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Abstract

We study Sample Averaging approximation for data-driven decision-making under uncertainty where the

underlying probability measure is partially observable through finitely dependent training samples. Given

the data generation procedure in which the datasets are taken along a single trajectory of a stationary

Stochastic Process, the central aspect of this paper is to investigate the fundamental results demonstrating

that certain SAA procedure retains optimality with dependent samples. Leveraging results from measure

concentration, we derive conditions on the considered data-generating process, under which solutions of

SAAs retain asymptotically optimality and tractability and, additionally, enjoy finite-sample performance

guarantees. While the obtained SAA is tractable, the learning algorithms for the resulting surrogate opti-

mization could be computationally excruciating. To address the numerical difficulty, we further propose a

stochastic operator-splitting scheme, referring to a Stochastic algorithm that is easily implementable and

highly parallelizable in solving complicated optimization problems. We discuss convergence rates, stability,

and finite-sample error bounds for the iterates. The theoretical results we investigate are self-contained and

accommodate parametric, non-parametric, and semi-parametric machine learning tasks. Numerical experi-

ments validate our theoretical results and demonstrate empirically that our approach outperforms baseline

approaches.
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Preface

This thesis is about stochastic convex optimization, a special class of convex optimization that aims to find

an optimal estimation under uncertainty. It has arisen in a variety of application domains and research

areas. While rich theoretical results have been established, the majority of them critically depend on the IID

assumption of the training samples. The basic point of this work is that we explore the foundational result of

a data-driven approach of stochastic optimization with Non-IID. Specially, we consider the Sample Average

Approximation (SAA) with training samples generated from a single trajectory of stochastic process, which

is assumed to be mixing.

Convex optimization problems are prevalent in practice, thus how to solve them in an efficient manner is

as equivalently important as a theoretical guarantee. The second part is about the tractability of SAA. We

specifically consider operator-splitting schemes, powerful algorithms that are adaptive and scalable enough

for a variety of statistical settings. We study the convergence of the proposed algorithms and perform

numerical experiments to verify their efficiency.

Parts work of this thesis have been presented in the paper, “ Sample average approximation for stochastic

optimization with dependent data: Performance guarantees and traceability ” [65], which was led by Wang,

Yafei (University of Essex) and me with the corporation with Tu, Wei (Queen’s University Canada), Liu,

Peng (University of Kent), Jiang, Bei (University of Alberta), Gao, Chao (Huawei Canada), Lu, Wei (Huawei

Canada) and Jui, Shangling (Huawei Canada) and Kong, Linglong (University of Alberta). Specifically, the

paper covers the content of the statistical performance guarantee in Chapter 3, the results of the algorithmic

analysis in part II, and the numerical experiment of the lasso-type quadratic minimization problem. My main

contribution to the published paper is mainly about the algorithmic analysis of operator-splitting schemes

and numerical analysis.

The entire work of this thesis is under development and planned to be submitted to Journal (Ongoing).
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True optimization is the revolutionary contribution of modern research to decision processes.

– George Bernard Dantzig, 1914 - 2005.
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Chapter 1

Introduction and Overview

We study the statistical properties of Sample Averaging Approximation for data-driven decision-making

under uncertainty, focusing on optimality and tractability via finitely correlated samples generated by a

single trajectory of a stationary Stochastic Process (S.P.), P k,∀k > 0. Such problems are ubiquitous and,

traditionally, modelled as stochastic programs. In this paper, we consider stochastic optimization,

J⋆ = min
x∈X

{
EP[ℓ(x; ξ)] =

∫
Ξ

ℓ(x; ξ)P(dξ)
}

(1)

x⋆ = argmin
x∈X

{
EP[ℓ(x; ξ)] =

∫
Ξ

ℓ(x; ξ)P(dξ)
}
. (2)

In the formulation 1–2, the feasible region is a closed, convex subset X of Rd, let L = {ℓ(·, ξ) | ξ ∈ Ξ}, we

assume that every element ℓ(x; ξ) : Rd × Rm → R of L is a closed, convex, and proper (c.c.p) function, but

not necessarily differentiable, and ξ be the random samples received. ξ is a random vector on the probability

space (Ξ,A,P), where the domain Ξ is a separable metric space. Problems 1–2 widely encompasses research

areas, such as convex optimization, operations research, and first- and second-order methods, as well as

linearly and sublinearly convergent algorithms. This setting is a powerful modelling paradigm widely used

to model large-scale optimization problems in machine learning, signal processing, and other computational

sciences [10], [27], [34], [60], [62].

The fundamental task of a generic stochastic convex optimization is to seek an optimal decision variable

x ∈ X that minimizes a given expected loss EP[ℓ(x; ξ)] taken with respect to an underlying population dis-

tribution P of a random variable ξ ∈ Rm. A wide variety of stochastic optimization methods for solving the

problems 1–2 have been explored in extensive literature. However, constructing optimal estimators for x⋆

and J⋆ remains a major challenge in large-scale, data-driven optimization problems. As a first specific point,

the true underlying population distribution P is never known but must be inferred through finitely-many ob-

servations. Even if the distribution P is known, the learning procedure could be computationally excruciating

since evaluating the corresponding expectation for a fixed x involves computing a multivariate integral, which

could be high-dimensional and intractable, e.g., given the loss function ℓ(·) is an affine function, evaluating

integral is still NP-hard. Second, while classical data-driven techniques are computationally tractable and

enjoy strong asymptotic performance guarantees, similar guarantees do not typically hold in finitely sample

settings. By calibrating a stochastic program to a given dataset and estimating optimal decisions through
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these methods, the generalization performance could consequently be disappointing. Beyond that, most

existing performance guarantees critically depend on the assumption that training samples are independent

and identically distributed (IID). This assumption, however, can be difficult to justify or outright invalid

in practice. Besides that, it is often unrealistic to assume that one has access to a source of independent

randomness, so studying the effect of dependence among samples is natural and essential. Third, J⋆ and

x⋆ generally do not have an analytic expression given the objectives that are composed of data fitting and

several competing structures, such as sparsity, low rank, and smoothness, which enforce prior knowledge of

the form of the solution. Thus, when establishing the practical utility of an underlying optimization scheme,

tractability is equally as important as theoretical performance guarantees.

1.1 Motivation and Related Work

As the true distribution P of random variable ξ is unknown in most cases of practical interest, it could be

extremely hard to evaluate the original problem 1–2 exactly—We miss essential information to solve problems

directly and it is unclear which problem instance should be solved. Thus, it is convenient to embed a

given stochastic optimization problem into a surrogate problem by replacing the unknown (true) probability

measure with some approximation P̂K , which is independent of the distribution P, i.e., we reformulate

the original stochastic optimization problem into some surrogate problem constructed completely from K

training samples that can be solved efficiently. One important Monte Carlo simulation-based approach,

Sample Average Approximation, is a powerful modelling paradigm that takes P̂K as the (discrete) empirical

distribution—the distribution that places a mass of 1/K at each of the sample points. SAA approximates

J⋆ and x⋆ in 1–2 as

Ĵ⋆
K = min

x∈X

{
EP̂K [ℓ(x; ξ)] =

∫
Ξ

ℓ(x; ξ)P̂K(dξ) =
1

K

K∑
k=1

ℓ(x, ξ̂k)
}

(3)

x̂⋆
K = argmin

x∈X

{
EP̂K [ℓ(x; ξ)] =

∫
Ξ

ℓ(x; ξ)P̂K(dξ) =
1

K

K∑
k=1

ℓ(x, ξ̂k)
}
, (4)

both of which are functions of the K samples. Throughout this paper, we reserve the superscript̂for objects
that depend on the training data and thus constitute random objects governed by the product distribution

PK .

Variants of the SAA-based methods in optimizations and other contexts are ubiquitous, from operations

research to statistical learning problems, and often used tacitly without necessarily being referred to by this

name. SAA-based methods are differentiated into three streams based on how data is generated: random

samples can be streamed, available as historical data, or simulated by sampling techniques (e.g., Monte

Carlo). More explicitly, SAA can be used to estimate J⋆ and x⋆ when IID data is drawn from an unknown

P is available or when random covariates can be simulated from a known P. In a Monte Carlo setting, it

is easy to generate additional data, so the key is understanding the number of samples needed to balance

the optimality and computational expense to compute SAA solutions. This number can be large, especially

when sampling from a high-dimensional space. In contrast, additional data is unavailable when working with
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historical data, while streaming data cannot be stored in memory for a long period and should be processed

as quickly as possible. Performance guarantees are thus a vital issue—Under mild structural assumptions on

the cost function ℓ and the sampling process, SAA enjoys strong convergence properties (as K →∞) and is

known to be computationally tractable for many cost functions ℓ(·) and sets X ([40], [41]):

1. Asymptotic convergence: As the number of training samplesK tends to infinity, both the estimated

optimal value Ĵ⋆
K and the estimated optimal solution x̂⋆

K converge strongly.

2. Tractability: For many cost functions ℓ(x; ξ) and sets X, finding the optimal value Ĵ⋆
K and an optimal

solution x̂⋆
K are computationally tractable.

These strengths underlie SAA’s popularity and practical success in data-driven settings. But such per-

formance guarantees critically rely on the assumptions of sufficient large IID samples. However, similar

guarantees do not typically hold for SAA for finite or dependent samples. For a review of SAA models where

ξ has finitely many realizations, see [8], [26], [40], [41], [45].

A problematic criticism in practice is that in finite-dependent-sample settings, solutions of SAAs and

out-of-sample performance can be volatile: perturbations in the data (e.g., in sample size or the level of

dependence between samples) can produce significant changes in the solutions, which could lead unstable

and untrustworthy decision or false inferences; Applying the resulting decisions on different datasets could

be risky, even if the tested dataset is generated from the same distribution. Thus, methods should have

guarantees that remain valid when the training samples are finite and exhibit serial dependence.

This paper examines SAA’s performance for finite and dependent training samples and expands the

method’s practical applications. In particular, we derive finite-sample properties and asymptotic guarantees

for SAA without the need for IID training samples from the distribution P over which we optimize. Instead,

we assume that training samples are drawn from a single trajectory of ergodic S.P., which converge to the

stationary distribution P (P k → P, as k → ∞). This setting accommodates serial dependence among the

training samples and is a natural extension because, in many circumstances, the distribution P is never

known or cannot be formulated by the decision maker. In other scenarios, it might not be possible to draw

samples efficiently from P. Such S.P.es include random processes on a finite-state space, finite-state Markov

chains, and different vector mixing processes, among many others. Even, for IID cases, the dataset can be

viewed as generated from IID S.P. where P k = P, ∀k.

To illustrate the importance of sampling efficiency and the need to accommodate intersample dependence,

consider the following two examples. First, define Ξ = {ξ ∈ {0, 1}d | ⟨a, ξ⟩ ≤ b}, where a ∈ Rd, b ∈ R, and P

is the uniform distribution over Ξ. A straightforward way to obtain a sample from P is by iterative random

sampling from {0, 1}d until the constraint on Ξ is satisfied: this approach takes O(2d) draws to obtain a

feasible sample. Alternatively, it is possible to design a Markov chain that generates a sample that is ε-close

to P and requires only log(
√
d/ε) exp

(
O(
√
d(log d)5/2)

)
draws—a greatly reduced sampling cost. Second,

autoregressive processes generate non-IID data, here sequential entries of a time series.

Multiple replications (MR) [30] is an attractive method for generating samples from multiple independent

trajectories of serially correlated states. Specifically, MR attempts to remove intersample dependence by
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using multiple trajectories of a stochastic process. After specifying initial conditions for the stochastic process

and generating a sequence ξ1, . . . , ξs for some s, MR keeps only the last sample ξs: it is assumed that the

marginal distribution of ξs is close to P. While this procedure can be applied to simulate K IID samples,

MR may be expensive and wasteful in practice (especially if s is large) or might not apply at all if only one

trajectory is available. Although MR is approximately two decades old, to the best of our knowledge, the

optimality of SAA under MR has not yet been established. Theorem 1 gives asymptotic optimality results

for this setting.

Theorem 1 (Asymptotic optimality of SAA under MR) Given s initial samples for each of Q tra-

jectories, let Ĵ⋆
Q and x̂⋆

Q represent the optimal value and optimizer obtained via SAA under MR. Assume

that supq∈[1,Q] ℓ(x̂
⋆
q , ξq) is bounded above by some finite constant Lq. It follows that P{lims→∞ limQ→∞ Ĵ⋆

Q =

J⋆} = 1 and P{lims→∞ limQ→∞ x̂⋆
Q = x⋆} = 1.

Theorem 1 suggests that the “wasted” samples are necessary and that a small value of s may introduce

bias in an approximation of P and hinder the convergence and accuracy of optimization algorithms.

In this paper, we instead focus on a single trajectory of a stochastic process (P k)k that generates training

samples and statistical information about P. We additionally assume that the stochastic process is suitably

ergodic, loosely, and that it converges relatively quickly to a stationary distribution P. The existing literature

that considers this setting does address algorithmic convergence guarantees with dependent samples but

pays little attention to the statistical properties of SAA estimators. As examples, see [24] and [63] and

the references therein. To fill this gap, we derive an upper confidence bound on the achievable out-of-

sample performance and establish the asymptotic convergence of the optimal value and optimal solution via

modern measure concentration results. Beyond asymptotic properties, we investigate the sample complexity

of SAA with dependent data in order to obtain an ε-optimal solution. Our results generalize SAA from

several recent works on stochastic and nonstochastic optimization, including the randomized incremental

subgradient method [36], [37] and the Markov incremental subgradient method [35].

While SAA has demonstrated practical success in data-driven optimization, especially for complex

datasets, the computational tractability of SAA suffers when the loss function ℓ itself possesses a com-

plex structure. This problem commonly arises in statistical machine learning methods that enforce prior

knowledge of the form of the solution (e.g., sparsity, rank, smoothness) [56]. Stochastic approximation pro-

vides a natural way to solve these problems. Indeed, algorithms that are both rich enough to capture the

complexity of data and scalable enough to process large volumes of data in a paralleled or fully decentralized

fashion have become centrally important. The need for such algorithms continues to motivate new devel-

opments, notably those related to stochastic algorithms and operator-splitting schemes. Indeed, the latter

is known to significantly reduce computation time in parallel computing environments and accommodate

memory requirements.

Operator-splitting techniques were first developed in the 1950s and applied to partial differential equa-

tions and inclusion problems [68]. Within the past few decades, certain operator-splitting methods, such as

the alternating direction method of multipliers (ADMM) algorithm [12], have been widely applied to large-
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scale problems in signal/image processing, statistical machine learning, compressed sensing, and matrix

completion [7], [16], [17], [32]. The success of operator-splitting methods is largely due to its simplicity and

efficiency. These techniques offer several advantages over traditional optimization methods (e.g., Newton-

type algorithms and interior-point methods): the former can easily handle nonsmooth terms and abstract

linear operators, requires only simple arithmetic operations, and scales well with the dimension of the prob-

lem. Underlying these techniques is a reformulation of a given convex optimization problem into one of

finding a fixed point of a nonexpansive operator. Operator-splitting methods additionally apply a decom-

position procedure in which the original problem is broken into subproblems that can easily be solved. The

solutions to these subproblems are combined to find a solution to the original problem. Several sophisticated

algorithms and their stochastic versions such as the proximal point algorithm (PPA), forward-backward

splitting (FBS), Douglas–Rachford (DRS), and Peaceman–Rachford splitting (PRS) [64], to name a few,

have been widely applied to complex problems and have been extended to accommodate distributed and

parallel optimization [12]. These techniques can all be embedded into an operator-splitting framework. Refer

to [5] and the references therein for a comprehensive overview of operator-splitting schemes.

1.2 Main Contributions

As the main contribution, we demonstrate that SAA with dependent samples retains asymptotic properties

and can be implemented efficiently through stochastic operator-splitting schemes for numerous popular loss

functions. That is, the main information-theoretic results characterize the attainable results in a variety

of applications and statistical settings. This also allows us to explore/develop procedures in the context of

data-driven, inferential, and statistical learning tasks whose optimality we can verify. Such results are critical

for a myriad of reasons; we can avoid making risky decisions that lacks of generalization or false inferences,

we may realize a learning task is limited or even infeasible, and we can explicitly calculate the amount of

data necessary for obtain content level of optimality of different statistical problems. We propose an efficient

data-driven procedure for constructing a sequence of discrete empirical distributions that asymptotically

estimates the true population distribution. This is a natural relaxation, because in many circumstances it

may be impossible to draw samples from population distribution directly, such as when Ξ is a combinatorial

space but it is possible to design a stochastic process that converges to the distribution. Furthermore, in

many practical applications, it is unrealistic to assume that one has access to a source of data distributed

separately such distributed medical data is restricted due to either ownership or other regulatory constraints.

We find that many stochastic optimization problems can be approximated and solved efficiently by SAA. We

further investigate the out-of-sample performance of the estimated optimal decisions, both theoretically and

experimentally, and demonstrate the advantage of the purposed sampling procedure over commonly used

data-generating processes.

1. We generalize SAA for a class of loss ℓ with IID data to settings with correlated training samples. We

show that, when the underlying stochastic process is ϕ-mixing, the estimated optimal solution x̂⋆
K and

value Ĵ⋆
K are asymptotically consistent. We further prove that the optimal value obtained through
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SAA provides an upper confidence bound for the true optimal out-of-sample cost.

2. We establish the sample complexity of SAA with dependent data under a structural assumption of

Lipschitz continuity.

3. We demonstrate that SAA can be implemented efficiently via stochastic operator-splitting schemes

and show that the corresponding approximation error is bounded and concentrated around zero. We

further establish deviation bounds for the algorithm’s iterates.

4. We present several stochastic versions of popular algorithms such as stochastic proximal gradient

descent (S-PGD) and the stochastic relaxed Peaceman–Rachford splitting algorithm (S-rPRS) and

illustrate that the method enjoys strong convergence guarantees through numerical experiments with

various data-generating process, including vector-auto regressive process and finite-state Markov Chain,

to demonstrate that our approach outperforms other data-driven methods.

1.3 Organization

In Chapter 2, we introduce a general framework for stochastic optimization and a broad range of data-

generating processes. We establish out-of-sample performance guarantees and asymptotic properties for

our method in Chapter 3. In Chapter 4, we investigate sample complexity under a variety of structural

assumptions with dependent data. In Chapter 5, for numerous objectives, we demonstrate that SAA can be

split into composed of several competing structures, such as minimizing the sum of two functions, and, more

generally, finding a zero of the sum of two monotone operators. We also derive deviation bounds when the

underlying stochastic process is ϕ-mixing together with stability and global convergence results for a family

of operator-splitting schemes. We apply established theoretical results to study the convergence properties of

several stochastic operator-splitting algorithms, including S-GFBS, S-PRS, and S-DRS with dependent data

in Chapter 6. We present numerical experiments to examine the performance of our proposed data-driven

procedure that relies on a single trajectory of a given stochastic process.
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Chapter 2

Data-Driven Stochastic Programming

From here on, we let Ξ̂K = {ξ̂k}Kk=1 denote the training dataset. We emphasize that Ξ̂K can be viewed as a

realization of a random object governed by the distribution P supported on Ξ. A data-driven version of the

problem in 2 is to find a feasible decision x̂⋆
K ∈ X based on the training set Ξ̂K . We hereafter suppress the

dependence of x̂⋆
K on the training sample in our notation for simplicity.

2.1 Multiple Optimality Guarantees

The statistical guarantees provided by most existing approaches to data-driven optimization critically rely

on large-sample approximations and the often-unreasonable assumption that training samples are IID. We

argue that any meaningful approach to data-driven optimization should retain asymptotic optimality and

finite sample performance guarantees when the training samples are finite in number and display serial

dependencies. We define EPK

[ℓ(x̂⋆
K ; ξ)] as the in-sample risk of x̂⋆

K , which is a function of the training

samples alone and therefore accessible to the decision-maker. An ideal optimal solution would minimize the

out-of-sample risk EP[ℓ(x̂⋆
K , ξ)], where ξ is independent of the training set, but since P is unknown, the best

we can hope to do is establish tight bounds on the out-of-sample performance.

The feasibility of x̂⋆
K in 1 implies that J⋆ ≤ EP[ℓ(x̂⋆

K , ξ)], but this lower bound is not particularly useful

since J⋆ is unknown. Our primary goal is then to bound the risk from above. In other words, we seek

data-driven solutions x̂⋆
K with performance guarantees of the form

PK
{
Ξ̂K | EP[ℓ(x̂⋆

K , ξ)] ≤ Ĵ⋆
K + ε⋆

}
≥ 1− β (2.1)

for some ε⋆ > 0 that represents approximation error caused by deviation in PK from P, where β ∈ (0, 1) is

a significance parameter with respect to the distribution PK that governs both x̂⋆
K and Ĵ⋆

K .

We approximate P with the discrete empirical probability distribution P̂K = 1
K

∑K
k=1 δξ̂k , that is, the

uniform distribution on Ξ̂K . In terms of stochastic optimization, this amounts to approximating the optimal

solution of the original problem 1–2 with SAA, as in 3–??. If the feasible set X is compact and the loss

function is uniformly continuous in x for all ξ ∈ Ξ, then the optimal value Ĵ⋆
K and every optimal solution

x̂⋆
K of the SAA problem converge almost surely to their counterparts in the original problem as K tends to

infinity [26], [40], [41].
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We will demonstrate that the optimal value Ĵ⋆
K , as well as any optimal solution x̂⋆

K of the SAA problem

in 3–??, enjoy the following properties.

1. Asymptotic consistency: As the number of data points K tends to infinity, the optimal value Ĵ⋆
K

and any optimal solution x̂⋆
K converge, both in expectation and with high probability, to the optimal

value J⋆ and an optimal solution x⋆ of the problem in (1)–(2).

2. Finite sample guarantee: Given the finite K training samples, by introducing a weakened version of

ϕ-mixing, we establish 1−β confidence bounds on the out-of-sample performance based on the optimal

solution obtained by minimizing an SAA problem.

3. Tractability: For many convex cost functions ℓ and sets X, the optimal and an optimal solution can

be obtained efficiently through operator-splitting schemes.

The stochastic optimization literature has identified the above properties as desirable for optimal values

and solutions [8]

2.2 Data-generating Process

We now introduce our proposed sampling algorithm, which is similar to other approaches in existing lit-

erature [24], [37]. In short, we consider a single trajectory of an ergodic stochastic process and design a

data-driven procedure that provides attractive performance when the sampling from P is impossible or ex-

pensive. Let ξ1, . . . , ξK denote a time-indexed sequence observed from a stochastic process P . Let P k denote

the marginal distribution of P at time k: P k thus converges to P.

Our proposed data-driven procedure for 1–2 is related to a family of stochastic optimizations with exoge-

nous correlated noise, where the goal is to minimize objectives as 1–2, but we have access only to samples

ξ that are not independent over time. In general, this stochastic process enables us to generate training

samples more efficiently and governs convergence guarantees [24]. There are a number of applications for

this work: in control problems, data is often coupled over time or may come from an autoregressive pro-

cess [38]. in distributed sensor networks [37], a set of wireless sensors attempt to minimize an objective

corresponding to a sequence of correlated measurements; and in statistical problems, data comes from an

unknown distribution and may be dependent [1]. See for other motivating applications.

We now describe several data-generating processes for which the surrogate optimization problem in 3-??

or the original optimization problem in 1-2 admit the proposed framework.

2.2.1 Linear Dynamical System

We consider the problem of learning a stable linear dynamical system, where the training samples are

generated from a single trajectory of correlated state observations. The problem is of fundamental importance

in various operation control, such as adaptive control [31], system identification [44], and learning of stable

dynamic programming [47]. Specially, the observable data {ξk}Kk=1 follows the vector-auto regressive process

ξk+1 = θ +Aξk + εk+1

9



with the state space S = Rh. Here, the drift term θ ∈ Rh is deterministic but unknown and (εk)
K
k=1 is

normally distributed with a mean of zero and a known positive-definite covariance matrix of Σ ∈ Rh×h. The

initial state ξ0 and all disturbances are mutually independent under P. Such data generating process is also

a common model in time series analysis and statistical process control [25], [46]. If we additionally assume

that A ∈ Rh×h is asymptotically stable (in the sense that all of its eigenvalues reside strictly inside the

complex unit circle), then the process {ξk}k∈N is ergodic and admits a unique stationary distribution [49].

2.2.2 Peer-to-peer Decentralized Optimization

The well-known Markov incremental gradient descent procedure derives from a distributed optimization

algorithm that uses a simple peer-to-peer scheme for optimization and communication [37]. The basic idea

is we have n processors or computers, each with a convex function ℓi : X×Rd → R. The goal is to minimize

the objective function

L(x) =
1

n

n∑
i=1

EPi [ℓi(x, ξi)]

over x ∈ X, where each expectation is taken with respect to a local distribution Pi. In this procedure, a

current set of parameters xk ∈ X is passed between the processors in the network: the token i(k) ∈ [n]

indicates the processor holding xk at iteration k. At iteration k, a sample ξk,i(k) is drawn from the local

distribution Pi(k) and the algorithm computes the update. We can more generally view the token i(k) as

evolving according to a Markov chain, See Appendix A.1 for more detail. The observations {ξk}k∈N are

serially independent and uniformly distributed under P: the corresponding transition probability matrix P

satisfies (P )ij = 1/h for all i, j ∈ Ξ. The process has a uniform stationary distribution. We emphasize that

the Markov chain converges to the true (uniform) distribution as K grows. The total variation distance

dTV(P
kei,1/n) between the stochastic process initialized at i(0) = i and the true distribution satisfies

dTV(P
kei,1/n) ≤

√
n∥P kei − 1h/n∥2 =

√
n∥P k(ei − 1h)∥2 ≤

√
n[ρ2(P )]k∥ei − 1h/n∥2 ≤

√
n[ρ2(P )]k,

where ei denotes the ith standard basis vector, 1h an h-vector of ones, and ρ2(P ) the second singular value

of P . If k ≥
1
2 log(Kn)

log ρ2(P )−1 , then ∥P kei − 1h/n∥1 ≤ 1/
√
K, and so ∥P kei − 1h/n∥1 → 0 as K →∞.

2.3 Computational Tractability

Although SAA offers powerful statistical guarantees, the method would not be useful if the underlying

optimization problem could not be solved efficiently. We now demonstrate that the SAA is computationally

tractable for several numerically inconvenient loss functions that are common in practice: we develop a

numerical procedure to solve 3 when data comes from an ergodic stochastic process that converges to P.

2.3.1 Problem Statement

We consider two types of stochastic problems. The first is the unconstrained problem

min
x∈X

{
EP[ℓ(x; ξ)] =

∫
Ξ

ℓ(x; ξ)P(dξ) =
∫
Ξ

[f(x; ξ) + g(x; ξ)]P(dξ)
}
, (2.2)
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while the second is the linearly constrained problem

min
x∈X,y∈Y

{
EP[ℓ(x; ξ)] =

∫
Ξ

ℓ(x; ξ)P(dξ) =
∫
Ξ

f(x; ξ) + g(y; ξ)P(dξ) | Ax+By = b
}
, (2.3)

where X,Y ⊆ Rd and ξ is a random vector defined on the probability space (Ξ,A,P). Here, Ξ ⊆ Rm and A

is a σ-algebra that contains the information we are interested in. We assume that A : X→ R and B : Y→ R

are bounded, linear operators.

Many optimization problems arising in image processing, machine learning, statistics, and other areas [3],

[9], [15], [29], [59], [70] can be cast as either 2.2 or 2.3 [11]. In practice, the dimensionality of the data can be

extremely large, so traditional methods may fail to efficiently (in terms of time) generate solutions. Penalty

terms, including those used to restrict the sparsity, rank, or smoothness of a solution, make problems 2.2 or

2.3 even more difficult to optimize jointly. Even if both terms can be handled jointly, even a single iteration

of classical algorithms can be infeasible when the data is high-dimensional or contains millions or billions of

samples.

The methodology we present differs from that used in classical convex analysis [11], [12], [57]. Classical

statistical methods attempt to estimate unknown parameters through an optimization problem. Our ap-

proach uses operator-splitting algorithms, which are driven by fixed-point iterations of a given operator, so

convergence rates are with respect to the fixed-point residual (FPR) ∥Txk − xk∥2 rather than the goal of

minimizing a loss function: convergence is due to the contractive property of the given fixed-point operator

rather than “descent” in the loss function. Most fixed-point schemes do not decrease the objective function

monotonically, so the objective function’s convergence is a consequence rather than a cause of fixed-point

convergence.

2.3.2 Geometry of Operator Splitting Schemes: Feasibility Problem

To illustrate fixed-point iteration schemes more clearly, We consider a feasibility problem of two subspaces to

(1) provide a geometric explanation of the convergence trajectory of the fixed-point sequence generated by

operator-splitting schemes; (2) show that locally, the fixed-point sequence settles onto a regular trajectory

such as a logarithmic spiral. We consider the problem in R2: let T1, T2 ⊂ R2 be two intersecting lines. The

problem of finding the common point of T1, T2 can be written as

min
x∈R2

lT1
(x) + lT2

(x).

As the proximal mapping of indicator functions is projection, the above problem can be easily handled by the

Douglas-Rachford splitting method, see Algorithm 2.3.2. The convergence trajectory of sequence {xk}k∈N is

provided as below.
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Algorithm 1 Douglas-Rachford splitting

input: x0 ∈ R2

while j = 0, 1, . . . , n do
uk
g ← Proj(xk−1); uk

f ← Proj(2uk
g − xk−1)

xk
1 ← xk−1 + (uk

f − uk
g)

xk → (1− αk)x
k−1 + αkx

k
1

end while
return x

−40

0

40

−75 −50 −25 0 25 50

Training.Trajectory Standard −DR 1 − Inertial −DR 2 − Inertial −DR

The above trajectory results are quite different from the “descent” in the loss function, which is evidence

that the contractive property of the given fixed-point operator ensures convergence and affects the trajectory

of the sequence.

12



Chapter 3

Statistical Performance Guarantees

3.1 Preliminary and Assumption

Before deriving statistical performance guarantees for the proposed method, we first recall an essential

definition from probability theory.

Definition 1 (Total variation distance [19]) Let P and Q be probability measures defined on a set Ξ

with respective densities p and q relative to some underlying measure µ. The total variation distance between

P and Q is

dTV(P,Q) =
1

2

∫
Ξ

|p(ξ)− q(ξ)|dµ(ξ) = sup
A
|P(A)−Q(A)|,

where the supremum is taken over measurable subsets A of Ξ.

We can now describe our notion of a mixing stochastic process. Let P k
[s] denote the distribution of ξk

conditional on Fs = σ(ξ1, . . . , ξs). That is, for any measurable A ⊆ Ξ, P k
[s](A) = P (ξk ∈ A | Fs). We use the

notion of a mixing coefficient to measure convergence.

Definition 2 (Mixing coefficient) Define F0 = {∅,Ω} and let (Fk)
K
k=1 be an increasing sequence of σ-

algebras. The ϕ-mixing coefficient of the sample distribution P under the total variation distance is

ϕ(v) = sup
k∈N+,A∈Fk

dTV(P
v+k(· | A),P) = sup{A ∈ Fk | |P k

[s](A)− P(A)| < σ}, (3.1)

for an arbitrary σ > 0. Intuitively, a process is ϕ-mixing if ϕ(v) → 0 as v → ∞. If the samples are IID,

then ϕ(1) = 0.

Our main assumption is that the stochastic process is suitably mixing, i.e., there is a stationary distribu-

tion P to which the distribution of ξk converges as k increases. Below are our main probabilistic assumptions:

these guarantee that a stochastic process converges.

Assumption 1 (Ergodicity) The ϕ-mixing coefficients for the sample distribution are summable, i.e.,∑∞
k=1 ϕ(k) <∞.

Assumption 2 (Light-tailed distribution) There exists a > 1 such that,

EP[exp(∥ξ∥a)] =
∫
Ξ

exp(∥ξ∥a)P(dξ) <∞.
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Assumption 1 is met by stochastic processes that mix geometrically: such processes, which include au-

toregressive process and periodic Harris-recurrent Markov processes [49], [50], satisfy ϕ(k) ≤ ϕ0 exp(−ϕ1k
α)

for some ϕ0 > 0, ϕ1 > 0, and α > 0. Of particular note, Definition 2 and Assumption 1 do not require the

distribution Pk to be time-homogeneous and allows randomness in the probability distribution Pk given the

initial s samples. That is, conditional on Fs, the mixing time ϕ(v) is an F[s]-measurable random variable.

Assumption 2, which ultimately requires that the tails of P decay at an exponential rate, is a common

requirement and is essential for SAA [28]. There are no convergence guarantees for SAA with heavy-tailed

distributions that fail to meet Assumption 2 [13], [14]. This assumption holds trivially if Ξ is compact.

3.2 Asymptotic Consistency and Out-of-sample Performance

We now present some modern measure concentration results that provide a basis for more-powerful finite

sample guarantees.

Definition 3 (Dependence Coefficient [21]) Let (Ω,A,P) be a probability space, X a real-valued random

variable, and F a σ-algebra on A. Let ∥·∥p denote the Lp-norm with respect to P and ∥·∥p,µ the Lp-norm

with respect to µ. Let PX denote the distribution of X and PX|F a regular distribution of X given F . Let

FX(t) = PX((−∞, t]) and FX|M(t) = PX|F ((−∞, t]). For p, q ∈ [1,∞], define

τµ,p,q(F , X) =
∥∥∥(∫ |FX|M(t)− FX(t)|pµ(dt)

)1/p∥∥∥
q
=
∥∥∥∥FX|F − FX∥p,µ

∥∥∥
q
.

Theorem 2 (Measure Concentration [21]) Let (Ω,A,P) be a probability space and (Xi)1≤k≤K a se-

quence of identically distributed, real-valued random variables with a common distribution function F . Let

F0 = {∅,Ω} and let (Fl)1≤l≤K be an increasing sequence of σ-algebra such that σ(Xi, 1 ≤ k ≤ l) ⊆ Fk.

Define

Dp,K(µ) =
(∫
|F̂K(t)− F (t)|pµ(dt)

)1/p
= ∥F̂K − F∥p,µ.

For any p ∈ [2,∞], any finite measure µ, and any positive x,

P(
√
KDp,K(µ) ≥ x) ≤ 2 exp

(
− Kx2

2(p− 1)
∑K

k=1

(∑N
l=i

∥∥∥FXl|Fi
− FXl|Fi−1

∥p,µ
∥∥
∞

)2
)
.

Remark 1 ([21]) The bound in Theorem 2 is valid for p ∈ [2,∞]. If p ∈ [1, 2), then the space Lp(µ) is

no longer smooth and the method of martingale differences in Banach spaces does not work. However, since

Dp,K(µ) ≤ D2,n(µ) for any probability measure µ and any p ∈ [1, 2], Theorem 2 provides an upper bound

for the deviation of Dp,K(µ) in terms of τµ,2,∞ (and hence, also in terms of τµ,1,∞ since τµ,2,∞(M, X) ≤

(τµ,1,∞(M, X))1/2).

Theorem 2 provides a prior estimate of the distribution P that resides outside of the ε-ball Bε(P̂K) = {Q |

∥P̂K − Q∥ ≤ ε}. In particular, where C(p,K, µ) =
∑K

k=1(
∑K

l=k(τµ,p,∞(Fk, Xl) + τµ,p,∞(Fk−1, Xl)))
2, we

have the upper bound P(
√
KDp,K(µ) ≥ x) ≤ 2 exp(−Kx2/[2(p− 1)C(p,K, µ)]). We can thus use Theorem
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2 to estimate the radius of the smallest ε-ball that contains P with confidence 1 − β for some prescribed

β ∈ (0, 1):

εK(β) =

√
2 log(2β−1)C(

∑K
k=1 ϕ(k))

K2
.

Let ∥P̂K − P∥ =
∫ 1

0
|P̂K(t)− P(t)|dt with P̂K = 1

K

∑K
k=1 δξk . If Assumption 1 holds, then by Theorem 2

in [21],

P(∥P̂K − P∥ ≥ ε) ≤ 2 exp
(
− K2ε2

2C(
∑K

k=1 ϕ(k))

)
for all K ≥ 1 and ε > 0, where C(

∑K
k=1 ϕ(k)) is a function of

∑K
k=1 ϕ(k) and satisfies C(

∑K
k=1 ϕ(k)) < ∞.

Therefore, εK(β) yields the smallest ε-ball that contains P with confidence 1−β for some prescribed β ∈ (0, 1).

Theorem 3 (Out-of-sample performance) Suppose that Assumption 2 holds. Assume also that ℓ(x; ξ)

is bounded by a constant L for x ∈ X and ξ ∈ Ξ. Let ε⋆ = LεK(β) > 0 and β ∈ (0, 1). It follows that

P(EP[Ξ̂K | ℓ(x̂⋆
K ; ξtest )] ≤ Ĵ⋆

K + ε⋆) ≥ 1− β. (3.2)

Proof: By the definition of εK(β), we have that P{P ∈ BεK(β)(P̂K)} ≥ 1 − β. Thus, by boundedness of

ℓ, it follows that EP[ℓ(x̂⋆
K ; ξ)] ≤ EP̂K [ℓ(x̂⋆

K ; ξ)] + L∥P̂K − P∥. Thus, EP[ℓ(x̂⋆
K ; ξ)] ≤ EP̂K [ℓ(x̂⋆

K ; ξ)] + LεK(β)

with probability 1− β. The result of the theorem follows by taking ε⋆ = LεK(β). □

We can conclude that the out-of-sample performance of x̂⋆
K is bounded within a ε⋆-ball about Ĵ⋆

K with

probability 1− β. It is clear from 3.2 that the approximation error is due to dependence among the samples

and the finite sample size. In addition, one can show that if βK converges to zero at a particular rate,

then the solution to the problem in 3 converges to that of 1 as K tends to infinity. The following theorem

formalizes this statement.

Theorem 4 (Asymptotic Consistency) Suppose that Assumption 2 holds. Let βK ∈ (0, 1) with

limK→∞ εK(βK) = 0 and
∑∞

k=1 βK <∞. Assume also that the loss function ℓ is a convex, closed, and proper

function that is bounded by some finite L. Let Ĵ⋆
K and x̂⋆

K represent the optimal value and optimal solution

obtained by SAA where ξk is drawn from an ergodic stochastic process. It follows that P(limK→∞ Ĵ⋆
K =

J⋆) = 1 and P(limK→∞ x̂⋆
K = x⋆) = 1, where J⋆ and x⋆ are optimal value and optimal solution i 1 and 2.

A convergence result akin to Theorems 3–4 for distributionally robust optimization is established in

[28]. Robust SAA is discussed in [8]. These results are complementary to Theorems 3–4. Indeed, the above

results accommodate dependence among training samples—a setting that is not considered in previous works.

While we require here that ℓ is a closed, convex, and proper function, our results still hold under the weaker

assumption that ℓ is lower semicontinuous in x. We argue that the former assumption is more realistic in

many real-world applications, relative to other regularity conditions such as strong convexity, smoothness,

and lower semicontinuity.

So far, Theorems 3–4 show that SAA accommodates data-driven procedures with dependent training

samples and retains favourable asymptotic and finite-sample guarantees. In practice, however, there are

several numerical difficulties.
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1. The formula for ε⋆ in 3.2 depends on the mixing coefficient ϕ(v) and, thus, on the training samples.

Even though ϕ(v) can be computed based on Definition 2, since the true distribution P is unknown,

ϕ(v) can only be approximated.

2. Even if P /∈ BεK(β)(P̂K), the optimal value Ĵ⋆
K may still provide an upper bound on J⋆.

3. Unlike the IID setting where asymptotic optimality depends only on the sample size K, in our setting,

this optimality also relies on the mixing properties of stochastic progress. Convergence may be faster

for certain processes. For example, processes that satisfy ϕ(v) ≤ ϕ0 exp(−ϕ1v
α) for some ϕ0 > 0, ϕ1 > 0

and α > 0 can converge faster than those where ϕ(v) ≤Mv−α, for some M and α > 0.
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Chapter 4

Statistical Inference and Sample
Complexity of SAA with Non-i.i.d
Data

4.1 Statistical Inference for Stochastic Optimization

With the asymptotic consistency in places, we now develop an asymptotic expansion that essentially gives the

distributional convergence results. Our approach is fully operational with online/offline data and is rigorously

underpinned by a functional covariance inequality and measure concentration theory. We provide more

precise inferential guarantees on minx∈X EP[ℓ(x; ξ)], which has a couple of key advantages over the existing

result. First, we give an extension of asymptotic normality of SAA to the dependent sequence, thereby

allowing for hypothesis tests that can be used to construct uncertainty sets for the optimization problems.

Second, the inference procedure can be computed in an online fashion that is efficient implementation suitable

for massive online data.

4.1.1 Functional Covariance Inequality and Assumptions

Our results on inferential guarantees are built on asymptotic expansions, which we now present. Without

additional conditions. It is challenging to provide more precise inferential convergence on minx∈X EP[ℓ(x; ξ)].

We then prove a crucial functional covariance and exponential inequality for the loss functions and deduce

an ϕ-mixing property for the stochastic process, P . These inequalities are the main tools for proving the

functional central limit theorem and sample complexity.

Lemma 1 (Functional Covariance Inequality) Let {ξk}Kk=1 be a ϕ-mixing sequence and ξk, ξn+k ∈ Rm

be measurable w.r.t. to Fk
1 and F∞

n+k respectively. Suppose a function f : Rm → R is Borel measurable.

Then, we have that

|Cov(f(ξk), f(ξk+n))| ≤ 4∥f∥2Mϕ(n),

where ∥f∥M = sup(x,ξ)|f(x, ξ)| is the bound of f , which we assume it is finite.
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In order to study the statistical properties of ℓ(x; ξ), for positive integers 1 ≤ p = p(K) ≤ K and

p → ∞, we decompose the set {1, . . . ,K} into successive blocks each containing p elements. Considering

that r = r(K) be the largest integer with 0 < r < K, r →∞, and 2pr ≤ K which implies that K
2pr → 1, we

denote that Yk = ℓ(x, ξk)− Eℓ(x; ξ) and S̄K = 1
K

∑K
k=1(ℓ(x, ξk)− Eℓ(x; ξ)) := 1

KSK . Let

Ui = Y2(i−1)p+1 + · · ·+ Y(2i−1)p, Vi = Y(2i−1)p+1 + · · ·+ Y2ip, i = 1, · · · , r; (1)

WK = Y2pr+1 + · · ·+ YK ,

with

ŪK =
1

K

r∑
i=1

Ui, V̄K =
1

K

r∑
i=1

Vi, W̄K =
1

K
WK , (2)

so that

S̄K = ŪK + V̄K + W̄K . (3)

We now show the assumptions necessary to formulate the exponential tail bound for S̄K .

Assumption 3 For all x, the loss function ℓ(x; ξ) is Borel measurable and bounded by a constant M , i.e.

supx,ξ |ℓ(x; ξ)| ≤M .

Assumption 4 {ξk}k≥1 is strictly stationary, ϕ(n) ≤ ϕ0 exp(−ϕ1n
a) for some constant ϕ0 > 0, ϕ1 > 0, a >

0. That is, {ξk} is a geometric mixing sequence.

Assumption 5 The group size, number of groups satisfy that 2pr ≤ K, p/K → 0, K/(2pr)→ 1 as K →∞.

Lemma 2 (Exponential Inequality) Let S̄K be defined by (3). For ε > 0, suppose Assumptions (3)-(5)

hold. Then, there exists a constant C0 > 0 such that for any fixed x ∈ Rd,

P(|S̄K | ≥ ε) ≤ C0 exp(−
Kε2

36p∥f∥2M
).

4.1.2 Functional Central Limit Theorem

We show a uniform variant of the asymptotic normality. While our results apply significantly more gener-

ality, the following results cover many practical instances of stochastic optimization problems. The exists a

well-developed statistical inference for the optimal objective value obtained from the SAA approach. [61] de-

velops a number of normal approximations and asymptotic normality theory for the stochastic optimization

problems, which we now present

√
n
(
min
x∈X

EP̂[ℓ(x; ξ)]−min
x∈X

EP[ℓ(x; ξ)]
)
∼ N (0,VarP(ℓ(x

⋆; ξ))).

Now, we extend the asymptotic behaviour of the SAA optimal objective value for the present dependence

structure.
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Theorem 5 (Functional Central Limit Theorem) We suppose that the assumptions (3)-(5) hold and,

additionally, we assume that, 1
KVar(

∑K
k=1 ℓ(x

⋆, ξk))→ VarP(ℓ(x
⋆; ξ)). Then,

1√
K

(
K∑

k=1

(
ℓ(x̂⋆

K , ξk)−min
x∈X

EP[ℓ(x; ξ)]

))
→ N (0,VarP(ℓ(x

⋆; ξ))).

With the uniqueness of the optimal solution, the above theorem implies that the optimal objective value

of SAA is asymptotically normally distributed, which also indicates that, under the uniform integrability

conditions, we have the vanishing rate of bias of O(K−1/2). While the SAA optimal value enjoys asymptotic

properties, the asymptotic distribution of the optimal solution critically depends on the functional properties

of objectives, see [2], [40].

4.2 Sample Complexity of SAA with Non-IID Data

While a study of asymptotic properties is a crucial aspect of understanding the behaviour of SAA, non-

asymptotic analysis, such as analysis of finite-sample error bounds, is more valuable as they provide a better

understanding of the factors that influence the learning performance with limited sample size. Indeed,

these results are useful for a myriad of reasons. For example, we can avoid making bad decisions or false

inferences, we may realize that a learning task is unrealistic, and we can explicitly the amount of data

necessary for solving different statistical problems. These results typically characterize the error bound of

the difference between the true and empirical form of a function in the aforementioned class and especially for

evaluating their suprema, which can be thought of as a measure of the worst-case approximated performance

of functions.

With the notability of [18], [23], [51], learning complexity has been analyzed in various statistical settings.

These error bounds typically provide the theoretical guarantee, with high probability, that the error in an

estimator is bounded by an empirical estimated of bias with a penalty term depending on some notation

of complexity of the class of functions, as well as the learning algorithms. However, many notations of

complexity might depend on the underlying probability measure that is rarely known, or be independent of

any characteristics of data. Thus, it is desirable to obtain data-dependent estimates which can readily be

computed from the sample. The goal is then to obtain the sharpest possible estimates against the complexity

of function classes empirically. In a decision-theoretic setting, we establish general risk bounds in terms of

complexities for SAA. We show the deviation of SAA against the ground truth can be bounded by these data-

dependent complexities in terms of empirical Rademacher complexity (typically a function in a certain class)

and precise sample complexities of given objects, and the established results can be extended to function

classes that can be expressed as combinations of functions from basic classes.

4.2.1 Measurement of Sample Complexity

Beyond asymptotic properties, we prove general risk bounds in terms of these complexities that provide a

unified perspective enabling us to characterize the finite sample properties. We consider function classes

that can be expressed as combinations of functions from basic classes and show how the Rademacher and
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local complexities of such a function class can be bounded in terms of the complexity of the basic classes.

The notion of complexity of a function class might depend on the (unknown) underlying probability measure

from which the data are produced. However, estimating these distribution-dependent quantities can be

complicated in practice, especially, when P is unknown. Thus, data-dependent estimates that can be readily

computed from a sample are desirable. We now present bounds on the error in terms of an empirical notion

of complexity, namely Empirical Rademacher complexity, which are defined w.r.t the distribution generating

the data. Empirical Rademacher complexity can be estimated reliably from data generated, and they yield

generalization error bounds in terms of data-dependent quantities that can often be estimated or bounded

empirically [4], [42]. As we consider a general form of ℓ, we attempt to find the sufficient conditions for

learning that led us to prove results as uniform convergence bounds in terms of a function class L and

decision set. Typically, The error bound over the function class state that empirical errors of objects from

a given class converge to their true errors in terms of Empirical Rademacher complexity. This shows the

difference between the training error and generalization error for all functions belonging to L.

In statistical learning theory, the generalization error will be based on the measure of Rademacher

complexity of a class of functions L with respect to sample set {ξk}Kk=1 with high probability. The Empirical

Rademacher complexity is given as

Definition 4 (Empirical Rademacher Complexity) Given Ξ̂ = {ξk}Kk=1, the empirical Rademacher

complexity of a class of real-valued functions L defined over a set Ξ is defined as follows

R̂K(L) =
1

K
Eϵ

[
sup
ℓ∈L

K∑
k=1

ϵkℓ(x, ξk) | Ξ̂ = (ξ1, · · · , ξK)

]
.

The expectation is taken over {ϵk}Kk=1 = (ϵ1, . . . , ϵK) where ϵk s are random variables taking values in

{−1,+1} called Rademacher random variables. The Rademacher complexity of a hypothesis set L is defined

as the expectation of RK(L) over all samples of size K

R(L) = Eξ

[
Eϵ

[
sup
ℓ∈L

ϵkℓ(x; ξ)

]]
.

The Rademacher complexity measures the ability of a class of functions to fit noise. The empirical

Rademacher complexity has the added advantage that it is data-dependent and can be measured from .finite

samples

Theorem 6 (Data-dependent Complexity of SAA with non-IID Data) Assume that ℓ : X×Ξ→ R

is Borel measurable for all x, and uniformly bounded by a constant M , i.e. supx,ξ |ℓ(x; ξ)| ≤ M , ∀ℓ(·) ∈ L.

Let L be a class of functions that contains ℓ. Then for a fixed sample size K, with probability at least 1− β,

we have that

sup
ℓ∈L

(
E[ℓ(x; ξ)]− 1

K

K∑
k=1

ℓ(x, ξk)
)
≤ 4R̂K(L) + 3M

√
2 log 2

β

K
.
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Proof: Consider we have that

P
(
there exists ℓ ∈ L such that

∣∣∣E[ℓ(x; ξ)]− 1

K

K∑
k=1

ℓ(x, ξk)
∣∣∣ > ε

)
= P

(
sup
ℓ∈L
|E[ℓ(x; ξ)]− 1

K

K∑
k=1

ℓ(x, ξk)| > ε
)

= P
(
sup
ℓ∈L

(
E[ℓ(x; ξ)]− 1

K

K∑
k=1

ℓ(x, ξk)
)
> ε
)
+ P

(
sup
ℓ∈L

( 1

K

K∑
k=1

ℓ(x, ξk)− E[ℓ(x; ξ)]
)
> ε
)
.

Let Ξ = {ξ1, · · · , ξk, · · · , ξK}, Ξ′ = {ξ1, · · · , ξ′k, · · · , ξK}. Denote

Φ(Ξ) = sup
ℓ∈L

(
E[ℓ(x; ξ)]− 1

K

K∑
k=1

ℓ(x, ξk)
)
,

we have

Φ(Ξ)− Φ(Ξ′) ≤ sup
ℓ∈L

(
1

K
ℓ(x, ξk)−

1

K
ℓ(x, ξ′k)

)
≤ 2M/K.

By McDiarmid’s type inequality [54], we have that with probability 1− β/2,

Φ(Ξ)− E[Φ(Ξ)] ≤M

√
2 log 2

β

K
. (1.1)

Let RK(L) = EΞ[R̂K(L)], we next prove E[Φ(Ξ)] ≤ 2RK(L) and the bound of RK(L). Let {ξ′k}Kk=1 be an

i.i.d. copy of {ξk}Kk=1. We have that

Eξ

[
sup
ℓ∈L

(
E[ℓ(x; ξ)]− 1

K

K∑
k=1

ℓ(x, ξk)
)]

= Eξ

[
sup
ℓ∈L

Eξ′

[ 1
K

K∑
k=1

ℓ(x, ξ′k)−
1

K

K∑
k=1

ℓ(x, ξk) | ξ1, . . . , ξk
]]

≤ Eξ,ξ′

[
sup
ℓ∈L

1

K

K∑
k=1

(ℓ(x, ξ′k)− ℓ(x, ξk))
]
= Eϵ,ξ,ξ′

[
sup
ℓ∈L

1

K

K∑
k=1

ϵk(ℓ(x, ξ
′
k)− ℓ(x, ξk))

]
≤ Eϵ,ξ′

[
sup
ℓ∈L

( 1

K

K∑
k=1

ϵkℓ(x, ξ
′
k)
)]

+ Eϵ,ξ

[
sup
ℓ∈L

( 1

K

K∑
i=1

ϵkℓ(x, ξk)
)]

= 2RK(L). (1.2)

The first inequality holds since sup is a convex function, we can apply Jensen’s Inequality to move the sup

inside the expectation. It follows from inequalities (1.1), (1.2) that

sup
ℓ∈L

(
E[ℓ(x; ξ)]− 1

K

K∑
k=1

ℓ(x, ξk)
)
≤ 2RK(L) +M

√
2 log 2

β

K
. (1.3)

On the other hand, observe that

Eϵ

[
sup
ℓ∈L

K−1
K∑

k=1

ϵkℓ(x, ξk)
]
− Eϵ

[
sup
ℓ∈L

K−1
K∑

k=1

ϵkℓ(x, ξ
′
k)
]

=Eϵ

[
sup
ℓ∈L

K−1
K∑

k=1

ϵkℓ(x, ξk)− sup
ℓ∈L

(
K−1

∑
k ̸=k′

ϵkℓ(x, ξk) +K−1ϵkℓ(x, ξ
′
k)
)]

≤Eϵ

[
sup
ℓ∈L

K−1ϵk(ℓ(x, ξk)− ℓ(x, ξ′k))
]
≤ 2M/K.
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Similarly, we can prove that Eϵ

[
supℓ∈L K

−1
∑K

k=1 ϵkℓ(x, ξ
′
k)
]
− Eϵ

[
supℓ∈L K

−1
∑K

k=1 ϵkℓ(x; ξ)
]
≤ 2M/K,

and thus ∣∣∣∣∣Eϵ

[
sup
ℓ∈L

K−1
K∑

k=1

ϵkℓ(x, ξ
′
k)
]
− Eϵ

[
sup
ℓ∈L

K−1
K∑

k=1

ϵkℓ(x; ξ)
]∣∣∣∣∣ ≤ 2M/K.

By applying McDiarmid’s type inequality [54], we have that for any ε > 0,

P(R̂K(L)−RK(L) ≥ ε) ≤ e−
ε2K
2M2 .

This implies that with probability 1− β/2,

RK(L) ≤ R̂K(L) +M

√
2 log 2

β

K
. (1.4)

Inequalities (1.3) and (1.4) together implies that

sup
ℓ∈L

(
E[ℓ(x; ξ)]− 1

K

K∑
k=1

ℓ(x, ξk)
)
≤ 4R̂K(L) + 3M

√
2 log 2

β

K
.

□

One shortcoming of RAs is that they provide global estimates of the complexity of a class of functions:

they do not reflect the fact that an algorithm will likely pick functions that have a small error and, in

particular, only a small subset of the class will be used. As a result, the best error rate that can be obtained

(with respect to RAs) is suboptimal in some situations. In this section, we establish the local sample

complexity of SAA.

We now analyze the number of samples required for the SAA solution to be ε-optimal with respect to

the solution of the original problem with high probability.

Theorem 7 (Uniform Convergence) Assume that ℓ(·, ξ) is L-Lipschitz continuous and that the decision

set X ⊆ Rd has a finite diameter D(X) > 0. Suppose the assumptions (3)-(5) hold, then there exists a

constant C0 > 0 such that

P
(
sup
x∈X

∣∣∣ 1
K

K∑
k=1

ℓ(x, ξk)− E[ℓ(x; ξ)]
∣∣∣ > ε

)
≤ C0

(4LD(X)
ε

)d
exp

(
− Kε2

144pM2

)
.

Proof: The idea of the proof is that we first construct a v-net to remove the supremum over x and then

use the inequality given in Lemma 2 to bound the probability in the statement of the theorem.

Pick a v-net {xl}Ql=1 on the decision set X such that Lv = ε/4. Thus, Q ≤ O(1)(4LD(X)/ε)d. By

definition, for all x ∈ X , there exists l(x) ∈ [Q] with [Q] := {1, · · · , Q} such that ∥x− xl(x)∥2 ≤ v = ε/(4L).

By the Lipschitz continuity of ℓ,

∣∣∣ 1
K

K∑
k=1

ℓ(x, ξk)−
1

K

K∑
k=1

ℓ(xl(x), ξk)
∣∣∣ ≤ ε

4
, and |E[ℓ(x; ξ)]− E[ℓ(xl(x), ξ)]| ≤

ε

4
.
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Hence, for any x ∈ X,

∣∣∣ 1
K

K∑
k=1

ℓ(x, ξk)− E[ℓ(x; ξ)]
∣∣∣ ≤∣∣∣ 1

K

K∑
k=1

ℓ(x, ξk)−
1

K

K∑
k=1

ℓ(xl(x), ξk)
∣∣∣

+
∣∣∣ 1
K

K∑
k=1

ℓ(xl(x), ξk)− E[ℓ(xl(x), ξ)]
∣∣∣+ |E[ℓ(xl(x), ξ)]− E[ℓ(x; ξ)]|

≤ε

2
+
∣∣∣ 1
K

K∑
k=1

ℓ(xl(x), ξk)− E[ℓ(xl(x), ξ)]
∣∣∣

≤ε

2
+ max

l∈[Q]

∣∣∣ 1
K

K∑
k=1

ℓ(xl, ξk)− E[ℓ(xl, ξ)]
∣∣∣.

It follows that

P
(
sup
x∈X

∣∣∣ 1
K

K∑
k=1

ℓ(x, ξk)− E[ℓ(x; ξ)]
∣∣∣ > ε

)
≤ P

(
max
l∈[Q]

∣∣∣ 1
K

K∑
k=1

ℓ(xl, ξk)− E[ℓ(xl, ξ)]
∣∣∣ > ε

2

)

≤
Q∑
l=1

P
(∣∣∣ 1

K

K∑
k=1

ℓ(xl, ξk)− E[ℓ(xl, ξ)]
∣∣∣ > ε

2

)
.

This inequality together with the result in Lemma 2 reduces to

P
(
sup
x∈X

∣∣∣ 1
K

K∑
k=1

ℓ(x, ξk)− E[ℓ(x; ξ)]
∣∣∣ > ε

)
≤ C0Q exp(− Kε2

144pM2
).

Taking Q ≤ O(1)(4LD(X)/ε)d yields the desired result. □

Corollary 1 (Uniform Sample Complexity of SAA with Non-IID Data) Assume that the assump-

tions of Theorem 7 hold. With probability at 1−β, the solution to the SAA problem is ε-optimal with respect

to the solution of the original problem if the sample size K satisfies

K ≥ O(1)
p

ε2

[
d log

(4LD(X)
ε

)
+ log

( 1
β

)]
If we ignore the log-factors in Corollary 1 with fixed group size p, we can conclude that the sample

complexity of SAA in achieving an ε-optimal solution with dependent samples is O(d/ε2).
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Part II

Algorithmic Analysis via Modern
Monotone Operator Theory
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Chapter 5

Computational Tractability

We further investigate the stability, global convergence, and generalizability of a family of operator-splitting

schemes based on the (KM) iteration (e.g., FBS, PRS, DRS, and ADMM). We do so in a stochastic setting

for the purpose of solving large-scale optimization problems with dependent training samples. We focus on

contraction properties, convergence rates, and the quality of approximated solutions under different operator-

splitting methods. While convergence results for these algorithms already exist in the literature [52], [58],

[66], they hold under specific assumptions on the splitting operator (e.g., that the fixed-point operator is

contractive or firmly nonexpansive) or the objective function (e.g., strong convexity or Lipschitz continuity).

Our work goes beyond these assumptions to a more general iterative scheme that requires only nonexpan-

siveness and convexity of the operator and the objective function, respectively.

The KM iteration was first introduced by Krasnosel’skǐi and Mann [43], [48] and frequently appears

in convex optimization. Many existing algorithms can be cast into this framework, including gradient

descent [59], the proximal point method [53], and various decomposition methods such as FBS [55]. For a

comprehensive survey of these methods and their applications, see [6].

Table 5.1: Overview of several first-order algorithms
Algorithm Operator identity Subgradient identity

SGD (g = 0) I − γ∇f xk+1 = xk − γk∇f(xk)

PPA (g = 0) (I + γ∂f)−1 xk+1 = proxγkf (x
k)

PGD (I + γ∂g)−1(I − γ∇f) xk+1 = proxγkg(I − γk∇f(xk))

DRS (I + γ∂f)−1[(I + γ∂g)−1(I − γ∂f) + γ∂f ] xk+1 = 1
2x

k + 1
2 reflγk∂f ◦ reflγk∂g(x

k)

Relaxed PRS (I + γ∂f)−1(I − λ∂g)(I + λ∂g)−1(I − λ∂f) xk+1 = (1 − λk)x
k + λk reflγk∂f ◦ reflγk∂g(x

k)

The stochastic setting considered in this paper is motivated by the increased focus on methods using

stochastic gradients in statistical machine learning [3], [9], [15], [29], [59], [70]. In this setting, an explicit

parameterization of the objective function is unavailable and classical gradient- or Hessian-based methods

may be expensive or intractable. It is standard to apply gradient descent (SGD), originally developed

by Robbins and Monro [56] for smooth stochastic approximation problems, to approximate the gradient

using independent samples. From an initial point x0, SGD proceeds by drawing ξk
IID∼ P and updating

xk+1 = xk − γkL
k for some Lk ∈ ∂(ℓ(xk; ξk)). Methods based on stochastic (sub)gradients have established

convergence guarantees and have seen much empirical success in the literature [33], [39]. However, these

methods do present some notable difficulties: they rarely adapt to nuanced aspects of numerical difficulty
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and, for some objective functions, can diverge due to the choice of step size.

Definition 5 (Nonexpansive Operator) A mapping T : X→ X is nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥

holds for all x, y ∈ X.

For a given nonexpansive operator T , define X ∗ = Fix(T ) = {x ∈ X : x = T (x)}. We assume that X ∗ ̸=

∅.

Definition 6 (Stochastic iteration) Let T be a nonexpansive operator with a non-empty set of fixed

points (i.e., Fix(T ) ̸= ∅). The stochastic iteration is as given in Algorithm ??,

xk+1 = Tλk,ϵk(x
k, ξ) = xk + λk(T (x

k, ξ)− xk + ϵk) = Tλk
(xk, ξ) + λkϵk,

where ϵk is the error of approximating T (xk), and ξ is a sequence of random variables taking values in Ξ.

The following fundamental definitions and properties can be found in [6]. Given a convex, closed, and

proper function f , let ∂f(x) denote the set of subgradients ∇̃f(x) at x. The convex conjugate of a convex,

closed, and proper function f is f∗(y) = supx∈X⟨y, x⟩ − f(x). Let IX denote the identity map on X. For any

point x ∈ X and γ ∈ R+, define the proximal and reflection operators as proxγ,f (x) = argminy∈X f(y) +

(2γ)−1∥y− x∥2 and reflγ,f = 2proxγ,f −IX, respectively. Define the PRS operator as TPRS = reflγ,f ◦ reflγ,g.

We further introduce ergodic stochastic as Algorithm 5, which adopts a stochastic operator-splitting

scheme to deal with non-IID data in a fast, online and efficient manner. The results of this paper apply not

only to existing algorithms that are based on atomic evaluations of the proximal and gradient operators but

also to algorithms that can be viewed as fixed-point iterations via a nonexpansive operator. Let λk ∈ (0, 1)

be a sequence of relaxation parameter values and choose x0 arbitrarily from X. The S-KM iteration of T

with data ξk generated from P k at time k is

xk = Tλ,ϵ(x
k−1; ξk) = xk−1 + λk−1(T (x

k−1; ξk)− xk−1 + ϵk−1)

= Tλk
(xk−1; ξk) + λk−1ϵk−1, (5.1)

where the stochastic error ϵk−1 is caused by randomness in sampling. We include ξk as an argument of T to

explicitly indicate that the kth iteration depends only on the sample drawn most recently.

Algorithm 2 Stochastic iteration (S-KM):
point-wised iteration

input: initial value x0, δ optimality parameter

while ∥T (xk−1; ξk)− xk−1∥2 > δ do
sample ξk ∼ P k

[s]

xk ← xk−1 + λk−1(T (x
k−1; ξk)− xk−1)

end while
return x

Algorithm 3 Stochastic iteration (S-KM): er-
godic iteration

input: initial value x0, δ optimality parameter

while ∥T (x̄k−1; ξk)− x̄k−1∥2 > δ do
sample ξk ∼ P k

[s]

xk ← x̄k−1 + λk−1(T (x̄
k−1; ξk)− x̄k−1)

x̄k −→ k−1
k x̄k−1 + 1

kx
k

end while
return x

We now provide a comprehensive analysis of the convergence rates of stochastic operator-splitting schemes

under the mild assumptions of strong convexity, subdifferentiability, and the existence of a feasible solution.

26



We show that stochastic operator-splitting schemes automatically adapt to the regularity of a problem with

dependent samples and achieve convergence guarantees that also hold for independent samples. Define the

fixed-point residual (FPR) as ek = ∥T (zk) − zk∥ and the residual as rk = zk+1 − zk. From this and the

above definition, it follows that e2k = ∥rk−λkϵk∥2/λ2
k. The main goal of an operator-splitting algorithm is to

construct a monotonic, nonexpansive operator T : X→ X that can be used as a building block for complex

computations.

In general, algorithms based on a nonexpansive operator fail to converge without additional restrictions.

To ensure the convergence of an algorithm based on the contraction property of averaged operator Proposition

5. We can also see the average nonexpansive operator which can be seen as a relaxed version of nonexpansive

operators (Proposition 5).

Let T : X → X be a nonexpansive operator. Then for all λ ∈ (0, 1] and (x, y) ∈ X × X, the averaged

operator Tλ satisfies

∥Tλx− Tλy∥2 ≤ ∥x− y∥2 − 1− λ

λ
∥(IX − Tλ)x− (IX − Tλ)y∥2. (5.2)

A mapping Q : X → X is α-averaged if there exists a nonexpansive mapping R : X → X and α ∈ (0, 1)

such that Q = (1− α)IX + αR.

Remark 2 An operator N : X → X satisfies 5.2 (with N in place of Tλ) if and only if it is λ-averaged. If

λ = 1/2, then Tλ is called firmly nonexpansive. A rearrangement of 5.2 shows that a nonexpansive operator

T is firmly nonexpansive if and only if, for all x, y ∈ X, ∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩.

Because splitting algorithms are driven by fixed-point operators, it is natural to perform an analysis

in terms of FPRs, which are related to differences between successive KM iterates through xk+1 − xk =

λk(T (x
k)−xk). In the stochastic setting, we lose some of the usual properties of FPRs such as summability

and monotonicity due to approximation error. In first-order algorithms, the FPR is typically related to the

norm of the gradient of the (convex) objective function. For example, xk = xk−1 − ∇f(xk−1) in unit-step

gradient descent algorithms and so the FPR is ∥∇f(xk−1)∥2. The FPR for the proximal point algorithm is

∥∇̃f(xk+1)∥, where ∇̃f(xk+1) = (xk − xk+1) ∈ ∂f(xk+1). When the objective function is a sum of multiple

functions, the FPR is a combination of the (sub)gradients of those functions. Thus, the convergence of the

FPR naturally implies the convergence of ∥xk+1− x∗∥2. This motivates us to establish the properties of the

FPR in the following analysis.

We first list a few assumptions that are standard in the analysis of stochastic KM iterations.

Assumption 6 The objective functions used in optimization are additive and f, g : H → (−∞,∞] are

convex, closed, and proper functions.

Assumption 7 (Subdifferentiability) Each function is subdifferentiable. Unless otherwise stated, we do

not require the function to be differentiable.

An operator-splitting algorithm can be applied directly to the closed, convex, and proper functions

f, g : X→ (−∞,∞] by applying a splitting method to ∂f(x) and ∂g(x) under the condition that ∂(f+g)(x) =
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∂f(x) + ∂g(x). However, this condition does not hold when the objective function includes both a smooth

and nonsmooth function, so we impose Assumption 8.

Assumption 8 (Splittability and Solvability) A convex optimization problem is primal splittable and

solvable if zer(∂f + ∂g) = zer(∂(f + g)) and zer(∂(f + g)) ̸= ∅, respectively.

In some cases [57], the splittability condition makes Assumption 8 slightly stronger than the assumption

of the existence of a minimizer. If Assumption 8 is not satisfied, then it is possible for the primal problem

to have an optimal solution and ∂f(x) + ∂g(x) to have no zero points. In this case, a splitting algorithm

would not be useful. Under Assumption 8, Proposition 5 establishes that the zero points of ∂f(x) + ∂g(x)

and ∂(f + g) are equal. As a general note, any fixed-point iteration with a well-defined operator-splitting

operator requires certain regularity conditions on the objective function or the direct assumption that the

primal problem is solvable and splittable.

Any zero of the operator ∂f(x) + ∂g(x) is an optimal solution to the problems in 2.2–2.3. If Assumption

3 holds, then every optimal solution of the problems in 2.2–2.3 is a zero of ∂f(x) + ∂g(x).

Proof: By Theorem 23.8 in [57], ∂f(x) + ∂g(x) ⊆ ∂(f + g), so any zero of ∂f + ∂g is a zero of ∂(f + g).

On the other hand, if ∂f + ∂g = ∂(f + g), then any zero of ∂(f + g) is also a zero of ∂f + ∂g. □

5.1 Convergence Rate Analysis of S-KM with IID Data

Although many works focus on special cases of the S-KM iteration to solve the structured optimization

problems in 2.2–2.3 via specific splitting operators, analyses of KM iterations in the stochastic setting are

limited even when samples are IID. For example, in the IID setting, [67] uses a primal-dual stochastic gradient

method to solve convex problems with many functional constraints. [58] studies stochastic proximal gradient

algorithms and [69] considers applications of these algorithms and stochastic ADMM to machining learning

and deep learning. All of these algorithms can be seen as special cases of stochastic KM iteration.

It is worth emphasizing that, while the KM algorithm itself is not new, no previous work has considered

the general assumption of a nonexpansive operator in the stochastic setting. Before proceeding to our

main results on S-KM iteration with dependent samples, we mend this gap in the literature and establish

convergence results for S-KM when samples are IID following P. These results provide convergence guarantees

for new algorithms in the stochastic setting with high-dimensional, IID data.

Theorem 8 (Pointwise Convergence of S-KM with Averaged Nonexpansive Operators) Let Tk :

X → X be an averaged nonexpansive operator. Let
∏K

k=1 Tk = T1 ◦ · · · ◦ TK with
⋂

k∈N Fix(Tk) ̸= ∅. The

sequence (xk)k∈N obeys the recursion xk+1 = (1−λk)z
k +λk(

∏K
k=1 Tkx

k + ϵk) for some k ∈ N0, x
0 ∈ X with

λk ∈ (0, 1]. Suppose that
∑∞

k=1 λkE[∥ϵk∥] <∞ and
∑∞

k=1(1 + k)λ2
kE[∥ϵk∥2] <∞. Define

∥ek∥2 =
∥∥∥ K∏

k=1

Tkx
k − xk

∥∥∥2 =
∥∥∥ (xk − xk+1)

λk
+ ϵk

∥∥∥2.
It follows that (i) ∥xk − x∗∥2 converges almost surely with x∗ ∈

⋂
n∈K and (ii) ek → 0 almost surely and

ek = op((k + 1)−1/2).
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Theorem 9 (Pointwise Convergence of S-KM with Nonexpansive Operators) Let T : X → X be

a nonexpansive operator, (xk)k∈N+
⊆ X generated following (5.1), and (λk)k∈N+

⊆ (0, 1). Assume that∑∞
k=1 λkE[∥ϵk∥] < ∞,

∑∞
k=1(k + 1)λ2

kE[∥ϵk∥2] < ∞, and τ = infk∈N+
τk ∈ (ε,∞) for some ε > 0 with

τk = λk(1 − λk). It follows that (i) there exists x∗ ∈ X ∗ such that ∥xk − x∗∥ → 0 almost surely and (ii)

∥T (xk)− xk∥2 = op((k + 1)−1).

The property that ∥xk − x∗∥ converges to zero may fail, but ∥xk − x∗∥ may still be bounded by a finite

value. We thus study ∥Txk − xk∥2 due to the property that limk→∞∥Txk − xk∥ = 0 always holds when a

fixed point of T exists. We next give a convergence rate for FPR, which we immediately improve by showing

that there exists x∗ ∈ X ⋆ such that ∥xk − x∗∥ → 0 almost surely. Theorem 9 indicates that there exists

x∗ ∈ X ⋆ such that ∥xk − x∗∥ → 0 almost surely that improves the existing result.

Theorem 10 (Ergodic Convergence Rate of S-KM with a Nonexpansive Operator) Make the same

assumptions as Theorem 9. Let r = ∥x1−x∗∥ and ēk = Λ−1
k

∑k
l=1 λle

l where el = Txl−xl and Λk =
∑k

l=1 λl.

Then ∥ēk∥ = Op([(k + 1)λ]−1) and E[∥ēk∥] ≤ 2Λ−1
k (r +

∑k
k=1 E[∥λkϵk∥]).

Theorems 8–9 establish a strong convergence guarantee for the S-KM iteration. However, convergence

relies heavily on the IID assumption. It is natural to next examine these properties again with non-IID data,

particularly, where samples are generated from an ergodic stochastic process. In the next few sections, we

provide our main tractability results and evaluate the performance of the S-KM iteration with dependent

data. Under some mild conditions, S-KM iterates concentrate around the true value. These general results

are fundamental and cover many splitting algorithms as special cases.

5.2 Convergence Rate Analysis of S-KM with Non-IID Data

Stability of Fixed Point Iteration with Nonexpansive Operators

The stability and boundness of S-KM iterates are the main focus of this section. We first formalize our

notion of stability.

Definition 7 A sequence of iterates (xk)k∈N generated according to Algorithm 5 is stable in probability if,

for all x ∈ X, supk∈N dist(xk, xk+1) <∞ with probability one.

Remark 3 Definition 7 is similar to the requirement introduced in [2], which aims to find stability guarantees

for stochastic proximal point methods, that supk∈N dist(xk,X ∗) < ∞. Similar results have been established

for stochastic subgradient methods and require that supk∈N dist(xk,X ∗) <∞ whenever E[∥ℓ′(x, ξ)∥22] ≤ C0 +

C1 dist(x,X ⋆)2 for all x ∈ X. Definition 7 differs in that, instead of considering the distance between iterates

an optimal solution, which can be bounded above if the solution is nonunique, defines stability in terms of

the residual.

The following assumption is a sufficient condition for the stability (in the sense of Definition 7) of the

proposed S-KM iteration. The subsequent theorem gives sufficient conditions for the stability of the proposed

stochastic operator-splitting schemes.
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Assumption 9 (Boundedness) For any x, x∗ ∈ X, ∥x − x∗∥ ≤ r < ∞. That is, X is compact and has a

finite radius r.

Theorem 11 (FPR Bound) Under Assumption 9 and the mixing conditions in Definition 3.1, let ēK =

Λ−1
K

∑K
k=1 λkek with ek = Txk − xk, ΛK =

∑K
k=1 λK , and (λk)k∈N ⊆ (0, 1). We have that

E[∥ēK∥] ≤
2(r + 2

∑K
k=1 E[∥λkϵk∥]) + 2ϕ(1)

ΛK
. (5.3)

with the assumption that for all approximation error {ϵk}k∈N with
∑K

k=1∥ϵk∥ < ∞, ēK converge almost

surely in expectation with convergence rate O(Λ−1
k ).

Remark 4 A comparison of Theorems 5.3 and 10 suggests that dependence among training samples adds a

penalty of ϕ(1) to the upper FPR bound. The convergence rate given in Theorem 11 is the optimal convergence

rate and was established for exact KM iterations [20].

A few more-consequential corollaries regarding stability follow.

Corollary 2 Under the assumption that the error term satisfies ∥ϵ∥ < C for some C ≤ ∞ and the conditions

of Theorem 11, supk∈N dist(xk, xk+1) <∞ and dist(xk, xk+1) converges to some finite value with probability

one at the rate O(1/Λk).

By combining Theorem 11 and Corollary 2, we see that the stochastic operator-splitting schemes are

stable according to Definition 7. This is in strong contrast to pointwise stochastic algorithms, which can be

unstable even in relatively simple problems.

We next show that the approximation error arising in the iteration is bounded and vanishes as K →∞.

The FPR bounds depend on the (possibly stochastic) error sequence ϵk. Here, we develop bounds for the

expected FPR in terms of the cumulative error E[ΛK
−1
∑K

k=1 λkek], where ΛK =
∑K

k=1 λk. In practical

settings, the error process may stem from various sources such as random noise. Here, we attribute the

error to random sampling from Pk rather than from P. It is therefore required that both path variations

and errors diminish with k. The path length may diminish if the target being tracked slows down over time

or eventually stops. Likewise, ϵ may diminish if the noisy gradients available from the adversary can be

corrected or improved with time. This assumption is commonly employed in convergence analyses, though

of course, there is a possibility that the assumption of vanishing errors is not realistic. This motivates us to

investigate this property of the approximation error to ensure that this convergence is valid.

Theorem 12 (Approximation Error Bound) Under Assumption 9, the norm of the difference between

the true function T (xk; ξ) − xk, where ξ is drawn from P, and its approximation T (xk; ξk+1) − xk, where

ξk+1 is drawn from P̂K , is uniformly bounded in expectation. Specifically, E[∥ϵk∥] ≤ ∆, where

∆ =
(8r2C(

∑∞
k=1 ϕ(v))

K2

)1/2
Γ
(1
2

)
and Γ(z) =

∫∞
0

xz−1 exp(−x)dx is the gamma function.
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Theorem 12 provides a strong theoretical justification for the boundedness of the approximation error,

which suggests that the approximation becomes close to the truth as K increases. However, the amount of

noise can be large when K is small. This is because we are considering drifting distributions and, in the

worse case, P k can be quite far away from P. Theorem 12 indicates that underestimating the mixing time

can potentially backfire.

Generalization Bounds for Stochastic Operator-splitting Algorithms with Non-IID Data

We proceed with a theorem that provides a high-probability generalization guarantee for stochastic operator-

splitting algorithms with a nonexpansive operator.

Assumption 10 (Iteration Boundedness) There is a nonincreasing sequence κ(k) such that, for succes-

sive S-KM iterates xk and xk+1, E[∥xk+1 − xk∥ | Fk] ≤ κ(k).

Assumption 11 (Iterate Boundedness) For a sequence of samples ξ1, . . . , ξK , the S-KM iteration pro-

duces a sequence of iterates x1, . . . , xT−1 such that
∑K−1

k=0 ∥Tλk
(xk; ξk+1)− Tλk

(x∗; ξk+1)∥ ≤ RK−1.

Assumptions 10–11 stipulate that the iteration trajectory is appropriately stable. As established pre-

viously, iterates from the fixed-point iteration of a nonexpansive operator, through averaging, are stable.

These mild assumptions do not sacrifice much power. An averaged operator has these contraction proper-

ties, which suggests that these assumptions are reasonable: for example, SGD satisfies RK = O(
√
K) and

κ(k) = O(1/
√
k). We now establish an upper bound for S-KM iterates around the true value.

Theorem 13 (Iterate Deviation Bound) Under Assumptions 9–11, for any τ > 0,

E
[∥∥∥ K∑

k=1

(xk − x∗)
∥∥∥] ≤ E[RK−1]︸ ︷︷ ︸

average regret

+ τ
(K−τ∑

k=1

E[κ(k − 1)] + r
)

︸ ︷︷ ︸
deviation bound

+ϕ(1)E[RK−1] + 2
√
2(K − τ)r

√
ϕ(τ + 1)︸ ︷︷ ︸

non-IID penalty

.

The proof of Theorem 13 (given in the Appendix) requires that we understand the impact of the ergodic

sequence ξ1, ξ2, . . . , ξK on the data-driven procedure. The performance of iterates under the operator T is

bounded by the sum of three main quantities: the average regret of the algorithm; the deviation bound,

which in turn depends on how far P k deviates from P; and the mixing time of the data source. We observe

that setting ϕ(1) = 0 and τ = 0 recovers an expected version of the results for IID samples. It is clear

that the stability assumption plays a key role in our result whenever τ > 0, that is when the samples are

dependent. Ultimately, for large enough τ , the sample ξk+τ is “nearly independent” of the parameters xk.
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Chapter 6

Convergence Analysis of Several
Splitting Algorithms

Many works focus on using stochastic operator-splitting algorithms to solve structured optimization problems

[52], [58], [67], [69]. We next present several examples of nonexpansive operators that cover numerous

algorithms based on the proximal and gradient operators. We use our results to analyze several special

cases: FBS, DRS, PRS, and the ADMM algorithm.

6.1 Stochastic Generalized FBS

Consider the monotone inclusion problem of finding x ∈ X such that 0 ∈ ∂f(x)+∂g(x) where ∂g, ∂f : X→ Rd

are assumed to be β-cocoercive for some β > 0. This problem corresponds to the problem in 2.2, where

f : X→ R is a convex, differentiable function with a β−1-Lipschitz-continuous gradient and g : X→ R∪{∞}

is a proper, closed, lower semicontinuous, convex function.

Corollary 3 Suppose that γk ∈ (0, 2β) and λk ∈ (0, (4β − γk)/(2β)] for k ∈ N. Let ∂g, ∂f : X → Rd

be β-cocoercive for some β > 0 and let (ϵk)k∈N ⊆ Rd be a sequence of random variables adapted to Fk =

σ(ϵk, l ≤ k). Define TFB(x) = Jγk∂g(I − γk∂f)(x). Then zer(∂f + ∂g) = Fix(TFB) and the sequence of

iterates (xk)k∈N generated by the algorithm satisfies

E
[∥∥∥ K∑

k=1

(xk − x⋆)
∥∥∥] ≤ E[RK−1] + τ

(K−τ∑
k=1

E[κ(k − 1)] + r
)
+ ϕ(1)E[RK−1] + 2

√
2(K − τ)r

√
ϕ(τ + 1).

Additionally, let ēK = Λ−1
K

∑K
k=1 λkek with ek = TFB(x

k)− xk,ΛK =
∑K

k=1 λk, and (λk)k∈N ∈ (0, 1). Then

E[∥ēK∥] ≤
2(r + 2

∑K
k=1 E[∥λkϵk∥]) + 2ϕ(1)

ΛK
.

In particular, if
∑∞

k=0 E[λk∥ϵf,k∥] <∞ and
∑∞

k=0 E[λk∥ϵg,k∥] <∞, then ēK = Op(Λ
−1
K ).

Remark 5 If λk = 1, then S-GFBS reduces to S-FBS, which is also known as the stochastic proximal

gradient method. It has the subgradient representation

xk+1 = Jγk∂g(x
k − γk∇f(xk) + ϵf,k) + ϵg,k = xk − γk∇̃g(xk+1)− γk∇f(xk) + ϵk,
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where ∇̃g(xk+1) = γ−1
k (xk − xk+1 − γk∇f(xk)) ∈ ∂g(xk+1), and xk+1 and ∇̃g(xk+1) are unique given xk

and γk > 0. The update xk+1 = xk + λk(TFB(x
k) − xk) can be viewed as adding momentum based on xk,

which is also known as the inertial proximal gradient method [22].

The following result is used in the proof of Theorem 14 to establish a generalized error bound for regret

in S-GFBS.

Theorem 14 (Generalized Error Bound for Regret) Let x̄ = K−1
∑K

k=1 x
k and τ = infk τk, where

τk = λk(1− λk) for k ∈ N. Under Assumption 9,

E[f(x̄) + g(x̄)− (f(x⋆) + g(x⋆))] ≤ r2

2Kγ
+
( 1
β
− 1

γ

)(
4r2 +

8r2πC(
∑∞

k=1 ϕ(k))

Kτ

)
.

6.2 S-rPRS and S-DRS

A direct application of the proximal point algorithm to the problem of minimizing f + g would require com-

puting the proximal operator proxγk(f+g), which can be difficult to evaluate. The DRS algorithm eliminates

this difficulty by separately evaluating the proximal operators of f and g. We first establish the equivalence

of this problem to that in 2.2.

Let ∂f , ∂g : X→ Rd be two maximal monotone operators. Then x⋆ is an optimal solution to the problem

in 2.2 if and only if, for any γk > 0 and λk ∈ R, x⋆ = Jγk∂f (x
⋆) and

x⋆ = x⋆ + λk[Jγk∂g(2Jγk∂f (x
⋆)− x⋆)− Jγk∂f (x

⋆)].

Specifically, when λ = 1,

x⋆ = 2−1[x⋆ + Jγk∂g ◦ Jγk∂f (x
⋆)] = Tγk,∂f,∂g(x

⋆),

where the operator TDR = 2−1(reflγk∂f reflγk∂g +I) is known as the Douglas–Rachford operator. When

λ = 2,

x⋆ = x⋆ + 2Jγk∂g(2Jγk∂f (x
⋆)− x⋆)− (2Jγk∂f (x

⋆)− x⋆) = x⋆ + Jγk∂gJγk∂f (x
⋆) = Tλk,∂f,∂g(x

⋆),

where the operator TPR = reflλkg ◦ reflλkf is known as the Peaceman–Rachford operator.

We now establish the asymptotic behavior of the D-DRS algorithm given in Algorithm ??.

Corollary 4 Let ∂f, ∂g : X → Rd be two maximal monotone operators. Suppose that γk > 0, (λk)k∈N ⊆

(0, 2), and that (ϵk)k∈N ⊆ X is a sequence of random variables that are adapted to Fk = σ(ϵk, l ≤ k). Given

any arbitrary x0 ∈ X, the iterates generated by the algorithm with 1/2 can be written as the fixed-point

iteration of xk and the operator TDR as

xk+1 = xk + λk

(1
2
(reflγk∂f reflγk∂g +I)xk − xk + ϵk

)
= xk + λk(Jγk∂f (2(Jγk∂gx

k + ϵg,k)− xk) + ϵf,k − (Jγk∂gx
k + ϵg,k)).
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The sequence of iterates (xk)k∈N generated by Algorithm ?? satisfies

E
[∥∥∥ K∑

k=1

(xk − x∗)
∥∥∥] ≤ E[RK−1] + τ

(K−τ∑
k=1

E[κ(k − 1)] + r
)
+ ϕ(1)E[RK−1] + 2

√
2(K − τ)r

√
ϕ(τ + 1).

Additionally, let ēK = Λ−1
K

∑K
k=1 λkek with ek = TDRx

k − xk,ΛK =
∑K

k=1 λk, and (λk)k∈N ⊆ (0, 1). Then

E[∥ēK∥] ≤
2(r + 2

∑K
k=1 E[∥λkϵk∥]) + 2ϕ(1)

ΛK
.

In particular, if
∑∞

k=0 E[λk∥ϵf,k∥] <∞ and
∑∞

k=0 E[λk∥ϵg,k∥] <∞, then ēK = Op(Λ
−1
K ).

Remark 6 Both DRS and PRS are special cases of relaxed PRS, which follows the iteration

xk+1 = (1− λk)x
k + λk reflλf ◦ reflλg(xk).

Taking λk = 1 yields PRS and λk = 1/2 yields DRS.

We now turn to the analysis of the S-rPRS algorithm (given in Algorithm ??), where we establish a

generalized error bound for the regret.

Corollary 5 Define TPRS = reflλf ◦ reflλg. Let x⋆ be a fixed point of TPRS and (ϵk)k∈N ⊆ X a sequence

of random variables adapted to Fk = σ(ϵk, l ≤ k). Additionally, let (γk)k∈N ⊆ (0,∞), and x0 ∈ X. If

(λk)k∈N ⊆ (0, 2) then for any τ > 0, the sequence of iterates (xk)k∈N generated by Algorithm ?? satisfies

E
[∥∥∥ K∑

k=1

(xk − x⋆)
∥∥∥] ≤ E[RK−1] + τ

(K−τ∑
k=1

E[κ(k − 1)] + r
)
+ ϕ(1)E[RK−1] + 2

√
2(K − τ)r

√
ϕ(τ + 1).

Let ēK = Λ−1
K

∑K
k=1 λkek, with ek = TPRSx

k − xk and ΛK =
∑K

k=1 λk. If, additionally, λk ∈ (0, 1), then

E[∥ēK∥] ≤
2(r + 2

∑K
k=1 E[∥λkϵk∥]) + 2ϕ(1)

ΛK
.

In particular, if
∑∞

k=0 E[λk∥ϵf,k∥] <∞ and
∑∞

k=0 E[λk∥ϵg,k∥] <∞, then ēK = O(Λ−1
K ).

Theorem 15 (Generalized Error Bound for Regret) Under Assumption 9, let x̄f = K−1
∑K

k=1 x
f
k

and x̄g = K−1
∑K

k=1 x
g
k, where xg

k = proxγ,g(x
k)+ ϵg and xf

k = proxγ,f (reflγ∂g(x
k))+ ϵf . Define τ = infk τk,

with τk = λk(1− λk). It follows that

E[f(x̄f ; ξ) + g(x̄g; ξ)− (f(x⋆; ξ) + g(x⋆; ξ))] ≤ r2

4γλK
+

2(λ− 1)r2

γλ2
+
(
1− 1

λ

)4Cr2π
∑∞

k=1 ϕ(k)

γλτK
.

Remark 7 Suppose that the function f in problem 2.2 is differentiable and that ∇f is (1/β)-Lipschitz.

Under this smoothness assumption, we can apply the S-FBS algorithm to the problem: given x0 ∈ X, for all

k ≥ 0, define xk+1 = proxγkg
(xk − γk∇f(xk)). To ensure convergence, the step size parameter γk must be

strictly less than 2β. Because the gradient operator is typically easier to evaluate than the proximal operator,

it may be preferable to use S-FBS instead of S-rPRS whenever one of the terms in the objective function is

differentiable. However, the following empirical and theoretical points should also be considered to determine

whether S-rPRS is preferable over S-FBS.
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1. The gradient and proximal point operators are involved in S-FBS, while S-rPRS uses only the proximal

operator. In both theory and practice, proximal point methods generally converge faster than gradient

descent methods.

2. Gradient descent methods can generate out-of-domain iterates, while proximal methods can ensure

iterate feasibility.

3. If the Lipschitz constant of ∇f is not known, then a line search procedure can find an appropriate step

size to ensure convergence. However, this presents another practical challenge: if this procedure is more

expensive than evaluating the proximal operator, then S-rPRS should be used. Even if the Lipschitz

constant of ∇f is known, S-rPRS is known to converge faster in practice than S-FBS, which indicates

that we can do no worse by using S-rPRS.

4. As shown in Theorem 15, S-rPRS iterates converge regardless of the chosen step size, while S-rFBS

may fail to converge. S-rPRS thus “demistifies” parameter selection, which may partially explain the

perceived practical advantages of relaxed PRS over FBS.
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6.3 Numerical Experiments

We conduct numerical experiments based on two applications, a Lasso-type quadratic minimization problem

with data generated from a vector-auto regressive process and a robust regression problem via training

samples coming from a peer-to-peer (P2P) network. The goal of experiments is to verify the theoretical

results for SAA with dependent data.

6.3.1 Lasso-type quadratic minimization problem

For some insight into the introduce a data-driven procedure, we present some numerical results for a sim-

ple lasso-type quadratic minimization problem where samples are generated from a stationary vector-auto

regressive process. We wish to compute

x̂⋆
K = argmin

x∈Rd

{ 1

K

K∑
k=1

∥⟨x, ξ1k⟩ − ξ2k∥22 + λ∥x∥1
}
,

where λ is a preset tuning parameter. Our data-generating mechanism resembles that in [24]. Let A be

a subdiagonal matrix with entries Ai,i−1
IID∼ U[0.8, 0.99]. We draw a sparse vector x ∈ R1000 with all but

its first 50 elements of x equal to zero. The data {(ξ1k, ξ2k)}k∈N is generated according to the vector-auto

regressive process, ξ1k = Aξ1k−1 + e1Wk, ξ2k = ⟨x, ξ1k⟩ + Ek, where Wk
IID∼ N(0, 1) and the Eks are IID

bi-exponential random variables, each with a common variance of one.
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Figure 6.1: Performance of the SP, SP-m, and MR-s methods for various values of m and s as measured by
(left) regret, (middle) FPR, and (right) distance between the estimated and true value of x in the lasso-type
example.

We use stochastic FBS to compute the objective function. Our goal is to compare the proposed procedure

(in two flavors) and MR in terms of performance and the number of samples used. Specifically, we generate

samples as (SP) every element of a single trajectory, (SP-m) every mth element of a single trajectory, and

(MR-s) the sth element of independent trajectories starting from the same state. In all three methods, K

samples are generated from one (in the case of SP and SP-m) or K (for MR-s) trajectories. Intuitively, we

expect SP-m to weaken the dependence between samples by not using every sample. SP and MR closely

resemble the sampling techniques in [24] and [63]. For a fixed sample size K = 1000, we consider m = 2, 3

for SP-m and s = 4, 6, 8, 10 for MR-s.

Figure 6.1 illustrates our numerical results and the convergence of the three methods as evaluated by

three criteria: regret (L(x̄)−L(x∗)), FPR, and the difference between the current iterate and the true value

of x. As expected, MR shows poor performance when s is small as the true mixing time is underestimated.
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In particular, MR-4 has the worst performance. It is clear that using every sample (in SP) is more com-

putationally efficient than taking every mth sample (in SP-m) in an attempt to weaken serial dependence

between sequential samples. While the latter approach is indeed able to weaken this dependence, it leads to

no notable improvements in performance.

6.3.2 Robust regression problem via P2P network

We consider the robust regression problem with the training samples ξ coming from P2P network

min
x

F (x) = Eξ=(a,b)

∣∣η⊤x− b
∣∣ ,

where ξ = (a, b), a ∈ Rd is a random feature vector, and b ∈ R is the response. η = N
(
a, σ2

ηId
)
is a perturbed

noisy observation of the input feature vector a. Let d = 10, and the data is generated as follows, with 10

servers (each with 20000 samples stored), ai ∼ N
(
µi, σ

2
ξId

)
, bi = aTi x

⋆ with σ2
ξ = 1 and pre-specified µi, x

⋆.

Here, µi is allowed to be different among servers but the same for σ2
ξ . For a given sample budge T , ranging

from 103 to 106, we adopt different sample allocation strategies for N = {O(T
1
2 ), O(T

1
3 ), O(T

1
4 )}, with

M = O(T
1
2 ) and repeat 30 runs for each sample allocation to report the average performance. Performance

measures include bias, in-sample risk against the true values x⋆ and F (x⋆), and probability guarantee defined

as P(x̂⋆
N,M ∈ Bε=0.5(x

⋆)). In addition, we also consider the special case with independent inner and outer

randomness to compare the performance of the two sampling schemes by choosing different inner samples.

In independent sampling scheme, ηij = η1j for all i > 1. The results are shown in Figure 6.2.

Figure 6.2 shows that the setting with N = O(T
1
2 ) has the best performance, smallest bias and highest

probability guarantee, for robust regression, which is consistent with our sample complexity results. We can

see from Figure 6.2 (b) that the probabilistic guarantee increases exponentially as the sample size increases.

Figure 6.2 (c) visualizes the performance of probability guarantee and in-sample risk simultaneously. For two

sampling schemes, Figure 6.2 (d) indicates that the independent sampling scheme has a smaller in-sample

risk, and the gap gradually decreases as sample size increases, which is also consistent with our theoretical

analysis.
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Figure 6.2: Robust regression problem via P2P network
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Chapter 7

Conclusion

In this paper, we demonstrate that SAA retains its asymptotic properties in settings with dependent samples

and can be implemented efficiently via stochastic operator-splitting schemes for numerous important loss

functions. We propose an efficient, data-driven procedure for constructing a sequence of discrete empirical

distributions that converges to the true underlying distribution. Our analysis, which includes a derivation

of the sample complexity and MSE of SAA, shows that many stochastic optimization frameworks can be

approximated by SAA and solved efficiently. We also investigate the out-of-sample performance of the

resulting optimal decisions, both theoretically and experimentally, and analyze its advantage over a few

common types of data-generating processes. In the future, we will study the general performance of SAA

under the framework of conditional stochastic optimization and the application of SAA to dependent data.
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Appendix A

Supplemental Material

A.1 Peer-to-peer Sampling Procedure as a Markov Chain

Let (ξk)k∈N be a time-homogeneous, ergodic Markov chain with the state space S = [h] and a dummy

deterministic initial state ξ0 = i0 ∈ Ξ. Define θ as satisfying limk→∞ P(ξk = i, ξk+1 = j) = θij > 0 for

i, j ∈ S. Similarly, let θ⋆ encode the stationary probability mass function of (ξt, ξt+1). Then∑
j∈S

θ⋆ij = lim
k→∞

∑
j∈S

P(ξk = i, ξk+1 = j) = lim
k→∞

P(ξk = i) = lim
k→∞

∑
j∈S

P(ξk−1 = j, ξk = i) =
∑
j∈Ξ

θ⋆ji.

In other words, the row sums of θ⋆ coincide with its column sums. This property of θ⋆ prompts us to define

Θ = {θ ∈ Rh×h | θi,j ≥ 0 for i, j ∈ S;
∑
i,j∈S

θij = 1;
∑
j∈S

θij =
∑
j∈S

θji for i ∈ S}.

That is, Θ is the set of doubly stochastic probability mass functions with balanced marginals. Every θ ∈ Θ

induces a unique row vector π ∈ R1×h of stationary state probabilities and a unique transition probability

matrix P ∈ Rh×h defined via πi =
∑

j∈S θij and Pij = θij/πi, respectively. By construction, P is a stochastic

matrix whose rows represent strictly positive probability vectors

PK(ξ1 = i1, . . . , ξK = iK) =

K∏
k=1

Pik−1,ik+1

for all (i1, . . . , iK) ∈ SK and K ∈ N. The stationary distribution π satisfies πP = π. Define the empirical

distribution of sequential states as P̂K ∈ Rh×h with

P̂K
ij =

1

K

K∑
k=1

δ(ξk−1,ξk)=(i,j)

for i, j ∈ S.

A.2 Proof of Theorem 1

Proof: Since J⋆ ≤ EP[ℓ(x̂⋆
Q, ξ)] ≤ Ĵ⋆

Q+L∥P̂[s]
Q −P∥p, then by the assumptions that βQ ∈ (0, 1), limQ→∞ εQ(βQ) =

0, and
∑∞

Q=1 βQ <∞ and the convergence of the empirical distribution, we have that

P(J∗ ≤ Ĵ⋆
Q + LεQ(βQ)) ≥ 1− βQ =⇒ P(lim inf

Q→∞
Ĵ⋆
Q ≥ J∗) = 1.
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Choose any δ > 0 and fix a δ-optimal solution xδ ∈ X with

sup
Q∈BεQ(β)(P̂

[s]
Q )

EQ[ℓ(xδ, ξ)] ≤ EP̂[s]
Q [ℓ(xδ, ξ)] + δ.

It follows that

lim sup
Q→∞

lim sup
s→∞

Ĵ⋆
Q ≤ lim sup

Q→∞
lim sup
s→∞

sup
Q∈BεQ(β)(P̂Q)

EQ[ℓ(xδ, ξ)] ≤ lim sup
Q→∞

lim sup
s→∞

EP̂[s]
Q [ℓ(xδ, ξ)] + δ

≤ lim sup
Q→∞

lim sup
s→∞

EP[ℓ(xδ, ξ)] + L∥P− P̂[s]
Q ∥p + δ

= EP[ℓ(xδ; ξ)] + δ + ε

≤ J⋆ + 2δ,

where the equality holds almost surely under P∞ and the mixing conditions since

∥P− P̂[s]
Q ∥ ≤ ∥P− P̂Q∥+ ∥P̂Q − P̂[s]

Q ∥ ≤ ε+ εT (βT ).

By combining this result with the fact that P(∥P− P̂Q∥ ≤ εQ(βQ)) ≥ 1− βQ, it follows that P(∥P− P̂Q∥ ≤

2εQ(βQ)) ≥ 1−βQ. Under the assumption that
∑∞

Q=1 βQ ≤ ∞, it follows that P(limQ→∞ lims→∞∥P−P̂[s]
Q ∥ =

0) = 1. Since δ > 0 was chosen arbitrarily, we can conclude that lim supQ→∞ lim sups→∞ Ĵ⋆
Q ≤ J⋆, and so

lim sup
Q→∞

lim sup
s→∞

Ĵ⋆
Q ≤ J⋆ ≤ lim sup

s→∞
lim inf
Q→∞

Ĵ⋆
Q

in probability. That is, lim supQ→∞ lims→∞ Ĵ⋆
Q = J⋆.

Now fix an arbitrary realization of the stochastic process (ξQ)Q∈N such that J∗ = limQ→∞ lims→∞ Ĵ⋆
Q

and J∗ ≤ EP[ℓ(x̂⋆
Q, ξ)] ≤ Ĵ⋆

Q + L∥P − P̂[s]
Q ∥ for all sufficiently large Q and s. By the previous result,

we know these two conditions are satisfied the probability. Then lim infQ→∞ lim infs→∞ EP[ℓ(x̂⋆
Q, ξ)] ≤

limQ→∞ lims→∞ Ĵ⋆
Q = J∗. Now let limQ→∞ lims→∞ x̂⋆

Q = x∗. Since X is closed, x∗ ∈ X. Furthermore,

J∗ ≤ EP[ℓ(x∗, ξ)] ≤ EP[lim inf
Q→∞

lim inf
s→∞

ℓ(x̂⋆
Q, ξ)] ≤ lim inf

Q→∞
lim inf
s→∞

EP[ℓ(x̂⋆
Q, ξ)] ≤ J∗,

where the second inequality holds since ℓ(x) is lower semicontinuous. Thus, equality holds throughout and

the desired result, that limQ→∞ lims→∞ x̂⋆
Q = x∗, follows. □

A.3 Proof of Theorem 4

Proof: We first prove that P(limK→∞ Ĵ⋆
K = J⋆) = 1. Note that J⋆ ≤ EP[ℓ(x̂⋆

K ; ξ)] ≤ Ĵ⋆
K + L∥P̂K − P∥.

Under the assumption that βK ∈ (0, 1), limK→∞ εK(βK) = 0 and P(J⋆ ≤ Ĵ⋆
K + LεK(βK)) ≥ 1 − βK .

Therefore, P(lim infK→∞ Ĵ⋆
K ≥ J⋆) = 1.

Choose any δ > 0, fix a δ-optimal solution xδ ∈ X with EP[ℓ(xδ; ξ)] ≤ J⋆ + δ, and let Q̂K ∈ BεK(βK)(P̂K)

be a δ-optimal distribution corresponding to xδ with

sup
Q∈BεK (βK )(P̂K)

EQ[ℓ(xδ; ξ)] ≤ EQ̂K [ℓ(xδ; ξ)] + δ.
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It follows that

lim sup
K→∞

Ĵ⋆
K ≤ lim sup

K→∞
sup

Q∈BεK (βK )(P̂K)

EQ[ℓ(xδ; ξ)]

≤ lim sup
K→∞

EQ̂K [ℓ(xδ; ξ)] + δ

≤ lim sup
K→∞

EP[ℓ(xδ; ξ)] + L∥P− Q̂K∥+ δ.

= lim sup
K→∞

EP[ℓ(xδ; ξ)] + δ

≤ J⋆ + 2δ.

The equality holds P-almost surely since P{∥P− Q̂K∥ ≤ 2εK(βK)} ≥ 1− βK because

∥P− Q̂K∥ ≤ ∥P− P̂K∥+ ∥P̂K − Q̂K∥ ≤ ∥P− P̂K∥+ εK(βK)

and P(∥P− P̂K∥ ≤ εK(βK)) ≥ 1− βK .

Under the assumption that
∑∞

K=1 βK ≤ ∞, the Borel–Cantelli lemma implies that P(limK→∞∥P−Q̂K∥ =

0) = 1. As δ > 0 was chosen arbitrarily, we conclude that, P-almost surely, lim supK→∞ Ĵ⋆
K ≤ J⋆. Therefore,

P(limK→∞ Ĵ⋆
K = J⋆) = 1.

We next prove that P(limK→∞ x̂⋆
K = x⋆) = 1. Fix an arbitrary realization of the stochastic process

(ξk)k∈N such that J⋆ = limK→∞ Ĵ⋆
K and J⋆ ≤ EP[ℓ(x̂⋆

K ; ξ)] ≤ Ĵ⋆
K + L∥P − P̂K∥ for all sufficiently large K.

From the previous result, we know these two conditions are satisfied in probability. Then

lim inf
K→∞

EP[ℓ(x̂⋆
K ; ξ)] ≤ lim

K→∞
Ĵ⋆
K = J⋆

almost surely. Let limK→∞ x̂⋆
K = x⋆, where x⋆ ∈ X since X is closed. Now,

J⋆ ≤ EP[ℓ(x⋆; ξ)] ≤ EP[lim inf
K→∞

ℓ(x̂⋆
K ; ξ)] ≤ lim inf

K→∞
EP[ℓ(x̂⋆

K ; ξ)] ≤ J⋆,

where the second inequality holds because ℓ is lower semicontinuous as ℓ is convex, closed and proper. Thus,

EP[ℓ(x⋆; ξ)] = J⋆ and so P(limK→∞ x̂⋆
K = x⋆) = 1.

□

A.4 Proof of Lemma 1

Proof:

|Cov (f(ξi), f(ξj))| = |E[f(ξi)f(ξj)]− (E[f(ξi)]) (E[f(ξj)])
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Let ξ = ξi and η = ξj , where ξi is Fk
1 measurable, ξj is F∞

n+k measurable. Thus, we have that

|E[f(ξ)f(η)]− (E[f(ξ)]) (E[f(η)])| = |E
[
E[f(ξ)f(η) | Fk

1 ]
]
− (E[f(ξ)]) (E[f(η)])|

= |E
[
f(ξ) · E[f(η) | Fk

1 ]
]
− (E[f(ξ)]) (E[f(η)])|

(With the assumption sup
ξ,x
|f(x, ξ)| ≤M.)

≤M · E
∣∣E[f(η) | Fk

1 ]− (E[f(η)])
∣∣

( Let ξ̃ = sign
(
E[f(η) | Fk

1 ]− (E[f(η)])
)
is Fk

1 measurable.)

= M · E
[
ξ̃
(
E[f(η) | Fk

1 ]− (E[f(η)])
)]

= M · E
[
ξ̃E[f(η) | Fk

1 ]− ξ̃ (E[f(η)])
]

= M ·
[
E
[
ξ̃f(η)

]
−
(
E[ξ̃]

)
(E[f(η)])

]

|E
[
ξ̃f(η)

]
−
(
E[ξ̃]

)
(E[f(η)])| =

∣∣∣E [E [ξ̃f(η) | F∞
n+k

]]
−
(
E[ξ̃]

)
(E[f(η)])

∣∣∣
=
∣∣∣E [Ef(η) [ξ̃ | F∞

n+k

]]
−
(
E[ξ̃]

)
(E[f(η)])

∣∣∣
≤M ·

∣∣∣E [E [ξ̃ | F∞
n+k

]]
−
(
E[ξ̃]

)∣∣∣
( Let η̃ = sign

(
E
[
ξ̃ | F∞

n+k

]
−
(
E[ξ̃]

))
is F∞

n+k measurable.)

= M · E
[
η̃
(
E
[
ξ̃ | F∞

n+k

]
−
(
E[ξ̃]

))]
= M ·

[
E[η̃ξ̃]− (E[η̃])

(
E[ξ̃]

)]
It follows that

|E[f(ξ)f(η)]− (E[f(η)]E[f(ξ])| ≤M2 ·
∣∣∣E[η̃ξ̃]− (E[η̃])

(
E[ξ̃]

)∣∣∣
Let B = {η̃ = 1} ∈ F∞

n+k, A = {ξ̃ = 1} ∈ Fk
1 . Therefore,

|E[f(ξ)f(η)]− (E[f(η)]E[f(ξ])|

≤M2 ·
∣∣P(AB) + P(ĀB̄)− P(AB̄)− P(ĀB)−

[
P(A)P(B)− P(A)P(B̄)− P(Ā)P(B) + P(Ā)P(B̄)

]∣∣
= M2 ·

∣∣[P(AB)− P(A)P(B)] +
[
P(ĀB̄)− P(Ā)P(B̄)

]
−
[
P(ĀB)− P(Ā)P(B)

]
−
[
P(AB̄)− P(A)P(B̄)

]∣∣
≤M2 · 4α(n) ≤ 4M2 · ϕ(n).

Then, we have that

|Cov(f(ξk), f(ξk+n))| ≤ 4∥f∥2Mϕ(n),

□
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A.5 Proof of Lemma 2

Proof: With the notation stated, we are now presenting the bound of the term Ūk. Note that

E
[
exp(tŪk)

]
= E

[
exp

(
t

k

r∑
i=1

Ui

)]

= Cov

(
exp

(
t

k

r−1∑
i=1

Ui

)
, exp

(
t

k
Ur

))
+

(
E[exp

(
t

k

r−1∑
i=1

Ui

)
]

)(
E[exp

(
t

k
Ur

)
]

)

= Cov

(
exp

(
t

k

r−1∑
i=1

Ui

)
, exp

(
t

k
Ur

))
+

(
Cov

(
exp

(
t

k

r−2∑
i=1

Ui

)
, exp

(
t

k
Ur−1

)))

+

(
E

[
exp

(
t

k

r−2∑
i=1

Ui

)])(
E
[
exp

(
t

k
Ur−1

)])(
E
[
exp

(
t

k
Ur

)])

= Cov

(
exp

(
t

k

r−1∑
i=1

Ui

)
, exp

(
t

k
Ur

))
+

(
Cov

(
exp

(
t

k

r−2∑
i=1

Ui

)
, exp

(
t

k
Ur

)))(
E
[
exp

(
t

k
Ur

)])

+

(
E

[
exp

(
t

k

r−2∑
i=1

Ui

)])(
E
[
exp

(
t

k
Ur−1

)])(
E
[
exp

(
t

k
Ur

)])

= Cov

(
exp

(
t

k

r−1∑
i=1

Ui

)
, exp

(
t

k
Ur

))
+

(
Cov

(
exp

(
t

k

r−2∑
i=1

Ui

)
, exp

(
t

k
Ur

)))(
E
[
exp

(
t

k
Ur

)])

+Cov

(
exp

(
t

k

r−3∑
i=1

Ui

)
, exp

(
t

k
Ur−2

))(
E
[
exp

(
t

k
Ur−1

)])(
E
[
exp

(
t

k
Ur

)])

+

(
E

[
exp

(
t

k

r−3∑
i=1

Ui

)])(
E
[
exp

(
t

k
Ur−2

)])(
E
[
exp

(
t

k
Ur−1

)])(
E
[
exp

(
t

k
Ur

)])
=

...

= Cov

(
exp

(
t

k

r−1∑
i=1

Ui

)
, exp

(
t

k
Ur

))
+

(
Cov

(
exp

(
t

k

r−2∑
i=1

Ui

)
, exp

(
t

k
Ur

)))(
E
[
exp

(
t

k
Ur

)])

+Cov

(
exp

(
t

k

r−3∑
i=1

Ui

)
, exp

(
t

k
Ur−2

))(
E
[
exp

(
t

k
Ur−1

)])(
E
[
exp

(
t

k
Ur

)])
+ · · ·

+

(
E
[
exp

(
t

K
U1

)])(
E
[
exp

(
t

K
U2

)])
· · ·
(
E
[
exp

(
t

K
Ur−1

)])(
E
[
exp

(
t

K
Ur

)])
For jth term,

Cov

(
exp

(
t

k

r−j∑
i=1

Ui

)
, exp

(
t

k
Ur−j+1

))(
E
[
exp

(
t

K
Ur−j+2

)])
· · ·
(
E
[
exp

(
t

K
Ur

)])

Cov

(
exp

(
t

k

r−j∑
i=1

Ui

)
, exp

(
t

k
Ur−j+1

))
≤ t2

k2
exp

(
t

k
(r − j + 1)2PM

) ∑
j∈A1

∑
k∈A2

Cov (Uj , Uk)
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where

A1 =

1, · · · , p︸ ︷︷ ︸
A1,1

, 2p+ 1, · · · , 3p︸ ︷︷ ︸
A1,2

, · · · , 2(r − j − 1)p+ 1, · · · , (2(r − j)− 1)p︸ ︷︷ ︸
A1,r−j


A2 = {2(r − j)p+ 1, · · · , (2(r − j) + 1)p}

A1i = {2(i− 1)p+ 1, · · · , (2i− 1)p}

∑
j∈A11

∑
l∈A2

Cov (Uj , Ul) ≤ p · Cov
(
Y1, Y2(r−j)p+1

)
+ p · Cov

(
Y2, Y2(r−j)+1

)
+ · · ·+ p · Cov

(
Yp, Y2(r−j)p+1

)
∑

j∈A1i

∑
l∈A2

Cov (Uj , Ul) ≤ p · Cov
(
Y2(i−1)p+1, Y2(i−j)p+1

)
+ p · Cov

(
Y2(i−1)p+2, Y2(i−j)p+1

)
+ · · ·+ p · Cov

(
Y2(i−1)p+p, Y2(r−j)p+1

)
= p ·

(2r−2j−2i+2)p∑
(2y−2j−2i+2)p−p+1

Cov (Y1, Yl)

Therefore,

r−j∑
i=1

Cov (Ui, Ur−j+1) ≤
r−j∑
i=1

p ·
(2r−2j−2i+2)p∑

(2y−2j−2i+2)p−p+1

Cov (Y1, Yl)

≤
r−j∑
i=1

p · 4M2
∑
l

ϕ(l), ( define ϕ(l) = Cov (Y1, Yl))

= 4pM2

r−j∑
i=1

(2r−2j−2i+2)p∑
(2y−2j−2i+2)p−p+1

ϕ(l) ≤ 4pM2
∞∑
l=p

ϕ(l)

It follows that

E
[
exp

(
tŪk

)]
≤

r−1∑
j=1

Cov

(
exp

(
t

k

r−j∑
i=1

Ui

)
, exp

(
t

k
Ur−j+1

))(
E
[
exp

(
t

k
U1

)])j−1

+

(
E
[
exp

(
t

k
U1

)])r

≤
r−1∑
j=1

t2

k2
exp

(
t

k
(r − j + 1)2pM

)(
4pM2

) ∞∑
l=p

ϕ(p) ·
(
E
[
exp

(
t

k
U1

)])j−1

+

(
E
[
exp

(
t

k
U1

)])r

=
4pM2t2V (p)

k2
exp

(
t

k
2pMr

) r−2∑
j=0

exp

(
−2pMt

k
j

)
·
(
E
[
exp

(
t

k
U1

)])j

+

(
E
[
exp

(
t

k
U1

)])r
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Note that |U1| ≤ 2pM , E
[
exp

(
t
kU1

)]
≤ exp

(
t2

k2 · 18 (4pM)
2
)
= exp

(
2p2M2t2

k2

)
. Therefore

E
[
exp

(
tŪk

)]
≤ 4pM2t2V (p)

k2
exp

(
t

k
2pMr

) r−2∑
j=0

exp

(
−2pMt

k
j

)
exp

(
2p2M2t2j

k2

)

+ exp

(
2p2M2t2r

k2

)
≤ 4pM2t2V (p)

k2
exp

(
t

k
2pMr

) r−2∑
j=0

exp

((
2p2M2t2 − 2pMkt

)
j

k2

)

+ exp

(
2p2M2t2r

k2

)

Based on Markov’s Inequality,

P
(
Ūk ≥ ε

)
≤

E
[
exp

(
tŪk

)]
exp (tε)

≤ 4pM2t2V (p)

k2
exp

(
− t

ε
+

2pMrt

k

) r−2∑
j=0

exp

(
2pMt(pMt− k)

k2
j

)

+ exp

(
2p2M2t2r

k2
− tε

)
Let t = k2ε

4p2M2r ,

P
(
Ūk ≥ ε

)
≤ 4pM2t2V (p)

k2
exp

(
−tε+ 2pMrt

k

) r−2∑
j=0

exp

(
2pMt(pMt− k)

k2
j

)

+ exp

(
− k2ε2

8p2M2r

)
If ε < M , under the fixed value t = k2ε

4p2M2r ,
∑r−2

j=0 exp
(

2pMt(pMt−k)
k2 j

)
is convergent. It follows that there

exists a constant c such that

P
(
Ūk ≥ ε

)
≤
(
c · ε

2k2V (p)

4p3r2M2
exp

(
kε

2pM

)
+ 1

)
exp

(
− k2ε2

8p2M2r

)
=

(
c · k

2ε2V (p)

4p3r2M2
exp

(
kε

2pM

)
+ 1

)
exp

(
− k2ε2

8p2M2r

)
≤
(
c · k2ε2

4p3r2M2
exp

(
kε

2pM

)
V (p) + 1

)
exp

(
− kε

4pM2

)
Assumption ϕ(p) ≤ ϕ0 exp (ϕ1k

a), for some ϕ0 > 0, ϕ1 > 0, a > 0, S.P. is geometric mixing sequence. Then,

P
(
Ūk ≥ ε

)
≤ c · exp

(
− kε2

4pM2

)
It is obvious that V̄k satisfies the same inequalities as Ūk, that is,

P
(
V̄k ≥ ε

)
≤ c · exp

(
− kε2

4pM2

)
We next show that the term W̄k can be dispensed. W̄k contains n − 2pr terms and n − 2pr < p. Then,

|W̄k| < p · 2MK , so that,

P
(
|W̄k| ≥ ε

)
≤ P

(
M ≥ kε

2p

)
= 0,
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for sufficiently large k, because k
p →∞. As a result, P

(
|W̄k| ≥ ε

)
= 0, for k →∞. Therefore,

P
(
|S̄k| ≥ ε

)
≤ P

(
|Ūk| ≥

ε

3

)
+ P

(
|V̄k| ≥

ε

3

)
+ P

(
|W̄k| ≥

ε

3

)
≤ P

(
|Ūk| ≥

ε

3

)
+ P

(
|V̄k| ≥

ε

3

)
, ( for k ≥ k0, say )

≤ 4c · exp
(
− kε2

36pM2

)
□

A.6 Proof of Theorem 5

Proof: Under the assumptions, we have that

P
(
|S̄k| ≥ ε

)
≤ c · exp

(
− kε2

36pM2

)
for some constant c. To proof

1√
K

[
K∑

k=1

(ℓ(x, ξk)− E [ℓ(x; ξ)])

]
→ N (0, σ2)

i.e.

1√
K]

(
K∑

k=1

Yk

)
→ N (0, σ2), where

1

K
Var

(
K∑

k=1

ℓ(x, ξk)

)
→ σ2 ∈ (0,∞)

for any x ∈ Rd. Given p ∈ N, let m = ⌊kp ⌋, and redefine the blocks,

Uj =

jp∑
i=(j−1)p+1

Yi, j = 1, · · · ,m, Um+1 =

K∑
i=mp+1

Yi

Let φk(t) represnet the characteristic function of 1√
K
SK , where SK =

∑K
k=1 Yk. We only need to establish

that
∣∣∣φk(t)− exp

(
−σ2t2

2

)∣∣∣→ 0. Decompose
∣∣∣φk(t)− exp

(
−σ2t2

2

)∣∣∣ into the form∣∣∣∣φk(t)− exp

(
−σ2t2

2

)∣∣∣∣
=

∣∣∣∣∣φk(t)− φmp(t) + φmp(t)− φm
p (t) + φm

p (t)− exp

(
−
t2σ2

p

2
+

)
+ exp

(
−
t2σ2

p

2
+

)
− exp

(
−σ2t2

2

)∣∣∣∣∣
≤ |φk(t)− φmp(t)|+

∣∣φmp(t)− φm
p (t)

∣∣+ ∣∣∣∣∣φm
p (t)− exp

(
−
t2σ2

p

2
+

)∣∣∣∣∣+
∣∣∣∣∣exp

(
−
t2σ2

p

2
+

)
− exp

(
−σ2t2

2

)∣∣∣∣∣
= D1 +D2 +D3 +D4

D1 ≤ E
∣∣∣∣exp( itSk√

K

)
− exp

(
itSmp√
mp

)∣∣∣∣ ≤ E
∣∣∣∣t( SK√

K
− Smp√

mp

)∣∣∣∣ ≤ |t|
(
E

[(
SK√
K
− Smp√

mp

)2
]) 1

2

= |t|

(
E

[(
1√
K

(Smp + Um+1)−
Smp√
mp

)2
]) 1

2

= |t|

{
E
[(

1√
K
− 1
√
mp

)
Smp +

1√
K

Um+1

]2} 1
2

= |t|

{(
1√
K
− 1
√
mp

)2 (
E[S2

mp]
)
+

1

K

(
E[U2

m+1]
)} 1

2
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It follows from the stationary of the sequence of random variables ξk that for m large enough, E[S2
mp] ≤

2σ2 ·mp and E[U2
m+1] ≤ 2σ2(k −mp) < 2σ2p. Therefore, as k →∞, which implies that m→∞, it follows

that

|φk(t)− φmp(t)| ≤ |t|

{(
1√
K
− 1
√
mp

)2

· 2σ2mp+
1

K
· 2σ2p

} 1
2

= |t|

{(√
mp

K
− 1

)2

sσ2 +
2σ2p

K

} 1
2

→ 0.

Denote Wj =
1√
P
Uj with characteristic function φp(t), σ

2
p = 1√

p Var(Sp).

D2 =

∣∣∣∣∣∣E
exp

 it√
m

m∑
j=1

Wj

− m∏
j=1

E
[
exp

(
it√
m
Wj

)]∣∣∣∣∣∣ ≤
m∑
j=2

t2

m

j−1∑
k=1

|Cov(Wj ,Wk)|

=

m∑
l=2

t2

mp

l−1∑
j=1

|Cov(Ul, Uj)| =
t2

mp

m∑
l=2

∑
k∈A

∑
j∈B

|Cov(Yk, Yj)|,

where

A =

1, 2, · · · , p︸ ︷︷ ︸
A1

, p+ 1, p+ 2, · · · , 2p︸ ︷︷ ︸
A2

, · · · , (l − 2)p+ 1, (l − 2)p+ 2, · · · , (l − 1)p︸ ︷︷ ︸
Al−1


B = {(l − 1)p+ 1, (l − 1)p+ 2, · · · , lp}

D2 ≤
t2

mp

m∑
l=2

l−1∑
j=1

[
p−2∑
u=0

(p− 1− u)ϕ((l − j)p− u) +

p∑
v=1

ϕ((l − j)p+ v)

]

=
t2

mp

m∑
l=2

l−1∑
j=1

p−2∑
u=0

(p− u− 1)ϕ((l − j)p− u) +
t2

mp

m∑
l=2

l−1∑
j=1

p∑
v=1

(p− v − 1)ϕ((l − j)p+ v)

=
t2

mp

m−1∑
l=1

(m− l)

p∑
k=1

kϕ((l − 1)p+ k) +
t2

mp

m−1∑
l=1

(m− l)

p−1∑
k=1

(p− k)ϕ(k + lp)

=
t2

mp

m−1∑
l=1

(m− l)

p∑
k=1

kϕ(k) +
t2

mp

m−1∑
l=2

(m− l)p

p∑
k=1

ϕ(k + lp)

=
t2

p

m−1∑
l=1

(1− l

m
)

p∑
l=1

kϕ(k) +
pt2

p

m−1∑
l=2

(1− l

m
)

p∑
k=1

ϕ(k + lp)

≤ t2

p

m−1∑
l=1

(1− l

m
)

p∑
l=1

kϕ(k) + t2
m−1∑
l=2

(1− l

m
)

∞∑
k=lp

ϕ(k)

(

p∑
l=1

kϕ(k) <∞,

∞∑
k=p

ϕ(k)→ 0)

→ 0, as p→∞.

D2 ≤
t2

m

m∑
l=2

l−1∑
j=1

(l−j)p∑
u=(l−j)p−(p−2)

Cov(Y1, Yu) =
t2

m

m∑
l=2

l−1∑
j=1

(l−j)p∑
u=(l−j)p−(p−2)

ϕ(u)

≤ t2

m
(m− 1)

∞∑
u=1

ϕ(u) ≤ c · t2
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For D3 and D4,

D3; lim
m→∞

∣∣∣∣∣φm
p (t)− exp

(
−
t2σ2

p

2

)∣∣∣∣∣→ 0, D4 ≤
t2

2

∣∣σ2
p − σ2

∣∣
it follows that

lim
k→∞

sup

∣∣∣∣φk(t)− exp

(
−σ2t2

2

)∣∣∣∣ ≤ t2

2

∣∣σ2
p − σ2

∣∣+ c · t2.

Based on the fact that limp→+∞ σ2
p = σ2, we have

lim
k→∞

sup

∣∣∣∣φk(t)− exp

(
−σ2t2

2

)∣∣∣∣ = 0

The next proof is based on the functional CLT and delta method. Consider the Banach space C(X) of con-

tinuous functions hi : X → R equipped with the sup-norm |h| := supx∈X |h(x)|. Define H(h) = infx∈X h(x).

Since X is a closed, convex subset of Rd, the function H : C(X)→ R is real value and measurable. Moreover,

it can be shown that

|H(h1)−H(h2)| ≤ inf
x∈X
|h1(x)− h2(x)||≤ |h1 − h2|

for any h1, h2 ∈ C(X). That is, H(·) is Lipschitz continuous with Lipschitz constant 1. It follows from

Danskin theorem that H(·) is directionally differentiable at any F ∈ C(X), and H ′
F (σ) = infx∈ ¯F (X) σ(x),∀σ ∈

C(X), ¯F (X]) = argminx∈X F (x). Since H(·) is Lipschitz continuous and directionally differentiable, we have

that H(·) is Hadamard directionally differentiable at any F ∈ C(X). Note that Ĵ⋆
K = H(ĴK), J⋆ = H(J),

where ĴK = 1
K

∑K
k=1 ℓ(x, ξk), J = E[ℓ(x; ξ)]. By applying Delta method and using the factor

√
K(ĴK−J)→

N (0, σ2
x) for any x ∈ X, we have that

√
K(Ĵ⋆

K − J) = H ′J
(√

K(ĴK)− J
)
+Op(1)→ N (0, σ2

x⋆)

□

A.7 Proof of Theorem 11

Proof: Note that

E
[∥∥∥ 1

ΛK

K∑
k=1

λk(T (x
k)− xk)

∥∥∥ | Fk

]
=

1

ΛK
E
[∥∥∥ K∑

k=1

(xk+1 − xk − λkϵk)
∥∥∥ | Fk

]
=

1

ΛK
E[∥xk+1 − x1 − λkϵk∥].

Additionally,

E[∥xk+1 − x∗∥ | Fk] = E[∥Tλ(x
k; ξk+1)− x∗ + λkϵk∥ | Fk]

≤
∫
Ξ

∥Tλ(x
k; ξ)− x∗∥(pk+1

[k] − p)(ξ)dξ +

∫
Ξ

∥Tλ(x
k; ξ)− x∗∥p(ξ)dξ + E[∥λkϵk∥]

≤ 2rdTV(P
k+1
k ,P) + EP[∥T (xk; ξ)− x∗∥ | Fk] + E[∥λkϵk∥]

≤ 2rdTV(P
k+1
k ,P) + ∥xk − x∗∥+ E[∥λkϵk∥]

≤ r(1 + ϕ(1)) + E[∥λkϵk∥].
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Therefore,

E
[∥∥∥ 1

ΛK

K∑
k=1

λk(T (x
k)− xk)

∥∥∥] ≤ 2r(1 + ϕ(1)) + 2
∑K

k=1 E[∥λkϵk∥]
ΛK

.

□

A.8 Proof of Theorem 12

Proof: Under Assumption 9 and the requirement that T is a nonexpansive operator,

∥EP̂K [T (x; ξ)− x]− EP[T (x; ξ)− x]∥ ≤ 2r∥P̂K − P∥.

This implies that

E{∥EP̂K [T (x; ξ)− x]− EP[T (x; ξ)− x]∥}

=

∫ ∞

0

P{∥EP̂K [T (x; ξ)− x]− EP[T (x; ξ)− x]∥ ≥ t}dt

≤
∫ ∞

0

P{2r∥P̂K − P∥ ≥ t}dt

≤
∫ ∞

0

2 exp
(
− K2t2

8r2C
∑∞

k=1 ϕ(k)

)
dt

=

∫ ∞

0

t−1/2 exp
(
− K2t

8r2C
∑∞

k=1 ϕ(k)

)
dt

=
(8r2C∑∞

k=1 ϕ(k)

K2

)1/2
Γ
(1
2

)
.

□

A.9 Proof of Corollary 3

Proof: Corollary 3 is a consequence of Theorems 12–13. We show that S-GFBS is a special case of the

S-KM algorithm. Set T1(x) = Jγk∂g(x) and T2 = (I − γk∇f)(x). Because Jγk∂g(x) is (1/2)-averaged and

I − γk∂f(x) is (γk/(2β))-averaged, it follows that TFB is 2β/(4β− γk)-averaged when γ < 2β. Furthermore,

since ∂f(x) is scalar-valued, then for any k ∈ N and x ∈ X,

x ∈ (∂f + ∂g)−1(0) ⇐⇒ x− γk∇f(x) ∈ x+ γk∂g(x) ⇐⇒ x ∈ Fix(T1T2).

For the error term ϵk, we have that

∥ϵk∥ =∥(Jγk∂g(x
k − γk(∇f(xk) + ϵf,k)) + ϵg,k − Jγk∂g(x

k − γk∇f(xk)))∥

≤∥Jγk∂g(x
k − γk(∇f(xk) + ϵf,k))− Jγk∂g(x

k − γk∇f(xk))∥+ ∥ϵg,k∥

≤∥xk − γk(∇f(xk) + ϵf,k)− (I − γk∇f)xk∥+ ∥ϵg,k∥

≤∥ϵf,k∥+ ∥ϵg,k∥.

It is easy to verify that the conditions of Theorems 12–13 are satisfied. The desired result then follows.

□
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A.10 Proof of Fact 6.2

Proof:

∥reflλf (x)− reflλf (y)∥22 = ∥2Jλf (x)− 2Jλf (y)− (x− y)∥22

= 4∥Jλ∂f (x)− Jλ∂f (y)∥22 − 4⟨Jλ∂f (x)− Jλf (y), x− y⟩+ ∥x− y∥22

≤ 4∥Jλ∂f (x)− Jλ∂f (y)∥22 − 4∥Jλ∂f (x)− Jλ∂f (y)∥22 + ∥x− y∥22

= ∥x− y∥22.

□

A.11 Proof of Corollary 4

Proof: Suppose that λ′
k = λk/2 and ϵk = 2ϵf,k +reflγk∂f (reflγk∂g z

k +2ϵg,k) reflγk∂f (reflγk∂g z
k). It follows

from Fact 6.2, Lemma ??, and straightforward manipulation that we can rewrite the iteration as a fixed-point

iteration with the reflection operator, which is nonexpansive. For the error term, we have that∑
k∈N

λk∥ϵk∥ ≤
∑
k∈N

λk∥ϵf,k∥+
∑
k∈N

λk∥reflγk∂f (reflγk∂g z
k + 2ϵg,k)− reflγk∂f (reflγk∂f z

k)∥/2

≤
∑
k∈N

λk(∥ϵf,k∥+ ∥ϵg,k∥) <∞

The result then follows from Theorems 12–13.

□

A.12 Proof of Theorems 8–10

Lemma 3 (Asi & Duchi, 2019 [2]) Let Ak, Bk, Ck, and Dk be non-negative random variables adapted

to the filtration Fk and satisfying E[Ak+1 | Fk] ≤ (1 + Bk)Ak + Ck − Dk. Then for the event {
∑

k Bk <

∞,
∑

k Ck <∞}, there is a random variable A∞ <∞ such that Ak → A∞ almost surely and
∑

k Dk <∞.

Lemma 4 (David & Yin, 2016 [20]) Suppose that the nonnegative scalar sequences (λj)j≥0 and (aj)j≥0

satisfy
∑∞

i=0 λiai < ∞. Let Λk =
∑k

i=0 λi for k ≥ 0 and let (ej)j≥0 be a sequence of scalars. Suppose that

ak+1 ≤ ak + ek for all k and that
∑∞

i=0 Λiei <∞. Then

ak ≤
1

Λk

( ∞∑
i=0

λiai +

∞∑
i=0

Λiei

)
and ak = o((Λk − Λ⌈k/2⌉)

−1).

Lemma 5 (David & Yin, 2016 [20]) Let T : H → H be a nonexpansive operator. Then for all λ ∈ (0, 1]

and (x, y) ∈ H ×H, the averaged operator Tλ satisfies

∥Tλx− Tλy∥2 ≤ ∥x− y∥2 − 1− λ

λ

∥∥(IH − Tλ)x− (IH − Tλ)y
∥∥2.

Lemma 6 For any operator T : H → H, the reflection operator reflγT of T is defined as reflγT = (2JγT−IH).

In addition, reflγT is a nonexpansive operator for any γ > 0.
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Proof: Since JγT is a (1/2)-averaged operator, ∥JγT (x)− JγT (y)∥ < ∥x− y∥ for any x, y ∈ H. Thus,

∥reflγT (x)− reflγT (y)∥2 = ∥2JγT (x)− 2JγT (y)− (x− y)∥2

= 4∥JγT (x)− JγT (y)∥2 − 4⟨JγT (x)− JγT (y), x− y⟩+ ∥x− y∥2

≤ 4∥JγT (x)− JλT (y)∥2 − 4∥JλT (x)− JλT (y)∥2 + ∥x− y∥2

= ∥x− y∥2.

□

A.12.1 Proof of Theorem 8

Proof: (i) Since (Tn)
N
n=1 is a sequence of averaged nonexpansive operators, by Lemma 5,

∥∥∥ N∏
n=1

Tn(x)−
N∏

n=1

Tn(y)
∥∥∥ ≤ ∥∥∥N−1∏

n=1

Tn(x)−
N−1∏
n=1

Tn(y)
∥∥∥ ≤ · · · ≤ ∥x− y∥.

Thus,

E[∥xk+1 − x∗∥2 | Fk] =
∥∥∥(1− λk)(x

k − x∗) + λk

( N∏
n=1

Tnx
k − x∗ + ϵk

)∥∥∥2
=(1− λk)∥xk − x∗∥2 + λk

∥∥∥ N∏
n=1

Tnx
k − x∗ + ϵk

∥∥∥2 − λk(1− λk)
∥∥∥ N∏

n=1

Tnx
k − xk + ϵk

∥∥∥2
=(1− λk)∥xk − x∗∥2 + λk

(∥∥∥ N∏
n=1

Tnx
k − x∗

∥∥∥2 + 2
〈 N∏
n=1

Tnx
k − x∗, ϵk

〉
+ ∥ϵk∥2

)
− λk(1− λk)

(∥∥∥ N∏
n=1

Tnx
k − xk

∥∥∥2 + 2
〈 N∏
n=1

Tnx
k − xk, ϵk

〉
+ ∥ϵk∥2

)
≤∥xk − x∗∥2 − τk

∥∥∥ N∏
n=1

Tnx
k − xk

∥∥∥2 + (λ2
k∥ϵk∥2 + 2λ2

k

∥∥∥ N∏
n=1

Tnx
k − xk

∥∥∥∥ϵk∥+ 2λk∥xk − x∗∥∥ϵk∥
)

=∥xk − x∗∥2 − τk

∥∥∥ N∏
n=1

Tnx
k − xk

∥∥∥2 + ξ̃k, (A.1)

where the last equality serves to define ξ̃k.

Next, we show that ∥
∏N

n=1 Tnx
k−xk∥2 is uniformly bounded over k. Since every averaged nonexpansive

operator can be written as a linear form of a nonexpansive operator, there exists a nonexpansive operator

T ′ and λ′ ∈ (0, 1) such that
∏N

n=1 Tn = (1− λ′)I + λ′T ′. Therefore,

∥∥∥ N∏
n=1

Tnx
k+1 − xk+1

∥∥∥2 = ∥xk+1 + λ′(T ′xk+1 − xk+1)− xk+1∥2 = (λ′)2∥T ′xk+1 − xk+1∥2

≤ ∥T ′xk+1 − xk+1∥2.
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Moreover,

∥T ′xk+1 − xk+1∥2 =∥T ′xk − xk∥2 + ∥T ′xk+1 − xk+1 − T ′xk + xk∥2

+ 2⟨T ′xk+1 − xk+1 − T ′xk + xk, T ′xk − xk⟩

=∥T ′xk − xk∥2 + ∥(T ′xk+1 − T ′xk)− (xk+1 − xk)∥2

+
2

λ′λk
⟨(T ′xk+1 − T ′xk)− (xk+1 − xk), xk+1 − xk − λkϵk⟩. (A.2)

Since T ′ is a nonexpansive operator, ∥T ′xk+1 − T ′xk∥2 ≤ ∥xk+1 − xk∥2, and so

2⟨T ′xk+1 − T ′xk − (xk+1 − xk), xk+1 − xk⟩ =∥T ′xk+1 − T ′xk∥2 − ∥xk+1 − xk∥2

− 2∥xk+1 − xk∥2 − ∥T ′xk+1 − T ′xk − (xk+1 − xk)∥2

≤− ∥T ′xk+1 − T ′xk − (xk+1 − xk)∥2. (A.3)

Then by (A.2)–(A.3),

∥T ′xk+1 − xk+1∥2 ≤∥T ′xk − xk∥2 − 1− λkλ
′

λkλ′ ∥(T
′xk+1 − T ′xk)− (xk+1 − xk)∥2

− 2

λ′ ⟨(T
′xk+1 − T ′xk)− (xk+1 − xk), ϵk⟩

=∥T ′xk − xk∥2 − 1− λkλ
′

λkλ′

∥∥∥(T ′xk+1 − T ′xk)− (xk+1 − xk)− λk

1− λkλ′ ϵk

∥∥∥2
+

λk

λ′(1− λ′λk)
∥ϵk∥2

≤∥T ′xk − xk∥2 + λ2
k

λkλ′(1− λ′λk)
∥ϵk∥2

=∥T ′xk − xk∥2 + ϵ̃k, (A.4)

where the last equality serves to define ϵ̃k.

Under the condition that
∑∞

k=1 λ
2
kE[∥ϵk∥2] < ∞, we have that supk∥

∏N
n=1 Tnx

k − xk∥2 < ∞ almost

surely. On the other hand,

E[∥xk+1 − x∗∥ | Fk] = ∥(1− λk)(x
k − x∗) + λk(Tx

k − x∗) + λkϵk∥

≤ ∥xk − x∗∥+ ∥λkϵk∥

≤ ∥x0 − x∗∥+
k∑

l=0

∥λlϵl∥. (A.5)

Therefore, under the condition that
∑∞

l=1 E[∥λlϵl∥] <∞, it follows (with probability one) that

sup
k
∥xk − x∗∥ <∞. (A.6)

Additionally,
∑∞

k=1 E[∥ξ̃k∥] <∞ under the condition that
∑∞

k=1 E[∥λkϵk∥]2 <∞. Let X̃ ∗ = {x ∈ H | x =∏N
n=1 Tn}. By applying Lemma 3 with Ak = ∥xk − x∗∥2, Bk = 0, Ck = ξ̃k, and Dk = τk∥

∏N
n=1 Tnx

k − xk∥2

in inequality (A.1), it follows that, for any x∗ ∈ X ∗, there is a random variable V (x∗) < ∞ such that

∥xk − x∗∥ → V (x∗) almost surely and
∑

k Dk < ∞. This implies that limk→∞∥Txk − xk∥2 = 0 almost

surely. Therefore, xk ∈ X ∗ as k →∞ and dist(xk,X ∗)→ 0 almost surely.
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We next show that V (x∗) = 0 for some x∗ ∈ X ∗. Let B = {x ∈ H | ∥x∥ ≤ 1}. Since V (x∗) < ∞, there

exists a c <∞, such that xk ∈ cB for all k. As dist(xk,X ∗)→ 0 almost surely, cB∩X ∗ ̸= ∅ by the compactness

of B. Let x∗ ∈ cB∩X ∗. The projection Px of any x ∈ cB onto X ∗ satisfies ∥Px−x∥ ≤ ∥x∗−x∥ ≤ 2dist(x,X ∗)

and ∥Px∥ ≤ 3dist(x,X ∗). Define the set S = 3dist(x,X ∗)B. It follows that dist(xk,X ∗) = dist(xk,X ∗ ∩ S)

for all k. Now fix ω > 0 and let {x∗
i }Ni=1 be a ω-net of X ∗ ∩ S with N <∞. Since xk ∈ S for all k,

min
i∈[N ]
∥xk − x∗

i ∥ − ω ≤ dist(xk,X ∗ ∩ S) = dist(xk,X ∗)→ 0

almost surely, and mini∈[N ]∥xk − x∗
i ∥ → mini∈[N ] V (x∗

i ) almost surely. So for any ω > 0, there exists

xω ∈ X ∗ ∩ S such that V (xω) ≤ ω and so infx∈X∗∩S V (x) = 0. Thus, xk converges to this x∗ ∈ X ∗.

(ii) Since
∏N

n=1 Tn is an averaged nonexpansive operator,

∥∥∥ N∏
n=1

Tnx
k − x∗

∥∥∥2 =
∥∥∥ N∏

n=1

Tnx
k −

N∏
n=1

Tnx
∗
∥∥∥2

≤
∥∥∥ N∏

n=2

Tnx
k −

N∏
n=2

Tnx
∗
∥∥∥2 − 1− λ1,k

λ1,k

∥∥∥(Id−T1)

N∏
n=2

Tnx
k − (Id−T1)

N∏
n=2

Tnx
∗
∥∥∥2

≤
∥∥∥ N∏

n=3

Tnx
k −

N∏
n=3

Tnx
∗
∥∥∥2 − 1− λ2,k

λ2,k

∥∥∥(Id−T2)

N∏
n=3

Tnx
k − (Id−T2)

N∏
n=3

Tnx
∗
∥∥∥2

− 1− λ1,k

λ1,k

∥∥∥(Id−T1)

N∏
n=2

Tnx
k − (Id−T1)

N∏
n=2

Tnx
∗
∥∥∥2

≤∥xk − x∗∥2 −
N∑
i=1

1− λi,k

λi,k

∥∥∥(Id−Ti)

N∏
n=i+1

Tnx
k − (Id−Ti)

N∏
n=i+1

Tnx
∗
∥∥∥2. (A.7)

By (A.1),

E[∥xk+1 − x∗∥2 | Fk] ≤∥xk − x∗∥2 + ξ̃k

≤
∥∥∥(1− λk−1)(x

k−1 − x∗) + λk−1

( N∏
n=1

Tnx
k−1 − x∗)∥∥∥2 + ∥λk−1ϵk−1∥2 + ξ̃k

+ 2⟨Tλx
k−1 − x∗, λk−1ϵk−1⟩

=(1− λk−1)∥xk−1 − x∗∥2 + λk−1

∥∥∥ N∏
n=1

Tnx
k−1 − x∗

∥∥∥2
− λk−1(1− λk−1)

∥∥∥ N∏
n=1

Tnx
k−1 − xxk−1

∥∥∥2
+ 2⟨Tλx

k−1 − x∗, λk−1ϵk−1⟩+ ∥λk−1ϵk−1∥2 + ξ̃k

≤(1− λk−1)∥xk−1 − x∗∥2 + λk−1

∥∥∥ N∏
n=1

Tnx
k−1 − x∗

∥∥∥2
− λk−1(1− λk−1)

∥∥∥ N∏
n=1

Tnx
k−1 − xk−1

∥∥∥2
+ 2∥x0 − x∗∥∥λk−1ϵk−1∥+ ∥λk−1ϵk−1∥2 + ξ̃k, (A.8)

where Tλx
k−1 = (1− λk−1)(x

k−1 − x∗) + λk−1(
∏N

n=1 Tnx
k−1 − x∗) + x∗. Together, (A.7) and (A.8) give
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that

E[∥xk+1 − x∗∥2 | Fk] ≤∥xk−1 − x∗∥2

− λk−1

N∑
i=1

1− λi,k−1

λi,k1

∥∥∥(Id−Ti)

N∏
n=i+1

Tnx
k−1 − (Id−Ti)

N∏
n=i+1

Tnx
∗
∥∥∥2

− λk−1(1− λk−1)
∥∥∥ N∏

n=1

Tnx
k−1 − xk−1

∥∥∥2
+ 2∥x0 − x∗∥∥λk−1ϵk−1∥+ ∥λk−1ϵk−1∥2 + ξ̃k.

Summing the above over k = 1, 2, . . . yields that

∞∑
k=1

{
τk−1E

[∥∥∥ N∏
n=1

Tnx
k−1 − xk−1

∥∥∥2]
+λk−1

N∑
i=1

1− λi,k−1

λi,k−1
E
[∥∥∥(Id−Ti)

N∏
n=i+1

Tnx
k−1 − (Id−Ti)

N∏
n=i+1

Tnx
∗
∥∥∥2]}

≤ ∥x0 − x∗∥2 + E[∥x1 − x∗∥2] + 2∥x0 − x∗∥
∞∑
k=1

λk−1E[∥ϵk−1∥] +
∞∑
k=1

E[∥λk−1ϵk−1∥2] +
∞∑
k=1

E[ξ̃k]

<∞

and so
∑∞

k=1 τkE[∥
∏N

n=1 Tnx
k − xk∥2] <∞ and

∞∑
k=1

λk

N∑
i=1

1− λi,k

λi,k
E
[∥∥∥(Id−Ti)

N∏
n=i+1

Tnx
k − (Id−Ti)

N∏
n=i+1

Tnx
∗
∥∥∥2] <∞.

This indicates that, for all k,

N∑
i=1

E
[∥∥∥(Id−Ti)

N∏
n=i+1

Tnx
k − (Id−Ti)

N∏
n=i+1

Tnx
∗
∥∥∥2] <∞

which in turn implies that

lim
k→∞

E
[∥∥∥(Id−Ti)

N∏
n=i+1

Tnx
k − (Id−Ti)

N∏
n=i+1

Tnx
∗
∥∥∥2] = 0,

( N∏
n=i

Tnx
k −

N∏
n=i+1

Tnx
k
)
→
( N∏

n=i

Tnx
∗ −

N∏
n=i+1

Tnx
∗
)

almost surely, and that
∏N

n=1 Tnx
k − xk → 0 almost surely. In other words, ek converges almost surely to 0.

Since Λk =
∑k

i=0 λi ≤ (k+1), then under the condition that
∑∞

i=1(i+1)E[ϵ̃k] <∞, the previous result,

and (A.10),

E
[∥∥∥ N∏

n=1

Tnx
k − xk

∥∥∥2] = o((k + 1)−1)

by Lemma 4. □

A.12.2 Proof of Theorem 9

The proof is similar to that of Theorem 8.
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A.12.3 Proof of Theorem 10

Proof: (i) First, we have that

E[∥xk+1 − x∗∥ | Fk] = ∥Tλk
(xk)− Tλk

(x∗) + λkϵk∥

≤ ∥xk − x∗∥+ ∥λkϵk∥

≤ ∥x0 − x∗∥+
k∑

l=0

∥λlϵl∥.

Therefore, E[∥xk+1 − x∗∥] ≤ D0 +
∑k

l=0 E[∥λlϵl∥], from which follows that

E[∥ēk∥] = E
[∥∥∥ 1

Λk

k∑
l=1

λle
l
∥∥∥]

=
1

Λk
E
[∥∥∥ k∑

l=1

(xl+1 − xl)− λlϵl

∥∥∥]
=

1

Λk
E
[∥∥∥xk+1 − x1 −

k∑
l=1

λlϵl

∥∥∥]
≤

2(D0 +
∑k

l=1 E[∥λlϵl∥])
Λk

.

(ii) Under the assumption that
∑∞

k=1 λkE[∥ϵk∥] < ∞ and λ > 0, both limk→∞ E[ēk] = 0 and ∥ēk∥ =

Op([λ(k + 1)]−1) follow from the previous result. □

A.13 Proof of Theorem 13

Let P and Q denote two probability measures that are absolutely continuous with respect to a third prob-

ability measure µ defined on a set Ξ. The square of the Hellinger distance between P and Q is defined

as

dhel(P,Q)2 =

∫
Ξ

(√p(ξ)

q(ξ)
− 1
)2

q(ξ)dµ(ξ) =

∫
Ξ

(
√

p(ξ)−
√

q(ξ))2dµ(ξ),

where p and q are the densities of P and Q, respectively. It is well known [1] that, for any probability

distributions P and Q,

dhel(P,Q)2 ≤ 2dTV(P,Q) ≤ 2dhel(P,Q). (A.9)

We now proceed with a proof of Theorem 13.
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Proof: Let p be the density of the distribution P. For simplicity, we suppress the subscript k in λk from

here on. Since Tλ(x
∗; ξ) = x∗ for any ξ ∈ Ξ, we have that

E
[∥∥∥ ⊤∑

t=1

(xt − x∗) | Ft−1

∥∥∥] ≤E[∥∥∥ ⊤∑
t=1

[Tλ(x
t−1; ξt)− Tλ(x

∗; ξt)] | Ft−1

∥∥∥]+ E[
[∥∥∥ ⊤∑

t=1

λt−1ϵt−1

∥∥∥]
=

∫
Ξ

∥∥∥ ⊤∑
t=1

[Tλ(x
t−1; ξ)− Tλ(x

∗; ξ)]
∥∥∥dP t

t−1(ξ) + E
[∥∥∥ ⊤∑

t=1

λt−1ϵt−1

∥∥∥]
≤
∫
Ξ

∥∥∥ ⊤∑
t=1

[Tλ(x
t−1; ξ)− Tλ(x

∗; ξ)]
∥∥∥d(P t

t−1 − P)(ξ)

+

∫
Ξ

∥∥∥ ⊤∑
t=1

[Tλ(x
t−1; ξ)− Tλ(x

∗; ξ)]
∥∥∥dP(ξ) + E

[∥∥∥ ⊤∑
t=1

λt−1ϵt−1

∥∥∥]
≤
∫
Ξ

∥∥∥ ⊤∑
t=1

[Tλ(x
t−1; ξ)− Tλ(x

∗; ξ)]
∥∥∥dP(ξ) +RT−1ϕ(1) + E

[∥∥∥ ⊤∑
t=1

λt−1ϵt−1

∥∥∥].
For any τ > 0,∫

Ξ

∥
⊤∑
t=1

[Tλ(x
t−1; ξ)− Tλ(x

∗; ξ)]∥dP(ξ) ≤
∫
Ξ

∥∥∥ T−τ∑
t=1

[Tλ(x
t−1; ξ)− Tλ(x

∗; ξ)]
∥∥∥(p− pt+τ

[t−1])(ξ)dξ

+

∫
Ξ

∥∥∥ T−τ∑
t=1

[Tλ(x
t−1; ξ)− Tλ(x

t−1+τ ; ξ)]
∥∥∥pt+τ

[t−1](ξ)dξ

+

∫
Ξ

∥∥∥ T−τ∑
t=1

[Tλ(x
t−1+τ ; ξ)− Tλ(x

∗; ξ)]
∥∥∥pt+τ

[t−1](ξ)dξ

+

∫
Ξ

∥∥∥ ⊤∑
t=T−τ+1

[Tλ(x
t−1; ξ)− Tλ(x

∗; ξ)]
∥∥∥p(ξ)dξ

=B1 +B2 +B3 +B4.

where the last equality serves to define B1, B2, B3, and B4. Regarding B1,

B1 =

∫
Ξ

∥∥∥ T−τ∑
t=1

[Tλ(x
t−1; ξ)− Tλ(x

∗; ξ)]
∥∥∥[√p(ξ) +

√
pt+τ
[t−1](ξ)

][√
p(ξ)−

√
pt+τ
[t−1](ξ)

]
dξ

≤
{
2

∫
Ξ

∥∥∥ T−τ∑
t=1

[Tλ(x
t−1; ξ)− Tλ(x

∗; ξ)]
∥∥∥2[p(ξ) + pt+τ

[t−1](ξ)]dξ

∫
[
√
p(ξ)−

√
pt+τ
[t−1](ξ)]

2dξ
}1/2

≤
√
2

T−τ∑
t=1

√
2E[∥xt−1 − x∗∥2]dhel(P, P t+τ

[t−1])

≤2
√
2(T − τ)r

√
ϕ(τ + 1).

The second inequality above holds by the contraction property of the averaged operator Tλ, while the third
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follows from (A.9). Now regarding B2,

B2 ≤
T−τ∑
t=1

E[∥Tλ(x
t−1; ξt+τ )− Tλ(x

t−1+τ ; ξt+τ )∥ | Ft−1]

≤
T−τ∑
t=1

τ−1∑
l=0

E[∥Tλ(x
t+l−1; ξt+τ )− Tλ(x

t+l; ξt+τ )∥ | Ft−1]

=

T−τ∑
t=1

t+τ−2∑
l=t−1

E[∥Tλ(x
l; ξt+τ )− Tλ(x

l+1; ξt+τ )∥ | Ft−1]

≤
T−τ∑
t=1

t+τ−2∑
l=t−1

E[∥xl − xl+1∥ | Ft−1]

≤ τ

T−τ∑
t=1

κ(t− 1).

Regarding B3,

B3 = E
[∥∥∥ T−1∑

t=τ

[Tλ(x
t; ξt+1)− Tλ(x

∗; ξt+1)]
∥∥∥ | Ft−τ

]
= E

{
E
[∥∥∥ T−1∑

t=τ

[Tλ(x
t; ξt+1)− Tλ(x

∗; ξt+1)]
∥∥∥ | Ft

]
| Ft−τ

}
≤

T−1∑
t=τ

E[∥xt − x∗∥ | Ft−τ ]

≤ E[RT−1 −Rτ−1].

Lastly, regarding B4,

B4 ≤
⊤∑

t=T−τ+1

E[∥xt−1 − x∗∥] ≤ τr.

The result holds by the above bounds on B1, B2, B3, and B4. □

A.14 Proof of Theorem 14

Proof: Recall that xk − xk+1 = γk∇̃g(xk+1) + γk∇f(xk) ∈ γk∂g(x
k+1) + γk∇f(xk) for all k ≥ 0. For

simplicity, we assume a constant step size γ = γk for all k. By the joint descent theorem, for all x ∈ dom(f),

EP[f(xk; ξ) + g(xk; ξ)]− [f(x⋆; ξ) + g(x⋆; ξ)]

≤ E[⟨xk − x⋆,∇f(xk−1; ξ) + ∂g(xk; ξ)⟩] + 1

2β
E[∥xk − xk−1∥2]

≤ 1

γ
E[⟨xk − x⋆, (xk−1 − xk)⟩] + 1

2β
E[∥xk − xk−1∥2]

=
1

2γ
E[∥xk − x⋆∥2−∥xk−1 − x⋆∥2] +

( 1

2β
− 1

2γ

)
E[∥xk−1 − xk∥2].
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Additionally,

∥T (xk−1; ξk)− xk−1∥2 =∥T (xk−2; ξk−1)− xk−2∥2 + ∥T (xk−1; ξk)− xk−1 − T (xk−2; ξk−1) + xk−2∥2

+ 2⟨T (xk−1; ξk)− xk−1 − T (xk−2, ξk−1) + xk−2, T (xk−2; ξk−1)− xk−2⟩

=∥T (xk−2; ξk−1)− xk−2∥2 + ∥(T (xk−1; ξk)− T (xk−2; ξk−1))− (xk−1 − xk−2)∥2

+
2

λk−2
⟨(T (xk−1; ξk)− T (xk−2; ξk−1))− (xk−1 − xk−2), xk−1 − xk−2 − λk−2ϵk−2⟩.

and

2⟨(T (xk−1; ξk)−T (xk−2; ξk−1))− (xk−1 − xk−2), xk−1 − xk−2⟩

=∥T (xk−1; ξk)− T (xk−2; ξk−1)∥2 − ∥xk−1 − xk−2∥2 − 2∥xk−1 − xk−2∥2

− ∥(T (xk−1; ξk)− T (xk−2; ξk−1))− (xk−1 − xk−2)∥2

≤− ∥(T (xk−1; ξk)− T (xk−2; ξk−1))− (xk−1 − xk−2)∥2.

It follows that

∥T (xk−1; ξk)−xk−1∥2

≤∥T (xk−2; ξk−1)− xk−2∥2 − 1− λk−2

λk−2
∥(T (xk−1; ξk)− T (xk−2; ξk−1))− (xk−1 − xk−2)∥2

− 2⟨(T (xk−1; ξk)− T (xk−2; ξk−1))− (xk−1 − xk−2), ϵk−2⟩

=∥T (xk−2; ξk−1)− xk−2∥2 − 1− λk−2

λk−2
∥(T (xk−1; ξk)− T (xk−2; ξk−1))− (xk−1 − xk−2)

− λk−2

1− λk−2
ϵk−2∥2 +

λk−2

1− λk−2
∥ϵk−2∥2

≤∥T (xk−2; ξk−1)− xk−2∥2 +
λ2
k−2

τk−2
∥ϵk−2∥2

≤4∥x0 − x⋆∥2 +
k−2∑
l=1

λ2
l ∥ϵl∥2/τ . (A.10)

Therefore,

E[(f(xk; ξ)+g(xk; ξ))− (f(x⋆; ξ) + g(x⋆; ξ))]

≤ 1

2γ
(∥xk − x⋆∥2 − ∥xk−1 − x⋆∥2) +

( 1

2β
− 1

2γ

)
∥xk−1 − xk∥2

≤ 1

2γ
(∥xk − x⋆∥2 − ∥xk−1 − x⋆∥2) +

( 1
β
− 1

γ

)
λ2
k−1∥T (xk−1; ξk)− xk−1∥2

+
( 1
β
− 1

γ

)
∥λk−2ϵk−2∥2

≤ 1

2γ
(∥xk − x⋆∥2 − ∥xk−1 − x⋆∥2) +

( 4
β
− 4

γ

)
∥x0 − x⋆∥2 +

( 1
β
− 1

γ

) k−1∑
l=1

λ2
l ∥ϵl∥2/τ .

62



and so

E
[ K∑
k=1

[(f(xk; ξ) + g(xk; ξ))− (f(x⋆; ξ) + g(x⋆; ξ))]
]

≤ 1

2γ
E[∥xK − x⋆∥2 − ∥x0 − x⋆∥2] +

( 4
β
− 4

γ

)
Kr2 +

( 1
β
− 1

γ

) K∑
k=1

k−1∑
l=1

E[∥λlϵl∥2]/τ

≤ r2

2γ
+
( 1
β
− 1

γ

)
4Kr2 +

( 1
β
− 1

γ

)
K2∆2/τ .

The result of theorem follows since f(K−1
∑K

k=1 x
k) ≤ K−1

∑K
k=1 f(x

k) by Jensen’s inequality. □

A.15 Proof of Theorem 15

Proof: We first have that

EP[(f(xk
f ; ξ) + g(xk

g ; ξ))− (f(x⋆; ξ) + g(x⋆; ξ))]

≤ E[⟨xk
f − x⋆,∇f(xk

f ) + ϵf ⟩+ ⟨xk
g − x⋆, ∂g(xk

g) + ϵg⟩]

= E[⟨xk
f − xg,∇f(xk

f ) + ϵf ⟩+ ⟨xk
g − x⋆,∇f(xk

f ) + ∂g(xk
g) + ϵg⟩]

=
1

2γ
E[⟨xk+1 − xk, γ(∇f(xk

f ) + ϵf )⟩+ ⟨x⋆ − xk
g , x

k+1 − xk⟩]

=
1

2γ
E[⟨xk+1 − xk, x⋆ + (xk − xk

g + γ(∇f(xk
f ) + ϵf ))− xk⟩]

=
1

2γ
E[⟨xk+1 − xk, x⋆ + γ(∂g(xk

g) + ϵg +∇f(xk
f ) + ϵf )− xk⟩]

=
1

2γ
E
[
⟨xk+1 − xk, x⋆ − 1

2λ
(xk+1 − xk)− xk⟩

]
=

1

4γλ
E
[
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2 +

(
1− 1

λ

)
∥xk+1 − xk∥2

]
.

Therefore,

EP
[ K∑
k=1

[(f(xk
f ; ξ)+g(xk

g ; ξ))− (f(x⋆; ξ) + g(x⋆; ξ))]
]

≤ 1

4γλ
E[∥x0 − x⋆∥2 − ∥xK − x⋆∥2] + 1

2γλ

(
1− 1

λ

) K∑
k=1

∥T (xk; ξk+1)− xk∥2

+
1

2γλ

(
1− 1

λ

) K∑
k=1

∥λϵk∥2.

Replacing the proximal gradient operator in (A.10) with the Peaceman–Rachford operator yields

E
[ K∑
k=1

{[f(xk
f ; ξ)+g(xk

g ; ξ)]− [f(x⋆; ξ) + g(x⋆; ξ)]}
]

≤ 1

4γλ
E[∥x0 − x⋆∥2 − ∥xK − x⋆∥2] + 1

γλ

(
2− 2

λ

)
Kr2

+
1

2γλ

(
1− 1

λ

) K∑
k=1

k−1∑
l=1

E[λ2
l ∥ϵl∥2]/τ +

1

2γλ

(
1− 1

λ

) K∑
k=1

E[∥λϵk∥2]

≤ r2

4γλ
+

1

γλ

(
2− 2

λ

)
Kr2 +

1

2γλ

(
1− 1

λ

)
K2∆2/τ .

The result of theorem follows since f(K−1
∑K

k=1 x
k) ≤ K−1

∑K
k=1 f(x

k) by Jensen’s inequality. □
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