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Abstract

Emergent communication is a framework for machine language acquisition that has recently
been utilized to train deep neural networks to develop shared languages from scratch
and use these languages to communicate and cooperate. Previous work on emergent
communication has utilized gradient-based learning. Recent advances in gradient-free
evolutionary computation, though, provide an alternative approach for training deep neural
networks which could be beneficial for emergent communication. Certain evolutionary
algorithms have been shown to be robust to misleading gradients, which can present a
problem in cooperative communication tasks. Additionally, some evolutionary algorithms
have been shown to train quickly and require only CPUs, rather than the GPUs needed for
gradient-based training.

This thesis addresses the question of whether or not a gradient-free evolutionary approach
can be used as a training methodology for emergent communication amongst deep neural
networks. The evolutionary approach that we use consists of a genetic algorithm to search
for both the weights and architectures of these networks. We adapt evolutionary techniques
which have previously been used to evolve individual agents so as to co-evolve pairs of agents
which develop languages to play a repeated referential game. We empirically demonstrate that
agents trained solely with evolution perform well above a random chance baseline, although
our performance is worse than that previously achieved with gradient-based reinforcement
learning. We show that evolving the architecture of these agents can improve their ability
to perform cooperative communication-based tasks when compared to utilization of a fixed

architecture. The main contribution of this thesis is to show that an evolutionary approach
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can be used to train agents to communicate and suggests that these techniques could be useful

for future research on cooperative multi-agent problems involving deep neural networks.
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"Yes, that’s so," said Sam. "And we shouldn’t be here at all, if we’d
known more about it before we started. But I suppose it’s often that
way. The brave things in the old tales and songs, Mr. Frodo:
adventures, as I used to call them. I used to think that they were
things the wonderful folk of the stories went out and looked for,
because they wanted them, because they were exciting and life was a bit
dull, a kind of sport, as you might say. But that’s not the way of it
with the tales that really mattered, or the ones that stay in the mind.
Folk seem to have been just landed in them, usually - their paths were
laid that way, as you put it. But I expect they had lots of chances, like
us, of turning back, only they didn’t. And if they had, we shouldn’t
know, because they’d have been forgotten. We hear about those as just
went on - and not all to a good end, mind you, at least not to what
folk inside a story and not outside it call a good end. You know,
coming home and finding things all right, though not quite the same -
like old Mr. Bilbo. But those aren’t always the best tales to hear,
though they may be the best tales to get landed in! I wonder what sort

of tale we’ve fallen into?"
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Chapter 1

Introduction

One of the fundamental goals of artificial intelligence research is the development of artificial
general intelligence, that is, agents which can learn many different tasks and exhibit human-
like cognition. One aspect of artificial general intelligence is the development of language,
which has been of central importance to the intellectual and social development of humans
and some non-human animals. Without the ability to develop shared languages, acquired
knowledge not easily be shared. Additionally, a lack of language could make any non-trivial
cooperation on a task infeasible. Equipping machines with the capacity to develop their own
languages and use these languages to communicate and cooperate could improve the efficacy
of these machines by allowing them to share knowledge and work effectively in groups. One
possible framework for machine language acquisition is emergent communication, which is a
framework through which which machines develop languages from scratch in response to
some task or environment and use these languages to communicate. By developing emergent
communication, we can provide machines with the capacity to communicate, which has
been invaluable for human success. Equipping machines with the capacity to communicate
benefits us, as improving the performance of machines further elevates their ability to solve
difficult problems for us.

Emergent communication could be used to solve certain challenges surrounding deep

neural networks. As networks have become increasingly complex, they have also become



1 Introduction 2

less interpretable. Training these networks to communicate could solve this interpretability
problem. Just as humans use language to transform complex, abstract internal reasoning
into a form which can be understood by others, emergent communication could force deep
neural networks to distill their representations and reasoning into an interpretable form. As
such, emergent communication could provide us with the tools to better understanding deep
neural networks so that we can further improve their performance at various tasks, as well
as monitor their behaviour.

Recent groundbreaking work (Foerster et al., 2016; Lazaridou et al., 2016; Havrylov and
Titov, 2017; Mordatch and Abbeel, 2018; Lazaridou et al., 2018; Mordatch and Abbeel, 2017;
Lowe et al., 2017; Cao et al., 2018) has shown emergent communication to be a promising
framework for language acquisition between deep neural networks. The languages developed
when deep neural networks are trained on emergent communication tasks have been shown
to be grounded. That is, they are related to the communicating agent or the environment in
which it is operating (Wagner et al., 2003). In this sense, the words used have meaning and
the agents share an understanding of what these meanings are. It is this grounding that
mirrors human language and makes emergent communication promising for artificial general
intelligence.

All contemporary work on emergent communication amongst deep neural networks
has utilized gradient-based learning. Gradient-free evolutionary computation (Collobert
and Weston, 2008; Back, 1996; Fogel, 2006), though, is a promising alternative training
approach for emergent communication. Lowe et al. (2017) described some difficulties that
arise when current gradient-based approaches are used for cooperative communication
tasks. One such problem is misleading gradient signals, particularly when the task at hand
involves long time horizons. An example given by Lowe et al. (2017) is one in which an
agent is emitting useful messages which are being ignored by its partner. Despite learning
to communicate useful information, this agent will be poorly rewarded. We believe that
a gradient-free approach could address this difficulty. Rather than following potentially

misleading gradients, evolutionary approaches sample many policies in a given region of
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policy space. This sampling has been shown to make these approaches more robust to tasks
which involve deceptive gradients (Such et al., 2017). As such, the deceptive gradients which
are present in cooperative communication tasks could present less of a problem when using
an evolutionary approach.

In addition to their robustness when faced with tasks which exhibit deceptive gradients,
evolutionary algorithms have a number of properties which are desirable for cooperative
communication tasks. Certain evolutionary algorithms have been shown to have fast
runtimes and require only CPUs to train on, rather than GPUs, which are typically needed
for gradient-based learning (Salimans et al., 2017; Such et al., 2017). The fast runtimes seen
with evolutionary computation are due to dispensing with expensive gradient computations
during training. In addition to executing quickly, these algorithms are also highly and
easily parralelizable, with threads often being required to communicate only a single real
number rather than more complicated information such as gradients, agent parameters, and
parameter updates (Salimans et al., 2017; Such et al., 2017).

Despite the attractive properties of evolutionary computation for application to emergent
communication, there has been no recent work in this direction. In this thesis we take a
first step forward in this line of research. In particular, we explore whether or not a simple
genetic algorithm can be used to train deep neural networks to develop shared languages
from scratch and use these languages to cooperate on a referential game. Furthermore,
previous research in emergent communication amongst deep neural networks used fixed,
handcrafted neural networks. We explore whether or not the architecture of communicating
agents can be evolved, and if these evolved agents can outperform the well-known Gated

Recurrent Unit (Cho et al., 2014) network architecture.
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1.1 Contributions
This thesis makes the following contributions:

e We adapt contemporary evolutionary computation techniques for training deep neural
networks to the case of pairs of agents creating a shared language from scratch
and using this language to cooperate at a repeated referential game. We show that
the performance of these agents is well above random baseline but worse than that
previously achieved using gradient-based deep reinforcement learning. We show that
the emerged languages show natural language properties consistent with previous work
in emergent communication. These results suggest that gradient-free evolutionary
computation is a viable alternative or complement to gradient-based learning for future

research in emergent communication.

o We evolve the recurrent architectures of communicating agents. We show agents with
evolved architectures can outperform agents with fixed architectures, but not a Gated
Recurrent Unit. This suggests that evolving the architectures of communicating agents

could be beneficial for further research in emergent communication.

1.2 Thesis organization

This thesis is organized as follows. Chapter 2 precisely formulates the problem which we
address. Chapter 3 reviews related work on emergent communication. Chapter 4 describes
our adaptation of evolutionary computation to the problem of emergent communication.
Chapter 5 presents results of my experiments and a discussion of these results, as well as
details about training and hyperparameter selection. Chapter 6 describes possible extensions
and modifications to our approach for future work. Chapter 7 concludes this thesis by
summarizing the problem being solved, our contribution to that problem, and the implications

of this research.



Chapter 2

Problem Formulation

In this chapter we state the problem which we address with this thesis and provide intuitive
motivation for the environment in which we address this problem. We then formally define

the problem and provide a list of preferences for our solution to this problem.

2.1 Intuitive Motivation

The problem that we address in this thesis is generation of deep neural networks which
develop their own languages in an emergent fashion so as to cooperate with each other. In
line with previous work (Lazaridou et al., 2018), we evaluate the communication of our
agents based on their performance at a repeated referential game. The repeated referential
game that we use is one in which, on a given round, a listener agent is shown a set of k + 1
objects, in which one object is a target and k objects are distractors. A speaker agent is
shown only the target and then sends a message to the listener which the listener uses
to choose an object from the set containing the target and distractors. The speaker and
listener must learn a language of such messages so that the speaker’s message contains
sufficient information to help the listener correctly choose the target, rather than a distractor.

Figure 2.1 shows a single round of the referential game with & = 3 distractors.
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3 <

Speaker Listener

Figure 2.1: A speaker and listener playing the referential game. The speaker is shown concept dog
and produces message "30,16,12" which the listener then hears. The listener sees target dog as well
as distractors wolf, duck, and mosquito, then uses the speaker’s message to correctly choose dog.

We believe that a referential game is a useful setting for training agents to communicate.
Lazaridou et al. (2018) showed that a repeated referential game is sufficient for agents
to develop complex languages which show natural-language linguistic properties such as
compositionality (Vogt, 2005) and ambiguity (Piantadosi et al., 2012).

Another useful aspect of the referential game is that we can control the difficulty of the
game by selecting k - the number of distractors used. This modifies the level of specificity
which agents must capture with their language. For example, suppose that our dataset which
agents communicate about consisted only of animals. This set could contain n concepts
such as dog, wolf, duck, goose, and iguana. If we set k =n — 1, that is, if every round the
listener had to choose the target out from the entire dataset, this would be a particularly
difficult task. One reason for this is that the speaker’s messages would have to distinguish
dog from wolf, or duck from goose. Given that these concepts are very similar to each other,
the level of specifity that the language would need to capture is very high. Conversely, if we
set k to 1, then each round we sample the target and a single distractor for the agents to
communicate about. In this case, the task can become significantly simpler. Distinguishing

dog from duck, and bear from mosquito should be simpler. On some rounds, the agents
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would still have to distinguish similar words from each other, but this should not happen
too often with sufficiently small k. A similar effect can be seen with human language.

As an example of how the need for increased specificity changes in response to distractors,
consider the case when an artificial intelligence expert is asked about their field of work by
someone unfamiliar with AI. In this case, the expert can simply state that they work in
artificial intelligence. This response will be meaningful to the inquirer, as the other fields
that the inquirer will compare the answer to (the inquirer’s distractors) will be unrelated to
Al Conversely, when asked about their field of work by a fellow Al expert, responding with
artificial intelligence will no longer be informative. Rather, more specificity will be needed
(e.g., reinforcement learning, deep learning, heuristic search). This is because artificial
intelligence has many meanings to a fellow expert, and so their set of Al-related distractors

is large.

2.2 The Referential Game

We now present in detail the repeated referential game which we use and we define the metric
by which we will evaluate agent performance. The repeated referential game is shown as
Algorithm 1. The game is played by a pair of agents - a speaker Ag and listener Ay. A set V
is chosen containing all objects which the agent pair may communicate about. The number
of rounds T is chosen along with a maximum speaker message length L. Additionally, we
choose the number of distractors k.

We initialize the agent pair’s shared reward r to 0 (line 1). The referential game proceeds
over T rounds. First, on round p, a target v, is chosen from V' (line 3). This is the object
that the speaker must communicate to the listener. In Figure 2.1, v, is Dog. Additionally,
distractors D = {d}, d2, ...,d’;} are chosen randomly without replacement from V' \ {v,}
(wolf, duck, and mosquito in Figure 2.1). We set mq to the sentence-start token S (line

5). The speaker then generates its message to be transmitted (lines 7-9). The speaker first

generates symbol m; = Ag(S) (line 8). The speaker then processes m; and generates symbol
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Algorithm 1: Referential Game

input : agents Ag, Ar; game objects V; number of referential game rounds T’
maximum message length L; number of distractors k&
output: proportion of correct guesses 7

170

2 forp=1,...,T do

3 randomly choose a target v, from V'

4 | choose distractors D = {d},d2, ..., ds} from V \ {v,} randomly without

replacement

5 mo < S

6 141

7 | whilem,_; #& & |m| < L do

8 L m; < As(mi_l)

9 14— 1+1
10 transmit m = (my, ma,...,myr) to Ag
11 Ayp uses m to generate interpretation z
12 Ay uses z to choose an element from D U {v,}
13 if Ay chose v, then

14 L rr+1

-
15 return T

ma = Ag(mq). This continues until either the speaker generates m; = &, the sentence-end
token, or the speaker has generated L symbols, at which point the maximum message length
has been reached. At this point, the message vector m = (mq,ma,...,mys) is transmitted to
the listener (line 10). In Figure 2.1, m = (30, 16, 12).

Given 7, the listener then processes 1 to generate z (line 11), which we call the listener’s
interpretation of m. The listener Ay, then uses z to select an element from D U {v,}, and
the pair receives a reward of 1 if the chosen element is the target, v, (lines 12-14).

Our objective in this thesis is to maximize the referential-game success rate 5 of
agent pairs - that is, the ratio of correct guesses to rounds of the referential game. One
concern when evaluating agents is that their languages do not generalize. We prefer agent
languages which can adapt to previously unseen objects, as this adaptation implies that
the communication protocol which the agents have created is structured, rather than being

comprised of meaningless mappings between previously seen objects and messages. To test
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whether the agents’ communication protocols generalize, the agents’ success rate will be
tested with objects which are never seen during training. We define successful communication
as statistically significant performance above chance when the agents are communicating
about previously unseen objects. For example, if the number of distractors k is set to 9,
then the agents are communicating successfully if 7 > 10% with p < 0.05 as shown by a

one-tailed z-test.

2.3 Preferences
We now give a list of preferences for our solution to the problem defined above.

e The ways in which agents process and represent data, as well as the methods which
they learn to communicate, should be learned entirely from scratch through repeated

play of the referential game.

e There should be no pre-training - that is, the weights of agents’ neural networks should
be randomized when they first begin playing the referential game, and they should

only be updated as a consequence of their performance on the referential game.

¢ The neural networks of communicating agents should share no weights nor components
with each other. To clarify this preference, suppose that we have a pair of communi-
cating agents Ag and Ar. Then any modification to the weights or architecture of Ag

must not modify the weights or architecture of Ay, and vice versa.

e Communicating agents should have no information about each other during training
or testing. The only information given to them should be objects being communicated

about, transmitted messages, and whether or not communication was successful.

e Solutions should run efficiently on CPUs.
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Chapter 3

Related Work

In this chapter, we review previous work related to the problem stated in Chapter 2 and
show how it leaves room for improvement.

Steels (2015) explored the emergence of grounded languages between artificial agents.
The agents involved were robots consisting of movable cameras connected to computers
which performed cognitive processing. These agents played a referential game in which
the objects being referred to were physical shapes of various colours distributed over a
wall. While the agents in this work learned languages from scratch, these agents utilized
hard-coded algorithms for processing and representing data. These algorithms came in the
form of a sensory layer which performed pre-defined computer-vision algorithms such as
edge detection and segmentation. This hard-coded processing and representation violates
our stated preferences for a solution.

Foerster et al. (2016) were the first to explore emergent communication amongst deep
neural networks. The agents learned to communicate through repeated play of two referential
game variants. The authors experimented with three algorithms. In the first algorithm, a
recurrent neural network was trained using deep Q-learning (Mnih et al., 2015), with each
agent having its own network. The second algorithm was similar to the first, but agents
shared a single network. For the third algorithm, agents were allowed to pass real-valued

messages (and so gradients) to each other during training. This made communication
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end-to-end differentiable across agents. The second algorithm involves parameter sharing,
and the third provides agents with additional information about each other during training,
both of which violate the preferences stated in Chapter 2. The first algorithm is the only
one which satisfies our preferences. This algorithm, though, was unable to learn one of the
referential games played and performed poorly on the other. Additionally, there was no
evidence provided that learned communication generalized to previously unseen data. As
such, this approach does not solve the problem that we address with this thesis.

Lazaridou et al. (2016) trained feedforward neural networks to play a referential game
in which the objects being communicated about were images taken from ImageNet (Deng
et al., 2009). Before being inputted to the speaker and listener, images being used were
processed by a VGGnet (Simonyan and Zisserman, 2014), which had been pre-trained on
ImageNet to generate a representation of reduced dimensionality. For a given round of the
referential game, the sender saw both the target and distracting object and was informed of
which was the target. Communication consisted of transmission of a single symbol drawn
from the speaker’s vocabulary. Agents were jointly trained using a policy gradient algorithm,
specifically William’s REINFORCE algorithm (Williams, 1992). While the communicating
agents were trained from scratch, they both had identical pre-trained VGGnets which
generated representations of input data in violation of our solution preferences.

To produce messages, the agents trained by Lazaridou et al. (2016) generated a categorical
probability distribution and sampled a discrete symbol from that distribution. This sampling
results in the communication process not being end-to-end differentiable and makes supervised
training through backpropagation infeasible. To combat this, Havrylov and Titov (2017)
used the Gumbel-softmax technique (Jang et al., 2016; Bengio et al., 2013) in which the
speaker generates a Gumbel distribution from which a message is sampled. This makes
the forward pass identical to previous work (Lazaridou et al., 2016). When performing the
backward pass, though, the differentiable Gumbel distribution from which message symbols

were sampled is used, making communication end-to-end differentiable. Both agents used the
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same pre-retrained VGGnet to pre-process images before they were used for communication.
As such, this violates our preferences.

Lazaridou et al. (2018) trained agents implemented as long short term memory ma-
chines (Hochreiter and Schmidhuber, 1997b) to play a referential game using both symbolic
(human-annotated descriptions of images) as well as pixel inputs. Rather than using a
pre-trained VGGnet (Simonyan and Zisserman, 2014) to generate representations, though,
these representations had to be learned as well. To this end, the speaker and listener were
each equipped with their own pre-visual network. To pre-process symbolic and pixel inputs,
respectively, a single-layer feedforward network and a convolutional network were used. These
pre-visual networks were initialized randomly and jointly trained along with the speaker
and listener using REINFORCE (Williams, 1992). This approach used a policy gradient
algorithm (Sutton et al., 2000), requiring gradient computation during backpropagation.
Backpropagation on deep neural networks does not run efficiently on CPUs. As such, this
approach violates our preferences.

Mordatch and Abbeel (2018) studied communication in a 2-D grid environment containing
landmarks as well as agents with colour, shape, and the ability to move and communicate by
uttering symbols. These agents were given various private tasks such as moving to a certain
location or instructing other agents to move to some location. While agents all had their
own private goal and a private memory bank, all agents shared a single policy which was
implemented as a feedforward network. These agents were trained in a supervised manner
using backpropagation. Communication was made end-to-end differentiable through usage
of the Gumbel-softmax estimator (Jang et al., 2016; Bengio et al., 2013). This work violates
our preferences in that all agents shared a single network and all parameters of that network.

The multi-agent environment of Mordatch and Abbeel (2018) was used by Lowe et al.
(2017) to train agents to cooperate and communicate. Rather than making communication
end-to-end differentiable, though, Lowe et al. (2017) extended the Deep Deterministic Policy
Gradient (Lillicrap et al., 2015) algorithm to the multi-agent case. To do this, the agents

involved had access to extra information during training, similarly to work by Foerster et al.
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(2016). While training, each agent received as input the observations, actions, and rewards
of all other agents. At test time, the only information provided to a given agent was its own
observation. Given that agents had access to all other agents’ observations, actions, and

rewards during training, this work does not satisfy our stated preferences.
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Chapter 4

Our Approach

In this chapter we describe the evolutionary methods which we used to train agents to develop
shared languages and play a repeated referential game. We begin with an introduction
followed by a background on methods used. We then describe the algorithm that we used.
The work described in this chapter was done in collaboration with Vadim Bulitko, Matthew
R.G. Brown, and Sergio Poo Hernandez. My personal contribution was: design of the
evolutionary algorithm; implementation of agents; processing data; writing training and

testing code; training and testing agents; as well as manuscript writing.

4.1 Introduction

We use evolutionary computation to train pairs of recurrent neural networks to play a
repeated referential game. These neural networks all have initially randomized weights, and
some have architectures which are generated to be drawn uniformly at random from a set of

possible architectures.
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4.2 Background on Methods

The approach that we take in this work is based on contemporary work utilizing evolutionary
computation to train deep neural networks (Such et al., 2017; Rawal and Miikkulainen,
2018).

To search for the parameters of our networks, we used a genetic algorithm similar to work
by Such et al. (2017). In their work, a population of deep neural networks was instantiated
with random weights. The agents were evaluated on a variety of tasks, such as playing
Atari games and the MuJoCo humanoid locomotion task (Todorov et al., 2012). After
each agent was evaluated, the best performing agents were selected for reproduction. The
weights of these agents were mutated with stochastic noise to produce offspring. This process
was repeated over generations until either a maximum generation or some pre-determined
performance threshold was reached.

Our inspiration for architectural evolution came from work by Rawal and Miikkulainen
(2018). While the agents in this work were trained using reinforcement learning, their
architecture was randomly initialized as a small network and periodically mutated. Evolved
agents were shown to outperform LSTMs (Hochreiter and Schmidhuber, 1997b) on tasks

such as language modelling and music generation.

4.3 Proposed Approach

In this section, we describe our communicating agents and give a detailed description of how
they play the referential game. We then describe the process through which we evolve the

weights and architectures of agents.

4.3.1 Agents

In this section we describe the architecture of the agents involved and give a more detailed

description of how the speaker and listener generate and process messages, respectively.
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Algorithm 2: Round p of refGame

input : recurrent neural networks Ag, Ar; accompanying feedforward networks
Fg, Fr; set of game vectors V'; sentence-start and sentence-end tokens S, &
output: 1 if Ay correctly guesses, 0 otherwise
randomly choose a target v, € V'
randomly choose a set of distractors D = {d;i,, s d%} CV\{v,}
ho < F S(U_;))
mo <— S
141
while m;_1 #€& & |m| < L do
set z; to a one-hot vector representation of m;_1
0; < As(7)
m; < argmax(0;)
1 i+1

[uny

© 0 N O Uk WN

[y
o

11 transmit m = (mg, ..., mpr) to Ap

12 1+ 1

13 while s < M do

14 process m; with Ay,

15 14—1+1

16 set Z to the final hidden state of Ay,

17 compute Fr(v;) and Fy(D) = {Fy(dl), ..., F(dk)}
18 if Z- Fy (i) > Fr(di) ¥ 1 <i <k then

19 L return 1

20 else
21 L return 0

In this work the objects about which the agents communicate, as well as the listener’s
message interpretation z, are vectors. As such, from this point on, for round p, we denote

— —

the target v, and distractors d}), oy d’; as Uy, d}), ey d’;, respectively. Additionally, we denote

the listener’s interpretation as Zz.

4.3.1.1 Agent Architectures

Speakers Ag and listeners Ay, are both recurrent neural networks (RNNs) (Lipton, 2015).
Given that we are using architectural evolution, an initial RNN architecture for the first
generation is needed. We test two starting RNN architectures for Ag and Ar. These are

the architectures that agents will be initialized to at the beginning of a simulation run. The
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Figure 4.1: A speaker generating a message 71, and listener using 7 to choose the target out from a
single distractor.

first such architecture is a gated recurrent unit (GRU) (Cho et al., 2014), and the second
is an RNN which is generated to be drawn at uniformly at random from a set of possible
architectures. An example of a possible randomly generated RNN is shown in a tree form in
Figure 4.3. The overall structure of any of our random RNNs will be the same as that in
Figure 4.3, but the operators and order of input nodes will be randomized. We chose to
experiment with a GRU to explore whether evolution could further improve a well known
RNN architecture’s performance on a communication task. We chose the random initial
architecture to test whether or not we could generate RNNs which successfully communicate

from a starting architecture which has no specific engineering.

4.3.1.2 Accompanying Feedforward Networks

Speakers Ag and listeners Ay, are each equipped with their own feedforward neural networks
Fg and Fp, respectively, which are used to preprocess target v, and distractors {d_;, e d%

before they are input to their respective RNN, generating reduced-dimension representations
of these raw inputs. Reducing these raw inputs to smaller representations serves two benefits:

(i) it reduces input dimensionality to the RNNs and (ii) it allows Fs and F7 to learn
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add

Figure 4.2: Gated Recurrent Unit tree representation.

potentially useful representations of input vectors, which may simplify the communication
task of Ag and Ar. The networks Fg and F, are both single layer neural networks with

sigmoid activation.

4.3.1.3 Program Trees of Recurrent Networks

We quickly note that throughout this thesis we use the notation a - b flexibly. When applied
to two vectors, as in @ - 5, this denotes the dot product a - ol — Say X bi+,,,+a, X by.
When applied to a matrix and vector, though, as in X - @, this denotes the matrix-vector
product of X with A.

For the purpose of performing evolutionary search on the architecture of agents Ag
and Ay, we chose to implement these RNNs as program trees (Langdon, 1999). A given
program tree has internal nodes, leaf nodes, and weight matrices U, U,, Uy, W, W,, W, V.

When an RNN receives an input vector &; at time ¢, it computes the quantities U - 3, Uy -
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add
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add add mul

Figure 4.3: Example of a possible initial network architecture when using random initialization.

Ty, Uy - 23, W - h;l, W, - h;l, W, - h;l, where h;l is the RNN’s hidden state from time
t — 1. These quantities, along with the unweighted h;l, make up the inputs to the RNN’s
internal nodes. These internal nodes are either binary operators add and multiply or unary
operators tanh, ReLU, sigmoid and 1— where 1 — (@) = T — @. Internal nodes process the
RNN’s inputs to generate the RNN’s next hidden state i;;, with which we compute the
RNN'’s output V - h;. We note that the seven weight matrices mentioned above are the
RNN’s only parameters which change throughout evolution. For any pair of internal nodes
of the RNN’s program tree, the connection weight between those nodes is 1. That is, when
the output from some node (say a tanh node) passes as the input to another node (such as
an add node), the input received by the add node is exactly the output from the tanh node.
This is in contrast to the case in which the connection weight between these nodes is 2, for
example, in which case the output of the tanh node would be multipled by 2 before being

input to the add node.
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4.3.1.4 A Detailed Round of the Referential Game

We now detail the process by which speakers generate messages and listeners use these
messages to choose an object. This is essentially a single round (round p) from Algorithm 1
filled in with the specific details of our implementation. This process is detailed in Algorithm 2,
which we now go through and explain. The process is also shown graphically in Figure 4.1. We
first randomly select a target vector v, from V' and set of distracting vectors D = {d_fi), ey d_%
from V'\ {v,} (lines 1,2). We generate the speaker’s initial hidden state ho by processing
target v, with Fg (line 3). That is, the speaker’s initial hidden state is the representation of
v, produced by Fg. We initialize mg to the sentence-start token S (line 4). The speaker
then generates a message 7 to be transmitted to the listener (lines 6-10). To do this, we
first generate a one-hot vector representation z of mg = S (line 7). We process ] with Ag
and generate output vector o7, which we take the argmax of to get mq, the first symbol of
m (lines 8,9). If my # &£, the sentence-end token, and the length || is less than maximum
message length L, we repeat this process. This continues until either my; = £ for some
M < L or mi = (mq,....,mypr), with M = L. At this point, the message m is transmitted to
the listener Ay, (line 11).

To choose an object from {v,} U D, the listener first processes 1 symbol by symbol,
generating some final hidden state Z (lines 13-16). We call Z the listener’s interpretation of
ni. We then use the listener’s feedforward network Fy, to generate a representation F7,(v,)
of the target as well as FL(d_l;) for each distractor d_Z; € D (line 17). We take the dot product
of Z with Fr,(v,) as well as each of the F L(d_f)), and the listener is said to have chosen the
target if 2’ Fr(v,) > 2~ FL(d_l;) for each 1 <1 < k (lines 18,19). In this case, the pair are
considered successful and receive a reward of 1. Otherwise, Ay, is considered to have chosen

a distractor and both agents receive a reward of 0 (line 20).
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mul add
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Figure 4.4: Replacement mutation mechanism. Example of a mul node being replaced with an add
node.

tanh

4.3.2 Evolutionary Search for Weights and Architectures

We use evolutionary search (Miikkulainen et al., 2017; Such et al., 2017) to procedurally
generate the architecture of Ag and Aj as well as the weights of Ag, Ar, Fs, and FT.
Pseudocode for this evolutionary search is given in Algorithm 3.

Evolutionary search proceeds over n, generations. We initialize the first generation of
agent pairs Gy as n speaker-listener pairs (line 1). We then evaluate each pair on their
performance on a referential game with vectors being communicated about drawn from a
training set (lines 3,4).

On each generation 4, the top n, performing agent pairs are chosen to reproduce asexually
(lines 5-14). We first sort the agent pairs in decreasing order by fitness (line 5). We set R to
contain the top performing n, agent pairs, which are the agent pairs that will reproduce
to create the next generation (line 6). We then initialize the next generation G;1; and
carry over the best-performing agent pair unchanged, a process known as elitism (Deb
et al., 2000) (line 7). During reproduction, we sample agent pairs (Ag, Az) uniformly
with replacement (line 9). When a reproducing pair (Ag, Ar) is sampled, its offspring
(A, A ) are initialized to be identical to their parents (line 10). Similarly, the offsprings’

accompanying feedforward networks (F¢, F}) are initialized identically to their parents’
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Algorithm 3: Evolutionary Search

input : number of agent pairs n; number of reproducing agents n,; training set V;
number of distractors k; number of generations n4; maximum message
length L; length of referential game T'; weight perturbation scale o;
architectural mutation probability ps; individual mutation probabilities pe

L Go e (A5 AL) . (42, 43) ... (A%, A7)

2 fori=1,...,n4do

3 foreach (A%, A7) € G; do

4 | f((AL, A}))  refGame(A}, AL, V, T, L, k)

5 sort G; by decreasing f

o | Re (A A}), (A2 A), .., (A%, A7)

7 | G < (45, AL))

8 for j=1,...,ndo

9 sample (Ag, A1) ~ R uniformly with replacement

10 initialize offspring (A, A7) < (As, Ar)

11 initialize offspring feedforward networks (Fg, F7) < (Fs, Fr)

12 add Gaussian noise o - N (0, 1) independently to weights of A, A}, Fg and F7,

13 with probability ps, independently mutate architecture of A and A’
according to individual mutation probabilities p¢

14 append (A%, A7) to Giq

feedforward networks (Fg, Fr,) (line 11). The weights of A, A}, F¢, F} are all independently
perturbed with Gaussian noise drawn from N (0, o), where o is called the perturbation scale
(line 12). With probability ps, the offspring pair (Ay, A}) is chosen for architectural mutation
(line 13). If architectural mutation does occur, a mutation occurs independently for each
of Ay and A} (see Section 4.3.3 for a detailed explanation of architectural mutation). The
next generation is comprised of all offspring pairs from the previous generation, as well as
the elite pair (line 14). This process repeats for n, generations.

Offspring of speaker-listener pairs remain paired together. This is so that agents need
only learn to communicate with one other agent, rather than having to form a common

language with many other agents, which future work will explore.
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Figure 4.5: Binary insertion and removal mutation mechanisms. From left to right, this is binary
removal in which the add node is removed and randomly replaced with its right child. Going from
right to left is binary insertion, in which an add node is inserted and a random input node is chosen
as its second child.

4.3.3 Details of Architectural Evolution

Evolution of RNN architectures for Ag and Ay, is achieved through repeated mutation using
five mechanisms: (i) replacement, in which binary or unary nodes are swapped for another
random node of the same type (Figure 4.4), (ii) binary insertion, in which a binary node is
randomly added as the parent of some node and a random input leaf is added as the binary
node’s other child (Figure 4.5), (iii) binary removal, in which a binary node is removed and
replaced with one of its child subtrees at random (Figure 4.5), (iv) unary insertion, in which
a random unary node is inserted as the parent of some node (Figure 4.6), and (v) unary
removal, in which a unary operator is deleted and replaced with its child (Figure 4.6).
Throughout evolution, each time an offspring pair (A, A ) is created, it will be chosen
for architectural mutation with probability ps. When architectural mutation occurs, the
architectures of Ay and A} will be mutated independently of each other. For both Ag
and Ay, we independently sample a mutation operation according to individual mutation
probabilities p.. The vector p is a probability vector (0 < Pt <1 forall i, and Y pt = 1)
such that each entry of pe corresponds to a different architectural mutation. For example,

pe = (0.2,0.1,0.3,0.15,0.25) corresponds to a 20% chance that replacement occurs, a 10%
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Figure 4.6: Unary insertion and removal mutation mechanisms. From left to right, this is unary
removal in which the 1— node is removed and replaced with its child. Going from right to left is
unary insertion, in which a 1— node is inserted as the parent of a random node.

chance that binary insertion occurs, a 30% chance that binary removal occurs, a 15% chance
that unary insertion occurs and a 25% chance of unary removal. After a mutation is chosen
for each of Ay and A7, we randomly choose appropriate nodes in the program trees of Ag
and Ay, and apply these mutations.

As an example of architectural mutation occuring, suppose that agent pair (A, A}) is
chosen for mutation. We independently sample mutations for Ay and A} . Suppose that
binary removal is chosen for Ay and unary insertion is chosen for A} . We randomly sample
a binary node b in the program tree of A’y and remove it, replacing b with one of its two
inputs at random. For A’ , we randomly select a node x from the program tree of A7. We
then choose a unary operator (e.g., tanh, sigmoid) at random and insert a new unary node
u which implements the chosen unary operator as the new parent of x.

To prevent our program trees from becoming arbitrarily large, we set a maximum program
tree depth of 15. We also set a minimum tree depth of 4. Additionally, we do not allow
consecutive nonlinearities (e.g., we do not allow a tanh node to become the parent of a

sigmoid node).
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Chapter 5

Evaluation

In this chapter, we evaluate the performance of agents trained to communicate using
Algorithm 3. We compare the performance of four experimental conditions. We show that
these agents not only learn to communicate but also that their communication extends to

previously unseen objects drawn from a test set.

5.1 Dataset and Data Processing

We used the Visual Attributes for Concepts Dataset (Silberer et al., 2013). This dataset
contains 500 concepts in 16 categories (Table 5.1). For each concept, there are human-
generated annotations describing its characteristics. We processed the dataset as described
by Lazaridou et al. (2018). Specifically, we removed the four smallest classes (devices,
materials, plants, toys) as well as all homonym concepts (e.g., tank, bat). The final dataset
contained 463 concepts in 12 classes with a total of 574 unique annotations, while the
initial dataset contained 636 unique annotations. For each concept, a corresponding binary
vector b € {0,1}5™ was created for which each position’s entry in b corresponds to one
of the 574 unique annotations, with a 1 indicating that the annotation is true for that
concept and a 0 indicating that it is false. For example, the concept dog has ones in the

positions corresponding to has_fur and has_legs but zeross in the positions corresponding to
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Table 5.1: Categories of the Visual Attributes for Concepts dataset along with one example
concept and some associated annotations

Category ‘ Example concept Example Annotatations
Animals Bear is_tall, has_claws, has_4_ legs
Appliances Stove has_door, is_box_shaped, made_of__metal
Artefacts Magazine made_of__paper, has_pages, has_symbols
Clothing Mittens has_thumb, made_of_wool, has_2_ pieces
Container Bucket made_of__plastic, has_handle, is_deep
Device Microscope has_lenses, has_eyepieces, has_arm
Food Asparagus has_stalks, is_green, is_long
Home Chandelier has__lightbulbs, is_branched, made_of_glass
Instruments Bagpipe has_ pipes, has_tubing, made_of_different_fabrics
Material Stone different_shapes, made_of__minerals, different_colours
Plants Dandelion has_stem, is_green, is_yellow
Structures Pyramid made_of__stone, is_triangular, is_tall
Tools Pliers is_small, has_handle, has_ pivot
Toys Kite is_flat, has_seams, has_string
Vehicles Scooter has_seat, has_2_wheels, has_exhaust_pipe
Weapons Grenade is_small, has_ring, made_of__metal

has_wheels and is_sharp. These binary vectors are the input to agents in the referential game.
An example of two such binary vectors for two different concepts is shown in Figure 5.1.
While we shortened the vectors in Figure 5.1 for an easier presentation, in our experiments

they would both be of length 574.

5.2 Experimental Conditions

We compared the random RNN and GRU initial architectures (Section 4.3.1), each with
and without architectural mutation. This resulted in four experimental conditions. We call
the two conditions involving a random recurrent neural network RT+E and RT, denoting

respectively the condition for which architectures are evolved, and the condition for which

they are not. Similarly, we call the GRU conditions GRU+E and GRU.
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Figure 5.1: Example of two concepts (crocodile and sailboat) and their annotations being converted
to binary vectors.

5.3 Evaluating Agents

In this section, we describe the process by which we evaluated each of the four experimental
conditions. This process is presented in Algorithm 4, which describes the evaluation procedure
for a single experimental condition, for a given maximum message length L.

We now describe Algorithm 4 in detail. To evaluate an experimental condition and given
maximum message length L, we execute ® evolution runs (line 1). On each evolution run
¢, with ¢ € {1,..., @}, we first partition our set of concepts into a training set V(;rai“ and
test set V(;eSt (line 2). We note that training/test set partitions are consistent across all
combinations of experimental conditions and maximum message lengths. That is, V" will
be the same for any combination of experimental condition and L, as will Vst  yirain y/fest
etc. For example, the first evolution run of experimental condition RT+E with L = 2 will

have the same training/test set split as the first evolution run of GRU with L = 5.
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Algorithm 4: Evaluation

input : number of evolution runs ®; number of agent pairs n; number of
reproducing agents n,; set of concepts V; number of distractors k; number
of generations ny; maximum message length L; training length of
referential game T'; extended training length of referential game T.; testing
length of referential game T ; frequency of extended referential game ¢;
weight perturbation scale ¢; architectural mutation probability ps;
individual mutation probabilities pj;

1 forp=1,...0 do

2 randomly partition V into training set Vdfrain and test set VdfeSt

8 | Go<« ((A5,AL), (A5, A7), ..., (A%, A}))

4 fori=1,...,n, do

5

6

7

foreach (A’ ,Ai) € G; do
if remainder(i, ¢) = 40 then
| F((AL, A])) < refGame(AL, A], V™™, T, L k)
8 else o o
9 | f((A%, A))) « refGame(AL, A7, Virain T, L, k)
10 sort GG; by decreasing f
11 if © <ny then
12 R« ((A4, A}) (A%, A%), ... (A%, A7)
13 Gis1 + (A5, A7)
14 | populate G;+1 with offspring of agents in R

15 | fy < refGame(Af, Ap, Vi, T, L, k)

Zj:1 fe
16 return =%

We initialize the first generation of agent pairs Gy as n speaker-listener pairs (line 3).
A given evolution run proceeds over n, generations (line 4). Lines 5 to 9 detail the way in
which agents are evaluated for a given generation. Each agent-pair in G; is evaluated at
a repeated referential game with concepts drawn from training set Vqﬁrain. On generations
which are not divisible by ¢, these agents play 7" rounds of the referential game (line 9).
Every gth generation, the agents are evaluated at a longer repeated referential game over T,
rounds (line 7). This longer repeated referential game was used because T' was chosen to be
small relative to the total number of possible samples. As such, agents could be chosen to

reproduce which performed well on the T training samples chosen for a given generation, but
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performed poorly in general. So, every ¢ generations we use a larger set of training samples
to ensure that reproducing agents perform well on a larger subset of the training set.

For all generations other than the final generation ng, agents reproduce to create the next
generation (lines 11-14). We omit the details of reproduction here, as they are presented in
depth in Algorithm 3.

On generation ng, after sorting the agent pairs in G, by decreasing fitness, we select
the highest performing agent pair (A}, A}) from Gp, to be evaluated on the evolution
run’s test set Vdfe“ (line 15). That is, the agent pair selected to be tested from a given
evolution run is the best performing agent pair from that evolution run’s final generation.
This best-performing agent pair is tested on T, samples consisting of concepts drawn from
test set V.

For a given experimental condition and maximum message length L, we average the
test set performance of all ® evolution runs executed for that experimental condition and
maximum message length (line 16). This average is the performance of a given experimental
condition. For example, suppose we ran Algorithm 4 for experimental condition RT+E,
with L = 2 and & = 2. Then two evolution runs would be executed, and each evolution
run would produce a best-performing agent-pair in its final generation. These two agent
pairs would be evaluated on their respective evolution run’s test set and achieve test set
performances of f; and fo respectively. Suppose fi = 60% and fo = 50%. Then the

performance of experimental condition RT+E with L = 2 would be w = 55%.

5.3.1 Network Architecture

The feedforward networks Fg and Ff, each had an input layer of size 574 and output layer of
size 50, reducing input vectors of size 574 to representations of size 50. For agents Ag and
Ar, we set weight matrices U, U, and Uy, to size 60 x 50, W, W, and W, to size 50 x 50
and V to size 50 x 60, giving these agents a hidden state of size 50 and vocabulary of size 60.

Figure 5.2 shows the sizes of all matrices and vectors involved when speaker Ag is

generating a message symbol m;. We show only a speaker, as all matrix and vector sizes are
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Figure 5.2: Matrix and vector sizes for a speaker generating a message.

identical for a listener. On round p, the speaker receives as input the target v, a vector of
size 1 x 574. v, is processed by Fg, which is of size 574 x 50, to generate the speaker’s initial
state h?) of size 1 x 50. We compute W - h—f), the first input to Ag which has dimension 1 x 50.
We then multiply U, a matrix of size 60 x 50 by the sentence-start token S of size 1 x 60 to
generate U - S, a vector of size 1 x 50. The vector U - S is the second input to Ag. In our
experiments, four other inputs to this agent would be generated (W - hB, W, - h_E), U, S, and
U, - S). We omit these, though, for clarity. The inputs W - ho and U - S are then processed

by the program tree of Ag to generate new hidden state hy of size 1 x 50. We multiply



Mean Success Rate

Mean Success Rate

5 Evaluation 31

GRU Initial Architecture, with Architectural Evolution

GRU Initial Architecture, without Architectural Evolution

0.9
0.8 A 0.8 A
0.7 1 0.7+
<
0.6 « 0.6
%]
[
0.5 A O 0.5 1
=)
1%}
0.4 c 0.4
©
[
0.3 A = 0.3
0.2 1 0.2 1
0.1+— - - - - : 0.11— - - - - -
0 200 400 600 800 1000 0 200 400 600 800 1000
Generation Generation
Random Initial Architecture, with Architectural Evolution 0 Random Initial Architecture, without Architectural Evolution
0.8 1 0.8 1
0.7 A @ 0.7 A
&
0.6 « 0.6 1
v
[
0.5 A 0 0.5 1
=}
[}
0.4 c 0.4
©
[
0.3 1 = 0.3
0.2 A 0.2 1
0.14+— : - - - T 0.14+— T - - - -
0 200 400 600 800 1000 0 200 400 600 800 1000
Generation Generation

Figure 5.3: Mean generational performance on each generation during training, with maximum
message length L set to 2.
h—i with matrix V to produce vector mi; of size 1 x 60, which will be the first element of

message M. The vectors hy and 17y make up the next inputs to W and U, respectively.

5.4 Chosen Hyperparameters

In this section, we first present the hyperparameters which we chose for all evolution runs. We
then present the hyperparameters which were chosen to be different for runs with maximum
message length L = 2 and L = 5. All hyperparameters were chosen through preliminary

experiments.
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Figure 5.4: Mean generational performance on each generation during training, with maximum
message length L set to 5.

Table 5.2 presents the hyperparameters that we chose to be the same for all evolution
runs. The last two hyperparameters, ps, and pg, are applicable only to the experimental
conditions which involve architectural evolution (conditions RT+E and GRU+E).

For runs with L = 2, we set population size n to 2000 and number of reproducing agents
n, to 60. For runs with L = 5, we set n to 1000 and n, to 40. We reduced the population
size for runs with L = 5 because increasing L increases computational cost. Reducing n
from 2000 to 1000 kept the runtime of evolution runs with L = 5 similar to evolution runs

with L = 2 (Table 5.5).
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Figure 5.5: Maximum generational performance on each generation during training, with maximum
message length L set to 2.

5.5 Statistical Methods

In this chapter we will be comparing the performance of experimental conditions. To ensure
that these comparisons are meaningful, we will be using a z-test. We chose to use a z-test as
agent success on a given round of the repeated referential game is binary (1 if the listener
chooses correctly, 0 otherwise).

For each experimental condition and each L, we tested three agent pairs on a test set
(one pair from each evolution run). Each agent pair was evaluated on 10000 samples from
its evolution run’s respective test set. So, for any given experimental condition and L, there

were 30000 rounds of the referential game played with concepts drawn from a test set. For
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Figure 5.6: Maximum generational performance on each generation during training, with maximum
message length L set to 5.

each experimental condition and L, we generated a data set consisting of that experimental
condition’s 30000 test set samples, and a binary number indicating the agent pair’s outcome
on that sample. For example, on round p = 10, an entry in this data set would look like
(v10, d¥0, d%'o, d?o, d‘_lfo, 1), where v is the target, the d{o are distractors, and the 1 indicates
that the listener chose correctly.

To compare pairs of experimental conditions for a given L, we compare their respective
data sets containing test set samples and outcomes. To do this we use a two-tailed z-test and
consider the difference statistically significant if p < 0.05. When comparing experimental
conditions to baseline random chance, we use a one-tailed z-test. One shortcoming of

this approach is that the z-test ignores variance between runs. This is because the test
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Table 5.2: Hyperparameters which were chosen to be identical for all evolution runs.
Hyperparameters p, and p; are applicable only to experimental conditions RT+E and
GRU+E.

Hyperparameter ‘ Value
Total number of generations n, 1000
Number of repeated referential game rounds 7' 300
Number of extended repeated referential game rounds T} 3000
Number of repeated referential game rounds for testing 7 10000
Frequency of extended referential game ¢ 40
Number of distractors k 4
Weight perturbation scale o 0.008
Architectural mutation probability ps 0.5
Individual mutation probabilities p, (0.15,0.3,0.3,0.15,0.1)

set performance of all three agent pairs tested for a given experimental condition and L
is amalgamated into a single data set despite the performance of different agents having

potentially different variance.

5.6 Results and Discussion

In this section, we present the results of our experiment. We show the test set performance
achieved for all experimental conditions along with statistical analysis to demonstrate that
the results are significant. We discuss our results along with their implications.

The test set performance of each experimental condition is presented in Table 5.3 for
maximum message length I = 2 and in Table 5.4 for L = 5. We executed 10 evolution
runs for each experimental condition with L = 2 and L = 5. For both tables, the first four
rows show the mean test set performance and standard deviation of the agent pairs chosen
from that condition to be tested, for each of the 10 evolution runs executed (as described in
Section 5.3). These agents were all tested on 10000 samples consisting of previously unseen
concepts drawn from a test set. The fifth row of each table shows the test performance of

the single agent pair tested by (Lazaridou et al., 2018).
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Table 5.3: Mean and standard deviation of success rates in the referential game when
referring to objects drawn from a test set for each experimental condition with maximum
message length 2. Means and standard deviations are for 10 trials. All pair-wise comparisions
of experimental conditions revealed significant differences (two-tailed z-test, p < 0.05).

Experimental Condition ‘ Success Rate

RTH+E 55.2% + 3.6%

RT 50.2% + 10.6%

GRU+E 52.5% + 2.8%

GRU 55.9% + 4.2%
Lazaridou et al. (2018) 74.2%

5.6.1 Comparison to Baseline Chance

Given that we used k = 4 distractors, if agents guessed randomly then their expected success
rate would be 20% (the baseline). All experimental conditions performed significantly better
than baseline chance (one-tailed z-test, p = 10716 for all conditions). This shows that
gradient-free evolutionary computation can be used to train deep neural networks to develop
shared languages from scratch, and that these languages can generalize to previously unseen

objects.

5.6.2 Comparison to Previous Work

We now compare the performance of our gradient-free evolutionary approach to previous
results from work using gradient-based deep reinforcement learning (Lazaridou et al., 2018).
We first note, though, that this comparison has flaws. Lazaridou et al. (2018) presented only
the performance of a single best agent pair, while we presented the performance of 3 agent
pairs for each combination of experimental condition with L. Additionally, no information
regarding train/test set splits or computational resource utilization is given in Lazaridou
et al. (2018). Agent pairs tested by Lazaridou et al. (2018) achieved a test-set success
rate of 74.2% when L = 2 and 76.8% when L = 5. The best mean performance of any of
our experimental conditions with L = 2 was 55.9%, with condition GRU. Comparing the

74.2% seen in previous work to the mean performance of GRU, we see a decrease of 18.3%.
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Table 5.4: Mean and standard deviation of success rates in the referential game when
referring to objects drawn from a test set for each experimental condition with maximum
message length 5. Means and standard deviations are for 10 trials. All pair-wise comparisions
of experimental conditions revealed significant differences (two-tailed z-test, p < 0.05).

Experimental Condition ‘ Success Rate

RT+E 49.8% + 5.3%

RT 48.0% + 6.5%

GRU+E 51.4% + 4.4%

GRU 53.9% + 3.3%
Lazaridou et al. (2018) 76.8%

Table 5.5: CPU days used for training, averaged over 10 evolution runs for each of the
experimental conditions, for L = 2 and L = 5.

Experimental condition
Maximum message length | RT+E ‘ RT ‘ GRU+E ‘ GRU

L=2 59.6 32.9 65.4 34.8
L=5 46.5 29.7 55.05 29.7

Similarly, with L = 5, comparing 76.8% to the mean performance of condition GRU, we

see a decrease of 22.9%.

5.6.3 Comparisons Between Experimental Conditions

For both L =2 and L = 5, all differences between experimental conditions were shown to
be significant (two-tailed z-test, p < 0.05). For the cases when L = 2 and L = 5, condition
GRU had the highest mean test set performance. This shows that we were not able to
evolve the architecture of agents which performed the given task better than a well-known
contemporary architecture. We believe that the primary explanation for this fact is the
simplicity of the architectural evolution algorithm which we used. We elaborate on this
explanation further in Chapter 6.

Condition RTH+E outperformed condition RT when L = 2 and L = 5. This suggests
that architectural evolution can be beneficial for cooperative communication tasks, as evolved

architectures were able to significantly outperform their fixed counterparts.
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Table 5.6: Selected messages of maximum length 2 with associated concepts generated by a
high performing speaker. Concepts are drawn from a test set consisting of previously unseen
concepts.

Message ‘ Concepts
[10,5] woodpecker, eagle, chicken, goose
[10,6] parakeet
[10,10] duck, toad, penguin
[10,33] lobster
[28,12] tractor
[28,22] taxi
[28,34] scooter, subway
[53,1] shield, otter
[53,10] | buffalo, pig, fawn, bison, sheep, bull, ox
[53,35] dagger, iguana
[53,36] dog

For both L = 2 and L = 5, condition GRU++E performed worse than condition GRU.
This is consistent with previous work (Stanley and Miikkulainen, 2002) which showed
that architectural evolution is more effective when the initial agent architectures used are
small. Diminished performance was shown by Stanley and Miikkulainen (2002) when agent

architectures were initialized to larger, hand-crafted networks.

5.6.4 Learned Languages

In this section we present a qualitative analysis of the languages that agents learned.

One desirable natural-language property of emergent languages is compositionality, in
which elements of a language are constructed from simpler elements of that language. For
example, sentences in English are sequences of words which are simpler than the sentence
itself. Compositionality is desirable because it allows elements of a language to be combined
in arbitrarily many ways so as to produce new elements of that language. The languages
generated by our agents exhibited evidence of compositionality. This evidence is best seen
in Table 5.6, which shows a selection of messages along with their associated concepts for a
high-performing speaker-listener pair with L. = 2. Rather than concepts being randomly

associated with messages, a pattern can be seen in which this speaker grouped concepts
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Table 5.7: Selected messages of maximum length 5 with associated concepts generated by
a poorly performing speaker. Concepts are drawn from a test set consisting of previously
unseen concepts.

Message ‘ Concepts
[27, 12, 3, 12, 30] garage
[27, 20, 12, 20, 12] | fox, rat, pig, porcupine, fawn, iguana, python, sheep, dog, ox
[27, 20, 12, 20, 27] toad
[27, 20, 17, 20, 12] bureau
[27, 20, 17, 20, 27] cello
[27, 20, 27, 20, 4] spear
[27, 20, 27, 20, 12] yam
[27, 20, 27, 20, 13] pyramid
[27, 20, 27, 20, 17] bookcase
[27, 20, 55, 34, 55] bed

into categories by assigning the same prefix to similar concepts. For example, messages
beginning with 10 referred to birds, and messages beginning with 53 referred to four-legged
animals as well as some weapons.

As described by Lazaridou et al. (2018), further evidence of compositionality is produc-
tivity, in which new messages can be made up on the fly. That is, when a speaker can create
new messages to describe previously unseen objects which can be understood by the listener.
Our agents exhibited productivity, as can be seen with the messages [10, 6], [28,22] and [2, 2]
which refer, respectively, to the test set concepts parakeet, taxi, and mittens. These three
messages were not used for any concepts in this speaker’s training set but were consistent
with the structure of messages used by the speaker to refer to training set concepts. That is,
the speaker used messages beginning with 10, 28, and 2, respectively, to refer to training set
concepts which were birds, vehicles, and clothing.

Table 5.7 sheds light on the diminished performance seen with experimental condition
RT when L was increased to 5. This table shows all of the messages beginning with
27 and their associated test-set concepts for a speaker which was chosen from one of
experimental condition RT’s evolution runs. While the agent did learn to group some

similar concepts ([27, 20, 12, 20, 12| refers to four-legged animals), there is minimal evidence



5 Evaluation 40

of compositionality. These messages, despite being structurally similar, refer to dissimilar
concepts. The communication strategy learned by this agent seemed to randomly assign
messages to concepts. This suggests that agent architectures with no specific engineering

struggle to develop compositional languages when the space of possible messages is large.
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Chapter 6

Future Work

In this section, we suggest extensions and modifications to our work which could further
improve performance, as well as analyses which could provide additional insight into the
languages and agents which emerged. In addition, we discuss other communication envi-
ronments to which this methodology could be applied that may further shine light on the

usefulness of evolutionary computation for emergent communication.

6.1 Future Research Directions

Due to time constraints, we were only able to execute ten evolution runs for each combination
of experimental condition and L. Future work should replicate these results with a larger
number of evolution runs (e.g., 50 runs per combination of experimental condition and L).

While this thesis demonstrated potential applicability of architectural evolution to emer-
gent communication, as evidenced by the improved performance of RNNs with randomized
architecture when allowed to evolve, no evolved architecture outperformed a fixed Gated
Recurrent Unit. Previous work on evolving neural networks has shown that this is likely be-
cause mutation which could eventually lead to improved performance often renders offspring
temporarily less viable, as the mutation needs time to mature. This has been addressed by

using NEAT (Stanley and Miikkulainen, 2002; Rawal and Miikkulainen, 2018) to divide the
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population into species and temporarily protect innovation. Utilizing aspects of NEAT could
improve the usefulness of architectural mutation for communication. Additionally, using
more complex reproduction strategies such as crossover could further improve performance.

As this was preliminary work in applying evolutionary computation to emergent com-
munication, only a single environment was explored - namely, a repeated referential game.
This environment was chosen because it is complex enough for interesting languages to
evolve and simple enough for these languages to be easily detected. The referential game
has limitations, though, when used to evaluate the effectiveness of an algorithm for training
agents to communicate. Learning is one-shot and does not involve long horizons. In addition,
agents need only learn to communicate so as to be successful - there are no other elements
of the environment which need be learned as well, or factors which make communication
more difficult. Given that evolutionary algorithms have been shown to be effective when
faced with tasks which have misleading gradients and long horizons, other environments
may better illustrate the usefulness of evolutionary computation for communication. In
particular, artificial-life (Langton, 1997; Bulitko et al., 2018) and other multi-agent grid
environments (Mordatch and Abbeel, 2018; Lowe et al., 2017) could provide additional
insight into the efficacy of the techniques explored in this thesis.

In this thesis, we presented only a visual inspection of emerged languages and no
inspection of architectures which emerged from evolution. Previous work (Lazaridou et al.,
2018) has used tests inspired by linguistics to explore natural language properties of emerged
languages. Additionally, when using architectural mutation, the emerged architectures have
been studied and shown to have interesting properties (Rawal and Miikkulainen, 2018), such
as LSTM-like components (Hochreiter and Schmidhuber, 1997a). In future work, it would be
interesting to investigate what natural-language properties emerge in languages developed
with evolutionary computation rather than deep reinforcement learning. Additionally, it
could be fruitful to further explore the structures which emerge, as these could provide
insight into what aspects of a deep neural network’s architecture make it effective at learning

to communicate.
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We trained only pairs of agents to communicate, and different pairs of agents were
separate in the sense that offspring of speaker-listener pairs remained paired. As such, the
languages of two different speaker-listener pairs could be completely different and it would
not affect performance. In future work, it would be interesting to explore whether or not
the techniques developed in this thesis can be applied to evolve larger populations of agents,
all of which share a single language.

While this thesis explored communication amongst deep neural networks, another open
problem is development of mechanisms for machines to communicate with humans. One
difficulty, though, is that deep neural networks must currently pass many thousands of
messages to each other for meaningful language to develop, which is infeasible when a
machine is communicating with a human. One possible solution to this is the use of human
proxies (Bulitko et al., 2019). Rather than having a machine communicate directly with
a human, some human responses could be collected and modelled. Machines could then
communicate with this model as a proxy for true human interaction. Future work will
explore utilization of human proxies to make progress towards communication between

neural networks and humans.
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Chapter 7

Conclusion

In this thesis, we presented a gradient-free evolutionary approach for training pairs of deep
neural networks to develop their own languages from scratch and use these languages to
communicate and cooperate. To achieve this, we used a genetic algorithm to search for both
the weights and architectures of communicating agents. The specific communication task
that we trained our agents on was a repeated referential game.

We showed that our approach - while achieving weaker results than those previously
demonstrated with gradient-based reinforcement learning - performed well above random
chance. We demonstrated that the learned languages are compositional and generalize to
previously unseen objects. Additionally, we demonstrated that agents whose architecture is
evolved can, in some cases, outperform agents with fixed, hand-crafted architectures.

The results of this thesis imply that a gradient-free evolutionary approach can be used
to train deep neural networks to communicate and cooperate, which had previously only
been achieved with gradient-based supervised and reinforcement learning. This provides
compelling motivation for the application of evolutionary computation to future research in

cooperative, multi-agent settings.
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