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A bstract

Switching systems are a particular class of hybrid system consisting of several dy­

namical subsystems with rules tha t determines the switching among them. Most 

references only dealt with continuous switching systems, especially the switching 

systems with subsystems of same “order” . This assumption is restrictive and is 

not based on theoretical foundations but on mathematical convenience. This the­

sis proposes a backstepping approach to design stabilizing controllers for a broad 

class of nonlinear switching systems, which consist of strict feedback subsystems. 

By switching between sub-controllers, the backstepping-based controller can stabi­

lize the unstable switching system or achieve asymptotic tracking. Meanwhile, the 

Lyapunov functions in quadric form are obtained simultaneously in the procedure of 

controller design. Based on the multiple Lyapunov function theorem, some sufficient 

conditions are given to guarantee the stability of closed-loop switching systems. Fi­

nally several examples are given and discussed to illustrate the theoretical results 

for both same-order and multiple-order switching systems.
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C hapter 1

Introduction

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Switching systems have attracted a great deal of attention in recent years [1, 

2, 3, 4, 5]. This is mainly because switching systems constitute a special class of 

hybrid dynamical systems tha t take specific and simple forms and thus have numer­

ous applications. There are many practical problems where physical or complexity 

constraints limit the available choice of controllers and control action must be de­

termined by switching among a finite set of given control laws. Typical real-life 

examples include car transmission systems, process control systems, mobile robots, 

etc. We are interested in developing a new, general methodology for designing 

controllers for a broad class of nonlinear switching systems, especially for those of 

multiple orders.

1.1 B ackground

Generally speaking, a switching system can be viewed as a family of continuous­

time dynamical subsystems with a rule to determine the switching between them. 

They have numerous applications in control of mechanical systems, automotive sys­

tems, aircraft and air traffic control, switching power converters, and many others. 

Some examples of such systems are discussed in [6], [7] and [8], Another source of 

motivation for studying switching systems comes from the rapidly developing area 

of switching control. Control techniques based on switching between different con­

trollers have been applied extensively in recent years, particularly in the adaptive 

context, where they have been shown to achieve stability and improve transient 

responses.

An overview of general results and ideas regarding switching dynamical systems 

is given in [1], The paper surveys recent developments in three basic problems 

regarding switching dynamics: stability for arbitrary switching signals, stability for 

slow switching signals, and construction of stabilizing switching signals. These three

2
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problems are very general and address fundamental issues concerning stability and 

design of switching systems. Some theoretical results have been obtained lately for 

input-to-state stability (ISS) of switching systems in [2] and [3]. Sufficient conditions 

for switching systems to be input-to-state stable are given under the assumption that 

all subsystems are input-to-state stable in [9]. A cycle analysis method is used to 

derive a switching controller for the integral-input-to-state stabilization (iISS) of 

switching nonlinear systems in [4]. Optimal control problems for both continuous­

time and discrete-time switching systems are formulated and investigated in [10]; 

this paper formulates optimal control problems for switching systems and proposes 

some solution methods. Both continuous-time and discrete-time switching systems 

are considered. A two stage optimization method and a dynamic programming (DP) 

approach are studied in detail. Nonlinear switching systems with state dependent 

dwell-time are discussed in [11]; this paper analyzes the asymptotic convergence 

of nonlinear switching systems in the presence of disturbances and discusses the 

two im portant cases of locally exponentially stable and feedforward systems. An 

interesting LMI method for controller design of switching systems is discussed in

[12]; the paper establishes a relationship between Lyapunov stability and topological 

properties of autonomous switching systems.

To solve the control problem for nonlinear switching systems, Lyapunov func­

tion theorems are studied and discussed frequently. As is pointed out in [2], the 

existence of a common ISS Lyapmnov triple implies tha t the switching system is ISS 

for arbitrary switching, and similarly for iISS. Converse Lyapunov theorems for ISS 

and iISS of nonlinear switching systems are proved in [3]. Their proofs are based 

on existing converse Lyapunov theorems for ISS and iISS of nonlinear systems, and 

on the association of the switching system with a nonlinear system with inputs and 

disturbances tha t take values in a compact set. Also, multiple Lyapunov functions

3
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are introduced to analyze Lyapunov stability of switching and hybrid systems in

[13]. A hybrid nonlinear control methodology for a broad class of switching non­

linear systems with input constraints is proposed in [14]. The key feature of the 

proposed methodology is the integrated synthesis, via multiple Lyapunov functions, 

of “lower-level” bounded nonlinear controllers and “upper-level” switching laws that 

orchestrate the transitions between the constituent dynamical modes of the switch­

ing system and their respective controllers. However, these papers fail to propose a 

general method of controller design for nonlinear switching systems. Thus, though 

some theorems have been established in previous papers to verify the stability of 

switching systems such as the common Lyapunov function theorem and the multiple 

Lyapunov function theorem, controller design for nonlinear switching systems is still 

an open problem, which is the focus of this thesis.

Switching systems can be classified as either time-dependent or state-dependent 

systems. Under some conditions, each of them can be transformed into the other [5], 

Switching systems can also be classified as continuous and non-continuous switch­

ing systems. Continuous switching systems are those where whenever switching 

occurs between two subsystems, the “states” of both systems are identical. This 

assumption is restrictive and is not based on theoretical foundations but on m ath­

ematical convenience. In particular, with this assumption, all subsystems forming 

the switching system must be of the same “order” . Though some results have been 

established to verify the stability of switching systems of the same order, such as the 

common Lyapunov function theorem and the multiple Lyapunov function theorem, 

switching systems of multiple orders are virtually unexplored and very few results 

are available in the literature. In addition, controller design for nonlinear switching 

systems is also a challenging problem. In this thesis, we are interested in develop­

ing a methodology for designing controllers for a broad class of nonlinear switching

4
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systems, which could be of either same order or multiple orders.

The main tool used in the controller design is the so-called backstepping pro­

cedure, one of the most powerful approaches of controller design for nonlinear sys­

tems. We propose a new backstepping approach that is capable to stabilize nonlinear 

switching systems. Our procedure is constructive and permits obtaining Lyapunov 

functions in the same quadratic form for all subsystems of the switching system.

1.2 T h esis  O rganization

The rest of this thesis is organized as follows.

In Chapter 2, we first introduce switching systems, especially those of multiple 

orders. The stability and control of switching systems are discussed with corre­

sponding Lyapunov function theorems. Then the classical backstepping approach 

for nonlinear systems is introduced at the end of this chapter.

In Chapter 3, we analyze the classical backstepping procedure first. Then we 

propose a new backstepping procedure to design switching controllers, which can 

stabilize switching systems of both same and multiple orders. Also in our design 

procedure, we can obtain Lyapunov functions in the same quadratic form for all 

subsystems. Thus the stability of closed-loop switching systems in either the time- 

dependent or state-dependent cases is guaranteed by the Lyapunov function theo­

rem.

In Chapter 4, we prove tha t the proposed backstepping approach can stabilize 

nonlinear switching systems if certain sufficient conditions are satisfied. Then several 

examples are given and discussed in detail. The simulation results show tha t the 

proposed backstepping approach can be applied successfully for controller design of 

nonlinear switching systems.

In Chapter 5, we extend the backstepping design procedure, so tha t the backstepping-

5
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based controller enables the output of a switching system track the expected signal, 

which could be any first-order differentiable signals. Several examples are given to 

illustrate the validity of the proposed backstepping approach.

Finally, conclusions of the research are drawn in Chapter 6.

6
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C hapter 2

Switching System s

7
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In this chapter, some basic definitions and classification of switching systems are 

given. Then, the stability of switching systems in both same-order and multiple- 

order cases will be discussed and analyzed in detail.

2.1 B asic  C on cep ts o f  S w itch in g  S y stem s

By “switching systems” , we mean hybrid dynamical systems consisting of a family 

of continuous-time subsystems and a rule tha t orchestrates the switching between 

them. Recently, the study of switching systems has received a great deal of attention. 

Switching systems have become a rapidly developing area of intelligent control, an 

im portant source of motivation for this study. This is mainly because switching 

systems constitute a special class of hybrid dynamical systems, which have broad 

applications and take specific and simple forms. The issue of stability of switching 

systems is considered to be of great importance and therefore has been studied 

extensively.

D efin ition  2.1 Consider a switching system that consists o f the following switched 

subsystems

Xi{t) =  f i(xi(t)),  i €E {1, -• -, -/V} (2.1)

where Xi(t) £ R ni, with given rules for switching amongst them. We add the follow­

ing rules:

1. Each fi  is globally Lipschitz continuous, which guarantees the existence and 

uniqueness o f solutions o f each differential equation.

2. The i ’s are p icked  in such a w ay  that there are f in ite  sw itches in f in ite  time.

According to the above definition, we see tha t a switching system can be viewed 

as several continuous-time subsystems with (isolated) discrete switching events. A

8
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switching system may be obtained from a hybrid system by neglecting the details 

of the discrete behavior and instead considering all possible switching patterns from 

a certain class. This represents a significant departure from hybrid systems, espe­

cially at the analysis stage. In switching control design, specifics of the switching 

mechanism are of greater importance, although typically we will still characterize 

and exploit only essential properties of the discrete behavior. Having remarked for 

the purpose of motivation tha t switching systems can arise from hybrid systems, we 

henceforth choose switching systems as our focus of study and will generally make 

no explicit reference to the above connection.

After giving a universal formal definition of a switching system, we now describe 

several specific categories of systems which will be our main objects of interest. 

Switching events in switching systems can be classified into

• Autonomous (uncontrolled) versus controlled

• State-dependent versus time-dependent

• Continuous versus non-continuous

Of course, one can have combinations of several types of switching. We now 

briefly discuss all these possibilities.

a  Autonomous (uncontrolled) versus controlled

Switching systems are of “variable structure” or “multi-model” ; they are a simple 

model of (the continuous portion) of hybrid systems. The particular i a t any given 

time may be chosen by some “higher process,” such as a controller, computer, or 

human operator, in which case we say tha t the system is controlled. It may also be 

a function of time or state or both and receive no effect from outside, in which case 

we say tha t the system is autonomous.

9
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b State-dependent versus time-dependent

• State-dependent switching 

Suppose tha t the continuous state space is partitioned into a finite or infinite 

number of operating regions by means of a family of switching surfaces, or 

guards. In each of these regions, a continuous-time dynamical system is given. 

Whenever the system trajectory hits a switching surface, the continuous state 

jumps instantaneously to a new value, specified by a reset map. In the simplest 

case, this is a map whose domain is the union of the switching surfaces and 

whose range is the entire state space, possibly excluding the switching surfaces 

(more general reset maps can also be considered, as explained below). We call 

this kind of switching systems state-dependent switching systems. In summary, 

the system is specified by

-  a family of switching surfaces and the resulting operating regions;

-  a family of continuous-time subsystems, one for each operating region;

-  a reset map.

In Figure 2.1, the thick curves denote the switching surfaces, the thin curves 

with arrows denote the continuous portions of the trajectory, and the dashed 

lines symbolize the jumps. The instantaneous jumps of the continuous state 

are sometimes referred to as impulse effects. A special case is when such 

impulse effects are absent, i.e., the reset map is the identity. This means 

tha t the state trajectory is continuous everywhere, although in general it is 

not differentiable when it passes through a switching surface. Most references 

restrict their attention to systems with no impulse effects. However, many of 

the results and techniques tha t we will discuss do generalize to systems with 

impulse effects.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.1: Example of a state-dependent, switching system

• Time-dependent switching 

Given the family P, we consider the switching system

x(t)  =  f s(x(t),u(t))  (2.2)

where x(t)  € R n,u  e  e and s is a switching signal, i.e., it is a piecewise 

constant function s : [0, +oo) —> T; we will denote by S  the family of the 

switching signals of a given switching system. Associated with each s 6 5  

there is a sequence of real numbers 0 =  to < ^i < < h  < ■■■ and a sequence

of indexes ero,cri, ...,0-*.,... such tha t s(t) =  ak for all tk < t < tfe+i- This is 

a typical example of time-dependent switching system. An example of such a 

switching signal for the case S  = {1,2,3} is depicted in Figure 2.2.

Note tha t it is actually difficult to make a formal distinction between state- 

dependent and time-dependent switching. Each of them can be transferred into the 

other one. Thus, without losing generality, most of the following work is done on 

the basis of time-dependent systems.

c Continuous versus non-continuous
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Figure 2.2: Example of a time-dependent switching' system

Switching systems can also be classified as continuous and non-continuous sys­

tems. Continuous switching systems are those where whenever switching occurs 

between two subsystems, the “states” of both systems are identical. If tha t is not 

the case, then the switching system is called non-continuous. Also according to the 

values of the ra*, the non-continuous switching systems can be classified into the 

following two categories.

C ase 2.1 I f  all of the rii’s are equal, i 6 {1 , . . . ,  N }, the switching system will be 

said to be o f the same order. Virtually all references dealing with switching systems 

in the literature consider same-order systems.

C ase 2.2 I f  some i ^  j , i , j  G {1, . . . ,  AT}, we have that Hi ^  n j, the switching 

system consists o f subsystems with different orders.

In Case 1, we can use established theorem such as the common Lyapunov theo­

rem to study their stability. In this thesis, our main interest is in switching systems

12
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of multiple orders. Of course, the result can also be used in switching systems of the 

same order (Case 1). In Case 2, some of system states only exist in certain subsys­

tems and corresponding time intervals. Thus, the classical definitions and theorems 

of stability are not applicable. As a consequence, we need to redefine stability for 

this type of switching systems.

Before introducing the definition for stability for general switching systems, we 

need to discuss and classify system states and subsystems which play a very impor­

tant role in this kind of switching systems.

The states of switching systems can be classified into the following categories.

1. Common states. These are the states which exist in all subsystems. They may 

be continuous or discontinuous at the switching instance. However, they will 

lose differentiability when switching in most cases.

2. General states. General states do not exist in all of subsystems. They only 

exist in some of subsystems. In the other subsystems, they are inactive. Thus 

the reset values of such states when they are activated is a very im portant 

issue, which will affect the stability directly. The example in chapter 3 will 

show this point clearly.

Though the states can be classified into the above two categories, they have 

effect on each other and determine the stability of switching systems together. This 

makes the analysis of such switching systems more complex.

In addition to the system states, it is necessary to classify the subsystems forming 

a switching system into one of the following two categories.

1. Provisional subsystems: These are the subsystems which are only activated 

before a certain time t s . This means tha t when t > t s , they will never be

13
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activated again. Thus some of the general states, which only belong to these 

provisional subsystems also disappear after t s .

2. Common subsystems: Aside from provisional subsystems the other subsystems 

are called common subsystems. After a certain time, all provisional subsystems 

are no longer activated and the system switches among common subsystems.

A switching system may have no provisional subsystems, but must have at least 

one common subsystem. Also we can see that, as to the stability of switching 

systems, common subsystems play a more im portant role. Compared with the same- 

order switching system, the multiple-order switching systems show many complex 

properties because of its own structure. In the following part, we will investigate 

stability issues for both types of switching systems separately.

2 .1 .1  S a m e-o rd er  S w itch in g  S y s te m s

A same-order switching system is a switching system defined in Definition 1.1 with 

the equal rq, i £ {1,..., N }. Its stability can be defined as follows:

D efin ition  2.2 We will say that a same-order switching system is uniformly asymp­

totically stable i f  there exist a positive constant S and a class ICC function (3 such that 

for all switching signals a, the solutions of 2.1 with jrc(O) | <  <5 satisfy the inequality

®(*)| < /3(|*(0)|,t) Vt > 0 (2.3)

I f  the function (3 takes the form  (3(r, s) =  ere for some c,A > 0, so that the above 

inequality takes the form

1^001 <  c|x(0)|e Xt Vt > 0 (2.4)

then the system (2.1) is called uniformly exponentially stable. I f  the inequalities 

(2.3) and (2.4) are valid for all switching signals and all initial conditions, we obtain

14
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global uniform asymptotic stability (GUA3) and global uniform exponential stability 

(GUES), respectively.

Equivalent definitions can be given in terms of properties of solutions. The term 

“uniform” is used here to describe uniformity with respect to switching signals. This 

is not to be confused with the more common usage which refers to uniformity with 

respect to the initial time for time-varying systems.

Traditional Lyapunov’s stability theorem has a direct extension which provides 

a basic tool for studying uniform stability of the same-order switching systems. This 

extension is obtained by requiring the existence of a single Lyapunov function whose 

derivative along solutions of all systems in the family of system (2.1) satisfies suitable 

inequalities. We are particularly interested in obtaining a Lyapunov condition for 

GUAS. To do this, we must take special care in formulating a counterpart of the 

Lyapunov inequality which ensures a uniform rate of decay.

Given a positive definite continuously differentiable (C 1) function V: R n — > R, 

we will say tha t it is a common Lyapunov function for the family of system (2.1) if 

there exists a positive definite continuous function W : R n — > R  such tha t we have

dV
- f p( x ) < - W ( x )  VT, Vp 6 {1,..., IV}. (2.5)

The following result will be used in the next chapters.

T h eo re m  2.1 I f  all systems in the family (2.1) share a radially unbounded common 

Lyapunov function, then the switching system is GUAS.

This theorem is well know and can be derived in the same way as the standard 

Lyapunov stability theorem. The main point is tha t the rate of decrease of V  along 

solutions, given by (2.5), is not affected by switching, hence asymptotic stability is 

uniform with respect to a.

15
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The common Lyapunov function theorem is a very useful theorem for the sta­

bility of switching systems. However, It is not easy to find a common Lyapunov 

function for all of the subsystems in a switching system. Sometime this function 

may not exist. In this case, one can try to investigate stability of the switching 

system using the multiple Lyapunov function theorem.

T h eo re m  2.2 Let a switching system be a finite family of globally asymptotically 

stable systems, and let Vp, p E V  be a family o f corresponding radially unbounded 

Lyapunov functions. Suppose that there exists a family of positive definite continuous 

functions Wp, p E V  with the property that for every pair of switching times (t i , tj),  

i < j  such that aft f) — o'(tj) — p E V  and cr(tk) 7̂  p for L < tk < tj, we have

Vp(x(tj)) -  Vp(x(ti)) < - W p(x(L)).  (2.6)

Then the switching system is globally asymptotically stable.

It is possible to obtain less conservative stability conditions involving multiple 

Lyapunov functions. In particular, one can relax the requirement tha t each Vp 

must decrease on the intervals on which the pth system is active, provided tha t the 

admissible growth of Vp on such intervals is bounded in a suitable way. Impulse 

effects can also be incorporated within the same framework.

2 .1 .2  M u ltip le -o rd er  S w itch in g  S y s te m s

In the case of multiple-order switching systems, since extra states only exist in some 

of subsystems, we can not use the traditional definition of the stability of switching 

systems. Here, we state the definition of the equilibrium point and stability of the 

multiple-order switching systems, based on the traditional definitions.

D efin ition  2.3 Consider an autonomous switching system (2.1), suppose the equi­

librium point of the common subsystems f j (x)  (j  — \...m ) of the switching system

16
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is x ej (j  =  which satisfies

f j ( x ej) =  0 (2.7)

Because each subsystem space is a subspace of the system space, each of equilibrium 

points of subsystems is a subset of systems states. Then we say that the union of 

the elements in these subsets is the equilibrium point of the switching system.

R e m a rk  2.1 The definition shows the following result: after a certain time, if all 

provisional subsystems disappear, the system switches among common subsystems. 

I f  states o f system trajectories converge to x e, the states of system will stay at x e, 

no matter how the system switches. This definition is consistent with what we have 

defined for switching systems of same order.

R e m a rk  2.2 In definition 1.3, x e is different from the classical definition of equi­

librium point, since x e may not be in any of the subsystem spaces. However, it still 

exists in the system state space. The following simple example shows this point.

E xam p le  2.1 Consider a switching system with two subsystems, which are both 

common subsystems. The first subsystem has three states x \, X2 and £3 and / i ( 2 ,3, 5) 

0. The second subsystem has two states £3 and £4 and / 2(5, 7) =  0. Then according 

to the above definition we say that the equilibrium point x e of this switching systems 

is the combination of these two equilibrium points:

x e = Ui U U2 =  [£10, £20, £30] U [£30, £40] =  [2, 3, 5, 7] (2.8)

After defining the equilibrium point of switching systems, we give the definitions 

of stability and convergence for general switching systems.

D efin ition  2.4 The equilibrium point x  =  x e of the system (2.1) is said to be 

uniformly stable i f  for any given e =  [ei€2 , ...,em] > 0, 3 t\ and a certain region D
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in the space of initial subsystem such that

£■(0) € D  => \\Xi(t) -  x ei\\ < ti V t > t i  (2.9)

Otherwise, the equilibrium, point is said to be unstable.

D efin ition  2.5 The equilibrium point x  =  x e of the system (2.1) is said to be 

convergent i f  for any given e =  [ei,e2>..., em] > 0, 3 £i and a certain region D in the 

state space of initial subsystem such that

i ( 0) e  D  =» lim Xi(t) = x ei i = l , . . . ,m  (2.10)t—* oo

D efin ition  2.6 The equilibrium point x  — x e of the system (2.1) is said to be 

asymptotically stable if  it is both stable and convergent. Also i f  the convergent region 

D is the same as the whole state space of initial subsystems, then we can say that 

the equilibrium point is globally asymptotically stable.

R e m a rk  2.3 What makes above definitions different from previous ones is that the 

initial state x(0) is not required to be close to the equilibrium x e. This requirement 

is inapplicable to the switching systems of multiple orders since the initial state £(0) 

may be in different system spaces from x e.

R e m a rk  2.4 The term “unifoim” is used here to describe uniformity with respect

to switching signals. It is totally different from the uniformity for L T V  systems,

which is with respect to time.

2 .1 .3  S ta b ility  a n d  C o n tro l o f  S w itch in g  S y s te m s

In [5], Liberzon formulates several basic questions regarding the stability of switching 

systems. These questions are still the main topics for the study of switching systems. 

In this thesis, we will discuss some of them and derive some sufficient conditions for 

the stability of switching systems.

18
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P ro b le m  A. Find conditions tha t guarantee tha t the switching system is asymp­

totically stable for any switching signal.

One situation in which Problem A is of great importance is when a given plant 

is being controlled by means of switching among a family of stabilizing controllers, 

which is designed for a specific task. If each stabilizing controller can stabilize 

the corresponding subsystem in the plant, can the multi-controller guarantees the 

stability of the closed-loop switching system? Unfortunately, the answer is negative.

Figure 2.3: Different switching systems with same stable subsystems

Consider the following system where V  =  {1,2} and x  G I?2, so tha t we are 

switching between two systems in the plane. First, suppose tha t the two individual 

subsystems are asymptotically stable, with trajectories as shown on the left in Figure 

2.3. For different choices of the switching signal, the switching systems might be 

asymptotically stable or unstable (these two possibilities are shown in Figure 2.3 on 

the right).

Figure 2.4: Different switching systems with same unstable subsystems
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Similarly, Figure 2.4 illustrates the case when both individual subsystems are un­

stable. Again, the switching system may be either asymptotically stable or unstable, 

depending on a particular switching signal.

From these two examples, the following facts can be deduced:

• Unconstrained switching may destabilize a switching system even if all indi­

vidual subsystems are stable.

• It may be possible to stabilize a switching system by means of suitably con­

strained switching even if all individual subsystems are unstable.

The above example shows tha t Problem A is not trivial in the sense tha t it 

is possible to get instability by switching between asymptotically stable systems. 

(However, there are certain limitations as to what types of instability are possible 

in this case. For example, it is easy to see tha t the trajectories of such a switching 

systems cannot escape to infinity in finite time.) If this happens, one may ask 

whether the switching system will be asymptotically stable for certain useful classes 

of switching signals. This leads to the following problem.

P ro b le m  B. Identify those classes of switching signals for which the switching 

system is asymptotically stable.

Since it is often unreasonable to exclude constant switching signals of the form 

a(t) =  p, Problem B will be considered under the assumption tha t all individual 

subsystems are asymptotically stable. Basically, we will find tha t stability is ensured 

if the switching is sufficiently slow.

Several theorems have been established to show tha t slow switching can stabilize 

the switching system under certain conditions. The simplest way tha t they use to 

specify slow switching is to introduce a number r  > 0 and restrict the class of admis­

sible switching signals to signals with the property tha t the interval between any two
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consecutive switching times is no smaller than t .  This number r  is sometimes called 

the dwell time (because cr “dwells” on each of its values for at least r  units of tim e). 

It is a fairly well-known fact tha t when all subsystems are asymptotically stable, 

the linear switching system is globally asymptotically stable if the dwell time r  is 

large enough. In fact, The required lower bound on r  can be explicitly calculated 

from the parameters of the individual subsystems. For details, see [20] (Lemma 2],

The other tool is the so-called average dwell time. For each T  > 0, let N a(T) de­

note the number of discontinuities of a given switching signal a  on the interval [0, T\. 

We will say tha t a  has the average dwell time property if there exist two nonnegative 

numbers a and b such tha t for all T  > 0, we have N a(T) < a + bT. The study of 

average dwell-time switching signals is motivated by the following considerations. 

Stability problems for switching systems arise naturally in the context of switching 

control. Switching control techniques employing a dwell time have been successfully 

applied to linear systems with imprecise measurements or modeling uncertainty. In 

the nonlinear setting, however, such methods are often unsuitable because of the 

possibility of finite escape time. Namely, if a “wrong” controller has to remain in 

the loop with an imprecisely modeled system for a specified amount of time, the 

solution to the system might escape to infinity before we switch to a different con­

troller (of course, this will not happen if all the controllers are stabilizing, but when 

the system is not completely known, such an assumption is not realistic).

An alternative to dwell-time switching control of nonlinear systems is provided 

by the so-called hysteresis switching and its scale-independent versions, which were 

introduced and applied to control of uncertain nonlinear systems in [21] and [22]. 

When the uncertainty is purely parametric and there is no measurement noise, 

switching signals generated by scale-independent hysteresis have the property that 

the switching stops in finite time, whereas in the presence of noise under suitable
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assumptions they can be shown to have the average dwell time property.

One reason for the increasing popularity of switching control design methods 

is that sometimes it is actually easier to find a switching controller performing a 

desired task than to find a continuous one. In fact, there are situations where con­

tinuous stabilizing controllers do not exist, which makes switching control techniques 

especially suitable. In the context of multi-controller systems mentioned in the last 

question, it might happen tha t none of the individual controllers stabilize the plant, 

yet it is possible to find a switching signal that results in an asymptotically stable 

switching system. We thus formulate the following problem.

P ro b le m  C. Construct a switching signal tha t makes the switching system asymp­

totically stable.

Of course, if at least one of the individual subsystems is asymptotically stable, 

the above problem is trivial (just keep a(t) = p where p is the index of this stable 

subsystem). Therefore, in the context of Problem C, it will be understood that none 

of the individual subsystems are asymptotically stable. This problem is more of a 

design problem than a stability problem, but the previous discussion illustrates that 

all three problems are closely related.

As to the real plant, we cannot control or change the switching sequence or time 

in most cases. Thus it makes more practical sense for us to design multiple con­

trollers which can stabilize not only the individual subsystems, but also the whole 

plan without changing switching condition directly. In this thesis, we will design 

backstepping-based feedback multi-controller which can stabilize the individual sub­

systems. In the same time, the Lyapunov theorem will guarantee the stability of 

the closed-loop plant for unconstrained switching, if some additional conditions are 

satisfied.
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2.2 C lassica l B ack step p in g  A pproach

As we know, backstepping is one of the most powerful tools for stabilizing non­

linear systems. By constructing Lyapunov functions, we can design state-feedback 

controllers for nonlinear systems using backstepping.

2 .2 .1  L y a p u n o v  S ta b ility  T h eo rem

The main step of backstepping approach is to construct Lyapunov functions for 

nonlinear systems. Then the following Lyapunov stability theorem will guarantee 

the stability of nonlinear systems.

T h eo re m  2.3 Let x  = 0 be an equilibrium point of x  — f (x ) ,  V  : D —> R  be a 

continuously differentiable function such that

(i) 1/(0) =  0,

(ii) V(x)  > 0  in D  — {0},

(iii) l / ( x ) < 0  in D — {0}, 

thus x = 0 is stable.

This theorem implies that a sufficient condition for the stability of the equilib­

rium point x — 0 is tha t there exists a continuously differentiable-positive definite 

function V(x)  such that V(x)  is negative semi-definite in a neighborhood of x  =  0. 

Also if we replace the third condition in the above theorem as follows:

(iii) V(x)  < 0 in D  — {0},

the origin is asymptotically stable.

In other words, the theorem says tha t asymptotic stability is achieved if the 

conditions of the above theorem are strengthened by requiring V(x)  to be negative 

definite, rather than semi-definite.
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The aim of the backstepping approach is to stabilize the nonlinear system by 

constructing a Lyapunov function.

2 .2 .2  In te g ra to r  B a c k ste p p in g

Let’s consider a system of the form

x  = / (x )  +  c/(x)£, (2.11)

£ =  «. (2-12)

Here x  € R n, (  € R,  and [x,£] € R n+1 is the state of the system (2.11)-(2.12). 

The function u G R  is the control input and functions f , g : D  — > R n are assumed

to be smooth. As will be seen shortly, the importance of this structure is tha t it

can be considered as a cascade connection of the subsystems (2.11) and (2.12). We 

will make the following assumptions:

(i) The function /(•) : R n — > R n satisfies /(0 ) =  0. Thus, the origin is an

equilibrium point of the subsystem x  — f (x ) .

(ii) Consider the subsystem (2.11). Viewing the state variable £ as an independent

“input” for this subsystem, we assume tha t there exists a state feedback control 

law of the form

£ — m  = o, (2.13)

and a Lyapunov function V\ : D  —■> R + such that

Vi(x) = - j^r[f (x ) +  9(x ) ■ <t>{x)\ < ~Va(x) < 0  Vx e  D  (2.14)

where Va(-) : D  —► R 1 is a positive semidefinite function in D.

According to these assumptions, the system (2.11)-(2.12) consists of the subsys­

tem (2.11), for which a known stabilizing law already exists, augmented with a pure
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integrator (the subsystem (2.12)). More general classes of systems are considered in 

the next section. We now endeavor to find a state feedback law to asymptotically 

stabilize the system (2.11)-(2.12).

By adding and subtracting g(x)cf)(x) to the subsystem (2.11), we obtain the 

equivalent system

x  =  f ( x )  + g(x)(j>(x) + g(x)[£-(/>{x)], (2.15)

£ =  u.

Define

2 =  Z-4>(x),  (2.1G)

z — £ — <p(x) = u — (f>(x), (2.17)

where

* = f x i = a ^ [S(x) + 9 { x n

This change of variables can be seen as “backstepping” — </>(x) through the integrator. 

Defining

v = z

the resulting system is

x  =  f ( x )  + g(x)4>(x) +  g(x)z,  (2.18)

z — v. (2.19)

The above two steps are im portant for the following reasons:

(i) By construction, the system (2.18)-(2.19) is equivalent to the system (2.11)-

(2 .12).

(ii) The system (2.18)-(2.19) is, once again, the cascade connection of two sub­

systems. However, the subsystem (2.18) incorporates the stabilizing state
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feedback law <f>(-) and is thus asymptotically stable when the input is zero. 

This feature will now be exploited in the design of a stabilizing control law for 

the overall system (2.11)-(2.12).

To stabilize the system (2.18)-(2.19), the traditional backstepping approach is 

to choose a Lyapunov function candidate of the form

It then follows by (2.17) tha t the origin x — 0 ,z  =  0 is asymptotically stable. 

Moreover, since z — ^ ~ <p(x) and (f)(0) =  0 by assumption, the result also implies 

that the origin of the original system x = 0 ,£ =  0 is also asymptotically stable. 

If all the conditions hold globally and Vi is radially unbounded, then the origin 

is globally asymptotically stable. Finally, noticing that, according to (2.17), the 

stabilizing state feedback law is given by

V  = (x,£) = V1 (x) + \ z 2. (2.20)

We have that

V  = ■ -[f(x) +g(x)(f>(x) + g(x)z\ + zz

dV, dV i
=  +

( 2 .21)

And then choose

(2 .22 )

we obtain

(2.23)

u = z +  <f>, (2.24)
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we obtain the input

u =  -  k[(, -  <P(X)} (2-25)

with the associated Lyapunov function

1
V  =  V ( x , 0  =  Vi{x) +  - (£  -  4>(x))2. (2.26)

2 .2 .3  S tr ic t  F eed b ack  S y s te m s

Next consider nonlinear systems in a more general form

x i = f ( x i ) + g ( x i)x 2 (2-27)

x 2 =  f i ( x i , x 2) + g i ( x i , x 2)x3

2 / j+ l  — f k ( ^ '1»x 2i  j x k-\-1) “b  9 k ( , x l i  x 2i  5 x k-\-1 ) ^

where x  € Rn and fi, gi are smooth, for all i — I, ■ ■ ■ k. Systems of this form are 

called strict feedback systems because the nonlinearities / ,  f i , and gL depend only 

on the variables 21, 22, • • • tha t are fed back. Strict feedback systems are also called 

triangular systems. We begin our discussion considering the special case where the 

x\  system is of order one (equivalently, A: =  1 in the system defined above):

x i = f{xx) + g{xi )x2 (2.28)

£2 =  f i ( x i , x 2) + g i (xx ,x2)u. (2.29)

Assuming tha t the subsystem (2.28) satisfies assumptions (i) and (ii) of the backstep­

ping procedure, we now endeavor to stabilize (2.28)-(2.29). This system reduces to 

the integrator backstepping in the special case where / i (21, 2:2) =  9i{x \ i x 2) =  1-

To avoid triviality we assume tha t this is not the case. If 51(21, 22) ^  0 over the
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domain of interest, then we can define

u = 4>(x i , x2) =
g i { x i , x 2)

Substituting (2.30) into (2.28) we obtain the modified system

xi  =  f  (x\) + g (x i )x2 

x 2 =  til

(2.30)

(2.31)

which is of the form (2.11)-(2.12). It then follows that, using (2.25), the stabilizing 

control law and associated Lyapunov function are

u =  (j>i(x\, x 2) 

dVi

1 + 9(x i )x 2}g i ( x i , x 2) dx

~ d x [ 9 ^  ~  k l X̂2 ~  ~  kl  > 0

V2(xi, x 2) = Vi(x) +  i [ x 2 -  4>(xi)]2.

For the system with three states

x \  = f ( x i )  + g (x i )x2

x 2 =  f l ( x \ ,  X2) + g i ( x i , x 2)x3

X3 = f 2 ( x i , x 2,xs)  + g2( x i , x 2, x 3)u

which can be seen as a special case of (2.28) with

, x 2 - x 3 ,u  = u , f

(2.32)

(2.33)

(2.34)

Xi X\ * J -r gx2 u t  t, x 2 — x 3,u  = u, f  — , g — , / l  = /2 ,5 i =  52,
x 2 J L / i  J L 9l J

(2.35)

with these definitions, and using the control law and associated Lyapunov func­

tion (2.32)-(2.33), we have tha t a stabilizing control law and associated Lyapunov 

function are as follows:

<j>2(x i , x 2, x 3) = 

d<f> i
52(20,^ 2,^ 3) d x 2

(2.36)

i(x ) +  gi{x )x3) -  k2[x3 -  <t>i\ -  f 2 ( x i , x 2, x 3)}, k2 > 0
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Vs = V2{x) + ~[x3 -(pi{xi ,X2)}‘2 (2.37)z

= Vl(x) +  \ [ x <2 -  4>{xl )]2 +  ” [X3 -  ^ ( x i , ^ ) ] 2.

From the above result we see tha t the final Lyapunov function (2.26) consists 

of Vi(x),£ and </>(x). Therefore, if we want to provide the Lyapunov function in a 

unified form for several systems, we have to find a common input 4>(x) which can 

stabilize all systems. This is a very difficult, even impossible task in most cases. 

Thus care must be exercised when applying this technique to switching systems.

The following chapter contains a procedure to design a backstepping-based con­

troller for switching systems of both same and multiple orders. Following this pro­

cedure, we can not only design a controller to stabilize switching systems, but also 

obtain Lyapunov functions simultaneously for each of subsystems. These Lyapunov 

functions are in a unified quadratic form which can satisfy the condition of the 

multiple Lyapunov theorem in most cases.
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C hapter 3

N ew  Backstepping Approach
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As introduced in the previous chapter, backstepping is one of the most power­

ful approaches for controller design of nonlinear systems. However, care must be 

exercised when applying this technique to switching systems, since the individual 

Lyapunov functions are not in a unified form. In this chapter, we will propose a 

new backstepping procedure tha t can not only stabilize the individual subsystems, 

but also generate the individual Lyapunov functions in the strict quadratic form. 

As a consequence, the proposed backstepping can be used to design controller for 

nonlinear switching systems of both same order and multiple orders.

3.1 C lassica l Form  o f  B a ck step p in g  for S w itch in g  S ys­
tem s

Backstepping has been successfully applied to controller design for many years. 

By constructing Lyapunov functions, we can use the backstepping procedure in­

troduced in the first chapter to design stabilizing controllers for nonlinear systems. 

When designing the backstepping-based controller, we obtain the Lyapunov func­

tion for the nonlinear systems simultaneously, which guarantees closed-loop stability 

of the origin. Thus it is natural to consider whether we can design the individ­

ual backstepping-based controller for each of subsystems and combine these sub­

controllers as a synchronous switched controller to stabilize the nonlinear switching 

system. Unfortunately, the answer is NO.

Consider the example given in Figure 2.4. By choosing certain switching rule, the 

switching system can be unstable even if all of subsystems are stable. Thus, though 

the individual backstepping-based controller can stabilize each of subsystems, it can 

still not guarantee the stabilization of the switching system. Even if we can obtain 

the individual Lyapunov function for each subsystem using backstepping, we can 

still not say tha t the switching system is stable since the Lyapunov functions are
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different and are not in the strict quadratic form in most cases. We can use the

following example to show this.

Consider a simple switching system consisting of the following two subsystems,

state (—2, 2). We see tha t two subsystems are both unstable without input u. Thus 

we need to design two controllers to respectively stabilize two subsystems. Here we 

use the classical backstepping approach and obtain two state-feedback controllers 

for the above two subsystems.

As to subsystem 1, consider the first equation. We can choose

x\  =  —2x\  — 4x2 (3.1)

2xiX2 — 3u

and,

±1 =  —5xj +  2x2 

X2 =  6x2 +  2 u.

Assume this switching system is time-dependent with period of 0.5s and initial

(3.3)

with respect to the Lyapunov function

V(x) = ^x f. (3.4)

Then consider the first two equations, we can obtain by using (2.32)

u (3.5)

QV\
~ q^ s (x i ) ~  ki[x2 -  <t>(xi)] -  / i ( x i ,x 2)}, fci > 0 

(—2xj — 4x2) +  4xi — k\ (x2 — xi) — 2x ix |
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with respect to  the Lyapunov function

V (x ) = \ x \ + \ { x 2 ~ x i  )2. (3.6)

As to subsystem 2, consider the first equation. We can choose

(j){x) = ^ x f  -  X1 (3.7)

with respect to the Lyapunov function

v ix ) = \ x \- (3-8)

Then consider the first two equations, we can obtain by using (2.32)

1 d(b
« =  <h(X!. s 3) =  g i (x i, I2) {T x  [ / ( x ,) +  a (x .)*„] (3.9)

dVx
~  k l [X2 ~  0(xi)] ~ f i ( x i , x 2 ) } ,  f a  > 0

( 5 ^  — 1)(—5x1 +  2^ 2) — 2a;i — fa(x  2 — +  sq) — 6x2
2

25x? 9 9
= ---------- 1- hx\X2 +  3xx — 2x2 — 2xi  — 3x2, fa — 2

with respect to the Lyapunov function

v (x ) = l x i + l ( x 2 - ^ o c j  + x 1f .  (3.10)

Figure 3.1 and Figure 3.2 show the trajectories of system states and the Lya­

punov function respectively. From the figures, we see tha t although each indi­

vidual subsystem of the switching system is stabilized by the backstepping-based 

controllers, the overall switching system is not stabilized by the multi-controller. 

The reason is tha t the Lyapunov functions of two subsystems are different and are 

not in the strict quadratic form.

3.2 Im proved  B a ck step p in g  A pproach

From the analysis in the previous section, we can see tha t the term  cf>{x) in the 

constructed Lyapunov function prevents us from finding Lyapunov functions in a
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (t)

Figure 3.1: System trajectory with respect to time

Time (t)

Figure 3.2: Trajectory of the Lyapunov function
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unified form for different nonlinear systems. Thus we can consider to select another 

form of Lyapunov functions.

3 .2 .1  In te g r a to r  B a c k ste p p in g

Consider the system (2.11)-(2.12) in the first chapter, which still satisfies the fol­

lowing assumptions (see Figure 3.3).

/ ( )

Figure 3.3: The original nonlinear system

(i) The function /(•) : R n — > R n satisfies /(0 )  =  0. Thus, the origin is an

equilibrium point of the subsystems x = f (x ) .

(ii) Consider the subsystems (2.11). Viewing the state variable £ as an independent

“input” for this subsystem, we assume tha t there exists a state feedback control 

law of the form

$ = <Kx), m  = o, (3.H)

and a Lyapunov function V\ : D  —» R + such that 

dV i
Fi(x) =  +  s (x ) ■ 4>{x)\ < - V a(x) < 0  Vx € D  (3.12)

where Va(-) : D  —> R + is a positive semidefinite function in D.
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f i x )
f i )  8i )  i )

Figure 3.4: Modified system after introducing —<j>{x)

By adding and subtracting g(x)4>{x) to the subsystem (2.11) (Figure 3.4), we 

obtain the equivalent system

x  = f ( x )  + g(x)<f>(x)+g(:c)[£-^(ar)], 

£ = u.

(3.13)

Define

z = 4>(x),

v = z  =  £ — <j>(x) = u — <p{x),

(3.14)

(3.15)

where

O

/ ( )  s ( )  0

Figure 3.5: “Backstepping” of —(f>(x)

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This change of variables can be seen as “backstepping” —<fr(x) through the inte­

grator, as shown in Figure 3.5. Defining

v = z (3.16)

the resulting system is

x  =  f {x )  + g(x)4>(x) + g(x)z (3.17)

z =  v

which is shown in Figure 3.6.

/(*)

Figure 3.6: The final system after the change of variables

The above steps are the same as the classical backstepping. Next, to stabilize 

the system (2.18), the classical backstepping approach choose a Lyapunov function 

candidate of the form

V  = (x,£) = V1(x) + ± z 2. (3.18)

Since the variable z  is actually the function of we cannot obtain the unified

individual Lyapunov functions for all of subsystems in a nonlinear switching system.

Here, instead of using (2.20), now we select the following Lyapunov function

V  = V ( x , t )  = Vi(s) +  \ { z  +  4>(x))2. (3.19)
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Then, we have that

V  =  ^  [f(x ) + g{x)(j){x) +  g(x)z\ + [z + <j>{x)][z + (f)(xj\ (3.20)

dV ,
=  -Q^  [/(*) +  g(x)4>{x) +  g(x)z] + [z + <f>(x)] [v +  <j){x)\.

We can choose

—k(z  +  <p(x))2 — Lg(x )z .
H m  k > 0 ■ (3'21)

Thus

V  -  ^ [ f ( x )  +  g(x)4>(x) +  g(x)z]  (3 .22)

+[i + m ] z
2 +  4>{X)

= ^ [ f ( x ) + g ( x )<t>(x)} -  k{ z  + <t>(x))2

< —Va(x) -  k( z  +  (l>(x))2, k >  0 .

Then it follows th a t the origin (x — 0, z =  0) is asymptotically stable. Moreover,

since z  =  £ — <j>{x) and <j>(0) =  0 by assumption, the result also implies tha t the origin

of the original system (2.11)-(2.12) with x  =  0 and £ =  0 is also asymptotically 

stable.

Since

u — z  +  <f>, (3 .23)

we obtain tha t

“ =  9(x) +  “ *<■ (3-24) 

and the corresponding Lyapunov function

V  =  Vx{x) +  \ e .  (3 .25)
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3 .2 .2  C h a in  o f  In te g ra to rs

In the previous part we proposed a new backstepping approach for systems with a 

state of the form [x,£], x  € R r\  £ € R,  under the assumption tha t a stabilizing law 

u exists. Now we extend this approach to high-order nonlinear systems.

We consider the following nonlinear system

x  =  f { x ) + g { x ) i  i (3.26)

£i =  £2

£/c—1

kk =  u -

Backstepping design for this class of systems can be approached using successive 

iterations of the procedure used in the previous section. To simplify our notation, 

we consider, without loss of generality, a third order system

x  = f ( x ) + g ( x ) ^  (3.27)

£1 — £2

£2 =  u

and proceed to design a stabilizing control law. We first consider the first two 

“subsystems”

i  =  f { x ) + g { x )£x (3.28)

L  = £ 2  (3-29)

and assume tha t =  <f>(xi) is a stabilizing control law for the system

x -  f ( x )  + g{x)cj){x). (3.30)
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Moreover, we also assume tha t V\ is the corresponding Lyapunov function for this 

subsystem. The second-order system (3.28)-(3.29) can be seen as having the form 

(2.11)-(2.12) with £2 considered as an independent input. We can asymptotically 

stabilize this system using the control law (3.24) and the associated Lyapunov func­

tion V\\
r)V, r)V,

(3.31)u = - ^ 9 ( x ) + i l t s { x )n r - k i '

and the corresponding Lyapunov function

V2 =  Fi(rr) +  - £ 2. (3.32)

We now iterate this process and view this third-order system given by the first three 

equations as a more general version of (2.11)-(2.12) with

x ,£ =  £2» / =
f ( x ) + g ( x ) £  1 

0
' 0 '

,9 = 1 (3.33)

Applying the backstepping algorithm once more, we obtain the stabilizing control

law:

k >  0

dx  ' d£x JL“’ ~J L dx  ’ d 
dV2 <9̂ 2 <A(^,£i)

£2

+
d£i £2

The composite Lyapunov function is

(3.34)

— k 0

v3 = V2(x) + - ( l  

= ViW + If? +

(3.35)

Following the above procedure, we can obtain stabilizing control laws and corre­

sponding Lyapunov functions for third-order systems. The procedure for nth-order
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systems is entirely analogous. The Lyapunov function for nth-order systems is in 

the unified form as follows:

Vn = F i(x i) +  ^  \ x i = v i(x ) +  \ x l  +  ' ‘ ' \ x l- (3-36)
i=2

3 .2 .3  S tr ic t  F eed b ack  S y s te m s

Next consider the nonlinear system in a more general form

x\  =  f ( x i )  + g (x i )x2, (3.37)

±2 =  f i ( x i , x 2) + g \ { x \ , x 2)x2,

X k + 1  —  f k { x  1) ’ j x k )  +  9 k { x  1, X 2 , • • • , X k ) u

where x  £ R n , ^  6 R n, and fi,  gi are smooth, for alH  =  1, • • • k.

For example, for the system with two states

x \  = f { x f )  + g{xi )x2, (3.38)

X2 =  f i ( x i , x 2) + g1(x1, x 2)u.

If g i ( x i , x 2) 7̂  0 over the domain of interest, then we can define

u =  <j>{xi,x2) = ——  ̂ -[ui -  h { x i , x 2)\. (3.39)
gi(x i, x 2)

Substituting (3.39) into (3.38) we obtain the modified system

xi  =  f ( x i) + g (x i )x2, (3.40)

± 2  =  Ul,

which is of the form (2.11)-(2.12). It then follows that, using (3.24), the stabilizing 

control law and associated Lyapunov function are

1
u = * i ( i i ' i2) = i T ( ^ {_ & : 9 (ll)  (3-41)

~  :r- ~  /1 i r i > ^1 > 0
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V  = V1(x) + ± x l

For the system with three states

x \  =  f ( x i )  + g (x i )x2,

X2 = f i ( x i , x 2) + g i ( x i , x 2)x3,

X3 = h ( x i , X 2>X3) + g2(x i ,X2,X3)u,

which can be seen as a special case of (3.38) with

, x 2 = x 3, u -  u, f  =

(3.42)

(3.43)

x\ x\
X2

f  + gx 2 '  0 '

h ,9 =
. 91 .

, / l  =  h , 9 i  = 92-

(3.44)

W ith these definitions, and using the control law and associated Lyapunov func­

tion (3.41)-(3.42), we have tha t a stabilizing control law and associated Lyapunov 

function for this systems are as follows:

1
u = (/>2( x i , x 2,xz)

9 2 ( x i , x 2, x 3) dx2
f  dV* ( \{ - - ^ — 92{x i , x 2) (3.45)

+ t t ^ 9 2 ( x i , x 2) -  k2x 3 -  f 2 ( x i , x 2, x 3)}, k2 > 0
d x 2‘ x 3

1 1
^3 =  V2(x) + - X 3  = Vi(x\)  + - x 2 +  - x 3 . (3.46)2 a

From the above analysis, we can see that, as to the system (3.37) with k + 1 states, 

we can build the following Lyapunov function with the input obtained from the 

above procedure.

i 1
Vh+i = Vk(xi) + - x 2k+1 = Vi(xi)  + Y  ~x i (3.47)

i—2

3 .2 .4  E x a m p le  o f  P r o p o s e d  B a c k s te p p in g

Now I will use the following example to verify the validity of the proposed backstep­

ping approach.
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Consider the following nonlinear system:

±1 =  2xf — 3xf — 2x2 (3.48)

X2 — 2xiX2 +  2u.

Consider the first equation and view the “state” X2 as an independent input 

for the first equation. Then we can try  to find a state feedback law u\ = <f>(x) to 

stabilize the origin x =  0. Here we can choose

0(x) =  x \  (3.49)

and define

Vi(xi) =  ^ x \  (3.50)

=  2xf — 3xj — 2x iX2 =  —3xf < x l-

Then consider the two equations, we can obtain by using (3.41)

U =  0 ,(x 1. I2 ) =  ^ 4 - - y { - | h 9 (x1) (3.51)

+ j r ^ 9 { v -  h x 2 -  / i ( x i ,x 2)}C/2' j X  2
1 X2

=  x { - a : i ( - 2 ) +  x i ( - 2 ) — -  fcix2 - 2 xix2)}Z X2
X?

- x i  X2 — X1X2, k — 2.
X2

The Lyapunov function associated with this control law is:

V2 = Vi(x) +  ^ x | = ^ x f  +  ^ x l  (3.52)

Also, we can use the classical backstepping approach to design the control law. We

can choose

<j>(x) =  x \  (3.53)
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and define

1
Vi(xi )  =  - X l  (3.54)

=> Vl(xi )  =  2 x \  — 3 x f  — 2xiX2 =  —3 x f  <  x f .

Then consider the two equations, we can obtain by using (2.32)

“  = * ( i i ' x2) = 5^ b d { i |/(x i) (3-55)
dVx

+ g ( x x) x 2] -  Q ^ d ( x i )  -  h [ x 2 ~  H x i)\  -  f i ( x i , x 2)} ,  h > 0  

=  ^ { 2 x i ( 2 x f  -  3x5 -  2 x 2) -  x i ( - 2 )  -  k i ( x 2 -  x f )  -  2 x i x 2}

=  x i  +  x f  +  2 x f  — 3 x f  — 3 x i x 2 — 2 x 2, k =  2.

Now we can use SIMULINK to verify and compare the performance of two con­

trollers. Here, we choose the initial states as (10, 15). The trajectories of system 

states are shown respectively in Figure 3.7 and Figure 3.9. The trajectories of Cor­

responding Lyapunov functions are shown respectively in Figure 3.8 and Figure

3.10.

From the above results, we can see tha t both backstepping-based controllers can 

stabilize the nonlinear system (3.48) around the equilibrium point. Both Lyapunov 

functions goes back to origin rapidly. Thus the example shows tha t the proposed 

backstepping approach can stabilize the unstable nonlinear system.

3.3 C ontro ller D esig n  based  on  B a ck step p in g

In this part, we will first design the backstepping-based feedback controller for 

switching systems. Then, an example will be given to illustrate its validity.

3 .3 .1  B a c k ste p p in g -b a se d  F eed b ack  C o n tro ller

Now let us consider the switching systems consisting of strict feedback subsystems. 

Following the above procedure, we can design the corresponding feedback controller
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Figure 3.7: Trajectory of system using the proposed backstepping
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Figure 3.8: The Lyapunov function of system using the proposed backstepping
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Figure 3.9: Trajectory of system using the classical backstepping
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Figure 3.10: The Lyapunov function using the classical backstepping
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for each of nonlinear or linear subsystems in a switching system. All controllers 

are companied with the Lyapunov functions in the form of (3.47). If we can find 

the same V\(x) for all of subsystems, the subsystems will have the same Lyapunov 

function. Then we can use the above procedure to design controllers for each of 

subsystems and combine these sub-controllers into a synchronous switched controller 

for the switching system.

State Feedback

The Switching Controller

Controller 1

Controller 2

Controller n

_________
"X

P l a n t

(The Switching System) r

Figure 3.11: Multicontroller architecture

The prototypical architecture for such a switching system with multicontroller 

is shown in Figure 3.11. We have two assumptions:

• All individual subsystems have the origin as a common equilibrium point: 

f p(0) =  0 , p G  P.

• The synchronous multicontroller is capable to switch a t the same time when 

system switches.
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Clearly, a necessary condition for (asymptotic) stability under arbitrary switch­

ing is tha t all individual subsystems are (asymptotically) stable. Indeed, if the 

p th subsystem is unstable, the switching system will be unstable if we choose this 

subsystem as the final subsystem. This condition is satisfied by our second as­

sumption because each subsystem is stabilized by the corresponding backstepping 

sub-controller. However, as we discussed in the first chapter, stability of all indi­

vidual subsystems is not sufficient for stability of the nonlinear switching system. 

Fortunately, the proposed backstepping guarantees tha t this kind of multi-controller 

can stabilize both the same-order and multiple-order switching systems if certain 

conditions are satisfied. We will discuss these sufficient conditions in detail in the 

next chapter. The following part of this chapter will give an example to illustrate 

the validity of this kind of controllers.

3 .3 .2  E x a m p le

Consider the simple switching system (3.1)-(3.2), which can not be stabilized by the

classical form of backstepping. Now we use the proposed backstepping approach to

obtain the controller again.

As to subsystem 1, consider the first equation. We still choose

<f>(x) = x i,  (3.56)

with respect to the Lyapunov function

V ( X )  =  i* ? . (3.57)

Then consider the two equations, we can obtain by using (3.41)

“  =  ( 3 ' 5 8 )

+ ' i -  J‘\ (:!:l i -!:2 l\• > 0
O X  I  X 2

4xi -  ^  -  2x2 -  2xi.xl 4 4x? 2x2 2x!x2  ,
=  -  o * i +  ^  +  - r -  +  — 5- * . k i =  2-3 3 3®2 3 3

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with respect to the Lyapunov function

V (x ) =  ^ x l  +

2.5

0.5

-0 .5

-1 .5

Tim e (t)

Figure 3.12: System trajectory with respect to time 

As to subsystem 2, consider the first equation. We still choose

5
</>(x) =

with respect to the Lyapunov function

V{x) = - x l

Then consider two equations, we can obtain by using (3.41) 

4l{xi,X 2) =u — 1 s dV' ( \

^  t \
+ d ^ 9{Xl) x2

g i( x i ,x 2) d x i
<t>{x\

=  —  X \ + X \
(§®i - * 1)

x 2
5a:? a;?

— X2 — 3x2

- x \  + — -----  -  x 2 -  3x2, h  = 2
2x 2 x 2
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5

2.5

0.5

Tim e (t)

Figure 3.13: The common Lyapunov function, 

with respect to the Lyapunov function

V (x) = ^ x f  + ^x%. (3.63)

Figure 3.12 and Figure 3.13 show the trajectories of system states and the Lya­

punov function respectively. We see tha t system states and Lyapunov function go 

to the origin eventually. Thus, by using the proposed backstepping approach, the 

switching system can be stabilized by the feedback controller. However, this is only 

two-order time-dependent simple switching system. Can the proposed backstep­

ping approach stabilize general switching systems, which could be state-dependent 

or time-dependent, same-order or multiple-order? W hat additional conditions and 

constrains should be used to guarantee it? The next chapter will answer these 

questions.
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C hapter 4

Backstepping-based Controller 
D esign for Switching System s
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As introduced in the second chapter, the backstepping approach can not only sta­

bilize nonlinear systems, but also provide corresponding Lyapunov functions. Thus 

the multi-controller using backstepping can stabilize all of individual subsystems in 

the switching system. However, this condition is not sufficient to guarantee the sta­

bility of switching systems. Therefore, we proposed a new backstepping approach 

in the third chapter, which can not only stabilize the nonlinear subsystems, but 

also provide Lyapunov functions in a unified form, or say in the strict quadratic 

form in most cases. How does this proposed backstepping guarantee the stability 

of switching systems? Is any additional condition needed? These questions will be 

answered and discussed in detail in this chapter.

4.1 S am e-order S w itch in g  S y stem s

Same-order switching systems are the switching systems with subsystems of the same 

order. They are analyzed and discussed in many references [8, 4, 16]. Most references 

use the common Lyapunov theorem to verify the stability of such systems. However, 

almost none of them can give a general procedure to design controller to stabilize 

such system. The proposed backstepping and corresponding feedback controller can 

solve this problem.

Let’s recall the common Lyapunov function theorem introduced in the second 

chapter.

T h eo re m  4.1 I f  all systems in the family (2.1) share a radially unbounded common 

Lyapunov function, then the switching system is GUAS.

This theorem is well know and can be derived in the same way as the standard 

Lyapunov stability theorem.

As talked in the backstepping part, the traditional backstepping can not pro­

vide same Lyapunov functions for all subsystems. But the proposed backstepping
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approach solves this problem.

T h eo re m  4.2 As to a continuous same-order switching system with strict feedback 

subsystems, furnished with an arbitrary switching rule, with the above proposed back- 

stepping approach, if  we can find the same V\ (x ) for all subsystems, then the corre­

sponding backstepping-based controller can stabilize the switching system around the 

equilibrium point.

P ro o f  1 The proof is straightforward. I f  we can find same V i(x) for all subsystems, 

all subsystems in the switching system have the same Lyapunov function (3.47). 

Then it can be used as the common Lyapunov function of the continuous switching 

system. We can apply the common Lyapunov function theorem to show that the 

switching system is (asymptotically) stable.

R e m a rk  4.1 The proposed backstepping approach can be used for all same-order 

switching systems with strict feedback subsystems. The switched rules have no effect 

on the validity o f backstepping-based controllers. Thus this type of controllers can 

be used for both time-dependent and state-dependent switching systems.

R e m a rk  4.2 As to the non-continuous same-order switching systems caused by the 

jumping, we can still find the common Lyapunov function using proposed backstep­

ping. However, the Lyapunov function will be also discontinuous. The stability of 

this kind of systems will be discussed in the next part of this chapter with some 

sufficient conditions.

4.2 M u ltip le-ord er S w itch in g  S y stem s

In this part, the multiple Lyapunov function theorem for multiple-order switching 

systems will be established and proved first. Then we will introduce sufficient con-
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ditions which guarantee the stability of multiple-order switching systems using the 

proposed backstepping approach.

4 .2 .1  M u lt ip le  L y a p u n o v  F u n ctio n  T h eo rem

As we know, the common Lyapunov theorem is very useful for the stability analysis 

of nonlinear systems. The theorem can also be used for stability analysis of switch­

ing systems of same order as the above theorem shows. However, as to switching 

systems of multiple orders, common Lyapunov function is not well defined because 

some states do not exist in all subsystems. Thus we propose the following multi­

ple Lyapunov theorem for multiple-order switching systems, which shows its own 

importance for such switching systems.

T h e o re m  4.3 Let the switching system (2.1) be a finite family of globally asymptot­

ically stable systems, which may have different orders, and let p E V  be a family of 

corresponding radially unbounded Lyapunov functions. I f  for every pair of switching 

times ( ti ,tj) ,i  <  j  such that a(ti) — a ( t j) = p E V  and a(tk) ^  p for U <  t^ <  tj, 

then the following statements hold

1. i f

Vp(x(tj)) -  Vp(x{ti)) <  0, (4.1)

then the switching system (2.1) is stable in the sense o f Lyapunov.

2. if  we have

Vp{x(tj)) -  Vp(x(U)) < ~ W p(x(ti)) (4.2)

here, Wv, p E V  is a family o f positive definite continuous functions, then the 

switching system (2.1) is globally uniformly asymptotically stable.
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P ro o f  2 Suppose the switching system (2.1) consists o fm  subsystems whose orders 

are respectively r i,i  € [1,2, I f  the number of switchings between subsystems is 

finite, then the problem is trivial. In this case, the state trajectory is guaranteed to 

converge to the origin after the finial switching since every subsystem is asymptoti­

cally stable. Now we only need to discuss the case o f infinite switchings.

Suppose, for every subsystem, the initial value of Lyapunov function is Vqj , i € 

[1, 2 , m]  which is a finite positive number. Then we can construct the sphere for  

each of subsystems. The dimension of the ball is equal to the order o f its correspond­

ing subsystem. Let Ri be a set o f the form  {x : Vfix) < Vo,} which is contained in i 

ball. Suppose at time t j , t j  € [to, oo}, system is switched to k subsystem. Then the 

states trajectory will come into the i sphere since (4-1) and stay in this sphere due 

to the globally asymptotically stability of subsystems until second switching. A fter  

the second switching, the trajectory will come into another sphere and stay in that 

sphere until the next switching. Thus we can see if  the system satisfies (4-1). The 

state trajectory will always belong to one of the bounded spheres, which may have dif­

ferent dimension. Thus the condition (4-1) and asymptotical stability of subsystems 

guarantee the switching system is stable in the sense o f Lyapunov.

I f  the switching system satisfies not only (4-1) but also (4-2), due to the finite­

ness o f V , there exists an index q € V  and an infinite sequence of switching times 

tit ,t i2,... such that crfaj) — q. The sequence V (x (ti1)) ,V (x ( ti2)),... is decreasing 

and positive and therefore has a limit c > 0.

We have

0 =  c - c — lim Vq(x{Ui J )  — lim Vq(x(tiA ) (4.3)j-*oO j —► oo

=  lim \Vq{x(ti )) -  Vq(x(ti ))}
3-+00  J  J

< lim [ -W q(x(ti.))] < 0
j —too
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Figure 4.1: Trajectory of the Lyapunov function

Then we can see Wq(x(tij )) —> 0 as j  —> 0. Since Wq is positive definite, x ftifi 

must converge to zero as j  —> oo. That means x(t)  —> 0 as t —> oo. Thus the 

switching system is globally uniformly asymptotically stable.

R em ark 4.3 This theorem can be used for either the same-order or multiple-order 

switching systems.

Rem ark 4.4 I f  the subsystems of switching system are only locally asymptotically 

stable, the switching system is also only locally asymptotically stable. That means, 

ifV o ifi € [ l ,2,...,m ] is in the convergent region of each subsystems, x(t) —» 0 as 

t —> oo.

Rem ark 4.5 The above theorem only provides a sufficient condition to verify the 

stability o f switching systems. The condition is not necessary since we can easily 

find a switching system which is GAS but does not satisfy the condition (4-1).

R em ark 4.6  One of advantages of this theorem is that it can be applied without 

knowing what happens at the time of switching and where the additional or deficient
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states go to or come from. The theorem requires constructing different Lyapunov 

functions for the different subsystems and use this theorem to prove the stability of 

switching systems.

R e m a rk  4.7  In the proof of this theorem, we see that the system trajectory is not 

continuous because of temporary disappearance of some states. This is similar to 

the jumping in same-order discontinuous switching systems. They are, however, 

significantly different in nature. Jumping in common switching systems occurs when 

the state is not continuous at the switching moment. In the case of switching systems 

of multiple orders, discontinuity in the system space is caused by the disappearance 

of some states, which do not exist in certain time intervals. Thus it is not suitable 

to describe the discontinuity in the system space as jumping.

W ith the above multiple Lyapunov theorem, we can verify the stability of switch­

ing systems of multiple orders. However, as we know, there is no common procedure 

for us to find Lyapunov functions of nonlinear systems and the multiple Lyapunov 

theorem sometime is too restrictive for switching systems.

It is im portant to  note that, to apply the above multiple Lyapunov function the­

orem, one must have some information about the solutions of the system. Namely, 

one needs to know the values of suitable Lyapunov functions a t switching times, 

which in general requires the knowledge of the state at these times. This is to be 

contrasted with the classical Lyapunov stability results, which do not require the 

knowledge of solutions. Of course, in both cases there remains the problem of finding 

candidate Lyapunov functions. As we will see shortly, multiple Lyapunov function 

resu lts  are u se fu l w h e n  th e  c la ss  o f  a d m iss ib le  sw itc h in g  s ig n a ls  is  co n str a in e d  in  a  

way tha t makes it possible to ensure the desired relationships between the values of 

Lyapunov functions a t switching times. The proposed backstepping approach will 

be a good candidate to ensure this condition.
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4 .2 .2  S u ffic ien t C o n d itio n s

As to a switching systems of multiple orders, the stability of system is not only 

determined by the initial values of all states, but also by the reset values of extra 

states. Thus the proposed backstepping approach cannot guarantee the stability of 

switching systems of multiple orders. The following theorems provide some sufficient 

conditions for the stability of closed-loop switching systems.

T h e o re m  4.4 Consider a switching system of multiple orders o f the form  (2.1). I f  

the reset values of extra states are all bounded and within the region of convergence, 

then the proposed backstepping approach can ensure the closed-loop system stable in 

the sense of Lyapunov.

P ro o f  3 The proof is straightforward. We can choose (3.47) as the Lyapunov func­

tion of the closed-loop switching system. Since we assume the reset values o f the extra 

states are bounded, the value o f the Lyapunov function at the switching instances 

is always bounded. Also the proposed backstepping method guarantees the Lyapunov 

function monotonically decreasing between two consequent switchings. Thus the val­

ues of the Lyapunov function are always bounded. Therefore, the closed-loop system  

is stable in the sense o f Lyapunov.

T h e o re m  4.5 I f  the values of extra states are kept as their next reset values when 

they are inactive, then the closed-loop switching system is asymptotically stable.

P ro o f  4 In  order to prove this theorem, we can add another assumption that the 

values of extra states remain as their last ending value when they are not activated. 

Adding this assumption has no effect on the stability o f closed-loop system. Then 

the switching system can be viewed as the continuous switching system with subsys­

tems of same order. We can choose (3.4 7) as the common Lyapunov function of
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switching system. Then the proposed backstepping method guarantees the decreasing 

of Lyapunov function. Thus according to the common Lyapunov function theorem, 

we can say the closed-loop switching system is asymptotically stable.

R e m a rk  4.8  The above theorems provide only sufficient conditions fo r  stability of 

closed-loop switching systems. I t is not difficult to find a stable switching system  

that does not satisfy the condition of theorems.

R e m a rk  4.9  In the proof o f theorem 3.5, we assumed that the values o f extra states 

are maintained constant when they are inactive. This assumption enables the system  

trajectory and that of Lyapunov function continuous so that we can use the common 

Lyapunov theorem to verify the stability o f switching systems. It has no effect on 

the stability of the closed-loop system, since the inactive extra states have no effect 

on the other states o f the switching system.

4.3  E xam p les

In this part, The feedback multi-controllers using the proposed backstepping are 

designed for both same-order and multiple-order switching systems. The simulation 

results show the validity of this kind of backstepping-based controllers.

4 .3 .1  S a m e-o rd ers  S w itch in g  S y s te m s

In order to illustrate the backstepping design for general switching systems, we 

consider a switching system with two subsystems:

X l  — —3x1 +  X2 (4.4)

X 2  —  — 2 x 2  —  2-3

X3 =  X 1 X 2  — 2 x i U
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and,

x \  =  — hx\ — 2x2 (4.5)

X2 =  — 3x2 — 2x3

± 3  =  6 x 1 +  X2 +  3 x 2 u -

Assume this switching system is time-dependent with switching period of 0.5s 

and initial state (-1, 2, 3). We can see tha t two subsystems are both unstable 

without input u. Thus we need to design two controllers to respectively stabilize 

two subsystems. Here we use the proposed backstepping approach and obtain two 

state-feedback controllers for both of subsystems.

As to subsystem 1, consider the first equation. We can choose

4>(x) =  2xi (4.6)

with respect to the Lyapunov function

v ix ) = \ x l- (4.7)

Then consider the first two equations, we can obtain by using (3.41)

4>\ (x) =  xi + ( k -  2)x2 ------ - (4.8)

with respect to the Lyapunov function

v (x ) = \ x \  + \ x \- (4.9)

Then by using (3.45), we can also obtain the final input u

u
2x\

X1X2 —x2 +  8x3 x ix 2 -  2xf

X1X2 — X2 +  k 2 Xz X1X2 — 2x^ +  (ki — 2)x\.22 (4.10)
2x 1X3

(k\ = 2,k2 — 8),
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with respect to the Lyapunov function

v (x) = +  ix § . (4.11)

As to subsystem 2, consider the first equation. We can choose

<j>(x) =  2xi, (4.12)

with respect to the Lyapunov function

V (x) = (4.13)

Then consider the first two equations, we can obtain by using (3.41)

<fti(x) =  x i  +  + x-2 -  — , ki > 0, (4-14)
2 X2

with respect to the Lyapunov function

v (x) = ^  + ^ x l .  (4.15)

By using (3.45), we can also obtain the final input u

—6xi + x 2 - k 2X3 4x\ -  2x!X2 -  (Aq +  3 )x | .
“  =  = ----------+ ------------- 3^ --------------  (4' 16)

- 6 x i +  2x2 - 8 x 3 , 4x\ — 2xix2 — 6x^
— 4-------------   , ( k i  — 3 , k 2 =  8)

2 3X2X3

with respect to the Lyapunov function

v (.x ) =  \ x l  +  \ x l  + \ x t  (4-17)

We then apply these controllers to the nonlinear switching system. In Figure 

4.2, we present the trajectories of the closed-loop switching system. From the figure 

we can see tha t all system states converge to zero rapidly.

The trajectory of Lyapunov function (4.11) is shown in Figure 4.3. It also 

converges to zero rapidly. Though the trajectory loses differentiability at switching
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Figure 4.2: System trajectories with respect to time.
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Figure 4.3: The common Lyapunov function.

instances, it is strictly decreasing since it is in the strictly quadratic form. The 

trajectory of control input u is shown in Figure 4.4. From the trajectories of system 

states and Lyapunov function, we see tha t this time-dependent switching system is
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Figure 4.4: The control input

stabilized by the backstepping-based controllers.

The backstepping-based controller can stabilize not only the time-dependent 

system but also the state-dependent system. We will show this with the following 

example.

Consider a switching system consisting of two subsystems:

x \  =  — 3xi +  X2 (4-18)

X2 =  x i + x% + u

and,

±1 =  —6xi +  5a:2 (4-19)

X 2  =  4^2  —  2 X 2 U .

Assume this switching system is state-dependent. When X2 > 0, subsystem 1 

is activated. Otherwise, subsystem 2 is activated. The initial state is (2, 3). It is 

obvious tha t the two subsystems are both unstable under zero input. We need to

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



design the controller to stabilize this system. Following by the procedure in chapter 

2, we can obtain two sub-controllers for two subsystems.

As to subsystem 1, the control law is

4a;2
u — fo fa ) — —2xx — k x 2 — Xo    (4.20)

3x2

=  - 2 x i  -  7 x 2 - x 2 ~  ( h  =  7).
3X2

As to subsystem 2, the control law is

5 x i +  (k +  4 )x2 hx\
“  =  = ---------2rC2-------- +  ^ T  (4'21)

5 x i+  8 x 2 , 5xf 
=  + (kl = 4)

with respect to the common Lyapunov function

V{*) = \ 4  + \ x i  (4.22)

Figure 4.5 and Figure 4.6 show the trajectories of system states and the Lya­

punov function respectively. We see, even the switching between systems is not 

regular as th a t in previous example, the switching system is still stabilized by the 

backstepping-based controller eventually. The example shows tha t this backstepping 

approach can also work for state-dependent switching systems.

R em ark 4.10 This approach can be used for the switching system with the sub­

systems in the strict feedback form  or system that can be converted into this form. 

Since the common Lyapunov function can be obtained simultaneously while design­

ing backstepping-based controllers, the proposed backstepping is a nice approach for  

controller design of switching systems with strict feedback subsystems.

R em ark 4.11 By the proposed backstepping approach, controllers can stabilize the 

whole switching systems, since Lyapunov functions are always decreasing. This is
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Figure 4.5: System trajectories with respect to time.
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Figure 4.6: The common Lyapunov function.

guaranteed for continuous switching systems by the multiple Lyapunov function the­

orem. But as to non-continuous switching systems, jumping rule plays an important 

role. With different jumping rules, the switching system may be either stable, oscil-
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lated or unstable.

R e m a rk  4.12 The trajectories o f the Lyapunov functions in Figure f .S  and Figure 

f .6  are actually the combination of those of two subsystems. Thus they may lose the 

differentiability at switching instances. But benefited from the proposed backstepping 

method, the common Lyapunov function is in the quadratic form. Thus they are 

decreasing and converge to zero rapidly.

4 .3 .2  M u ltip le -o r d e r  S w itc h in g  S y s te m s

In order to illustrate the backstepping design for general switching systems, we 

consider a switching system consisting of two subsystems with different orders:

x \ — —3xi +  X2 (4.23)

X2 — -2 x2  ~  X3

£3 =  x i  +  3x2 —

and,

x i  — —6x 1 — X2 (4.24)

X2 — —x \  +  6 u.

Assume this switching system is time-dependent with period of 0.5s and initial 

state (-3, 6, 2). We see tha t two subsystems are both unstable w ithout input u.

Thus we need to design two controllers to respectively stabilize two subsystems.

Here we use the backstepping method and obtain two state-feedback controllers for 

two subsystems.

As to subsystem 1, consider the first equation. We can choose

4>{x) =  2xi (4.25)
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with respect to the Lyapunov function

V (x ) =  \ x \-

Then consider the first two equations, we can obtain by using (3.41)

2x\
— a)jl. 2 —

with respect to  the Lyapunov function

= x \  +  (k -  2)x2 -
X2

v (?) = \ *  1 +  5*2- 

Then by using (3.45), we can also obtain the final input u

, , . Xl +  2X2 +  &2X3 X1X2 -  2x? +  (fei -  2)Xo 
" = « I) =  2 +  ------------

=  + 2 i22 +  83,3 +  Xl^ ~ 2x’ . 0 t . = 2 , f e  =  8)

with respect to the Lyapunov function

v (x ) = £*1 +  ^ 2 +  ^*3- 

As to the subsystem 2, consider the first equation. We can choose

<f>(x) — 2xi 

with respect to  the Lyapunov function

v (x ) =  \ x v

Then by using (3.41), we can obtain the final input u

. . .  1  . n  .
U = 0 x(x) =  -(X l -  2x2 + z f  -)

O X2

with respect the Lyapunov function

v ( x )  =  \ x l  +  \ x t
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Figure 4.7: System trajectory with respect to time

We then apply these controllers to the nonlinear switching system. First, suppose 

the value of extra x$ will be kept when subsystem 1 is not activated. In Figure 4.7, 

we present the trajectories of the switching system with stabilizing controllers and 

initial states (-1, 2, 0.5). From Figure 4.7, we see tha t the system states x \  and 

X2 are continuous but lose differentiability in switching instances. Unlike x \  and 

X2 -, which belong to both of subsystems, x$ only belongs to subsystem 1. When 

subsystem 2 is activated, xz has no value. Finally all of system states converge to 

zero. Thus the system is stabilized by the backstepping-based controller.

The trajectories of two Lyapunov functions are shows in Figure 4.10 and Figure

4.11. We see tha t both of them converge to zero rapidly. Also since both (4.30) and 

(4.33) are in the same quadratic form, we can use (4.33) as the common Lyapunov 

function of two subsystems, which is shown in Figure 4.8. It is actually the combina­

tion of two Lyapunov trajectories of subsystem 1 and subsystem 2 in Figure 4.10 and 

Figure 4.11. Note tha t although this common Lyapunov function is discontinuous 

at switching instances, it is always monotonously decreasing between two sequential
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Figure 4.8: The common Lyapunov function
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Figure 4.9: The control input

switching events. The trajectory of control input u is shown in Figure 4.9.

However in the real plant, the extra state, such as X3, may have very complex 

initial value when the corresponding subsystem is activated. This value depends on
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Figure 4.10: The Lyapunov function for subsystem 1
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Figure 4.11: The Lyapunov function for subsystem 2

the real system. For example, if we simply choose the initial value of x 2 equal to 

0.5 whenever subsystem 1 is activated. We can see X3 will be oscillated. So do x\ 

and X2 • In this situation, the Lyapunov function will oscillate together with system
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states excited by the initial value of xs at the switching moment. Figure 4.12 and 

Figure 4.13 show this clearly. The trajectory of control input u is shown in Figure 

4.14.

0.5

-0 .5

0.5 2.5

Figure 4.12: System trajectory with respect to time

2.5

0.5

2.50.5

Figure 4.13: The common Lyapunov function
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Figure 4.14: The control input

R e m a rk  4.13 From the above two examples, we see that the proposed backstepping 

can stabilize the switching systems of multiple orders. Since Lyapunov functions can 

be obtained simultaneously while designing controllers, the proposed backstepping is a 

nice approach fo r  controller design of switching systems with subsystems of different 

orders.

R e m a rk  4.14 From Figure 4-9 and Figure 4-H> we see that the control input u is 

bounded by choosing the suitable When we use the proposed backstepping ap­

proach to design controllers for switching systems, we should be careful when choos­

ing f>{x), so that the control input u is realizable in applications.

R e m a rk  4.15 With the backstepping-based feedback controller, the values of Lya­

punov functions are always decreasing between two sequential switching events. How­

ever, the reset values of additional or deficient states still play an important role 

here. With different reset values, the switching system may be stable, oscillated or 

unstable.

72

10 r

-15  ■

-2 5  ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R e m a rk  4.16 We can also consider (4-30) and (4-33) are the individual Lyapunov 

functions of subsystem 1 and subsystem 2 respectively. Then we can use the multiple 

Lyapunov theorem to verify the stability o f this switching system. A s to this example, 

from Figure 4-10 and Figure 4-H> we can see that the multiple Lyapunov theorem 

is satisfied. Thus the whole switching system with the controllers is stable.

R e m a rk  4 .17 In  the last example, i f  we consider (4-33) as the common Lyapunov 

function, we can see that this Lyapunov function is not continuous because of the 

discontinuity o f x$, which only has value when subsystem 1 is activated. However, 

the common Lyapunov function is always monotonously decreasing between two se­

quential switching events. This can guarantee the stability of switching systems with 

backstepping controllers in most cases.
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C hapter 5

Backstepping Approach to  
Tracking Control
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In the previous chapters, a new backstepping-based controller has been proposed 

to stabilize nonlinear switching systems, which could be either same order or multiple 

orders. W ith the Lyapunov functions in the strict quadratic form, the backstepping- 

based controller can stabilize the states of nonlinear switching systems around the 

equilibrium point. In this chapter, we extend our design procedure, so tha t the 

backstepping-based controller enable the outputs of nonlinear switching systems to 

track the given outputs, which could be any first-order differentiable signal.

5.1 Tracking C ontrol by B ack step p in g

It is the purpose of this chapter to introduce a new tracking control approach for the 

class of switching systems (5.1)-(5.2) so tha t output asymptotic tracking is possible. 

In the following part of this section, we will first discuss the case of the single 

nonlinear system with the form (5.1).

Consider the single-input nonlinear system of the form

x \ = f ( x \ )  + g(x i )x 2 ,

X2 = f i ( x i , x 2) + g i ( x 1, x 2)x3,

(5.1)

i f c + l  f k ( x  1 ,  X 2 , , X f c ,  X f c + l )  +  Q k ( x  1 ,  X 2 , , Xf ~,  Xfc- j - \ ) u

and the multiple outputs

/  x\  \  
X2

y = (5.2)

V x k + i  /
where x  € R n, and fi,Qi are smooth, for all i = 1 ,•■•&. Suppose the expected 

system outputs are
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Ve( t )  =

(  n ( t )  \  
r2(t)

(5.3)

\  rk+i(t)

The control objective is to design the control input u so tha t the output y  can 

asymptotically track the first-order differentiable trajectories ye{t), i.e.,

In order to enable the system output to track the given output ye(t), we need to 

make each system state x j , j  € (1 ,2 ,..., /c+1} track each given Vj, j  € {1,2,..., k +l } .  

It is natural to transfer the original system state equations to system error equa­

tions. Then, the proposed backstepping method can be used to design a stabilizing 

controller for the error system. If the backstepping-based controller can stabilize 

the system error around the origin, the output of the original system can track the 

given output rj(t) successfully.

Because the given output is rj(t) j  =  { !,--• ,/c-|-l} , the error of output is

lim (y(t) - y e(t)) = 0
t—> oo

(5.4)

ei = x i -  riW> J € [1,2,..., k + 1]. (5.5)

Then from the above equations, we can obtain

x i  =  e3 +  r 3 ( t )- (5.6)
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Subscribe (5.6) to (5.1), we obtain

e i+ n ( < )  =  f ( e i  + ri(t)) + g(e1 + r 1(t))(e2 + r2(t)), (5.7)

(*) =  f j - 1 (ei + ,ej + r j (t))

+ g j - i(e i +  r ^ t ) ,  ■■■ ,ej + rj(t))(ej+l +  rj+1(t)),

efe+l +  h+l ( t )  = fk(e l +  n(*)>' '  ‘ +  r fc+l(*))

+fffc(ei +  n ( f ) ,  • • • , ek+i +  r fc+i(t))u .

Prom (5.7) we can obtain the error equation

ei =  / ( e i + r i ( t ) ) - r ! ( t ) +  g (e i+  r i( i ) ) r2( t ) + 5 ( e i+ r i ( t ) ) e 2, (5.8)

ej =  / i - l ( e i  +  n( t ) ,  ■ ■ ■ , ej +  r,-(t)) -  rj(t)

+ 9 j- l ( el +  ri( t) , • • • , ej +  rj(t))rj+\(t)

+ 9 j- i(e i +  ri( i) , • • • , ej +  r j (t))ej+ i,

4+1 =  /fc(ei + r 1(t),--- ,e k+1 + rk+1(t)) - r fc+1(f)

+fffc(ei +  n  (£),••• ,e fc+i +  r fc+i(t))u.

Define

/ i - l ( e i , '  • • , ej , r i, • • • , r j , f j )  = f j - i(ei +  n ( t ) ,  • • • ,e j +  r,-(i)) -  rj(t)  (5.9)

+ 5 i_ i(e i +  n ( t ) ,  • • • , ej +  ^ ( t ) ) ^  

i  €  { 1 ,2 ,. . . ,  A;},

f k i e l, ••• > ej) r l , ' ' '  j^fc+l^fc+l) =  /fe(ei +  n ( t ) , - -  - ,e k+i + r k+1(t)) - r k+1(t).
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Then, we obtain the following system

ei =  f ( e 1, r i ( t ) , r i ( t ) )+g(e i , r i ( t ) ) e2, (5.10)

e2 =  f l ( e i , e 2 , r i ( t ) , r 2 ( t ) , f2(t)) + gi (ei ,e 2 , r i ( t ) , r2(t))e3,

efc+l =  fk(e I , - "  ,ek+l,r\ (t ) , ---  , rk+l(t) , rk+1(t)) + gk(e1} ■ ■ ■ , ek+1, ri(t),  ■ • • , r k+1(t))u.

Comparing system (5.10) with the previous strict feedback system (5.1), we 

see that, unlike the strict feedback systems (5.1) tha t we dealt with before, the 

above system is nonautonomous because of r(t) and f{t).  However, le t’s recall the 

proposed backstepping approach. The constructed objective Lyapunov function for 

the system (5.10) is

k-\-\
U + l  =  U ( e i )  +  h i + , =  V ,(e i ) +  £  \ e l  (5.11)

i=2
Notice tha t the above Lyapunov function is independent of t. Then, the Lya­

punov function and the corresponding controller law (5.14) satisfy the nonautonomous 

Lyapunov function theorem. Thus, the proposed backstepping approach can sta­

bilize both the autonomous system in the form of (5.1) and the nonautonomous 

system in form of (5.10).

Therefore, we can design the stabilizing controller for system (5.10) using back- 

stepping. The state e* of the error system (5.10) can be stabilized around the origin.

Then the output y(t) of the original system (5.1) can track the given signal ye(t).

For example, in case of k = 1, the control law for the error system (5.10) is

« = ^l(ei,e2) = ----r { - ^ s ( e i )  + ^ 0 ( e i ) ^ ^ - A ; i e 2 - / i ( e i , e 2 ) } ,  h  > 09 l ( e i , e 2) 1 o e \  d e x K e2

(5.12)

with the associated Lyapunov function

F2 =  Vi(ei) +  ^ 4  (5.13)
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Subscribing (5.5) to (5.12) and (5.13), we have tha t the final control law and

associated Lyapunov function for this systems are

- k 1(x2 -  r2) -  ( f i ( x i , x 2) -  h ( t )  + g i ( x i , x 2)r2(t))},

V2 = V\ (xi , r \ )  +  ^ ( x 2 -  r 2)2. (5.15)

Prom the above analysis, we see that, as to the system (5.1) with k + 1 states, we 

can build the following Lyapunov function with the input obtained from the above 

procedure.

1 i
Vk+x =  Vk (x) +  -x £ + i =  Vl (xi , r 1) + ^ 2 ^ { x i  - n ) 2. (5.16)

2 = 2

In general, we obtain the following theorem.

T h e o re m  5.1 The feedback controller (5.14) using the proposed backstepping can 

guarantee that the SISO or SIMO nonlinear system in the form  of (5.1)-(5.2) achieves

asymptotic tracking for any first-order differentiable signal.

P ro o f  5 Transfer the system state equations (5.1) to the system error equations

(5.10). Then the proposed backstepping method ensures that the transferred system

(5.10) is stabilized around the origin fo r any given first-order differentiable rfit), 

since the constructed Lyapunov function is independent oft .  Then the output y(t) of  

the original system (5.1) can track the given signal ye(t). Therefore, the closed-loop 

SISO and SIMO nonlinear system in the form  of (5.1 )-(5.2) can achieve asymptotic 

tracking for any first-order differentiable signal.

R e m a r k  5 .1  The above backstepping approach app lies to  tracking co n tro ller  design  

of nonlinear switching systems in the strict feedback form, especially to those can 

not be feedback-linearized due to the unstable zero dynamics or the lackness o f well 

defined relative degree.
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5.2 T racking T h eorem  for S w itch in g  S y stem s

Consider now the nonlinear switching systems (2.1). If we can find the same V\(x)  

for all subsystems, the subsystems will have the Lyapunov functions in the strict 

quadratic form (5.16). Then we can use the above procedure to design controllers 

for each of subsystems and combine these sub-controllers to obtain a synchronous 

switched controller for switching systems. The following theorem guarantees the 

stability of closed-loop switching systems.

T h e o re m  5.2 A s to a continuous switching system consisting of the subsystems 

with the form  (5.1)-(5.2), furnished with an arbitrary switching rule, with the pro­

posed backstepping tracking method, if  we can construct the same Vi(:ei) for all 

subsystems, then the corresponding close-loop switching system with backstepping- 

based controller can track the expected outputs ye{t), which could be any first-order 

differentiable signals.

P ro o f  6 The proof is straightforward. First we transfer all subsystems to error-state 

form  (5.10). Assuming we can find the same V\{x{) for all subsystems, there exists 

the same V\{e) fo r  all subsystems in the error state form  (5.10). Then Theorem 

4-2 and Theorem 4-4 guarantee the closed-loop switching systems in the form  (5.10) 

stable around the origin. In the other words, the state errors of original switching 

system converge to zero asymptotically. Therefore, the original switching system  

can track the expected outputs ye(t). The constructed Lyapunov function (5.16) also 

shows that the proposed controller will ideally achieve asymptotic tracking.

R e m a rk  5.2 The above theorem is applicable to any continuous SISO or SIMO  

switching system consisting of the subsystems in the form  (5.1)-(5.2).

R e m a rk  5.3 The proposed backstepping approach is independent of the switching
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rules. Thus, it can be used for both time-dependent and state-dependent switching 

systems.

R e m a rk  5.4 The above theorem is based on Theorem f .S  and Theorem f .J.  Thus 

the switching system could be either same-order or multiple-order system.

The following example will illustrate theoretical results for multiple-order switch­

ing systems.

5.3 E xam p le

In this part, the following example is given to show the performance of the proposed 

backstepping-based control for the nonlinear switching systems. More explicitly, 

consider the switching system with two subsystems of multiple orders.

and,

with the output

x \ = —3xi +  x<i, (5.17)

±2 —  - 2 x 2  —

X 3 —  x i  -j- 3 x 2  —  2u ,

x \ = —6xi — *2, (5.18)

X2 = —Xi +  6 u,

y — x i. (5.19)

Assume this switching system is time-dependent with period of 0.5s and initial 

state (—1,2,0.5). The expected output is r(t) . Thus we need to design two con­

trollers to  solve this tracking problem. Here we use the backstepping method and
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obtain two state-feedback controllers for each of subsystems. First, we transfer the 

system equations to error equations. Since

e\ =  a q - r i ( i ) ,  (5.20)

e2 =  x 2 -  r2(t), 

e3 =  a j 3 - r 3(i),

then, according to  (5.7), we obtain the system error equations as follows:

ei =  —3ei — 3ri(t) — ri( t)  +  r2{t) + e2, (5.21)

e2 -  —2e2 — 2r2(t) — r2(t) — r2(t) — e3,

H  =  &l +  r\(t)  +  3e2 +  Sr2(t) — r ^ t )  — 2u.

and,

ei =  -6o:i -  6 r i ( i ) - r i ( t )  -  r 2(t) -  e2, (5.22)

e2 =  — (ei +  r i( t ) )2 — r2(t) +  6u.

As to subsystem 1, consider the first equation. We can choose

<Kei) =  ri(t)  +  3rx(f) -  r2(t) +  ei, (5.23)

with respect to  the Lyapunov function

V(ei )  = \ e \ .  (5.24)

Then considering the first two equations, we can obtain by using (3.41)

e 2 )  =  e i + ( k  -  2 )e2 -  e -̂ T’-1^  +  3rl(*) +  ei— r ^ i) )  _
e2

(5.25)

with respect to  the Lyapunov function

V2(ei,e2) =  +  (5.26)
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Then considering the third equation, we can obtain the final input u

\ / t , n  e i ( r i ( i )  +  3 r i ( i )  +  e i  — r2(t) ) ,c
u =  <t>2 (e l ,  e 2 , e3) =  (e2 -  (e i  +  (A* -  2 )e 2 --------— —--------- — -------------------- *(5.27)

e 2

- 2 r 2(i)  -  r3(f) -  r2( t ) ) / e 3 -  A ^ e i  -  n ( i )  -  3 e2 -  3r2(i)  +  r3( f ) ) / ( - 2 )  ,

with respect to the Lyapunov function

t̂ 3(e i,e2)e3) =  +  ie§ . (5.28)

As to subsystem 2, consider the first equation. We can choose

^(ei) =  2ei -  6 ri(t) -  n ( t )  -  r 2(t), (5.29)

with respect to  the Lyapunov function

Vi(ex) =  ie f .  (5.30)

Then we can obtain the final input u

u =  ^x (e i,e2) =  (ei +  e i n̂ ^  +  6 r i^ )— 2ei +  r2^ )) _ fcie2 +  (ei + r i ( t ) ) 2+ r 2(f))/6
X2

(5.31)

with respect to  the Lyapunov function

% e i , e 2) =  ie ?  +  ± 4  (5.32)

We can use the above controller to verify the performance of closed-loop switch­

ing systems. First, we use the step signal as the tracking signal with the other two

states X2 ,xa stabilized at the origin. Then

ye(t) =  1, Vt > 0, (5.33)

and

Ve{t) =  f i ( t )  — 0, Vt >  0. (5.34)
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Design the backstepping controller according to (5.27) and (5.31). In Figure 5.1, 

we compare the trajectories of the expected output and the system output. The 

error is shown in Figure 5.2. From above two figures, we see tha t the output of the

—  Sysem  Outpul
—  E xpected O ulput

Figure 5.1: Expected and system outputs

Figure 5.2: Trajectory of output error

switching system can track the expected output successfully.

Consider now the same system and let the tracking signal be a ramp. Then:

Ve(t) = t, Vt > 0, (5.35)

and

V e { t )  =  h ( t )  =  1, Vt >  0. (5.36)
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—  System  Output
—  E xpected  Output

lime (t)

Figure 5.3: Expected and system outputs

lime (I)

Figure 5.4: Trajectory of output error

We obtain the results shown in Figure 5.3 and Figure 5.4. From the above figures, 

we see tha t the output of the switching system can track the given ram p signal.

Consider now the same system and change the tracking signal to  a sinusoid. 

Then

ye(t) =  s in t, Vt > 0, (5.37)

and

ye(t) =  r\{t) — cost, Vt > 0. 

And we obtain the results shown in Figure 5.5 and Figure 5.6:

(5.38)

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—  System  Output
-  -  E xpected  O utput

time (I)

Figure 5.5: Expected and system outputs

Figure 5.6: Trajectory of output error

The output trajectories are shown in Figure 5.5. We can see th a t both of them 

converge to zero very rapidly. Also since both (4.30) and (4.33) are in the same 

quadratic form, we can use (4.33) as the common Lyapunov function of two subsys­

tems, which is shown in Figure 5.9. It is actually the combination of two Lyapunov 

trajectories of subspace 1 and subspace 2 in Figure 5.7 and Figure 5.8. Note tha t 

although this common Lyapunov function is discontinuous at the switching instance, 

it is always continuously decreasing between two sequential switching events.

From the above figures, we see tha t the output of the switching system tracks 

the given sinusoid.
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Figure 5.7: The Lyapunov function for sub­
system 1 (5.21)
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0
0 1 2 3 4 5 6 7 8 9  10

Tlme(t)

Figure 5.8: The Lyapunov function for sub­
system 2 (5.22)

3 

2.6

1. 5

0.6
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Figure 5.9: The common Lyapunov function

Ki n. n
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R e m a rk  5.5 The above example shows that the backstepping method can be used 

for switching systems of multiple orders. The proposed backstepping method can 

not only stabilize switched systems around the equilibrium point, but also solve the 

tracking problem of nonlinear switching systems via system transformation. The 

backstepping-based controller enables the system output to track any given first-order 

differentiable signal.
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C hapter 6

Conclusions
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Generally speaking, switching systems can be viewed as continuous-time systems 

with discrete switching events from a certain class. Such systems can be considered 

as higher-level abstractions of hybrid systems.

In this thesis, we have proposed a method to design controllers for nonlinear 

switching systems. First, we introduced basic concepts and classification of switching 

systems, especially those tha t apply to systems of multiple orders. We then discussed 

the traditional backstepping approach for controller design of nonlinear systems and 

use an example to show its shortcoming for nonlinear switching systems. In order to 

solve this problem, we proposed a new backstepping approach to controller design 

for nonlinear switching systems. This new approach can stabilize switching systems 

of both same order and multiple orders. Also in our design procedure, we can obtain 

Lyapunov functions in the same quadratic form for all of subsystems of switching 

systems. We then obtained and discussed several sufficient conditions for same- 

order and multiple-order switching systems. W ith these conditions, the stability of 

closed-loop switching systems in either the time-dependent or state-dependent cases 

is guaranteed by the multiple Lyapunov function theorem for switching systems, 

which is proposed and proved in this thesis. Also, the proposed controller can 

achieve asymptotic tracking by system transformation. Finally several examples 

were given and discussed in detail. The simulation results show tha t the proposed 

backstepping approach can be applied successfully for controller design of nonlinear 

switching systems.

6.1 S w itch in g  S ystem s

In this thesis, we introduced the traditional definitions and some stability theorems 

for switching systems. It is easy to see tha t the common and multiple Lyapunov func­

tion theorems play im portant roles for switching systems. However, these stability
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theorems can only be used for the same-order switching system, whose subsystems 

have the same order. This assumption is restrictive and is not based on theoretical 

foundations but on mathematical convenience.

The main objective of this thesis is to extent these results to the case of multiple- 

order switching system, which is virtually unexplored and very few results are avail­

able in the literature. The subsystems in these switching systems have different 

orders. Thus we can not use the established theorems to verify the stability of such 

systems. First, we classified the states and subsystems in multiple-order systems, 

according to their different roles in switching. The definitions of equilibrium point 

and stability of such system are given and discussed in detail. We can see that 

the equilibrium point x e of such systems is different from the classical definition of 

equilibrium point, since x e may not be in any of the subsystem spaces. However, it 

still exists in the system state space.

Based on these definitions, the multiple Lyapunov function theorem for multiple- 

order systems is proposed and proved. The theorem establishes a powerful tool 

to design controllers for multiple-order switching systems. The result provides a 

sufficient condition to verify the stability of switching systems. One of advantages 

of this theorem is tha t it can be applied without knowing what happens at the 

time of switching and where the additional or deficient states go to or come from. 

The theorem requires constructing different Lyapunov functions for the different 

subsystems, and then it can be used to prove the stability of switching systems.

6.2 P ro p o sed  B ack step p in g  A pproach

One of the most powerful methods to design controller for nonlinear systems is 

the backstepping procedure. By constructing Lyapunov functions, we can design 

stabilizing controllers for nonlinear systems via the backstepping approach. When
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designing the backstepping-based controller, we obtain the Lyapunov function for 

the nonlinear system simultaneously, which guarantees closed-loop stability of the 

origin. However, since the Lyapunov function obtained by the traditional back- 

stepping method is not in the strict quadratic form. The traditional backstepping 

cannot stabilize nonlinear switching systems. In the thesis, we proposed a new 

backstepping procedure to design switched controller, which can stabilize switching 

systems of both same order and multiple orders. Also in our design procedure, we 

can obtain Lyapunov functions in the same quadratic form for all of subsystems of 

switching systems. Thus the stability of closed-loop switching systems in either the 

time-dependent or state-dependent cases is guaranteed by the Lyapunov function 

theorem. Also, after system transformation, asymptotic tracking can be achieved 

by the proposed controller. Several examples given in the thesis show the validity 

of this method.

6.3 F ulfillm ent o f  T h esis O b jectives and F uture W ork

Four examples were given for the theory presented. Two of them are about same- 

order switching systems and carried to illustrate the proposed backstepping ap­

proach can stabilize both the time-dependent and state-dependent cases. The other 

two examples dealt with multiple-order switching systems. We can see tha t the 

backstepping-based controller can stabilize the switching systems if the sufficient 

conditions given in the second chapter are satisfied.

Because this backstepping approach can stabilize a broad class of nonlinear 

switching systems, which consist of strict feedback subsystems, this method could 

have a broad class application. Typical examples in real life include car transmission 

systems, process control systems, mobile robots etc.

It is hoped tha t this thesis fulfilled the motivation to provide a solid framework
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and basis for switching systems of both same and multiple orders, and give a  general 

method to design controllers for nonlinear switching systems, which could be of same 

or multiple orders.
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