
University of Alberta

S o f t w a r e D i s t r ib u t e d S h a r e d M e m o r y : I s s u e s a n d a C a s e S t u d y

by

Mehmet Ra§it Eskicioglu

A thesis subm itted to the Faculty of G raduate Studies and Research in partial ful
fillment of the requirements for the degree of Doctor of Philosophy.

D epartm ent of Com puting Science

Edmonton, Alberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95927-9
Our file Notre reference
ISBN: 0-612-95927-9

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perfection is not achieved when there is nothing left to add,
bu t w hen there is nothing left to take away.

St. Exupery's Dictum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my dearest wife Hiilya and my lovely daughters Pinar and C^agla,
for standing by me far too many years...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

This has been a very long journey... So, I may not able to remember every

name. I w ould like to start expressing my appreciation to my original supervisor,

Dr. Wlodek Dobosiewicz for his endless and highly inspiring and m otivating ideas.

I also w ould like to thank my current supervisors and mentors Dr. Tony M arsland

and Dr. Pawel Gburzynski. Dr. M arsland has been and still is m y "virtual w riting"

coach. It is for his continuous advise that there is just a few if any sentence in this

dissertation that ends w ith a w ord which also exists in the sentence itself. Along

w ith Dr. Dobosiewicz, Dr. Gburzynski has been supportive from the very early

days. I cannot forget their support.

I was the president of the 1989-90 CSGSA executive w ith Leigh Willard as VP

and Jean Leroux as Treasurer. It was a great pleasure working w ith you guys. I also

remember the good old days, w hen I shared offices w ith Franco Carlacci, George

Ferguson, Yiang-Leng Chang, Iqbal Goralwalla, Dimitry Grodnichy, Andreas Jung-

hanns, Yngvi Bjornsson, and various labs w ith Ken Barker, Randal Peters, Wade

Holst, and Kalandhar Voruganti. Further, other friends and colleagues that I can

remember are Mike MacGregor, Gordon Atwood, Abdul Sattar, Cesur Baransel,

Afsal Upal, and Diego Novillo, all of w hom have finished their studies long before

me. I (shamefully) thank you all, and the others w hom I forgot to m ention here, for

your com pany and friendship.

I also w ould like to recognize some of the departm ent's personnel w hom I

shared many views academic or otherwise and received help in m any occasions.

From adm inistrative services group: Edith Drum m ond, Karen Berg, Sharon Gan

non, and Britta Nielsen; from hardw are support group Rick Hughes, Charles Jobagy,

and Rene Leiva; from instructional support group Rod Johnson, Chris Helmers,

Carolyn Morris, and Roman Fedoriw; from systems support group Jim Easton,

Bruce Folliot, and Rob Lake. Last, bu t not least, I w ould like to m ention the sup

port and friendship of Steve Sutphen, Carol Smith, and Catherine Descheneau.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

1.1 B a c k g ro u n d ... 2

1.2 U nderlying C o n c e p ts .. 4

1.3 Classification and a Historical P erspective.. 6

1.4 Thesis Statement .. 7

1.5 Organization of the T h e s is .. 9

1.6 Summary of Thesis Contributions ... 10

2 Foundations of DSM 11

2.1 Layer of A b s tr a c tio n .. 11

2.1.1 H ardw are Im plem en tations.. 12

2.1.2 Software Im plem entations... 16

2.2 F u n d a m e n ta ls .. 17

2.2.1 M emory Consistency M o d e ls .. 17

2.2.2 Structure and G ra n u la r ity ... 21

2.2.3 Coherence Protocols and Synchronization................................... 22

2.2.4 Data Location and Access A lg o rith m s ... 23

2.2.5 O ther I s s u e s .. 24

2.3 S u m m ary .. 26

3 A Review of Software DSM Systems 27

3.1 In tro d u c tio n ... 27

3.2 Software DSM Systems in the L ite ra tu re ... 28

3.2.1 Page-based Software DSM Systems .. 29

3.2.2 Object/Language-based Software DSM S y s te m s 43

3.2.3 H ybrid DSM Systems ... 47

3.3 S u m m ary ... 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 JIA-R—A Case Study 57

4.1 O v erv iew ... 57

4.2 JIAJIA and J IA -R .. 58

4.3 M emory O rg a n iz a tio n .. 58

4.4 Coherence P ro to c o l... 59

4.5 Comm unication M echan ism ... 61

4.6 Program m ing In te rface .. 61

4.7 Details of JIA-R E n h a n c e m e n ts ... 62

4.7.1 A utom ated Startup and In itia l iz a t io n .. 65

4.7.2 N ew Messaging S y s te m ... 66

4.7.3 Comm unication Subsystem O p tim iz a tio n s 66

4.8 S u m m ary ... 67

5 Evaluation of JIAJIA and JIA-R 68

5.1 Experimental Platforms ... 68

5.2 Benchmark Suite .. 69

5.3 Experimental M e th o d o lo g y ... 74

5.4 JIAJIA on S P 2 .. 75

5.4.1 Comparison of JIAJIA and CVM ... 75

5.4.2 Comparison of JIAJIA and T M K .. 77

5.5 JIA-R on the 16-SingleCPU C lu s te r .. 81

5.6 Overview of Results ... 84

5.7 S u m m ary ... 98

6 Conclusions and Future Work 100

6.1 C o n c lu s io n s ..100

6.2 Future W o r k ..101

Bibliography 103

Abbreviations 119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Software DSM A bstrac tion .. 1

1.2 DSM Publications by Y e a r .. 9

2.1 DSM Integration L a y e r s .. 12

2.2 Uniform Consistency M o d e ls .. 18

2.3 Hybrid Consistency M o d e ls ... 19

2.4 Common Consistency Models used in S-DSM Systems 20

4.1 Architecture of JIAJIA ... 57

4.2 M emory Architecture of J IA JIA ... 59

4.3 Coherence Protocol of J IA J IA .. 60

4.4 General Execution Flow of Parallel A p p lic a tio n s 63

4.5 JIA-R Message S tru c tu re ... 65

4.6 JIA-R Comm unication Structure .. 66

5.1 Comparative Speedups: JIAJIA vs C V M .. 78

5.2 Com parative Speedups: JIAJIA vs T r e a d M a r k s 80

5.3 Bandwidths of three N etw ork Interconnects... 82

5.4 Performance of Barnes on the 16-SingleCPU C lu s te r 87

5.5 Relative Times of Barnes on the 16-SingleCPU Cluster 88

5.6 Performance of EP on the 16-SingleCPU C lu s te r 89

5.7 Relative Times of EP on the 16-SingleCPU C lu s te r 90

5.8 Performance of LU on the 16-SingleCPU C lu s t e r 91

5.9 Relative Times in LU on the 16-SingleCPU C lu s te r 92

5.10 Performance of SOR on the 16-SingleCPU C lu s te r 93

5.11 Relative Times in SOR on the 16-SingleCPU C lu s te r 94

5.12 Performance of TSP on the 16-SingleCPU C l u s t e r 95

5.13 Relative Times in TSP on the 16-SingleCPU C lu s t e r 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.14 Performance of Water on the 16-SingleCPU Cluster

5.15 Relative Times in Water on the 16-SingleCPU Cluster

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

1.1 S-DSM Related Publications over the Past 14 Y ears 8

3.1 Page-based Software DSM S y stem s.. 30

3.2 Object/Language-based Software DSM S y s te m s 44

3.3 H ybrid Software DSM S y s te m s ... 49

5.1 Application Characteristics ... 70

5.2 Performance of Applications w ith JIAJIA and C V M 75

5.3 Performance of Applications w ith JIAJIA and T M K 79

5.4 Message count and data sizes with JIAJIA and TREADMARKS 81

5.5 N etw ork In te rco n n ec ts .. 82

5.6 Performance of Applications on Fast E th ern e t.. 83

5.7 Performance of Applications on Gigabit E th e rn e t................................. 85

5.8 Performance of Applications on M y rin e t... 85

5.9 Application Speedup on 3 N e tw o rk s ... 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Software Distributed Shared Memory (S-DSM) is an abstract view of the col

lective memories on a set of loosely-coupled com puters, as shown in Figure 1.1.

This abstraction allows users to view the collection of memories of the com ponent

com puters as a single large common (global) memory. Further, it allows a trans

parent replication and sharing of the application data over the distributed memory

of the computers. This fundam ental characteristic allows the deploym ent of net

worked standalone com puters as one parallel multicomputer. The issues related to

the transparent replication and sharing of application data make S-DSM quite a

popular research topic. Such issues include transparency of memory am ong inde

pendent com puters, consistency of shared data, and protocols that allow sharing.

Processor 1 Processor 2 Processor n

Interconnection Network

Distributed Shared Memory

Figure 1.1: Software DSM Abstraction

This w ork is m otivated by the observations that (i) w ith the advent of ever

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

increasing availability of off-the-shelf personal com puters (PCs) and the variety of

network interconnects, powerful distributed systems can be built, and (ii) using S-

DSM on such platform s provide the users w ith an easy program m ing model. The

availability of inexpensive and powerful PCs as well as fast interconnect m edia

increases not only the popularity of S-DSM research, bu t also a variety of w ork in

other fields (e.g., caching in w orld wide web applications).

This thesis first examines the rationale behind S-DSM to give an insight for

its development. The first few sections in this chapter give some background on

loosely-coupled (distributed) computers, their basic underlying concepts covering

two fundam ental program m ing models (message passing and shared memory),

and a brief description of the terminology. This introduction is followed by a clas

sification of shared memory abstraction, a definition of S-DSM used in this thesis,

and a short historical perspective. Finally, the I conclude the chapter w ith a brief

description of the organization of the thesis and a sum m ary of its contributions.

1.1 Background

D uring the past two decades, m any kinds of distributed com puting systems

have been proposed and built, covering a w ide range of design goals, scope, per

formance, and applications. The common point of all these systems is that they

all consist of m ultiple processors. The collection of different architectures of m ul

tiple processor com puter systems includes vector computers, dataflow and deduction

machines, multiprocessors, multicomputers, and workstation-LANs and -WANs. Vec

tor com puters have m any processors that execute the same arithmetic operations

on different data. Dataflow and deduction com puters execute different operations

on different data. Multiprocessors have m any autonom ous processors that share

a common single main memory. M ulticomputers are similar to multiprocessors

except that there is no shared m em ory bu t private memories dedicated to each

processor. On the other hand, workstation-LANs (also know n as Network o f Work

stations (NOW s), or Clusters o f Workstations (COWs), or Pile of Workstations (POWs)),

depending on their physical arrangements, and workstation-W ANs are multicom

puters consisting of workstations or m inicom puters as their m ain processing units.

M ultiprocessors are commonly referred to as tightly- or closely-coupled systems,

while multicom puters are referred to as loosely-coupled systems.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Because of this diversity, there is no agreement am ong researchers to date on

the definition of a distributed computing system. Nevertheless, the following defi

nition given by Bal et al. [BST89] is adopted, as it has the most generic form: “A

distributed computing system is a group of autonomous processors that do not share main

memory but cooperate with each other over a communications network by exchanging mes

sages." This definition actually describes a loosely-coupled system, which is the

common architecture where S-DSM systems have been generally implem ented. I

will use distributed com puter system and loosely-coupled (computer) system in

terchangeably in this thesis.

With the recent advances in com puter technology, the developments in operat

ing systems have resulted in some form of a consensus: a good operating system

m ust be capable of controlling a large num ber of individual machines com m uni

cating over a network.

The users should be given enough resources to solve their problems, even if it

means creating virtual resources that share a (possibly smaller) set of real resources,

and should not be forced to know how such a system implements various ser

vices that it provides. The users merely present to the system a set of cooperating

processes and expect them to be executed by w hatever means the system finds

suitable.

While virtual memory becomes a de facto standard1, the other real resources are

not all transparent to the users. In particular, a user m ust log on a particular m a

chine, use a file system that resides on a particular disk, use explicit commands

to perform netw ork communication (as opposed to local communication), and so

on. On the other hand, a distributed com puting system (or a loosely-coupled sys

tem) should be viewed as a single entity2: a com puting server. Tanenbaum and

van Renesse argue that the notion of a host should be abolished—the operating

system should turn the collection of available resources into a num ber of virtual

processing units. The underlying networks and protocols interconnecting these vir

tual processing units should be transparent to the users, unless the user explicitly

wants to use them. Hence, a "distributed operating system" can be defined as an

operating system running on a collection of autonomous processing units that hides the

multiplicity of the processing units and the underlying network from its users.

h o w ev er , its need and usefulness has been questioned [Hag89],
zTanenbaum and van Renesse in their excellent survey [Tv85] call this entity a ''v ir tu a l u n ip ro ces

sor" to emphasize its transparency and abstraction.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A few operating systems, fitting into the above definition, have been developed

over the years. Most notably, Amoeba [MvT+90], Chorus [RMP+87], Mach [ABB+86],

Sprite [OCD+88], Rhodos [WHG94], and Mos [BL85] (later became Mosix [BL88])

are some of the significant ones. However, only some of them have em erged out

side the academia as commercial products, and some others have only been used

in a few academic institutions.

1.2 Underlying Concepts

Interprocess communication (IPC) has been studied for many years, first in single

processor systems, resulting in many communication and synchronization mech

anisms [M 0087, BST89]. Two program m ing models that support distributed and

parallel applications were introduced as a result of multiple processor com puter

systems: message passing (for loosely-coupled systems) and shared memory (for tightly-

coupled systems).

Message passing has been the major m odel of IPC in distributed com puting

systems, since the com puters forming a distributed com puting system do not share

main memory. The basis of the message passing model is Hoare's classic paper on

Communicating Sequential Processes (CSP) [Hoa78]. Message passing is charac

terized by the data m ovem ent among the cooperating processes as the processes

communicate and synchronize by sending and receiving messages. M any variations

of message passing systems have been proposed in the literature. A complete list,

discussing these variations, is provided elsewhere [BST89].

Unfortunately, message passing does not allow data sharing directly. One way

to share data using message passing is to pu t the shared data in a special process

and allow the other processes to send well-defined operations to the special process

that operates on the data [Lib85]. Other methods that allow sharing data in a m es

sage passing environm ent may move data around explicitly in messages, bu t this

approach needs special care since synchronization of the messages may become a

problem. Moreover, data consistency may become a potential problem if several

messages carry copies of the same data.

The message passing mechanism is usually becomes significantly burdensom e

for the application program m ers, because they generally have to move data back

and forth explicitly w ithin program s [TSF90]. Earlier, Remote Procedure Call (RPC), a

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mechanism for language-level transfer of control and data between processes [Nel81,

BN84], was introduced to ease the burden on the application programm ers. RPC

has the basic semantics of shared memory, except param eters are passed only "by

value", because of the separate memories (address spaces) on which the caller pro

gram and the remote procedure usually execute. Broadcast and m ulticast are other

message-based communication mechanisms, where the interactions involve one

sender and m ultiple receivers [Geh84].

Shared memory is among the earliest communications paradigm s in program

ming. M any languages exist that use the shared memory paradigm. M any uniproces

sor operating systems are constructed as a collection of processes communicating

through a shared memory. The shared memory paradigm , that resides on the oppo

site end of the spectrum of communications mechanisms, provides direct support

for data sharing as the m apping of data to a shared memory is natural.

Bal and Tanenbaum [BT91] describe the most im portant differences between

message passing and shared memory paradigm s as follows:

• In message passing, two processes should be alive when the interac

tion takes place because the message transfers information between two

processes. Moreover, at least the sender should know the identity of the

receiver before sending the message. In contrast, processes interacting

through shared memory need not know the existence of each other, nor

should they both be alive at the same time. They only need the address

of the memory location they share.

• Also, in message passing there is a delay between sending a message

and its reception. But an assignment to a shared memory location has

im mediate effect.

• One program m odule cannot affect the correctness of other m odules in

message passing. In contrast, a "wild store" through a wrong pointer

in one m odule m ay cause a disaster in shared memory.

• Synchronization of the communicating processes is implicit w ith mes

sage passing. In other words, the receiver waits for a message to arrive.

Similarly, w ith synchronous message passing, the sender waits for the

receiver to be ready as well. With shared memory, however, synchro

nization m ust be provided explicitly, for example, by m utual exclusion

using locks or semaphores.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Li [Li86] has noted some additional im plem entation problems of the message

passing paradigm . They include the difficulty of passing complex data structures

to a remote procedure and the problem of moving processes to other processors

(process migration). These problems make process management, thus message

passing, more complicated.

Earlier, researchers have observed the complementary role of memory and com

munication in the context of operating system kernel design as well as in the orga

nization of distributed applications [YTR+87], This observation reduced the prob

lem to an investigation of how to extend this duality to a distributed environment.

In recent years, the shared memory paradigm became a popular research topic

among several researchers who exploited it as an alternative approach for IPC over

a network, although it is not directly applicable to the current distributed com put

ing systems. The abstraction of shared memory on a distributed com puter system

is know n as Distributed Shared Memory (DSM). In this context, a distributed shared

memory can be viewed as a memory address space that spans m ultiple com put

ers' memories, and is logically shared by processes running on a loosely-coupled

system.

One other approach to ease the complexity of message passing is to build com

plex language compilers that w ould analyze the data dependencies in applications,

and insert necessary constructs to automatically parallelize sequential code. Al

though extensive research has also been done in this area, it is beyond the scope of

this thesis.

1.3 Classification and a Historical Perspective

Over the years, researchers used several different phrases to define the main

topic of this thesis—shared memory abstraction. Raina [Rai92] gives a clear clas

sification of the shared memory abstraction on distributed memory hardw are as

follows:

- Virtual Shared Memory (VSM)—systems that use hardw are assistance (other

than the memory m anagem ent unit (MMU)), such as a hardw are cache mech

anism. A typical example is the DASH prototype [LLG+90]. The unit of shar

ing is usually a cache line.

- Shared Virtual Memory (SV M)—systems that im plem ent shared memory on

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

top of each node's virtual memory, allocating a range of address space shared

by every node. Such systems use hardw are page size as the unit of sharing.

- Distributed Shared Memory (DSM)—systems that are known as Non-Uniform

M emory Architectures (NUMA) or "dancehall" architectures. In these sys

tems, there is no replication, thus no hardw are coherence problem.

This thesis is focuses on "software distributed shared memory" that fits into the

definition of "shared virtual memory". Nevertheless, I will use the term software

distributed shared memory (S-DSM) to mean "shared virtual memory".

Although Kai Li's w ork [LH86] in mid-80's is considered as the start of active

research on S-DSM, the concept of sharing the memories of other com puters in a

local area network (which is fundam entally the essence of S-DSM) goes back to al

most a decade earlier. Researchers at M onash University in Australia w orked on

the MONADS project [Kee78], whose purpose was to investigate the ways to build

a network of personal com puters based on uniform shared virtual memory. Within

the MONADS project, Abramson [Abr81] introduced the idea of using hardw are

mechanisms to m anage large3 virtual memory, which in essence, is the very con

cept of software distributed shared memory. Later, Rosenberg and Keedy [RK81]

described a m ethod to manage a large virtual memory. Abramson [AK85] designed

an novel bus architecture to achieve this goal, whereas Li's S-DSM w ork was solely

based on the "already" existing support provided by the underlying hardw are

through the operating system. After all, the fundam ental issue different S-DSM

systems try to address is the fact that multiple copies of the application data m ust

be identical at all (sometimes most) times. This issue, for practical purposes, is the

cache coherence problem that arises in "m ultiprocessor" shared memory com puter

systems. The hardw are communication platform in the latter case is the system

bus, whose speed is close to that of the processors in the system.

1.4 Thesis Statement

The research activity on S-DSM steadily increased until the past decade. Most

recently, research activities have reduced to developmental w ork trying to make

3Here "large" implies a capacity greater than the capacity of a single computer, as supported by
its operating system.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S-DSM systems more efficient, run different benchmarks, and use variations of ex

isting memory consistency protocols. Nevertheless, there are still different areas

to explore: the developm ent of the killer application and use of S-DSM concepts in

other settings such as in storage area networks or w ide area networks. The idea of

caching has already been explored widely in the context of web browsers as well

as Internet search engines.

Year Number of Publications Year Number of Publications
2003 173 (as of 2/2004) 1996 341
2002 343 1995 316
2001 349 1994 239
2000 348 1993 253
1999 407 1992 160
1998 338 1991 118
1997 367 1990 106

pre-1990 331

Table 1.1: S-DSM Related Publications over the Past 14 Years

To give a brief perspective of the past research relevant to S-DSM, I have searched

one of the most frequently used citation service, INSPEC Database [IEE04]. I used

the terms ((distributed shared memory) or (DSM) or (virtual shared
memory) or (vsm) or (coherence protocol) or (consistency model))
in the search. Although there is a certain level of contamination in the search re

sults (e.g., a record using one of the term s in a different context is hit by the search

criteria), the results give a rough indication of relative intensity of S-DSM related

publications over the years. The docum ents searched per year ranged from 258,862

in 1990 to 201,103 in 2003 (I believe this is still a low value since the collection is

m ost likely be incomplete for the last year). For 1980-1989 period, the num ber of

docum ents searched was 2,122,627. Table 1.1 shows the distribution of the search

results over the last 14 years and beyond. Figure 1.2, which is extracted from the

DSM section of the collection of com puter science bibliographies [Ach94], depicts

the yearly distribution of publications in [Esk95] as of February 6, 2004. Note that

this online bibliography contains only a few references to some earlier key research

in the hardw are area. A lthough this bibliography represents considerable effort, it

should still be considered incomplete, and there are about a hundred or so newer

publications that have not yet m ade into the bibliography.

Based on the above evidence, I state that the software distributed shared mem-

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ory is still a viable alternative to message passing for many applications. Indeed,

all the "key" ideas have been explored, as Michael Scott claimed in his keynote

speech at the Second Workshop on Distributed shared M emory [ScoOO]. N everthe

less, most of the de-facto parallel benchm arks and well w ritten applications can

still achieve better speedups using S-DSM, com pared to using message passing

systems. I present a new software DSM system called JIA-R [Esk02] in this the

sis to confirm Michael Scott's claims. Additionally, I show that such systems can

benefit from high-speed netw ork interconnects and further reduce the com m uni

cation latency that is inherent in such systems. There is no w ork in the literature

that presents an evaluation of a S-DSM on three networks.

£50 - 1 i | -

U1
CL» 200 o
c
Of
s_ a*

S_a>
JQ
£3

150 -

100 -

50 -

r~ n -

1980
T

1990

Y e a r o f p u b l i c a t i o n

T

2 0 0 0

Figure 1.2: DSM Publications by Year

1.5 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 discusses the "founda

tions" of distributed shared memory. It reviews the two fundam ental program

ming models, and argues how these models provide application program m ers

w ith an abstract view of distributed shared memory. Chapter 3 discusses various

related issues, and gives a unified review of software distributed shared memory

systems developed over the past decade or so. Chapter 4 presents JIA-R, a new

software distributed system which is derived from JIAJIA [HST98], and describes

its distinguishing characteristics over its predecessor. Chapter 5 evaluates JIAJIA

and JIA-R on several platforms and netw ork interconnects using the same set of

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

benchm ark applications4. Chapter 6, summarizes the contributions of my research,

and presents a sum m ary of future work.

1.6 Summary of Thesis Contributions

The principle contributions of this thesis are as follows:

• An overview of the state-of-the-art in software distributed shared memory

systems, w ith a discussion of fundam ental design and other research issues

that are becoming more interesting and challenging to pursue.

• A unified review of earlier software distributed shared memory systems that

appeared in the literature. Such systems are grouped into three distinct cate

gories: page-based, object- or language-based, and hybrid.

• D emonstration of the advantages of using a software DSM system on net

w orked off-the-shelf com puters to run existing parallel shared memory ap

plications or to develop new applications using this model, instead of explicit

message passing systems such as PVM [Sun90] or MPI [Mes95].

• Introduction of a new S-DSM system called J I A - R and its com parative per

formance on three different network interconnect platforms: Fast Ethernet,

Gigabit Ethernet, and Myrinet.

4With some exceptions described later.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Foundations of DSM

The foundations of S-DSM, basically cache coherence and memory manage

ment, have been studied for m any years, resulting in the developm ent of several

S-DSM systems. This chapter discusses design and im plem entation issues con

cerning the common characteristics of such S-DSM systems. These can be broadly

identified as follows:

• Layer of abstraction

• Fundam entals

- M emory consistency models

- Coherency protocols and synchronization

- Structure and granularity

- Data location and access

Other less common issues addressed by various software DSM systems are het

erogeneity and fault tolerance.

2.1 Layer of Abstraction

In parallel and distributed systems, S-DSM abstractions are integrated at dif

ferent layers (Figure 2.1). Researchers have proposed three ways to provide DSM:

hardw are enhancements, operating system prim itives and system libraries, and

language (object) and application level mechanisms. These implementations, how

ever, are not m utually exclusive. There are m any hybrid approaches in the litera

ture.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Language/Object Systems

Systems Software

Hardware

Figure 2.1: DSM Integration Layers

From the com puter architecture point of view, distributed shared memory (DSM)

usually refers to the memories of NUMA computers. However, over the years, soft

w are as well as hardw are approaches have been developed to help overcome the

"caching" problem of those computers.

2.1.1 H ardw are Im plem entations

Introducing hardw are support to S-DSM has been exploited in several ways.

A common approach is to explore alternative communication structures to reduce

the bus-m em ory contention in conventional multiprocessor architectures [PNB83].

Distributed global memory systems such as IBM RP3 [PBG+85] provide a distrib

uted physical memory that is shared am ong the processors [SD88, Bro89]. The fol

lowing sum m ary describes a subset of research efforts regarding hardw are DSM

systems.

The "Data Diffusion Machine" (DDM) project [WH88] at the Swedish Institute

of Com puter Science aimed at developing a new scalable multiprocessor architec

ture based on a new notion of Cache Only M emory Architecture (COMA). This

architecture relies on a hierarchical network structure. Each processor in this h i

erarchy has a "set-associative" local memory. These memories are connected to a

local bus via a memory controller to construct a cluster. These clusters can then

be connected, via another memory controller, to a higher bus, and up on the hier

archy. The higher level memory controllers are know n as "directory controllers."

Each processor holds the data it created in its own local memory, and that data can

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

migrate automatically w hen it is needed, thus reducing access times and traffic.

The DDM is prim arily designed to support parallel execution of logic programs,

bu t the architecture is sufficiently general that it can be applied to any class of ap

plications.

The developm ent of M e m N e t [Del88] is based on the observation that the net

work is always treated as an 1 /O device by the communication protocols. M e m -

N e t is a shared memory local area network, based on a high speed token ring,

developed at the University of Delaware. A special purpose hardw are unit and

its software make this local netw ork to appear as memory in the physical address

space of each processor on the network.

The V M P [CGBG88], an experimental shared memory multiprocessor devel

oped at Stanford University, uses software managem ent of the processor caches

and the design decisions in the cache. The project focuses on the problem of con

necting multiple high-performance processors to a shared memory w ithout signif

icant degradation, rather than connecting a large num ber of processors w ith more

m odest capabilities.

The "Directory Architecture for SHared memory" (DASH) [LLG+89] proto

type at Stanford University is a result of the research which showed that it is fea

sible to build scalable shared memory multiprocessors w ith hardw are cache co

herence. This prototype provided solid evidence that it is possible to build such

a system and it allowed further research into the study of real workloads on an

actual hardware. The DASH architecture is composed of two levels. A t the first

level, there is a set of processing nodes connected by a mesh network. These nodes

in turn contain bus-based multiprocessors. The intra-node cache coherence im

plements a snoopy protocol, where each processor "listens" to the activity on the

system bus all the time. The inter-node cache coherence is m aintained by a distrib

uted directory-based protocol. This prototype became an early version of Silicon

Graphics Inc.'s scalable multiprocessor series.

The "Memory Hierarchy Network" (M HN) approach is based on the inclusion

of data memories and dynamic routing capabilities in the switching elements of

the multistage interconnection networks [MBLZ89].

PLUS [BNR89] is a multiprocessor system w ith a distributed memory topology,

and supports memory coherence and synchronization in hardw are and caching

data among m ultiple memories in software.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The "Virtual Port M emory" (VPM) [Joh89] machine developed at New Mexico

State University explores the idea of global memory machines that relies entirely

upon message passing for interprocess communication and synchronization. This

research machine is intended to evaluate the potential of global memory message

passing architectures to combine the best features of both shared memory and mes

sage passing paradigm s, while avoiding m any of their drawbacks.

CAPNET [TF90] applies the shared memory paradigm onto a wider domain,

namely the wide area networks. In this case, the inherent broadcast nature of a local

area network is lost as the underlying network essentially becomes a collection of

point-to-point interconnections between the nodes.

The A l e w if e project [ACJ+92] at MIT is a large-scale multiprocessor design

that integrates both cache-coherent, distributed shared memory, and user-level

message passing in a single integrated hardw are framework. A lthough the most

recent im plem entation can scale up to 512 nodes, only a 32-node system has been

prototyped so far. The A l e w if e group also pursues some software issues, such as

synchronization, compilation, various run-tim e systems, and operating system for

the architecture.

The "FLexible Architecture for SHared memory" FLASH project [HKO+94] at

Stanford University is to develop a scalable multiprocessor which is able to sup

port a variety of communication models through the use of a program m able node

controller. The m ain com ponent of this design is a custom protocol engine MAGIC

(Memory A nd General Interconnect Controller). FLASH is an umbrella project en

compassing research into operating systems, simulation technology, applications,

and compilers and languages.

The A v a l a n c h e project [SWCL95] at the University of UTAH aims at design

ing a scalable parallel com puting environm ent w ith low communication latency,

supporting both message passing and distributed shared memory program m ing

models. The A v a l a n c h e prototype is designed to have 64 processing elements,

using off-the-shelf hardw are components as m uch as possible to achieve its goal.

The m ain effort is the developm ent of a "context sensitive" Cache and Com m uni

cation Controller Unit (CCCU) to provide low message latency as well as support

for flexible suite of cache coherence protocols. This project also makes use of the

concept "Simple Cache Only M emory Architecture" or S-COMA [HSL94],

The I-ACOM A project [TP96] at the University of Illinois at U rbana-Cham paign

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

focuses on new processor, memory, and system technologies and organizations to

build novel com puter architectures. The em phasis is on architecture and software

support for thread level speculation, design for reliability, ease of debugging and

fault recovery, reconfigurable architectures, techniques for energy managem ent

and architectures integrating processor core components and memory on a chip.

The "Direct Interconnection of Com puting Elements" (DICE) project [LQCK96]

at the University of M innesota is aimed at designing a shared-bus multiprocessor

based on COMA architecture. It optimizes the COMA for a shared-bus to particu

larly reduce the side effects of the cache coherence.

The "Efficient Architecture for Running THreads" (EARTH) project [HMT+95]

at McGill University is aimed at running both numeric and non-numeric parallel

applications efficiently. It investigates compiler techniques and novel architectural

features to support future high-performance architectures. The project has moved

to the University of Delaware.

The L i g h t n i n g project [NSA97] is a multi-institution research aiming at de

veloping optical interconnect system for high end workstation resource sharing.

The unique characteristics of this project are: a fully scalable architecture allowing

dynamic distributed network control and dynamic reallocation of communication

bandw idth am ong various nodes as needed by an application. The operating sys

tem and com puter interface cards are being developed at the Sarnoff Labs, the net

work architecture and netw ork control hardw are are being designed by SUNY Buf

falo, and the optical components are being developed by the University of M ary

land.

The N O W project [ACP95] at the University of Berkeley is som ewhat different

than the others described here. It aims at building a system support for using a

network of workstations to act as a distributed supercom puter on a building-w ide

scale. Its com plementary research efforts include developing an operating system

and a communication architecture. The goal of the N O W Project is to dem onstrate

a 100 processor system that delivers better cost-performance for parallel applica

tions than a massively parallel processing architecture for the same scale as well as

better performance for sequential applications running on an individual w orksta

tion. To achieve these goals, the group are doing research and developm ent into

new network interface hardw are, faster communication protocols, distributed file

systems and distributed scheduling and job control.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The N U M A c h i n e project [GBC+98] at the University of Toronto aims at de

veloping a modular, cost-effective and scalable shared-memory multiprocessor ar

chitecture. The N U M A c h i n e is designed as a cache-coherent architecture that is

easy to program for efficient parallel applications. The node elements of the ar

chitecture are linked to each other by a hierarchy of unidirectional bit-parallel ring

interconnects. This ring hierarchy provides efficient multicasting, order-preserving

data transfers through cleverly intelligent cache coherence protocols that restricts

the coherence traffic to local elements w henever possible. The architecture is par

ticularly optimized for applications w ith good locality.

The S3.MP (Sun's Shared M emory Multiprocessor) [NAB+94] is a research project

that im plem ents a distributed cache-coherent (CC) shared memory computer. S3.MP

uses a distributed directory-based protocol to achieve cache coherence. Similar to

Scalable Coherent Interface (SCI) [Goo89], this protocol uses a linked list for its

hardw are supported overflow mechanism to hold the data blocks shared by the

processing nodes.

The TRAPEZE project [YCGL97] at Duke University aims at developing new

techniques for high-speed communication and fast access to stored data in w ork

station clusters. The prim ary platform for this project is a cluster of D EC/Com paq

Alpha and Intel-based workstations linked by M yrinet [BCF+95] and Alteon [NorOO]

interconnects.

Some of the above projects introduced above are only indirectly related to de

veloping "distributed shared memory". Also, some of these projects are completed,

yet some others are still on going.

2.1.2 Softw are Im plem entations

Abstraction of distributed shared memory at software level combines the scal

ability of loosely coupled multicom puters w ith the ease of program m ing of tightly

coupled multiprocessors. Usually, this abstraction is achieved at various levels of

systems software: the operating system level, the program m ing language level, or

using a hybrid approach using the operating system and the communication sub

strate. As these im plem entations are the essence of this thesis, they are discussed

in more detail in Chapter 3.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Fundamentals

The overall goal that the designers of software DSM systems face is to provide

cost-effective algorithms to manage the "extended" memory (e.g., local and remote

memories) so that data can be accessed efficiently, yet preserving a logically shared

space to the program m er [MS99]. A lthough the design space of software distrib

uted shared m em ory is large, the prim ary focus of the recent research has been

concentrated in the following four categories:

- The consistency of the "extended" memory across different levels (e.g., local

and remote memories). This basically means adopting an appropriate and

efficient memory consistency model for the applications.

- The structure and granularity of shared data that is moved across the levels

of the extended memory.

- The m anagem ent of the extended memory w ith algorithms and mechanisms

that will allow efficient data sharing.

- The initial placement of shared data on the extended memory and its location

and access mechanisms.

2.2.1 Memory Consistency Models

DSM systems make extensive use of "caching" to enhance overall performance.

Caching requires that the data being shared m ust be kept consistent across the

system all the time. A centralized shared memory system employs traditional,

well-defined uniprocessor consistency model, called Atomic Consistency (AC) (or

strict consistency), which requires that (1) each (shared) object has a unique copy,

(2) all the w rite operations to such objects are totally ordered, (3) a read operation

on an object always returns the last value w ritten into the object, and (4) all the

non-overlapping operations are perform ed in the order they are issued [HW90].

However, the AC model is not applicable to a distributed shared memory system

as the set of operations on shared objects by each processor in such a system is

only partially ordered. This observation directed DSM researchers to weaken the

notion of memory consistency, and several less strict memory consistency models

were subsequently adopted. I informally define these models in this section to help

compare various S-DSM systems that are presented in Chapter 3.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mosberger [Mos93] classifies the proposed m em ory consistency models as uni

form and hybrid. The uniform models do not distinguish between the types of m em

ory access. The hybrid models em ploy different ordering constraints depending on

the type of memory access, such as shared or synchronizing. A detailed discussion

of this classification can be found in [Mos93]. Figure 2.2 shows the hierarchy of

uniform m em ory consistency models indicating their strictness on sharing:

M ost S trict

Atomic — — Single processor

Sequential —— O rder of every access is important

Causal —— O nly "related" w rites are ordered

PRAM — O rder of w rites from the same
processor is im portant

Cache —— Ordered accesses per location

Processor —__ W rites from different processors
are not ordered

L east S trict

Figure 2.2: Uniform Consistency Models

• Lam port [Lam79] suggested a less strict model to be used in m ultiproces

sor systems, called Sequential Consistency (SC). The SC model guarantees that

"the result of any execution is the same as if the operations of all processors

were executed in some sequential order, and the operations of each individ

ual processor appear in this sequence in the order specified by its program ."

• H utto and A ham ad [HA90] applied Lam port's notion of potential causality [Lam78]

to DSM, and defined Causal Consistency (CC) as "the agreement of all proces

sors on the order of casually related events1."

• Lipton and Sandberg [LS88] suggested the Pipelined R A M (PRAM) consis

tency model, which requires that "all processors observe the writes from a

single processor in the same order, bu t m ay disagree on the order of writes

executed by different processors."

'The authors interpreted a w r ite as a "message-sent" event and a read as a "message-received"
event.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• G oodm an [Goo89] weakened the SC relative to location and proposed Cache

Consistency or Coherence. This scheme requires that "accesses are SC on a per-

location basis."

G oodm an's [Goo89] definition of Processor Consistency (PC) can be interpreted

as a combination of coherence and PRAM, i.e., writes from different proces

sors may be observed in different orders, bu t writes from a single processor

m ust be perform ed in the order they occurred.

M o st S tric t

Weak

Release

Entry

Lazy

M em o ry access o rdering is
re la ted to synchron iza tion points

S ynchron iza tion : acqu ire vs. re lease

S hared da ta is assoc ia ted
w ith a synchron iza tion va riab le

E xp lic it synchron iza tion
w ith m essage(s)

L e a s t S tric t

Figure 2.3: H ybrid Consistency Models

Hybrid m em ory consistency models reduce strictness even further as Figure 2.3

shows. These models take the advantage that most parallel and distributed appli

cations enforce higher-level synchronization mechanisms w ithin themselves, thus

only require the enforcement of coherent shared m em ory during explicit synchro

nization operation(s). Cheriton [Che86] presents some examples where certain in

consistency levels are unavoidable, yet acceptable. Common hybrid models are

listed below:

• Weak Consistency (WC) [DSB86] separates shared data accesses from synchro

nization accesses. It implies that all previous data accesses by a processor are

perform ed before a synchronization access perform ed by that processor.

• Release Consistency (RC) [GLL+90] is an extension of WC where all previous

data accesses (updates) are perform ed before a release of a synchronization

access is observed by any processor.

• Entry Consistency (EC), being weaker than RC, relates a synchronization vari

able w ith each shared data [BZ91]. In an entry consistent system, processors

19

with permission of the copyright owner. Further reproduction prohibited without permission.

require consistency of shared data only at the beginning of a critical region.

This m odel is used in Midway S-DSM system.

• Lazy Consistency (LC) separates synchronization operations from the shared

data [BH90]. Synchronization is achieved explicitly by other means, such as

by sending and receiving messages. U pdates and invalidations to the shared

data may be postponed until the "new " values become visible.

Release consistency is further relaxed as follows:

• Eager Release Consistency (ERC), where updates are buffered until the next

release synchronization operation. This model is em ployed in Mu n in S-DSM

system [BCZ91].

• Lazy Release Consistency (LRC), where updates are buffered until the next ac

quire synchronization operation [KCZ92], This model is used in TreadMarks

and several other S-DSM systems.

LRC
ERC

SC
Acq Re I

P
0

P
1 Acq

P
2 Acq

0

Figure 2.4: Common Consistency Models used in S-DSM Systems

Among the consistency models introduced above, only sequential consistency

and hybrid consistency models are practical for S-DSM systems. Figure 2.4 shows

the message traffic on these commonly used models. Note that the figure does

not incorporate the messages for the first acquire operation on P0, and that all the

messages at the acquire point are for synchronization, except for LRC, which also

contains all the buffered updates.

Other models usually require increased consistency message traffic resulting

in a substantial am ount of communication. This makes a S-DSM im plem entation

inefficient and impractical.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Most recently, Iftode et al. [ISL96] introduced yet another consistency model,

called Scope Consistency (ScC) for S-DSM systems. A consistency scope is a portion of

the application code w ith respect to which memory is accessed, making the m odi

fications to data only visible in that scope. The idea is similar to critical sections in

that a scope consists of "all" critical sections protected by the same synchronization

primitive.

In this model, consistency rules are relaxed in the following way: W hen a con

sistency scope is opened by a process, all the previous updates m ust be completed

for the scope on that process, and a memory access by a process is allowed to be

made only after all the other previously opened scopes are successfully entered.

Finally, an earlier consistency approach proposed by Cheriton [Che86] is called

the Problem-oriented Shared Memory. The applications are required to handle any

consistency issues through specific memory "fetch" and "store" operations. This

approach is used by various im plem entations of M unin [BCZ90, CBZ91, CBZ95].

2.2.2 Structure and Granularity

The layout of the shared data (structure) and the size of the shared unit {granu

larity) are closely related [NL91]. These characteristics are usually controlled by the

level of integration of DSM implementations. Hardw are im plem entations typically

support smaller granularity. For example, both D ASH [LLW+92] and DDM [HLH92]

have a granularity of 16 bytes, and this is the cache line size of their prototype

processors MIPS R3000 and MOTOROLA M C88100/M C88200, respectively. M em-

N et's [DSF88] cache size is 32 bytes. Some hardw are im plem entations employ hy

brid approaches: PLUS [BR90] uses caching (replication) granularity of a virtual

page and 4 bytes for coherence.

In S-DSM systems im plem ented at the system level, a page is used as the unit

of sharing. This allows designers to integrate the im plem entation w ith the virtual

memory system of the underlying operating system. Such systems view shared

data as an unstructured sequence of bytes and, also allow users to share multiple

pages, if needed. For example, users can share a program code com posed of sev

eral pages or a large array of integers occupying a couple of pages. IVY [LH86],

M irage [FP89], Mu n in [CBZ91], M ether [MF89] and many others use this ap

proach. Mether also supports special "short pages", which are only 32 bytes long.

As the language and application level S-DSM im plem entations provide sharing

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at an "object" level, the granularity of sharing on such systems varies, and is ba

sically determ ined by the size of the shared object. The run time system provides

coherency by automatically serializing the accesses to the shared objects.

2.2.3 Coherence Protocols and Synchronization

S-DSM provides a global view of all memories to the users. The global view

should be kept consistent according to the memory consistency m odel used, requir

ing that the access to the shared data m ust be closely controlled. Coherence pro

tocols, similar to cache coherence protocols found in multiprocessors, are used to

enforce this requirement. The protocol is usually trivial, provided there is no repli

cation am ong the shared data. In that case, the coherence can easily be achieved

by serializing the accesses to the data through the underlying interconnection net

work at the processor level. However, the traditional m ethod severely reduces the

major advantages of a S-DSM: scalability and parallelism. The easiest w ay to in

crease parallelism is to replicate data. Unfortunately, data replication complicates

the coherence protocols, because the protocols m ust also deal w ith the replicas of

the shared data.

In general, protocols that handle replication fall into two m ain categories: write-

invalidate and write-update. Both of these groups are snooping protocols. A common

alternative is directory-based protocols used in scalable SMPs, where the cache co

herence is achieved at several (usually two) levels.

- A write-invalidate protocol broadcasts an invalidation request w hen a replica

is modified by a processor. It allows m ultiple read-only copies and one write-

only copy to exist, bu t before a write operation is actually performed, all the

copies except one are invalidated. It is also know n as the multiple-readers-

single-zvriter (M RSW) protocol.

- A write-update protocol broadcasts the new value of the data w hen a replica

is modified by a processor. It allows m ultiple write-only copies of shared

data as well as m ultiple read-only copies. However, write operations are

perform ed on all copies. It is also know n as the multiple-reader-multiple-writer

(M RM W) or distributed write protocol.

Generally, a write-invalidate protocol works better in "light sharing" applica

tions, as write operations impose only one copy of data in the system. A write

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

update protocol is preferred on "heavy sharing" situations, such as semaphores, as

the write operations always impose coherent values in all caches.

Synchronized access to shared data is achieved by low level machine instruc

tions such as Test-and-Set in shared memory multiprocessors, In S-DSM systems,

however, the use of such instructions on arbitrary memory accesses is not practi

cal. One solution is to provide the users w ith high level synchronization primitives,

such as locks and barriers, im plem ented using message passing. Alternatively,

applications may synchronize only w hen necessary (for example, to indicate the

completion of computation). M ost recent S-DSM im plementations use the latter

approach.

For the sake of completeness, I define a lock, a barrier, and a scope, as follows:

- A lock is a synchronization mechanism that allows an exclusive execution of

a piece of program code that accesses some shared data. As such, a lock m ust

be acquired to perform the operations, and then it m ust be released.

- A barrier is a mechanism that w ould block the execution of a parallel (SPMD)

program until all the processors have reached a certain location in the code.

In the context of S-DSM, one can assume the same program is executing on

different computers.

- A scope is a "lim ited" view of (shared) memory where modification to data

is only visible within.

2.2.4 Data Location and Access Algorithms

In addition to keeping the shared memory "consistent," a S-DSM system should

also provide algorithms to locate and access shared data. Stumm and Zhou [SZ90a]

categorize such algorithms based on w hether the data are migratory a n d /o r repli

cated:

Central-server algorithm :

Shared data resides in a fixed and know n location, and is maintained by a

server. The users (clients) of the shared data send requests to the server which

responds to those requests. A lthough this algorithm is quite simple, it has

a potential bottleneck where the server node may become overloaded by fre-

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quent requests. This algorithm is basically Li and H udak's Centralized Manager

algorithm, where the "ownership" of data is statically fixed [LH86].

Migration algorithm:

Shared data is grouped into blocks, and these blocks relocate to the requesting

nodes as they are accessed. This approach eliminates the bottleneck of the

central server algorithm by reducing the communication costs and allowing

neighboring data to be accessed locally. If the data block is not local, a client

broadcasts a location request message in order to locate the data block. After

the data block is located, it is requested from the current holder by a second

(migrate) message. This prim itive two-phase algorithm causes unnecessary

traffic on the network. More efficient methods to locate shared data are also

know n [LH86].

Read-replication algorithm:

Shared data is replicated on read operations in order to reduce the com m u

nication overhead of such operations. On a write operation, however, the

requester has to m ulticast invalidate messages to the holders of the replicas

of the shared data before perform ing the write operation in order to maintain

consistency. This algorithm basically follows the write-invalidate protocol.

Full-replication algorithm:

This algorithm goes one step further, allowing multiple writable copies of the

data blocks, bu t complicating the consistency maintenance of shared data. A

global "sequencer" controls accesses to the shared data to ensure consistency.

The above replication algorithms are basically Li and H udak's Distributed M an

ager algorithms. Although they reduce the message traffic for coherence, they are

quite complex and non-trivial to implement. More discussion of these algorithms

can be found in Li's PhD thesis [Li86].

2.2.5 Other Issues

Some other issues of S-DSM such as heterogeneity, recoverability, and fault tol

erance have not been investigated as extensively as the issues described above.

Because they are quite complex issues, these mechanisms are either not fully im

plem ented, or they are only experimented w ith via simulations.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A gora [BF88] and M ermaid [ZSM90] aim at extending an S-DSM to heteroge

neous system environments. As a language level S-DSM, Agora supports m ulti

language m odules running on heterogeneous machines by providing a set of access

functions to create and m anipulate shared data structures. These functions can be

accessed by different languages such as C and CommonLisp. M ermaid, is devel

oped as a user-level S-DSM w ith some modifications to the underlaying operating

system kernel. Mermaid only supports the C language. Both research efforts con

cluded that the major problem is data conversion, and for extreme values, different

representations of floating point num bers make the conversion impossible. Zhou

et al. [ZSLW92] argue that the num ber of different machines accommodating het

erogeneous S-DSM can be extended to many, w ith the cost of providing separate

conversion routines for basic data types and for each pair of machines. A dm it

tedly, this approach does not scale well, because large num ber of heterogeneous

machines w ould outweigh the benefits by yielding higher conversion overhead.

A nother problem that has draw n interest in S-DSM research is the recoverabil

ity of shared data after processor failures. Wu and Fuchs [WF90] examine the

problem of rollback recovery in S-DSM environm ents using checkpointing and a

twin-page disk storage technique. Their checkpointing scheme is transparent to the

user, and it is integrated into the S-DSM coherence protocol. Richard III and Sing-

hal [RS93] use process checkpointing and read-shared pages for logging as a recov

ery technique. Their technique supports independent process recovery and, does

not require active processes to rollback. Tam and H su [TH90b] extend their earlier

token transaction m ethod [TH90a] to achieve fast recovery in a database manage

m ent system based on distributed shared memory. In this system, the database

is m apped to distributed virtual memory which spans across the network [HT88].

The recovery is achieved as follows: each site on the network periodically check

points its token state to disk. On a failure, the site first restores its token directory

using the m ost recent checkpoint, and then updates its sequence num ber informa

tion (about other sites) by communicating w ith the other sites. Finally, any lost

token transaction message is replayed using these current sequence numbers.

Stumm and Zhou [SZ90b] extend the four basic S-DSM algorithms described

in [SZ90a] to be resilient to single system faults. They argue that host failures are

not frequent. Also, the failures in most cases are independent of each other (ex

cept the pow er failures which m ight affect m any hosts), thus tolerating a single

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

host failure is usually sufficient for most applications. Their study shows that the

extended versions of the central-server and the full-replication algorithms do not

introduce significant additional overhead. However, the overhead introduced by

the migration and the read-replication algorithms m ay be substantial, and reduce

the performance of these algorithms dramatically, depending On the access patterns

of the applications.

There are other literature that studied a variety of formal models of shared

memory consistency. Some of the notable related w ork includes, weak ordering [AH90],

formalism for non-coherent distributed parallel memory [HS93, Sin93, HPS94],

lazy caching [ABM93], sequential consistency in distributed systems [MRZ95a,

MRZ95b], formal verification of cache coherence protocols [PD93, PD98] and con

sistency models [PD96, PD98]. These, however, are beyond the scope of this thesis.

2.3 Summary

The basic hardw are organization of a system that provides the share memory

at software level is a collection of otherwise independent com puters connected by

an interconnection netw ork to support transparent exchange of messages. Such a

system provides the necessary abstraction that allows program m ers to utilize the

simplicity of shared memory program m ing on distributed systems.

Software DSM is m aturing, yet there are still open issues. The fundam ental

issues are addressed, and efficient mechanisms and algorithms are in place. The

technological challenges are mostly know n and companies have already dem on

strated that these challenges can be overcome [MS99].

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

A Review of Software DSM
Systems

3.1 Introduction

There is a large body of literature about software DSM [Esk95]. A lthough some

w hat dated, Hellwagner [Hel90] gives an excellent survey of this research area.

Raina [Rai92] provides a survey of basic techniques and a review of architectures,

including hardw are, that provide distributed shared memory abstraction. Mohin-

dra and Ram achandran [MR94] compare design issues of software DSM using sim

ulation. M ost recently, Judge et al. [JNT+99] give a broad overview of distributed

shared memory; in fact, they review software DSMs. This chapter reviews systems

based on their im plem entation at various software levels and on their fundam en

tal characteristics described in Chapter 2. As such systems som ew hat abstract the

fundam ental characteristics in different ways, and the literature describing them

do not necessarily go into the same level of detail, I sum m arize a representative

set of page-based software DSM systems, elaborating on the following common

criteria: Memory Organization, Coherence Protocol, Communication Mechanism, and

Programming Interface.

M emory organization deals w ith the w ay applications share the S-DSM address

space. While m ost of the traditional page-based systems use the underlying op

erating systems' virtual memory primitives, some earlier systems had their own

mechanisms to deal w ith this issue. Coherence protocol is the mechanism that pro

vides the abstraction of consistency m odel in S-DSM systems. Similar to memory

organization, m ost S-DSM system im plem entations use the underlying operating

systems' networking functions, i.e., standard Internet protocols, such as U D P/IR

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Some other systems add another software layer and use traditional message pass

ing systems, such as PVM or MPI, while earlier systems have their ow n com m uni

cation mechanisms.

3.2 Software DSM Systems in the Literature

About three dozen software distributed shared memory systems have been

cited in the literature over the past two decades. These systems are prim arily cat

egorized as page-based and object- or language-based. The other systems are con

sidered as hybrid, because of their use of special hardware, their im plem entation

platform, or because they are part of larger projects.

As the source code of the reported systems is not always publicly available for a

variety of reasons, it is impossible to make an elaborate comparison. It is similarly

difficult to replicate the results of the systems w ith their source code mainly due to

the different nature of the hardw are platforms used.

The developm ent of software distributed shared memory systems can be grouped

in three generations. The distinguishing milestones in each generation are sum m a

rized as follows:

• First-generation: The systems in this category include IVY, Shiva, Mirage,

and Mether. They were all developed on a network of single-CPU w ork

stations, and they were not portable to other architectures due to their strong

dependencies to the underlying systems. All these systems im plem ented se

quential consistency.

• Second-generation: A lthough this generation of systems w ere also developed

on single-CPU systems, they did not depend on the underlying architectures

other than basic memory m anagem ent and communication prim itives and

they relaxed memory coherence to reduce communication latency between

the processors.

• Third-Generation: These systems continued using relaxed memory consistency

models, and introduced various other mechanisms such as adaptation and

hom e m igration to further decrease the latency. Some of the systems in this

generation such as Brazos use m ultithreading to achieve better application

performance.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1 Page-based Software DSM Systems

Paged-based DSMs are the m ost studied category, because these systems gen

erally (particularly if they run on UNIX or its derivatives) do not need modifica

tions to the underlying operating system. These systems are built as user level

runtim e libraries where the applications are linked before they are deployed for

execution. Moreover, these systems usually make use of the hardw are features

that are available through the operating system, such as basic virtual memory and

message passing primitives.

Table 3.1 shows the page based-software DSM systems cited in the literature.

I selected a small subset, m arked w ith an asterisk, to elaborate their four basic

characteristics in more detail. O ther im plem entations are briefly sum m arized at

the end of this section. I start discussing the page-based systems w ith IVY, because

it was not only the very first system built, bu t also it stim ulated more research in

the DSM area and its contributions are highly recognized. Some of the systems are

included in the table for their historical significance.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

DSM System Consistency Model Coherence Protocol Software/Hardware Requirements Other Characteristics

ADSM [MB98] LRC Multiple UDP/IP; UNIX Flavors 3rd gen.; adaptive
IVY* [Li86] SC WI; MRSW Simple RPC, Aegis OS; Apollo Ring l at gen.

Brazos* [SB97] ScC Multiple Winsock, Windows NT 3rd gen.; multicast, threads
CarlOS [KFJ94] LRC WI; MRMW UDP/IP, DEC OSF/1; DEC Alpha 2 nd gen.

CVM [Kel96] SC, LRC WI; MRSW, MRMW UDP/IP, UNIX Flavors 2nd gen.
KDSM [YLLM01] LRC, ScC WI; MRMW TCP/IP, Linux 3rd gen.

KOAN [LP92] SC WI; MRSW NX/2; iPSC/2 D* gen.
JIAJIA [HST98] ScC WI; MRMW UDP/IP, UNIX Flavors 2 nd gen.
JUMP [CWHOO] ScC WI; MRMW UDP/IP; SunOS, Linux 3rd gen.; fast sockets
Mether [MF89] SC WU; MRMW SunOS 4.0 1st gen.
Mirage* [Fle87] SC WI, MRSW System VIPC, Locus OS; DEC Vax 1*‘ gen.
Mu n in [BCZ90] SC, RC Multiple UDP/IP; V-System 2 nd gen.

N autilus [Md99] ScC WU; MRMW UDP/IP, Linux 2 nd gen.
Quarks [Kha96] SC, RC Multiple UDP/IP, UNIX Flavors 2 nd gen.

Shiva [LS89] SC WI; MRSW N X /2; iPSC/2 1st gen.
Strings [RC98] SC, RC WU; MRMW UDP/IP, UNIX Flavors 3rd gen.; SMP, threads
SVMLib [PS97] SC WI; MRSW, MRMW SISCI,1 Windows NT; SCI2 1st gen.

TreadMarks* [KDCZ94] LRC WI; MRMW UDP/IP, Unix Flavors 2 nd gen.

1 SISCI is a user level API for the SCI card below.
2 Scalable Coherent Interconnect (SCI) network interface from Dolphin Interconnections, Inc.

Table 3.1: Page-based Software DSM Systems

IVY

Integrated shared Virtual m em ory at Yale (IVY) [LH86] is the first widely-

acclaimed prototype of software distributed shared memory. Li [Li86] identifies

three basic requirements for im plem enting the prototype: a fast communication

link, a homogeneous set of computers, and a memory m anagem ent unit (MMU)

w ith page level protection mechanism. IVY prototype sits on top of an Apollo Do

main system running a modified Aegis operating system. Nodes on the system are

connected by a ring netw ork [LLD+83]. The goal for im plem enting the prototype

was to justify the use of "shared" virtual memory on loosely coupled multiproces

sors.

IVY assumes a traditional model of a parallel program as a set of processes that

share a single address space. However, the subtle difference is that these processes

can run on "any" node in the Apollo Domain system. Thus, a parallel program can

run on any num ber of processors on an Apollo ring network.

Memory Organization

Parts of a parallel program runs on several processors as closely-coupled processes.

The address space of those processes can span a num ber of processors. Therefore,

any process can directly access any memory location in this address space. Parts of

this shared address space m ay exist on different real memories. Memory Mapping

Managers (M M M s), running on each node, handle the m apping between the local

memories and the shared virtual memory address space. Similar to traditional vir

tual memory, IVY's shared virtual memory is also partitioned into "pages." Some

of these pages are m arked as read-only, if there are multiple copies of them on dif

ferent nodes, whereas others are m arked as write since they will exist on a single

node.

The unit of sharing (replication) is a page that corresponds to the virtual m em

ory page. The MMMs view the "shared" part of their local memory as a large cache

of the shared address space. A reference to a shared memory location causes a page

fault, and the memory m apping managers, w ith the help of the operating system 's

virtual memory, identify and fetch the missing page from the other processor's

memory.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Coherence Protocol

IVY enforces strict consistency to maintain coherence between the processes.

This means that each node m ust have a coherent view of the shared memory at all

times. Memory m apping m anagers provide this functionality. Pages in the virtual

shared memory can be in either of the two modes: (i) read-only or (ii) write. The

coherence protocol is write-invalidation.

Each shared page is ow ned by a single node, and has one of the following ac

cess rights: read, write, or nil. The owner is always the node which has m ost recently

modified the page. The owner m aintains a copyset for each page it owns. A copy-

set contains the nodes which currently have an up-to-date (read-only) copy of the

page. W hen a node references an address on a shared page, it first checks w hether

it has the proper access right. In the norm al case, the location is accessed in the

usual way. Otherwise, the memory m apping m anager is invoked through a page

fault. Read and write faults are handled differently. A shared page, w hether it is

local or not, is handled identically. The fault mechanisms are totally transparent

from the user process.

Li has im plem ented several coherence maintenance algorithms which differ

mainly in two aspects: (i) the way they locate the owner of a page, and (ii) the

distribution of copysets. The details can be found in [Li86]. IVY's synchroniza

tion mechanism is based on the underlying Aegis Operating system 's eventcount

primitives.

Communication Mechanism

IVY only supports the Apollo Domain ring network as its underlying com m u

nication medium. A simple RPC mechanism handles all the remote operations. It

is based on sending and receiving packets and, the exception handling mechanism.

A process can either send a packet to another process or broadcast it. Li modified

the Aegis operating system to handle the incoming packets more efficiently. As a

result, a simple null RPC took about 10 milliseconds.

Programming Interface

IVY w as im plem ented in Pascal. However, any program m ing language that

could interact w ith procedure calls can also be used for developing applications.

Programm ing convention requires that all shared data are grouped into a record.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

None of the literature on IVY goes into details of parallelizing applications, though

it is implicit in Li's thesis that he uses special primitives for the task. The program

ming model is not specified in the thesis explicitly either, but it is m ost likely to be

SIMD.

The program m er is responsible for process synchronization and scheduling.

There are two options for scheduling: m anual or system. It the latter case, the user

simply uses primitives to create and term inate processes. If the m anual scheduling

is chosen, the user has to take care of process m igration as well. At startup, a

special program initializes IVY on the nodes listed in a configuration file, and the

parallelized application program starts its execution.

Other Properties

Li has im plem ented several algorithms to address various issues pertinent to

DSM systems. They include the m ethods of process migration, memory alloca

tion, and page replacement strategies. The IVY also had some shortcomings that

triggered more research particularly into shared memory coherence algorithms.

Overall, this w ork has shown that shared virtual memory can be im plem ented on

a loosely-coupled system, and that it can achieve acceptable speedups for many

parallel applications. Li's seminal w ork has opened a wide range of research op

portunities, as seen in the vast am ount of literature since 1986.

B r a z o s

Brazos [SB97] is the first software DSM system developed to run on Microsoft

W indows NT operating system. It has a few features that are different from other

software DSM systems: use of m ulti-threading both in itself and in applications,

selective multicast, and the availability of several adaptive runtim e performance

tuning mechanisms.

Memory Organization

There is no special treatm ent to memory m anagem ent in Brazos, except the

modification of the W indows NT system call mapmem () . This was necessary to

provide a mechanism to m ap two virtual pages onto the same physical page so

that multiple threads could have possibly different access rights for the same page.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Coherence Protocol

Brazos uses selective multicast, scope consistency, and adaptive performance

timing at runtim e to reduce the coherence protocol related netw ork traffic. M ulti

cast communication is used only during "global" synchronization. Global synchro

nization (or global scope) is the "arrival" at the next barrier by all the processes

whereas local synchronization (local scope) is a section of code protected by a

lock. Barrier synchronization occurs at two levels: (1) between threads of a process

and (2) between processes. Scope consistency is the prim ary software-only m em

ory model adopted by Brazos. It uses a distributed page m anagem ent scheme,

where each process maintains dirty portions of each shared data as "diffs" (see the

TreadMarks discussion for the details), since this approach is know n to be su

perior to home-based protocols [Kel94]. Runtime performance tuning techniques

used in Brazos include dynam ic copyset reduction where dirty page diffs are not

sent to unnecessary processes in cases w hen they are not needed anymore. Bra

zos also adopts an early update mechanism where redundant indirect diff m es

sages at synchronization points are eliminated [SB97]. Finally, the runtim e system

adaptively changes the shared page m anagem ent to distributed or home-based per

shared page, depending on the behavior of a process.

Communication Mechanism

Brazos supports 100Mbps Ethernet, lG bps Ethernet, GigaNet cLAN, and Server-

N et as the underlying communication media. W indows NT im plem ents TCP/IP

protocol stack through WinSock [Sta96] user level library. Thus, there is an addi

tional overhead in WinSock socket calls as all the calls are m ade through the static

library functions.

Brazos takes advantage of the WinSock library's multicast support to reduce

coherence related message traffic during global synchronization as follows: w hen

a process arrives at a synchronization point such as a barrier, it sends a message

to the previously assigned barrier manager. This message includes a list of dirty

pages. The manager collates this information, and sends a message to each process

about dirty pages. W hen a process faults on an invalidated page, it sends a "m ul

ticast" message to those processes that are in the current copyset of the dirty page.

A recipient of this message, in turn, sends back a multicast message containing

the diffs for that particular page to all members of the page's copyset. In this way,

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processes receive indirect diffs for those pages that have not caused a page fault

as yet. A disadvantage of this approach is that a process may not use the indirect

diffs provided for a page it has. This restriction causes an unnecessary disruption

to such processes w hen they receive the multicast message. B r a z o s runtim e has a

dynamic copyset reduction mechanism to reduce this side effect. W hen the num

ber of unused diff messages count reaches a certain threshold, a process piggybacks

the list of such pages to the next barrier arrival message, and removes itself from

the copyset of those pages.

Programming Interface

In W indows NT, there is no function to start a process remotely similar to the

Unix rexecd daemon. B r a z o s uses a special "service" on each node in the system

to em ulate this functionality.

One of the main com ponents of BRAZOS is its GUI front end which is used to

m onitor the execution of parallel applications. M ultiple DSM applications can be

m anaged on a single com puter using this graphical interface. It also provides per

formance feedback on each application by m onitoring the traffic on the network.

Other Properties

Br a z o s DSM itself is m ulti-threaded in order to allow greater overlap between

communication and computation. It also supports multi-threaded application ex

ecution, allowing program s to take advantage of the local tightly-coupled shared

memory available on multiprocessor PC servers, while transparently interacting

w ith remote "virtual" shared memory.

Current w ork on BRAZOS includes decreasing communication latency, m ul

tiprogramming, high availability (checkpoint/restart and thread migration), and

support for MPI and OpenM P applications directly.

M ir a g e and M ir a g e +

M irage [Fle87] is only the second DSM system developed. Unlike IVY, how

ever, it is built into the Locus operating system kernel, using UNIX System V shared

memory model. The Locus operating system [WPE+83] is a distributed version of

UNIX that provides an enhanced set of standard UNIX services. Like IVY, hav

ing been developed more than a decade ago and built on an experimental operat-

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing system, neither M irage nor the Locus operating system are operational today.

MIRAGE was developed on a cluster of VAX 11/750 computers.

Memory Organization

Because M irage processes use UNIX System V shared memory semantics, they

access shared memory through the use of segments. A segment is used only to

store raw data, not the program code. Processes can share segments at a page

granularity, which is 512 bytes long on the VAX system. Mirage also provides

upw ard compatible system calls to create, delete, or access a shared segment. For

example, shm at () is used to create (and "attach") a shared segment to the process

address space or shm get () is used to access a shared segment.

Coherence Protocol

The coherence model of M irage is similar to IVY, i.e., multiple-readers-single-

writer sequential consistency. Also, the parallel program s are assumed responsible

for the proper data access synchronization.

The nodes in the system are identified as the library, the clock (i.e., the current

writer), or the requesting site. Any other node is called the reader node for a page,

if they share that page as read-only. The library site is associated w ith a particu

lar segment whereas all the other "sites" are associated w ith a particular page of a

segment. All the access requests are sent, and processed by the library site sequen

tially.

The key part of the im plem entation is the delta (A) time value which controls

the page thrashing. The clock mechanism ensures that all the readers or the current

writer "holds on" to a page for the A period of time. In a traditional sense, A is

the time slice each process gets from the CPU. This value can be tuned statically or

dynamically to im prove overall application performance.

The library site maintains the A values bu t the clock sites deal w ith the page

invalidations. Typically, w hen an invalidation request arrives at a clock site, the

site (1) invalidates the (local) page, (2) invalidates the other read-only copies, if the

page w as read-only, and finally (3) distributes the page to the readers and the new

writer.

A new system call y i e l d () is created to allow processes to release the owner

ship of a page before their A time has expired. A lthough the new system call im-

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proves the performance in some worst-case scenarios, the use of it m ight become a

burden to programmers.

Communication Mechanism

Unfortunately, the literature on M irage does not discuss any details about its

underlying communication mechanism. As the underlying operating system Lo

cus is a distributed operating system based on UNIX System V, however, it is safe

to assume that M irage uses System V messages for communication.

Programming Interface

As m entioned above, parallel program s use System V "Shared M emory Inter

face". This simple interface is composed of four primitives: shm at () to attach

a shared memory to the address space of a process; shine t l () to m anipulate per

missions of a shared memory segment; shm dt () to remove a shared segment from

the address space; and shm get () to access a shared segment w ith an application.

Other Properties

Fleisch continued working on this research. His research group at UC Riverside

ported M irage to a network of IBM PS/2 computers, and incorporated additional

features to it. The new system is called MIRAGE+ [FHJ94], The w ork on this sys

tem prim arily focused on reliability and fault tolerance, and various new protocols

are developed using this system [JF95, TF95a, TF95b, TF99]. The group has also

developed a fault-tolerant distributed storage system called OASIS+ [WLF01], that

is based on the new algorithms and protocols m entioned above.

T r e a d M a r k s

TreadMarks [KDCZ94] is a distributed shared memory system developed at

Rice University. A lthough its public availability was restricted due to commercial

licensing, it is by far the most widely used DSM system in the academic com m u

nity. TreadMarks was developed as an experimental distributed shared memory

system to study parallel com puting on a network of computers. Currently it runs

on a variety of UNIX flavors.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Memory Organization

T r e a d M a r k s uses the heap address space provided by the underlying oper

ating system and uses its ow n malloc () function to allocate shared data. Alloca

tion of shared data is done by the "m aster" process before copies of it are spaw ned

on other processors. Since the shared data allocated on the heap do not neces

sarily have the same address on different processors, the master process is also

responsible for distributing the pointer of the shared data to other processes using

Tmk_distribute () function.

Coherence Protocol

Tr e a d M a r k s adopts lazy release memory consistency (LRC) [KCZ92] to reduce

coherence related communication overhead. In LRC, the modifications to the local

copy of the shared data are not propagated until the next acquire, w hen the acquir

ing processor determ ines the modifications it needs based on the release consistency

(RC). The novel approach in LRC is the execution intervals that start and end w ith

a release or acquire (lock) operation perform ed on a processor. The intervals on

different processors are partially ordered [AH90] such that: (1) the intervals on a

single processor are in program order, and (2) an interval on processor p precedes

an interval on processor q if the interval on processor q begins w ith an acquire that

corresponds to the release that completed the interval on processor p.

T r e a d M a r k s uses a m ultiple-writer protocol to address the false sharing prob

lem that is common on all page-based DSM systems. Initially, all the shared pages

are write-protected. On the first write operation to a page, the protocol creates

a twin of the page and changes the page's protection to read-write. Subsequent

writes are m ade on the original page w ithout any intervention of the protocol. A

run length encoding of the modifications to the current page (i.e. the differences

between the tw in copy and itself), called a diff is created only w hen another proces

sor requests for the modifications to a page or w hen a "write-notice" (a message

indicating that a page has been modified in a particular interval) arrives from an

other processor for that page. The arrival of a write-notice causes the invalidation

of a particular page, and subsequent accesses cause the propagation of the modifi

cations to the local copy.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Communication Mechanism

Similar to other second generation and new er page-based DSM systems, TREAD

MARKS uses standard UNIX libraries for remote process creation, interprocess com

munication, and memory management. Interprocess communication operations

use U D P/IP protocol on an Ethernet or AAAL3/4 on an ATM network. Since both

protocols are unreliable, T r e a d M a r k s uses a thin layer of operation-specific pro

tocols for reliable delivery of messages.

Programming Interface

TREADMARKS has a very simple API that allows easy process creation and ter

mination, synchronization, and shared memory allocation. This API includes the

following functions: T m k.startup () is used to initialize the DSM system and

create remote processes. Tmk_malloc () , T m k _d istr ib u te () , and Tmk_f r e e ()

are used to allocate shared memory (by the master process), data distribution, and

memory release, respectively. Tm k_lock_acquire () , T m k_lock_release () , and

Tm k_barrier () are used for synchronization. A few additional functions are also

used in applications, but I will not list them here.

Other Properties

Since T r e a d M a r k s uses the heap of the process address space, it is im portant

to claim back the space that is no longer used by various system data structures.

Garbage collection operation is triggered w hen the free space for the system drops

below a threshold. This operation is usually perform ed while the application is

blocked on a barrier [KDCZ94].

Other Page-based Systems

A D SM [MB98] extends T r e a d M a r k s by enhancing its consistency protocol

to adopt to the application's data sharing patterns. ADSM categorizes the shared

data pages as: (i) falsely-shared, (ii) migratory, and (iii) producer/consum er(s).

Based on this classification, each page is m anaged either in "single-writer" or "mul-

tiple-w riter" mode. Coherence is achieved by invalidation for every page, whereas

migratory pages are protected by locks, and producer/consum er(s) pages use bar

riers to protect the pages' respective modes. This type arrangem ent is reported to

outperform original T r e a d M a r k s by up to 155% on some applications. However,

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the additional classification for adaptation requires some application code modifi

cations, which is som ew hat a fall back of the basic goals of software DSM systems.

C a rlO S [KFJ94] is one of the earlier systems that is based on Treadmarks.

The memory coherence actions are triggered by special causality annotations ex

changed by special messages. The authors called this approach message-driven co

herency mechanism, and it is intended to provide a foundation for building systems

that integrates message passing and shared memory paradigms. The ultim ate goal

is to provide a mixed platform for which either paradigm can be used to best suit

the applications. CarlOS is built on top of OSF/1 operating system using tradi

tional U D P/IP datagram s, supplem ented w ith a custom sliding w indow protocol

for reliability and orderly delivery of messages.

CVM [Kel96] supports multiple coherence protocols. Initially, it w as intended

to include four models: single- and multiple-writer versions of lazy release con

sistency, sequential consistency, and eager release consistency. However, the last

public release CVM 0.2 does not include eager release consistency implementation.

This version runs on Sun Sparc, DEC Alpha, and IBM RS6K architectures. It is w rit

ten in C++, and supports applications w ritten in C, C++, and Fortran. One of the

key features of CVM is its extensibility. Since it is w ritten in C++, new classes can

easily be derived from a master Protocol class, allowing new protocols to be eas

ily incorporated. Similar to other new er software DSM systems, multi-threading,

which allows overlap of com putation and communication through context switch

ing, is also supported. CVM has its ow n threading mechanism as a user-level

library. However, CVM itself is not multi-threaded. Further, new er features such

as heterogeneity, on-the-fly configuration, race detection [PK00], and "tapew orm s"

based synchronization libraries [Kel99] are not publicly available.

KDSM [LYLM02] is built on the Linux operating system. Like m any other

systems, it is im plem ented as a user level library using TCP/IP for communica

tion and SIGIO for signal handling am ong processes. KDSM uses a page-based

m ultiple-writer invalidation protocol, and also supports home-based lazy release

consistency (HLRC) [ZIL96]. Apparently, this w ork has borrow ed many ideas from

JIAJIA [HST98] and HLRC. Nevertheless, the group has also developed several

communication mechanisms based on different high speed networks: VIA [VIA97]

and M yrinet [BCF+95].

KOAN [LP92] is built on an Intel iPCS/2 hypercube com puter em bedded into

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its the N X /2 operating system. It adopts sequential consistency im plem ented by

an invalidation protocol using the fixed distributed manager algorithm introduced

by Li [Li86]. Later, the system was ported to Paragon XP/S m ulti com puter as an

external page m anager of the underlying Mach microkernel.

JIA JIA [HST98] is a second generation DSM system that uses scope consis

tency model. It implements a multiple-reader, m ultiple-writer protocol using a

simple lock-based mechanism. JIAJIA is described in more detail in Chapter 4.

JU M P [CWH99] (short for JIAJIA Using M igrating-Home Protocol) extends

JIAJIA by adopting a migrating-home protocol, and using an efficient BSD sockets-

based communication protocol called Socket-DP [CWHOO]. It has been shown in

[ZIL96] that home-based memory coherence protocols usually outperform hom e

less protocols. Nevertheless, the JUM P system 's migrating home protocol gains

performance on certain applications by m igrating a page to a new process P, w hen

processor Q is serving a remote page fault from processor P if these conditions are

met: (i) processor Q is the home of faulted page X, and (ii) the page X is up-to-date,

i.e., processor Q has received all the updates to the page. This scheme eliminates

the transm ission of diff notices to the new "home" of the page. However, the new

home still sends messages to all other processors on the held lock's release as short

"migration notices".

M e t h e r [MF89] is one of the older software DSM systems, and it runs on Sun

workstations under SunOS 4.0 operating system. It is composed of two compo

nents: a kernel driver that maintains a set of shared pages and their states, and

an event-driven user level server. Basic UNIX communication-related system calls

are used to im plem ent the two components, i o c t l () is used to control the kernel

driver, and mmap () , s e l e c t () are used for shared page allocation, and the m es

sage arrival and shared page related events (such as page w anted or page freed).

Although a page based DSM system, M eth er supports both regular page size of

8KB, and a mini page size of 32 bytes. The latter size is to support the memory

m apped network M em N et [Del88] that originally inspired the M eth er project.

M U N IN [BCZ90] is an early second-generation software DSM system. It incor

porates several novel techniques that were not seen in the earlier systems. These

techniques include use of m ultiple consistency protocols and support for complex

protocols to allow concurrent multiple writers and to reduce the communication

overhead am ong processes. It also im plem ents a distributed locking mechanism to

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

further reduce the network traffic load. The users of M un in system can annotate

their applications to chose one of several consistency protocols. The latest version

of the system recognizes one of read-only, migratory, write-shared, and conventional

annotations. The consistency protocol uses release consistency that delays updates

to share data until a synchronization location, at which point the modifications

from different processors are merged [CCD+93].

N autilus [Md99] also uses scope consistency im plem ented by a lock-based

protocol. In addition, NAUTILUS uses threads, bu t only to handle synchroniza

tion services. A lthough several publications compare it w ith other software DSM

systems, none of those publications give sufficient details as to how and w hy the

system almost always achieves better performance than any other DSM system.

QUARKS [Kha96] system consists of two major components: a user-level run

time library that is linked to parallel applications and a centralized Shared Memory

Server that manages the shared memory and the synchronization primitives. W hen

a parallel application starts, it first registers itself to the server, and then spawns

the other remote processes which in tu rn register themselves to the server as well.

Each parallel application process is composed of an Application and a D SM Server

thread. QUARKS supports a w rite-update protocol for sequential consistency and

a delayed write update protocol for (eager) release consistency. A dding new pro

tocols is also relatively easy. The system has been ported to SunOS 4.1, HP-UX and

IRIX 5.2 operating systems, running on SPARC, PA-RISC, and MIPS architectures,

respectively.

SHIVA [LS89] is a followup project to Li's IVY software DSM system. It is de

signed and built on a the Intel iPSC/2 hypercube multicomputer. Since the Inter

hypercube is prim arily used by a single user at a time, Shiva does not have to deal

w ith any address space protection among multiple users. This approach greatly

simplifies the design of Shiva. The main components of Shiva are a shared m em

ory m apping and memory m anagem ent mechanism, a synchronization and thread

control module, a message passing implementation, and a language-independent

RPC facility. Unlike IVY, however, the synchronization primitives are independent

of shared memory mechanism.

String s system [RC98] is based on Quarks, bu t uses POSIX threads instead

of Quark's original Cthreads implementation. Strings also allows m ultiple ap

plication threads as it is designed to work on an SMP cluster running Solaris oper-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ating system. One unique characteristics of STRINGS are its use of m ultiple kernel-

level threads for the applications and its design to run prim arily on a cluster of

SMP computers.

SV M L ib [PS97] is one of the few software DSM systems that run on Windows

NT operating system. The prim ary focus of the project is to integrate scalable dis

tributed synchronization algorithms into DSM systems since the use of such mech

anisms at the lower im plem entation layer is necessary to im plem ent particularly

weaker consistency models efficiently. In addition to using traditional UNIX net

work protocols, TCP/IP, SVMLib also makes use of a high performance network

interconnect based on SCI [Goo89]. SVMLib im plem ents a user-configurable se

quential consistency (SC) as well as synchronization support for the lazy release

consistency (LRC) protocol. It is also possible to run shared memory applications

on several flavors of the Unix operating system using a simple NT em ulation li

brary [PBS98].

The page-based systems mostly use the underlying operating systems' support

for basic memory managem ent and message passing features. These systems use

the virtual memory trap handling mechanisms for the managem ent of shared data

and BSD sockets using (TCP,UDP)/IP protocol stack for communication between

the nodes. A few systems use high performance network interconnects such as

M yrinet and SCI that allow the system designers to develop more efficient com

munication protocols. With a few exceptions, alt the systems are built as user

level libraries that are linked to parallel applications and the runtim e spaw ns the

processes on the other nodes as needed.

Other not widely know n or new research efforts on page-based software DSM

include C a b l e s [JB02], M o o d y [LYL95], T h e R e g i o n T r a p L i b r a r y [BS99], and

W i n d [SHU+00].

3.2.2 Object/Language-based Software DSM Systems

This section overviews some of the object- and language-based systems that

im plem ent distributed shared memory at the highest level of abstraction. Some of

the systems are included in Table 3.2 only for their historical significance.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

DSM System Structure Coherence Model Software Requirements Other Characteristics

A gora [BF87] Object SC — Heterogeneity
A mber [CAL+89] Object SC — Programming system
A dsmith [Lia94] Object RC PVM —
A urora [Lu97] Object ScC — Based on std C++ classes
Cilk [BJK+95] Language Dag — —

Concert [KC93] Language Multiple — —
DiSOM [CGSC96] Object EC — Heterogeneity

D ist. Filaments [FLA94] Language SC — Stackless threads
D osmos [BL94] Object Weak; MRSW PVM Hierarchical structure

M idway [BZS93] Object EC — First EC implementation
Orca [BTK90] Language SC — Strongly-typed, distributed PL

PCOMP [BAFR96] Language SC ParC —
Problem-Oriented SM [Che86] Object Problem oriented — —

SAM [SL94] Language SC Jade; PVM Runs on SMPs and NOWs
T u p l e Sp a c e [Gel85] Language SC — Programming system

Table 3.2: Object/Language-based Software DSM Systems

A g ora [BF87] is a system that supports the development of multi-language

parallel applications for heterogeneous machines. It provides two types of support

for heterogeneous parallel programming: operating system level mechanisms that

can be used to implement heterogeneous parallelism and programming environ

ment functionalities that facilitates the management of parallel programs.

AM BER [CAL+89] is an earlier program m ing system that perm its a single ap

plication program to use a homogeneous network of com puters in a uniform way,

making the netw ork appear to the application as an integrated multiprocessor. It

is specifically designed for high performance in the case where each node in the

network is a multiprocessor.

A D SM IT H [Lia94] is an object-based system built on top of PVM. Its user-level

C++ API provides prim itives to create and m anipulate shared objects. This API

supports release consistency (RC) model using object-based m ultiple-writer proto

col w ith bulk transfer, prefetching, non-blocking and other specialized access ca

pabilities.

A urora [Lu97] is a distributed shared data (DSD) system based on a standard

C++ class library and a run-time system that provides a shared data abstraction on

a distributed system. It includes a unique property, called "scope behavior", that

can be used in applications for various data sharing optimizations. A urora does

not provide any language extensions and it does not require any support from the

underlying hardware. Hence, it is highly portable.

C lLK [BJK+95] is a m ultithreaded algorithmic language. Its philosophy is that

a program m er should concentrate on the structure of the program for efficient par

allelism, leaving the scheduling, load balancing, and other execution issues to the

runtim e system of the compiler. Version 3.0 im plem ented a new shared memory

consistency model called "DAG (Directed Acyclic Graph) Consistency" [BFJ+96],

where the memory model is defined in term s of the com putation DAG only. This

version was im plem ented on a CM5 system. The new er version 5.1 is designed to

run on a cluster of SMPs.

Concert [KC93] is a compiler and runtim e support system for fine-grained

concurrent object-oriented languages. Among other advanced techniques, it pro

vides a global shared nam e space supported by object-based concurrency con

trol. This approach, called view caching [KC97], provides a framework to construct

customized asynchronous coherence protocols that require less synchronization

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

among processes even w ith fine-grained sharing.

D lSO M [CGSC96] runs on heterogeneous networks. It provides a fine grained

data sharing by using a simple shared memory model that im plem ents update-

based entry consistency. It also supports data sharing between applications run

ning a shared memory multiprocessor.

DISTRIBUTED F i l a m e n t s [FLA94] is a C runtim e library that runs on vari

ety of different shared- and distributed-m em ory machines. It has been designed

to support parallel scientific applications, and is intended to be a target for a com

piler. Filaments provide two abstractions: fine-grain parallelism and shared vari

able communication. Each filament is a lightweight thread w ith no stack, and are

m anaged by a server thread on every node. A barrier mechanism supported by re

duction operations is used for the synchronization is among m ultiple filaments. A

reliable datagram protocol is used to handle message traffic for retrieving non-local

pages. The system provides an iterative filament used in loop based applications

and a fork/jo in filament used in recursive applications.

D O SM O S [BL94] (stands for Distributed Objects Shared M emOry System) is

based on a set of distributed passive objects that can be grouped as necessary. The

objects that are handled by a client-server protocol can be shared by applications

transparently. The system supports a weak MRSW model, although applications

can also use strong consistency by declaring the objects as such. Typical PVM func

tions are used to handle object, group, and process creation as well as their dis

tribution. Users can create hierarchical processes which can share the same set of

objects.

The MIDWAY [BZS93] is best know n for its "Entry Consistency" memory model.

In order to provide this model, M i d w a y uses locks that are explicitly bound to

shared variables. This allows applications acquire locks for the proper synchro

nization of the shared data, thus limits the m ovem ent of shared data to the lock

acquisition messages. To reduce communication overhead, it uses specialized com

munication protocols built on Mach kernel's low-overhead interfaces for both ATM

and Ethernet networks.

ORCA [BTK90] is a strongly typed program m ing language, based on "shared

data objects" m odel [BT88]. It contains primitives to support concurrent program

ming as well as mechanisms for process creation and synchronization on remote

nodes. The im plem entation of ORCA consists of a compiler and a run-time system.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The m ain goal of the P C O M P project is to apply compiler technology to in

crease the performance of parallel program s using distributed shared memory par

adigm. Unlike the traditional compiler optimizations seen in automatic paralleliza-

tion of sequential loops or partitioning shared arrays, the high level language of the

PCOMP project, called PARC, optimizes a parallel program by analyzing the page

movements of the underlying distributed shared memory.

P r o b l e m - o r i e n t e d s h a r e d m e m o r y [Che86], proposed by David Cheri-

ton, is a som ewhat different paradigm for building sophisticated distributed ap

plications. A problem -oriented shared memory im plem ents fetch and store oper

ations that are specific to the particular application it is supporting. This shared

memory can be regarded as a system service im plem ented on m ultiple processors.

The semantics of the problem -oriented shared memory is relaxed such that "stale"

data can exist in the system.

SAM [SL94J is a run-time system that supports a shared name space in software

on distributed-m em ory multiprocessors. SAM uses variable granularity, based

on the size of the shared data used in applications. An im plem entation of the

Jade [RSL93] parallel program m ing language for distributed memory machines is

also included. SAM has been im plem ented on a variety of platforms, including

the Intel iPSC/860 and Paragon, the Thinking Machines CM-5, the IBM SP1, and

on heterogeneous netw ork of workstations running PVM.

The T u p l e S p a c e [Gel85] is a novel synchronization mechanism developed

for the Linda language. The Tuple Space is a global memory containing tuples,

constructs similar to records in Pascal language. A tuple is denoted by providing

both actual and formal param eters for every field. Unlike the other conceptual

shared m em ory systems, the Tuple Space is addressed associatively (by contents).

There are other language- or object-based software DSM im plem entations or

high level languages that provide shared memory abstraction in the literature.

These include Emerald [JLHB88], Jade [RSL93], Locust [Ver96], and SENSE

[Joh99].

3.2.3 Hybrid DSM Systems

The systems listed below are considered "hybrid" for a variety of reasons. A

few of these systems are not exactly a DSM system, but developed as a distributed

application supporting weak consistency of shared data (e.g., BAYOU system) and

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are part of a larger, not necessarily a software DSM, project (e.g., SciFS). Some of

them describe an architecture, and may not be fully im plem ented (e.g., the II Ar

chitecture). Others are parts of an operating system (e.g., CHORUS CONSISTENCY

S e r v e r), or a "hardw are" prototype, bu t introduced new consistency mechanisms

(e.g., the SHRIM P project). Yet some others are explicitly built on top of a message

passing system (e.g., PHOSPHORUS). Nevertheless, all of those systems contributed

in a substantial w ay to DSM research over the years. Although the list is not com

plete, it includes m ost of the systems that are frequently referenced in the literature.

Some systems are included in Table 3.3 for their historical significance.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

vO

DSM System Consistency Model Coherence Protocol Other Characteristics

Bayou [DPS+94] Weak MRMW Disconnected applications
CASHMERe [SLD+96] Weak MRMW Uses DEC Memory Channel

Chorus Consistency Server [AA092] SC MRSW Built on top of Chorus Nucleus
Clouds [RAK89] SC MRSW OO distributed OS prototype

CRL [JKW95] SC MRMW Uses PVM for process handling features
DSM-PM2[AB01a] SC, RC, Java MRMW Various high-performance NICs

DSM-Threads [Mue97] Multiple MRMW POSIX threads
H amster [SchOl] Multiple MRMW SCI interconnect
Larc h a nt [FS94] Multiple MRMW Garbage collection

Millipede [ISW97] SC MRSW Minipages
Mach Shared Memory server [FBYR89] SC MRSW Built on top of Mach Kernel

PAMS [Myr95] SC MRSW Hardware assisted
Phosphorous [CDM94] Multiple MRMW Built on top of PVM
II Architecture [KBCC93] Various Various Design architecture

PLURIX [STS98] SC MRSW Java-based distributed OS
Rthreads [DZU98] SC MRSW Supports PVI, PMI, and DCE

SciFS [KCR98] SC MRSW Distributed file system; SCI interconnect
Shasta [SGT96] RC MRMW Code re-writing and instrumentation

Shared Regions [SGZ93] EC and RC variations MRMW Partial implementation and simulation
SHRIMP [BAC+98] AURC, HLRC MRMW Hardware assisted
StarD ust [CP96] SC MRSW Heterogeneous parallel programming env.

U nify [GYF93] Multiple MRMW Spatial consistency
Vote [Cor94] SC MRSW Part of the Peace parallel OS

Win d Tu n n e l [HLW95] Various Various Sub-projects: Blizzard, Tempest, Typhoon

Table 3.3: H ybrid Software DSM Systems

The BAYOU [DPS+94] system is prim arily designed to support "disconnected"

applications such as mobile users. Among other things, its emphasis is on develop

ing new replication algorithms that w ould allow weak consistency. Some typical

applications of the system include calendars, databases, or docum ents "shared"

among co-workers that usually allow distant collaboration. Hence, BAYOU is fo

cused on supporting application specific mechanisms instead of generic ones.

The "Coherence Algorithms for SHared MEmory aRchitectures" CASHM ERe

project [SLD+96] is an effort to provide efficient, scalable, shared memory w ith

minimal hardw are support. Early simulation results have shown that the per

formance of non-cache coherent, non-uniform memory access (NCC-NUMA) ar

chitectures can be close to the performance of totally hardw are coherent m ulti

processors. For this reason, the CASHM ERe project tries to bridge the perfor

mance gap between shared memory em ulations on networks of workstations and

tightly-coupled cache-coherent multiprocessors w ith a minimal hardw are support.

As a proof of concept, the group has successfully built an eight 4-processor NCC-

NUMA prototype using DEC 4100 SMPs connected by DEC's proprietary high

speed Memory Channel network. The success of the project has lead to further

research into data sharing. The followup project, called INTERACT, aims at pro

viding efficient and transparent data sharing in a client-server environm ents such

as a datam ining application. M ost recently, the work on the INTERWEAVE project

[CDP+00] complements message passing by allowing users to share data segments

across distributed platforms. The unique features of this work are that it allows (i)

sharing on "heterogeneous" architectures, and (ii) use of a variety of program m ing

languages. Currently Alpha, Sparc, x86, MIPS, and Power series processors, and

C, C++, Java, Fortran 77, and Fortran 90 languages are supported.

C h o r u s C o n s i s t e n c y S e r v e r [AA092] is im plem ented as a subsystem run

ning outside the Chorus Nucleus [RMP+87]. It is a part of the Chorus/M iX oper

ating system that im plements a distributed version of the System V UNIX on top

of the Chorus Nucleus. Chorus/M iX provides a single system image on multicom

puter architectures. The consistency server uses sequential consistency algorithms

introduced by IVY.

C LO U D S [RAK88] is an object-oriented, micro kernel based distributed operat

ing system developed at Georgia Institute of Technology in the late 80's. Clouds

is built on passive objects and active entities called threads. Each object occupy a

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distinct location in the C louds' global virtual address space. M ultiple segments en

capsulating code and data of an application makes an object. Threads provide flow

of control in the system. The node's processor, distributed shared memory controller

(implemented as a software prototype) and a netw ork interface provides the nec

essary functionality of DSM.

The C Region Library (CRL) [JKW95] is an all-software DSM system. The key

features are (i) it is both hardw are and software architecture, and language inde

pendent (therefore it is portable) and (ii) unlike other DSM systems, CRL does not

use any features of the underlying hardw are and software (e.g., the page fault

mechanism) mainly to avoid drawbacks of inefficient interfaces to access them.

Its finer granularity avoids false sharing, a common problem of page-based sys

tems, by annotating shared data. CRL was originally im plem ented on CM-5 and

Alewife. The most recent, publicly available version (CRL 1.0) was im plem ented

on a network of Sun Sparc workstations using Berkeley sockets for interprocess

communication, and PVM [Sun90] for its group and process m anagem ent features.

Despite the advocated goals for simplicity and its efficiency for some applications,

its special API makes parallel benchm ark suites such as SPLASH [SWG92] and

SPLASH2 [WOT+95] or any other existing parallel application difficult to adopt.

The requirem ent of PVM, which is no longer a popular message passing system,

makes the system dependent on other software.

D SM -PM 2 [ABOla] is not a complete DSM system bu t rather a portable im ple

mentation platform for m ultithreaded consistency protocols for software distrib

uted shared memory. It provides generic building blocks, allowing easy protocol

im plem entation and com parison w ithin a unified framework. Currently, DSM-

PM2 supports three consistency models: sequential consistency (SC), release con

sistency (RC) and Java consistency [ABM+00]. Different models can be used by

a runtim e switch w ithout re-compiling applications. DSM-PM2 runtim e is avail

able on a variety of clusters operated by UNIX-like operating systems and based

on Myrinet, SCI and Ethernet networks.

D S M - T h r e a d s [Mue97] is a distributed m ultithreaded runtim e system that

adopts the distributed shared memory approach using a POSIX Threads-like API.

The system supports several memory consistency models where both the consis

tency and the synchronization mechanisms are based on decentralized algorithms.

The H a m s t e r [SchOl], which stands for H ybrid-dsm based A daptive and Mod-

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ular Shared m em ory archiTEctuRe, project is a shared memory framework which

combines the traditional software DSM mechanisms w ith the advanced hardw are

capabilities of a SCI based interconnection medium. The underlying low-level API,

called SCI-VM, exports a transparent global shared memory abstraction that pro

vides necessary infrastructure for the efficient implem entation of different shared

memory models.

LARCH ANT [FS94] project prim arily deals w ith garbage collection (GC) in shared

distributed stores. One particular interest in the project is to provide an algorithm

that enables GC in distributed shared memory. The project identified the interac

tions between coherence and GC, and im plem ented a proof-of-concept prototype.

Further w ork in the project includes im proving performance, and adding heuris

tics for various issues, such as clustered objects and interaction of GC w ith multiple

consistency mechanisms.

M i l l i p e d e [ISW97] is a software platform that builds a "virtual parallel m a

chine" (VPM) on top of a netw ork of com puters running Windows NT operating

system. Each com puter on the netw ork acts as a processor of an SMP m ultiproces

sor, sharing all the memory in the system. The transparent sharing of the network's

memory is provided by the DSM com ponent of the system, called M i l l i p a g e that

im plements Sequential Consistency through MRSW protocol.

M a c h S h a r e d M e m o r y S e r v e r (MSMS) [FBS89] is an external paging ser

vice built on top of the Mach operating system kernel. Originally im plem ented on

a shared memory system, the MSMS is basically a virtual memory m anager that

allows virtual pages to reside on different nodes in the system.

The "Parallel Application M anagem ent System" (PAMS) [Myr95] from Myrias

Software Corporation is a hardware-assisted software package that turns a distrib

uted system into a shared memory multicomputer. It was originally developed on

the Myrias supercom puter for FORTRAN applications. The most im portant PAMS

"directive" is PARDO (PARallel DO), which automatically invokes the parallel m an

agem ent functions. FORTRAN program s using such directives are preprocessed by

the PAMS driver to include the necessary parallel execution functionality. Most of

the PAMS directives are similar to OpenM P [Ope97] primitives.

P h o s p h o r o u s [CDM94] is a S-DSM developed on top of PVM system. The

system has evolved as part of an ongoing research in parallel architectures. The

unit of sharing is a "variable," and the data types are handled by packing/unpacking

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functions of PVM. PHOSPHOROUS uses distributed and dynamic ownership scheme

suggested by Li [Li86], and supports data sharing schemes similar to those of

Mu n in .

The II A r c h i t e c t u r e [KBCC93] is a new system software design approach

that allows its subsystems to be easily tailored for the needs of applications and

hardw are configurations. The idea behind this new design principle is that the sys

tem software should be flexible to accommodate varying needs of the applications.

One of the subsystems of the II A r c h ite c tu r e is the distributed shared m em

ory, which is based on the idea of making implicit concepts explicit by a process

know n as reification, or materialization. The architecture creates a m apping of an

"abstract" application model to the underlying "computational" dom ain by defin

ing a uniform object model for both. The DSM subsystem is composed of several

subcomponents where each subcom ponent has two interfaces: a Function export

ing the functionality of the subcom ponent and a System interface that controls the

actual implementation. The components of the DSM subsystem that sits on top of

the II A r c h ite c tu r e are the Hardware Resource Virtualization Component, HVRC,

the DSM Meta-Object Subsystem, and the Language Support. The DSM Meta-Object

Subsystem is used to reify (materialize) the im plem entation of a DSM system.

P l u r i x [STS98] is a native high-speed operating system for PC clusters de

veloped from scratch using Java. It has an implicit DSM storage which directly

supports intra-netw ork cooperation. This storage unit im plements an optimistic

transaction scheme that guarantees consistency of shared data automatically using

"Java Objects" technology.

The R T h r e a d s (short for Remote Threads) [DZU98] is based on the POSIX

threads (pthreads) model. A pre-compiler transforms a pthreads program into an

RThreads program automatically by replacing "all" the global variables into shared

variables. Since the translated program s are free from any specific DSM runtime,

they can run on heterogeneous clusters and they can also use PVM, MPI, and DCE

message passing systems. Rthreads is object-based and prim arily supports sequen

tial consistency.

SciFS [KCR98] is a distributed shared virtual memory built on top of SciOS

using the m em ory m apped file concept. As the nam e implies, the whole system is

built on Dolphin SCI network adapter. A driver m odule handles all the low level

memory operations on this adapter. The system is based on the Linux Virtual File

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System (VFS).

S h a s t a [SGT96] is a S-DSM system that supports varying granularity. The sys

tem re-writes the parallel applications w ith hooks that intercept the load (read) and

store (write) instructions. It uses a flexible cache coherence protocol that supports

m ultiple relaxed memory models to handle the shared data consistency at software

level w ith various run-time overhead reducing techniques.

SHARED R e g i o n s (SR) [San95] is a framework which provides strategies for

efficient cache m anagem ent in SMPs. The framework allows shared data to be

m anaged at varying granularity required by the application. Further, the coherence

decisions are m ade dynamically and at the software level. The SR provides a run

time system that is located between the operating system and the compilers.

The SHRIMP (stands for Scalable High-performance Really Inexpensive Multi-

Processor) project investigates how to construct high-performance servers w ith a

network of com modity PCs, and commodity operating systems...

S t a r D u s t [CP96] provides an environm ent for parallel com puting on net

works of heterogeneous workstations, supporting both message passing and shared

memory program m ing paradigms. It also supports load balancing, application re

configuration, and fault tolerance.

The objective of the U n i f y project [GYF93] is to build a scalable m ulticom puter

system that is capable of shared memory applications on many nodes that are at

geographically distant locations. It is a segment based system supporting three

abstractions for shared data. Random access memory is directly addressable. Se

quential access memory is accessible in two ways: the front end of the memory is

accessed by a read and the back end of the memory is accessed by a write opera

tion. Associative memory is accessed using <key, value> pairs. Sequential access

and associative memory uses a new memory model called spatial consistency, which

determines the relative order of the contents of the replicas of a segment.

VOTE [Cor94] is a communication system that provides support for both m es

sage passing and shared memory program m ing paradigms. VOTE is part of the

Peace project [Sch94],

W i n d T u n n e l [WWT01] is a large umbrella project that focused on design

ing cost-effective parallel machines supporting shared memory. The project had

three phases developing ideas and research papers on: a simplified shared m em

ory hardw are called "cooperative shared memory" [HLRW93] that allowed soft-

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w are m anaged data movement, a generic "memory interface" [HLW95] that en

abled applications to use message passing, shared memory, or combination of both

through program m ing interfaces, and im proving performance through more hard

w are support [MHW03]. The third phase is evolved into a new project called M u l -

TIFACET [Mul03].

Other notable hybrid software DSM im plem entations include PVMSYNCH [PitOO].

3.3 Summary

I sum m arized the software distributed systems developed in various forms that

range from pure page-based systems to object- or language-based systems to hy

brid systems. For a more complete list of DSM im plem entations please refer to

the online DSM bibliography [Esk95]. Javid Huseynov has recently taken over the

DSM im plem entations web site from Peter Keleher. This new web site is currently

maintained at http: / /www. ics . uci . edu/~ j avid/dsm. html.
Most of the software DSM systems in the literature provide only a command-

line interface for the execution of application. An exception is the 3rd generation

B r a z o s system which provides a graphical user interface for applications on the

Windows NT operating system.

In the software distributed system research and developm ent m entioned above,

the main focus have been one of the following:

- Design of new and more efficient memory models.

- Approach from a purely theoretical perspective w ith some prototyping.

- Developm ent of various latency hiding techniques.

- Use of user-level network interfaces.

There are other aspects of research as in the literature that are used to support

various issues software DSM systems, such as execution visualization and profil

ing, post-m ortem or algorithm analysis tools. I will not include them here, because

this thesis does not focus on such issues.

As m entioned in Chapter 2, research on some other aspects of software DSM

is not widely and sufficiently done. These areas of research include architectural

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

issues from both hardware-assisted and software-only perspectives, characteriza

tion and possible restructuring of applications based on the memory models. Most

of the research describing developm ent and comparative evaluation of analysis of

software DSM systems, including the one reported in this thesis, use the de-facto

benchm ark suites SPLASH [SWG92], SPLASH2 [WOT+95], and NAS [BBLS94]. Al

beit it is difficulty to study the performance of other applications for a variety of

reasons (e.g., being proprietary or confidential software), the advantages of soft

w are DSM systems are yet to be seen on Grand Challenge Problems, such as ocean or

weather modeling.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

JIA-R—A Case Study

4.1 Overview

This chapter describes the JIA-R software DSM system as a case study. This

system is derived from an early version of the JIAJIA software DSM system. I was

involved in the developm ent of JIAJIA in it early stages (version 0.9). I introduced

many im provem ents after its first public release, and I have changed its nam e to

JIA-R. Further, unlike its predecessor, JIA-R fully supports the M4 macros that are

commonly used in m any shared memory applications. The most noteworthy im

provements m ade to the original code are enhanced autom ated startup procedure,

highly efficient message structure, and optimized communication sub-system.

In the following sections, I introduce the common characteristics of JIAJIA and

JIA-R, and describe the enhancements of the JIA-R system. I will refer to each

processor of the underlying hardw are as a node and use both w ords interchange

ably in the rest of the thesis.

Application

UDP/IP
Virtual
Memory

Figure 4.1: Architecture of JIAJIA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 JIAJIA and JIA-R

I have started w orking w ith JIAJIA w hen it was still preliminary. It was being

tested on four Sun Sparc workstations, where some of the workstations were also

being used to develop the system. The discussion of JIAJIA in the next four sec

tions reflects its very first public release, version 0.9. During the its development,

I have ported JIAJIA to about half a dozen different platforms. I have w ritten

the handler code for SIG SE G V and S IG IO signals on all the ports, and simplified

the original code for the SunOS operating system. My initial involvement goes to

a point where I proof-read the original developers many papers and the JIAJIA

documentation.

Similar to TreadMarks, JIAJIA is a software DSM system that is designed to

run at user level on a network of Sun workstations. It is originally built onto So

laris (a UNIX flavor) as a runtim e library and it uses standard libraries for remote

program invocation, interprocess communication, and memory management. JI

AJIA im plem ents scope consistency [ISL96] w ith a lock-based protocol and uses a

write-invalidation scheme to handle dirty data. The system also allows multiple

writers to alleviate false sharing.

4.3 Memory Organization

As Figure 4.2 shows, JIAJIA organizes the shared memory in an unconven

tional way. The global shared memory is distributed across the processors. Each

processor acts as the home of a portion of the shared memory. Users can spec

ify home size of each processor in a configuration file and hence control initial

distribution of shared data. A page is accessed ordinarily w hen referenced by its

home processor. A remote page, on the other hand, is first fetched from its home

processor and cached locally for subsequent accesses. A page is always kept at the

same user space address, in other words, the logical address of a page is identical

on all processors, w hether it is a hom e page or has been cached by the processor.

This approach eliminates any address translation upon a remote access and pro

vides a uniform view of the shared memory across the processors. Furthermore,

each processor uses a local page table to keep inform ation only about its "cached"

pages. It contains the address, current state and a tw in (if in RW state) for each

cached page.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ached

C ached

Home

C ached

Home
C ached

C ached

Home

C ached

C ached

Interconnection Network

Figure 4.2: M emory Architecture of JIAJIA

With the above memory organization, JIAJIA is able to support shared m em

ory that is m uch larger than the physical memory of any single processor in the

system. Hence, the total size of the shared memory is not limited by the physical

memory of a single processor, bu t only by the virtual memory settings (e.g., max

im um allowable user-mappable address range) of the underlying hardw are and

operating system.

4.4 Coherence Protocol

Currently, JIAJIA provides two synchronization operations (though, others can

easily be added): lock/unlock and barrier. Either one of these operations can be used

in an application to control a critical section. A barrier can be viewed as a combi

nation of a lock-unlock pair, bu t in reverse order: arriving at a barrier exits from

the "previous" critical section and leaving a barrier enters the "next" (new) critical

section. Since two barriers are needed to enclose a critical section, the start of an

application is considered an implicit entry to the first critical section.

Based on the observation that the overhead of a complex software DSM system

may easily offset its benefits, the coherence protocol of JIAJIA, as sum m arized in

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rd, a c q , rel rd, w t

acq, re l: acquire, release
acqinv : invalidate the page on acquire

getp : get the page from its home
w tn t: send write-notices to lock
diffs : send page diffs to home(s)
twin : create a twin of the page

Notes
rd, w t : read, write

a c q , rel

Figure 4.3: Coherence Protocol of JIAJIA

Figure 4.3, is designed to be simple.

The shared pages in an application can either be "local" or "cached" on a given

processor. In the former case, the processor is the home of the page. During the exe

cution, these pages can be in one of three states: Invalid (INV), Read-Only (RO),
and Read-Wri te (RW) . The initial state of the pages at their home processors is RO.
Since m ultiple writers are allowed, a page may be in different states after several

processors cache it.

Ordinary read and write accesses to a RW page, or read access to a RO page, or

acquire and release on an INV or a RO page do not cause any change in the page's

state. Like the shared pages, each lock is assigned a home processor in a round-

robin fashion during system initialization.

On a release, the processor generates "diffs" (run-length encoding of the changes

made to a page) for all modified pages and eagerly sends them to their respective

homes. Also, the processor sends a release request to the lock's home processor

along w ith the write-notices (basically, a list of modified pages) for the associated

critical section. Similarly, the acquiring processor sends a request to the lock's

owner and waits until it receives a lock-grant message. M ultiple acquire requests

for a lock are queued at the lock's home processor. W hen the lock becomes (or is)

available, a lock-grant message is sent to the first processor in the queue, piggy

backed w ith the current existing write-notices. After receiving the lock-grant m es

sage, the acquiring processor invalidates the pages listed in the write-notices and

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

continues w ith its norm al execution.

On reaching a barrier, processors send write-notices along w ith diffs to the

homes of the modified pages. Home processors, in turn, apply the diffs to the orig

inal copy of the pages. Thus, each processor resumes execution w ith an up-to-date

view of the shared memory after a barrier.

In summary, the protocol propagates all the modifications (as diffs) to the home

processor of a page on a release and to the next processor on the following acquire.

This approach keeps the diffs only for a short period of time, hence reducing local

diff keeping overhead.

Unlike other DSM systems, JIAJIA does not keep a separate global directory

structure, instead, only a lock structure keeps the necessary information, such as

ownership, for the relevant pages. This approach further reduces the overall space

overhead of the system. JIAJIA 's shared memory allocation scheme is only bound

by the virtual memory m anagem ent limitations of the underlying (UNIX or its fla

vors) operating system. This feature of JIAJIA allows parallelization of applications

that require large am ounts of shared data.

4.5 Communication Mechanism

Like m ost second generation page-based DSM systems, JIAJIA uses traditional

U D P/IP protocol for both control and data messages. The runtim e system keeps

track of the messages being sent on each processor, and provides a naive, yet func

tional, reliability for the communication by inserting sequence num bers to each

message. The SIGIO signal handler installed during the initialization phase veri

fies the ordering w hen a message arrives.

4.6 Programming Interface

JIAJIA im plem ents the SPMD program m ing model, in which each processor

runs the same program on different parts of the shared data. It provides functions

for system initialization, shared memory allocation, and synchronization using the

following exported program m ing interface (API):

• j ia_ini t (int argc, char * * argv) —initializes JIAJIA runtim e system. It

m ust be called from every shared memory application.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• j i a _ a l l o c (i n t s i z e) —allocates shared memory. The param eter s i z e in

dicates the num ber of bytes allocated.

• j i a . l o c k (i n t lo c k id) —acquires a global lock specified by lo c k id .

• j i a .u n lo c k (i n t l o c k i d) —releases a global lock. j i a _ l o c k () and j ia _ u n lo c k ()

should appear in pairs for obvious reasons.

• j i a J o a r r i e r () —performs a global barrier by preventing any process from

proceeding until all processes reach the barrier.

• j ia.wait () —similar to j iaibarrier () except that j ia.wait () does not

enforce any coherence operations across processors.

• j i a . c l o c k () —returns elapsed time since the start of application in seconds.

• j i a _ e r r o r (c h a r * s t r) —prints out the error string s t r and term inates the

application.

• j i a . e x i t () —prints statistics (optional) and term inates the application.

Additionally, two variables, j i a p i d and j i a h o s t s , specify the host identifi

cation num ber and the total num ber of hosts of a parallel program, respectively.

This simple interface is defined in a header file, which m ust be included by the

application.

4.7 Details of JIA-R Enhancements

Typically, software DSM systems follow the general flow as shown in Figure 4.4.

This is quite common in S-DSM systems, w ith slight differences. For example, in

TreadMarks, the m aster node allocates the global variables and distributes their

addresses to the other nodes.

The original system used a simple but time consuming remote process startup

procedure. This code was developed on four networked Sun workstations. If

there is no N etw ork File System (NFS) m ounted directories, then the prim ary node

"copies" the executables to other nodes before starting the execution. This ap

proach was an inefficient as a system startup. JIA-R uses a dynamic mechanism,

adopted from TreadMarks, for remote process creation and invocation. This ap

proach has reduced the startup time to half for all applications. Even larger appli

cations benefit from this mechanism.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lait until all slaves arrive'
at the barrier ,

Create
slaves

Execute
Allocate
globals

In itia lize

Figure 4.4: General Execution Flow of Parallel Applications

In addition to dynamic port allocation and assignment enhancements in J I A - R ,

I also restructured the messaging data structures and message transfer mecha

nisms. For example, instead of having a set of buffers for incoming messages and

another set for outgoing messages, I introduced a common pool of constant size

(currently there are 32 message buffers1) for both message types. This approach re

duced the memory requirements in the runtim e code. In the original code, w hen a

control message or a shared page is sent to other nodes, a message w ould be sent to

the local node if it is involved in the communication scheme. This communication

would incur unnecessary delay on the local machine, because the message would

travel dow n and up through the protocol stack, as well as produce an unnecessary

1 /O interrupt. I optimized message delivery system such that if a message is to be

sent to the local machine, I simply remove the message from the outgoing queue

and insert it into the incoming queue.

In the original system, each JIAJIA node allocates two ports (channels), one for

control messaging and the other for the transfer of the shared pages. UNIX port

num bers are used to "nam e" these communication channels and the num bers are

assigned statically and stored in a fix-sized two-dimensional array, large enough

to hold ports for m aximum num ber of nodes (it w as set to 16) during the startup.

The disadvantages of this approach are the static nature of the assignments and

the potential conflict of the port num bers on various UNIX operating system fla

vors. Further, JIA-R dynamically allocates the port num bers by requesting them

from the operating system. This approach avoids any potential conflict on ports

’This number is not special and it is found by trial-and-error while testing the applications in the
benchmark suite.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w ith other applications and services. The port num bers are reclaimed after the

application's execution is completed. In j i a - r , the port allocations are done auto

matically, based on the num ber of available nodes.

I am algam ated m ultiple controls and internal structures of the shared pages

that allowed the elimination of several time consuming operations that had to be

executed every time a page fault on a shared page occurs. I introduced m any m et

rics into the software to help evaluate the system. They include counters for m es

sages being sent and received, memory operations (including SIG SE G V handling),

I /O operations (including S IG IO handling), diff related operations, and synchro

nization primitives. In addition, timings for these counters are also recorded inter

nally and ou tpu t at the end of each execution. I also experimented w ith buffering

the output of the program s until the end of their execution. However, the perfor

mance gains of doing so were negligible. Lastly, I have developed additional code

to allow the users debug their applications by an X-based debugging facility.

The current directory structure of the JIA-R source code base is shown below:

. . . / J I A - R /
/src

/ . . .
/doc
/appls

/barnes/src
/ . . .

/null
/Makefile

/linux
/solaris
/aix41
/Makefile.common
/datafiles

/ . . .

/lib
/linux

/libj ia.a
/Makefile

/solaris
/aix41
/Makefile.common

/m4.macros
JIA-R-clean
JIA-R-make
README
README.JIA-R

I identified the more complicated and im portant additions and modifications

made to the original JIAJIA code as three groups: automatic startup and initializa

tion, new messaging system, and communication subsystem optimizations.The following

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sections describe the details of these enhancements.

4.7.1 Automated Startup and Initialization

W hen a parallel application is subm itted to the system, it starts executing on

a node called the master. The master node then spawns all the other nodes called

the slaves. Nodes run an exact copy of the application, except the master node does

a few additional tasks related to the setup, initialization, and termination. The

master node is mainly responsible for starting the slaves, in addition to execute the

application itself. All nodes read a small configuration file and learn about their

peers, including the master. For simplicity, the first node in this file is also the

master.

The first initialization step, done by all the nodes, is to initialize memory, com

munication, and synchronization sub-systems. During the memory initialization,

a SIG SE G V handler is installed to deal w ith "shared memory" accesses and neces

sary data structures for the shared memory are created. Each node then allocates

a message common buffer pool for all incoming and outgoing message traffic. A

SIGIO handler is also installed during the communication sub-system initializa

tion. I have completely re-written this startup and initialization component.

in d e x

"n ex t

*nextl

*nex tO

o p

from P ID

toP ID

b u s y

s e q n o

f la g s

s iz e

I d a ta

Figure 4.5: JIA-R Message Structure

65

- > N ex t m e s s a g e

- > N ex t m e s s a g e in th e in p u t q u e u e

- > N ex t m e s s a g e in th e o u tp u t q u e u e

>■ Local co n tro l d a ta

> A c tu a l m e s s a g e p a y lo a d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7.2 New Messaging System

I have re-designed the message structure as Figure 4.5 shows. By introducing

16 bytes of additional control structure, I was able to use the same structure for

both incoming and outgoing messages. Further, w ith this small additional data,

which is only used locally, I was able to eliminate redundant message structures in

the system.

4.7.3 Communication Subsystem Optimizations

Q_
LL1 .cc 1

- - 03 04

42 - -

16 - - -

N o d e 1

N o d e 2

Figure 4.6: JIA-R Comm unication Structure

I have re-designed and im plem ented the communication subsystem of JIA JIA .

In JIA-R, not only there are two communication channels between a pair of nodes,

bu t also those channels (sockets) are created dynamically, eliminating port num ber

conflicts in the UNIX operating system. The port num bers are assigned dynam

ically each time a channel is created. This is done by the s o c k e t () system call.

The send operations for both the control messages and the data transfers are done

on one socket. Similarly, the receive operations of the same are done on another

socket. Figure 4.6 shows the communication channels assigned on a three-node

system. Each node has a pair of sockets for every other node in the system. One

socket is dedicated for sending messages and the other is for receiving messages.

They are illustrated as REQ - 03 and REP - 42 between node 0 and node 1, respec

tively. The REP - XX sockets are set to receive asynchronous messages, thus trigger

SIGIO interrupts, because messages may arrive at random. The 3 x 3 matrix below

node 0 illustrates the data structures used to hold the socket num bers between the

pairs of nodes.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Summary

I have detailed the im portant features of the original JIAJIA S-DSM software

and discussed the optimizations and improvements introduced to the new system.

Unfortunately, I was not able to locate unmodified original version 0.9 of JIAJIA.

Moreover, the partially modified version did not compile on the new er platform.

Nevertheless, it is a conservative assum ption that the new "internal" structure and

optimizations have im proved the performance of the applications by as m uch as

15%. Moreover, these enhancements have increased readability of the source code.

I believe additional improvements to JIA-R software DSM system can be made

to further im prove its performance. Possible improvements include re-designing a

more efficient locking mechanism of the coherence protocol, incorporating process

migration a n d /o r page migration, using threading to hide communication laten

cies, developing more efficient communication library, such as Fast Messages [PLC95]

or Active Messages [vCGS92]. Both JIA-R and its predecessor JIAJIA are single

threaded systems. Related research has shown that using m ulti-threading tech

niques and hiding communication latencies, application performance can be im

proved in m any cases [ABOlb, SB97, ISS98, JB02, KC98, LR00].

Apparently, some of these suggestions have been incorporated into the new er

version of JIAJIA. However, the details presented in related publications are rather

sketchy. Also, I have been unable to acquire the new code w ith those additions,

thus I was unable to compare JIA-R w ith the new er versions of JIAJIA.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Evaluation of JIAJIA and JIA-R

This chapter presents the performance results of JIAJIA, CVM, TreadMarks,

and JIA-R. I started this research by evaluating various software DSM systems

whose source code is freely available. At the time, there were three possibilities.

I omitted TREADMARKS, because it had strict licensing rules and CVM because

of its im m ature status at the time. As it turned out, the developer of CVM has

not released a distribution beyond version 0.2. Hence, I decided to w ork w ith

JIAJIA, despite its early developm ent stage and I acquired the full source code of

JIAJIA w ithout any licensing issues. I then compared the performance of several

applications w ith JIAJIA, CVM and TreadM arks. The first part of the evaluation

com ponent of this chapter is devoted to these comparisons. In the latter part, I

evaluate the new JIA-R DSM system and present the results of m y experiments on

three different networks.

5.1 Experimental Platforms

The platforms for testing JIAJIA and JIA-R w ith a set of applications has varied

over the years. Initially, I used a 64-node IBM SP2 cluster at the Center for High

Performance Com puting at the University of U tah [EM98]. A lthough there were

two types of nodes w ith slightly different characteristics on the cluster, I used up

to 16 identical "thin nodes" for the experiments. Each thin node was equipped

w ith 120 M Hz POWER2 Superchip processor and 128 MB physical memory. All

the cluster nodes were interconnected w ith a high performance multi-stage Omega

switch (SP2 Switch) which provided a m inim um of four simultaneous paths (with

a bandw idth of 80 megabits each) between any pair of nodes. The nodes were also

connected to the outside w orld by both Ethernet and FDDI links. A full version of

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AIX 4.1.5 operating system was running on each node. A lthough all the nodes were

available for public use w ith no restrictions, I ran my experiments on dedicated

nodes, i.e., w ith no other user process, thus utilizing the full capacity of each node.

I will refer to this platform as the SP2 Cluster. I compared the performances of

JIAJIA, T r e a d M a r k s , and CVM on that platform.

The second, and the most recent platform, consists of a 16-node cluster of IBM

M-Pro PCs. Each node has an 866Mhz P-III Copperm ine processor w ith 256KB L2

cache, 256MB RAM, and 18GB wide-SCSI disk drive. All nodes run Redhat Linux

7.2 w ith the 2.4.9-31 kernel. The nodes are interconnected w ith three networks: 100

Mbps (Fast) Ethernet, Gigabit Ethernet, and M yrinet (the third generation interface,

a.k.a. Myrinet-2000). Each network has its own dedicated switch, and the cluster

is connected to outside w orld on their Fast Ethernet via a switch. I refer to this

platform as the 16-SingleCPU Cluster.

In both platforms, I used the public-dom ain C compiler g cc w ith option -02

for the compilation of both the DSM systems (JIAJIA, CVM, T r e a d M a r k s , and

JIA-R) and the applications.

5.2 Benchmark Suite

There are several benchm arks for a variety of environments on the Internet.

However, only a few of them suit the purpose of this research. I have selected ap

plications from three w idely used parallel benchmarks, namely, SPLASH [SWG92],

SPLASH2 [WOT+95], and NAS [BBLS94], covering a broad range of problem do

mains and varying data access patterns.

SPLASH is a collection of parallel applications developed prim arily for use in

the design of shared memory multiprocessors, and in the study of centralized and

distributed shared memory multiprocessors. Consequently, these applications are

tailored for fine-grain, hardw are (sequential) cache-coherent systems. SPLASH2 is

the successor of the SPLASH suite of applications. Applications in the NAS Parallel

Benchmark suite are developed for evaluating high performance computers.

I have experimented w ith a total of seven applications: Barnes, EP, LU, SOR,

TSP, Water, and Matmul. Barnes and Water are from SPLASH. EP is from the

NAS. LU is from SPLASH-2. The three remaining program s extended the appli

cations selected from the above benchm ark suites. Matmul is a locally developed

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simple matrix multiplication program , m anipulating large matrices. SOR is an im

plem entation of a m ethod of solving partial differential equations. Finally, TSP is

developed at the Rice University in conjunction w ith their T r e a d M a r k s system.

Table 5.1 lists relevant characteristics of the applications in the test suite. Note

that for simplicity, both JIAJIA and JIA-R allocate a new page for each j i a _ a l lo c ()

call. So, the page count in the last column of the table does not necessarily reflect

the actual size of the shared data.

Appl. Sync.
Dataset

S m /M d /L g
Shared Mem

(4K -pages)
8192 bodies 499

Barnes B 16384 bodies 995
32768 bodies 1987
224 numbers 1

EP B 226 numbers 1
228 numbers 1

lK x lK 2060
LU B 2Kx2K 8206

3Kx3K 18450
lK x lK 2060

Matmul B 2Kx2K 8206
3Kx3K 18450

1022x511 2048
SOR B 2046x1023 4096

3070x1535 12288
18 cities 197

TSP L 20 cities 197
19 cities (big) 197

343 mots 27
Water B,L 1000 mols 71

1728 mols 121
B=barrier, L=lock

Table 5.1: Application Characteristics

Below is a sum m ary of the benchm ark applications used in my evaluations. For

m ost of them, more detailed descriptions can be found in the literature [SWG92,

WOT+95, BBLS94]. Please note that not all of them are used in m y different exper

iments presented in the next sections. Nevertheless, I included a brief sum m ary of

them all below for completeness.

Barnes

Barnes is the im plem entation of Barnes-Hut hierarchical N-body algorithm

which simulates the interaction of a system of particles in 3-dimensions over a

num ber of time steps. Every body in the program is m odeled as a point of mass

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and exerts forces on all other bodies in the system where the space is represented

by an octree (octal tree) in three dimensions. The root of the tree represents a space

cell containing all bodies in the system. Depending on the user input of the num ber

of bodies, the tree is built by adding particles into the initially em pty root cell, and

subdividing a cell into its eight children as soon as it contains more than a single

body. The leaves of the resulting tree are individual bodies, and the internal nodes

are cells. There are five phases for each time step:

1. MakeTree: Construct the tree.

2. MassCompute: Com pute center of mass of each cell.

3. GetBodies: Partition bodies among processes.

4. ForceCompute: Com pute forces on partial (self) bodies.

5. Update: U pdate position and velocity of partial bodies.

where the tree is traversed once for each body to com pute the net force acting upon

that body.

In the program , both body and cell arrays are shared and the first two phases

are executed by the master process to reduce extensive data exchange traffic. Barri

ers are used to synchronize the com putations after MassCompute and ForceCompute
steps. In this version, there are no locks. Modifications to cell structures during the

steps are done on local copies and then merged together at barriers. This version

was slightly modified by the T r e a d M a r k s group at Rice University. Basically,

they've eliminated one barrier from the code.

EP

EP (embarrassingly parallel) kernel benchm ark is heavily computational. The

program generates 2 x 2 " Gaussian random numbers, where n is given as a com

m and line argum ent, and tabulates them in successive annuli.

After the random num bers r-j are generated in the interval (0,1) for 1 < i < 2n,

the following algorithm is executed:
for j = 1 t o n d o

x i = 2r2j - i - 1;
V j = 2 r 2 j - l;

end for
k = 0; j = 1;
w hile k < n do

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (tj = Xj + pj) < 1 then

X k — %i \J 2l og t j / t j ,

= %i\J 2logt j / t j]
k = k + 1;

else
j = j + l;

end if
end w hile

Finally, the program tabulates ten (Qi) values as the count of (Xk, Yk) pairs, where

l < M a x { \ X k \, \Yk \) < l + l.

Since each process can generate part of the uniform random num bers indepen

dently, this program can easily be parallelized (hence the nam e embarrassingly

parallel) such that each process can accumulate the Qi sums independently, and

only pass the partial sum s to the m aster process at the end of the computations. So,

the only communication between the processes occur tow ard the very end w hen

all processes participate in a reduction operation, protected by a lock, to generate a

global sum. In this sense EP provides an estimate of the upper achievable limit for

floating-point performance on a particular system.

LU

LU is a matrix decom position program that factors a dense matrix into the p rod

uct of a lower triangular matrix and an upper triangular matrix. The dense n x n

matrix is divided into an N x N array of B x B blocks (n — N B) to exploit tem

poral locality on sub-matrix elements. This version of the kernel (LU-Contiguous)

factors the matrix as an array of blocks, allowing blocks to be allocated contigu

ously and entirely at the processes that own them, even though these blocks are

not contiguous in the original array. The algorithm factors the matrix in several

steps separated by barriers.

Matmul

Matmul is a simple im plem entation of the inner product algorithm used to m ul

tiply two N x N matrices. Both the m ultiplicand matrices and the product matrix

are shared. The w ork is divided am ong processes, where each process computes

the result for a certain num ber of rows. The partial results are then merged at a

barrier after the computations. The algorithm is only timed for the multiplication

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

part, i.e., initialization of A and B are not taken into consideration for timing. Two

barriers, before and after, are used by the worker processes while they m ultiply

band of rows of A w ith columns of B.

SOR

SOR is an iterative algorithm for solving discretized Laplace equations on a

grid of points represented by a matrix. For each iteration, each element of the

matrix is updated for the next iteration by some function of the neighboring ele

ments. For testing purposes, this function is the average of the elem ent's nearest

neighbors. The two matrices, red and black are used to hold both tem porary and

current values at each iteration, taking turns. Each iteration has two phases. Only

one of the colored matrices is calculated during each phase. This scheme inter

changes for each iteration during the whole process. For each iteration, parallel

processes operate on a band of rows of both matrices and two barriers are used for

synchronization. Due to the function of the algorithm, the size of the matrices are

2 M + 2 x 2N + 2.

TSP

TSP solves the classical traveling salesman problem using a branch-and-bound

algorithm to find the shortest path (tour). The cities are represented as the nodes of

a directed graph in the program. The program starts w ith an initial partial path and

recursively perm utes over the remaining nodes, updating the partial path, if and

w hen necessary, until it finds the shortest path between two cities. In this sample

solution, if the length of a partial path plus a lower bound of the remaining portion

of the path is longer than the current shortest path, the search stops as the solution

cannot lead to a shorter path than the current maxim um length path.

This version of the program m aintains a shared priority queue of partially eval

uated paths, where the head contains the path w ith the shortest lower bound on

its length. Other shared data structures are an array of tour data structures, stack

pointers to unused tour structures, and the current global m aximum tour and its

length.

A lock is used to guard this queue and the recursion stack. The process that

finds a shorter path than the global m inim um gets the lock to set a new global

m inim um value for the path length.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Water

Water is an A’-body molecular simulation program that evaluates forces and

potentials in a system of w ater molecules in the liquid state using an 0 (n 2) brute

force m ethod w ith a cutoff radius. Water simulates the state of the molecules over

a user defined num ber of steps. Both intra- and inter-molecular potentials are com

puted in each step. The m ost computation- and communication-intensive part of

the program is the inter-molecular force com putation phase, where each processor

com putes and updates the forces between each of its molecules and each of the n j 2

following molecules in a w rap-around fashion. The main data structure used in

this application is a single one dimensional array representing a w ater molecule.

Each molecule structure contains inform ation as the center of mass, the forces of its

three atoms, their displacements, and the first six derivatives of the displacements.

I used the slightly revised TREADM ARKS version [LDCZ95] of Water in this study.

5.3 Experimental Methodology

My approach to evaluate both JIAJIA and JIA-R was similar to that of oth

ers. In the following first section, I compared the performance results of JIAJIA

w ith CVM and T r e a d M a r k s . In the second section, I present the results of my

experiments w ith JIA-R on three different netw ork interconnects.

Since ensuring reproducible experiments is the m ost crucial aspect of the eval

uation, I ran my experiments on a dedicated cluster and collected speedups. All

the results were logged using a simple scripting procedure. The reported results

are the best times out of five executions of each application, since I believe that

the other slightly higher times were caused by the NFS traffic on the network. In

any case, the observed variance between the five execution times is w ithin 0.5-2%

margin. Further, the part of the runtim e code to collect the statistics had a negli

gible overhead (less than 1%) on the execution times of each application. Unless

otherwise noted, I report all the performance results described below in seconds.

Previous w ork in the literature reported short periods of execution times. This

m ay not necessarily reveal the actual execution pattern of an application. I have

executed each application for longer periods to allow them stabilize in terms of ex

ecution patterns. Also, I ran each application five or more times and selected the

best time am ong them.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 JIAJIA on SP2

This section sum marizes my early w ork [EM98, EMHS99] on JIAJIA. I present

a com parison of JIAJIA w ith CVM and T r e a d M a r k s . All the experiments were

done on the SP2 Cluster.

5.4.1 Comparison of JIAJIA and CVM

In this part of the study I used six benchm ark applications: Barnes, EP, LU,

Matmul, TSP, and Water. Table 5.2 shows a sum m ary of the overall results. The

num bers in the table indicate the execution time of each application in seconds.

Appl. Size
Num ber of Cluster Nodes

1 2 4 8 16
JIAJIA CVM JIAJIA CVM JIAJIA CVM JIAJIA CVM JIAJIA CVM

B a r n e s

8192 bodies 51.60 49.69 28.39 29.62 19.65 20.03 19.62 16.33 29.33 18.62
16384 bodies 118.86 114.34 65.07 66.97 43.53 44.75 40.20 34.37 59.78 38.03
32768 bodies 270.56 260.16 148.24 - 98.15 97.24 86.15 72.83 120.61 80.25

EP
224 numbers 74.72 78.42 37.58 39.17 19.27 19.60 9.37 9.84 4.73 4.96
226 numbers 300.46 314.46 151.24 157.27 75.05 78.94 37.51 39.76 19.27 19.63
228 numbers 1203.83 1260.50 606.96 630.44 301.15 515.24 150.66 158.02 75.62 79.36

LU
lK x lK 6.59 15.62 6.00 9.93 3.33 6.15 2.65 4.00 2.52 3.03
2Kx2K 53.55 - 40.52 - 19.64 - 14.85 - 10.04 -
3Kx3K 182.28 - 136.22 - 62.03 - 42.73 - 26.01 -

M atm ul

lK x lK 45.82 34.96 24.57 19.99 13.58 10.94 8.24 7.68 10.97 7.15
2Kx2K 366.92 280.69 196.37 160.82 104.81 86.97 58.72 53.75 45.26 46.66
3Kx3K 1243.07 952.55 669.63 770.53 352.91 391.22 190.98 389.47 118.09 370.07

TSP
18 cities 42.80 122.34 22.74 66.01 12.44 34.09 7.34 20.88 4.92 13.48
20 cities 277.07 799.24 149.61 407.13 80.22 211.88 47.03 116.98 36.08 64.19

19 cities (big) 434.92 1235.71 226.41 637.37 118.75 337.92 59.38 154.33 33.56 91.32

W ate r

343 mols 43.03 51.09 30.98 34.79 15.92 22.77 14.76 17.74 26.07 16.35
1000 mols 363.93 439.43 195.13 250.22 102.52 140.45 60.91 86.06 55.09 63.51
1728 mols 1115.76 1316.22 575.32 716.93 294.60 390.53 158.53 221.13 110.99 143.40

Table 5.2: Performance of Applications w ith JIAJIA and CVM

Despite the elimination of the critical and only lock from the code, the over

all performance of Barnes was not good. This application suffers from not only

excessive but also irregular fine-grain sharing, which causes invalidation and re-

fetching of whole pages. Barnes only achieved speedups 1.76,1.99, and 2.24 on 16

processors for 8192,16384, and 32768 particles, respectively. This is an example of

an application that is not suited for JIAJIA.

EP achieved an excellent performance as expected and scales well. The speedups

are near linear (for example, 15.92 on 16 processors w ith 228 random numbers) be

cause the only communication among the processors, which is com pensated by

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the high com putation rate, occurs at the end of the num ber generation phase to

accumulate the tabulated results.

The speedups obtained from LU ranged from 2.62 for a lK x lK matrix to 7.01

for a 3Kx3K matrix. The results confirmed m y expectations that higher speedups

and better performance can be achieved w ith larger problem sizes. I used a block

size of 64 bytes, because (after perform ing some additional tests) I observed that

this size (as opposed to 16 recommended by the developers o f the application) yields the

best performance on SP2 cluster, probably because of bigger cache lines on SP2

nodes.

The locally developed matrix m ultiplication program Matmul also achieved

good speedups, particularly for larger data sets. As mentioned earlier, 1-processor

version of this application showed an execution anomaly. For this reason, I used

the execution times of the sequential version (SEQ column) to calculate relative

speedups. A lthough, the speedup on 16 processors is low (4.18) for lK x lK m atri

ces, it is very good (10.53) for 3Kx3K matrices. Matmul clearly benefits from initial

distribution of shared data among processors.

TSP uses only locks for synchronization while executing the branch-and-bound

algorithm. There are also two barriers in the application, before and after the recur

sive evaluation of the tours. I tested TSP w ith 18, 19, and 20 cities w ith recursion

levels (- r option) of 14,14, and 15, respectively. Incidentally, the program finds the

m inim um tour length for 20 cities faster than for 19 cities which can be attributed to

the setup of the input data. The speedup for all three data sets up to four processors

is near linear. As the num ber of processors increases beyond four, the larger data

sets are penalized by the lock-based coherence protocol. JIAJIA transfers mostly

whole pages because the accumulation of lock-releases unnecessarily invalidates

more pages a lock is acquired. Nevertheless, it achieved good speedups, despite

this deficiency.

I sim ulated 343, 1000, and 1728 molecules w ith Water, each for 25 steps. The

am ount of shared data in the revised Water code is smaller because the molecule

data is split into shared and non-shared parts in this version. With the small data

set, the speedup is not good, the performance degrading for eight or more proces

sors. The major cause of this problem, which is usually more detrim ental w ith the

343-molecule case, is extensive fine-grain sharing, because the algorithm requires

that each processor fetches modified data from half of the other processors. How-

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ever, w ith the large data set, this overhead is com pensated for by higher com pu

tation rate, leading to better speedups. In the test runs, I obtained speedups 1.65,

6.72, and 10.05 on 16 nodes for 343,1000, and 1728 molecules, respectively.

Overall, the applications in the test suite achieved speedups from 1.34 (LU) to

1.99 (EP) on 2 processors w ith small data set, from 1.83 (Barnes) to 8.13 (TSP)

w ith m edium data set, and from 1.65 Water to 15.92 EP w ith large data set on 16

processors. The major causes for the variance between speedups may be irregular

shared data access patterns, low com putation to communication ratio and, to some

extent that JIAJIA protocols have not yet been optimized.

I ran the same applications w ith CVM software DSM. CVM is a protocol test

bed w ith a variety of other models such as sequential consistency and single-writer

LRC. I only tested m ultiple-writer LRC protocol. Also, JIAJIA and CVM use to

tally different allocation schemes for shared memory. JIAJIA distributes the shared

pages am ong processors w hereas CVM replicates them on each and every proces

sor. A lthough static data distribution through hom e processors improves perfor

mance of certain applications, the positive effect of this approach is not always

possible.

Figure 5.1 summarizes the com parison of speedups achieved by three different

data sets w ith JIAJIA and CVM. This figure also shows that m ost applications

achieve higher speedups w ith JIAJIA as the data set size increases and that JIAJIA

performs better than CVM in all applications w ith larger data sets, except Barnes

and TSP.

Unfortunately, not all applications ran successfully under CVM. I w as unable

to run LU w ith a 2Kx2K matrix on more than 4 processors, and a 3Kx3K matrix on

more than a single processor. This application ran successfully, however, on 1-16

processors w ith smaller (up to lK x lK) matrices. Similarly, for unknow n reasons,

Barnes did not run to its completion w ith 32768 particles on 2 processors.

Overall, the applications generally ran faster w ith JIAJIA, mainly because of

the simpler coherence protocol and low overhead of the system.

5.4.2 Comparison of JIAJIA and TMK

In this part of the study, five benchm ark applications are used: EP, LU, Matmul,

TSP, and Water. Table 5.3 shows a sum m ary of the overall results. The num bers in

the table indicate the execution time of each application in seconds.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sp
ee

du
p

-
JIAJIA
c v m

- -

- -

- -

- -

- -

ll 1

1 1

ll
2 P 16 P 2 P 16P 2 P 16P 2 P 16P 2 P 16P 2 P 16P
Barnes EP LU Matmul TSP Water

(a) Small Data Set

a 16
JIAJIA
CVM

2P 16P 2 P 16P 2 P 16P 2 P 16P 2 P 16P 2 P 16P
Bames EP LU Matmul TSP Water

(b) M edium Data Set

q . 16
"O JIAJIA

CVM
0)0)

12

10

8

6

4

2

0
2 P 16P
Barnes

2 P 16P
EP

2P 16P
LU

2 P 16P
Matmul

2 P 16P
TSP

2 P 16P
Water

(c) Large Data Set

Figure 5.1: Comparative Speedups: JIAJIA vs CVM

Figure 5.2 shows the speedups of applications on 2, 4, 8, and 16 processors for

both JIAJIA and T r e a d M a r k s .
EP perform ed similarly w ith both JIAJIA and TREADM ARKS, as expected. LU

and Matmul achieved better speedups w ith JIAJIA, while some problem sizes of

Water and TSP perform ed only slightly better w ith TREADM ARKS. Overall, JI

AJIA versions of the applications showed comparable performance to T r e a d

M a r k s despite its un-optim ized and prim itive protocols. I also collected the to-

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p l. S iz e
Number of Cluster Nodes

1 2 4 8 16

JIAJIA TMK JIAJIA TMK JIAJIA TMK JIAJIA TMK JIAJIA TMK

E P

224 numbers 74.72 78.23 37.58 39.13 19.27 19.62 9.37 9.82 4.73 4.91
226 numbers 300.46 314.34 151.24 157.38 75.05 78.88 37.51 39.38 19.27 19.61
228 numbers 1203.83 1261.43 606.96 630.10 301.15 315.19 150.66 157.98 75.62 79.06

LU

lK x lK 6.59 15.74 6.00 11.11 3.33 7.27 2.65 6.23 2.52 5.18
2Kx2K 53.55 126.39 40.52 86.16 19.64 55.42 14.85 42.31 10.04 36.33
3Kx3K 182.28 427.31 136.22 299.44 62.03 222.06 42.73 178.01 26.01 151.79

M atm ul

lK x lK 45.82 48.44 24.57 26.28 13.58 16.01 8.24 13.52 10.97 13.54
2Kx2K 366.92 390.64 196.37 254.09 104.81 162.09 58.72 156.72 45.26 168.57
3Kx3K 1243.07 - 669.63 - 352.91 - 190.98 - 118.09 -

T S P

18 cities 42.80 55.34 22.74 30.06 12.44 16.10 7.34 9.47 4.92 6.10
20 cities 277.07 356.22 149.61 182.01 80.22 100.07 47.03 52.15 36.08 29.48

19 cities (big) 434.92 563.64 226.41 291.17 118.75 155.35 59.38 76.18 33.56 42.64

W a te r

343 mols 43.02 53.07 30.98 35.10 15.93 22.05 14.76 15.94 26.07 16.09
1000 mols 369.93 454.67 195.13 257.29 102.52 143.38 60.91 85.78 55.09 61.27
1728 mols 1115.76 1360.65 575.32 736.83 294.60 398.11 158.53 224.12 110.99 144.72

Table 5.3: Performance of Applications w ith JIAJIA and TMK

tal num ber of messages and data exchanged by the processors w ith JIAJIA and

T r e a d M a r k s . Table 5 .4 shows these statistics.

Although the num ber of messages in the TREADMARKS version of Water is an

order of m agnitude more than that of the JIAJIA version, the total data transferred

is only twice as much. The reason for the higher data transfer rate is that JIAJIA

usually sends whole pages because of the write-invalidate protocol, bu t causes less

diff accumulation. TreadMarks, however, sends m any small diff messages.

The am ount of transferred messages and data are quite similar in both JIAJIA

and TreadMarks versions of LU on 2 processors. The data am ount quadruples

w ith TreadMarks w hen I scale to 16 processors, while it only doubles w ith JIA

JIA on the same num ber of processors. The message count on 16 processors is more

w ith TreadMarks, even though it is less on 2 processors. This roughly indicates

that JIAJIA 's protocol scales better in applications like LU.

EP performs nearly identical with both JIAJIA and TreadMarks. JIAJIA

sends more messages and data because of unnecessary invalidation of the only

shared page.

JIAJIA 's lower speedup in TSP is caused by the extensive am ount of message

(5 times more) and data (75 times more) transfers. Nevertheless, the speedups

achieved by T read M arks does not reflect this advantage because it also suffers

from the higher overhead of its diff management.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q_ 16'Q. 16
J I A J IA

TMK
J IA J IA

TMK & 14 -

2 P 16P
EP

2 P 16P
LU

2 P 16P
Matmul

29 16P
TSP

2 9 16P
Water

2 9 16P
EP

29 16P
LU

29 16P
Matmul

29 16P
TSP

2 9 16P
Water

(a) Small Data Set (b) M edium Data Set

Q. 16

JIAJIA
TMK

2 P 16P
EP

29 16P
LU

29 16P
Matmul

29 16P
TSP

29 16P
Water

(c) Large Data Set

Figure 5.2: Comparative Speedups: JIAJIA vs TREADMARKS

Matmul transfers slightly more data and messages w ith JIAJIA, but again, its

simple protocol helps achieve better speedups. TreadMarks cannot execute Mat

mul, for example, w ith 3Kx 3K matrices, even w hen the shared page pool has 65,636

pages. This is a side effect of the fact that the shared memory in TreadM arks is

allocated on the system 's heap and therefore limited to a certain value which is dif

ferent for different operating systems. JIAJIA 's shared memory allocation scheme

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p l. S ize
N o .
o f

Procs

JIAJflA TreadM arks

N o . o f

M e ssa g es
Total
D ata

N o . o f
M essa g es

Total
D ata

EP
Sm

2 18 8.6 KB 9 4.3 KB
16 270 128.6 KB 181 90.8 KB

Lg
2 18 8.6 KB 9 4.3 KB

16 270 128.8 KB 177 88.5 KB

LU
Sm

2 4,496 8.6 MB 4,302 8.3 MB
16 19,400 34.2 MB 29,196 54.8 MB

Lg
2 38,040 72 MB 37,513 73 MB

16 152,288 144 MB 155,777 298 MB

Matmul
Sm

2 4,100 8 .1M B 3,079 6.0 MB
16 61,470 121.6 MB 58,169 116.9 MB

Lg
2 16,388 32.4 MB 12,302 24.1 MB

16 245,760 486.4 MB 236,336 468.2 MB

T SP
Sm

2 1,848 2.3 MB 551 70.1 KB
16 5,409 6.5 MB 2,423 1.4 MB

Lg
2 13,000 20.3 MB 2,763 268.4 KB

16 27,357 43.1 MB 10,759 4.9 MB

Water
Sm

2 5,496 8.6 MB 44,033 12.1 MB

16 139,911 163.6 MB 324,472 145.9 MB

Lg
2 12,100 33.9 MB 200,526 59.5 MB

16 210,299 324.5 MB 1,546,692 718.9 MB

Table 5.4: Message count and data sizes w ith JIAJIA and TreadMarks

is only bound by the virtual memory managem ent limitations (e.g., less limited

than the heap size itself) of the underlying UNIX operating system. This feature of

JIAJIA allows parallelization of applications that require large am ounts of shared

data, practically as large as the size of the available address space in the virtual

shared memory.

I observed that JIAJIA is sensitive to load imbalance of the com ponent proces

sors on the SP2 cluster. This is also true for the TREADMARKS system.

5.5 JIA-R on the 16-SingleCPU Cluster

This section extends m y recent w ork [Esk02] and presents some new results.

The characteristics of the netw ork interconnects used in the experiments are given

in Table 5.5. To the best of m y knowledge, this w ork is unique in that it evalu

ates the performance of a software DSM system on identical hardw are using three

different network interconnects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interconnect Type Brand/Model
Fast Ethernet on-board Intel EPro 100

Gigabit Ethernet 32-bit PCI Syskonnect SK-9843
Myrinet 64-bit PCI M3S-PCI64B-4

Table 5.5: N etw ork Interconnects

I ran the applications on M yrinet using their GM-Sockets1 interface, both w ith

1518-byte standard and 9000-byte "jumbo" MTUs. As the page size on Pentium

class com puters is 4096 bytes, I anticipated that the results will show at least m od

est improvements using a larger MTU, since it captures an entire message carry

ing a page. To my surprise, the results have only shown minimal and negligible

difference between each run. I attribute this unexpected behavior to GM-sockets

software's the first, perhaps then not optimized, public release.

^ . 4 e + 0 4 -

CO
■§2.le+04 —

|=1.8e+04

IT3
Cl .5e+04 j —
$0Q

1.2e+04 • -

G M, M8

Z e ro B ytes
1500 B ytes

4 1 4 0 B ytes

. I I I .
F - Fa s t Et her ne t
G - Gi gabi t Et her ne t
M, - M y r i n e t (MTU=1500)
M9 - Myr inet (MTU=9000)

III
G M, M9

Transfer Size (bytes)

Figure 5.3: Bandwidths of three N etw ork Interconnects

I did some micro-benchmark tests on Fast (100Mbit) Ethernet, Gigabit Ethernet,

and 3rd generation M yrinet (a.k.a. Myrinet-2000) networks and measured their

sustained user level performance. I experimented w ith 2 different buffer sizes: 1500

bytes for the default MTU and 4140 bytes for a full page transfer. The additional 44

bytes in the latter buffer size is for the header inform ation used by JIA-R to transfer

data between the processes. For the user level times, I ran a simple buffer transfer

program (based on UDP sockets) 500000 times and observed the following average

'This software runs on top of Myrinet's firmware, called GM, and it provides BSD-Sockets inter
face to the applications running on the PCs.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

times for each of the three networks (all times are given in microseconds):

T . . Buffer SizeInterconnect _ ,
1500-byte 4140-byte

Fast Ethernet 389 593
Gigabit Ethernet 129 190

M yrinet (MTU=1500) 179 237
M yrinet (MTU=9000) 155 234

Basically, these num bers show one-way communication latency on the system.

Other relevant system overhead are 123 //secs for servicing a (native) page fault,

0.6/isec for requesting current time, 4.2 //secs for SIGIO, and 5.5 //secs for SEGV

handling on the host Linux operating system.

The results of Netperf2 runs on the three networks are shown in Figure 5.3. The

reported results are for u d p R EQ U E ST/R E SPO N SE TEST with a confidence level

of 99% and a ±5.0% confidence interval width.

Appl. Size SEQ
Number of Cluster Nodes

2 4 8 16

Barnes
8192 bodies 117.36 65.69 35.73 25.73 26.80
16384 bodies 371.90 199.84 105.98 67.14 62.13
32768 bodies 1040.48 553.08 289.45 171.73 143.76

EP
224 numbers 19.13 9.57 4.79 2.40 1.22
226 numbers 76.61 38.33 19.17 9.59 4.81
228 numbers 306.83 153.48 76.76 38.39 19.20

LU
lK x lK 90.37 42.13 23.49 18.17 10.31
2Kx2K 790.38 382.48 201.03 95.08 52.92
3Kx3K 2746.65 1369.69 694.67 333.47 179.20

SOR
1022x511 3.72 4.54 2.57 1.71 1.60

2046x1023 14.11 12.76 6.77 3.88 2.76
3070x1535 33.79 32.49 16.97 9.41 6.17

TSP
18 cities 9.39 5.03 2.82 1.74 1.25
20 cities 62.59 35.14 20.36 15.44 14.79

19 cities (big) 95.28 49.82 26.66 13.85 8.16

Water
343 mols 11.00 6.55 4.94 6.84 13.73

1000 mols 95.17 50.63 27.88 20.58 26.00
1728 mols 286.41 149.85 - 48.50 45.10

Table 5.6: Performance of Applications on Fast Ethernet

The major overhead inherent to software DSM systems is communication la

2Netperf is a benchmark that can be used to measure the performance of many different types of
networking. It provides tests for both unidirectional throughput, and end-to-end latency [Jon02]. I
have used version 2.2alpha of Netperf for the benchmarks.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tency. One of the ways to reduce this overhead is to send fewer and smaller m es

sages. I explored this by developing an additional experiment. Borrowing the idea

from IBM's new Memory Expansion Technology (MXT) [TFR+01], I used a fast

RAM algorithm [Riz97] to compress the "full" shared pages before they are trans

ferred. This algorithm was originally developed to compress SWAP files and is

reportedly faster and more efficient than LZRW1 [Wil91]. The results showed only

minimal (approximately 2-5% on the average) performance gain. The m ain rea

son for this poor performance is that the algorithm is only efficient w hen the pages

contain mostly zero values (as it is commonly the case in swap files), bu t shared

data pages of the applications are almost always contain non-zero values. I also

tried using the compression for the diff messages, bu t for the same reason, there

was no improvement. IBM's MXT technology doubles the memory size. Thus,

memory constrained program s, such as web applications, benefit from this technol

ogy. Those applications can cache more pages into the main memory and reduce

the disk 1 /O activity. I added the RAM algorithm in JIA-R and ran some of the

benchm ark applications. Basically, the marginal reduction in the communication

latency was absorbed by the compression time of the transferred pages, because

these pages contained mostly non-zero values.

Tables 5.6, 5.7, and 5.8 sum m arize the results of the experiments on Fast Ether

net, Gigabit Ethernet, and M yrinet (with 9000-byte MTU), respectively. The SEQ

column shows the execution times of the pseudo-sequential runs. JIA-R runtim e

reduces the system overhead to a bare m inim um for most of the applications w hen

the num ber of hosts is one.

5.6 Overview of Results

Table 5.9 shows the speedups of applications on 2,4, 8, and 16 processors on all

three netw ork interconnects. These tables show the execution times of the applica

tions in seconds for each of the small, m edium , and large data sets, respectively.

In addition to execution times for each application, I collected timing statistics

and grouped them as:

IDLE—is the combined time spent on locks and barriers.

OS —is the time spent on sending and receiving messages and m p r o te c t ()

system call.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appl. Size SEQ
Number of Cluster Nodes

2 4 8 16

Barnes
8192 bodies 117.36 54.13 33.77 20.21 14.77
16384 bodies 371.90 198.31 101.70 56.41 38.22
32768 bodies 1040.48 549.80 280.73 150.17 96.05

EP
224 numbers 19.13 9.57 4.79 2.40 1.21
226 numbers 76.61 38.33 19.17 9.59 4.80
228 numbers 306.83 153.48 76.75 38.39 19.20

LU
lK x lK 90.37 41.75 23.07 18.03 9.61
2Kx2K 790.38 380.58 199.66 92.19 50.69
3Kx3K 2746.65 1365.54 691.85 330.91 175.00

SOR
1022x511 3.72 4.36 2.36 1.40 1.11

2046x1023 14.11 12.76 6.56 3.53 2.24
3070x1535 33.79 32.22 16.61 8.81 5.15

TSP
18 cities 9.39 4.95 2.72 1.55 1.06
20 cities 62.54 33.21 17.67 10.06 7.62

19 cities (big) 95.28 49.23 25.97 12.96 7.35

Water
343 mols 11.00 6.08 3.70 3.40 5.48
1000 mols 95.17 49.60 25.96 15.19 13.36
1728 mols 286.41 147.47 - 40.93 27.87

Table 5.7: Performance of Applications on Gigabit Ethernet

Appl. Size SEQ
Number of Cluster Nodes

2 4 8 16

Barnes
8192 bodies 117.36 64.89 33.81 20.62 15.33
16384 bodies 371.90 198.58 102.03 57.08 39.29
32768 bodies 1040.48 550.84 281.30 151.48 98.18

EP
224 numbers 19.13 9.57 4.79 2.40 1.21
226 numbers 76.61 38.33 19.17 9.59 4.80
228 numbers 306.83 153.48 76.76 38.39 19.20

LU
lK x lK 90.38 41.81 23.12 17.71 9.61
2Kx2K 790.38 380.79 199.82 92.40 50.86
3Kx3K 2746.65 1365.75 692.14 329.78 175.58

SOR
1022x511 3.72 4.39 2.40 1.46 1.22

2046x1023 14.11 12.61 6.59 3.63 2.37
3070x1535 33.79 32.11 16.57 8.88 5.25

TSP
18 cities 9.38 4.97 2.73 1.59 1.07
20 cities 62.54 33.38 17.92 10.50 8.30

19 cities (big) 95.28 49.33 26.05 13.01 7.33

Water
343 mols 11.00 6.16 3.92 3.97 6.79
1000 mols 95.17 49.72 26.17 15.78 14.75
1728 mols 286.41 147.76 - 41.51 29.66

Table 5.8: Performance of Applications on Myrinet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appl. Size
Number of Cluster Nodes

2 4 8 16
F G M F G M F G M F G M

Barnes
8192 bodies 1.79 2.17 1.81 3.28 3.48 3.47 4.56 5.81 5.69 4.38 7.95 7.66
16384 bodies 1.86 1.88 1.87 3.51 3.66 3.65 5.54 6.59 6.52 5.99 9.73 9.47
32768 bodies 1.88 1.89 1.89 3.59 3.71 3.70 6.06 6.93 6.87 7.24 10.83 10.60

EP
224 numbers 2.00 2.00 2.00 3.99 3.99 3.99 7.97 7.97 7.97 15.68 15.81 15.81
226 numbers 2.00 2.00 2.00 4.00 4.00 4.00 7.99 7.99 7.99 15.93 15.96 15.96
228 numbers 2.00 2.00 2.00 4.00 4.00 4.00 7.99 7.99 7.99 15.98 15.98 15.98

LU
lK x lK 2.14 2.16 2.16 3.85 3.92 3.91 4.97 5.01 5.10 8.77 9.40 9.40
2Kx2K 2.07 2.08 2.08 3.93 3.96 3.96 8.31 8.57 8.55 14.94 15.59 15.54
3Kx3K 2.01 2.01 2.01 3.95 3.97 3.97 8.24 8.30 8.33 15.33 15.70 15.67

SOR
1022x511 0.82 0.85 0.85 1.45 1.58 1.55 2.18 2.66 2.55 2.33 3.35 3.05

2046x1023 1.11 1.12 1.12 2.08 2.15 2.14 3.64 4.00 3.89 5.11 6.30 5.95
3070x1535 1.04 1.05 1.05 1.99 2.03 2.04 3.59 3.84 3.81 5.48 6.56 6.44

TSP
18 cities 1.87 1.90 1.89 3.33 3.45 3.44 5.40 6.06 5.91 7.51 8.86 8.78
20 cities 1.78 1.88 1.87 3.07 3.54 3.49 4.05 6.22 5.96 4.23 8.21 7.53

19 cities (big) 1.91 1.94 1.93 3.57 3.67 3.66 6.88 7.35 7.32 11.71 12.96 13.00

Water
343 mols 1.68 1.81 1.79 2.23 2.97 2.81 1.61 3.24 2.77 0.80 2.01 1.62
1000 mols 1.88 1.92 1.91 3.41 3.67 3.64 4.62 6.27 6.09 3.66 7.12 6.45
1728 mols 1.91 1.94 1.94 - - - 5.91 7.00 6.90 6.35 10.28 9.66

F=Fast Ethernet, G=Gigabit Ethernet, M=Myrinet

Table 5.9: Application Speedup on 3 Networks

DSM —is the combined time spent for the DSM protocol, including times for

page twinning, diff creation, shared data related segmentation fault handling

and page invalidation, and several other internal protocol functions.

USER —is the time spent for the application execution.

Below, I give detailed performance results of the benchm ark applications using

three netw ork interconnects. Table 5.1 shows the am ount of shared pages allocated

for each application. Note that JIA-R allocates a separate page for each shared

memory request. This allocation m ight seem a wasteful approach, but I believe

it potentially reduces the false sharing. Though I did not investigate this point

further, it only effects Barnes, TSP, and Water, because these applications have

smaller (than a page) units of shared structures.

Obviously, the speedup of the applications on faster networks are better. With

a few exceptions, there is not much difference on the performance on two Gigabit

Ethernet and M yrinet networks. The gap between those two and the Fast Ethernet,

which also carries NFS traffic, albeit locally, is more noticeable.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Barnes

Barnes is an application w ith irregular data access patterns. For this and prac

tical purposes, all the shared pages are allocated on the first (master) node. The

num ber of pages to hold the shared data structures increases as the data set size

(particle count) increases. The effect of irregular and fine-grained data sharing in

the application becomes obvious as the num ber of nodes increases (Figure 5.4). As

a result, the num ber of messages exchanged grow accordingly.

16
Sm all

M ed iu m

Large14

12

10

8

6

4

2

162 4 6 8 10 12 14

16
S m all

M ed iu m

Large14

12

10

8

6

4

2

162 4 6 8 10 12 14

N u m b e r o f P ro ce sso rs N u m b e r o f P ro ce sso rs

(a) Fast Ethernet (b) Gigabit Ethernet

16
S m a ll

M ed iu m

Large14

12

10

8

6

4

2

2 6 8 10 12 14 164

N u m b e r o f P ro ce sso rs

(c) Myrinet

Figure 5.4: Performance of Barnes on the 16-SingleCPU Cluster

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
or

m
al

iz
ed

Ex

ec
ut

io
n

tim
e

The overheads incurred by the DSM and OS operations are nearly identical for

all data sets and netw ork interconnects. The communication latency hiding is more

clear on fast networks (Figure 5.5). The results show that Barnes can achieve very

good speedups on up to four nodes. For Fast Ethernet, the speedup on 8 nodes is

the only achievable maximum.

J l
2 4 8 16

Sm all

I J
2 4 8 16

M edium
2 4 8 16

L arge

(a) Fast Ethernet

Q)
. £ 100

UjT3
.Nj

§o

. . I ll
2 4 8 16

Sm all
2 4 8 16

M edium

i
2 4 8 16

L arge

(b) Gigabit Ethernet

USER
DSM
OS
IDLE8 0 —

6 0 —

4 0 —

20 —

Sm all M edium Large Data Sets
(c) Myrinet

Figure 5.5: Relative Times of Barnes on the 16-SingleCPU Cluster

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EP

As discussed earlier and as the nam e implies, EP is a highly parallel bench

m ark application. It shares only an array of ten elements that contains the counts

of Gaussian pairs calculated on each node. A total of 18 messages are exchanged

in a 2-processor run, and 270 in a 16-processor run. The relative cost of this com

munication is less than %1 in both cases. This application shows almost a linear

speedup, as expected (Figure 5.6).

16
Sm all

M ed iu m

Large14

12

10

8

6

4

2

162 4 6 8 10 12 14

16
S m a ll

M ed iu m

Large14

12

10

8

6

4

2

2 6 8 10 12 14 164

N u m b e r o f P ro ce sso rs N u m b e r o f P ro ce sso rs

(a) Fast Ethernet (b) Gigabit Ethernet

16
Sm all

M ed iu m

Large

o .D
■o a)
CD
Q.
to

2 4 6 8 10 12 14 16

N u m b e r o f P rocesso rs

(c) Myrinet

Figure 5.6: Performance of EP on the 16-SingleCPU Cluster

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
or

m
al

iz
ed

Ex

ec
ut

io
n

tim
e

The effect of this linear speedup is also reflected in the relative times graphs.

The only observable (communication) overhead is w ith the small data set on 16

processors using the Fast Ethernet connection. Obviously, this shows that the com

putation of the Gaussian pairs on 16 processors is fast that the messaging time is

only visible on the Fast Ethernet (Figure 5.7). O ther than this observation, there is

no noticeable advantage in using any one of the three network interconnects for

this particular application.

2 4 8 16

Sm all
2 4 8 16

M edium
2 4 8 16

L arge

(a) Fast Ethernet

. £ 100

uj■o
.N

I

2 4 8 16

Sm all
2 4 8 16

M edium
2 4 8 16

L arge

(b) Gigabit Ethernet

0).S loo-'

ao
8UJ

.N

USER
DSM
O S
IDLE

2 4 8 16
Sm all

2 4 8 16
M e d iu m

2 4 8 16
Large

(c) Myrinet

Figure 5.7: Relative Times of EP on the 16-SingleCPU Cluster

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LU

Because LU manipulates large dense matrices, the shared data for this applica

tion is also large. I carefully allocated matrix blocks to individual pages and divide

these pages equally to the nodes. Consequently, the data traffic is substantially

reduced and the application achieved near optimal speedups for larger data sets

(Figure 5.8).

16
S m all

M ed iu m

Large14

12

10

8

6

4

2

162 4 6 8 10 12 14

16
S m all

M ed iu m

Large14

12

10

8

6

4

2

2 4 6 8 10 12 14 16

N u m b e r o f P ro ce sso rs N u m b e r o f P ro ce sso rs

(a) Fast E thernet (b) G igabit Ethernet

16
S m all

M ed iu m

Large14

12

10

8

6

4

2

2 4 6 8 10 12 14 16

N u m b e r o f P ro ce sso rs

(c) M yrinet

Figure 5.8: Performance of LU on the 16-SingleCPU Cluster

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
or

m
al

iz
ed

Ex

ec
ut

io
n

tim
e

However, as the size of the matrices, hence the num ber of blocks increases, the

data traffic also goes up, limiting the speedup of the application for small data set to

approxim ately 50%, even for faster networks. On the other hand, the application

w ith m edium and large data sets obtains fair am ount of com putation time, thus

better speedup (Figure 5.9).

2 4 8
Sm all

. . i l . , i i
2 4 8 16 2 4 8 16

M edium Large

100 —

6 0 -

4 0 -

20 -

Sm all M edium L arge

(a) Fast Ethernet (b) Gigabit Ethernet

<b
. g 100

I
"S
m 8 0

Uj
I•L!
75 60

i

i

USER
DSM
OS
IDLE

2 4 8 16 2 4 8 16 2 4 8 11
Sm all M edium Large

(c) Myrinet

Figure 5.9: Relative Times in LU on the 16-SingleCPU Cluster

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOR

SOR accesses the same data blocks for each iteration. I ran this application for

101 iterations. I distributed the row blocks of the matrix evenly to each node. This

approach reduced the page fault rate per iteration, because the nodes processed

the local part of the matrix for a while. Despite of the careful distribution of row

blocks, the attainable speedup was limited to approximately 6.5 on even the fast

networks on 16 nodes (Figure 5.10).

16
S m all

M ed iu m

Large14

12

10

8

6

4

2

2 6 8 10 12 14 164

16
S m all

M ed iu m

Large14

12

10

8

6

4

2

2 6 8 10 12 14 164

N u m b e r o f P ro ce sso rs N u m b e r o f P ro ce sso rs

(a) Fast Ethernet (b) Gigabit Ethernet

16
Sm all

M ed iu m

Large14

12

10

8

6

4

2

2 4 6 8 10 12 14 16

N u m b e r o f P rocesso rs

(c) Myrinet: MTU 1500

Figure 5.10: Performance of SOR on the 16-SingleCPU Cluster

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
or

m
al

iz
ed

Ex

ec
ut

io
n

tim
e

Please note that the even distribution of the matrix blocks substantially in

creased the num ber of shared pages. This behavior is also valid for all applications

that manipulates matrices. On Fast Ethernet, the IDLE time generally dominates,

as the nodes w ait on the barriers after each iteration. This time som ewhat reduced

on the faster networks (Figure 5.11).

2 4 8 16

Sm all
2 4 8 16 2 4 8 16

M edium L arge

CD
.5 100

O) 80
a"O
.N

£

2 4 8 16

Sm all

§
2 4 8 16

M edium
2 4 8 16

L arge

(a) Fast Ethernet (b) Gigabit Ethernet

.6 100 -

3
® 80
a
. N75 60
i
I

USER
□SM
O S
IDLE

2 4 8 16 2 4 8 16 2 4 8 16
Sm all M edium L arge

(c) Myrinet

Figure 5.11: Relative Times in SOR on the 16-SingleCPU Cluster

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TSP

The TSP application has a fixed am ount of shared data, independent of the data

sets. Since the max size of interm ediate solution tours is constant for each data set

and relatively small size of shared data, TSP is quite scalable and it achieves good

speedups (Figure 5.12).

16
S m all

M ed iu m

Large14

12

10

8

6

4

2

162 4 6 8 10 12 14

16
S m a ll

M ed iu m

Large14

12

10

8

6

4

2

162 4 6 8 10 12 14

N u m b e r o f P ro ce sso rs N u m b e r o f P ro ce sso rs

(a) Fast Ethernet (b) Gigabit Ethernet

16
S m all

M ed iu m
Large14

12

10

8

6

4

2

2 6 8 10 12 14 164

N u m b e r o f P rocesso rs

(c) Myrinet

Figure 5.12: Performance of TSP on the 16-SingleCPU Cluster

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
or

m
al

iz
ed

Ex

ec
ut

io
n

tim
e

For small problems, the synchronization overhead increase noticeably w ith the

num ber of nodes. Nevertheless, for larger problems, this is a non-issue (Figure 5.13).

2 4 8 16
Sm all

2 4 8 16
M edium

2 4 8 16
L arge

(a) Fast Ethernet

60 —

4 0 -

LargeSm all M edium

(b) Gigabit Ethernet

USER
m dsm
■ ■ OS

IDLE

c
.Q

"3o
SUj■O

,N
60 -CO

g

4 0 -

2 0 -

Sm all M edium Large

(c) Myrinet

Figure 5.13: Relative Times in TSP on the 16-SingleCPU Cluster

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Water

Like Barnes, Water also has an irregular sharing pattern. For unknow n rea

sons, this application did not run successfully on 4 nodes w ith the large data set.

Nevertheless, it achieved reasonable speedups for 8 and 16 nodes on fast networks

(Figure 5.14).

16
S m all

M ed iu m

Large14

12

10

8

6

4

2

10 12 14 162 4 6 8

16
Sm all

M ed ium

Large14

12

10

8

6

4

2

6 8 10 12 14 162 4

N u m b e r o f P ro ce sso rs N u m b e r o f P ro ce sso rs

(a) Fast Ethernet (b) Gigabit Ethernet

16
S m a ll

M ed iu m

Large14

12

10

8

6

4

2

12 14 162 4 6 8 10
Num ber of Processors

(c) Myrinet

Figure 5.14: Performance of Water on the 16-SingleCPU Cluster

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
or

m
al

iz
ed

Ex

ec
ut

io
n

tim
e

The speed of the communication media helped reduce the messaging overhead

for even m edium data set (Figure 5.15).

JJ
2 4 8 16

S m a ll

.ll A
2 4 8 16

M e d iu m
2 4 8 16

L a rg e

(a) Fast Ethernet

0)
.£ ioo

CD 8 0

UJ73P.NIS 60

I

,l
2 4 8 16

S m a ll

ii ii
2 4 8 16

M e d iu m
2 4 8 16

L a rg e

(b) Gigabit Ethernet

<3
.£ ioo-

30
sUj■O
.NJ

1

J ..I

USER
DSM
O S
IDLE

I
2 4 8 16

S m a ll
2 4 8 16

M e d iu m
2 4 8 16

L a rg e

(c) Myrinet

Figure 5.15: Relative Times in Water on the 16-SingleCPU Cluster

5.7 Summary

I gave a detailed analysis of the application performance of JIAJIA and JIA-R.

The advantages of software distributed shared memory can be seen clearly in the

above performance results. It is also clear that not all the benchm ark applications

can achieve a desirable speedup. For each application, I discussed the reasons for

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such anomalies. I conclude that the current version of JIA-R achieves moderate to

good results on the applications tested. Better performance is not feasible mainly

because of the inherent overhead of the underlaying operating system for virtual

memory trapping and netw ork protocol stack. I believe that employing user ac

cessible firmware mechanisms of today 's high performance network interconnects

could not only improve performance, but also it may increase scalability.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

In this thesis, I reviewed the state-of-the-art in distributed shared memory, em

phasizing page-based systems. I also introduced JIA-R, a page based-software

DSM system as a case study, and analyzed the performance of JIA-R w ith several

commonly used benchm ark applications from a w ide variety of areas and domains.

The killer application for software DSM systems is yet to be developed. However,

such an application needs to be designed from scratch. Usually, a better perfor

mance can be achieved if an application is developed from scratch w ith S-DSM in

mind. Admittedly, trying to im prove an existing large application requires a thor

ough understanding of it, as well as efficient performance tuning tools supporting

them.

6.1 Conclusions

The idea of im plem enting a shared memory over a network of com puters us

ing software techniques (software DSM) was proposed more than a decade ago by

Kai Li in his seminal work [LH86]. O ther researchers have expanded on the idea

by studying a variety of areas, which can be categorized as: (1) DSM concepts, (2)

memory coherence protocols and algorithms, (3) im plem entation type: hardw are,

(low-level) software, and language primitives, (4) performance, and (5) other issues

such as synchronization, fault tolerance, heterogeneity, and persistence [Esk96]. Al

though it is hard to find new key ideas, there are many engineering details that can

still be utilized to make production quality software distributed shared memory

systems.

In this thesis, I have introduced a new software distributed shared memory sys

tem called JIA-R. Using this software, I have dem onstrated that such systems are

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

still viable alternatives to message passing systems, such as MPI. For the first time

in the literature, I have evaluated parallel application performance on three differ

ent netw ork interconnects. I have also presented an extensive survey of the state-

of-the-art in software distributed shared memory, and provided a unified classifi

cation of earlier systems.

6.2 Future Work

Over the last decade, software DSM research has focused on four basic areas:

consistency models (e.g., [AG96, HKV97, Kin99]), protocols (e.g., [KDCZ94, ISL96,

BZ91, CBZ91]), architectural support (e.g., [ALK95, OAS95]), and application-driven

approaches (e.g., [BIS96]). The majority of recent research has concentrated on con

sistency models and protocols, w ith far fewer contributions in the latter two areas.

In their work, Iftode and Singh [IS99] summarize the current progress and chal

lenges in software DSM. They identify the current focus as: (i) performance analy

sis and application restructuring for DSM, (ii) protocol enhancements driven by

application bottlenecks, (iii) architectural support and interactions w ith the com

m unication architecture, (iv) com parison w ith alternative software shared m em

ory approaches, and (v) software tools. They also predict that the areas for future

advances will be in: (a) reducing the still considerable performance gap between

hardw are and software DSM, (b) im proving the protocols and system support fur

ther, and (c) in understanding programmability.

Until recently, there were several active workshops attracting research papers

on DSM and related issues. For example, the theme of the 1999 Workshop on Soft

w are D istributed Shared M emory was "What remains to be done in software DSM ?"

and more specifically, "W ill software D SM ever move into the mainstream?" The con

sensus there was that "There still remain many issues to be researched in this area" and

that "A killer application or better support from the underlying network interconnect fab

ric are still needed". These are obviously some of the targets for future research on

distributed shared memory.

Since the fundam ental idea behind DSM is "caching", there are potentially end

less opportunities to apply the idea in other fields of computing. One such field

is the storage area networks. For example, IBM's StorageTank and SANFS prod

ucts [IBMOO] use the caching technology to their advantage [Hen04].

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I conclude the thesis w ith a sum m ary of Michael Scott's excellent keynote ad

dress, titled "Is S-D SM Dead?" at the 2nd Workshop on Software D istributed Shared

Memory [ScoOO]:

- W hy we study S-DSM ? Shared memory is an attractive model and arguably

simpler especially for non-performance-critical applications. H ardw are co

herence is faster, bu t providing coherence in software is cheaper as it can be

built faster. More complex protocols can be used in software and it is easy to

enhance, tune and customize. It is the only option on distributed systems.

- Is S-DSM dead?

Yes, because the key ideas are all explored and applications are still w rit

ten using MPI.

No, because speedups for well-written applications are usually good,

bu t serious users w ait for "production quality" systems. Furthermore,

the ideas are still valuable in w ider domain.

- What has been done so far? There is no major operating system that contains a S-

DSM. TREADMARKS is the only commercially available system as a separate

package1. Many researchers still prefer message passing, particularly MPI.

- Where do we stand today? Relaxed memory models, virtual memory based

protocols, multiprocessor nodes and use of advance network interfaces such

as VIA or M yrinet are right choices. Performance of even w ell-tuned appli

cations are OK on small num ber of nodes, bu t the real scalability is yet to be

seen.

- A look at the future. S-DSM is not going to run on systems w ith m any nodes,

nor it can match the performance of w ell-tuned MPI applications. However,

S-DSM is "good" for m odest sized clusters and the applications they run. We

need a single system image w ith good debuggers and efficient process and

m em ory m anagem ent mechanisms, better compiler integration, non-scientific

applications such as games or e-commerce, and wide area distribution pro

viding heterogeneity and fault tolerance (for functionality and not perfor

mance).

A u th o r 's note: E ven the w o rk o n T r e a d M a r k s is currently stalled .

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Abr81] D. A. Abramson. H ardware M emory M anagem ent of a Large Virtual
Memory. In Proc. of the 4th Australian Computer Science Conf. (ACSC-4),
pages 1-13, January 1981.

[AK85] D. A. Abramson and J. L. Keedy. Implementing a Large Virtual M emory
in a D istributed Com puter System. In Proc. of the 18th Hawaii Int'l Conf
on System Sciences (HICSS-18), pages 515-522, January 1985.

[AA092] V. Abrossimov, F. Arm and, and M. I. Ortega. A Distributed Consis
tency Server for the CHORUS System. In Proc. of the Symp. on Experiences
with Distributed and Multiprocessor Systems (SEDMS-III), pages 129-148,
March 1992.

[ABB+86] M. Acetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and
M. Young. Mach: A new kernel foundation for Unix development. In
Proc. of Summer U S E N IX 1986 Technical Conf, pages 93-112, June 1986.

[Ach94] A.-C. Achilles. The Collection of Com puter Science Bibliographies.
http://liinwww.ira.uka.de/bibliography/index.html, Jan 1994.

[AH90] S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In Proc.
of the 17th Annual Int'l Symp. on Computer Architecture (ISCA'90), pages
2-14, May 1990.

[AG96] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models:
A Tutorial. IEEE Computer, 29(12):66-76, December 1996.

[ABM93] Y. Afek, G. Brown, and M. Merritt. Lazy Caching. A C M Trans, on Pro
gramming Languages and Systems, 15(l):182-205, January 1993.

[ACJ+92] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kuri-
hara, B.-H. Lim, G. Maa, and D. Nussbaum . The MIT Alewife Machine:
A Large-Scale Distributed-M emory Multiprocessor. In M. Dubois and
S. S. Thakkar, editors, Scalable Shared Memory Multiprocessors, pages 239-
261. Kluwer Academic Publishers, 1992.

[ALK95] J.-H. Ahn, K.-W. Lee, and H.-J. Kim. Architectural Issues in Adopting
D istributed Shared M emory for Distributed Object M anagem ent Sys
tems. In Proc. o f the 5th IEEE Workshop on Future Trends of Distributed
Computing Systems (ETDCS'95), pages 294-300, A ugust 1995.

[ACP95] T. E. Anderson, D. E. Culler, and D. Patterson. A Case for NOW (Net
w ork of Workstations). IEEE Micro, 15(l):54-64, February 1995.

[ABM+00] G. Antoniu, L. Bouge, M. MacBeth, K. McGuigan, and R. Namyst.
Im plem enting Java Consistency Using a Generic, M ulti-threaded DSM

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://liinwww.ira.uka.de/bibliography/index.html

Runtime System. In Proc. o f the Int'l Workshop on Java for Parallel and
Distributed Computing, pages 560-567, May 2000.

[ABOla] G. A ntoniu and L. Bouge. DSM-PM2: A Portable Im plem entation Plat
form for M ultithreaded DSM Consistency Protocols. In Proc. 6th Int'l
Workshop on High-Level Parallel Programming Models and Supportive Envi
ronments (HIPS '01), pages 55-70, April 2001.

[ABOlb] G. A ntoniu and L. Bouge. Implementing M ultithreaded Protocols for
Release Consistency on Top of the Generic DSMPM2 Platform. In Proc.
Int'l Workshop on Cluster Computing (IWCC '01), pages 179-188, Septem
ber 2001.

[BAFR96] Y. Ben-Asher, D. G. Feitelson, and L. Rudolph. ParC—An Extension of
C for Shared M emory Parallel Processing. Software— Practice and Experi
ence, 26(5):581-612, May 1996.

[BBLS94] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS Parallel Bench
marks. Technical Report RNR-94-007, NASA Ames Research Center,
March 1994.

[BT88] H. E. Bal and A. S. Tanenbaum. D istributed Programm ing w ith Shared
Data. In Proc. o f the 1988 Int'l Conf. on Computer Languages, pages 82-91,
1988.

[BST89] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programm ing Languages
for D istributed Com puting Systems. A C M Computing Surveys, 21(3),
September 1989.

[BTK90] H. E. Bal, A. S. Tanenbaum, and M. F. Kaashoek. Orca: A Language
for D istributed Programming. AC M SIGPLAN Notices, 25(5):17-24, May
1990.

[BT91] H. E. Bal and A. S. Tanenbaum. Distributed Programm ing w ith Shared
Data. Computer Languages, 16(2):129—146,1991.

[BL85] A. Barak and A. Litman. MOS: A M ulticomputer D istributed Operating
System. Software Practice and Experience, 15(8):725-738, A ugust 1985.

[BL88] A. Barak and O. La'adan. The MOSIX M ulticomputer O perating System
for H igh Performance Cluster Computing. Future Generation Computer
Systems, 13(4-5):361-372, April 1988.

[BCZ90] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed
Shared M emory Based on Type-Specific Memory Coherence. In Proc.
o f the Second A C M SIGPLAN Symp. on Principles and Practice o f Parallel
Programming (PPOPP'90), pages 168-176, March 1990.

[BCZ91] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed
Shared M emory Using Multi-Protocol Release Consistency. In A. I.
Karshmer and J. Nehmer, editors, Operating Systems of the 90s and Be
yond, num ber 563 in Lecture Notes in Com puter Science, pages 56-60.
Springer-Verlag, July 1991.

[BZ91] B. N. Bershad and M. J. Zekauskas. Shared Memory Parallel Program
ming w ith Entry Consistency for Distributed Memory M ultiproces
sors. Technical Report CMU-CS-91-170, School of Com puter Science,
Carnegie-Mellon University, September 1991.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[BZS93]

[BIS96]

[BN84]

[BF87]

[BF88]

[BNR89]

[BR90]

[BJK+95]

[BFJ+96]

[BAC+98]

[BCF+95]

[BH90]

[BS99]

[Bro89]

B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The M idway Dis
tributed Shared Memory System. In Proc. of the 38th IEEE Int'l Computer
Conf. (COM PCON Spring'93), pages 528-537, February 1993.

A. Bilas, L. Iftode, and J. P. Singh. Supporting A Coherent Shared A d
dress Space Across SMP Nodes: An Application-Driven Investigation.
In Proc. of IM A Workshop on Parallel Algorithms and Parallel Systems, N o
vem ber 1996.

A. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. A C M
Transactions on Computer Systems, 2(l):39-59, February 1984.

R. Bisiani and A. Forin. Architectural Support for M ultilanguage Par
allel Program m ing on Heterogeneous Systems. In Proc. o f the second
In t'l Conf. on Architectual Support for Programming Languages and Oper
ating Systems, pages 21-30, April 1987.

R. Bisiani and A. Forin. M ultilanguage Parallel Program m ing of H et
erogeneous Machines. IEEE Transactions on Computers, 37(8):930-945,
A ugust 1988.

R. Bisiani, A. Nowatzyk, and M. Ravishankar. Coherent Shared Memory
on a D istributed M emory Machine. In Proc. of the 1989 Int'l Conf. on
Parallel Processing (ICPP'89), volum e I, pages 133-141, A ugust 1989.

R. Bisiani and M. Ravishankar. PLUS: A Distributed Shared-Memory
System. In Proc. of the 17th Annual Int'l Symp. on Computer Architecture
(ISCA'90), pages 115-124, May 1990.

R. D. Blumofe, C. F. Joerg, B. Kuszmaul, C. E. Leiserson, and K. H. Ran
dall. Cilk: An Efficient M ultithreaded Runtime System. In Proc. o f the 5th
A C M SIGPLAN Symp. on Principles and Practice of Parallel Programming,
pages 207-216, July 1995.

R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall.
Dag-Consistent Distributed Shared Memory. In Proc. o f the 10th Int'l
Parallel Processing Symp. (IPPS'96), pages 132-141, April 1996.

M. A. Blumrich, R. D. Albert, Y. Chen, D. W. Clark, S. N. Damianakis,
C. Dubnicki, E. W. Felten, L. Iftode, K. Li, M. Martonosi, and R. A. Shill-
ner. Design Choices in the SHRIMP System: An Empirical Study. In
Proc. o f the 25th Annual In t'l Symp. on Computer Architecture (ISCA'98),
June 1998.

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L Seitz, J. N.
Seizovic, and W.-K. Su. Myrinet: A Gigabit per Second Local Area N et
work. IEEE Micro, 15(l):29-36, February 1995.

L. Borrmann and M. Herdieckerhoff. A Coherency Model for Virtu
ally Shared Memory. In Proc. of the 1990 Int'l Conf. on Parallel Processing
(ICPP'90), volum e II, pages 252-257, A ugust 1990.

T. Brecht and H. Sandhu. The Region Trap Library: H andling Traps on
Application-Defined Regions of Memory. In Proc. o f the U SENIX Annual
Technical Conference, pages 85-99, June 1999.

M. Brorsson. A Decentralized Virtual M emory Scheme Implemented on
an Em ulated MIMD Multiprocessor. In Proc. of the 22nd Hawaii Int'l Conf.
on System Sciences (HICSS-22), pages 286-295, January 1989.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[BL94]

[CP96]

[CDM94]

[CBZ91]

[CCD+93]

[CBZ95]

[CGSC96]

[CAL+89]

[CDP+OO]

[Che86]

[CGBG88]

[CWHOO]

L. Brunie and L. Lefevre. DOSMOS : A Distributed Shared Memory
Based on PVM. In Proc. of the First European PVM Users Group Meeting,
October 1994.

G. Cabillic and I. Puaut. Stardust: An Environment for Parallel Pro
gram m ing on N etworks of Heterogeneous Workstations. In Proc. o f the
Second Int'l Euro-Par C onf, volum e I, pages 114-119, A ugust 1996.

R. Cabrera-Dantart, I. Demeure, and P. Meunier. Phosphorus: A dding
Shared Memory to PVM. Presented at the First European PVM Users'
Group Meeting, Rome, Italy, October 1994.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Per
formance of M unin. In Proc. of the 13th A C M Symp. on Operating Systems
Principles (SOSP-13), pages 152-164, October 1991.

J. B. Carter, A. L. Cox, S. Dwarkadas, E. N. Elnozahy, D. B. Johnson, P. J.
Keleher, S. Rodrigues, W. Yu, and W. Zwaenepoel. N etw ork M ulticom
puting Using Recoverable D istributed Shared Memory. In Proc. o f the
38th IEEE Int'l Computer Conf. (COM PCON Spring'93), pages 519-527,
February 1993.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Techniques for Reduc
ing Consistency-Related Comm unication in Distributed Shared M em
ory Systems. A C M Trans, on Computer Systems, 13(3):205-243, A ugust
1995.

M. Castro, P. Guedes, M. Sequeira, and M. Costa. Efficient and Flexi
ble Object Sharing. In Proc. of the 1996 Int'l Conf. on Parallel Processing
(ICPP'96), volume 1, pages 128-137, A ugust 1996.

J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy, and R. J. Lit
tlefield. The Amber System: Parallel Programming on a N etw ork of
Multiprocessors. In Proc. o f the 12th A C M Symp. on Operating Systems
Principles (SOSP-12), pages 147-158, December 1989.

D. Chen, S. Dwarkadas, S. Parthasarathy, E. Pinherio, and M. L. Scott.
Interweave: A M iddleware System for Distributed Shared State. In
S. Dwarkadas, editor, Proc. o f the Fifth Workshop on Languages, Compilers,
and Run-Time Systems for Scalable Computers (LCR'OO), LNCS. Springer-
Verlag, May 2000.

D. R. Cheriton. Problem-oriented Shared Memory: A Decentralized A p
proach to Distributed System Design. In Proc. of the 6th In t'l Conf. on
Distributed Computing Systems (ICDCS-6), pages 190-197, May 1986.

D. R. Cheriton, A. Gupta, P. D. Boyle, and H. A. Goosen. The VMP
Multiprocessor: Initial Experience, Refinements and Performance Eval
uation. In Proc. o f the 15th Annual In t'l Symp. on Computer Architecture
(ISCA'88), pages 410-421, June 1988.

D. W.-L. Cheung, C.-L. Wang, and K. Hwang. JUMP-DP: A Software
DSM System w ith Low-Latency Communication Support. In Proc. o f the
In t'l Conf. on Parallel and Distributed Processing Techniques and Applications
(PDPTA'00), pages 821-827, June 2000.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[CWH99] D. W.-L. Cheung, C.-L. Wang, and K. Hwang. A M igrating-Home Pro
tocol for Implementing Scope Consistency Model on a Cluster of Work
stations. In Proc. of the Int'l Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTA'99), June 1999.

[Cor94] J. Cordsen. Basing Virtually Shared M emory on a Family of Consistency
Models. In Proc. of the Int'l Workshop on Support for Large Scale Shared
Memory Architectures, pages 58-72, April 1994.

[Del88] G. S. Delp. The Architecture and Implementation of MemNet: a High-Speed
Shared-Memory Computer Communication Network. PhD thesis, D epart
m ent of Electrical Engineering, University of Delaware, 1988.

[DSF88] G. S. Delp, A. S. Sethi, and D. J. Farber. An Analysis of MemNet: An
Experiment in High-Speed Shared-Memory Local Networking. In Proc.
of the A C M Symp. on Communications Architectures, Protocols and Applica
tions (SIGCOMM'88), pages 165-174, A ugust 1988.

[DPS+94] A. J. Demers, K. Petersen, M. J. Spreitzer, D. B. Therry, M. M. Theimer,
and B. B. Welch. The Bayou Architecture: Support for Data Sharing
am ong Mobile Users'. In Proc. of the Workshop on Mobile Computing Sys
tems and Applications, pages 2-7, December 1994.

[DZU98] B. Dreier, M. Zahn, and T. Ungerer. The Rthreads D istributed Shared
M emory System. In Proc. o f the 3rd In t'l Conference on Massively Parallel
Computing Systems (MPCS'98), April 1998.

[DSB86] M. Dubois, C. Scheurich, and F. A. Briggs. M emory Access Buffering
in Multiprocessors. In Proc. o f the 13th Annual Int'l Symp. on Computer
Architecture (ISCA'86), pages 434-442, June 1986.

[Esk02] M. R. Eskicioglu. Software DSM's Are Still Alive and Well! In Proc. of the
Int'l Conf. on Parallel and Distributed Processing Techniques and Applications
(PDPTA'02), pages 90-96, June 2002.

[Esk95] M. R. Eskicioglu. A n Online Comprehensive Bibliography of Dis
tributed Shared Memory, h t t p : //d sm b ib lio .c s .u m an ito b a .ca /W E B ,
January 1995.

[Esk96] M. R. Eskicioglu. A Comprehensive Bibliography of D istributed Shared
Memory. A C M Operating Systems Review, 30(l):71-96, January 1996.

[EM98] M. R. Eskicioglu and T. A. M arsland. Shared Memory Com puting on
SP2: JIAJIA Approach. In Proc. of the IBM Centre for Advanced Studies
Conf. (CASCON'98), pages 235-245, November 1998.

[EMHS99] M. R. Eskicioglu, T. A. M arsland, W. Hu, and W. Shi. Evaluation of JI
AJIA Software DSM System on High Performance Com puter Architec
tures. In Proc. o f the 32nd Hawaii Int'l Conf. on System Sciences (HICSS-32)
CD-ROM , pages 287, file: stdcr05.ps, January 1999.

[FS94] P. Ferreira and M. Shapiro. Garbage Collection and DSM Consistency.
In Proc. of the 1st Symp. on Operating Systems Design and Implementation
(OSDI'94), pages 229-241, November 1994.

[Fle87] B. D. Fleisch. Distributed Shared M emory in a Loosely Coupled Distrib
uted System. In Proc. of the A C M SIGCOM M '87 Workshop on Frontiers in
Computer Communications Technology, pages 317-327, A ugust 1987.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[FP89]

[FHJ94]

[FBYR89]

[FBS89]

[FLA94]

[Geh84]

[Gel85]

[GLL+90]

[Goo89]

[GBC+98]

[GYF93]

[HLH92]

[HSL94]

[Hag89]

B. D. Fleisch and G. J. Popek. Mirage: A Coherent D istributed Shared
M em o ry D esig n . In Proc. of the 12th A C M Symp. on Operating Systems
Principles (SOSP-12), pages 211-223, December 1989.

B. D. Fleisch, R. L. Hyde, and N. C. Juul. MIRAGE+: A Kernel Im
plem entation of D istributed Shared M emory on a N etw ork of Personal
Computers. Software— Practice and Experience, 24(10):887-909, October
1994.

A. Forin, J. Barrera, M. Young, and R. Rashid. Design, Implementation,
and Performance Evaluation of a Distributed Shared M emory Server for
Mach. Technical Report CMU-CS-88-165, Carnegie-Mellon University,
School of Com puter Science, January 1989.

A. Forin, J. Barrera, and R. Sanzi. The Shared Memory Server. In Proc. of
the Winter 1989 U SENIX Conference, pages 229-243, January 1989.

V. W. Freeh, D. K. Lowenthal, and G. R. Andrews. D istributed Filaments:
Efficient Fine-Grain Parallelism on a Cluster of Workstations. In Proc. of
the 1st Symp. on Operating Systems Design and Implementation (OSDl'94),
pages 201-213, November 1994.

N. H. Gehani. Broadcasting Sequential Processes (BSP). IEEE Transac
tions on Software Engineering, SE-10(4):343-351, July 1984.

D. Gelertner. Generative Communication in Linda. AC M Transactions on
Programming Languages and Systems, 7(1):80—112, January 1985.

K. Gharachorloo, D. E. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. L. Hennessy. M emory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors. In Proc. o f the 17th Annual Int'l Symp.
on Computer Architecture (ISCA'90), pages 15-26, May 1990.

J. R. Goodman. Cache Consistency and Sequential Consistency. Techni
cal Report 61, IEEE Scalable Coherence Interface Working Group, March
1989.

A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux,
K. Loveless, N. Manjikian, S. Srbljic, M. Stumm, Z. Vranesic, and Z. Zilic.
Design and Implementation of the NUMAchine Multiprocessor. In Proc.
of the 35th IEEE Design Automation Conference, pages 66-69, June 1998.

J. N. Griffioen, R. Yavatkar, and R. Finkel. Unify: A Scalable, Loosely-
Coupled, D istributed Shared Memory. Technical Report CS226-93, De
partm ent of Com puter Science, University of Kentucky, January 1993.

E. Hagersten, A. Landin, and S. Haridi. DDM—A Cache-Only Memory
Architecture. IEEE Computer, 25(9):44-54, September 1992.

E. Hagersten, A. Saulsbury, and A. Landin. Simple COMA N ode Im
plementations. In Proc. o f the 27th Hawaii Int'l Conf. on System Sciences
(HICSS-27), volum e I, pages 522-533, January 1994.

R. Hagmann. Comments on Workstation Operating Systems and Virtual
Memory. In Proc. o f the 2nd Workshop on Workstation Operating Systems,
September 1989.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[HS93] A. H eddaya and H. Sinha. An Overview of Mermera: A System and
F orm alism for N o n -co h eren t D istr ib u ted Parallel M em ory. In Proc. o f
the 26th Hawaii Int'l Conf. on System Sciences (HICSS26), pages 164-173,
January 1993.

[HPS94] A. Heddaya, K. Park, and H. Sinha. Using Warp to Control Netw ork
Contention in M ermera. In Proc. of the 27th Hawaii Int'l Conf. on System
Sciences (HICSS-27), volume II, pages 96-105, January 1994.

[HKO+94] M. Heinrich, J. Kuskin, D. Ofelt, J. Heinlein, J. Baxter, J. P. Singh, R. Si-
moni, K. Gharachorloo, D. Nakahira, M. Horowitz, A. Gupta, M. Rosen-
blum , and J. L. Hennessy. The Performance Impact of Flexibility in the
Stanford FLASH Multiprocessor. In Proc. o f the 6th Symp. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-VI),
pages 274-285, October 1994.

[Hel90] H. Hellwagner. A Survey of Virtually Shared Memory Schemes. Tech
nical Report TUM-19056, Institute for Informatics, Technical University
of M unich, Germany, December 1990.

[Hen04] B. Henderson. StorageTank: Delivering on the SAN Promise. LIN U X
Magazine, 6(2):28-32, February 2004.

[HW90] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condi
tion for Concurrent Objects. A C M Trans, on Programming Languages and
Systems, 12(3) :463^92, July 1990.

[HKV97] L. Higham , J. Kawash, and N. Verwaal. Defining and Com paring Mem
ory Consistency Models. In Proc. of the 10th Int'l Conf. on Parallel and
Distributed Computing Systems (PDCS-97), pages 349-356, October 1997.

[HLRW93] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood. Cooperative
Shared Memory: Software and H ardware for Scalable Multiprocessors.
A C M Trans, on Computer Systems, 11(4):300-318, November 1993.

[HLW95] M. D. Hill, J. R. Larus, and D. A. Wood. Tempest: A Substrate for
Portable Parallel Programs. In Proc. o f the 40th IEEE Int'l Computer Conf.
(COM PCON Spring'95), March 1995.

[Hoa78] C. A. R. Hoare. Comm unicating Sequential Processes. Communications
o f the AC M , 21(8), A ugust 1978.

[HT88] M. H su and V.-O. Tam. M anaging Databases in D istributed Virtual
Memory. Technical Report TR-07-88, Aiken Com putation Laboratory,
H arvard University, March 1988.

[HST98] W. Hu, W. Shi, and Z. Tang. A Lock-based Cache Coherence Protocol for
Scope Consistency. Journal o f Computer Science and Technology, 13(2):97-
109, March 1998.

[HMT+95] H. H. J. Hum , O. Maquelin, K. B. Theobald, X. Tian, X. Tang, G. R. Gao,
P. Cupryk, N. Elmasri, L. J. Hendren, A. Jimenez, S. Krishnan, A. Mar
quez, S. Merali, S. S. Nemawarkar, P. Panangaden, X. Xue, and Y. Zhu. A
Design Study of the EARTH Multiprocessor. In Proc. o f the IFIP WG 10.3
Working Conf. on Parallel Architectures and Compilation Techniques, PACT
'95, pages 59-68, June 1995.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[H A 90]

[IBMOO]

[ISL96]

[IS99]

[IEE04]

[ISW97]

[ISS98]

[JB02]

[Joh99]

[Joh89]

[JKW95]

[JNT+99]

[JLHB88]

[JF95]

P. W. H utto and M. Ahamad. Slow Memory: Weakening Consistency
to Enhance Concurrency in Distributed Shared Memories. In Proc. o f
the 10th Int'l Conf. on Distributed Computing Systems (1CDCS-10), pages
302-311, May 1990.

IBM International Business Machines. StorageTank and SANFS.
h t t p : //w w w .s to rag e . ib m .c o m /s o f tw a r e /v i r tu a l iz a t io n /s f s ,
2000.

L. Iftode, J. P. Singh, and K. Li. Scope Consistency: A Bridge between Re
lease Consistency and Entry Consistency. In Proc. of the 8th A C M Annual
Symp. on Parallel Algorithms and Architectures (SPAA'96), pages 277-287,
June 1996.

L. Iftode and J. P. Singh. Shared Virtual Memory: Progress and Chal
lenges. Proc. o f the IEEE, Special Issue on Distributed Shared Memory,
87(3):498-507, March 1999.

IEE. INSPEC Database on Axiom, Institute of Physics Publishing (IOP),
1968-2004.

A. Itzkovitz, A. Schuster, and L. Wolfovich. Supporting M ultiple Par
allel Program m ing Paradigm s on Top of the Millipede Virtual Parallel
Machine. In Proc. o f the 2nd Int'l Workshop on High-Level Parallel Program
ming Models and Supportive Environments (HIPS'97), April 1997.

A. Itzkovitz, A. Schuster, and L. Shalev. Thread M igration and its A ppli
cations in Distributed Shared M emory Systems. The Journal of Systems
and Software, 47(l):71-87, July 1998.

R. Jamieson and A. Bilas. CableS: Thread Control and M emory M anage
m ent Extensions for Shared Virtual M emory Clusters. In Proc. o f the 29th
Annual Int'l Symp. on Computer Architecture, pages 236-247, May 2002.

A. S. Johansen. SENSE—An All-Software, Portable
DSM System w ith a Variable Unit of Coherence.
h t t p : / / h je m .g e t2 n e t . d k /d d u c k /s e n se .h tm l, 1999.

E. E. Johnson. The Virtual Port M emory GMMP Multiprocessor. In Proc.
o f the 2nd Int'l Conf. on Computing and Information (ICCI'89), volum e 2,
pages 127-130, May 1989.

K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL: High-
Performance All-Software Distributed Shared Memory. In Proc. of the
Fifth Workshop on Scalable Shared Memory Multiprocessors, June 1995.

A. Judge, P.A. Nixon, B. Tangney, S. Weber, and V. Cahill. Distributed
Shared Memory, volum e 1, chapter 17, pages 412-441. Prentice Hall, 1999.

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-Grained Mobility
in the Emerald System. A C M Trans, on Computer Systems, 6(1):109-133,
February 1988.

N. C. Juul and B. D. Fleisch. A M emory Approach to Consistent, Reliable
DSM. In Fifth Workshop on Hot Topics in Operating Systems (HotOS-V),
pages 108-112, May 1995.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.storage.ibm.com/software/virtualization/sfs
http://hjem.get2net.dk/dduck/sense.html

[KC93] V. Karamcheti and A. A. Chien. Concert-Efficient Runtime Support for
Concurrent Object-oriented Programm ing Languages on Stock H ard
ware. In Proc. of the 1993 ACM/IEEE Conference on Supercomputing, pages
598-607, December 1993.

[KC97] V. Karamcheti and A. A. Chien. View Caching: Efficient Software Shared
M emory for Dynamic Computations. In Proc. of the 11th In t'l Parallel
Processing Symp. (IPPS'97), pages 483-489, April 1997.

[KC98] K. M. Kavi and W. E. Cohen. M emory Latency and Thread M igration
Challenges for Distributed Shared M emory Systems. In Proc. o f the 31st
Hawaii In t'l Conf. on System Sciences (HICSS-31), volume VII, pages 772-
773, January 1998.

[Kee78] J. L. Keedy. The MONADS O perating System. In Proc. o f the 8th A us
tralian Computer Conf, pages 903-910,1978.

[KCZ92] P. J. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency
for Software Distributed Shared Memory. In Proc. o f the 19th Annual Int'l
Symp. on Computer Architecture (ISCA'92), pages 13-21, May 1992.

[KDCZ94] P. J. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. TreadMarks:
D istributed Shared M emory on Standard Workstations and Operating
Systems. In Proc. o f the Winter 1994 USENIX Conference, pages 115-131,
January 1994.

[Kel94] P. J. Keleher. Lazy Release Consistency for Distributed Shared Memory. PhD
thesis, D epartm ent of Com puter Science, Rice University, December
1994.

[Kel96] P. J. Keleher. The Relative Importance of Concurrent Writers and Weak
Consistency Models. In Proc. of the 16th Int'l Conf. on Distributed Comput
ing Systems (ICDCS-16), pages 91-98, May 1996.

[Kel99] P. J. Keleher. Tapeworm: High-Level Abstractions of Shared Accesses.
In Proc. o f the 3rd Symp. on Operating Systems Design and Implementation
(OSDP99), pages 201-214, February 1999.

[Kha96] D. R. Khandekar. QUARKS: Distributed shared M emory as a Building
Block for Complex Parallel and Distributed Systems. M aster's thesis,
D epartm ent of Com puter Science, The University of Utah, March 1996.

[Kin99] E. Kindler. A Classigfication of Consistency Models. Technical report,
Institute of Informatics, Berlin Free University, October 1999.

[KFJ94] P. T. Koch, R. J. Fowler, and E. B. Jul. Message-Driven Relaxed Consis
tency in a Software D istributed Shared Memory. In Proc. o f the 1st Symp.
on Operating Systems Design and Implementation (OSDI'94), pages 75-85,
N ovem ber 1994.

[KCR98] P. T. Koch, E. Cecchet, and X. Ronsset de Pina. Global M anagem ent of
Coherent Shared M emory on an SCI Cluster. In Proc. of the European M ul
timedia, Multiprocessor Systems and Electronic Commerce Conference (SCI
Europe'98), September 1998.

[KBCC93] D. C. Kulkarni, A. Banerji, M. R. Casey, and D. L. Cohn. Structuring
D istributed Shared M emory w ith the II Architecture. In Proc. o f the 13th
Int'l Conf. on Distributed Computing Systems (ICDCS-13), pages 93-100,
M ay 1993.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[LP92] Z. Lahjomri and T. Priol. KOAN: A Shared Virtual M emory for iPSC/2
H yp ercu b e . In Proc. of the 2nd Joint Int'l Conf. on Vector and Parallel
Processing (CONPAR'92), pages 441-452, September 1992.

[Lam78] L. Lamport. Time, Clocks, and the O rdering of Events in a Distributed
System. Communications of the AC M , 21(7):558-565, July 1978.

[Lam79] L. Lamport. How to Make a M ultiprocessor Com puter that Correctly
Executes M ultiprocess Programs. IEEE Transactions on Computers, C-
28(9):690-691, September 1979.

[LLD+83] P. J. Leach, P. H. Levine, B. P. Douros, J. Hamilton, D. L. Nelson, and B. L.
Stumpf. The Architecture of an Integrated Local Network. IEEE Journal
on Selected Areas in Communications, SAC-l(5):842-856, November 1983.

[LQCK96] G. Lee, B. Quattlebaum , S. Cho, and L. Kinney. Global Bus Design of a
Bus-based COMA M ultiprocessor DICE. In Proc. o f the Int'l Conf. on Com
puter Design: VLSI in Computers and Processors, pages 231-240, October
1996.

[LYLM02] S.-K. Lee, H.-C. Yun, J. Lee, and S. Maeng. Design and Implementation
of KDSM (KAIST Distributed Shared Memory) System. Journal of BUSS:
Computer Systems and Theory, 29(5-6) :257-64, June 2002.

[LR00] L. Lefevre and O. Reymann. Combining Low-Latency Comm unication
Protocols w ith M ultithreading for High Performance DSM Systems on
Clusters. In 8th Euromicro Workshop on Parallel and Distributed Processing,
pages 333-338, January 2000.

[LLG+89] D. E. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, J. L. Hennessy,
M. Horowitz, and M. Lam. Design of the Stanford DASH multiproces
sor. Technical Report CSL-TR-89-403, Com puter Systems Laboratory,
Stanford University, December 1989.

[LLG+90] D. E. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. L. H en
nessy. The Directory-Based Cache Coherence Protocol for the DASH
Multiprocessor. In Proc. of the 17th Annual Int'l Symp. on Computer Archi
tecture (ISCA'90), pages 148-159, May 1990.

[LLW+92] D. E. Lenoski, J. Ludon, K. Gharachorloo W.-D. Weber, A. Gupta, J. L.
Hennessy, M. Horowitz, and M. S. Lam. The Stanford DASH M ulti
processor. IEEE Computer, 25(3):63-79, March 1992.

[LH86] K. Li and P. Hudak. M emory Coherence in Shared Virtual M emory Sys
tems. In Proc. o f the 5th Annual A C M Symp. on Principles o f Distributed
Computing (PODC'86), pages 229-239, A ugust 1986.

[Li86] K. Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD the
sis, D epartm ent of Com puter Science, Yale University, September 1986.

[LS89] K. Li and R. Schaefer. Shiva: An O perating System Transforming A
Hypercube into a Shared-Memory Machine. Technical Report CS-TR-
217-89, D epartm ent of Com puter Science, Princeton University, April
1989.

[Lia94] W.-Y. Liang. Adsmith: A Structure-Based Heterogeneous Distributed
Shared Memory on PVM. M aster's thesis, Institute of Com puter Sci
ence, National Tsing H ua University, June 1994.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Lib85] D. Libes. User-Level Shared Variables. In 1985 U SENIX Summer Conf.
Proceedings, June 1985.

[LYL95] Y.-W. Lin, S.-M. Yuan, and D. Liang. Design and Implementation of
Moony: A Fault Tolerant D istributed Shared M emory System. Int'l
Journal o f Computer Systems Science and Engineering, 10(2):111-119, April
1995.

[LS88] R. J. Lipton and J. S. Sandberg. PRAM: A Scalable Shared Memory. Tech
nical Report CS-TR-180-88, D epartm ent of Com puter Science, Princeton
University, September 1988.

[LDCZ95] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Message-Passing
vs. Distributed Shared M emory on Networks of Workstations. In Proc.
of Supercomputing'95, December 1995.

[Lu97] P. Lu. Aurora: Scoped Behaviour for Per-Context Optim ized Distributed
Data Sharing. In Proc. o f the 11th Int'l Parallel Processing Symp. (IPPS'97),
April 1997.

[M 0087] M. M aekawa, A. E. Oldehoeft, and R. R. Oldehoeft. Operating Systems—
Advanced Concepts. Benjam in/Cum m ings Publication Company, Inc.,
Menlo Park, CA, 1987.

[Md99] M. D. M arino and G. L. de Campos. A Preliminary DSM Speedup Com-
parision: JIAJIA x NAUTILUS. In Proc. of the 13th Annual In t'l Symp. on
High Performance Computing Systems and Applications (HPCS'99), pages
713-722, June 1999.

[MHW03] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: De
coupling Performance and Correctness. In Proc. o f the 3oth Annual Int'l
Symp. on Computer Architecture (ISCA'30), pages 182-193, June 2003.

[MS99] V. Milutinovic and P. Stenstrom. Scanning the Issue: Special Issue on
D istributed Shared Memory Systems. Proc. of the IEEE, 87(3):399-404,
March 1999.

[MF89] R. G. Minnich and D. J. Farber. The M ether System: Distributed Shared
M emory for SunOS 4.0. In Proc. of the 1989 Summer USENIX Conference,
pages 51-60, June 1989.

[MBLZ89] H. E. Mizrahi, J.-L. Baer, E. D. Lazowska, and J. Zahorjan. Introduc
ing M emory into the Switch Elements of M ultiprocessor Interconnection
Networks. In Proc. of the 16th Annual Int'l Symp. on Computer Architecture
(ISCA'89), pages 158-166, May 1989.

[MRZ95a] M. Mizuno, M. Raynal, and J. Z. Zhou. Sequential Consistency in Dis
tributed Systems: Theory and Implementation. Technical Report RR-
2437, INRIA, France, March 1995.

[MRZ95b] M. Mizuno, M. Raynal, and J. Z. Zhou. Sequential Consistency in Dis
tributed Systems. In K. Birman, F. M attern, and A. Schiper, editors, Proc.
of the In t'l Workshop on Theory and Practice in Distributed Systems, num
ber 938 in Lecture Notes in Com puter Science, pages 224-241. Springer-
Verlag, July 1995.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[MR94]

[MB98]

[Mos93]

[Mes95]

[Mue97]

A. M ohindra and U. Ramachandran. A Comparative Study of Distrib
uted Shared M emory System Design Issues. Technical Report GIT-CC-
94/35, College of Computing, Georgia Institute of Technology, A ugust
1994.

L. R. M onnerat and R. Bianchini. Efficiently A dapting to Sharing
Patterns in Software DSMs. In Proc. of the 4th IEEE Symp. on High-
Performance Computer Architecture (HPCA-4), pages 289-299, February
1998.

D. Mosberger. M emory Consistency Models. A C M Operating Systems
Review, 27(1): 18-26, January 1993.

Message Passing Interface (MPI) Forum.
Standard, version 1.1, June 1995.

A Message-Passing Interface

F. Mueller. On the Design and Implementation of DSM-Threads. In
Proc. o f the Int'l Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA'97), pages 315-324, June 1997.

[MvT+90] S. J. M ullender, G. van Rossum, A. S. Tanenbaum, R. van Renesse, and
H. van Staveren. Amoeba: A Distributed O perating System for the
1990's. IEEE Computer, 23(5):44-53, May 1990.

[Mul03]

[TFR+01]

[Myr95]

[Nel81]

[Jon02]

[NL91]

[NorOO]

[NAB+94]

Multifacet Research Group. Wisconsin Multifacet Project.
http://www.cs.wise.edu/multifacet/, 2003.

R. B. Tremaine, P.A. Franaszek, J. T. Robinson, C. O. Schultz, T.B. Smith,
M. E. Wazlowski, and P. M. Band. IBM Memory Expansion Technology
(MXT). IBM Research and Development Journal, 45(2):271-284, March 2001.

Myrias Com puter Technologies. Parallel Application Management System
(PAMS) V 2 ,1995.

B. J. Nelson. Remote Procedure Call. PhD thesis, Carnegie-Mellon Univer
sity, May 1981.

R. Jones. NetPerf: A N etw ork Performance M easurem ent Tool.
http://www.netperf.org/netperf/NetperfPage.html, 2002.

B. Nitzberg and V. Lo. Distributed Shared Memory: A Survey of Issues
and Algorithms. IEEE Computer, 24(8):52-60, A ugust 1991.

N ortel Networks, Ltd. Alteon
http://www.nortelnetworks.com, 2000.

Web Systems.

A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, D. Lee, and M. Parkin.
The S3.mp Scalable Shared M emory Multiprocessor. In Proc. o f the 27th
Hawaii Int'l Conf. on System Sciences (HICSS-27), volum e I, pages 144-
153, January 1994.

[NSA97] National Security Council NSA. Lightning Project, 1997.

[OAS95] M. Oguchi, H. Aida, and T. Saito. A Proposal for a DSM Architecture
Suitable for a Widely Distributed Environment and Its Evaluation. In
Proc. o f the Fourth IEEE Int'l Symp. on High Performance Distributed Com
puting (HPDC-4), pages 32-39, A ugust 1995.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.wise.edu/multifacet/
http://www.netperf.org/netperf/NetperfPage.html
http://www.nortelnetworks.com

[Ope97] OpenM P Architecture Review Board OpenMP. The OpenM P Applica
tion Programm ing Interface Specifications, http: / /www. openmp. org,
1997.

[O C D +88] J. K. O u sterh ou t, A . R. C h eren son , F. D o u g h s , M. N . N e lso n , and B. B.
Welch. The Sprite N etw ork Operating System. IEEE Computer, 21(2):23-
36, February 1988.

[PS97] S. M. Paas and K. Scholtyssik. Efficient Distributed Synchronization
w ithin an all-software DSM System for Clustered PCs. In Proc. o f the
1st Workshop on Cluster-Computing, TU Chemnitz, November 1997.

[PBS98] S. M. Paas, T. Bemmel, and K. Scholtyssik. Win32 API Emulation on
UNIX for Software DSM. In Proc. o f the 2nd USENIX Windows N T Sym
posium, A ugust 1998.

[PLC95] S. Pakin, M. Lauria, and A. Chien. High Performance M essaging on
Workstations: Illinois Fast Messages (FM) for Myrinet. In Proc. o f the
1995 ACM/IEEE Conference o f Supercomputing (CDROM), December 1995.

[PKOO] D. Perkovic and P. J. Keleher. A Protocol-Centric A pproach to On-
The-Fly Race Detection. IEEE Trans, on Parallel and Distributed Systems,
11(10):1058-1072, October 2000.

[PBG+85] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. L. Kleinfelder,
K. P. McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss. The IBM Re
search Parallel Prototype (RP3): Introduction and Architecture. In Proc.
of the 1985 Int'l Conf. on Parallel Processing (ICPP'85), pages 764-771, A u
gust 1985.

[PNB83] L. Philipson, B. Nilsson, and B. Breidegard. A Communication Structure
for a Multiprocessor Com puter w ith Distributed Global Memory. In
Proc. of the 10th Annual Int'l Symp. on Computer Architecture (ISCA'83),
pages 334-340, June 1983.

[PitOO] A. J. Pitman. PVMsynch Client Library.
http://elvis.rowan.edu/~pitman/pvmsync/index.shtml, March
2000.

[PD93] F. Pong and M. Dubois. The Verification of Cache Coherence Protocols.
In Proc. of the 5th A C M Annual Symp. on Parallel Algorithms and Architec
tures (SPAA'93), pages 11-20, June 1993.

[PD96] F. Pong and M. Dubois. Formal Verification of Delayed Consistency
Protocols. In Proc. of the 10th Int'l Parallel Processing Symp. (IPPS'96),
pages 124-131, April 1996.

[PD98] F. Pong and M. Dubois. Formal Verification of Complex Coherence Pro
tocols Using Symbolic State Models. JACM, 45(4):557-587, April 1998.

[Rai92] S. Raina. Virtual Shared Memory: A Survey of Techniques and Sys
tems. Technical Report CSTR-92-36, D epartm ent of Com puter Science,
University of Bristol, 1992.

[RAK88] U. Ram achandran, M. Ahamad, and M. Y. A. Khalidi. Unifying Syn
chronization and Data Transfer in M aintaining Coherence of Distributed
Shared Memory. Technical Report GIT-ICS-88/23, College of C om put
ing, Georgia Institute of Technology, June 1988.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://elvis.rowan.edu/~pitman/pvmsync/index.shtml

[RAK89] U . Ram achandran, M . A hamad, and M . Y. A. Khalidi. Coherence of Dis
trib u ted Shared M em ory: U n ify in g S yn ch ron iza tion an d D ata Transfer.
In Proc. of the 1989 Int'l Conf. on Parallel Processing (ICPP'89), volum e II,
pages 160-169, A ugust 1989.

[RS93] G. G. Richard III and M. Singhal. Using Logging and Asynchronous
Checkpointing to Implem ent Recoverable Distributed Shared Memory.
In Proc. of the 12th Symp. on Reliable Distributed Systems (SRDS'93)r pages
58-67, October 1993.

[RSL93] M. C. Rinard, D. J. Scales, and M. S. Lam. Jade: A High Level
M achine-Independent Language for Parallel Programming. IEEE Com
puter, 26(6):28-38, June 1993.

[Riz97] L. Rizzo. A Very Fast Algorithm for RAM Compression. AC M Operating
Systems Review, 31(2):36-45, April 1997.

[RK81] J. Rosenberg and J. L. Keedy. Software M anagem ent of a Large Virtual
Memory. In Proc. of the 4th Australian Computer Science Conf. (ACSC-4),
pages 173-181, January 1981.

[RC98] S. Roy and V. Chaudhary. Strings: A High-Performance Distributed
Shared M emory for Symmetrical Multiprocessor Clusters. In Proc. of
the Seventh IEEE Int'l. Symp. on High Performance Distributed Computing,
pages 90-97, July 1998.

[RMP+87] M. Rozier, J. L. M artins, Y. Paker, J.-P. Banatre, and M. Bozyigit.
CHORUS Distributed Operating System: Some Design Issues, volum e 28
of NATO A S I Series F: Computer and Systems Sciences, pages 261-288.
Springer-Verlag, 1987.

[SHU+00] S. Saito, A. Hayashi, T. Uehara, K. Joe, and Y. Kunieda. Wind : A Low
Cost Comm unication M odule for a Software DSM System. In Proc. of the
Int'l Conf. on Parallel and Distributed Processing Techniques and Applications
(PDPTA'00), pages 729-735, June 2000.

[SGZ93] H. S. Sandhu, B. Gamsa, and S. Zhou. The Shared Region Approach
to Software Cache Coherence on Multiprocessors. In Proc. of the Fourth
A C M SIGPLAN Symp. on Principles and Practice of Parallel Programming
(PPOPP'93), pages 229-238, July 1993.

[San95] H. S. Sandhu. Shared Regions: A Strategy for Efficient Cache Management
in Share-Memory Multiprocessors. PhD thesis, G raduate Departm ent of
Com puter Science, University of Toronto, July 1995.

[SWCL95] A. Saulsbury, T. Wilkinson, J. B. Carter, and A. Landin. An A rgum ent
for Simple COMA. In Proc. of the 1st IEEE Symp. on High-Performance
Computer Architecture (HPCA-1), pages 276-285, January 1995.

[SL94] D. J. Scales and M. S. Lam. The Design and Evaluation of a Shared Object
System for Distributed M emory Machines. In Proc. o f the 1st Symp. on
Operating Systems Design and Implementation (OSDI'94), pages 101-114,
N ovem ber 1994.

[SGT96] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A Low Over
head, Software-Only Approach for Supporting Fine-Grain Shared M em
ory. In Proc. of the 7th Symp. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VII), pages 174-185, October
1996.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[SD88]

[STS98]

[Sch94]

[SchOl]

[ScoOO]

[SLD+96]

[SWG92]

[Sin93]

[SB97]

[Sta96]

[SZ90a]

[SZ90b]

[Sun90]

[TF90]

[TSF90]

C. Scheurich and M. Dubois. Dynamic Page M igration in M ultiproces
sors w ith Distributed Global Memory. In Proc. of the 8th Int'l Conf. on
Distributed Computing Systems (ICDCS-8), pages 162-169, June 1988.

M. Schoettner, S. Traub, and P. Schulthess. A Transactional DSM Oper
ating System in Java. In Proc. of the Int'l Conf. on Parallel and Distributed
Processing Techniques and Applications (PDPTA'98), volum e I, pages 99-
106, July 1998.

W. Schroeder-Preischat. The Logical Design of Parallel Operating Systems.
Prentice-Hall, Upper Saddle River, N. J., 1994.

M. Schultz. Shared Memory Programming on NUMA-based Clusters Us
ing a General and Open Hybrid Hardware / Software Approach. PhD thesis,
D epartm ent of Informatics, Technical University of Munich, July 2001.

M. L. Scott. Is S-DSM Dead? Keynote address at the 2nd Workshop on
Software Distributed Shared Memory, May 2000.

M. L. Scott, W. Li, S. Dwarkadas, L. Kontothanassis, G. Hunt,
M. Michael, R. Stets, N. Hardavellas, W. Meira, A. Poulos, M. Cierniak,
S. Parthasarathy, and M. Zaki. Implementation of Cashmere. In Proc.
of the Sixth Workshop on Scalable Shared Memory Multiprocessors, October
1996.

J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel A p
plications for Shared Memory. Computer Architecture News, 20(1):5^14,
March 1992.

H. S. Sinha. Non-Coherent Distributed Shared Memory for Parallel Comput
ing. PhD thesis, D epartm ent of Com puter Science, Boston University,
May 1993.

W. E. Speight and J. K. Bennett. Brazos: A Third Generation DSM Sys
tem. In Proc. of the USENIX Windows N T Workshop, A ugust 1997.

Stardust Technologies, Inc. W indows Sockets 2 Application Program
m ing Interface, 1996.

M. Stumm and S. Zhou. Algorithms Implementing Distributed Shared
Memory. IEEE Computer, 23(5):54-64, May 1990.

M. Stumm and S. Zhou. Fault Tolerant Distributed Shared Memory. In
Proc. of the Second IEEE Symp. on Parallel and Distributed Processing, pages
719-724, December 1990.

V. S. Sunderam. PVM: A Framework for Parallel Distributed Com put
ing. Concurrency: Practice&Experience, 2(4):315-339, December 1990.

M.-C. Tam and D. J. Farber. CapN et-A n Approach to Ultra High Speed
Network. In Proc. o f the IEEE Int'l Conf. on Communications (ICC'90),
pages 955-961, April 1990.

M.-C. Tam, J. M. Smith, and D. J. Farber. A Taxonomy-Based Com par
ison of Several D istributed Shared Memory Systems. A C M Operating
Systems Review, 24(3), July 1990.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[TH90a]

[TH90b]

[Tv85]

[TF95a]

[TF95b]

[TP96]

[TF99]

[Ver96]

[VIA97]

[vCGS92]

[WPE+83]

[WH88]

[WLF01]

[WHG94]

V.-O. Tam and M. Hsu. Token Transactions: M anaging Fine-Grained
M igration of Data. In Proc. o f the 9th AC M Symp. on Principles of Database
Systems, April 1990.

V.-O. Tam and M. Hsu. Fast Recovery in Distributed Shared Virtual
M emory Systems. In Proc. of the 10th Int'l Conf. on Distributed Computing
Systems (ICDCS-10), pages 38-45, May 1990.

A. S. Tanenbaum and R. van Renesse. Distributed O perating Systems.
ACM Computer Surveys, 17(4):419-470, December 1985.

O. E. Theel and B. D. Fleisch. Design and Analysis of Highly Available
and Scalable Coherence Protocols for Distributed Shared M emory Sys
tems Using Stochastic Modeling. In Proc. of the 1995 Int'l Conf. on Parallel
Processing (ICPP'95), volum e I, pages 126-130, A ugust 1995.

O. E. Theel and B. D. Fleisch. Analysis of a Fault-Tolerant Coherence
Protocol for Distributed Shared M emory Under Heavy Write Loads.
In Proc. o f the 1995 IEEE Pacific Rim Conf. on Fault Tolerant Systems
(PRFTS'95), pages 146-151, December 1995.

J. Torrellas and D. Padua. The Illinois Aggressive Coma Multiprocessor
Project (I-ACOMA). In Proc. of the 6th Symp. on the Frontiers o f Massively
Parallel Computing (Frontiers'96), October 1996.

J. Turk and B. D. Fleisch. DBRpc: A Highly Adaptable Protocol for Reli
able DSM Systems. In Proc. of the 19th Int'l Conf. on Distributed Computing
Systems (ICDCS-19), pages 340-348, May 1999.

M. Verma. Compiler-Directed Distributed Shared Virtual Memory. PhD
thesis, Departm ent of Com puter Science, State University of N ew York
at Stony Brook, 1996.

Virtual Interface Architecture Forum VIA. Virtual Interface Architecture
Specification, Draft Version 1.0, December 1997.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active
Messages: A M echanism for Integrated Communication and Com pu
tation. In Proc. of the 19th Int'l Sym. on Computer Architecture (ISCA'92),
pages 256-266, May 1992.

B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS Dis
tributed Operating System. In Proc. o f the 9th A C M Symp. on Operating
Systems Principles, pages 49-70, October 1983.

D. H. D. Warren and S. Haridi. Data Diffusion Machine—A Scalable
Share Virtual M emory Multiprocessor. In Proc. of the Int'l Conf. on Fifth
Generation Computer Systems (ICOT'88), pages 943-952,1988.

D. Watson, Y. Lou, and B. D. Fleisch. Experiences w ith Oasis+: A Fault
Tolerant Storage System. In Proc. of the IEEE Int'l Conf on Cluster Com
puting, pages 29-36, October 2001.

G. Wickham, M. Hobbs, and A. Goscinski. The Logical Design of the
RHODOS M ultithreaded Microkernel. Technical Report TR C94/06,
School of Com puting and Mathematics, Deakin University, April 1994.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Wil91] R. N. Williams. An Extremely Fast ZIV-Lempel Data Compression Al
gorithm. In Proc. of the Data Compression Conference, pages 362-371, April
1991.

[WOT+95] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-
2 Programs: Characterization and Methodological Considerations. In
Proc. o f the 22th Annual Symp. on Computer Architecture, pages 24-36, June
1995.

[WF90] K.-L. Wu and W. K. Fuchs. Recoverable Distributed Shared Memory.
IEEE Transactions on Computers, 39(4):460-469, April 1990.

[WWT01] WWT Research Group. Wisconsin Wind Tunnel Project.
http: //www. cs .wise. edu/~wwt/, 2001.

[YCGL97] K. G. Yokum, J. S. Chase, A. J. Gallatin, and A. R. Lebeck. Cut-Through
Delivery in Trapeze: An Exercise in Low Latency Messaging. In Proc.
of the IEEE Symp. on High-Performance Distributed Computing (HPDC'97),
pages 243-252, A ugust 1997.

[YTR+87] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, W. Bolosky,
D. Black, and R. Baron. The Duality of Memory and Communication
in the Implementation of a M ultiprocessor Operating System. In Proc.
o f the 11th A C M Symp. on Operating Systems Principles (SOSP-11), pages
63-76, November 1987.

[YLLM01] H.-C. Yun, S.-K. Lee, J. Lee, and S. Maeng. An Efficient Lock Protocol
for Home-based Lazy Release Consistency. In Proc. o f the 1st IEEE/ACM
Int'l Symp. on Cluster Computing and the Grid (CCGrid'01), pages 527-532,
May 2001.

[ZSM90] S. Zhou, M. Stumm, and T. Mclnerney. Extending D istributed Shared
M emory to Heterogeneous Environments. In Proc. o f the 10th Int'l Conf.
on Distributed Computing Systems (ICDCS-10), May 1990.

[ZSLW92] S. Zhou, M. Stumm, K. Li, and D. Wortman. Heterogeneous Distributed
Shared Memory. IEEE Trans, on Parallel and Distributed Systems, 3(5):540-
554, September 1992.

[ZIL96] Y. Zhou, L. Iftode, and K. Li. Performance Evaluation of Two Home-
Based Lazy Release Consistency Protocols for Shared Memory Virtual
Memory Systems. In Proc. of the 2nd Symp. on Operating Systems Design
and Implementation (OSDI'96), pages 75-88, October 1996.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abbreviations

COMA Cache Only M emory Architecture
DSM Distributed Shared Memory
EC Entry Consistency
ERC Eager Release Consistency
LRC Lazy Release Consistency
MRSW M ultiple Reader Single Writer
MRMW M ultiple Reader M ultiple Writer
MTU M aximum Transmission Unit
RC Release Consistency
SC Sequential Consistency
ScC Scope Consistency
SPMD Single Program M ultiple Data
WC Weak Consistency
WI Write Update
w u Write Invalidate

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

