Nati ib
L I

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

335 Wellington Streel
Ottawa, Ontaro
K1A ON4 K1AON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canad'éi

395, rue Wellington
Ottawa (Ontario)

Youw B Votre téldrome

Ouwr tig Wolre 1élérence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualit¢ d'impression de
certaines pages peut laisser a -
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendeinents subséquents.

UNIVERSITY OF ALBERTA

A Hierarchical Model for Virtual Environments

BY

Yungqi Sun g

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy.

DEPARTMENT OF COMPUTING SCIENCE

Edmonton, Alberta

Fall 1995

I * l National Library Bibliothéque nationale
of Canada du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services 3ranch des services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa, Ontario Ottawa (Ontario)

K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-06299-6

Canadi

Your e Volre rélé-ence

Our hip Notra <éldrence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Yunqi Sun
TITLE OF THESIS: A Hierarchical Model for Virtual Environments

DEGREE: Doctor of Philosophy
YEAR THIS DEGREE GRANTED: 1995

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The anthor reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

(Signed) . ?M?; . SM'D .

Yunqgi Sun

1-202, Building 43

Nan Shan Residence

Dalian University of Technology
Dalian, Liaoning Province

The People’s Republic of China

116024

Date:

gl . 0

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled A Hierarchical Model
for Virtual Environments submitted by Yunqi Sun in partiai fulfillment of the
requirements for the degree of Doctor of Philosophy.

..EJ.\.)&%\..

Dr. S. Greenberg (External)

/7// /7/

........

Dr. H/Il()ove1 (quamln(r)

Dr. /R van Beek/,(ﬂxarx\un(,’r)
s
Dr. B. Cockburn (Examiner)

Dr. J. Culbherson (Chair)

Date: . 5/71/? /Lf‘fk ' /77g

To my parents

Abstract

It is difficult to build large, complicated virtnal environments with many application
objects. There are a number of reasons for this, and this thesis concentrates on
three of them. First, the response time increases as the munber of objects inereases.
Second, for multi-user virtual environments, the users should be able to join or quit
from the shared environment at any time. Third, in order to ensure a consistent view
for all users, their databases must be synchronized, which may produce subsiantial
network traffic.

This thesis proposes a new architecture for shared virtual environments, describes
a prototype implementation and the evaluation of this architecture. A hicrarchical
Virtual Object Model is proposed to help programmers analyze, design and implement
applications from a high level to a more detailed level. A hierarchical Virtual Place
Model is introduced to organize virtual environments and to put application objects
into different sub—environments. Only the objects that are in the sub environments
that are visible to the user are evaluated and presented. Consequently, the response
time is greatly improved since it is only proportional to the complexity of the nser’s
current sub—environment, rather than the complexity of the whole application envi-
ronment. For multi-user applications, a communication mechanism is provided to
automatically update databases for late-comers. Local changes arc only sent to the
users who can see the changes, so the network traflic generated by the local user is
proportional to the number of cooperating users, as opposed to all the users in the

entire virtual environment.

Acknowledgments

I would like to thank my supervisor Professor Mark Green for his guidance, encour-
agement., patience and support throughout the course of this thesis research. 1 also
like to thank Professor Jim Hoover and Professor Peter van Beek for carefully reading
this thesis and providing many insightful comments. The time and effort that Pro-
fessor Bruce Cockburn and Professor Saul Greenberg spent reviewing and evaluating
this thesis is truly appreciated. 1 would like to acknowledge the Computing Science
Department for providing some of the financial support in the last five years. Special
thanks go to Chris Shaw and Haiying Wang for their helpful suggestions during the
implementation of my thesis project. Thanks also go to Robert Lake for providing
a convenient. working environment in our graphics lab. I wish to thank Hungiu Sun,
Jiandong Liang and Qunjie Wang for their interesting discussions and helpful com-
ments. 1 am very grateful that my husband, Weiye Zhang, has always been very
understanding and patient since the beginning of my Ph.D study. Lastly, I would like
to thank my parents. Without their love and support, this dissertation would not

have been completed.

Contents

1 Introduction

1.1 Terminology and Motivation
[.2 The Problem
1.2.1 The Geometric Model Component o000 00 .
1.2.2 The Computation Component.
1.2.3 The Interaction Component
1.2.4 The Presentation Component
1.2.5 Communication Isswes 000
1.3 Research Goals
1.3.1 VR System Modelo 0.
1.3.2 VR Environment Structureo
1.3.3 Navigation Facilitieso 000
1.3.4 Access to Other Sub-Environments
1.3.5 Better Response Time
1.3.6 Muiti-User VR Systems o oL
1.3.7 Lower Network Traffic
1.4 Thesis Outline. oo
2 Background
2.1 VR Applications oo o oo
2.1.1 Visualization 0 oo

2.1.2 Training

..............................

17
17
17
19

2.1.3 Computer- Aided Design .. oo o000 oo oo
2.1.4 Telecommunicalions00 e e e e
2.1.5 Entertainment oL Lo
21,6 DISCUSSION « . . . o o e e e e e e e e
2.2 VR Devices . . . o o 0 e e e e e e e e
2.2.1 Criteria for VR Devices . . 00 o0 0000000000
2.2.2 Visnal Display Devices o o0
2.2.3 Anditory Display Deviceso o000
2.2.4 Haptic Display Deviceso oo
2.2.5 Interaction Devices Lo
2.2.6 Discussion Lo e e e e
2.3 VR Software Development, 00000
2.3.1 System Configurationo
2.3.2 Single-User Systems o000
2.3.3 Multi-User Systems o oo
2.3.4 Concurrency Control oo oo
2.3.5 VR Environment Organization.
2.3.6 Discussion oL o e e e

3 Virtual Environment Model
3.1 Virtual Object Model00 00 00000
3.2 The Place Model e

4 Multi-User VR System Architecture

4.1 The VR Session Manager,
1.2 The Communication Compounent,
4.3 The Geometric Model Component
4.4 The Interaction Component
4.5 The Computation Component

4.6 The Presentation Component

19

20

43
44
47

Multi—User Place System

5.1
n.2

5.3

Ay |
NaN

[
’
i |

Svstem Overviewo L
Class Hierarchy

Object Class

"
=

5.3.3 Behavior Evalnation and Presentation

Link Object Class
5.4.1 Transformation Matrix
5.4.2 Animation Behavior Evaination
Place Class
5.5.1 Physical Properties and Structure . . .

5.5.2 Behavior Evaluation and Presentation

Door Class

5.6.1 Navigation Related Functions

5.3.1 Physical Properties

5.3.2 Structure Lo

5.6.2 Visible Places’ Behavior Evaluation and Presentation

Crystal Ball Class

User Class o v v v v v i v v

Communication Agent Class
5.10.1 Shared User Management
5.10.2 Shared Data Management
5.10.3 New Protocols
5.10.4 Transaction Management
5.10.5 Request Processing
The Session Manager
5.11.1 Shared User Management

5.11.2 Transaction Management

.............

.............

66
66
68

T

-1 -1
- g™

-1
[g4

59
89
90
91

5.12.1 The Filesystem Model as an Analogy to the Place Model . . .

5.12.2 Extending the Traditional User Interface Model ... oo
503 SUMIMALY . . o o oo e e
Evaluation
6.1 Performance Analysis 0. o000 oo oo oo
6.1.1 Response Time Improvemento oo
6.1.2 Network Traflic Reduetion o . o000 oo oo
6.2 Application Example o oo
6.2.1 Multi-User Place System Application
6.2.2 Response Time Improvement o000 o000
6.2.3 Network Traflic Reductiono oo
6.3 SUMIMATY . . o o o v vt e v e e e e e e e e e e
Conclusion
7.1 Contributions L o e e
7.2 Future Work 0 0 0 e e
7.2.1 Security Problem oo oo
7.2.2 Concurrency Control oo o
7.2.3 System Bottleneck o oo
724 Traveller Problem o oo

Example Application Programs

A.1 Program of Example Envitonment Construction

A.2 Program of Class VClocko oo oo
A2.1 Aclockh oo oo
A2 Aclock.Cooo o

A3 Program of Class AObjecto o o oo
A3 Aobject.h . oL Lo
A2 Aobject.C o L Lo e

91
94

96

97

143

Bibliography

14

3

List of Figures

3.1 The Virtnal Object Model . . 0000000 oo oo oo 46
3.2 The Place Model 0 0 o0 Lo e 48
4.1 Multi-user VR system architectureo H4
5.1 Multi-User Place System 000 oo 63
5.2 Multi-User Place System Class Hierarchyo o0 65
5.3 Analogy between Filesystem model and Place model 000 91
5.4 Correspondence between all types of files and VOs oo 92
5.5 Traditional software systemmodelo o000 94
56 VR software systemmodelo oo oo oo 95
6.1 Hierarchical structure of the application environment 117
6.2 Hicrarchical structure of the clock object 118
6.3 Compare userA's results in both applications 121
6.4 Compare userB’s results in both applications 122

6.5 Communications among SM, userA and userB in NoPlaceApplication 125

6.6 Communications among SM, userA and userB in PlaceApplication . . 127

List of Tables

6.1
6.2
6.3
6.4
6.5

6.6

6.7

6.8
6.9

Test results for userA in the NoPlaceApplication 120
Test results for userB in the NoPlaceApplication 120
Test results for userA in the PlaceApplication 120
Test results for userB in the PlaceApplication 121

Compare the test results of userA in NoPlaceApplication and in PlaceAp-
plication oL e 123

Compare the test results of userB in NoPlaceApplication and in PlaceAp-

plication L 123
Transactions occured at userA’s site in NoPlaceApplication 124
Transactions occured at userB’s site in NoPlaceApplication 125
Transactions occured at userA’s site in PlaceApplication 127

6.10 Transactions occured at userB’s site in PlaceApplication 127

Chapter 1

Introduction

1.1 Terminology and Motivation

Virtual reality is a new field of computer science, which so far has no formal definition.

But the following description gives the necessary characteristics of a virtual reality

system:

“Virtual reality is a threc-dimensional computer-generated environment with which

the user can dynamically interact.”

Virtual reality is also called virtual environment, virtual world, artificial reality,

artificial environment, or cyberspace.

In this thesis, we use the following terms:

Virtual Reality (VR) refers to the new technology used to produce three-dimensional
interactive environments.

Virtual Environment (VE) refers to an environment produced by a virtual reality
system. It is a new type of graphical user interface, compared to traditional 2D
user interfaces.

Virtual World (VW) is a metaphor for Virtual Environment. Usually, a Virtual
Environment is a simulated real world or representation of information in the

form of the physical world.

VR technology has many potential applications, including visualization, train-
ing, computer-aided design, telecommunications, and entertainment. The future of
virtual reality is promising. However, virtual reality technology is still relatively
immature. Producing a large and complicated VR environment is difficult. The ob-
jective of this thesis is to explore VR techniques that provide high level support for
designing and implementing multi-—user VR applications which have better response
time and lower network traffic. The final goal is to build a prototype software system

to support the development of such application systems.

1.2 The Problem

There are three essential requirements for a VR system to be suceessful, or at least
acceptable: resp mse time, realism, and usability. When an application environment,
with a large number of application objects is constructed, quick response time is not,
easy to achieve. As the number of objects increases, object behavior evaluation time
and rendering time increase proportionally. Consequently, the response time will he
unbearable for the users.

One possible solution to the problem is to divide the application environment
into several sub-environments, and put the application objects into different suly
environments. The behavior evaluation time and rendering time of those objects that
are not visible to the user can be saved , thus improve the response time. However,
the usability could be impaired by the sub-environment structure if the user needs
to operate on an object in another sub—environment, or observe what is going on in
several other sub—environments while working in the current sub- environment.

Another issue concerning usability is whether a VR system allows multiple users
to share the application environment, and to enter or leave the environment as they
wish. In order to provide the same view of the shared environment to all users, the
system must somehow synchronize the users’ databases. The synchronization could

produce substantial network traffic among shared users. The network delay, which is

the time between one nser’s action and when the result reaches another user’s site,
would be longer.

Usually, a VR system is composed of input/output (1/0) devices, supporting
software, and the application. All these parts of a VR system have to meet the
aforementioned requirements to generate a responsive, realistic, easy-to-use Virtual
snvironment,.

VR technology involves a few new hardware devices that introduce new channels
of information exchange between computers and users. The new devices include the
DataGlove, EyePhone, HeadPhone, and devices for force-feedback. Researchers at
NASA, the University of North Carolina at Chapel Hill [13, 27, 44, 30, 40] and other
institutes have been working to upgrade the performance of these devices.

To build a VR application still requires a large amount of time and effort. High-
level VR support software is needed to assist the programmer in analyzing, designing,
and implementing VR application systems. To improve the performance of an ap-
plication is not easy either. Nevertheless, there are many application-dependent
methods to improve performance. This is largely the responsibility of the application
programmer. Performance evaluation tools are certainly helpful. At the University
of Alberta, we use a Timing software package to measure the response time of VR
software systems [36].

The VR support software that lies between the hardware devices and the appli-
cation level is the major concern of this thesis. VR support software should pro-
vide mechanisms to improve response time for any VR application. For VR devices,
realism means minimum distortion of the presented information. For VR support
software, animation feedback should be supported to give the user a sense of realism.
VR support software should also strongly support VR system usability. A virtual
environment should be structured so that it is easy for the users to investigaie it.
It should also provide powerful tools for the user to interact with objects within an
environment as well as interact with other users. In this context, response time,

environment structure, interaction, and multi-user problems will be discussed.

Zeltzer et al. [46] suggested a constraint network control structure for building
interactive simulation systems, especially for task- level animation systems. Robert-
son et al. [34] designed the Cognitive Coprocessor Architecture to sapport “multiple,
asynchronous, interactive agents” and smooth animation. But these two models did
not address the response time of VR systems. Furthermore, they were designed for
single user systems, not multi-user systems.

IBM researchers use a centralized approach to implement a multi-user VR simu-
lation system [8]. In their system, each user has his or her own interface style but
shares the underlying simulation with all other users. The centralized approach is
simple. However, a replicated approach has the advantage of better response time
and lower network traffic without losing user-specitic interaction style, especially for
users who are several miles away from each other.

The SIMNET system [5] developed by the LORAL Advanced Distributed Sinmmn-
lation Inc and the DIVE system [7] built at Swedish Institute of Compnter Science
both use a replicated architecture, but the changes are broadcast to all users, although
SIMNET uses the “dead reckoning” technique to extrapolate moving objects’ states so
s to reduce network traffic. However, SIMNET does not structure the environment;
whereas in DIVE the whole virtual environment is a collection of different, “worlds”
which contain different sets of objects and users can switch worlds dynamically. The
response time problem is not considered by the two systems.

The WAVES [21] and BrickNet [37] systems are similar in that both of them allow
different users to have different virtual world contents while still sharing some objects.
The updated data for a shared object are sent only to the users who have the object.
BrickNet also provides a “dynamic portal” for a user to go to another world, select
and copy objects from that world and bring them back to the user’s local world. These
two systems did not attack the response time problem directly, but they do improve
the response time because only the user’s local world is evaluated and displayed to
the user. However, if the user’s local world contains too many application objects,

the response time problem still exists.

At the University of Alberta, the Decoupled Simulation Model [36] has been pro-
posed. A VR application is broken into four components: the Interaction component,
the Geometric Model component, the Computation component, and the Presenta-
tion component. The VR system consists of one or more processes which can be
distributed to different machines therefore speeding up the whole system. The Min-
imal Reality (MR) Toolkit was built to support this model. The MR Toolkit has
device-level software, which also provides support for realismi (such as filter proce-
dures), and several software packages that support interaction techniques are also
provided.

The MR Toolkit addresses low-level, device-related issues. It provides little sup-
port for application environment design and multi-user application design. The soft-
ware packages in MR facilitate the Interaction component and the Presentation com-
ponent of an application. The Geometric Model component is totally up to the VR
application programmer to design and construct. In addition, the Decoupled Simula-
tion Model was designed for single user applications, not for multi-user applications.
When we take application level software and multiple users into account, a lot of

problems still need to be solved.

1.2.1 The Geometric Model Component

The Geometric Model component maintains a high-level representation of the data
in a virtual environment. When a large, complicated application environment is
constructed, it is difficult to manage the data representation. A model for describing
and organizing virtual environments must be developed to help in the design and
implementation of applications.

Bricken et al. at the University of Washington have suggested a “Virtual Envi-
ronment Operating System” (VEOS) to manage the data structure. The idea is that
everything in an virtual environment is an Entity. They did not address the response
time problem.

Card et al. [6] introduced 3D Rooms to organize information workspaces so that

ot

the information frequently needed, or in immediate use, is in the current Room. Ouly
the current Room is displayed. The user can walk through doors into other Rooms
to switch from one cluster of information to another. The overall cost of information
retrieval is lowered. This idea can also be used to organize virtual environments.
However, 3D Rooms is a 3D graphics system, not a virtual reality system. In a
virtual reality system, the navigation problem is much more complicated, as will be
discussed in the context of interaction. As well, there is no way the usei can access
information in another Room from the current Room. Consequently, this 31 Room

structure may impair the usability of the system.

1.2.2 The Computation Component

The Computation component updates the data in the Geometric Model component.
The data sharing package in the MR Toolkit facilitates data communication. Since
we use two graphics workstations to display pictures to the user’s two eyes, the data
in the Geometric Model components on both machines has to be synchronized. The
same problem appears when more than one user shares a virtual environment at
different sites. However, not all the users will work in one sub-environment all the
time. Sometimes, the result of one user’s action will not be visible to another user for
quite a long time. In this case, sending the results through the network only increases

network traffic.

1.2.3 The Interaction Component

The Interaction component manages input from the user. The MR Toolkit has several
software packages to support the development of the Interaction component. However,
the construction of some portions of this component is not fully supported, especially
when we consider structured VR environments and multi-user environments.

The current MR Toolkit does not have a good filter for the DataGlove. The jit-
tering problem makes it difficult to do actions such as selecting. Varying the control-

to~display (C/D) ratio is helpful. Unfortunately, the DataGlove is an absolute device

6

rather than a relative device like the mouse. If the accumulated distance between
the real position of the hand, and the drawn position of the DataGlove becomes too
large, the user will no longer feel that it is his or her hand that is wearing the giove.

The DataGlove gesture editing program in the MR Toolkit allows the programmer
or the end user to interactively define the gestures to be used in applications. But the
number of gestures that we can think of is very limited. Consequently, applications
are not able to provide the user with flexible and powerful interfaces. The Panel
package of the MR Toolkit can be used to produce 3D menus, which could help to
enlarge the nser’s command vocabularies. But it is difficult to either select a menu
item or confirm the selection by the Dataglove because of the jittering problem.

The MR Toolkit has a Workspace Mapping package. The new VR devices, includ-
ing the EyePhone, DataGlove, and 3D sound, all have their own coordinate systems,
which are dependent on the device locations. The Workspace Mapping package con-
verts the device coordinates to room coordinates and then to virtual environment
coordinates. Thus, the coordinates of devices which the programmer receives are the
coordinates in the virtual environment. However, if the virtual environment is orga-
nized into a structured environment, the coordinates of devices should be transformed
into the sub—environment that the user is occupying.

Usually, the Interaction component is designed to process all inputs to the en-
vironment in the order of their arrival. However, if the result of the current event
will not be immediately visible to the user, and there are other requests with higher
priority, a better update rate can be obtained by using a scheduling algorithm. For
instance, when the user is dragging an object in the current Room, a clock shows
the updated time in another Room. The Computation component should process the
dragging request first, and leave the time update until later, or even skip it. The cri-
teria for scheduling requests are correctness and efficiency. Only when the suspended
request is processed before its results are used, can correctness be guaranteed. If
the scheduling algorithm is too complex, the response time will degrade rather than

improve.

In a structured VR environment, the nser usually works in the current sub
environment. But there are cases when the user needs aceess to an element which is
not in the current sub-environment. For example, a user may need to know the time
from a clock which is in another sub-environment, or may need to set the time for that
clock. In other cases, the user may have to observe what is happening in several other
sub-environments, while working on something else in the current sub environment.
The environment structure, while meant to help improve response time, should not
become an obstacle to the application system’s usability.

Navigation is always an issue in virtual reality. In practice, the virtnal environ-
ment is most likely larger than the physical space the user can walk around. The user
must be able to travel to any point within the virtual environment without physically
walking that distance. Flying is a popular navigation tool in most VR systems. The
user can “fly” freely within the whole virtual environment as if he or she is driving a
helicopter. Flying is a powerful navigation aid if the virtual environment is reason-
ably small, or the user is quite familiar with the setting of the virtual environment.
However, if the user is not familiar with the environment, it is very easy to get lost.
Landmarks can be of great help during the navigation process. Again, the user must
know the surrounding environment quite well to figure out how to get to where he or
she wants to go from his or her current location. Otherwise, landmarks will not, make
any sense to the user.

The navigation problem becomes even more complicated if we have many sub
environments in a single large VR environment. Navigation facilities must be pro-
vided to allow the user to move from the current sub-environment to other sub
environments. Animation feedback is a very important feature of any navigational
aid. If the user is suddenly transported from the current sub-environment to another
one, the user will probably be confused and disoriented. As the user crosses the bor-
der between two sub-environments, the user’s coordinates should he in the coordinate
system of the new sub-environment instead of the previous sub-environment.

Usually, every sub-environment has a boundary to remind the user of the limit of

his or her current, working place. For instance, a virtual room has its surrounding walls
as its boundary. As long as the user always remains within the boundary of the current
sub environment and can walk only through doors to go to other sub-environments,
the chance that the person will get lost is small. Unfortunately, these boundaries of
the snb-environments are virtual, not real boundaries. They can not stop the user
from walking throngh them as real walls do. Unless the user is completely familiar
with the locations and setting of every sub-environment, he or she will most likely
become lost if he or she unintentionally walks through the boundary of the current

sub -environment. Help information about the user’s location should also always be

available, too.

1.2.4 The Presentation Component

The Presentation Component presents the synchronized visual, sonic and haptic (force
feedback or tactile feedback) display to the user. Usually, every element in the VR
environment will be presented to the user, since it is hard to determine the elements
that are not visible. But rendering something invisible is a waste of time and degrades
response time. An alternative is to display only the current sub-environment which
the nser is in, that is, to assume that all doors leading to other sub-environments are
always closed. However, this is counter-intuitive in that the user can not see elements
in another sub-environment even when he or she is walking through an open door
to it. Can we automatically display the current sub—environment with open doors to

other sub-environments?

1.2.5 Communication Issues

When e construct a multi-user VR application, the data sharing package of the
MR Toolkit can be used to deliver messages among users. But coordinating com-
munications among users, and managing the entrance or departure of users from the
environment is beyond the functionality of the current data-sharing package. When-

ever a late-comer joins in a shared virtual environment, the local database must be

updated so it is consistent with the other users’ evolving databases, even after the
user who made the changes has left the shared environment. Communication pro-
tocols must be designed for maintaining the changes to the database and updating
the databases for shared users whenever necessary. The naming mechanism of the
data sharing package needs to be improved, too. For now, every shared data gets an
internal name in the order of its declaration. When two users dynamically create two
different objects to be shared at the same time, the two objects will get the same
internal name at their local machines. If the internal name has to be obtained from
a centralized location such as a manager, different. users working on different objects
will have to compete for the internal names. This will introduce a bottleneck into the

system and degrade system performance.

1.3 Research Goals

The objective of this thesis is to explore models and related technigues to provide
high-level support for VR programmers to design and implement high performance,
multi-user VR application systems. The following goals will help achieve the objec-

tive:

e To propose a VR system model which could help the programmer analyze,
design and implement application systems from a high level to a more detailed

level.

e To propose a VR environment structure to organize large, complicated VR
environments into sub-environments. Related elements can be put into the

same sub-environment.
e To provide navigation facilities in the environment structure.
¢ To provide mechanisms to enable access to non-current sub-environments,

e To improve response times of VR systems.

10

o To provide support for multi-user VR systems and database updates when a
late comer joins a group of geographically distributed users i a shared virtual

environment,.

e Tou reduce network traffic among shared users.

1.3.1 VR System Model

Typically, a VR application system receives input from users, processes the input, up-
dates and synchronizes databases, and presen.. output to the users. The output will
show the users how the virtual environment reacts to the input, and how it changes
itself even without user interference. A virtual environment is typically composed of
many virtual objects. How the virtual environment reacts to the input and how it
changes itself are actually a result of how each object, or parts of the objects, reacts
to the input and changes. The output presented to the users is a collection of objects
with their own physical attributes. My goal is to decompose VR application design
and implementation into various levels of object design and implementation. The VR
support software assembles all the objects into the complete application system. As

a result, the programmer productivity can be greatly increased.

1.3.2 VR Environment Structure

People tend to classify their working objects into different categories. Usually, they
work on one set of objects, and after a certain period of time, switch to another set
of objects. A large object set can be split into several smaller object sets with more
closely related objects in the same set. We support different sets of objects placed in
different levels of sub-environments in the virtual world. Every sub-environment may
have a boundary to separate itself from the rest of the environment. This environment
structure provides the foundation for response time improvement and network traffic

reduction.

11

1.3.3 Navigation Facilities

One of the primary goals of virtual reality is to allow users to make use of their daily
experience in real life to live and act in a virtual world. Users can move around
within the virtual world by physically walking or turning around. However, a user
can not walk beyond the VR devices’ sensing limit or the boundary of the room in
which the user is physically located. Navigational facilities must he provided to allow
users to move from their current locations to any other locations within the virtnal
environment with minimum effort.

Flying, as a navigational aid. allows users to move aronund in a large virtual en-
vironment such as an open field. Users can use their driving experience to navigate
themselves in the virtual world. But people do not have a ghost's experience of going
through walls in their real lives. Even though this experience could be exciting, it
might be guite confusing to most people. Unless they are really familiar with the
structure and setting of the environment. they will not be able to tell where they are,
how to get back where they were, and how to get where they wonld like to go. In
real life, people do have a lot of experience going through doors to go to a particu:
lar room in a big building. Since virtual environments are organized into different,
levels of sub—environments, doors are provided to facilitate navigation hetween any
two sub-environments. Animation feedback is also provided. The door will gradually
open. The user is slowly transported to the other side of the door, just as in real Life.
Once a user enters a new sub-environment, the user’s coordinates will he changed to
the coordinate system of the current sub--environment, to allow the nser to interact
with all the objects within the new sub-environment.

Other facilities can also be provided to offer help information er to prevent users
from getting lost. Every sub-environment can be built with a landmark in it. The
name of the sub-environment can be shown on a name tag somewhere within the
sub-environment. The boundary of a sub-environment can also be set to move away
whenever the user tries to walk through it. Help information about the user’s enrrent

location is always available. The path from the user’s current, suly environment to

1.
the top level environment — the virtual world -- should remind the user of his or

her current, position within the entire virtnal environment.

1.3.4 Access to Other Sub—Environments

Most of the time the user works only on the objects in the current sub-environment.
But sometimes the user may need to reference an object that is not in the current
sub environment. Sometimes several other sub-environments have to be observed at
the same time. The proposed system provides copies of objects and sub-environments
to meet such requirements. The copy of a remote object can be used to avoid nav-
igating back and forth between different sub-environments. The user can view and
manipulate the copy just as he or she views and manipulates the original object.
Copies of sub-environments can show the user everything happening in the original
suh environments. If the user wishes to operate on some objects in an original sub-

environment, he or she can jump into that sub-environment and jump back after the

work 1s done.

1.3.5 Better Response Time

When a user interacts with a virtual environment, instantaneous and continuous
feedback is expected. The response time can be measured by the system lag and
update rate. If the system lag is too great, the user will get feedback that was
expected earlier. If the update rate is too low, the display presented to the user
will jump from one picture to the next, rather than appearing continuous. The
time for input processing, behavior computation, and rendering all contribute to the
slow response time of a VR system. Since sub-environment boundaries can separate
different sub- environments, most. parts of the virtual environment will not be visible
to the user. Therefore, only the current sub-environment, along with those sub-
environments which have an open door to the current sub-environment, are possibly
visible to the user at any moment. By using the above observation, I am able to

reduce input processing time, object behavior computation time, and display time.

1
Consequently, I can reduce the system lag and increase the update rate so as to
improve the response time. Most of the object behaviors can be suspended when
the user is not present. Some object behaviors, such as simulations, may not be
interrupted, even when the object is not visible to the nser. These behaviors are to

be kept alive all the time.

1.3.6 Multi-User VR Systems

For any muliti-user VR system, either a centralized architecture or a replicated ar-
chitecture can be used. In a centralized architecture, there is only one copy of the
application. The input from each user is sent to the application, and the output is
broadcast to every user from the application. In a replicated architecture, cach user
has a copy of the application. The output to each user is obtained from the local copy
of the application. So the update rate of the application is not affected by network
delay. Only the input has to be sent to other users. Therefore, the network traffic is
much lower than when a centralized architecture is used.

We consider shared users who are at geographically different sites. One of the
main problems is to improve response time. The replicated architecture is nsed to
achieve better performance as well as lower network traffic.

Since the replicated architecture is used, each user’s local database has to he
synchronized to provide all users with the same view of the shared environment,
Synchronization mechanisms are provided to help keep the local databases consistent.
Users can create objects, remove objects, or modify object attributes. Whenever the
shared environment is changed by a user, other users should see the result after the
network delay.

When the last user exits from the shared environment, these changes have to he
saved somewhere so that the next user who comes into the environment can continue
from this point rather than start from scratch. A centralized session manager is
provided to manage the changes when no user is present in a shared environment

and to coordinate database updates for late-comers. Thercfore, this multi user VR

system architecture is actually a hybrid architecture.

1.3.7 Lower Network Traffic

If the users are working in several different sub-environments, changes to some sub-
environments may not be visible to all users. We use this fact to further reduce
network traffic by not sending changes to those users who can not see the changes at
the moment. The changes are only sent to a user when the user moves to the changed

sub-environment. If a user never goes into a changed sub-environment, those changes

will never be sent.

1.4 Thesis Outline

This thesis has six parts: background, VR environment model, multi-user VR system
architecture, multi-user Place system, evaluation, and conclusion.

The second chapter, background, reviews the previous work done in the areas of
VR applications, VR devices, and VR software development. The new VR technology
can be applied to many areas including visualization, training, computer-aided de-
sign, telecommunications, and entertainment. VR devices provide the hardware basis
for VR technology. VR input devices obtain gesture, tactile or force, and sound input
from nsers, whereas VR output devices provide visual, haptic, and auditory feedback
to users. However, there is little support provided by these devices for programmers
to constriuct VR application systems. The potential of VR applications initiated re-
search on VR software development in the areas of system configuration, single-user
and multi-user application architecture, and virtual environment organization. Un-
fortunately, it is still not easy to build large and complicated virtual environments
with reasonable response time and acceptable network traffic using previous VR soft-
ware systems.

In the third chapter, an hierarchical model for application objects and VR en-

vironments is proposed. This model helps VR programmers decompose application

wt

design and implementation from a high level to a more detailed level. Application
objects can be organized into different sub-environments to improve response time,
because only visible objects are evaluated and presented to the local user.

The fourth chapter discusses a mmlti-user architecture for the proposed model.
The hybrid architecture is used for managing VR sessions. A single session man-
ager coordinates user entiauces and departures from shared sub-environments. Fach
user has a Comiuunication Component to communicate with the session manager
and other users. Network traffic is reduced since local changes are sent only to ihe
users who can see these changes. The remaining parts of an application nse the
improved Decoupled Simulation Model. The Geometric Model Component uses the
proposed hierarchical environment model. The Interaction Component is responsi-
ble for workspace transformation and computation scheduling. Navigation facilities
are provided for structured VR environments. The Presentation Component displays
only those objects which are possibly visible to the user at the moment.

The fifth chapter presents the multi-user Place system, which is an implementa-
tion of the virtual environment model and its multi-user system architecture. This
system is written in the object-oriented language C++. Implementation details are
discussed in the chapter and an analogy is made between file systems and the proposed
virtual environment model.

The Multi-User Place system is evaluated in chapter 6 by doing a theoretical
analysis and implementing an example application of the Multi-User Place system.

The last chapter contains a summary and discussion of future work.

16

Chapter 2

Background

Virtual Reality is getting more attention from the media, public, and industry due
to its interesting and promising potential applications. VR hardware devices pro-
vide a foundation for exploration of VR applications. However the software support
for these devices is minimum. Previous VR software supports the construction of
VR applications to some extent, but high-level support for building large, compli-

cated multi-user virtual environments with satisfying performance has not yet been

provided.

The research work that is presented here has been done in VR applications, VR

devices, VR software development and related areas.

2.1 VR Applications

Virtual reality technology can be applied to a variety of areas such as visualization,
training, computer-aided design, telecommunications, and entertainment. Many VR

researchers have been working on application systems in these areas.

2.1.1 Visualization

UNC’s molecular docking is a typical VR application in scientific visualization. Feiner’s
“worlds within worlds”, and Mackinlay’s Perspective Wall explore some techniques

17

to visualize information in 3D environments.

The UNC’s molecular docking system was developed to help chemists interactively
solve the molecular docking problem by using VR visual and haptic displays [30].
The molecular docking problem finds the right position and orientation for a drug
with respect to a receptor site so as to minimize the overall interaction energy. In
this system, the visual display presents the positions of both drug and the receptor
site. The haptic display imposes the force between the drug and the receptor on
the chemist’s hand. The chemist can move the drug while feeling the force to try to
dock the drug. It was claimed that the chemist obtains a better nnderstanding of the
problem by using this system.

Feiner proposed a “worlds within worlds” metaphor for visualizing n-dimensional
information in a three-dimensional world, and used the metaphor in a “financial
visualization” application [11, 12]. The “financial visualization” system allows the
user to examine the values of positions to buy or sell foreign currency on a specified
date at a specified price. The values are determined by a function of six variables.
In this system, three out of six variables can be kept constant, thus an inner 31)
world within the outer 3D coordinate system is obtained. Then general interaction
techniques can be used in the inner 3D worlds. [If the user assigns another set of
values to the inner three variables, a new inner 3D world is produced. By using the
“worlds within worlds” metaphor, high dimensional abstract data can be put into
three-dimensional space. It is more intuitive and the data is more understandable.

Feiner was using 3D worlds to visualize higher dimensional information. In con-
trast, Mackinlay designed a Perspective Wall for visnalizing 2D information with wide
aspect ratios, such as linear inforriation along a time axis [26]. The user’s current
interest is displayed with details on the center panel while the context is shown on
two perspective panels. In this way, the user can focus on the full details of the center

panel as well as get context from the perspective panels.

I8

2.1.2 'Training

VR can be used in training processes, especially in cases where training on the real
equipment is very expensive, such as pilot training.

Kaye et. al. constructed a virtual cockpit system for military pilot training [20].
The system gives the pilot visual and auditory feedback from the virtual cockpit and
surrounding environment, which makes the pilot feel that he is flying in a real cockpit.

One of the problems encountered in flight simulation systems is providing infor-
mation to help the pilot navigate in an unfamiliar large-scale environment. There
are two types of maps which are helpful to the pilots. One is the standard north-up
type of map. The up direction on a north-up map is the north direction on earth.
Another type is the track-up map, which means the up direction on the map is the
direction the pilot is facing. The track-up map is ideal for pilot navigation in a large
environment whereas the north-up map is used by pilots to communicate with a nav-
igator on the ground. Both track-up map and north-up map are considered to be

important in navigation [2, 18].

2.1.3 Computer—Aided Design

UN(s architectural walkthrough and radiation treatment design are two application
systems in the area of computer aided design.

The objective of the walkthrough project is to provide the architect with a tool to
pre-examine the building he or she is designing, before the building is constructed. It
also makes it possible for the clients to “walk through” the virtual building and give
some feedback to the architect before it is too late. With this system, the visualization
becomes an important part of the architecture design process.

The system used for radiation treatment design is called the virtual simulator [29].
The virtual simulator creates a 31 geometrical patient model which the radiotherapist
can accurately and intuitively manipulate. In addition, it provides the radiotherapist

with computer-aided design tools to position the radiation treatment beam on the

19

20
model and adjust the angles so as to maximize the radiation dose to the tumor area,
and minimize the dose to nearby healthy tissue. The system helps the radiation
therapy physicians obtain optimal designs that will result in higher cancer cure rates

with fewer side effects.

2.1.4 Telecommunications

VR technology is believed to be very useful in telecommunications.

Bolas et. al. at NASA Ames Research Center built a telepresence application sys-
tem. The interface for a telerobotics application not only needs a snpervisory control
mode, but also an interactive control mode especially when performance degrades.
Bolas’s telepresence system presents visual, auditory, and tactile feedback from the
remote task site. The operator can use gesture, voice, and tactile input to control
the remote robot [13, 3]. Thus the operator working in a virtual environment can
produce the same effect as if he or she were working in that remote site.

Teleconferences can be held today with telephone or television technology. But
virtual reality can be used to go one step further. People in different places can enter

one virtual environment and hold a meeting just like they are really in the same room.

2.1.5 Entertainment

Entertainment is a big potential application area of VR techniques. Many video
game scenarios can be moved into virtual environments. Because of its sense of
reality, it would be more exciting than curreni video games. Krueger’s Videoplace
was implemented without goggles and gloves [22] [23]. People can go swimming and

skiing inside the Videoplace. The future of VR in entertainment is very promising.

2.1.6 Discussion

The application systems we have described are only explorations of the applications

of VR technology. However, we can see that a VR application enviromment can be

21

really large and complicated like in the molecular docking system, the virtual cockpit
system and the architecture walkthrongh system. In these cases, the response time
problem may arise and the applications may become nuresponsive. Furthermore, the

above applications are single-user systems, while some of them would require the

cooperation of multiple users in reality.

2.2 VR Devices

VR input and output devices are used to provide two-way information exchange
between end users and the computer. The output devices provide visual feedback,
three: dimensional auditory feedback, and tactile or force-feedback to the user. Input
devices, such as a DataGlove or a speech recognition system, are used by the user
to dynamically interact with the virtual environment. Researchers at NASA, UNC,
and other institutes have made great progress in constructing and improving several
types of VR devices. The work of these groups provides the fundamental basis for

research on VR applications and software development.

2.2.1 Criteria for VR Devices

As James J. Gibson stated, the natural environment is the stimulation resource for
the human’s five senses [15]. VR devices are used to stimulate the human body’s
visual sense, auditory sense, and tactile sense. The devices dealing with vision, tactile
sensation, and the sense of hearing have been studied. Stereoscopic display systems
are used to show three-dimensional pictures to the user’s eyes. 3D sound systems
can synthesize and play three-dimensional sound in the virtual environment. Force-
feedback systems put specified amounts of force on the human body. Devices to
stimulate the smell and taste senses might be invented in the future, but no immediate
application acts as a strong motivation to initiate research in these areas. In addition
to devices that provide environment, information te the user, interaction devices have

also been invented for the user to tell the computer what he or she would like to do.

VR devices are fundamental parts of VR systems. In some sense, VR devices are
used to fool the human's senses in order to replace the natural environment with the
virtual environment. It is a tough job, to ool the human senses, since they have been
evolving for so many years. The VR devices must be reasonably satisfying so the end
user can bear to live within the environment. at least for a while,

To generate a reasonably realistic environment, these devices must meet mininmm
requirements in terms of realism, response time, and usability. Realism means that
there is not excessive distortion in the images a sensory chanuel presents, and that
the noise level is low enough. For example, in the case of visual feedback, the pictare
shown to the user must be drawn without any distortion and jitter. Response time
refers to the system lag and update rate. If the system lag is too big, the end user
will see the picture he or she should have seen a moment. ago. While, if the update
rate is not fast enongh, the display will jump from one picture to the next instead
of being continuous. Usability is also an important requirement for VR interaction
devices, since the VR environment is a type of graphical user interface,

In this section, VR devices will be examined from the following perspectives:
hardware configuration, software support, and system performance including realism,

response time, and usability.

2.2.2 Visual Display Devices
Hardware configuration

Basically, there are four types of VR hardware configurations for generating stereo-
scopic images.

The first stereoscopic display system was introduced by Sutherland in 1968 [35].
The idea was to surround the user with a three dimensional environment. The display
system presented three-dimensional illusions to the user. When the user moves his or
her head, the images change in the same way as when the user is moving around in a

real environment. A mechanical or ultrasonic head position sensor was used to detect,

)

-

the position and orientation of the user’s head. Then the corresponding perspective
image was computed and sent to the special spectacles with two miniature cathode
ray tubes (CRT) for display. The spectacles used half-silvered mirrors in a prism, so
the user conld see the picture from the cathode ray tubes as well as objects in the
real room. This is a kind of see-through head-mouated display (HMD).

The virtual environment display system built by NASA contained a non-see—
throngh stercoscopic head-mounted display [13]. Two medium-resolution, monochro-
matic liquid crystal display (LCD) screens using standard NTSC signals were used
for display. The LCD technology was used to get a small, light, safe, power-saving
and low cost display system. A 6 degree-of-freedom tracking device mounted on the
helmet, was responsible for tracking head movements. The VPL EyePhone is the same
kind of stereoscopic head-mounted display [41].

Another system also built at the NASA Ames Research Center is a counterbal-
anced CRT-hased stereoscopic viewer (CCSV) [27]. It was developed to provide
higher resolution than a LCD based head-mounted display could provide. The CCSV
was monnted on a 6 degree-of-freedom counterbalanced arm. The user can use the
handles on the side of the display to move the CCSV to track head motion. The
position and orientation data of the display head can be determined from transducers
at the joints of the arm. The CCSV is not head-mounted so the user can easily go
into the virtual world, look around and come back to his or her desk top environment.

The last type of stereoscopic display is totally different from the first three in that
it does not require the user to either wear special glasses or move the equipment to
follow him or her. The principle behind this direct-view type of stereoscopic display
system is to display the image on a 7-inch LCD which is covered by a cylindrical lens
array, called lenticular lenses [1]. The lenticular lenses divide the left and right images
and presents them to the user’s eyes. A highly directional infrared transmitter and
pusition sensing device (PSD), mounted on both sides of the LCD display, is used to

detect the head position.

)
.

3

Software support

In order to provide a better device level interface to the VR application programmer,
some software packages have been developed on top of the stercoscopic display devices.

In Sutherland’s system, there was a matrix multiplier. Every time the position
and orientation data arrived. the matrix multiplier would transform the information
from the room coordinates to eye coordinates to produce the perspective view for the
user. So the application program did not have to repeat this routine work.

Similar to Sutherland’s matrix multiplier, CCSV has Forward Kinematies. For-
ward Kinematics converts the joint angle information to the display head’s position
and orientation, which is used to set the viewing parameters in the applications.

Here at the University of Alberta, our graphics group developed the Minimal
Reality (MR) Toolkit to help with VR application construction [36]. The MR Toolkit
uses the VPL EyePhone for display and it has device level software dealing with 31
devices. The software packages in the MR Toolkit provide higher level interfaces
for the devices. One of them is the workspace mapping package. Sinee the VPL
EyePhone has its own coordinate system that depends upon its location in the room,
the workspace mapping package provides routines to convert the device data from the
device coordinate system to the room coordinate system, then to the application’s
virtual world coordinate system. In addition, since we nse two graphics workstations
to produce the images, there are facilities to synchronize the display of the pictures

for the two eyes.

System performance

As mentioned before, system performance for VR devices involves realism, response
time, and usability.

In the case of stereoscopic display devices, what we mean by realism is that the
images presented to the user should be of high quality withont any distortion and
without jitter. Resolution is the first issue. CRTs can definitely provide higher res-

olution than LCDs can. But when considering size, weight, power, safety and cost,

the CRT is probably not the better choice. The second issue is picture distortion. In
Sutherland’s system, both the cathode ray tubes and the head-mounted optical sys-
tem contribute to the so-called pin-cnshion distortion which was about three percent
[38]. The NASA HMD, the CCSV, and the VPL EyePhone all use the Large Expanse
Extra Perspective (LEEP) optics designed by Eric Howlett 27, 47]. These optics pro-
vide a 120 degree field of view but introduce chromatic aberration- and pincushion
radial distortion. Chromatic aberrations usually occurs along the edges of the images
with highly contrasted color. The effect of pincushion distortion is not obvious so this
problem is often ignored. Robinett and Rolland at UNC proposed a computational
model for the geometry of a HMD [35]. This model considered the physical geometry
of all device components that may affect image quality. It is claimed that this model
compensates for all the distortions caused by the display screens, the optics and the
placement of the screen with respect to the eyes. The last issue is the jitter problem.
Jiandong Liang at the University of Alberta used an anisotropic low pass filter to
reduce the noise in head position data in order to solve the jitter problem [25].
Response time involves minimum system lag and high update rate. Bryson at
NASA Ames described how to measure the system lag in [4]. Rebo and his colleagues
at Air Force Institute of Technology used a simple Kalman filter to do predictive
tracking of the user’s head position to reduce the system lag [33]. Based on the
ohservation that the delay in orientation data is the major factor causing the lag,
Jiandong Liang designed another predictive Kalman filter to compensate for that
delay so as to minimize the system lag {25]. The update rate is actually a measure
of image continuity. Generally speaking, it should be thirty frames per second for
human users to see smooth motion, but as few as ten frames per second can be
acceptable. The update rate of a computer system depends upon the CPU speed of
the host machine, as well as how much device management, application computation,
and drawing has to be done per frame. One way to get higher update rate at the
device level is to distribute the workload to several different machines as is done in

the MR Toolkit of University of Alberta [36].

[\
ot

Usability is based on how comfortable and convenient the user feels using varions
stercoscopic display devices. The head mounted display gives the user a feeling that
he or she is in a three—dimensional environment. But the user’s eve will get tired after
a while due to the LCD screens’ low resolution. The fact that HMDs are quite heavy
could cause neck fatigne. In addition, the cables of HMDs may vestrict the user's
movement. CRT-based stereoscopic display systems have higher resolntion, but are
much heavier than LCD displays. So they are usnally not head mounted. As in the
CCSV system, the display head is mounted on a counterbalanced arm. The user
has to move the display head using his or her hand, which is not as convenient and
natural as in a HMD system. Also the user’s movement is confined to the positions
that the arm can reach. The direct view stercoscopic display system does not require
the user to wear any kind of special glasses and still can present stercoscopic images
to the user. However, the user doesn’t have the feeling of being within a surrounding
environment because the display screen is not large enough. Another advantage of
the CCSV system and the direct-view stercoscopic display is that the user is not
completely separated from the real world as one is when wearing a HMD. In this case
the user is able to use traditional devices, such as keyboard or mouse, as well as 31)

VR devices to interact with the VR environment.

2.2.3 Auditory Display Devices

Besides the visual devices, auditory devices provide another channel for the user to get
information from the environment. As Wenzel et. al. stated, three dimensional sonned
information can greatly improve the user’s understanding of the environment [44].
Although auditory devices are nseful in VR systems, only a few VR researchers have
done work in this area. Becanse scientists do not fully understand how the humans’
auditory system works, there is still a lot that can be done as more psychological

research results come out.

20

Hardware configuration

In order to produce three-dimensional sound, Doll et. al. used many real sound
sources or londspeakers [10]. But in virtual reality, the virtual sound sources might be
dynamically specified anywhere within the environment. Wenzel designed an auditory
display device to process the sound signal to synthesize three—dimensional sound cues
in real time and present them over headphones to the user [44]. The psychological
theory hehind the synthesis technique is that human sound localization is not only
determined by the “interaural differences in time of arrival at low frequencies and
interanral differences in intensity at high frequencies”; but also determined by the
direction dependent interaction between the incoming sound waves and the outer
cars or pinnac, as cited in [45]. The acoustic adjustment of the sound signal by
the onter cars is defined as the Head-Related Transfer Function (HRTF). To sample
the HRTF, Finite Impulse Responses (FIRs) are obtained through experiments on a
specific subject. Then the listener-specific “location filters” can be built and used
in producing three-dimensional sound signals [44]. The sound can be simulated to
he anywhere outside the headphone in the environment by interpolating the signal
with lincar weighting functions. Since it is impossible to measure and store the FIRS
information for every potential listener in practice, Wenzel et. al. have gone one step

further to study the feasibility of acoustic devices based on non—individualized virtual

acoustic sound cues [45].

Software support

In Wenzel’s paver and other published papers about three-dimensional auditory dis-
play devices, software support is not discussed. However, it would be very helpful to
have some software packages to provide high level facilities to the programmer, such
as a package to facilitate the construction of a sentence — a sequence of different

sonic frequencies.

27

System performance

The realism standard for acoustic display devices is that they should produce sim-
ulated sound as if the sound were produced by a free-field source. Psychological
research has been done on comparing free-field and synthesized free field listening
[43]. The results show that the use of the synthesis technique is satisfactory for static
sources when using listener-specific “location filters”. However, confusion errors re-
main quite high when non-individual HRTFs are used [45] .

The real-time performance of this device is acceptable according to Perrott’s work
on the perception of anditory motion [32]. The digital signal processor has a max-
imum lag or directional update interval of 10-30 msec. There may be additional
latencies added by the other parts of the system.

As to usability, this acoustic display system requires that the nser wears head-
phones. Nevertheless it provides static or moving virtual sound sources, and the

sound can respond to head movement when coupled with head- tracking deviees,

2.2.4 Haptic Display Devices

In addition to the visual and auditory display, haptic display is another channel to
deliver environment information to the user. Force-feedback has been stadied in the
robotics field for applications in telerobotics. Now researchers at UNC, the University
of Tsukuba in Japan, and MIT are working on various haptic display devices that

can be used in VR applications including telerobotics.

Hardware configuration

UNC’s force display system uses a molecular docking problem as the driving applica-
tion. In this system the user can feel the interaction foree field between a drug and a
receptor site in a protein or nuleic acid [30]. An Argonne E-3 Remote Manipulator
(ARM) is used as the force display. When the interaction forces and torques among

the molecules are computed, the manipulator will impose the forces on the user’s

hand as if the user were holding the drug. The user can also use the handgrip of the
manipulator as a 6-) joystick to dock the drug inwo the receptor. So the manipulator
is a forece output device as well as a 6-D input device.

Similar to UNC’s system, the force-feedback device designed by Iwata at the Uni-
versity of Tsukuba in Japan is a “tactile input device with reaction force generator”
[19]. The manipulator is used to measure the joint angles of the user’s hand as well
as impose forces on the fingers and palm of the user.

Patrick et. al. at MIT designed a non-reactive tactile display device [31]. As they
state, a reactive display exerts joint torques on the operator’s body, thus stimulating
the body’s entaneous and musculo-skeletal sensors; while a non-reactive tactile dis-
play does not exert torques to the joints and stimulates only the cutaneous sensors.
Their non-reactive tactile display has the advantages of being light in weight, small
size and low cost. Two voice-coils (small speakers), which are used as the tactile dis-
play, are mounted on the fingertips of one’s thumb and index finger. They are driven
by a 250 Hz variable-amplitude signal from analog electronics units. A PC samples
the hand’s position from sensors on the EXOS Dextrous Hand Master (DHM) and

uses this data to control the electronics units.

Software support

Haptic device studies are still in the very early stage. We know little about how to
precisely deliver a specific feeling to the human body through these devices. There
are no software packages that can be used to produce special kinds of tactile or force
feedback to the user. Minsky et. al. at UNC has started to do experiments on texture
feeling [28]. In their Sandpaper system, they use tiny virtual springs to pull in or push
away the user’s hand from a surface to make the hand feel the textures. Experiments

like the Sandpaper system will greatly help the development of haptic software tools.

29

System performance

Realism, response time, and usability are still three important issues with haptic
display devices.

None of the above three devices have reached the point where they produce re-
alistic haptic displays. For example, a virtual wall produced by MIT's non reactive
tactile feedback device feels a little bit like a vibrating plate {31]. The high friction
associated with the cable-driven system is a big problem for UN(”s force display sys-
tem [30]. Iwata used an intuitive idea to present slightly more realistic foree feedback.
When the user’s hand grabs a rigid object, the maximum torque was imposed on the
fingers to tell the user that he is grabbing a hard surfaced object. Whereas the foree
imposed on the palm depends upon the relative position of the palm and the object,
as well as the mass distribution of the object [19].

Response time is not quite satisfactory either. As Ouh-young et.al. stated in [30],
at least 20 updates per second are needed. For UNC’s system, the latency between
the detection of a hard surface and when the servo motor is started is 200 300 msec.
And the overall system update rate is about 3-5 updates per second. For the solid
model virtual space example, Iwata’s system has an update rate of 4 Hz, and a lag
time of 0.25 seconds. MIT’s non-tactile force feedback system claims to have 60
updates per second. That is probably because the device was so casy to drive and
the application was having the user find the position of a virtual wall.

Just as the user has to wear an EyePhone or headphone to get three dimensional
visual and aunditory feedback, the user has to put his/her hand in the special haptic
devices to feel the tactile or force display. It may not be comfortable for the nser,
Even worse is that it could be very dangerous. The UNC systen uses two measnres
to guarantee the safety of the user [30]. One is to use a dead man footswitch. The
user must step on it to have power on the servo motors. The second is to nse the
safety-range detector to restrict the maximum force the manipulator can put on the
user. Other issues about the usability of haptic display devices, such as allowing the

user to move around while receiving the force feedback, have to be further studied.

2.2.5 Interaction Devices

By interaction devices we mean VR input devices. All the above devices are essentially
output, devices for VR systems, the end-user needs various input devices to interact
with the VR system. These input devices are used to visually, aurally, and tactually
represent the user within the virtual environment, so that the user can influence the

environment through these devices.

Hardware configuration

The DataGlove is a device used to visually represent the user’s hand in a VR en-
vironment. It has two parts: flex sensors, and a Polhemus sensor [40]. The flex
sensors refer to the ten optical fibers and a optical adaptor that has the light sources
and phototransistors. The optical fibers are on the back of a common glove, along
the joints of the thumb and fingers. When the optical fibers are bent, the amount
of light going through them is reduced. The reduced light level is converted to an
analog voltage by a phototransistor and sent to a control unit. The Polhemus sensor
used to track the position of the DataGlove is the same as the one used to track the
head position in VPL EyePhone. It contains two components: a source and a sensor.
The source emits the electromagnetic fields. Within this field, the sensor can tell its
position relative to the source and produce analog signals describing the position and
orientation of the DataGlove to the control unit. The control unit converts the analog
signal from the DataGlove to a proper data format for the host computer. This data
can be used to draw the hand of the user on the screen.

Speech recognition techniques (used in NASA’s virtual environment system, see
[13]) can be used to input user commands. But it is not a typical VR device. Speech
recognition can be used in various areas beside virtual reality.

The user can also influence the virtual world tactually. As we discussed before,
the tactile or force display devices are also tactile input devices. When the user
moves his/her fingers to impose force on the devices, the devices detect the effect and

transmit the data back to the VR system.

31

Software support

VPL has developed the “DATAGLOVE GESTURE EDITOR SOFTWARE For the
Apple Macintosh” [39]. Here at the University of Alberta, we have a DataGlove cal-
ibration and gesture editing program that can interactively define the static gestures

as well as recognize gestures at run time [36).

System performance

We have discussed the system performance of tactile input devices.

For the DataGlove, the noise and response time issues have not been thoroughly
studied. Filters for reducing the noise and delay are still to be developed. VPL once
tried to use the DataGlove technique to build a datasuit. But the delay problem
made it impossible to get reasonable response times.

Usability is the big issue here. The DataGlove is not uncomfortable to wear.
However, it is not the best choice. Due to the noise problem, it is not casy for the
user to do a selection or pointing operation, or to make the exact gesture required to
issue a command. Even if we could solve this problem, the potential limit on the size

of gesture vocabularies would restrict the number of commands.

2.2.6 Discussion

From the survey of various VR devices, we can see that VR device rescarch has a
long way to go. First of all, all the current devices need to be improved in hardware.
Maybe new devices will need to be designed. Second, there are little software support,
available for the VR programmer to get better service from some of the devices, prob-
ably because the hardware problems have been keeping device researchers ocenpied,
Third, realism and response time must be greatly improved. And finally, the devices
must be refined so that users feel comfortable using them.

However, research in VR devices did provide a reasonable basis for rescarch on

upper level software and application systems. It also resulted in the general require-

ments of VR systems such as realism, response time, and usability. Realism and
response time are not only goals for devices, but also for VR support software and
application systems, so as to produce a realistic, dynamically interactive environment.
To reach such an objective, both realism and response time are important. Unfortu-
nately, improving realism takes time and consequently affects the response time. As
a result, we have to make trade-offs between the two in order to improve the realism
while keeping the response time acceptable. As to usability, we have discussed the
issue mostly from the physical perspective -—— whether the user is physically comfort-
able with the devices. When we build software facilities and VR applications, we
have to consider the issue from the psychological point of view, since virtual reality

is supposed to be a more user-friendly type of user interface.

2.3 VR Software Development

Based on the experience gained from previous VR application systems, people be-
gan to work on software tools for supporting the development of future application
programs. In this section, we will review some research work related to system con-
figuration, single-user and multi-user application program structure, concurrency

control methods, and VR environment organization.

2.3.1 System Configuration

System configuration is the most fundamental part in constructing any VR applica-
tion. It is respousible for the management of all VR devices, providing effective and
convenient services.

Since VR device drivers take a lot of run time, the application task and related
software will not get enough CPU time to have the high performance that VR systems
require. Researchers at IBM use multiple workstations to distribute the workload and
an event-driven device management system to coordinate these VR devices [42, 24].

The Minimal Reality (MR) Toolkit developed here at the University of Alberta

33

uses a similar approach to distributing the device drivers {36].

2.3.2 Single—-User Systems

At the top level of the whole system, there are application programs. Usually, an
application addresses one specific task. One application can be a single user appli-
cation or shared by several users. Several research groups have suggested different
structures for single—user VR application programs.

Zeltzer and his colleagues at MIT produced a general-purpose package for building
interactive simulation systems, especially for task-level animation systems [46]. The
key element is a constraint network which connects all the objects. Once the status
of an object is updated, all the constraints which involve that object are informed
and evaluated. This process continues until no more objects are changed and then
the final result is displayed.

Robertson et. al. at Xerox proposed an architectural model called the Cognitive
Coprocessor Architecture [34]. The purpose of the Cognitive Coprocessor Architee-
ture is to support “multiple, asynchronous, interactive agents” and smooth animation.
It is based on a three agent model of an interactive system. These agents are: the
user, the user discourse machine, and the task machine. The basic control mechanism
is the animation loop, which has a task queue, a display queue, and a governor. The
task queue maintains all the incoming computations from different sorts of agents;
the display queue contains all the objects to be drawn; while the governor keeps track
of time and helps the application to produnce smooth output.

At the University of Alberta, the Decoupled Simulation Model is proposed in
order to improve the response time of VR application systems [36]. In the Decoupled
Simulation Model, there are one or more UNIX-style processes in an application. One
is the master process; others are slave or computation processes. The master process
establishes socket connections with scrver processes and gets input from the user. To
reduce the communication delay between processes, the master process also displays

the output to one of the user’s eyes. Slave processes are responsible for ontput. The

35
ontput to another eye of the user is produced by a slave process of an MR application.
Computation processes perform the simulation task. Since the computation processes
run asynchronously from other processes, the whole application system is sped up.

That is why the model is named the Decoupled Simulation Model.

2.3.3 Multi-User Systems

The above three models are suitable for single-user applications. When we consider

multi- user applications, we have to decide whether to use the centralized architecture

or the replicated architecture.

Centralized Architecture

In a centralized architecture, there is only one copy of the application. The input
from every nser is sent to the application and the output is broadcast to every user
from the application.

IBM researchers used the centralized architecture to build a multi-person virtual
world called rubber rocks [8]. Two users can manipulate several flexible objects
simultaneously. For each user there is a Dialogue Manager which manages input
from input devices, sending output to output devices, and communicating with the
rubber rocks simulation. Thus each user may have his or her own interaction interface.

But their Dialogue Managers talk to the same underlying simulation.

Replicated Architecture

In a replicated architecture, there is one copy of the application for each user in a
multi -user environment. The input from every user is distributed to every copy. The
output to users is obtained from the local copy of the application. Somehow all copies
of the application must be synchronized and the output to users should be consistent
all the time.

People in the field of computer-supported cooperative work use the replicated

architecture for computer teleconferencing. GroupSketch designed by Greenberg is a

sketchpad for multi-users who are geographically distributed at different sites [16]. Tt
allows up to four users to draw, enter text or gestures on the shared work surface on
a virtual piece of paper. Any user can join the collaboration after others have so.cted
and leave the collaboration as he or she wishes. GroupSketeh uses the replicated ar-
chitecture. On each workstation, there is a copy of the application and a conference
agent. A registrar daemon is responsible for introducing a late comer into a GroupS-
ketch session. Each copy of the application communicates with the registrar through
its conference agent. Applications are synchronized by sending events to cach other.

The SIMulation NETworking (SIMNET) system [5] developed by LORAL Ad-
vanced Distributed Simulation Inc is probably the first virtnal reality system which
uses the replicated architecture. The SIMNET system is aimed at team training of
many soldiers in a virtual battlefield. The bhattlefield is composed of static compo-
nents and dynamic components. The static components are the “passive clements”
in the virtual world while the dynamic components are the “active participants” that
are “moving and changeable objects” in the environment. Every user has the same
static components and the change-of-state events of the dynamic compouents are
broadcast to all users to ensure a consistent view for each user. The event receivers
are responsible for deciding which events are of interest to themselves and what effect,
an event may have. As a result, any user can join or leave the shared environment at
any time. In order to save network bandwidth, the event receivers can use the “dead
reckoning” technique to extrapolate states of those dynamic components so that the
change-of-state events do not have to be sent out continuonsly.

The Distributed Interactive Virtual Environment (DIVE) system [7] built at the
Swedish Institute of Computer Science also multicasts changes to the replicated
databases residing in all the participating processes. The database is composed of
completely different worlds, each of which contains a specific set of objects. The
worlds are implemented by process groups, where one DIVE process represents a user
or an application. A DIVE process belongs to one world at a time and it can switch

worlds dynamically which means a complete switch of context.

36

Similar to the process group concept, The WAVES (WAterloo Virtual Environ-
ment, System) architecture [21] designed by Kazman at University of Waterloo uses
a host to simulate a subset of objects, thus a collection of hosts is required to create
an entire simulated world. Some of the objects are native to a particular host while
others can be clones of objects which are native to other hosts so that users associated
with different hosts can share these objects. The message managers mediates commu-
nication between hosts but hosts can not communicate directly with each other. In
order to minimize message volume, the message managers can filter the messages that
a particular host receives upon request. But this feature had not been implemented
when the paper was published. The “dead reckoning” technique was also extended
to predict objects” behavior so as to reduce network traffic.

Similar to WAVES, the BrickNet system [37] developed at the National University
of Singapore has clients with different virtual world contents. A client can deposit its
objects at a server while other clients can lease objects from any of the servers on the
network. A user can use “dynamic portals” to go to another world, then select and
copy objects from that world to the local world. Updates on the shared objects are
sent only to the clients who have the objects and are interested in the updating of
the objects. BrickNet is aimed at providing a “network-based design environments
where a complete design task is distributed over several design nodes” and each node,
a client, “shares its design objects with others to facilitate collaboration on the larger
design task.” However, it can also be used to build applications with the same content
for every user. For example, a ship planning environment was built to allow several
users to *load containers destined for different parts of the world in a ship.” In this
case, all changes will be sent to every user in the shared environment.

The replicated architecture is more complicated than the centralized architecture.
The advantage of the centralized architecture is that it is simple. The application
program does not have to be changed. There is no need to keep different copies
of the application consistent. As stated in [9], the replicated architecture has the

following advantages: better performance and easy site-specific interaction. Because

37

only the input from users has to be distributed to every copy of the application,
network traffic is greatly reduced. Every site has the local copy of the application,
so output is less sensitive to network latency. Therefore, better performance can
be achieved. In order to get site-specific interaction, like in IBM's rubber rocks
simulation, applications using the centralized architecture must keep separate event

processing threads for each user. Replicated applications are single threaded which
makes site-specific interaction casy. These advantages of the replicated architecture

are very important for VR applications.

2.3.4 Concurrency Control

When a replicated architecture is used, the application copies at ditferent users” sites
have to be synchronized by sending messages to each other. However, inconsistencies
will arise when two or more users try to change the same object at the same time,
At each user’s site, the remote updating message will arrive after the local update,
Consequently, the object will be updated in different orders at different sites. A con-
currency control mechanisim must be employed to keep the application in a consistent

state.

Traditional Concurrency Control Methods

Concurrency control maintains application consistency through serialization which
ensures that the result of interfering events is equivalent to the result, of these events
being executed in one order at all sites. In [17], Greenberg and Marwood reviewed
the traditional concurrency control methods and discussed the problems that oceur
when these methods are directly applied to real time distributed groupware systems.

Serialization techniques can be non-optimistic or optimistic.

Non-optimistic serialization does not allow events to be excceuted out of order. It
is guaranteed that these events are executed in the same order at all sites. While one
event is changing an object, the second event, which is trying to change the same

object, will not be executed until the first one is finished. Even when an object is not,

modified by any event, the application still has to check before an event is allowed to
start, changing the object. As a result, the response time of the application is very
slow. In a groupware system, this “interferes with the flow of the interaction and begs
the question of how feedback to this ‘pending’ state should be handled.” (17]

Optimistic serialization allows events to be executed out of order. It then detects
and repairs the results so that the final results appears to be the same as if the events
woere exeented in a correct order. However, the implementation of detecting and
repairing out of order events could be quite expensive. If a groupware system uses
this approach, a user who is trying to manipulate an object that is being updated by
another user could see the result of his/her own action first, then suddenly see the
resnlt, of the other user’s action. This type of sitnation will make groupware users
very confused, as stated in [17].

Locking is a widely used serialization technique. An application may have locks on
different, levels of objects. Locking controls the order of event execution by making the
events obtain and release the locks on the objects they operate on. The granularity
of the locks determines the degree of concurrency of the application. The coarser the
locks, the lower degree of concurrency and “the more difficult it is for people to work
close together.” [17]

A locking scheme can be non-optimistic, semi-optimistic or fully-optimistic.

Non-optimistic locking does not allow an event to be executed before the lock is
granted. As discussed in non-optimistic serialization, it results in an unresponsive
interface. In addition, the application has to show that an object is waiting for a
lock.

Semi-optimistic locking allows the event to manipulate the object but blocks the
event at the end of its execution. In case the lock is denied, only this event has
to be rolled back, which should be easy for users to understand. However, if the
granularity of the lock is finer than necessary, semi-optimistic locking could produce
a jerky interface just as non-optimistic locking.

Fully--optimistic locking not only allows the event that is applying for the lock to

B
.

39

he executed, but also allows the application to move onto the next event before the
lock is granted. It avoids delay and produces a responsive interface. However, if the
lock is denied. the whole chain of events have to be rolled back. If a user had started
to work on something else, he or she may not notice the reversion. Furthermore, it is
not obvious to the users whether the reversion is due to the undo action or another
user has changed the object.

The concurrency control methods have different impacts on an application’s in-
terface and consequently affect the end users. As claimed in [I7], the user mediating
policy would be enough for a groupware system most of the time becanse groupware
users usnally “follow social protocols for mediating interactions™. The concurrency
control methods can be used in rare cases where conflicts do oceur. The resalts of
these methods must mateh what the users expect, otherwise they will cause confusion.

Greenberg and Marwood pointed out in [17] that none of the aforementioned
methods are ideal for all real time distributed groupware systems bhecanse of user
involvement. They designed a conenrrency scheme library from which an application
can choose the most appropriate one according to the specific requirements of the

application.

Concurrency Control in multi—user VR systems

The SIMNET and WAVES systems did not consider the concurrency contrel prablem.
Actually, in the SIMNET system, each dynamic object is responsible for updating its
own status and broadcasting updates to other sites. There are no cases when more
than one user can change an object at the same time. Therefore, the status of every
dynamic object will always be consistent across all the sites. That is, the SIMNET
system does not have the concurrency control problem.

DIVE and BrickNet used non-optimistic locking schemes to prevent potential
conflicts when shared users are manipulating the same object.

DIVE used mutually exclusive locks. Whenever a process asks for a lock on an

object, the system will check to see if there is another process holding the lock. If the

10

41

answer is yes, the requesting process has to wait. Otherwise, it gets the lock. After
the process finishes its work, the lock is released and can be used by other processes.

The BrickNet, system. uses the concept of object ownership. A user has to apply
for tiee uhjecet ownership from the server before changing an object. The ownership

is given np after the change is made so that somebody else can use the ownership.

2.3.5 VR Environment Organization

Usually people would like to organize their working objects into groups. But none
of the above VR systems supports the construction of structured application envi-
ronments. W. Bricken et. al. at the Human Interface Technology Laboratory at
the University of Washington worked on a so called “Virtual Environment Operating
System (VEQS)”. The basic idea in VEQS is that everything is an Entity. However,
VEOS does not provide support for virtual environment organization.

[0 the Information Visualizer, Card et. al. used the concept of 3D Rooms to
divide the information workspace into different Rooms [6]. The current Room stores
the most immediately accessible information, while other 3D Rooms store information
which might be of interest to tre user sometime later. And the user can switch from
otic Reom to another. 31 Rooms provide a uice tool to organize a large information
workspace. But a 3D Rooms user can not access information in another Room from
his or her current Room. In addition, 3D Rooms was rot originally designed for

virtual reality systems, and is not a multi-user system either.

2.3.6 Discussion

The VR systems that are reviewed here mainly attacked two problems: the response
time problem and the network traffic problem. Nevertheless, none of them considered
making use of environment structure to improve response time and to lower network
traflic.

WAVES and BrickNet systems allow different users to be in different worlds. If

cach user has a small local world, the response time will not be a problem because

only the local world has to be nupdated and presented to cach user. However, if any
of the local worlds contains a large number of complicated application objects, the
respons “‘me problem still exists.

In c:dei o reduce network traffic, the BrickNet system passes any ohject changes
only to the users who share the object. If two users are to share a large set of objects
over a long period of time, while they might not work closely together all the time,
it may not be necessary to send all object changes from one to another,

The idea of 3D Rooms can be used to organize large virtual environments into
hierarchical structure. Unfortunately, the 3D Rooms system was not designed for
the purpose of improving the response time and network traffic of VR application
systems. A VR software system is required to provide framework for virtual environ-
ment structure and support better response time and lower network traflic based on
this environment structure. An example of the potential applications for snch a VR
software system is a car design environment in which many engineers can work on
different parts of a car model in different sub-environments.

The Place system described in the following chapters is implemented to address
the above requirement.

The concurrency control problem will not be discussed in this thesis therefore is

a limitation of this thesis work.

Chapter 3

Virtual Environment Model

This chapter introduces the hierarchical virtual object model and virtual environment
model. The virtual object model is used to build application objects so as to help
VR programmers design and implement VR applications from a high level to a more
detailed level. The virtual environment model, the Place model, is used to organize
application objects into different levels of sub-environments. A user can work on
a small number of application objects in one sub-environment at a time. So the
response time is improved, since only the objects which are visible to the user are
evaluated and displayed to the user. The network traffic of a multi-user VR system
is reduced by sending object changes only to the users who can see the changes.

A special type of object—door—may be used to aid users to navigate between sub-
environments. If a user would like to view or medify an object which is in another
sub environment, a virtual copy of that object in the current sub-environment will
allow the user to perform the task without leaving the current sub-environment. The
crystal ball, which is a virtual copy of another sub-environment, enables a user to see
what is happening in that sub-environment from the current sub-environment.

An example application will be used to illustrate the models as they are presented.
The example environment is a small house sitting on a piece of grassland. In the house,
there is a living room, a kitchen and a bedroom. Users can look outside of the house

through a window in the living room. There are also a clock, a chair and a sofa in

43

4

the living room. In the kitchen, two donuts are being cooked in an oven which is on
a kitchen table, and there is a fan beside the table. The bedroom has a bed as well
as a clock. When the users are in the bedroom, they might also want to know if the
donuts are cooked in the kitchen.

This example will also be used in the following two chapters. The example program

is given in the evaluation chapter.

2.1 Virtual Object Model

A virtual object (VO) is anything that can be put in a virtual world. The clock,
chair and donuts are all virtual objects. A VO has physical properties. It has its
own appearance so that users can see what shape it is, what color it is, ete. It may
produce sound so users can hear its voice, for instance, a clock may beep at a specified
time to remind users of pre-planned activities. When a user tries to touch a VO, it
may feel hard or soft. It may even have smell or taste such as a donut. A VO may
also have other object-specific properties. Of course the corresponding devices must
be available to present these physical properties to the end users.

Some VOs also have behaviors. A VO behavior is any action taken by the VO
which may cause a change in the virtnal world. There are two types of behaviors.
The first type of behavior is reactions to the users’ interactions. These hehaviors
are called event-handling behaviors. The event-handling behavior of the chair reacts
when the local user does a grab gesture close enough to the chair’s position. When
such an event happens, the chair will translate itself, following the hand’s movement,
to a new position. The second type of behavior does not need any user’s interference
to activate them. They keep changing objects until terminated. These behaviors
are called animation behaviors. The clock’s animation behavior is to get, the current,
time fromn the host computer and report it to the user; while the donuts’ animation
behavior is to be baked, i.e., to change their colors as time passes. Depending npon

the application, some animation behaviors can be suspended when the user can not

see the resnlts. Others, including tine-consuming simulation computations, may
have to be running all the time to avoid side-effects. For example, the clock could
stop reporting the current time when it is not visible to the users. However, the
donuts should he baked whether the users are present or not.

A VO can be composed of several parts, - called sub-VOs, which in turn are the
super VOs of their sub-VOs. The clock, as an example, has the following sub-VOs: a
frame, twelve dial markers, an hour hand, a minute hand, and a second hand, which
tell the current time. The typical event-handling behavior and animation behavior of
a super VO is the collection of its sub-VOs’ event-handling hehaviors and animation
behaviors. The animation behavior of the clock is to get the time from the host com-
puter and invoke the animation behaviors of the hour hand, minute hand and second
hand to adjust their angles so as to display the time. This hierarchical structure
makes it possible to decompose the application system design and implementation
into the bottom level object design and implementation.

A VO can have multiple virtual copies in the virtual world. These virtual copies,
which are also VOs, have exactly the same attributes as the original VO except for
position and orientation. Thus the VO may appear at different locations, at different
view points to the user. The clock in the bedroom can be a virtual copy of the clock in
the living room. So the user in the bedroom does not have to go to the living room all
the o me to check the current time. In addition, two VOs could share one sub-VO in
their object hierarchy. The original sub-VO has the position and orientation relative
to its super- VO, while the sub-VO copy will have its position and orientation relative
to the super-VO of that copy. A typical example is a door connecting two neighbor
places, as will be discussed in the next section.

Figure 3.1 shows the virtual object model.

One special type of VO is the representation of the user. A user consists of several
sub-VOs. Depending on the VR devices locally available, these sub-VOs could be
eyes and hands corresponding to the EyePhone and the DataGloves respectively.

The position and orientation of the eyes and the hand, plus the hand gesture are

Virtual Object ‘)

Physical

/ Propertics

N —

Behaviors

\ Structure

Appcarance

Sound
Hardness

Smell
Taste

Other Propertics

Event-handling

Behaviors

A6

Animation
Behaviors

Ordinary
Behaviors

Always—-Aclive
Behaviors

Super -
Virtual Object

Sub -
Virtual Objects

Virtual Copics of
Virtual Object

Figure 3.1: The Virtual Object Model

47

controlled by the real user who is in the virtnal world. These inputs are the original
event sources, which trigger other event -handling behaviors in the user VO and other
VO’s. Oue of the nser’s behaviors is flying around within the virtual environment
without moving in the physical world.

The relationship among VOs is reflected by their behaviors. The behaviors of one

VO might change properties of another VO or several other VOs.

3.2 The Place Model

Figure 3.2 shows the Place model. The whole VR environment is commonly called
the virtual world (VW). The VW is composed of one or more virtual places. The
term “place” is borrowed from real life. In a virtual world, a virtual place has a
more limited meaning than a real place. A virtual place (VP) is a space with a
definite boundary. In the example environment, the house, kitchen and bedroom,
as well as the oven are all VPs. A baindary can be composed of one or more VOs
like walls. The boundary could also have behaviors, such as not allowing the user
to go out of the bonndary. These boundary VOs could be composed of multiple
levels of sub-VOs, just like any other VOs. If the boundary blocks the view of the
ontside of the VP in all directions, this VP is a closed VP. Otherwise, it is an open
VP. For instance, the house is an open VP because users can see the outside of the
house through the window; while the kitchen and the bedroom are both closed VPs.
(Ylosed VPs are very effective in reducing the response time of virtual environments
because the application objects that are not in the user’s carrent VP — a closed VP

are not visible to the user any more. Therefore, the user can not interact with
these objects which saves the event-handling behavior evaluation time of the objects.
Furthermore, there is no need to evaluate the objects’ ordinary animation behavior,
and to render these invisible objects. Consequently, the overall response time can be
greatly improved. Open places, on the other hand, gives VR programmers flexibility

to build places like house where an user may want to see the objects outside of the

Boundary
Virtual Objects

Application
Virtual Objects

Virtual Place
Structurc

Port

Figure 3.2: The Place Maodel

Doors

Sub -
Virtual Places

Super -
Virtual Places

Virtual Copies of
Virtual Places

')]4"1.(',(5.

A VP can contain any munber of VOs, including virtual copies of VOs. Every VO
in the virtual environment has a containing VP in the virtual world. Tiis containing
VP is called the current VP of the VO. The current VP of the table is the kitchen,
and the current VP of the donnts is the oven. Since the user is a special type of VO,
the user also has its current VP at any specific moment. The user’s current VP is
where the real user can interact with all the other VOs contained in the same VP, as
well as the boundary of the current VP.

A VP can also contain many sub-VPs. A VP which contains sub-VPs is called
a super- VP, The house is the super-VP of the kitchen and the bedroom. There is
no living room as a VP. The living room is the space outside of the kitchen and the
bedroom, and within the boundary of the house. This hierarchical structure of VPs
can be very effective in organizing a medium-scale or large-scale VR environment.
It. helps to improve programmers’ productivity by dividing a large, complicated ap-
plication environment into different levels of VPs. It could also be very helpful for
the user to get familiar with a new environment, since studies of spatial cognition
reveal that people tend to remember one place within another. The path through the
virtual world to the user’s current VP is very useful in providing help information
about the location of the user. Theoretically, there is no limit to how deeply one VP
can be nested within another. However, too many levels in a VP structure would
only be confusing rather than helpful.

To provide bidirectional sub-VP to super-VP navigation for the user, there can be
a special sub-VO called a door somewhere in the boundary object hierarchy. There
is a door as a sub-VO of each boundary of the kitchen, the bedroom and the house.
The doors’ event-handling behavior can decide if the doors should be open. Different
kinds of doors could have different conditions to be opened. If the open condition
is satisfied, the door should be gradually opened for the user. Then the user can
navigate through the door to the VP on the other side of the door.

To provide bidirectional navigation between two neighbor VPs, which are not sub-

49

VP and super-VP, one of the VPs could have a door sub VO as part of its boundary.
The other VP can use a virtual copy of that door as a sub VO of its boundary, i.c.,
the two VPs share the same door. This is one of the uses of a VOs™ virtual copies.
When the user is navigating through the door, he or she is going from the current
VP to the other VP instead of going from the sub- VP to the super VP or from the
super-VP to the sub-VP.

Doors provide users with their most familiar way to navigate among VPs. An
alternative approach, commonly used in other 3D graphics animation systems and
VR systems, is to allow users to fly freely in the whole environment, through any
VP boundaries. An application environment may provide both navigation facilities.
But every boundary object of all the VPs in this environment must have an event
handling behavior which detects when an user crosses the boundary and sets the
correct current VP for the user.

VPs may have multiple virtual copies of themselves, too. We call these virtual
copies crystal balls because they provide views to their original VPs. Crystal balls
make it possible for a user to observe what is happening in one or several other VPs
at the same time while working in the current VP. In the example environment, a
crystal ball of the oven can be put in the bedroom so that users will know whether
the donuts are cooked or not from the bedroom. The difference between the virtual
copy of a VO and the virtual copy of a VP is that a virtual copy of a VP will be
restricted to viewing instead of interacting. The user will not, be able to interact with
any VOs within the original VP. The reason is that usually the virtual copy of a VO
will have the same size of the original VO, while the virtnal copy of a VP will be
much smaller than the original VP in order to fit into the user’s current VI* as an
ordinary VO. To select and manipulate objects in a small space is not, an easy job for
the user. If the user really wants to interact with VOs in that VP, the crystal ball
provides a jump-in facility which allows the user to navigate from the current VP
to the VP of the crystal ball. Once the user jumps in, there will be another erystal

ball of the user’s previous VP in his or her current VP. This crystal ball will let the

[

0

user jump back to the previous VP, if he or she wishes to. Then the user can do the
interactions in this current VP.

The jump-in faci'ity provides an alternative navigational tool that saves an user’s
time in navigating back and forth between the current place and the original place
of the erystal ball. Moreover, in situations where a door is unnatural, the user can
cither fly over the border to a neighbor place, or make use of crystal balls to jump
into whichever place he or she wants to go. The programmer may also provide a 3D
menu for the user to choose the place to go, then simply remove the user from the

current place and put him or her ' *he new place.

Because a VP may have a VOs and sub-VPs in its space, when a user
requests o enter the VF, it is “a . the user is put in the middle of a VO, or
most likely, in a sub-¥VP _ o ~or example, if a user asks to enter the house

in the example environment, the user may find nimself or herseif in the kitchen or
the bedroom, while he or she really wants to enter the living room. In order to avoid
such situations, each VP must have a specified space which is not occupied by any

VOs or sub-VPs at any time. This specified space is called the Port of the VP.

51

Chapter 4

Multi—User VR System

Architecture

In this chapter, a multi-user VR system architecture is proposed to allow more than
one user to share the same virtual environment, and these users do not have to enter
the environment at the same time or quit at the same time. A two-user example
application system is used to demonstrate the architecture. The two nsers, nser A
and user B, share the example house environment discussed in the previous chapter.

Since slow response time is a big problem for multi-user VR systems, the replicated
architecture is used to achieve better response time as well as lower network traffic.
Each user has a local copy of the application. The input from the local nser is
processed in the local application. Only the results are sent to other users to ensure
that all users have the same view of the shared environment. The output to the local
user is obtained from the local application. Therefore, the response time for the local
user is not affected by network delay. The network traffic is also lower than when a
centralized architecture is used.

The local databases of all users have to be synchronized because of the replicated
architecture. When a user joins a shared environment, information about shared
users must be available so that the new comer can establish connections with them,

and get the most up-to-date data to update the local database. When the last user

H2

quits from the environment, the changes made by all shared users should be saved
somewhere, so that the next user can continue from this point rather than start from
scratch. Therefore, a session manager is needed to manage the users’ activities and
their database transactions. Each user also needs a communication component to
communicate with the session manager and other shared users.

Figure 4.1 shows the architecture for multi-user VR systems. The figure is drawn
for a two-user application. If there are more than two users, the architecture is the
same except that the VR Session Manager deals with multiple users rather than two.

The VR Session Manager helps shared users establish communications and coor-
dinates the database updating for late comers. Each user’s application has a Commu-
nication Component in addition to the four components in the Decoupled Simulation
Model. The Communication Component manages communications with the VR Ses-
sion Manager as well as data synchronization with the shared users.

The Decoupled Simulation Model is used because the Computation Component
can be a separate process which helps to reduce the response time for every user. The
model is enhanced such that the Geometric Model Component uses the hierarchical
Virtual Object Model and Virtual Place Model to represent the application objects
and application environment. The Interaction Component gets input from the local
user then sends the input to the Computation Component. The Computation Com-
ponent does the object behavior evaluation according to the scheduling algorithm,
sends restlts to the Geometric Model Component and the Cominunication Compo-
nent. The Communication Component informs the Communication Components of
its shared users to update their local databases. The Presentation Component selects
all the objects which are possibly visible to the user at the moment, and presents

them to the user.

Nl

D
N

o
/7

wauodwo) wouodwo)

uoneuasald uonoIeIANU]

wduoduio) weuoduwio)
[9POJA] OLISW030 uonendwo)

N/

wauodwo)
UOTIEITUNUILIO))

wduodwo) wouodwo)
UOTIBIUASAI] uonoeIANy|
auodwo) wsuodwo)
[OPOJAl dUIAUWI0AN) uonenduio)
wouodwo)y
UOTNBIIUNWILO))
—

N

d

Id38eueiy UOISSIS YA

Figure 4.1: Multi-user VR system architecture

4.1 The VR Session Manager

The VIR Session Manager is responsible for introducing a new user to the shared
environment, i.¢, it helps the new user establi-h communications with related shared
users and coordinates the database updating fur the new user.

A user list is maintained at the Session Manager’s site. The list records each user’s
addresses, including the host name and port number, as well as the user’s viewing
places and viewing objects, which are visible to the user from the user’s current place.

Whenever the Session Manager receives a request from a new user to enter the
shared environment, the user is put into the user list. The Session Manager can
compare the new user’s viewing praces and viewing objects with other user’s viewing
places and viewing objects and find the shared users for the new comer. It can
then help the new user establish connections with these shared users and coordinate
updating the database for the new user. In this way, only the shared users are
connected to the new user and the new user can ge: 11 the npdated data he or she
needs from these shared users.

The VR Session Manager is also responsible for keeping the changes when there
are no users in a changed place. A transaction list maintains all modifications vo all
places up to the time when the last user leaves each shared place. When the next
user comes into a changed place, the corresponding transactions will be dispatched
to update that user’s database. «

For example, when the first user, userA, enters the house, the Session Manager
adds userA into its user list. Because the house has a window, userA’s viewing places
include not only the house but also the outside of the house — the virtual world.
Cappose the second user, userB, enters the virtual world after userA dragged the
chair to a new pasition in the house, since userB’s viewing places are also the virtual
werld and the house, the Session Manager will inform userB te connect to userA so
that they can synchronize their databases as more changes are made. UserA will also
"o instructed to send the chair’s current position to userB.

If aserA feaves the example environment after userB, the Session Manager will

ot

ot

request userA to send over the chair’s new position and save it in the transaction list.
The next time either userA or userB goes into the house, the Session Manager will

transfer the chair's position to that user.

4.2 The Communication Component

At each user’s site, the Communication Component communicates with the Session
M.uager and performs data synchronization with the local user’s shared users.

Similar to the Session Mauager, the ¢ ‘cinriunication Compor -nt also has a shared
user list and a transaciion list.

The sharidd user Hist rec ceds the addresses of the Session Manager and shared nsers
for the local ustw tu initiste cominnnication with them. It also keeps viewing objects
and viewir.g places of t:e shared users. The shared users for the local user refer to
the nsers who sharc at least one vittual obhject or one virtnal place with the local
user, that is, every shared user has at least one viewing obrject or viewing place which
is the same as the local user’s. Whenever the local user modifies a virtual objeet,
the Communication Component selects the users that can see the changes from the
sharcd user list and sends modifications only to the selected users. In this way, the
network traffic can be further reduced.

When the local usor enters the shared environment, the Communication Compo-
nent obtains the information about its shared users from the Session Manager, puts
them into the shared user list, and establishes connections with them. As new users
join in and some shared users leave the environment. the Communication Component,
adjusts the shared user list accordingly.

When the user switches from the cuirent place to another place, the viewing
objects and viewing places will all change. Consequently, the shared user lists have
to be changed too. The Communation Component can simply send a request to the
Session Manager to remove the user from the current place and re registee the user

in the new place. A more complicated approach is to get the viewing objects and

viewing places for the new place, send them to the Session Manger, and get the new
list of shared users. The Communication Component can compare the new shared
nser list with the enrrent list, disconnect with those users who are not in the new list
and conneet to the users who are in the new list but were not in the current list. The
updated data for the new viewing objeci and viewing places can then be requested
from the new shared nsers. This approach is n.ore efficient when some of the viewing
object. and viewing places of the new pi. . the same as those of the current place.

The transaction list serves the same purpose as the one kept by the Session Ma.
ager. [t saves all the most recent changes made to the local database in order to
update databases for late comers. Whenever the Communication Component re-
ceives 2 request Lo update a particular object or place for a new—comer, it wiil send
ont the changes to that object or place from its transaction list.

The transaction list is expanded whenever the local environment is updated, either
by the local user or by a shared nser. When the local user modifies an object, the
Communication Component not only sends the transaction to the shared users but
also saves il in the local trausaction list. If the object had been modified before, the
previous transaction is replaced by the new transaction so as to control the growth
of the transaction list. When a shared user sends updated data for an object, the
Communication Cemponent also saves the information in the transaction list and
then delivers it to the Geometric Model Component to upd-te that object.

Before the user quits from the current place, the Communication Component will
check to see whether every transaction in its transaction list has enothes copsin a
shared user’s site. If not, the transaction will be transferred to tne Session Manager
and saved in its transaction list.

Take nserA’s Communication Component as an example. When userA enteurs the
house as the first user in the environment, its shared user list has only one item: the
Session Manager. The transaction list is empty. As userA drags the chair around, the
chair’s new position is recorded in the transaction list. Guce userB joins userA in the

virtual world, userB is adied into userA’s shared user list because userB’s viewing

places, the virtual world and the house, are the same as userA’s viewing places. The
Session Manager will also instruct userA to help update userB's database. UserA's
(ommunication Component will get the chair’s current position from its transaction
list and send it to userB. If userA moves the chair again while userB is still in the
environment, the Communication Component will save the chair's position in the
transaction list and then send it to userB, who can see the changes. When nser3 quits
from the virtual world, userA removes userB from the shared user list. Therefore,
when userA exits from the house, the Communication Component knows the local
user is the last user in the house, and sends the chair’s most recent position to the

Session Manager before terminating the program.

4.3 The Geometric Model Component

The Geometric Model Compouent maintains a high-level representation of *he virtual
world. According to the virtual environment model described in the previous chapter,
the virtual world is a hierarchy of places. Each place may contain a munber of
application objects. Each application object can he an object composed of many
sub-objects in its object hierarchy. The Geometric Model Component contains the
structural information and physical properties of all the virtual objects, including
application objects and place boundary objects as well as the local user objees. The
Presentation Component needs this information to display the environment to the
end user.

The Geometric Model Components for nserA and userB are identical, except the
local user objects. Both components store t!.» place and object hierarchical structure,
such as the world contains the house, which contains the kitchen and the bedroom,
the clock is composed of the frame, dial markers, and hour hand, minute hand and
second hand. Part of the structural information is the positions and orientations of
the places and objects relative to their containing place’s coordinate system. The

Geometric Model Components also store the shapes, sizes and colers of the objects

HY

as well as the walls of the places.

4.4 The Interaction Component

The Interaction Component, collects input from the local user. The input, including
eye and hand position and orientation, is transformed from the virtual world coordi-
nate system to the coordinate system of the user’s current place. They are then sent
to the Computation Component to compute the feedback.

For example, if userA is in the house, userA’s eye and hand position and orien-
tation will be transformed from the virtual world coordinate system to the house
coordinate system, so that userA and other objecis in the house will be in the same

coordinate system, thus userA can manipulate those objects including the chair.

4.5 The Computation Component

The Computation Component contains a collection of object behaviors. It obtains
input from the Interaction Component, and evaluates the object behaviors according
to the scheduling algorithm, which is the bebavior culling algorithm as described
below.

Since the user can only manipulate objects in the current place, only the event-
handling behaviors of these objects are evaluated. The event-handling behaviors of
the boundary objects of the current place as well as its sub—places are also invoked so
that the user may navigate through deors to other places. For instance, userA is in
the house, thus he or she can only interact with the clock, chair, sofa, go through the
house door to the ontside, go through the kitchen door to the kitchen, or go through
the bedroom door to the bedroom. Therefore, the event-handling behaviors of the
objects 1t the Yitchen and the bedroom need not to be evaluated.

In case more than ene vse: is trying to modify an object at the same time, de-

pending on he apylication, either a concurrency contrel mechanism can be used to

allow ouly one user to modify the object or the programmey can get a compromised
result by considering all users’ modifications. Concurrency control is an important
problem, but it lies outside the range of this thesis, so it won’t be considered here.

The Computation Cemponent also determines which animation behaviors of which
objects in the virtual world should be evaluated. In order to achieve better response
time, we assum¢ that the ordinary animation behavior of any object which is not
visible to the user can be suspended. The Computation Component will only evaluate
behaviors of those objects which are possibly visible to the user at the present time.
Suppose userB is in the kitchen, the Computation Component of userBl will not
evaluate the clock’s animation behavior because userB can not see the clock anyway.
The always-active behaviors of any objects in the virtual world are evaluated in every
frame. The donuts are always being baked in the oven until they are cooked, even if
1o users are present.

The results of the behavior evaluations are scnt to the Geometrie Model Compo-
nent to update the local database and to the Communication Component to update
shared users’ databases.

The behavior culling algorithm saves the event-handling behavior evalnation time
and ordinary animation behavior evaluation time of those ol:iects which are not visible

to the local user, which reduces the overall response time o, 2he VR environment.

4.6 The Presentation Component

The Presentation Component gets input from the Geometric Model Component, pro-
duces the visual, sonic or force display, and presents them to the local user.

The Presentation Component is composed of display procedures for ali the virtual
objects. Each display procedure is responsible of converting the data representation
of the physical properties to the visual, sonic, or force display for its object. Similar
to the Computation Component, the Presentation Component contributes to the im-

provement of response time hy presenting ouly those objects that are possibly visible

60

61
to the user at the present time. For instance, userB’s Presentation Component only
presents objects in the kitchen plus the kitchen’s boundary, while userA’s Presenta-

tion Component. presents everything but objects in the kitchen and the bedroom.

Chapter 5

Multi—User Place System

The Multi-User Place System supports the Virtual Object Model, the Virtual Place
Model, and the Multi-User VR System Architecture. It provides a framicwork for
application systems to construct hierarchically structured environments with hierar-
chically structured application objects in them. Facilities such as link object, crystal
ball, and door are also provided. Communication mechanisms including the Ses-
sion Manager and the: Communication Agent are embedded in the Multi User Place
Systen: to assist communications among shared users. An analogy between the tra-
ditional user interface software system and the proposed VR system model is made,

showing how existing software techniques can be extended to VR.

5.1 System Overview

As shown in Figure 5.1, there are five layers in the Multi User Place System. The
upper layers can make use of the facilities provided by any of the lower layers.

The bottom layer contains Object, which supports hierarchically structured oh
jects in a virtual environment, inchiding object transformation, behavior evalnation,
and object presentation.

The second layer contains Link Object, Place, and Door. The Link Object, pro-

vides an exact copy of an object in a different, location, enabling the user to manipulate

62

APPLICATION

COMMUNICATION SESSION
[Me || oz |
T
SHARED USER
........................ e

I CRYSTALBALL “ USER
e
) L=l
OBJECT

Figure 5.1: Multi-User Place System

an object that is not in his or her current place. It can alio be used to provide the
user with multiple views of one object. Place organizes a virtnal environment using
an hierarchical structure. Response-time improvement and network traflic reduction
are based on this hierarchical environment structure. Door is a special type of Object
that provides a navigation tool for the user to go from one place to another,

The third layer includes Crystal Ball and User. The Crystal Ball provides a small
version of a Place so that the user can observe what is happening in that place. The
Link Object is used in its implementation. The User gets the local nser’s eye and
hand positions and orientation, and converts them into his or her current place’s
coordinate system. It also does behavior and display culling according to the current
place of the local user as well as information about the virtual world.

In the forth layer, there is Shared User. Shared User keeps the commmnication
related information for a User. It provides facilities for the local user to send or

receive messages to or from that shared user. It also keeps the viewing objects and

6

viewing places of the shared user, thus the Communication Agent is able to decide if

that user can see a local change made to a particular objeet and whether to send the
updated data to that user.

The fifth layer is composed of Communication Agent and Session Manager. The
Communication Agent communicates with the Session Manager and the local nser’s
shared users. It is responsible for registering the local user with the Session Manager,
receiving its Shared Users’ information from the Session Manager, and synchronizing
the local database with its Shared Users. “Yhen the local user is leaving the virtual
world, the Communication Agent also informs the Session Manager and all its Shared
Users. The Session Manager coordinates User cntering and leaving the virtnal en-
vironments, helps them to establish communications and npdate databases for cacl
other.

The top layer is VR applications. The VR applications can use or extend any
facilities provided by the Multi-User Place System in the construction of its virtnal

environment.

Zink Object
Place ™ Room
Object Door — Plain Door

Crystal Ball

User

/N

Wall
Window

Shared User

Communrication Agent

Session Manager

Figure 5.2: Multi-User Flace System Class Hierarchy
4 y)

5.2 Class Eierarchy

The Multi-User Place System is implemented in the object-oriented language C++.

Figure 5.2 shows the class hierarchy of the Multi-User Place System. VR pro-

grammers can use or extend any class to build their own virtual worlds. The classes

in plain text are examples of extended classes.

5.3 Object Class

The Virtual Object Model presented in chapter three is used in the implementation

of the Object class.

5.3.1 Physical Properties

An object may have many different object- dependent physical properties. But there
are some common properties that every object must have. These common properties

are:

1. The size of the object’s bounding hox
2. The object’s location

3. The object’s material and color

Bounding Box

The bounding box of an object in the Object class is defined by the origin of the box
and its length, width, and height. The Object elass provides the following functions

for the bounding boxes:

o Set or get the origin and sizes in x, y and z directions in the objeet’s coordinate

system

e Test if a single point in the object’s coordinate system is within the bounding

box

o Decide the area a point is in relative to the hounding box (left, right, front,

back, hottom, top or in)

66

e Calculate the intersection point on the hounding box of a line segment from a

point’s previous position to it’s current position

The bounding boxes are useful in improving the efficiency of collision detection.
For example, when userA is in the house, he or she should not be able to go through
any wall of the house, the kitchen or the bedroom. To detect whether userA is trying
to go through a wall to the bedroom, userA’s current eye position is transformed to
the bedroom’s coordinate system, and then tested if userA is in the bounding box of
the bedroom. If not, there is no need to test userA against every wall of the bedroom.
For the house, sinee userA is in the house, the eye’s current as well as previous position
are checked against the bounding box of each wall of the house to see if both positions
are on the same side of the wall. If the resuit is no, the whole virtual world must be
translated in the direction of nserA’s movement s as to prevent userA from going
outside of the house. The distance the virtual world must be translated should be a
little bit greaters than the distance between the intersection point where the user is
supposed to hit the wall and userA’s current eye position.

Depending on the object, its bounding box counld be any irregular shape. VR
programmers can extend the Object elass and overload the above functions according

to 1. hape of the new bounding box.

Location
By location we mean the place the object is in, and the object’s position and ori-
entation in that place’s coordinate system (if the object has no super-object), or
the object’s position and orientation in its super-object’s coordinate system. The
position and orientation of an object can bhe represented by a 4x4 transformation
matrix.

The following functions are available for specifying and changing the object loca-

tion:
e Set place for the object
e (et the current place the object is in

o Reset the object’s matrix to the unit matrix

e Set the object’s matrix to a given matrix

Get the current transformation matrix

e (et the inverse of the transformation matrix
e Scale; rotate, or translate the object

e Transform the object using a given matrix

Material and Color

Programmers can set material, set. RGB color, get the current RGB color. or cheek
if the material and the color are set for the object. The default is not set. o this
case, the material and the color of the object are assnimed to be the same as those
of its super-obiect. Therefore, for an object which has most of its sub objeets in the
same color, the programmer does not have to assign the color to cach of these sub

objects. The programmer can simply assign the color to the object and set the colors
for other sub~objects individually. For example, all the sub objects of the elunr are
in a wooden color except its back. Thus the chair object can be set to be in woodon

color while the back of the chair is set to be in a different color.

5.3.2 Structure

An object can be composed of one: or more sub- objects. Because of the hierioehicoal
structure of the object, conversions among different coordinate systenn. are reqguived.
Suppose userA i~ in the bounding hox of the bedroom when we deteet that he e she
is trying to go threugh the bedroom walls. To do this, userA’s coordinates ave to be
converted from the house’s cocrdinate system to the bedroom’, sooedinate system,
then to the coordinate system of cach wall of the hedroom to tesi which wall the nser
is trying to pass through. Therefore, a point in a sub object’s coordinate system may
need to be converted to the coordinate system of its Top Object, (the object the root

of the object hierarchy, which has no super object), or converted from the top object’s

coordinaie system to a sub -object’s coordinate system. In a different <‘tuation, the
point may have to be converted between a sub-object’s coordinate system and its

PRPTPIS RPN e v alet cn e 1 f ~$1 . . .].
place’s coordinate system. By making use of these conversion functions, we can also
test if a given point in a top object’s coordinate system is within a sub-object’s

hounding hox.

The Obiect class provides the following functions to support the hierarchical object
structuore:

e Add a sub object to this object

e Remove a sub-object from this object

o Convert a vecter or a point from the voordinate system of this object to the

cooidinate system of its top object

o Clonvert a vector or a point from the coordinate system of 1+ is hject’s top

object 1o its coordinate system

e Convert a vector or a point from the coordinate system of this object to the

coordinate system of this object’s enrrent place

o Convert a vector or a point irom the coordinate systeii of this object’s current

place to the coordinate systemi of it object
¢ (et the transformaiion matrix for any of the above conversions

e Test if a point in a given top object’s coordinate system is with . the bounding

box of this object

An objeet can also be linked by a Link Object, producing another copy of the

object at a different location. This results in multiple +per-objects and multiple

69

top chjects for this object and its sub-objects. For instaive, wien there is a door

hetween two neighbor places, say rooml and room2, the deor 1 room?2’s boundary

object hierarchy is a link object of the door in rooml’s boundary object hierarchy.

¢ suentiy, the door has two top objects: one is room!’s boundary object, the
othci is room?2’s boundary object. Deper.ding on which room the user is in, the
user’s coordinates will be transformed from that room’s honndary object’s coordinate
aystem to the door’s coordinate syster: to see if the user is close enough to the docr

then decide i cue door should be open.

The * =ing functions .~ 50 provided b the Object class:

a Adi . lickob) tto the Tt

Remove a link o ot from this object,

Get the top object of this ubject

Get the next top object fonnected by a link object) oo his Ghject,

5.3.3 DBebkavior Evaluation anrd Presentation

The Obje t class provides three functions to handle tho o different types of object
behavior: event handling behavior, aniniation behavior, and always active bebevi,
These functions traverse the object hierarchy from the enrrent objeet down te the
bottom level of the hierarchy, i.e. they simply call their sub-objeet’s functions.

For any application object, typically at the botiom o i object hierarchy, the
programmer extends the Object ~lass and overloads the - fnetions with the special
behaviors of the application object. In cases where an object has its own behavior
and it alsc nas sub-objects, the programmer must extend the Object, elass to evaluate
its own bebavior as well as it’s sub-objects’ behaviors. For example, the clock’s
animation behavior is overloaded to obtain the time from its host computer and invoke
the animation behaviors of the hand pointer, mimite pointer and sccond peinter.

The presentation of the object presents all of its sub objects. Each sub object is
transformed first, by using the sub-ohject’s transformation matrix. If the material or
the color is set for the sub-object, the current material and color are then saved and

this sub-object’s material and color are used for drawing from this point. The saved

70

71

material and color are recovered after this sub-object’s drawing is done. Otherwise
the current material and «dor will be used for drawing the cirrent sub-object. In the
case of the chair, before the Lack is drawn, the wooden ccior for the chair object is
saved and the color for the back is nsed to display the back. Then the wooden color
is recovered to draw the remaining sub-objects of the chair.

Yor an application object, the presentation function niust be overloaded by its

drawing procednre.

5.4 Link Object Class

The Link Object class is a sub class of the Objec class. Therefore, a link oblect can
be put in cay position in an object Lierarchy.

We have to consider the iollowing two probicsi duting vie implementation of the

Link Object class:

1. The “r asforination matriv of the original object must be renlaced by the trans-
formaticn matrix of the link object whenever we traverse the link object’s hier-

archy

2. A link objeci could cause repeated evaluation of its ordinary animation behav-

lors

5.4.1 Transf mation Matrix

The functions manipnlating the transformation matrix provided by the Link Oujoct
class take the transformation matrix of a link object and ignore the original object’s
transformation matrix. Therefore, we cai. treat a link object exactly like an ordinary
object whenever a link object is encountered while traversing an object hierarchy. For
example, when the clock link object in the bedroom is displayed, the transformation

matrix of the clock link object, specifying its position and orientation in the bedroom’s

coordinate system, is used; while the transformation matrix of the origiial clock that

specifies the clock’s position and orentation in “he house is ignored.

%.4.2 Animation Behavior Evaluation

The evaluation of 1 1 object’s event handling beha o 5 the presentation of the
link object are sin-ple. We just invoke the corresponcang functions of the original
object.

For ordinary animation behavior of a link object, we hiave to consider the possi-
bility of repeated evaliation. For instance, we may have two copies of an object (one
original object, one link object) showing a simulation process from different angles
to the user. In this case, repeated evaluation may not be acceptable. 1f the objeet
is supposed to move one step per frame, repeated evaluation will result in two step
movements of the object per frame. In order to prevent this from happeiing, the Ob-
ject class’s regular animation evaluation function is overload- 1. The Link Object’s
regular animation evaluation function tests if the original object has heen evalnated
before doing the evaluation.

The always active behavior of the original obj-ct shoaid be evaluated inits object
hierarchy. Therefore the link ohject’s always active hehavior evaluation is overloaded

by an empt:s tunction.

5.5 Place Class

The Place class is a sub-class of the Object class. The Virtual Place Model is used

to implement the Place class.

5.5.1 Physical Properties and Structure

A place itself is an object. Its boundary objerts are its sub objects. The appearance
and behaviors of a place are decided by its boundary objects. A collision avoiding

function is provided for preventing objects from going through the houndary objects.

73
Doors conld be sub-objects in the place object hierarchy so that the user can go in

and out, of the place by a door.
A place may contain objects and sub-places. VR programmers can use the follow-

ing functions to put application objects in places and build their own place hierarchy:

e Add an object to the place
¢ Remove an object from the place
o Add a sub-place to the place

e Remove . - h-place from the place

Now we have the place hierarchy, we can provide functions for ceuverting between

the coordinate system of this place and the coordinate system of the whole virtual

environtnent.

s “‘omvert a vector or a point from this place’s coordinate system to the environ-

k)
ment’s

o Convert a vecter or a point from the environreni’s ceordinate system to this

1 b] .
place’s coordinate system
e (iet the transformation matrix for the above conversions

The frst function is used when userA is trying to go throngh a wall of the house.
The viz .l world has to move away to prevent it. But the vector from the point where
userA is supposed to hit the wall to userA’s current position is in the coordinate
system of the house, not the virtual world. This vector hzs to be converted to
the coordinate system of the virtual world before it is used to translate the world.
The second funetion is used to convert the local user’s eye and hands position and
orientation from the environment’s coordinate system to the user’s current place’s

coordinat - s:nten,

One special property of places is whether they are open. If a place is open, the
user will be able to see outside the place from inside, or see wnside the place from
outside. In the case of closed places, the user can only sce the objects that are inside
of the place. We use this property to decide the visibility of places to the user. If
the current place is open, it is possible that the user can see objects i all the open
super-places along the current place hie:rehy until we find a closed super place.
This closed super-place is called the Top of the open places. The presentation of the
virtual world starts from the Top of the open places of the local user's current place,
and displays all the open sub-places and objects in them along the place hicrarchy.

Several functions are provided concerning the open property:

e Open the place

e Close the place

o Check to see if the place is open or closed

e Gei the Top of the open places of (i~ current place

Another property of places is port. The position and .o oi @ port defines @ space
which is guaranteed to be fice in the place. That is, the space of a port must not. be
occupied by any obiects or any sub-places in this place ai any time. Poits are used
to avoid confusing situations such as travsporting the user to a sub place while the
user is meant to be transported to the super-place of that sub -place. The port of
the house must not be in the kitchen or the bedroom, or in the same position as th:

chair or sofa. Two functions are provided for setting and getting a port.

e Set, the position and size for a port

o Get the position and size for a port

The default port position is at the center of the place.

5.5.2 Behavior Evaluation and Presentation

The user should be able to interact with the boundary objects of the current place,
the boundary objeets of the sub places and all objects located in the current place.
‘The evaluation of the event -handling behavior of a place invokes evaluations of event
handling behaviors of all the abeve objects. For example, the event-handling behavior
of the house invokes the event-handling behaviors of the boundary objects of the
kitchen, the bedroom, as well as the house, allowing the user to go through any door
to another place, and to stop the user if the user tries to go through any of the walls.
The event wandling behavior of the clock, chair and sofa are also called, thus the user
can move any of them around.
The animation: behaviors of all objects that are possibly visible from the user’s
current, place, including the oljects and boundary objects of the user’s current place,
- sub-nlaces, should be evaluated. if any of the sub-places is an open place,
w5 and sub-places should be evaluated using the same strategy. The objects
ace with an open door to the current place should also be evaluated. However,
infinite recursions could occur in cases where the current place has an open door to
the next place, which has an open Aoor to the third place, which has an opeu door to
the current place. Such cases have to be detected and evaluation terminated once 1t
happens. Just as we said in the ohject seciion, we do not want to repeat animation
evaluation of zny object in one {rame. 1t could result in undesired effects.
Similar to the animatior behavior evaluation, all possibly visible objects have to
be presented to the user. In order to prevent infinite recursions in each frame, the

place is tested before being, rendered and marked after the rendering is done.

5.6 Door Class

The Door class is also a sub-class of the Object class. It provides a navigation facility
for the user to move from one place to another while exposing the places on the other

side of the door to the user.

-J
ot

76

5.6.1 Navigation Related Functis s

The following functions determine the policy as to when and how the door should he
opened or closed, and when and how the user should be transported from the current

place to the other side of the door.
o Test if the door should be open

o Test if the door should be closed

Animate the door opening process

Animate the door closing process

Initialize user transportation

Transport the user from the current place to the other side of the door

The functions that help to implement the Door’s behaviors are:

Set the door’s status to openini. wpe s, closing, or closed
o Check the door’s statvs

o Test if the user is inside 2 place or outside

o Find out which place is on the other side of the door
The default policy offered by the Door class is:

e Whenever the user is close enough to the door, the door should he open. Oth-

erwise it should be closed.

e The door will gradually open towards omiside or inside (by rotating alons its
axis, which is its 127t or right edge) depending on which direction the user is
going. The door will be open towards outside if the user is going from inside
the door to the outside of the door, and vice versa. Otherwise, the user wonld
back away from thr: door to avoid a collision with it. If the user moves away

from the door, the door will start to close.

2 When the door is fully opened, the user is transported from his or her current
position in the eurrent, place to the center of the door position, then to the
place on the other side of the door. After the user reaches a position which is
farther from the door, the door starts to close and the user will continue to be
transported along the direction the user is looking until he or she decides to

stop by actually walking physically in the real world.

The evaluation of the door’s event-handling behavior invokes the testing functions
to cheek whether the door should be open or not, and set the status for the door to
be opening, open, closing, or closed. The animation behavior stimulates the door
opening, door closing, or user transport processes according to the door’s status.

irifferent doors may use different policies. The programmer can extend this Door

class, overloading any of the above functions to adopt a new nolicy.

5.6.2 Visible Places’ Behavior Evaluation and Presentation

Wiien the door is open, the user will be able to see what is happening in the neighbor
pince. When this place is an open place, its super-place and 21l open sub—-places of
the super place are probably visible to the user too. So are all the super-places up
along the place hierarchy until we find a closed super-place, which we call Top of
the Open Place. All these visible places have to be rendered and their animation
behaviors have to be evalnated.

The animation evaluation of the door evalusics the door animation behavior,
as well as the animation behaviors of the Top of tiile Open places and those of “is
ancestors.

The presentation of the door also renders the Top of the Open Places besides the

door.

5.7 Crystal Ball Class

The Crysisi 523! class is a sub ciass 0. the Object class. A ¢i- < al ball contains a
simall «.ewir 0 i a place, allowing the user to observe what is h. o oning in that place
from tiic user’s current place. We make use of the Link Object elass to implement the
Crystal Ball class. A link is made to the original place to produce the small version
of it within the crystal ball.

Since the user only has a small version of the original place and due to the fact
that device noise level is quite high, we do not allow the user to manipulate any
objects frem ihe current place. If the user needs to interact with an object i the
original place, the Crystal Ball class provides a jump-in facility. The event handting
behavior of a crystal ball wiil transport the user from the current place directly to
the port position of that place, if the user is within a certain distance to the erystal
ball, looking at it, and the user’s hand is pointing at it at the same time. Of course
any programmer can extend the Crystal Ball class and overload the default.

The evaluation of the animation behavior ¢f a crystal ball @ iggers the evaluation
of the original place’s animation behavior, s.uee Jhe user is e to see everything
inside the original place.

The presentation of a crystal ball is a little bit more complicated than simply
drawing a transparent sphere and the original place. In oeder o let the user see
inside, we draw the place with backlacing place houndary objects removed.

One possible problem is that sometimes the original place ic not drawn inside the
crystal ball since it has been drawn before. For instance, a user is in a place with
a crystal ball of the neighbouring placc. When the door is open, the neighbounring
place has to be drawn. But the mechanisi that prevents infinite recursions will
prevent this place from being drawn again inside the crystal ball. In order £ solve
this problem, we have to save the status of the original place and reset its status to
be undrawn, then draw the triging' place, and recover the saved status for the place

after the drawing is done.

-1

5.8 Useor {’lass

Users are a oo-aal type of object. A user may have more than one sub-object
depending on the VR devices locally available. The defanit user has two stth—-objects:
user’s eye and a user’s hand. Their position and orientation are controlled by the
real user in the real world. Whenever new data comes in, they are converted to the
coordinate system of the current place of the user from the environment’s coordinate
systean. The Eye Object also provides functions ta test if the user is walking or turning
in the physical world according to the data reported by the device. The Hand drawing
procedure proviged by the MR Toolkit draws the hand in the environment coordinate
system. The Hand Object provides a new function to draw the user’s hand in the
current, place.

One big difference between a user and an ordinary object is that when the user
is transformed (transported), he or she could be standing «ii v the real world.
In order to make the user feed that he or she is being transpo-ted. the whole virtual
world is transformed in the opposite way. The “cale, Rotate, T: o tas> and Trans{. . m
functions are overloaded in the User class. The transformation 1+ 10 o the uwe’s
current, place is converted to the coordinate system in the virtuel envi.onment, and
the whole environment is transformed by the inverse of the converted transformation
matrix.

The event handling behavior of the User class tests if the user should sta- walking,
stop walking, start flying, or stop flying. By walking we mean the user is transported
on the x-y plane along the direction the aser is looking. By flying we mean the user is
transported in the direction the user s looking. A function for setting the transport
speed is available.

If the user is in the walking or flying state, the animation behavior evaluation
obtains the user'’s eye orientation and transports the user in that direction at the
given speed.

When a virtual envirenment is built by using or extending the classes provided,

the User class provides an EnteringWorld function to start the environment and

79

keep it running. It also provides the LeavingWorld function to stop the environment
wheuever the user wishes to leave.

The EnteringWorld function initializes the environment first. It adds the user
object into a specific place, which is the user’s current place. The user along with all
the related information is then registered with the Session Manager through the local
Communication Agent. The local database will be updated and connections with
shared users will be established by the Compunication Agent when the registration
is done. Now the real user is supposed to he within the sensing limit of all VR devices
in the real world. When the environment begins to run, the user will be put at the
port position of his or her current place.

The environment execution process is a loop. For cach frame, requests from the
Session Manager or shared users are handled first. Then we check to see if the nser
wants to exit from the environment. If the user does, the Leaviug World Tutiction is
called. Before any behavior evaluation, all input data is obtaine | from the local VR
devices and processed.

Because the user can interact only with objects in the curient place, the event-
nandler behavior of the current place is invoked. For ordinary animation hebaviors,
all possibly visible objects must be evaluated. The top of the open places of the
current place is found and the ordinary behaviors are evaluated from the top place
down the place hierarchy. The always active behaviors are evaluated from the root,
of the place hierarchy (the world) every frame. In this way we implement behavior
culling and improve the response time of the environment.

Similar to the orcdinary animation hehavior evaluation, the presentation of the
environment starts from the top of the open places of the usei’s current place.

The LeavingWorld function calls the Communication Agent to inform the shared
users and Session Manager that the local user is leaving, then it terminates the

program.

S0

5.9 Shared User Class

The Shared User class keeps information ahont a shared user and offers the following

facilities to communicate with the shared user:
e Set the shared nser’s 1D, including user name, host name, and port number
o Get the username, hostname, or port number
o [istablish connection with the shared user
e Close the connection with the shared user
e Scend a message to the shared v
s Keceive a reply from that user
e {eceive a message from the shared vser
e Send a message to that user

The Inte. ¢ Transmission Control Protocol (TCP}) is used in the communica-
tion among siared users. In order to simplify the message receiving pro- dures, the
message sending procedures write the messz_e size before the actual message and
the message receiving procedures read the size first then read this specified length of
nessage.

The Shared User class also keeps a record of a shared user’s viewing places and

ving objects. Viewing places are all places which are possibly visible to the user
av.. the user’s current place, ireluding the current place. Crystal balls, open doors,
and open places are the reasons that a user inay have more than one viewing pla« -.
Viewing objects are objects which have multiple copies in a viewing place. For exam-
ple, if userB is in the bedroom, userB’s viewing places are the bedroom and the oven
because there is a erystal ball of the oven in the bedroom. UserB’s viewing object is
the clock which is a link object of the clock in the house. When userA is in the house,

userA’s viewing places are the house and the virtual world snee the house is an open

81

place and userA’s viewing object is the clock. The viewing place and viewing object
information are used to decide which shared users can see the local changes made
to a particular obiect so that the updated data can be sent to thenm These shared
users are called coworkers. UserA and userB are coworkers hecause both of them can
manipulate the clock.

The following funetions are available for the Communication Agents and Session

Manager to maintain their user lists:
e Set viewing places of the shared user
e Set viewiag objects in eact f the viewing places
o Set the shared user’s inferm-tion. including user 1D and the aboyre mformation
e Get the shaced user’s .. wwsion
o Decide if a shared user is a coworker of this user
o Add a shared user as a coworker of this user

¢ Remove a coworker

5.10 Cecinmunication Agent Class

Coramunication Agents update the databases for shared nsers so that the environment
looks the same for every shared user. At che same time, the network traflic shonld be
kept as low as possible. In order 1o meei the above two requirements, the local changes
should be sent ony to the corresponding coworkers. Communication agents manage
shared users and provide faciiities for VR programimers to update shared duta and
define their own protocols among shared nsers, The transaction lists keep records
of all the changes to the local environments. Requests from the Session Manager
and other shared users concerning the shared user list and database updates are also

processcd by the Communication Agents.

5.10.1 Shared User Management

Three functions are available to VR programmers to announce the local user’s joining

or leaving the shared environment, or switching from one place to another.
o Register the local user
e Remove the local user

e Move the local user from the current place to another place

Registering the local user involves three steps. First, the communication agent
collects the local user’s information including user name, host name, port number,
viewing places and viewing objects. The information is sent to the Session Manager
and the Communication Agent waits for the reply. The Session Manager sends the
information about the coworkers, so that the communication agent can set ap the
shared user list for the local user. The third step is to update the local database hy
executing the transactions received from the coworkers, or from the Session Manager
if no other users have such information.

Removing the local user {rom the shared environment also involves three steps.
The first step is to inform the local user’s shared users to remove the local user
as a coworker. The local Communication Agent will wait for confirmation to avoid
any problem that could be caused by network delay. Otherwise, a shared user’s
message sent 1o the leaving user before the quit message is received might arrive after
the leaving user’s program is terminated. The second step is to inform the Session
Manager that the local user is leaving the shared environment. If the local nser does
not have coworkers with the changes to any of the viewing places or viewing objects,
the corresponding transactions are transferred to the Session Manager. I the local
user is the last user in the shared environment, all changes made by always active
behaviors are transferred to the Session Manager too.

Moving the local user from the current place to a new place is cquivalent to
removing the user from the current place, and registering the user in the new current

place.

A two user example illustrating the maintenance of the user list was given in the

previons chapter.

5.10.2 Shared Data Management

Object. behaviors change the object in an application environment. Some of these
changes, like those produced by event handling behaviors, are made at only one
nser’s site. This type of change must he broadeas® to all coworkers immediately.
The second type of changes, performed by ordinary animation behaviors, occur at all
coworkers® sites, while changes made by always active animation behaviors occur at
all shared users’ sites. As long as these animation behaviors are initialized correctly,
the coworkers should he able to see almost the same resuits, even if the changes are
not. sent out every frame. However, the changes must be saved in order to initialize
a new user’s behaviors. One potential problem is that the results of these animation
behavior evaluations conld be very different after a period of time due to different
update rates of different users, or the time differences among different computers, even
though the behaviors are initialized correctly. For example, if userA is in the kitchen
watching the donuts cooking while userB in the bedroom doing the same thing by
looking at the erystal ball, suppose the donuts should be cooked in 30 minutes, due
to the time difference between the two computers, nuserA may see that the donuts
are cooked after 29 minntes and userB may see them cooked after 31 minutes. In
this case, the programmer should periodically force data synchronization for these
behaviors,

As a result of the above three types of changes, we have three types of shared
data. One is Regular type of data. They will be sent to all coworkers whenever the
Communication Agent receives such a request. The chair’s transformation matrix is
a Regular type of data. The second type is called Animation type of data and the
last type is AlwaysActive data. The donuts’ colors are AlwaysActive type of deia.
The last two types of data will be saved, but not sent to any other coworkers when

updated unless the programmer explicitly asks for it. The Communication Agent will

%4

send the data to update a new comer’s database when it is necessary.

Before & programmer updates a shared data for the local user’s coworkers, the
shared data st be registered with all Commumication Agents to get its internal
name — its data IID number. The reason is that the same data in different users’
programs is assigned different addresses in different processes. For a Commanication
Agent that receives an updated data to find the data’s local address and store the
data into that address, we have to associate the data’s different addresses with an
identical ID number so that the Communication Agent can find the data address in
any user’s process using the data II) number.

Two functions are available for data sharing:
o Register data (regular, animation or alwaysActive type)
e [Update a registered Data

The data registering function keeps a record of the data type, the data address
and the length of the data. It also records the DataOwner, which is the object the
data represents. The DataOwner of the chair’s transformation matrix is the chair.
DataOwner will be used to decide whether the sharved data is a part, of any viewing
objects, or whether the DataOwner is in any of the viewing places. The shared data
can then be sent to the corresponding coworkers by the data update function.

The data registering function returns the next available data ID. Shared data that
are registered before the application environment starts to run should have the same
IDs at all user’s sites as long as the order of their registration is the same. However,
the order of data registration can not be guaranteed to be the same at different nser’s
sites after the application environment starts running. If two objects, objl and obj2,
are dynamically created by two shared users, userA and userB, at the same time, the
shared data of objl and obj2 will obtain the same data I1} from userA and userB’s
local Communication Agents respectively. When objl is created on user8’s machine,
and obj2 is created on userA’s machine, they will get the next data ID. In this case,

the order of data registration on userA’s host is obj1’s shared data followed by ohj2’s

shared data; while the order of data registration on nserB’s host is 0bhj2’s shared data

followed by ohjl’s shared data.

In order to prevent data 1D conflict at environment execition time, one possi-
Lle solition is to have a centralized mechanism residing in the Session Manager to
distribute the next available data 1D, However, the Session Manager will become a
potential bottleneck if all the users are creating new ohjects and requesting data 1D
mmbers for the objects’ shared data. The response time al users’ sites will be in-
creased even if all the users are working in different places and do not realize what is
going on.

Another approach is to distinguish shared data which are originally registered from
different users” sites. Bach user’s new shared data have their own naming space. The
whole naming space is divided into a number of blocks. The first block is designated
for pre-defined shared data, which are defined before the application environment
starts to run. Bach of the remaining blocks is allocated for data created by one of the
shared nsers, including the local user. If a shared data is dynamically registered at a
user’s site, it will get the next available data ID in the block allocated for that user
from the local Communication Agent. The same data ID will be returned after the
corresponding registration statements are called on the coworkers’ sites. For example,
both nserA’s and userB’s Communication Agents have three blocks in their shared
data name space: the first block is for pre-defined shared data such as the donuts’
current colors, the second block is for userA’s dynamically created object data, and
the third block is for userB’s dynamically created object data. Suppose userA and
userB are both in the house and userA created a chair at the same time as userB
created a sofa, the chair’s shared data will get the first ID in the second block of the
name space while the sofa’s shared data will get the first ID in the third block of the
name space on both users’ computers.

The number of blocks in the name space depends on the maximum number of
coworkers of the local user. In the case of only a few users share an application

environment, they might all be able to see each other’s work, and thus the number of

86

blocks should be the number of users plus one (for pre defined sharved data). If there
are thonsands of users sharing an environment, the number of blocks should be the
maximum number of coworkers allowed for a user plus two (one block for pre- defined
shared data; one block for locally created shaved data).

The data update function checks whether the given data 1D is valid. it is, the
transaction is saved, so it can be used to update late comers’ databases. The shared
data is then sent to all coworkers of the dataOwner, if it is a regular type of shared
data. If a programmer explicitly requests animation data or alwaysActive type of
data to be updated for other users, the Communication Agent will send the data to

the corresponding coworkers.

5.10.3 New Protocols

VR programmers can use the functions below to define new protocols for shared users.

e Define a new command

e Invoke the new command

The command defining functieu records a programmer-specilied procedure and
the place where the procedure will produce changes. The place is used to find cor-
responding coworkers for the changes. Similar to shared data in different processes,
the specified procedure also has different addresses in different processes. A imique
command ID number is returned for the programmer to refer to the command later.

The function invoking the new command will call the specified procedure locally
as well as at the coworkers’ sites.

VR programmers can use this feature to create or remove an object, dynamically. If
the created object is shared by several users, its shared data mmst be registered at all
the users’ sites. An easy way to do this is to put the shared data registration statement,
inside the object creation procedure. Or, the programmer can define another new

commard just for shared data registration and call the command after the object s

=

88
created. The data registering function will return the same data 1D to all the shared

users.,

5.10.4 Transaction Management

Transaction manageinent is transparent to VR programmers. Whenever a shared data
is updated, or a new command is called (such as shared object creation deletion), the
transaction is saved at the local user’s site as well as the coworkers’ sites. The saved
transactions will be nsed to npdate databases for new comers.

Typically, shared data is npdated continuously for a number of frames. For in-
stance, when a user is dragging an object to a new position, the matrix for the object
is updated for all coworkers nntil the nser releases the object. The Commurication
Agent will only store the most recent version of the shared data so as to save memory
space.

When a new comer joins in the shared environment, if the new user is a coworker
of the local user’s viewing places or viewing objects, the local Communication Agent
will be asked to transfer the corresponding transactions to that new user. Indexes are
built, for cach of the viewing places and viewing objects so that the Cominunication

Agent can find their transactions.

5.10.5 Request Processing

Every Communication Agent checks for requests from the Session Manager or from
Communication Agents of the shared users, and processes these requests accordingly.

The following requests can be processed by a Communication Agent.

Add a shared user

o Remove a shared user

Update shared data

o (lall a new command

89

When a new user sends a register request to the Session Manager, if the local user
is a coworker of the new user, the local Communication Agent will get a request from
the Session Manager to add the new shared user into the local nser list and send the
required transactions to the new user.

A reguest to remove a shared user will be received if the shared user is leaving the
environiment. The Communication Agent will remove the user from the nser 1ot and
send a confirm message back to the leaving user.

When a data update request is received from a shared user, the Communication
Agent will find the local data address according to the given data D number and place
the new data in that address. The transaction will be saved in the local transaction
list.

To process the command invocation request, the Communication Agent simply

invokes the procedure specified by the given command [number.

5.11 The Session Manager

The Session Manager helps users to establish connections with their shared users when
they come to the shared environment. It also manages transactions and coordinates
database updates for new users.

The Session Manager is transparent to VR programmers. All the focal applications

communicate with the Session Manager through their Communication Agents.

5.11.1 Shared User Management

The Session Manager processes the following two requests from local Communication

Agents:

e Register the user

o Remove the user from the shared environment

The user registration function keeps a record of the new user’s information in-
cluding nser name, host address, port number, the user’s viewing places and viewing
objects. The information is nsed to compare with other shared users’ information
o find ont which nsers are the new user’s coworkers. The coworkers” information is
then sent to the new user: while the new user’s information is sent to the coworkers.
These coworkers will be instructed to update the database for the new user.

The nser removal function removes the user from the user list. If any of the
changes made at the user’s site do not have coworkers any more, the corresponding

transactions will be transferred to the Session Manager and saved at the manager’s

sile.

5.11.2 Transaction Management

To update a new user’s database, the Session Manager has to find out which shared
user, including itself, has the most nup-to-date information for the new user. This
information inclndes the transactions for the new user’s viewing places and viewing
objects. The most up-to-date animation and alwaysActive types of data are also
needed to correctly initialize the new user’s environment.

There may be more than one user having the necded information. Certainly every
user who is in the shared environment has the most up-to-date data of alwaysActive
type. In order not to send repeated transactions to the new user, the Session Manager
goes throngh the new user’s shared user list and decides which one is responsible for
sending the transactions about which objects and places. In case these users do not
have all the information, the Session Manager will find the remaining information
from the transactions saved at its site and send them to the new user.

When a user leaves the environment, if there are no coworkers for any of the user’s
viewing places or viewing objects, the Session Manager will accept the corresponding
transactions and use them to update a new user’s database later on. If the user is the
last one in the environment, the Session Manager also has to save the transactions of

all the alwaysActive shared data.

90

91

File System --------- Virtual World
directory | ---e----- place
file | --------- object

Figure 5.3: Analogy between Filesystem model and Place model
5.12 Extending Existing Computer Technologies

Looking back at the Filesystem model in the UNIX operating system environment,
we find that there are many similarities between this model and the VR environment,
model. Since there are many well-developed technologies in conventional soltware
development, we may borrow or extend them to get their counterparts for virtual
reality technology. In this section, we extend the Filesystem model for the UNIX
operating system and the software on top of it to produce a VR software system

model.

5.12.1 The Filesystem Model as an Analogy to the Place
Model

Figure 5.3 shows the correspondence between the Filesystem model and the Place
model. In the Filesystem model, the file system refers to the UNIX operating system
environment; in the Place model, virtual world refers to the whole VR environment.
Directories and virtual places have the same characteristics and are used for the same
purpose. Directories are special files while virtnal places are special virtual objects.
Directories look exactly like files from their parent directories. Virtual places are just

boundary objects if we look at them from the outside. Nevertheless, they can contain

Regular files Regular VOs
Directories VPs
Device files Representation of users

L - - -z

Unix domain sockets (BSD)

C ication
& Named pipes (ATT) ommunication agents

Hard links Link objects
& Symbolic links (BSD) & Crystal balls

Figure 5.4: Correspondence hetween all types of files and VOs

the basic clements of their models - files and virtual objects, which in turn may be
other directories and virtual places. In this way, they can be built into hierarchical
structures and used effectively to organize environments. Files and virtual objects
are the “meta” clements in the two environments to some extent. Everything in the
operating system environment is a file whereas everything in the virtual world is a
virtual object.

Fxamining the files and VOs more carefully, we can see that different types of
liles and VOs still have similar semantic meanings. There are seven types of files
in UNIX operating systems. Their correspondence to the types of different VOs is
shown in Figure 5.4. The most common type of file is a regular file whose content
is just data. And the most common type of VOs is a regular VO, which is usually
an application -defined VO. A directory is another type of file, while a VP is another
type of VO as discussed before. Input/output data is made available through device
files in the UNIX operating system. The same thing occurs in the virtual world. VR
devices, such as the Polhemus digitizer, EyePhone and DataGlove, are all represented
by a special type of compound virtual object — users. Unix domain sockets (BSD)
and named pipes (ATT) are used for interprocess communications. Communication

agents are responsible for communicating with the Session Manager and other users

92

in the shared environment. Hard links and symbolic links are essentially the same
from the user's perspective. Thev provide a copy of another file. The link objects
and crystal balls serve the same purposes as their connterparts do in UNIN systems.
Actually the idea of providing copies of objects and places originated frons the idea
of symbolic links for files. This borrowed technigue can provide nsers with aceess to
objects that are not in the users” current place. A link object is anothier display of
the original VO. A crystal ball provides another display of the original place, and a
navigation channel between the erystal ball’s current place and its original place.

The Place model and the file system model are similar to cach other i straeture as
well as in operations, such as create, move, remove (files, objects), and going from one
place or directory to another place or directory. The similaritios give us an indication
of the kinds of operations a VR software system should support.

However. there are a few differences between the Virtnal World and the file sys
tem. These differences include the structural difference and the difference in feedback
resulting from the characteristics of an Q8 and VR.

In a virtual world, objects have hierarchical structure becanse sometimes oper-
ations on a whole object, as well as sub-obhjects, must be provided. But in a lile
system, a file is not a hierarchical structure itself. We need extra functions to deal
with object structures.

Aunother difference is that the virtual world environment is an animation world,
while the file system is a text-based environment. For example, we nse “ed” to

“cd” command finishes, the prompt

navigate around in the file system. When the
pops up and the user is in the new directory. No other feedback is provided, although
the “pwd” command can be used to assure that the nser is in the right directory. Ina
virtual world environment, the user issues a navigation command by making a gesture
or selecting a command from a menu panel. What he or she expeets is that. a door will
gradually open, and he or she is moved throngh the door from the enrreni position

to the other side of the door. If the user is snddenly transformed from the current

place to another place, he or she could become confused. The user may not. know

93

Application

UIMS

Toolkit

Window manager system and graphics package

Operating system

Hardware

Fignre 5.5: Traditional software system model

that the navigation command has finished. Therefore, the animated visual, auditory,
or tactile feedback must he siven in a virtual world environment. Every VO in the
VW can have behaviors. Every behavior is actually an animation process. All active
hehaviors must be invoked frame after frame. In addition, many VOs’ behaviors are
initiated by the user. Usually, the user will he watching the process of the animation.
Some processes can also be processes of direct manipulation. For instance, the user

is dragging an object.

5.12.2 Extending the Traditional User Interface Model

We know that the file system is the environment model provided by the UNIX op-
eraiing system for application programmers. And the UNIX system is the lowest
level software that most programmers usually work with. To make the current soft-
ware more friendly to users as well as to programmers, there are window manager
systems, graphics packages, toolkits, and user interface management svstems on top
of the UNIX operating system. The traditional software system model is shown in
Figure 5.5 (from [14]).

Because of the similarities between the structure of the virtual world and the file
svstem, it is possible to build a VR software system to provide similar functionality

for VR environments as the UNIX operating system provides with the file system.

94

Application

VRUIMS

VR Toolkit

Crystal Ball

The Place System

VR Devices

Figure 5.6: VR soltware system model

Naturally, we would like to extend the upper level software in traditional software
system models too. Figure 5.6 shows the corresponding extension from the traditional
software system model to the VR software system model.

Corresponding to the Hardware level in Fignre 5.5, VR devices from the bottom
level associated with servers and probably some software packages providing hetter
services to the higher levels.

The operating system is a resource management system according to the file sys-
tem environment model. Every hardware device looks like a file to the programmer.
The operating system manages the static files and the rmnmning processes the started
executable object files. In comparison, the Place system does a lot of the operating
system work, like managing places and objects in a VR envitonment and managing
the behaviors of objects.

The window manager system in Figure 5.5 actually provides the user with a mul-
tipresence capability. The user can open several windows al the same time. He or she
might be in different directories and doing different work in cach window. The user
can switch amongst windows by just moving the cursor from the current window 1o
another window. The user can work very efficiently in this multipresence way. We

can even find examples of multipresence in a big factory. In a central control room

of the factory, there are many control monitors on which the situations in different

workplaces can he seen. The crystal ball in the VR software system model gives the
nser a mmltipresence ability within the virtnal world. The user can use many crystal
halls through which the situation in other places of interest are displayed. The user
can wateh what is happening in other places and jurp into a crystal ball, if he or she
wishos 1o, Then the user is in that place. He or she can look back into the original
place or return to that place later.

Above the Crystal ball level is the VR Toolkit. A set of tools will greatly improve
programming efficiency in the development of applications. In the VR Toolkit, dif-
ferent, interaction techniques can be provided. We can have different, kinds of VPs
sneh as rooms with doors, multiple floor buildings and parks. Transport facilities like
clevators and helicopters can be provided. Clocks and watches can be used to report
time to the user within virtual environments.

The top level of the software system is the VR User Interface Management System
(VRUIMS). Just like a UIMS, a VRUIMS is a mechanism to start the application,

call the functions provided by the programmer, keep the program running. This part

will speed np the development of applications.

5.13 Summary

This chapter presents the Multi-User Place system, an implementation of the Multi-
User VR system architecture described in the previous chapter. This Place system
shows that the Virtual Object Model, Virtual Place Model, and the Multi-User VR
system architecture do provide a feasible solution to the problem of response time
improvement and network traffic reduction. The next chapter will evaluate how well
the problem can be solved by the Place system.

The extension of traditional user interface model to VR is also discussed.

96

Chapter 6
Evaluation

The research goal of this thesis is to explore new VR techniques and provide high

level support to help VR programmers build high performance, multi user virtual
environments. In this chapter, system performance, including response time and
network traffic, is analyzed for the Place application systems. An example application
is used as the basis for an experimental evalnation. The response time and network

traffic are measured to see whether they achieve the expected performance.

6.1 Performance Analysis

The Multi-User Place System provides facilities to improve VR applications’ response
time and reduce the network traffic.

Typically, an application environment is composed of application objects. Let vw
be the set of objects in an application environment without nsing the Place System,
and VW be the objects in the same environment constructed nsing the Place System.

If the application environment is constructed using the Multi User Place System,
each application object can be a “meta” object and/or a hicrarchy of sub objects.
By “meta” object I mean an object that has its own behaviors, rather than just a
composition of its sub-objects. For example, the clock, which is the super object, of

the frame, the dial markers, the hour hand, the minute hand and the second hand, is

97

a “meta” object because it has an animation behavior of retrieving the current time
from its host computer besides invoking the animation behaviors of the hour hand,
minute hand and second hand.

Su we have
objeet = {OBJECT} U {subobj | subobj is a sub-object of object}

where OBJECT is a “meta” object.
The application environment can be a place hierarchy. Each place has its boundary

objects (composed of sub-objects of the place), contains application objects, and may

have sub--places.

place = boundary U object U subPlace

where
boundary = {obj | obj is a boundary object of place}
object = {obj | obj is an application object in place}
subPlace = {subplc| subpleis a sub-place in place}

For instance, the house includes the set of its boundary objects, the clock, the
chair, the sofa, as well as the bedroom and the kitchen, which include their boundary

objects and the objects inside them.

6.1.1 Response Time Improvement

The response time t,.q, of vw is the total response time of all application objects.

trsp(vw)= Z f'rsp(Obj)

objEvw
The response time of an application object is mostly due to the evaluation times
of the object’s event-handling behavior t., ordinary animation behavior t,¢ and

always active animation behavior t41,, as well as rendering time t,,q.

98

qh]

trsplobject) = te(object) + tora(0bject) + tu(object) + tea(object)
So we have

trsp(0) = D (Lew(00)) + tora(0b)) + Lurw(0b)) + tra(obj))
obj€vw

For the corresponding Place application system, the behavior evaluation time and

rendering time are denoted by Trwe, Tords Thtwy and Ty

Event—-Handling Behavior Evaluation

Tew(object)y = Z Tewi(0b7)
o, Eobject
Tew(place) = S Teilobi) + 3 Tawlob) + D Taulob))
objEboundary obj€object objesubl’lcB
where

subPleB = {boundary of subple|subple € subPlacc}
The subPlcB of the house is set of boundary objects of the bedroom and the kitchen.
Suppose the current place the user is in is:

cur Place = epB U epObj U epSubl

where cpB is the set of boundary objects of cur Place, cpObj is the set of application

objects in curPlace, and cpSubP is the set of sub-places in curPlace. We have
Tm:t(vw) = Tr-,,L((TU'I'I’)l(I,(T(I)

Therefore,

Tei(VW) Tey(curPlace)
teu!(vw) - tevt(vw)
Cosicepn Teut(007) + Lopiecpon; Tewt(00f) + Lopjecpsubricn Tem(0by)
anjemu "cu!(()bj)

100

where

epSubPle3 = {boundary of subplejsubple € epSubP }
Assume
T (objeet) = ta(object) where object is an application object

anel

Z ’I'r 1/[(0bj) + Z 7‘”:!(()1)]') S Ceur Place Z Tmlf,(()bj)

ohj€cpB obj€cpSubPlcB) obj€cpOby

Where Corpraee is the smallest integer which satisfies the above inequality.

In case of the honse, the event-handling behavior evaluation time of the boundary
objects of the house, bedroom and kitchen should be less than or equal to the event-
handling behavior evaluation time of the clock, chair and sofa. So ¢jouse = 1. For
places which have more application objects with more complicated event-handling

.

behaviors, epouse = 1 is definitely enough. .

&
Now we have

,rr-ut(v‘/v) < (Crurl’lnc‘e + 1) X Zobj&rp()bj Tﬂ!l(Obj)
I,.,,,(m.‘)) B Zobjému f’f’vl(()bj) /

If the application objects are equally distributed in every place and their Ten:{0bject)

are all the same,

Teut(vw) < CeurPlace + 1
Lew(vw) — Nptace

where Npjaee is the number of places in VIV. Therefore, using the Place system

to organize large, complicated application environments is quite efficient in saving
objects” event--handling behavior evaluation time.

In very simple application environments where all application objects are put in
a single place, the VW, there are no sub-places. So

Tevt(0by) =0
objecpSubflcB

And there is no need to have boundary objects or say Te, of the boundary objects
are (),

S Tews(obj) =0

obj€cpB

101
Then we have

7’0’”[(V”') — z.)b‘)ek'p()b‘] ’I‘r‘ul(obj)
t('nl (1"7“) Zu(»_iEuu' ,”,((Obj)
= 1

As a result, using the Place system for building single place application environ-

ment is as efficient as without using it in event handling behavior evaluation.

Ordinary Animation Behavior Evaluation

Tora(object) = Y Toralobj)
obj€object
Tora(place) = Z T,ra(0by) + Z Tra(oby) + z 'i::,.,,(y)l(-)
objEboundary oby€Eobyeet ple€sublluce
where
, Tora(place if place is open
7! (place) = | 1) ’ '

> obj€houndary Tora(0by) otherwise
For example, T, ,(house) is equal to Tora(house) because the house is an open place
and the user can see the inside of the hounse if he or she is in the virtual world.
Whereas T, (kitchen) is equal to the animation behavior cvaluation time of the
boundary objects of the kitchen becanuse the user can only see these houndary objects
from outside of the kitchen.

There are two special types of objects whose ordinary animation hehavior evalua-
tion are more than just the evaluation of the object itself. One is the door object as a
boundary object of the place. Whenever the door is open, the evaluation time is not
only Tora of the door object, but also Tyrq of the top of the open places of the place
on the other side of the door (See definition of “top of the open places” in previous
chapter, section 5.5).

Let

door = {DOO R} U {subobj}subobj is a suly-object of door}

and topNeighbor P be the top of the open places of the neighbor place on the other

side of the open door.

102

S ohjedoor Tora(0b7) + Tri(topNeighbor P) if door is open

cToraldoor) =
Zubjeduor 1 urrl(()b]) otherwise

When the user is in the kitchen and the door to the house is open,

T, ra(katchen Door) = Z Tora(0bj) + Tora(virtualWorld)
obj€kitchenDoor

The default door policy is to open the door only when the user is within a certain
distance of the door. Most of the time at most one door is open for the local user. In
this way, Thra(topNeighbor P) can be saved.

Another special type of object is a crystal ball. There may be one or more. crystal
balls in a place. Each crystal ball introduces the ordinary behavior evaluation of its
original place.

Let

crystal Ball = {CRY SBALL} U {origin Place}

where ('RY SBALL is the crystal ball drawn outside of the original place and origin Place
is its original place.
We have
Tora(crystal Ball) = T,,q(origin Place)

As we can see from Typq(door) and To,q(place), open places consume more ordinary
animation behavior evaluation time. By default all places are closed. In this case,

topNeighbor P will be neighbor P which is the neighbor place itself. And

Tra(place) = 37 Tora(obj)
obj€boundary

an(l(]’l“("‘) = Z Tord(Obj) + Z Tord(Obj) + Z Tord(Obj)
obj€boundary obj€Eobject obj€subPlcB

where subPleB = {boundary of subPlc|subPlc € subPlace}.

Let epTopPlace be the top of the open places of the user’s cur Place,

cpTopPlace = cpTopB U cpTopObs U cpT opSubP

103
where cpTopB is the set of the boundary objects of epTopPlace, epTopObj is the
set of application objects in epTopPlace, and epTopSubP is the set of sub places in

cpTopPlace. We have

Tord(VW) = Tora(epTopPlace)
Torri(V”/) 71(”
tora(vW) tora(vVW0)
ZObjECpTopB Tﬂrd(()bj) + zﬂb,jEvrTop()le ’1‘01‘11(0(’].) + z,.[(-e(.,,'[',,,,_q”,,l: I::M(p[(‘)—
anjEuw Iur,l(()bj)

d(cpTopPlace)

When all places are closed,

cpTopPlace = curPlace
Ta(VW) Tora(cur Place)
tora(vw) - tord(VW)

ZObjECpB TOTd(Obj) + Zobj&cp()bj 7107‘11(01).7.) + Zubjér;n.%'uhl‘er 'I:n'rl(”hj)
ZObjEmu tm‘(l(()[)j)

Usually boundary objects do not have ordinary animation behaviors except open-
ing doors. Plus, there is at most one door open at a time according to the defanlt
door policy. So

Z Tora(0by) + Z Tora(0by) — Tora(door) =0
obj&cpB obj€cpSubPlcB
Therefore,
Tord(vw) ZobjECpObj Tord(OI)j) + 7107'(1((1007')
f'OTd(vw) ZobjEmu {‘OTd(Obj)

ZobjECPObj TOTd(Obj) + ZobjErloor Turll(ohj) + ,I'orti(71'“7:.(11"1")74))
Z:objemu t(lTll(()bj)

Suppose there are N..,, number of crystal balls as objects in the user’s cur Place,

T VW)
tora(vW)
S objecpObjcrys Tord(007) + Tptceoriginp Tord(Ple) + Topjedoor Tora(0bj) + Tora(neighborl’)
S objevw tora(0DF)

104

If all application objects are equally distributed in places, and each object has the

same T4, every place has the same ordinary animation hehavior evaluation time

T,ea(1’). Then we have

Z 7‘nrd(0bj) + Z Torll(()bj) - Tor(l(P)

uhj€cpOby—crys ohjEdoor

S Todlple) = Neys % Tora(P)

ple€originl’

Tora(neighborP) = Tog(P)
Z tord(Obj) = NplarﬂxTorrl([))

obj€vw

S()
and(vw) _ 2 + Ncrystal

to-,-,[(‘UUJ) - Nplacf

However even when all places are open, we have the mechanism to prevent any
repeated behavior evaluation. In the worst case,

Tord(VW)

=1
tora(vW)

Always Active Animation Behavior Evaluation

Tuw(object) = Y Tan(obj)
obj€E€object
Taw(place) = S Tuwlob) + Y Taw(obi) + 3 Taw(ple)
obj€boundary obj€object plc€subPlace
'ulw(vm/) = Z Talw(Obj) + Z Talw(Obj)
objeVW obj€boundary of places

where places is the set of places in VW.
Boundary objects don’t have always active animation behaviors unless specified
by VR programmers. So
> Tuw(obj) =0
obj€boundary Of places
Therefore,

Taw(place) = Z Tatw(0by)
objEVW

105

Ta(VW) _ LobjeVW Tatw(0bj)
talw(vw) ZobjEnw tdllU(Obj)
= 1

Rendering

Similar to the ordinary animation behavior evaluation,

Trna(object) = Z Trud(0bg)

obj€object
Trna(place) = Z Trna(0b7) + Z Tena(eby) + Z 'I'r'm,(pl(-)

obj€boundary obj€object ple€subPlace

where
' Trnd(place) if place is open
Trnd(place) = .)
Eobjebouudary Trnd(Ob]) otherwise

Y objedoor Trud(007) + Tena(topNeighbor P) if door is open

Trud(dOOT) =
Y ohjedoor Trna(0by) otherwise
Tend(crystalBall) = Trua(CRYSBALL) + T,na(originPlace)

Therefore,

Trnd (4 W)
“tena(vw)
Trnd(epT opPlace)
trna(vw0)
YosjccpTopB Trnd(007) + LopjecpTopos; Trnd(005) + LpteecpTopsubr | Tua(ple)
Lobjeuw trnd(00])

When all places are closed,

Tond(door) = Tra(DOOR) + Torg(neighborP)

Trfnd(place) = Z T,-"d(Obj)
obj€boundary
Trud(Pl“CC) = Z Trnd(Obj) + Z Trnd(Obj) + Z ’llrnd(()bj)

obj€boundary obj€Eobject objesubPlcB

106
So
Toa(VW) Tl cur Place)

brra(020) - (D)
- Z"MEWJH Trnrl(”bj) + Zr;bjEcp()bJ 7;'1ul(0bj) + Zobjeppsubplcg TT,L,[(Obj)
Z(ijEmu ,'ruri(()bj)

Suppose

Z ’rrnd(()()]’) + Z Trml(()bj) = Z T:rnli(Obj)

ovhyj€cp B objEcpSubPlcB obj€cpObj
We have
la(VW)

Lond (VW)
2 x ZobjEcp()bj-—crys Tord(Obj) + Zplc&origini’ 7107.,[(])1(2) + T,..,,_,[(".Cighl)O’l‘P)

B ZobjEuw f"‘nd(Obj)
3 + N('rys
/Vplm'r

Best Case
’I'r.vp(VM/) = . 'nll(v‘/v) + Torri(vu/) + Tnlw(VW) + Trnd(vvv)
= T,u(curPlace) + Tora(epTopPlace) + To(VW) + Trna(cpTopPlace)

The best case is when the following three conditions are all satisfied at the same

time.
e Therce are no erystal balls.
(4 2l
e There are no open places.
e All doors are closed
We now have

Trop(VW) = Tou(curPlace) + Torg(cur Place) + Tor(VW) 4 Trna(cur Place)
= Trsp(curPlace) + Top (VW — curPlace)

107
Because

T,sp(curPlace) = Trgp(epB U epSubPleB) 4 T, gp(epOb))

Suppose

Trsp(epB U epSubPleB) = Trep(epObJ)

which means the response time of the boundary ohjects of the user’s cur Place and its
sub-places are the same as the response time of the application objects in cur Place.
This is a conservative assumption when the application environment has enough ap-
plication objects in each place.

As to To (VW — cur Place), VR programmers can distribute the time consuming
compntation of all always active animation behaviors to different. compnters and sen-l

the results to the users’ hosts periodically. In this case,
Toatw(VW — cur Pluce) & Trgp(cur Place)

As a result,

T,p(VW) 2 X Trsp(epOby)
trsp(VW) - Noptace % Trgp(epOby)
N 2
- Nplur‘(‘

Worst Case

The worst case is when-all places in VW are open.
Trop(VW) = Tei(cur Place) + Toya(VW) + T (VW) + T (VW)

In this case, only event-handling behavior evaluation time can be saved. Always
active animation behavior evaluation time will remain about the same; while ordi-
nary animation behavior evaluation time and rendering time will be increased by the

amount of time of evaluating and displaying boundary objects respectively.

Tet(VW) = T.,(curPlace)

108

i

tra{vw) + z T.,ra(0by)

obj€placeB

T, (VW)

’I‘ulm(VW) = f«,l[m(v’ll))
rl‘”"'l(V W) = I’T"'l(l”“}) + Z -rrrnll(()b.j)

obj€plnceB
where place B = {boundary of place|place is in VW . If the time spent on evaluating
and displaying the boundary objects is more than the time saved from event-handling
hebavior evaluation, i.e.
Z (T ral0b)) + Tra(0by)) > Lot w) — Tout(cur Place)
objEplaceB
‘The overall response time will be greater than the system response time without using

the Place system. That is,

Trsp(VW) S

trsp(vw)

6.1.2 Network Traffic Reduction

We will consider the number of transactions transmitted among shared users. Let
nt(vw) be the total number of transactions transmitted over the network if the Multi-
User Place System is not used to build vw, and let NT'(VW) be the total number of
transactions if the Multi-User Place System is used in the construction of VW. All
transactions are initiated hy users’ actions, such as entering the shared environment,
making changes in the environment, switching places, or leaving the environment.
Let nt(user) and NT(user) denote the number of transactions initiated by the user’s
actions. Now we have

nt(vw) = > nt(user)
user€sharel/ ser

> NT(user)

user€sharel/ser

NT(VW)

where sharel/ser = {user | user is in the shared environment vw or VW}.
When the user enters vw or a place in VW, related transactions must be trans-

ferred to the user to initialize his or her database. After the environment starts

{04
running. whenever the user makes changes. the results should be broadeast to the
coworkers. When the user exits from vw or any place in VW, some transactions are

needed for bookkeeping. So

nt(user) = nlgaluser) + ntpg(user) 4+ nte g (user)

NT{user) = NTnu(user)+ NTo, (wser) + NT. o(user)

Environment Initialization

In vw, all objects have to be updated to initialize the environment. correetly for the
new user. But no initialization is needed when the user switches places. While i
VW, when the user enters his or her first place and whenever the user switches places,
the user’s viewing objects, objects that are in the user’s viewing places, and ohjects
that have the AlwaysActive type of shared data have to be updated. We represent

these objects by updateSet; when the user is in his or her ith place in VW, e,

updateSet; = vicwSel; U sharceSel

where
viewSet; = {obj | 0bj is a viewing object of the user wha is in the ith place} U
{obj | ohj is in a viewing place of the user who is in the ith place}
shareSet = {obj | 0bj has the AlwaysActive type of shared data}
We have
i (user) = Z nlii(0by)
objEnw
Nrurf’lur:-

NT'I.nit(u.ger) = Z Z N,I'ini!(()l).j)

=1 obj€upduleSet,
where ntini(0bj) = NTi(0bj) for all application objects, nti(oby) and N7y (oby)
are the number of shared data items in obj that have been updated, and Ny prag, 15

the number of places the user has been in.

110
Suppose application objects are uniformly distributed in the places in VW and
the average mmber of viewing places is NoivPtace s the number of objects in viewSet;
is Nowwwttaee times of the number of objects in one place. Assume the number of
objeets in shareSet is abont the same number of objects in one place, we have

er'inzt(”'“”:r) _ /Vrurl'lucr X (1 + /Vumuf’lnrrv)

1k (user) Nplaer

where Nppuee is the number of places in VW,

Environment Updating

Once the environment starts to run, the local changes have to be sent to shared users
to ensure a consistent view of the environment. In vw, the changes have to be sent
to all other shared users, because it is impossible to tell the users who can or can not
see the changes. However, in VW, if an object is modified, the result has to be sent

to only those users who can see the object. If we use coworker(obj) to represent the

coworkers of obj, that is,

coworker(obj) = {user | user € sharcl/ser and obj € viewSet; of the user}

where 1 < 1 < anrl’lurf-» we have

7""1‘1;71(“3(’7') == Z Nshnrcl/ser X ntrun(Obj)
objEvw
N’['N,”(US(’,T') = Z Ncoworker(Obj) X NTrun(Obj)
objEuirwSet,

where Noret-ser 1 the number of shared users in the environment and Nooworker(0b])
is the munter of coworkers of the obj.

If the Animation or AlwaysActive types of shared data of an object is modified,
the result is saved but not sent to anyone else. Thus the transaction does not count in
NTrun(object). Because ordinary animation behaviors and always active animation
hehaviors most likely modify the above two types of shared data, most of NT,..(0bj)

result from event-handling behavior evaluation. vw could use the same policy so that

111
nt.un(0bj) only counts transactions resulling from obj’s event handling behaviors.

But we can still assume,

ST ontralob)) = 30 NTow(ob))

objEvw ohy€rewSet,

Suppose every object in VW has an average number of coworkers N porters then

NTv(user) Neoworker X Lobjemewset, NT,un(0b))
Nty (wser) Naharet'ser X 2oty gme o (0b))

< Ncuwurkrr

- Nsharrl Iser

Environment Termination

When the user quits from vuw, if he or she is the last one in the shared environment,
all transactions must be transferred to somewhere and saved for new users. If there

are other users in vw, no transactions need to he saved. Thus

Y objevw Nexit(0bj) if sharelser — {user} = {}
Ntezir(user) =
0 otherwise

On average, the probability of wser heing the last user in the environment is
1/ Nsharetsser- Therefore,

Z(;bj&mn ntf';x:il (Obj)
Ns/mr('llsrr

nlegi(user) =

When the user leaves a place in VW, the transactions of the objects that do
not have any other coworkars have to be transferred to the Session Manager. 1f the
user is leaving VW and he or she is the last user in the shared environment, the

AlwaysActive type of shared data have to be saved by the Session Manager too. Now
Y Y1 Y

we have
NrurPlar— , ,
NT.pi(user) = Y ST NTalebj)+ DY NT. (obj)
i=1 objE€uirwSet, obj€shareSet
For oby € viewSet,,
) NT..ii(0bj) if coworker(obj) — {user} = {}

NTpir(0bj) =

0 otherwise

112
The probability of user heing the last coworker of 0bj is 1/ Neoworker (0bj). S0

. NTiu(obj)
NT,, (oby) = 'N__Tl—(—obj

If the numbers of coworkers for all obgs are the same, say Negworker s

NTr-:r:il (Ob.])

NT. . (obj) = ~
coworker

rrit

As a resnlt,
ZobjEuimub"f't. NTezit(Ol’])
waarkcr

S NT,(0bj) =

objEvirwSet,

Similarly, for obj € shareSet,

NT..i(0bj) if sharellser — {user} = {}

NT. ..(obf)

et .
0 otherwise
— NTPzit(Obj)
Ns/mrf'(/s(u,-
’) obj€shareS NTezi objy
Z NT,.I,-t(obj) = 3 bj€shareSet o])
Ns/mrrl_lsm-

obj€shareSel
N
S,

N, @ o . P
Nr]‘,.rit(?l,ﬁfﬂ') — i:tl ritac EobjEuir'wat, NTextt(Ob.])

+ EobjEshareSet NTt’Iii(Obj)

Nroworkrr Nslmrel/ser

We have

Neur Plac - (ob] .
E;:rlur 4o zanEmrw‘Setl NT"'I"(ObJ) + ZOb]EsharcSet NTc:nt(abJ)

N7 (‘.’J?il(us("r) — Ncoworkcr l,vshnrel/ser
7’-f'rrit(“3€7') Eab}évw 7ltez|t(abj)
Nenarel ser
NeurPlace ;
Nshare”st'r v Ei:—fi‘r e zobjéviewSetg NT?:rit(Ob]) +
Ncmuorkrr Zob jEvw ntemit(ObJ)
)

Eobjeslmreb'et NTP-’L‘il(Obj)
Zob; Erw ntfl‘ii(Obj)

where nte(0b5) = NTezir(0bf) for all application objects. ntezi(oby) and NT..i:(obj)
are the number of shared data items in obj that have been updated.
Suppose the application objects are equally distributed in all places, the number

of objects in viewSet; are Nyiewpiace times of objects in one place. Thus

NeurPlace .
Z:i:ri" ¢ EobjEviewSei. NTPﬂ’it(Ob]) Nt‘urf’lace X Nuiew}"luce

Zobjemu "'te:zrit(Obj) Nplace

113
where N,icwpiace is the average number of viewing places, and Ny is the number of
places in the application environment.

Assume the number of objects that have the AlwaysActive type of shared datais

about the same number of objects in one place, then

Zolr."""hareh'f't A,Tt‘-l’“(()bj) _ l

Zob_jému ”tr‘.z:il(()b.]) N]'lur‘t‘
Now
NTexit(u'SeT) _ Ns/m'rel./se-r % ‘Ncurl’lucr X Nnu'ml'lm'r- + 1
nterit (u.t;({’]') "V('uurork('r Nplu ce N;llu('r
Best Case

The best case happens when no user has other viewing places besides the current
place, and every user stays in the current place long enough before switching to
the next place so that the cost of initiating and terminating places can be ignored
compared to the number of transactions at run time. In an environment where no
user has other viewing places, Neyworker 1s reduced to the number of nsers sharing the
same current place. That every user remaining in the current place long enongh will
reduce the overhead of initiating and terminating the user’s places and improve the
efficiency of the shared environment.
Suppose NT(user) and ni(user) are the same for every user,

NT(VW) ZILSETESILH.TE‘USPT NT(’U.S(“J')

nt(vw) Y useresharelser ME(USET)

Nahareiser X NT (user)

Naharetrser X nt(user)

NT(user)

nt(user)

NTiir(user) + NToy(user) + NT, i (user)

ntii(user) + nlpm(user) + nt g (user)

Since

NTai(user) + NTopu(user) < NTou(user)

ntii(user) + ntegi(user) < nbpg,(nser)

114

NT(VW) NT,un(user)
W T by (user)

Z(;bje‘uimu.‘:'et, Ncawurker X NTrun(Obj)
Y objenw Naharetiser X Mrun(0bg)
Neguworker X Loobjeuiewset N Trun(0b])
Ns/m,.,,(/s" X ZobjEmU 7I,f,,-un(0bj)

Assume there are equal number of objects in each place in VW, and NT,,.(0obj)

and nlum(0bj) are all the same for every object,

NT(|4 W) Ncoworker % 1

7Lf.(1)?l)) JIV.‘;/mrr'I/srr Nplacr

Worst Case

The worst, case is when all users can see every place in VW and they are switching

from places to places all the time while making very few changes. We have,

updateSet; = {obj | obj € VW}

So
N7111Lit(u'q67') = NeurPlace X nt,-,,“(user)
For NT,..(user),
N(‘muork(‘r = Nshare”srr
viewSet; = {obj | obj € VW}
Then

NT o (user) = ntpyn(user)
As to NT.zi(user), because
viewSet; = {obj | obj € VW}
shareSet C wviewSet;

Ncoworker = J,VslmreUser

we have

NT r{user) = Newrprace X i user)

Because

NT(VW) _ Zuserésharr”st'r 'bT(“S(W')

7I,t('U'lU) ZttserEshar('”srr 71.1,((1.9(57')
Zuse‘rEs/mre”ser(NT!.H“(“S('T) + er‘run(”'w'r) + IV,[’,.J.,',(U.H'(‘7'))
Zuseres/mre”st’r(ntinil(u":('r) + 7"[7‘1171(""“'7.) + ""f'J‘il(""q('7'))

and we assume that all users switches places very often but make few modifications,

NTop(user) & NThi(user) 4+ NToq(user)

ntom(user) < nlpi(user) + nteyg(user)

So we have
NT (VW)

= N« ur Place
nt(vw)

6.2 Application Example

An example two-user application has been built using the Multi User Place System
to demonstrate the system’s functionality. It is a two-user application, with one
user using the Eyephone and Dataglove and the other user using the ADL-1 and
Polhemus Isotrak for the user’s eye and hand position and orientation. The same
two-user example application has also been built without using the Multi- User Place
System. In this section, the application built using the Multi- User Place is refered to
as the PlaceApplication. while the application that does not nse the Place system is
refered to as the NoPlaceApplication. The response time and network traffic of the
two applications is compared with each other to see if the response time is improved

and if the network traffic is reduced for the PlaceApplication.

116
6.2.1 Multi-User Place System Application

The example application environment, used from chapter 3 to chapter 5, is con-
structed according to the Place model. Figure 6.1 shows the hierarchical structure of
the application environment.

In the example environment, there are two sub-places (the kitchen and the bed-
room) in the house which is an open place in the virtual world. The clockLink object
in the bedroom is a link object of the clock that is in the house, while the oven(Crystal
is a crystal ball of the oven that is in the kitchen.

The source code for this environment is given in appendix A.l.

Some of the application objects, such as donuts, are simple objects. Others, like
clock and chair, are composed of sub-objects. Figure 6.2 shows the hierarchical
structure of the clock object.

The clock is an object that reports the current time. The ordinary animation
behavior of the clock retrieves the time from its host computer, informs the hour
hand, the minute hand and the second hand about the current time, then invokes
their ordinary animation behaviors to adjust their angles so as to display the time.
The code for the clock is in appendix A.2.

In order to allow the users to re-arrange the position of an object, the standard
VObject class in the Place system is extended to an AObject class. The event-
handling behaviors of the AObject class tests whether it is grabbed by the local
user’s hand, and translates according to the hand’s movement if grabbed. The ap-
plication objects, including the clock, chair, sofa, table, and bed, are all instances of
the AObject class.

Whenever an object of class AObject is grabbed and moved to a new position,
the other user should be informed of the transformation, if it is possible for him or
her to see the object. In the constructor of the AObject class, the object matrix is
registered wizh the local Communication Agent. When the object is moved, the data
updating function is invoked to send the updated matrix to the other user.

Appendix A.3 shows the source code for class AObject.

Vworld

Figure 6.1: Hierarchical structure of the application environment,

/

(ygrassland)

N fa.n)

=]
\ - | (donutl)
‘*‘ i donut2)

/(ovenCrystal)

/
/ B
house | — bedmorpj —{ ‘bhed)
\ 3 :
\\ o
\ I
* (_clockLink)
(clock)~
(' chair)
Y sofa)
: place

: object

118

-

-~
1
’

4

’ A .- -
;S s
/ /
/'/
/// o mTTT -
(clock) —---—= 1t hourhand !
§ eI TTToe S ' b . object
.\ minute hand } (L % !
RPN AR i ") & sub—object
*_ second hand } S - -

il I

Figure 6.2: Hierarchical structure of the clock object

6.2.2 Response Time Improvement

The same two-user example application has been built without using the Multi-User
Place system. This is similar to SIMNET [5], DIVE [7], and BrickNet [37] with
same contents for both users, the event-handling behaviors and ordinary animation
behaviors of all objects are evaluated. All the objects in the example environment are
rendered, whether they are visible to the local user or not. If one user drags an object
to a new position, the object’s updated transformation matrix is sent to the other
nser even though the object may not be visible to that user. It is not appropriate to
build the house environment using BrickNet with the two clients, userA and userB, in
different worlds. First, if userA’s world is the kitchen, anc userB’s world is the house
plus the outside of the house, while nobody is in the bedroom, it is not clear where
the server can find all the objects in the bedroom to lease them to userB when userB
wants to go into the bedroom. Second, there is no intuitive navigational facility with
animation feedback available for the users to go from one place to another. The users

have to select a menu item to be taken to another world using a “dynamic portal”

119
mechanism.

In the tests, userB enters the kitchen first, userA then enters the house and starts
to move the chair around until the program quits after 1000 updates. The time spent
on communication (com), evaluation of event-handling behaviors (evt), ordinary an-
imation behaviors (ord), and always active animation behaviors (alw), and rendering
(rnd), as well as the update rate are measured for userA and userB in both applica-
tions. The test results for the PlaceApplication are then compared with the results
for the NoPlaceApplication to determine the response time improvement for userA
and userB.

The communication time can be hard to determine if the time that the two users
share the environment is different. The longer the two users sharve the environment,
the longer the communication time is. The event-handling behavior evaluation time
varies according to the users’ activities in the environment. If a user is always moving
an object around, this user’s event-handling behavior evaluation time is longer. The
ordinary animation behavior evaluation time is about the same for every test in this
house environment. As we will see, the always active animation behavior evaluation
time increases as the update rate of the application increases, while the npdate rate
is mostly determined by the rendering time, which increases as the user looks at more
and complex objects, instead of few and simple polygonal objects.

In order to show that the response time is improved for both users in even the
worst cases, the two users always enter the environment at about, the same time, and
look at as many objects as possible. Because we don’t have the dataGlove for user3,
userB can not do the “grab” gesture to drag any objects around. But, userA always
moves the objects around for as long as possible.

Table 6.1 and table 6.2 show 5 test results for userA and userB in the NoPlaceAp-
plication; while table 6.3 and table 6.4 show the results in the PlaceApplication.

Figure 6.3 compares userA’s average performance data in the NoPlaceApplica-
tion with its average performance data in the PlaceApplication, whereas figure 6.4

compares the average results in the two applications for userB.

120

test No. comJ evt, I ord | alw] rnd update rate
(seconds) (updates/second)
test | 231205 3.2 1.6 154.8 5.5
test 2 2.11220] 3.0 1.4]151.8 5.5
test 3 1.9]232] 3.1 1.5]I57.7 5.3
test 40 2.4 (243 3.5 1.5 153.6 5.4
test 5 1.9 12231 3.0 1.3]159.2 5.3
[average || 2.1 [22.4 [3.2] 1.4 [1554 | 5.4 |

Table 6.1: Test results for userA in the NoPlaceApplication

test No. || com | evt | ord | alw | rnd update rate
(seconds) (updates/second)

test 1 1.7110.4 | 2.8 2.3 | 186.8 4.9

test 2 1.9 1107 27| 1.8 185.6 4.9

test 3 1.7112.11 3.4 1.7 188.9 4.8

test 4 2.0[11.7] 3.2 | 2.0 i86.2 4.9

test 5 1.9]11.01 291 2.2 | 186.2 4.9

average | 18] 11.2] 3.0] 2.0 | 1867 | 4.9]

e

Table 6.2: Test results for userB in the NoPlaceApplication

test No. [[com T evt | ord I alw | rnd update rate
(seconds) (updates/second)
test 1| 2.6|11.6| 1.9} 3.4]49.9 14.2
test 2| 22126 1.9} 3.5|5L.7 13.7
test 3 2.4 (126 2.0 3.5|53.6 13.4
test 4 231|118 L.7]| 3.6 | 50.3 14.1
test Hy 281126 1.8 3.9]49.9 13.9
[average | 25 [122 1.9] 3.6 [5L.1 | 139 |

Table 6.3: Test results for userA in the PlaceApplication

test No. || com revt, | ord | alw | rnd update rate
(seconds) (updates/second)

test 1| 2.9]7.6] 1.3] 2.6|91.5 9.1

test 2| 231 78]09] 291963 9.0

test 3 2.0 8.6 | 1.1] 2.9|96.7 3.9

test 4| 24|81 0924|928 9.3

test H || 2.48.0[1.4] 3.0]934 9.2
[‘average | 24 8.0 [1.1 [27]94.1 | 9.2

Table 6.4: Test results for nserB in the PlaceApplication

180 -

160 NoPlace —

140 +

120 -

userA
test 100
result
(seconds) 80 |
60 +

40

20 +

0 = = |

Place —

N

o B Y

PRV = |

nll

corm

evt,

ord

alw

rud update rate
(updates/second)

Figure 6.3: Compare userA’s results in both applications

121

122

180

160 NoPlace — -
Place —

140 - -

120 -
userl3
test 100]
result]

(seconds) K -

60 + .
40 + -
20 b =
0 ~n in S = n 1

com evt, ord alw rnd update rate
(updates/second)

Figure 6.4: Compare userB’s results in both applications

We can see that communication takes about the same amount of time for userA
and userB in NoPlaceApplication. The communication time for the two users in
PlaceApplication is more than the communication time in NoPlaceApplication be-
cause the transaction management is more complicated, and takes more time in
PlaceApplication than in NoPlaceApplication when userA drags the chair around
and the fan is running in the kitchen.

In both applications, userA uses much more event-handling behavior evaluation
time than userB, because userA is moving the chair around and userB is not changing
anything in the kitchen. UserA and userB do save some event-handling behavior eval-
nation time in PlaceApplication over the NoPlaceApplication, since only the objects
in their current place are evaluated.

(omparing the ordinary animation behavior evaluation time for userA and userB
in PlaceApplication with the time in NoPlaceApplication, PlaceApplication saves
time since it only evaluates the clock’s time-reporting behavior for userA and the fan
blades” turning behavior for userB.

Only the two donuts in the example environment have always active baking be-

haviors. The baking behavior of each donut keeps changing the color of the donut

r application ” com | evt]71‘(1 I alw [rnd “ update mt‘vl

without Place 2.1 224 3.2 1.4 | 1554 H
with Place 2511221 1.9 3.6 5l 13.9
[improve (%) [[-19.0 [45.5 [40.6 [-157.1 [67.1 || 61.2]

Table 6.5: Compare the test results of userA in NoPlaceApplication and in PlaceAp-
plication

[application T(‘Oln | evt Tord | alw Trnd ” update rn.t.(-l

without Place 1.8 (112 3.0 2.0 | 186.7 1.9
with Place 241 8.0 1.1 271 94.1 9.2
[improve (%) [[-333128.6 [63.3]-35.0 | 19.6 | 16.7 |

Table 6.6: Compare the test results of userB in NoPlaceApplication and in PlaceAp-
plication

until the specified baking time (in real time) has passed. The higher the update rate
is, the more frames in which the donuts’ baking behaviors must be evaluated. As we
can see, the update rates for both userA and userB are improved in PlaceApplication.
Therefore, in this particular application, the always active behavior evaluation time
for userA and userB in PlaceApplication is more than it is in NoPlaceApplication.

Rendering time is the most dominant factor of response time. As shown in lig-
ure 6.3 and figure 6.4, both userA and userB’s rendering time in PlaceApplication
are greatly improved because the PlaceApplication does not draw any objects in the
kitchen or in the bedroom for userA, and only draws the objects in the kitchen for
userB. The rendering for userB takes more time than the rendering for userA, since
the two donuts are Non-Uniform Rational B-Spline (NURBS) surfaces which take
more time to render than polygons.

The update rates for both users are improved in PlaceApplication mostly due to
the rendering time improvement.

Table 6.5 compares the average performance data for userA in Table 6.1 and

Table 6.3, while table 6.6 compares the average performance data for aserl3 in Ta-

124

number || establishing updating terminating total
of connection databases connection

messages || sent | reev’d || sent | recv’d || sent | recv’d || sent | recv’d
test 1 1 20 419 1 1 0| 421 3
test 2 1 2 || 402 1 1 0 404 3
test 3] 2| 407 1 1 0| 409 3
test. 4 1 2| 423] 1 01| 425 3
test 5 1 21 373 1] 01 375 3

Table 6.7: Transactions occured at userA’s site in NoPlaceApplication

ble 6.4 and in Table 6.2. We can see that the Multi-User Place system does help
this example application save a lot of rendering time as well as some evaluation time
of event-handling behaviors and ordinary animation behaviors. Consequently, the
update rates are greatly improved for both userA and userB, although the communi-
cation time is a little more in the PlaceApplication than in the NoPlaceApplication

and the always active behaviors of the donuts take more time because of higher update

rates.

6.2.3 Network Traffic Reduction

The number of messages sent and received by the Session Manager (SM), userA and
nserB are also recorded in both applications to see if PlaceApplication can save any
network traric. For userA and userB, the number of messages are counted in the
following three periods of time: when the users enter the environment, when they are
interacting with the objects in the environment, and when they are ready to leave
the environment.

Table 6.7 and table 6.8 give the number of messages sent and received by userA
and aserB in the NoPlaceApplication. The number of messages sent and received by
SM is always 3 and 5 in the 5 tests.

Figure 6.5 shows the communication process in the NoPlaceApplication. The

numbers along the arrows denotes the order of messages sent or received. Because

number || establishing updating terminating total
of connection databases connection

messages || sent [recv’d [| sent | recv’d | sent [recv’d [[sent | reev'd
test 1 1 1 2 419 2 l H 421
test 2 1 1 2 402 2 1 5 404
test 3 1 1 2 407 2 I H 409
test 4 1 I 2 423 2 1 H 125
test 5 1 1 2 373 2 | H 375

Table 6.8: Transactions occured at userB’s site in NoPlaceApplication

Cm
(userA)

-

Y
= (userB)

Figure 6.5: Communications among SM, userA and userB in NoPlaceApplication

(&)
-t

126
userl3 always enters the environment first and the up late rate for userA and userB
are almost, the same, userB always finishes the 1000 updates first and quits first from

the environment. The following list explains each message:

I. UserB registers at SM site to enter the kitchen;

SM acknowledges userB’s registration;

N

3. UserA registers at. SM site to enter the house;
4. SM instriets userB to send the always active behavior data to userA;
5. UserB acknowledges the above message;

6. SM acknowledges userA’s registration with userB’s information;

7. UserB sends donuts’ always active behavior data to userA;

8. UserA sends the chair’s updated transformation matrix to userB;

9. UserB informs userA that he or she is leaving the environment;
10. UserA acknowledges the leaving message;

I1. UserB informs SM that he or she is leaving the environment;

12. UserA informs SM of leaving the environment as well as sends the chair’s trans-

formation matrix and donuts’ data to SM;

Table 6.9 and table 6.10 show the number of messages sent and received by userA
and userB in the PlaceApplication.

Figure 6.6 illustrates the above case.
[. UserB registers at SM site to enter the kitchen;
2. SM acknowledges userB’s registration;

3. UserA registers at SM site to enter the house;

number | establishing updating terminating total
of connection databases connection

messages || sent | recv’d || sent [recv’d [sent [reev’d [sent | reev'd
test 1 I 2 I l 2 I 4 1
test 2 1 2 1 1 2 1 3 1
test 3 1 2 1 l 2 1 1 4
test 4 1 2 1 1 2 | 1 |
test H 1 2 l | 2 1 1 1

Transactions occured at userA’s site in PlaceApplication

Table 6.9:

number | establishing updating terminating total
of connection databases connection

messages || sent | recv’d || sent | recv’d [sent | recv’d || sent | reev’d
test 1 1 1 2 l 2 2 5 1
test 2 1 l 2 1 2 2 3 4
test 3 I 1 2] 2 2 D 4
test 4 1 1 2 1 2 2 D 1
test)] | 2] 2 2 5 4

Table 6.10: Transactions occured at userB’s site in PlaceApplication

L SM)
3, I 2,

12,/ \ 4,
6, L

/By T \

e J -
(userA) ~ = (userB J
7, &

Figure 6.6: Communications among SM, userA and userB in PlaceApplication

128

4. SM instructs nserB to send the always active behavior data to userA;

-t

UserB acknowledges the above message;

6. SM acknowledges userA’s registration with userB’s information:
7. UserB sends donut’s always active behavior data to userA;

8. UserB informs nserA that he or she is leaving the environment;
9. UserA acknowledges the leaving message;

10. UserB informs SM that he or she is leaving the environment;
1. SM acknowledges the above message;

12. UserA informs SM of leaving the environment as well as sends the chair’s trans-

formation matrix to Sii;

13. SM asks for the donuts’ always active behavior data because userA is the last

user in the shared environment;

14. UserA sends the donuts’ data to SM;

As we can see, even though the PlaceApplication requires a few more messages
for maintaining the transactions when userA quits from the shared environment, it
significantly reduces network traffic by not sending the chair’s transformation matrix

when userA moves the chair around in the house.

6.3 Summary

The theoretical evalnation of a Place application system reveals that crystal balls,
open doors and especially open places are very expensive in terms of response time
and network traffic, becanse they make more places visible to the users. Although the

event-handling behavior evaluation time and always-active behavior evaluation time

129
are not affected by the number of places visible to a user, the ordinary animation
behavior evaluation time and rendering time, as well as network traflic are affected
dramatically by the number of visible places. Therefore, from the performance point
of view, a Place application system programmer should use crystal balls, open doors
and open places as little as possible.

In the example house environment, a crystal ball was used in the bedroom to allow
a user to view the donuts being baked in the oven. Sinee neither userA nor userBB
were in the bedroom, the experimental results are not affected by the existence of
this crystal ball. Furthermore, the doors were always closed during the experiments.
Therefore, open doors are not a factor considered in the results. However, the place
userA is in is an open place because it has a window through which nserA can see
the outside of the house. Since there is only one object ontside of the house, the
grassland having no behaviors and little rendering cost, the fact that the house is an
open place should not have a major effect on the response time for userA, and have
no effect on the network traffic between userA and userB.

Taking into account that not all the application objects are evenly distributed
in the house environment and that the behavior evaluation time and rendering time
for the objects are not the same, the experimental result for the example application
do not exactly match the theoretical evaluation results that are derived under those
assumptions. However, the result of the example application did demonstrate that
the Place system indeed improves the event-handling evaluation time, the ordinary
animation evaluation time, as well as the rendering time, and therefore improves
the overall response time. The total number of transactions is also greatly reduced
even though some transactions are needed for initializing and terminating the shared
environment.

Rendering time is the most dominant factor in this example application. Further
experiments where network traffic is the dominant factor need to be conducted. Jor
example, a virtual environment may contain a complex object, such as a soft hall

which is composed of hundreds of thousands of small polyhedrons. Whenever the

130
user squishes the ball, the transformation matrices for all the polyhedrons must be
sent, 1o the shared users, resulting in heavy network traffic. When shared users are
geographically distributed to different sites, the network delay will become a major

problem which should be further investigated as well.

Chapter 7

Conclusion

7.1 Contributions

The main contribution of this thesis is the introduction of the Virtnal Object Model,
the Virtual Place Model, and the Multi-User VR System Architecture. The Virtnal
Object Model is proposed to assist programmers to analyze, design and implement
VR application systems from a high level to a more detailed level. The Virtual Place
Model is proposed to organize application environments into hierarchical structure so
we can take advantage of this environment structure to improve response time and
reduce network traffic for VR applications. The Multi- User VR System Architecture
allows shared users to join or quit from a shared environment without affecting cach
other.

The Multi-User Place System was built to support the proposed models. It is a
framework that can integrate application objects into VR environments. The appli-
cation objects are specified as in the Virtual Object Model. The VR environments
are hierarchically structured as described in the Virtnal Place Model. The navi-
gation facilities, such as doors and flying, enable the users to move around in the
virtual environment. Link objects and the crystal ball mechanism provide accesses to
non-current places, which relieves the disadvantages of putting application objects in

different places. Behavior culling and visible object rendering both contribute to the

131

1

improvement of the system response time. The response time of a Place application,
cither a single user application, or a multi-user application, is not proportional to the
complexity of the whole virtnal environment, but proportional only to the complexity
of the current place the user is in.

A multi-user VR application system can benefit even more by using the Multi-
(Iser Place System. The built-in Session Manager and Communication Agents sup-
port, database synchronization among shared users and automatic database update
for late--comers. The naming mechanism for dynamically created shared data is im-
proved so that multiple users can create objects at the same time without competing
for their internal names. The updated shared data is sent only to the users who can
see the changes so that the network traffic is reduced. The number of messages sent
and received by a user is proportional only to the number of users who share the same
places, as opposed to the number of all users who share the entire environment with
the user.

None of the previous VR systems, including IBM rubber rocks, SIMNET, WAVES
and BrickNet, used hierarchical structure in their application environments.

Using the Place system, the performance of a simple application environment like
in IBM rubber rocks system should be as good as the original system. For systems
like SIMNET, if the environment can be properly divided, the response time for each
user as well as network traffic among shared users should be improved depending on
the environment structure. WAVES and BrickNet application systems allow different
nsers to be in different worlds. If each user only needs very small environment for their
own, Place applications can work as well as WAVES and BrickNet. However, when
any user needs a larger environment, and this environment can be further divided
into small sub-environments, the performance of the Place application will exceed
the performance of WAVES and BrickNet. The BrickNet system can also be used
to build applicatiors with different users in the same environment. In this case, the
Place application will definitely perform better than the BrickNet application in terms

of response time and at least as good as BrickNet application in terms of network

32

133

traffic.

7.2 Future Work

In order to improve the functionality of the Multi-User Place System, the following
problems need to be further studied: objects and places’ security problem, concur-

rency control, multi-user system bottlenecks, and the traveller problem.

7.2.1 Security Problem

In a Multi-User Place application system, a user may have some objects and places
which the user does not want other users to see or modify. In the Unix file system, the
permission mode for a file or directory decides the read, write, and execute permissions
of the shared users. Similarly, the permissions to view and modify an object or a place
can be introduced to the Multi-User Place System. An object or a place should not
be visible to a user who does not have view permission. If a user does not have modify
permission ox: an object, he or she should not be allowed to manipulate the object.
When a user registers to enter a place, the permission mode of the place should be

checked to see if the user is allowed to be in that place.

7.2.2 Concurrency Control

When several users are cooperating on a project, they may all have permission to
modify a particular object. A VR system must use a concurrency control mechanism
to ensure a consistent copy of the object at all users sites.

One strategy that people working on Computer Aided Cooperative Work suggest
is called “floor control”. Only one user controls the floor at a time. Only the user
who controls the floor can manipulate the shared object. After that user is done, the
control is passed on to the next user. The floor control strategy could be implemented
by granting the object modify permission only to the user who controls the floor. The

permission must be changed whenever the control is passed on to another user.

1

This is a non-optimistic serialization approach which will affect the responsiveness

of VR systems. On the other hand, optimistic serialization approaches will produce
very confusing environments for the user to work in. Semi-optimistic approaches
might be the way to go for VR application systems. They should provide better
responsiveness than non-optimistic approches and are easier to implement and less

confusing to users than the optimistic approaches.

7.2.3 System Bottleneck

The potential system bottleneck is the Session Manager, which is responsible for
processing the user’s request to enter the shared environment, to quit from the envi-
ronment, and to switch places. When there are too many shared users, the number of
requests may go beyond the processing power of the Session Manager. Consequently,
all users have to wait for their requests to be processed. The Session Manager then
becomes the system bottleneck.

Multiple session managers could be used to share the responsibilities of the current
Session manager. Each session manager can be assigned to a specific set of places.
If a user is always working within one set of places, the session manager which is
responsible for this set of places can process all requests from that user. Otherwise,

several session managers have to work together to serve the needs of this user.

7.2.4 Traveller Problem

By traveller, I mean a user who frequently moves from one place to another. If a
Multi-User Place application system has a traveller, the Session Manager will receive
“switch place” requests very often. The probability that the Session Manager be-
comes the system bottleneck is much higher than when no traveller is present in a
shared environment. Moreover, all related shared users have to adjust their shared
user list and update the database for the traveller whenever navigation takes place.
Clonsequently, the performance for shared users can be affected because their Com-

munication Agents spend more time to process the traveller’s requests. The network

34

traffic is not necessarily reduced either.

One possible solution is to provide an option for a user to claim to be a traveller
when the user joins in the environment. The Multi-User Place System can treat the
traveller as a coworker of every other shared user. In this way, neither the Session
Manager nor any of the shared users need to be bothered when the traveller switches
places. However, the network traffic produced because of the traveller will be the

same as when the Multi-User Place System is not used.

Appendix A

Example Application Programs

A.l

#include
#include
#include
#include
#tinclude
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

Program of Example Environment Construc-
tion

"/usr/granada/grad/yunqi/include/VP/Vinit .h"
"/usr/granada/grad/yunqi/include/VP/Vdebug.h"
“/usr/granada/grad/yunqi/include/VP/Vrectangle.h"
"/usr/granada/grad/yunqi/include/VP/Vwall.h"
"/usr/granada/grad/yunqi/include/VP/VplainDoor.h"
"/usr/granada/grad/yunqi/include/VP/VwallWithDoor.h"
"/usr/granada/grad/yunqi/include/VP/VoldStyleWindow.h"
"/usr/granada/grad/yunqi/include/VP/VwallWithWindow.h"
"/usr/granada/grad/yunqi/include/VP/Vroom.h"
"/usr/granada/grad/yunqi/include/VP/Vlink.h"
"/usr/granada/grad/yunqi/include/VP/Vcrystal.h"
"include/Aclock.h"

"include/Atable.h"

"include/Achair.h"

"include/Asofa.h"

"include/Abed.h"

“"include/Aoven.h"

"include/Atorus.h"

"include/Afan.h"

VRoom xhouse;
VRoom *bedroom;
VRoom *kitchen;

VWall* houseWalls[6] = {NULL, NULL, NULL, NULL, NULL, NULL};

136

veid vwConstruct ();

int NEWSOFA;
void VCreateSofa ();

int main(int argc, char** argv) {
Virit(argec, argv);
vwConstruct ();
NEWSOFA = VcomAgent->VNewCommand (house, VCreateSofa);
short handDevice = VlocalHand->VGetHandDevice ();

if (handDevice == 1) {
VlocalUser->VEnterWorld (*house) ;
} else {
VlocalUser->VEnterWorld (*kitchen) ;
}

VExit () ;
};

void vwConstruct () {

Vworld->VSetSize (20.0, 10.0, 3.01);
Vbackground->VSetRGBColor (120, 200, 255);

VRectangle *vground = new VRectangle (“ground", 20.0, 10.0);
vground->VSetRGBColor (100, 255, 100);
Vworld->VAddSubObj (*vground) ;

VPlainDoor *houseDoor = new VPlainDoor ("houseDoor");
houseDoor->VTranslate (4.0, 0.0, 0.0);

houseWalls[0] = new VWallWithDoor ("housefrontWall",
10.0, 3.0, houseDoor);

V01dStyleWindow *window = new V0ldStyleWindow (""window");
window->VTranslate (4.0, 0.0, 1.0);
houseWalls[3] = new VWallWithWindow ("housebackWall", 10.0, 3.0, windo

house = new VRoom ("house", 10.0, 5.0, 3.0, houseWalls, 6);

house->VTranslate (5.5, 5.0, 0.01);
Vworld->VAddSubPlace (*house);

VClock *vclock = new VClock ("clock");
vclock->VTranslate (3.2, 4.92, 2.0);
vclock->VRotate (900, ’x’);
house->VAddObj (vclock);

AChair *chair = new AChair ("chair");
chair->VTranslate (3.2, 4.4, 0.01);
house->VAddObj (chair);

bedroom = new VRoom ("bedroom", 4.0, 2.5, 3.0);
bedroom->VTranslate (6.0, 2.5, 0.01);
house->VAddSubPlace (*bedroom);

VLink *clockLink = new VLink ("clockLink", *vclock) ;
clockLink->VTranslate (1.0, 2.49, 2.0);
clockLink~->VRotate(900, ’x’);

clockLink->VScale (1.5, 1.5, 1.5};
bedroom->VAddObj (clockLink);

ABed *bed = new ABed ('beAd");
bed->VTranslate (2.0, 2.49, 0.0);
bed->VRotate (2700, ’z’);
bedrocm->VAddObj (bad);

btedroom->VSetPortPos (1.0, 1.2, 0.0);

kitchen = new VRcom ("kitchen", 5.0, 2.5, 3.0);
kitchen->VTranslate (2.5, 0.0, 0.01);
kitchen->VRotate(900, ’z’);
house->VAddSubPlace (*kitchen);

ATable *table = new ATable ("table");
table->VTranslate (3.0, 1.5, 0.01);
kitchen->VAdd:bj (table);

AOven *oven = new AOven ("oven", 0.6, 0.4, 0.4);
oven->VTranslate (3.2, 2.3, 0.62);

oven->VRotate (2700, ’z’);

oven->VOpenPlace ();

138

};

kitchen->VAddSubPlace (*oven);

ATorus *donuti = new ATorus ("donuti");
donut?- : “3etCookingTime (6.0);
donuti~»VYTranslate (0.2, 0.15, 0.15);
oven->VAddObj (donutl);

ATorus *donut2 = new ATorus ("donut2");
donut2->VSetCookingTime (9.0);
donut2->VTranslate (0.4, 0.15, 0.15);
oven~>VAddObj (donut2) ;

AFan *fan = new AFan ("fan");
fan->VTranslate (4.0, 0.85, 0.01);
fan->VRotate (2700, ’z2’);
kitchen->VAddObj (fan);

kitchen->VSetPortPos (2.5, 1.5, 0.0);

VCrystal *crysOven = new VCrystal ("crysKitchen", oven);
crysCGven->VTranslate (1.0, 2.0, 1.0);

bedroom->VAddObj (crysOven);

house->VSetPortPos (5.5, 1.5, 0.0);

void VCreateSofa () {

};

ASofa *newSofa = new ASofa (''newSofa');

newSofa->VTranslate (5.3, 4.2, 0.01);
newSofa->VRotate (2700, ’z’);
house->VAddObj (newSofa);

A.2 Program of Class VClock

A.2.1 Aclock.h

#include "/usr/granada/grad/yunqi/src/appl/include/Aobject.h"

139

140

#ifndef VCLOCK_H
#tdefine VCLOCK_H

/**

* Class VClock *
ok o o o o o sk sk o ok ok o ok o o oo s ok ks okt ek ok ok kR ok ok Kok ok f

class VClock : public AObject {
public:

VClock(charx*);

~“VClock () {};

virtual void VGenClkObj();

virtual void VAnimation();
protected:

struct timeval *tv;

struct tm *vTime;

int hourlndex;

int minuteIndex;

int secondIndex;

#endif

A.2.2 Aclock.C

#include <stdio.h>

#include <time.h>

#include <sys/time.h>

#include <sys/types.h>

#include <malloc.h>

#include <gl.h>

#include "/usr/granada/grad/yunqi/include/VP/Vinit.h"
#include "/usr/granada/grad/yunqi/include/VP/Vd2bug.h"
#include "/usr/granada/grad/yunqi/include/VP/Vrectangle.h"
#include "include/Aobject.h"

#include "include/AdialMarker.h"

#include "include/AclockHand.h"

#include "include/Aclock.h"

VClock::VClock(char *clkName) : AObject(clkName) {

vTime = (struct tm *)malloc(sizeof(struct tm));

};

111

tv = (struct timeval *)malloc(sizeof(struct timeval));

gettimeofday(tv,NULL);
vTime = localtime(&(tv->tv_sec));

VGenC1k0Obj () ;

void VClock: :VGenClkObj() {

VRectangle *frame;
VDialMarker *dialMarker;
VClockHand *hourHand;
VClockHand *minuteHand;
VClockHand *secondHand;

frame = new VRectangle("frame", 0.6, 0.6);
frame->VTranslate(-0.3, -0.3, 0.0);
frame->VSetRGBColor (200,200,200);
VAddSubObj (*frame) ;

VSetRGBColor(6,6,6);

dialMarker = new VDialMarker ("dialMarker", 0.024, 0.03);
dialMarker->VTranslate (0.0, 0.0, 0.01);
VAddSubObj (*dialMarker) ;

hourHand = new VClockHand (*hourHand", 0.032, 0.18);
hourHand->VTranslate (0.0, 0.0, 0.01);

hourIndex = subObjNum;

VAddSubObj (*hourHand) ;

minuteHand = new VClockHand ("minuteHand", 0.025, 0.28);
minuteHand->VTranslate (0.0, 0.0, 0.01);

minuteIndex = subObjNum;

VAddSubObj (*minuteHand) ;

secondHand = new VClockHand ("secondHand", 0.015, 0.30);
secondHand->VTranslate (0.0, 0.0, 0.01);

secondIndex = subObjNum;

VAddSub0bj (*secondHand) ;

142

void VClock::VAnimation() {

int seconds, minutes, countermin, hours;
int secang, minang, hourang;

gettimeofday (tv,NULL);
vTime = localtime(&(tv->tv_sec));

seconds = vTime->tm_sec;
secang = (3600 - seconds * 60) Y 3600; // sec/60 = ang/360
((VClockHand*)subObj[secondIndex])->VUpdateTime(secang) ;

minutes = vTime->tm_min;

countermin = minutes * 60;

minang = (3600 - countermin) % 3600;
((VClockHand*)subObj[minuteIndex])->VUpdateTime(minang) ;

hours = vTime->tm_hour % 12 ;
hourang = (3600 - hours * 300 - countermin / 12) % 3600;
((VClockHand#) sub0bj [hourIndex])->VUpdateTime (hourang) ;

for (int i = 2; i < subObjNum; i++) {
subObj [i]->VAnimation ();

A.3 Program of Class AObject

A.3.1 Aobject.h

#include "/usr/granada/grad/yunqi/include/VP/Vobject.h"

#ifndef AOBJECT_H
#define AOBJECT_H

/**

*

Class AOBJECT *

**/

class AObject : public VObject {
public:

1143

AObject(charx);

~AObject () {};

virtual int AIsGrabbedByHand ();
virtual void VEventHandler();

protected:
int grabbed; // 1: grabbed by hand; 0: released;
int matrixId; // datald for object matrix;

};

#tendif

A.3.2 Aobject.C

#include <gl.h>

#include "/usr/granada/grad/yunqi/include/VP/Vinit.h"
#include "/usr/granada/grad/yunqi/include/VP/Vdebug.h"
#include "include/Aobject.h"

AObject::AObject (char *AobjName) : VObject(AobjName) {

grabbed = 0;
matrixId = VcomAgent->VRegisterData (this, (char*) mat, sizeof (mat));

int AObject:: AIsGrabbedByHand () {
float handPos[4];

int ifGrabbing = VlocalHand->VIsGrabbing ();

if ((grabbed == 0) && (ifGrabbing == 1)) {
VlocalHand->VGetHandPos (handPos[0], handPos[1], handPos[2]);
handPos[3] = 1.0;
grabbed = VWithinBoundary (*VlocalHand, handPos, 0.05, 0.05, 0.05);
} else {
int ifFlat = VlocalHand->VIsFlat ();
if ((grabbed == 1) && (ifFlat == 1)) {
grabbed = 0;
}
}

return (grabbed);

144

void AObject::VEventHandler () {
int 1fGrabbed;
float prevHand[3];
float curHand[3];
float offHand[3];

if ((superObj[0] == NULL) || (superObj[0] == VlecalHand)) {
// if this is the top object;
ifGrabbed = AIsGrabbedByHand ();
if ((grabbed == 0) && (ifGrabbed == 1)) {
curPlace->VRmObj (this);
VlocalHand->VAddSubObj (*this);

} else {
if ((grabbed == 1) && (ifGrabbed == 0)) {

VlocalHand->VRmSubObj (*this);
curPlace->VAddObj (this);

}

if (grabbed == 1) { // dragged by hand;
VlocalHand->VGetPrevHandPos (prevHand[0], prevHand[1], prevHand[2]);

VlocalHand->VGetHandPos (curHand[0], curHand[1], curHand[2]);
offHand[0] = curHand[0] - prevHand[0];
offHand[1] = curHand[1] - prevHand[1];
offHand[2] = curHand[2] - prevHarnd[2];

i}

VTranslate (offHand[0], offHand[1], offHand[2]);

VcomAgent->VUpdateData (matrixId);
}

VObject::VEventHandler ();
¥

Bibliography

(1]

[4]

[6]

Kenji Akiyama, Nobuji Tetsutani. Morito Ishibashi, Susumu Iehinose, and 1Hi-
roshi Yasnda. Consideration on three- dimensional visnal communication sys-
tems. [EEE Journal on Selected Areas in Communications, 9(4):H05 H60, May

1991.

Anthony J. Aretz. Spatial cognition and navigation. In Proceedings of the Hu-

man Factors Society 33rd Annual Meeting, volume |, pages 8 12, October 1989

M.T. Bolas and S.S. Fisher. Head- coupled remote stereoscopic camera system for
telepresence applications. In Stereoscopic Displays and Applications, Proceedings

of SPIE, volume 1256, pages 113--123, February 1990.

Steve Bryson and Scott S. Fisher Defining, modeling, and measuring system lag
in virtual environments. In Stereoscopic Displays and Applications, Procecdings

of SPIE, volume 1256, pages 98--109, 1990.

James Calvin, Alan Dickens, Bob Gaines, Paul Metzger, Dale Miller, and Dan
Owen. The SIMNET virtual world architecture. In IEEE Virtual Reality Annual

International Symposium’93, pages 450- 455, 1993.

Stuart K. Cark, George G. Robertson, and Jack D). Mackinlay. The information
visualizer, an information workspace. In CHI'91 Coaference Procecdings, pages

181-188, 1991.

145

146
[7) Christer Carlsson and Olof Hagsand. DIVE — a multi-user virtual reality sys-
tem. In IEEE Virtual Reality Annual International Synposium VRAILS 93, pages
394 400, 1993.

(8] Christopher Codella, Reza Jalili, Lawrence Koved, J. Bryan Lewis, Daniel T.
Ling, James S. Lipscomb, David A. Rabenhorst, and Chu P. Wang. Interactive

simulation in a multi-person virtual world. In CHI’92 Conference Proceedings.

pages 329 334, 1992

[9) Terrence Crowley, Paul Milazzo, Ellie Baker, Harry Forsdick, and Raymond Tom-
linson. Mmeonf: An infrastructure for building shared multimedia applications.

In Proceedings of CSCW?90, pages 329-342, 1990.

[10] T.J. Doll, J.M. Gerth, W.R. Engelman, and D.J. Folds. Development of simu-
lated directional andio for cockpit applications. Technical Report AAMRL-TR-

86-014, USAF, 1986.

[11] Steven Feiner and Clifford Beshers. Visualizing n-dimensional virtual worlds
with n-vision. Computer Graphics, Special issue on 1990 Symposium on Inter-

active 3D Graphics, 24(2):37-38, March 1990.

[12] Steven Feiner and Clifford Beshers. Worlds within worlds metaphors for explor-
ing n-dimensional virtual worlds. In UIST 90, Proceedings of the ACM SIG-
IRAPH Symposium on User Interface Software and Technology, pages 76-83,
October 1990.

[13] S.S. Fisher, M. McGreevy, J. Humphries, and W. Robinett. Virtual environ-
ment display system. In Proceedings of the 1986 Workshop on Intcractive 3-D
(raphics, pages T7-87, New York: Association for Computing Machinery, 1987.

[14] James 1. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Com-
puter Graphics Principles and Practice, page 436. Addison-Wesley Publishing

Company, 2nd edition, 1990.

147
[15] James J. Gibson. The Senses Considered as Pereeptual Systems. Houghton

mifflin company. Boston, 1966.

[16] Saul Greenberg and Ralph Bohnet. Groupsketeh: A multi user sketchpad for
geographically-distributed small groups. In Graphics Interface 91, pages 207

215, 1991.

171 Saul Greenberg and David Marwood. Real time groupware as a distributed
Arouj
system: Conerrrency control and its effect on the interface. In Proceedings of

CSCW?’9/, pages 207-217, 1994.

[18] Kelly Harwood. Cognitive perspective on map displays for helicopter flight. Tn
Proceedings of the Human Factors Socicty 3:3rd Annual Mecting, volume 1, pages

13-17, October 1989.

[19] Hiroo Iwata. Artificial reality with force-feedback: Development of desktop
virtual space with compact master manipulator. Computer Graphics, 24(4):165

170, August 1990.

[20] M.G. Kaye, Judith Ineson, D.N. Jarrett, and G. Wickham. Evaluation of vir-
tual cockpit concepts during simulated missions. In Helmet-Mounted Display 11,

Procecdings of SPIE, volume 1290, pages 236-245, April 1990.

[21] Rick Kazman. Making WAVES: On the design of architectures for low end
distributed virtual environments. In IEEE Virtual Reality Annual International

Synposium VRAIS’93, pages 443-449, 1993.

(22] Myron W. Krueger. Artificial Reality. Addison Wesley Publishing Company,
1983.

[23] Myron W. Krueger. Artificial Reality 11. Addison Wesley Publisling Company,
1991.

[24] J. Bryan Lewis, Lawrence Koved, and Daniel T. Ling. Dialogue structures for

virtual worlds. In CHI’91 Conference Proccedings, pages 131 136, 1991,

148
[25] Jiandong Liang, Chris Shaw, and Mark Green. On temporal-spatial realism in
the virtual reality environment. In UIST’91, Proceedings of the ACM Symposium

on User Irterface Software and Technology, pages 19-25, November 1991.

[26] Jack D). Mackinlay, George G. Robertson, and Stuart K. Card. The perspective

wall: Detail and context smoothly integrated. In CHI’91 Conference Proceedings,

pages 173179, 1991.

[27] LE. McDowall, M. Bolas, 5. Pieper, 5.5. Fisher, and J. Humphries. Implementa-
tion and integration of a counter™~'~nced crt-based stereoscopic display for in-
teractive viewpoint control 1 sironment applications. In Stereoscopic
Displays and Applications, F- of SPIE, volume 1256, pages 136-146,

February 1990.

[28] Margaret Minsky, Ming Ouh-young, Oliver Ste.le, Frederick P. Brooks, Jr., and
Max Behensky. Feeling and seeing: Issues in force display. Computer Graph-
ics, Special lssue on 1990 Symposium on Interactive 3D Grphics, 24(2):235-244,
March 1990.

[29] Charles E. Mosher Jr., George W. Sherouse, Peter H. Mills, Keven L. Novins,
Stephen M. Pizer, Julia. 3. Rosenman, and Edward L. Chaney. The virtual
simulator. In Prececdings of the 1986 Workshop on Interactive 3D Graphics.
ACM, 1987.

[30] Ming Ouh-young, Michael Pique, Jchn Hughes, Neela Srinivasan, and Frederick
P. Brooks, Jr. Using a manipulator for force display in molecular docking. In
JEEE Robotics and Automation Conference Proceedings, volume 3, pages 1824—

1829, April 1988.

[31] Nicholas J.M. Patrick, Thomas B. Sheridan, and Michael Massimino. Design
and testing of a non-reactive, fingertip, tactile display for interaction with remote
environments. In Cooperative Intelligent Robotics in Space, Proceedings of SPIE,

volume 1387, pages 215-222, 1990.

149
[32] D.R. Perrott and .J. Tucker. Minimum audible movement angle as a function of

signal frequency and the velocity of the source. Journal of the Acoustical Society

of America, 83:1522-1527, 1988.

[33] Robert K. Rebo and Phil Amburn. A helinet mounted virtual environment
display system. In Helmet-Mounted Displays, Proceedings of SPIE, volume 1116,
pages 80-34, 1989.

[34] George G. Robertson, Stuart K. Card, and Jack 3. Mackinlay. The cognitive
coprocessor architecture for interactive user interface. In UIST 89, Proceedings
of the ACM SI7!GRAPH Symposium on User Interface Software and Technology,
pages 10-18, 1989.

[35] Warren Robinett and Jannick P. Rolland. A computational model for the sterco-
scopic optics of a head-mounted display. Technical Report "TRIT 009, The
University of North Carolina at Chapel Hill, Department of Computer Seience,

February 1991.

[36] Chris Shaw, Jiandong Liang, Mark Green, and Yunqi Sun. The deconpled sim-
ulation model for virtual reality systems. In CHI’92 Conference Procecdings,

pages 321-328, 1992.
[37] Gurminder Singh, Luis Serra, Willie Png, and Hern Ng. BrickNet: A software

toolkit for network-based virtual worlds. PRESENCE: Telcoperators and Virlual

Environments (to appear).

[38] Ivan E. Sutherland. A head-mounted three dimensional lisplay. In Proceedings
of the AFIPS Fall Joint Computer Conference, pages TH7 764. Washington: "The

Thompson Book Company, 1968.

[39] VPL Research Inc. DATAGLOVE GESTURE EDITOR SOFTWARI For the
Apple Macintosh. Redwood City, California, March 1989.

[40]

(11]

[12]

[43]

j44]

[16]

[17]

1
VL, Research Ine. DATAGLOVE MODEL 2 Operation Manual. Redwood City,

California, August 1989.

VIPL, Research Ine. EYEPHONE Operation Manual. Redwood City, California,

June 1989.

Chii . Wang, Lawrence Koved, and Semyon Dukach. Design for interactive
performance in a virtnal laboratory. Computer Graphics, Special Issue on 1990

Symposium on Interactive 3D Grphics, 24(2):39-40, March 1990.

. M. Wenzel, F. L. Wightman, D. J. Kistler, and S.H. Foster. Acoustic origins
of individual differences in sonnd localization behavior. Journal of the Acoustical

Socicty of America, 84, S79, 1988.

Elizabeth M. Wenzel and Scott H. Foster. Realtime digital synthesis of virtual
aconstic environments. Computer Graphics, Special lssuc on 1990 Symposium

on Interactive 3D Grphics, 24(2):139-140, 1990.

Flizabeth M. Wenzel, Frederic L. Wightman, and Doris J. Kistler. Localization
with non-individualized virtnal acoustic display cues. In 7“HI’9! Conference

Proceedings, pages 351-359, 1991.

. Zeltzer, X. Pieper, and D. Sturman. An integrated graphical simulation

platform. In Procecdings of Graphics Interjace’89, pages 266-274, 1989.

M. Zientara. New view on the world - pioneer designs 3d camera lenses with

micro. InfoWorld, May 1984.

D}

"

0

