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: “'that completes_all deliveri}es in a mrnrmum drstance.

' ABSTRACT

Ty

The complexrty of a one-drmensronal ﬁxed capacity . delrvery problem is exammed An

- e

. capacrty k. Ea.ch pair of pomts represents a source and destrnatron ol' 2. package and the capach;'

. | is the hmrt on the allowable load of the delrvery car. The car is requrred to travel back and forth

on the llne segment prckmg up pacl(ages at sources and delrverrng them to therr correspondmg

'destmatrons, in such a way that the car's capacrty never exceeds k The delrvery car - may not

' funload a package temporanly Therel‘ore once a source is vrsrted the package remains part of the

car's cargo untrl 1ts destrnatron is reached The l'ocus here ison a fureher restnctron that each

trrp has the same dlrectlon in the lrne segmenL Tt rs requlred to ﬁnd a route for the delrvery car
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A polynomlal tlme algonthm is presented for the capacrty 1 problem The capacrty > 3
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CHAPTER 1

' INTRODUCTION

3.
@
»

The boundary between those problems that can be solved in polynomml time and those that

[1972] This thesis presents a problem called the dellvery problem that has a polynomml solu-

* - tion m its most restrlct,ed version.. However by relaxmg only one parameter, it joins the class of -

with the \size of the problem. It therefore becomes ‘apparently-intractable. | '
: \ v :

] 11 Inforrrral Pescription of the Delivery Problem

The mogg, general form of t_he»deiivery problerrr can be thoughﬁ-of as oi;é of optimizing'the
pa’t'h.‘ol' a deliv;ry car which must haul a number of.pagkages from giv.err eources-to given destina-
trons w1thout temporary unloadmg The car has a finite capacxty and each package uses up 2

! specrﬁc amount of this capacity. As wrll be seen, this problem 13 too general to be mterestmg
Vanous restnctlons\can be placed on the problerh and wrll be dlscussed in Chapter 2. However
the focus of this thes\xs is on the followmg very restricted version:

' n pairs of ploints]‘\on a straight line sergrne'nt are ‘given', ‘each. representing a source and desci-
‘nation of a pack:i‘ge; r.A‘deli‘v‘ery car lS reqﬁired to rurr back and forth on the line segment,
picking ap and dehvermg these packages wrth the restnctlon that 1t can carry /no more than
'k( k a fiXed. parameter greater than or eqda.l to one) packages at one trme The c¢ar may not
unload a package temporanly Therefore once a source 1s vrslted the package rem‘ams part

X f the car's cargo until 1ts destmatlon 18 reached JA further restrlctrou is that all delwerres

pomt in tbe same direction. That is, if (s d) is a source-destination parr, then d>s It is

' .'required to find a route for the car which‘com‘pletes all deliveries in*the minimum distance.

.
*
.

hkcly have no polynomlal solution has been of interest to computing serentrsts since Cook’s paper .

problerﬁ\s for which the ‘only known algorithms requrre a numbier of steps that grows exponentially’

9



’ !
1.1 Informal Deseription of the Delivery Problem Q

\

Note that this is a significantly more restricted problem than the general one because:
) - Vo

1. The ear travels in only one dimension.
2.+ All packages take up an equal capacity, 1,°of the car’s capacity, k.

3. All deliveries point in the same direction.' x

Note also that the car may start anywhere and end anywhere so long as it travels a minimum dis-
tance. This restricted problem is called the one way, one-dimensional, k capacity delivery

_problem. It is abbreviated as I Way del-k. .

A summary of necessary definitions and concepts follows, A much more thorough treatment

of the following material can be found in any source dealing with complexity of algorithms. This
. i .

e

summary is loosely based on Garey and \John_son [1979].

1.2. Time Complexity of Algorithms

4 : . o
The time complexity of an algorithm is a statement of its time requirements as a function of

.

the input size.  Suppose a probiem, R, i3 solved by an_algorithm; -A, with {time) complexity f. y
This means that for every integer n, A solves every instance of R with input length n, in time no
gréatcr than f(n). Cleariy the time required depepds on both thg measure and the computer

. o . . . ) \
model used. Similarly input length is dependent on ithe encoding scheme for the algorithm. The

1

) result‘ing‘ time compleXity functions, however, vary by no more than a polynomial function.

These distinctions are imrﬁater.ial in the"theory of NP-completeness, Whic\h';is conc::rned with iden-
“tifying broad categories of algorithm complexity. - -
7 : ’ ) ’

A function f:I-+Iis Ofg] if and only if there exists a constaht ¢ such that | f{n)] < c|g(n)].

for all n greater than some finite positive integer N. -

.
o -

A polynomial time algorithm is one whose time complexity function fis O(p) for some poly-
nomial function p. Thus there exists -a constant c  such thai for every integer

n, | f(n)] € clp(n)] for a\l,lvinput of length n.

" IThis thesis will denote this direction as forward and represent it in figures as upward. .



Tihe Complexity of Algonthins : 3

A problem for which no polynomial time algorithm existy is considered Intractable.

1.3. Decislon and Optimization Problems

~
\

Frequently two different versions of a problem can be considered, one requinng an optimiza-
.

tion, the other requiring a decision. This is the case for the delivery problem of this thewis. The

two versions are: .

Optirﬁlzatlon problem
Instance: n source-destination pairs and a capacity k.

Problem: Find a feasible route with least fength that completes all deliveries.

Declslon problem
Instance: n source-destination pairs, a capacity k, and a bound B. .
N < N

Question: Does there exist a feasible route of léngth less than or equal to 8, that completes all

deliveries?

.

A solution is feasible if it meets the restrictions of the problem. In this case a route is feasible if

the car never carries more than k packages at a time. .

The set of all mstances of a decision problem, R, contains as a subset those instances which

result in a yes decision. This subset is the set of yes-instances denoted by Ry.

In order to be precise, the theory of NP-completeness is applied to-decision proﬁlems only.
Howe\;er any algorithm that solves the optimization version of a problem, can be converted to one
that solves the corresponding decision problem by just appending a comparison of the result with
tﬁe bound B. Frequently the converse is also true. Using the decision algorithm, a binary search
can be done on the possible outcomes to determine the optimal bound B'. If the set of possible -
outcomes is small enough,'this search takes no more than polynomial time. Next the optimal
solution is constructed séquentia[ly fromypartial solutions in polynomi#l time. This; is done with a

step by step extension of intermediate results until the final solution is found.

L%
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" %1.3 Decision and Op,_timizati%n Problems ..~ 1. e e R
Tl 4. Polynomial Reducnbillty - L o - e T |

Ve S .
v

_',A decrsron problem R is reduclble to a decrsron problem Q 1f there exrsts a constructwe transl’or- ,

,matron whrch converts any mstance I of R rnto a correspondmg mstnnce 1’ of Q such that 1 is a' .

o “ _‘ves mstance of R if -and only 1f 1’ is ayes-lnstance ol' Q

t‘l_l'lg‘l'n_sthed_as fo_llows.,
'"NP.'i’s”t}he class ol‘ all ,decis‘ion problems ,w.hich_ vc'an'_be‘ SO]V_‘ev(l _lln"po__lynom'i'a'l-'t’ime-!n:éi‘ngga\,':mn_: s

: ,,determrmstlc *model of computatxon

C.Omp,utatroni A

Y '_'

o the' transl'ormati_on can b_e constructed in _time ,»boun'_ded by a polynomial function of the igput

ROARE

:‘Siie,' then, }‘i’.‘is poglynomla._lly" r:éd‘j!‘?lﬁle",to Q. : (A o - N o
1 5. NP-completenéea and Intractabxlity " s T e S

9\ v _ S v o
There eust many provably mtractable problems However 30 far those that have been pmo ‘

ven mtractable are erther undecrdable or’ rntractable even uqmg the 1 non- determmlstrc model for

. computatron 2 There is an,ofher class of problems suspected of berng 1ntractable but no proof yet "

"ﬂ.ﬂ,ef:i(i'sts Frnally, there are’ the provably tractable problems These lasl; two classes are drs-- T

o -

v

o

R

5 [

- .
B N ; R

' . P rs the class of all problelns that can be solved in polynomlal trme usmg a determmrstlc model of :;'b"

: ¢
: L
>

‘ -determrmstlc Turmg machme by 1gnor1ng the e‘{tra power of the non-determrnrsbrc model the L

)

’»l.'classPlsasubsetoftheclassNP AA

i A fundamental open problem ol‘ computer scrence todaly is whether or not Pisa proper subs

set of NP Althou0h lt is wrdely con]ectured that P # NP t.here lS yet no problem known to be

=

"rn NP and yet 1ntractable SR o “

a

“Deﬁnmons and dlscussron ol' determrnlstrc a,nd non- determlmstrc models of comput.atlon can be found in Ga.rey and

: »Johnson 11079] S R B . R . R

o ‘Though these deﬁnrhlons and that of NP—completeness to follow are properly stated in the form of language recog- ’
o nitlon problems on determrnlshc and non-det.ermlmstrc Tunng machmes, for the purposes of this thesrs the equrvalent S

. charactenzatlon in, terms ‘of algonthms is suﬂ'lcnent N : R . - <
- . ‘ B . . - . R N N <
y RS 3 U : ,
v . ) f
v a.
‘ o

Smce any algorrthm l'or a determrmstlc Turmg machme ‘¢an be converted to one for a non- '

=



o 1.5 NP_-'c_ompleteness and l}ntractability T . L » o 5

W

Instead followmg. the example of Cook attentlon is, focused on those problems that are_
:among the hardest problems in NP Cook proved [1971] that every problem in NP can. be polyno— :
mlally reduced to one. partlcular problem in NP called Sa.tlsﬁabllity Subsequently Karp {197”] |
| and then many others proved that a great number of decrsron problems shared thls property wrth‘s'

: satlsﬁablhty The 1mportance of this class. of problems has. been recogmzed and grven a name
B A‘problem is vNP-,c‘Omplete‘ if it js in'NP and eVery. 'problem“‘in NP can.be polynomi»allv reducedﬂ_ o

Provmg that 4 new problem 15 NP—complete is srmphﬁed by Cook s ploneermg work Smce' ‘

. polynomral reductlon 8 transrtlve lt is suﬂlclent to show two thrngs A problem R 15 ,’\«P-'

S cgmplete 11‘ o ,

S D R 15 1n NP That is, there is a polynomml tlme nonédetermmlstlc algonthm that solves R
e . . p o .

L2 There is',aniNP-com'plete proble"m' that is pblynomially' reducible to R o

i

o 1.8. 'P'revlevv‘

In Chapter 2 the general delrvery problem is dlscussed and some vanatlons are shown to be

S

tnvxally NP—complete Other related problems are also c1ted In. Chapter 3a polynomlal algo-': -
."w.nthm for the one way, ‘ome. dlmenslonal ‘capamty one . dellverv problem (lWay del 1)

. v“'_develdpeﬂd an ’.i.'_analyzed For k>3 the one way, one drmensxonal capacrty k delrvery problem //
b(llVay del— k) is NP—complete Proof ol thls is the content of Chapter 4 Chapter 5 contams a

. summary of results some conclusnons and observatlons, and descnbes some related open problems

o ' L SRR vs "‘H



: cl_eliv"er‘y prob]em‘,s:_ o

. I ‘ . E
|
| 'i_f\RELA,’I»ED ’PR»,OBLEMS ) o L e

'

2 1 The General Dehvery Problem _ .‘ L _ '

The general delivery problem does not restrlct the dlmensmn of the space in whnch the :

- trlps lle Nor is- the welght of each package or the total car capaclty restrlcted though they are‘

"4 . B,

assumed to be posrtwe mtegers y The deﬁnltron of the decrslon problem versron ol' the. general._g

Declsxon general delrvery R :
o

Instance n palrs of pomts (s,,d) in Euclldean m-space a.n n-tuple W ( wy; -:_‘-".-"_,yiu,;)*aie;s'sociatln.g a o "

welght w, w1th each pair (s d ) a. capac1ty k and a bound B '

Questlon Is there a route for the car “of lenvth no more than B such that it complete’s all'_"

dehvenes and the total welght xn the car at any one txme xs <k"‘

The 1Way del k problem ls a subproblem of the general dellvery problem Other subprob—

‘ lems may be generated by changmg the restrlctlons on the general problem

In Ilght of the lnrge degree ol‘ generalrty, x/t is not surprlsmg that the general dehvery prob--'

lem 1s NP—complete In fact the problem remams NP—complete when one or two of three dlﬁ'erent B

parameters are srgmﬁcantly restrrcted Consrder the followmg possrble restnctmns

~IReal numbers are not consxdered since n is lntended to show that these. plroblems are |nherently NP- complete not"- e

just difficult beca.use ‘of the complex:ty of computing with’ real numbers.. ‘No loss of: generahty results from ellmlna.tlng

. ratlonal numbers smce 3 problem with ratlonal welghts and capacnty can be’ converted to an equlvalent mteger problem . »

-4



_ 2.‘1'>The General Delivery Problem B S . _ LT

. u ’ ¥
' ‘p’aramet_er _ unrest'rivcted‘value‘ o . restricted value -
_ _ dimension . . positive lnteger ma | '
Iy - wweights. w;==drbitrary integer < k Cwp=l
o , . forally -} foralli ' -
capacity

: posrtwe mtegerk A IR SR

Except when the array of werghts is :lrbltrary and the capaclty restrlcted to 1 all combma-

' tlons of these restnctlons have meamng" {’However ‘the problem remams NP—complete unless all

: three restnctmns are |mposed ﬂrmultaneously ot

-

w{parameters m (drmensron) w (welght) and k (cap'tcrty) replaced l'rom the table above For exam-‘," iR

&

,v'ple delwery(lD aer Lcap) lS the one. d1mensronal arbrtrary welghts Ic capacrty dehvery prob-.‘

lem Usmg thls notatlon the IWay del- Ic problem becomes delzvery(lD llV k”cap) wrth the addr-.‘ -

tlonal restrlctron that all dellverles are- in the same drrectlon ' Lo R \

e v_2:.‘2; Sox‘ﬁe NP-complete S‘ubpr‘obler_ns' :

B Some NP—complete results are 1mmedrate l\ non- determlmstlc algorrthm can solve the gen-"l"»,‘ =
:.eral delrvery problem in. pol\ nomral trme Al'ter guessmg a solutlon 1t is only necessarv to check.'

that'the proposed route is feasrble, and to add up the length of the route to ensure 1t rs less than‘

.or equal to B Slnce both these last two operatrons can be done in lmear tlme

i . . _
% The: notatron dchvcry(mD wW kcap} wrll be. used here to represen/t the dellvery problem wrth

£

e general g

v‘.b‘.,delrvery problem is in NP and hence all subproblems are as well Thercfore o }y the second_'v., S

- requ1rement for NP—completeness a constructlve reductlon w1ll be sketched

» 221 TheDehvery(ZD,lW,lca.p)Problem _‘ é : / S

"’..Theoremfl . v

Delwery(QD 1W 1cap) is NP-complete e

o

‘-,proof

’The reductron is from the Euclidean Travelling Salesman (ETS} problem ror the plane Thrs

problem is NP-complete [Papadrmrtrlou 1977] Let an lnstance L of ETS be specrﬁed by a



' R only rl' I’ lS a yes-rnstance ol‘ a’elwery 2D IW\L ap)'._

‘“(soj,l, ;-- sa )has length < 3nB Hence by the trrangle mequa

-T‘route “(sa',d‘

VTheorem 2 25 .?.\,\'_.

N

. .
)

L]

*

- are short enough they wrll have neglrglble eﬂ'ect on the length of a route erther between the crtres

‘ ‘m ETS or through the dehvenes in delwery(QD IW lcap) ‘ T E. .

T 1§

: ‘fv

22,1 The Delivery(2D,1W,lcap) Problem L s

’ x,collection -C, of n cities, a complete?set E, of intercity dlstanc’es,‘deﬁned by. the dlscrete‘Euclidean ’
' metrlc 2 and a bound B The transformatlon to an mstance}ol‘ delwery(”D 1W lcap) consrstél of

"cbnstructmg a very short trlp, (s,,d ), startmg at each cxty ¢ in c. The 1dea rs that if: the trrps e

Constructron of an mstance 1' ol‘ delwery(QD lW lcap) orrespondlng to Ii in ETS is-ag fol-' .
:‘_‘vlows At each c1ty c, in ETS construct a source s, ln delwery(QD 1W lcap) In .order to ensure ;

mteger values throughout the edges in E and the bound B are enlarged by multrplymg the drs- :

tance functron by 3n and ‘thie new trrps are glven unit leugth Thus 5(.9,,3,) = 3n5(c,,c,)3 At

. ,/4

4

d j - 7~? : §

: ‘each 7% construct a trlp (s,ﬁ\&ength ‘one. Fmally, set B’ = 3nB + 2n Thls constructlon

&

For suppose there s - N route (c,,,, T .

30; ) has a’ length < 3nB + 2n for I' : ":I‘hus,‘

IR

S B Thus 1’ € delwery(2D 1W lcap)y 1mplres I € ETSy D ‘

",’-»2 2 2. The Delivery(lD,aer kcap) Problem VY‘ e R i a T

SN

Delwery(lD aer kcp\)ls NP-complete |

g

\ 2
=3 Thls métnc is deﬁned l'or the plane by (J:l—zn) + (yl yz)
greater tha.n or equal to z. N . S

P

2 6(z,y) is the dlsta.nce from Xt y

) :_fcan be’ performed in polynomml tlme and hns the property that I rs ‘a yes-mstance -of FTS 1f and'b :

‘ ‘length < B for 1 Then the path,
of the_ dlstance functlon the‘f =

[ E ETSy 1mphes.' :

r" E
‘;"“1' E delzvery(ZD 1W 1cap) Conversely,_ suppose " ,.‘1'"" has ::a route »if'o" length:
< B’ == 3nB + 2n Then' because of the séale v'l'actor;:' '71: 'has..wa route ol len‘gth""
S §ﬂ§3i2_"_ = ‘B 3 But all! edges have rnteger length Therefore I has a route of length" _‘

] where f:c] is deﬁned as the sma.llest lnteger &



- 222 The,Dellvery(I‘D,aer,kcapc) Problem B R . . IR R 9

-
Proof e S S . ‘ !

e

’ The reductron 15 from the NP-complete problem Partltlon [Karp,1972] Let 1 be an mstance of

' Partrtlon specrﬁed by a set A {al, . .;_,a,} of 'n posrtrve mtegers The correspondmg' -

mstance 1 of delwery(lD aer kcap) contains n-trip‘s' T,f_ {1,2) of unlt length each w1th the"

b

same source and destlnatlon where the welght ol' tnp T is 2a;. Capacrty k 1s Set to E a; and the,

o . . R l='=1
- .bound to 3. Then there isa route of length 3 1f and only lf all dehvenes can be made in two for-

ward passes Thrs is p0551ble ll' and only 1f there isa partmon ol' A mto 2 equal parts i

The fact that delwery(lD IW kcap) is also NP—complete ls a consequence of a sllﬂhtly more -

restncted problem (the one way yersron) proved NP—complete in Chapter 4

2. V~V_T<h‘e- Polynomial ‘Subproble.m"_
When he specxﬁed restnctlons y"are pl'aced Oll’ “all i"three parameters the

‘ : ’delwery(lD llV Icap) problem results A car travels back and forth on a stralght lme sevment

-

: makmg the trlps l'rom s, to d one at a tlme The car 18, allowed to start anywhere and end any-

S

"where The problem is. to ﬁnd a shortest route E ';,; S

Because the car's: capacrty is. one after plckmg up. a package at lts source, 1t must travel '

Ll .drrectly to the correspondmg destmatron Therefore l'or a specrﬁc mstance every route contams S
e . 3 : . . : -. P £

the same trlps Only the evtra dlstance between tnps can vary Hence mmlmmng thls ov erhead

s equrvalent to mmlmmng the route length i - R .
Let A be an -n by n array, where A, J- is the drstance from the #t destlnatlon to the ]

3 f"source and A, ,~—oo The problem then 18 the same as’ ﬁndmga a’ smgle cycle permutatron ) v‘ '

1

S e

. (‘x=1n+1, ey z")of(l, ; n) such that [JE A, . 1__ 1r<nja< "{ . }] is,vminimal_b‘5 T
G N IR i - - R . . - B l..'_sv R OEN ETN E EP
A The problem "Partmon asks |l‘ there is a. suhset A 01' Al such that E a, = Z ‘ va,‘..
) : - o TleEd ‘8, €A-A'
s Finding 2 single cycle per_‘m,utatlo‘n?(il'=vi,l+ K ,l',,) of (1,. ..\ n) such that Z A, i ] is 'mlnirna: vnelds a

minimum tour ratherthan a minimum route. .



2.3 The Polynomvial'-:'xSubproblem ‘ = '10‘ '

Thls formulatron hrghlrghts the srmllanty to th Travellmg Salesman (route) problem But

‘ 'contrary to the the clalm in an unpublrshed rllanuscru{t by Chang [1976] the problems are qptf

o on

_“equrvalent The drstance array for the Travellmg Salesman problem may have arblt,rary entrles '

9

In wdelwery(lD 1W lcap) the matrix entries are more stncted than Chang assumed The res-’

L

trlctlon to. one drmensron implies tllat the rows of matrrx A are not rndependent» Thus -

delwery(lD 1 W lcap) is'a subproblem of the Travellmg Salesman problem

o~

Grlmori and Gomory [1964] solved a closely related problem Therr O(n log n) algonthn} N

Y

Y for sequencmg a ome state-varlable machme when applled to the mput of delwery(lD IW lcap) ’

o

o produces the shortest tour l‘or the delrvery car, rather than the: shortest route If a ﬁxed startmg -

' pomt b, and an endpomt ¢, are gpeclﬁed therr algorlthm could strll be used by lncludrng the trlp

) (e b) in the set ol’ trlps and ﬁndmg the shortest tour But there are- only n “n possrble start kand e

.,

' ,ﬂend pomt combmatrons in delwery(lD 1W Lcap) that could yreld optrmal routes Therefore

‘ , Gllmore s algorlthm could be applled n -n tlmes to yleld the optlmal Toute, w1th arbltrary start

: l-,and end pomts Though thrs solutron takes O(nalog n) and appears meﬂ'lcrent 1t proves. that :

delwery(lD 1W lcap) is mdeed in P. :
-

An approach qulte drﬁerent from Grlmore and Gomory ] ylelds an O(n log n) soluuon pro~
: vrded that m addltron to the current restrlctrons all trrps have the same drrectlon “This algo— o

. rrthm is’ descrlbed m the next chapter lt is lrkely that a better algonthm than“the O(n3log n)

: met_hod 'mention_ed above 18 possrble for the two drrectlonal case as well.

‘ 2 4. Other Related Problema

Common l'eat,ures shared by vanous forms ol’ che delrvery problem and each ol' the Travel-‘.'
S lmg Salesman the Euclrdean Travelllng Salesman, and Pamtlon problems have already been

Fa . ra

. \1llustrated Many other problems bear some degree of srmllarlty to the delrvery problem

An elevator problem drscussed in Knuth s Volume Three [1973] and solved by Karp, consrd-
" ers the optrmal transport ol‘ people between ﬂoors usmg 2 smgle elevator Thrs problem resem-

/

bles dejwery(lD lW k‘cap) but ha.s addltlonal restncuons that admlt a polynomral trme solutlon

o



2.4 - Other Related l_’robleuje o S 11
l

unllke dclwery(lD 1w kcap) ‘"Though the’se extra propertxes result in quite a different problem,‘

the techmque used to calculate a lower bound resembles that used i in Chapter 4 to facrlrtate proof

of NP—completeness of the k capacxty dehvery problem

»

' Wong, Llll and Apter [1973] proved that a very snmple algorrthm transfers records on a-
,rotntmg drum in aptrmal or nearly optlmal time. Their problem is related to 1Way del-1. How-"

.ever the drum schcdulmg problem operates on a c1rcle mstead of a lme segment In addmon .the
B ¢
'drum rotates"constantly in one direction, whereas in IWay del—l the delrvery car can move m both

' dlrect_rons These crucial dlll'erences mean that thelr solutron does not carry ‘over to the delwery o
- .problem. .. . . Lo
: A number of schedulmg and sequencmg problems have some superﬁcral resemblance to vari- -
: _ous forms of the delrvery problem ‘But those problems fall to capture the posmon ml'ormatlon

‘ mherent in. the sources and destmatlons ol‘ 1Way del-k. Also they often mclude other restramts’

such as a partlal ordermg or multlple/p)o/cessors that are not analogous ‘to parameters of t,he

iy -‘delivery pro%n,

o



CHAPTER 3

THE ONE WAY, CAPACITY ONE DELIVERY PROBLEM

In thrs chapter a polynomral solutlon for the one drrectlonal delrvery problem where capa-
crtv equals one rs developed The complexrty of the algorrthm is analyzed and is sho'vn to be. of

'optimal order.

o

.-

¢

- In order to make the problem and its solution precis’e, the following deﬁnition's_'are used:

© 3.1 InltlalDeﬂnltions“and Termlnology‘

A trlp, T is an ordered parr (s d) of mtegers The functlons src( T) and °dcsl(T) select the’
ﬁrst and second coordrnates of T respectrvely Let F ={Ty..., Ty } be a collection .of trips.
'/ The functlon Is selecta the trip T; E r such that src(T ) < src(T~_) for every ‘T; € . Thus,
x 'ls(F) selects the trip, in wrth the least source. Srmrlarly gd(F) selects the tnp wrth the greatest..' '
destmatron. ‘That is, gd(l‘) T, if and only if dest(T,) > dest( ) for every» i The expressroni

top(f) Js an abbrevratron for dest(gd(F) Srmrlarly, bottom(l‘) is an abbrevmtlon for src(ls (F)) a

bThe mterval spz}nned by the trlps in T, bottom(l ) top( ) is denoted I(F). A set of trips T" is gap- '

less if, for any P e nry there exrsts an i such that src(T) <p < dest(T) Let r contarn n

trrps and « be an arrangement ol’ the set {1, . n} A route Ra is an ordermg of the n trrps '
1nul‘, accor_dmg to a. Thus R, (T"r To - - ’Ta..)' The«length, Len, of,'a‘ rou,te ‘R4 s
Len Z [ d - sa | + Z | dg, III. The overhead, Oy(R,) of a route, R;,“’is:

) . : c-—l i ’ e . : i ’ .. -
Ov(R,) ="Y; | da. ‘—"sa‘l,“flr The pairs (da,.%a, ;) are the links: of.the route R,. Links are -

:b'a‘clclv‘vard links if da,Z .s,,'ﬁ;l and forward links otherwise. A svubr_olivte of T'is an arrange-
rnent of a‘,suvbset of the tripsin T'. - - = 'l__ AR o o ""“"_ ' |

2o



"~ 3.3. _Results'

: minimi,_zi_ng the sum of the lengths of _the links.

3.1 Initial Definitions and Terminology -~ © o : 3
3.2. Problem Deﬂnltlon * - # . ‘

o - | \\‘
1Way dcl~1 18 deﬁned by:- L _ , ‘ \.

Instance: a set T" of n trips in a hne segment PQ such that 5 <-d; for every T er.
Problem: Find th_e arr_.angement 4 such that-

| Len(R.,,),= .mim'mum{Len(Ra)l @ is an arrangethent of 1, ... ,n} ‘
For hhe remainder of this chapter, all trips are in oneidireet/ion (forward).

o

For all nrtangements @, the first term of Len(R , is Z |d - Sa, | = Y (di - s) This is

|—1 i=r .

just the sum of the lengths of the trlps in F and is - con%tant for_all routes Therefore to minimize

the route length it is suﬂ'rcxent to ﬁnd the route with minimum overhead Thrs 1s equrvalent to

\'.

3.3.1. Lower Bound on Overhead
i ] K . L :
‘Let'Ra,be'an'y route through T Then:

. '_ n-1 | E
(Ra.) = E | da, ’f?a,',lll
' =1, S
. n-1 .n-1 :
: "‘>‘ E d'ar - E sa|+ 1

i=1 i==1 .
" - A ~
e e ERRRRE
: . i= = ) o , . ,

> Ed - Zs, top (") + ‘bottom(T)

=1

Deno't‘e this lower bound by ‘LB(I"'). 'Dbe,note',an optimal route through I''by R*. Then LB(T') is ‘_n »

lower bound for Ov(R.‘) and any route R that has OU(R) = LB(F) must be an'op't‘erm»al ronte.‘_

IWay del-l requrres that the minimum length be found over the set of all possrble start and_

'end points. However a srmllar lower bound ‘is useful for- a route with ﬁ\:ed start and end. pomts

Let R', be a route wrth ﬁxed start and end pomt?s b and € rcspectwely Then .

o



3.3.1 Lower Bound on Overhead ' : ' - 14

S " n-l Y ‘
OuR! ) = |6 =s,| + Lilda, =0, 4 [do, =]

Zd—Zs,+b—e

i=1

. |v7

¥

Denote this Iower bound by FLB‘(F)

Notice. that LB(F) is achieved by a route R if and only if T = ls (F) = gd(r‘), and

dy 2 37.; for every i. That is, a’route achieves the lower bound LBe(F) if and only if it begms

at-the least source, ends at the greatest destination, and all lmks are backward links. Slmllnrly,
y .

" route achieves lower bound, FLB( ) if and only lf it travels b'lckward from bto Sap from d to ¢,

s

and between trips. _ : o R

3.3.2. Stairbases" - R A T, ' ‘ . \x ‘

A staircase for I' is a subroute ST=(S¢1;‘."..,St,,',') 'ol'~tri\bs in T such that’

St1 = la (F) Stm = gd(F) and src(St,H) < dest(St ) < dest(Stiy1) for evéryi < m-1.- .

' Lemma L31 '
II' T is gapless then a staircase for r can bc constructed in time O iF]

a

:proof oo : : i
1

. Let T = {Tl, ..., T4} be ordered so-that src(T,) < srg( ,H) A stalrcase for thls gapless set

’ _can be constructed as follows.

= ‘Stli— T1 ‘ P ls(I‘).# . ' S .’ N _. "y

- e3:;11’:11e St 7é gd(l |
' ; —whlle dest(T) < dest(St ) -
do. ‘
g z-z+1
od '
g g+l
St;— T;
S z*— z+1
od.

01

Notice that in the inner loop there must exist an i such that dest(T-) > dest(St,) since

" top(T) > dest(Stj). Also the first trip, - T, such that dest(T) >. dest(St ) rirust. have

L



I

'Lemma LB 2.

—
[}

3.3.2 Staircases
<3 . i . . ’

Fl

) \
\

(T) < de?t(St ) since otherwise I’ would not be gapless Since 1 is mcremented at every pass

/

" thrqugh the ‘innerloop, the algorithm exam@nes each trip in " once and therefore requires time

o(r]).o

/
!

’

Let T be a set of gapless trips together with a ﬁxed start b and end e such-that b, e € I(T).
'If b > e,w-then there is a route‘ R! through T such that Ov(R') achieves the lower bound
' FLB(F)\ and thus is opt‘imal for fixed start and end.
prOOf: ' 334

Let ST _—_-,(St,, ..., 8tn} CT be a staircase for I'. Let H be those trips T € (I' - ST) such_

"that src(T) >b. Similarly, let 'L' be th@\ set of trips T'.€ (I' - S'T) such that' sfc(T') < b

Then = (STUHUL Order H and L from greatest destination to least. destmatron ylﬁ}dmg

~(H1, . H,,) and (Ll,.‘..,L) Now let R = (b Ll, .. L,,St,, Ce m,Hl,,...,H,,, e).

Since b > e, R' has only- backward lmks and therefore achieves lower bound FLB(T). 0

[
\

ThlS lemma ylelds an upper bound on the overhead o the optlmal route R’ through a gap--
S

. less set I. Let p be some pount P E I(F) By lemma L3.2 there is a route R wh)ch starts and -

.

| ends at p and achieves FLB(E). Therefore, - ‘ S ‘ T

e 4

 ou(Ry) = FLB(I‘)

=Zd—28,—'p+p ’ . ‘ ’/‘.

i=1 i=1 ) l ’
R n e
=24~ Y ‘
i=1 i=1

°Denote thls upper bound for a gapless set r by UB(F) E

3.3.3. Add{tio_nal Lerrg'th of a Route

* For any rou_te R through r, 'Ov"(Rl_can be calculated directly feom the forward links in R

“-and its-start and end poinﬁs. This is the convte»nty'of the following: lemma.

: VLemma L33

°

Let R, be a route through F which starts at src(T ) = sa~ and ends at dest(T )=.'d,, .



3.4.3 Additional Length of a Route : 16

Then

Ov(R,) = LB(T) + 2) (54, - do) + (90, - bottom(L)) + (top(I') - #4)
T ‘ .
where flis the set of forward links.' . " ' .

proof: |
4

Let b/ and fl represent the set of backward links and forward links respectively.

. n-1 . ) » » N \
Ov(Ry) = Y | da, - %a,, | E ‘
. {==1 . N
- %?“‘a. S o e
= E( a, +1) + E ~ %o " 1. 22(3“
[ 1. 1

= Z(d v+ 1! -‘*- 22 8°|+_l - d".)

=Zd;—d : Es.+sa+2}:

§=1 2=l

= LB(T 102 b - dg)+ (56, - bottom(I)) + (top(T) - d, )

i

Thus Ov(R,) is greater than LB(I‘) by twice the sum of its forward links plus the difference

between its start and end points and the points boitam(l’) and top (I') respectively.

\ ' '3.3.4. Improved Bounds
Itr i’s\;t set of trips with gaps, then the lower bounc2LB(r) can be improved. The following
' /lemmas sh.ow that anyovptimal' route Lhrou‘gﬁ T has fdrwal] links through the gaps in a set of trips. |
Lemma}LI& 4! | N
\Suppose I'= FIUI‘QU - 'y where T; and f,H are sets <;f gapless trips, arranged from
!owest to hlgh_est sources and I{T';) ﬂ‘[’I(F,-H)‘-— 0. Let the gap between I'; and I‘,+ L be
‘ ~called G,-ia»nd havé siie g;. That is, the\distance{ from top (I‘i) to bottom(l‘,-_H) is g;. Then if

‘. T . l—
R is a route through T, Ov(R) 2 LB(N)+ 23, 9.

i=1

prdof: v ' o - ' ) /i

T



3.3.4 tmproved Bounds 17

Let the atart of 12 be b and the end be et For every howuch that € lies above b, It must travel
’]';::‘;‘f()I'WZ\rd across (7, since it must complete all trips. Similarly, for every {such that ) lies below
e, 1 must travel forward across G Now consider the g:x;;ﬂ that are both below b and above ¢ If
there  are  no  such  gaps, then the result  follows by lemma L33 Otherwise,

(b - bottom(I)) > Y, g, and (top(I') - ¢) > Y, g, Therefore, using 1,3.3

G b RN

Ov(R) > LB(U) + 2 Y + 2 3 g+ (b bottom(D)) + (top(I) - )
By G e

%

)

t-1
> LB+ 2Y) e 0
[}

This improved lower bound for the overhead of a route through the trips in
P=TI,....I wit'h gaps (4, .. ., Gy, is called ILB(T).
An upper bound for a route through a set of trips F possibly with gaps, can now be formu-
lated. Let D == Ny T be as in lemma L3.4, and let ST, be a st:lirc:;se for ;. Let R be
> a route that starts at bottom ('), completés each staircase, ST, in order from bottom to top. and
tﬁen completgs the trips in I'; - ST} from top to bottom in order of decreasing sources finally end-
ing in I"}. The only forward links‘ for this r-oute are across the gaps G;. So by lemma L3.3

Ou(R) = LB(T) + 2X)(sa_, - da)) + (top(I) - bottom(T’))
| - ‘

-1

= LB(T) + 2Y g + (top(T) - bottom(T)) 4 ' .
. i=]
= id.‘— isi + ZEQ.“
=1 F=1 =1

Therefore the optimal route must have overhead less than or equal to this length‘_’ This length is

denoted by TUB(T).

Lemma L3.5

For any set of one-directional trips I', there is a route, R*, of optimal length which starts at

a point lower than or equal to its ending point.

. e,
Vit is sufficient- to assume b = sre(T,) and ¢ = dest(T,) for some i and j, since otherwise R can be made shorter e
by eliminating this initial and final travel.

o



e

2. forifrom 1toj do the tripsin ST in order.

»

;\fv“i_ L e e e |
yproof R l S T N _'/ k
B Let R be a route through F thh start b greater than end €. Assume = FxU UFl as in
lemma L34.

Suppose b and e are in - the same mterval I(F ) Then by lemma L33

)+ 2

" Case 11

".b OU(R )"= . d )+ (top(F) —-e) + (b = battom(l‘)) But all gaps G above‘,

lb or below € must, have forwnrd llnks through them Therefore m thls case, all gaps have forward
,'lmks Thus ., o ) S ' bv ', e o -
Ou(R) > LB(D). + 229.4' (zop(r) . e) " (b 3 bottom(F))
=T : l

E fﬂ.Smce b>e thls is greater than IUB(F) ’I}'herefore R canno_t be optnma_l_: el

R : : e, -

; :Case 2: Suppose bEI(F,,) and eEI(F ) where k>] By lemma L3 3

\ OU(Ra) = LB )+ 22 + (tOP );— e)+ (b-—' l)otlom_(Fl).j"

i »All gaps above b and all gaps belbw € must have forward hnks Therefore

+ 2§]g. + 2§]a. '+ (top( )— e)+n (b = lwHwn(F))

Loizk t<j

+22“+22%+°M—o+0w0)b) u_wmamf”:"

'.-|>k ,"<] . - ' ' v ) \7,

0 ‘(103 )> LB(T

-i—_%LB(

S

But ‘7(b - e)u—. 22?: + 2 Z I(F }-l- ‘2(b - bottom(l'g)) + 2(top(l‘ )— e)
i i J<v<k : ) . ’

e

'Therel‘ore ’ e el T
v(R }> LB(F -l‘ zgg, +o E nr "(top( r)-e)

)+ 2(b : b"ouom(r,,
Atv—-l-., r1<|<k.;' L

(top F) A\b) + e - botfom(F))

a.

" But-a tnp, R’ can be con\itructcd that- begms at top(l" ) and ends at botlom(F ) and has over-

" 'head no greacer than Ov(R},) Fu’st construct a stalrcase ST for each set F The':route R! S5

: proceeds as follows o \\' s
: .07 o

[ IR T U

1.0 fo‘r i from,.j‘do'w'_n to l;'_do\\the i;rips in (0= ST,) in orde’r of decreasing sources: -



e

- be optlmal

73.3.4 Improved Bounds ) k ) S S _‘ S o

3 g -for t from ]+ 1 to k 1 do the tnps in F by completrng ST in order and then completmg o

B (IT,« - ST,-) in order of decreasmg sources

4: " for ffrom k to 't“do‘th_eiiri.ps in ST,- ivn ,order.; '

5. for. i[frOm t down to k do the trips 'in (Ti —ST) in 'Order of-decreasing _sour'ces.
In. steps 1 and 5 there are no forward lmks “In steps 2 and 4 the only forward lmks are[

across gaps In® step 3 for each i there lS a forward lmk from the destlnatron of the ﬁnal trlp in ':
: 7, (F = ST) to t0p(1"‘) whlch cormnues across gap G Thrs forward length must be less than7~,. R

i v_’g, + I(F ) Therefore using lemma L3.3, the overhead of R’ can be bounded aboye =

. ov(R ( )< LB(F .+ QZg,.l-l— 2 E IT' )+ (top( )y-—bottom(l‘k))
A B L J<l<k ) e

| +(lop(r ')-.—»bottom(l“)').v . _ "

hls is less than or’ equal to the overhead of route R Therefore R’ 1s at’ least as short a route:‘ '

¢

asR D

"‘3 3. 5 Additxonal Overhead of Subroutes -

Suppose S = (S(, P ,,:Sa";) is. a subroute of F contammg exactly the mps 1n F’ C F‘

: It 1s useful to determlne how good the ordermg of 5 i assummg that these are the only trlps to_'

. li'y"be covered The addltlonal overhead AOv of a subroute S' measures the amount of overhead;:} SRR

accumulated by So, in excess of the lower bound for the set of trlps m S It is deﬁned by ‘

S 'AOv(iS' )— Ov( ) ]LB(F') Thus AOv( )j-— 0 if and only lf S starts at the ls(F’) ends at‘-'v L

gd (") and has backward hnks e\rcept across gaps Otherwrse »

_,AOv( ‘v‘_eg o ', ) -2 2 g+ (sre(Se,) - bottom(l"’)): (':o“;;'j('r'_);—' dé§t(ﬂl$am.)). 'Foif,:;‘ :

GEI'" .

' ’complete route Ra, AOv( a) = O’implies that R, achieves the lower bound. andvt‘her_efore'must, 5 L

"\
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N

. 4. The Solution to 1Way del-1

R such that AOv(R ) is mlmmal /'l{hls proceeds m three steps First, a- subroute S is con=

B mal in the sense that. there 1s no subroute S’ contammg a proper superset of the trlps in S that )

: also has AO&(S’) = 0. The second step 1s to lnsert the remammg trlps mto S’ in’ such a way" . S

The optlmal route Tor a set of trlps F = FIU UF, is found by determxmng a route,

Vstructed such that 1) AOU(S ) "0, 2) S' contams Is(F ) and gd(F ) for. all i and 3) S-‘ is ma‘xi-‘ .

Q-

"that mrnlmum addltronal overhead is accumulated The ﬁnal step 1s to prove that the route thus '

[

' _'>c‘onstructe'd ls;optlmal,. ‘

“r —{T,,

3 4, 1. Frrst Part of the Solution A

I

Let F -—I‘lu Ul’vg" where’ each I“A TiS a maxlmal- ganless' su;_bse“t.‘_ A‘s’sumef S

- IF l = m( ) that F is arranged from lowest to hlghest set and that the. tnps in’ each subset‘

'(l

_'ST = (5,', S,”) for each set of tnps | o These stalrcases can be ]omed tovether from'-

1

- ‘lowest to hlghest to yleld a subroute S of l"

. _'lmum gapless subsets of W arranged from lowest to hlghest Some of these W, can be mserted e

. Z,el'O._’ ’

I ) "s(Zl)"

S = (Stl B l Stls(n’s.‘t?l"" ..,V“S‘t.n‘ St,l, ;:,. St, " )) The addltlonal overhead of S lS L

R

Let W be the set F UST of bnps not in any stalrcase, and let. Wl, . i{; W, be themax- e

':l=l

' '.lnto Syleldmg a longer subroute of l‘ m such a way that the addmonal overhead remams zero

AT

! Lemma L3 6

: ".Let S = (Sl, o S) be the subroute bu1lt Trom concatenatlng stalrcases toget’her andd-»‘-uf"" !

s j__'_‘denote the mterval src(SjH) dest (S ) spanned by the llnk l'rom S to S a1 by I(lznk ) f

there ex1sts a j such that I(W n I(Imlc ) ;é @ t'hen W‘, can be mserted rnto s wrthout;

‘1ncreasmg the addmonal overhead o

."_

} are ordered by mcreasmg src(T ) By lemma L3 1 there exrsts a sbaxrcase
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‘prwoof R 3
‘ ‘Suppose I(W; ) ﬂ I(lznk 74 (b Because of the constructlon of the starrcases, the 1ntersectlon" 2
"Y,Vmust be wrth a backward link, and the’{'efore dest(S ) > src( J+l) ‘But W; is ,gapless So by»
lemma L3 2, thcre is a route R through W; starting at b—sup W n] lmlc )) and ending at

3 -—_znf I(W ﬂ[(lmk ) with only backward lmks Let s be the route that results from ‘

‘"lnsertmg R, between S and Sy Smce S’ strll starts at ls(F) and ends at gd(l") and has only

"o

o ..

r"_backward lmks except across gaps the addltlonal overhead remams 0 D i o o

Let S be the subroute burlt by msertmg mto S all such W that have non empty mtersec-

"tron wrth some stalrway hnk as in: L3 6 If there exrsts W up to- W,+‘, all mtersectmg the same

_‘stairWayi’Ijnk lmk then each of them can be 1nserted thween Sty and St 1 ln order from_

' hrghest to- lowest set Because OfrltS constructlon' S) 'y clearly satxsﬁes the ﬁrst two of the three e
| '-‘propertres hsted at the beommng of thls sectlon that is: 1) 4OU(S ),-— 0 and 2) S‘ contalns"

N

s () ,and gd(I",Aj for. every i

1
,‘\,

3. 4 2 Second Part of the Solutlon
Il' every set W has been mserted mto S then S is'a route for F wrth AOU(S ) = 0 I

: therefore has overhead that acohleves ILB(F) and hence I3 an optlmai route

In general however there may remam some subsets whlch do not mtersect a stalrcase lmk.
e Rename these unmserted sets from lowest to hlghest Vl, i Ve, and denote the collectron

-~ "{Vl, e V } by A For each of these sets the mterval I(Vk) is contalned 1n the mterval s, f.,‘

. for exactly one tnp S in S', and I( V,;) mtersects no other tnps outsrde of V,, Frgure 31 lllus-h“ -

‘btrates the type of conﬁguratron possrble for some of these remamlng sets whrch are represented by
elhpses.‘ :

It is 1mportant to observe that the sets in A are determmed by: the structure of F and are :

_'mdependent of the stalrcase constructron A drﬂerent sta)rcase yrelds exactly the same st of trlps ‘ O

© . as those rn S and the same umnserted sets Vl, e - ,,‘V‘u.,' Also as the followmg lemma shows

‘S satrsﬁes the thlrd property, namely 3) 5% i3 2 maxlmal subroutc for whlch the propremes 1)"

-p',; .
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: s

and 2) above hold. -

.Lem‘maLSl'. - o s |
_‘ .6;‘ is-a maxrmal subroute for r such that 1) AOv( ’)= 0 and 2) s’ con‘tarns ‘ls(I“,-‘)'yan'd

o gd(I_‘i)‘for every z.' | o | o T o | o

proofy .. o o i " ! . . M "

/ T

.".Let T be any tnp in r- S* and let. S € S be the tnp such that T C 1( ) Let VT be the ,,
' set in-A contalmng T Conslder any subroute S' of 1" that 1ncludes both S and T and also '

: mcludes Is(f‘») and gd(F ) for every i Then erther S precedes Tor T precedes S S ,‘b

- CaseI Su,ppose S, precedes Tm S’ : T ' e ol

S Case I Suppose S; succeeds T in S’

.'vaet T’ be the ﬁrst tnp after T in S' such that src(T’) > dest(T) fany such T’ exrsts then .

S'dmust contam a forward llnk at. least as . great a.s the dnstance from dest(T)

o rnm {src(-T’) dest(S )} If no such T’ exists, then S’ must termmate at some pomt less than or .

\equal to lop(VT) In elther sntuatnon 40v(5') > 0

| ‘Let T” be the last trrp before T in S’ such that dest(T") < src(T) If any such T'/ exists, o

then S’ _ must 'contaxn a: forward Imk at least as great as’ "the diStance .‘ f‘rom'l-

max. {dest(T”) src(S )} to src(T) If no’ such T” e‘usts then S' rnust begln at some. pomt :

greater than or equal to bottom(VT) Agam in erther srtuatlon AOv(S’) > 0

‘ Thus no tnp can- be added to those in S' whrle mamtammg an addrtronal overhead of D D S

. This’ part of the solutlon mserts‘ the tnps m A in such a x';'a).' that they add a rnrnrmal

) amount of addltlonal o.verhe\ad’ Each one ol’ -the sets in A is added to the subroute S 1n one of:»:'

‘;'i‘thfee wa&s » | i | ‘ o
1 - V)‘ can be prepended to S That is no tnps lower than bottom(Vk) are completed bcfore Vk
s begun RIS AT RTINS

2: V,, can be appended to S' That.is'no'trina hrgherthantap(l//,,) are,vstarted; after Vi is

' complcted
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3. v Vk can be 1nserted mto an?ther part of the subroute. That is: erther tnps with sources lower.

" than b_ottom,(V,,) occur both before and after V},, or trlps wrth destlnatlons hlgher than

: lo'p(Vk) occnr both before and after Vi

’Methods 1 and 2. change the start and end pornts respectlvely but can be done wrthout
: L

' addmg forward lmks Method 3. does not change the start and end pornts of the subroute but'
'.adds forward lrnks Therefore any of the optlons add addltronal overhead to the new subroute It
is necessary‘to determme whrch of these three optlons 1s optrmal for‘each V,;, and construct a

bﬁnal route R from thrs ‘mformatron It must also be shown that any other route through l"‘v_

. would accumulate at least as much addltronal overhead as R’. » S ‘\/

' The, -following lemma vpres‘e_nts: "‘a way to.:(_prepend trips to"rSl‘f;’ (,cor-re'spon‘din'g} to imethod‘ 1.)

without_ need _for any. forward links, and calculates the ad‘dit‘io_nal oYerhead'due'to this construc-

. .._tion.'

T

. ,‘..Lemma L3g . S L
The sets Vl,. o ‘can be prepended to s* yleldmg <z>S' 1n such 2 way that
AOv(<z>S )— bottom ;) - ot!o I v ‘

* . proof: e ' g PRI o ST

| Let ST( V-)“'beﬂ a'vstair'case for Vi Let the suhroute {i>‘S" 'be bd‘e'ﬁnced by ,prepending the tri‘ps-in i
séts 'Vi, oV to S' <z>S' beglns at. bottom(V)‘,l It ﬁrst completes the tnps in ST( )
then those in V, ST(V) in order of decreasrng sources Next for k from =1 to 1it completes

the set Vk rn order of decreasmg sources Frnally S 18 appended as is to thls 1mt1al subroute

-There are no_ new forward lrnks in <z>5' $0 AOu(<z>S )'— bot/’om(V,») »—‘bottom’(l“).'l:] S

The trlps in sets V,, e V can be appended to S' in a wéy analogous to the prependrng

of lemma L38 Thus after completlng S' the sets V down to V,H are appended m order of A

decreasmg sources Frnally the set V, ls appended by completmg l/, ST(V,) and then clrmbmg :

_the starrc_,ase ST( Vi) The followrng lemma results
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Lemma L3.9 . o I ¢
The sets:V,, . .2, V, can be appended to S° yielding’ S§*<l> in such a way. that .
A0u(s” <l>) top(F) tp(V). o ;

~Let <z>S <> be the subroute wrth the trlps in Vl, - V prepended to S* and

o , .
’ V, V appended to S' as’in lemmas L38 and L3.9. Al trlps except those in U Vi are:
‘ : o k—a+ 17
included_ 'in this snbronte. These»reﬁ)fainingv trips can"be inserted, into“<i>iS’_<l> and the addi'—l o

2

v‘t’ional o.verhead due‘to these lnsertiOns ca'n be determined_. - T '
AIt is. convement to rename each of the remalnmg sets V,,, z+1<lc<l 1 Jna wa;\-that
 reflects V whlch stalrcase ’ tnp, : S,-, ' contams I(.V,,,). Suppose I(SJ) contalns
',1’(‘V,,)’,l;’.,1(V) z+1<q<r<l 1 but. ‘not I(V,, 1) mor I Viii)- Then alternatlvely label
g9’ {p(;)

v, o,V as V’jl,.v.._, V! where u(])b—- r-q+1 mdlcatmg that I(V’ )C 8 d for

. 1<t<u( )

* Some l'urther deﬁmtrons are necessary Refer to Flgure 3 2 whlch 1llustrates some ol‘ the

set,s of tnps embedded in. one starrcase tnp Let 0 be the greatest destmatlon less than '_

v

' bott‘om(-V- jk)' Note that 01 is- tap( ) if k>1 and 01 is the destmatlon of some element in .
:<1>S <l> Il' there lS "no destlnatlon less. than bottom(V’ ), {only the case when .
- i#O‘!_,j=1, k——=1) then set 0 bottom(l‘).r S‘imrlarly let o, be the Jeast source ‘.‘g'reatervthan .

top(V’Jk) ’llhen"qjik is.bbt:tom(‘V»’ }'k+1) if_k<;1(j‘) and Ulj’vm:‘is‘the 30uree_ of some ‘trip in -

<-i>S'<’lV>“ It there is mo source. greater than top'"(V"k), (only possible when
l,-—=lv’-'+-‘1‘;'l_/;” 5=V, and is contained in"gd(I‘) then set U, = lop (F) Let &), be the distance_ .
from top(V’ ) to ,boltom(V’.’ -H;) for 1<k<u(]) 1. Also let 6 ‘be the distance from

t » o

: ‘bottg_m(V ) to 85, and let 5 be the drstance_ from .tvop(l( _j.( ‘)) to Uf:(n'd'

1\ The followmg lemma mserts V,H, i : V, 1 rnto <z>S <l> _using exactly u( ) l'orward
. lmks for each collectlon of sets V Jx . - P ( uses the smallest avallable set of forward

Q

1_,1;(1)
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°

links, and determjnes the additional overhead due to this construction’

Lemma L3.10. , o

Suppose T{ V" IR .,I(V ) ares contarned in S; and let §;, 0}, and'éj,r be defined as

Ji?

Te(n)

above. Then the sets. Vs o) V' ; can be inserted into <i>S'<I> yielding alonger

subroute: <i'>_S;<l> in such a way that

< pl) '
CAOV(<Li>S; <l>)— 40v(<z>5 <l>)+ 2%‘6k~2 max {61}
: Do . o<k<ug) Tt

Y -

proof:

)

Let m(j) be the index such that <Tax { ,k} 8y and let ST,, be a staircase for V' 5 for

'1<‘k<p(':")§ The extended subroute <z>5 <l> has the trips in V’ i np‘ to V' jm(;)"’ inserted

" into <z >S <l> after 01 , and ‘has V' ”' L up to v }. I') mserted into <.i>5'<l.,> before

Form a subroute Si1 ‘that ﬁrst travels up the starrcases ST v 4ST and then -com-

o Im ( )

Im()

_ letes the trlps in v,l ST down to V _— ST ‘n or’der of decreasing sources.' Also con- -
P L

Y

struct the subroute S-,z" t,hat ﬁrst c’ompletes the t.rips‘ in V! '-’m~STj“ down to

'Vl‘fm(,)u' A_S'Tj-m(ml in order of decreasmg sources, and then travels up the starrcases from

, ST] (1)+1 ‘to STJ (') Then t.he subroute <z>5 <I> i the subroute <z>5 <l> quh

'rnserted al‘ter the trrp in <z>S <> termrnatmg at 9, and S] 2 mserted before the trip startmg ;

0]

at o; . Notrce that wrthrn each set V/; there are no. forward links.. The only forward l_mks are

Tk

through ‘the gaps 6, ,l [or : .0<L<m(])1 and m{j)+1<k<p(s) - Thus -

AOv(<z>S’ 'U>) = AOv(<z>S <l> + 2&6“ 2 max §,.a-
o<kE<n(y)

_ Denote the route with all the sets Viyy, ..., Vi inserted into <i>5°<I> using the

method of lemma L3.10 as <i.>-'Sf”'<"I/>j, '

“Notice that for each j, the sets V]l, Vi

forward link due to ‘each -ij- is _ either the dis_tance (bo;tom(_lfji) = Bjk').r':= 5. or.

Jk -1
/ ’ ’ . [

V, are rnserted- with ©(7) forward links. The
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. N . ,,/u‘/"\:\/\h\_q . . ‘ , o '
(25, - top(V- = by,. Let IC(VJ}) be the cost of lhsertrng Vj, as in L3.10. ,Then for any v,

Esuch that k< m(j); here m(]) is the lndex of the maximum 61", i is mserted after 05, at cost

L IC(V;) = é&i For V such that k > m(]) V, is 1nserted before oy, at cost IC(V; ) = 26;.

Using this notation,
AOv(<i>S','<l.>,)/—;;"(‘bottom(/V,-) - ‘bottom(F)) + (top ([)- top(V))) + 35 IC(VL):

k=2i+ 1

For every combination of i and l such that 0<:i <I<v+ 1, there is a route <z>5"<l>‘
constructed usmg the methods of L3 8, L3.9, and L3. 10. Let R be the one with least addltlonal

',

overhead. Thus e - ','

 AOWR")= _ min {AOv(<z>S”<l>)} '

° S 0Ki<ISu+l,

= min { ’ﬁ IC(,V,,) + '(bottoei(V,-)—botlom(I‘)_) + (top(I‘)—top(V,))}&

0Zi<ISu+ e g
' R'~ can be constructed directly w1thout burldmo all routes of the form <z>S"<l> To

' determme those sets that accumulate less addltlonal overhead by prependmg to S* as opposed to. -
» inserting. it is suﬂicient to- ﬁnd 1 such that (boltom(V,-) - bottom E is mmlm_al.,

The procedure used to determme the optimal 1 is lncluded n the next sectron where the complete

s ";algorithm for ﬁndmg R is outllned..'The idea 1s_ that the first index P such that

: bottom(V ) — bottom(T il(" Vi) mdlcates that the sets Vl, .., V, are less expensive to

_.p'repend than to inse’rt, After this point, further savings.are dete'cted by searching for a new point

. N o ‘ v . Y ) “, T . » o .

p' >'p such that (bottom(V,/)— bottom(V,)) < Y. IC(Vi). Since the search is ‘always for.
' s , ' S k=pel o

o further savmgs the largest p' found rndlcates those sets Vl, oV that should not be inserted. -

: Srmrlarly, to determme those sets that accumulate less addrtronal overhead through append—

.

ing to S ,than through - msertmg, it is sufficient . to" determme‘ ! such that

E r(t‘opl(rA‘).— ton‘(V,)) -.li‘_,IC(Vk.) is minimal. -
S = A
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- Ir lSi'then, for the collection V;, L. , Vi, prependini; or appending both eurpasg inserting.
Then R* = <z>S <i+ 1> for some %, and
AOv(R ) = (bottom(V)— bottom(T')) + (top(F) - tOp(V‘H)) o SR
(lop(f‘) - b‘ottom(I’)) (top (Visr) - bottom(V;)) ‘ A o

But tbi‘s’_is least when (tOp( i+ 1) - bottom(V;)) is greatest Therefore R* can still be ea'si‘ly deter--

mirred~~by ﬁndfné i\such that-(top(f/;,rl) - bottom(V ) is ma.xrmnl‘.

\

3.4.3. Optimality of R’

It remains to shovf"l,th,;}\t R is ap optimal route through T.  , : : oy

Theorenr T3.1- T

* AOv(R*) = min{A0v(R)| Ris any route through T}. |
proof: = T ' : \\ " . Co e
, - 9

‘Let Ry = (T4, -, Tq,) be any | route through T Lév. b = src(T ) and e = dest(T,, ). It

e <'b then'AOv(R ) > AOv(<1>S"<1+1>) > AOv(R )\Therefore assume e > b. It is

" sufficient to show ‘that AOv(R ) > AOU(R ) The pomts b, and e partmon the.set Vy, ..., V,
_ into three parts: 1) Vl, ..., Vg, where bottom( ) < b, r.) V,, N where\tap( 0 > e,;and |«
. ‘ ™~
N Veiv Ve Consrder the sets in the third pamtlon If there are none then - \\\ ‘
AOu(R,) > (b - bottom(T ))'+ (top(r)'_‘e) R ‘
e I
2 (bottom(V ) - bottom(F)) (top () - top(V,)) ;
= AOs(<g>S+r<r>) : . ’
> A0u(R") |
Otherwise R, requ1res at least one forward lmk),for each of the sets v! 5 € {v, +1, T V,_l};

. since each I(V’ ) C CS; for one and only one j.- But he shortest possrble forward hnk for each -

1

_V‘J is elther (bottom(V )~ jk.) or (a;k ~top (V' ) The route <q>6‘"< r> has the pro-
pn«ghy that precisely the smallest possible fomard links of these occur and no others Therefore
" AOv(R,) = AOv(<,_q->S“<r>);>_ AOv(R*). 0"

o -
&



© 3.4.3 Optimality of R’ | : 30

3.5. Statement of the Algorithm

[

The optimal route R * is constructed by building up a linked list of the trips in the correct
. {)rder.' The basic structure of the algorithm is outlinetkbut the detail of lower level routines is '
“omitted.. The bogy)kkeeping‘necessary to execute these procedures without backtracking is not

included.

o

Algorithm for 1Way del-1

Step 1: R -
“order the trips yielding I' = (T, . . ., Ty) .
such that sre(T;) < sre(Tiv1) - ot



3.5 Statement of the Algorithmn

Step 2

# build $*, the maximal subroute such that AOv(S"*) == 0 #
subll — T, # put T, in the subroute #

Ex « @ # lox is the set of current extra trips #
For j from 2ton

do

if sre(T;)<dest(subR) .
then : ‘
© 4 in same gapless set #
if dest(T;)>dest(subR)
then
. # a higher staircase trip #
add_to stair(T-)

else
‘ # not a staircase trip #
if Ez=0 \
then

# T, becomes the current extra trip #
start _new_Ex(T})
elif top(Ez) 2> src(Ty)
then )
# T, goes into current extra set #
add_to_Ex(T}) .
else .
© # T; does riot intersect Ex.
therefore new Ex set #
# deal with current Ex set #
it I(Ez)ﬂlmlc(J)yéﬂ

then
# Ex can be put into subR #
“insert(Ex,j)
. else ,
# add Ex to list of V sets #
add _to_ (Ex)
fi
. - start_new_Ex(TJ) 4 '
- ' fi ’ )
fi
else ‘
#t new gapless set # o
# deal with Ex set as-above and #
- add_to _stair(T;)
e

od.
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.35 Statement of the Algorithm’ ‘
' Step 3 : .
# l"md those. sets Vu ..., Vi that are better appended than mserted.

_ ‘This step is specified in more detaxl than othe,rs,
e "as promlsed in the previous sectlon # ‘

'»# mmahzation #

"last_prepend _pt + bottom(F)' " # bottom of last set, pr‘é"pehded # -

o L

' _od,.'f... S

= _hlghest_prepend set 0

".‘:'_.do

do

# index of last set prepended #

s total_IC ~0  -‘ S # insert: cost 30 far #.
Pl # mdex for current V—set #
: ’whlle i< v i ;3-' ;. # sml V-sets left #

: "‘currST - stau-(V ) # stalr cohtammg V #
-‘maxgap « lowergap (V) - # gap'below Vi=6;. o :
last Iow lnsert, — z -1. #mdex of last; set mserted [rom belOW#

» --.f.whxle [( i) C currST

_':# decxde wh her to prepend or msert. # ERE
N # ﬁrst ﬁnd best meertlon —i.e. below or above #

".best msert +« min {maxgap, uppergap(V )} :
Sif (bottom(V)—last_prepend_pt) < (total IC + - 2 best msert)
"ithen: . . ‘
C# Prepend V # s
. vhlghest__prepend Set. 4= it
“maxgap — uppergap(V) . si .
..last_prepend_pt 4——7bottom(V) '

“else e T : T SR S
: '-sj-‘# better so far to msert V # . S o
‘if maxgap > uppergap(V) S e
’-then e ,
CHV best S0 far mserted before- UiV} #
insert_pt (Vi) «*“before o V)" - w
total IC - total IC =+ 2 uppergap(V ' :
. ‘else B S
4 # Vi and all 1ower sets in S that are not.
‘ prepended .are mserted after 0( Vk) since new. maxgap #
.. for k from ]ast low msert+ l to. a0
cdo’ T
" # change msertlon pomt for V,,#
- insert_pt (V,;) -~ A“after H(Vk)" :
od : ‘ '
last_1 low Zinsert + 1 : SEE
~total JC «~ total IC' + 2 ma‘(gnp
maxgap - UPpergap (V)

5 . L

i i+ 1 # ready to Iook at next V #

total JO=0 T SRRt L

g



RS

'Step 4:
-.# Find those sets that are better appended than lnserted T
. This: step has astructure mirroring Step 3 # STV o

~ #If some sets are both below the hlghest prepend pornt and
-~ "above the lowest append pomt then ﬁnd the largest gap in.
the V-sets H# . : . R

A L hrghest_prepend set > lowest append set
‘then

.

: prepend (PG,, - vhwhnlprqend) L - EY »
. Vappend (Vloveal ‘appendr.c .+ w2 Vy ‘ = s B e _.._‘ "

'3 8. Time Complexity of the Algorlthm' ;

':'._Smce thls is just a sort by sources tlme requrred is O(n log n)

onl'y.O(v)vtlme_ A ,', S

3.5 Statement.of thie ‘Al‘gorithm, AR L »:’; ' L .33

Step 5

hrghest_prepend set i such that (top( ,+1) bottom(V;)):
“'is maximum - 2 Do
l_o‘westLappend__set —it S S G W

: Step 6
- # Burld R #

for k from hrghest__prepend_set-t—l to lowest append set— N
do msert (Vk) R

The steps outhned in the algonthm can be examrned for tlmmg requrrements

:'..,Step 1

Step 2'

) '_Each trlps is tested once' in the order returned from Step 1 Wlth the appropnate bool\keepmg i

,,4

4"each tnp can be dealt wrth in constant trme Therefore thls step requrres O( )
Step3 - ; | .. ‘. g | v. vb‘_.
: Step can pass a11 the requrred ualues for each V-set "I;he‘ innerf‘v‘-whi'le"»’”.l‘oop 'ine‘rerne:ntS', 1 o'n".
, v.‘each 1teratlon Smce iis never decrem.ented the outer loop ensuress there are .no more than v
passes through the mner loop all together The only part of thrs loop that 1neludes more 1teratron '

'lS the “for” loop But each set can be exammed here at most once Therefore thls step requrres

-y



: Step 4

36 ‘Time_Complexity of the Algorithm- B ; R o T34,

A

As for Step 3 O(v) is suﬂ'rcrent

Qtep 5:

R

‘_.'-A smgle pass throu0h each V-set record locates the largest top( +1) = bottom(V))f, and there-

'."fore O( )trme is used in thrs step IR R ‘- e S

Step 6

T
w

'Starrcases need to be: burlt and pomters rearranged as’ prevrously determmed vIl" boo}tkeep‘ing”’is:

_.—thorough thrs requrres only O(n)tlme at’ most 4 C SR SRR AT %

f.,

S

Smce v <o, steps 2 through 6 execute in- 0( ) 3Th~us ordering the trips is,the most eX'pen.-
srve part ol' the algorlthm whrch operates in. trrne O(n log n) iy ; S

The l'ollowmg lemma shows that O(n log n) is: a lower bound on the tlme requrred to solve‘ :

o the IWay del- I problem and thus the algorlthm is of Optrmal“order

5 " ‘Lemma L3 11 F v

O(n log n) is the optlmal order for solvrng IWay del 1

g lproof

S Let A be any algonthm that solves IWay del L Let S {sl - s,,}»be"- asetof n integers; AL
o '_can be used to sort the elements of S as follows Construct 2 tnp T = (s', $i7 —;—) for cach ele-_

v>s

-','ment s; E S Let 1 be an mstance of IWay del 1 consrstmg of the collectron of these tnps Smcef;; 8

'i‘

the trlps m 1 do not overlap, the algorrthm A wrll produce the route R = (T L ,T,u) such

I

2 that" _‘,s‘rc('T-) < src(T‘j;")- -'.{o’r every Jo Thls yrelds 'an ) ordermg : f :S‘, s'uch .that""

.-Vd

i Si, < 8i, < < s, . Thus 4 can be used to sort S But sortmg cannot b(/}: done m less than' _-

. A,}O(nlog n) trme Hence algorrthm A takes at least O(nlogn) tlme The grven algorrthm l'or-.f

IWay del»l achleves thns lower bound and therefore is of optlmal order



: CHAI'?"TER- 4

S

: T HE ONE DIRECTIONAL CAPACITY K > 2, DELIVERY PROBLEM

: t

o
' l
l

Although the one dlrectronal dehvery problem wrth capacrty one can be: solved m polyno- L

S

.4 content of this chapter( The problem l‘or capacrt)\' two 15 30 far unsolved and 8 dlscussed l'urther b

mChapterS N = e E S ~

T \\»‘.' ’ .

4 1. Deﬂnitions o

>

A set O[ trlps T has the same meanlng here as,\)m Chapter 3. Other deﬁmtlons with the"v" '

T r.
" o

o exceptlon of route such as. src, dest ls gd top, and 5ottom are also used here a8 in Chapter 3'

_ For capacrty k>1 1t is no' longer true that a route is made up of trlps ]orned together by lmks

o

{1' Y"v N ’-"‘_n} For arbltrary ﬁxed capacrty, k 2 route, Ra, is an, ordenng» R = '

',of ‘the ‘7n. pomts {31, e ‘s.l.,dl, , d, } of sources and destmatlon‘qtv'nlvg,f“_fl;iir‘)s.in F Vé‘ccéfdvin‘g,tq'-‘l -
o 5 che arrangement a. In addltlon it ls necessary that e Tl

:;v.f_l_ .~E6r e\'ery i,,*.s.?preced.c_f‘é d,i :}nd‘ IRt “: ,. e i R i

B

'»b‘ nation_s‘up to and includi_ng ‘posltion j'._i_s'less tlian ‘o_r eq'ual tobk, »
L .

‘ .-iThese two condrtrons ensure that packages are prcked up before they are delwered and that the

,}k = 1 15 equrvalent to the deﬁmtron ol' a route in: Chapter 3

W

For every 7; the number of sources upv_to and:including position minusthe‘number of desti~ "

L mral trme the problem is’ NP—completea for capacrty greater than or equal to three Thrs is the -

'_‘car is never carrymg more than Ic packages at one tlme Notlce that thls deﬁnltron for the case

s 4F



than that, it cannot achieve the lower bound. .

4.1 Definitions S L S -

4.2, A Lower Bound for Route Length ‘

¢

Because tnps can “be combmed together when capa.crty is’ greater th:m one, the. overhead as

_deﬁned in Chapter 3 no longer has mennmg Strll a lower bound is useful but one is. denved here

‘.for the total route length rather than for the overhead The length Len, of a route is

Len(Ra)=

The sources’ and destlnatlons of trips in F partltlon the lme segment l'rom bottom(F) to

‘top (I‘) mto no-more than 2n -1 pleces Let pl,pz, S ,pq, (q <2n) be the pornts correspondmg to’

. sources and destmatlons in’ F taken ‘in order from least to greatest L‘e\t p( ) be the number of

"6

“trips contamlng the lme segment PiPis1 Slnce‘ k packages at most _ean’ be carrvred_: at one tlme,;.

and since. all trip.s, are fOrward_,( there must ‘be: at’lezet Q[M] ~ 1 passés through ‘this ‘line seg- -

k-l

.~ ment to .c:o_r:np.le‘t'e thes_e_ .dleliv_er'i'es.’ Therefore a distance of at least "(p.-+‘1 - p;)i[Q[ﬁ(i)v—.l ;.1] must

:-‘-IC

‘ cAbe‘tr‘hvelled for each line segment. Summing these over successive segments yields the l'ollow'ing'".‘
: lo_wer,bound. i

“Lemma L4 1

A lower bound on the length of a route R l'or the IlVay del—lc problem on.a set of trxps»
F = {Tl, . T,,} ‘partrtlomng the, line - .segment wrth “points p_i, ,pq Tis
2%: p,+1 " PR ] (pq = pl)
: r..-l ) IR B RN ‘

If there is'a route that starts at the least source, ends at the greatest destlnatlon always"'

'vtravels l'orward wrth a full car, and backward wrth an empty car, then that route passes through _

k=

P p,-*liexa,ctly Ql-p—(i):‘ :'—- ]'j-tvimesl,pand‘_ -a'c,h_‘ieve's ,this_ ,lower bound. »Also,] »'sincee'very interval £

P Piaa ‘must be. travelled at least Ql-ﬂkl):l_l times, i a route»trvavelsi'z'in)"li‘nter(/al more times " L

.
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. 4.2 A Lower Bound for Route Length ..

| 4'.3‘. Problem 'De‘ﬁnltlon

441 Proof of _Comp_leteneEB for ,‘C'ap‘a,city Three -

o .Theorem T4 1

_.prool'

o

BN
Y
A

-

For capacrty = 1 the optrzcmti\c')n verslion' of the one directional delivery Problem v,vas of -

' mterest To prove N -completeness ol’ the capacrty > 3 problem the correspondmg decrsron ver-

sron is necessary The capacrty —-,k one dlrectlonal decrsron dehvery problem is deﬁned as:

‘ Declsion 1Way del- k o Y .
- Instance A set r ol' n trrps {Tl, .. T } such that src(T ) < dest(T ) and a bound B > 0

L Questlon Does there exist a route R through r that has length less than or equal to B"

5

: "4 4. 1Way del-kls NP- completefork>3 R L . Loy )

The reductron is: from the Exact Cover by Tl,f\ree Sets, {XS‘C} problem Thls problem

w

s was proved NP—complete by Karp[1972] )[80 is deﬁned by : L L ) (

X.?C ” By

o

Instance A ﬁmte set\)x thh |X| = 3q and a collectlon H = {Cl, R ,C,,,} of ".th/reeelem;envt’, ;

subsetsofX _' . SO R

L Questron ‘Does T1 contam an exact cov er for X’ That is, does there e\ust a subcollectron H' c I

such that lrj every z E X T G C‘, H' for exaetly one r

' _Notrce that I'I’ isan e\(act cover for er and only it U C =X and. |l'I’ l-—q

CEH’ )

IWay del- 3 is NP—complete | _

-

v._IWay del~lc and hence IWay del-.? are 1n NP srilce the general dehvery problem 15 in NP and thrs 5 3

Coisa subproblem -

L To show that IWay del- 3 rs complete XBC is transformed to rt Let an arbrtrary 1nstance,‘.

, .Of XS‘C'-be,specrﬁ‘ed ’b)’ 'X= {zy, - zg,,} and H— {’Cl, C } sueh that each‘

P =



4.4.1 Proof of Completeness for Capacity Three . R 38

"C, = {z, ,z, ,z, } where z, € X To,construct an instance of vllVay del-3 from thi,é, a line _seg- ‘

ment m + 3¢ + 1 umts long is requu'ed and points labelled at unlt dlstances One endpomt

.and the followrng m- 1 pomts are consecutxvely labelled C,,Cy, .. .., Cpy. The followmg 8q pomts--

~ are labelled zl,:rg,‘ L. ,:534 The’ second last pomt is labelled out and the last pomt in. See Frg-

ure 4.1. This line segment is.assumed directed from C, to in, and trips are embeddcd in thrs line .

segment always in, ‘thi_s'direction. The set T’ of vonstructéed trips consists of 6m members, which

“

~ can be partitioned into 3 sets,

Thé ﬁrst set l‘l only depends on the size of X. For ev ery ) from 1to 3q, construct the"‘

‘ tnp T = (z,,m) Let l"l {Tl, S qu}

CR

~

The second set, F depends on thL number of occurrences of each I, in the collectlon n:

R Leb r](z,) be the number of trmee that z; appears in the collectlon I For each 1 from 1 to 3q,

b_con‘struc‘t n(z,) 11dent1cal tnps T,, = (x,,out) 1<j< n(z,) -1.. Let&»—- ‘ U g {'T,»?J-l .

3

by B

1<

The set I"3 is determlned by the contents of the sets C, in-IL. For each C,E[I construct the =

',mmmmn, m@nm]~w3Laﬂ U{nﬁvwwmr—ruruﬁmmﬂ“

1I<5€3. .

~

et "-‘ - Ry

Mi

.9
=2

ltz;_
L

(out - C,)*—l2 2q(m - out) (zneCl)

2l

- —‘2m3q+ 221+ 2q—(m+ 3q+ 1)

- R — e : : R
'#ﬁmrﬁmﬁw*Lvlﬁﬁud' o Tl

" The complete constructlon is |llustrated in Flgure 41, P T

'

Note that |1"l| = 3q and |F3| = 3m and that each tnp in these, sets can be constructed' o

'in"constant‘trme Smce t/here are m 3—element subsets contalmng elements of X the sum of the

number of decurrences of all z, in UC, is 8m Therefore i(n (£)-1) - v3(m—‘q) _-—-" [I‘*.| These »

szt

T

‘trips‘ «can also each be const‘r_ucted m 1Constant .time. Determrn,lng"n(:r,»)‘for.‘:é.ll i requiresfzi's’ivngle o
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pass over the sets in M, and. therel'ore t:ﬁke .time_ .proportional “to m. So

r| = 3q + 3m + 3(m q) = 6m, and the construction of thls mstance of 1Way del-3 from an

Y

1nst:mce or X3C 18 polynomml m m. It remains to show that I contams an exact cover of X if -

~and only if I has'a route of length less than or equal to B.
By lerﬁmn U4.1, /;i-\lower bound on th_e' length’ ol' a route 'for_l" 18 '
m+ 3¢+ 1 .\l 5 | . |
_2 (Pivi—Pi) p3 - (in = CY)

i=1

221[—:]+ 9}51[ ]+ 10[-35‘1-1--(m+ 3q.% 1)
=2[m—_*-—l'l]+3qum+2q (m+3q+-1} v

2
= 6mg + m*-g¢q - 1
But thlSj the bound B Therefore it ls suﬂrcnent to sbow that TI contains an e\(act cover if and

only if T has a. route of length exactly B " v _
. R o

Suppose -that H’ CcIl is an'exact cover of X Let a route R for T proceed a follows.' R

- \starts at C, and plcks up all 3 tnpx\ T8, It ¢ = {z ,:tl?',il-} e then :is the car Jasses each

,destlnanon of TIJ, it completes thaﬁ trlp and lmmedlately plcks up the trlp (zl .in) in I“1 These

‘ tnps are completed by travellmg tb in. Otherwnse ll’ C ¢ H then as the car ‘passes each destl-

: \natlon of TU, it 1mmedlately pxcks up one of the trips- (zl ,out) m Fz These trips are all com-

Ed

out always mamtammg a fyll load without backtrackmg Il' the car ends at al‘ter thxs ﬁrst for- -

._ward pass, it travels empty l'rom in ,b:mk to out.

For each remammg C, that is not.in H’ the car now travels from out to C and back t,o
From out to C, the car is empty At‘. C, it pleS up all 3 trips T} *j»-and changes dlrectlon

.headlng for out As rt passes each of its current destmatlons it picks up ‘the tnp (z, ,out) E r?

'
PN

and proceeds to out.

pleted by travellmg to out In elther case, the car hns started at ¢ and travelled drrectly toinor
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Now for each remaining Cy € H’ the car moves dlrectly back to. C,, and then forward to in.
3
Travellmg backward to Cy, the car is empty At each C,, it plCl(S up the, three trrps T,”

' changes drrectron As it passes each ol‘ rts current destrpatlons it 1mmedntely prcks up the

correspopding trips (:rkj,in) er? and_uprocee'ds to.in.. . ‘ . Lo

a’, . ‘ .
- : ) . . v

i B . . . ) » ) - . R . . ﬁ . .
Since. this route .starts at the least source and ends at the greatest destination, travels for-

ward with a fu‘ll\clar',. and biickward with an empty car, it must achieve the lower bound. Thus

the route has length B.! Therefore, if TI contains .an exact cover then there is a route for I' with

length less than or equal to B.- o L ' X

Te

Conversely, suppose there is a route, R, for [ with length B. Since ];?”is the lower bound, R .

travels through each interval p; p;i1, exactly"‘l[—p—(:;—'l-'):l -1 times, ’va‘nd t/gerefore forward through -

'

each interval at most oli) times.” Byt by.' the c_onstruction of T, each interval p; p;,, has.a
. ; 3 _ , o : - +1 .

|
z 0

multlple of 3 trips passmg through it. Each mterval C,Ciyqis contamed by 3l trips; each mter-‘
~ val from C,, to out is contamed by Bm trlps and the 1nterval out in rs contamed by 3q trrps '
‘ Therefore ‘when R travels forward through an mterval it must have a l'ull car. Also fora trip T -
and any mterval pirie C T, the package for T must be carrred through that interval only one -
time. Otherwise all'p_(i) trips in p, p,-;1 cannot be ¢ompleted in ﬁ(lii):l forward passes. This

' implies that when R travels backward, it must have an empty tar.

4.

Now consrder the Bq tnps contalmng out n. R must complete them. in g-forward p‘asses,

_each trme executmg 3 delrverres. On any one pass through out in in, let T,,T,, Ty be the trips

being executed These trrps have unique sources, say Z,,%,,Zy smce all tnps to zn have unique

l

sources. But then the three tnps completed by R ]USt prror to T,,Tu, and T, must have ter-

mrnated at’ x,,:cu, and Zv, since otherwise R would have to travel l'orward without carrymg full

4

"capacrty or backward without bemg empty Let these trips [ be T ,,T’,,, and T’ v and therr

.1 This can also ‘be seen by-calculating the length of the described route directly.

. L . " ) 1
. .
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sources be C,,C,, and.C, in _{Cl, ...,Cm}. Since no trips terminate in this Se‘t, R must have

“been travellmg backward _before these trlps Hence C, =C,= C, since votherwise again R

wc\;uld be travelling forward not full or backwa.rd not empty Srmllarly ‘the remaining ¢- 1 passes

\
through out in isolate a unlque pomt C,, {Cy, .. C } "The sets in H‘correspondmg to these

. \ (4 o
pomts form a cover for X of srze q, which must therefore be an exact cover. Thus if there is a .

l
route R*for T of length less than or equal to B, then I contalns an exact cover for X. O e

)

v

4. 4 2. Proof of Completenesa for Capaclty Greater Than 3

4

It remains to show that 1Way del-k fors ;any k > 3 lS also NP—complete This can be done

" by supplementlng the previous constructlon with additional trips.

Corollary C41 S S B N

A\

lWay del- k for any £ > 3, is ’VP—complete o - ‘ N

_proof:
‘.IWay del-k is clearly " in NP smce a . non- determmlstrc algorlthm need only guess a l‘easrble :
arrangement of the 2n pomts consrstmg of sources and destmatrons of trips and check that the

/

correspondmg length is less than or equal to B.

EBC re agam used . l'or the transl‘ormatron Let T be the set of trips: constructed from an
Ains.tan'ce of ESG.in the- previous~prool‘ F‘or each l 1<l<m define k - 3 rdentrcal trrps_ '
- T!y ;= (Cy,o0ut) l’or 1<4] < k-3. Also deﬁne (k- 3)q 1dentrcal tnps T = (out m) for
1<i< (k~3)q Let T be the set of trips T supplemented wrth these extra (k 3)m + (k- 3)
ltnps deﬁned above. Set the bound B to .be_ the same as deﬁned in theorem T4.1. Then' it is
'strarghtforward to see that there is an exact cover for X if. and onl_y if there is a k-capacity rout:

through T of length B. The extrzi trips enforee a full car for all forward motlon, and prevent

simultaneous completion of trips starting at more than one point Cj. a



CHAPTER 5

CONCLUSIONS AND FURTHER RESEARCH

-

'5.1. Observatlons Concernlng the Delivery Problem
, g : ]

The '.question of why a problem is_ NP-complete could have direcﬁ beyaring o"u’whethler
P = NI; Tlxerefore the answer wrll typlcally be dlﬂ'rcult However, there is one part of the.

1Way ‘del- k problem for a constant k that can be isolated as bemg polynommlly solvable thus

mdrcatmg that thrs _part alone is not responsrble for the dlﬁ'roulty of the problem Suppose some . .

oracl\ declared the optrmal order in which to plck up the sources of a glven collection of trips.
Bccause of the two restrlctlons on l’easrble routes, 1) sources precede corresponding destmatrons
and 2) no more 'than k deliveries can be. currentb there are well deﬁned limits on the mtermcdrate
msertron of destmatrons mto thei route. A dynamic programmmg ‘approach requrrmg only ‘polyno-
-mral trme can be used to place the destmatlons optlmally Thls is shown for capacrty k—” in the
section of this chapter enmled “Open Pro.l)lems‘ InJ thls case the msertron of destmatrons has
complexity O(nﬁ). - The g'eueralization to arbi;rary ﬁ;(ed capacity k results in-an ‘algontl’rm. with
. ‘ : -
-compleuty o(n** l). Similarly, the sources can be inserted,optimally into a ﬁﬁged*ordering of the
_destinations .in'polyn\omia;l time, Il, vappears, therefore, t_hat‘ the problem’s dill'icully‘ isvndue to the
woy that‘ sources end de_stiuatior'rs inreralct and cannot be att.rlbuted to either part individually. .
Arlother obServ.atio‘n involves the complicated solution to lll'Vay. delél: "prese:n'ted in’ Chapter
‘3 A lot of appérent comple\ut,y ig’ due to seeking an optimal route rather than an optrmal tour.
1t just a tour had\been requrred tlre solutron would have been much srmplrer because the extra

‘ detarls to. accommodate specral properties of startrng pomts and ending- pomts would disappear.

\

' The solutron becomes one of derrvmg the lower bound Zd - Zs + 22 g; for the overhead of

=g i=1 =1

-+ any tour through I'. This is just a corollary. of lemmas L3.2, and L.3.4. Then it is e:isyato/(show ,
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that this lower bound is aIWays attamable using the same method as used to derive the 1UB in~
Chapter 3 This type of srtuation is not, particularly rare, Frequently such a lack of symmetry .

hides a lot of inherent sxmplrcrty.

5.2, Corollaries to the Completeness Result ‘

The NP-completeness of the two | direvctional k .capacity, . delivery | problem,
delzvery(lD 1W kcap) follows {rom the completeness ol‘ IWay del k smce the one way problem‘
‘is a restrlcted version of the more general two way problem Alternatlvely, this result can be pro-
ven directly usrng a modlﬁcation of the reduction constructed in Chapter 4. For capacity 3, it s

o

sufficient to construct 3q return trips from in to out’ and 3 trips from out to each ol' the C'

i

except C,. Then there is an exact cover if and only-if there is a route such. that the car is always

" full. The extension to "capacity: k simply mimics the extension for the one way case.

Another variation,. called the direct delivery problem requires “that once a package is
picked up at s,, the car must travel directly to d; wrthout any backtracking. Itis allow;ld to plCl( v
‘up 'further packages bel'ore delrvermg T; only if they are en route%g d;. Even though" this is'a
further restrictionor 1 Way del-k, the direct delivery problem remains NP-c.omplete.-' ln fact the

proof in Chapter 4 that E3C reduces to IWay del-3, a.ctually constructs an instance of the direct -

dqlivery problem thus provmg ‘the claim.

5.3. Open Problems:

The problems l'or capacrty. ‘equal * to 2 1Way del- 2 and the' two way version
delwery(lD 1W 20ap) are unsolved A completely d\ﬁerent approach seems necessary in order to
determine the-statu's of these. problems The usefulness of E3C for. attackmg this problem’-—"
h ap‘pears‘e)‘(hausted at capacity \equal to 3.

- Howe,ver if the optimal ordering of the sources 1s lr’nown, then tliere is an algor‘ithm that
,inserts.the destinations optimally in O(nf) time. Let $ = (s, ..,5,) be the oracle’s ordering

of sources for the optimal route. Construct a multi-stage graph with n stages. Each node in. the
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7™ column (stage) represerii.s a possible configuration in the car immediately after picking up the
source g;. Thus there is one node for every possible set of undelivered destinations. At the j®
- stage each of these sets contains destination d;. A node may :xl.ﬂ{o contain 1 other undelivered des-

tinations selected froﬁl the 7 -1 trips already picked up. Therefore the j™ stage contains
1+ (J 1]— j nodes. Flgure 5.1 illustrates the multl-shge graph for n = 5 when capacity

k = 2. Nodes may have a size of 1 (just d;) or 2 (a full car). Nodu of élze 2 have three succes-

sors since either 1 or 2 different destinations are visited before going to the next source. Nodes of

size 1 have two successors since the current destination can be either visited or not before going "'

"to the next source. Therefore the number of edges going from nodes at stage j to nodes at stage

4

e lis2+ 3(-1) =3 -1 N
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Figure 5.1 N“Iulﬂ-_sta‘ge‘ g}aph for 5 trips
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Smce an edge ‘between a node at stage i and a node at stage ]+ } represents the delwery of

0, 1 or&'2 tnps the optrmal ordermg for these delrverres can be found n constant trme say K

’ ,Let the cost ol' calculatlng all edges between stage i and stage ] be denoted C, - Then the cost of

.

. 'mmg ovier all stages ylelds Cl . S Z K (3@)1) = 0 A ﬁnal stage of the multr-stage grnph

.4

“is requlred to represent the delrvery ol’ the destmatlons remalmrl:'g after s,, 18 prcked up ThlS cost -

PP

‘.'_Y"rs bounded by 0( ) Thus the destlnatrons can be mserted optlmally mto ‘the ordermg of the

°

s‘ources in ,time‘ prop‘ortronnlto ni o BT ERR T SRR

\

: -’s\tack or a. queue the problem changes srgmﬁcantly It i3 not known xf thrs restrrctlon is suﬂ'rcrent -

a srmple closed curve has been\tudled in the one drrecnonal case lt seems lrkely that the

v_/. i

e\x_,/) - : =

correspondmg two dlrectlonal cage can be solved by combmmg some results from both the ‘two

.q

,drrectlonal lme segment versron and the one dlrectlonal crrcular versron ln any rase, except when :

/
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: '5 4 Appllcatlons T T R .
“ The: problem delwer"y(lD 1W lcap) onglnated as’ a manufacturlng mdustry problem whleh L

‘f was erroneously thought to be NP-complete Eﬂlcrent dellvery systems are one. appllca\tron of thelb g

LS

",T.‘work presented xn thrs thesrs However the pnmary results ol' this thesrs determlnmg a set ‘of res-

tnctrons that can, be applred to a probleim wrthout srgmﬁcantly srmplﬂ‘ymg it; are at present

:

Other va,rratlons could be consrdered Ir the packages on the car wartmg for dellvery form a

23

calculatmg all edges between: stage _1 and stage ]+l. is: bounded by C) 1+1 < K (8] - 1) Sum- o

’ f‘to make the problem a member of P As‘ prevrously noted the varratxon where the car travels on,:

Ta partlcular appllcauon warrants rt pursumg numerous slrght vanatlons does not: appear to be a R
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