂
κeff

⎞⎟⎟⎟⎟⎟⎟⎠ (2.121)

g =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

− 1
F

0

⎞⎟⎟⎟⎟⎟⎟⎠ (2.122)

f(u) =

⎛⎜⎜⎜⎜⎜⎜⎝
SLi(s)

FSLi(s)

(1− t0+)SLi+

FSLi+

⎞⎟⎟⎟⎟⎟⎟⎠ (2.123)

2.2.3 Boundary Conditions

As with the boundary conditions for the separator cell in Section 2.1.3, Equations

(2.64) and (2.65) can be used at the anodic boundary of the domain to describe
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the flux conditions for the Lithium-ions, cLi+ , and electrolyte potential, ϕR, for an

imposed current. For an imposed voltage, Equation (2.87), describing the reactions

at a planar-electrode, can be additionally used to relate the potential drop to the

current. Because the solid phase only exists in the cathode layer, a zero flux boundary

condition can be imposed on the solid Lithium concentration, cLi(s) , and the solid

phase potential, ϕs, at the interface between the separator and the cathode. At the

current collector interface, at the far end of the cathode layer, the flux of Lithium-

ion, solid Lithium, and electrolyte current are all set to zero. Because electrons are

the only component that can penetrate this boundary, the solid potential will be set

to zero as a reference. While this value is arbitrarily chosen, it will “anchor” the

potential for the whole system from which a potential difference can be measured for

the imposed current case, and the current can be measured for the imposed voltage

case. Figure 2.4 visually describes how the boundaries conditions are assigned for (a)

a constant current and (b) a constant cell voltage.

2.3 Input Parameters

This section will provide physical meaning for the diffusion coefficient, ionic con-

ductivity, transference number, and the thermodynamic factor, it will describe how

they can be obtained through experimentation, and it will give their parameteriza-

tion sourced from the literature. This will be for the two electrolytes used in the

simulations, i.e., LiPF6 in EC:DEC (1:1 by weight) and LiTFSI in PEO. The LiPF6

parameters are given at 10, 25, and 40◦C for Li+ concentration between 0.5 and 1.5 M,

and the LiTFSI is presented at 90◦C for the range of 0.25 to 3.75 M. Because the

parameterized equations for LiTFSI were determined from the raw data in ref [105],

the original data points are included in the figures as well.
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(a)

(b)

Figure 2.4: Boundary condition schematic for macro-scale battery application for an
(a) imposed current and (b) imposed voltage. The solid phase solution variables are
not solved in the separator and therefore their boundary conditions are applied at
the interface between the separator and cathode. icell indicates the vector of imposed
current and Vcell is the scalar imposed voltage.
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2.3.1 Diffusion Coefficient

The measurable salt diffusion coefficient, introduced in Equation (2.27), is not an

intrinsic property of any one component in solution but instead a byproduct of the

exact species and stoichiometries of the electrolyte as a whole. As a result, it is evident

that when the stoichiometries change due to concentration differentials in an operable

cell, the diffusion at each point in the cell will also change. Parameterization for the

diffusion coefficient is obtained through experimental fitting instead of directly from

theory because certain parameters for which diffusion is dependent, such as the salt

activity coefficients, are not easily obtained from theory alone. Additionally, it has

been observed that in concentrated solutions, such as in Lithium-ion batteries, the

salt experiences a significant amount of ionic association, resulting in the formation of

ionic pairs and triplets, and eventually the precipitation of the salt out of the solution

altogether [104]. Some experiments indicate that ionic association is of the order of

40-60% for LiPF6 electrolytes during operation [127, 128]. Changing the electrolyte

makeup, by increasing the concentration of ionic pairs, will naturally decrease mobility

and thus also decrease the salt diffusion [129]. The salt diffusion, therefore, tends

to decrease with increased concentration and subsequently increase with increasing

temperatures, due to increased Brownian motion and mobility.

Salt diffusion can be experimentally measured in multiple ways, with varying de-

grees of accuracy. One such method is the restricted diffusion experiment in which

relaxation between two fixed points is measured, after the application of a current

or voltage [110]. This method applies a small enough polarization so as to assume

constant diffusion across the domain, yet a large enough polarization to mitigate

experimental error [130]. Another method is to measure the self-diffusivities of all

components in solution (e.g., using nuclear magnetic resonance (NMR) in operando

[131, 132]) and using the relationships in Equations (2.25) and (2.27) to parameterize

the salt diffusivities for whatever operational range of salt concentrations is required
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Figure 2.5: Diffusion coefficient given as a function of salt concentration for various
temperatures for LiPF6 in EC:DEC 1:1 by weight. Experimental data sourced from
ref [106].

Figure 2.6: Diffusion coefficient given as a function of salt concentration at 90◦C for
LiTFSI in PEO. Experimental data sourced from ref [105].

[104, 110].

The salt diffusion for LiPF6 in EC:DEC (1:1 by weight) is modelled against con-

centration in Figure 2.5 and tabulated in Table 2.1, for temperatures of 10◦C, 25◦C,

and 40◦C [106]. For the LiTFSI in PEO, the diffusion coefficient was determined from

a line of best fit, given the experimental data presented in Figure 2.6 and Table 2.2
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Table 2.1: Salt diffusion of LiPF6 in EC:DEC (1:1 by weight).

D(c) = a0 + a1cLi+ + a2c
2
Li+ [×10−11 m2/s]

a0 a1 a2

10◦C 19.16 -5.170 -4.310

25◦C 29.13 -2.932 -3.013

40◦C 36.64 6.763 -6.295

Table 2.2: Input parameters for LiTFSI in PEO at 90◦C.

x(cLi+) = a0 + a1cLi+ + a2c
2
Li+ + a3c

3
Li+ + a4c

4
Li+

x(cLi+) a0 a1 a2 a3 a4

D [10−11 m2/s]
cLi+ ≥ 2.38 M -706.8 1178 -711.3 212.4 -31.35

cLi+ < 2.38 M 0.7165 -1.156 3.603 -2.497 0.4949

κ [mS/cm]
cLi+ ≥ 2.58 M -100.7 97.81 -30.68 3.138

cLi+ < 2.58 M 0.1049 -0.6306 63.62 -4.878 -0.9992

t0+
cLi+ ≥ 2.58 M -68.22 59.93 -17.25 1.631

cLi+ < 2.58 M -0.0874 0.7622 -0.2531 -0.0318(︂
1 + ∂ ln c0

∂ ln cLi+

)︂ cLi+ ≥ 2.58 M -226.2 193.4 -52.79 4.702

cLi+ < 2.58 M -0.1876 1.963 0.5783 -0.3799

[105].

2.3.2 Conductivity

Like diffusion, the electrolyte conductivity, κ is also highly dependent on ionic concen-

tration, however, in this case, not monotonically. As the ionic concentration decreases,

the electrolyte begins to resemble a capacitor and the resistance greatly increases due

to less ions being able to carry charge within the electric field. On the other hand, at

very high ionic concentrations, the interaction between ions becomes more dominant,

due to the mentioned ionic pair formation and potential precipitation, thus also in-

creasing resistance. However, conductivity increases monotonically with temperature
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Figure 2.7: Conductivity given as a function of salt concentration for various temper-
atures for LiPF6 in EC:DEC 1:1 by weight. Experimental data sourced from ref [106].

as a result of increased ionic mobility (see Equation (2.44) for the relationship be-

tween conductivity and temperature). The optimal range for maximum conductivity,

lies within the 0.8− 1.0M range, depending on the electrolyte and temperature.

Electrolyte conductivity is measured experimentally by performing EIS over a sym-

metric Li-foil cell [133]. An equivalent circuit can be built, consisting of a constant-

phase element (CPE) to account for the capacitive DL, in series with a resistor for

conductivity [134]. By fitting the curve of the equivalent circuit to the experimen-

tally achieved results, the resistor element can be isolated and the ionic conductivity

calculated by means of the equation,

κ =
Cell Length

Cell Area · Resistance
(2.124)

The ionic conductivity is given with respect to the LiPF6 in EC:DEC (1:1 by

weight) concentration in Figure 2.7 and Table 2.3 [106] and for the LiTFSI in PEO

electrolyte in Figure 2.8 and Table 2.2 [105].
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Figure 2.8: Conductivity given as a function of salt concentration at 90◦C for LiTFSI
in PEO. Experimental data sourced from ref [105].

Table 2.3: Ionic conductivity of LiPF6 in EC:DEC (1:1 by weight).

κ(c) = a0cLi+ + a1c
1.5
Li+ + a2c

3
Li+ [mS/cm]

a0 a1 a2

10◦C 23.30 -18.90 1.073

25◦C 29.15 -22.38 1.147

40◦C 35.95 -26.48 1.149
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2.3.3 Transference Number

The transference number, t0i , is defined as the number of moles of a species trans-

ferred by migration per mole of electrons. For an ideal, fully dissolved solution, this

definition could be expressed by Equation (2.26). However, this equation does not

hold once the ions start to associate and create ionic pairs. Transference is therefore

most easily reported by fitting experimental data.

The transference number is often misunderstood and confused with another pa-

rameter: the transport number, ti. For a binary salt, an ion’s transport number

corresponds to the ratio of mobility of that ion with respect to its counter ion. As

a result, it is often expressed in terms of the self-diffusivities of each ion, i.e. for the

cation [135],

t+ =
D+

D+ +D−
(2.125)

The use of the transport number assumes the applicability of the Nernst-Einstein

equation, which does not account for the interaction between charged ions. This

assumption is valid at the dilute limit, but as concentration increases and ionic inter-

actions become significant, the use of the transport number in place of the transfer-

ence number will result in errors. Despite this, the transport number is still useful,

even for concentrated solution. While one may not obtain a quantitative value that

can be implemented into a model, the transport number is easily measurable and its

quantitative characteristics are analogous to those of the transference number.

The confusion regarding the transference number often arises through the incorrect

usage of certain experiments in reporting its parameterized values. For instance, the

Bruce-Vincent method is often performed, in which a constant voltage is applied to

a symmetric Li-foil cell and the resulting current is measured [136]. Once a steady

state (SS) is obtained, the transport number can be obtained through comparison of

the initial current and the final current, i.e.,

t+ =
Iss
I0

(2.126)
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where Iss is the steady state current and I0 is the initial current. The derivation of

this equation, however, assumes the applicability of the Nernst-Einstein relation, and

therefore is a measure of the transport number, not the transference number (as is

often reported).

An experiment that is used to measure the true transference number is called the

Hittorf method [137]. This method bypasses the need for the Nernst-Einstein equa-

tion by inserting at least two additional reference electrodes within the separator, and

measuring the potential that develops accross them, ensuring that the concentrations

between the intermediate electrodes remains constant. Then, by calculating the num-

ber of moles of anion passed between the intermediate electrodes, by measuring the

anion concentration accumulation in the vicinity of the cathode, one can determine

the number of moles of Lithium-ions that are passed. Recognizing that this trans-

port of Lithium between the intermediate electrodes is solely due to migration, the

transference number will be the ratio of the number of moles of Lithium passed per

mole of charge.

Other sources for discrepancy between reported transference numbers are due to

the presence of neutral aggregates [104, 127], moving boundaries due to plating [138],

or the assumption of a non-zero bulk velocity [139]. As such, transference numbers

vary greatly, with some suggesting concentration independence [140] or even negative

values [103, 141]. The majority, however, assert that the transference number is

mildly dependent on concentration and temperature and exists in the neighbourhood

of 0.2−0.3. The transference number is usually much less than the transport because

the Lithium-ion often has a large solvation shell around it, making mobility more

difficult.

For this work, the transference number’s dependence on concentration is presented

in Figure 2.9 and Table 2.4 for LiPF6 in EC:DEC (1:1 by weight) [106] and in Fig-

ure 2.10 and Table 2.2 for LiTFSI in PEO [105].
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Figure 2.9: Positive transference number coefficient given as a function of salt concen-
tration for various temperatures for LiPF6 in EC:DEC 1:1 by weight. Experimental
data sourced from ref [106].

Figure 2.10: Positive transference number given as a function of salt concentration
at 90◦C for LiTFSI in PEO. Experimental data sourced from ref [105].
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Table 2.4: Positive transference number of LiPF6 in EC:DEC (1:1 by weight).

t0+(c) = a0 + a1cLi+ + a2c
2
Li+ + a3c

3
Li+

a0 a1 a2 a3

10◦C 0.2973 -0.3651 0.3396 -0.1166

25◦C 0.4231 -0.4312 0.3373 -0.1197

40◦C 0.4467 -0.4450 0.3394 -0.1176

2.3.4 Thermodynamic Factor

Appearing as the bracketed factor containing the molal activity factor in Equations

(2.35) and (2.55), i.e., (︃
1 +

∂ ln γ±
∂ lnmLi+

)︃
(2.127)

the thermodynamic factor is a measure of the non-ideality of the electrolyte, specif-

ically with regard to how the salt activity changes with ionic concentration. At low

ionic concentrations, as experienced in dilute solution theory, this term will approach

unity and can be neglected. But once the ionic concentration exceeds roughly 0.5 M

[142], this assumption will introduce significant under-predictions of the open-cell

voltage. The thermodynamic factor measures the potential across a concentration

cell when no current is being passed. In this case, Equation (2.45) can be rearranged

to:

∂ϕR

∂cLi+

⃓⃓⃓⃓
i=0

=
2RT

F

(︃
1 +

∂ ln γ±
∂ lnmLi+

)︃
(1− t0+) (2.128)

and the thermodynamic factor isolated for.

The concentration dependency for the thermodynamic factor for LiPF6 in EC:DEC

(1:1 by weight) is given in Figure 2.11 and Table 2.5 [106] and for LiTFSI in PEO in

Figure 2.12 and Table 2.2 [105].

2.3.5 Other Parameters

While the four parameters described so far are the most important for accurately

modelling the electrolyte, there are additional parameters for which parameterizations
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Figure 2.11: Thermodynamic factor given as a function of salt concentration for
various temperatures for LiPF6 in EC:DEC 1:1 by weight. Experimental data sourced
from ref [106].

Figure 2.12: Thermodynamic factor given as a function of salt concentration at 90◦C
for LiTFSI in PEO. Experimental data sourced from ref [105].
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Table 2.5: Thermodynamic factor of LiPF6 in EC:DEC (1:1 by weight).(︂
1 + ∂ ln c0

∂ ln cLi+

)︂
(c) = a0 + a1cLi+ + a2c

2
Li+

a0 a1 a2

10◦C 0.5167 0.7073 0.1041

25◦C 0.6223 0.9968 0.6223

40◦C 0.6708 1.199 0.0214

are not provided but are still very important for modelling the symmetric cell system

and the full battery system. These are presented in Table 2.6. While each cathodic

parameter is with respect to NMC, they are obtained from multiple sources. This

is because, unfortunately, it is uncommon for one group to fully parameterize the

cathode, given that their research is usually focused at one aspect of the cathode

only.

A closer examination of the cathodic micro-structure must be taken for the volu-

metric parameters pertaining to its nature to be understood. First, the diffusion of

solid Lithium occurs in two modes. First, and most substantially, it diffuses radially

within each active material particle. The “pseudo” dimension in the P2D model is

strictly responsible for this mode of diffusion. However, in this work, because the

micro-scale is not being modelled, it is assumed that the radial diffusion rate is in-

finitely fast, and therefore, the intra-particle diffusion coefficient is infinitely large.

The other mode of diffusion is macroscopically, in which solid Lithium is passed be-

tween the active material particles, allowing for macro-scale spatial movement of solid

Lithium. The transport between particles is often assumed insignificant and therefore

not modelled in most electrochemical models [126]. However, reference [120] noted

that inter-particle diffusion is likely the cause of decreased heterogeneity within the

solid phase, and therefore, a contributing factor in macro-scale transport. As an ongo-

ing area of research, this transport has not yet been quantified for NMC in terms of a

diffusion coefficient. Following the examples of references [54, 120], the inter-particle
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Table 2.6: Additional simulation parameters

Parameter Symbol Value

Inter-particle solid diffusion
coefficient

Ds 6 · 10−12 cm2/s [143]

Intra-particle solid diffusion
coefficient

∞ (assumed)

Macro-scale solid
conductivity

σs 38 mS/cm [143]

Separator pore volume
fraction

ϵ 0.55∗

Cathode pore volume
fraction

ϵ 0.37 [144]

Cathode AM volume
fraction

ϵAM 0.60 [144]

Interfacial area to volume
ratio

Av 8000 cm2/cm3 [145]

Li-foil exchange current
density

iref 0.5 mA/cm2 [146]

Active material exchange
current density

iref,c 0.96 mA/cm2 [32]

Li-foil charge-transfer
coefficient

α 0.5 [143]

Active material
charge-transfer coefficient

αc 0.5 [32]

Solid Lithium saturation
concentration

csat 27.380 M [143]

Electrolyte Li+ reference
concentration

cref 1.0 M

Open cell voltage (OCV) U 3.3-4.3 V† [147]

LiPF6 specific volume v̄e 53.49 m3/mol

LiTFSI specific volume v̄e 215.85 m3/mol

∗ Based on Celgard® 2500 Monolayer Microporous Membrane.

† SOC dependant. See ref [147] for details.
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diffusion coefficient will be taken to be the same as the intra-particle diffusion co-

efficient, accounting for porosity and toruosity, as given in ref [143]. Because this

diffusion is acting over such large scales (i.e., the macro-scale cathode domain instead

of one active material radius), this inter-particle diffusion will not have a significant

impact on cell performance. This is to be expected, given that the main mode of

solid diffusion is radially within the active material particle.

The specific volume of the active material and pore phase do not actually comprise

the total volume of the cathode, as is suggested in the governing equation derivation.

In reality, there are other materials as well, including the conductive additive, binder,

and any other doping/enriching compounds. However, because these materials make

up a minimal fraction of the total volume, it is lumped in with the active material

phase.

The saturation concentration is a measure of the maximum amount of intercalated

Lithium that can be extracted back out of the cathode as the cell is run in reverse.

Note that this is not the same as the total amount of Lithium in the cathode. The

maximum Lithium concentration in the NMC active material is 48.204 M and the

minimum amount that must remain when Lithium is being stripped is 20.824 M [143],

resulting in a saturation concentration equal to the difference (i.e., 27.380 M).

Finally, the active material exchange current density is obtained from the reac-

tion rate constant cited from reference [32], using the saturation concentration and

electrolyte reference concentration presented in the table.

2.4 Implementation

This section outlines the process of implementing the governing equations, in the

form,

A
∂u

∂t
= ∇ ·

[︁
B(u)∇u

]︁
+
[︁
i(u) · ∇t0+(u)

]︁
g + f(u) (2.57)
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into the OpenFCST software through the use of the finite element method (FEM)

[148]. The solution vector, u, and the coeffieicnts, A, B(u), g, and f(u), are given

for the symmetric cell in Equations (2.58) to (2.62) and for the full battery in Equa-

tions (2.119) to (2.123). The current, i(u), is given in Equation (2.45).

2.4.1 Temporal Discretization

Since the temporal and spatial components of Equation (2.57) are independent, a

method for solving each can be developed, independent of the other. Given the

temporal ODE,

du

dt
= f

(︁
t,u(t)

)︁
(2.129)

the function, f
(︁
t,u(t)

)︁
, contains the spatial driving forces and source terms from

Equation (2.57).

OpenFCST already has a θ-scheme and a backward differentiating formulae (BDF)

scheme implemented in its framework. For the θ-scheme, the transient component

is replaced by a finite difference and the f
(︁
t,u(t)

)︁
function is implemented by the

combination of implicit and explicit terms, i.e.,

u(n+1) − u(n)

τ
= θf (n+1) + (1− θ)f (n) (2.130)

where τ is the step size. When θ is set to 0, one obtain the explicit Euler method

and when θ is 1, one obtains implicit Euler, both of which are first order accurate.

By setting θ = 0.5, the Crank-Nicolson method is obtained which is second order and

unconditionally stable (as is implicit Euler). The BDF scheme is also unconditionally

stable for its first and second order (k = 1 or 2) but has the possibility of being

extended to sixth order accurate, although the higher order schemes are conditionally

stable. Implicit Euler is recovered for BDF-1 [116]. In this work, the BDF-1 scheme

was chosen as it is unconditionally stable and can be extended to higher orders of

accuracy if needed.
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Based on the form of the system in Equation (2.129), the BDF discretization

definition for order k is given by,

f (n+1) =
n+1∑︂

p=n−k+1

αp

τ
u(p) =

1

τ

(︁
αn+1u

(n+1) + αnu
(n) + · · ·+ αn−k+1u

(n−k+1)
)︁

(2.131)

The superscript, (n + 1), denotes the current time step, and αp is a mathematically

determined prefactor that is dependent on the scheme order.

Applying Equation (2.131) to Equation (2.57), results in the following temporally

discretized governing equation,

n+1∑︂
p=n−k+1

Aαp

τ
u(p) =∇ ·

(︁
B(u(n+1))∇u(n+1)

)︁
+
(︁
i(u(n+1)) · ∇t0+(u(n+1))

)︁
g + f(u(n+1))

(2.132)

2.4.2 Linearization

The driving force coefficient, B, the current, i, and the source term, f, are all functions

of the solution variables, and therefore, their values for the current time step cannot

be directly determined, as the values on which they depend are unknown. Therefore,

an iteration technique within the current time step will be applied that can give

an increasingly accurate estimate for the values of the unknown coefficients. This

iteration routine will be denoted by a second superscript (n+1,m+1), where m+1

denotes the current nonlinear iteration. Note that the values of the solution variables

from previous time steps (p ≤ n) are always given by the final iteration at that time

step. Equation (2.132) will then be,

n+1∑︂
p=n−k+1

Aαp

τ
u(p,m+1) = ∇ ·

(︁
B(u(n+1,m+1))∇u(n+1,m+1)

)︁
+
(︁
i(u(n+1,m+1)) · ∇t0+(u(n+1,m+1))

)︁
g + f(u(n+1,m+1))

(2.133)

The first method implemented in OpenFCST is the Picard method. In this method,

the unknown coefficients are merely computed using the solution variables from the

previous iteration. This process is repeated until a reasonable tolerance is achieved.
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Applying this method gives,

n+1∑︂
p=n−k+1

Aαp

τ
u(p,m+1) = ∇ ·

(︁
B(u(n+1,m))∇u(n+1,m+1)

)︁
+
(︁
i(u(n+1,m)) · ∇t0+(u(n+1,m))

)︁
g + f(u(n+1,m))

(2.134)

Alternatively, the Newton-Raphson method was also implemented into OpenFCST.

This linearization method involves taking the variation of the equation functional and

setting it equal to zero, i.e.,

R(u(m+1)) = R(u(m)) + δR(u(m)) = 0 (2.135)

Applied to Equation (2.133), the linearized form of the governing equation is,

0 =
n+1∑︂

p=n−k+1

Aαp

τ
u(p,m)

+
Aαn+1

τ
δu

−∇ ·
(︁
B(u(n+1,m))∇u(n+1,m)

)︁
−∇ ·

(︁
B(u(n+1,m))∇δu

)︁
−∇ ·

(︃
∂B(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m)

)︃
−

(︃(︃
∂i(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

)︃
·
(︃
∂t0+(u)

∂ul

⃓⃓⃓⃓
u=u(n+1,m)

∇ul
)︃)︃

g

−
(︃
i(u(n+1,m)) ·

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇u(n+1,m)
k

)︃)︃
g

−
(︃
i(u(n+1,m)) ·

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇δuk
)︃)︃

g

−
(︃
i(u(n+1,m)) ·

(︃
∂2t0+(u)

∂uk∂ul

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m)
l

)︃)︃
g

− f(u(n+1,m))

− ∂f(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

(2.136)

An approximation of u(n+1) is obtained by successfully solving for δu and updating

u(n+1,m+1) = u(n+1,m)+ δu. This will continue until the residual tolerance is satisfied,

at which point the algorithm will advance in time. The derivation for this linearization

is provided in Appendix A.9.
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In this case, the disadvantage of using the Newton-Raphson method is that the

derivatives of the B, i, and f terms need to be determined and implemented for

each variable. This will cause derivative terms to appear off the main diagonal of the

solution matrix, thus making matrix inversion generally more difficult. For this appli-

cation, however, in which certain equations are driven by multiple solution variables,

the system-matrix is already non-symmetric and using the Newton-Raphson method

will not make it worse. The advantage of this method, and the reason it was chosen

for this application, is that it converges significantly faster than the Picard iteration,

thus reducing computational expense.

2.4.3 Weak Formulation and Spatial Discretization

The linearized equations will be spatially discretized using the Bubnov-Galerkin finite-

element method. Each term is multiplied by a test function [116], v, and the equation
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is integrated over the domain, Ω, i.e.,

0 =

∫︂
Ω

v

n+1∑︂
p=n−k+1

Aαp

τ
u(p,m)dΩ

+

∫︂
Ω

v
Aαn+1

τ
δudΩ

−
∫︂
Ω

v∇ ·
(︁
B(u(n+1,m))∇u(n+1,m)

)︁
dΩ

−
∫︂
Ω

v∇ ·
(︁
B(u(n+1,m))∇δu

)︁
dΩ

−
∫︂
Ω

v∇ ·
(︃
∂B(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m)

)︃
dΩ

−
∫︂
Ω

v

(︃(︃
∂i(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

)︃
·
(︃
∂t0+(u)

∂ul

⃓⃓⃓⃓
u=u(n+1,m)

∇ul
)︃)︃

gdΩ

−
∫︂
Ω

v

(︃
i(u(n+1,m)) ·

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇u(n+1,m)
k

)︃)︃
gdΩ

−
∫︂
Ω

v

(︃
i(u(n+1,m)) ·

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇δuk
)︃)︃

gdΩ

−
∫︂
Ω

vi(u(n+1,m)) ·
(︃
∂2t0+(u)

∂uk∂ul

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m)
l

)︃
gdΩ

−
∫︂
Ω

vf(u(n+1,m))dΩ

−
∫︂
Ω

v
∂f(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δukdΩ

(2.137)

One can then apply integration by parts and Gauss’ theorem, i.e.,∫︂
Ω

s
(︁
∇ · v

)︁
dΩ = −

∫︂
Ω

(∇s) · vdΩ +

∫︂
Ω

∇ ·
(︁
sv

)︁
dΩ

= −
∫︂
Ω

(∇s) · vdΩ +

∮︂
∂Ω

n ·
(︁
sv

)︁
dΓ

(2.138)

to Equation (2.137) to reduce the order of the derivative by one. Here, s is a scalar,

v is a vector, and ∂Ω denotes the domain boundary.
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The weak form of the governing equation is then,∫︂
Ω

v
Aαn+1

τ
δudΩ

+

∫︂
Ω

(∇v) ·
(︁
B(u(n+1,m))∇δu

)︁
dΩ

+

∫︂
Ω

(∇v) ·
(︃
∂B(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m)

)︃
dΩ

−
∫︂
Ω

v

(︃(︃
∂i(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

)︃
·
(︃
∂t0+(u)

∂ul

⃓⃓⃓⃓
u=u(n+1,m)

∇ul
)︃)︃

gdΩ

−
∫︂
Ω

v

(︃
i(u(n+1,m)) ·

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇δuk
)︃)︃

gdΩ

−
∫︂
Ω

v

(︃
i(u(n+1,m)) ·

(︃
∂2t0+(u)

∂uk∂ul

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m)
l

)︃)︃
gdΩ

−
∫︂
Ω

v
∂f(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δukdΩ

= −
∫︂
Ω

v
n+1∑︂

p=n−k+1

Aαp

τ
u(p,m)dΩ

−
∫︂
Ω

(∇v) ·
(︁
B(u(n+1,m))∇u(n+1,m)

)︁
dΩ

+

∫︂
Ω

v

(︃
i(u(n+1,m)) ·

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇u(n+1,m)
k

)︃)︃
gdΩ

+

∫︂
Ω

vf(u(n+1,m))dΩ

+

∮︂
∂Ω

n ·
(︁
vB(u(n+1,m+1))∇u(n+1,m+1)

)︁
dΓ

(2.139)

Note that the boundary term is computed at the m+1 nonlinear iteration. This can

be achieved as the boundary conditions are either Dirichlet, in which case the whole

term will become zero (as v = 0), or Neumann/complex, in which case the flux is

imposed and the whole term can be replaced (see Section 2.4.4 for more detail).

Determining functions that closely approximate the solution over the whole domain

would be tedious and incredibly difficult. As such, the domain will be spatially

discretized over a predetermined mesh. The intention being, that the solution over

these cells can be approximated by a set of given shape functions to a reasonable

degree of accuracy. By increasing the number of cells (and therefore decreasing the

size of each cell), along with changing the number of shape functions in each cell,
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the error in the final approximation can be reduced to within a required threshold.

The shape function definition for the solution variance, δuc, and test functions, v, are

given as,

δuc ≈
N∑︂
j=1

ψjδūjc v ≈
N∑︂
i=1

ψiv̄i (2.140)

where ψj is a first order Lagrangian polynomial and N is the DOF of the shape

functions. The indices are given as superscripts to distinguish them as DOF indices

instead of indices denoting the equation number, which are given as subscripts.

For these discretizations to be applied to Equation (2.139), it is convenient to write

this equation in index notation, as a fourth order matrix in tensor notation could be

misleading. The discretized weak form is then,[︄∫︂
Ω̂

Aacαn+1

τ
ψiψjdΩ̂

+

∫︂
Ω̂

Bac(u
(n+1,m))

(︁
∇ψi · ∇ψj

)︁
dΩ̂

+

∫︂
Ω̂

(︃
∂Bab(u)
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(2.141)
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where δlk is the Kronecker delta function, defined as,

δlk =

⎧⎨⎩ 1 k = l

0 k ̸= l
(2.142)

At this point, the LHS is an n × n square matrix with indices a and c, where n is

the number of equations in the system. Each element contains the corresponding

equation’s a’th Jacobian matrix with respect to the c’th solution variable variance.

The Jacobians are N × N matrices with indices i and j. Likewise, the RHS is a

vector with index a and length n, where each element is the residual vector for that

equation, with index i and size N . The domain of integration becomes the domain of

each cell, Ω̂. This step is not trivial but does not offer much towards understanding.

Therefore a derivation is provided in Appendix A.10.

The boundary terms drop out of the equation for the cells that do not share an

edge with the edge of the simulation domain. As such, they have been left out of the

derivation and will be considered further in Section 2.4.4.

The discretized form of an arbitrary governing equation, α, in the system is now

in the linear form, (︁
Mδū

)︁
α
= bα (2.143)

and can be directly implemented into the application. OpenFCST then uses various

linear solver techniques to obtain a solution for the shape function coefficients for

that time step, i.e., δū. The guess for the next iteration will then use the previous

iteration’s guess plus the variance, u(n+1,m+1) = u(n+1,m) + δu, obtained using Equa-

tion (2.140). Once a reasonable tolerance has been achieved, the program will save

the solution for that time step and move on to the next time step using this solution

as its initial guess.

2.4.4 Boundary Conditions

This section outlines the use and implementation of each type of boundary condition

into the OpenFCST program. Recall that the boundary term omitted in Section 2.4.3
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for an arbitrary equation, α, is given by,(︃∮︂
∂Ω̂

n ·
(︁
B(u(n+1,m+1))∇u(n+1,m+1)

)︁
ψidΓ

)︃
α

(2.144)

The following subsections outline the various methods of applying this boundary term

to the boundary conditions outlined in Sections 2.1.3 and 2.2.3.

2.4.4.1 Dirichlet Boundary Condition

A Dirichlet boundary condition is one in which the value of the solution variable at

that boundary is directly imposed, such as the solid phase potential at the cathodic

current collector. The process of implementing this condition is to ensure that the

initial solution guess meets the requirements of this boundary, and then forcing the

solution update to zero at those points. Since the solution is known, the test function

is forced to zero such that the integral in Equation (2.144) will disappear, and thus

not be used at all. This boundary condition can account for temporally fluctuating

boundary values by imposing values of the affected solution variables prior to the first

iteration in each new time step.

2.4.4.2 Neumann Boundary Condition

A Neumann boundary condition describes the flux of a solution variable across the

boundary of the domain. Examples of this would be the no-flux boundary condition

at the lateral domain walls or the imposed current at the planar anodic electrode.

For the no-flux current or concentration boundaries, the boundary integral (2.144)

will become zero and can be neglected all-together.

An imposed current is accounted for through the use of Equations (2.64) and (2.65).

By applying these equations to the boundary integral (2.144), the following equations

can be used to impose the current boundary condition for the species transport and
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MacInnes equations, respectively:(︃∮︂
∂Ω̂

n ·
(︁
B(u(n+1,m+1))∇u(n+1,m+1)

)︁
ψidΓ

)︃
1

=
t0+ − 1

F

∮︂
∂Ω̂

n · i(n+1)ψidΓ

(2.145)

(︃∮︂
∂Ω̂

n ·
(︁
B(u(n+1,m+1))∇u(n+1,m+1)

)︁
ψidΓ

)︃
2

= −
∮︂
∂Ω̂

n · i(n+1)ψidΓ

(2.146)

Since the current will remain constant within the nonlinear iterations, the m + 1

superscript can be dropped. The transient superscript, however, will remain because

the current may be time dependant (e.g. for EIS or potentiostatic ramp tests).

2.4.4.3 Complex Boundary Condition

When applying a cell voltage, no direct information is given about the solution vari-

ables being solved for (neither their values, nor their fluxes). What is provided, how-

ever, is the potential of the out-of-domain electrode, ϕsp. Equation (2.87) describes

how a current can be calculated through the use of the Butler-Volmer kinetics, given

values for the solution variables, u. Therefore, i(u) is an implicit term and must

be solved for within the Newton loop. Using Equations (2.145) and (2.146), the

boundary integral terms become,(︃∮︂
∂Ω̂

n ·
(︁
B(u(n+1,m+1))∇u(n+1,m+1)

)︁
ψidΓ

)︃
1

(2.147)

=
t0+ − 1

F

∮︂
∂Ω̂

n · i(u(n+1,m+1))ψidΓ (2.148)

(︃∮︂
∂Ω̂

n ·
(︁
B(u(n+1,m+1))∇u(n+1,m+1)

)︁
ψidΓ

)︃
2

(2.149)

= −
∮︂
∂Ω̂

n · i(u(n+1,m+1))ψidΓ (2.150)
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for the species flux and current terms, respectively. Applying the linearization tech-

nique in Equation (2.133), these equations become,(︃∮︂
∂Ω̂

n ·
(︁
B(u(n+1,m+1))∇u(n+1,m+1)

)︁
ψidΓ

)︃
1

=
t0+ − 1

F

∮︂
∂Ω̂

n ·
(︃
i(u(n+1,m)) +

(︃
∂i(u)

∂uk

)︃⃓⃓⃓
u=u(n+1,m)

ψjδūjk

)︃
ψidΓ

(2.151)

(︃∮︂
∂Ω̂

n ·
(︁
B(u(n+1,m+1))∇u(n+1,m+1)

)︁
ψidΓ

)︃
2

= −
∮︂
∂Ω̂

n ·
(︃
i(u(n+1,m)) +

(︃
∂i(u)

∂uk

)︃⃓⃓⃓
u=u(n+1,m)

ψjδūjk

)︃
ψidΓ

(2.152)

The first term in the integral can be incorporated into the residual vector of Equa-

tion (2.143), and the derivative term can be included in the Jacobian matrix.
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Chapter 3

Results

3.1 Symmetric Cell Analysis

Before an effective model for the macro-scale LiB can be developed and analyzed,

the correctness of the electrolyte equations and their implementation must first be

confirmed. These equations were isolated by eliminating the porous electrode al-

together and only considering the separator layer, sandwiched between two planar

Li-foil electrodes. First, the model described in Section 2.1 was used to reproduce the

experimental results by Pesko et al. in reference [105]. Then, a sensitivity analysis

of each input parameter in the model was conducted. This provided insights that

would be used to discuss the differences between the computational model and the

results from the literature. Finally, the OpenFCST model is applied to an electrolyte

for which no computational study has yet been performed. This is compared with

experimental results and discussed.

Since the symmetric cell was built using a coin cell configuration, transport is

assumed uniform in the radial direction of the cell and varying only in the axial

direction (i.e. the x-coordinate). While the edges of the cell will impact the cell

performance in a real system, the larger the diameter of the cell, the smaller this

effect will be and the closer the model will become to reality. The simulation domain

for this application can therefore be modelled in one-dimension only. OpenFCST

is designed to operate in either 2- or 3-dimensions. Therefore, for this analysis, a
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2-dimensional equally sized quadrilateral mesh with a width in the y-direction of only

one cell was used.

3.1.1 Validation

The system was validated by reproducing experimental results obtained from the

literature for the geometry and conditions described in Section 2.1.

Using the various experimental methods described in Section 2.3, Pesko et al.

measured the input parameters for LiTFSI in PEO for various Li+ concentrations at

90◦C [103, 105]. The data points presented in the figures in Section 2.3 are directly

obtained from their published work. While they also provided piece-wise polynomial

expressions for the input parameters, these did not match the data points provided in

the same paper; in some cases, being orders of magnitude different. Therefore, new

polynomial expressions were created for this work, shown visually by the solid trend

line in the aforementioned figures.

Pesko et al. also ran galvanostatic experiments of a symmetric cell containing

various concentrations of LiTFSI in PEO at various current densities. Using the

input parameters mentioned, the OpenFCST model could be validated by comparing

its results with the results from these experiments.

The domain of the OpenFCST simulation was 500 µm, refined into 500 cells (there-

fore, making each cell 1 µm thick). This domain thickness was chosen as it is wide

enough for spatial variations to be detected for relatively low current densities. The

refinement was chosen because it is fine enough not to introduce significant numerical

error while still large enough to keep computational times low. By decreasing the

cell thickness to 0.5 µm (i.e., 1000 cells), the cell voltage at steady-state changed by

only 0.00001%. The simulation time step was progressed at 1 s intervals, for a total

simulation time of 4 hours. Decreasing the time step to 0.5 s only decreased the

steady-state cell voltage by 0.001%.

The direct linear solver used in this analysis is the MUltifrontal Massively Parallel
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Solver (MUMPS) [149] and the numerical integration was performed using the deal.II

library [150]. The tolerance of the nonlinear solver, as outlined in Section 2.4.2, is

10−8. The simulation was run on 12 AMD cores using an MSI computer with 32GB of

RAM. The simulations in Section 3.1.1 averaged 48 s to complete and the simulations

in Section 3.1.2 averaged 27 s, both using the fuel cell-2D executable.

3.1.1.1 Comparison with the Literature

Pesko et al. presented experimental results for the symmetric cell application in ref-

erence [105] using LiTFSI in PEO. Because of the dendrite growth at higher current

densities, leading to inaccurate results and eventually short circuiting, Pesko’s work

focused on very low current densities. Low current densities result in gradual concen-

tration and potential gradients, therefore the separator thickness in their study was

significantly extended to allow for larger changes in the solution variables across the

domain (i.e., 500 µm instead of a typical 25 µm).

Figure 7a in ref [105] provides their experimental cell voltage responses over time

when running the symmetric cell with an initial Li+ concentration of 2.76 M at

varying current densities, ranging from 0.02 to 0.25 mA/cm2. Figure 7b isolates

the effect of the electrolyte by removing the overpotential effects. This was done

by performing EIS tests, fitting the model to an equivalent circuit, and determining

the overpotential contribution from the low frequency range. This contribution could

then be subtracted from the cell potential to isolate for the electrolyte contribution

only, i.e., the ohmic voltage. Additionally, Figure 7b scales this voltage response by

dividing by the separator thickness. This scaling was performed because one would

expect that, by scaling the cell thickness, the ohmic voltage would scale by the same

factor, allowing for a more general analysis.

The OpenFCST model was run under the same conditions as Pesko et al., given the

model described in Section 2.1 and the input parameters in Section 2.3. The main.prm

and data.prm configuration files for this simulation are given in Appendix B.1. The
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(a) Cell voltage
(b) Scaled cell voltage, isolating for elec-
trolyte influence only.

Figure 3.1: Symmetric cell discharge with varying current densities and a 2.76 M
initial Li+ concentration using OpenFCST simulation results and Pesko et al. exper-
imental results [105].

results are presented in Figure 3.1, alongside Pesko et al.’s experimental results. Fig-

ure 3.1a is the cell voltage response (equivalent to Figure 7a in ref [105]) and Fig-

ure 3.1b is the ohmic voltage response (obtained by eliminating the overpotential due

to surface kinetics) scaled by the separator thickness (which is equivalent to Figure 7b

in ref [105]). The overpotential was eliminated in the OpenFCST model by replacing

the Robin boundary conditions described in Section 2.4.4.3 by Dirichlet and Newman

conditions on either side. Because the solution variable, ϕR, is the solid potential of

a reference electrode, its difference across the cell will be exactly equal to the ohmic

voltage. Note the experimental curve for a current density of 0.25 mA/cm2 abruptly

ends at about two hours. This is due to the cell experiencing failure at this point,

likely due to dendrite growth.

While not perfect, the simulation results do an adequate job of replicating the ex-

perimental results. As expected, the cell voltage increases as current density increases

and the cell voltage within each test initially increases sharply before approaching a

steady state value. In particular, the steady-state cell voltage in Figure 3.1b is re-
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markably similar for the simulation and experimental results. These results provide

validation that the model presented in Section 2.1 is applicable for this system.

Figure 3.2 provides insight into the steady-state simulations by plotting the solu-

tion variable profile’s within the simulation domain for three current densities: 0.02,

0.05, and 0.10 mA/cm2. From Figure 3.2a, it is clear that the average concentra-

tion remains at 2.76 M, regardless of the current density. This is because the anions

cannot leave the electrolyte and, because of electroneutrality, there cannot be an ac-

cumulation of charge (neglecting the DL). This means that for every Li+ ion that

leaves the electrolyte, one must enter. The downward slope is expected, as discussed

in Section 2.1.1. The stronger the current, and therefore the electric field, the steeper

the gradient must be for the anion to balance the electric attraction. The ϕR plot

in Figure 3.2b demonstrates the losses that occur spatially due to Li+ transport. As

current density increases, the losses become more pronounced as energy is lost to the

environment via heat. These plots demonstrate that the model does produce realistic

results.

Given the variability of the input parameters with Li+ concentration, the question

arises as to whether one would observe the same agreement with experiments for a

different initial concentration. In Figure 8 of reference [105], Pesko et al. provides

the SS voltage from experimentally testing a symmetric cell with a 0.02 mA/cm2

current density for different initial Li+ concentrations. These results are presented in

Figure 3.3, along with the simulated results for the same concentrations, using the

developed OpenFCST model. The error bars represent the standard deviation of the

experimental data.

The OpenFCST model provides strong agreement with experiments for concentra-

tions between 1 M and 3 M. The data points fall within or very close to the error

bars and the general trend, including the local peak at 2.38 M, is also captured.

The SS cell voltage at both Li+ concentration extremes deviate from experimental

observations, especially at higher concentrations. One possible explanation for this
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(a) Li+ concentration (b) Reference Li/Li+ electrode potential.

Figure 3.2: Steady state spatial profiles due to varying current densities for (a) the
Li+ concentration and (b) solid potential of a reference Li/Li+ electrode.

Figure 3.3: Symmetric cell steady-state voltage response to a 0.02 mA/cm2 current
for varying initial concentrations. Comparing experimental results with OpenFCST
model. Experimental results reproduced from ref [105].
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(a) Li+ concentration deviation (b) Reference Li/Li+ electrode potential.

Figure 3.4: Steady state spatial profiles due to varying average Li+ concentration for
(a) the deviation in Li+ concentration from the average and (b) solid potential of a
reference Li/Li+ electrode.

is that the input variables are not parameterized below 0.25 M and above 3.78 M

and therefore, although the average Li+ concentration is within the defined range,

the concentration gradient will force the extremities to operate at concentrations for

which the parameters are not defined.

The valleys in the SS cell voltage profile occur in the vicinity of 1 M and 3 M. These

ranges are of practical importance as they are the concentration ranges for which

batteries are designed to operate. The local maxima at low and high concentrations

and at 2.38 M correspond to regions in which internal resistance is increased due to

hindered Lithium transport. This is a result of either a low diffusion coefficient or

low transference number.

Figure 3.4 provides the internal solution variable profiles at steady state for the

symmetric cell undergoing a 0.02 mA/cm2 current density with average Li+ concen-

trations of 0.473, 1.87, and 2.76 M. For readability, the concentration profiles are

displayed as their deviation from the average current. As expected, each plot shows a
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Figure 3.5: Symmetric cell steady-state voltage response to a 0.02 mA/cm2 current
for varying initial concentrations. Comparing experimental results with Pesko et al.
SS model. Reproduced from ref [105].

downward trend between electrodes. The fluctuation in each profile is a result of the

input parameter’s Li+ concentration dependencies. The gradient of concentration for

the 0.473 M symmetric cell exhibits the strongest slope. This is to be expected consid-

ering the role that the thermodynamic factor plays in the boundary conditions, i.e.,

Equation (2.64). The thermodynamic factor for the 0.473 M case is much smaller

than the other two, meaning the magnitude of the gradient in concentration must

increase to compensate.

Figure 3.5 shows the results produced using Pesko et al.’s SS computational model

for the SS voltage responses to a 0.02 mA/cm2 current density at varying Li+ con-

centrations. Note in this figure, the cell voltages are given as a function of molality

instead of molarity. This is because the simulation results presented in ref [105] were

given with respect to molality. It is clear that, despite only being a steady state

model, they too observe a comparable error with the experimental results.

The key differences between the OpenFCST model and the model used in Pesko
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et. al.’s work, besides the OpenFCST model being multi-dimensional, is the transient

versus steady-state capability, the boundary condition equations, and perhaps the

input parameterization.

The steady-state result for the OpenFCST model was obtained by running a tran-

sient simulation and recording the cell voltage when the system has achieved a steady-

state solution. Pesko’s model for obtaining the plot in Figure 3.5 does not contain

transient elements, and therefore directly solves for the steady state. While, in theory,

this should lead to the same result, it will also magnify other differences.

Perhaps the most significant difference between the two models is Pesko’s choice

of boundary conditions. In ref [105] they state that the 1D boundary conditions with

respect to the species transport equation are,

−D
dcLi+

dx

⃓⃓⃓⃓
x=0

=
1− t0+
F

iSS (16) in ref [105]

−D
dcLi+

dx

⃓⃓⃓⃓
x=δ

= −
1− t0+
F

iSS (17) in ref [105]

From the derivation in Section 2.1.3.1, it is clear that the LHS of these two equations

should be multiplied by the molality correction factor, as in Equation (2.64). It

is known that this factor is not merely lumped into the diffusion coefficient, D, in

these reported equations because it is present in their Li+ transport equation (that

is, Equation (15) in ref [105]), from which the two BCs should derive. Figure 3.6

demonstrates the effect of not including the molality correction factor, by simulating

the same conditions using the OpenFCST model but with the boundary conditions

described in Equations (16) and (17) of reference [105]. It is clear that these boundary

conditions will cause a significant error in predicted SS voltage, when comparing

the two OpenFCST models. Unlike the actual OpenFCST model, which exceeds

the voltages expected from Pesko et al., the model with the alternative BCs shows

diminished SS voltages, but to a similar degree. Therefore, it is inconclusive as to

whether Pesko’s model did in fact use incorrect BCs or whether they were correctly

implemented and only reported incorrectly in the article.
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Figure 3.6: Comparison between model implementations of steady state voltage for
the symmetric cell system with varying Li+ concentrations at a constant current
density of 0.02 mA/cm2. Models include Pesko et al.’s model, the OpenFCST model,
and the OpenFCST model using the same boundary conditions as in Equations (16)
and (17) or ref [105], denoted as OpenFCST alternative.

Finally, the equations provided in ref [105] describing the relationship between the

input parameters and the Li+ concentration for LiTFSI in PEO do not match their

own data points. Additionally, these equations are given in piece-wise notation and

they are very discontinuous between the two defined regions. The parameterization

that was used in this work was based on the best-fit line for the raw data points

that were also provided in the same article. Therefore, it is very likely that the

OpenFCST parameterizations are slightly (or perhaps significantly) different to those

implemented in Pesko’s model.

3.1.1.2 Parametric Studies

This section provides a better understanding of how each input parameter influences

the performance of the cell by simulating and comparing the cell response to an in-

stantaneous step in current for varying electrolyte input parameters. The influence of

each parameter was isolated and studied by simulating LiTFSI in PEO and increasing
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Figure 3.7: Characteristic curve from a 0.02 mA/cm2 current density for LiTFSI in
PEO electrolyte in symmetric-cell configuration with varying salt diffusion coefficient
at 90◦C. All other input parameters are held constant.

or decreasing the parameter in question while keeping all other parameters the same.

These simulations were all performed at 0.02 mA/cm2 and 2.76 M, as these are the

conditions at which Pesko et al. studied the cell.

3.1.1.2.1 Diffusion Coefficient

The parametric study for the salt diffusion coefficient is presented in Figure 3.7. The

nominal value for diffusion, for the LiTFSI in PEO electrolyte, is 9·10−8 cm2/s for an

Li+ concentration of 2.76 M. These values were adjusted from one fifth to five times

its nominal value.

Evidently, the diffusion coefficient has a significant effect on cell performance for

both the SS voltage of the cell and the time scales required to obtain this steady

state. By decreasing the diffusion coefficient, it is observed that the cell voltage

required to achieve the same current density increases. Mathematically, this follows

from the diffusion coefficient being the proportionality factor between the gradient of
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concentration and the diffusion driving force. By increasing the diffusion coefficient,

the influence of a concentration gradient increases and therefore a lower gradient is

required to maintain the same current.

The time scale also increases as diffusion decreases (stretching the plot horizon-

tally), for two reasons. The first is a result of this need to create a larger concentration

gradient when decreasing the diffusion coefficient. Naturally, it would take longer to

create a steep gradient. The second is that, by decreasing diffusion, the mobility of

the ions decreases, thus slowing the development of the concentration gradient profile.

This is supported by the Einstein relation [151, 152], i.e.,

D = kBTu (3.1)

where u is the ionic mobility and kB is the Boltzmann constant. While this equation is

only strictly true of DST, it is a valuable approximation for the relationship between

diffusion and mobility.

3.1.1.2.2 Conductivity

Figure 3.8 shows the parametric study for conductivity values ranging from one tenth

to ten times its nominal value (which, for LiTFSI in PEO is 1.6·10−3 S/cm for an Li+

concentration of 2.76 M).

Because both driving force terms in Equation (2.55) contain a pre-factor of κ, the

increased potential required to account for the developing concentration gradient will

remain constant, regardless of conductivity. This explains why, besides the vertical

shift, the cell voltage response profiles in Figure 3.8 look the same. The vertical shift

exists because the ionic conductivity quantifies the ohmic resistance (i.e. the propor-

tionality between the current and potential gradient). This means that a decreased

conductivity will increase ohmic resistance thus shifting the cell potential vertically

upwards, and vice versa.

As will be discussed in Section 3.1.1.2.5, altering the exchange current density will

have a similar effect on the cell voltage profile as conductivity does. The influences of
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Figure 3.8: Characteristic curve from a 0.02 mA/cm2 current density for LiTFSI in
PEO electrolyte in symmetric-cell configuration with varying ionic conductivity at
90◦C. All other input parameters are held constant.

these parameters are easily distinguished from one another by considering the effect

of linearly scaling the thickness of the cell. Because the conductivity will influence the

potential gradient, by enlarging the size of the cell, the cell voltage will also increase,

proportional to the conductivity. The exchange current density, on the other hand,

affects only the overpotential developing at the reaction surfaces and therefore will

be independent of the thickness of the cell.

3.1.1.2.3 Transference Number

The parametric study for the positive transference number is given in Figure 3.9.

The study is conducted by altering the transference number of LiTFSI in PEO by its

nominal value plus 0.3 to the nominal value minus 0.3. The value nominal value is

0.1 for a Li+ concentration of 2.76 M.

The transference number appears in both governing equations and boundary con-

ditions of the symmetric cell system. In the boundary conditions, Equation (2.64)
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Figure 3.9: Characteristic curve from a 0.02 mA/cm2 current density for LiTFSI in
PEO electrolyte in symmetric-cell configuration with a varying positive transference
number at 90◦C. All other input parameters are held constant.

states that the magnitude of the gradient in Li+ concentration increases when trans-

ference decreases. This is due to the mobility of Lithium ions decreasing compared

to the anions. Further, the transference number also appears in the pre-factor for

the concentration gradient term in Equation (2.55). By decreasing the transference

number, the concentration gradient will provide a greater contribution to the current

passing through the cell. Because both of these effects will contribute to the potential

in the same way, the linear decrease in transference number will result in a quadratic

increase in the cell potential. This quadratic relationship is observable in Figure 3.9 in

that there is a larger gap between the nominal value and the +0.3 plot than between

the nominal value and -0.3 plot.

3.1.1.2.4 Thermodynamic Factor

Figure 3.10 displays the parametric response of increasing the thermodynamic factor

of the LiTFSI in PEO electrolyte from one fifth to five times its nominal value. The
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Figure 3.10: Characteristic curve from a 0.02 mA/cm2 current density for LiTFSI in
PEO electrolyte in symmetric-cell configuration with varying thermodynamic factor
at 90◦C. All other input parameters are held constant.

nominal value is 3.74 for an Li+ concentration of 2.76 M.

The response to increasing the thermodynamic factor of the electrolyte is a vertical

stretch in the cell potential. This is because the thermodynamic factor merely adjusts

the relationship between the concentration and potential gradients. Note that the

effect of the thermodynamic factor and the transference number will be similar. One

way to distinguish between the influence of each parameter, is to investigate the Li+

concentration profile in the cell during discharge. While changing the transference

number will impact the concentration gradient, changing the thermodynamic factor

will have no effect on the developed gradient.

3.1.1.2.5 Exchange Current Density

Finally, although the exchange current density is not a characteristic of the electrolyte

itself but rather of the reaction at the electrode surface, it is still parameterized and

discussed in this section because its effect can be easily confused with that of the ionic
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Figure 3.11: Characteristic curve from a 0.02 mA/cm2 current density for LiTFSI
in PEO electrolyte in symmetric-cell configuration with varying exchange current
density at 90◦C. All other input parameters are held constant.

conductivity, as discussed in Section 3.1.1.2.2. Figure 3.11 shows the cell response to

altering the exchange current density by a factor of ten larger and smaller than its

nominal value of 0.5 mA/cm2.

As with the conductivity, the exchange current density parametric study shows

simply a vertical shift in the voltage response profile. This is because, with a smaller

current density, a larger overpotential is required to supply the same current at the

planar electrodes. As stated, this overpotential is dependent on the reaction itself

and will remain constant with a changing cell thickness. The current density may

be increased or decreased based on the electrode/electrolyte pairing, or the surface

roughness of the electrode. A rougher surface will have more reaction surface area

per cm2 of electrode, thus increasing the reaction rate and exchange current density.
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3.1.1.3 Input Parameter Discussion

By comparing the experimental and simulation results in the two plots in Figure 3.1

and in light of the information gleaned from Section 3.1.1.2, one can make assertions

about the accuracy of the input values proposed in ref [105]. First, it is evident that

the differences between the SS voltages obtained at sequential current densities in

Figure 3.1a are closer together for the simulation results then they are for the experi-

mental results. This, however, is the opposite in Figure 3.1b, where the simulated SS

voltages are further apart. Besides scaling with cell thickness, which would have no

effect on this relationship, the only adjustment between the two figures is the elimi-

nation of the surface overpotential. Due of this observation, it is concluded that the

overpotential has a larger impact on cell voltage than was expected. Therefore, as-

suming the validity of the BV equation, the exchange current density is likely slightly

larger in reality than that implemented in the numerical model. This conclusion is

not surprising, as any roughness to the surface of the Lithium foil would increase its

surface area and effectively increase the exchange current density.

Focusing more directly on Figure 3.1b, the major difference between the experi-

mental and simulation results is in regard to the rate at which the system approaches

a steady state. The numerical results begin to plateau at around one hour, whereas

the experimental results are more gradual and plateau closer to two hours. The only

input parameter associated with changing the cell voltage reaction profiles with re-

spect to time (i.e. horizontally) is the salt diffusion coefficient. Therefore, the more

gradual development of the cell voltage may suggest that the diffusion coefficient is, in

reality, slightly less than that reported in ref [105]. However, this cannot be the only

adjustment that would be required to match the experimental results, as a decreased

diffusion coefficient would also increase the SS current, which is not observed. There-

fore, by decreasing either the positive transference number or the thermodynamic

factor, the SS cell voltage could once again re-approach the correct value. Which
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one of these two quantities would need altering cannot be known with confidence

because information about the experimental Li+ concentration profile is not available

in ref [105]. That being said, in Pesko’s earlier paper [103], the transference number

was obtained by fitting data, given the already determined values of the diffusion

coefficient and thermodynamic factor. Therefore, because the transference number is

wholly dependent on the value of diffusion, which appears to be over-estimated, it is

logically concluded that this value is the culprit and is actually less than reported.

Finally, the reported value of ionic conductivity appears to agree with experiments.

This is concluded by recognizing that the experimental and simulation results have

similar initial cell voltages at the beginning of each test, prior to the formation of a

concentration gradient.

3.1.2 Application to a Novel Electrolyte

Having validated the symmetric cell model in Section 3.1.1, this model will now be

applied to a new electrolyte chemistry that is commonly used in battery applications,

i.e., LiPF6 in EC:DEC (1 to 1 by weight), for which previous numerical simulations

have not been performed.

This electrolyte is slightly viscous, allowing for an effective study of the mass

transfer phenomena. Additionally, it is one chemistry that is easily made using the

experimental resources readily available for this work and for which parameterized

values are available in the literature. The electrolyte is parameterized based on Lund-

gren et al.’s work in reference [106], which is summarized in Section 2.3. As with the

model in Section 3.1.1, the cell consists of a 500 µm separator, saturated with the

electrolyte and pressed between two planar Li-foil electrodes. In this case, a steady-

state was reached far quicker than with the LiTFSI in PEO simulations, as a result

of the increased diffusion coefficient. Therefore, the time of simulation was limited

to 15 minutes, with a time step, τ , of 0.1 s. By decreasing the time step further, to

0.05 s, the steady state voltage only decreases by 0.002%.
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Figure 3.12: Cell voltage response to varying current densities applied to a 500 µm
symmetric cell with 0.6 M LiPF6 in EC:DEC (1:1 by weight). Results presented for
(a) experimental cell and (b) the OpenFCST model.

While the simulated cell was operable within a wide range of operating conditions,

the experimental cell experienced difficulties at high concentrations and current den-

sities. Eventually, testing conditions were chosen to be a constant current of 0.01

to 0.2 mA/cm2 for a cell with 0.6 M Li+ concentration and 25◦C, and the resulting

voltage response was recorded. Even for these conditions, however, the experimental

setup did not always create reproducible or even steady results. Nevertheless, a set of

experimental results are presented in Figure 3.12 alongside the OpenFCST simulated

results.

It is apparent that the initial voltage of the symmetric cell, before the concentra-

tion gradient profile is established, is nearly twice as large for the experimental results

than it is in for the simulation results. As discussed in Section 3.1.1.2, this can be

attributed to one of two parameters in the electrolyte: the ionic conductivity or the

exchange current density. It was earlier remarked that the cause of this large initial

voltage could be determined by changing the separator thickness and observing the

101



result. If the exchange current density was the issue, the initial voltage would not

scale with thickness and if it was the ionic conductivity, it would. Three new experi-

mental cells with thicknesses of 125, 250, and 500 µm were created and subjected to

a current density of 0.20 µm/cm2. This same test was run for the numerical model

and the results for both are presented in Figure 3.13. The simulated results show

the expected change in the voltage response profile. The numerical model predicted

that, by decreasing the size of the domain, the cell voltage would drop. It is evident

that the overpotential constitutes the largest loss component, evident in how little

the initial voltage changes between cell thicknesses. By extrapolation, the theoreti-

cal voltage loss due to overpotential is 0.0205 V. The experimental results, however,

did not produce the expected result. The 125 µm cell did experience a decrease in

voltage, but the 250 µm cell actually showed an increase in voltage. Additionally, the

250 µm cell profile also requires more time than the 500 µm cell profile to plateau;

a relationship that should be the opposite. Finally, the 500 µm cell produced very

different results than those from the identical experiment in Figure 3.12, both in

magnitude and time-scale. It is therefore concluded that the experimental analysis

does not create reproducible results. This likely has to do with the process in which

the batteries were constructed, as the results in Figure 3.12 that are taken from a

single cell show physically realistic relationships between each test but when analyz-

ing different cells, comparison is not cohesive. One potential source of experimental

error could be attributed to surface imperfections or SEI layer development. These

non-idealities are not considered in the OpenFCST model and could be the source

of the nonconformity between the OpenFCST model and the experimental cells and

also between experimental cells.

It was decided that the narrow operating conditions and variability of the ex-

perimental results for this electrolyte were such that further investigation using the

OpenFCST model could not be validated. Instead, the focus was shifted to modelling

and investigating the full macro-scale battery model.
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(a) Experimental Results. (b) Numerical Results.

Figure 3.13: Cell voltage response for symmetric cell with varying thicknesses, sub-
jected to a 0.20 mA/cm2 current density with 0.6 M LiPF6 in EC:DEC (1:1 by weight).

3.1.3 Summary

The electrolyte was modelled using the formulation of concentrated solution theory

outlined in Section 2.1. It was studied by creating a symmetric cell in which the elec-

trolyte saturated a separator sandwiched between two Lithium-foil electrodes. First,

the electrolyte, LiTFSI in PEO, was used to reproduce the experimental results pro-

duced by Pesko et al. The discharge profiles at varying current densities matched

the experiments very closely, providing confidence in the transient implementation

of the model. The steady-state voltages reproduced those from experiments to a

comparable degree as Pesko et al.’s own model. The differences between Pesko et

al.’s model and the OpenFCST model were discussed, especially with regard to the

incorrect boundary conditions in their article. Then the model was run through a set

of parametric tests to determine each parameter’s influence on cell performance. This

information was used to comment on possible reasons why the OpenFCST model may

have diverged from the experiments. Finally, a novel electrolyte was investigated for

which no computational model has yet been developed. Unfortunately, the experi-
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mental results were not reproducible, resulting in inconclusive agreement between the

OpenFCST simulations and reality.

3.2 Macro-Scale Lithium-Ion Battery Analysis

The full cell analysis is based on the macro-scale model developed in Section 2.2. This

analysis contains a major simplification, namely not modelling the micro-scale, and

therefore is not expected to predict cell performance well unless transport within the

active material particle is not dominant, i.e., if the particles are very small or the solid

diffusion coefficient very large. However this study is still important as it provides

insight into the electrolyte behaviour within a more complex application: especially

in modelling volumetric reactions and multi-layer transport.

Two possible options were available in the analysis of this model. Either the

model could be applied to a hypothetical battery, in which the electrolyte and solid

material parameters are sourced separately from the literature, or applied to a battery

chemistry for which experimental results have been obtained in the literature. While

the latter option would quantitatively provide an argument for whether the micro-

scale model is required to reproduce experiments, the first option was ultimately

chosen, as it allows the direct application of the electrolyte characteristics gleaned

from the previous section. Additionally, this approach is likely more realistic, as

sources that present parameters for the solid phase often disregard the electrolyte,

and vise versa.

The domain of simulation is one-dimensional with a thickness of 35 µm, divided

into a 25 µm separator and 10 µm porous cathode. The width of the separator

was chosen as that is the width of the standard Celgard® 2500 separator used in

button cells. The width of the cathode was chosen as that is the common width

used in a laboratory setting for studying LiBs. This domain is parcelled into 700

cells, each 0.1 µm wide. This cell width was chosen based on the mesh independence

study, provided in Figure 3.14. If the cell size is decreased by a factor of 2, the
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Figure 3.14: Mesh independence study for macro-scale simulations. Tested at 8C
using 0.1 s time step intervals. Error quantified using average Li+ concentration at
50% SOC.

Figure 3.15: Time step independence study for macro-scale simulations. Tested at 8C
using a mesh with 0.1 µm thick cells. Error quantified using average Li+ concentration
at 50% SOC.
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error diminishes by only 0.00006%. The method for which error was determined

is based on the error investigation in Section 3.2.1. The simulation time step of

0.02 s was chosen for this simulation, based on the time step independence study in

Figure 3.15. Decreasing the step size to 0.01 s would only decrease the error by 0.05%.

The electrolyte being modelled is LiTFSI in PEO at an average Li+ concentration of

1 M, for which parameterized coefficients are provided in Section 2.3, and all other

simulation parameters are summarized in Table 2.6. The anode is modelled as a

planar Li-foil electrode, similar to the symmetric model, and the cathode is chosen to

be made of NMC active material, connected to a current collector at its far end. While

the current collectors may introduce minor ohmic losses, they are not considered in

this model. The simulation is run until the cell discharges fully; that is, when the cell

can no longer provide a positive voltage.

First, this section will provide the voltage response for a discharge simulation at

a constant current density. Additionally, the requirement of a constant average Li+

concentration will be discussed and verified. The transient profiles of the solution

variables will be discussed. Then, the cell will be recharged and the hysteresis dis-

cussed, along with the cell efficiency and capacity. Finally, a parametric study is

performed and the effect of changing the current density is discussed in terms of cell

efficiency.

3.2.1 Discharge Curve

A discharge simulation was conducted at a constant current of 8C (2.172 mA/cm2),

meaning that it took 7.5 min for the cathode material to became fully saturated

and not allow any more current to pass. This C-rate was chosen as it provides

deeper insight into the challenges facing batteries when pushed to higher current

densities. The main.prm and data.prm configuration files for this simulation are

given in Appendix B.2. The resulting discharge curve is presented in Figure 3.16.

The OCV of this cell at 90◦C is 4.3 V [147] which, because this is an ideal sys-
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Figure 3.16: Discharge curve of macro-scale LiB at 8C using OpenFCST simulation.

tem, is equal to the thermodynamic voltage. The discrepancy between this value

and the starting cell voltage of 4.32 V is a result of the solid Lithium concentration

in the active material being well below the reference value of 1 M. The relatively

steep decrease in voltage in the first 10% of discharge is the result of the developing

Lithium-ion concentration gradient, as discussed thoroughly in the previous system

(Section 3.1). Then, the majority of the discharge is characterized by a gradual de-

crease in cell voltage due to there being fewer reaction sites in the active material into

which Lithium can intercalate, and therefore slower kinetics. This gradual decrease

becomes more pronounced in the later stages of discharge as Lithium-ions travel fur-

ther through the cathode to regions with lower solid Lithium concentrations. Finally,

the sharp decrease in cell potential that characterizes the last 10% of discharge is a

result of the solid phase reaching its saturation concentration of solid Lithium. The

distribution of all solution variables and reactions within the cell will be discussed in

Section 3.2.2.

The plot in Figure 3.16 provides confidence in the effectiveness of this macro-scale

model in that it shows a very similar trend to those reported in the literature (e.g.,
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Figure 26.52 in ref [28]). Understandably, however, it is likely to fail to accurately

model any real battery, as the micro-scale contribution is neglected. For this reason,

the quantitative comparison to experimental discharge curves will be reserved for

when the two model scales can be combined.

Without comparing with experiments, answering the question of whether the equa-

tions presented in Section 2.2.2.6 were correctly implemented into the OpenFCST

model becomes paramount. In this case, an alternative metric can be used to verify

the model implementation. By neglecting the double layer effects, as discussed in

Chapter 2, charge cannot be stored in the system. Additionally, the anion does not

participate in the reaction and therefore the average anodic concentration is always

constant. Due to these two postulates, it can be concluded that, for the 1:1 binary

electrolyte modelled in this section, the average concentration of Lithium ions must

everywhere be equivalent to that of the anion, thus requiring that its average does

not change throughout the operation of the cell. This principle is not imposed by

boundary conditions but instead a conservative property of the modelled equations

and, therefore, should be observed at all times. This value will be the metric to en-

sure that the discretized form of the equations and their numerical implementation

are correct. It is also the metric used for the mesh and grid independence analysis in

the previous section.

The average concentration at any time can be calculated from the area under the

plot of the concentration profile throughout time, accounting for the different porosity

in each layer. Figure 3.17 shows how the average concentration remains relatively

even throughout the experiment, with a few intermittent fluctuations. Importantly,

however, is the magnitude by which the average concentration deviates from the

expected value. Recognizing that the fluctuations in this figure are incredibly minimal

and therefore likely just numerical noise (e.g. having a maximum error of only 0.2%)

gives confidence to the correct implementation of the discretized form of the equations

outlined in Section 2.2.2.6. Had the equations been incorrectly implemented, or the
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Figure 3.17: Average Lithium-ion concentration throughout cell discharge.

time step/mesh size too large, one would observe a steady increase or decrease in

average concentration throughout the simulation.

3.2.2 Transient Profiles

The visualization of the behaviour of each solution variable can provide deeper insight

into the physical processes occurring in the cell during discharge. As such, this section

will provide and discuss the transient profiles of the solution variables and reaction

distribution.

3.2.2.1 Lithium-ion Concentration

Figure 3.18 gives the profile evolution of the Lithium-ion concentration throughout

cell discharge. Each line corresponds to a 30 s time step, trending from light to dark

as the discharge progresses. The dashed vertical line at 25 µm indicates the interface

between the separator layer and the porous cathode layer.

The magnitude of the concentration gradient rapidly increases at the beginning

of the test. As mentioned in Section 2.1.1 and 2.1.2.2, this slope produces a driving

force on the anion that is countered by the electrical field across the system. After
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Figure 3.18: Lithium-ion concentration profiles in the electrolyte throughout 8C dis-
charge of macro-scale cell. The dashed line indicates interface between separator layer
and cathode layer.

roughly 30 s, this slope reaches a steady-state.

The cathode exhibits a similar negative gradient in Lithium-ion concentration. At

the interface with the separator, it is evident that the slope is even steeper than in the

separator. This is a result of the cathode layer being less porous than the separator

and therefore having a smaller effective diffusion coefficient. Also, the concentration

gradient in the cathode layer vanishes as it approaches the cathodic current collector,

until the profile becomes completely horizontal. This is to be expected, as Lithium-

ions are being consumed in the volumetric reactions, resulting in less and less current

in the electrolyte phase until, at the current collectors, no current is being passed

at all. Figure 3.19 illustrates the current passing through the electrolyte phase. As

stated, it is observed that the current is constant throughout the separator and then

trends to zero in the cathode layer. The difference between plots throughout time is

a result of the reaction rate profile, which will be discussed further in Section 3.2.2.5.

As the concentration of Lithium-ions decreases in the cathode over time, the ca-

thodic overpotential must increase. This is one of the contributing factors for the
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Figure 3.19: Profile of current passing through electrolyte phase at throughout 8C
discharge of macro-scale cell. Dashed line indicates the interface between the separa-
tor and cathode layers.

decreasing cell voltages in Figure 3.16, particularly in the first 10% of discharge.

3.2.2.2 Solid Potential of a Reference Electrode

The development of the solid potential for a Li/Li+ reference electrode in the elec-

trolyte is illustrated in Figure 3.20.

The first thing to notice is that the potential is generally in the range of -4.0 to

-4.3 V for this discharge. The significant negative values are due to the OCV of

the battery, being around 4.3 V for this chemistry at 90◦C. The values are negative

because reduction is assumed. The potential increases above the -4.3 V because of

the potential losses due to resistance in the solid phase and the reaction overpotential.

Likewise, the reference electrode potential increases throughout the test because the

overpotential has to increase to compensate for the depletion of Lithium-ions and

active material reaction sites in the cathode layer.

The negative gradient in the potential profiles is a result of the concentration profile

discussed in the previous section. They mimic the concentration profiles in that the

slope is accentuated due to the decreased porosity in the cathode and they trend to
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Figure 3.20: Potential profile of electrolyte reference electrode throughout 8C dis-
charge of macro-scale cell. The dashed line indicates interface between separator
layer and cathode layer.

Figure 3.21: Solid Lithium concentration profiles throughout 8C discharge of macro-
scale cell.

horizontal at the cathodic current collector.

3.2.2.3 Solid Lithium Concentration

Figure 3.21 gives the transient profile of the solid Lithium concentration throughout

cell discharge.
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Figure 3.22: Solid potential profiles throughout 8C discharge of macro-scale cell. The
dashed line indicates the interface between the separator and cathode layers.

The solid concentration is zero in the separator layer, as there is no solid phase for

which the Lithium can intercalate. The average concentration of solid Lithium in the

cathode steadily increases as Lithium ions react to create solid Lithium. The solid

Lithium cannot leave the cathode as the flux in either direction is zero. Since the

current is constant throughout and therefore solid Lithium is produced at a constant

rate, the area created between sequential lines in Figure 3.21 is always the same.

Initially, the reactions are favoured at the LHS of the cathode layer as a result of

the larger overpotential. However, as time progresses, this switches on account of a

depletion in active material reaction sites on the LHS.

3.2.2.4 Solid Potential

The electronic potential profiles are given for progressing time in Figure 3.22.

The gradient in the solid phase is considerably smaller than the other solution

variables, having a maximum difference on the order of 0.03 mV, on account of the

high conductivity in the solid phase. As with the solid Lithium profiles, the electronic

potential is forced to zero in the separator layer, as there is no solid through which
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Figure 3.23: Reaction rate profiles throughout 8C discharge of macro-scale cell.

electrons can move. Also, at all time steps, the RHS of the profile is forced to zero.

This is because the RHS is directly connected to the cathodic current collector, which

serves as the reference potential for which all other potentials are measured against.

As time progresses, the LHS of the electronic potential profile decreases. This is

because relatively fewer reactions are occurring at this side of the cathode, on account

of the depletion of active material reaction sites on that side. Because the majority of

the reactions are shifted to the RHS, there is a smaller current being passed through

the RHS and thus a smaller potential gradient. The gradient of electronic potential

right at the current collector interface is always constant, as this gradient drives the

constant current through Ohm’s law,

is = −σs∇ϕs (2.95)

3.2.2.5 Reaction Rate

Due to the constantly changing potentials and concentrations within the simulation

domain, the reaction rate within the cathode will also change spatially over time.

Figure 3.23 gives the progression of the reaction rate profile throughout cell discharge.

As with the previous two profiles, the reaction rate in the separator layer is zero
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at all times because there is no solid phase for which the electrolyte can intercalate

into. The area under the graph would correspond to the current density being passed

through the battery. As expected, this is equal to 2.172 mA/cm2 (8C) for all times.

At the beginning of discharge, the reactions favour the LHS of the cathode, as

this region has a larger overpotential while maintaining similar concentrations as the

RHS. As time progresses, the LHS overpotential remains larger, however, the solid

Lithium concentration approaches saturation and slows the reaction. This results in

the reaction rate becoming more uniform throughout the cell and eventually, when

the LHS begins to reach saturation, strongly favouring the RHS of the cathode.

3.2.3 Hysteresis

A hysteresis study was conducted by charging the cell at the same current density as

discharge, but in the opposite direction, beginning with a fully saturated cathode and

stripping it of the Lithium until it reaches the lower limit. The results are presented

in Figure 3.24, where the charge curve is compared directly to the discharge curve

by comparing the cell voltage magnitudes, recognizing that the delithiation process

produces a negative cell voltage.

From the plot, it is evident that there is a large difference in voltage magnitude for

the charge versus discharge curves. This is understandable in that the losses due to

transport and overpotential will be significant for the relatively high current densities

in this study. These losses will decrease the available potential of the discharge curve

and increase the required potential for the charge curve, thus increasing the space

between curves and decreasing the reversibility of the cell.

Using the charge/discharge curves, one can calculate the energy supplied by the

cell, as well as the energy required to recharge it. As such, one can determine the

energy lost to thermal effects and the efficiency of the cell. The DC power, P , either

produced by the cell or supplied to the cell on a per area basis is equal to the cell
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Figure 3.24: Hysteresis study for charge and discharge of macro-scale model. Cell is
operated at 8C for charge and discharge processes.

voltage multiplied with the current density, i.e.,

P = Vcell(t)iA (3.2)

where A is the cell area, assumed here to be 1 cm2. The electrical energy, E is just

the power multiplied by the time for which that power is applied,

dE = P (t)dt (3.3)

Therefore, the total energy is equal to,

E(t) =

∫︂ t

0

Vcellidt (3.4)

From the simulation in question, the energy required to charge the cell, using

Equation (3.4), is 0.8855 J. Likewise, the energy produced by the cell discharge is

0.8338 J. Therefore, the energy lost in the charge/discharge cycle is 0.0517 J and the

efficiency, defined as,

ηcell =
Eout

Ein

(3.5)
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Figure 3.25: Characteristic curve at 8C for macro-scale battery system with varying
solid conductivity. All other input parameters are held constant. The dashed line
corresponds to 50% SOC.

is 94.2%. This cell produces such a small amount of energy because the cathode

material and thickness were chosen to resemble laboratory conditions and therefore

store far less Lithium than in most real applications.

3.2.4 Parametric Studies

This section is provided to enrich the understanding of the influence of the solid phase

input parameters, having already performed a parametric study of the electrolyte

parameters in Section 3.1.1.2. Each study was performed under the same conditions

outlined in Section 2.2 but with one parameter changed, i.e., solid conductivity, solid

diffusion, exchange current density, or the current density passing through the system.

3.2.4.1 Solid Conductivity

The discharge curves for the solid conductivity parametric study are presented in

Figure 3.25 for conductivities 1 to 10 000 times less than in ref [144].

Decreasing the conductivity 100 times makes a negligible impact on the discharge

curve, emphasizing the ease at which electrons pass through the solid. If the conduc-
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tivity is decreased further, one begins to observe cell voltage losses that are compara-

ble and may even exceed the methods of voltage loss that are usually more dominant,

e.g., overpotential and transport in the electrolyte phase.

Figure 3.26 offers more insight into the effects of decreasing the solid phase conduc-

tivity to the point that it alters the internal physics of the system. Specifically, this

figure provides the solid potential, overpotential, and solid Lithium profiles within

the cathode layer at 50% SOC, indicated by the dashed line in the discharge plot.

The solid potential is presented in Figure 3.26a on a logarithmic plot in the vertical

direction. The solid potential profile increases roughly proportional to the decrease in

conductivity. The steps make sense in that the gradient of potential is proportional

to the current being passed. The profiles are not, however, merely stretched copies of

one another, as the reaction rate profile changes as well.

The overpotential plot, in Figure 3.26b is very interesting and will offer valuable in-

sight into why the solid Lithium concentration develops in the manner that it does for

low conductivities. Recalling that the gradient of potential is proportional to the cur-

rent being passed, it is expected that ϕR, though also containing other dependencies,

will transition from a steep gradient at the separator interface, where it is transport-

ing all the current, to flat at the end of the cathode, where it is no longer passing

any current, resulting in the bowed profile observant in Figure 3.20. Conversely, the

solid potential would have a similar bow, but trending in the opposite direction as it

carries more charge the further it is from the separator interface. Figure 3.26b then

correctly depicts why the overpotential (defined here as the difference between the

two) also shows this bow. As the conductivity decreases, this bow shifts from being

electrolyte dominant (i.e., downward sloping) to solid dominant (i.e., upward sloping).

This change is easily understood as the transition from greater losses occurring due

to transport in the electrolyte, to transport in the solid. When the conductivity is

decreased 1000 times, it can be seen that the two phases offer comparable transport

losses, as the trend decreases on the left, plateaus, and then clearly increases on the
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(a) Solid potential profile.

(b) Overpotential profile.

(c) Solid Lithium concentration

Figure 3.26: Solution variable profiles for macro-scale battery system discharge at 8C
in porous cathode layer at 50% SOC with varying solid conductivity. All other input
parameters are held constant.
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right. It is evident, however, that decreasing the conductivity 10 000 times results in

the solid phase losses greatly exceeding those in the electrolyte.

Finally, the solid Lithium profile, in Figure 3.26c, demonstrates how the Lithium

accumulates in the region of the cathode with the larger overpotential. At normal

conductivities, the Lithium profile develops a downward sloping trend due to more

reactions closer to the separator layer where overpotential is greater. When conduc-

tivity is very low, the accumulation develops close to the cathodic current collector.

For the 10 000 times decrease, this accumulation is so significant that the right side

of the cathode begins to experience saturation while the cathode as a whole is still at

50% SOC.

3.2.4.2 Solid Diffusion

The solid phase in a real battery is composed of active material particles, into which

Lithium intercalates and diffuses. Lithium seldomly passes between particles as a

response to a macro-scale concentration gradient. Therefore, the solid phase diffusion

coefficient has been reported to be very small. For the simulations in previous sections,

solid Lithium is nearly static. Figure 3.27 contains the discharge plots, in which it is

allowed that solid Lithium is more mobile and influenced by macro-scale concentration

gradients. The discharge curves correspond to simulations with diffusion coefficients

100 to 10 000 times greater than reported in reference [143].

Although diffusion is allowed in the solid phase, the discharge curve shows that

this allowance has minimal effect on the cell voltage. If anything, losses are mini-

mized as the solid diffusion coefficient increases. This is because diffusion can aid

in transporting solid Lithium from regions of high Lithium solid concentration to

lower concentrations, allowing for reactions to resume in these regions with larger

overpotential. The difference in discharge curves may be accentuated if the cathode

thickness was larger, as larger solid Lithium differentials would exist in the cathode.

Figure 3.28 demonstrates that, with an increased diffusion coefficient, the concen-
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Figure 3.27: Characteristic curve at 8C for macro-scale battery system with varying
solid diffusion. All other input parameters are held constant. The dashed line corre-
sponds to 50% SOC.

tration profile will smooth from a distinct slope to completely horizontal, at which

point any gradient in solid Lithium concentration created by nonuniform reaction

rates is completely leveled due to macro-scale diffusion. Note that studying these

large diffusion coefficients helps to gain a better understanding of each parameter

and is not necessarily realistic for modelling actual battery conditions, as no solid

material can transport Lithium this effectively.

3.2.4.3 Exchange Current Density

The cathodic exchange current density is a measure of the proportionality between

the kinetics exponential to the rate at which reactions occur within the cathode.

Figure 3.29 shows the discharge curve for varying exchange current densities. Fig-

ure 3.30 shows the solid potential of a Li/Li+ reference electrode across the whole

battery domain at the point when the SOC is at 50%.

It is clear from Figure 3.29 that the exchange current density does impact the

discharge curve, but only insomuch as a linear translation in cell voltage. Figure 3.30

shows a similar linear translation for the reference electrode potential. While not
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Figure 3.28: Solid Lithium profile for macro-scale battery system discharge at 8C in
porous cathode layer at 50% SOC with varying solid diffusion coefficients. All other
input parameters are held constant.

Figure 3.29: Characteristic curve at 8C for macro-scale battery system with varying
cathodic exchange current densities. All other input parameters are held constant.
The dashed line corresponds to 50% SOC.
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Figure 3.30: Li/Li+ reference electrode profiles for macro-scale battery system dis-
charge at 8C at 50% SOC with varying exchange current. All other input parameters
are held constant.

shown, all other solution variable profiles remain the exact same given this variance

in exchange current density. This is because, as mentioned, the exchange current

density is the relationship between the kinetics exponential and the reaction rate,

and therefore, to sustain the same current density, the solid and electrolyte potential

difference needs to compensate. Due to the exponential in this relationship, this

difference will increase linearly as exchange current density is increased exponentially.

Then, because the solid potential is anchored at the cathode, the reference electrode

potential will linearly decrease and the cell voltage linearly increase, as observed in

the figures. If the exchange current density is increased to infinity, the discharge curve

will only give the ohmic losses, allowing one to study the electrolyte induced losses

in isolation. Unfortunately, a study with infinite exchange current density cannot be

run using the current simulation framework. This is because the reference electrode

potential is only anchored by its relationship to the solid potential. If the exchange

current density is increased to infinity, the reference electrode potential will not be

able to be expressed in terms of the solid potential and the simulation will fall apart.
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Figure 3.31: Discharge curves at varying current densities for macro-scale model. The
dashed line indicates 50% SOC.

3.2.4.4 Current Density

The current density being passed through the cell will strongly dictate the behaviour

of the cell, affecting the cell voltage, transient profiles, and overall time-scale. This

analysis was performed with current densities of 16C, 8C, 4C, 2C, and 1C at an

average Li+ concentration of 1.5 M. The resulting discharge curves are presented in

figure 3.31.

As expected, as the current density increases, the available cell voltage decreases.

This is because all modes by which potential is lost (i.e., mass transport, overpotential,

and ohmic losses), are being exacerbated. This concept will be investigated at 50%

SOC, as indicated by the dashed line in Figure 3.31. The solution variable profiles

for all three current densities at this SOC are presented in Figure 3.32.

As the current density increases, the Lithium-ion concentration gradient and elec-

trolyte potential gradient get progressively steeper. Interestingly, the electrolyte pro-

files for the 16C case are far less linear in the separator layer than they are for the

lower current densities; a result of the complex concentration dependencies of the co-

efficients in the electrolyte transport equations. The gradient of the solid potential is
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(a) Lithium-ion concentration (b) Solid Lithium concentration

(c) Reference electrode potential (d) Solid potential

Figure 3.32: Solution variable profiles for macro-scale battery system discharge at 8C
and 50% SOC for various current densities.
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(a) (b)

Figure 3.33: OCV study for macro-scale LiB simulation. (a) Cell voltages at 50%
SOC for varying current densities. Trendline slope and vertical intercept correspond
to the equivalent circuit’s internal resistance and OCV. (b) OCV of the cell as a
function of the SOC of the active material.

also much steeper in the cathode layer for larger current densities. The solid Lithium

concentration gradient is also more exaggerated, but unlike the others, which are a

result of larger fluxes, this gradient is a result of accumulation over time due to the

larger overpotential and thus more reactions created at the LHS of the cathode.

Figure 3.33a shows the slice taken at 50% SOC from Figure 3.31, as a function of

the current density. Within this phase of the discharge curve, the increased current

density will have a linear effect on the available cell voltage. The vertical intercept

of this plot gives the OCV at that SOC. The slope is the effective internal resistance

of the battery system. Therefore, the cell voltage will be,

Vcell = OCV −Rinternali

where, at 50% SOC, the OCV is 4.308 V and the internal resistance is 62.2 Ω·cm2.

Extending this approach to the entire discharge of the battery, Figure 3.33b demon-

strates how the OCV of the cell sharply decreases at first, then plateaus slightly, and

then drops as the active material becomes fully saturated. The potentials above 4.3 V
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Figure 3.34: Efficiency of macro-scale battery model for various C-rates.

are allowable, given that the rate of forward and reverse reactions will equal each other

for an applied voltage of 4.3 V only when the concentration of filled sites equals the

concentration of empty sites, which is evident in Equation (2.118). This will occur

50% of the way through discharge, meaning the OCV before this point will be larger

than 4.3 V and afterwards, will be less than 4.3 V. The reason the cell voltage at zero

current does not equal 4.3 V, given the trend line intercept in Figure 3.33a, is that

the point at 16C is not directly inline with the others, and is therefore shifting the

intercept up.

Figure 3.34 gives the cell efficiency, using Equation (3.5), for varying C-rates. It

demonstrates how the cell efficiency decreases as current density increases. Therefore,

in addition to the fact that fast-charging an EV’s battery can be detrimental to the

batteries health, it is also far less efficient; which is paramount to EV usage. As

expected, slowing the discharge of the battery will bring the efficiency closer and

closer to fully reversible. In reality, the battery will be less efficient than the model

predicts at these low C-rates, since the battery will experience self-discharge due to

parasitic reactions.
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3.2.5 Summary

The macro-scale system was built, based on the description in Section 2.2, to function

as one of the building blocks, along with a micro-scale model, for the development of

a multi-dimensional multi-scale LiB model. First, this system was run under realistic

conditions and the discharge curve presented and discussed. It was concluded that

its resemblance to experimental curves and the minimal deviance in average Li+

concentration were strong markers that this model correctly captures the macro-

scale. The physical processes occurring during discharge were further investigated by

analyzing how the solution variables and reaction profiles developed throughout cell

discharge. This was supplemented with a parametric study of the exchange current

density, solid conductivity and diffusion, and current density. The cell was then run

in reverse to detect hysteresis, and the cell capacity determined. Finally, the cell

efficiency as a function of current density was plotted and discussed.
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Chapter 4

Conclusion

The focus of this work was to create a computational framework for the macro-scale

model of a Lithium-ion battery that can be extended with the addition of a micro-

scale model to physically model a full cell.

This objective was achieved by,

• Providing an extensive derivation of CST and the Lithium-ion battery governing

equations as well as their finite element implementation.

• Create an electrolyte model that could be validated with the literature and

applied to experiments.

• Expand the electrolyte model to a full macro-scale battery model.

• Discuss the transient profiles, hysteresis, and the effects of each input parameter

on cell performance.

4.1 Summary of Work Completed

Two systems used to study Lithium-ion batteries were implemented into OpenFCST.

The first was a symmetric cell with Lithium foil electrodes separated by an electrolyte

separator. The purpose of this system was to isolate the electrolyte’s influence on cell

performance. The electrolyte transport equations are based on the DFN concentrated

solution theory formulation. Using the concentration of Lithium-ions and the solid
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potential of a Li/Li+ reference electrode as the solution variables, two equations were

derived that fully describe the system, that is, the Li+ species transport equation

and the MacInnes equation. Additionally, an equation relating the reaction rate at

the two planar electrodes with the potential difference of the working and reference

electrodes was developed using the Butler-Volmer formulation.

The other model was for a full macro-scale Lithium-ion battery. This model used

Lithium foil as the anode and a porous NMC layer as the cathode, sandwiching

the electrolyte separator. The porous media is modelled as superimposed continua

coupled through volumetric reactions. The addition of the solid phase required two

additional equations to describe the solid phase concentration and electron transfer;

enter Fick’s law and Ohm’s law respectively. The reaction source term is again

formulated using BV kinetics.

Although the electrolyte equations are obtained from first-principles, the equation

coefficients are most easily determined through experimentation. Two electrolytes

were parameterized, i.e., LiPF6 in EC:DEC (1:1 by weight) [105] and LiTFSI in PEO

[106]. Additional parameters were sourced from the literature for the solid phase and

reaction kinetics at both electrodes.

The governing equations were temporally discretized using the backward differen-

tiation formulae, linearized using the Newton-Raphson method, and then presented

in their finite-element, spatially discretized weak form using the Bubnov-Galerkin

method. The boundary terms were discretized separately and related to their New-

man and complex boundary conditions. The equations and boundary conditions were

then implemented into their respective OpenFCST applications.

The first system to be simulated was the symmetric cell. It was first validated by

reproducing experimental results in the literature [105]. Using a 2.76 M LiTFSI in

PEO electrolyte in a 500 µm thick button-cell, the system was subjected to a con-

stant 20 µA/cm2 current density and the transient cell voltage response recorded.

This was repeated for increasing current densities up to 250 µA/cm2. The results
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matched those from experiments very closely. The cell was then simulated with an

applied 20 µA/cm2 current density for varying Li+ concentration; spanning from

0.473 M to 3.78 M. The steady-state voltages obtained from these tests were com-

pared to experiments and to a SS electrolyte model created by Pesko et al. It was

concluded that the OpenFCST implementation was comparable to Pesko et al.’s SS

model at reproducing the experimental results. The difference between the two mod-

els was also discussed, especially in regard to the incorrect boundary conditions used

by Pesko et al.’s model. The same cell configuration at 2.76 M and 20 µA/cm2 was

used for a sensitivity analysis, in which the input parameters were adjusted to discern

their individual influence on the electrolyte performance. While each parameter had

a different impact on the cell voltage, each played a crucial role in mitigating losses.

Using this information, a commentary was provided on the likely culprit in any non-

conformity between the OpenFCST model and experiments. The OpenFCST model

was then applied to an electrolyte for which no previous computational implementa-

tion has yet been performed. The experimentation had a very difficult time creating

reproducible results. Even though numerical results are physical, experiments per-

formed to validate the model were not reproducible. Therefore, the validation of the

OpenFCST model for this new electrolyte could not be completed.

The focus was then shifted to the macro-scale Lithium-ion battery system. This

system considered a button cell containing a 25 µm separator layer sandwiched be-

tween a Lithium foil anode and a porous 10 µm NMC cathode. The electrolyte used in

this investigation was LiTFSI in PEO at an initial concentration of 1 M. The system

was first operated at 10C and the resultant discharge curve plotted and discussed.

The curve created the same trend that has been reported in the literature. The av-

erage Li+ concentration throughout the discharge was plotted and it was noted that

it remained within 0.2% of the original value, providing confidence in the numerical

accuracy of the model. The transient profiles of the solution variables as well as the

reaction rate and current density were then plotted and discussed. Each plot provided
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realistic results and allowed for a deeper understanding of the battery physics. Then,

the model was charged after discharge and the hysteresis plotted. Using this plot, the

cell capacity and efficiency were deduced. A parametric analysis was then performed

for parameters not considered in the symmetric system (i.e., solid conductivity and

diffusion, exchange current density, and the applied current density). It was found

that minor changes in solid diffusivity and conductivity had a minimal impact on cell

performance, while decreasing exchange current density had a significant impact. Fi-

nally, the cell efficiency was modelled for increasing current densities and the general

trend noted for conforming well to reality.

In conclusion, both systems returned realistic results and allowed for a deeper

understanding of the LiB physics and internal cell profiles. This information can be

used in future applications to understand limiting conditions and facilitate battery

design. The macro-scale battery system provides a framework for which future models

can extend upon (i.e. a micro-scale and thermal model).

4.2 Contributions

This work contributed to the literature in the following ways:

• The equations governing CST are highly non-trivial. Certain works provide

the scientific grounding for these equations, however, none could be found that

provide a rigorous derivation. This work fully outlines how the equations are

developed, what the relevant first principles are, and how they are be applied

based on certain assumptions. This work sheds light on the non-intuitive terms

such as the conductivity definition, thermodynamic factor, and molality correc-

tion factor. Additionally, this work discusses the confusion surrounding the use

of ϕR instead of ϕm to describe the electrolyte potential, and how this usage

will impact the BV equations.

• Most works simplify the model by either implementing only first order equations,
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assuming one-dimensionality, or using a commercial FEM solver, and thus not

allowing for other groups to verify or expand on their work. This work, however,

provides an open-sourced FEM framework and the discretized weak form of the

implemented multi-dimensional governing equations. This is provided for the

symmetric cell system, in which an electrolyte can be studied using CST, and

for the full macro-scale cell model. The fully documented and verifiable software

can then be used as is, or expanded for future works.

• Multiple boundary conditions for the CST electrolyte have been proposed in the

literature. Based on the derivation provided in this work, one formulation was

preferred and validated by experimental results. Additionally, the alternative

boundary conditions that have been reported were also implemented in the

model. The differences were compared and discussed in the context of the

literature that proposes these alternative boundary conditions.

• Creating a computational LiB framework can have advantages in itself, such

as being able to verify the governing equations and understanding the relevant

physics, but the main objective of all models is to supplement design by guid-

ing experimental research. This is done by investigating the interior physical

profiles that are unobtainable during experimentation, or by providing accurate

results faster than experimentation and therefore guiding design optimization.

This work provided insight into the interior solution variable and reaction rate

profiles which helped in understanding where and by what means losses were

most significant. This work also provided parametric studies for a host of elec-

trolyte and solid phase parameters. This helped understand which material

characteristic would be most important for improving battery performance.

4.3 Future Work

The current work has the following limitations:
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• The use of the solid potential for a reference Li/Li+ electrode as a solution

variable in the electrolyte complicates the use of the BV equations and is not

common in the field of electrochemistry, outside of battery research.

• The discussion of the results is not exhaustive in what was chosen to be studied,

given the capability of the model.

• The full battery system makes the major assumption of infinitely fast intra-

particle diffusion, which is known to cause major inaccuracies in predicting

battery performance.

Therefore, the areas of future research proposed are using alternative solution vari-

ables, conducting further macro-scale investigations, and adding the micro-scale model.

4.3.1 Alternative Solution Variables

In Section 2.1.2.2, two forms of the MacInnes equation were presented: one with

respect to the reference potential, ϕR, and one with respect to the electrolyte po-

tential, ϕm. In battery modelling using CST, the convention is to use ϕR because it

reduces the need for two thermodynamic factors to only one. Not only that, but the

thermodynamic factor in Equation (2.55), i.e.,(︃
1 +

∂ ln γ+−

∂ lnmLi+

)︃
is characteristic of the electrolyte salt combination and is therefore likely easier to

experimentally measure than either thermodynamic terms in Equation (2.56), i.e.,(︃
1 +

∂ ln γ+
∂ lnmLi+

)︃
,

(︃
1 +

∂ ln γ−
∂ lnmLi+

)︃
as they are with respect to the individual ionic species in the electrolyte salt. Despite

these advantages, ϕm is traditionally used in the field of electrochemistry as a whole

because it is directly derived from NP theory and is far simpler to use in conjunction

with the BV equations.
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Future work could be to investigate a macro-scale model in which ϕm is used as the

solution variable instead of ϕR. Not only would this greatly reduce the complexity

surrounding the BV equation, but it would also allow direct comparison between the

CST battery system to other applications in electrochemistry; namely DST, in which

ϕm is consistently used. Further research would need to be conducted to determine

the importance of differentiating the two thermodynamic factors from the one in

Equation (2.55). If they could be assumed similar or if a convenient method of

measuring them could be found, this framework may be much more useful than the

one outlined in this work.

The system of governing equations that would describe this alternative macro-scale

model, obtained from Chapter 2, would be,

(1− ϵ)
∂cLi(s)
∂t

= ∇ ·
(︁
Deff

s ∇cLi(s)
)︁

+ SLi(s) (2.94)

0 = ∇ ·
(︁
σeff
s ∇ϕs

)︁
+ FSLi(s) (2.101)

ϵ
∂cLi+

∂t
= ∇ ·

(︁
ζ∇cLi+

)︁
−

i · t0+
F

+ (1− t0+)SLi+ (2.105)

0 = ∇ ·
(︁
κeff∇ϕm + ξ∇cLi+

)︁
+ FSLi+ (4.1)

where, ξ = −κ
effRT

cLi+F

(︃
t0−

(︂
1 +

∂ ln γ−
∂ lnmLi+

)︂
− t0+

(︂
1 +

∂ ln γ+
∂ lnmLi+

)︂)︃(︃
1− d ln c0

d ln cLi+

)︃
and, ζ = Deff

(︃
1− d ln c0

d ln cLi+

)︃
The reaction source terms would be,

SLi(s) =
Aviref,c
F

[︃(︃
cLi+

crefLi+

)︃(︃
csat − cLi(s)

csat

)︃
exp

(︃
− αcF

RT
(ϕs − ϕm − Eeq,ref )

)︃
−

(︃
cLi(s)
csat

)︃
exp

(︃
(1− αc)F

RT
(ϕs − ϕm − Eeq,ref )

)︃]︃ (4.2)

and the reactions at the planar electrode would be,

i =niref

[︃(︃
cR

crefR

)︃
exp

(︃
− αF

RT
(ϕsp − ϕm − Eeq,ref )

)︃
−

(︃
cP

crefP

)︃
exp

(︃
(1− α)F

RT
(ϕsp − ϕm − Eeq,ref )

)︃]︃ (2.79)
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4.3.2 Further Macro-Scale Investigations

Further macro-scale investigations could also be performed, given the implementation

already existing in OpenFCST.

In Section 3.2, the approach taken was to model a battery using the already imple-

mented electrolyte model and sourcing the remaining parameters from the literature.

The other approach would have been to find an article with a full set of input parame-

ters and reproduce the experimental results using the macro-scale system. This would

allow for a quantitative measure of how important it is to include the micro-scale

model in the battery simulation. By pursuing this avenue of research, the question of

how valid the assumption of infinitely fast particle diffusion could be answered.

Another investigation could be to alter the temperature or Li+ saturation con-

centration, thickness, or porosity of the cathode layer and examine the responding

discharge curves and solution variable profiles. Other electrolytes could also be im-

plemented to understand under which conditions the optimal cell performance can be

achieved.

Additionally, the double layer capacitance could be reintroduced to examine the

cell’s voltage response at short time scales and for EIS studies.

Finally, the macro-scale model could be run in 2D or 3D with nontrivial geometries.

Little research has been carried out for complicated geometries. Optimizing cell

dimensions and shapes, especially when combined with the micro-scale model, could

help in battery design.

4.3.3 Addition of the Micro-Scale Model

Finally, the most important extension to this work is the addition of the micro-scale

model. Research would need to be conducted on the most effective means by which

this could be done, but a couple potential solutions are provided here:

• Using the 3D micro-structure, the electrolyte could be solved in the pores only.
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Instead of modelling the reactions as source terms, they could be modelled as

boundary conditions at the interface with the active particle (similar to the

planar electrode BC). The micro-scale model could be solved simultaneously

in the solid phase, thus fully coupling the two phases through the reaction

kinetics. This method would be very computationally demanding as the micro-

structure would need to be resolved completely and thus the domain must have

an incredibly fine mesh. This is the approach taken by references [49–51].

• Similar to the previous suggestion, except the two phases would be solved sep-

arately, iterating between them to reduce the residual of the reaction equation.

This would have the added complication, however, of not directly imposing

the requirement for a constant Li+ concentration within the electrolyte. No

previous work has been found that uses this approach.

• Continue modelling the macro-scale on a volumetric averaging basis, where

the reaction source term is location dependant and a result of the micro-scale

output. The micro-scale model could be solved using a representative volume at

each location in the macro-scale, using the concentration and potential values

at that location. This would allow the two scales to be solved simultaneously

but would save time in that the micro-structure would not need to be fully

resolved. This is the approach followed by references [54, 55] in their work with

homogenized models.

• Model the macro-scale on the continuum basis, as described in this work. The

micro-scale could incorporate a surrogate coupling scheme in which it is param-

eterized in pre-processing and stored in a database so that, during simulation,

the macro-model use the micro-scale solutions on a look-up basis. This is the

approach followed by reference [56].

Based on the research conducted in the literature review of this work, the third option
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is the best path forward, however, future work may have a different application in

mind, in which higher fidelity solution are required. In this case, one of the other

options, or perhaps a different one all-together, would be the most appropriate. Once

completed, this full scale model could be validated with experimental and literature

sourced results. It could be used to aid battery design and predict performance.
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Appendix A: Extended Derivations

This appendix provides mathematical proofs of some of the steps taken in Section 2

and 3 that do not provide further scientific insight into the physics of the equations

but are required for completeness.

A.1 Derivation for SOC and C-rate

The state of charge (SOC) in a system is the fraction of the cathode available for

Lithium intercalation. Because the application in section 3.2.1 is for a constant cur-

rent, the SOC will be a linear function of time,

SOC(t) = c− 1

b
t

where b and c are constants. For discharge, the cell will begin full charged (i.e.,

SOC = 1), thus making c = 1. The second term will be the non-dimensional fraction

of filled cathodic active material. Therefore, b is just the total time required to

discharge the cell.

SOC(t) = 1− 1

ttotal
t

The total time of discharge will be dictated by the total amount of solid Lithium

that has intercaled into the cathode, i.e., its saturation concentration. Using the

principle,

ϵcsat = rLi(s)ttotal

where rLi(s) is the rate at which solid Lithium is created in M/s, the SOC will be,

SOC(t) = 1−
rLi(s)
csat

t

151



The reaction rate can then be expressed in terms of charge, by considering the

number of Coulomb’s transferred per mole of solid Lithium that is created. This

quantity would be equivalent to the average source term in the cathode, i.e.,

SLi(s),ave = zLi+FrLi(s)

Finally, the average source term in the cathode will just be the current density

being passed into the cathode divided by the thickness of the cathode, assuming zero

charge storage (as discussed in section 2.1.2.2), i.e.,

SLi(s),ave =
i

δc

Substituting all identities in gives the expression provided in section 3.2.1,

SOC(t) = 1− i

zLi+Fδcϵccsat
t (1.4)

The above derivation will be recycled to obtain an explicit expression for the C-rate.

The C-rate is defined as the number of identical batteries that could be discharged

in one hour. Alternatively, this is equivalent to 1 hour divided by the time it takes

to discharge one battery, i.e.,

C-rate =
1 hr

ttotal

Then, substituting the equalities above for the total time required to discharge the

battery, ttotal, the C-rate is given by,

C-rate =
i(1 hr)

zLi+Fδcϵccsat
(1.5)

Where the current, i, is multiplied by 3600 to convert between A to C/hr.

A.2 Derivation between equations (2.18) to (2.21)

Beginning with,

ce
(︁
ν+∇ ln (m+γ+) + ν−∇ ln (m−γ−)

)︁
= − c0

cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
(2.18)
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and combining term by bringing the νi terms into the exponents,

ce∇ ln (m
ν+
+ γ

ν+
+ m

ν−
− γ

ν−
− ) = − c0

cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
Equation (2.15), which is given by,

me =
m+

ν+
=
m−

ν−
(2.15)

can be substituted into Equation 2.18 in place of m− to obtain,

ce∇ ln

(︃
m

ν+
+

(︂m+ν−
ν+

)︂ν−
γ
ν+
+ γ

ν−
−

)︃
= − c0

cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
Then, separating the νi terms into a new gradient,

ce

(︃
∇ ln

(︁
m

ν+
+ m

ν−
+ γ

ν+
+ γ

ν−
−
)︁
+∇ ln

(︂ν−
ν+

)︂ν−
)︃

= − c0
cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N++

1

z−D0−

i

F

)︃
The second gradient will fall to zero because all of its components are constants,

resulting in,

ce∇ ln
(︁
m

(ν++ν−)
+ γ

ν+
+ γ

ν−
−
)︁
= − c0

cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
(2.19)

Then applying Equation (2.20), given by,

γ
(ν++ν−)
+− = γ

ν+
+ γ

ν−
− (2.20)

to Equation (2.19),

ce∇ ln
(︁
m

(ν++ν−)
+ γ

(ν++ν−)
+−

)︁
= − c0

cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
Then, bringing the exponent in front,

ce(ν+ + ν−)∇ ln
(︁
m+γ+−

)︁
= − c0

cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
and reapplying Equation (2.15),

(c+ + c−)∇ ln (m+γ+−) = − c0
cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N+ +

1

z−D0−

i

F

)︃
(2.21)

153



A.3 Derivation between equations (2.23) to (2.24)

Beginning with,

(c++ c−)

(︃
1+

∂ ln γ+−

∂ lnm+

)︃
∇ lnm+ = − c0

cT

(︃(︂ 1

D0+

− z+
z−

1

D0−

)︂
N++

1

z−D0−

i

F

)︃
(2.23)

we will first isolate for the flux of cations, N+,

N+ =− cT (c+ + c−)

c0

(︂ 1

D0+

− z+
z−

1

D0−

)︂−1
(︃
1 +

∂ ln γ+−

∂ lnm+

)︃
∇ lnm+

− 1

z−D0−

(︂ 1

D0+

− z+
z−

1

D0−

)︂−1 i

F

Eliminating the −1 exponent,

N+ =
cT (c+ + c−)

c0

(︃
z−D0+D0−

z+D0+ − z−D0−

)︃(︃
1 +

∂ ln γ+−

∂ lnm+

)︃
∇ lnm+

+
1

z−D0−

(︃
z−D0+D0−

z+D0+ − z−D0−

)︃
i

F

and eliminating factors in the current term,

N+ =
cT (c+ + c−)

c0

(︃
z−D0+D0−

z+D0+ − z−D0−

)︃(︃
1 +

∂ ln γ+−

∂ lnm+

)︃
∇ lnm+

+

(︃
z+D0+

z+D0+ − z−D0−

)︃
i

z+F

Then, recalling electroneutrality for the binary electrolyte,

z+c+ = −z−c−

Substituting in for c−,

N+ =
cT
c0

(︂
c+ − c+z+

z−

)︂(︃ z−D0+D0−

z+D0+ − z−D0−

)︃(︃
1 +

∂ ln γ+−

∂ lnm+

)︃
∇ lnm+

+

(︃
z+D0+

z+D0+ − z−D0−

)︃
i

z+F

and bringing through the brackets,

N+ =− cT c+
c0

(︃
D0+D0−(z+ − z−)

z+D0+ − z−D0−

)︃(︃
1 +

∂ ln γ+−

∂ lnm+

)︃
∇ lnm+

+

(︃
z+D0+

z+D0+ − z−D0−

)︃
i

z+F

(2.24)
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A.4 Derivation for molality to molarity factor

This section will provide a step-by-step derivation for how to the molality correction

factor can be expressed in terms of the specific volume and concentration of the ionic

salt for a 1:1 binary electrolyte.

Beginning with the molality to molarity factor from Equation (2.30),

1− d ln c0
d ln c+

The derivation begins by separating the derivative term by introducing a dummy

variable, x (x was chosen because using a spacial coordinate gives physical meaning

to this derivation),

1−
(︃
d ln c0
dx

)︃(︃
d ln c+
dx

)︃−1

Then, taking the derivative through the logarithm,

1−
(︃

1

c0

dc0
dx

)︃(︃
1

c+

dc+
dx

)︃−1

= 1− c+
c0

dc0/dx

dc+/dx

The following identity states that the sum of partial volumes for each species in

solution is equal to the total volume. This requirement is true for all solutions.∑︂
i

civ̄i = cev̄e + c0v̄0 = 1

Rearranging for the concentration of the solvent,

c0 =
1

v̄0
(1− cev̄e)

This identity can be applied to determine the derivative of the solvent concentration

with respect to the cation concentration,

dc0
dx

= − v̄e
v̄0

dc+
dx

By inserting these two identities into the above equation, one would receive:

1− c+
1
v̄0
(1− c+v̄e)

− v̄e
v̄0
(dc+/dx)

(dc+/dx)

Which, when terms are eliminated, returns,

1− d ln c0
d ln c+

=
1

1− v̄ec+
(2.31)
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A.5 Derivation between equations (2.42) to (2.43)

Regarding the derivation from Equation (2.42) to Equation (2.43):

c+∇µ̄+ =
RT

cT

[︃
c+

D+−

(︃
z+cTDe

z−c0

(︂
1 +

∂ ln γ+−

∂ lnm+

)︂(︂
1− d ln c0

d ln c+

)︂
∇c+ +

it0−
z−F

)︃
+
(︂ z+c+
z−D+−

− c0
D0+

)︂(︃
− cTDe

c0

(︂
1 +

∂ ln γ+−

∂ lnm+

)︂(︂
1− d ln c0

d ln c+

)︂
∇c+ +

it0+
z+F

)︃]︃ (2.42)

Combine like terms for i and ∇c+,

c+∇µ̄+ =
RT

cT

[︃(︃
c+

D+−

t0−
z−

+
(︂ z+c+
z−D+−

− c0
D0+

)︂ t0+
z+

)︃
i

F

+

(︃
z+c+
z−D+−

− z+c+
z−D+−

+
c0

D0+

)︃
cTDe

c0c+

(︂
1 +

∂ ln γ+−

∂ lnm+

)︂(︂
1− d ln c0

d ln c+

)︂
∇c+

]︃
Dividing by c+ and simplifying the two coefficient terms,

∇µ̄+ =
RT

cT

[︃(︃
1

z−D+−
−

c0t
0
+

z+c+D0+

)︃
i

F
+

cTDe

c+D0+

(︂
1 +

∂ ln γ+−

∂ lnm+

)︂(︂
1− d ln c0

d ln c+

)︂
∇c+

]︃
Then, applying electroneutrality, z+ν+ = −z−ν−, dividing by z+F , and further sim-

plifying,

1

z+F
∇µ̄+ =

RT

cT z−z+F 2

(︃
1

D+−
+

c0t
0
+

c−D0+

)︃
i+

RTDe

z+c+FD0+

(︂
1+

∂ ln γ+−

∂ lnm+

)︂(︂
1− d ln c0

d ln c+

)︂
∇c+

Applying equations (2.25) and (2.26), the ratio, De/z+D0+ in the last term can be

manipulated as follows:

De

z+D0+

=
1

z+D0+

D0+D0−(z− − z+)

z−D0− − z+D0+

=
z−D0−

z−D0− − z+D0+

(︃
1

z+
− 1

z−

)︃
= t0−

(︃
1

z+
− 1

z−

)︃
Substituting in,

1

z+F
∇µ̄+ =

RT

cT z−z+F 2

(︃
1

D+−
+

c0t
0
+

c−D0+

)︃
i

+
RTt0−
c+F

(︂ 1

z+
− 1

z−

)︂(︂
1 +

∂ ln γ+−

∂ lnm+

)︂(︂
1− d ln c0

d ln c+

)︂
∇c+

Finally, simplifying for the current, i,

i

[︃
−RT

cT z−z+F 2

(︃
1

D+−
+

c0t
0
+

c−D0+

)︃]︃
=

[︃
− 1

z+F
∇µ̄+ +

RTt0−
c+F

(︂ 1

z+
− 1

z−

)︂(︂
1 +

∂ ln γ+−

∂ lnm+

)︂(︂
1− d ln c0

d ln c+

)︂
∇c+

]︃ (2.43)
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A.6 Derivation between equations (2.46) and (2.47)

Regarding the derivation from Equation (2.46) to Equation (2.47):

i =κ

[︃
− 1

z+F
∇
(︁
µ⊖
+ +RT ln (m+γ+λ

⊖
+) + z+Fϕm

)︁
+
RTt0−
c+F

(︂ 1

z+
− 1

z−

)︂(︂
1 +

∂ ln γ+−

∂ lnm+

)︂(︂
1− d ln c0

d ln c+

)︂
∇c+

]︃ (2.46)

Bringing the gradients through the brackets and eliminating constant terms,

i = κ

[︃
−∇ϕm− RT

z+F
∇ ln (m+γ+)+

RTt0−
c+F

(︂ 1

z+
− 1

z−

)︂(︂
1+

∂ ln γ+−

∂ lnm+

)︂(︂
1− d ln c0

d ln c+

)︂
∇c+

]︃
Through the use of Equation (2.22) and (2.29), the concentration gradient term can

be reverted to a previous form:

i = κ

[︃
−∇ϕm − RT

z+F
∇ ln (m+γ+) +

RTt0−
F

(︂ 1

z+
− 1

z−

)︂
∇ ln (m+γ+−)

]︃
Then, recalling electroneutrality, z+ν+ + z−ν− = 0,

i = κ

[︃
−∇ϕm − RT

z+F
∇ ln (m+γ+) +

RTt0−
z+ν+F

(ν+ + ν−)∇ ln (m+γ+−)

]︃
Then, by Equation (2.20), the electrolyte activity coefficient can be split into cation

and anion terms,

i = κ

[︃
−∇ϕm − RT

z+F
∇ ln (m+γ+) +

RTt0−
z+ν+F

(︁
ν+∇ ln (m+γ+) + ν−∇ ln (m+γ−)

)︁]︃
Combining like terms,

i = κ

[︃
−∇ϕm +

RT

F

(︃
t0−ν−
z+ν+

∇ ln (m+γ−) +
(t0− − 1)

z+
∇ ln (m+γ+)

)︃]︃
By electroneutrality and the identity, t0+ + t0− = 1,

i = κ

[︃
−∇ϕm − RT

F

(︃
t0−
z−

∇ ln (m+γ−) +
t0+
z+

∇ ln (m+γ+)

)︃]︃
Then, applying equations (2.22) and (2.29) again,

i = κ

[︃
−∇ϕm−

RT

c+F

(︃
t0−
z−

(︂
1 +

∂ ln γ−
∂ lnm+

)︂
+
t0+
z+

(︂
1 +

∂ ln γ+
∂ lnm+

)︂)︃
(︃
1− d ln c0

d ln c+

)︃
∇c+

]︃ (2.47)
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A.7 Derivation for Equilibrium Current Density

This appendix will outline the derivation form of the Butler-Volmer equation most

often used in battery literature.

As discussed in Section 2.1.3.2, the general reaction being modelled is,

R+ + e− ⇋ P (2.66)

where the reaction is taking place at a reference electrode with solid potential ϕR.

When applying electrochemical equilibrium, results in,

µ̄R + µ̄e− = µ̄P

Recalling the electrochemical potential definition, i.e.,

µ̄i = µ⊖
i +RT ln ai + ziFϕm (2.13)

and applying it to each term in (2.66),(︁
µ⊖
R +RT ln aR + Fϕm

)︁
+
(︁
µ⊖
e− − FϕR

)︁
=

(︁
µ⊖
P +RT ln aP

)︁
(2.13)

where the activity of an electron is taken as 1. After cancelling terms and rearranging,

ϕR = ϕm +
1

F

(︃
µ⊖
R + µ⊖

e− − µ⊖
P +RT ln

(︂aR
aP

)︂)︃
The combination of reference potentials (µ⊖

R, µ
⊖
e− , and µ⊖

P ) describes the open-cell

potential that develops between the electrolyte and the reference electrode. For a

working electrode made of the same material as the reference electrode, this combi-

nation will be equivalent to FEeq,⊖.

µ⊖
R + µ⊖

e− − µ⊖
P = FEeq,⊖

Substituting ϕR into Equation (2.85) gives,

i = nieq

[︃
exp

(︃
− αF

RT

(︃
ϕs − ϕm − Eeq,⊖ − RT

F
ln
(︂aR
aP

)︂)︃)︃
− exp

(︃
(1− α)F

RT

(︃
ϕs − ϕm − Eeq,⊖ − RT

F
ln
(︂aR
aP

)︂)︃)︃]︃
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Then, splitting the exponential and cancelling it with the logarithm of the activity

term, gives,

i = nieq

[︃(︂aR
aP

)︂α

exp

(︃
− αF

RT

(︁
ϕs − ϕm − Eeq,⊖)︁)︃

−
(︂aR
aP

)︂(α−1)

exp

(︃
(1− α)F

RT

(︁
ϕs − ϕm − Eeq,⊖)︁)︃]︃

Recall the activity of each ionic species,

ai = miγiλ
⊖
i (2.14)

which, when applying the definition of molality from Equation (2.29), becomes,

ai =
ciγiλ

⊖
i

c0M0

Substituting in, the c0 and M0 will cancel, as will λΘi , as it is characteristic to the

electrolyte as a whole and only a function of pressure and temperature, which are

properties common to all species. Therefore,

i = nieq

[︃(︃
cRγR
cPγP

)︃α

exp

(︃
− αF

RT

(︁
ϕs − ϕm − Eeq,⊖)︁)︃

−
(︃
cRγR
cPγP

)︃(α−1)

exp

(︃
(1− α)F

RT

(︁
ϕs − ϕm − Eeq,⊖)︁)︃]︃

Bazant discusses the application of the activity coefficients in the BV equations in

ref [165]. In equation (12) he isolates a correction factor that accounts for the effects

of concentrated solutions, i.e., (︃
γ1−α
R γαP
γ‡

)︃
where γ‡ is the activity coefficient of the transition state.

However, not only is the activity coefficient of the transition state difficult to obtain,

but the correction factor has a minor effect on the resulting current and the work in

references [7, 61, 118, 125] merely assumes linear activity, scaling with concentration,

even for highly concentrated solutions. Therefore, the activity of each species will
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instead be presented as a ratio of its concentration with its reference concentration,

i.e.,

i = nieq

[︃(︂ cR

crefR

)︂α(︂ cP

crefP

)︂−α

exp

(︃
− αF

RT

(︁
ϕs − ϕm − Eeq,ref

)︁)︃
−

(︂ cR

crefR

)︂(α−1)(︂ cP

crefP

)︂(1−α)

exp

(︃
(1− α)F

RT

(︁
ϕs − ϕm − Eeq,ref

)︁)︃]︃
Then, by pulling out common factors,

i = nieq

(︃
cP

crefP

)︃−α(︃
cR

crefR

)︃(α−1)[︃(︃
cR

crefR

)︃
exp

(︃
− αF

RT

(︁
ϕs − ϕm − Eeq,ref

)︁)︃
−
(︃
cP

crefP

)︃
exp

(︃
(1− α)F

RT

(︁
ϕs − ϕm − Eeq,ref

)︁)︃]︃
This form of the BV equation is very similar to the form in Equation (2.79) except

for the prefactor of exchange current density, iref , i.e.,

i = niref

[︃(︃
cR

crefR

)︃
exp

(︃
− αF

RT
(ϕs − ϕm − Eeq,ref )

)︃
−

(︃
cP

crefP

)︃
exp

(︃
(1− α)F

RT
(ϕs − ϕm − Eeq,ref )

)︃]︃ (2.79)

Setting the two prefactors equal gives,

iref = ieq

(︃
cP

crefP

)︃−α(︃
cR

crefR

)︃(α−1)

and then rearranging for ieq,

ieq = iref

(︃
cP

crefP

)︃α(︃
cR

crefR

)︃1−α

(2.82)

A.8 Derivation for U and U ′ relationship

Beginning with Equation (2.111), having substituted Equation (2.114) in for ieq,

SLi(s) = iref,c
Av

F
θαc(1− θ)1−αc

(︃
cLi+

crefLi+

)︃1−αc
[︃
exp

(︃
− αcF

RT
(ϕs − ϕR − U)

)︃
− exp

(︃
(1− αc)F

RT
(ϕs − ϕR − U)

)︃]︃
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Bringing the factors containing θ inside the brackets and removing a (1− θ) from the

first term and a θ term from the second,

SLi(s) = iref,c
Av

F

(︃
cLi+

crefLi+

)︃1−αc
[︃
(1− θ)

(︁
θαc(1− θ)−αc

)︁
exp

(︃
− αcF

RT
(ϕs − ϕR − U)

)︃
− θ

(︁
θαc−1(1− θ)1−αc

)︁
exp

(︃
(1− αc)F

RT
(ϕs − ϕR − U)

)︃]︃
Then, using the logarithm/exponential identities, the equation will becomes,

SLi(s) = iref,c
Av

F

(︃
cLi+

crefLi+

)︃1−αc

[︃
(1− θ) exp

(︃
− αc ln

(︃
1− θ

θ

)︃)︃
exp

(︃
− αcF

RT
(ϕs − ϕR − U)

)︃
− θ exp

(︃
(1− αc) ln

(︃
1− θ

θ

)︃)︃
exp

(︃
(1− αc)F

RT
(ϕs − ϕR − U)

)︃]︃
And finally, by combining the exponential terms,

SLi(s) = iref,c
Av

F

(︃
cLi+

crefLi+

)︃1−αc

[︃
(1− θ) exp

(︃
− αcF

RT

(︃
ϕs − ϕR − U +

RT

F
ln

(︃
1− θ

θ

)︃)︃)︃
− θ exp

(︃
(1− αc)F

RT

(︃
ϕs − ϕR − U +

RT

F
ln

(︃
1− θ

θ

)︃)︃)︃]︃
Now, by comparing this with Equation (2.115), where ieq is substituted by Equa-

tion (2.116), i.e.,

SLi(s) =iref,c
Av

F

(︃
cLi+

crefLi+

)︃1−αc
[︃
(1− θ) exp

(︃
− αcF

RT
(ϕs − ϕR − U ′)

)︃
− θ exp

(︃
(1− αc)F

RT
(ϕs − ϕR − U ′)

)︃]︃
It becomes apparent this Equation (2.117) follows,

U ′ +
RT

F
ln

(︃
1− θ

θ

)︃
= U (2.117)

A.9 Derivation for Newton Linearization

For this derivation, the residual term, R(u(m)) is trivial. The complexity arises in the

Jacobian term, δR(u(m)).
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The Jacobian term is given by,

δR(u(m)) = δ

[︄
n+1∑︂

p=n−k+1

Aαp

τ
u(p,m)

−∇ ·
(︁
B(u(n+1,m))∇u(n+1,m)

)︁
−
(︁
i(u(n+1,m)) · ∇t0+(u(n+1,m))

)︁
g

− f(u(n+1,m))

]︄

Because the variation is distributive, it can be applied to each term,

δR(u(m)) = δ

[︃ n+1∑︂
p=n−k+1

Aαp

τ
u(p,m)

]︃
− δ

[︂
∇ ·

(︁
B(u(n+1,m))∇u(n+1,m)

)︁]︂
− δ

[︂(︁
i(u(n+1,m)) · ∇t0+(u(n+1,m))

)︁
g
]︂

− δf(u(n+1,m))

Allowing the variation into each term by recognizing that it is associative and applying

the product rule,

δR(u(m)) =
n+1∑︂

p=n−k+1

Aαp

τ
δu

−∇ ·
(︁
δB(u(n+1,m))∇u(n+1,m) +B(u(n+1,m))∇δu

)︁
−

(︁
δi(u(n+1,m)) · ∇t0+(u(n+1,m)) + i(u(n+1,m)) · ∇δt0+(u(n+1,m))

)︁
g

− δf(u(n+1,m))

Then, applying the identity,

δf(u) =
∂f

∂u
δu
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the Jacobian term becomes,

δR(u(m)) =
n+1∑︂

p=n−k+1

Aαp

τ
δu

−∇ ·
(︃
∂B(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m) +B(u(n+1,m))∇δu
)︃

−
(︃(︃

∂i(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

)︃
·
(︃
∂t0+(u)

∂ul

⃓⃓⃓⃓
u=u(n+1,m)

∇ul
)︃)︃

g

−
(︃
i(u(n+1,m)) · ∇

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

)︃)︃
g

− ∂f(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

Then, applying the product rule for the gradient to the fourth term,

δR(u(m)) =
n+1∑︂

p=n−k+1

Aαp

τ
δu

−∇ ·
(︃
∂B(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m) +B(u(n+1,m))∇δu
)︃

−
(︃(︃

∂i(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

)︃
·
(︃
∂t0+(u)

∂ul

⃓⃓⃓⃓
u=u(n+1,m)

∇ul
)︃)︃

g

−
(︃
i(u(n+1,m)) ·

(︃
∇
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk +
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇δuk
)︃)︃

g

− ∂f(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

Finally, by applying the chain rule again,

δR(u(m)) =
n+1∑︂

p=n−k+1

Aαp

τ
δu

−∇ ·
(︃
∂B(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m) +B(u(n+1,m))∇δu
)︃

−
(︃(︃

∂i(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

)︃
·
(︃
∂t0+(u)

∂ul

⃓⃓⃓⃓
u=u(n+1,m)

∇ul
)︃)︃

g

−
(︃
i(u(n+1,m)) ·

(︃
∂2t0+(u)

∂uk∂ul

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m)
l +

∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇δuk
)︃)︃

g

− ∂f(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk
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Finally, cleaning up some terms,

δR(u(m)) =
n+1∑︂

p=n−k+1

Aαp

τ
δu

−∇ ·
(︁
B(u(n+1,m))∇δu

)︁
−∇ ·

(︃
∂B(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m)

)︃
−

(︃(︃
∂i(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

)︃
·
(︃
∂t0+(u)

∂ul

⃓⃓⃓⃓
u=u(n+1,m)

∇ul
)︃)︃

g

−
(︃
i(u(n+1,m)) ·

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇δuk
)︃)︃

g

−
(︃
i(u(n+1,m)) ·

(︃
∂2t0+(u)

∂uk∂ul

⃓⃓⃓⃓
u=u(n+1,m)

δuk∇u(n+1,m)
l

)︃)︃
g

− ∂f(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δuk

This can then be inserted as the δR(u(m)) term in Equation (2.135) to receive Equa-

tion (2.136).

A.10 Derivation for Spatial Discretization

This appendix section will outline the process in which the discretized weak form

of the system of governing equations was obtained. Note this is general enough to

encompass either system outlined in section 2. Beginning with the weak form of the

equations, i.e., Equation (2.139), the test functions, as outlined in Equation (2.140),

will be implemented. The summations have been dropped and the indices are pre-
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sented as a superscript, i.e.,∫︂
Ω

v̄iψiAαn+1

τ
δūjψjdΩ

+

∫︂
Ω

(︁
∇(v̄iψi)

)︁
·
(︁
B(u(n+1,m))∇(δūjψj)

)︁
dΩ

+

∫︂
Ω

(︁
∇(v̄iψi)

)︁
·
(︃
∂B(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δūjkψ
j∇u(n+1,m)

)︃
dΩ

−
∫︂
Ω

v̄iψi

(︃(︃
∂i(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δūjkψ
j

)︃
·
(︃
∂t0+(u)

∂ul

⃓⃓⃓⃓
u=u(n+1,m)

∇ul
)︃)︃

gdΩ

−
∫︂
Ω

v̄iψi

(︃
i(u(n+1,m)) ·

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇(δūjkψ
j)

)︃)︃
gdΩ

−
∫︂
Ω

v̄iψi

(︃
i(u(n+1,m)) ·

(︃
∂2t0+(u)

∂uk∂ul

⃓⃓⃓⃓
u=u(n+1,m)

δūjkψ
j∇u(n+1,m)

l

)︃)︃
gdΩ

−
∫︂
Ω

v̄iψi∂f(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δūjkψ
jdΩ

= −
∫︂
Ω

v̄iψi

n+1∑︂
p=n−k+1

Aαp

τ
u(p,m)dΩ

−
∫︂
Ω

(︁
∇(v̄iψj)

)︁
·
(︁
B(u(n+1,m))∇u(n+1,m)

)︁
dΩ

+

∫︂
Ω

v̄iψi

(︃
i(u(n+1,m)) ·

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇u(n+1,m)
k

)︃)︃
gdΩ

+

∫︂
Ω

v̄iψif(u(n+1,m))dΩ

The equation vector is now going to be opened up using index notation. The indices

are denoted as subscripts to distinguish them from the DOF indices in the superscript.

It is important to realize that these dimensions are independent from each other can

therefore vectors and tensors will operate as a scalar when manipulating the other

index (e.g., spatial gradients acting upon the shape functions should not be applied
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to A or B). The equaton is therefore now,∫︂
Ω

v̄iψiAabαn+1

τ
δūjbψ

jdΩ

+

∫︂
Ω

(︁
∇(v̄iψi)

)︁
·
(︁
Bab(u

(n+1,m))∇(δūjbψ
j)
)︁
dΩ

+

∫︂
Ω

(︁
∇(v̄iψi)

)︁
·
(︃
∂Bab(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δūjkψ
j∇u(n+1,m)

b

)︃
dΩ

−
∫︂
Ω

v̄iψi

(︃(︃
∂i(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δūjkψ
j

)︃
·
(︃
∂t0+(u)

∂ul

⃓⃓⃓⃓
u=u(n+1,m)

∇ul
)︃)︃

gadΩ

−
∫︂
Ω

v̄iψi

(︃
i(u(n+1,m)) ·

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇(δūjkψ
j)

)︃)︃
gadΩ

−
∫︂
Ω

v̄iψi

(︃
i(u(n+1,m)) ·

(︃
∂2t0+(u)

∂uk∂ul

⃓⃓⃓⃓
u=u(n+1,m)

δūjkψ
j∇u(n+1,m)

l

)︃)︃
gadΩ

−
∫︂
Ω

v̄iψi∂fa(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δūjkψ
jdΩ

= −
∫︂
Ω

v̄iψi

n+1∑︂
p=n−k+1

Aabαp

τ
u
(p,m)
b dΩ

−
∫︂
Ω

(︁
∇(v̄iψj)

)︁
·
(︁
Bab(u

(n+1,m))∇u(n+1,m)
b

)︁
dΩ

+

∫︂
Ω

v̄iψi

(︃
i(u(n+1,m)) ·

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

∇u(n+1,m)
k

)︃)︃
gadΩ

+

∫︂
Ω

v̄iψifa(u
(n+1,m))dΩ

The test function and variation coefficients, v̄i and δūj, are constant and can

therefore be brought out from the gradient terms. Also, v is common to all terms and

will therefore be divided out of the equation all together. Finally, rearranging terms
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slightly for readability, the discretized form becomes,∫︂
Ω̂

Aacαn+1

τ
ψiψjδūjcdΩ̂

+

∫︂
Ω̂

Bac(u
(n+1,m))

(︁
∇ψi · ∇ψj

)︁
δūjcdΩ̂

+

∫︂
Ω̂

(︃
∂Bab(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

)︃(︁
∇ψi · ∇u(n+1,m)

b

)︁
ψjδūjkdΩ̂

−
∫︂
Ω̂

(︃
∂t0+(u)

∂ul

⃓⃓⃓⃓
u=u(n+1,m)

)︃(︃(︃
∂i(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

)︃
· ∇ul

)︃
gaψ

iψjδūjkdΩ̂

−
∫︂
Ω̂

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

)︃(︂
i(u(n+1,m)) · ∇ψj

)︂
gaψ

iδūjkdΩ̂

−
∫︂
Ω̂

(︃
∂2t0+(u)

∂uk∂ul

⃓⃓⃓⃓
u=u(n+1,m)

)︃(︂
i(u(n+1,m)) · ∇u(n+1,m)

l

)︂
gaψ

iψjδūjkdΩ̂

−
∫︂
Ω̂

(︃
∂fa(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

)︃
ψiψjδūjkdΩ̂

= −
∫︂
Ω̂

n+1∑︂
p=n−k+1

Aabαp

τ
u
(p,m)
b ψidΩ̂

−
∫︂
Ω̂

Bab(u
(n+1,m))

(︁
∇ψj · ∇u(n+1,m)

b

)︁
dΩ̂

+

∫︂
Ω̂

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

)︃(︂
i(u(n+1,m)) · ∇u(n+1,m)

k

)︂
gaψ

idΩ̂

+

∫︂
Ω̂

fa(u
(n+1,m))ψidΩ̂

Finally, the variation is pulled out of the RHS, thus creating a new free variable

and turning the bracketed term into a matrix. Each term within this matrix is the
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corresponding variational contribution to the Jacobian matrix.[︄∫︂
Ω̂

Aacαn+1

τ
ψiψjdΩ̂

+

∫︂
Ω̂

Bac(u
(n+1,m))

(︁
∇ψi · ∇ψj

)︁
dΩ̂

+

∫︂
Ω̂

(︃
∂Bab(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δkc

)︃(︁
∇ψi · ∇u(n+1,m)

b

)︁
ψjdΩ̂

−
∫︂
Ω̂

(︃
∂t0+(u)

∂ul

⃓⃓⃓⃓
u=u(n+1,m)

)︃(︃(︃
∂i(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δkc

)︃
· ∇ul

)︃
gaψ

iψjdΩ̂

−
∫︂
Ω̂

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δkc

)︃(︂
i(u(n+1,m)) · ∇ψj

)︂
gaψ

idΩ̂

−
∫︂
Ω̂

(︃
∂2t0+(u)

∂uk∂ul

⃓⃓⃓⃓
u=u(n+1,m)

δkc

)︃(︂
i(u(n+1,m)) · ∇u(n+1,m)

l

)︂
gaψ

iψjdΩ̂

−
∫︂
Ω̂

(︃
∂fa(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

δkc

)︃
ψiψjdΩ̂

]︄
δūjc

= −
∫︂
Ω̂

n+1∑︂
p=n−k+1

Aabαp

τ
u
(p,m)
b ψidΩ̂

−
∫︂
Ω̂

Bab(u
(n+1,m))

(︁
∇ψj · ∇u(n+1,m)

b

)︁
dΩ̂

+

∫︂
Ω̂

(︃
∂t0+(u)

∂uk

⃓⃓⃓⃓
u=u(n+1,m)

)︃(︂
i(u(n+1,m)) · ∇u(n+1,m)

k

)︂
gaψ

idΩ̂

+

∫︂
Ω̂

fa(u
(n+1,m))ψidΩ̂

This equation could be recommitted to tensor notation with the use of the Kro-

necker product (second order tensor product), ⊗, to create a fourth order RHS matrix

[167]. However, this can be very confusing as it is not clear which dimension is being

operated on.
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Appendix B: OpenFCST PRM
Files

B.1 app lib electrolyte main and data PRM Files

Listing B.1: main.prm

###########################################################
# $Id : $
#
# This f i l e i s used to s imulate a p p l i b e l e c t r o l y t e
# and obta in the vo l tage r equ i r ed to su s t a i n a g iven
# cur rent pas s ing though .
#
# Copyright (C) 2022 by Marc S e cane l l and Cameron Fenske
#
###########################################################

subsec t i on Simulator

s e t s imu lato r name = a p p l i b e l e c t r o l y t e
s e t s imu lato r parameter f i l e name = data . prm
se t non l i nea r s o l v e r name = None
s e t t r an s i e n t s o l v e r name = BDF
se t Ana lys i s type = Analys i s

end
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Listing B.2: data.prm

###########################################################
# $Id : $
#
# This f i l e i s used to s imulate a p p l i b e l e c t r o l y t e
# and obta in the vo l tage r equ i r ed to su s t a i n a g iven
# cur rent pas s ing though .
#
# Copyright (C) 2022 by Marc S e cane l l and Cameron Fenske
#
###########################################################

###########################################################
subsec t i on Grid gene ra t i on
s e t Type o f mesh = GridExternal
s e t F i l e name = . . / an a l y s i s /Mesh .msh
s e t F i l e type = msh
s e t I n i t i a l r e f inement = 0
s e t Planar e l e c t r o d e width = 0.0001

end
###########################################################

###########################################################
subsec t i on D i s c r e t i z a t i o n
s e t Boundary f l u x e s = true

end
###########################################################

###########################################################
subsec t i on I n i t i a l So lu t i on
s e t I n i t i a l s o l u t i o n output f i l ename = Step00000
s e t Output i n i t i a l s o l u t i o n = f a l s e

end
###########################################################

###########################################################
subsec t i on Adaptive re f inement
s e t Number o f Refinements = 1
s e t Refinement = adapt ive #g l oba l | adapt ive
s e t Output i n i t i a l mesh = f a l s e
s e t Output f i n a l s o l u t i o n = true
s e t Output in t e rmed ia t e s o l u t i o n s = true

end
###########################################################
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###########################################################
subsec t i on Output
subse c t i on Data
s e t Pr int s o l u t i o n = true
s e t Pr int only the l a s t time l ay e r data = true

end
end
###########################################################

###########################################################
subsec t i on Output Var iab l e s
s e t Compute boundary r e sponse s = true
s e t num output vars = 1
s e t Output boundary id = 6

end
###########################################################

###########################################################
subsec t i on Fuel c e l l data
subse c t i on Lithium Ion Separator Layer
s e t Mater ia l id = 1
s e t Lib l ay e r type = LibSeparator
s e t Poros i ty = 0.55

end
subse c t i on Operating cond i t i on s
subse c t i on Steady−s t a t e c ond i t i on s
s e t Temperature c e l l [K] = 363

end
end

end
###########################################################

###########################################################
subsec t i on Mate r i a l s
s e t E l e c t r o l y t e Chemistry = LiTFSI PEO

end
###########################################################

###########################################################
subsec t i on Equations

subse c t i on Lithium Ion D i f f u s i on Equation

subse c t i on I n i t i a l data
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s e t l i t h i um i on con c en t r a t i on = 1 : 2 . 7 6
end

subse c t i on Boundary data
s e t l i t h i um i on con c en t r a t i on =
se t Constant Lithium Ion Flux Boundary Condit ions

= 5 : 0 . 0
s e t BV Reaction Boundary Condit ions ( Current )

= 6 : 0 .0002 , 7 : −0.0002
s e t BV Reaction Boundary Condit ions ( Voltage ) =

end

end

subse c t i on Lithium Charge Transport Equation

subse c t i on I n i t i a l data
s e t l i t h i um e l e c t r o n i c p o t e n t i a l = 1 : 0 . 0

end

subse c t i on Boundary data
s e t l i t h i um e l e c t r o n i c p o t e n t i a l =
s e t Constant Current Boundary Condit ions = 5 : 0 . 0
s e t BV Reaction Boundary Condit ions ( Current )

= 6 : 0 .0002
s e t BV Reaction Boundary Condit ions ( Voltage )

= 7 : 0 . 0
end

end

end
###########################################################

###########################################################
subsec t i on Newton
s e t Max s t ep s = 100
s e t Tolerance = 1 . e−8
s e t Debug l e v e l = 5

end
###########################################################

###########################################################
subsec t i on Trans ient
s e t Adaptive time stepp ing a lgor i thm = None
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s e t Total time o f s imulat ion , [ s ] = 900
s e t I n i t i a l time step , [ s ] = 1
s e t Create d e t a i l e d s imu la t i on r epor t = true

end
###########################################################
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B.2 app lib macro scale main and data PRM Files

Listing B.3: main.prm

###########################################################
#
# This f i l e i s used to s imulate app l i b mac r o s c a l e .
#
# This app l i c a t i o n runs the macro−s c a l e Lithium−ion
# batte ry model . I t coup l e s charge and mass t ran spo r t
# in a sepa ra to r and porous cathode , a long with the
# r e a c t i o n s between them , us ing BV k i n e t i c s .
#
#
# Copyright (C) 2022 by Marc S e c an e l l and Cameron Fenske
#
###########################################################

subsec t i on Simulator
s e t s imu lato r name = app l i b mac r o s c a l e
s e t s imu lato r parameter f i l e name = data . prm
se t non l i nea r s o l v e r name = Newton3pp
s e t t r an s i e n t s o l v e r name = BDF
se t Ana lys i s type = Analys i s

end
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Listing B.4: data.prm

###########################################################
# $Id : $
#
# This f i l e i s used to s imulate app l i b mac r o s c a l e .
# This f i l e w i l l be c a l l e d by the main . prm f i l e .
#
# Copyright (C) 2022 by Marc S e c an e l l and Cameron Fenske
#
###########################################################

###########################################################
subsec t i on Grid gene ra t i on
s e t Type o f mesh = GridExternal
s e t F i l e name = . . / an a l y s i s /MacroScaleMesh .msh
s e t F i l e type = msh
s e t I n i t i a l r e f inement = 0
s e t Planar e l e c t r o d e width = 0.000005

end
###########################################################

###########################################################
subsec t i on I n i t i a l So lu t i on
s e t Read in i n i t i a l s o l u t i o n from f i l e = f a l s e
s e t Output i n i t i a l s o l u t i o n = f a l s e
s e t Output s o l u t i o n f o r t r a n s f e r = f a l s e
s e t I n i t i a l s o l u t i o n output f i l ename = Step00000

end
###########################################################

###########################################################
subsec t i on Adaptive re f inement
s e t Refinement = g l oba l
s e t Number o f Refinements = 1
s e t Output i n i t i a l mesh = f a l s e
s e t Output in t e rmed ia t e s o l u t i o n s = f a l s e
s e t Output f i n a l s o l u t i o n = true
s e t Output in t e rmed ia t e r e sponse s = f a l s e
s e t Use non l i n ea r s o l v e r f o r l i n e a r problem = f a l s e

end
###########################################################

###########################################################
subsec t i on System management
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s e t Number o f s o l u t i o n v a r i a b l e s = 4

subse c t i on So lu t i on v a r i a b l e s
s e t So lu t i on va r i a b l e 1 = s o l i d l i t h i um con c e n t r a t i o n
s e t So lu t i on va r i a b l e 2 = e l e c t r o n i c e l e c t r i c a l p o t e n t i a l
s e t So lu t i on va r i a b l e 3 = l i t h i um i on con c en t r a t i on
s e t So lu t i on va r i a b l e 4 = l i t h i um e l e c t r o n i c p o t e n t i a l

end

subse c t i on Equations
s e t Equation 1 = Ficks Transport Equation − s o l i d l i t h i um
se t Equation 2 = Elect ron Transport Equation
s e t Equation 3 = Lithium Ion D i f f u s i on Equation
s e t Equation 4 = Lithium Charge Transport Equation

end

end
###########################################################

###########################################################
subsec t i on Fuel c e l l data
subse c t i on Operating cond i t i on s
subse c t i on Steady−s t a t e c ond i t i on s
s e t Temperature c e l l [K] = 363 .0

end
end
subse c t i on Lithium Ion Separator Layer
s e t Mater ia l id = 1
s e t Lib l ay e r type = LibSeparator
s e t Poros i ty = 0.55

end
subse c t i on Lithium Ion Porous Cathode Layer
s e t Mater ia l id = 2
s e t Porous E lec t rode l ay e r type = HomogeneousElectrode
s e t Poros i ty = 0.37

end
subse c t i on Cathodic Current Co l l e c t o r Layer
s e t Mater ia l id = 3
s e t So l i d mate r i a l type = Ste e l 4340

end
end
###########################################################

###########################################################
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subse c t i on Mate r i a l s
s e t E l e c t r o l y t e Chemistry = LiTFSI PEO

end
###########################################################

###########################################################
subsec t i on Equations

subse c t i on Ficks Transport Equation − s o l i d l i t h i um
subse c t i on I n i t i a l data

s e t s o l i d l i t h i um con c e n t r a t i o n = 1 : 0 . 0 , 2 : 1 . 0
end
subse c t i on Boundary data
s e t s o l i d l i t h i um con c e n t r a t i o n = 6 : 0 . 0
s e t s p e c i e s f l u x = 5 : 0 . 0 , 7 : 0

end
end

subse c t i on Elec t ron Transport Equation
subse c t i on I n i t i a l data
s e t e l e c t r o n i c e l e c t r i c a l p o t e n t i a l = 1 : 0 . 0 , 2 : 0 . 0

end
subse c t i on Boundary data
s e t e l e c t r o n i c e l e c t r i c a l p o t e n t i a l = 7 : 0 . 0
s e t c u r r e n t f l u x = 5 : 0 . 0 , 6 : 0

end
end

subse c t i on Lithium Ion D i f f u s i on Equation
subse c t i on I n i t i a l data
s e t l i t h i um i on con c en t r a t i on = 1 : 1 . 0 , 2 : 1 . 0

end
subse c t i on Boundary data
s e t l i t h i um i on con c en t r a t i on =
se t Constant Lithium Ion Flux Boundary Condit ions = 5 : 0 , 7 : 0
s e t BV Reaction Boundary Condit ions ( Current ) = 6 : 0 . 0 02
s e t BV Reaction Boundary Condit ions ( Voltage ) =

end
end

subse c t i on Lithium Charge Transport Equation
subse c t i on I n i t i a l data
s e t l i t h i um e l e c t r o n i c p o t e n t i a l = 1 : −4.3 , 2:−4.3

end
subse c t i on Boundary data
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s e t l i t h i um e l e c t r o n i c p o t e n t i a l =
s e t Constant Current Boundary Condit ions = 5 : 0 . 0 , 7 : 0
s e t BV Reaction Boundary Condit ions ( Current ) = 6 : 0 . 0 02
s e t BV Reaction Boundary Condit ions ( Voltage ) =

end
end

end
###########################################################

###########################################################
subsec t i on D i s c r e t i z a t i o n
s e t Boundary f l u x e s = true
s e t Element = FESystem [FE Q(1 ) ˆ 4 ]
subs e c t i on Matrix
s e t Quadrature c e l l = −1
s e t Quadrature f a c e = −1

end
subse c t i on Res idua l
s e t Quadrature c e l l = −1
s e t Quadrature f a c e = −1

end
end
###########################################################

###########################################################
subsec t i on Output Var iab l e s
s e t Compute boundary r e sponse s = true
s e t num output vars = 1
s e t Output boundary id = 6
s e t Output var 0 = s o l i d e l e c t r o d e p o t e n t i a l

end
###########################################################

###########################################################
subsec t i on Output
subse c t i on Data
s e t Output format = vtk
s e t Pr int s o l u t i o n = true
s e t Pr int only the l a s t time l ay e r data = true

end
subse c t i on Grid
s e t Format = eps

end
end
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############################################################

############################################################
subsec t i on Trans ient
s e t Adaptive time stepp ing a lgor i thm = None
s e t Total time o f s imulat ion , [ s ] = 400
s e t I n i t i a l time step , [ s ] = 0 .01
s e t Create d e t a i l e d s imu la t i on r epor t = true

end
############################################################

############################################################
subsec t i on Newton
s e t Max s t ep s = 100
s e t Tolerance = 1 . e−8
s e t Debug l e v e l = 5

end
############################################################
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