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ABSTRACT

Given a familv F of topological spaces, we ask the
question : does there exist a quotlent-universal space for F, that-
. o
is, does there . exist an element in F of which everv other clement

of F is a quotiedt ? The families we are interested in incude

the metric spaces, the first-cduntable spaces and (especially) the
sequential spaces.. A very natural quotient-universal metric space
is known for sequential Spaces of cardinality ¢ ; we show that

this cannot be generalized for cardinality R, or any cardinal x for

which KK° >« . In fact we obtain the two following,results“:

- ¢ can be characterized among cardinals as the smallest for

N

which there is a quotient-universal metric space for sequential spaces

o

of that cardinality.

- there i1s a quotient-universal metric space for sequential

Re _

spaces of cardinality « if and only if « = K.

c . .

2" non-homeomorphic .countable sequential spaces are cons-
tructed, which are all> quotients of separable metric spaces but

most of which are not quotients of any countable metric space. The

v
’

introduction of the notions of quasi-first-countability and weakly-

<5

quasi—first—countability enables us to solve the problem of which

countable sequential spaces are quotients of countable metric spaces.

"

iv
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INTRODUCTION

Certain tamilies of topological spaces contain a member

which-ts of special interest because everv other nfember can be

v

obtained from it in some wav; such a space i{s called universal.Two

kinds of universal 5 ces have been considered so far : those that

X\

-

. . . B A\, .
contain a homeomorphic-copy of ?JJ other members of the family con-

N

sidered and those of which any other member of the family can be

obtained as a quotient. We are interested in spaces of the latter

sort, and we will call them, to0 avoid anv confusion)\ quotient-

univers¥®! spaces.

~

One af the first examples of quotient-univergal aces to

appear in the literature is the Cantor set C which'is universal for
the class of compact méEric spaces. Indeed, ‘Aléxandrpff and Urysohn
proved in 1929 [1 ] that every compact metric space-is a continuous
image of C aqd‘hence also a'qutient of C (since a continuous map’
between cbmpact Hausdorff spaces is also a quotient ﬁaP) . Anéther
exampléﬁof a quoLient—universalVSpace }s the unit interval I 1in R
wﬁich is universal for the famiiy éf compact @etric,connected,locally
connected spaces,also known as Peano spaces.; the well-known Hahn—
Mazurkiewicz theorem (Qee [10] ) shows that evéfy such space is a
“continuous image:bf I and hence, once again, a quotient of‘ I
The results just mentioned can be considered answers in

specific instances to a question which in full generality reads :

"Given a family F of topological spaces, does there exist some



X+ I such that everv Y o | is a quotient of X 7" We propose in
‘this thesis, then, to consider this ruestion tor various tamilies F.

Obviously, we must impos. some cardinalitv restriction an the members

of F and the results will then often turn out to be results ongar-

‘dinal numbers.

Ih_ChapLer I, we Jook at families consisting of metric

spaces and first-countable spaces. For cardinali:v ¢ ,it s known

that the disjoint union of ¢ <copies of a convergent, K scquence is

k)

quotient-universal for metric spaces of that cardinality ; a similar
result holds for cardina]ity <« whenever KR° = ¥ but we show that
it fails for cardinality Ro . However ie show that for each cardinal

x , there is a quotient-universal space for metric spaces of that

cardinality and this space acts also as a universal space for first-

N

countable spaces. . : .

» Chapter II deals with the family of countable sequential
;:j‘ M

spaces. For cardinality ¢ ,the space mentioned above is quotient-
universal for seguential spaces of that cardinality and again a simi-
R,

lar situation holds for any cardinality «. such that «x x . The

univezsal space§ in these cases have the additional property of being
metfic. We want to know if a.simil;? result can be obtainédlin,the
countable case. Since countable metric spaces do HLve a quotient-
.universal space,the question4is then reduced to g is any countébfg&
sequential space a quotieﬁt of some countable metric space ? We
show that the answer is no by constructing a large family of countable

sequential spaces most of which cannot be the quotient of any metric

space of cardinality less than ¢ . This leads to a characterization



ot ¢ among cardinads as the smallest one tor which there is a
metric space quotient-umiversas tor sequential spaces of that car-
. . . Y .
dinality. The same family .t countable spaces enables us to answer \
- . ‘ 1

a question of Michael and Stone in (6 ] doncerning quoti-onts of the

set P of irrational numbersy’

I'n chapter I11, we finish our Nwwf sequential spaces
st g

N . v

i —~ . N\ ‘\’- . ‘
with the cardinalities « .- ¥ for whigh. v . Universal spaces

NS
‘.\(Ko -

e : W :
for c¢ardinalites «x with- 7 = « have-ithe additional _roperty of

- -

being metric ;. a construction analogous to that of Chapter Il shows

that no such universal space exists for cardinalities =« such that

<R° s, leading to the c¢haracterization of cardinals « for which

K =« 'as_precisely.the oneé for which there is a quotient-universal
metric Spaée for sequential spaces of that cardinélity, .
The fealizatidn (in Chapter I11) thét noﬁ every counﬁable
sequential; space is quotient of a countable metric s; ice led to the
problem of characterizing topol?ézkally,those that are.-. To solve }han
problem, Chapter IV introduces‘and';gudies "quasi-first-countable"
and "weakly-quasi-first-countable' spaces. Some of the Aresults
obtained are that countable‘spacesvare héreditarily quotient images
of some countable metric space if and only if_ﬁhey are quasi—first

countable and countable spaces are quotient images of some countable

metric space if and only if they are weakly-quasi-first—-countable

spaces.

We mention once and for all that all spaces considered are

Hausdorff spaces.

Also, any definition, proposition or theorem of topology



“which is used without specia¥ introduction or reference  can  be

tound in  Willard: 110!



CHAPTER

Metric and First-Coun’ abie paces

i L
il

.
;. Quotient maps.

Definftion I : A map U lrom a topological space X onto . Lopolop..d

space Y is called a quotient map it tor everv subset U ot Y , U is

-1

open if and only if 1t (U ) is cpen.
"
Definition 2 IN\UA quotient map f : X - Y is called hereditarily

. . A S
quotient if for any subset A . of Y , the restriction map f: £ 7 (A) +A

is a quotient map.

Hereditarily quotient maps have also been called in the

'

/ .
literature "pseudo-ppen maps" [2 ]. The reason is made clear by the

following theorem./
j
;

Theorem | : Let’ X and Y be two topological spaces and f a con-

.

tinuous map fr¢ﬁ' X onto Y . Then f  is hereditarily quotient it
and only it Qbr ary y_ € Y and A , a subset of X , A is a neigh-
~sborhood of/f—l (yo) in X if and only if £ (A) is a neighborhood of

Y, in %/

4 : Hereditarily quotient maps are obviously quotient maps
while the converse is not true (for an example, see section 1 in
Chapter II ). Closed continuous maps (""images of closed sets are

: : ,
closed") and open continuous maps ("images of open sets are open')

I

are particular cases of hereddtarily quotient maps .
. : \ ///’

K

x



2. Mot Spa s '
J LJopa e <o
Fouroany actric o S et See ne che distoind union
. .
of the ¢ nver. »nt sequences ! Trors easiiv o seen that the naturaj
map ‘i om SeX0 onto X (mappio. peints are chem$elves) s quotient
map. Hence (! 5 denotes 4 consergent sequen » , Sav S ST N s
. n v
. r .,

and {f . is a car inal such that nx”y‘ «,  the disjoint union ot

copies ot 5 provides a quotient-universal space for metric spaces

of cardinality less than or equal tof -« (since such spaces have nuo more

Ra : ‘ o .
than - "¢ = . convergent sequences ). In fact, we wi]] see in

. ' . . - ooy ’ e .
Chapter Il that this space is universal for an even larger class of

-

spaces.

~

Hence, in‘barticu}ar , Lhe'family‘of metric spaces of car-
. . e L ‘
dinality ¢ (and the same holds for cardinality 2 ) has a quotient-

universal space. This Jeads to the following questicns for ‘the

’

B
i -

countable case : .

R
3 o

ch we will

’ N Sy

- is the disjoint union of R, dobies of S (whi

denote by m(*w)') a quotlent-universal space for countable metric
; » . .
spaces ' Y To# : . : . .

v

7

- if not,is some other countable metric sp&ce universal .

The ficst QueStion could.be rephrased as :- is it~ possible

to determine the topology of any countable metric space.using only

‘

countably many of its convergent sequences 7 One could hardly expect

this to be true and in fact, countable metric spaces are rarely

quotients of m(R.) as the following theorem shows :

Theorem 2 : If X 1is a countable metric space,the following are

~



equivalent

(a) X is a quotient of m(}Ko).
(b) X is hereditarily locally compact.

(¢) X is a subspace of m(R,). : ;

Proof : (a) » (b) .. Let us denote by s™ the m~th copy of S in
UK}XO) . Let A' be a subset of X and yg @ non-isolated podint of
A . We want to show that y; has a compact neighborhood in A . Let T

be the set of indices m for which f—l( yo) ¢ ntains the-limit point

of s™ and f—l\ A ) contains a sUbseqdence of s™ .

m -1

Let F=(usS )nf (A) . Notice that T is not

mgr ’
empty since y; is non-isolated. We claim that for some C c F, where
C contains a tail of each S" n f_l( A'), me I, ‘f( C ) 1is compact.
For suppose not ; let y; ¢ f( F ) be such that d(y;,yg)<l ;

let x; ¢ F be such that f(x;) = y; and let o(1) ¢ T be such that

<0 (1) Py ' " -
X1 e S Now since none of the £( C ) , for C as described above,
are co pact, we can find y, ¢ £( F - {Sm;m e Tom < g(l)} ) such
that d(y,,yy) < min { %—, d(yy,yp) } 5 let x ¢ F Ee such that
o (2) Similarly, we

e

f(x;) =y, and let 0(2) ¢ T be such that x, ¢ S
find 'ﬁ\\ Xn , o(n) 'Sugh that .
-y e f(F-u{Shme ,m_ o(n-1)})
’ ) . 1
- dly»yg) < min {—, d(yn_l,yo)}

R YR

So(n)

- X
. l n
Now we define a subset M of F as follows

If i < o(1) , M contains the elements x of st n f—l(-A ) such



thaL0 d(f£(x),vg) < d(yy,y0)-

If o(l) « i< o(é), M contains those x of Si n f_l( A ) such
that. d(f(x),yp) < d(y2,¥0),
and in general,

if o(n-1) < i % o(n) , M contains the elements x of st oq f_l(A)
such that d(f(X),yO)\%‘ﬂ(Yn’YO)

The set M is so constructed that f(M) does not contain
any of the yn 's. Now, sigce ali our spaces here are metric, the map

f : f_l( A j ~ A is hereditarily quotient ( see Chapter II,theorem 2);

clearly M u f_l( yo)- is a neighborhood of f—l( yo) 1in f—l( A)

therefore by theorem 1 , f( M) is a neighborhood of yg . But this is
-a contradiction since (yn)n . N converges to yp in A. This provides
the compact neighborhood we were looking for. ¢

(b)Y 7 (c). If P -+ p in X , where each P, is non-isolated,

then X - { prl ; n € N} 1is not locally compact since any neighborhood
of p would have a sequence with no converging subsequence ( a
sequenéeuconvefgiqg to a suitable P, ). Hence, if X is he}editarily
locally compact, then each point qf X has a deleted neighborhood
consisting of isolated points. Now if p is a non-isolated point of

X , there exiSts‘a néighborhood v QfA p such that V - U is

fiﬁite for each neighborhood U of »p contained in V : simply take

v go be any compact neighborhood of‘ P ‘consisting of isolACed points.'
vIt follows that each non-isolated point p in X has a neigﬂbor£ood

which consists of a sequence converging ‘to p

(c) » (a) . For an example of such a quotient map , il



N . - . . . ¢
A o m(Ry)  and X, s a tixed point of A, map A onto itself
and lor every x « m(X,) - A » Il x is in a sequence S for which
the limit point s in A map  x onto this limit point , otherwise

map x too x.o.otf

Remark . Among countable metric spaces which are not quotients of
m(}{o) , Fhe simplest ( in a sense to be made precise shortly ) is
the metric wedge product A of counLably many conserging sequences,
that is

A = {a} v {@ij;i,j £ N}
with the tdpology in which each 'aij is isolated and (basic) ne}gh—
borhoods of the point a have the form

Uh = {a} U.{aij;j >}

This space is the test space for countable metric spaces which are
not quotienté of m{R,). 1In fact, ‘any_ﬁetric space (countable or
not ) is hereditarily locally compact if and only if it contains no
copy of A . Since A itself is not locally cohpact , necessity is

. obvious. For sufficiency, suppose X is not hereditarily locally
: v
compact and let B be a non-locally compact subset of X and

P € B .a point with no compact neighborhood in B. There exists an

increasing sequence of integers (o(n))n e N such that for any n € N,

1
o(n)

. A . .
of B, say ( ?m )In e N Otherw1s¢, there would be some-n_ € N

such that B(p,———i—) - B(p;%) is finite for every n > o(no);but then

o(no)
1

B(p,gz;—y) would be a compact neighborhood of p in B . Hence, the
(o}

Sequence (o(n))n e N exists and the 'sequences (xi)m c N for n e N

the ring B(p, ) - B(p,ozizij) - contains countably manylelements



together with p provide the required! copy of A

Theorem 2 shows that very feéw countable metric spaces

are quotients of m(?<o; . Thus, the situation which holds tor car-
. - . C ’

dinalities like ¢ , 2 ... does not hold for the countable case.

We must then look at the second question : 1is some other space

.

universal for the countable metric spaces 7
The answer is yes . As a corollary to a result of Sier-
Lo . . . .
pinski , every countable metric space is a quotient of the space Q

of?rational numbers . Spécifically R

\ ) .
Theégem 3 (Sierpinski) : Every countable metric space which is dense-

in-itself is homeomorphic to Q . ‘
Proof : see [9 ]

Corollary : Every countable metric space is a quotient.image of Q

*~

Proof : If X 1is a countable metric space , then X X Q@ 1is a coun-
table dense-in-itself metric space and hence is homeomorphic to Q.
Composition of this homeomorphism with the first proYection of the
product gives the required quotient map. U

‘We,conclude that for cardinalities « such ghat me =K o
as'well as for cardinality Ro , .there is a quotient—uﬁiversal space
for ﬁetfip spaces of' that éardinality. It remains to look at chg case

Kﬁ° > ¥ . For spaces X of such

of cardinalities « >Rs such that

cardinalities, the space S(X) defined at the beginning of this sec-



. . - . LA ) . : C o
tion will often contain converging sequences; the usual disjoint
union of convergent sequences will then have cardinality bigger than

R,

rhat of the space ) amd hence does not quatifv as a universal

S

space.  But it twins out that those cardinalities still have a univer-
sal space and in fact this space will act as a universal space not only

for . metric spaces but also for first-couritable spaces.

"3.First-countable spaces

.«

We show in this section that first-countable spaces of a

given ¢ardinality have a quotient-universal space.

: . *
Let « , be a cardinal and let ( w X k') be the following
set :
» *
(wxx) = {(n,y)smeN, v <x} v{(w,x)}
* )
\ We give to (w X K ) the following topology : every.
point is opén except (w,~x) which has as a neighborhood base the

' -

sets

{(H,Y);UEHO;Y*"K}

as n, runs through the integeré. Now let T(x) be the disjoint union
x ' *
of k copies of (wx«k) . We denote the a-th copy by ( w * « )a
so that
', N . *
\ S TR = g Gy

| . Lk
and .we denote the elements of ( w X o<)Ol by (n,Y)Ol or (w,K)a .

bleafly the. space T(k) 1is first-countable. We have the following ,

theorem :

;

Theorem 4 : Every first-countable space X of cardinality less than or



cqual to k  is a quotient of T (x).
Proof © We may as well assume that X has cardinality « so Jet
X = | X, oK } be a first-countable space. For each'xOL £ X,
n .
Jet ( B ) be a countable neighborhood base at x . We may
a 'n e N Q
) n . ’ . n . n
assume the Ba s are decreasing . ‘Now since ]Bu| < kK, let fa be
n B
a map of x onto Ba . We define f:T(x) - X as follows
. n )
= . f
£((n,7)) .
K =
E(wy) ) = ox

( .
We show that f is a quotient map. First, f is con-

tinuous. For , let 0O = {xB B e T cx} be an open set of X
To show that f_l( 0 ) is open in .T(x) , it suffices to show that
f—l( O ) cdntains a neighborhood of any (w,K)B , B el . Now since

. ‘ a , n .
O is open and x, € O ,'0 contains BBO for some n, € N and since

8

the Bg 's are decreasing, O.céntainé Bg for all n 2 0, - Therefore
f_l( 0 ) contains { (n,Y)8 s n2ng , ¥y <K }. This shows that
f-l( O ) 1is open . Therefore f is continuocus ‘

Now let A <X be such that f_l( A ) is open in T(x)
Say A = { X B eT CﬂKv} . Since (w;K)B € f_l( A ) and f_l( A)
isvopen ,» for some nj , the set {(n,Y)B-; n:2 ng o, Y < < ) is con-

tained in f—l( A) . This implies that A contains Bgo. Therefore

A contains a neighborhood of each of its points and hence A is

open . [] .. .

The space T(x) is then a quotient-universal space for
/ X .

12



13

first-countable spaces of cardinality « . Note that T(x) is in
fact a metrizable space . For example , the following metric d

is compatible with the topology of T(x) :

d( (n,y)_ , (n',y")_, ) = 1 if B34«
1ot g .
d( U"J)K)a )‘ \w)K)B ) = 1 if 8 # a
d( kw,K)a , (H,Y)ﬁ ) = 1 if g # a
. 4 ’
d( (n,Y)Q ) (wy’()a ) - n
d( (n,y) (m,y") ) = 241
P ’ o h n

: s
Therefore T(x) provides also a universal space for metric

spaces of cardinality « . We had one already for X, and « such
that Kx° = k. but not for cardinalities « with RALTIE
' ’ ,//_/ ) .
Remark . The fact that T(Ro) is a universdl space for countable
—_— J -
o

metric spaces while m(X,) 1is not illustrates Lhe superiority of

nets over sequences in the description of topologies ; 1indeed it

shows that it is not always possible to determine the topology of

a countable metric space by giving countably many of its convergent-

sequences while it is always possible to do so by giving countably
S s ' x o

many of its convergent nets ( ( w X x) -{(w,k)}acts as a directed

©

set )



CHAPTER 11

)

\Countable Sequential Spaces -

|

T

o

l. Sequential and\?kéchet spaces
\‘,

The sequential and the Fréchet spaces are two classes of .
topological spaces gpr which the topology can be determined in some

way by the convergent Sequences . More precisely ,

Definition 1 . A topological space X'is said to be sequential

 if a subset A of X -1s open if and only if every sequence conver-

ging to a point of A isg eventually in A

Definition 2 . A -topological space X “is said to be Fréchet if
for any subset A < X , a point is in the closure of“A if and
only if there exists a seqhénce iﬁ A converging to ihis point
> o

Sequential and Fréchet spaces have been inves;igated by S.?.
Franklin in [3] and [4]. He idengified.those ;péées as Being the
qﬁotien;s of metric spaces ;nd the Hereditary quotients of metric
spaces respectively. |

Cléérly » every first-counﬁable space is béth Sequential
and Fréchet ; one of thefsimplest‘exaﬁples of a nbn—first—countable
Fréc@et space is‘the quotient of ‘the disjoint gnion'of ¢ untably
,many cﬁﬁvergent sequences obt§ineq.by identifying the limit points.

A Fréchet space is always séquential but the converse is

<
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not true , as the following example shows . Franklin shows in [4 ]
) ' .
that a sequential space is Fréchet if and only if it is hereditarily

sequential.

Examglé . Let f :Q - Q  be the following ﬁap

f(x) = x if x # n for all n e N
1
f = =
(n) o
Let QO = f(Q) and let us consider on QO the quotient topology\
induced by f . With this topology , Qo is a sequential space which

is not Fréchet (and also, f is a quotient map whicﬁ is not here ‘-
tarily quotient.y. Indeed,let

A = Q ”,<ﬁc§1 in,nt1[ ).
Then 0 ¢ A ;.HoweQer , NO sequence of points of A converges to 0
For suppose (x )p cN © A and xp -+ 0 thén, we see, first that
fdr each n , only finitely many of the xp 's are in Q n Jn,m+1[ ,
otherwise we would.have a subsequernce converging to O and‘lying in
jn,n+l[ which.is impossible ;.now , ‘'since only finitely many ‘of ' the.
xpts are in Q n n,otl( , Ehen

7l v 3,0 0 JnmHl - Geip e B3

provides. a heiéhborhood of O conéaining no point of'the sequence,
cOntradi;ting the fact that the sequence toﬁverges to O

Theorem 1 below shows that Q -is-sequential
Theorem 1 : Evefy quotient of a sequential space is sequential
‘Proof : Let X be a sequential'spéce and f : X+ Y be a quotient

map of X onto Y . Let A be a subset of Y such that every
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sequence donvegging te a point in A 1is eventually in A . Suppose
__l ' )
X, XO)L t "(C A) . Then , by continuity f(xn) - f(xo? ? A and
4 f . : : . . .
hence ( (xn) )n e is eventually in A ; thlS'ShOWS that (Xn)ngN

is eventually in f—l( A ) , and since X 1is sequential , then f_l(A)

is open . Now , f being a quotient map , it follows that A is

open . L
The following theorem is proved by Franklin in [3 ]

Theorem 2 : If X and Y are Hausdorff , X 1is a Fréchet space
and £ : X » Y s a:auotient map , then Y 1s a Fréchet space 1if and

only 1if f 1s hereditarily quotient

.
v

2. Countable sequential spaces

1

For any spaée X , let g(X)‘be:, as in Chapter ° , the
di;joint union Jf the convergeﬁt sequences of X . It is e;sily-
seen that the natural map from S(X) onto X (mapping poin.s onto
themseLves ) is‘a quotient map. if and only if X 1is sequential
Hence ,.if kRe= ¢ , the disjoin;‘ﬁnion of"x; copies of S (we had
s = { % ; n €N}y {01} ) provides a quétient—univergal space

M : cy
for sequencial}spaces of cardiqality léss than or équal to . and
this unf ersal space has the additional property of being metric.

Then , iﬁ partii:lar , the family of sequential spaces

of cardinality less than or equal to ¢ (and the same holds for

cardinality 2C') has a Qquotient-universal metric space . As in the
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case of metric spaces , this leads to two questions for the

countable case
- .

- is m(?*o) a universal space for countable sequen-
tial spaces 7
- if not , 1is some other countable metric space uni-

versal ?

The answgr to the first question is of course , no , since
we saw in theorem 2 of Chaptér I that even metric spaces were rarely
quotients of m()ﬁo) . Now ; is somé,ocher countablk‘metric space
universal for the countable sequential spaces ? We will sth that
rhere is no such space by constructing countahble sequential spaces
ﬁhat are -not quotients of any countable ﬁetric space ( thougﬁ each
of them will be a quotient of a separable metric space )

. ’ * -
The spaces QA ’

o

Eor any subset A of R 3 let QA be the folloéing sdb—
-set of Rz : .
QT Qax (Q-{0 ) UAx{O}
Noy let. Q* be tﬁe set\ Qx (Q-{013}uvui{e} where e is any
point mot in Q'x'( Q = (o }) . Let Q: be the set Q with the
quotient topology determined by the map'ovaA onto Q* which is
ﬁhe identity on Q x k Q - { 0:}) and maps A { 0} onto the

. . Sk ~
point e . In other words , QA is the space obtained from QA by

idenﬁifying. Ax { 0} to a single point
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The spaces QA as A runs through the subsets ot R
are countable sequential spaces . Thev are actually Fréchet -
spaces . However not all of them are quotiénts of countable

metric spaces.

Lemma 1 : Let X and Y be Fréchet spaces and let r o X - Y
be a here itarily quotient map from X onto Y . If ( yn\)n ) ;

is a sequence in Y such that v —+y ¢°'Y , then there exists
n (0]

b ° f . I3
a subsequence ( yJ(n) )n c N © '( Ya )n .y ° pbolnts (xo(n))n - N
: -1
d in X h - , f
an X, in such that xo(n) xo xo_% (yo? and
f
(xo(n)) Yo (n)
Proof : Since f  is hereditarily quotient , then
-1 : '
£ f ({yn;n e N} u {yo}) > iy, in g N} y {YO}
is a quotient map . Now suppose that the conclusion of the lemma

does not hold . Then if x ¢ £ (y ) and (x) ¢ £ 5({(y )tuiy } )
e - o "o n n o

is‘a:sequehce convgrging to xO , We must have 'f(xn),— yovfor all -
n gfeater than a certain ingéger‘since we must have f(xn)_ .(xo) «
and since we assumed the conclusion of the lemma to be false
Therefore , f_l(yo)_contains a tai% of every Sequehce of
f'l({(yﬁ)} Q{yo}) converginé to an element ofvg—;(yo) and henc%
f—l(yo) is open‘in‘ f—l( {yn;nvg N} u {yé}).i' Since f is a quotient

map, this would imply' that {yo} is open in'{yn;n e N} y {yo} which

-

is néc true‘. Théreforevthe.lemma holds . o
. ,
Theorem 3 : If QA is a quotient of a countable metric space , then

A is an .Fo subset of R ( that ig , A is a union of countably

- o
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many closed subsets

of R )

. *
Proof : Suppose that there is a quotient map f of M onto Q\
B ¢
where M is a countgble metric space . For each p: A, let
o= (x 2 X ) be a sequence in Q (Q - {0 ') such
P Pyl p,! d '
that
X - (p,0): - min {l ,/ X o= {(p,0y} )
p,n n p,it—l !

Let” q be the quot

let =

e Zp,n q(xp’n)
*

in QA . Now np

a subsequence if’

bp £ f~l(e) and a s

' *
ient map of QA onto QA

and let . be the sequence (z ,
p p,l

equence T = (s
p p

Z

p,2’

For each p and n

S )

ce by the lemma , replacing n_ by

|%

cessary , we may say that there is some

such that
T > b and
P P _
fix =n that 1is f(s )y =z for all p,n )
) P) p ( ( p,n p,n P
Let f-l(e) = {xa:n £ N} , and for neg N , let
A peA ;b =x}
n p n
- We claim that the clésure in R of each A is con-
tained in A . Suppase not ; then some Arl contains a sequence-
(pi)i e N with no cluster point in A . The sequence npi cop— .

verges to . e for each i and the sequence rp ‘converges to

X for each i

i
A diagonal sequence (s ,

n s n.’
P1s0y Ppoly

e )

with n, 2 k for each k wiil then converge to X and hence

k
(z
(

n.'? n
Ppofp Py

X n » X 0’
Pp»fy Ppally.

) converges to e . 'Therefoge

) must have a cluster point in Q

A

o

and in fact

19



in A - 0O - . But

]
X - (p, , X = (p, .M - e
Pk'nk }k p. Lk k k ‘
So any c¢luster point of (x) N Y in A - ¢ 0 would also
. '[
Pyt
be a cluster point of (pJ,O)_; (pZ’O)' ... ' which is impossible
by choice of the by 's . Theretore the closure {n R ot each A
n
is contained in A and hence A = UNAIA which shows that A is
neN 1
an’ Fj subset of R ;
[}
Corollary : 1If P is the set of irrationals of the real line ,

*
then QP is a countable sequential space which is not a quotient

of any countable metric space

Proof : 1Tt is a very well-known fact that P 1s not an FJ subset
of R . See {or example [ 7]

The conditdion that A be an Fx'subset of R 1is in fact
c )
. ' S *
not only necessary but also sufficient to imply that QA is a

quotient of a countable metric. space .

' : *
Theorem 3' : If A 1is an FJ subset of R , then QA is a quo-
tient of some countable metric space . g
Proof : Let A c R be such that A = y_ F where each F, is a
—_— : neN n . n

closed subset of R . Replac 2 the Fn_'s by their intersection

~with bounded intervals if necesziry , we may assume that each Fn

\

. *
is compact . Now , Q

A is clearly the quotient of the disjoint

*
union of the QF obtained by identifying all copies of a give&
. a ‘

1
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point of Q x ( Q- { 0} ) and identifying all copies of the
point e . Since a disjoint union of countably many countable
metric’spaces is a countable metric space , it then suffices

. * ' D ,
to show that QF 1s a countable metric space whenever the set
F is compact . But since a compact subset of a second-

N - : *
countable metric space clearly has countable character ,then the
*

point e in QF has a countable base of neighborhoods and

*
therefore Q is a second-countable regular space and hence’

F.
a.metric space which is also dense-in-itself . The theorem of

. . g *
Sierpinski mentioned in Chapter I implies that QF is homeo-

morphic to Q . 0

We conclude from theorem 3 and its corollary that no
countable metric space can .be quotient-universal for the countable
sequential spaces . We show now that even if we remove the requi-

rement that our universal space be metric, we still have a negative

answer
Let us define an equivalence relation on the subsets of
R by .
Tk ' : *
A = B if and only if QA is homeomorphic to QB
Theorem 4 : There are 2¢ equivalence classes for the relation =
Proof : Since any two subsets of R . have different families of

% A subset A c X is said to have countable character in X if
there is a countable family (U_) of open sets containing A such

that 1f V is an open set conta%ning A , then for some no,AcUn cV.
, : o)

<
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x .
neighborhoods , all the topologies we determine on Q by choice
of subsets A of R are distinct . Hence , these are 2C distinct-
* .
topologies on Q . Now , if A ¢ R, to any B equivalent to A

' ‘ * *
there corresponds a homeomorphism between QA and QB which | is

* *
a map from Q * onto Q ;5 this correspondence between sets B
‘ T ’ * * )
equivalent to A and maps from Q onto Q 1s one-one . Since Q
. . . * . *' N
18 countable , there are o maps from Q onto Q and therefore
there can be at most ¢ sets B  equivalent to A . Since’ each equi-

c

vValence class contains at most ¢ elements y there must be 2
equivalence classes . g '
' c , *
Corollary : There are 2 non-homeomor phic spaces QA as A runs

through the subsets of R .

— . , ,
Since there’ can be only ¢ maps from a countable sequen-
* *
tial space onto the set Q , there are at most ¢ spaces QA that
can be quotients of a given countable sequential space . This shows
that no countable Sequential space can be quotient-universal for

the countable sequential spaces.:

~
3.Quotients of the space of irrationals.

In [6] , Michael and'Stone'establish tha every metric

space which is a continuous_image of the set P of irrationals is
also a quotient of P - The question is raised there whether this

result can be extended to non-metrizable regular Tl images of P ‘ , //\\:



that are also quotient of some separable metric space : that is ,

if X is reguiar and Tl , X is a continuous image of" P and X is

a quotient image of some separéble metric space , then must X also
. *

Le a quotient of P ? The spaces QA will provide the negative

answer

c ‘F;rsc note ghét every countable space is a continuous

image of P éince every countable space is a continﬂous image of’

the countable discrete space and the countable discrete space is °

a continuous iﬁage of P(fpr =war.ple,collapse each interval ]n;n+l[nP»
' *

of P to a point )'. Therefore each space QA is a regular Tl space

whieh is a Continuous -image of P and also a quotient of some sepa-

¢ \/M

rable metric space (namely QA ) . However ,
. . : c .
Theorem 5 : At most ¢ of the 2 spaces {QA 3 Ac R} can be uo-

tients of P

'

. .
Proof : Let S be the collection of spaces QA that are quotilents

©
(o

] * : ) .
of P . To any QA in § , we can associate the couple w

-1,
£ , £ -1
CE7C) s £y gl )
. . : * .
where f is the quotient map of P onto QA .- This correspondence
is clearly one-one . So it suffices to show that this couple can

°

take at most c¢ values ; f_l(e) is a closed subset of P and hence

f—l(e) can take only c¢ values ; now, for a given closed subset A

of P, if A = f—l(é), then f/P.— A is a continuous map T :z2tveen

N * -
P - A and QA - {e}. Since P - A 1is separable and Hausdciff , such

maps are determined by'their values on a countable dense set and

hence , there can be at most ¢ such maps . Therefore

23
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( f_l(e) , f ! ) can take at most ¢ différent values. 0
/P = £ " (e)

In fact , we have a more precise answer concerning which

.k
spaces QA are quotients of P

N .
Theorem 6 : QA is a quotient of P if and only if A is an analy-

tic subset of R

Before we prove this theorem , we give the necessary pre-

liminaries on analytic sets

.An%%ytic subsets of a given complete ﬁeparable metric
space M are defined to be contiﬂuous images of the Borel sets ana
_Since every Borel subset of such a space is known to be a continuous

image of the set P of irrationals , analytic subsets of M can
be thought of as those subsets that are continuous images of P
Countable unions and intersections of analytic sets are analytic

’There is an equivalent definition for ahalytic sets ‘and
tis is the one we will use to prove the necessity part of our
_theorem . First , we must define :hé‘notion of "A-operation" -.
Definition . Let kAk' | } be a system of sets defined for each

. lkz k . - , . B
finite sequence kl,kz,...,kn of positive integers. The set
R = . u

_ n ,
klk2"'kﬁ"n—l Aklkz..,kn

is'called the result of the A-operation applied to the system

{Ak } . Such a system is called regular if _
gee t Iegular \

. - :
Aklkz...kn+l Aklkz...kn



Theorem 7 : A subset A of a éomplete separable metric space M
is analytic if and only if it is the result of the A-operation

performed on a regular system of closed subsets of M

.
Rt

Proof : Tor a proof of this theorem and more de?ails about analy-
tic sets , see [ 5] or [8]

‘.

'Proof of theoreém 6

\\Z\

Sufficiency is easy T if A_vis analyticr; then QA (as a .
union of two analytic subsets of. R2 ) is an analytic subset of Rz
and henée is a continuous image of P . By lhe'cheorem of Michael
and Stone ,’QA is then a quotient-of P . Since Q: is a quofient

of QA ; é: is a quotient.of P

Necessity : Let A.c R. and suppose f : P — Q: is a quo-
" tient map . We show that A x {0} 4is the result of the A-operation
appl.-. on gome regular system of closed subsets of RZ
We fix on P a ﬁetric with respect to which P .is com-

plete and this is the only metric that we will use in the proof

Let (Bn)n e N be a family of open sets of diameter less

than or equal to 1 which covers P (using the Lindel8f property

for example ) . For each Bn" let‘(Bnm)m c N be ‘a family of open

sets of P contained in Bn with diameter less than or equal to %

and which covers B_. Inductively , for each B , let

n". n.0....N0

12 k _
(Bn 0 ...n m)m e N be a family of open sets of P such that
172 k

-Bn n n ﬁ “ Bn n n

B L s S R R

-diameter (B ) €1

n,n,...on

17277k k+L

A

[



—mUN n A, m n.n
D 13 JLET Y 1My
Let C = £ "(e)
If B n C#¢,
Dy, . .en
let F = Cl_ o(f(B - C) ) n (Rx {0}
nln2"'nk R ’ nan"fnk
If B a L N ¢C =¢ ,
17277k
define FoL n‘ = b h
17277k
The family {F_ sk e N, n, e N} 'is a regular
NN, . .0y i

family of closed sets of R x {0} . We claim that A x {0} 1is the

result of the A-operation performed on the system {F "} of
_ ’ Comyn,..ny :

sets , that is

A x {0} = U
) 0N, ...n k=1 nln2 o
1. A x {0} < U E F -
] . nlnz...pk... k=1 nlnz...nk
Let X, € A x {Q} .. Let (xn)n e N be a sequence of
. , . *
Qx (Q-{0} ) converging to Xy .Then , in QA s X re . Since

“* - » .
£ P > QA is hereditarily quotient ., there exist (yc(n))n ¢ N c P

and-yo e C = ffl(e) such that

\ = Yo (n) > Y and
" E0m)? T X m) .

(by the lemma 1l of this chapter ) . Since the family (Bn)n . N
covers P , let n, be such thgt Yo € Bﬁl . Inductively., if n%,nz,..._
o have been chosen so that Yo € Bn n ’ then find ooy such

» ] [LVTEE »
that y_ € B by using the fact that the family (B )

o DNy ey ‘ | ny ... m msN
covers B . . Now each B is open and contains_yO e C;

L Ny, ...y |
hence 1t contains a tall of the éequencg <y0(n)) and since X5 (n) Xy

26
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D>

in R” , then
% 3 Cle(f(Bnan:.‘nk - c? ) n (R x {0})
Hence for this particular thoice of n15n2""’nk’f" ,
o kEl Fnln2 ny —
Z. n, U.nk kgl Fnlﬂz R < A FO}“:
Let X, € sz Fnln2"'nk and suppose X d‘A x {0} . We

seek a contradiction We have

X, € Clpo(£(B -C) ) n (R x {0})

o} FLUTERL N
Therefore in each f(B - © = C) , there .is a sequence converging
N nyn, .. .0
to x_ 1in the sense of R Say (Xk ) c f(B - C) and
o] n ‘ne N nlnz...
xi +,§o . Since f(Bn n o C) ¢ f(Bn n 0 = C) , by taking
12 ’ 1727 k-1 |
some kind of a diagonal sequence , we -can get a sequence (xn)n c N
such that ~
) . 2
- x +x (in R7) and
n [e} . )
"~ x_ e f(B"- - C) for all n > k .
- “n n.o,.. :
. | 172 ,
(For example , take
' 1, .
X € (xn?rl e N ~with d(xl,xo) < 1
. 2
x, € (x) : 1
2 n nle N with .d(XZ’%a) <3 4
X € (xp) with d(x ,x ) % 1 s )
p n‘n € N p’“o P )

- C), let v € B -~ C be such that
L n., n -

" Now since ¢ f(B
*k nn,...n N

2...nk

f(yk) = X Then (yn)n o N isa seguence in P sgch that
Yo € Bn n n for .all n > k (since Bn : c B )
ILTXRRL ) 4 ln2"'nk+l nlnz..l.nk
~ Sincé the diameter of B is less than or equal to T

;o Mpfpee



then (yn)n is a Cauchy sequence . P bein< tomplete with the metric

e N

considered , let Yo € P be such that Yo -y Since f is continuous ,

o]
. ‘ , *
f(yn) -+ f(yo) u Bu; f(yn) =X, and (xn)n ¢ § (¢S mot converge in QA
since X, X in the sense of R2 and X ¢ A x {0} . Therefore we get

a contradiction .

We finally conclude that A x {0} is an analytic subset of R’

and hence A is an analytic subset of R . []
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CHAPTER III

. 55%uential Spaces of Higher Cardinalities

We have eBtablished in the previous chapter that there is
no countafle metric space which is éuotient—uniVersal'fér the coﬁntable
éequentialAspaces_while we know that such a space exists‘for the>cor—
responding probiem in cardinalit? ¢ . We n 'mok‘at the same
questién for cardinélities less than c if the or uum hypothesié
does not hold . ‘And finally , to complete the . uay we will look at
cardinélities bigger than ¢ for which.the disjoi* v, on of convergent
sequences of a Sp%ge has cardinalitfbgigger than that £ L = space

'
b

and hence does not qualify‘as a universal space

1. Sequential spaces of cardinality « with Ko< x < ¢

* v :
The spaces QA are as constructed in the previous chapter.
N ‘ : .
Theorem ‘1 - : QA is a quotient of a metric space of cardinality «k < ¢

if and only if A is a union of «x closed sets of R .

Proof : The p%oof can be cgbied exactly.from the.proofa of theorems 4
VA' of Chapter II ex;ept‘that f_l(é) will now be written és {xa;a‘< K}
inscaa@ of {xn;n e N} -and the sets An‘ will be ;eplaced by the éor—
feséonding sets an/, a <K, with

. Aa = {Ap e A ; bp =X }

29



Proposition : There exists a subset A, of R, which is not a union

of less than ¢ closed subsens of R

Proof ihere are c¢ uncduﬁtable ciosed sets in R ; so let
{COL ; a < cl be those sets . Let p, " and q; be any two distinct
elements qf Cl . If- pB and. a4 have been chosen for 8 < a such
that Py € CB','qB ngB and.all of them are distinct , chen_éince'
{pB ,'qB ; B < a}. has cardinélitybless than .c and sincé any un-
. countable closéd set of R has cardinality ¢ , we can pick pa € Ca,
a, € CG. such'that P, # a, and
qu{pg,qs;'8<a}
qud{p8,98;§<a} |
Let‘ AO‘=‘{p 3 a-< c} . 1If A.o were a union of K closed sets of’

R ( x < ¢) , then one of them would have to be one of the Ca's . But

it is impossible since for any « <Kk, q, € Cu and q, ¢ Ao 0

' * : : :
Corollary : - Q is'not a quotient of any metric space of cardinality -
A . v : ,

o
less than ¢ . N

These results léad to the following theorem .

Theorem 2 : ¢ can be characterized among cardinals as the smallest
one for which there is-'a metric space quotient-universal for sequen-

tial spaces of that cardinality

2. Sequential spaces of cardinality k > c

‘We already know that if Ko = , the disjoint union of ™=k

30



copies of -§ = {i-; n eN} yu {0} acts as a quotient-universal’ space
for sequential spédes of that cardinality . So we study the case
KR' > K

o
For x > ¢ with & > «x , let D(x) be the discrete space

of cardinality « 4and let B(x) be the productyof countably many

(4
copies of the discrete space , that is

v

B (k) = oy LD(K) )

Being a countable product -of metric spaces, B(x) 1is metric.
It haé c;}dinality-_Kx° and it has a dense subset of cardinality «
Indeed , let Xy be a fixed elemenﬁ of D(x) and let KkK)_be the set
of all points of B(K)p_for which all th finitely many cOordinatés
are equél to X ThiéTSet is dense in B(x) since any element
(yl,yz,.t.,yn,...) .is fhevlimit of the sequence

(yl,xb,xo,..u,xo,...)
(yl,yz,xo,. --,XO,...)
- A . (yl,Ayz,---,yn,xO,...xo,‘...’)

’

>

of elements of K(K)'; Furthermore , K(k) has clearly cardinality «

B(k) and K(x) will play the same r8le as R and Q res-
pectively ﬁlayed in the case of cardinalities smalier than ¢ ..Namely
. . * : - . . ]
let K(x) = K(k) x (K(xk) - (xo,xb,xo,..),xo}...) ) u {e} where ‘e 'is-
-a point not in K(k) . For awvsubset A of B(k) , let K(K)A be

the set )

K(K)A 5_ K(K) x (K(k) - (XO,XO,---?XO....)) u (A x (xo’xo’7'7’xo"';))



; * *
and let K(K)A be the set K{(x)  with the quotient topology determined
* .
by the natural map of K(K)A onto K(x) (mapping points of
K(x) x (K(x) - (ﬁo’ﬁo""’%o"")') onto themselves»and A x (xo,xo,.
onto ‘e).
As A runs through all subsets of B(K)‘, we get a'family

\xo . * .
of 2" sequential topologies on K(k) and actually those are Fréchet

topologies

We prove,as in the previous . case, that not all of those spaces

can be quotients of a metric space of cardinality ’« . : .

 Lemma : If K is a compact subset of a metric space X , then K has

countable character in X

¢

Proof : Let us denote by B(K, —) the set K enlarged by i- ,that is
B(K,;D = {xeX} d(x K) < —}
We claim that the sets B(K,%) form a base of neighborhoods of K,

that is,that every open set containlng K must contain one of these.

- Indeed , let U be an open set of X such that K < ‘U . Since K is com-
pact and and X - U is closed , then d(X,Xx - U) 2 %— for some n € N.
. ) 5
It is then clear that B(X,=) < U . O
o .
S « o . a
Theorem 3 : K(K)A is a quotient of a metric space of cardinality

less than KR° if and only if A 1is a union of less t''n €*° compact

Y

subsets of B{(k)

Proof : - Sufficiency : Let A = y_ F with 1 <~KK° , and Fa compact .

a<T a

. %
Cleé?!y , K(K)A is a quotient of the disjoint union of all‘K(K)F 's,

aJ< T ,(mapping all copies of points of K(k) x (K(x) - (xo,xo,...) )
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&

onto themselves and all points of the sets FQX (x '.) onto e.

o' Xgr

. *
Hence 1t suffices to show that if - F is compact, K(K)F is a quotient
of a metric space of cardinality «.
» *
We show in fact that K(K)F is itself metric, using the

general metrization theorem. By the lemma above, F has a countable

base of néighborhoods in K{x) X(K(K) —(xo,x' c);

o0 .)) U Fix (xo,x

o’

let (B)) be those neighborhoods and we may assume that they are
n’ neN ‘ P .

decreasing. Now, 'K(K)F is mgtric and hénce has a Oilpéélly finite

Pase, sgy {un}neN where Un is a locally finite family. Now, if for
o %

any Ue U we define U =1U - {F x {0}} and ¢f we define

* * o ' * : : *

U ={uvu;uvueldl}u{B}, then u U 1is a base for K(x)_. . It

n : n n neN 1 F

. %
follows for a classical compactness argument that Un is also locally

, *
finite and hence K(K)F 1s metrizable.

Necessity : The proof of the necessity is very much like the proof
. m .
of the corresponding theorem in the case of cardinalityjﬁo once we

realize that in theorem 4 6f Chapter II , besides proving that_the

.

An 's h;d their closufe in A , we—tould have proved at the same. time
that Zg is also compact . This did not make a'dif%erence then since
in R , é—compact sets and FO sets are the same . Bﬁt it does make a
difference now and we do want the stronger conclusion about compact-

ness of the corresponding séES‘r So , as before , for each pe A ,

beed))

.. ) be a sequence in K(K)X(K(K)—(XO,XO

‘we let 'o = (x
P P_)

such that

1°%p, 27

. . l . .
d[xp’n,(P,(xo,xn,.f.) ) 1 < min{;u d[xp,n—l’(p’(xo’xo"") ) 1}
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*
Let q be the quotient map of K(rc)A onto K(K)A . For each p,n,
let 2 = x ) and let 9 be the sequence (2 , L wee )
p,n a p,D P : d pyl’7p,2
*
in K(x) . Now np + e ., Hence , since f 1s hereditarily quotlent,
replacing np by a subsequence if necessary , we may say that there
-1 : -]
is some b € f e) and a sequence T_ = (8 , 8 pess) dn £ e)
P ( d p - 1082 (
such that
-1 _=b " and
p P ,
- f(1 = n
P) P

(by lemma 1 of Chapter II ). Let f—l(e) = {xa ;oo < 1< Kgﬂ_and for
a < 1,let Aa = {pe A, bp = Xa}
The sets Aa are the analogue of the sets An in the
countable case . Now , in ofder to show that X; was contained in A
in the proof of theorem 4 (Chapter II)F, we supposed there was a
sequence invAn.wich no cluster pqint in A and prodﬁced a cluster point
in A for that sequence , hence a contrédiction ; 1t is important to
note that we did not need to assume anything about that sequence to
start with . Hence , 1f we take any sedﬁence contained in Aa , using
the same argument as in theorem 4 ;.we can show that the dequence has
a clusﬁer Rgint in A . This shows both that A 1s compact and,X; c A.

0

Therefore A is a unionm of 1 (<Q(’) compact subsets of B(x). [

Proposition : B(k) ts not a union of less than "o compact subsets.

Proof : Suppose B(x) = y_F (t < KN°) where  F isvcompact for

— adt “a a

any a . Then at least one Fa,say Fa ,must have a cardihality bigger
o R '

than ¥ . Now since F(1 is compact, then ﬂn(Far) is finite for any

O O



‘n € N (where T denotes the projection of the product on the n-th

coordinate ); but Fa c nl(Fa ) x ﬂz(Fa ) x ... o0x nn(Fa ) ... and

: o} o w2 : e}
the set on the right has cardinality 2 ° = ¢ < k , which is a contra-
diction . Thi: shows more generally that no subset of B(x) with car-
dinality e can be a union of less than Kx;_compact sets . ]
Corollary : There is no duotient—universal metric space for sequential

spaces of cardinality k ( RSATIEN K )

Proof : The proposition above together with theorem 3 Shows that

R :
K(K)B(K) is not the quotient of any metric space of cardinality

less than Kxﬁ 0

"

°=K

Finally , we can say that thé cardinals « such that «

-

are characterized among cardinals as precisely those for which there

is a quotient-universal metric space for sequential spaces of that

cardinality .



'CHAPTER 1V

Quasi- and Weakly-Quasi-First-Countable Spaces

1. Quasi-first-countable spaces

In studying the notion of first—countability , one often
gives as anvexample of a ﬁon—first—counﬁable space, the q;otient of
n(R,) obtained by identifying the limit points to a point-ko , that
is the disjoint union of Ro copies o; {%—; n e N} u {0} in which we
identify all coples of O to.a point Xy - However, the way in
which this space fails to'bé first-countable is not too drastic be-
cause the space still carries somevnotion of countability : 1indeed,
at x_ -, there are countabiy mény branches on each of which we can

fix countably many ts (namely the tails of the sequences ) such

ruct a neighborhood of X5 > it suffices to pick one such

set on each branch . Another similar space is the quotient of Q

R e

obtained byAidentifying Z to a'single point . Those spaces are

much "gloser" to first-countability than spaces like [O,l]C (or for

that matter any uncountable product of first-countable spaces) and
*

*
QP for example,where QP is as defined in Chapter II. We will call

such spaces "quasi—first—countéble spaces’

Definition : We say that a space X is quasi-first-countable at X5 e X

if there exist countably many countable families of decreasing subsets

N .
of X contalning X such that a subset V of X 1s a neighborhood

36
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;
of X in X 1if and only Lf V contains a member of each family

We say that X 1is quasi-first-countable 1f it is so at each

of its poian

Quasi—first—éountability at X is an intérmediate property
between having x(xo,X) =N and X(xO,X) = ¢ , where X(KO,X) is the
smallest cardinallty for a neighborhood base at xo .  Not every space
with X(xé,X) = ¢ 1s quasi-first-countable ; for example Q; is a coun-

table not quasi-first-countable space (see theorems below)

Remark : The notion of quasi—fifst—councabiiity retains enough of
the idea of first-countability to insure "sequentialness" and in fact

"Fréchetness" , that is

/7

Proposition : Every qu :i-first-countable space is Fréchet

Proof : Let % ¢ X-agd let (Bn) be the families provided t-
— o , m'me N , v :
quasi—firét—qountability at x, . There exists n, € N such that each

B;O meets A ; for otherwise , for aﬂy ne N, we could find o(n) e N

such that
‘ n
B A =
o(n) " @ '
. . n - :
Now by quasi first—?puntability' N Bo(n) is g neighborhood of X
. n . ) ) -_ .
and ( ndy Bo(n) ) n A ¢ contradicting the fact that xQ € A, Hence

there exists n_ such that B;O nA # ¢ for all me N'; let X € B; n A.

Theg (xm)m ¢ N converges to xorsince any neighborhood of X, contains

one of the Bz 's . Therefore the space is Fréchet . [

In previous chapters , we saw that some countable sequential
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spaces were quotients of countable metric spaces while some others
were not . The notion of quasi—firét—countability and as we will

see later,of weakly-quaéi—first—countability , Came up as we were
i

~

trying to identify which countable sequential spaces were quotients
of a countable metric space by characterizing'interna;ly the topo-
logy of such spaces . Theorem 1 and more completely theorem 4

give the answer to that problem

Theorem 1 : A countable space X 1is quasi-first-countable if and
only if it is a hereditarily quotient image of a countable metric

space

. oy ,
Proof : Suppose X 1s countable and quasi-first-countdble . For

be the families provided by quasi-first-

each x , let )
. ) m m e N

‘couhtability at x . Let YU be the set X provided with the

discrete tOpology except for the point x,which has as a base of

X,N

neighborhoods the family (Bx’n) Then Y is first-
. i : m me N .

countable , countable and regular , and ﬁence metric . ‘ -
"Let Y be the disjoint union of all YO r s for x e X
and n'e N-. Then Y 1is.a countable metric space
Let f ©be the natural map of Y onto X ( mapping a
point onto itself ) . Then f 1s continuous : for, let O be open
' -1 X,n -
in X ; let £ 7°C0) Y #¢ . If xe O, then since O is open,

X,n

-0 contains one of the Bm 's for some m ¢ N; hence f_l( 0) con="

tains a neighborhoad of x 1in v*"  and clearly 1t contains a
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X,n

neighborhood of each of its other points in Y Hence

f_l( 0.) n ¥ g open . "~ Therefore f_l( 0 ) is open and hence f

is continuous.
"The map f 1is also a quotient map : for suppose f_l( 0)

is open in Y , that 1is f_l( 0)n YO! i open for all x ¢ X and

X,n :

neN. If xe O, then since f—l( 0)nyY is open ,

=1 X,n , X,n :
£f7C0 ) n ¥ contains a Bm’ for a certain m ; hence O contains

Bz”n;;,this is true for each n and hence s b& quasi-first-countabi-

lity, O is a neighborhood of x . Therefofe , O is a neighborhood
of each of its points , that is O 1is open . It follows that £
is a quotient map and since X is Hausdorff and Fréchet ( by quasi-

first-countability ) , f is hereditarily quotient (see theorem 2 of

Chaptler II )

Now for the converse , let us assume that X 1is a heredi-

tapily quotient image of a couhtable metric space M ; let f : M > X

| 1 )

be a quotient map . Let f "( x ) = {‘xl,xz,...,xn We want to

show that X 1is quasi-first-countable at x ; let (C;):=l be a

" countable base of neighborhoods of M at x_; let

n n : \:h}
BY = £(cCh)

Then the (Bz ) are the required'familigs'& For , if O 1is a

me N

neighborhood of x , then for any n , there éxistg o(n) e N such

that

R o : : Ql
CO(n) < £700) _

/yad then 0 = f o f_l( 0 ) contains -Bg(n) for any n ¢ N .

Conversely , 1f O contains some Bg(n) for all n ¢ N, then f—l(O)

- .
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contains C:(n) for all n and hence f—l( 0 ) is a neighborhood of
fl( x- ) . This implies that O is a neighborhood of x since f is
hereditarily quotieﬁt .0

Remark : The result cannot be improved , in the sense that "heredi-
tarily quotient” cannot be replaced by "quotient" . Indeed , the

example given at the beginning of Chapter II»of a sequedtial spacé
not Fréchet is countable and given as a quotient of - Q . However ,

being non-Fréchet , 1t is not quasi-first-countable

N

2. Quasi-first-countable spaces as quotients of metric spaces
. . Y N . .

In this section , we look at the following question
.

Can the quasi-first-countable spaces be characterized as the
quotients of metric spaces by some particular kind of maps ?

Definition : Amap f : X » Y is said to have countable frontier

if for any y e Y , fr(f_l(y) ) is countable . (We recall that the
frontier of a subset A of a space X is defined as the closure>of

A in X minus its interior.)

'

Theorem 2 : The quasi-first—countable spaces are precisely the
images of metric spaces. by maps that are hereditarily quotient and

- have countable frontier

Proof : Suppose X 1s quasi-first-countable and let (B:;’n)m c N
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X,n

be the families provided by this property . Let Y be the set X

with the topology in which points are open except for x which has

X,n

as a base of neighborhoods ﬁhe family (Bg’n) Y is a metric

me N’

space (for example the following metric is easily seen to be compa-
. f.ox,n A
tible with the topology of Y
- d(y,x) = % where m 1s the smallest integer
such that y ¢ Bz’n
1 4
T Ay hyy) = dly X))+ d(x,yz)
for yl,# x and Y, # x ?

We define the space Y to be the disjoint union of all

y*on 's and we consider the natural map f : Y » X . Arguments

similar to those used:-in the proof of theorem 1 show that f is a

quotienﬁ map and hence hereditarily quotientvsince X 1s Fréchet
v . .

- . i -
Furthermore , fr(f ;( x ) ) is cBuntable since fr(f l( x) ) is
: ' X,n - &
formed by the point x of each Y’ "as n runs through N

Conversely , let f : M+ X be a hefeditarily quotient
map that has countable frontier , with M a metric space .. Let

ErCENCx) ) = (xphxpseex,all) o Ler (G

0 me N be a neigh-

borhood base at X and let
X,n - X,N
B £CC ) |
Again an argument as in theorem 1 shows that the families (B;’n)meN

are as required . 0O

G

A quotient map between a metric space and a qﬁasi—first—

countable space does not have to have/éountable frontier . 1In fact,

in a metric space , as far as neighborhoods are concerned , compact
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sets and points behave the same way ( we established previously tha
compabt subsets have countable character in metric spaces ) , and
-Hencg ; one sees easily that in the second part of the proof aboveq
l"countable‘frontier" could be replaced by 'o-compact frontier"
(that is fr(f_l( x ) ) is o—cqmbact for each x ¢ X ) . Hence , we

also have

Theorem 2' : The quasi-first-countable spaces are precisely the

images of metric spaces by maps that are hereditarily quotient and,

havé g-compact frontier

Still , é quotient map between a metric space and a
quaSi-fir;E—countable space need not héve o—;oﬁpéct frontier : for
example , take X to be a metric;pace , M(X) to be thg disjoint
“union of uncéuntably many copiii of X. and f to be thé natural
map of M(X) onto ‘X ( mapping“points onto themsélVes) ; However,
wevdo have a result in that difection for quotients that do not

‘involve too mény identifications . - Namely , let us called a

quotient map f,: Y > X a "nice quotient" if for any x € X.there

is a neighborhood ,V. of x in X such thét x 1is the only point

of V. with an inverse image of possibly more than one point,that is

the elements x of X for which f—l(vx') “contains more than one

point form a relatively discrete subspace of X . Then vwe have

the following

Al

, ' > .
Theorem 3 : Let f : M > X be a "mice quotient map" of a metric



space onto a quasi-first-countable space . Then f is hereditarily

quotient and has g -compact frontier

Proof : The map f is hereditarily quotient (by theorem 2 of Chap-
ter II ) since X 1is Hausdorff and Fréchet . Let‘x e X be shch,that
f 7( x ) contains more than one element . .-We want to show that

£7°( x ) has o-compact frontier

Let (B;)m'e N _be the families provided by quasi-first-

' . n
countability at - x ; we may assume .that Bmk: V for eachn , me N

For each y ¢ fr(f—l(-x ) ) , we can find a sequence (yn)n e N in

M J'f—l( x ) such that

- yn, >y and
=~ for some no EVN s BZF contains a tail of

(f(yn) )h e N - for all me N

Indeed , let (Zn)n e N be any séqueﬁce of M- f ~ converging .

to y ; then (f(zn) )n e N converges tp X ; now there exists n e N

such that , for'ail me N,
n : -
BnP n {f(zn)fn e N} # ¢ |
For otherwise , for each n ¢ N we cquld find c(n) € N such that

n - . ,
| Bo(n) n (zn),n e N} = ¢
ad then N %:(n) would be a neighbo%hood o%ﬁ'x not meeting

(£Gz) ),

e N contradicting the fact that, (f(zn) )n c N ;onvergif

to x . Hence there does exist o such that -
- O
n
Bmo n {f(zn}-;ng N} # ¢
for all me N ; using this and the fact that the ng 's are decreasing .

one can construct by induction a subsequence (z ) such that
o co(n)'ne N ,

¢
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A

. n
. B
£« zo(n)) € m
Let Yo T % () Then : (yn)n e N has the required property,

f

. n !
that is each BEP contains a tail of (f(yn))n c N

©

Now , we associate each ¥y e. fr(f—l( x )) (via this

sequence (yn)n e N ) to the ny obtained és above . Let Ano o
be the set of .y 's which are associated to n, . We claim that K;
. ' " [e]
is compact , which will show that fr(f l( X 3 ) 1is o-compact
'Since M 1is metric , it suffices to show @hat each
sequence imr An has an accumulation point in fr(fnl( x )) . Let
JP © ' P P
( )p . N.“be a sequence in An . For each y" , let (yn)n e N

: o
be the sequence considered above , so -that

p P
- p) >y and \

n : . P .
- B
e conta;ns a tail of (f(yn))n e N

for any m .

: m
d f
, we can‘vind z € (yn)n£

Since B0 contains a tail of (f(ym))
m n‘.n e N

N
such that ‘

L and
m

- d(ym,zm) <

n
- f(zm) e BoO

such that (f(zm))m e

converges -
e N g .

We then get a.sequence (zm)m N

to - x since: any neighborhOOd of x contains Bgo for some m and

. . L S ' '
each Bpo c9nta1ns-all-f(zm) for m=> p . Siéce (f(zm))m__E N con

verges to x and f is hereditarily quotient , replacing (f(zm))mSN

by a subsequence if necessary , we'can say that there is a sequence

1.

(y.) N in M and a point y e f “( x ) such that

nne
TV T Y gpand

- £y = £(z)



Now , since the*f(zm) 's are in the sets B$D and hence in V ,

then we must have =z for all ne N ; but » y; hence
Yn n Yn

z + y . Furthermore , we have d(zp,yp) < %—; hence we can conclude

that y° - y . Therefore the sequence (yp)p e N

point in fr(f—l( x ) ) and this proves that K; is compact . O
' o)

" We deduce from theorem 3 a result obtained before
. . - |
Corollary : QA is a quotient of a countable metric space if and

only if 4 1is an FO subset of R

Proof : If A 1is an F0 subset of R , then A is o=~compact ; hence

: : ' *
the quotient map of Q onto QA has o-compact frontier and since

A

it is hereditarily quotient , then by theorem-2' of this chapter 3
Q: is quasi—fi;st—coﬁntable . By theorem 1 , Q: is a quotient of
a eoqntable metric space . i

' anversely , if Q: is a quotignt of a countable metric
space , then it is alsp a hereditary quotient (s;ncé QZ is Fréchet)‘
and by theorem.l , Q: is quasi-first-countable ; Ncw.by'theorem 3,

the quotient map of QA onto QA must have o-compact frontier and

since fr(f_l( e ) ) =Ax {0}, then A must be o-compact .  []

3. weakly—quasi—first—countable spaces

We identified in theorem 1 the countable sequential spaces

that are hereditarily quoﬁient images oi countable metric spaces

has an accumulation
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3

7
"
'

We want to do the same now for countable sequential spaces that are -

simply quotients of countable metric spaces
Definition : "A space X 1is said to be weakly-quasi-first-countable .
if and only if for all x ¢ X , there exist countably many countable

fgmilies of decreasing subsets éoncaining .x such thaﬁ a set 0O is
open if and only if for any x € O , O contains a me;ber of-egch family
associated to x

A straightforward argumént shows that every weakly-quasi- —
first-countable $pace is sequential since if a set contains a tail
of any_sequénce converging to one of icé points , it must also con-"
’ : ‘ , i
tains a member of, eac. amily associated ;o its poincs ; butxweakly;
quasi-first-countable sbaées need ﬁoﬁ be‘Fréche; és‘is shown by the
space given in the beginﬁing of Chapter II as anvexample of “a non-
Fréchet sgqﬁential space

Weak.quasi—first—countability is the property we wefe lookf
ingvfor in order to characterize internally by their topologies the

quotients of countable metric spaces

Theorem 4 : A countable space X 18 a quotient of a countable

metric space if and only if it is weakly-quasi-first-countable

14

-

Proof : The proof can be copied on the proof of theorem 1 doing

the few necessary changes

46
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The weakly-quasi-first-countable spaces can be characterized
as was done for quasi-first-countable spaces and the proof of theorem 2

can easily be adapted to prove thé following theorem

Theorém 5 : The weakly-quasi-first-countable spaces are precisely
the images of metric spaces by quotient maps with countable frontier

(or g—compact frontier as in theorem 2' )

We have definedvthe notion of wéak quasi—first—countabilicy
in order to characterize internally the guotients of ‘countable metric
spaces and in dbing so , we were forced to define it as a global pro-
perty instead of as a:local property as for quasi;first—countability
(that is we could not find a way to define.it at a point in such a
way that 1f it is satisfied af eadh point , then it 1s equivalent
to ﬁhe definitipn we gave ) . This réfyécﬁs the fact that{”sequential-
ness'" is defined as a glbbai property while "Fréchetness' gan’be con-
sidered a loéal-property ( we could say thaﬁ X 4is "Fréchet at # "

{ e A -+ there eiiscs a‘sequencé in A converging to x , and‘
X is Fréchet if it is so at each off its points ) .V The différence
between.the definitions of weak quasi-first-countability and quasi-
first-countability is the exact translation of the difference between
sequentilal ,spaces and quotient ﬁaps on one hand»,.Fréchet spaces and
hereditarily quotient maps on the other hand . ‘It is the difference
between topologies given in terms of open. sets and.topologies given

in terms of neighborhoods .. Indeed , quotient maps are defined by
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1"

" f—l( U ) is open if and only if U s open

while hereditarily quotient maps can be equi ently defined by

N
[

"f—l( U ) is a neighborhood of f—l( x ) if and

only if U is a neighborhood of x

Similarly , séquential spaces are defined by

"sequentially open sets are open "

o

while Fréchet spaces , as the following proposition shows , could
be eqdivalently defined by
"sequential neighborhoods of x are neighborhoods of x " ,

where one defines a sequential neighborhood of x 1in a natural way

as a set containing a tail of each of the sequences converging to x

Proposition : X is Fréchet if and only if sequential neighborhoods

of x are neighborhoods of x , for any x z X

Proof : Suppose X 1s Fréchet ; let V be a sequential neighborhood
of x . We claim that V 1is a neighborhood of x . Let (Ba)a e A
.be a neighborhood base at x'. If V 1is not a neighborhood of x ,

then for any a € A , there exists X, such that

- X e B but
) a a
\ ' -X g Vv
, .
—.—_Consider the set {xa;q e A} . Clearly ,

x € {x N a.AF
a .
but no sequence of that set converges to x since such a sequence
would have to have a tail in V . This contradicts the fact that F

ig Fréchet . Hence 'V 1is a neighborhood of x
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Conversely , suppose X is not Fréchet . Then there
exists some.subset A ¢ X and a point x € X such that x ¢ A but‘no
sequence of A converges to x . Then (X -A)u {x} is a
sequeﬁtial ncighborhood‘of x ; however [( X - A ) u {x}] n A=29¢
and hence , since x € A, then.( X - A) Ub{x}_ris’nqt a neighbor—‘

hood of x

Finally , we obtain as a corollary to theorems 2 and 5

Corollary : X 1is quasi-first-countable if and only if X is weakly-

quaéi—first—countable and Fxéchet

Proof : Necessity is-clear . For sufficiency , let X be Fréchet
Y

and weakly-quasi-first-countable . By theorem 5 , X is a quotient

“of some metric space by a map with countable frontier . Now , since

X is Fréchet , this map must be hereditarily quotient , and then by

theorem 2 , X must be quasi-first-countable '.
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